Java Language
Features

With Modules, Streams, Threads, 1/0,
and Lambda Expressions

Second Edition

Kishori Sharan

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

Java Language Features

With Modules, Streams, Threads, 1/0,
and Lambda Expressions

Second Edition

Kishori Sharan

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

Java Language Features:With Modules, Streams, Threads, I/0, and Lambda Expressions

Kishori Sharan
Montgomery, Alabama, USA

ISBN-13 (pbk): 978-1-4842-3347-4 ISBN-13 (electronic): 978-1-4842-3348-1
https://doi.org/10.1007/978-1-4842-3348-1

Library of Congress Control Number: 2018932349
Copyright © 2018 by Kishori Sharan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484233474. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3348-1
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com
http://www.apress.com/bulk-sales
www.apress.com/9781484233474
http://www.apress.com/source-code
http://www.allitebooks.org

Contents

About the AULNOKcccusseemmssanmmsssnnmssssnssssnnssssnnssssnsssssnnssssnsssssnnssssnnssssnnssssnnnsssnnnsssns Xix
About the Technical REVIEWErSccuusseemmmsssssnnsmsssssnnssssssssssssssssssssssssnnsnssssssnsnsssssnns XXi
Acknowledgmentsccccuusenmmmsssnnnnesssssnnssssssnsssssssssnnssssssnsnssssssnnnssssssnnnsssssnnnnesssnnns xxiii
L1 L1 T1 L T] | XXV
Chapter 1: Annotations.........ccccuinemmmmnisenmnmmsssnmmnsssnmmssss s —————————— 1
What Are ANNOTALIONS?cceeeerccecrere s 1
Declaring an AnNotation TYPE.......ccocvcrcrcrcrcr s s 4
Restrictions on ANNOtation TYPEScccucceeerriernniiesnsese e sns e snesnnnens 7
LTSy ([0 110 I OO 7
LTSy ([0 110 72O 8
RESIHICHION #3 ...t p e e p R e e R R e e e s e nes 8
LTSy ([0 110 I R 9
RESIHICHION #5 ...t s e e p R e ne bR e e e R e e e s e s s 9
RESIHICHION H6c.evveeecrericesesi e s e e e R e e s e e s e e e pn s s 9
Default Value of an Annotation Element ... 9
Annotation Type and ItS INSTANCES.........ccceeeeererere e snenne e 10
USING ANNOTALIONSccciueieeiicrine e n s sr s sn s nnenn s 11
PrIMITIVE TYPES wouvvreeeeerirreesi sttt se s s e s ne s e s e e e s e s 12
SEIING TYPES c.uerrreueiresree s e e e e s s e e e R e e R e e e e e R e Re e e e e R e e e e R e e e e nrnnn s 12

ClASS TYPES ..vuveueerrrresesersssesesesessesesessesesesesss e e ssssse e e s s ese e sesssse e e s e s se e e s e s R e se e s e e R e e e nenRe e e e s s e ne e e nsnnn s 13

310 T ST 14
ANNOTALION TYPE ... se e e s e s Re e e b e s e e e s e nn e e nnns 16

Array Type Annotation EIEMENT............oeeeeircecee e 16

iii

vww allitebooks.conl

http://www.allitebooks.org

iv

CONTENTS

No Null Value in an AnNotationccocvvrrersersenser s 17
Shorthand Annotation SYNtaX..........ccccevvrirrnrnnrrr e e 17
Marker ANNOtation TYPES......cccveerrerrerserrerserses s sn s sn s sn s snenn e nnenanas 19
Meta-Annotation TYPES......cccucviernrerenriiess e r e e 19
The Target ANNOTAtION TYPE......vevecceererreererirree e nennns 20
The Retention ANNOTAtION TYPEcocevreeeeerirerecrerire e nnns 23
The Inherited ANNOTALION TYPEccoveereeeeeririreerer e 24
The Documented ANNOAtION TYPEcovverreerec e e 24
The Repeatable ANNOTAtIoN TYPE ...ccovvveeeererereeririre e 25
Commonly Used Standard AnNotations...........ccoceverereeneresnessessee s s ses s sessessessesssssens 26
DEPrECALING APIS ...ttt sa s e s ae e s s e sesae e e s s e e e e e e ae e e R e neeaenae e ae e naenenaeanaees 27
Suppressing Named Compile-Time WarNiNgSccceceereriererreresrersesesesesessssessssessssessessssessssessesessesssses 38
LT o [T T =T (oo OO 39
Declaring FUNCHIONAI INTEITACESccoveereeerrerererererereres e ssesessesessesessessssessesessssessesessesassessesesssssssesasaens 40
ANNOtating PACKAQGES.......cccceeuerrerrerere e rse e ssesse s ssesaesnesse s e snesnssnssrssnesnesnssnsnnennnnnns 41
ANNOtating MOUUIEScoveeirereeiree e 41
Accessing Annotations at RUNTIME...........ccoceverrrererc s e 42
Evolving ANNOtation TYPES......ccvcecercerierer s 47
Annotation Processing at Source Code LeVeL...........cccevverenrernsmsessnseseseseses s e 47
E3 1111 P2 2SS 53
Chapter 2: INner ClasSescccurrssssmmnmmssssnnnssssssnnnsesssssnnsesssssnssssssssnnsssssssnnnsssssnnnnss 57
What IS an INNEr ClaSS?..........ccceeiereereresireses s ses s sn s sns s sns e saes 57
Advantages of USiNg INNEr ClASSEScccceeerrerererrensessessessessessesssssssssssssssssssssssssssnsnns 59
TYPES Of INNEI CIASSES......coverierrrirresissesre s sn s se s sn s s sn s snesn s sns s nnis 59
MEMDBEE INNEE ClASS......cvieeeeererreeererre e ss e se s a s s et e s et esse e e e s s e e e e nsn s s 59
LOCAI INNEE CIASScueeereeueeresreeesesseesesessesesesesssseesesssss e sesss s e e sssss s e sssasssessssssesssssessnsssssessnsssssessnes 61
ANONYMOUS INNEE ClASScueeereeereriricesesiriee e se e e nnns 65
A static Member Class Is Not an Inner Class.........c.ccueeerrerenrnesnsesessssessessssessssessessssens 68
Creating Objects Of INNEr CIASSESccceeerrererrererrerre e e e sse e ssessessesnesnssnssnssnssnssnnnas 70

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Accessing Enclosing Class MEMDErs ... 73
Restrictions on Accessing Local Variablesc.ccocvververrervenrnnensenses s ses e e sessensens 80
Inner Class and INNEritanCe..........c.ccoriicrn e 81
No static Members in an INNEr ClASSccccevverenrrernnesesnsesssssesss s sssssssens 83
Generated Class Files for INNEr CIASSESccoveererrenerersenesesesesesesesessesesessesesessssesenns 84
Inner Classes and the Compiler MAQICcccoceeererereseseese e sse e e sessnssnssns s snas 85
Closures and CallDACKScceuserrerersmrnssssesssssssessssesssssssssssssssssssssssesssssssssssssssssssssssssens 89
Defining Inner Classes in static CONtextS........cccvvvvrirrrrnsn s 91
31T RN 91
Chapter 3: Reflection........ccccccmiinssmmmnnnssssnnninsssssnnmmssssnnessssssssssssssssesssssssssssssnnnnss 97
What IS REfIECHIONTceeeee e s 97
Reflection in JAVA...........cocerenerre s 98
LOAAING @ CIASSccueeveerierreererese e s se s sas s n e sn s nn s nne e 99
USING ClaSS LItEIAIScevveereeereererererereeessesessesesaesessesassessesessesessessssessssessesesssssssessssesassessensssesssassansens 99
Using the Object::getClass() MEINOUcccccverererererrerer s reree e esaesessesesaesassesassesasnenes 100
Using the Class::forName() MEthodccoevererererrerre s ree e sesse e e s e ssesessesessesassesassesasnenes 100

[0 R T 0T o [T 103
Class Loaders in JDKB...........covnnnnniiiiissssssssssss s 103
Class Loaders in JDKI.........cocovnnnnniiiissssssssssss s 104
RefleCting 0N CIASSEScccverrerererrnnisesessesse s sn s s ss s se s snssnsnas 107
Reflecting on FIelds........cocvvvvrierierrersirsirer s se e e e sn s sn s sa s sa e snenns 112
Reflecting on EXECULADIES.........ccocercerierierersere s sn s e nne e 114
Reflecting 0n MELhOAS..........coru e e 116
Reflecting 0n CONSIIUCTIONS ..o e e p e s r s 118
Creating ODJECTS......c.ccoviererrrersere s ne s s s 120
INVOKING METhOUS ..o se e sa e sa s sa e sa e sa s sa e sn e nn e 121
ACCESSING FIBIAS ...c.veeeeeereerecrerrerre e ne e n e sr e nesn e n e n e sr s sn e nn e nnnnne s 122
v

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Deep REfIECLIONccocerererir st n e e 124
Deep Reflection Within @ MOUIE...........cccoceurieieeirircesesr e 125
Deep Reflection ACIOSS MOUUIESc.ccceerereeesererree e sa e n e 129
Deep Reflection and Unnamed MOUUIES..........cccouvueeeererenencnerinee s eens 134
Deep Reflection 0N JDK MOTUIESc.cceererueeeririeeesiresse s se s s e sessssssnens 134

RefleCting ON ArTAYScvcerierieriererer st se e e sn s sn s sn e sn s sn e sn e nnenens 136

EXPANCING QN AITAYeeeeeeeeceeecieese e sse e ssessessessessessessesssssssssssessessesnssnesssssssssssssssnsans 138

Who Should Use ReflECtiON?ccceeivernnerenrsessnssesse s se s ses e ssesnsnens 140

RS0 72 140

Chapter 4: GENEIICS wuuueerrrussssnnmrssssnnnsmssssnnnsessssnsnssssssnnnsessssnnnssssssnnnsssssnnnnsssssnnnnss 143

WHAL Ar€ GENEIICS?cveecereeererreesesssese s se s sa s ses s nens 143

Supertype-Subtype RelationShip........ccoceeeeerenrcesses s ses e 147

2T 3 0T 148

Unbounded WIldCArds ... s 149

Upper-Bounded WIldCards.........ccceeeeeererresesessesesssssessssssssssssssesssssssssssssssssssssssssssnsnns 152

Lower-Bounded WIldCardsccoeeerrerenserenmssessesssesessessesessessssesssssssessssssssssssssssssnsesns 153

Generic Methods and CONSIIUCIOrS..........ccocereerereresesesese e se e snenes 155

Type Inference in Generic Object Creationcccvcvcrcrcercercesses s 157

NO Generic EXCEPLION CIASSES.......ccccvreererrerrierrsererssesesssesesssesssessessssssesssesssssssssssssesses 160

No Generic ANONYMOUS ClASSESccvreeererreseresenesesessesss s e e sss s sss s sessessssesnes 160

GENEIICS ANU AITAYSeveeerrerrerseeressessessessessessesssssessessessessessessessessessesssssessesssssnsssnsansans 160

Runtime Class Type of Generic ODJECES........cccvvrrerrerrerrer s 161

HEap POIULIONcoeeecereses s e s sr s nn s nn s nnnnnnn 162

Varargs Methods and Heap Pollution Warningsccccceceeevevesssssssessessesssssessensenns 163

E3 1111 P2 7SS 165

Chapter 5: Lambhda EXPreSSionsccccuuseesmmssssssnsmsssssssssssssssnsssssssnsssssssnsnsssssnnnnss 169

What Is a Lambda EXPreSSion?cccceeeerveerierieeremisesesssssesssesssssssssssssssssssssssssssssssesses 169

Why Do We Need Lambda EXPreSSions?cocevcrerncnnnniesnsesesessessssessesessessssessens 171

vi

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Syntax for Lambda EXPreSSiONScoceeerererseresessessesssessssessssessessssssssssssesssssssssssssssens 173
OMItting Parameter TYPEScocoveveeeeerrrreereririee e e st s e nn s e nens 174
Declaring @ Single PArameter..........cooeceeririeenerireesesesise s s nnens 175
Declaring NO PArameEters........c.cococeerrueererenresesesessesse s esesesse s e e sssssessssssssssssssssssssssssnsnsens 175
Parameters With MOGIfIErsScovrrrrrr e 175
Declaring Body of Lambda EXPreSSiONScoceererererenmnenenenesssssesssssssssesssssesssss s sesssssssens 176

L= L0 1= 0 177011 S 176

Functional Interfaces...........coriininn s —————— 184
Using the @Functionalinterface ANNOtation ... 184
Generic Functional INTEITACE ... ———— 185
Intersection Type and Lambda EXPreSSionS..........ccvvvernereniesnsesssesesessssssessssessssessssessssesssssssessssesns 187
Commonly Used Functional INterfacesccoeruieeerirrecresesee e 188
Using the FUNCioN<T,R> INTEITACE..........coceererrrr e 188
Using the Predicate<T> INTEITACEcccvcerriericrcrrrrrr e 190
Using FUNCHONAl INTEITACESceceireecectr et p s 191

Method REfEIENCESccceeerereeireree e 196
static Method REfErENCES..........cvu i 197
Instance Method REfEIENCES ... 200
Supertype Instance Method REfErENCES..........cecererereeierirreese e 203
CONSTIUCTIOr RETEIBNCESccceceeeeeee e 205
Generic Method RETEIENCES ... 208

LEXICaAl SCOPING c.vevvereerrereereerrersersersersessessessessessessesssssssasssssassassassssssssssssssasssssasssssasssssnns 209

Variable CaptUIE.......cccc oo n e r e sr e n e sn e sn e n e sn e nn e nn e nnen s 211

JUMPS ANA EXITS...cueiirirererer sttt 214

Recursive Lambda EXPressions..........ccciverinieeniensessses s s ssss s ssssssessssssesssesnes 215

Comparing ODJECES.......coeeeeecererere e re e sr e resresr e snesnesnesnennennennennenans 216

SUMMAIY ...ttt a s e s e r s s ae e s e re e s e ne e e ne e n e nnnnnnnas 218

Chapter 6: Threadscommmmmmms s ——————— 223

What IS @ TRFEAA?........ccveeeeircrrse et sr s nn s nn s 223

Creating Threads iN JAVA..........coceeeveererenerrsee e sse e sssssessessessesessssssssasssssassasssssassnnns 226

vii

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Specifying Your Code for @ TRreadc.cceveerennserenesenensesesesse e ssesessessssesnens 228
Inheriting Your Class from the Thread Class..........ccocecerrererireneseseseseeesesessseseses e sesessssssesens 229
Implementing the RUNNADIE INTEITACEcveeeererieeerr e 229
USing @ Method REfEIENCEvcveeeerereecirirteeer e 230
A QUICK EXAMIPIE......cvrerereresssesesesesesesssesssessssssssssssssnsssssssnsssssssnsnsnsnenes 230

Using Multiple Threads in @ PrOgramccccocevereenesensesssssssssssssssssssssssssssssssssssasssssenns 231

Issues in Using Multiple TRreads.........ccoeeeeerereresesessessesssssessesssssesssssesssssssssssssssnsnns 232

Java Memory MOGEL.........ccovirrrirere e 235
ATOMUCHTY .. veveeeerereeeesese et e e e s e b e e s e R e e s e R e e e A e R e e e b e R e e e e s R e nnnn e nrans 236
VISIDIIIEY vuvvvveveevessesesessssessssnessssessssesssssssssessssesss s sssssssssessasssssasesss s basesssssssssssssssssssasessssssssasesssssssans 236
L0 [T o OO 236

Object’s Monitor and Threads Synchronization............cccceeeeevevrrenese s 237
RUIE #1 .eveeoeevereesseessseessssessssessssessssssssssesssssessssessssssssssnessssessssnsssssessssesssssnssssesssssessssmessssnssssssssannssssnnses 244
1< 7S 245

The Producer/Consumer Synchronization Problem............cccovinninrnnccnnccnennnens 250

Which Thread IS EXECULING? ..ot ses e 254

Letting @ TRread SIEEPcocvvverererreree s sae e e e e s sassnesassaesaesassaesaesaenns 255

I Will JOIn YOU iN HEAVEN........coueeeeeeceeceecrecsecse s s s s s snesnssnesnesnssnesnssnssnsnnnnns 256

Be Considerate to Others and Yieldccccvvrvrierinsnsn s ses e sesens 259

Lifecycle of @ TRreadccocevercecrcerrr e sne e ne s 259

Priority 0f @ TRFEAU........ccccerercercertr e nenn 263

Is It a Demon or @ DABMON?coecerererere e sr e s sr s sa e srssa e sn e e snesnesnenens 264

0TI =T 0T 0T S 266

Threads WOrk in @ GIOUPcceceveerreriersessessesses s s s se s e se e s e s e snssnssnssnssnssnssnssnssnnnns 270

Volatile VAriabIESocceeeeiererieiesesesse e sse e sse s sse s sse e s sns e sss s ssessssessssesnes 271

Stopping, Suspending, and Resuming Threadsccceevvvernserennsesssesesessessenenaens 273

SPIN-Wait HINES ..o e 277

Handling an Uncaught Exception in @ Thread...........cccvvvvrvrvrsersensesses s sessenenns 278

Thread ConcurrenCy PACKAQES.........ccvveerrerereriessssesessssessesesessssessesessessssessessssssssnsnsens 280

viii

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

ALOMIC VariaDIES........coieetre e 280
Scalar Atomic Variable ClASSEScoccuirrrrrrrriirerssrssrssisssssss s ssssnsnas 281
ATOMIC AITAYS ClASSESvveueerrrreeseresseesesssseesesessssssesessssssesesssesssssssans 281
Atomic Field UPater CIASSES.........vrueerererreerirerreesesesse s ssss e sssssessssssssssssssssssssssesssssssens 282
Atomic Compound Variable CIaSSESouuerrreerirerreesesessssseses s sesesss s sesessssssssessnns 282

EXPICIt LOCKS ...cuveeresrisccccine s ss s s s 283

B3 LLLE L (0] 17T TSRS 288
SBMAPNOIES. ... ccveeeiertrerie s e e e e b e e b e e s R e e e Re e e Re R e e e R e e e Re e e Re e e aeee e e eRe e eRe e e aenenanas 289
BaITIBIS ... ——————————— 292
PRASEIS....cocet b bbb 295
LALCNES ... s 304
EXCRANQETS e e e e e s e b e e R e Re e b b e Re e e sesRe e e eesma e e e s 306

The Executor FrameworK ... 310
RESUIT-BEAINNG TASKS.....ccveeecrerrrreeresesseesesessssesesesss s seses s e e e s e sesss s s e sssssssssssssssssssssssssssssansnsens 315
SCNEAUNNG @ TASK.....cviveeerrrieeeririe e s e s e s e e p e s 318
Handling Uncaught Exceptions in @ TaSK EXECULIONcccceererueienerereeenesesisese s sesseeenens 321
Executor’s COMPIETION SEIVICEccoiieeerereeeririee e 322

The Fork/Join FrameWOrKccouvneremmnnnsss s ssssssssens 325
Steps in Using the FOrk/Join FrameWOIKccccccvrcevrererererereseresessssessesessesessesessessssessssesssssssesassens 326
A FOrk/Join EXAMPIE.......ccceverererereereresereresesessessesessesessesassesassessesessssassessssessssesssssssessssessssesssnsnsensnnes 328

Thread-Local Variables............co s 330

Setting Stack Size of @ Threadcccceovceriirienncr s 333

E3 1111 P2 7SS 334

Chapter 7: Input/Qutput........cccciiemmmmmisssnnnmmmsssssnmmssssssnmmsssssnmsssssssesssssnsessssnnnns 337

What IS INPUL/OULPUL? ... en s 337

Working With Fil€S........ccccveicrircrsir s 338
Creating @ File ODJECT ..o 338
Knowing the Current Working Dir€CIOryccovcvrnninnicrrcrrcse s sss e s 339
Checking for @ File’s EXISTENCE.........ccceriiieriricrs s s e sr s 340
Which Path Do You Want t0 GO?........c.covvrrrnnnnnsnssssssssssssssssssssssssssss s sssssssssssenes 340

ix

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Creating, Deleting, and Renaming FilES........ccccvvrerrrererenereniersesersesessesessesessessssessesesssssssssassessssessssenes 342
Working with File ARFDULESccveceece e 346
0])V T T 1 346
KNowing the Size 0f @ FilEcccveeveierererersrere s ses e e sse e se e e sas e saesesassasassassesassesasnenes 346
Listing DireCtorieS @nd FIlEScciveiiriiirirerene e sss s s ssesasss s s ss s s st sa s e e e s sae s 347
The Decorator Pattern ... 350
INPUL/OULPUL STrEAMSc.veeee vt e e n e sa e s s s ae e sn e s e e nnesanennenns 358
Reading from a File USing an INPUt STream.........ccceeeerreienenennesesesisssesesssss s sesessssesenens 359
Writing Data to a File Using an Qutput Stream..........cooeceevrnencnsnssesesss s sesessns 363
Input Stream Meets the Decorator Pattern ... 366
BUfferediNPUESIFEAMcoviiii s ———— 369
PUShDACKINPUESIIEAMceviiiciriniiss bbb 370
Output Stream Meets the Decorator Pattern...........ocoeeeeeceecsc s 371
PLINESITAM......ci s 373
USING PIPBS....ceieeeercrreireres e se s sn s s s n s snenn s ene e sne e nns 375
Reading and Writing Primitive Data TYPesS.......c.ccuevrrrrsessessessessessesssssessessessessssssssesnenns 378
Object Seri@lizationcceeeeeeecerere e n e nenen 380
SerAliZING ODJECIScveeeereeeere et e a e 381
DeSErialiZiNg ODJECEScveueeeereieeerire et ne e 383
Externalizable Object Serialization ... 385
Serializing transient Fields.........ccccovieeeiicernicresrese e 389
Advanced Object Serialization.............coeevieenieresniese s 389
Writing an Object Multiple Times 10 @ STream ... enen 389
Class Evolution and Object Serializationccccevverrierniersrere s se e sassesassessesenes 393
StOPPING SEHANIZALION........ceveeeeeerererererre e sa e ae e s e e s aesesaesassesae e saenesaenenaesanaens 394
Readers and WILErS.........ocviricirniss s s s s 395
Custom Input/Output SIrEAMS........cccvieeriirrerer e rn e snene s 399
Random ACCESS FilESccvvervirirririr e s s s s s 402
Copying the Contents 0f @ File..........cccoeeeeeeenececececece e 404

Standard Input/OutpU/Error STrEamSccccvcereerreerierreerserseesse s e s e sseseessesssessesssessenns 405

CONTENTS

Console and SCANNEN CIASSEScccvvererrmrrerrsserresereressessesessessssesss s ssesssssssssssssssssens 410
StringTokenizer and StreamTOKENIZErccvevverrerrerrerrer s sesseeees 412
L1] 11T SR 415
Chapter 8: Working with Archive Files.......c.cccenmmmmsmmmmmsssssnnmmssssssnsmsssssssssssssnsns 419
What IS an Archive File?..........ciisn e 419
Data CoOMPIESSIONccecererirerrer sttt e s s se e e e sn e sr e sn e sn e nn e nnesnennenens 419
(0 T= T 1 T 420
Compressing BYLE AITAYScccceeerererersessessessessessessessnsans 422
Working with ZIP File FOrmMatcccoceviieiennesesssessssesse s sss s ssessssesssssssessssssssssssens 427
Creating ZIP FIlES.......covurueeeereririeesesisse et e e e se s se e ssss e e ssss s sessssessssssssassnsnnns 427
Reading the Contents 0f ZIP FilES........cccorriiererreeserriseese e eens 431
Working with the GZIP File FOormat..........ccccvvrvrvrinrrrrsr s 434
Working with the JAR File FOrmat...........ccccoorirircscscscs s 435
Creating @ JAR FIl@ccouieieerecreie et sa e r e s b e n e 437
UPAAtiNg @ JAR FIE ...ttt 438
INAEXING @ JAR FilE ...ttt r e e e e e 438
Extracting an Entry from @ JAR File ...t 439
Listing the Contents of @ JAR File.........coreirrncrcsrcsnerr s 439
The ManIfEST File ..ot 439
Sealing a Package in @ JAR File ...t sns e e snsnens 441
USING the JAR APL......oiee ettt 442
Accessing Resources from @ JAR File.......ccccvevererrnesnesnsses e sesses e s e sessessassenss 446
SUMIMAIY ...eeeetetecre e srssn e sn s e s n e r s r e sn e sr s e e r s nnenn e nnennennennennennenrennennennannannan 447
Chapter 9: New Input/Output........ccccviiemmnmmmssnsnmmssssssnmsssssssnsssssssssssssssnnssssssnnnnes 449
WRAL IS NIO? ...t se s p s p s 449
BUFTBIS ..ttt 450
Reading from and Writing to @ Buffer..........ccccooerirrrncnrccr e 453
Read-0nly BUfEISccccerceririersirser st sn s sn s sn s sn s sn s nnsnnenn e 460
Different Views 0of @ BUFFEXccucceeeiennsesesnse s snsn s 461

xi

CONTENTS

(0 F T T -) TS 462
0T g T3 47
Reading/Writing FileSc.cvcreerceriersersires s sn s e sn s snssnssnesnanns 473
Memory-Mapped File /0. s snssesnes 477
o LN 0T (o SRR 478
Copying the Contents of @ File...........cccvinnnnnn s 480
Knowing the Byte Order of @ Maching.........c.ccccuceenierennsensnsssesnse e 481
Byte Buffer and It Byt Order..........ccoveecrriencnnescreseseseseese s s snssenens 482
1111 112 SRS 483
Chapter 10: New Input/OQutput 2........cocccmmmnnnemnmnnmsesnmmmsssnmmsssssssssssssesssnn 487
What Is New INPUt/OULPUL 27 ...t 487
Working with @ File SYStem..........ccvrnr s 488
Working With Paths ..o s s sn s s snnes 490
L0 L T TR T = 0 = 491
Accessing Components 0f @ Path..........cccccvvievriresere s sse s e s sas e saesesaenennes 491
00 1 0 LT L1 493
Normalizing, Resolving, and Relativizing Paths............ccccvcevrierrrerenererre e sessesessesessenes 495
SYMDONC LINKSeeeereeeereeeresesesesesesessesessesessesessesassessesessssesssssssessssessssesssssssessssessssessssessenssssnsssesansens 497
Different FOrms of @ Path ... 497
Performing File Operations on @ Path ... 499
Creating NEW FileS ... e b s e e n e e 499
DEIEBHING FIlES ... et e e e p e e e a e R 500
Checking for EXiSteNCe 0f @ File ..o 501
Copying and MOVING FIlES.......couciiierireeerireeese e 501
Commonly Used File ARFDULES.........coieerereeerireee e 503
Probing the Content Type of @ File........ooureeerccecrrrr s 504
Reading the Contents 0f @ File.......c.ccoiiierrcnccrr e 504
WHEING 10 @ Fl .ttt s a e e s p s b p e e 507
Random ACCESS 10 @ Fileccuuei s ———— 508

xii

CONTENTS

Traversing @ File TrEccoeevveeercresese st s n s 511
MatChing Pathsccoeeeriricere s sa e sn e sa s sa e sa e sa s sn e sn e sa e 516
Managing File ALHDULEScoceeceeceee e 517
Checking for a File Attribute View SUPPOrt.........ccoiiecrcrrcrr e 518
Reading and Updating File ARFDULESc.oeoeiricceecece e 520
Managing the OWNEr 0f @ Fle ..o 524
Managing ACL File PErMISSIONSccccevrerrniereierssess s sse s ses s s s ssssessssesssssssessssessssenes 526
Managing POSIX File PErMISSIONS........cccveririernieresirs s sre e ss e s ses s sas e sss s 529
Watching a Directory for Modifications...........c.cceveervennncrennienssssessse e 532
Creating @ WatCh SEIVICEcoveceerreecrir et 533
Registering the Directory with the WatCh SErviCe ... 533
Retrieving a WatchKey from the Watch Service QUEUE ... 533
ProCessing the EVENTS ..ot e sss s nsnnnnns 534
Resetting the WatchKey after Processing EVENTS..........coeocerereienereneesesissesesesessese e sesssseeens 534
Closing the WatCh SEIVICEceceeerieeerireecs et 534
ASYNCRrONOUS File 1/0.....ccucieeceereeceererieree s sae s saesa s saesnssnssn e e sa s sa e saesae s 536
BT 111 12 SRS 946
Chapter 11: Garbage Collection.........ccucccmmmssssennmmssssnnnsmssssssnssssssssssssssssnssssssnnnns 549
What Is Garbage COlleCtion?ccocvvrierserserser s 549
Memory AlIOCAION iN JAVAccvceereieierrneresn e sna e enes 551
Garbage ColleCtion iN JAVA.........cccceeevererenereesee e see e saesessaesseseessesassasssesassassasssssnnns 552
Invoking the Garbage COIIECLONcccceeeeeeeerecre e snssnesnennnnns 553
Object FINANIZALION...........ccoeieieerrcresr e 555
Fin@lly Or FINALIZE?cocerererierer sttt se s se e e sn e sn s sn s sn s sn s sn s sn e sn e nn e 557
ODbjeCt RESUITECLION........c.ceeeeeeeeeeeecrecee e sse s e sresr e sresresrssnesnesnesnennssnennennnnans 559
State of @ ODJECT........ccceeereerrrere e ne s 561
L L =T L 223 (= =] T £ 562
Accessing and Clearing a Referent’s Referencecccoceeeeececececscesceecessesses s 566

xiii

CONTENTS

Using the SOftReference Class.........ccooeverererercse e ses e e sneenns 569
Using the ReferenceQueue Classccouueerereneiesensessesssse s se s ssssessessssessssessenns 573
Using the WeakReference Class...........couinnnnniennsnssisse s s 574
Using the PhantomReference Classcccevverenieressessessssessssssessssessesssessssesssssssens 578
Using the Cleaner CIASScoouererrrerniesesesesse s sss s s s sssssssessssesssssssenns 581
SUMIMAIY ...ttt s e sr s sn s n e r s r s e r e e e e s s e s s nneen e s e nn e e e s e e e nnennnsnennennnnnnnan 585
Chapter 12: ColleCtionsccccrrusssesnmmssssnsnmsssssssnssssssnssssssssnnsssssssssnsssssnnnssssssnnnnss 587
What IS @ COlIECHON?........coceeercerr et 587
Need for a Collection FrameWOrK...........cccvverrersersersessenses s s s ses e sessesses e sesssssnssssnnns 589
Architecture of the Collection FrameworkK..........cccouceeerrennsesesensesssesesessessesesessssesnes 590
The Collection<E> INtErfacec.ccoccvvrircersrser s 591
Methods for BasiC Operationscccecierniernnenesess s sss e s ses e sss e ssssens 591
Methods for Bulk OPerations.........ccccceeiernicnnscrs s s sns e s 592
Methods for Aggregate OPErations...........coceoceererreenerirsecre s 592
Methods for Array OPErations...........ccocerereienirireesere e 593
Methods for Comparison OPerations..........cccucceercrennenenesners s se e s sss s 593
A QUICK EXAMPIE ...t e s ae e sse e e sas e sae e sae e s sas e saesss e sae e saesassesans 593
Traversing Elements in COIECHIONSc.ccocvververrervennerser s 594
USING @N HEIALOT ... 595
USING @ FOr-BACH LOOP......cceecrerereseeesesese e 598
Using the fOrEach() METNOM ... 599
Using Different Types of COlIECHONS........ccceeeerecece et nns 600
WOPKING WIth SEISc.ciueeicirerirere s e e s r e e s b p e e 600
WOrKING WIth LISESc.coeieiiriierircrie e s e s s a e s st a e e 613
WOrKing With QUEUES.......cceeererirerie e e bbb e e np e e p e n e nnas 618
WOrKing With IMAPS.......c.coiieeiirircre e s s a s b e ne e b p e e ne e nnis 641
Applying Algorithms t0 COIIECLIONS.........ccvcereriererrrere e 655
SOMING @ LISE ... e a e e s e e p e 655
SEANCHING @ LiST.....cceovieeeeeirieeseresie st s e e s e e s s s 656
Shuffling, Reversing, Swapping, and Rotating @ LiStccccovrriennnnenerirrese s 657

xiv

CONTENTS

Creating Different Views of @ COlECHON...........coeeirienrrirerrccr s 659
Read-0nly Views 0f COIECHONSccoueeeererieeerisieeeseris e 659
Synchronized View 0f @ COlECHION...........ccoeereeeceerces e 660
Checked COIIECLIONS ... 661

Creating Empty COlIECHIONScoeveereerercrererre e see e e e sn e sessae e e snssnssaenns 662

Creating Singleton COIIECLIONScccceeeeerererrece e e snesnesresnesnesnssnesrenns 662

Understanding Hash-Based COlIECHIONSccoverernnenennssesssssse s sesse s 663

E3 U112 7SS 668

Chapter 13: Streams.......cccuemmminnsemnmmmsssmmmssssnmss s ———————————— 675

What Are STreamS?.......cocrrri s 675
Streams Have NO STOrAQE........cceverererereeeree s reseraserse e ssesessesessesassesas e saesessessssesassesassessensssssansenansens 676
INFINITE STEAMS ...t ———————————— 676
Internal Iteration vs. External REration ... 676
Imperative VS. FUNCHIONALcceoveiererererte e seesesseses e sss e ssesessesessesassesassessesessssessssassesassesssnenes 678
SIrEaM OPEIAtIONS......cceveereerererererereree e rre s e res e ras e s se e saesesaesesserasaesaesesae e sae s saesasserasnesaenesaenansenanaens 678
Ordered STrBAMScuiuvcerirrisieses s 680
Streams Are NOt REUSADIE..........ouiririirii s 680
Architecture of the Streams APl ... ————— 680

A QUICK EXAMPIE ... se s e sa s s ss s sne e s s sas e s 682

Creating StrEa@mS..........coccereierrere e s 686
SIreams frOM VAIUES ..o 686
EMPLY STTEAMS ...t s e e e e pe e n e 689
Streams frOm FUNCHIONScvuiuieieiicice s 689
SIIEAMS TrOM AITAYS.....cuceeereeesereriee e s e e se e e s e e e e s e e e e pn s s 694
Streams from COIECHONSccucuieiiececc s 695
STrEAMS TTOM FIlES ..o n s 695
Streams from Other SOUICEScu e 697

Representing an Optional Valuecccocvververiencersen s seesenens 698

Applying Operations t0 STreams.........ccccceeeerecccccese e 703
Debugging a Stream PIPEliNe ... 704
Applying the FOrEach Operation ... s 705

CONTENTS

Applying the Map OPErationcccecveverererierrrere s s sas e sae e sae e saesasaesa e e sae e saenenaes 706

L= (=T L30T =T 14 708

Applying the Filter OPEration........ccccccveveriereriereerereseresesesssessssessssessesassessssessssesssssssessssessssessssssssssnes 710

Applying the RedUCE OPEIAtiONccceverevererieiere e s e rae e sa e sas e sae e sae e aesasaesassesaeesaensnnes 713
Collecting Data USing COlIECIONSccceeueereererrecrecre e sse s sne s s e snesnesnssnssnesnenns 721
Collecting Summary StatiStiCScocvrerererrrrrr e 725
Collecting Data in MapScccovereririernsese e sne s 727
Joining Strings Using COlIECIOrScccvcrirsrsrsercires e 729
Grouping DALcc.eveeeicree e e a e na e nn e 730
Partitioning Data..........c.ccocrrrirsnirss s 734
Adapting the Collector RESUISccceeeeeeeerere et e 735
Finding and Matching in STreamscccvvrvrnninnr s 739
Parallel SIrEAMScccevrecrereirre s 740
1111 112 SRS 742
Chapter 14: Implementing ServiCescccvummsmsnmmssssnsnsssssssnssssssssnsssssssnnsssssssnnnss 747
WhaL IS @ SEIVICE?......coeiereeererise et ns s e n s 747
DiSCOVEIING SBIVICES.....cerverererserserrersessessessesses e s e s e s e s ses e s e s e s se s e s snesessassassassaesaesnnnnnns 749
Providing Service Implementations...........cccvcvcrcrcrsscs s 750
Defining the Service INterface..........c.ccueerirenniennssesr s 752
Obtaining Service Provider INSTANCESccccveverirercrr s seeens 752
Defining the SErvICe.......cciiirircr s e 756
Defining SErviCe ProViders..........ccoicieensesesssesssssssesssse s sssses s s ssessssessesesssssssssnes 758

Defining a Default Prime Service ProVidercoc oo 758

Defining a Faster Prime Service PrOVIAET ...t 760

Defining a Probable Prime Service ProViter ... 761
Testing the Prime SErVICeccoucveeicernneiesrse e se s e 763
Testing Prime Service in Legacy MOdeccocceevereencresniess e s e sessesensens 767
1111 11 SRS 769

xvi

CONTENTS

Chapter 15: The Module APcccccmmmminmmmmmsss 17 1

What IS the Module API?..........or s s 771
Representing MOUIESc.cecerereersersrir s snenns 773
DesCribing MOAUIES..........cvcerierrererrerser s se e e sn e sn s sn e sn e sa e sn e sn e nnenens 773
Representing Module StatemeNtsccccvecerererer e se e sa e e sae s 774
Representing @ MOAUIE VEISIONccccererererrereereresereesessesesesessessesessesessessssessssessssessssessssessesassesssnenes 776
Other Properties 0f MOAUIES........cccoeeerererertrerterereeserereseres e ressesaesessesessesassesassessesessssesassassesassesssnenes 777
Knowing Module BaSiC INTOcccvererererererereeseree e reesessesesesessessesessesessesassessssessssessssessssassesassessenenes 778
QUETYING MOTUIEScovveeiriecrire et 781
UPdating MOTUIESooueeeeeeereerecreree e sse s ssesaessesaesresne s e sr e snesaesnesnesnssnesnesrnnans 783
Accessing Module BESOUICESccerereerersersersessesssssssssssssssssssssssssssssssssssssassssssssassssses 786
Accessing Resources Before JDKO..........cccveererererereneresesereesersesessssessessssessssessssesssssssessssesssnesssnssaes 786
Accessing ReSOUICES iN DKccceeererererecereerere s seseressessesessesessesassesasesassessssessessssessenesssnssaes 790
Annotation on ModUIES..........coierrriinin e ——————— 803
Working with Module LAYEIS........ccccvcrverierierrerser e se s sss s s e sns s s s snnns 805
FINGING MOUUIES ...ttt se e s s e e se e e 807
Reading Module CONTENTS..........ccceeerereeririrree s a e ne s nens 809
Creating CoONfIGUIALIONScooureiererireecr e se s a e n e 811
Creating MOUUIE LAYETS........cocvureierererreesesesressesessssssesesssss e e s seesessssesssssessssssssssssssssssssssssssssssanssnsns 813
E3 1111 1P 7SS 821
Chapter 16: Breaking Module Encapsulationcccccuneemmmmnsssssnmmssssssnmssssssnn 825
What Is Breaking Module Encapsulation?...........ccccvvvvrvrvrvnsnsensessen e 825
Command-Line OPLioNS........ccccerererinierr e s 826
The --add-eXports OPLION ..ot sa e sr e sa e sa e nn e s 826
The --add-0pens OPLIONcece e se e e sr e e sa e a e nn e nn 827
The --add-reads OPiON ... e e e e e sa e sa e sr e sa e e sn e nn 827
The --illegal-acCcess OPLIONcccecererererrerr e e r e r e nrenas 828
AN EXAMPIE ...ttt sse s s s sa e s sn e s n e sa e s n e sn e n e sn e na e nn e nn s nn e nn e nnenn s 829
Using Manifest Attributes 0f @ JAR.........cocverererc s sse e e sassennens 837
SUMMEAY ...ttt a s e a e e e s ae e e e a e e e n e ae e s e nnnnae s 841

CONTENTS

Chapter 17: Reactive Streams......cccccerrimmmmmsssssssnnmmmsmssssssssssssssssssssssssssssssssssssns 843
What IS @ SIre@m?........cccorriic s 843
What Are Reactive SIreams?.........ccccivrniiennnensssssssssss s ssssssssssssnssens 844
The Reactive Streams APl in JDKI..........cccivnnnsssssssess s 846
Publisher-Subscriber INteractions ... ———— 846
L0 L T 10 1 1T 847
001 1T T T o =T 4 848

A QUICK EXAMIPIE....cveeeeeeereerererteereesereesessesas e sessessesesaesessesassessssessssessssessessssesassesssssssssssessssessenssssssaes 849
Creating SUDSCIIDEIScoee et s res e rae e se s sae e saesa s s e e sae e saesesaesesaesa e e sae e sae e saesanaesansesannenes 851
USING PrOCESSOIScveeeeererereeereerersesersessssessssessssessssesssssssessssessssessssessesssssssssesssssssesssssnsssssassessssessenees 856
SUMMEAIY ...ttt a s e e ae e e r e e s e a e e ae e e e nernaean 859
Chapter 18: Stack WalKingccussenmmssssnsnmmssssssnssssssssnssssssnsnsssssssnsssssssnnsssssssnnnss 861
What IS @ STACK? ... s 861
What IS STack WalKing?.........ccocreerieriirsersen s sn s s s e e sns s e s s 862
Stack Walking in JDKSccoevierrerierierses s e sesses e ssssesssssessssssssssssssssssssssssssssssssnns 862
Drawbacks in Stack WalKing..........ccoccveeniersnnienncsesessesss e ses s sss s sessessssesnes 865
Stack WalKing in JDKO ... s e ss s ssssssssssssssnens 866
Specifying Stack-Walking OPLiONScccecerreienerneessr s es 866
Representing @ Stack Frame ...t 866
0Dbtaining @ STACKWAIKEE CIASS......cccourueerererreesesesreese s sesss s ss e e ssss s s ssssssssssssssssssnnns 868
WaIKING The STACK.......ccoveeeerirteeeririre st p e e 869
KNOWiINg the CallEr’S ClASSueueceeererreeererreesesessesse s ses e sesesse s e sessssssssssssssssssssssssssssssssnsnsens 874
Stack-Walking PErmMiSSIONS.........cceeererieeeririse s ss s sesesss s e s snssnes 877

E3 1111 P2 7S 878
INA@X.ciieiiressiesssansnsasssn s s s s s s s s n s n s n e 881

xviii

About the Author

Kishori Sharan works as a senior software engineer lead at IndraSoft, Inc.
He earned a master’s of science degree in computer information systems
from Troy State University, Alabama. He is a Sun-certified Java 2
programmer and has over 20 years of experience in developing enterprise
applications and providing training to professional developers using the
Java platform.

Xix

vww .allitebooks.cond

http://www.allitebooks.org

About the Technical Reviewers

Manuel Jordan Elera is an autodidact developer and researcher who enjoys learning new technologies for
his own experiments and creating new integrations.

Manuel won the 2010 Springy Award - Community Champion and Spring Champion 2013. In his little
free time, he reads the Bible and composes music on his guitar. Manuel is known as dr_pompeii. He has tech
reviewed numerous books for Apress, including Pro Spring Messaging (2017), Pro Spring, 4th Edition (2014),
Practical Spring LDAP (2013), Pro JPA 2, Second Edition (2013), and Pro Spring Security (2013).

Read his 13 detailed tutorials about many Spring technologies, contact him through his blog at
http://www.manueljordanelera.blogspot.com, and follow him on his Twitter account at @dr_pompeii.

Jeff Friesen is a freelance teacher and software developer with an emphasis on Java. In addition to authoring
Java I/0, NIO, and NIO.2 (Apress) and Java Threads and the Concurrency Utilities (Apress), Jeff has written
numerous articles on Java and other technologies (such as Android) for JavaWorld (JavaWorld. com),
informIT (InformIT.com), Java.net, SitePoint (SitePoint.com), and other websites. Jeff can be contacted via
his website at JavaJeff.ca or via his LinkedIn profile (www.1linkedin.com/in/javajeff).

xxi

http://www.manueljordanelera.blogspot.com/
http://www.manueljordanelera.blogspot.com/
http://www.linkedin.com/in/javajeff

Acknowledgments

I'would like to thank my family members and friends for their encouragement and support: my mom
Pratima Devi, my elder brothers, Janki Sharan and Dr. Sita Sharan, my nephews, Gaurav and Saurav; my
sister Ratna; my friends Karthikeya Venkatesan, Rahul Nagpal, Ravi Datla, Mahbub Choudhury, Richard
Castillo, and many more friends not mentioned here.

My wife, Ellen, was always patient when I spent long hours at my computer working on this book. I want
to thank her for all of her support in writing this book.

Special thanks to my friend Preethi Vasudey, for offering her valuable time and providing solutions to
the exercises in this book. She likes programming challenges, particularly with Google Code Jam. I bet she
enjoyed solving the exercises in this book.

My sincere thanks are due to the wonderful team at Apress for their support during the publication of
this book. Thanks to Mark Powers, the Editorial Operations Manager, for providing excellent support. Thanks
to the technical reviewers Manuel Jordan Elera and Jeff Friesen, for their technical insights and feedback
during the review process. They were instrumental in weeding out several technical errors. Last but not least,
my sincere thanks to Steve Anglin, the Lead Editor at Apress, for taking the initiative to publish this book.

xxiii

Introduction

How This Book Came About

My first encounter with the Java programming language was during a one-week Java training session in 1997.
I did not get a chance to use Java in a project until 1999. I read two Java books and took a Java 2 programmer
certification examination. I did very well on the test, scoring 95 percent. The three questions that I missed
on the test made me realize that the books that I had read did not adequately cover details of all the topics. I
made up my mind to write a book on the Java programming language. So, I formulated a plan to cover most
of the topics that a Java developer needs to use Java effectively in a project, as well as to become certified. I
initially planned to cover all essential topics in Java in 700 to 800 pages.

AsIprogressed, I realized that a book covering most of the Java topics in detail could not be written in
700 to 800 pages. One chapter alone that covered data types, operators, and statements spanned 90 pages.
I'was then faced with the question, “Should I shorten the content of the book or include all the details that
I think a Java developer needs?” I opted for including all the details in the book, rather than shortening
its content to maintain the original number of pages. It has never been my intent to make lots of money
from this book. I was never in a hurry to finish this book because that rush could have compromised the
quality and coverage. In short, I wrote this book to help the Java community understand and use the Java
programming language effectively, without having to read many books on the same subject. I wrote this
book with the plan that it would be a comprehensive one-stop reference for everyone who wants to learn
and grasp the intricacies of the Java programming language.

One of my high school teachers used to tell us that if one wanted to understand a building, one
must first understand the bricks, steel, and mortar that make up the building. The same logic applies to
most of the things that we want to understand in our lives. It certainly applies to an understanding of the
Java programming language. If you want to master the Java programming language, you must start by
understanding its basic building blocks. I have used this approach throughout this book, endeavoring
to build upon each topic by describing the basics first. In the book, you will rarely find a topic described
without first learning about its background. Wherever possible, I tried to correlate the programming
practices with activities in daily life. Most of the books about the Java programming language available in
the market either do not include any pictures at all or have only a few. I believe in the adage, “A picture is
worth a thousand words.” To a reader, a picture makes a topic easier to understand and remember. I have
included plenty of illustrations in the book to aid readers in understanding and visualizing the concepts.
Developers who have little or no programming experience have difficulty in putting things together to make
it a complete program. Keeping them in mind, the book contains over 390 complete Java programs that are
ready to be compiled and run.

I spent countless hours doing research when writing this book. My main sources were the Java
Language Specification, whitepapers, and articles on Java topics, and Java Specification Requests (JSRs).
I also spent quite a bit of time reading the Java source code to learn more about some of the Java topics.
Sometimes, it took a few months of researching a topic before I could write the first sentence on it. Finally, it
was always fun to play with Java programs, sometimes for hours, to add them to the book.

XXV

INTRODUCTION

Introduction to the Second Edition

I am pleased to present the second edition of the Java Language Features book. It is the second book in the
three-volume Beginning Java 9 series. It was not possible to include all JDK9 changes in the one volume. I
have included JDK9-specific changes at appropriate places in the three volumes, including this one. If you
are interested in learning only JDK9-specific topics, I suggest you read my Java 9 Revealed book (ISBN 978-
1484225912), which contains only JDK9-specific topics. There are several changes in this edition, as follows:

e ladded the following five chapters to this edition: Implementing Services (Chapter
14), The Module API (Chapter 15), Breaking Module Encapsulation (Chapter 16),
Reactive Streams (Chapter 17), and Stack Walking (Chapter 18).

e Implementing services in Java is not new to JDKO. I felt this book was missing a
chapter on this topic. Chapter 14 covers in detail how to define services and service
interfaces, and how to implement service interfaces using JDK9-specific and
pre-JDK9 constructs. This chapter shows you how to use the uses and provides
statements in a module declaration.

e Chapter 15 covers the Module API in detail, which gives you programmatic access to
modules. This chapter also touches on some of the advanced topics, such as module
layers. The first volume of this series covered basics on modules, such as how to
declare modules and module dependence.

e Chapter 16 covers how to break module encapsulation using command-line options.
When you migrate to JDK9, there will be cases requiring you to read the module's
internal APIs or export non-exported packages. You can achieve these tasks using
command-line options covered in this chapter.

e Reactive Streams is an initiative for providing a standard for asynchronous stream
processing with non-blocking backpressure. It is aimed at solving the problems
processing a stream of items, including how to pass a stream of items from a
publisher to a subscriber without requiring the publisher to block or the subscriber
to have an unbounded buffer. Chapter 17 covers the Reactive Streams API, which
was added in JDK9.

e Chapter 18 covers the Stacking-Walking API, which was added in JDK9. This API lets
you inspect the stack frames of threads and get the class reference of the caller class
of amethod. Inspecting a thread's stack and getting the caller's class name were
possible before JDK9, which I covered in Chapter 13 of the first volume. The new
Stack-Walking API lets you achieve this easily and efficiently.

e Ireceived several e-mails from the readers about the fact that the books in this series
do not include questions and exercises, which are needed mainly for students and
beginners. Students use this series in their Java classes and many beginners use it to
learn Java. Due to this popular demand, I spent over 60 hours preparing questions
and exercises at the end of each chapter. My friend Preethi offered her help and
provided the solutions.

Apart from these additions, I updated all the chapters that were part of the first edition. I edited the
contents to make them flow better, changed or added new examples, and updated the contents to include
JDK9-specific features.

It is my sincere hope that this edition will help you learn Java better.

XXVi

http://dx.doi.org/10.1007/978-1-4842-3348-1_14
http://dx.doi.org/10.1007/978-1-4842-3348-1_15
http://dx.doi.org/10.1007/978-1-4842-3348-1_16
http://dx.doi.org/10.1007/978-1-4842-3348-1_17
http://dx.doi.org/10.1007/978-1-4842-3348-1_18
http://dx.doi.org/10.1007/978-1-4842-3348-1_14
http://dx.doi.org/10.1007/978-1-4842-3348-1_15
http://dx.doi.org/10.1007/978-1-4842-3348-1_16
http://dx.doi.org/10.1007/978-1-4842-3348-1_17
http://dx.doi.org/10.1007/978-1-4842-3348-1_18
http://dx.doi.org/10.1007/978-1-4842-3348-1_13

INTRODUCTION

Structure of the Book

This is the second book in the three-book Beginning Java series. This book contains 18 chapters. The
chapters contain language-level topics of Java such as annotations, generics, lambda expressions, threads,
1/0, collections, streams, etc. Chapters introduce Java topics in increasing order of complexity. The new
features of Java 9 are included wherever they fit in these chapters. The Module API, Reactive Streams, and
Stack-Walking API, which were added in Java 9, are covered in depth in their own chapters.

After finishing this book, you can take your Java knowledge to the next level by learning the Java APIs
and modules, which are covered in the final book in the series, Java APIs, Extensions and Libraries.

Audience

This book is designed to be useful to anyone who wants to learn the Java programming language. If you are
a beginner, with little or no programming background in Java, you are advised to read the companion book,
Beginning Java 9 Fundamentals, before reading this book. This book contains topics of various degrees of
complexity. As a beginner, if you find yourself overwhelmed while reading a section in a chapter, you can
skip to the next section or the next chapter, and revisit it later when you gain more experience.

If you are a Java developer with an intermediate or advanced level of experience, you can jump to a
chapter or to a section in a chapter directly. If a section covers an unfamiliar topic, you need to visit that
topic before continuing the current one.

If you are reading this book to get a certification in the Java programming language, you need to
read almost all of the chapters, paying attention to all of the detailed descriptions and rules. Most of the
certification programs test your fundamental knowledge of the language, not the advanced knowledge.
You need to read only those topics that are part of your certification test. Compiling and running over 390
complete Java programs will help you prepare for your certification.

If you are a student who is attending a class in the Java programming language, you should read the
chapters of this book selectively. Some topics—such as lambda expressions, collections, and streams—are
used extensively in developing Java applications, whereas other topics—such as threads and archive files—
are infrequently used. You need to read only those chapters that are covered in your class syllabus. I am sure
that you, as a Java student, do not need to read the entire book page by page.

How to Use This Book

This book is the beginning, not the end, of learning the Java programming language. If you are reading this
book, it means you are heading in the right direction to learn the Java programming language, which will
enable you to excel in your academic and professional career. However, there is always a higher goal for
you to achieve and you must constantly work hard to achieve it. The following quotations from some great
thinkers may help you understand the importance of working hard and constantly looking for knowledge
with both your eyes and mind open.

The learning and knowledge that we have, is, at the most, but little compared with that of
which we are ignorant.

—Plato

True knowledge exists in knowing that you know nothing. And in knowing that you know
nothing, that makes you the smartest of all.

—Socrates

xxvii

INTRODUCTION

Readers are advised to use the API documentation for the Java programming language as much
as possible while reading this book. The Java API documentation includes a complete list of everything
available in the Java class library. You can download (or view) the Java API documentation from the official
website of Oracle Corporation at www.oracle. com. While you read this book, you need to practice writing
Java programs. You can also practice by tweaking the programs provided in the book. It does not help
much in your learning process if you just read this book and do not practice writing your own programs.
Remember that “practice makes perfect,” which is also true in learning how to program in Java.

Source Code and Errata

Source code for this book can be accessed by clicking the Download Source Code button located at
WWW. apress.com/9781484233474.

Note At the time of going to print, Java 10 had just been announced. To provide you with useful information
on some of its features and the new Java versioning scheme, | have written three appendices that you can
download for free via the Download Source Code button referenced above. These appendices will give you a
head-start on the most important features of Java 10.

Questions and Comments

Please direct all your questions and comments for the author to ksharan@jdojo.com.

xxviii

http://www.oracle.com/
http://www.apress.com/9781484233474

CHAPTER 1

Annotations

In this chapter, you will learn:
e What annotations are
e How to declare annotations
e How to use annotations
e What meta-annotations are and how to use them

e Commonly used annotations that are used to deprecate APIs, to suppress named
compile-time warnings, override methods, and declare functional interfaces

e How to access annotations at runtime
e How to process annotations in source code
All example programs in this chapter are a member of a jdojo.annotation module, as declared in
Listing 1-1.
Listing 1-1. The Declaration of a jdojo.annotation Module

// module-info.java

module jdojo.annotation {
exports com.jdojo.annotation;

}

What Are Annotations?

Before I define annotations and discuss their importance in programming, let’s look at a simple example.
Suppose you have an Employee class, which has a method called setSalary() that sets the salary of an
employee. The method accepts a parameter of the type double. The following snippet of code shows a trivial
implementation for the Employee class:

public class Employee {
public void setSalary(double salary) {
System.out.println("Employee.setSalary():" + salary);
}

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-1-4842-3348-1_1) contains supplementary material, which is available to
authorized users.

© Kishori Sharan 2018 1
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_1

https://doi.org/10.1007/978-1-4842-3348-1_1
https://doi.org/10.1007/978-1-4842-3348-1_1

CHAPTER 1 © ANNOTATIONS

A Manager class inherits from the Employee class. You want to set the salary for managers differently. You
decide to override the setSalary() method in the Manager class. The code for the Manager class is as follows:

public class Manager extends Employee {
// Override setSalary() in the Employee class
public void setSalary(int salary) {
System.out.println("Manager.setSalary():" + salary);
}

There is a mistake in the Manager class, when you attempt to override the setSalary() method. You'll
correct the mistake shortly. You have used the int data type as the parameter type for the incorrectly
overridden method. It is time to set the salary for a manager. The following code is used to accomplish this:

Employee ken = new Manager();
int salary = 200;
ken.setSalary(salary);

Employee.setSalary():200.0

This snippet of code was expected to call the setSalary() method of the Manager class but the output
does not show the expected result.

What went wrong in your code? The intention of defining the setSalary() method in the Manager
class was to override the setSalary() method of the Employee class, not to overload it. You made a mistake.
You used the type int as the parameter type in the setSalary() method, instead of the type double in the
Manager class. You put comments indicating your intention to override the method in the Manager class.
However, comments do not stop you from making logical mistakes. You might spend, as every programmer
does, hours and hours debugging errors resulting from this kind of logical mistake. Who can help you in
such situations? Annotations might help you in a few situations like this.

Let’s rewrite your Manager class using an annotation. You do not need to know anything about
annotations at this point. All you are going to do is add one word to your program. The following code is the
modified version of the Manager class:

public class Manager extends Employee {
@0verride
public void setSalary(int salary) {
System.out.println("Manager.setSalary():" + salary);
}

All you have added is a @0verride annotation to the Manager class and removed the “dumb” comments.
Trying to compile the revised Manager class results in a compile-time error that points to the use of the
@0verride annotation for the setSalary() method of the Manager class:

Manager.java:2: error: method does not override or implement a method from a supertype
@0verride

AN

1 error

CHAPTER 1 © ANNOTATIONS

The use of the @0verride annotation did the trick. The @0verride annotation is used with a non-static
method to indicate the programmer’s intention to override the method in the superclass. At source code
level, it serves the purpose of documentation. When the compiler comes across the @verride annotation,
it makes sure that the method really overrides the method in the superclass. If the method annotated does
not override a method in the superclass, the compiler generates an error. In your case, the setSalary(int
salary) method in the Manager class does not override any method in the superclass Employee. This is the
reason that you got the error. You may realize that using an annotation is as simple as documenting the
source code. However, they have compiler support. You can use them to instruct the compiler to enforce
some rules. Annotations provide benefits much more than you have seen in this example. Let’s go back to
the compile-time error. You can fix the error by doing one of the following two things:

¢ You canremove the @verride annotation from the setSalary(int salary)
method in the Manager class. It will make the method an overloaded method, not a
method that overrides its superclass method.

e You can change the method signature from setSalary(int salary) to
setSalary(double salary).

Since you want to override the setSalary() method in the Manager class, use the second option and
modify the Manager class as follows:

public class Manager extends Employee {
@0verride
public void setSalary(double salary) {
System.out.println("Manager.setSalary():" + salary);
}

Now the following code will work as expected:

Employee ken = new Manager();
int salary = 200;
ken.setSalary(salary);

Manager.setSalary():200.0

Note that the @verride annotation in the setSalary() method of the Manager class saves you
debugging time. Suppose you change the method signature in the Employee class. If the changes in the
Employee class make this method no longer overridden in the Manager class, you will get the same error
when you compile the Manager class again. Are you starting to understand the power of annotations? With
this background in mind, let’s start digging deep into annotations.

According to the Merriam Webster dictionary, the meaning of annotation is
“A note added by way of comment or explanation’

This is exactly what an annotation is in Java. It lets you associate (or annotate) metadata (or notes) to the
program elements in a Java program. The program elements may be a module, a package, a class, an interface,
afield of a class, a local variable, a method, a parameter of a method, an enum, an annotation, a type parameter
in a generic type/method declaration, a type use, etc. In other words, you can annotate any declaration or type
use in a Java program. An annotation is used as a “modifier” in a declaration of a program element like any other
modifiers (public, private, final, static, etc.). Unlike a modifier, an annotation does not modify the meaning
of the program elements. It acts like a decoration or a note for the program element that it annotates.

CHAPTER 1 © ANNOTATIONS

An annotation differs from regular documentation in many ways. A regular documentation is only for
humans to read and it is “dumb.” It has no intelligence associated with it. If you misspell a word, or state
something in the documentation and do just the opposite in the code, you are on your own. It is very difficult
and impractical to read the elements of documentation programmatically at runtime. Java lets you generate
Javadocs from your documentation and that’s it for regular documentation. This does not mean that you do
not need to document your programs. You do need regular documentation. At the same time, you need a
way to enforce your intent using a documentation-like mechanism. Your documentation should be available
to the compiler and the runtime. An annotation serves this purpose. It is human readable, which serves as
documentation. It is compiler readable, which lets the compiler verify the intention of the programmer; for
example, the compiler makes sure that the programmer has really overridden the method if it comes across an
@0verride annotation for a method. Annotations are also available at runtime so that a program can read and
use it for any purpose it wants. For example, a tool can read annotations and generate boilerplate code.

If you have worked with Enterprise JavaBeans (EJB), you know the pain of keeping all the interfaces and classes
in sync and adding entries to XML configuration files. EJB 3.0 uses annotations to generate the boilerplate
code, which makes EJB development painless for programmers. Another example of an annotation being used
in a framework/tool is JUnit version 4.0. JUnit is a unit test framework for Java programs. It uses annotations to
mark methods that are test cases. Before that, you had to follow a naming convention for the test case methods.
Annotations have a variety of uses, which are documentation, verification, and enforcement by the compiler,
the runtime validation, code generation by frameworks/tools, etc.

To make an annotation available to the compiler and the runtime, an annotation has to follow rules.

In fact, an annotation is another type like a class and an interface. As you have to declare a class type or an
interface type before you can use it, you must also declare an annotation type.

An annotation does not change the semantics (or meaning) of the program element that it annotates.
In that sense, an annotation is like a comment, which does not affect the way the annotated program
element works. For example, the @verride annotation for the setSalary() method did not change the way
the method works. You (or a tool/framework) can change the behavior of a program based on an annotation.
In such cases, you use the annotation rather than the annotation doing anything on its own. The point is that
an annotation by itself is always passive.

Declaring an Annotation Type

Declaring an annotation type is similar to declaring an interface type, except for some restrictions.
According to Java specification, an annotation type declaration is a special kind of interface type declaration.
You use the interface keyword, which is preceded by the @ sign (at sign) to declare an annotation type.

The following is the general syntax for declaring an annotation type:

[modifiers] @ interface <annotation-type-name> {
// Annotation type body goes here
}

[modifiers] for an annotation declaration is the same as for an interface declaration. For example,
you can declare an annotation type at the public or package level. The @ sign and the interface keyword
may be separated by whitespace or they can be placed together. By convention, they are placed together
as @interface. The interface keyword is followed by an annotation type name. It should be a valid Java
identifier. The annotation type body is placed within braces.

Suppose you want to annotate your program elements with the version information, so you can
prepare a report about new program elements added in a specific release of your product. To use a custom
annotation type (as opposed to a built-in annotation, such as @0verride), you must declare it first. You want
to include the major and the minor versions of the release in the version information. Listing 1-2 contains
the complete code for your first annotation declaration.

CHAPTER 1 © ANNOTATIONS

Listing 1-2. The Declaration of an Annotation Type Named Version

// Version.java
package com.jdojo.annotation;

public @interface Version {
int major();
int minor();

Compare the declaration of the Version annotation with the declaration of an interface. It differs
from an interface definition only in one aspect: it uses the @ sign before its name. You have declared two
abstract methods in the Version annotation type: major () and minor (). Abstract methods in an annotation
type are known as its elements. You can think about it in another way: an annotation can declare zero or
more elements, and they are declared as abstract methods. The abstract method names are the names of
the elements of the annotation type. You have declared two elements, major and minor, for the Version
annotation type. The data types of both elements are int.

Tip Although you can declare static and default methods in interface types, they are not allowed in
annotation types. static and default methods are meant to contain some logic. Annotations are meant to
represent just the values for elements in the annotation type. This is the reason that static and default methods
are not allowed in annotation types.

You need to compile the annotation type. When Version. java file is compiled, it will produce a
Version.class file. The simple name of your annotation type is Version and its fully qualified name is
com.jdojo.annotation.Version. Using the simple name of an annotation type follows the rules of any
other types (e.g., classes, interfaces, etc.). You will need to import an annotation type the same way you
import any other types.

How do you use an annotation type? You might be thinking that you will declare a new class that will
implement the Version annotation type, and you will create an object of that class. You might be relieved to
know that you do not need to take any additional steps to use the Version annotation type. An annotation
type is ready to be used as soon as it is declared and compiled. To create an instance of an annotation type
and use it to annotate a program element, you need to use the following syntax:

@annotationType(namel=valuel, name2=value2, name3=value3...)

The annotation type is preceded by an @ sign. It is followed by a list of comma-separated name=value
pairs enclosed in parentheses. The name in a name=value pair is the name of the element declared in the
annotation type and the value is the user-supplied value for that element. The name=value pairs do not have
to appear in the same order as they are declared in the annotation type, although by convention name=value
pairs are used in the same order as the declaration of the elements in the annotation type.

Let’s use an instance of the Version type, which has the major element value as 1 and the minor element
value as 0. The following is an instance of your Version annotation type:

@Version(major=1, minor=0)

You can rewrite this annotation as @/ersion(minor=0, major=1) without changing its meaning.
You can also use the annotation type’s fully qualified name as

@com. jdojo.annotation.Version(major=0, minor=1)

CHAPTER 1 © ANNOTATIONS

You use as many instances of the Version annotation type in your program as you want. For example,
you have a VersionTest class, which has been in your application since release 1.0. You have added some
methods and instance variables in release 1.1. You can use your Version annotation to document additions
to the VersionTest class in different releases. You can annotate your class declaration as

@Version(major=1, minor=0)
public class VersionTest {
// Code goes here

}

An annotation is added in the same way you add a modifier for a program element. You can mix the
annotation for a program element with its other modifiers. You can place annotations in the same line as
other modifiers or in a separate line. It is a personal choice whether you use a separate line to place the
annotations or you mix them with other modifiers. By convention, annotations for a program element are
placed before all other modifiers. Let’s follow this convention and place the annotation in a separate line by
itself, as shown. Both of the following declarations are technically the same:

// Style #1

@Version(major=1, minor=0) public class VersionTest {
// Code goes here

}

/1 Style #2

public @Version(major=1, minor=0) class VersionTest {
// Code goes here

}

Listing 1-3 shows the sample code for the VersionTest class.

Listing 1-3. A VersionTest Class with Annotated Elements

// VersionTest.java
package com.jdojo.annotation;

// Annotation for class VersionTest
@Version(major=1, minor=0)
public class VersionTest {
// Annotation for instance variable xyz
@Version(major=1, minor=1)
private int xyz = 110;

// Annotation for constructor VersionTest()
@Version(major=1, minor=0)
public VersionTest() {

}

// Annotation for constructor VersionTest(int xyz)
@Version(major=1, minor=1)
public VersionTest(int xyz) {
this.xyz = xyz;
}

CHAPTER 1 © ANNOTATIONS

// Annotation for the printData() method
@Version(major=1, minor=0)

public void printData() {

}

// Annotation for the setXyz() method
@Version(major=1, minor=1)
public void setXyz(int xyz) {
// Annotation for local variable newValue
@Version(major=1, minor=2)
int newValue = xyz;

this.xyz = xyz;

In Listing 1-3, you use @/ersion annotation to annotate the class declaration, class field, local variables,
constructors, and methods. There is nothing extraordinary in the code for the VersionTest class. You just
added the @Version annotation to various elements of the class. The VersionTest class would work the
same, even if you remove all @/ersion annotations. It is to be emphasized that using annotations in your
program does not change the behavior of the program at all. The real benefit of annotations comes from
reading it at compile-time and runtime.

What do you do next with the Version annotation type? You have declared it as a type. You have used
itin your VersionTest class. Your next step is to read it at runtime. Let’s defer this step for now; I cover it in
detail in a later section. I discuss more on annotation type declarations first.

Restrictions on Annotation Types

An annotation type is a special type of interface with some restrictions. I cover some of the restrictions in the
sections to follow.

Restriction #1

An annotation type cannot inherit from another annotation type. That is, you cannot use the extends clause
in an annotation type declaration. The following declaration will not compile because you have used the
extends clause to declare the WrongVersion annotation type:

// Won't compile

public @interface WrongVersion extends BasicVersion {
int extended();

}

Every annotation type implicitly inherits from the java.lang.annotation.Annotation interface, which
is declared as follows:
package java.lang.annotation;
public interface Annotation {

boolean equals(Object obj);
int hashCode();

CHAPTER 1 © ANNOTATIONS

String toString();
Class<? extends Annotation> annotationType();

This implies that all of the four methods declared in the Annotation interface are available in all
annotation types. A word of caution needs to be mentioned here. You declare elements for an annotation
type using abstract method declarations. The methods declared in the Annotation interface do not declare
elements in an annotation type. Your Version annotation type has only two elements, major
and minor, which are declared in the Version type itself. You cannot use the annotation type Version as
@Version(major=1, minor=2, toString="Hello").The Version annotation type does not declare
toString as an element. It inherits the toString() method from the Annotation interface.

The first three methods in the Annotation interface are the methods from the Object class. The
annotationType() method returns the class reference of the annotation type to which the annotation
instance belongs. The Java creates a proxy class dynamically at runtime, which implements the annotation
type. When you obtain an instance of an annotation type, that instance class is the dynamically generated
proxy class, whose reference you can get using the getClass () method on the annotation instance. If you get
an instance of the Version annotation type at runtime, its getClass() method will return the class reference
of the dynamically generated proxy class, whereas its annotationType() method will return the class
reference of the com. jdojo.annotation.Version annotation type.

Restriction #2

Method declarations in an annotation type cannot specify any parameters. A method declares an element
for the annotation type. An element in an annotation type lets you associate a data value to an annotation’s
instance. A method declaration in an annotation is not called to perform any kind of processing. Think of
an element as an instance variable in a class having two methods, a setter and a getter, for that instance
variable. For an annotation, the Java runtime creates a proxy class that implements the annotation type
(which is an interface). Each annotation instance is an object of that proxy class. The method you declare in
your annotation type becomes the getter method for the value of that element you specify in the annotation.
The Java runtime will take care of setting the specified value for the annotation elements. Since the goal of
declaring a method in an annotation type is to work with a data element, you do not need to (and are not
allowed to) specify any parameters in a method declaration. The following declaration of an annotation type
would not compile because it declares a concatenate() method, which accepts two parameters:

// Won't compile
public @interface WrongVersion {
// Cannot have parameters
String concatenate(int major, int minor);

Restriction #3

Method declarations in an annotation type cannot have a throws clause. A method in an annotation type is
defined to represent a data element. Throwing an exception to represent a data value does not make sense. The
following declaration of an annotation type would not compile because the major () method has a throws clause:

// Won't compile

public @interface WrongVersion {
int major() throws Exception; // Cannot have a throws clause
int minor(); // OK

CHAPTER 1 © ANNOTATIONS

Restriction #4
The return type of a method declared in an annotation type must be one of the following types:
e Any primitive type: byte, short, int, long, float, double, boolean, and char
e java.lang.String
e java.lang.Class
e Anenum type
e Anannotation type

e Anarray of any of the previously mentioned types, for example, String[], int[], etc.
The return type cannot be a nested array. For example, you cannot have a return type
of String[][] orint[][].

Tip The reason behind these data type restrictions is that all values for allowed data types must be
represented in the source code, which the compiler should be able to represent for compile-time analysis.

The return type of Class needs a little explanation. Instead of the Class type, you can use a generic return
type that will return a user-defined class type. Suppose you have a Test class and you want to declare the return
type of a method in an annotation type of type Test. You can declare the annotation method as shown:

public @interface GoodOne {
Class element1(); // Any Class type
Class<Test> element2(); // Only Test class type
Class<? extends Test> element3(); // Test or its subclass type

Restriction #5

An annotation type cannot declare a method, which would be equivalent to overriding a method in the
Object class or the Annotation interface.

Restriction #6

An annotation type cannot be generic.

Default Value of an Annotation Element

The syntax for an annotation type declaration lets you specify a default value for its elements. You are not
required to, but you can, specify a value for an annotation element that has a default value specified in its
declaration. The default value for an element can be specified using the following general syntax:

[modifiers] @interface <annotation-type-name> {
<data-type> <element-name>() default <default-value>;

CHAPTER 1 © ANNOTATIONS

The keyword default is used to specify the default value. The default value of the type must be
compatible with the data type for the element.

Suppose you have a product that is not frequently released, so it is less likely that it will have a minor
version other than zero. You can simplify your Version annotation type by specifying a default value for its
minor element as zero, as shown:

public @interface Version {
int major();
int minor() default 0; // Set zero as default value for minor

Once you set the default value for an element, you do not have to pass its value when you use an
annotation of this type. Java will use the default value for the missing element.

@Version(major=1) // minor is zero, which is its default value
@Version(major=2) // minor is zero, which is its default value
@Version(major=2, minor=1) // minor is 1, which is the specified value

All default values must be compile-time constants. How do you specify the default value for an array
type? You need to use the array initializer syntax. The following snippet of code shows how to specify default
values for an array and other data types:

// Shows how to assign default values to elements of different types
public @interface DefaultTest {

double d() default 12.89;

int num() default 12;

int[] x() default {1, 2};

String s() default "Hello";

String[] s2() default {"abc", "xyz"};

Class c() default Exception.class;

Class[] c2() default {Exception.class, java.io.IOException.class};

The default value for an element is not compiled with the annotation. It is read from the annotation type
definition when a program attempts to read the value of an element at runtime. For example, when you use
@Version(major=2), this annotation instance is compiled as is. It does not add the minor element with its
default value as zero. In other words, this annotation is not modified to @/ersion(major=2, minor=0) at the
time of compilation. However, when you read the value of the minor element for this annotation at runtime,
Java will detect that the value for the minor element was not specified. It will consult the Version annotation
type definition for its default value. The implication of this mechanism is that if you change the default value
of an element, the changed default value will be read whenever a program attempts to read it, even if the
annotated program was compiled before you changed the default value.

Annotation Type and Its Instances

I use the terms “annotation type” and “annotation” frequently. Annotation type is a type like an interface.
Theoretically, you can use annotation type wherever you can use an interface type. Practically, we limit its
use only to annotate program elements. You can declare a variable of an annotation type as shown:

Version v = null; // Here, Version is an annotation type

10

CHAPTER 1 © ANNOTATIONS

Like an interface, you can also implement an annotation type in a class. However, you are never
supposed to do that, as it will defeat the purpose of having an annotation type as a new construct. You
should always implement an interface in a class, not an annotation type. Technically, the code in Listing 1-4
for the DoNotUseIt class is valid. This is just for the purposes of demonstration. Do not implement an
annotation in a class even if it works.

Listing 1-4. A Class Implementing an Annotation Type

// DoNotUseIt.java
package com.jdojo.annotation;

import java.lang.annotation.Annotation;

public class DoNotUseIt implements Version {
// Implemented method from the Version annotation type
@0verride
public int major() {
return 0;
}

// Implemented method from the Version annotation type
@0verride
public int minor() {
return 0;
}

// Implemented method from the Annotation annotation type,

// which is the supertype of the Version annotation type

@0verride

public Class<? extends Annotation> annotationType() {
return null;

}

The Java runtime implements the annotation type to a proxy class. It provides you with an object
of a class that implements your annotation type for each annotation you use in your program. You must
distinguish between an annotation type and instances (or objects) of that annotation type. In your example,
Version is an annotation type. Whenever you use it as @/ersion(major=2, minor=4), you are creating
an instance of the Version annotation type. An instance of an annotation type is simply referred to as an
annotation. For example, we say that @/ersion(major=2, minor=4) isan annotation or an instance of the
Version annotation type. An annotation should be easy to use in a program. The syntax @Version(...) is
shorthand for creating a class, creating an object of that class, and setting the values for its elements. I cover
how to get to the object of an annotation type at runtime later in this chapter.

Using Annotations

In this section, I discuss the details of using different types of elements while declaring annotation types.
Keep in mind that the supplied value for elements of an annotation must be a compile-time constant
expression and you cannot use null as the value for any type of elements in an annotation.

11

CHAPTER 1 © ANNOTATIONS

Primitive Types

The data type of an element in an annotation type could be any of the primitive data types: byte, short,

int, long, float, double, boolean, and char. The Version annotation type declares two elements, major
and minor, and both are of int data type. The following code snippet declares an annotation type called
PrimitiveAnnTest:

public @interface PrimitiveAnnTest {

byte a();

short b();

int c();

long d();

float e();

double f();

boolean g();

char h();

You can use an instance of the PrimitiveAnnTest type as
@PrimitiveAnnTest(a=1, b=2, c=3, d=4, e=12.34F, f=1.89, g=true, h="Y")

You can use a compile-time constant expression to specify the value for an element of an annotation.
The following two instances of the Version annotation are valid and have the same values for their elements:

@Version(major=2+1, minor=(int)13.2)
@Version(major=3, minor=13)

String Types

You can use an element of the String type in an annotation type. Listing 1-5 contains the code for an
annotation type called Name. It has two elements, first and last, which are of the String type.

Listing 1-5. Name Annotation Type, Which Has Two Elements, first and last, of the String Type

// Name.java
package com.jdojo.annotation;

public @interface Name {
String first();
String last();

The following snippet of code shows how to use the Name annotation type in a program:

@Name(first="John", last="Jacobs")
public class NameTest {
@Name(first="Wally", last="Inman")
public void aMethod() {
// More code goes here...
}

12

CHAPTER 1 © ANNOTATIONS

It is valid to use the string concatenation operator (+) in the value expression for an element of a String
type. The following two annotations are equivalent:

@Name(first="Jo" + "hn", last="Ja" + "cobs")
@Name(first="John", last="Jacobs")

Typically, you will use string concatenation in an annotation when you want to use compile-time
constant such as a final class variable as part of the value for an annotation element. In the following
annotation, Test is a class that defines a compile-time constant String class variable named UNKNOWN:

@Name(first="Mr. " + Test.UNKNWON, last=Test.UNKNOWN)

The following use of the @Name annotation is not valid because the expression new String("John") is
not a compile-time constant expression:

@Name(first=new String("John"), last="Jacobs")

Class Types

The benefits of using the Class type as an element in an annotation type are not obvious. Typically, it is used
where a tool/framework reads the annotations with elements of a class type and performs some specialized
processing on the element’s value or generates code. Let’s go through a simple example of using a class

type element. Suppose you are writing a test runner tool for running test cases for a Java program. Your
annotation will be used in writing test cases. If your test case must throw an exception when it is invoked

by the test runner, you need to use an annotation to indicate that. Let’s create a DefaultException class, as
shown in Listing 1-6.

Listing 1-6. A DefaultException Class That Is Inherited from the Throwable Exception Class

// DefaultException.java
package com.jdojo.annotation;

public class DefaultException extends java.lang.Throwable {
public DefaultException() {
}

public DefaultException(String msg) {
super(msg);

Listing 1-7 shows the code for a TestCase annotation type.

Listing 1-7. A TestCase Annotation Type Whose Instances Are Used to Annotate Test Case Methods

// TestCase.java
package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

13

CHAPTER 1 © ANNOTATIONS

@Retention(RetentionPolicy.RUNTIME)
@Target (ElementType.METHOD)
public @interface TestCase {
Class<? extends Throwable> willThrow() default DefaultException.class;
}

The return type of the willThrow element is defined as the wildcard of the Throwable class, so that the
user will specify only the Throwable class or its subclasses as the element’s value. You could have used the
Class<?> type as the type of your willThrow element. However, that would have allowed the users of this
annotation type to pass any class type as its value. Note that you have used two annotations, @Retention and
@Target, for the TestCase annotation type. The @Retention annotation type specified that the @TestCase
annotation would be available at runtime. It is necessary to use the retention policy of RUNTIME for your
TestCase annotation type because it is meant for the test runner tool to read it at runtime. The @Target
annotation states that the TestCase annotation can be used only to annotate methods. I cover the @Retention
and @Target annotation types in detail in later sections when I discuss meta-annotations. Listing 1-8 shows
the use of your TestCase annotation type.

Listing 1-8. A Test Case That Uses the TestCase Annotations

// PolicyTestCases.java
package com.jdojo.annotation;

import java.io.IOException;

public class PolicyTestCases {
// Must throw IOException
@TestCase(willThrow=IOException.class)
public static void testCase1(){
// Code goes here
}

// We are not expecting any exception
@TestCase()
public static void testCase2(){
// Code goes here
}

The testCase1() method specifies, using the @TestCase annotation, that it will throw an I0Exception.
The test runner tool will make sure that when it invokes this method, the method does throw an
I0Exception. Otherwise, it will fail the test case. The testCase2() method does not specify that it will throw
an exception. If it throws an exception when the test is run, the tool should fail this test case.

Enum Type

An annotation can have elements of an enum type. Suppose you want to declare an annotation type called
Review that can describe the code review status of a program element. Let’s assume that it has a status
element and it can have one of the four values: PENDING, FAILED, PASSED, and PASSEDWITHCHANGES. You can
declare an enum as an annotation type member. Listing 1-9 shows the code for a Review annotation type.

14

CHAPTER 1 © ANNOTATIONS

Listing 1-9. An Annotation Type That Uses an enum Type Element

// Review.java
package com.jdojo.annotation;

public @interface Review {
ReviewStatus status() default ReviewStatus.PENDING;

String comments() default "";

// ReviewStatus enum is a member of the Review annotation type
public enum ReviewStatus {PENDING, FAILED, PASSED, PASSEDWITHCHANGES};

Tip The enum type used as the type of an annotation element need not be declared as a nested enum type of
the annotation type, as you did in this example. The enum type can also be declared outside the annotation type.

The Review annotation type declares a ReviewStatus enum type and the four review statuses are the
elements of the enum. It has two elements, status and comments. The type of the status element is the
enum type ReviewStatus. The default value for the status element is ReviewStatus.PENDING. You have an
empty string as the default value for the comments element.

Here are some of the instances of the Review annotation type. You will need to import the com. jdojo.
annotation.Review.ReviewStatus enum in your program to use the simple name of the ReviewStatus
enum type.

// Have default for status and comments. Maybe the code is new.
@Review()

// Leave status as Pending, but add some comments
@Review(comments="Have scheduled code review on December 1, 2017")

// Fail the review with comments
@Review(status=ReviewStatus.FAILED, comments="Need to handle errors")

// Pass the review without comments
@Review(status=ReviewStatus.PASSED)

Here is the sample code that annotates a Test class indicating that it passed the code review:

import com.jdojo.annotation.Review.ReviewStatus;
import com.jdojo.annotation.Review;

@Review(status=ReviewStatus.PASSED)

public class Test {
// Code goes here
}

15

CHAPTER 1 © ANNOTATIONS

Annotation Type

An annotation type can be used anywhere a type can be used in a Java program. For example, you can use
an annotation type as the return type for a method. You can also use an annotation type as the type of an
element inside another annotation type’s declaration. Suppose you want to have a new annotation type
called Description, which will include the name of the author, version, and comments for a program
element. You can reuse your Name and Version annotation types as its name and version elements type.
Listing 1-10 shows the code for the Description annotation type.

Listing 1-10. An Annotation Type Using Other Annotation Types as Its Elements
// Description.java

package com.jdojo.annotation;

public @interface Description {
Name name();
Version version();
String comments() default "";

To provide a value for an element of an annotation type, you need to use the syntax that creates an
annotation type instance. For example, @/ersion(major=1, minor=2) creates an instance of the Version
annotation. Note the nesting of an annotation inside another annotation in the following snippet of code:

@escription(name=@Name(first="John", last="Jacobs"),
version=@Version(major=1, minor=2),
comments="Just a test class")

public class Test {

// Code goes here

}

Array Type Annotation Element
An annotation can have elements of an array type. The array type could be one of the following types:
e A primitive type
e java.lang.Stringtype
e java.lang.Class type
e Anenum type
e Anannotation type

You need to specify the value for an array element inside braces. Elements of the array are separated by
a comma. Suppose you want to annotate your program elements with a short description of a list of things
that you need to work on. Listing 1-11 creates a ToDo annotation type for this purpose.

Listing 1-11. ToDo Annotation Type with String[] as Its Sole Element

// ToDo.java
package com.jdojo.annotation;

16

CHAPTER 1 © ANNOTATIONS

public @interface ToDo {
String[] items();
}

The following snippet of code shows how to use a @ToDo annotation:

@ToDo(items={"Add readFile method", "Add error handling"})
public class Test {

// Code goes here
}

If you have only one element in the array, you can omit the braces. The following two annotation
instances of the ToDo annotation type are equivalent:

@ToDo(items={"Add error handling"})
@ToDo(items="Add error handling")

Tip If you do not have valid values to pass to an element of an array type, you can use an empty array.
For example, @ToDo (items={}) is a valid annotation where the items element has been assigned an empty array.

No Null Value in an Annotation

You cannot use a null reference as a value for an element in an annotation. Note that it is allowed to use an
empty string for the String type element and an empty array for an array type element. Using the following
annotations will result in compile-time errors:

@ToDo(items=null)
@Name (first=null, last="Jacobs")

Shorthand Annotation Syntax

The shorthand annotation syntax is little easier to use in a few circumstances. Suppose you have an
annotation type Enabled with an element having a default value, as shown:

public @interface Enabled {
boolean status() default true;
}

If you want to annotate a program element with the Enabled annotation type using the default value
for its element, you can use the @Enabled() syntax. You do not need to specify the values for the status
element because it has a default value. You can use shorthand in this situation, which allows you to omit the
parentheses. You can just use @Enabled instead of using @Enabled(). The Enabled annotation can be used in
either of the following two forms:

@Enabled

public class Test {
// Code goes here
}

17

CHAPTER 1 © ANNOTATIONS

@Enabled()

public class Test {
// Code goes here

}

An annotation type with only one element also has a shorthand syntax. You can use this shorthand
if you adhere to a naming rule for the sole element in the annotation type. The name of the element must
be value. If an annotation type has only one element that is named value, you can omit the name from
name=value pair from your annotation. The following snippet of code declares a Company annotation type,
which has only one element named value:

public @interface Company {
String value(); // the element name is value
}

You can omit the name from name=value pair when you use the Company annotation, as shown
here. If you want to use the element name with the Company annotation, you can always do so as
@Company (value="Abc Inc.").

@Company ("Abc Inc.")
public class Test {

// Code goes here
}

You can use this shorthand of omitting the name of the element from annotations, even if the element
data type is an array. Consider the following annotation type called Reviewers:

public @interface Reviewers {
String[] value(); // the element name is value

Since the Reviewers annotation type has only one element, which is named value, you can omit the
element name when you are using it.

// No need to specify name of the element
@Reviewers({"John Jacobs", "Wally Inman"})
public class Test {

// Code goes here
}

You can also omit the braces if you specify only one element in the array for the value element of the
Reviewers annotation type.

@Reviewers("John Jacobs")
public class Test {

// Code goes here
}

You just saw several examples using the name of the element as value. Here is the general rule of
omitting the name of the element in an annotation: if you supply only one value when using an annotation,
the name of the element is assumed value. This means that you are not required to have only one element
in the annotation type, which is named value, to omit its name in the annotations. If you have an annotation

18

CHAPTER 1 © ANNOTATIONS

type, which has an element named value (with or without a default value) and all other elements have
default values, you can still omit the name of the element in annotation instances of this type. Here are some
examples to illustrate this rule:

public @interface A {
String value();
int id() default 10;

}
// Same as @A(value="Hello", id=10)
@A("Hello")

public class Test {
// Code goes here
}

// Won't compile. Must use only one value to omit the element name
@A("Hello", id=16)
public class WontCompile {
// Code goes here
}

// OK. Must use name=value pair when passing more than one value
@A(value="Hello", id=16)
public class Test {
// Code goes here
}

Marker Annotation Types

A marker annotation type does not declare any elements, not even one with a default value. Typically, a
marker annotation is used by the annotation processing tools, which generate boilerplate code based on the
marker annotation type.

public @interface Marker {
// No element declarations
}

@Marker

public class Test {
// Code goes here

}

Meta-Annotation Types

Meta-annotation types are used to annotate other annotation type declarations. The following are
meta-annotation types:

e Target

e Retention

19

CHAPTER 1 © ANNOTATIONS

e Inherited
e Documented
e Repeatable

Meta-annotation types are part of the Java class library. They are declared in the java.lang.annotation
package. I discuss meta-annotation types in detail in subsequent sections.

Tip The java.lang.annotation package contains a Native annotation type, which is not a meta-
annotation. It is used to annotate fields indicating that the field may be referenced from native code. It is a
marker annotation. Typically, it is used by tools that generate some code based on this annotation.

The Target Annotation Type

The Target annotation type is used to specify the context in which an annotation type can be used. It has
only one element named value, which is an array of the java.lang.annotation.ElementType enum type.
Table 1-1 lists all constants in the ElementType enum.

Table 1-1. List of Constants in the java.lang.annotation.ElementType enum

Constant Name Description

ANNOTATION_TYPE Used to annotate another annotation type declaration. This makes the annotation
type a meta-annotation.

CONSTRUCTOR Used to annotate constructors.

FIELD Used to annotate fields and enum constants.

LOCAL_VARIABLE Used to annotate local variables.

METHOD Used to annotate methods.

MODULE Used to annotate modules. It was added in Java 9.

PACKAGE Used to annotate package declarations.

PARAMETER Used to annotate parameters.

TYPE Used to annotate class, interface (including annotation type), or enum
declarations.

TYPE_PARAMETER Used to annotate type parameters in generic classes, interfaces, methods, etc.

It was added in Java 8.

TYPE_USE Used to annotate all uses of types. It was added in Java 8. The annotation can also
be used where an annotation with ElementType.TYPE and ElementType.TYPE_
PARAMETER can be used. It can also be used before constructors, in which case it
represents the objects created by the constructor.

The following declaration of the Version annotation type annotates the annotation type declaration
with the Target meta-annotation, which specifies that the Version annotation type can be used with
program elements of only three types: any type (class, interface, enum, and annotation types), constructors,
and method.

20

CHAPTER 1 © ANNOTATIONS

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Target;
import java.lang.annotation.ElementType;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR, ElementType.METHOD})
public @interface Version {

int major();

int minor();

The Version annotation type cannot be used on any program elements other than the three types specified
in its Target annotation. Its following use is incorrect because it is being used on an instance variable (a field):

public class WontCompile {
// A compile-time error. Version annotation cannot be used on a field.
@version(major = 1, minor = 1)
int id = 110;

The following uses of the Version annotation are valid:

/7 OK. A class type declaration
@Version(major = 1, minor = 0)
public class VersionTest {

// OK. A constructor declaration

@Version(major = 1, minor = 0)

public VersionTest() {

// Code goes here
}

// OK. A method declaration
@Version(major = 1, minor = 1)
public void doSomething() {

// Code goes here
}

Prior to Java 8, annotations were allowed on formal parameters of methods and declarations of
packages, classes, methods, fields, and local variables. Java 8 added support for using annotations on any
use of a type and on type parameter declarations. The phrase “any use of a type” needs little explanation.
A type is used in many contexts, for example, after the extends clause as a supertype, in an object creation
expression after the new operator, in a cast, in a throws clause, etc. From Java 8, annotations may appear
before the simple name of the types wherever a type is used. Note that the simple name of the type may be
used only as a name, not as a type, for example, in an import statement. Consider the declarations of the
Fatal and NonZero annotation types shown in Listing 1-12 and Listing 1-13.

21

CHAPTER 1 © ANNOTATIONS

Listing 1-12. A Fatal Annotation Type That Can Be Used with Any Type Use
// Fatal.java
package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target({ElementType.TYPE_USE})
public @interface Fatal {

}

Listing 1-13. A NonZero Annotation Type That Can Be Used with Any Type Use

// NonZero.java
package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target({ElementType.TYPE_USE})
public @interface NonZero {

}

The Fatal and NonZero annotation types can be used wherever a type is used. Their uses in the
following contexts are valid:

public class Test {
public void processData() throws @Fatal Exception {
double value = getValue();
int roundedvalue = (@NonZero int) value;

Test t = new @Fatal Test();

// More code goes here

}

public double getValue() {
double value = 189.98;

// More code goes here

return value;

Tip If you do not annotate an annotation type with the Target annotation type, the annotation type can be

used everywhere, except in a type parameter declaration.

22

CHAPTER 1 © ANNOTATIONS

The Retention Annotation Type

You can use annotations for different purposes. You may want to use them solely for documentation purposes,
to be processed by the compiler, and/or to use them at runtime. An annotation can be retained at three levels.

e Source code only
e C(lassfile only (the default)
e (lass file and the runtime

The Retention meta-annotation type is used to specify how an annotation instance of an annotation
type should be retained by Java. This is also known as the retention policy of an annotation type. If an
annotation type has a “source code only” retention policy, instances of its type are removed when compiled
into a class file. If the retention policy is “class file only,” annotation instances are retained in the class file,
but they cannot be read at runtime. If the retention policy is “class file and runtime” (simply known as
runtime), the annotation instances are retained in the class file and they are available for reading at runtime.

The Retention meta-annotation type declares one element, named value, which is of the java.
lang.annotation.RetentionPolicy enum type. The RetentionPolicy enum has three constants,
SOURCE, CLASS, and RUNTIME, which are used to specify the retention policy of source only, class only, and
class-and-runtime, respectively. The following code uses the Retention meta-annotation on the Version
annotation type. It specifies that the Version annotations should be available at runtime. Note the use of
two meta-annotations on the Version annotation type: Target and Retention.

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Target;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,
ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Version {
int major();
int minor();

Tip If you do not use the Retention meta-annotation on an annotation type, its retention policy defaults
to class file only. This implies that you will not be able to read those annotations at runtime. You will make
this common mistake in the beginning. You would try to read annotations and the runtime will not return any
values. Make sure that your annotation type has been annotated with the Retention meta-annotation with the
retention policy of RetentionPolicy.RUNTIME before you attempt to read them at runtime. An annotation on
a local variable declaration is never available in the class file or at runtime irrespective of the retention policy
of the annotation type. The reason for this restriction is that the Java runtime does not let you access the local
variables using reflection at runtime; unless you have access to the local variables at runtime, you cannot read
annotations for them.

23

CHAPTER 1 © ANNOTATIONS

The Inherited Annotation Type

The Inherited annotation type is a marker meta-annotation type. If an annotation type is annotated with
an Inherited meta-annotation, its instances are inherited by a subclass declaration. It has no effect if an
annotation type is used to annotate any program elements other than a class declaration. Let’s consider
two annotation type declarations: Ann2 and Ann3. Note that Ann2 is not annotated with an Inherited meta-
annotation, whereas Ann3 is.

public @interface Ann2 {
int id();
}

@Inherited

public @interface Ann3 {
int id();

}

Let’s declare two classes, A and B, as follows. Note that class B inherits class A.

@Ann2(id=505)
@Ann3(id=707)
public class A {
// Code for class A goes here
}

// Class B inherits Ann3(id=707) annotation from the class A
public class B extends A {

// Code for class B goes here
}

In this snippet of code, class B inherits the @Ann3(id=707) annotation from class A because the Ann3
annotation type has been annotated with an Inherited meta-annotation. Class B does not inherit the @
Ann2(id=505) annotation because the Ann2 annotation type is not annotated with an Inherited meta-
annotation.

The Documented Annotation Type

The Documented annotation type is a marker meta-annotation type. If an annotation type is annotated with a
Documented annotation, the Javadoc tool will generate documentation for all of its instances. Listing 1-14 has
the code for the final version of the Version annotation type, which has been annotated with a Documented
meta-annotation.

Listing 1-14. The Final Version of the Version Annotation Type

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

24

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 © ANNOTATIONS

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR, ElementType.METHOD, ElementType.MODULE,
ElementType.PACKAGE, ElementType.LOCAL VARIABLE, ElementType.TYPE USE})
@Retention(RetentionPolicy.RUNTIME)
@ocumented
public @interface Version {
int major();
int minor();

Suppose you annotate a Test class with your Version annotation type as follows:
package com.jdojo.annotation;

@Version(major=1, minor=0)
public class Test {

// Code for Test class goes here
}

When you generate documentation for the Test class using the Javadoc tool, the Version annotation
on the Test class declaration is also generated as part of the documentation. If you remove the Documented
annotation from the Version annotation type declaration, the Test class documentation would not contain
information about its Version annotation.

The Repeatable Annotation Type

Prior to Java 8, you could not repeat an annotation in the same context. For example, the following repeated
use of the Version annotation would generate a compile-time error in Java 7:

@Version(major=1, minor=1)
@Version(major=1, minor=2)
public class Test {

// Code goes here
}

Java 8 added a Repeatable meta-annotation type. An annotation type declaration must be annotated
with a @Repeatable annotation if its repeated use is to be allowed. The Repeatable annotation type has
only one element named value whose type is a class type of another annotation type. Creating a repeatable
annotation type is a two-step process:

e Declare an annotation type (say T) and annotate it with the Repeatable meta-
annotation. Specify the value for the annotation as another annotation that is known
as containing an annotation for the repeatable annotation type being declared.

e Declare the containing annotation type with one element that is an array of the
repeatable annotation.

Listing 1-15 and Listing 1-16 contain declarations for the ChangeLog and Changelogs annotation types.
Changelog is annotated with the @Repeatable(Changelogs.class) annotation, which means that it is a
repeatable annotation type and its containing annotation type is ChangeLogs.

25

CHAPTER 1 © ANNOTATIONS

Listing 1-15. A Repeatable Annotation Type That Uses the ChangeLogs as the Containing Annotation Type

// Changelog.java
package com.jdojo.annotation;

import java.lang.annotation.Repeatable;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
@Repeatable(Changelogs.class)
public @interface Changelog {
String date();
String comments();

}
Listing 1-16. A Containing Annotation Type for the ChangeLog Repeatable Annotation Type
// Changelogs.java

package com.jdojo.annotation;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
public @interface Changelogs {
Changelog[] value();

You can use the Changelog annotation to log change history for the Test class, as shown:

@Changelog(date="08/28/2017", comments="Declared the class")
@Changelog(date="09/21/2017", comments="Added the process() method")
public class Test {
public static void process() {
// Code goes here
}

Commonly Used Standard Annotations

Java API defines many standard annotation types. This section discusses four of the most commonly used
standard annotations. They are defined in the java.lang package. They are

e Deprecated
e Override
e SuppressWarnings

e FunctionallInterface

26

CHAPTER 1 © ANNOTATIONS

Deprecating APIs

Deprecating APIs in Java is a way to provide information about the lifecycle of the APIs. You can deprecate
modules, packages, types, constructors, methods, fields, parameters, and local variables. When you
deprecate an API, you are telling its users:

e Notto use the API because it is dangerous.
e To migrate away from the API because a better replacement for the API exists.

e To migrate away from the API because the API will be removed in a future release.

How to Deprecate an API

The JDK contains two constructs that are used to deprecate APIs:
e The @deprecated Javadoc tag
e The java.lang.Deprecated annotation type

The @deprecated Javadoc tag was added in JDK 1.1 and it lets you specify the details about the
deprecation with a rich set of text formatting features of HTML. The java.lang.Deprecated annotation
type was added to JDK 5.0 and it can be used on the API elements, which are deprecated. Before JDK9, the
Deprecated annotation type did not contain any elements. It is retained at runtime.

The @deprecated tag and the @eprecated annotation are supposed to be used together. Both should
be present or both absent. The @Deprecation annotation does not let you specify a description of the
deprecation, so you must use the @deprecated tag to provide the description.

Tip Using a @deprecated tag, but not a @Deprecated annotation, on an API element generates a compiler
warning. Prior to JDK9, you needed to use the -X1int:dep-ann compiler flag to see such warnings.

Listing 1-17 contains the declaration for a class named FileCopier. Suppose this class is shipped as
part of a library.

Listing 1-17. A FileCopier Utility Class
// FileCopier.java

package com.jdojo.deprecation;
import java.io.File;

/**

* The class consists of static methods that can be used to
copy files and directories.

*

*

* @deprecated Deprecated since 1.4. Not safe to use. Use the
* ¢code>java.nio.file.Files</code> class instead. This class
*
*
*

will be removed in a future release of this library.

@since 1.2
*/

27

CHAPTER 1 © ANNOTATIONS

@Deprecated

public class FileCopier {
// No direct instantiation supported
private FileCopier() {

}

Vioio
* Copies the contents of src to dst.
* @param src The source file
* @param dst The destination file
* @return true if the copy is successfully, false otherwise.
*/
public static boolean copy(File src, File dst) {
// More code goes here
return true;

}

// More code goes here

The FileCopier class is deprecated using the @Deprecated annotation. Its Javadoc uses the @deprecated
tag to give the deprecation details such as when it was deprecated, its replacement, and its removal notice.
Before JDK9, the @Deprecated annotation type did not contain any elements, so you had to provide all
details about the deprecation using the @deprecated tag in the Javadoc for the deprecated API. Note that the
@since tag used in the Javadoc indicates that the FileCopier class has existed since version 1.2 of this library,
whereas the @deprecated tag indicates that the class has been deprecated since version 1.4 of the library.

The Javadoc tool moves the contents of the @deprecated tag to the top in the generated Javadoc to draw
the reader’s attention. The compiler generates a warning when non-deprecated code uses a deprecated API.
Annotating an API with @Deprecated does not generate a warning; however, using an API that has been
annotated with a @Deprecated annotation does. If you used the FileCopier class outside the class itself, you
will receive a compile-time warning about using the deprecated class.

Enhancements to the Deprecated Annotation in JDK9

Suppose you compiled your code and deployed it to production. If you upgraded the JDK version or
libraries/frameworks that contain new, deprecated APIs that your old application uses, you do not receive
any warnings and you would miss a chance to migrate away from the deprecated APIs. You must recompile
your code to receive warnings. There was no tool to scan and analyze the compiled code (e.g., JAR files)

and report the use of deprecated APIs. Even worse is the case when a deprecated API is removed from the
newer version and your old, compiled code receives unexpected runtime errors. Developers were also
confused when they looked at a deprecated element Javadoc—there was no way to express when the API was
deprecated and whether the deprecated API will be removed in a future release. All you could do was specify
these pieces of information in text as part of the @deprecated tag. JDK9 attempted to solve these issues by
enhancing the @eprecated annotation. The annotation received two new elements in JDK9: since and
forRemoval. They are declared as follows:

e String since() default "";

e boolean forRemoval() default false;

28

CHAPTER 1 © ANNOTATIONS

Both new elements have default values specified, so the existing uses of the annotation do not break.
The since element specifies the version in which the annotated API element became deprecated. It is a
string and you are expected to follow the same version naming convention as the JDK version scheme,
for example “9” for JDKO. It defaults to the empty string. Note that JDK9 did not add an element to the
@Deprecated annotation type to specify a description of the deprecation. This was done for two reasons:

e The annotation is retained at runtime. Adding descriptive text to the annotation
would add to the runtime memory.

e The descriptive text cannot be just plain text. For example, it needs to provide a link
to the replacement of the deprecated API. The existing @deprecated Javadoc tag
already provides this feature.

The forRemoval element indicates that the annotated API element is subject to removal in a future
release and you should migrate away from the API. It defaults to false.

Tip The @since Javadoc tag on an element indicates when the APl element was added, whereas the
since element of the @Deprecated annotation indicates when the APl element was deprecated. In JDK9,
reasonable efforts have been made to backfill these two elements’ values in most, if not all, use-sites of the
@Deprecated annotations in the Java SE APIs.

Before JDKO9, the deprecation warnings were issued based on the use of the @eprecated annotation on
the API element and its use-site, as shown in Table 1-2. The warnings were issued when a deprecated API
element was used at a non-deprecated use-site. If both the declaration and its use-site were deprecated, no
warnings were issued. You were able to suppress deprecation warnings by annotating the use-sites with a
@SuppressWarnings("deprecation") annotation.

Table 1-2. Matrix of Deprecation Warnings Issued Before JDK9
API Use-Site API Declaration Site

Not Deprecated Deprecated

Not Deprecated N W

Deprecated N N

N = No warning, W = Warning

Addition of the forRemoval element in the @Deprecation annotation type has added five more use-cases.
When an API is deprecated with forRemoval set to false, such a deprecation is known as ordinary deprecation
and the warnings issued in such cases are called ordinary deprecation warnings. When an API is deprecated
with forRemoval set to true, such a deprecation is known as terminal deprecation and the warnings issued
in such cases are called terminal deprecation warnings or removal warnings. Table 1-3 shows the matrix of
deprecation warnings issued in JDKO9.

29

CHAPTER 1 © ANNOTATIONS

Table 1-3. Matrix of Deprecation Warnings Issued in JDK9

API Use-Site API Declaration Site
Not Deprecated Ordinarily Deprecated Terminally Deprecated
Not Deprecated N OW RW
Ordinarily Deprecated N N RW
Terminally Deprecated N N RW

N = No warning, OW = Ordinary deprecation warning, RW = Removal deprecation warning

For backward compatibility, four upper-left uses cases in Table 1-3 are the same as in Table 1-2. That is,
if your code generated a deprecation warning in JDKS, it will continue to generate an ordinary deprecation
warning in JDK9. If the API has been terminally deprecated, its use-sites will generate removal warnings
irrespective of the deprecated status of the use-site.

In JDK9, the warning issued in one case, where both the API and its use-site are terminally deprecated,
needs a little explanation. Both API and the code that uses it have been deprecated and both will be removed
in the future, so what is the point of getting a warning in such a case? This is done to cover cases where the
terminally deprecated API and its use-site are in two different codebases and are maintained independently.
If the use-site codebase outlives the API codebase, the use-site will get an unexpected runtime error because
the API it uses no longer exists. Issuing a warning at the use-site will give its maintainers a chance to plan for
alternatives in case the terminally deprecated API goes away before the code at use-sites.

Suppressing Deprecation Warnings

Introduction of removal warnings in JDK9 has added a new use-case for suppressing deprecation warnings.
Before JDK9, you could suppress all deprecation warnings by annotating the use-site with a @uppressharnings
("deprecation") annotation. Consider a scenario:

e InJDKS, an APl is deprecated and the use-site suppresses the deprecation warning.

e InJDKOY, the API's deprecation changes from ordinary deprecation to terminal
deprecation.

e The use-site compiles fine in JDK9 because it has suppressed deprecation warnings
in JDK8.

e The APIis removed and the use-site receives an unexpected runtime error without
receiving any removal warning earlier.

To cover such scenarios, JDK9 does not suppress removal warnings when you use @SuppressiWarnings
("deprecation"). It suppresses only ordinary deprecation warnings. To suppress removal warnings,
you need to use @SuppressiWarnings("removal"). If you want to suppress both ordinary and removal
deprecation warnings, you need to use @SuppressiWarnings({"deprecation”, "removal"}).

An Example

In this section, I show you all use-cases of deprecating APIs, using the deprecated API with and without
suppressing warnings with a simple example. In the example, I deprecate only methods and use them to
generate compile-time warnings. You are, however, not limited to deprecating only methods. Comments
on the methods should help you understand the expected behavior. Listing 1-18 contains the code for a
class named Box. The class contains three methods—one in each category of deprecation—not deprecated,

30

CHAPTER 1 © ANNOTATIONS

ordinarily deprecated, and terminally deprecated. I have kept the class simple, so you can focus on the
deprecation being used. Compiling the Box class will not generate any deprecation warnings because the
class does not use any deprecated API, rather it contains the deprecated APIs.

Listing 1-18. A Box Class with Three Types of Methods: Not Deprecated, Ordinarily Deprecated, and
Terminally Deprecated

// Box.java
package com.jdojo.annotation;

/**
* This class is used to demonstrate how to deprecate APIs.
*/
public class Box {
/¥*
* Not deprecated
*/
public static void notDeprecated() {
System.out.println("notDeprecated...");
}

Vi

* Deprecated ordinarily.

* @deprecated Do not use it.

*/

@eprecated(since="2")

public static void deprecatedOrdinarily() {
System.out.println("deprecatedOrdinarily...");

}

/**

* Deprecated terminally.

* @deprecated It will be removed in a future release. Migrate your code now.

*/

@Deprecated(since="2", forRemoval=true)

public static void deprecatedTerminally() {
System.out.println("deprecatedTerminally...");

}

Listing 1-19 contains the code for a BoxTest class. The class uses all methods of the Box class. A few
methods in the BoxTest class have been deprecated ordinarily and terminally. The first nine methods
correspond to nine use-cases in Table 1-3, which will generate four deprecation warnings—one ordinary
warning and three terminal warnings. Methods named like m4X (), where X is a digit, show you how to
suppress ordinary and terminal deprecation warnings.

Listing 1-19. A BoxTest Class That Uses Deprecated APIs and Suppresses Deprecation Warnings

// BoxTest.java
package com.jdojo.annotation;

31

CHAPTER 1 © ANNOTATIONS

public class BoxTest {

32

/**

* API: Not deprecated

* Use-site: Not deprecated

* Deprecation warning: No warning

*/

public static void m11() {
Box.notDeprecated();

}

Vioio

* API: Ordinarily deprecated

* Use-site: Not deprecated

* Deprecation warning: No warning

*/

public static void m12() {
Box.deprecatedOrdinarily();

}

/**

* API: Terminally deprecated
* Use-site: Not deprecated

* Deprecation warning: Removal warning

*/

public static void m13() {
Box.deprecatedTerminally();

}

/X¥*

* API: Not deprecated

* Use-site: Ordinarily deprecated
* Deprecation warning: No warning
* @deprecated Dangerous to use.
*/

@eprecated(since="1.1")

public static void m21() {

Box.notDeprecated();
}

Vioio

* API: Ordinarily deprecated

* Use-site: Ordinarily deprecated

* Deprecation warning: No warning

* @deprecated Dangerous to use.

*/

@Deprecated(since="1.1")

public static void m22() {
Box.deprecatedOrdinarily();

}

CHAPTER 1

/**
* API: Terminally deprecated
* Use-site: Ordinarily deprecated
* Deprecation warning: Removal warning
* @deprecated Dangerous to use.
*/
@eprecated(since="1.1")
public static void m23() {
Box.deprecatedTerminally();
}

/**
* API: Not deprecated
* Use-site: Terminally deprecated
* Deprecation warning: No warning
* @deprecated Going away.
*/
@eprecated(since="1.1", forRemoval=true)
public static void m31() {
Box.notDeprecated();
}

/Xx*

* API: Ordinarily deprecated

* Use-site: Terminally deprecated

* Deprecation warning: No warning

* @deprecated Going away.

*/

@eprecated(since="1.1", forRemoval=true)

public static void m32() {
Box.deprecatedOrdinarily();

}

Vak
* API: Terminally deprecated
* Use-site: Terminally deprecated
* Deprecation warning: Removal warning
* @deprecated Going away.
*/
@eprecated(since="1.1", forRemoval=true)
public static void m33() {
Box.deprecatedTerminally();
}

/**

* API: Ordinarily and Terminally deprecated

* Use-site: Not deprecated

* Deprecation warning: Ordinary and removal warnings

*/

public static void m41() {
Box.deprecatedOrdinarily();
Box.deprecatedTerminally();

ANNOTATIONS

33

CHAPTER 1 © ANNOTATIONS

/**
* API: Ordinarily and Terminally deprecated
* Use-site: Not deprecated
* Deprecation warning: Ordinary warnings
*/
@SuppressWarnings("deprecation")
public static void m42() {
Box.deprecatedOrdinarily();
Box.deprecatedTerminally();

}

/**
* API: Ordinarily and Terminally deprecated
* Use-site: Not deprecated
* Deprecation warning: Removal warnings
*/
@Suppressiarnings("removal")
public static void m43() {
Box.deprecatedOrdinarily();
Box.deprecatedTerminally();

}

Vioio

* API: Ordinarily and Terminally deprecated

* Use-site: Not deprecated

* Deprecation warning: Removal warnings

*/

@SuppressWarnings({"deprecation", "removal"})

public static void m44() {
Box.deprecatedOrdinarily();
Box.deprecatedTerminally();

You need to compile the BoxTest class using the -X1int:deprecation compiler flag, so the compiler
emits deprecation warnings. Note that the following command is entered on one line, not two lines.

C:\JavaglanguageFeatures>javac -Xlint:deprecation -d build\modules\jdojo.annotation
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java

src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:20: warning: [deprecation]
deprecatedOrdinarily() in Box has been deprecated

Box.deprecatedOrdinarily();
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:29: warning: [removal]
deprecatedTerminally() in Box has been deprecated and marked for removal

Box.deprecatedTerminally();

N

src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:62: warning: [removal]
deprecatedTerminally() in Box has been deprecated and marked for removal

Box.deprecatedTerminally();

34

CHAPTER 1 © ANNOTATIONS

A

src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:95: warning: [removal]
deprecatedTerminally() in Box has been deprecated and marked for removal

Box.deprecatedTerminally();
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:104: warning: [deprecation]
deprecatedOrdinarily() in Box has been deprecated

Box.deprecatedOrdinarily();

N

src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:105: warning: [removal]
deprecatedTerminally() in Box has been deprecated and marked for removal

Box.deprecatedTerminally();
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:116: warning: [removal]
deprecatedTerminally() in Box has been deprecated and marked for removal

Box.deprecatedTerminally();
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:126: warning: [deprecation]
deprecatedOrdinarily() in Box has been deprecated

Box.deprecatedOrdinarily();

A

8 warnings

static Analysis of Deprecated APls

Recall that deprecation warnings are compile-time warnings. You will not get any warnings if compiled code
for your deployed application starts using an ordinarily deprecated API or generates a runtime error because
an API that was once valid had been terminally deprecated and removed. Before JDK9, you had to recompile
your source code to see deprecation warnings when you upgraded your JDK or other libraries/frameworks.
JDK9 improves this situation by providing a static analysis tool called jdeprscan that scans compiled code
to give you the list of deprecated APIs being used. Currently, the tool reports the use of only deprecated JDK
APIs. If your compiled code uses deprecated APIs from other libraries, say, Spring or Hibernate, or your own
libraries, this tool will not report those uses.

The jdeprscan tool is in the JDK_HOME\bin directory. The general syntax to use the tool is as follows:

jdeprscan [options] {dir|jar|class}

Here, [options] is alist of zero or more options. You can specify a list of space-separated directories,
JARs, fully qualified class names, or class file paths as arguments to scan. The available options are as follows:

o -1, --list
e --class-path <CLASSPATH>

e --for-removal

--release <6|7|8|9>
e -v, --verbose

e --version
--full-version

e -h, --help

35

CHAPTER 1 © ANNOTATIONS

The --1ist option lists the set of deprecated APIs in Java SE. No arguments specifying the location of
compiled classes should be specified when this option is used.

The --class-path specifies the class path to be used to find dependent classes during the scan.

The --for-removal option restricts the scan or list to only those APIs that have been deprecated for
removal. It can be used only with a release value of 9 or later because the @eprecated annotation type did
not contain the forRemoval element before JDK9.

The --release option specifies Java SE release that provides the set of deprecated APIs during
scanning. For example, to list all deprecated APIs in JDK 6, you will the tool as follows:

jdeprscan --list --release 6

The - -verbose option prints additional messages during the scanning process.

The --version and --full-version options print the abbreviated and full versions of the jdeprscan
tool, respectively.

The --help option prints a detailed help message about the jdeprscan tool.

Listing 1-20 contains the code for a JDeprScanTest class. The code is trivial. It is intended to just compile,
not run. Running it will not produce any interesting output. It creates two threads. One thread is stopped using
the stop() method of the Thread class and another thread is destroyed using the destroy() method of the
Thread class. The stop() and destroy() methods have been ordinarily deprecated since JDK 1.2 and JDK 1.5,
respectively. JDK9 has terminally deprecated the destroy() method, whereas it continued to keep the stop()
method ordinarily deprecated. I use this class in the following examples.

Listing 1-20. A JDeprScanTest Class That Uses The Ordinarily Deprecated Method stop() and the
Terminally Deprecated Method destroy() of the Thread Class

// JDeprScanTest.java
package com.jdojo.annotation;

public class JDeprScanTest {
public static void main(String[] args) {
Thread t = new Thread(() -> System.out.println("Test"));
t.start();
t.stop();
Thread t2 = new Thread(() -> System.out.println("Test"));
t2.start();
t2.destroy();

The following command prints the list of all deprecated APIs in JDKO. It will print a long list. The
command takes a few seconds to start printing the results because it scans the entire JDK.

C:\Java9glanguageFeatures>jdeprscan --list

@eprecated java.lang.ClasslLoader
javax.tools.ToolProvider.getSystemToolClassLoader()

36

CHAPTER 1 © ANNOTATIONS

The following command prints all terminally deprecated APIs in JDK9. That is, it prints all deprecated
APIs that have been marked for removal in a future release:

C:\Java9glanguageFeatures>jdeprscan --list --for-removal

@Deprecated(since="9", forRemoval=true) class java.lang.Compiler

The following command prints the list of all APIs deprecated in JDK8:

C:\ Java9languageFeatures >jdeprscan --list --release 8

@eprecated class javax.swing.text.TableView.TableCell

The following command prints the list of deprecated APIs used by the java.lang.Thread class.

C:\Java9glanguageFeatures>jdeprscan java.lang.Thread
class java/lang/Thread uses deprecated method java/lang/Thread::resume()V

Note that the previous command does not print the list of deprecated APIs in the Thread class. Rather, it
prints the list of APIs in the Thread class that uses those deprecated APIs.

The following command lists all uses of deprecated JDK APIs in this chapter’s compiled code. The
Java9languageFeatures/build/modules/jdojo.annotation directory in the downloadable code for this
book contains the compiled code for this chapter.

C:\Java9languageFeatures>jdeprscan build/modules/jdojo.annotation

Directory build/modules/jdojo.annotation:

class com/jdojo/annotation/ImportDeprecationWarning uses deprecated class java/io/
StringBufferInputStream

class com/jdojo/annotation/JDeprScanTest uses deprecated method java/lang/Thread::stop()V
class com/jdojo/annotation/JDeprScanTest uses deprecated method java/lang/

Thread: :destroy()V (forRemoval=true)

C:\Java9languageFeatures>jdeprscan --for-removal build/modules/jdojo.annotation

Directory build/modules/jdojo.annotation:
class com/jdojo/annotation/JDeprScanTest uses deprecated method java/lang/
Thread: :destroy()V (forRemoval=true)

37

CHAPTER 1 © ANNOTATIONS

Dynamic Analysis of Deprecated APIs

The jdeprscan tool is a static analysis tool, so it will skip dynamic uses of deprecated APIs. For example, you
can call a deprecated method using reflection, which this tool will miss during scanning. You can also call
deprecated methods in providers loaded by a Serviceloader, which will be missed by this tool.

In a future release, the JDK may provide a dynamic analysis tool named jdeprdetect that will track the
uses of deprecated APIs at runtime. The tool will be useful to find dead code referencing deprecated APIs
that are reported by the static analysis tool jdeprscan.

No Deprecation Warnings on Imports

Until JDK9, the compiler generated a warning if you imported deprecated constructs using import
statements, even if you used a @SuppressWarnings annotation on all use-sites of the deprecated imported
constructs. This was an annoyance if you were trying to get rid of all deprecation warnings in your code. You
just could not get rid of them because you cannot annotate import statements. JDK9 improved on this by
omitting the deprecation warnings on import statements.

Suppressing Named Compile-Time Warnings

The Suppressharnings annotation type is used to suppress named compile-time warnings. It declares
one element named value whose data type is an array of String. Let’s consider the code for the
SuppressiWarningsTest class, which uses the raw type for the ArrayList<T> in the test() method.
The compiler generates an unchecked named warning when you use a raw type.

Listing 1-21. A Class That Will Generate Warnings When Compiled

// SuppressWarningsTest.java
package com.jdojo.annotation;

import java.util.Arraylist;

public class SuppressWarningsTest {
public void test() {
Arraylist list = new ArraylList();
list.add("Hello"); // The compiler issues an unchecked warning

Compile the SuppressiWarningsTest class with an option to generate an unchecked warning using the
command

javac -Xlint:unchecked SuppressWarningsTest.java

com\jdojo\annotation\SuppressiWarningsTest.java:10: warning: [unchecked] unchecked call to
add(E) as a member of the raw type ArraylList
list.add("Hello"); // The compiler issues an unchecked warning
A
where E is a type-variable
E extends Object declared in class Arraylist
1 warning

38

CHAPTER 1 © ANNOTATIONS

As a developer, sometimes you are aware of such compiler warnings and you want to suppress them
when your code is compiled. You can do so by using a @Suppressharnings annotation on your program
element by supplying a list of the names of the warnings to be suppressed. For example, if you useiton a
class declaration, all specified warnings will be suppressed from all methods inside that class declaration.
It is recommended that you use this annotation on the innermost program element on which you want to
suppress the warnings.

Listing 1-22 uses a @SuppressWarnings annotation on the test() method. It specifies two named
warnings: "unchecked" and "deprecation". The test() method does not contain code that will generate a
"deprecated" warning. It was included here to show you that you could suppress multiple named warnings
using a SuppressWarnings annotation. If you recompile the SuppressWarningsTest class with the same
options shown previously, it will not generate any compiler warnings.

Listing 1-22. The Modified Version of the SuppressWarningsTest Class

// SuppressWarningsTest.java
package com.jdojo.annotation;

import java.util.Arraylist;

public class SuppressWarningsTest {
@SuppressWarnings ({"unchecked", "deprecation"})
public void test() {
Arraylist list = new Arraylist();
list.add("Hello"); // The compiler does not issue an unchecked warning

Overriding Methods

The java.lang.Override annotation type is a marker annotation type. It can only be used on methods.
It indicates that a method annotated with this annotation overrides a method declared in its supertype.
This is very helpful for developers to avoid typos that lead to logical errors in the program. If you mean to
override a method in a supertype, it is recommended to annotate the overridden method with a @verride
annotation. The compiler will make sure that the annotated method really overrides a method in the
supertype. If the annotated method does not override a method in the supertype, the compiler will generate
an error.

Consider two classes, A and B. Class B inherits from class A. The m1() method in the class B overrides
the m1() method in its superclass A. The annotation @verride on the m1() method in class B just makes a
statement about this intention. The compiler verifies this statement and finds it to be true in this case.

public class A {
public void m1() {

}
}
public class B extends A {
@0verride
public void m1() {
}

39

CHAPTER 1 © ANNOTATIONS

Let’s consider class C.

// Won't compile because m2() does not override any method
public class C extends A {

@verride

public void m2() {

}

The method m2() in class C has a @0verride annotation. However, there is no m2() method in its
superclass A. The method m2() is a new method in class C. The compiler finds out that method m2() in
class C does not override any superclass method, even though its developer has indicated so. The compiler
generates an error in this case.

Declaring Functional Interfaces

An interface with one abstract method declaration is known as a functional interface. Previously, a
functional interface was known as a SAM (Single Abstract Method) type. The compiler verifies that all
interfaces annotated with a @FunctionalInterface really contain one and only one abstract method.
A compile-time error is generated if the interfaces annotated with this annotation are not functional.
It is also a compile-time error to use this annotation on classes, annotation types, and enums. The
FunctionalInterface annotation type is a marker annotation.

The following declaration of the Runner interface uses a @FunctionalInterface annotation. The
interface declaration will compile fine.

@FunctionalInterface

public interface Runner {
void run();

}

The following declaration of the Job interface uses a @FunctionalInterface annotation, which will
generate a compile-time error because the Job interface declares two abstract methods, and therefore it is
not a functional interface.

@FunctionalInterface
public interface Job {
void run();
void abort();

The following declaration of the Test class uses a @FunctionalInterface annotation, which will
generate a compile-time error because a @FunctionalInterface annotation can only be used on interfaces.

@FunctionalInterface
public class Test {
public void test() {
// Code goes here
}

40

CHAPTER 1 © ANNOTATIONS

Tip Aninterface with only one abstract method is always a functional interface whether it is annotated
with a @FunctionalInterface annotation or not. Use of the annotation instructs the compiler to verify the fact
that the interface is really a functional interface.

Annotating Packages

Annotating program elements such as classes and fields are intuitive, as you annotate them when they are
declared. How do you annotate a package? A package declaration appears in a compilation unit as part
of top-level type declarations. Further, the same package declaration occurs multiple times in different
compilation units. The question arises: how and where do you annotate a package declaration?

You need to create a file, which should be named package-info. java, and place the annotated package
declaration in it. Listing 1-23 shows the contents of the package-info.java file. When you compile the
package-info.java file, a class file will be created.

Listing 1-23. Contents of a package-info.java File

// package-info.java
@Version(major=1, minor=0)
package com.jdojo.annotation;

You may need some import statements to import annotation types or you can use the fully qualified
names of the annotation types in the package-info. java file. Even though the import statements appear
after the package declaration, it should be okay to use the imported types. You can have contents like the
following in a package-info. java file:

// package-info.java

@com. jdojo.myannotations.Author("John Jacobs")
@Reviewer("Wally Inman")

package com.jdojo.annotation;

import com.jdojo.myannotations.Reviewer;

Annotating Modules

You can use annotations on module declarations. In JDK9, the java.lang.annotation.ElementType enum
has a new value called MODULE. If you use MODULE as a target type on an annotation declaration, it allows the
annotation type to be used on modules. In JDK9, two annotations—java.lang.Deprecated and java.lang.
SuppresshWarnings—have been updated to be used on module declarations. They can be used as follows:

@eprecated(since="1.2", forRemoval=true)
@Suppressiarnings("unchecked")
module com.jdojo.myModule {

// Module statements go here

}

41

CHAPTER 1 © ANNOTATIONS

When a module is deprecated, the use of that module in requires, but not in exports or opens
statements, causes a warning to be issued. This rule is based on the fact that if module M is deprecated, a
"requires M" statement will be used by the module’s users who need to get the deprecation warnings. Other
statements such as exports and opens are within the module that is deprecated. A deprecated module does
not cause warnings to be issued for uses of types within the module. Similarly, if a warning is suppressed in
a module declaration, the suppression applies to elements within the module declaration and not to types
contained in that module.

Tip You cannot annotate individual module statements. For example, you cannot annotate an exports
statement with a @eprecated annotation indicating that the exported package will be removed in a future
release. During the early design phase, it was considered and rejected on the ground that this feature will take
a considerable amount of time that is not needed at this time. This could be added in the future, if needed.

Accessing Annotations at Runtime

Accessing annotations on a program element is easy. Annotations on a program element are Java objects.
All you need to know is how to get the reference of objects of an annotation type at runtime. Program
elements that let you access their annotations implement the java.lang.reflect.AnnotatedElement
interface. There are several methods in the AnnotatedElement interface that let you access annotations of
a program element. The methods in this interface let you retrieve all annotations on a program element,
all declared annotations on a program element, and annotations of a specified type on a program
element. I show some examples of using those methods shortly. The following classes implement the
AnnotatedElement interface:

e java.lang.Class

e java.lang.reflect.Executable

e java.lang.reflect.Constructor

e java.lang.reflect.Field

e java.lang.reflect.Method

e java.lang.reflect.Module

e java.lang.reflect.Parameter

e java.lang.Package

e java.lang.reflect.AccessibleObject

Methods of the AnnotatedElement interface are used to access annotations on these types of objects.

Caution It is very important to note that an annotation type must be annotated with the Retention
meta-annotation with the retention policy of runtime to access it at runtime. If a program element has multiple
annotations, you would be able to access only annotations, which have runtime as their retention policy.

42

CHAPTER 1 © ANNOTATIONS

Suppose you have a Test class and you want to print all its annotations. The following snippet of code
will print all annotations on the class declaration of the Test class:

// Get the class object reference
Class<Test> cls = Test.class;

// Get all annotations on the class declaration
Annotation[] allAnns = cls.getAnnotations();
System.out.println("Annotation count: " + allAnns.length);

// Print all annotations

for (Annotation ann : allAnns) {
System.out.println(ann.toString());

}

The toString() method of the Annotation interface returns the string representation of an annotation.
Suppose you want to print the Version annotation on the Test class. You can do so as follows:

Class<Test> cls = Test.class;

// Get the instance of the Version annotation of Test class
Version v = cls.getAnnotation(Version.class);
if (v == null) {
System.out.println("Version annotation is not present.");
} else {
int major = v.major();
int minor = v.minor();
System.out.println("Version: major=" + major + ", minor=" + minor);

This snippet of code shows that you can use the major () and minor() methods to read the value of the
major and minor elements of the Version annotation. It also shows that you can declare a variable of an
annotation type (e.g., Version v), which can refer to an instance of that annotation type. The instances of an
annotation type are created by the Java runtime. You never create an instance of an annotation type using
the new operator.

You will use the Version and Deprecated annotation types to annotate your program elements and
access those annotations at runtime. You will also annotate a package declaration and a method declaration.
You will use the code for the Version annotation type, as listed in Listing 1-24. Note that it uses the
@Retention(RetentionPolicy.RUNTIME) annotation, which is needed to read its instances at runtime.

Listing 1-24. A Version Annotation Type

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

43

CHAPTER 1 © ANNOTATIONS

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR, ElementType.METHOD, ElementType.MODULE,
ElementType.PACKAGE})
@Retention(RetentionPolicy.RUNTIME)
@ocumented
public @interface Version {
int major();
int minor();

Listing 1-25 shows the code that you need to save in a package-info. java file and compile it along with
other programs. It annotates the com. jdojo.annotation package. Listing 1-26 contains the code for a class
for demonstration purposes that has some annotations.

Listing 1-25. Contents of package-info.java File

// package-info.java
@Version(major=1, minor=0)
package com.jdojo.annotation;

Listing 1-26. AccessAnnotation Class Has Some Annotations, Which Will Be Accessed at Runtime

// AccessAnnotation.java
package com.jdojo.annotation;

@Version(major=1, minor=0)
public class AccessAnnotation {
@Version(major=1, minor=1)
public void testMethod1() {
// Code goes here
}

@Version(major=1, minor=2)

@eprecated

public void testMethod2() {
// Code goes here

}

Listing 1-27 is the program that demonstrates how to access annotations at runtime. Its output
shows that you are able to read all annotations used in the AccessAnnotation class successfully.
The printAnnotations() method accesses the annotations. It accepts a parameter of the AnnotatedElement
type and prints all annotations of its parameter. If the annotation is of the Version annotation type, it prints
the values for its major and minor versions.

Listing 1-27. Using the AccessAnnotationTest Class to Access Annotations

// AccessAnnotationTest.java
package com.jdojo.annotation;

import java.lang.annotation.Annotation;
import java.lang.reflect.AnnotatedElement;
import java.lang.reflect.Method;

44

CHAPTER 1

public class AccessAnnotationTest {
public static void main(String[] args) {
// Read annotations on the class declaration
Class<AccessAnnotation> cls = AccessAnnotation.class;
System.out.println("Annotations for class: " + cls.getName());
printAnnotations(cls);

// Read annotations on the package declaration
Package p = cls.getPackage();
System.out.println("Annotations for package:
printAnnotations(p);

+ p.getName());

// Read annotations on the methods declarations

System.out.println("Method annotations:");

Method[] methodList = cls.getDeclaredMethods();

for (Method m : methodlList) {
System.out.println("Annotations for method:
printAnnotations(m);

+ m.getName());

}

public static void printAnnotations(AnnotatedElement programElement) {
Annotation[] annList = programElement.getAnnotations();
for (Annotation ann : annList) {
System.out.println(ann);
if (ann instanceof Version) {
Version v = (Version) ann;
int major = v.major();
int minor = v.minor();
System.out.println("Found Version annotation:
+ "major=" + major + ", minor=" + minor);

}

System.out.println();

Annotations for class: com.jdojo.annotation.AccessAnnotation
@com. jdojo.annotation.Version(major=1, minor=0)
Found Version annotation: major=1, minor=0

Annotations for package: com.jdojo.annotation
@com. jdojo.annotation.Version(major=1, minor=0)
Found Version annotation: major=1, minor=0

Method annotations:

Annotations for method: testMethod1

@com. jdojo.annotation.Version(major=1, minor=1)
Found Version annotation: major=1, minor=1

ANNOTATIONS

45

CHAPTER 1 © ANNOTATIONS

Annotations for method: testMethod2

@com. jdojo.annotation.Version(major=1, minor=2)
Found Version annotation: major=1, minor=2
@java.lang.Deprecated(forRemoval=false, since="")

Accessing instances of a repeatable annotation is a little different. Recall that a repeatable annotation
has a companion containing annotation type. For example, you declared a ChangelLogs annotation
type that is a containing annotation type for the Changelog repeatable annotation type. You can access
repeated annotations using either the annotation type or the containing annotation type. Use the
getAnnotationsByType() method, passing it the class reference of the repeatable annotation type to get the
instances of the repeatable annotation in an array. Use the getAnnotation() method, passing it the class
reference of the containing annotation type to get the instances of the repeatable annotation as an instance
of its containing annotation type.

Listing 1-28 contains the code for a RepeatableAnnTest class. The class declaration has been annotated
with the ChangeLog annotation twice. The main() method accesses the repeated annotations on the class
declaration using both of these methods.

Listing 1-28. Accessing Instances of Repeatable Annotations at Runtime

// RepeatableAnnTest.java
package com.jdojo.annotation;

"Declared the class")
"Added the main() method")

@Changelog(date = "09/18/2017", comments
@Changelog(date = "10/22/2017", comments
public class RepeatableAnnTest {
public static void main(String[] args) {
Class<RepeatableAnnTest> mainClass = RepeatableAnnTest.class;
Class<Changelog> annClass = Changelog.class;

// Access annotations using the Changelog type
System.out.println("Using the Changelog type...");
Changelog[] annList = mainClass.getAnnotationsByType(ChangelLog.class);
for (Changelog log : annList) {
System.out.println("Date=" + log.date() + ", Comments=" + log.comments());
}

// Access annotations using the Changelogs containing annotation type
System.out.println("\nUsing the Changelogs type...");

Class<Changelogs> containingAnnClass = Changelogs.class;
Changelogs logs = mainClass.getAnnotation(containingAnnClass);
for (Changelog log : logs.value()) {
System.out.println("Date=" + log.date() + ", Comments=" + log.comments());
}

Using the Changelog type...
Date=09/18/2017, Comments=Declared the class
Date=10/22/2017, Comments=Added the main() method

46

CHAPTER 1 © ANNOTATIONS

Using the Changelogs type...
Date=09/18/2017, Comments=Declared the class
Date=10/22/2017, Comments=Added the main() method

Evolving Annotation Types

An annotation type can evolve without breaking the existing code that uses it. If you add a new element to
an annotation type, you need to supply its default value. All existing instances of the annotation will use
the default value for the new elements. If you add a new element to an existing annotation type without
specifying a default value for the element, the code that uses the annotation will break.

Annotation Processing at Source Code Level

This section is for experienced programmers. You may skip this section if you are learning Java for the first time.

This section discusses in detail how to develop annotation processors to process annotation at the source
code level when you compile Java programs. The University of Washington developed a Checker Framework
that contains a lot of annotations to be used in programs. It also ships with many annotation processors. You
can download the Checker Framework from http://types.cs.washington.edu/checker-framework.

It contains a tutorial for using different types of processors and a tutorial on how to create your own processor.

Java lets you process annotations at runtime as well as at compile time. You have already seen how to
process annotations at runtime. Now, I discuss, in brief, how to process annotations at compile time (or at
the source code level).

Why would you want to process annotations at compile time? Processing annotations at compile time opens
up a wide variety of possibilities that can help Java programmers during development of applications. It also helps
developers of Java tools immensely. For example, boilerplate code and configuration files can be generated based
on annotations in the source code; custom annotation-based rules can be validated at compile time, etc.

Annotation processing at compile time is a two-step process. First, you need to write a custom
annotation processor. Second, you need to use the javac command line utility tool. You need to specify the
module path for your custom annotation processor to the javac compiler using the - -processor-module-
path option. The following command compiles the Java source file, MySourceFile. java:

javac --processor-module-path <path> MySourceFile.java

Using -proc option, the javac command lets you specify if you want to process annotation and/or
compile the source files. You can use the -proc option as -proc:none or -proc:only. The -proc:none option
does not perform annotation processing. It only compiles source files. The -proc:only option performs
only annotation processing and skips the source files compilation. If the -proc:none and the -processor
options are specified in the same command, the -processor option is ignored. The following command
processes annotations in the source file MySourceFile. java using custom processors: MyProcessorl and
MyProcessor2. It does not compile the source code in the MySourceFile. java file.

javac -proc:only --processor-module-path <path> MySourceFile.java

To see the compile-time annotation processing in action, you must write an annotation processor using
the classes in the javax.annotation.processing package, which is in the java.compiler module.

While writing a custom annotation processor, you often need to access the elements from the source code,
for example, the name of a class and its modifiers, the name of a method and its return type, etc. You need to
use classes in the javax.lang.model package and its subpackages to work with the elements of the source

47

http://types.cs.washington.edu/checker-framework

CHAPTER 1 © ANNOTATIONS

code. In your example, you will write an annotation processor for your @Version annotation. It will validate all
@Version annotations that are used in the source code to make sure the major and minor values for a Version
are always zero or greater than zero. For example, if @/ersion(major=-1, minor=0) is used in source code,
your annotation processor will print an error message because the major value for the version is negative.

An annotation processor is an object of a class, which implements the Processor interface. The
AbstractProcessor class is an abstract annotation processor, which provides a default implementation
for all methods of the Processor interface, except an implementation for the process () method. The
default implementation is fine in most circumstances. To create your own processor, you need to inherit
your processor class from the AbstractProcessor class and provide an implementation for the process ()
method. If the AbstractProcessor class does not suit your need, you can create your own processor class,
which implements the Processor interface. Let’s call your processor class VersionProcessor, which inherits
the AbstractProcessor class, as shown:

public class VersionProcessor extends AbstractProcessor {
// Code goes here
}

The annotation processor object is instantiated by the compiler using a no-args constructor. You must
have a no-args constructor for your processor class, so that the compiler can instantiate it. The default
constructor for your VersionProcessor class will meet this requirement.

The next step is to add two pieces of information to the processor class. The first one is about what kind
of annotations processing are supported by this processor. You can specify the supported annotation type
using @SupportedAnnotationTypes annotation at the class level. The following snippet of code shows that
the VersionProcessor supports processing of com. jdojo.annotation.Version annotation type:

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})

public class VersionProcessor extends AbstractProcessor {
// Code goes here

}

You can use an asterisk (*) by itself or as part of the annotation name of the supported annotation
types. The asterisk works as a wildcard. For example, "com. jdojo.*" means any annotation types whose
names start with "com. jdojo.". An asterisk only ("*") means all annotation types. Note that when an
asterisk is used as part of the name, the name must be of the form PartialName.*. For example, "com*"
and "com.*jdojo" are invalid uses of an asterisk in the supported annotation types. You can pass multiple
supported annotation types using the SupportedAnnotationTypes annotation. The following snippet of
code shows that the processor supports processing for the com. jdojo.Ann1 annotation and any annotations
whose name begins with com. jdojo.annotation:

@SupportedAnnotationTypes({"com.jdojo.Ann1", "com.jdojo.annotation.*"})

You need to specify the latest source code version that is supported by your processor using a
@SupportedSourceVersion annotation. The following snippet of code specifies the source code version 9 as
the supported source code version for the VersionProcessor class:

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})

@SupportedSourceVersion(SourceVersion.RELEASE 9)

public class VersionProcessor extends AbstractProcessor {
// Code goes here

}

48

CHAPTER 1 © ANNOTATIONS

The next step is to provide the implementation for the process() method in the processor class.
Annotation processing is performed in rounds. An instance of the RoundEnvironment interface represents a
round. The javac compiler calls the process () method of your processor by passing all annotations that the
processor declares to support and a RoundEnvironment object. The return type of the process () method is
boolean. If it returns true, the annotations passed to it are considered to be claimed by the processor. The
claimed annotations are not passed to other processors. If it returns false, the annotations passed to it are
considered as not claimed and other processor will be asked to process them. The following snippet of code
shows the skeleton of the process() method:

public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv) {
// The processor code goes here
}

The code you write inside the process() method depends on your requirements. In your case, you want
to look at the major and minor values for each @/ersion annotation in the source code. If either of them
is less than zero, you want to print an error message. To process each Version annotation, you will iterate
through all Version annotation instances passed to the process() method as follows:

for (TypeElement currentAnnotation : annotations) {
// Code to validate each Version annotation goes here
}

You can get the fully qualified name of an annotation using the getQualifiedName() method of the
TypeElement interface.

Name qualifiedName = currentAnnotation.getQualifiedName();

// Check if it is a Version annotation

if (qualifiedName.contentEquals("com.jdojo.annotation.Version")) {
// Get Version annotation values to validate

}

Once you are sure that you have a Version annotation, you need to get all its instances from the source
code. To get information from the source code, you need to use the RoundEnvironment object. The following
snippet of code will get all elements of the source code (e.g., classes, methods, constructors, etc.) that are
annotated with a Version annotation:

Set<? extends Element> annotatedElements = roundEnv.getElementsAnnotatedWith(currentAnnotation);

At this point, you need to iterate through all elements that are annotated with a Version annotation;
get the instance of the Version annotation present on them; and validate the values of the major and minor
elements. You can perform this logic as follows:

for (Element element : annotatedElements) {
Version v = element.getAnnotation(Version.class);
int major = v.major();
int minor = v.minor();
if (major < 0 || minor < 0) {
// Print the error message here
}

49

CHAPTER 1 © ANNOTATIONS

You can print the error message using the printMessage() method of the Messager. The processingEnv
is an instance variable defined in the AbstractProcessor class that you can use inside your processor to
get the Messager object reference, as shown next. If you pass the source code element’s reference to the
printMessage() method, your message will be formatted to include the source code file name and the line
number in the source code for that element. The first argument to the printMessage() method indicates
the type of the message. You can use Kind.NOTE and Kind.WARNING as the first argument to print a note and
warning, respectively.
String errorMsg = "Version cannot be negative. major=" + major + "
Messager messager = this.processingEnv.getMessager();
messager.printMessage(Kind.ERROR, errorMsg, element);

minor=" + minor;

Finally, you need to return true or false from the process() method. If a processor returns true,
it means it claimed all the annotations that were passed to it. Otherwise, those annotations are considered
unclaimed and they will be passed to other processors. Typically, your annotation processors should be
packaged in a separate module. Listing 1-29 contains the declaration for a jdojo.annotation.processor
module, which contains the annotation processor named VersionProcessor for the Version annotation
type, as shown in Listing 1-30.

Listing 1-29. The Declaration for a jdojo.annotation.processor Module

// module-info.java
module jdojo.annotation.processor {
exports com.jdojo.annotation.processor;
requires jdojo.annotation;
requires java.compiler;
provides javax.annotation.processing.Processor
with com.jdojo.annotation.processor.VersionProcessor;

The module reads the jdojo.annotation module because it uses the Version annotation type in
the VersionProcessor class. It reads the java.compiler module to use annotation processor related
types. Notice the use of the provides statement in the module’s declaration. JDK9 will load all annotation
processors on the processor module path mentioned in the with clause of the provides statement. The
statement specifies that the VersionProcessor class provides an implementation for the Processor service
interface. Refer to Chapter 14 for more details on the provides statement and implementing services.

Listing 1-30. An Annotation Processor to Process Version Annotations

// VersionProcessor.java
package com.jdojo.annotation.processor;

import java.util.Set;

import javax.annotation.processing.AbstractProcessor;
import javax.annotation.processing.Messager;

import javax.annotation.processing.RoundEnvironment;
import javax.annotation.processing.SupportedAnnotationTypes;
import javax.annotation.processing.SupportedSourceVersion;
import javax.lang.model.SourceVersion;

import javax.lang.model.element.Element;

import javax.lang.model.element.Name;

import javax.lang.model.element.TypeElement;

import javax.tools.Diagnostic.Kind;

50

http://dx.doi.org/10.1007/978-1-4842-3348-1_14

CHAPTER 1 © ANNOTATIONS

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})
@SupportedSourceVersion(SourceVersion.RELEASE 9)
public class VersionProcessor extends AbstractProcessor {
// A no-args constructor is required for an annotation processor
public VersionProcessor() {

}

@0verride
public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment
roundEnv) {
// Process all annotations
for (TypeElement currentAnnotation: annotations) {
Name qualifiedName = currentAnnotation.getQualifiedName();

// check if it is a Version annotation
if (qualifiedName.contentEquals("com.jdojo.annotation.Version")) {
// Look at all elements that have Version annotations
Set<? extends Element> annotatedElements;
annotatedElements = roundEnv.getElementsAnnotatedWith(currentAnnotation);
for (Element element: annotatedElements) {
Version v = element.getAnnotation(Version.class);
int major = v.major();
int minor = v.minor();
if (major < 0 || minor < 0) {
// Print the error message
String errorMsg = "Version cannot be negative." +
" major=" + major +
minor=" + minor;

Messager messager = this.processingEnv.getMessager();

messager.printMessage(Kind.ERROR, errorMsg, element);

}

return true;

Now you have an annotation processor. It is time to see it in action. You need to have a source code that
uses invalid values for the major and minor elements in the Version annotation. You will place the source
code in a module named jdojo.annotation.test, as shown in Listing 1-31. The VersionProcessorTest
class in Listing 1-32 uses the Version annotation three times. It uses negative values for major and minor
elements for the class itself and for the method m2 (). The processor should catch these two errors when you
compile the source code for the VersionProcessorTest class.

51

CHAPTER 1 © ANNOTATIONS

Listing 1-31. The Declaration of a jdojo.annotation.test Module

// module-info.java

module jdojo.annotation.test {
exports com.jdojo.annotation.test;
requires jdojo.annotation;

Listing 1-32. A Test Class to Test VersionProcessor

// VersionProcessorTest.java
package com.jdojo.annotation.test;

@Version(major = -1, minor = 2)
public class VersionProcessorTest {
@Version(major = 1, minor = 1)
public void m1() {
}

@Version(major = -2, minor = 1)
public void m2() {
}

To see the processor in action, you need to run the following command. You need to specify the path
for the VersionProcessor class’ module using the --processor-module-path option. The modules that
the annotation processor depends on should also be specified in the processor module path. When the
command is run, the compiler will automatically discover the VersionProcessor as an annotation processor
and it will pass all @ersion instances to this processor. The output displays two errors with the source file
name and the line number at which errors were found in the source file.

C:\Java9languageFeatures>javac --module-path dist\jdojo.annotation.jar
--processor-module-path dist\jdojo.annotation.processor.jar;dist\jdojo.annotation.jar
-d build\modules\jdojo.annotation.test
src\jdojo.annotation.test\classes\module-info.java
src\jdojo.annotation.test\classes\com\jdojo\annotation\test\VersionProcessorTest.java

src\jdojo.annotation.test\classes\com\jdojo\annotation\test\VersionProcessorTest.java:7:
error: Version cannot be negative. major=-1 minor=2
public class VersionProcessorTest {

N
src\jdojo.annotation.test\classes\com\jdojo\annotation\test\VersionProcessorTest.java:13:
error: Version cannot be negative. major=-2 minor=1

public void m2() {

2 errors

52

CHAPTER 1 © ANNOTATIONS

Summary

Annotations are types in Java. They are used to associate information to the declarations of program
elements or type uses in a Java program. Using annotations does not change the semantics of the program.

Annotations can be available in the source code only, in the class files, or at runtime. Their availability is
controlled by the retention policy that is specified when the annotation types are declared.

There are two types of annotations: regular annotation or simply annotations, and meta-annotations.
Annotations are used to annotate program elements, whereas meta-annotations are used to annotate other
annotations. When you declare an annotation, you can specify its targets that are the types of program
elements that it can annotate. Prior to Java 8, annotations were not allowed to be repeated on the same
element. Java 8 lets you create repeatable annotations.

Java library contains many annotation types that you can use in your Java programs—Deprecated,
Override, SuppresshWarnings, FunctionalInterface, etc. are a few of the commonly used annotation types.
They have compiler support, which means that the compiler generates errors if the program elements
annotated with these annotations do not adhere to specific rules.

Java lets you write annotation processors that can be plugged into the Java compiler to process
annotations when Java programs are compiled. You can write processors to enforce custom rules based on
annotations.

Deprecation in Java is a way to provide information about the lifecycle of the API. Deprecating an API
tells its users to migrate away because the API is dangerous to use, a better replacement exists, or it will be
removed in a future release. Using deprecated APIs generates compile-time deprecation warnings. The
@deprecated Javadoc tag and the @Deprecated annotation are used together to deprecate API elements such
as modules, packages, types, constructors, methods, fields, parameters, and local variables. Before JDK9, the
annotation did not contain any elements. It is retained at runtime.

JDK9 has added two elements to the Deprecated annotation type: since and forRemoval. The since
element defaults to an empty string. Its value denotes the version of the API in which the API element was
deprecated. The forRemoval element’s type is boolean and it defaults to false. Its value of true denotes that
the API element will be removed in a future release.

The JDK9 compiler generates two types of deprecation warnings depending on the value of
the forRemoval element of the @Deprecated annotation: ordinary deprecation warnings when
forRemoval=false and removal warnings for forRemoval=true.

Before JDK9, you could suppress the deprecation warnings by annotating the use-sites of the
deprecated APIs with a @SuppresshWarnings("deprecation") annotation. In JDK9, you need to use
@SuppressWarnings(“deprecation”) to suppress ordinary warnings, @SuppressWarnings(“removal”)
to suppress removal warnings, and @SuppressWarnings({“deprecation”, “removal”}) to suppress both
types of warnings. Before JDK9, importing a deprecated construct using an import statement generated a
compile-time deprecation warning. JDK9 omits such warnings.

QUESTIONS AND EXERCISES

What are annotations? How do you declare them?
What are meta-annotations?
What is the difference between an annotation type and annotation instances?

Can you inherit an annotation type from another annotation type?

o~ w0 b=

What are marker annotations? Describe their use. Name two marker annotations
available in Java SE API.

53

CHAPTER 1

10.

11.

12.

13.

14.

15.
16.
17.

54

ANNOTATIONS

Name the annotation type whose instances are used to annotate an overridden
method. What is the fully qualified name of this annotation type?

What are the allowed return types for methods in an annotation type declaration?

Declare an annotation type named Table. It contains one String element named
name. The sole element does not have any default value. This annotation must be
used only on classes. Its instances should be available at runtime.

What is wrong with the following annotation type declaration?

public @interface Version extends BasicVersion {
int extended();
}

What is wrong with the following annotation type declaration?

public @interface Author {
void name(String firstName, String lastName);
}

Briefly describe the use of the following built-in meta-annotations: Target,
Retention, Inherited, Documented, Repeatable, and Native.

Declare an annotation type named ModuleOwner, which contains one element
name, which is of the String type. The instances of the ModuleOwner type should
be retained only in the source code and they should be used only on module
declarations.

Declare a repeatable annotation type named Author. It contains two elements of
String type: firstName and lastName. This annotation can be used on types,
methods, and constructors. Its instances should be available at runtime. Name the
containing annotation type for the Author annotation type as Authors.

What annotation type do you use to deprecate your APIs? Describe all the elements
of such an annotation type.

What annotation type do you use to annotate a functional interface?
How do you annotate a package?

Create an annotation type named Owner. It should have one element, name, of the
String type. Its instances should be retained at runtime. It should be repeatable.
It should be used only on types, methods, constructors, and modules. Create a
module named jdojo.annotation.test and create a class named Test in the
com. jdojo.annotation.exercises package. Add a constructor and a method to
the class. Annotate the class, its module, constructor, and method with the Owner
annotation type. Add a main() method to the Test class and write code to access
and print the details of these instances of the owner annotation.

vww allitebooks.conl

http://www.allitebooks.org

18.

19.

20.

21.

CHAPTER 1

Consider the following declaration of an annotation type named Status:

public @interface Status {
boolean approved() default false;
String approvedBy();

Later you need to add another element to the Status annotation type. Modify the
declaration of the annotation to include a new element named approvedon, which
is of the String type. The new element will contain a date in ISO format whose
default value may be set to "1900-01-01".

Consider the declaration of the following annotation type named LuckyNumber:

public @interface LuckyNumber {
int[] value() default {19};
}

Which of the following uses of the LuckyNumber annotation type is/are invalid?
Explain your answer.

a) @LuckyNumber
b) @LuckyNumber({})
C) @LuckyNumber(10)

)
) @LuckyNumber({8, 10, 19, 28, 29, 26})

) @LuckyNumber(value={8, 10, 19, 28, 29, 26})
) @LuckyNumber(null)

—» D O

Given a LuckyNumber annotation type, is the following variable declaration valid?
LuckNumber myLuckNumber = null;
Consider the following declaration for a jdojo.annotation.exercises module:

module jdojo.annotation.exercises {
exports com.jdojo.annotation.exercises;

ANNOTATIONS

The module exists since version 1.0. The module has been deprecated and will be removed in

the next version. Annotate the module declaration to reflect these pieces of information.

55

CHAPTER 2

Inner Classes

In this chapter, you will learn:
e What inner classes are

How to declare inner classes

e How to declare member, local, and anonymous inner classes
e How to create objects of inner classes
All example programs in this chapter are a member of a jdojo.innerclasses module, as declared in
Listing 2-1.
Listing 2-1. The Declaration of a jdojo.innerclasses Module

// module-info.java

module jdojo.innerclasses {
exports com.jdojo.innerclasses;

}

What Is an Inner Class?

You have worked with classes that are members of a package. A class, which is a member of a package, is
known as a top-level class. For example, Listing 2-2. shows a top-level class named TopLevel.
Listing 2-2. An Example of a Top-Level Class

// Toplevel.java
package com.jdojo.innerclasses;

public class TopLevel {
private int value = 101;

public int getValue() {
return value;
}

public void setValue (int value) {

this.value = value;
}

© Kishori Sharan 2018
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_2

57

https://doi.org/10.1007/978-1-4842-3348-1_2

CHAPTER 2 * INNER CLASSES

The TopLevel class is a member of the com. jdojo.innerclasses package. The class has three
members:

e Oneinstance variable: value
e Two methods: getValue() and setValue()

A class can also be declared within another class. This type of class is called an inner class. If the class
declared within another class is explicitly or implicitly declared static, it is called a nested class, not an
inner class. The class that contains the inner class is called an enclosing class or an outer class. Consider the
following declaration of the Outer and Inner classes:

// Outer.java
package com.jdojo.innerclasses;

public class Outer {
public class Inner {
// Members of the Inner class go here
}

// Other members of the Outer class go here

The Outer class is a top-level class. It is a member of the com. jdojo. innerclasses package. The Inner
class is an inner class. It is a member of the Outer class. The Outer class is the enclosing (or outer) class for
the Inner class. An inner class can be the enclosing class for another inner class. There are no limits on the
levels of nesting of inner classes.

An instance of an inner class can only exist within an instance of its enclosing class. That is, you must
have an instance of the enclosing class before you can create an instance of an inner class. This is useful
in enforcing the rule that one object cannot exist without the other. For example, a computer must exist
before a processor can exist; an organization must exist before a president for that organization exists. In
such cases, Processor and President can be defined as inner classes whereas Computer and Organization
are their enclosing classes, respectively. An inner class has full access to all the members, including private
members, of its enclosing class.

Java 1.0 did not support inner classes. They were added to Java 1.1 without any changes to the way the
JVM used to handle the class files. How was it possible to add a new construct like an inner class without
affecting the JVM? Inner classes have been implemented fully with the help of the compiler. The compiler
generates a separate class file for each inner class in the compilation unit. The class files for inner classes
have the same format as the class files for the top-level classes. Therefore, the JVM treats the class files for
inner and top-level classes the same. However, the compiler has to do a lot of behind-the-scenes work to
implement inner classes. I discuss some of the work done by the compiler to implement inner classes later
in this chapter.

You may ask whether it is possible to achieve everything in Java that is facilitated by inner classes
without using them. To some extent, the answer is yes. You can implement most of the functionalities, if
not all, provided by inner classes without using inner classes. The compiler generates additional code for
an inner class. Instead of using inner class constructs and letting the compiler generate the additional
code for you, you can write the same code yourself. This idea sounds easy. However, who wants to
reinvent the wheel?

58

CHAPTER 2~ INNER CLASSES

Advantages of Using Inner Classes

The following are some of the advantages of inner classes. Subsequent sections in this chapter explain all of
the advantages of inner classes with examples.

e They let you define classes near other classes that will use them. For example, a
computer will use a processor, so it is better to define a Processor class as an inner
class of the Computer class.

e They provide an additional namespace to manage class structures. For example,
before the introduction of inner classes, a class can only be a member of a package.
With the introduction of inner classes, top-level classes, which can contain inner
classes, provide an additional namespace.

e Some design patterns are easier to implement using inner classes. For example, the
adaptor pattern, enumeration pattern, and state pattern can be easily implemented
using inner classes.

e Implementing a callback mechanism is elegant and convenient using inner classes.
Lambda expressions in Java 8 offer a better and more concise way of implementing
callbacks in Java. I discuss lambda expressions in Chapter 5.

e Ithelps implement closures in Java.

¢ You can have a flavor of multiple inheritance of classes using inner classes. An inner
class can inherit another class. Thus, the inner class has access to its enclosing class
members as well as members of its superclass. Note that accessing members of two
or more classes is one of the aims of multiple inheritance, which can be achieved
using inner classes. However, just having access to members of two classes is not
multiple inheritance in a true sense.

Types of Inner Classes

You can define an inner class anywhere inside a class where you can write a Java statement. There are three
types of inner classes. The type of an inner class depends on the location of its declaration and the way it is
declared.

° Member inner class
e Localinner class

e Anonymous inner class

Member Inner Class

A member inner class is declared inside a class the same way a member field or a member method for
the class is declared. It can be declared as public, private, protected, or package-level. The instance of
a member inner class may exist only within the instance of its enclosing class. Consider the example of a
member inner class shown in Listing 2-3.

59

http://dx.doi.org/10.1007/978-1-4842-3348-1_5

CHAPTER 2 * INNER CLASSES

Listing 2-3. Tire Is a Member Inner Class of the Car Class

// Car.java
package com.jdojo.innerclasses;

public class Car {
// A member variable for the Car class
private final int year;

// A member inner class named Tire

public class Tire {
// A member variable for the Tire class
private final double radius;

// A constructor for the Tire class

public Tire(double radius) {
this.radius = radius;

}

// A member method for the Tire class
public double getRadius() {

return radius;
}

} // The member inner class declaration ends here

// A constructor for the Car class
public Car(int year) {

this.year = year;
}

// A member method for the Car class
public int getYear() {

return year;
}

In Listing 2-3, Car is a top-level class and Tire is a member inner class of the Car class. The fully
qualified name for the Car class is com. jdojo.innerclasses.Car. The fully qualified name of the Tire class
is com.jdojo.innerclasses.Car.Tire. The Tire inner class has been declared public. That is, its name can
be used outside the Car class. For example, you can declare a variable of Car.Tire type outside the Car class
as follows:

Car.Tire t;

The constructor for the Tire class is also declared public. This means you can create an object of the
Tire class outside the Car class. Since Tire is a member inner class of the Car class, you must have an object
of the Car class before you can create an object of the Tire class. The new operator is used differently to
create an object of a member inner class. The “Creating Objects of Inner Classes” section in this chapter
explains how to create objects of an inner member class.

60

CHAPTER 2~ INNER CLASSES

Local Inner Class

Alocal inner class is declared inside a block. Its scope is limited to the block in which it is declared. Since

its scope is always limited to its enclosing block, its declaration cannot use any access modifiers such as
public, private, or protected. Typically, alocal inner class is defined inside a method. However, it can also
be defined inside static initializers, non-static initializers, and constructors. You would use a local inner class
when you need to use the class only inside a block. Listing 2-4 shows an example of a local inner class.

Listing 2-4. An Example of a Local Inner Class

// Titlelist.java
package com.jdojo.innerclasses;

import java.util.Arraylist;
import java.util.Iterator;

public class Titlelist {
private Arraylist<String> titleList = new ArrayList<>();

public void addTitle (String title) {
titlelist.add(title);
}

public void removeTitle(String title) {
titleList.remove(title);
}

public Iterator<String> titleIterator() {
// A local inner class - TitleIterator
class TitleIterator implements Iterator<String> {
int count = 0;

@0verride
public boolean hasNext() {

return (count < titlelist.size());
}

@0verride
public String next() {

return titlelList.get(count++);
}

} // Local Inner Class TitleIterator ends here
// Create an object of the local inner class and return the reference

TitleIterator titleIterator = new TitleIterator();
return titlelIterator;

61

CHAPTER 2 * INNER CLASSES

ATitlelist object can hold a list of book titles. The addTitle() method adds a title to the list.
The removeTitle() method removes a title from the list. The titleIterator() method returns an iterator for
the title list. The titleIterator() method defines a local inner class called TitleIterator, which implements
the Iterator interface. Note that the TitleIterator class uses the private instance variable titlelist of its
enclosing class. At the end, the titleIterator() method creates an object of the TitleIterator class and
returns the object’s reference. Listing 2-5 shows how to use the titleIterator() method of the Titlelist class.

Listing 2-5. Using a Local Inner Class

// TitlelistTest.java
package com.jdojo.innerclasses;

import java.util.Iterator;

public class TitlelListTest {
public static void main(String[] args) {
Titlelist tl = new TitlelList();

// Add three titles
tl.addTitle("Java 9 Revealed");
tl.addTitle("Beginning Java 9");
tl.addTitle("Learn JavaFX 9");

// Get the iterator
Iterator<String> iterator = tl.titlelIterator();

// Print all titles using the iterator
while (iterator.hasNext()) {

System.out.println(iterator.next());
}

Java 9 Revealed
Beginning Java 9
Learn JavaFX 9

The fact that the scope of a local inner class is limited to its enclosing block has some implications on
how to declare a local inner class. Consider the following class declaration:

package com.jdojo.innerclasses;
public class SomeToplLevelClass {
public void someMethod() {

class SomeLocalInnerClass {
// Code for SomelLocalInnerClass goes here
}

// SomelocalInnerClass can only be used here

62

CHAPTER 2~ INNER CLASSES

SomeTopLevelClass is a top-level class. The someMethod () method of SomeTopLevelClass declares the
SomeLocalInnerClass local inner class. Note that the name of the local inner class, SomeLocalInnerClass,
can only be used inside the someMethod () method. This implies that objects of the SomeLocalInnerClass
can only be created and used inside the someMethod() method. This limits the use of a local inner class to
only being used inside its enclosing block—in your case the someMethod() method. At this point, it may
seem that a local inner class is not very useful. However, Listing 2-5 demonstrated that the code for the local
inner class TitleIterator can be called from another class, TitleListTest. This was possible because the
local inner class TitleIterator implemented the Iterator interface.

To use a local inner class outside its enclosing block, the local inner class must do one or both of the
following:

e Implement a public interface
e Inherit from another public class and override some of its superclass methods

The name of the interface or another class must be available outside the enclosing block that defines
the local inner class. Listing 2-4 and Listing 2-5 illustrate the first case where a local inner class implements
an interface. Listing 2-6 and Listing 2-7 illustrate the second case, where a local inner class inherits from
another public class. Listing 2-8 provides a test class to test a local inner class. The example is trivial.
However, it illustrates the concept of how to use a local inner class by inheriting it from another class. Note
that you may get a different output when you run the program in Listing 2-8.

Listing 2-6. Declaring a Top-Level Class, Which Is Used as the Superclass for a Local Class

// RandomInteger.java
package com.jdojo.innerclasses;

import java.util.Random;

public class RandomInteger {
protected Random rand = new Random();

public int getValue() {
return rand.nextInt();
}

}

Listing 2-7. A Local Inner Class That Inherits from Another Class

// RandomLocal.java
package com.jdojo.innerclasses;

public class RandomLocal {
public RandomInteger getRandomInteger() {
// A local inner class that inherits from the RandomInteger class
class RandomIntegerLocal extends RandomInteger {
@0verride
public int getValue() {
// Get two random integers and return the average ignoring the fraction part
long n1 = rand.nextInt();
long n2 = rand.nextInt();

63

CHAPTER 2 * INNER CLASSES

int value = (int) ((n1 + n2)/2);
return value;

}

return new RandomIntegerlLocal();
} // End of the getRandomInteger() method

}

Listing 2-8. Testing a Local Inner Class

// LocalInnerTest.java
package com.jdojo.innerclasses;

public class LocalInnerTest {

public static void main(String[] args) {
// Generate random integers using the RandomInteger class
RandomInteger rTop = new RandomInteger();
System.out.println("Random integers using a top-level class:");
System.out.println(rTop.getValue());
System.out.println(rTop.getValue());
System.out.println(rTop.getValue());

// Generate random integers using the RandomIntegerlLocal class
RandomLocal local = new RandomLocal();
RandomInteger rlLocal = local.getRandomInteger();

System.out.println("\nRandom integers using a local inner class:");
System.out.println(rLocal.getValue());
System.out.println(rLocal.getValue());
System.out.println(rLocal.getValue());

Random integers using a top-level class:
-947391317
-678893674
-826257063

Random integers using a local inner class:
-120430809
2074796197
-293854159

The RandomInteger class contains a getValue() method. The only purpose of the RandomInteger
class is to get a random integer using this method. The RandomLocal class is another class, which has a
getRandomInteger () method, which declares a local inner class called RandomIntegerLocal, which inherits
from the RandomInteger class. The RandomIntegerLocal class overrides its parent’s getValue() method. The
overridden version of the getValue() method generates two random integers. It returns the average of the

64

CHAPTER 2~ INNER CLASSES

two integers. The LocalInnerTest class illustrates the use of the two classes. The name RandomIntegerLocal
is not available outside the method in which it is declared because it is a local inner class. Two things are
worth noting.

e ThegetRandomInteger () method of the RandomLocal class declares that it returns
an object of the RandomInteger class, not the RandomIntegerLocal class. Inside the
method, it is allowed to return an object of the RandomIntegerLocal class because
the RandomIntegerLocal local inner class inherits from the RandomInteger class.

e InthelocalInnerTest class, you declared the rLocal reference variable of the
RandomInteger type.

// Generate random integers using the RandomIntegerlLocal class
RandomLocal local = new RandomLocal();
RandomInteger rlLocal = local.getRandomInteger();

However, at runtime, rLocal will receive a reference of the RandomIntegerLocal
class. Since getValue() method is overridden in the local inner class, the rLocal
object will generate random integers differently.

Anonymous Inner Class

An anonymous inner class is the same as a local inner class with one difference: it does not have a name.
Since it does not have a name, it cannot have a constructor. Recall that a constructor name is the same as
the class name. You may wonder how you can create objects of an anonymous class if it does not have a
constructor. An anonymous class is a one-time class. You define an anonymous class and create its object
at the same time. You cannot create more than one object of an anonymous class. Since anonymous class
declaration and its object creation are interlaced, an anonymous class is always created using the new
operator as part of an expression. The general syntax for creating an anonymous class and its object is as
follows:

new <interface-name or class-name> (<argument-list>) {
// The body of the anonymous class goes here
}

The new operator is used to create an instance of the anonymous class. It is followed by either an
existing interface name or an existing class name. Note that the interface name or class name is not the
name for the newly created anonymous class. Rather, it is an existing interface/class name. If an interface
name is used, the anonymous class implements that interface. If a class name is used, the anonymous class
inherits from that class.

The <argument-1list> is used only if the new operator is followed by a class name. It is left empty if
the new operator is followed by an interface name. If <argument-1ist> is present, it contains the actual
parameter list for a constructor of the existing class to be invoked. The anonymous class body is written, as
usual, inside braces. The previous syntax can be broken into two for simplicity: the first syntax is used when
the anonymous class implements an interface and the second one is used when it inherits a class.

new Interface() {
// The body of the anonymous class goes here
}

65

CHAPTER 2 * INNER CLASSES

and

new Superclass(<argument-list-for-a-superclass-constructor>) {
// The body of the anonymous class goes here
}

Anonymous classes are very powerful. However, the syntax is not easy to read and is somewhat
unintuitive. The anonymous class body should be short for better readability. Let’s start with a simple
example of an anonymous class. You will inherit your anonymous class from the Object class, as shown:

new Object() {
// The body of the anonymous class goes here
}

This is the simplest anonymous class you can have in Java. It is created and it dies anonymously without
making any noise!

Now you want to print a message when an object of an anonymous class is created. An anonymous
class does not have a constructor. Where do you place the code to print the message? Recall that all instance
initializers of a class are invoked when an object of the class is created. Therefore, you can use an instance
initializer to print the message in your case. The following snippet of code shows your anonymous class with
an instance initializer:

new Object() {
// An instance initializer

{
}

System.out.println ("Hello from an anonymous class.");

Listing 2-9 contains the complete code for a simple anonymous class, which prints a message on the
standard output.

Listing 2-9. An Anonymous Class Example

// HelloAnonymous.java
package com.jdojo.innerclasses;

public class HelloAnonymous {
public static void main(String[] args) {
new Object() {
// An instance initializer

{
}

}; // A semicolon is necessary to end the statement

System.out.println ("Hello from an anonymous class.");

Hello from an anonymous class.

66

CHAPTER 2~ INNER CLASSES

Since an anonymous inner class is the same as a local class without a class name, you can also
implement the examples in Listing 2-4 and Listing 2-5 by replacing the local inner classes with anonymous
inner classes. Listing 2-10 rewrites the code for the Titlelist class to use an anonymous class. You will notice
the difference in the syntax inside the titleIterator() method shown in Listing 2-4 and Listing 2-10. When
using an anonymous class, it is important to indent the code properly for better readability. You can test the
TitleListWithInnerClass by replacing TitlelList with TitleListWithInnerClass in Listing 2-5and you
will get the same output.

Listing 2-10. The TitleList Class Rewritten Using an Anonymous Class as TitleListWithInnerClass
// TitlelistWithInnerClass.java

package com.jdojo.innerclasses;

import java.util.Arraylist;
import java.util.Iterator;

public class TitleListWithInnerClass {
private final ArraylList<String> titlelist = new ArraylList<>();

public void addTitle(String title) {
titleList.add(title);
}

public void removeTitle(String title) {
titlelist.remove(title);
}

public Iterator<String> titleIterator() {
// An anonymous class
Iterator<String> iterator = new Iterator<String>() {
int count = 0;

@0verride

public boolean hasNext() {
return (count < titlelist.size());
}

@0verride
public String next() {

return titleList.get(count++);
}

}; // The anonymous inner class ends here

return iterator;

67

CHAPTER 2 * INNER CLASSES

The titleIterator() method of TitleListWithInnerClass has two statements. The first statement
creates an object of an anonymous class and stores the object’s reference in the iterator variable. The
second statement returns the object reference stored in the iterator variable. In such cases, you can
combine the two statements into one statement. The getRandomInteger() method shown in Listing 2-7 can
be rewritten using an anonymous class as follows:

public RandomInteger getRandomInteger() {
// Anonymous inner class that inherits from the RandomInteger class
return new RandomInteger() {
public int getValue() {
// Get two random integers and return the average ignoring the fraction part
long n1 = rand.nextInt();
long n2 = rand.nextInt();

int value = (int)((n1 + n2)/2);
return value;

};

A static Member Class Is Not an Inner Class

A member class defined within the body of another class may be declared static. The following snippet of
code declares a top-level class A and a static member class B:

package com.jdojo.innerclasses;

public class A {
// A static member class
public static class B {
// The body of class B goes here
}

A static member class is not an inner class. It is considered a top-level class. It is also called a nested
top-level class. Since it is a top-level class, you do not need an instance of its enclosing class to create its
object. An instance of class A and an instance of class B can exist independently because both are top-level
classes. A static member class can be declared public, protected, package-level, or private to restrict its
accessibility outside its enclosing class.

What is the use of a static member class if it is nothing but another top-level class? There are two
advantages of using a static member class:

e Astatic member class can access the static members of its enclosing class, including
the private static members. In your example, if class A has any static members, those
static members can be accessed inside class B. However, class B cannot access any
instance members of class A because an instance of class B can exist without an
instance of class A.

68

CHAPTER 2~ INNER CLASSES

e Apackage acts like a container for top-level classes by providing a namespace.
Within a namespace, all entities must have unique names. Top-level classes having
static member classes provide an additional layer of namespaces. A static member
class is the direct member of its enclosing top-level class, not a member of the
package in which it is declared. In your example, class A is a member of the package
com. jdojo.innerclasses, whereas class B is a member of class A. The fully qualified
name of class A is com.jdojo.innerclasses.A. The fully qualified name of class B
is com.jdojo.innerclasses.A.B. This way, a top-level class can be used to group
together related classes defined as its static member classes.

An object of a static member class is created the same way you create an object of a top-level class using
the new operator. To create an object of class B, you write

A.B bReference = new A.B();

Since the simple name of class B is in the scope inside class A, you can use its simple name to create its
object inside class A as

// This statement appears inside the code for class A
B bReference2 = new B();

You can also use the simple name B outside class A by importing the com. jdojo.innerclasses.A.B
class. However, using the simple name B outside class A is not intuitive. It gives an impression to the reader
that class B is a top-level class, not a nested top-level class. You should use A. B for class B outside class A
for better readability. Listing 2-11 declares two static member classes, Monitor and Keyboard, which have
ComputerAccessory as their enclosing class. Listing 2-12 shows how to create objects of these static member
classes.

Listing 2-11. An Example of Declaring static Member Classes

// ComputerAccessory.java
package com.jdojo.innerclasses;

public class ComputerAccessory {
// A static member class - Monitor
public static class Monitor {
private final int size;

public Monitor(int size) {
this.size = size;
}

public String toString() {
return "Monitor - Size:" + this.size +
}

inch";
}

// A static member class - Keyboard
public static class Keyboard {
private final int keys;

69

CHAPTER 2 * INNER CLASSES

public Keyboard(int keys) {
this.keys = keys;
}

public String toString() {
return "Keyboard - Keys:'
}

+ this.keys;

}

Listing 2-12. An Example of Using static Member Classes

// ComputerAccessoryTest.java
package com.jdojo.innerclasses;

public class ComputerAccessoryTest {
public static void main(String[] args) {
// Create two monitors
ComputerAccessory.Monitor m17 = new ComputerAccessory.Monitor(17);
ComputerAccessory.Monitor m19 = new ComputerAccessory.Monitor(19);

// Create two Keyboards
ComputerAccessory.Keyboard k122 = new ComputerAccessory.Keyboard(122);
ComputerAccessory.Keyboard k142 = new ComputerAccessory.Keyboard(142);

System.out.println(m17);
System.out.println(m19);
System.out.println(k122);
System.out.println(k142);

Monitor - Size:17 inch
Monitor - Size:19 inch
Keyboard - Keys:122
Keyboard - Keys:142

Creating Objects of Inner Classes

Creating objects of a local inner class, an anonymous class, and a static member class is straightforward.
Obijects of a local inner class are created using the new operator inside the block, which declares the class.

An object of an anonymous class is created at the same time the class is declared. A static member class is
another type of top-level class. You create objects of a static member class the same way you create objects of
a top-level class.

Note that to have an object of a member inner class, a local inner class, and an anonymous class, you
must have an object of the enclosing class. In the previous examples of local inner classes and anonymous
inner classes, you placed these classes inside instance methods. You had an instance of the enclosing
class on which you called those instance methods. Therefore, instances of those local inner classes and

70

CHAPTER 2~ INNER CLASSES

anonymous inner classes had the instance of their enclosing classes on which those methods were called.
For example, in Listing 2-5, first you created an instance of TitleList class and you stored its reference in t1
as shown:
Titlelist tl = new TitlelList();

To get the iterator of t1, you called the titleIterator() method:

Iterator iterator = tl.titleIterator();

The method call t1.titleIterator() creates an instance of the TitleIterator local inner class inside
the titleIterator() method as

TitleIterator titleIterator = new TitleIterator();

Here, titleIterator is an instance of the local inner class and it exists within t1, which is an instance
of its enclosing class. This relationship exists for all inner classes, as depicted in Figure 2-1.

An instance of the - An instance of the local
enclosing class -TitleList inner class -Titlelterator

N/ e
; Vaa

titleIterator

Figure 2-1. The relationship between an instance of an inner class and an instance of its enclosing class

Note There are situations where an instance of the enclosing class is not required for the existence
of an instance of a local inner class or an anonymous inner class. This happens when local inner classes or
anonymous inner classes are defined inside a static-context, for example, inside a static method or a static
initializer. | discuss these cases later in this chapter.

An instance of a member inner class always exists within an instance of its enclosing class. The new
operator is used to create the instance of the member inner class with a slightly different syntax. The general
syntax to create an instance of a member inner class is as follows:

outerClassReference.new MemberInnerClassConstructor()

71

CHAPTER 2 * INNER CLASSES

Here, outerClassReference is the reference of the enclosing class followed by a dot, which is followed
by the new operator. The member inner class’s constructor call follows the new operator. Let’s revisit the first
example of the member inner class, which is as follows:

package com.jdojo.innerclasses;

public class Outer {
public class Inner {

}

To create an instance of the Inner member inner class, you must first create an instance of its enclosing
class Outer:

Outer out = new Outer();

Now, you need to use the new operator on the out reference variable to create an object of the Inner
class.

out.new Inner();

To store the reference of the instance of the Inner member inner class in a reference variable, you can
write the following statement:

Outer.Inner in = out.new Inner();

After the new operator, you always use the constructor name, which is the same as the simple class
name for the member inner class. Since the new operator is already qualified with the enclosing instance
reference (as in out.new), the Java compiler figures out the fully qualified name of the enclosing class name
automatically. It is a compile-time error to qualify the inner class constructor with its outer class name while
creating an instance of an inner class. The following statement will result in a compile-time error:

Outer.Inner in = out.new Outer.Inner(); // A compile-time error

Consider the following class declaration with inner classes nested at multiple levels:
package com.jdojo.innerclasses;
public class OuterA {

public class InnerA {

public class InnerAA {
public class InnerAAA {

}

To create an instance of InnerAAA, you must have an instance of InnerAA. To create an instance of
InnerAA, you must have an instance of InnerA. To create an instance of InnerA, you must have an instance
of OuterA. Therefore, to create an instance of InnerAAA, you must start by creating an instance of OuterA.

72

CHAPTER 2~ INNER CLASSES

The important point is that to create an instance of a member inner class, you must have an instance of its
immediate enclosing class. The following snippet of code illustrates how to create an instance of InnerAAA:

OuterA outa = new OuterA();

OuterA.InnerA ina = outa.new InnerA();
OuterA.InnerA.InnerAA inaa = ina.new InnerAA();
OuterA.InnerA.InnerAA.InnerAAA inaaa = inaa.new InnerAAA();

Listing 2-13 uses the member inner class called Car.Tire from Listing 2-3 to illustrate the steps needed
to create an instance of a member inner class.
Listing 2-13. Creating Objects of a Member Inner Class
// CarTest.java

package com.jdojo.innerclasses;

public class CarTest {
public static void main(String[] args) {
// Create an instance of Car with year as 2018
Car c = new Car(2018);

// Create a Tire for that car of 9.0 inch radius
Car.Tire t = c.new Tire(9.0);

System.out.println("Car's year: " + c.getYear());
System.out.println("Car's tire radius: " + t.getRadius());

Car's year: 2018
Car's tire radius: 9.0

Accessing Enclosing Class Members

An inner class has access to all instance members, instance fields, and instance methods of its enclosing
class. Listing 2-14 declares a class called Outer and a member inner class called Inner.
Listing 2-14. Accessing Instance Members of the Enclosing Class from an Inner Class

// Outer.java
package com.jdojo.innerclasses;

public class Outer {
private int value = 1116;

// The Inner class starts here
public class Inner {
public void printValue() {
System.out.println("Inner: value = " + value);
}

} // The Inner class ends here

73

CHAPTER 2 * INNER CLASSES

// An instance method for the Outer class

public void printValue() {
System.out.println("Outer: value = " + value);

}

// Another instance method for the Outer class

public void setValue(int newValue) {
this.value = newValue;

}

The Outer class has a private instance variable called value, which is initialized to 1116. It also defines
two instance methods: printValue() and setValue(). The Inner class also defines an instance method
called printValue(), which prints the value of the value instance variable of its enclosing class Outer.

Listing 2-15 creates an instance of the Inner class and invokes its printValue() method. The output
shows that the inner class instance can access the instance variable value of its enclosing instance out.

Listing 2-15. Testing an Inner Class That Accesses the Instance Members of its Enclosing Class

// OuterTest.java
package com.jdojo.innerclasses;

public class OuterTest {
public static void main(String[] args) {
Outer out = new Outer();
Outer.Inner in = out.new Inner();

// Print the value
out.printValue();
in.printvalue();

// Set a new value
out.setValue(828);

// Print the value
out.printValue();
in.printvalue();

Outer: value = 1116
Inner: value = 1116
Outer: value = 828
Inner: value = 828

Let’s make things a little complex by adding an instance variable named value to the inner class. Let’s
call the classes Outer2 and Inner2, as shown in Listing 2-16. Note that the instance variables for the Outer2
and Inner2 classes have the same name as value.

74

CHAPTER 2~ INNER CLASSES

Listing 2-16. A Member Inner Class Having the Same Instance Variable Name as Its Enclosing Class

// Outer2.java
package com.jdojo.innerclasses;

public class Outer2 {
// An instance variable for the Outer2 class
private int value = 1116;

// The Inner2 class starts here

public class Inner2 {
// An instance variable for Inner2 class
private int value = 1720;

public void printValue() {
System.out.println("Inner2: value = " + value);
}

} // The Inner2 class ends here

// An instance method for the Outer2 class

public void printValue() {
System.out.println("Outer2: value =

}

+ value);

// Another instance method for the Outer2 class
public void setValue(int newValue) {

this.value = newValue;
}

If you run the Outer2Test class as shown in Listing 2-17, the output is different from the output when
you ran the OuterTest class in Listing 2-15.

Listing 2-17. Testing an Inner Class That Accesses the Instance Members of Its Enclosing Class

// Outer2Test.java
package com.jdojo.innerclasses;

public class Outer2Test {
public static void main(String[] args) {
Outer2 out = new Outer2();
Outer2.Inner2 in = out.new Inner2();

// Print the value
out.printValue();
in.printvalue();

// Set a new value
out.setValue(828);

75

CHAPTER 2 * INNER CLASSES

// Print the value

out.printValue();
in.printvalue();
}
}
Outer2: value = 1116
Inner2: value = 1720
Outer2: value = 828

Inner2: value = 1720

Note that the output has changed. When printing the value for the first time, the Outer2 class’s
instance prints 1116, whereas the Inner2 class’s instance prints 1720. After you set the new value using out.
setValue(828), the Outer2 class’s instance prints the new value of 828, whereas Inner2 class’s instance still
prints 1720. Why does the output differ?

To fully understand this output, you need to understand the concept of the current instance and the
keyword this. So far, you understand that the keyword this refers to the current instance of the class. For
example, inside the setValue() instance method of the Outer2 class, this.value refers to the value field of
the current instance of the Outer class.

You need to revise the meaning of the keyword this with respect to the instance of a class. The meaning
of the keyword this that it refers to the current instance is sufficient as long as you deal with only instances
of top-level classes. In dealing with only top-level classes, there is only one current instance in context
when a piece of code is executed. In such cases, you can use the keyword this to qualify the instance
member names to refer to the instance members of the class. You can also qualify the keyword this with
the class name to refer to the instance of the class in context. For example, inside the setValue() method
of the Outer2 class, instead of writing this.value, you can also write Outer2.this.value. If the name of a
variable used inside a class in a non-static context is an instance variable name, the use of the keyword this
is implicit. That is, the use of the simple name of a variable inside a class in a non-static context refers to
the instance variable of that class unless that variable hides the name of an instance variable with the same
name in its superclass. The use of the keyword this alone and its use qualified with class name is illustrated
in Listing 2-18. The program in Listing 2-19 tests the uses of the keyword this concept.

Listing 2-18. Use of the Keyword this Qualified with the Class Name

// QualifiedThis.java
package com.jdojo.innerclasses;

public class QualifiedThis {
// Instance variable - value
private int value = 828;

public void printValue() {
// Print value using simple name of instance variable

System.out.println("value = " + value);

// Print value using keyword this
System.out.println("this.value =

+ this.value);

// Print value using keyword this qualified with the class name
System.out.println("QualifiedThis.this.value = " + QualifiedThis.this.value);

76

CHAPTER 2~ INNER CLASSES

public void printHiddenValue() {

// Declare a local variable named value, which hides the value instance variable

int value = 131;

// Print value using simple name, which refers to the local variable - 131
System.out.println("value = " + value);

// Print value using keyword this, which refers to the instance
// variable value with value 828

System.out.println("this.value = " + this.value);

// Print value using keyword this qualified with the class name,
// which refers to instance variable value as 828
System.out.println("QualifiedThis.this.value = " + QualifiedThis.this.value);

}

Listing 2-19. Testing the Use of the Keyword this Qualified with the Class Name

// QualifiedThisTest.java
package com.jdojo.innerclasses;

public class QualifiedThisTest {
public static void main(String[] args) {
QualifiedThis gt = new QualifiedThis();
System.out.println("printValue():");
qt.printVvalue();

System.out.println("\nprintHiddenvalue():");
qt.printHiddenValue();

printValue():

value = 828

this.value = 828
QualifiedThis.this.value

828

printHiddenValue():

value = 131

this.value = 828
QualifiedThis.this.value = 828

You can refer to an instance variable in any of the following three ways, if its name is not hidden:

e Using the simple name, such as value
e Using the simple name qualified with the keyword this, such as this.value

e Using the simple name qualified with the class name and the keyword this, such as
QualifiedThis.this.value

7

CHAPTER 2 * INNER CLASSES

If the instance variable name is hidden, you must qualify its name with the keyword this or the class
name as well as the keyword this. The code inside an inner class always executes in the context of more
than one current instance. The number of current instances depends on the level of nesting of the inner
class. Consider the following class declaration:

public class TopLevelOuter {
private int vi = 100;

// Here, only vi is in scope

public class InnerLevelOne {
private int v2 = 200;

// Here, only vi and v2 are in scope

public class InnerlLevelTwo {
private int v3 = 300;

// Here, only vi, v2, and v3 are in scope

public class InnerLevelThree {
private int v4 = 400;

// Here, all vi, v2, v3, and v4 are in scope

When the code for the InnerLevelThree class is executed, there are four current instances: one
for the InnerLevelThree class and one for each of its three enclosing classes. When the code for the
InnerlLevelTwo class is executed, there are three current instances: one for the InnerLevelTwo class and
one for each of its two enclosing classes. When the code for the InnerLevelOne class is executed, there are
two current instances: one for the InnerLevelOne class and one for its enclosing class. When the code for
the TopLevelOuter class is executed, there is only one current instance because it is a top-level class. When
the code for an inner class is executed, all instance members, instance variables, and methods of all current
instances are in scope unless hidden by local variable declarations.

The previous example has comments indicating which instance variables are in scope in an inner class.
When an instance member is hidden inside an inner class, you can always refer to the hidden member by
using the keyword this qualified with the class name. Listing 2-20 is the modified version of Listing 2-16. It
illustrates the use of the class name with the keyword this to refer to the instance member of the enclosing
class of an inner class. Listing 2-21 contains the code to test the ModifiedOuter2 class.

Listing 2-20. Using the Keyword this Qualified with the Class Name
// ModifiedOuter2.java
package com.jdojo.innerclasses;

public class ModifiedOuter2 {
// An instance variable for the ModifiedOuter2 class
private int value = 1116;

78

CHAPTER 2
// The Inner class starts here
public class Inner {
// An instance variable for the Inner class
private int value = 1720;
public void printValue() {
System.out.println("\nInner - printValue()...");
System.out.println("Inner: value = " + value);
System.out.println("Outer: value = " + ModifiedOuter2.this.value);

}

} // The Inner class ends here

// An instance method for the ModifiedOuter2 class

public void printValue() {
System.out.println("\nOuter - printValue()...");
System.out.println("Outer: value = " + value);

}

// Another instance method for the ModifiedOuter2 class

public void setValue(int newValue) {
System.out.println("\nSetting Outer's value to
this.value = newValue;

+ newValue);

Listing 2-21. Testing the ModifiedOuter2 Class

// ModifiedOuter2Test.java
package com.jdojo.innerclasses;

public class ModifiedOuter2Test {

public static void main(String[] args) {
ModifiedOuter2 out = new ModifiedOuter2();
ModifiedOuter2.Inner in = out.new Inner();

// Print the value
out.printValue();
in.printvalue();

// Set a new value
out.setValue(828);

// Print the value
out.printValue();
in.printvalue();

INNER CLASSES

79

CHAPTER 2 * INNER CLASSES

Outer - printValue()..
Outer: value = 1116

Inner - printValue()...
Inner: value = 1720
Outer: value = 1116

Setting Outer's value to 828

Outer - printValue()...
Outer: value = 828

Inner - printValue()...
Inner: value = 1720
Outer: value = 828

Note Java restricts you from naming the inner class the same as its enclosing class. This is needed for the
inner classes to access the hidden members of their enclosing classes using the enclosing class name with the
keyword this.

Restrictions on Accessing Local Variables

Alocal inner class is declared inside a block—typically inside a method of a class. A local inner class can
access the instance variables of its enclosing class as well as the local variables, which are in scope. The
instance of an inner class exists within an instance of its enclosing class. Therefore, accessing the instance
variables of the enclosing class inside a local inner class is not a problem because they exist throughout the
lifecycle of the instance of the local inner class. However, the local variables in a method exist only during
the execution of that method. All local variables become inaccessible when method execution is over. Java
makes a copy of the local variables that are used inside a local inner class and stores that copy along with
the inner class object. However, to guarantee that the values of the local variables can be reproduced when
accessed inside the local inner class code after the method call is over, Java puts a restriction that the local
variables must be effectively final. An effectively final variable is a variable whose value does not change after
itis initialized. One way to have an effectively final variable is to declare the variable final. Another way

is not to change its value after it is initialized. Therefore, a local variable or an argument to a method must
be effectively final if it is used inside a local inner class. This restriction also applies to an anonymous inner
class declared inside a method.

Tip Prior to Java 8, a local variable must be declared final if it is accessed inside a local inner class or
an anonymous class. Java 8 changed this rule: the local variable need not be declared final, but it should be
effectively final.

80

CHAPTER 2~ INNER CLASSES

The program in Listing 2-22 demonstrates the rules for accessing local variables inside a local inner
class. The main() method declares two local variables called x and y. Both variables are effectively final. The
variable x is never changed after it is initialized and the variable y cannot be changed because it is declared

as final.

Listing 2-22. Accessing Local Variables Inside Local Classes

// AccessinglocalVariables.java

package

com.jdojo.innerclasses;

public class AccessinglocalVariables {
public static void main(String... args) {

}
}
X = 100
y = 200

int x = 100;
final int y = 200;

class LocalInner {
void print() {
// Accessing the local variable x is fine as it is effectively final.

System.out.println("x = " + x);

// The local variable y is effectively final as it has been declared final.

System.out.println("y = " +y);

}

/* Uncommenting the following statement will make the variable x no longer
an effectively final variable and the LocalInner class will not compile.

*/

// x = 100;

LocalInner 1i = new Locallnner();

li.print();

Inner Class and Inheritance

An inner class can inherit from another inner class, a top-level class, or its enclosing class. For example,
in the following snippet of code, inner class C inherits from inner class B; inner class D inherits from its
enclosing top-level class A, and inner class F inherits from inner class A.B:

public class A {
public class B {

}

public class C extends B {

}

81

CHAPTER 2 * INNER CLASSES

public class D extends A {

}
}

public class E extends A {
public class F extends B {

}

The situation becomes trickier when you want to inherit a top-level class from an inner class:

public class G extends A.B {
// This code won't compile
}

Before I discuss why this code will not compile, recall that you must have an instance of the enclosing
class before you can create an instance of an inner class. In this case, if you want to create an instance of
class G (using new G()), you must also create (indirectly though) an instance of A.B, because A. B is its parent
class. Here, A.B is an inner class. Therefore, in order to create an instance of the inner class A. B, you must
have an instance of its enclosing class A. Therefore, you must create an instance of class A before you can
create an instance of class G. You must also make the instance of class A available to class G so that it can be
used as the enclosing instance when A.B instance is created while creating an instance of its subclass G. The
Java compiler enforces this rule. In this case, you must declare a constructor for class G, which accepts an
instance of class A and calls the parent’s constructor on that instance. The previous class declaration for class
G must be changed to the following:

public class G extends A.B {

public G(A a) {
a.super(); // Must be the first statement
}

To create an instance of class G, you should follow two steps:

// Create an instance of class A first
A a = new A();

// Pass class A's instance to G's constructor
G g = new G(a);

You can combine these two statements into one:
G g = new G(new A());

Note that inside G’s constructor you have added one statement: a.super (). The compiler requires this
to be the first statement. At the time of compilation, the compiler modifies a. super () to super(a). Here,
super(a) means call the constructor of its parent, which is class B, passing the reference of class A. In other

words, with the coding rule, the Java compiler ensures that the constructor of class B gets a reference to its
enclosing class A when the instance of class B is created.

82

CHAPTER 2~ INNER CLASSES

Let’s change the declaration of the class E in the example to the following:

// The following code won't compile
public class E {
public class F extends A.B {

}

This code will not compile. To create an instance of the inner class F, you need an instance of A.B,
which in turn requires an instance of class A. In the earlier case, E was inherited from A. Therefore, it was
guaranteed that an instance of A exists when an instance of E is created. An instance of F can only be
created when you have an instance of its ancestor’s A. B’s enclosing class A. When E inherited from A, it was
guaranteed, when an instance of E was created, you always had an instance of class A. To make this code
work, you need to apply the same logic as you did for class G. You need to declare a constructor for class F
that takes an instance of class A as its parameter, like so:

// The following code will compile
public class E {
public class F extends A.B {
public F(A a) {
a.super(); // Must be the first statement
}

No static Members in an Inner Class

The keyword static in Java makes a construct a top-level construct. Therefore, you cannot declare any static
members (fields, methods, or initializers) for an inner class. The following code will not compile because
inner class B declares a static field DAYS_IN_A_WEEK:

public class A {
public class B {
// Cannot have the following declaration
public static int DAYS_IN A WEEK = 7; // A compile-time error

However, it is allowed to have static fields in an inner class that are compile-time constants.

public class A {
public class B {
// Can have a compile-time static constant field
public final static int DAYS_IN A WEEK = 7; // OK

// Cannot have the following declaration, because it is not

// a compile-time constant, even though it is final
public final static String str = new String("Hello");

83

CHAPTER 2 * INNER CLASSES

Tip A member interface and a member enum are implicitly static and, therefore, they cannot be declared
inside an inner class.

Generated Class Files for Inner Classes

Each inner class is compiled into a separate class file. The names of the generated class files follow a naming
convention. The class file name format for a member inner class and a nested class is as follows:

<outer-class-name>$<member-or-nested-class-name>

The format for the class file name for a local inner class is as follows:
<outer-class-name>$<a-number><local-inner-class-name>

The format for the class file name for an anonymous class is as follows:
<outer-class-name>$<a-number>

<a-number> in a class file name is a number that is generated sequentially starting from 1 to avoid any
name conflicts. The following nine class files, one for the top-level and eight for inner classes, are generated
when you compile the source code in Listing 2-23:

e InnerClassFile.class

e InnerClassFile$MemberInnerClass.class

e InnerClassFile$NestedClass.class

e InnerClassFile1LocalInnerClass.class

e InnerClassFile1LocalInnerClass$LocalInnerClass2.class
e InnerClassFile1AnotherLocalInnerClass.class

e InnerClassFile$i.class

e InnerClassFile2AnotherLocalInnerClass.class

e InnerClassFile1TestLocalClass.class

Listing 2-23. An Example for Generating File Names for Inner Classes

// InnerClassFile.java
package com.jdojo.innerclasses;

public class InnerClassFile {
public class MemberInnerClass {

}

public static class NestedClass {
}

84

CHAPTER 2~ INNER CLASSES

public void testMethod1() {
// A local class
class LocalInnerClass {
// A local class
class LocalInnerClass2 {
}
}

// A local class
class AnotherlLocalInnerClass {

}

// Anonymous Inner class
new Object() {

)

}

public void testMethod2() {
// A local class. Its name is the same as a local class in testMethod1() method
class AnotherLocalInnerClass {

}

// Another local class
class TestlocalClass {

}

Inner Classes and the Compiler Magic

Inner classes are implemented with the help of the compiler. The compiler does all the magic behind the
scenes for the features provided by inner classes by altering your code and adding new code. Here is the
simplest example of an inner class:

public class Outer {
public class Inner {

}

When the Outer class is compiled, two class files are generated: Outer.class and Outer$Inner.class.
If you decompile these two class files, you get the following output. You can use any available decompilers
for class files. Some Java class file decompilers are available free on the Internet. You can also use the javap
tool, which ships with the JDK, to decompile class files. The javap utility is located on your machine in the
JAVA_HOME\bin folder, where JAVA_HOME is the JDK installation folder.

// Decompiled code from Outer.class file
public class Outer {

public Outer() {

}

85

CHAPTER 2 * INNER CLASSES

// Decompiled code from Outer$Inner.class file
public class Outer$Inner {
final Outer this$o;
public Outer$Inner(Outer outer) {
this$o = outer;
super () ;

The following points may be observed in the decompiled code:

e Asusual, the compiler provided a default constructor for the Outer class because you
did not provide one in your source code.

e The Inner class definition is removed entirely from the body of the Outer class.
Therefore, the Inner class becomes a class that stands by itself in its compiled form.
Its class name is changed to Outer$Inner per the rules discussed earlier in this
chapter. By just looking at the definition of only the Outer$Inner class, no one can
notice that Outer$Inner is an inner class.

e Inthe Inner class definition (the Outer$Inner class in the decompiled code), the
compiler added an instance variable named this$0, which is of its enclosing class
type Outer (see the declaration "final Outer this$o;" in the decompiled code).

Since you did not include any constructors for the Inner class, you were expecting that the compiler
would add a default constructor. However, that is not the case. In the case of an inner class, if you do
not provide a constructor, the compiler includes a constructor, which has one argument. The argument
type is the same as its enclosing class. If you include a constructor for an inner class, the compiler adds
one argument to all the constructors you have included. The argument is added in the beginning of the
constructor’s arguments list. The argument type is the same as the enclosing class type. Consider the
following declaration of the Inner class:

public class Outer {
public class Inner {
public Inner(int a) {

}

Now the compiler will add an extra argument to its constructor, as shown:

public class Outer$Inner {
final Outer this$o;
public Outer$Inner(Outer outer, int i) {
this$0 = outer;
super();

The constructor’s body for the compiled Inner class is as follows:

this$0 = outer;
super () ;

86

CHAPTER 2~ INNER CLASSES

The first statement assigns the constructor’s argument, which is the reference to its enclosed class
instance, to the instance variable. The second statement calls the default constructor of the parent of the
Inner class, which is the Object class in this case. Recall that if there is a call to the parent’s constructor
inside a constructor of a class, it must be the first statement inside the constructor. However, it is the second
statement for the synthesized inner class, as shown previously. Can you think of a reason why the call to the
ancestor’s constructor is placed as the second statement as opposed to the first statement?

Let’s add an instance variable to the outer class and access that instance variable inside the inner class.
To keep the example simple, you have added a new getValue() method to the Inner class in order to access
the Outer class’s instance variable called dummy. The modified code is as follows:

public class Outer {
int dummy = 101;

public class Inner {
public int getValue() {
// Access Outer's class dummy field
int x = dummy + 200;
return x;

The decompiled code for the Outer.class and Outer$Inner.class files are as follows:

// Decompiled code from the Outer.class file
public class Outer {
int dummy = 0;

public Outer() {
dummy = 101;
}

}

// The decompiled code from the Outer$Inner.class file
public class Outer$Inner {
final Outer this$o;

public Outer$Inner(Outer outer) {
this$0 = outer;
super () ;

public int getValue() {
int x = this$o.dummy + 200;
return x;

Note the use of this$0.dummy to access the instance variable of the Outer class inside the getValue()
method of the Inner class. The dummy instance variable in the Outer class has a package-level access.
Since an inner class is always part of the same package as its enclosing class, this method of referring to

87

CHAPTER 2 * INNER CLASSES

the instance variable of the Outer class from outside works fine. However, if the instance variable dummy is
declared private, the Outer$Inner class code cannot refer to it directly as it did in the previous example. The
compiler uses a different way to access the private instance variable of the outer class from an inner class.
The following is the modified code and the corresponding decompiled code for the Outer and Inner classes:

// Modified Outer class code with dummy as private instance variable
public class Outer {
private int dummy = 101; // Declare dummy as private

public class Inner {
public int getValue() {
int x = dummy + 200; // Access Outer's dummy field
return x;

}

// Decompiled code from the Outer.class file
public class Outer {
private int dummy = 0;

public Outer() {
dummy = 101;
}

// A method added by the compiler to access the dummy private field
static int access$000(Outer outer) {

return outer.dummy;
}

}

// Decompiled code from the Outer$Inner.class file
public class Outer$Inner {
final Outer this$o;
public Outer$Inner(Outer outer) {
this$o = outer;
super () ;

public int getValue() {
int x = Outer.access$000(this$0) + 200;
return x;

Note that the compiler added a new static method to the Outer class, which is declared as

static int access$000(Outer outer)

88

CHAPTER 2~ INNER CLASSES

The compiler adds a new method to the enclosing class for each of its private instance variables
accessed inside the inner class. The method, access$000(), is known as a synthetic method because
it is synthesized by the compiler. The compiler sets a flag for each synthetic method in order to
prevent direct access to these methods from the source code. Another difference for you to note is that
inside the getValue() method of the Inner class the compiler has used the synthetic method Outer.
access$000(this$0) to access the Outer class’s dummy instance variable.

The compiler does many things to implement inner classes. To learn more about the implementation
details of inner classes, you can write inner classes; compile the code to generate class files; and then,
decompile the generated class files to see the work done by the compiler.

Closures and Callbacks

In functional programming, a higher order function is an anonymous function that can be treated as a data
object. That s, it can be stored in a variable and passed around from one context to another. It might be
invoked in a context that did not necessarily define it. Note that a higher order function is an anonymous
function, so the invoking context does not have to know its name. A closure is a higher order function
packaged with its defining environment. A closure carries with it the variables in scope when it was defined,
and it can access those variables even when it is invoked in a context other than the context in which it was
defined.

In object-oriented programming, a function is called a method and it is always part of a class. An
anonymous class in Java allows a method to be packaged in an object that can be treated much as a higher
order function. The object can be stored in a variable and passed around from one method to another.

The method defined in an anonymous class can be invoked in a context other than the one in which it was
defined. However, one important difference between a higher order function and a method defined in an
anonymous class is that a higher order function is anonymous, whereas a method in an anonymous class
is named. The invoker of the anonymous class method must know the method name. An anonymous class
carries with it its environment. An anonymous class can use the local variables and the parameters of a
method inside which it is defined. However, Java places a restriction that local variables and parameters to
the method must be effectively final if they are accessed inside an anonymous class.

The callback mechanism can be implemented using anonymous classes and interfaces. In the simplest
form, you register an object, which implements an interface. A particular method is called (back) on the
registered object later. Let’s define an interface named Callable with one method named call(), as shown
in Listing 2-24.

Listing 2-24. A Callable Interface to Implement a Callback Mechanism

// Callable.java
package com.jdojo.innerclasses;

public interface Callable {
void call();
}

The CallbackTest class in Listing 2-25 illustrates the implementation details of the callback
mechanism. The main() method creates three Callable objects using anonymous inner classes and
registers them to be called later. The register() method registers a Callable object and stores the object’s
reference in an Arraylist so that these object’s call() method can be executed later. The callback()
method calls back all registered objects by invoking their call() methods.

89

CHAPTER 2 * INNER CLASSES

Listing 2-25. Implementing the Callback Mechanism Using Anonymous Classes

// CallbackTest.java
package com.jdojo.innerclasses;

import java.util.Arraylist;

public class CallbackTest {
// To hold all registered Callable objects
private final Arraylist<Callable> callablelList = new ArraylList<>();

public static void main(String[] args) {
CallbackTest cbt = new CallbackTest();

// Create three Callable objects and register them
cbt.register(new Callable() {
@0verride
public void call() {
System.out.println("Called #1");
}

};

cbt.register(new Callable() {
@0verride
public void call() {
System.out.println("Called #2");
}

};

cbt.register(new Callable() {
@0verride
public void call() {
System.out.println("Called #3");
}

1

// Callback all the registered Callable objects
cbt.callback();

}

private void callback() {
// Callback all the registered Callable objects
for (Callable c: callablelist) {
c.call();
}

}

public void register(Callable c) {
this.callablelist.add(c);
}

90

CHAPTER 2~ INNER CLASSES

Called #1
Called #2
Called #3

The callback mechanism described in this section is used extensively in Java when working with GUI
applications developed using Swing and JavaFX.

Note Java 8 introduced lambda expressions that make working with callbacks more concise. | discuss
lambda expressions in Chapter 5.

Defining Inner Classes in static Contexts

You can also define an inner class in a static context such as inside a static method or a static initializer.
There is no current instance of the outer class present in a static context, and therefore such an inner class
cannot access instance fields of the outer class. However, all static field members are accessible to such an
inner class.

public class Outer {
static int k = 1001;
int m = 9008;

public static void staticMethod() {
// Class Inner is defined in a static context
class Inner {
int j = k; // OK. Referencing static field k
int n = m; // An error. Referencing non-static field m

Summary

Classes declared inside the body of another class are called inner classes. The class within which the inner
class is declared is known as the enclosing class. Inner classes have direct access to all members of their
enclosing class. Instances of inner classes exist only within an instance of the enclosing class, except when
they are declared in a static context, for example, inside a static method.

There are three types of inner classes: member inner class, local inner class, and anonymous inner
class. Inner classes are declared in non-static contexts. A member inner class is declared inside a class
the same way a member field or a member method for the class is declared. It can be declared as public,
private, protected, or package-level. A local inner class is declared inside a block. Its scope is limited
to the block in which it is declared. An anonymous inner class is the same as a local inner class with one
difference: it does not have a name. An anonymous class is a one-shot class; it is declared and an object of
the class is created at the same time.

A class declared inside another class as a static member is simply called a nested class. A nested class
has access to the static members of the enclosing class.

91

http://dx.doi.org/10.1007/978-1-4842-3348-1_5

CHAPTER 2 * INNER CLASSES

Inside an inner class, the keyword this refers to the current instance of the inner class. To refer to the
current instance of the enclosing class, you need to qualify the keyword this with the class name of the
enclosing class.

You cannot declare a static member for inner classes. This implies that interfaces and enums cannot be
declared as members for inner classes.

QUESTIONS AND EXERCISES

1. What is an inner class? Differentiate between member, local, and anonymous inner
classes.

2. What is the fully qualified name of the inner class B, which is declared as follows?

// A.java
package com.jdojo.innerclasses.exercises;

public class A {
public class B {

}
}

3. Consider the following declaration for top-level class named Cup and a member
inner class named Handle:

// Cup.java
package com.jdojo.innerclasses.exercises;

public class Cup {
public class Handle {
public Handle() {
System.out.println("Created a handle for the cup");
}

}

public Cup() {
System.out.println("Created a cup");
}

}

Complete the code in the main() method of the following CupTest class that will
create an instance of the Cup.Handle inner class:

// CupTest.java
package com.jdojo.innerclasses.exercises;

92

CHAPTER 2~ INNER CLASSES

public class CupTest {
public static void main(String[] args) {
// Create a Cup
Cup ¢ = new Cup();

// Create a Handle
Cup.Handle h = /* Your code goes here */ ;
}
}

4. What will be the output when the following Outer class is run?

// Outer.java
package com.jdojo.innerclasses.exercises;

public class Outer {
private final int value = 19680112;

public class Inner {
private final int value = 19690919;

public void print() {

System.out.println("Inner: value = " + value);

System.out.println("Inner: this.value = " + this.value);

System.out.println("Inner: Inner.this.value = " +
Inner.this.value);

System.out.println("Inner: Outer.this.value
Outer.this.value);

n
+

}

public void print() {
System.out.println("Outer: value = " + value);

System.out.println("Outer: this.value = " + this.value);

System.out.println("Outer: Outer.this.value = " +
Outer.this.value);

}

public static void main(String[] args) {
Outer out = new Outer();
Inner in = out.new Inner();
out.print();
in.print();

93

CHAPTER 2

94

INNER CLASSES

The following declaration of an AnonymousTest class does not compile. Describe
the reasons and steps you might take to fix the error.

// AnonymousTest.java
package com.jdojo.innerclasses.exercises;

public class AnonymousTest {
public static void main(String[] args) {
int x = 100;

Object obj = new Object() {

System.out.println("Inside. x = " + x);

}
};

X = 300;
System.out.println("Outside. x = " + x);

}
}

Consider the following declaration for a top-level class A and a member inner
class B:

// A.java
package com.jdojo.innerclasses.exercises;

public class A {
public class B {
public B() {
System.out.println("B is created.");
}

}

public A() {
System.out.println("A is created.");
}

}

Consider the following incomplete declaration of class ¢, which inherits from the
inner class A.B:

// C.java
package com.jdojo.innerclasses.exercises;

public class C extends A.B {

CHAPTER 2

/* Define a constructor for class C here */

public static void main(String[] args) {
C ¢ = /* Your code goes here */;
}

}

Add an appropriate constructor for class C and complete the statement in the
main() method. When class C is run, it should print the following to the standard
output:

A is created.
B is created.
C is created.

Which of the following is true about an anonymous inner class?

a. It caninherit from one class and implement one interface.

b. It can inherit from one class and implement multiple interfaces.

¢. It caninherit from one class or implement one interface.

d. It can implement multiple interfaces, but inherits from only one class.

How many class files will be generated when the following declaration of the
Computer class is compiled? List the names of all generated class files.

// Computer.java
package com.jdojo.innerclasses.exercises;

public class Computer {
public class Mouse {
public class Button {

}
}

public static void main(String[] args) {
Object obj = new Object() {

)

System.out.println(obj.hashCode());

INNER CLASSES

95

CHAPTER 2

9.

10.

INNER CLASSES

The following declaration of class H does not compile. Point out the problem and
suggest a solution.

// H.java
package com.jdojo.innerclasses.exercises;

public class H {
private int x = 100;

public static class J {
private int y = x * 2;
}

}
Consider the following declaration of a top-level class P and a nested static class 0:

// P.java
package com.jdojo.innerclasses.exercises;

public class P {
public static class Q {

{
}

System.out.println("Hello from Q.");

}
}

Complete the main() method of the following PTest class that will create an object
of the nested static class 0. When class PTest is run, it should print a message
"Hello from Q." to the standard output.

// PTest.java
package com.jdojo.innerclasses.exercises;

public class PTest {
public static void main(String[] args) {
P.Q q = /* Your code goes here */;
}

96

CHAPTER 3

Reflection

In this chapter, you will learn:
e What reflection is
e What a class loader is and about the built-in class loaders

e How to use reflection to get information about classes, constructors, methods, etc. at
runtime

e Howto access fields of an object and a class using reflection
e How to create objects of a class using reflection
e How to invoke methods of a class using reflection
e How to create arrays using reflection
Most example programs in this chapter are a member of a jdojo.reflection module, as declared in
Listing 3-1. I use more modules in this chapter, which I show later.
Listing 3-1. The Declaration of a jdojo.reflection Module

// module-info.java

module jdojo.reflection {
exports com.jdojo.reflection;

}

What Is Reflection?

Reflection is the ability of a program to query and modify its state “as data” during the execution of the
program. The ability of a program to query or obtain information about itself is known as introspection.
The ability of a program to modify its execution state, modify its own interpretation or its meaning, or add
new behaviors to the program as it is executing is called intercession. Reflection is further divided into two
categories:

e Structural reflection
e Behavioral reflection

The ability of a program to query about the implementation of its data and code is called structural
introspection, whereas its ability to modify or create new data structure and code is called structural
intercession.

© Kishori Sharan 2018
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_3

https://doi.org/10.1007/978-1-4842-3348-1_3

CHAPTER 3 © REFLECTION

The ability of a program to obtain information about its runtime environment is called behavioral
introspection, whereas its ability to modify the runtime environment is called behavioral intercession.

Providing the ability to a program to query or modify its state requires a mechanism for encoding the
execution state as data. In other words, the program should be able to represent its execution state as data
elements (as objects in objected-oriented languages such as Java) so that it can be queried and modified.
The process of encoding the execution state into data is called reification. A programming language is called
reflective if it provides the programs with reflection capability.

Reflection in Java

The support for reflection in Java is mostly limited to introspection. It supports intercession in a very limited
form. The introspection features provided by Java let you obtain class information about an object at
runtime. Java also lets you obtain information about the fields, methods, modifiers, and the superclass of a
class at runtime.

The intercession features provided by Java let you create an instance of a class whose name is not known
until runtime, invoke methods on such instances, and get/set its fields. However, Java does not allow you to
change the data structure at runtime. For example, you cannot add a new field or a method to an object at
runtime. All fields of an object are always determined at compile-time. Examples of behavioral intercession
are the ability to change the method execution at runtime or add a new method to a class at runtime. Java
does not provide any of these intercession features. That is, you cannot change a class’s method code at
runtime to change its execution behavior; neither can you add a new method to a class at runtime.

Java provides reification by providing an object representation for a class and its methods, constructors,
fields, etc. at runtime. In most cases, Java does not support reification for generic types. Java 5 added support
for generic types. Refer to Chapter 4 for more details on generic types. A program can work on the reified
objects in order to get information about the runtime execution. For example, you have been using the
object of java.lang.Class class to get the information about the class of an object. A Class object is the
reification of the bytecode for the class of an object. When you want to gather information about the class of
an object, you do not have to worry about the bytecode of the class from which the object was instantiated.
Rather, Java provides the reification of the bytecode as an object of the Class class.

The reflection facility in Java is provided through the reflection API. Most of the reflection API classes
and interfaces are in the java.lang.reflect package. The Class class, which is central to the reflection in
Java, is in the java.lang package. Some of the frequently used classes in reflection are listed in Table 3-1.

Table 3-1. Commonly Used Classes in Reflection

Class Name Description

Class An object of this class represents a single class loaded by a class loader in the JVM.

Field An object of this class represents a single field of a class or an interface. The field
represented by this object may be a static field or an instance field.

Constructor An object of this class represents a single constructor of a class.

Method An object of this class represents a method of a class or an interface. The method
represented by this object may be a class method or an instance method.

Modifier This class has static methods that are used to decode the access modifiers for a class and
its members.

Parameter An object of this class represents a method’s parameter.

Array This class provides static methods that are used to create arrays at runtime.

98

http://dx.doi.org/10.1007/978-1-4842-3348-1_4

CHAPTER 3 © REFLECTION

Some of the things you can do using the reflection features in Java are as follows:
e Ifyouhave an object reference, you can determine the class name of the object.

e Ifyou have a class name, you can know its full description, for example, its package
name, its access modifiers, etc.

e Ifyou have a class name, you can determine the methods defined in the class, their
return type, access modifiers, parameters type, parameter names, etc. The support
for parameter names was added in Java 8.

e Ifyou have a class name, you can determine all field descriptions of the class.
e Ifyouhave a class name, you can determine all constructors defined in the class.

e Ifyou have a class name, you can create an object of the class using one of its
constructors.

e Ifyou have an object reference, you can invoke its method knowing just the method’s
name and method’s parameter types.

e You can get or set the state of an object at runtime.

e You can create an array of a type dynamically at runtime and manipulate its
elements.

Loading a Class

The Class<T> class is central to reflection in Java. The Class<T> class is a generic class. It takes a type
parameter, which is the type of the class represented by the Class object. For example, Class<String>
represents the class object for the String class. Class<?> represents a class type whose class is unknown.
The Class class lets you discover everything about a class at runtime. An object of the Class class
represents a class in a program at runtime. When you create an object in your program, Java loads the class’s
byte code and creates an object of the Class class to represent the byte code. Java uses that Class object
to create any object of that class. No matter how many objects of a class you create in your program, Java
creates only one Class object for each class loaded by a class loader in a JVM from one module. Each class
from a module is also loaded only once by a particular class loader. In a JVM, a class is uniquely identified by
its fully qualified name, its class loader, and its module. If two different class loaders load the same class, the
two loaded classes are considered two different classes and their objects are not compatible with each other.
You can get the reference to the Class object of a class in one of the followings ways:

e Using class literal
e Using the getClass() method of the Object class

e Using the forName() static method of the Class class

Using Class Literals

A class literal is the class name or interface name followed by a dot and the word “class.” For example, if you
have a class Test, its class literal is Test.class and you can write

Class<Test> testClass = Test.class;

99

CHAPTER 3 © REFLECTION

Note that the class literal is always used with a class name, not with an object reference. The following
statement to get the class reference is invalid:

Test t = new Test();
Class<Test> testClass = t.class; // A compile-time error. Must use Test.class

You can also get the class object for primitive data types and the keyword void using class literals as
boolean.class, byte.class, char.class, short.class, int.class, long.class, float.class, double.
class, and void.class. Each wrapper class for these primitive data types has a static field named TYPE,
which has the reference to the class object of the primitive data type it represents. Therefore, int.class and
Integer.TYPE refer to the same class object and the expression int.class == Integer.TYPE evaluates to
true. Table 3-2 shows the class literals for all primitive data types and the void keyword.

Table 3-2. Class Literals for Primitive Data Types and the void Keyword

Data Type Primitive Class Literal Wrapper Class static Field

boolean boolean.class Boolean.TYPE
byte byte.class Byte.TYPE

char char.class Character.TYPE
short short.class Short.TYPE

int int.class Integer.TYPE
long long.class Long.TYPE
float float.class Float.TYPE
double double.class Double.TYPE
void void.class Void.TYPE

Using the Object::getClass() Method

The Object class contains a getClass () method, , which returns the reference to the Class object of the
class of the object. This method is available in every class in Java because every class in Java, explicitly or
implicitly, inherits the Object class. The method is declared final, so no descendant class can override it. For
example, if you have testRef as a reference to an object of class Test, you can get the reference to the Class
object of the Test class as follows:

Test testRef = new Test();
Class<Test> testClass = testRef.getClass();

Using the Class::forName() Method

The Class class has a forName() static method, which loads a class and returns the reference to its Class
object. It is an overloaded method. Its declarations are as follows:

e (lass<?> forName(String className) throws ClassNotFoundException

e (lass<?> forName(String className, boolean initialize, ClasslLoader
loader) throws ClassNotFoundException

e (lass<?> forName(Module module, String className)

100

CHAPTER 3 © REFLECTION

The forName(String className) method takes the fully qualified name of the class to be loaded. It
loads the class, initializes it, and returns the reference to its Class object. If the class is already loaded, it
simply returns the reference to the Class object of that class.

The forName(String className, boolean initialize, ClasslLoader loader) method gives you
options to initialize or not to initialize the class when it is loaded, and which class loader should load the
class. The first two versions of the method throw a ClassNotFoundException if the class could not be loaded.

The forName (Module module, String className) method loads the class with the specified
className in the specified module without initializing the loaded class. If the class is not found, the method
returns null. This method was added to the Class class in JDK9.

To load a class named pkg1.Test, you would write:

Class testClass = Class.forName("pkgl.Test");

To get a Class object reference using the forName () method, you do not have to know the name of
the class until runtime. The forName(String className) method initializes the class if it is not already
initialized, whereas the use of a class literal does not initialize the class. When a class is initialized, all its
static initializers are executed and all static fields are initialized. Listing 3-2 lists a Bulb class with only
one static initializer, which prints a message on the console. Listing 3-3 uses various methods to load and
initialize the Bulb class.

Listing 3-2. A Bulb Class to Demonstrate Initialization of a Class

// Bulb.java
package com.jdojo.reflection;

public class Bulb {
static {
// This will execute when this class is loaded and initialized
System.out.println("Loading class Bulb...");

}

Listing 3-3. Testing Class Loading and Initialization

// BulbTest.java
package com.jdojo.reflection;

public class BulbTest {
public static void main(String[] args) {

/* Uncomment only one of the following statements at a time.
Observe the output to see the difference in the way the Bulb
class is loaded and initialized.

*/

BulbTest.createObject();

// BulbTest.forNameVersioni();
// BulbTest.forNameVersion2();
// BulbTest.forNameVersion3();
// BulbTest.classLiteral();

101

CHAPTER 3 © REFLECTION

102

public static void classLiteral() {

// Will load the class, but won't initialize it.
Class<Bulb> c = Bulb.class;

public static void forNameVersioni() {

try {
String className = "com.jdojo.reflection.Bulb";

// Will load and initialize the class
Class ¢ = Class.forName(className);

} catch (ClassNotFoundException e) {
System.out.println(e.getMessage());

}

public static void forNameVersion2() {

try {
String className = "com.jdojo.reflection.Bulb";
boolean initialize = false;

// Get the classloader for the current class
ClasslLoader cloader = BulbTest.class.getClassLoader();

// Will load, but not initialize the class, because we have
// set the initialize variable to false
Class ¢ = Class.forName(className, initialize, cloader);

} catch (ClassNotFoundException e) {
System.out.println(e.getMessage());

}

public static void forNameVersion3() {

String className = "com.jdojo.reflection.Bulb";

// Get the module reference for the current class
Module m = BulbTest.class.getModule();

// Will load, but not initialize, the class
Class ¢ = Class.forName(m, className);

if(c == null) {

System.out.println("The bulb class was not loaded.");
} else {

System.out.println("The bulb class was loaded.");
}

CHAPTER 3 © REFLECTION

public static void createObject() {
// Will load and initialize the Bulb class
new Bulb();

Loading class Bulb...

Class Loaders

Atruntime, every type is loaded by a class loader, which is represented by an instance of the java.lang.
ClassLoader class. You can get the reference of the class loader of a type by using the getClassLoader()
method of the Class class. The following snippet of code shows how to get the class loader of the Bulb class:

Class<Bulb> cls = Bulb.class;
ClassLoader loader = cls.getClasslLoader();

Class loaders have changed a bit in JDK9. However, the code behavior of class loading and class loaders
remains the same in JDK9. The following sections describe the class loaders in JDK8 and JDK9.

Class Loaders in JDKS8

Prior to JDK9, the runtime used three class loaders to load classes as shown in Figure 3-1. The direction of
the arrows indicates the delegation direction. These class loaders load classes from different locations and of
different types. You can add more class loaders, which would be a subclass of the ClassLoader class. Using
custom class loaders, you can load classes from custom locations, partition user code, and unload classes.
For simple applications, the built-in class loaders are sufficient.

Bootstrap class loader
A

Extension class loader
A

Application class loader

Figure 3-1. Class loaders hierarchy in the JDK prior to version 9

Class loaders work in a hierarchical fashion—the bootstrap class loader being at the top of the
hierarchy. A class loader delegates a request to load a class to the one above it. For example, if the
application class loader is requested to load a class, it delegates the request to the extension class loader,
which in turn delegates the request to the bootstrap class loader. If the bootstrap class loader cannot
load the class, the extension class loader attempts to load it. If the extension class loader cannot load
the class, the application class loader attempts to load it. If the application class loader cannot load it, a
ClassNotFoundException is thrown.

103

CHAPTER 3 © REFLECTION

The bootstrap class loader is the parent of the extension class loader. The extension class loader is the
parent of the application class loader. The bootstrap class loader has no parent. By default, the application
class loader will be the parent of additional class loaders you create.

Tip You can get the reference of the parent of a class loader by using the getParent() method of the
ClassLoader class.

The bootstrap class loader loads bootstrap classes that consist of the Java platform, including the
classes in the JAVA_HOME\1ib\rt. jar and several other runtime JARs. It is entirely implemented in the
virtual machine. You can use the -Xbootclasspath/p and -Xbootclasspath/a command-line options to
prepend and append additional bootstrap directories. You can specify a bootstrap class path using the
-Xbootclasspath option, which will replace the default bootstrap class path. At runtime, the sun.boot.
class.path system property contains the read-only value of the boot class path. The bootstrap class loader
is represented by null. That is, you cannot get its reference. For example, the Object class is loaded by the
bootstrap class loader and the expression Object.class.getClassLoader() returns null.

The extension class loader is used to load classes available through the extension mechanism located in
JARs in the directories specified by the java.ext.dirs system property. To get the reference of the extension
class loader, you need to get the reference of the application class loader (see the next paragraph) and use
the getParent () method on that reference.

The application class loader loads classes from the application class path that is specified by the
CLASSPATH environment variable or command-line option -cp or -classpath. The application class loader
is also known as the system class loader, which is a kind of misnomer that gives a false impression that it
loads system classes. You can get a reference of the application class loader using the static method named
getSystemClassLoader() of the ClassLoader class.

Class Loaders in JDK9

JDK9 keeps the three-level hierarchical class loader architecture for backward compatibility. However, there
are a few changes to the way they load classes from the module system. Figure 3-2 shows the JDK9 class
loader hierarchy.

Bootstrap class loader |[«—
A

Platform class loader
A

Y

Application class loader —

Figure 3-2. Class loaders hierarchy in JDK9

Notice that in JDK9, the application class loader can delegate to the platform class loader as well as the
bootstrap class loader; the platform class loader can delegate to the application class loader.

104

CHAPTER 3 © REFLECTION

In JDK9, the bootstrap class loader is implemented in the library code and in the virtual machine.

For backward compatibility, it is still represented by null in a program. For example, Object.class.
getClassLoader () still returns null. Not all Java SE Platform and JDK modules are loaded by the bootstrap
class loader. To name a few, modules loaded by the bootstrap class loader are java.base, java.logging,
java.prefs, and java.desktop. Other Java SE Platform and JDK modules are loaded by the platform class
loader and the application class loader, which are described next. Options to specify the boot class path,
-Xbootclasspath, and -Xbootclasspath/p, and the system property, sun.boot.class.path, are no longer
supported in JDK9. The -Xbootclasspath/a option is still supported and its value is stored in the system
property jdk.boot.class.path.append.

JDK9 no longer supports the extension mechanism. However, it retains the extension class loader
under a new name called platform class loader. The ClassLoader class contains a new static method named
getPlatformClassLoader (), which returns the reference of the platform class loader. Table 3-3 lists the
modules loaded by the platform class loader.

Table 3-3. The JDK Modules Loaded by the Platform Class Loader in JDK9

java.activation java.transaction jdk.deploy
java.compiler java.xml.bind jdk.dynalink
java.corba java.xml.crypto jdk.localedata
java.scripting java.xml.ws jdk.naming.dns
java.se java.xml.ws.annotation jdk.scripting.nashorn
java.se.ee jdk.accessibility jdk.security.auth
java.security.jgss jdk.charsets jdk.security.jgss
java.smartcardio jdk.crypto.cryptoki jdk.zipfs

java.sql jdk.crypto.ec

java.sql.rowset jdk.crypto.mscapi

The platform class loader serves another purpose. Classes loaded by the bootstrap class loader are
granted all permissions by default. However, several classes did not need all permissions. Such classes have
been de-privileged in JDK9 and they are loaded by the platform class loader.

The application class loader loads the application modules found on the module path and a few JDK
modules that provide tools or export tool APIs, as listed in Table 3-4. In JDK9, you can still use the static
method named getSystemClassLoader () of the ClassLoader class to get the reference of the application
class loader.

Table 3-4. The JDK Modules Loaded by the Application Class Loader in JDK9

jdk.attach jdk.internal.le jdk.jdi
jdk.compiler jdk.internal.opt jdk.jdwp.agent
jdk.editpad jdk.jartool jdk.jlink
jdk.internal.ed jdk.javadoc jdk.jshell
jdk.internal.jvmstat jdk.jdeps jdk.jstatd

105

CHAPTER 3 © REFLECTION

Tip Before JDK9, the extension class loader and the application class loader were an instance of the
java.net.URLClassLoader class. In JDK9, the platform class loader (the erstwhile extension class loader) and
the application class loader are an instance of an internal JDK class. If your code relied on the methods specific
to the URLClassLoader class, your code may break in JDK9.

The JDK modules not listed in Table 3-3 and Table 3-4 are loaded by the bootstrap class loader. Listing 3-4
shows you how to print module names and their class loader names. A partial output is shown. The output
depends on the modules resolved by the runtime. To print all JDK modules and their class loaders, you
should add a "requires java.se.ee" in your module declaration before running this class. I discuss
module layers in Chapter 15.

Listing 3-4. Listing the Names of Loaded Modules by Class Loader

// ModulesByClassLoader. java
package com.jdojo.reflection;

public class ModulesByClassLoader {
public static void main(String[] args) {
// Get the boot layer
ModulelLayer layer = Modulelayer.boot();

// Print all module's names and their class loader names in the boot layer
for (Module m : layer.modules()) {
ClassLoader loader = m.getClasslLoader();
String moduleName = m.getName();
String loaderName = loader == null ? "bootstrap" : loader.getName();
System.out.printf("%s: %s¥%n", loaderName, moduleName);

platform: java.xml.ws

app: jdk.compiler

platform: java.transaction
platform: jdk.naming.dns
bootstrap: java.datatransfer
bootstrap: jdk.jfr

app: jdk.jlink

The class loading mechanism in JDK9 has changed a bit. The three built-in class loaders work in tandem
to load classes. When the application class loader needs to load a class, it searches modules defined to all
class loaders. If a suitable module is defined to one of these class loaders, that class loader loads the class,
implying that the application class loader can now delegate to the bootstrap class loader and the platform
class loader. If a class is not found in a named module defined to these class loaders, the application class
loader delegates to its parent, which is the platform class loader. If class is still not loaded, the application
class loader searches the class path. If it finds the class on the class path, it loads the class as a member of its
unnamed module. If it does not find the class on the class path, a ClassNotFoundException is thrown.

106

http://dx.doi.org/10.1007/978-1-4842-3348-1_15

CHAPTER 3 © REFLECTION

When the platform class loader needs to load a class, it searches modules defined to all class loaders. If
a suitable module is defined to one of these class loaders, that class loader loads the class, implying that the
platform class loader can delegate to the bootstrap class loader as well as the application class loader. Ifa
class is not found in a named module defined to these class loaders, the platform class loader delegates to its
parent, which is the bootstrap class loader.

When the bootstrap class loader needs to load a class, it searches its own list of named modules. If a
class is not found, it searches the list of files and directories specified through the command-line option
-Xbootclasspath/a. If it finds a class on the bootstrap class path, it loads the class as a member of its
unnamed module. If a class is still not found, a ClassNotFoundException is thrown.

Reflecting on Classes

This section demonstrates the features of Java reflection that enable you to get the description of a class,
such as its package name, access modifiers, etc. You will use a Person class, as listed in Listing 3-5, to
demonstrate the reflection features. It is a simple class with two instance fields, two constructors, and some
methods. It implements two interfaces.

Listing 3-5. A Person Class Used to Demonstrate Reflection

// Person.java
package com.jdojo.reflection;

import java.io.Serializable;

public class Person implements Cloneable, Serializable {
private int id = -1;
private String name = "Unknown";

public Person() {
}

public Person(int id, String name) {
this.id = id;
this.name = name;

}

public int getId() {
return id;

}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

107

CHAPTER 3 © REFLECTION

@0verride
public Person clone() {
try {
return (Person) super.clone();
} catch (CloneNotSupportedException e) {
throw new RuntimeException(e.getMessage());
}

}

@0verride
public String toString() {

return "Person: id=" + this.id +
}

, name=" + this.name;

Listing 3-6 illustrates how to get the description of a class. It lists the class access modifiers, the class
name, its superclass name, and all interfaces implemented by the class.

Listing 3-6. Reflecting on a Class

// ClassReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Modifier;
import java.lang.reflect.TypeVariable;

public class ClassReflection {
public static void main(String[] args) {
// Print the declaration of the Person class
String clsDecl = getClassDescription(Person.class);
System.out.println(clsDecl);

// Print the declaration of the Class class
clsDecl = getClassDescription(Class.class);
System.out.println(clsDecl);

// Print the declaration of the Runnable interface
clsDecl = getClassDescription(Runnable.class);
System.out.println(clsDecl);

// Print the declaration of the class representing the int data type
clsDecl = getClassDescription(int.class);
System.out.println(clsDecl);

}

public static String getClassDescription(Class<?> cls) {
StringBuilder classDesc = new StringBuilder();

// Prepare the modifiers and construct keyword (class, enum, interface etc.)
int modifierBits = 0;

String keyword = "";

108

CHAPTER 3

// Add keyword @interface, interface or class
if (cls.isPrimitive()) {
// We do not want to add anything
} else if (cls.isInterface()) {
modifierBits = cls.getModifiers() & Modifier.interfaceModifiers();

// An annotation is an interface
if (cls.isAnnotation()) {
keyword = "@interface";
} else {
keyword = "interface";
}

} else if (cls.isEnum()) {
modifierBits = cls.getModifiers() & Modifier.classModifiers();
keyword = "enum";

} else {
modifierBits = cls.getModifiers() & Modifier.classModifiers();
keyword = "class";

}

// Convert modifiers to their string representation
String modifiers = Modifier.toString(modifierBits);

// Append modifiers
classDesc.append(modifiers);

// Append the construct keyword
classDesc.append(" ");
classDesc.append(keyword);

// Append simple name

String simpleName = cls.getSimpleName();
classDesc.append(" ");
classDesc.append(simpleName);

// Append generic parameters
String genericParms = getGenericTypeParams(cls);
classDesc.append(genericParms);

// Append super class

Class superClass = cls.getSuperclass();

if (superClass != null) {
String superClassSimpleName = superClass.getSimpleName();
classDesc.append(" extends ");
classDesc.append(superClassSimpleName);

}

// Append Interfaces
String interfaces = ClassReflection.getClassInterfaces(cls);
if (interfaces != null) {

REFLECTION

109

CHAPTER 3 © REFLECTION

classDesc.append(" implements ");
classDesc.append(interfaces);

}

return classDesc.toString().trim();

}

public static String getClassInterfaces(Class<?> cls) {
// Get a comma-separated list of interfaces implemented by the class
Class<?>[] interfaces = cls.getInterfaces();
if (interfaces.length == 0) {
return null;
}

String[] names = new String[interfaces.length];

for (int i = 0; i < interfaces.length; i++) {
names[i] = interfaces[i].getSimpleName();

}

String interfaceslList = String.join(",
return interfaceslist;

, names);

}

public static String getGenericTypeParams(Class<?> cls) {
StringBuilder sb = new StringBuilder();
TypeVariable<?>[] typeParms = cls.getTypeParameters();

if (typeParms.length == 0) {

}

return "";
String[] paramNames = new String[typeParms.length];
for (int i = 0; i < typeParms.length; i++) {
paramNames[i] = typeParms[i].getTypeName();
}

sb.append('<');

String parmsList = String.join(",", paramNames);
sb.append(parmsList);

sb.append('>");

return sb.toString();

public class Person extends Object implements Cloneable, Serializable

public final class Class<T> extends Object implements Serializable, GenericDeclaration,
Type, AnnotatedElement

public abstract interface Runnable

int

110

CHAPTER 3 © REFLECTION

The getName () method of the Class class returns the fully qualified name of the class. To get the simple
class name, use the getSimpleName() method of the Class class, like so:

String simpleName = c.getSimpleName();

The modifiers of a class are the keywords that appear before the keyword class in the class declaration.
In the following example, public and abstract are the modifiers for the MyClass class:

public abstract class MyClass {
// Code goes here
}

The getModifiers() method of the Class class returns all modifiers for the class. Note that the
getModifiers() method returns an integer. To get the textual form of the modifiers, you need to call the
toString(int modifiers) static method of the Modifier class, passing the modifiers value in an integer
form. Assuming c1s is the reference of a Class object, you get the modifiers of the class as shown:

// You need to AND the returned value from the getModifiers() method with

// appropriate value returned from xxxModifiers() method of the Modifiers class
int mod = cls.getModifiers() & Modifier.classModifiers();

String modStr = Modifier.toString(mod);

It is straightforward to get the name of the superclass of a class. Use the getSuperclass() method of
the Class class to get the reference of the superclass. Note that every class in Java has a superclass except the
Object class. If the getSuperclass() method is invoked on the Object class, it returns null.

Class superClass = cls.getSuperclass();
if (superClass != null) {

String superClassName = superClass.getSimpleName();
}

Tip The getSuperclass() method of the Class class returns null when it represents the Object class,
a class for an interface such as List.class, and a class for a primitive type such as int.class, void.class,
etc.

To get the names of all interfaces implemented by a class, you use the getInterfaces() method
of the Class class. It returns an array of Class object. Each element in the array represents an interface
implemented by the class.

// Get all interfaces implemented by cls
Class<?>[] interfaces = cls.getInterfaces();

The getClassDescription() method of the ClassReflection class puts all parts of a class declaration
into a string and returns that string. The main() method of this class demonstrates how to use this class.

111

CHAPTER 3 © REFLECTION

Note Java 8 added a method called toGenericString() to the Class class that returns a string
describing the class. The string contains the modifiers and type parameters for the class. The call Person.
class.toGenericString() will return public class com.jdojo.reflection.Person.

Reflecting on Fields

Afield of a class is represented by an object of the java.lang.reflect.Field class. The following four
methods in the Class class can be used to get information about the fields of a class:

e Field[] getFields()

e Field[] getDeclaredFields()

e Field getField(String name)

e Field getDeclaredField(String name)

The getFields() method returns all the accessible public fields of the class or interface. The
accessible public fields include public fields declared in the class or inherited from its superclass. The
getDeclaredFields () method returns all the fields that appear in the declaration of the class. It does not
include inherited fields. The other two methods, getField() and getDeclaredField(), are used to get the
Field object if you know the name of the field. Let’s consider the following declarations of classes A and B,
and an interface IConstants:

interface IConstants {
int DAYS_IN WEEK = 7;
}

class A implements IConstants {
private int aPrivate;
public int aPublic;
protected int aProtected;

}

class B extends A {
private int bPrivate;
public int bPublic;
protected int bProtected;

If bClass is the reference of the Class object for class B, the expression bClass.getFields() will return
the following three fields that are accessible and public:

e public int B.bPublic
e public int A.aPublic
e public static final int IConstants.DAYS_IN WEEK

112

CHAPTER 3 © REFLECTION

The bClass.getDeclaredFields () method will return the three fields that are declared in class B:
e private int B.bPrivate
e public int B.bPublic
e protected int B.bProtected

To get all the fields of a class and its superclass, you must get the reference of the superclass using the
getSuperclass() method and use the combinations of these methods. Listing 3-7 illustrates how to get the
information about the fields of a class. Note that you do not get anything when you call the getFields()
method on the Class object of the Person class because the Person class does not contain any public fields.

Listing 3-7. Reflecting on Fields of a Class

// FieldReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.util.Arraylist;

public class FieldReflection {
public static void main(String[] args) {
Class<Person> cls = Person.class;

// Print declared fields
Arraylist<String> fieldsDescription = getDeclaredFieldsList(cls);

System.out.println("Declared Fields for

for (String desc : fieldsDescription) {
System.out.println(desc);

}

// Get the accessible public fields
fieldsDescription = getFieldsList(cls);

+ cls.getName());

System.out.println("\nAccessible Fields for

for (String desc : fieldsDescription) {
System.out.println(desc);

}

+ cls.getName());

}

public static ArraylList<String> getFieldsList(Class c) {
Field[] fields = c.getFields();
Arraylist<String> fieldsList = getFieldsDescription(fields);
return fieldslist;

}

public static ArraylList<String> getDeclaredFieldsList(Class c) {
Field[] fields = c.getDeclaredFields();
ArraylList<String> fieldsList = getFieldsDescription(fields);
return fieldslist;

113

CHAPTER 3 © REFLECTION

public static ArraylList<String> getFieldsDescription(Field[] fields) {
ArraylList<String> fieldlist = new ArraylList<>();

for (Field f : fields) {
// Get the modifiers for the field
int mod = f.getModifiers() & Modifier.fieldModifiers();
String modifiers = Modifier.toString(mod);

// Get the simple name of the field type
Class<?> type = f.getType();
String typeName = type.getSimpleName();

// Get the name of the field
String fieldName = f.getName();

fieldList.add(modifiers + " " + typeName + " " + fieldName);

}

return fieldlist;

Declared Fields for com.jdojo.reflection.Person
private int id
private String name

Accessible Fields for com.jdojo.reflection.Person

Tip You cannot use this technique to describe the 1ength field of an array object. Each array type has a
corresponding class. When you try to get the fields of an array class using the getFields() method, you get
an array of Field objects of zero length. The array length is not part of the array’s class definition. Rather, it
is stored as part of the array object in the object header. For more information on array’s length field, refer to
Chapter 11.

Reflecting on Executables

An instance of the Method class represents a method. An instance of the Constructor class represents a
constructor. Structurally, methods and constructors have a few things in common. Both use modifiers,
parameters, and throws clause. Both can be executed. Java 8 refactored these classes to inherit them from
a common abstract superclass, Executable. Methods to retrieve information common to both have been
added/moved to the Executable class.

A parameter in an Executable is represented by an object of the Parameter class, which was added
in Java 8. The getParameters() method in the Executable class returns all parameters of an Executable

114

http://dx.doi.org/10.1007/978-1-4842-3348-1_11

CHAPTER 3 © REFLECTION

Parameter[]. By default, the formal parameter names are not stored in the class files to keep the file size
smaller. The getName () method of the Parameter class returns synthesized parameter names like argo, argi,
etc. unless the actual parameter names are retained. If you want to retain the actual parameter names in
class files, you need to compile the source code using the -parameters option with the javac compiler.

The getExceptionTypes() method of the Executable class returns an array of Class objects, which
describes the exceptions thrown by the Executable. If no exceptions are listed in the throws clause, it
returns an array of length zero.

The getModifiers() method of the Executable class returns the modifiers as an int.

The getTypeParameters() method of the Executable class returns an array of TypeVariable that
represents the type parameters for generic methods/constructors. The examples in this chapter do not
include the generic type variable declarations in method/constructors.

Listing 3-8 contains a utility class that consists of static methods to get information about an Executable
such as the list of modifiers, parameters, and exceptions. I use this class when I discuss methods and
constructors in the subsequent sections.

Listing 3-8. A Utility Class to Get Information for an Executable

// ExecutableUtil.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Executable;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.lang.reflect.Parameter;
import java.util.Arraylist;

public class ExecutableUtil {
public static ArraylList<String> getParameters(Executable exec) {

Parameter[] parms = exec.getParameters();

Arraylist<String> parmList = new ArraylList<>();

for (int i = 0; i < parms.length; i++) {
// Get modifiers, type, and name of the parameter
int mod = parms[i].getModifiers() & Modifier.parameterModifiers();
String modifiers = Modifier.toString(mod);
String parmType = parms[i].getType().getSimpleName();
String parmName = parms[i].getName();
String temp = modifiers + " " + parmType +

+ parmName;

// Trim it as it may have leading spaces when modifiers are absent
parmList.add(temp.trim());

}

return parmlList;

}

public static ArraylList<String> getExceptionList(Executable exec) {
Arraylist<String> exceptionlist = new Arraylist<>();
for (Class<?> c : exec.getExceptionTypes()) {
exceptionlList.add(c.getSimpleName());
}

115

CHAPTER 3 © REFLECTION

return exceptionlist;

}

public static String getThrowsClause(Executable exec) {
Arraylist<String> exceptionlList = getExceptionList(exec);
String exceptions = ExecutableUtil.arraylListToString(exceptionList, ",");

String throwsClause = "";

if (exceptionList.size() > 0) {
throwsClause = "throws " + exceptions;
}

return throwsClause;

}

public static String getModifiers(Executable exec) {
// Get the modifiers for the class
int mod = exec.getModifiers();

if (exec instanceof Method) {

mod = mod & Modifier.methodModifiers();
} else if (exec instanceof Constructor) {

mod = mod & Modifier.constructorModifiers();
}

return Modifier.toString(mod);

}

public static String arraylistToString(ArraylList<String> list, String saparator) {
String[] tempArray = new String[list.size()];
tempArray = list.toArray(tempArray);
String str = String.join(saparator, tempArray);
return str;

Reflecting on Methods
The following four methods in the Class class can be used to get information about the methods of a class:
e Method[] getMethods()
e Method[] getDeclaredMethods()
e Method getMethod(String name, Class... parameterTypes)
e Method getDeclaredMethod(String name, Class... parameterTypes)

The getMethods () method returns all the accessible public methods of the class. The accessible
public methods include any public method declared in the class or inherited from the superclass.
The getDeclaredMethods () method returns all the methods declared only in the class. It does not
return any methods that are inherited from the superclass. The other two methods, getMethod() and

116

CHAPTER 3 © REFLECTION

getDeclaredMethod(), are used to get the Method object if you know the name of the method and its
parameter types.

The getReturnType() method of the Method class returns the Class object, which contains information
about the return type of the method.

Listing 3-9 illustrates how to get information about the methods of a class. You can uncomment the
code in the main() method to print all methods in the Person class—declared in the Person class and
inherited from the Object class.

Listing 3-9. Reflecting on Methods of a Class

// MethodReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Method;
import java.util.Arraylist;

public class MethodReflection {
public static void main(String[] args) {
Class<Person> cls = Person.class;

// Get the declared methods
Arraylist<String> methodsDescription = getDeclaredMethodsList(cls);
System.out.println("Declared Methods for " + cls.getName());
for (String desc : methodsDescription) {
System.out.println(desc);
}

/* Uncomment the following code to print all methods in the Person class
// Get the accessible public methods
methodsDescription = getMethodsList(c);
System.out.println("\nMethods for " + c.getName());
for (String desc : methodsDescription) {
System.out.println(desc);
}

*/
}

public static Arraylist<String> getMethodsList(Class c) {
Method[] methods = c.getMethods();
ArraylList<String> methodsList = getMethodsDescription(methods);
return methodslist;

}

public static Arraylist<String> getDeclaredMethodsList(Class c) {
Method[] methods = c.getDeclaredMethods();
Arraylist<String> methodslList = getMethodsDescription(methods);
return methodslist;

}

public static ArraylList<String> getMethodsDescription(Method[] methods) {
Arraylist<String> methodlList = new Arraylist<>();

117

CHAPTER 3 © REFLECTION

for (Method m : methods) {
String modifiers = ExecutableUtil.getModifiers(m);

// Get the method return type
Class returnType = m.getReturnType();
String returnTypeName = returnType.getSimpleName();

// Get the name of the method
String methodName = m.getName();

// Get the parameters of the method
Arraylist<String> paramsList = ExecutableUtil.getParameters(m);

String params = ExecutableUtil.arraylListToString(paramsList, ",");

// Get the Exceptions thrown by method
String throwsClause = ExecutableUtil.getThrowsClause(m);

methodList.add(modifiers +
+ methodName + "(" + params + ")

+ returnTypeName +
" + throwsClause);

}

return methodlist;

Declared Methods for com.jdojo.reflection.Person
public String toString()

public Object clone()

public String getName()

public int getId()

public void setName(String argo)

Reflecting on Constructors

Getting information about constructors of a class is similar to getting information about methods of a
class. The following four methods in the Class class are used to get information about the constructors
represented by a Class object:

e (Constructor[] getConstructors()

e (Constructor[] getDeclaredConstructors()

e (Constructor<T> getConstructor(Class... parameterTypes)

e (Constructor<T> getDeclaredConstructor(Class... parameterTypes)

The getConstructors() method returns all public constructors. The getDeclaredConstructors()
method returns all declared constructors. The other two methods, getConstructor() and
getDeclaredConstructor(), are used to get the Constructor object if you know the parameter types of
the constructor. Listing 3-10 illustrates how to get information for the constructors represented by a Class
object.

118

CHAPTER 3 © REFLECTION

Listing 3-10. Reflecting on Constructors of a Class

// ConstructorReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.util.Arraylist;

public class ConstructorReflection {
public static void main(String[] args) {

Class<Person> cls = Person.class;

// Get the declared constructors
System.out.println("Constructors for " + cls.getName());
Constructor[] constructors = cls.getConstructors();
Arraylist<String> constructDesclList = getConstructorsDescription(constructors);
for (String desc : constructDesclList) {
System.out.println(desc);
}

public static ArraylList<String> getConstructorsDescription(Constructor[] constructors) {

Arraylist<String> constructorList = new ArraylList<>();
for (Constructor constructor : constructors) {
String modifiers = ExecutableUtil.getModifiers(constructor);

// Get the name of the constructor
String constructorName = constructor.getName();

// Get the parameters of the constructor
Arraylist<String> paramslList
= ExecutableUtil.getParameters(constructor);
String params = ExecutableUtil.arraylListToString(paramsList, ",");

// Get the Exceptions thrown by the constructor
String throwsClause = ExecutableUtil.getThrowsClause(constructor);

constructorList.add(modifiers + + constructorName

+ "(" + params + ") " + throwsClause);

}

return constructorlist;

Constructors for com.jdojo.reflection.Person
public com.jdojo.reflection.Person()
public com.jdojo.reflection.Person(int argo,String argl)

119

CHAPTER 3 © REFLECTION

Creating Objects

Java lets you use reflection to create objects of a class. The class name need not be known until runtime. You
can create the object by invoking one of the constructors of the class using reflection. You can also access the
values of fields of objects, set their values, and invoke their methods. If you know the class name and have
access to the class code at compile-time, do not use reflection to create its object; rather use the new operator
in your code to create objects of the class. Typically, frameworks and libraries use reflection to create objects.
You can create an object of a class using reflection. You need to get the reference of the constructor
before you can create an object. The previous section showed you how to get the reference of a specific
constructor of a class. Use the newInstance() method of the Constructor class to create an object. You can
pass the actual parameter to the constructor to the newInstance() method, which is declared as follows:

public T newInstance(Object... initargs) throws InstantiationException,
I1legalAccessException, IllegalArgumentException, InvocationTargetException

Here, initargs are the actual parameters for the constructor. You will not pass any parameters for the
no-args constructor.

Tip The newInstance() method of the Class class creates a new object of the class using its no-args
constructor. The method has been deprecated since JDK9 because it does not propagate the exceptions thrown
by the no-args constructor properly. Use the newInstance() method of the Constructor class to create an
object of a class using its no-args and all other constructors.

The following snippet of code gets the reference of the no-args constructor of the Person class and
invokes it. have omitted the exception handling for brevity:

Class<Person> cls = Person.class;

// Get the reference of the Person() constructor
Constructor<Person> noArgsCons = cls.getConstructor();
Person p = noArgsCons.newInstance();

Listing 3-11 contains the complete code to illustrate how to use the Person(int, String)
constructor of the Person class to create a Person object using reflection. Note that the Constructor<T>
class is a generic type. Its type parameter is the class type that declares the constructor, for example, the
Constructor<Person> type represents a constructor for the Person class.

Listing 3-11. Using a Specific Constructor to Create a New Object

// InvokeConstructorTest.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;

public class InvokeConstructorTest {

public static void main(String[] args) {
Class<Person> personClass = Person.class;

120

CHAPTER 3 © REFLECTION

try {
// Get the constructor "Person(int, String)"
Constructor<Person> cons = personClass.getConstructor(int.class, String.class);

// Invoke the constructor with values for id and name
Person chris = cons.newInstance(1994, "Chris");
System.out.println(chris);
} catch (NoSuchMethodException | SecurityException
| InstantiationException | IllegalAccessException
| IllegalArgumentException | InvocationTargetException e) {
System.out.println(e.getMessage());

Person: id=1994, name=Chris

Invoking Methods

You can invoke methods of an object using reflection. You need to get the reference to the method that you
want to invoke. Suppose you want to invoke the setName () method of the Person class. You can get the
reference to the setName () method as follows:

Class<Person> personClass = Person.class;
Method setName = personClass.getMethod("setName", String.class);

To invoke this method, call the invoke () method on the method’s reference, which is declared as
follows:

public Object invoke(Object obj, Object... args) throws IllegalAccessException,
11legalArgumentException, InvocationTargetException

The first parameter of the invoke() method is the object on which you want to invoke the method. If
the Method object represents a static method, the first argument is ignored or it may be null. The second
parameter is a varargs parameter in which you pass all the actual parameters in the same order as declared
in the method’s declaration.

Since the setName() method of the Person class takes a String argument, you need to pass a String
object as the second argument to the invoke () method. Listing 3-12 illustrates how to invoke a method on a
Person object using reflection.

Listing 3-12. Invoking a Method on an Object Reference Using Reflection

// InvokeMethodTest.java
package com.jdojo.reflection;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

121

CHAPTER 3 © REFLECTION

public class InvokeMethodTest {
public static void main(String[] args) {

Class<Person> personClass = Person.class;

try {

// Create an object of Person class
Person p = personClass.newInstance();

// Print the details of the Person object
System.out.println(p);

// Get the reference of the setName() method
Method setName = personClass.getMethod("setName", String.class);

// Invoke the setName() method on p passing passing "Ann"
// as the actual parameter
setName.invoke(p, "Ann");

// Print the details of the Person object
System.out.println(p);

} catch (InstantiationException | IllegalAccessException

| NoSuchMethodException | SecurityException
| IllegalArgumentException | InvocationTargetException e) {
System.out.println(e.getMessage());

Person: id=-1, name=Unknown
Person: id=-1, name=Ann

Accessing Fields

You can read or set the value of a field of an object using reflection. First, you need get the reference of
the field you want to work with. To read the field’s value, you need to call the getXxx() method on the
field, where Xxx is the data type of the field. For example, to read a boolean field value, you would call the
getBoolean() method, and to read an int field you would call the getInt () method. To set the value of
afield, you call the corresponding setXxx () method. The following are the declarations of the getInt()
and setInt() methods where the first argument, obj, is the object’s reference whose field is being read or

written:

122

int getInt(Object obj) throws IllegalArgumentException,
I1legalAccessException

void setInt(Object obj, int newValue) throws IllegalArgumentException,
I1legalAccessException

CHAPTER 3 © REFLECTION

Tip static and instance fields are accessed the same way. In case of static fields, the first argument to the
get() and set() methods is the reference of the class/interface.

Note that you can access fields only that have been declared as accessible, such as a public field. In the
Person class, all fields are declared private. Therefore, you cannot access any of these fields using normal
Java programming language rules. To access a field that is not normally accessible, for example, if it is
declared private, refer to the “Deep Reflection” section later in this chapter. You will use the PublicPerson
class listed in Listing 3-13 to learn the technique to access the fields.

Listing 3-13. A PublicPerson Class with a Public Name Field

// PublicPerson.java
package com.jdojo.reflection;

public class PublicPerson {
private int id = -1;
public String name = "Unknown";

public PublicPerson() {
}

@0verride
public String toString() {

return "Person: id=" + this.id +
}

, name=" + this.name;

Listing 3-14 demonstrates how to get the reference of a field of an object and how to read and set its
value.

Listing 3-14. Accessing Fields Using Reflection
// FieldAccessTest.java
package com.jdojo.reflection;

import java.lang.reflect.Field;

public class FieldAccessTest {
public static void main(String[] args) {
Class<PublicPerson> ppClass = PublicPerson.class;

try {
// Create an object of the PublicPerson class
PublicPerson p = ppClass.newInstance();

// Get the reference of the name field
Field name = ppClass.getField("name");

// Get and print the current value of the name field
String nameValue = (String) name.get(p);
System.out.println("Current name is " + nameValue);

123

CHAPTER 3 © REFLECTION

// Set the value of name to Ann
name.set(p, "Ann");

// Get and print the new value of name field
nameValue = (String) name.get(p);
System.out.println("New name is " + nameValue);
} catch (InstantiationException | IllegalAccessException
| NoSuchFieldException | SecurityException
| I1legalArgumentException e) {
System.out.println(e.getMessage());

Current name is Unknown
New name is Ann

Deep Reflection

There are two things you can do using reflection:
e Describe an entity
e Access the members of an entity

Describing an entity means knowing the entity’s details. For example, describing a class means knowing
its name, modifiers, packages, modules, fields, methods, and constructors. Accessing the members of
an entity means reading and writing fields and invoking methods and constructors. Describing an entity
does not pose any issues of access control. If you have access to a class file, you should be able to know the
details of the entity represented in that class file. However, accessing members of an entity is controlled by
the Java language access control. For example, if you declare a field of a class as private, the field should
be accessible only within the class. Code outside the class should not be able to access the private field of
the class. However, this is half-true. The Java language access control rules are applied when you access
members statically. The access control rules can be suppressed when you access members using reflection.
The following snippet of code accesses the private name field of the Person class. This code will compile only
within the Person class:

Person john = new Person();
String name = john.name; // Accessing the private field name statically

Java has been allowing access to rather inaccessible members such as a private field of a class outside
the class using reflection. This is called deep reflection. Reflective access to inaccessible members made it
possible to have many great frameworks in Java such as Hibernate and Spring. These frameworks perform
most of their work using deep reflection. You can access the private name field of the Person class outside the
Person class using deep reflection.

So far in this chapter, I kept the examples simple and stayed away from violating the Java language access
control. I accessed only public fields, methods, and constructors; the accessed members and the accessing
code were in the same module. Before JDK9, accessing inaccessible members was easy. All you had to do was

124

CHAPTER 3 © REFLECTION

call the setAccessible(true) method on the inaccessible Field, Method, and Constructor objects before
accessing them. Introduction of the module system in JDK9 has made deep reflection a bit complicated. In
this section and its sub-sections, I walk you through rules and examples for deep reflection in JDK9.

Tip If a security manager is present, the code performing deep reflection must have a ReflectPermissio
n("suppressAccessChecks") permission.

To perform deep reflection, you need to get the reference of the desired field, method, and
constructor using the getDeclaredXxx() method of the Class object, where Xxx can be Field, Method, or
Constructor... Note that using the getXxx() method to get the reference of an inaccessible field, method, or
constructor will throw an I1legalAccessException. The Field, Method, and Constructor classes have the
AccessibleObject class as their superclass. The AccessibleObject class contains the following methods to
let you work with the accessible flag:

e void setAccessible(boolean flag)

e static void setAccessible(AccessibleObject[] array, boolean flag)
e boolean trySetAccessible()

e boolean canAccess(Object obj)

The setAccessible(boolean flag) method sets the accessible flag for a member (Field, Method,
and Constructor) to true or false. If you are trying to access an inaccessible member, you need to
call setAccessible(true) on the member object before accessing the member. The method throws
an InaccessibleObjectException if the accessible flag cannot be set. The static setAccessible
(AccessibleObject[] array, boolean flag) isa convenience method to set the accessible flag for all
AccessibleObject in the specified array.

JDK9 added the trySetAccessible() method that attempts to set the accessible flag to true on
the object on which it is called. It returns true if the accessible flag was set to true and false otherwise.
Compare this method with the setAccessible(true) method. This method does not throw a runtime
exception on failure, whereas the setAccessible(true) does.

JDK9 added the canAccess(Object obj) method, which returns true if the caller can access the
member for the specified obj object. Otherwise, it returns false. If the member is a static member or a
constructor, the obj must be null.

I discuss accessing rather inaccessible members within a module, across modules, in unnamed
modules, and of JDK modules in the next sections.

Deep Reflection Within a Module

Let’s start with an example. You want to access the private name field of a Person object. First, you get the
reference of the name field in a Field object and try reading its current value. Listing 3-15 contains the code
for the I11legalAccess1 class.

Listing 3-15. Accessing the Private Name Field of the Person Class

// IllegalAccessi.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;

125

CHAPTER 3 © REFLECTION

public class IllegalAccessi {
public static void main(String[] args) throws Exception {
// Get the class reference for the Person class
String className = "com.jdojo.reflection.Person”;
Class<?> cls = Class.forName(className);

// Create a Person object
Constructor<?> cons = cls.getConstructor();
Object person = cons.newInstance();

// Get the reference of the name field
Field nameField = cls.getDeclaredField("name");

// Try accessing the name field by reading its value
String name = (String) nameField.get(person);

// Print the person and its name separately
System.out.println(person);
System.out.println("name=" + name);

Exception in thread "main" java.lang.IllegalAccessException: class com.jdojo.reflection.
I1legalAccessl (in module jdojo.reflection) cannot access a member of class com.jdojo.
reflection.Person (in module jdojo.reflection) with modifiers "private"
at java.base/jdk.internal.reflect.Reflection.newIllegalAccessException(Reflection.
java:361)
at java.base/java.lang.reflect.AccessibleObject.checkAccess(AccessibleObject.
java:589)
at java.base/java.lang.reflect.Field.checkAccess(Field.java:1075)
at java.base/java.lang.reflect.Field.get(Field.java:416)
at jdojo.reflection/com.jdojo.reflection.IllegalAccessi.main(IllegalAccessi.
java:21)

In Listing 3-15, I added the Exception class in the throws clause of the main() method to keep the
logic simple inside the method. I keep doing this for all examples in this section, so you can focus on the
illegal access rules rather than on exception handling. The I1legalAccess1 and the Person class are in the
same jdojo.reflection module. You were able to create a Person object successfully because you used
the public no-args constructor of the Person class. The name field in the Person class is declared as private
and accessing it from another class failed. Fixing this error is simple—you set the accessible flag to the
Field object using the setAccessible(true) or the trySetAccessible() method. Listing 3-16 contains the
complete code.

Listing 3-16. Accessing the Private Name Field of the Person Class After Making It Accessible

// IllegalAccessl.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;

126

CHAPTER 3 © REFLECTION

public class IllegalAccess2 {
public static void main(String[] args) throws Exception {
// Get the class reference for the Person class
String className = "com.jdojo.reflection.Person”;
Class<?> cls = Class.forName(className);

// Create a Person object
Constructor<?> cons = cls.getConstructor();
Object person = cons.newInstance();

// Get the reference of the name field
Field nameField = cls.getDeclaredField("name");

// Try making the name field accessible before accessing it
boolean accessEnabled = nameField.trySetAccessible();

if (accessEnabled) {
// Try accessing the name field by reading its value
String name = (String) nameField.get(person);

// Print the person and its name separately

System.out.println(person);

System.out.println("name="
} else {

System.out.println("The Person.name field is not accessible.");
}

+ name);

Person: id=-1, name=Unknown
name=Unknown

So far, everything looks fine. You might think that if you cannot access the private member of a
class, you can always use reflection to access them. However, this is not always true. Access to otherwise
inaccessible members of a class is handled through the Java security manager. By default, when you run
your application on your computer, the security manager is not installed for your application. The absence
of the security manager for your application lets you access all fields, methods, and constructors of a class
in the same module after you set the accessible flag to true as you did in the previous example. However, if
a security manager is installed for your application, whether you can access an inaccessible class member
depends on the permission granted to your application to access such members. You can check if the
security manager is installed for your application or not by using the following piece of code:

SecurityManager smgr = System.getSecurityManager();

if (smgr == null) {
System.out.println("Security manager is not installed.");
}

127

CHAPTER 3 © REFLECTION

You can install a default security manager by passing the -Djava.security.manager option on the
command line when you run the Java application. The security manager uses a Java security policy file
to enforce the rules specified in that policy file. The Java security policy file is specified using the -Djava.
security.policy command-line option. If you want to run the I1legalAccess2 class with a Java security
manager with the Java policy file stored in the C: \JavaglLanguageFetaures\conf\myjava.policy file, you
would use the following command:

C:\Java9languageFeatures>java -Djava.security.manager
-Djava.security.policy=conf\myjava.policy --module-path build\modules\jdojo.reflection
--module jdojo.reflection/com.jdojo.reflection.IllegalAccess2

Exception in thread "main" java.security.AccessControlException: access denied
("java.lang.reflect.ReflectPermission" "suppressAccessChecks™)
at java.base/java.security.AccessControlContext.checkPermission
(AccessControlContext.java:472)
at java.base/java.security.AccessController.checkPermission
(AccessController.java:895)
at java.base/java.lang.SecurityManager.checkPermission(SecurityManager.java:558)
at java.base/java.lang.reflect.AccessibleObject.checkPermission
(AccessibleObject.java:85)
at java.base/java.lang.reflect.AccessibleObject.trySetAccessible
(AccessibleObject.java:245)
at jdojo.reflection/com.jdojo.reflection.IllegalAccess2.main
(I1legalAccess2.java:26)

The myjava.policy file is empty when this command was run, which means that the application did
not have permission to suppress the Java language access control.

If you want to allow your program to access an inaccessible field of a class using reflection, the contents
of themyjava.policy file would look as shown in Listing 3-17.

Listing 3-17. Contents of the conf\myjava.policy File

grant {
// Grant permission to all programs to access inaccessible members
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

};

Let’s re-run the I1legalAccess2 class with a security manager and the Java policy as shown in
Listing 3-17:

C:\JavaglanguageFeatures>java -Djava.security.manager
-Djava.security.policy=conf\myjava.policy

--module-path build\modules\jdojo.reflection

--module jdojo.reflection/com.jdojo.reflection.IllegalAccess2

Person: id=-1, name=Unknown
name=Unknown

128

CHAPTER 3 © REFLECTION

This time, you were able to access the private name field of the Person class when you granted the
appropriate security permission. The rules for accessing the inaccessible members have just begun. You
saw the rules for deep reflection within a module, when the code gaining illegal access and the code being
illegally accessed were in the same module. The next section describes the illegal access behavior across
modules.

Deep Reflection Across Modules

Let’s set up a new module named jdojo.reflection.model, as shown in Listing 3-18, and a simple class in
it called Phone, as shown in Listing 3-19. The module declaration contains no module statements. The Phone
class contains a number instance variable, two constructors, and a getter and a setter for the number instance
variable. The toString() method returns the phone number.

Listing 3-18. The Declaration of a jdojo.reflection.model Module

// module-info.java
module jdojo.reflection.model {

// No module statements at this time
}

Listing 3-19. A Phone Class

// Phone.java
package com.jdojo.reflection.model;

public class Phone {
private String number = "9999999999";

public Phone() {
}

public Phone(String number) {
this.number = number;
}

public String getNumber() {
return number;
}

public void setNumber(String number) {
this.number = number;
}

@0verride

public String toString() {
return this.number;

}

129

CHAPTER 3 © REFLECTION

Let's create a class called I1legalAccess3 in the jdojo.reflection module. The class will try to
create an object of the Phone class in the jdojo.reflection.model module and read the object’s private
field, number. The I1legalAccess3 class in Listing 3-20 contains the complete code. It is very similar to the
I1legalAccess2 class. The only difference is that you are accessing the Phone class and its private instance
variable across the module’s boundary.

Listing 3-20. Accessing the Private Number Field of the Phone Class

// IllegalAccessi.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;

public class IllegalAccess3 {
public static void main(String[] args) throws Exception {
// Get the class reference for the Phone class
String className = "com.jdojo.reflection.model.Phone";
Class<?> cls = Class.forName(className);

// Create a Phone object
Constructor<?> cons = cls.getConstructor();
Object phone = cons.newInstance();

// Get the reference of the number field
Field numberField = cls.getDeclaredField("number");

// try making the number field accessible before accessing it
boolean accessEnabled = numberField.trySetAccessible();

if (accessEnabled) {
// Try accessing the number field by reading its value
String number = (String) numberField.get(phone);

// Print the phone number

System.out.println("number=" + number);
} else {

System.out.println("The Phone.number field is not accessible.");
}

Let’s run the I11legalAccess3 class using the following command:
C:\Java9languageFeatures>java

--module-path build\modules\jdojo.reflection;build\modules\jdojo.reflection.model
--module jdojo.reflection/com.jdojo.reflection.IllegalAccess3

130

CHAPTER 3 © REFLECTION

Exception in thread "main" java.lang.ClassNotFoundException: com.jdojo.reflection.model.Phone
at java.base/jdk.internal.loader.BuiltinClassLoader.loadClass(BuiltinClassLoader.
java:582)
at java.base/jdk.internal.loader.ClassLoaders$AppClassLoader.loadClass(ClassLoaders.
java:185)
at java.base/java.lang.ClasslLoader.loadClass(ClassLoader.java:496)
at java.base/java.lang.Class.forNameo(Native Method)
at java.base/java.lang.Class.forName(Class.java:292)
at jdoj9o.reflection/com.jdojo.reflection.IllegalAccess3.main(IllegalAccess3.java:11)

Can you guess what is wrong with the command? The error is indicating that the runtime did not find
the Phone class. You were able to compile the I11egalAccess3 class because the class does not use the
Phone class reference in the source code. It attempts to use the Phone class using reflection at runtime. You
have included the jdojo.reflection.model module in the module path. However, including a module in
the module path does not resolve the module. The jdojo.reflection module does not read the jdojo.
reflection.model module, so running the I1legalAccess3 did not resolve the jdojo.reflection.model
module and this is why the runtime did not find the Phone class. You need to resolve the module manually
by using the --add-modules command-line option:

C:\Java9glanguageFeatures>java

--module-path build\modules\jdojo.reflection;build\modules\jdojo.reflection.model
--add-modules jdojo.reflection.model

--module jdojo.reflection/com.jdojo.reflection.IllegalAccess3

Exception in thread "main" java.lang.IllegalAccessException: class com.jdojo.reflection.
IllegalAccess3 (in module jdojo.reflection) cannot access class com.jdojo.reflection.
model.Phone (in module jdojo.reflection.model) because module jdojo.reflection.model does
not export com.jdojo.reflection.model to module jdojo.reflection

at java.base/jdk.internal.reflect.Reflection.newIllegalAccessException

(Reflection.java:361)

at java.base/java.lang.reflect.AccessibleObject.checkAccess

(AccessibleObject.java:589)

at java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:479)

at jdojo.reflection/com.jdojo.reflection.IllegalAccess3.main(IllegalAccess3.java:15)

This time, the runtime was able to find the Phone class, but it complained about accessing the Phone
class in the jdojo.reflection.model module from another module, jdojo.reflection. The error is stating
that the jdojo.reflection.model module does not export the com. jdojo.reflection.model package, so
the Phone class is in the com. jdojo.reflection.model package and is not accessible outside the jdojo.
reflection.model module. Listing 3-21 contains the modified version of the jdojo.reflection.model
module. Now it exports the com. jdojo.reflection.model package.

Listing 3-21. The Modified Declaration of a jdojo.reflection.model Module

// module-info.java

module jdojo.reflection.model {
exports com.jdojo.reflection.model;

}

131

CHAPTER 3 © REFLECTION

Let’s re-run the I1legalAccess3 class using the previous command:

C:\JavadglanguageFeatures>java

--module-path build\modules\jdojo.reflection;build\modules\jdojo.reflection.model
--add-modules jdojo.reflection.model

--module jdojo.reflection/com.jdojo.reflection.IllegalAccess3

The Phone.number field is not accessible.

This time, you were able to instantiate the Phone class, but you would not access its private number
field. Notice that the jdojo.reflection module does not read the jdojo.reflection.model module. Still
the I1legalClass3 class is able to access the Phone class and instantiate it using reflection. If you write the
following snippet of code in the I1legalAccess3 class, it would not compile:

Phone phone = new Phone();

When module M accesses the types in module N using reflection, a read from module M to module N is
granted implicitly. Such a read must be specified explicitly using a requires statement when such access is
needed statically (without reflection). This is what the previous command did when creating an object of the
Phone class.

If you used the setAccessible(true) in the I1legalAccess3 class to make the number field accessible,
the previous command would have produced an error message similar to the following:

Exception in thread "main" java.lang.reflect.InaccessibleObjectException: Unable to make
field private java.lang.String com.jdojo.reflection.model.Phone.number accessible: module
jdojo.reflection.model does not "opens com.jdojo.reflection.model" to module jdojo.
reflection

This error message is loud and clear. It is stating that the runtime could not make the private number
field accessible because the jdojo.reflection.model module does not open the com.jdojo.reflection.
model package to the jdojo.reflection module. Here comes the concept of opening a module’s package
and opening an entire module.

Exporting a package of a module grants access to the public types in the package and the accessible
public members of those types to another module. Exporting a package grants the access at compile-time and
at runtime. You can use reflection to access the same accessible public members that you can access without
reflection. That is, Java language access control is always enforced for exported packages of a module.

If you want to allow deep reflection on types of a package in a module by code in other modules at
runtime, you need to open the package of the module using the opens statement. The syntax for the opens
statement is as follows:

opens <package-name> [to <module-name>,<module-name>...];

The syntax allows you to open a package to all other modules or a set of specific modules. In the
following declaration, module M opens its package p to modules S and T:

module M {
opens p to S, T;
}

132

CHAPTER 3 © REFLECTION

In the following declaration, module N opens its package q to all other modules:

module N {
opens q;

It is possible that a module exports and opens the same package. It is needed if other modules need to
access the types in the package statically at compile-time and runtime, and using deep reflection at runtime.
The following module declaration exports and opens the same package p to all other modules:

module J {
exports p;
opens p;

}

An opens statement in a module declaration allows you open one package to all other modules or
selective modules. If you want to open all packages of a module to all other modules, you can declare the
module itself as an open module. You can declare an open module by using the open modifier in the module
declaration. The following declares an open module named K:

open module K {
// Other module statements go here
}

An open module cannot contain an opens statement. This is because an open module means it has
opened all its packages to all other modules for deep reflection. The following declaration of module L is
invalid because it declares the module as open and, at the same time, contains an opens statement:

open module L {
opens p; // A compile-time error

// Other module statements go here

It is fine to export package in an open module. The following declaration of module D is valid:

open module D {
exports p;

// Other module statements go here

So, now you know what to do with the jdojo.reflection.model module for the jdojo.reflection
module to perform deep reflection on the Phone class. You need to do either of the following:

e Openthe com.jdojo.reflection.model package of the jdojo.reflection.model
module to all other modules or at least to the jdojo.reflection module.

e Declare the jdojo.reflection.model module as an open module.

Listing 3-22 and Listing 3-23 contain the modified module declaration of the jdojo.reflection.model
module. You will need to use one of them, not both. For this example, you do not need to export the package
in the module’s declaration because you are not accessing the Phone class at compile-time in the jdojo.
reflection module.

133

CHAPTER 3 © REFLECTION

Listing 3-22. The Modified Declaration of a jdojo.reflection.model Module, Which Opens the com.jdojo.
reflection.model Package to All Other Modules

// module-info.java

module jdojo.reflection.model {
exports com.jdojo.reflection.model;
opens com.jdojo.reflection.model;

Listing 3-23. The Modified Declaration of a jdojo.reflection.model Module, Which Declares it as an open
Module

// module-info.java

open module jdojo.reflection.model {
exports com.jdojo.reflection.model;

}

Let’s re-run the I1legalAccess3 class using the previous command with the com. jdojo.reflection.
model package open. This time, you will received the desired output.

C:\Java9languageFeatures>java

--module-path build\modules\jdojo.reflection;build\modules\jdojo.reflection.model
--add-modules jdojo.reflection.model

--module jdojo.reflection/com.jdojo.reflection.IllegalAccess3

number=9999999999

Deep Reflection and Unnamed Modules

All packages in an unnamed module are open to all other modules. Therefore, you can always perform deep
reflection on types in unnamed modules.

Deep Reflection on JDK Modules

Prior to JDK9, deep reflection was allowed on members of all types—JDK internals and your types. One of
the main goals of JDK9 is strong encapsulation and you should not be able to access rather inaccessible
members of an object using deep reflection. However, enforcing strong encapsulation for JDK types would
have broken many existing applications or required them to be changed before migrating to JDK9. This
meant that either those applications will be migrated to JDK9 slowly or they will never be migrated to JDK9
at all. Java designers try their best to keep the new JDK backward compatible. To deliver on the backward
compatibility, JDK9 allows deep reflection on members of JDK internal types from the code in unnamed
modules. Upon the first such illegal access, the runtime issues a warning. Such illegal access to JDK internal
types will be disallowed in a future version. This means that applications using deep reflection on JDK types
in JDK8 will continue to work in JDK9 if they are deployed on the class path. Recall that all types loaded from
the class path are part of unnamed modules. If such applications are modularized in JDK9, the code using
illegal reflective access to JDK internals in such applications needs to be fixed. Refer to Chapter 16 for more
on this topic.

134

http://dx.doi.org/10.1007/978-1-4842-3348-1_16

CHAPTER 3 © REFLECTION

Let’s walk through an example of this. The java.lang.Long class is immutable. It contains a private field
named value to hold the long value that this object represents. Listing 3-24 shows you how to access and
modify the private value field of the Long class using deep reflection, which is not possible using the Long
class statically.

Listing 3-24. Accessing and Modifying the Private Value Field of the java.lang.Long Class Using Deep
Reflection

// IllegalAccessi.java
package com.jdojo.reflection;

import java.lang.reflect.Field;

public class IllegalAccessIDKType {
public static void main(String[] args) throws Exception {
// Create a Long object
Long num = 1969L;
System.out.printIn("#1: num = " + num);

// Get the class reference for the Long class
String className = "java.lang.lLong";
Class<?> cls = Class.forName(className);

// Get the value field reference
Field valueField = cls.getDeclaredField("value");

// try making the value field accessible before accessing it
boolean accessEnabled = valueField.trySetAccessible();

if (accessEnabled) {
// Get and print the current value of the Long.value private field of the
// num object that you created in the beginning of this method
Long value = (Long) valueField.get(num);

System.out.println("#2: num = " + value);
// Change the value of the Long.value field
valueField.set(num, 1968L);

value = (Long) valueField.get(num);
System.out.printIn("#3: num = " + value);

} else {
System.out.println("The Long.value field is not accessible.");
}

In the beginning of the main() method, you create a Long object, called num, and set its value to 1969L.

Long num = 1969L;
System.out.printIn("#1: num = " + num);

135

CHAPTER 3 © REFLECTION

Later, you get the reference of the Class object for the Long class and get the reference of the private
value field and try to make it accessible. If you were able to make the field accessible, you read its current
value, which would be 1969L. Now you change its value to 1968L and read it back in your program.

The I1legalAccessIDKType class is a member of the jdojo.reflection module. Let’s run it using the
following command:

C:\Java9languageFeatures>java --module-path build\modules\jdojo.reflection
--module jdojo.reflection/com.jdojo.reflection.IllegalAccessIDKType

#1: num = 1969
The Long.value field is not accessible.

You were not able to make the private value field of the Long class accessible because the
I1legalAccessIDKType class is part of a named module and code in named modules is not allowed to have
illegal access to the members of the JDK internal types. The following command re-runs the class from the
class path and you get the desired output. Notice the one-time warnings even though you have accessed the
private field three times.

C:\JavaglanguageFeatures>java --class-path build\modules\jdojo.reflection com.jdojo.
reflection.IllegalAccessIDKType

#1: num = 1969

WARNING: An illegal reflective access operation has occurred

WARNING: Illegal reflective access by com.jdojo.reflection.IllegalAccessIDKType
(file:/C:/JavaglanguageFeatures/build/modules/jdojo.reflection/) to field java.lang.Long.value
WARNING: Please consider reporting this to the maintainers of com.jdojo.reflection.
I1legalAccessIDKType

WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access
operations

WARNING: A1l illegal access operations will be denied in a future release

#2: num = 1969

#3: num = 1968

Reflecting on Arrays

Java provides special APIs to work with arrays. The Class class lets you find out if a Class reference
represents an array by using its isArray() method. You can also create an array and read and modify its
element’s values using reflection. The java.lang.reflect.Array class is used to dynamically create an
array and manipulate its elements. As stated before, you cannot reflect on the length field of an array using
anormal reflection procedure. However, the Array class provides the getLength() method to get the length
value of an array. Note that all methods in the Array class are static and most of them have the first argument
as the array object’s reference on which they operate.

To create an array, use the newInstance() static method of the Array class. The method is overloaded
and has two versions.

e Object newInstance(Class<?> componentType, int arraylLength)

e Object newInstance(Class<?> componentType, int... dimensions)

136

CHAPTER 3 © REFLECTION

One version of the method creates an array of the specified component type and the array length. The
other version creates an array of the specified component type and dimensions. Note that the return type of
the newInstance() method is Object. You need to use an appropriate cast to convert it to the actual array type.

If you want to create an array of int of length 5, you would write

int[] ids = (int[]) Array.newInstance(int.class, 5);

This statement has the same effect as the following statement:
int[] ids = new int[5];

If you want to create an array of int of dimension 5x8, you would write:
int[][] matrix = (int[][]) Array.newInstance(int.class, 5, 8);

Listing 3-25 illustrates how to create an array dynamically and manipulate its elements.

Listing 3-25. Reflecting on Arrays

// ArrayReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Array;

public class ArrayReflection {
public static void main(String[] args) {
try {
// Create the array of int of length 2
Object arrayObject = Array.newInstance(int.class, 2);

// Print the values in array element. Default values will be zero
int n1 = Array.getInt(arrayObject, 0);
int n2 = Array.getInt(arrayObject, 1);
System.out.println("n1 = " + n1 + ", n2 =

+n2);

// Set the values to both elements
Array.set(arrayObject, 0, 101);
Array.set(arrayObject, 1, 102);

// Print the values in array element again
nl = Array.getInt(arrayObject, 0);
n2 = Array.getInt(arrayObject, 1);
System.out.println("n1 = " + n1 + ", n2 = " + n2);
} catch (NegativeArraySizeException | IllegalArgumentException
| ArrayIndexOutOfBoundsException e) {

System.out.println(e.getMessage());

137

CHAPTER 3 © REFLECTION

nt=0,n2=20

nl = 101, n2 = 102

Java does not support a truly multi-dimensional array. Rather, it supports an array of arrays. The Class
class contains a method called getComponentType(), which returns the Class object for an array’s element
type. Listing 3-26 illustrates how to get the dimension of an array.

Listing 3-26. Getting the Dimension of an Array

// ArrayDimension.java
package com.jdojo.reflection;

public class ArrayDimension {
public static void main(String[] args) {
int[J[1[] intArray = new int[6][3][4];
System.out.printIn("int[][][] dimension is " + getArrayDimension(intArray));

}

public static int getArrayDimension(Object array) {
int dimension = 0;
Class c = array.getClass();

// Perform a check that the object is really an array
if (lc.isArray()) {
throw new IllegalArgumentException("Object is not an array.");

}
while (c.isArray()) {
dimension++;
c = c.getComponentType();
}

return dimension;

int[][][] dimension is 3

Expanding an Array

After you create an array, you cannot change its length. You can create an array of a bigger size and copy
the old array elements to the new one at runtime. The Java collection classes such as ArrayList apply this
technique to let you add elements to the collection without worrying about its length. You can use the
combination of the getComponentType() method of the Class class and the newInstance() method of the
Array class to create a new array of a given type. You can use the arraycopy() static method of the System
class to copy the old array elements to the new array. Listing 3-27 illustrates how to create an array of a
particular type using reflection. All runtime checks have been left out for clarity.

138

CHAPTER 3

Listing 3-27. Expanding an Array Using Reflection

// ExpandingArray.java
package com.jdojo.reflection;

import java.lang.reflect.Array;
import java.util.Arrays;

public class ExpandingArray {
public static void main(String[] args) {

}

// Create an array of length 2
int[] ids = {101, 102};

System.out.println("0ld array length: " + ids.length);
System.out.println("0ld array elements: " + Arrays.toString(ids));

// Expand the array by 1
ids = (int[]) expandBy(ids, 1);

// Set the third element to 103

ids[2] = 103; // This is newly added element
System.out.println("New array length: " + ids.length);
System.out.println("New array elements: " + Arrays.toString(ids));

public static Object expandBy(Object oldArray, int increment) {

// Get the length of old array using reflection
int oldLength = Array.getlength(oldArray);
int newlLength = oldLength + increment;

// Get the class of the old array
Class<?> cls = oldArray.getClass();

// Create a new array of the new length
Object newArray = Array.newInstance(cls.getComponentType(), newlLength);

// Copy the old array elements to new array
System.arraycopy(oldArray, 0, newArray, 0, oldLength);

return newArray;

0ld array length: 2

0ld array elements: [101, 102]

New array length: 3

New array elements: [101, 102, 103]

REFLECTION

139

CHAPTER 3 © REFLECTION

Who Should Use Reflection?

If you have used any integrated development environment (IDE) to develop a GUI application using drag-
and-drop features, you have already used an application that uses reflection in one form or another. All GUI
tools that let you set the properties of a control, say a button, at design time use reflection to get the list of
the properties for that control. Other tools such as class browsers and debuggers also use reflection. As an
application programmer, you will not use reflection much unless you are developing advanced applications
that use dynamism provided by the reflection API. It should be noted that using too much reflection slows
down the performance of your application.

Summary

Reflection is the ability of a program to query and modify its state “as data” during the execution of the
program. Java represents the byte code of a class as an object of the Class class to facilitate reflection. The
class fields, constructors, and methods can be accessed as an object of the Field, Constructor, and Method
classes, respectively. Using a Field object, you can access and change the value of the field. Using a Method
object, you can invoke the method. Using a Constructor object, you can invoke a given constructor of a
class. Using the Array class, you can also create arrays of a specified type and dimension using reflection and
manipulate the elements of the arrays.

Java has been allowing access to rather inaccessible members such as a private field of a class outside
the class using reflection. This is called deep reflection. Before you can access the inaccessible member, you
need to call the setAccessible(true) on that member, which could be a Field, a Method or a Constructor.
The setAccessible() method throws a runtime exception if the accessibility cannot be enabled. JDK9
added a trySetAccessible() method for the same purpose, which does not throw a runtime exception.
Rather it returns true if accessibility is enabled and false otherwise.

Deep reflection in JDK9 across modules is prohibited by default. If a module wants to allow deep
reflection on types in a given package, the module must open that package to at least the module that will
use deep reflection. You can open a package using the opens statement in a module declaration. You can
declare a module as an open module, which opens all packages in the module for deep reflection. If a named
module M uses reflection to access types in another module N, the module M implicitly reads module N. All
packages in an unnamed module open for deep reflection.

JDKO9 allows deep reflection on JDK internal types by code on the class path. JDK9 issues a warning on
the first such illegal access to the member of JDK internal types. The illegal reflective-access to JDK internal
types will be removed in a future release.

QUESTIONS AND EXERCISES

1. What is reflection?

2. Name two Java packages that contain the reflection related classes and interfaces.
3. What does an instance of the Class class represent?

4. List three ways to get the reference of an instance of the Class class.

5. When do you use the forName() method of the Class class to get an instance of

the Class class?

6. Name three built-in class loaders. How do you get references of these class
loaders?

140

10.

11.

12.
13.

14.

CHAPTER 3

If you get a reference of the Class class, how do you know if this reference
represents an interface?

What do instances of the Field, Constructor, and Method classes represent?

What is the difference between using the getFields() and getDeclaredFields()
methods of the Class class?

You need to use setAccessible(true) or trySetAccessible() method of the
AccessibleObject class to make a Field, Constructor, and Method object
accessible even if they are inaccessible (e.g., they are declared private). What is the
difference between these two methods?

Assume that you have two modules named R and S. Module R contains a public p.Test
class with a public method m(). The code in module S needs to use the class p.Test

to declare variables and create its objects. Module S also needs to use reflection to
access the public method m() of the p.Test class in module R. What is the minimum
you need to do while declaring module R, so module S can perform these tasks?

What is opening a package in a module? What is an open module?

What is the difference between exporting and opening a package of a module? Give
an example when you will need to export and open the same package of a module.

Consider the declarations of a module named jdojo.reflection.exercise.model
and a MagicNumber class in that module as follows:

// module-info.java

module jdojo.reflection.exercises.model {
/* Add your module statements here */

}

// MagicNumber.java
package com.jdojo.reflection.exercises.model;

public class MagicNumber {
private int number;

public int getNumber() {
return number;
}

public void setNumber(int number) {
this.number = number;
}

}

Modify the module declaration so that code in other modules can perform

deep reflection on the objects of the MagicNumber class. Create a class named
MagicNumberTest in @ module named jdojo.reflection.exercises. The code
in the MagicNumberTest class should use reflection to create an object of the
MagicNumber class, set its private number field directly, and read the current value
of the number field using the getNumbex () method.

REFLECTION

141

CHAPTER 3 © REFLECTION

15. Can you access private members of JDK classes in Java 97 If your answer is yes,
describe the rules and restrictions for such access.

16. Assume there are two modules, P and Q. Module P is an open module. Module Q
wants to perform deep reflection on types in module P. Is module Q required to read
module P in its module’s declaration?

17. Assume there are two modules, M and N. Module M does not open any of its
packages to any modules, but it exports a com. jdojo.m to all other modules.
Can module N use reflection to access publically accessible members of the
com. jdojo.m package of module M?

142

CHAPTER 4

Generics

In this chapter, you will learn:

e What generics are

e How to define generic types, methods, and constructors

e How to define bounds for type parameters

e How to use wildcards as the actual type parameters

e How the compiler infers the actual type parameters for generic type uses

e Generics and their limitations in array creations

e How the incorrect use of generics may lead to heap pollution

All example programs in this chapter are a member of a jdojo.generics module, as declared in

Listing 4-1.
Listing 4-1. The Declaration of a jdojo.generics Module

// module-info.java

module jdojo.generics {
exports com.jdojo.generics;

}

What Are Generics?

Generics let you write true polymorphic code that works with any type. Refer to Chapter 1 of the first volume
of this Beginning Java 9 series for more information on polymorphism and writing polymorphic code.

Let’s discuss a simple example before I define what generics are and what they do for you. Suppose you
want to create a new class whose sole job is to store a reference to any type, where “any type” means any
reference type. Let’s call this class ObjectWrapper, as shown in Listing 4-2.

Listing 4-2. A Wrapper Class to Store a Reference of Any Type
// ObjectWrapper.java

package com.jdojo.generics;

public class ObjectWrapper {
private Object ref;

© Kishori Sharan 2018 143
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_4

https://doi.org/10.1007/978-1-4842-3348-1_4
http://dx.doi.org/10.1007/978-1-4842-3348-1_1

CHAPTER 4 © GENERICS

public ObjectWrapper(Object ref) {
this.ref = ref;
}

public Object get() {
return ref;
}

public void set(Object ref) {
this.ref = ref;
}

As aJava developer, you would agree that you write this kind of code when you do not know the type
of the objects that you have to deal with. The ObjectWrapper class can store a reference of any type in Java,
such as String, Integer, Person, etc. How do you use the ObjectWrapper class? The following is one of the
ways to use it to work with the String type:

ObjectWrapper stringWirapper = new ObjectWrapper("Hello");
stringWrapper.set("Another string");
String myString = (String) stringWrapper.get();

There’s one problem in this snippet of code. Even though you knew that you stored (and wanted to) a
String in the stringWrapper object, you had to cast the return value of the get() method to a String type in
(String) stringWrapper.get(). Consider writing the following snippet of code:

ObjectWrapper stringWrapper = new ObjectWrapper(“"Hello");
stringWrapper.set(new Integer(101));
String myString =(String) stringWrapper.get();

This snippet of code compiles fine. However, the third statement throws a ClassCastException at
runtime because you stored an Integer in the second statement and attempted to cast an Integer to a
String in the third statement. First, it allowed you to store an Integer in stringWrapper. Second, it did not
complain about the code in the third statement because it had no knowledge of your intent that you only
wanted to use a String with stringWrapper.

Java has made some progress with the way it helps developers write type-safe programs. Wouldn't it be
nice if the ObjectWrapper class allowed you to specify that you want to use this class only for a specific type,
say, String this time and Integer the next? Your wish is fulfilled by generics in Java. They let you specify a
type parameter with a type (class or interface). Such a type is called a generic type (more specifically generic
class or generic interface). The type parameter value could be specified when you declare a variable of the
generic type and create an object of your generic type. You have seen specifying parameters for method. This
time, I am talking about specifying parameters for types such as classes or interfaces.

Tip Atype with type parameters in its declaration is called a generic type.

144

CHAPTER 4 © GENERICS

Let’s rewrite the ObjectWrapper class to use generics naming the new class simply Wrapper. The formal
parameters of a generic type are specified in the generic type’s declaration. Parameter names are valid Java
identifiers and are specified in angle brackets (< >) after the name of the parameterized type. You will use T
as the type parameter name for the Wrapper class:

public class Wrapper<T> {
}

It is an unwritten convention that type parameter names are one character, and to use T to indicate that
the parameter is a type, E to indicate that the parameter is an element, K to indicate that the parameter is a
key, N to indicate the parameter is a number, and V to indicate that the parameter is a value. In the previous
example, you could have used any name for the type parameter, like so:

public class Wrapper<Hello> {
}

public class Wrapper<MyType> {
}

Multiple type parameters are separated by a comma. The following declaration for MyClass takes four
type parameters named T, U, V, and W:

public class MyClass<T, U, V, W> {
}

You will be using your type parameter named T inside the class code in instance variable declarations,
constructors, the get () method, and the set() method. Right now, T means any type for you, which will be
known when you use this class. Listing 4-3 contains the complete code for the Wrapper class.

Listing 4-3. Using a Type Parameter to Define a Generic Class
// Wrapper.java

package com.jdojo.generics;

public class Wrapper<T> {
private T ref;

public Wrapper(T ref) {
this.ref = ref;
}

public T get() {
return ref;
}

public void set(T ref) {
this.ref = ref;
}

145

CHAPTER 4 © GENERICS

Are you confused about using T in Listing 4-3? Here, T means any class type or interface type. It could be
String, Object, com.jdojo.generics.Person, etc. If you replace T with Object everywhere in this program
and remove <T> from the class name, it is the same code that you had for the ObjectWrapper class.

How do you use the Wrapper class? Since its class name is not just Wrapper, rather it is Wrapper<T>, you
may specify (but do not have to) the value for T. To store a String reference in the Wrapper object, you create
it as follows:

Wrapper<String> greetingWrapper = new Wrapper<String>("Hello");

How do you use the set () and get () methods of the Wrapper class? Since you have specified the type
parameter for class Wrapper<T> to be String, the set() and get() method will work only with String
types. This is because you used T as an argument type in the set() method and T as the return type in the
get() method declarations. Imagine replacing T in the class definition with String and you should have no
problem understanding the following code:

greetingWrapper.set("Hi"); // OK to pass a String
String greeting = greetingWrapper.get(); // No need to cast

This time, you did not have to cast the return value of the get () method. The compiler knows that
greetingWrapper has been declared of type Wrapper<String>, so its get () method returns a String. Let’s
try to store an Integer object in greetinghrapper.

// A compile-time error. You can use greetingWrapper only to store a String.
greetingWrapper.set(new Integer(101));

The statement will generate the following compile-time error:

error: incompatible types: Integer cannot be converted to String
greetingWrapper.set(new Integer(101));

You cannot pass an Integer to the set() method. The compiler will generate an error. If you want to
use the Wrapper class to store an Integer, your code will be as follows:

Wrapper<Integer> idWrapper = new Wrapper<Integer>(new Integer(101));
idWrapper.set(new Integer(897)); // OK to pass an Integer
Integer id = idWrapper.get();

// A compile-time error. You can use idWrapper only with an Integer.
idWrapper.set("hello");

Assuming that a Person class exists that contains a constructor with two parameters, you store a Person
object in Wrapper as follows:

Wrapper<Person> personWrapper = new Wrapper<Person>(new Person(1, "Chris"));
personirapper.set(new Person(2, "Laynie"));
Person laynie = personWrapper.get();

The parameter that is specified in the type declaration is called a formal type parameter; for example, T
is a formal type parameter in the Wrapper<T> class declaration. When you replace the formal type parameter
with the actual type (e.g., in Wrapper<String> you replace the formal type parameter T with String), it is
called a parameterized type. A reference type in Java, which accepts one or more type parameters, is called a

146

CHAPTER 4 © GENERICS

generic type. A generic type is mostly implemented in the compiler. The JVM has no knowledge of generic
types. All actual type parameters are erased at compile time using a process known as erasure. Compile-time
type-safety is the benefit that you get when you use a parameterized generic type in your code without the
need to use casts.

Polymorphism is about writing code in terms of a type that also works with many other types. In the
first volume of this Beginning Java 9 series, you learned how to write polymorphic code using inheritance
and interfaces. Inheritance in Java offers inclusion polymorphism where you write code in terms of the base
type and the code also works with all subtypes of that base type. In this case, you are forced to have all other
types fall under a single inheritance hierarchy. That is, all types for which the polymorphic code works must
inherit from the single base type. Interfaces in Java lifts this restriction and lets you write code in terms of
an interface. The code works with all types that implement the interface. This time, all types for which the
code works do not have to fall under one type hierarchy. Still, you had one constraint that all those types
must implement the same interface. Generics in Java takes you a step closer to writing “true” polymorphic
code. The code written using generics works for any type. Generics in Java do have some restrictions as to
what you can do with the generic type in your code. Showing you what you can do with generics in Java and
elaborating on the restrictions are the topics of discussion in this chapter.

Supertype-Subtype Relationship

Let’s play a trick. The following code creates two parameterized instances of the Wrapper<T> class, one for
the String type and one for the Object type:

Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
stringWrapper.set("a string");

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
objectWrapper.set(new Object());

// Use a String object with objectWrapper
objectWrapper.set("a string"); // OK

It is fine to store a String object in objectWrapper. After all, if you intended to store an Object in
objectWrapper, a String is also an Object. Is the following assignment allowed?

objectWrapper = stringWrapper;
No, this assignment is not allowed. That is, a Wrapper<String> is not assignment compatible to a
Wrapper<Object>. To understand why this assignment is not allowed, let’s assume for a moment that it was

allowed and you could write code like the following:

// Now objectWrapper points to stringWrapper
objectWrapper = stringWrapper;

// We could store an Object in stringWrapper using objectWrapper
objectWrapper.set(new Object());

// The following statement will throw a runtime ClassCastException
String s = stringWrapper.get();

147

CHAPTER 4 © GENERICS

Do you see the danger of allowing an assignment like objectWrapper = stringWrapper? The compiler
cannot make sure that stringWrapper will store only a reference of String type if this assignment was
allowed.

Remember that a String is an Object because String is a subclass of Object. However, a
Wrapper<String> is not a Wrapper<Object>. The normal supertype/subtype rules do not apply to
parameterized types. Don’t worry about memorizing this rule if you do not understand it. If you attempt
such assignments, the compiler will tell you that you can’t.

Raw Types

Implementation of generic types in Java is backward compatible. If an existing non-generic class is rewritten
to take advantage of generics, the existing code that uses the non-generic version of the class should keep
working. The code may use (though it is not recommended) a non-generic version of a generic class by just
omitting references to the generic type parameters. The non-generic version of a generic type is called a raw
type. Using raw types is discouraged. If you use raw types in your code, the compiler will generate unchecked
warnings, as shown in the following snippet of code:

// Use the Wrapper<T> generic type as a raw type Wrapper
Wrapper rawType = new Wrapper("Hello"); // An unchecked warning

// Using the Wrapper<T> generic type as a parameterized type Wrapper<String>
Wrapper<String> genericType = new Wrapper<String>("Hello");

// Assigning the raw type to the parameterized type
genericType = rawType; // An unchecked warning

// Assigning the parameterized type to the raw type
rawType = genericType;

The compiler generates the following warnings when this snippet of code is compiled:

warning: [unchecked] unchecked call to Wrapper(T) as a member of the raw type Wrapper
Wrapper rawType = new Wrapper("Hello"); // An unchecked warning

where T is a type-variable:
T extends Object declared in class Wrapper

warning: [unchecked] unchecked conversion
genericType = rawType; // An unchecked warning

required: Wrapper<String>

found: Wrapper
2 warnings

148

CHAPTER 4 © GENERICS

Unbounded Wildcards

Let’s start with an example. It will help you understand the need for as well as the use of wildcards in generic
types. Let’s build a utility class for the Wrapper class and call it WrapperUtil. Add a static utility method
called printDetails() to this class, which will take an object of the Wrapper<T> class. How should you
define the argument of this method? The following is the first attempt:

public class WrapperUtil {
public static void printDetails(Wrapper<Object> wrapper){
// More code goes here
}

Since your printDetails() method is supposed to print details about a Wrapper<T> of any type, Object
as the type parameter seems to be more suitable. Let’s use your new printDetails() method, as shown:

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
WrapperUtil.printDetails(objectWrapper); // OK

Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
WrapperUtil.printDetails(stringWrapper); // A compile-time error

The compile-time error is as follows:

error: method printDetails in class WrapperUtil cannot be applied to given types;
WrapperUtil.printDetails(stringWrapper); // A compile-time error

required: Wrapper<Object>

found: Wrapper<String>

reason: argument mismatch; Wrapper<String> cannot be converted to Wrapper<Object>
1 error

You are able to call the printDetails() method with the Wrapper<Object> type, but not with the
Wrapper<String> type because they are not assignment compatible, which is contradictory to what your
intuition tells you. To understand it fully, you need to know about the wildcard type in generics. A wildcard
type is denoted by a question mark, as in <?>. For a generic type, a wildcard type is what an Object type is for
araw type. You can assign a generic of known type to a generic of wildcard type. Here is the sample code:

// Wrapper of String type
Wrapper<String> stringWirapper = new Wrapper<String>("Hi");

// You can assign a Wrapper<String> to Wrapper<?> type
Wrapper<?> wildCardWrapper = stringWrapper;

The question mark in a wildcard generic type (e.g., <?>) denotes an unknown type. When you declare a
parameterized type using a wildcard (means unknown) as a parameter type, it means that it does not know

about its type.

// wildCardWrapper has unknown type
Wrapper<?> wildCardWrapper;

149

CHAPTER 4 © GENERICS

// Better to name it as an unknownWrapper
Wrapper<?> unknownWrapper;

Can you create a Wrapper<T> object of an unknown type? Let’s assume that John cooks something for
you. He packs the food in a packet and hands it over to you. You hand over the packet to Donna. Donna asks
you what is inside the packet. Your answer is that you do not know. Can John answer the same way you did?
No. He must know what he cooked because he was the person who cooked the food. Even if you did not
know what was inside the packet, you had no problem in carrying it and giving it to Donna. What would be
your answer if Donna asked you to give her the vegetables from the packet? You would say that you do not
know if vegetables are inside the packet.

Here are the rules for using a wildcard (unknown) generic type. Since it does not know its type, you
cannot use it to create an object of its unknown type. The following code is illegal:

// Cannot use <?> with new operator. It is a compile-time error.
new Wrapper<?>("");

error: unexpected type
new Wrapper<?>("");
N

required: class or interface without bounds
found: ?
1 error

As you were holding the packet of unknown food type (John knew the type of food when he cooked it), a
wildcard generic type can refer to a known generic type object, as shown:

Wrapper<?> unknownWrapper = new Wrapper<String>("Hello");

There is a complicated list of rules as to what a wildcard generic type reference can do with the object.
However, there is a simple rule of thumb to remember. The purpose of using generics is to have compile-
time type-safety. As long as the compiler is satisfied that the operation will not produce any surprising
results at runtime, it allows the operation on the wildcard generic type reference.

Let’s apply the rule of thumb to your unknownWrapper reference variable. One thing that this
unknownWrapper variable is sure about is that it refers to an object of the Wrapper<T> class of a known type.
However, it does not know what that known type is. Can you use the following get () method? The following
statement generates a compile-time error:

String str = unknownWrapper.get(); // A compile-time error

error: incompatible types: CAP#1 cannot be converted to String
String str = unknownWrapper.get(); // A compile -time error
N

where CAP#1 is a fresh type-variable:

CAP#1 extends Object from capture of ?
1 error

150

CHAPTER 4 © GENERICS

The compiler knows that the get () method of the Wrapper<T> class returns an object of type T.
However, for the unknownWrapper variable, type T is unknown. Therefore, the compiler cannot ensure
that the method call, unknownWrapper.get (), will return a String and its assignment to str variable
is fine at runtime. All you have to do is convince the compiler that the assignment will not throw a
ClassCastException at runtime. Will the following line of code compile?

Object obj = unknownWrapper.get(); // OK

This code will compile because the compiler is convinced that this statement will not throw a
ClassCastException at runtime. It knows that the get () method returns an object of a type, which is not
known to the unknownWrapper variable. No matter what type of object the get() method returns, it will
always be assignment-compatible with the Object type. After all, all reference types in Java are subtypes of
the Object type. Will the following snippet of code compile?

unknownWrapper.set("Hello"); // A compile-time error
unknownWrapper.set(new Integer()); // A compile-time error
unknowniWrapper.set(new Object()); // A compile-time error
unknownWrapper.set(null); /7 0K

Were you surprised by errors in this snippet of code? You will find out that it is not as surprising
as it seems. The set(T a) method accepts the generic type argument. This type, T, is not known to
unknownWrapper, and therefore the compiler cannot make sure that the unknown type is a String type,
an Integer type, or an Object type. This is why the first three calls to set() are rejected by the compiler.
Why is the fourth call to the set() method correct? A null is assignment-compatible to any reference type
in Java. The compiler thought that no matter what type T would be in the set(T a) method for the object
to which unknownWrapper reference variable is pointing to, a null can always be safe to use. The following
is your printDetails() method’s code. If you pass a null Wrapper object to this method, it will throw a
NullPointerException.

public class WrapperUtil {
public static void printDetails(Wrapper<?> wrapper) {
// Can assign get() return value to an Object
Object value = wrapper.get();
String className = null;

if (value != null) {
className = value.getClass().getName();
}

System.out.println("Class:
System.out.println("Value:

+ className);
+ value);

Tip Using only a question mark as a parameter type (<?>) is known as an unbounded wildcard. It places
no bounds as to what type it can refer. You can also place an upper bound or a lower bound with a wildcard. |
discuss bounded wildcards in the next two sections.

151

CHAPTER 4 © GENERICS

Upper-Bounded Wildcards

Suppose you want to add a method to your WrapperUtil class. The method should accept two numbers that
are wrapped in your Wrapper objects and it will return their sum. The wrapped objects may be an Integer,
Long, Byte, Short, Double, or Float. Your first attempt is to write the sum() method as shown:

public static double sum(Wrapper<?> ni, Wrapper<?> n2) {
//Code goes here
}

There are some obvious problems with this method signature. The parameters n1 and n2 could be of
any parameterized type of Wrapper<T> class. For example, the following call would be a valid call for the
sum() method:

// Try adding an Integer and a String
sum(new Wrapper<Integer>(new Integer(125)), new Wrapper<String>("Hello"));

Computing the sum of an Integer and a String does not make sense. However, the code will compile
and you should be ready to get some runtime exceptions depending on the implementation of the sum()
method. You must restrict this kind of code from compiling. It should accept two Wrapper objects of type
Number or its subclasses, not just anything. Therefore, you know the upper bound of the type of the actual
parameter that the Wrapper object should have. The upper bound is the Number type. If you pass any other
type, which is a subclass of the Number type, it is fine. However, anything that is not a Number type or its
subclass type should be rejected at compile-time. You express the upper bound of a wildcard as

<? extends T>

Here, Tis atype. <? extends T> means anything that is of type T or its subclass is acceptable. Using
your upper bound as Number, you can define your method as

public static double sum(Wrapper<? extends Number> ni, Wrapper<? extends Number> n2) {
Number numl = ni.get();
Number num2 = n2.get();
double sum = numi.doubleValue() + num2.doubleValue();
return sum;

The following snippet of code inside the method compiles fine:

Number numl = ni.get();
Number num2 = n2.get();

No matter what you pass for n1 and n2, they will always be assignment-compatible with Number because
the compiler will make sure that the parameters passed to the sum() method follow the rules specified in its
declaration of <? extends Number>. The attempt to compute the sum of an Integer and a String will be
rejected by the compiler. Consider the following snippet of code:

Wrapper<Integer> intWrapper = new Wrapper<Integer>(new Integer(10));
Wrapper<? extends Number> numberWrapper = intWrapper; // OK
numberWrapper.set(new Integer(1220)); // A compile-time error
numberWrapper.set(new Double(12.20)); // A compile-time error

152

CHAPTER 4 © GENERICS

Can you figure out the problem with this snippet of code? The type of numberWrapper is <? extends
Number>, which means it can refer to (or it is assignment-compatible with) anything that is a subtype of
the Number class. Since Integer is a subclass of Number, the assignment of intWrapper to numberWrapper is
allowed. When you try to use the set() method on numberWrapper, the compiler starts complaining because
it cannot make sure at compile-time that numberWrapper is a type of Integer or Double, which are subtypes
of a Number. Be careful with this kind of compile-time error when working with generics. On the surface, it
might look obvious to you and you would think that code should compile and run fine. Unless the compiler
ensures that the operation is type-safe, it will not allow you to proceed. After all, compile-time and runtime
type-safety is the primary goal of generics!

Lower-Bounded Wildcards

Specifying a lower-bound wildcard is the opposite of specifying an upper-bound wildcard. The syntax for
using a lower-bound wildcard is <? super T>, which means “anything that is a supertype of T”. Let’s add
another method to the WrapperUtil class. You will call the new method copy() and it will copy the value
from a source wrapper object to a destination wrapper object. Here is the first attempt. The <T> is the formal
type parameter for the copy () method. It specifies that the source and dest parameters must be of the same
type. I explain generic methods in detail in the next section.

public class WrapperUtil {
public static <T> void copy(Wrapper<T> source, Wrapper<T> dest) {
T value = source.get();
dest.set(value);

Copying the content of a Wrapper<String> to a Wrapper<Object> using your copy() method will not work.

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
Wrapper<String> stringWirapper = new Wrapper<String>(“"Hello");
WrapperUtil.copy(stringWrapper, objectWrapper); // A compile-time error

This code will generate a compile-time error because the copy() method requires the source and the
dest arguments be of the same type. However, for all practical purposes a String is always an Object. Here,
you need to use a lower-bounded wildcard, as shown:

public class WrapperUtil {
// New definition of the copy() method
public static <T> void copy(Wrapper<T> source, Wrapper<? super T> dest){
T value = source.get();
dest.set(value);

153

CHAPTER 4 © GENERICS

Now you are saying that the dest argument of the copy () method could be either T, same as source,
or any of its supertype. You can use the copy() method to copy the contents of a Wrapper<String> to a
Wrapper<Object> as follows:

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
WrapperUtil.copy(stringWrapper, objectWrapper); // OK with the new copy() method

Since Object is the supertype of String, the new copy() method will work. However, you cannot use it
to copy from an Object type wrapper to a String type wrapper, because “an Object is a String is not always
true. Listing 4-4 shows the complete code for the WrapperUtil class.

Listing 4-4. A WrapperUtil Utility Class That Works with Wrapper Objects

// WrapperUtil.java
package com.jdojo.generics;

public class WrapperUtil {
public static void printDetails(Wrapper<?> wrapper) {
// Can assign get() return value to Object
Object value = wrapper.get();
String className = null;

if (value != null) {
className = value.getClass().getName();
}

System.out.println("Class: " + className);
System.out.println("Value: " + value);

}

public static double sum(Wrapper<? extends Number> ni, Wrapper<? extends Number> n2) {
Number numl = ni.get();
Number num2 = n2.get();
double sum = numi.doubleValue() + num2.doubleValue();
return sum;

}

public static <T> void copy(Wrapper<T> source, Wrapper<? super T> dest) {
T value = source.get();
dest.set(value);

Listing 4-5 shows you how to use the Wrapper and WrapperUtil classes.

Listing 4-5. Using the WrapperUtil Class

// WrapperUtilTest.java
package com.jdojo.generics;

154

CHAPTER 4 © GENERICS

public class WrapperUtilTest {
public static void main(String[] args) {
Wrapper<Integer> nl = new Wrapper<>(10);
Wrapper<Double> n2 = new Wrapper<>(15.75);

// Print the details
WrapperUtil.printDetails(n1);
WrapperUtil.printDetails(n2);

// Add numeric values in two WrapperUtil
double sum = WrapperUtil.sum(n1, n2);
System.out.println("sum: " + sum);

// Copy the value of a Wrapper<Double> to a Wrapper<Number>
Wrapper<Number> holder = new Wrapper<>(45);
System.out.println("Original holder: " + holder.get());
WrapperUtil.copy(n2, holder);

System.out.println("After copy holder: " + holder.get());

Class: java.lang.Integer
Value: 10

Class: java.lang.Double
Value: 15.75

sum: 25.75

Original holder: 45
After copy holder: 15.75

Generic Methods and Constructors

You can define type parameters in a method declaration. They are specified in angle brackets before the
return type of the method. The type that contains the generic method declaration does not have to be a
generic type, so you can have generic methods in a non-generic type. It is also possible for a type and its
methods to define different type parameters.

Tip Type parameters defined for a generic type are not available in static methods of that type. Therefore,
if a static method needs to be generic, it must define its own type parameters. If a method needs to be generic,
define just that method as generic rather than defining the entire type as generic.

The following snippet of code defines a generic type Test with its type parameter named as T. It also
defines a generic instance method m1() that defines its own generic type parameter named V. The method
also uses the type parameter T, which is defined by its class. Note the use of <V> before the return type void of
the m1() method. It defines a new generic type named V for the method.

155

CHAPTER 4 © GENERICS

public class Test<T> {
public <V> void mi(Wrapper<V> a, Wrapper<V> b, T c) {
// Do something
}

Can you think of the implication of defining and using the generic type parameter V for the m1()
method? Look at its use in defining the first and second parameters of the method as Wrapper<V>. It forces
the first and the second parameters to be of the same type. The third argument must be of the same type T,
which is the type of the class instantiation.

How do you specify the generic type for a method when you want to call the method? Usually, you do
not need to specify the actual type parameter when you call the method. The compiler figures it out for you
using the value you pass to the method. However, if you ever need to pass the actual type parameter for the
method’s formal type parameter, you must specify it in angle brackets (< >) between the dot and the method
name in the method call, as shown:

Test<String> t = new Test<String>();
Wrapper<Integer> iwl = new Wrapper<Integer>(new Integer(201));
Wrapper<Integer> iw2 = new Wrapper<Integer>(new Integer(202));

// Specify that Integer is the actual type for the type parameter for mi()
t.<Integer>mi(iwl, iw2, "hello");

// Let the compiler figure out the actual type parameters using types for iwl and iw2
t.m1(iwl, iw2, "hello"); // OK

Listing 4-4 demonstrated how to declare a generic static method. You cannot refer to the type
parameters of the containing class inside the static method. A static method can refer only to its own
declared type parameters.

Here is the copy of your copy() static method from the WrapperUtil class. It defines a type parameter T,
which is used to constrain the type of arguments source and dest.

public static <T> void copy(Wrapper<T> source, Wrapper<? super T> dest) {
T value = source.get();
dest.set(value);

The compiler will figure out the actual type parameter for a method whether the method is non-static
or static. However, if you want to specify the actual type parameter for a static method call, you can do so as
follows:

WrapperUtil.<Integerscopy(iwl, iw2);

You can also define type parameters for constructors the same way as you do for methods. The
following snippet of code defines a type parameter U for the constructor of class Test. It places a constraint
that the constructor’s type parameter U must be the same or a subtype of the actual type of its class type
parameter T.

public class Test<T> {
public <U extends T> Test(U k) {
// Do something
}

156

CHAPTER 4 © GENERICS

The compiler will figure out the actual type parameter passed to a constructor by examining the
arguments you pass to the constructor. If you want to specify the actual type parameter value for the
constructor, you can specify it in angle brackets between the new operator and the name of the constructor,
as shown in the following snippet of code:

// Specify the actual type parameter for the constructor as Double
Test<Number> t1 = new <Double»Test<Number>(new Double(12.89));

// Let the compiler figure out that we are using Integer as the actual type parameter
// for the constructor
Test<Number> t2 = new Test<Number>(new Integer(123));

Type Inference in Generic Object Creation

In many cases, the compiler can infer the value for the type parameter in an object-creation expression when
you create an object of a generic type. Note that the type inference support in the object-creation expression
is limited to the situations where the type is obvious. Consider the following statement:

List<String> list = new ArraylList<String>();

With the declaration of 1ist as List<String», it is obvious that you want to create an ArrayList with
type parameter as <String>. In this case, you can specify empty angle brackets, <> (known as the diamond
operator or simply the diamond), as the type parameter for ArrayList. You can rewrite this statement as
shown:

List<String> list = new ArraylList<>();

Note that if you do not specify a type parameter for a generic type in an object-creation expression, the
type is the raw type and the compiler generates unchecked warnings. For example, the following statement
will compile with an unchecked warning:

// Using Arraylist as a raw type, not a generic type
List<String> list = new ArraylList(); // Generates an unchecked warning

warning: [unchecked] unchecked conversion
List<String> list = new ArraylList(); // Generates an unchecked warning
A

required: List<String>
found: Arraylist
1 warning

Sometimes the compiler cannot correctly infer the parameter type of a type in an object-creation
expression. In those cases, you need to specify the parameter type instead of using the diamond operator
(<>). Otherwise, the compiler will infer a wrong type, which will generate an error.

157

CHAPTER 4 © GENERICS

When the diamond operator is used in an object creation expression, the compiler uses a four-step
process to infer the parameter type for the parameterized type. Let’s consider a typical object-creation
expression:

T1<T2> var = new T3<>(constructor-arguments);

1. First, it tries to infer the type parameter from the static type of the constructor-
arguments. Note that constructor-arguments may be empty, for example,
new ArraylList<>().If the type parameter is inferred in this step, the process
continues to the next step.

2. Ttuses the left side of the assignment operator to infer the type. In the previous
statement, it will infer T2 as the type if the constructor-arguments are empty.
Note that an object-creation expression may not be part of an assignment
statement. In such cases, it will use the next step.

3. Ifthe object-creation expression is used as an actual parameter for a method call,
the compiler tries to infer the type by looking at the type of the formal parameter
for the method being called.

4. If all else fails and it cannot infer the type using these steps, it infers Object as the
type parameter.

Let’s discuss a few examples that involve all steps in the type inference process. Create the two lists,
list1of List<String> type and 1ist2 of List<Integer> type:

import java.util.Arrays;
import java.util.list;

// More code goes here...

List<String> list1 = Arrays.asList("A", "B");
List<Integer> list2 = Arrays.aslist(9, 19, 1969);

Consider the following statement that uses the diamond operator:
List<String> list3 = new ArraylList<>(list1); // Inferred type is String

The compiler used the constructor argument 1ist1 to infer the type. The static type of 1ist1 is
List<String>, so the type String was inferred by the compiler. The previous statement compiles fine. The
compiler did not use the left side of the assignment operator, List<String> 1ist3, during the inference

process. You may not trust this argument. Consider the following statement to prove this:

List<String> list4 = new Arraylist<>(list2); // A compile-time error

required: List<String>
found: Arraylist<Integer>
1 error

158

CHAPTER 4 © GENERICS

Do you believe it now? The constructor argument is 1ist2 whose static type is List<Integer>. The
compiler inferred the type as Integer and replaced ArraylList<> with ArraylList<Integer>. The type of
list4is List<String>, which is not assignment-compatible with the ArrayList<Integer>, which resulted
in the compile-time error.

Consider the following statement:

List<String> 1ist5 = new Arraylist<>(); // Inferred type is String

This time, there is no constructor argument. The compiler uses the second step to look at the left side
of the assignment operator to infer the type. On the left side, it finds List<String> and it correctly infers the
type as String. Consider a process () method that is declared as follows:
public static void process(List<String> list) {

// Code goes here
}

The following statement makes a call to the process () method and the inferred type parameter is

String:

// The inferred type is String
process(new ArraylList<>());

The compiler looks at the type of the formal parameter of the process () method, finds List<String>,
and infers the type as String.

Tip Using the diamond operator saves some typing. Use it when the type inference is obvious. However,
it is better, for readability, to specify the type, instead of the diamond operator, in a complex object-creation
expression. Always choose readability over brevity.

JDK9 added support for the diamond operator in anonymous classes if the inferred types are denotable.
You cannot use the diamond operator with anonymous classes—even in JDK9—if the inferred types are
non-denotable. The Java compiler uses types that cannot be written in Java programs. Types that can be
written in Java programs are known as denotable types. Types that the compiler knows but cannot be written
in Java programs are known as non-denotable types. For example, String is a denotable type because
you can use it in programs to denote a type; however, Serializable & CharSequence is not a denotable-
type, even though it is a valid type for the compiler. It is an intersection type that represents a type that
implements both interfaces, Serializable and CharSequence. Intersection types are allowed in generic type
definitions, but you cannot declare a variable using this intersection type:

// Not allowed in Java code. Cannot declare a variable of an intersection type.
Serializable & CharSequence var;

// Allowed in Java code

class Magic<T extends Serializable & CharSequence> {
// More code goes here
}

159

CHAPTER 4 © GENERICS

Java contains a generic Callable<V> interface in the java.util.concurrent package. It is declared as
follows:

public interface Callable<V> {
V call() throws Exception;
}

In JDK9, the compiler will infer the type parameter for the anonymous class as Integer in the following
snippet of code. Prior to JDK9, you had to write "new Callable<Integer>()".

// A compile-time error in JDK8, but allowed in JDK9.
Callable<Integer> ¢ = new Callable<s() {
@0verride
public Integer call() {
return 100;
}

};

No Generic Exception Classes

Exceptions are thrown at runtime. The compiler cannot ensure the type-safety of exceptions at runtime if
you use a generic exception class in a catch clause, because the erasure process erases the mention of any
type parameter during compilation. This is the reason that it is a compile-time error to attempt to define a
generic class, which is a direct or indirect subclass of java.lang.Throwable.

No Generic Anonymous Classes

An anonymous class is a one-time class. You need a class name to specify the actual type parameter. An
anonymous class does not have a name. Therefore, you cannot have a generic anonymous class. However,
you can have generic methods inside an anonymous class. Your anonymous class can inherit a generic class.
An anonymous class can implement generic interfaces. Any class, except an exception type, enums, and
anonymous inner classes, can have type parameters.

Generics and Arrays

Let’s look at the following code for a class called GenericArrayTest:

public class GenericArrayTest<T> {
private T[] elements;

public GenericArrayTest(int howMany) {

elements = new T[howMany]; // A compile-time error
}

// More code goes here

160

CHAPTER 4 © GENERICS

The GenericArrayTest class declares a type parameter T. In the constructor, it attempts to create an
array of the generic type. You cannot compile the previous code. The compiler will complain about the
following statement:

elements = new T[howMany]; // A compile-time error

Recall that all references to the generic type parameter are erased from the code when a generic class or
code using it is compiled. An array needs to know its type when it is created, so that it can perform a check
at runtime when an element is stored in it to make sure that the element is assignment-compatible with the
array type. An array’s type information will not be available at runtime if you use a type parameter to create
the array. This is the reason that the statement is not allowed.

You cannot create an array of generic type because the compiler cannot ensure the type-safety of the
assignment to the array element. You cannot write the following code:

Wrapper<String>[] gsArray = null;

// Cannot create an array of generic type
gsArray = new Wrapper<String>[10]; // A compile-time error

It is allowed to create an array of unbounded wildcard generic types, as shown:
Wrapper<?>[] anotherArray = new Wrapper<?>[10]; // Ok

Suppose you want to use an array of a generic type. You can do so by using the newInstance() method
of the java.lang.reflect.Array class as follows. You will have to deal with the unchecked warnings at
compile-time because of the cast used in the array creation statement. The following snippet of code shows
that you can still bypass the compile-time type-safety check when you try to sneak in an Object into an array
of Wrapper<String>. However, this is the consequence you have to live with when using generics, which
does not carry its type information at runtime. Java generics are as skin deep as you can imagine.

Wrapper<String>[] a = (Wrapper<String>[]) Array.newInstance(Wrapper.class, 10);

Object[] objArray = (Object[]) a;
objArray[0] = new Object(); // Will throw a java.lang.ArrayStoreExceptionxception
a[0] = new Wrapper<String>("Hello"); // OK. Checked by compiler

Runtime Class Type of Generic Objects

What is the class type of the object for a parameterized type? Consider the program in Listing 4-6.

Listing 4-6. All Objects of a Parameterized Type Share the Same Class at Runtime

// GenericsRuntimeClassTest.java
package com.jdojo.generics;

public class GenericsRuntimeClassTest {
public static void main(String[] args) {
Wrapper<String> a = new Wrapper<String>("Hello");
Wrapper<Integer> b = new Wrapper<Integer>(new Integer(123));

161

CHAPTER 4 © GENERICS

Class aClass = a.getClass();
Class bClass = b.getClass();

System.out.println("Class for a: " + aClass.getName());
System.out.println("Class for b: " + bClass.getName());
System.out.println("aClass == bClass: " + (aClass == bClass));

Class for a: com.jdojo.generics.Wrapper
Class for b: com.jdojo.generics.Wrapper
aClass == bClass: true

The program creates objects of the Wrapper<String> and Wrapper<Integer>. It prints the class names
for both objects and they are the same. The output shows that all parameterized objects of the same generic
type share the same class object at runtime. As mentioned earlier, the type information you supply to the
generic type is removed from the code during compilation. The compiler changes the Wrapper<String> a;
statement to Wrapper a;. For the JVM, it’s business as usual (before pre-generics)!

Heap Pollution

Representing a type at runtime is called reification. A type that can be represented at runtime is called

a reifiable type. A type that is not completely represented at runtime is called a non-reifiable type. Most

generic types are non-reifiable because generics are implemented using erasure, which removes the type’s

parameters information at compile time. For example, when you write Wrapper<String>, the compiler

removes the type parameter <String> and the runtime sees only Wrapper instead of Wrapper<String>.
Heap pollution is a situation that occurs when a variable of a parameterized type refers to an object

not of the same parameterized type. The compiler issues an unchecked warning if it detects possible

heap pollution. If your program compiles without any unchecked warnings, heap pollution will not occur.

Consider the following snippet of code:

Wrapper nWrapper = new Wrapper<Integer>(101); /] #1

// Unchecked warning at compile-time and heap pollution at runtime
Wrapper<String> sWrapper = nWrapper; // #2
String str = sWrapper.get(); // #3 - ClassCastException

The first statement (labeled #1) compiles fine. The second statement (labeled #2) generates an
unchecked warning because the compiler cannot determine if nWrapper is of the type Wrapper<String>.
Since parameter type information is erased at compile-time, the runtime has no way of detecting this type
mismatch. The heap pollution in the second statement makes it possible to get a ClassCastException in the
third statement (labeled #3) at runtime. If the second statement was not allowed, the third statement will not
cause a ClassCastException.

162

CHAPTER 4 © GENERICS

Heap pollution may also occur because of an unchecked cast operation. Consider the following snippet
of code:

Wrapper<? extends Number> nW = new Wrapper<Long>(1L); // #1

// Unchecked cast and unchecked warning occurs when the

// following statement #2 is compiled. Heap pollution occurs,

// when it is executed.

Wrapper<Short> sw = (Wrapper<Short>) nW; // #2

short s = sw.get(); // #3 - ClassCastException

The statement labeled #2 uses an unchecked cast. The compiler issues an unchecked warning.
At runtime, it leads to heap pollution. As a result, the statement labeled #3 generates a runtime
ClassCastException.

Varargs Methods and Heap Pollution Warnings

Java implements the varargs parameter of a varargs method by converting the varargs parameter into an
array. If a varargs method uses a generic type varargs parameter, Java cannot guarantee the type-safety.
A non-reifiable generic type varargs parameter may possibly lead to heap pollution.

Consider the following snippet of code that declares a process() method with a parameterized type
parameter. The comments in the method’s body indicate the heap pollution and other types of problems.

public static void process(Wrapper<Long>...nums) {

Object[] obj = nums; // Heap pollution
obj[0] = new Wrapper<>("Hello"); // An array corruption
Long 1lv = nums[0].get(); // A ClassCastException

// Other code goes here

Tip You need to use the -X1int:unchecked,varargs option with the javac compiler to see the
unchecked and varargs warnings.

When the process () method is compiled, the compiler removes the type information <Long> from its
parameterized type parameter and changes its signature to process (Wrapper[] nums). When you compile
the declaration of the process () method, you get the following unchecked warning:

warning: [unchecked] Possible heap pollution from parameterized vararg type Wrapper<Long>
public static void process(Wrapper<Long>...nums) {

1 warning
Consider the following snippet of code that calls the process () method:
Wrapper<Long> vi = new Wrapper<>(10L);

Wrapper<Long> v2 = new Wrapper<>(11L);
process(vi, v2); // An unchecked warning

163

CHAPTER 4 © GENERICS

When this snippet of code is compiled, it generates the following compiler unchecked warning:

warning: [unchecked] unchecked generic array creation for varargs parameter of type
Wrapper<Long>[]
process(vi, v2);

A

1 warning

Warnings are generated at the method declaration as well as at the location of the method call. If you
create such a method, it is your responsibility to ensure that heap pollution does not occur inside your
method’s body.

If you create a varargs method with a non-reifiable type parameter, you can suppress the unchecked
warnings at the location of the method’s declaration as well as the method’s call by using @SafeVarargs
annotation. By using @SafeVarargs, you are asserting that your varargs method with non-reifiable type
parameter is safe to use. The following snippet of code uses the @SafeVarargs annotation with the
process() method:

@SafeVarargs

public static void process(Wrapper<Long>...nums) {
Object[] obj = nums; // Heap pollution
obj[0] = new Wrapper<String>("Hello"); // An array corruption
Long 1v = nums[0].get(); // A ClassCastException

// Other code goes here

When you compile this declaration of the process () method, you do not get an unchecked warning.
However, you get the following varargs warning because the compiler sees possible heap pollution when the
varargs parameter nums is assigned to the Object array obj:

warning: [varargs] Varargs method could cause heap pollution from non-reifiable varargs
parameter nums
Object[] obj = nums; // Heap pollution
N

1 warning

You can suppress the unchecked and varargs warnings for a varargs method with a non-reifiable type
parameter by using the @SuppressiWarnings annotation as follows:

@SuppressWarnings({"unchecked", "varargs"})

public static void process(Wrapper<Long>...nums) {
// Code goes here
}

Note that when you use the @SuppressWarnings annotation with a varargs method, it suppresses
warnings only at the location of the method’s declaration, not at the locations where the method is called.

164

CHAPTER 4 © GENERICS

Summary

Generics are the Java language features that allow you to declare types (classes and interfaces) that use type
parameters. Type parameters are specified when the generic type is used. The type when used with the
actual type parameter is known as a parameterized type. When a generic type is used without specifying its
type parameters, it is called a raw type. For example, if Wrapper<T> is a generic class, Wrapper<String>is a
parameterized type with String as the actual type parameter and Wrapper as the raw type. Type parameters
can also be specified for constructors and methods. Generics allow you to write true polymorphic code in
Java—code using a type parameter that works for all types.

By default, a type parameter is unbounded, meaning that you can specify any type for the type
parameter. For example, if a class is declared with a type parameter <T>, you can specify any type available
in Java, such as <String>, <Object>, <Person>, <Employee>, <Integer>, etc., as the actual type for T.

Type parameters in a type declaration can also be specified as having upper bounds or lower bounds. The
declaration Wrapper<U extends Person> is an example of specifying an upper bound for the type parameter
U that specifies that U can be of a type that is Person or a subtype of Person. The declaration Wrapper<?

super Person> is an example of specifying a lower bound; it specifies that the type parameter is the type
Person or a supertype of Person.

Java also lets you specify the wildcard, which is a question mark, as the actual type parameter. A
wildcard as the actual parameter means the actual type parameter is unknown; for example, Wrapper<?>
means that the type parameter T for the generic type Wrapper<T> is unknown.

The compiler attempts to infer the type of an expression using generics, depending on the context in
which the expression is used. If the compiler cannot infer the type, it generates a compile-time error and you
will need to specify the type explicitly.

The supertype-subtype relationship does not exist with parameterized types. For example,
Wrapper<Long> is not a subtype of Wrapper<Number>

The generic type parameters are erased by the compiler using a process called type erasure. Therefore,
the generic type parameters are not available at runtime. For example, the runtime type of Wrapper<Long>
and Wrapper<String> are the same, which is Wrapper.

EXERCISES

1. What are generics (or generic types), parameterized types, and raw types? Give an
example of a generic type and its parameterized type.

2. The Number class is the superclass of the Long class. The following snippet of code
does not compile. Explain.

List<Number> 1listi= new ArraylList<>();
List<Long> list2= new Arraylist<>();
lista = list2; // A compile-time error

3. Write the output when the following ClassNamePrinter class is run. Rewrite

the code for the print() method of this class after the compiler erases the type
parameter T during compilation .

165

CHAPTER 4 © GENERICS

// ClassNamePrinter.java
package com.jdojo.generics.exercises;

public class ClassNamePrinter {
public static void main(String[] args) {
ClassNamePrinter.print(10);
ClassNamePrinter.print(10L);
ClassNamePrinter.print(10.2);

}

public static <T extends Number> void print(T obj) {
String className = obj.getClass().getSimpleName();
System.out.println(className);
}
}

4. What are unbounded wildcards? Why does the following snippet of code not
compile?

List<?> 1list = new ArrayList<>();
list.add("Hello"); // A compile-time error

5. Consider the following incomplete declaration of the Util class:

// Util.java
package com.jdojo.generics.exercises;

import java.lang.reflect.Array;
import java.util.Arraylist;
import java.util.Arrays;

import java.util.list;

public class Util {
public static void main(String[] args) {
Integer[] n1 = {1, 2};
Integer[] n2 = {3, 4};
Integer[] m = merge(ni, n2);
System.out.println(Arrays.toString(m));

String[] s1 = {"one", "two"};

String[] s2 = {"three", "four"};
String[] t = merge(s1, s2);
System.out.println(Arrays.toString(t));

List<Number> list = new ArraylList<>();

add(list, 10, 20, 30L, 40.5F, 50.9);
System.out.println(list);

166

CHAPTER 4

public static <T> T[] merge(T[] a, T[] b) {

}

public static /* Add type parameters here */ void add(List<T> list,
U... elems) {

/* Your code to add elems to list goes here */

}

Complete the body of the merge () method, so it can concatenate the two arrays
passed in as its parameters and return the concatenated array.

Complete the add() method by specifying its type parameters and adding the code
in its body. The first parameter to the method is a parameterized List<T> and the
second parameter is a varargs parameter of the type T or its descendant. That is,
the second parameter type is any type whose objects can be added to the List<T>.

Running the util class should produce the following output:

[1, 2, 3, 4]
[one, two, three, four]
[10, 20, 30, 40.5, 50.9]

Create a generic Stack<E> class. Its objects represent a stack that can store
elements of its type parameter E. The following is a template for the class. You need
to provide implementation for all its methods. Write test code to test all methods.
Method names are standard method names for a stack. Any illegal access to the
stack should throw a runtime exception.

// Stack.java
package com.jdojo.generics.exercises;

import java.util.Llinkedlist;
import java.util.list;

public class Stack<E> {
// Use LinkedList instead of Arraylist
private final List<E> stack = new LinkedList<>();

public void push(E e) {}
public E pop() { }

public E peek() { }

public boolean isEmpty() { }
public int size() { }

GENERICS

167

CHAPTER 4 © GENERICS

7. What is heap pollution? What types of warnings does the compiler generate when
it detects a possibility of heap pollution? How do you print such warnings during
compilation? How do you suppress such warnings?

8. Describe the reasons that the following declaration of the Test class does not
compile.

public class Test {
public <T> void test(T t) {
// More code goes here
}

public <U> void test(U u) {
// More code goes here
}

168

CHAPTER 5

Lambda Expressions

In this chapter, you will learn:
e Whatlambda expressions are
e Why we need lambda expressions
e The syntax for defining lambda expressions
e Target typing for lambda expressions
e Commonly used built-in functional interfaces
e Method and constructor references
e Lexical scoping of lambda expressions

All example programs in this chapter are a member of a jdojo.lambda module, as declared in Listing 5-1.

Listing 5-1. The Declaration of a jdojo.Jlambda Module

// module-info.java

module jdojo.lambda {
exports com.jdojo.lambda;

}

What Is a Lambda Expression?

Alambda expression is an unnamed block of code (or an unnamed function) with a list of formal parameters
and a body. Sometimes a lambda expression is simply called a lambda. The body of a lambda expression
can be a block statement or an expression. An arrow (->) is used to separate the list of parameters and the
body. The term “lambda” has its origin in Lambda calculus that uses the Greek letter lambda () to denote a
function abstraction. The following are some examples of lambda expressions in Java:

// Takes an int parameter and returns the parameter value incremented by 1
(int x) -> x + 1

// Takes two int parameters and returns their sum
(int x, inty) -> x +y

// Takes two int parameters and returns the maximum of the two
(int x, inty) -> { intmax = x>y ? x : y;
return max;

}

© Kishori Sharan 2018 169
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_5

https://doi.org/10.1007/978-1-4842-3348-1_5

CHAPTER 5 © LAMBDA EXPRESSIONS

// Takes no parameters and returns void

0O->{1}
// Takes no parameters and returns a string "OK"
() _> IlOKlI

// Takes a String parameter and prints it on the standard output
(String msg) -> { System.out.println(msg); }

// Takes a parameter and prints it on the standard output
msg -> System.out.println(msg)

// Takes a String parameter and returns its length
(String str) -> str.length()

At this point, you will not be able to understand the syntax of lambda expressions completely. I cover
the syntax in detail shortly. For now, just get the feel of it, keeping in mind that the syntax for lambda
expressions is similar to the syntax for declaring methods.

Tip Alambda expression is not a method, although its declaration looks similar to a method. As the name
suggests, a lambda expression is an expression that represents an instance of a functional interface.

Every expression in Java has a type, and so does alambda expression. The type of a lambda expression
is a functional interface type. When the abstract method of the functional interface is called, the body of the
lambda expression is executed. Consider the lambda expression that takes a String parameter and returns
its length:

(String str) -> str.length()

What is the type of this lambda expression? The answer is that we do not know. By looking at the
lambda expression, all you can say is that it takes a String parameter and returns an int, which is the length
of the String parameter. Its type can be any functional interface type with an abstract method that takes a
String as a parameter and returns an int. The following is an example of such a functional interface:

@FunctionalInterface
interface StringToIntMapper {
int map(String str);

}

The lambda expression represents an instance of the StringToIntMapper functional interface when it
appears in the assignment statement, like so:

StringToIntMapper mapper = (String str) -> str.length();

In this statement, the compiler finds that the right side of the assignment operator is a lambda
expression. To infer its type, it looks at the left side of the assignment operator that expects an instance of
the StringToIntMapper interface; it verifies that the lambda expression conforms to the declaration of the
map () method in the StringToIntMapper interface; finally, it infers that the type of the lambda expression
is the StringToIntMapper interface type. When you call the map () method on the mapper variable passing a
String, the body of the lambda expression is executed as shown in the following snippet of code:

170

CHAPTER 5 LAMBDA EXPRESSIONS

StringToIntMapper mapper = (String str) -> str.length();
String name = "Kristy";

int mappedValue = mapper.map(name);
System.out.println("name=" + name +

, mapped value=" + mappedValue);
name=Kristy, mapped value=6

So far, you have not seen anything that you could not do in Java without using lambda expressions. The
following snippet of code uses an anonymous class to achieve the same result as the lambda expression used
in the previous example:

StringToIntMapper mapper = new StringToIntMapper() {
@0verride
public int map(String str) {
return str.length();
}

};

String name = "Kristy";
int mappedValue = mapper.map(name);
System.out.println("name=" + name + ", mapped value='

+ mappedValue);
name=Kristy, mapped value=6

At this point, alambda expression may seem to be a concise way of writing an anonymous class, which
is true as far as the syntax goes. There are some subtle differences in semantics between the two. I discuss
those differences when I discuss more details later.

Tip Java is a strongly-typed language, which means that the compiler must know the type of all
expressions used in a Java program. A lambda expression by itself does not have a type, and therefore, it
cannot be used as a standalone expression. The type of a lambda expression is always inferred by the compiler
by the context in which it is used.

Why Do We Need Lambda Expressions?

Java has supported object-oriented programming since the beginning. In object-oriented programming, the
program logic is based on mutable objects. Methods of classes contain the logic. Methods are invoked on
objects, which typically modify objects’ states. In object-oriented programming, the order of method invocation
matters as each method invocation may potentially modify the state of the object, thus producing side effects.
static analysis of the program logic is difficult as the program state depends on the order in which the code will
be executed. Programming with mutating objects also poses a challenge in concurrent programming in which
multiple parts of the program may attempt to modify the state of the same object concurrently.

171

CHAPTER 5 © LAMBDA EXPRESSIONS

As the processing power of computers has increased in recent years, so has the amount of data to
be processed. Nowadays, it is common to process data as big as terabytes in size, requiring the need for
parallel programming. Now it is common for computers to have a multi-core processor that give users the
opportunity to run software programs faster; at the same time, this poses a challenge to programmers to
write more parallel programs, taking advantage of all the available cores in the processor. Java has supported
concurrent programming since the beginning. It added support for parallel programming in Java 7 through
the fork/join framework, which was not easy to use.

Functional programming, which is based on Lambda calculus, existed long before object-oriented
programming. It is based on the concept of functions, a block of code that accepts values, known as
parameters, and the block of code is executed to compute a result. A function represents a functionality or
operation. Functions do not modify data, including its input, thus producing no side-effects; for this reason, the
order of the execution of functions does not matter in functional programming. In functional programming,

a higher order function is an anonymous function that can be treated as a data object. That is, it can be stored
in a variable and passed around from one context to another. It might be invoked in a context that did not
necessarily define it. Note that a higher order function is an anonymous function, so the invoking context does
not have to know its name. A closure is a higher order function packaged with its defining environment. A
closure carries with it the variables in scope when it was defined, and it can access those variables even when it
is invoked in a context other than the context in which those variables were defined.

In recent years, functional programming has become popular because of its suitability in concurrent,
parallel, and event-driven programming. Modern programming languages such as C#, Groovy, Python, and
Scala support functional programming. Java did not want to be left behind, and hence, it introduced lambda
expressions to support functional programming, which can be mixed with its already popular object-
oriented features to develop robust, concurrent, parallel programs. Java adopted the syntax for lambda
expressions that is very similar to the syntax used in other programming languages, such as C# and Scala.

In object-oriented programming, a function is called a method and it is always part of a class. If you
wanted to pass functionality around in Java, you needed to create a class, add a method to the class to
represent the functionality, create an object of the class, and pass the object around. A lambda expression
in Java is like a higher-order function in functional programming, which is an unnamed block of code
representing a functionality that can be passed around like data. A lambda expression may capture the
variables in its defining scope and it may access those variables later in a context that did not define the
captured variable. This features let you use lambda expressions to implement closures in Java.

Java 8 introduced lambda expressions that represent an instance of a functional interface. You were
able to do everything prior to Java 8 using anonymous classes that you can do with lambda expressions.
Functional interfaces are not new to Java 8; they have existed since the beginning.

So why and where do we need lambda expressions? Anonymous classes use a bulky syntax. Lambda
expressions use a very concise syntax to achieve the same result. Lambda expressions are not a complete
replacement for anonymous classes. You will still need to use anonymous classes in a few situations. Just
to appreciate the conciseness of the lambda expressions, compare the following two statements from the
previous section that create an instance of the StringToIntMapper interface; one uses an anonymous class,
taking six lines of code, and another uses a lambda expression, taking just one line of code:

// Using an anonymous class
StringToIntMapper mapper = new StringToIntMapper() {
@0verride
public int map(String str) {
return str.length();
}

};

// Using a lambda expression
StringToIntMapper mapper = (String str) -> str.length();

172

CHAPTER 5 LAMBDA EXPRESSIONS

Syntax for Lambda Expressions

Alambda expression describes an anonymous function. The general syntax for using lambda expressions is
very similar to declaring a method. The general syntax is

(<LambdaParametersList>) -> { <LambdaBody> }

Alambda expression consists of a list of parameters and a body separated by an arrow (->). The list of
parameters is declared the same way as the list of parameters for methods. The list of parameters is enclosed
in parentheses, as is done for methods. The body of a lambda expression is a block of code enclosed in
braces. Like a method’s body, the body of a lambda expression may declare local variables; use statements
including break, continue, and return; throw exceptions, etc. Unlike a method, a lambda expression does
not have the following four parts:

e Alambda expression does not have a name.

e Alambda expression does not have a return type. It is inferred by the compiler from
the context of its use and from its body.

e Alambda expression does not have a throws clause. It is inferred from the context of
its use and its body.

e Alambda expression cannot declare type parameters. That is, a lambda expression
cannot be generic.

Table 5-1 contains some examples of lambda expressions and equivalent methods. I have given a
suitable name to methods as you cannot have a method without a name in Java. The compiler infers the
return type of lambda expressions.

Table 5-1. Examples of Lambda Expressions and Equivalent Methods

Lambda Expression Equivalent Method
(int x, int y) -> { int sum(int x, int y) {
return x + y; return x + y;
} }
(Object x) -> { Object identity(Object x) {
return x; return x;
} }
(int x, int y) -> { int getMax(int x, int y) {
if (x> y) { if (x> y) {
return x; return x;
} else { } else {
return y; return y;
} }
} }

(continued)

173

CHAPTER 5 © LAMBDA EXPRESSIONS

Table 5-1. (continued)

Lambda Expression Equivalent Method

(String msg) -> { void print(String msg) {
System.out.println(msg); System.out.println(msg);

}

O ->{ void printCurrentDate() {
System.out.println(LocalDate.now()); System.out.println(LocalDate.now());

}

O ->{ void doNothing() {
// No code goes here // No code goes here

} }

One of the goals of lambda expressions is to keep its syntax concise and let the compiler infer the
details. The following sections discuss the shorthand syntax for declaring lambda expressions.

Omitting Parameter Types

You can omit the declared type of the parameters. The compiler will infer the types of parameters from the
context in which the lambda expression is used.

// Types of parameters are declared
(int x, int y) -> { return x +y; }

// Types of parameters are omitted
(x, y) -> { return x +vy; }

If you omit the types of parameters, you must omit it for all parameters or for none. You cannot omit for
some and not for others. The following lambda expression will not compile because it declares the type of
one parameter and omits for the other:

// A compile-time error
(int x, y) -> { return x + y; }

Tip Alambda expression that does not declare the types of its parameters is known as an implicit lambda
expression or an implicitly-typed lambda expression. A lambda expression that declares the types of its
parameters is known as an explicit lambda expression or an explicitly-typed lambda expression.

174

CHAPTER 5 LAMBDA EXPRESSIONS

Declaring a Single Parameter

Sometimes a lambda expression takes only one parameter. You can omit the parameter type for a single
parameter lambda expression as you can do for alambda expression with multiple parameters. You can also
omit the parentheses if you omit the parameter type in a single parameter lambda expression. The following
are three ways to declare a lambda expression with a single parameter:

// Declares the parameter type
(String msg) -> { System.out.println(msg); }

// Omits the parameter type
(msg) -> { System.out.println(msg); }

// Omits the parameter type and parentheses
msg -> { System.out.println(msg); }

The parentheses can be omitted only if the single parameter also omits its type. The following lambda
expression will not compile:

// Omits parentheses, but not the parameter type, which is not allowed.

String msg -> { System.out.println(msg); }

Declaring No Parameters

If alambda expression does not take any parameters, you need to use empty parentheses.

// Takes no parameters
() -> { System.out.println("Hello"); }

Itis not allowed to omit the parentheses when the lambda expression takes no parameter. The following
declaration will not compile:

-> { System.out.println("Hello"); }

Parameters with Modifiers

You can use modifiers, such as final, in the parameter declaration for explicit lambda expressions. The
following two lambda expressions are valid:

(final int x, final int y) -> { return x +vy; }
(int x, final int y) -> { return x +y; }

The following lambda expression will not compile because it uses the final modifier in parameter
declarations, but omits the parameter type:

(final x, final y) -> { return x + y; }

175

CHAPTER 5 © LAMBDA EXPRESSIONS

Declaring Body of Lambda Expressions

The body of a lambda expression can be a block statement or a single expression. A block statement is
enclosed in braces; a single expression is not enclosed in braces.

The body of a lambda expression is executed the same way as a method’s body. A return statement or
the end of the body returns the control to the caller of the lambda expression.

When an expression is used as the bodyj, it is evaluated and returned to the caller. If the expression
evaluates to void, nothing is returned to the caller. The following two lambda expressions are the same; one
uses a block statement and the other an expression:

// Uses a block statement. Takes two int parameters and returns their sum.
(int x, int y) -> { return x + y; }

// Uses an expression. Takes two int parameters and returns their sum.
(int x, int y) -> x +y

The following two lambda expressions are the same; one uses a block statement as the body and the
other an expression that evaluates to void:

// Uses a block statement
(String msg) -> { System.out.println(msg); }

// Uses an expression
(String msg) -> System.out.println(msg)

Target Typing

Every lambda expression has a type, which is a functional interface type. In other words, alambda
expression represents an instance of a functional interface. Consider the following lambda expression:

(X, y) > x+y

What is the type of this lambda expression? In other words, an instance of which functional interface
does this lambda expression represent? We do not know the type of this lambda expression at this point.
All we can say about this lambda expression with confidence is that it takes two parameters named x and
y. We cannot tell its return type as the expression x + y, depending on the type of x and y, may evaluate to
anumber (int, long, float, or double) or a String. This is an implicit lambda expression, and therefore,
the compiler has to infer the types of two parameters using the context in which the expression is used. This
lambda expression may be of different functional interface types depending on the context in which it is used.
There are two types of expressions in Java:

e Standalone expressions
e Poly expressions

A standalone expression is an expression whose type can be determined without knowing the context of
its use. The following are examples of standalone expressions:

// The type of expression is String
new String("Hello")

// The type of expression is String (a String literal is also an expression)
"Hello"

176

CHAPTER 5 LAMBDA EXPRESSIONS

// The type of expression is ArraylList<String>
new ArraylList<String>()

A poly expression is an expression that has different types in different contexts. The compiler
determines the type. The contexts that allow the use of poly expressions are known as poly contexts.
All lambda expressions in Java are poly expressions. You must use it in a context to know its type. Poly
expressions existed in Java prior to Java 8 and lambda expressions. For example, the expression new
ArraylList<>() is a poly expression. You cannot tell its type unless you provide the context of its use. This
expression is used in the following two contexts to represent two different types:

// The type of new Arraylist<>() is ArraylList<Long>
Arraylist<Long> idList = new ArrayList<>();

// The type of new ArraylList<>() is Arraylist<String>
ArraylList<String> namelList = new ArrayList<>();

The compiler infers the type of a lambda expression. The context in which a lambda expression is used
expects a type, which is called the farget type. The process of inferring the type of alambda expression from
the context is known as target typing. Consider the following pseudocode for an assignment statement,
where a variable of type T is assigned a lambda expression:

T t = <LambdaExpression>;
The target type of the lambda expression in this context is T. The compiler uses the following rules to
determine whether the <LambdaExpression> is assignment compatible with its target type T:
e Tmustbe a functional interface type.

e Thelambda expression has the same number and type of parameters as the abstract
method of T. For an implicit lambda expression, the compiler will infer the types of
parameters from the abstract method of T.

e The type of the returned value from the body of the lambda expression is assignment
compatible to the return type of the abstract method of T.

e Ifthe body of the lambda expression throws any checked exceptions, those
exceptions must be compatible with the declared throws clause of the abstract
method of T. It is a compile-time error to throw checked exceptions from the body of
alambda expression, if its target type’s method does not contain a throws clause.

Let’s look at a few examples of target typing. Consider two functional interfaces, Adder and Joiner, as
shown in Listing 5-2 and Listing 5-3, respectively.
Listing 5-2. A Functional Interface Named Adder
// Adder.java

package com.jdojo.lambda;

@FunctionalInterface
public interface Adder {

double add(double ni, double n2);
}

177

CHAPTER 5 © LAMBDA EXPRESSIONS

Listing 5-3. A Functional Interface Named Joiner

// Joiner.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Joiner {
String join(String si, String s2);

The add() method of the Adder interface adds two numbers. The join() method of the Joiner interface
concatenates two strings. Both interfaces are used for trivial purposes; however, they will serve the purpose
of demonstrating the target typing for lambda expressions very well. Consider the following assignment
statement:

Adder adder = (x, y) -> X +y;

The type of the adder variable is Adder. The lambda expression is assigned to the variable adder,
and therefore, the target type of the lambda expression is Adder. The compiler verifies that Adder is a
functional interface. The lambda expression is an implicit lambda expression. The compiler finds that the
Adder interface contains a double add(double, double) abstract method. It infers the types for x and y
parameters as double and double, respectively. At this point, the compiler treats this statement as shown:

Adder adder = (double x, double y) -> x +y;

The compiler now verifies the compatibility of the returned value from the lambda expression and the
return type of the add() method. The return type of the add() method is double. The lambda expression
returns X + Y, which would be of a double as the compiler already knows that the types of x and y are
double. The lambda expression does not throw any checked exceptions. Therefore, the compiler does not
have to verify anything for that. At this point, the compiler infers that the type of the lambda expression is the
type Adder.

Apply the rules of target typing for the following assignment statement:

Joiner joiner = (X, y) -> X +y;

This time, the compiler infers the type for the lambda expression as Joiner. Do you see an example of a
poly expression where the same lambda expression (x, y) -> x + yis of the type Adder in one context and
of the type Joiner in another?

Listing 5-4 shows how to use these lambda expressions in a program. Note that it’s business as usual
after you use a lambda expression to create an instance of a functional interface. That is, after you create an
instance of a functional interface, you use the instance as you used before Java 8. The lambda expression
does not change the way the instance of a functional interface is used to invoke its method.

Listing 5-4. Examples of Using Lambda Expressions
// TargetTypeTest.java

package com.jdojo.lambda;

public class TargetTypeTest {
public static void main(String[] args) {
// Creates an Adder using a lambda expression
Adder adder = (x, y) -> x + y;

178

// Creates a Joiner using a lambda expression
Joiner joiner = (X, y) -> X +y;

// Adds two doubles
double suml = adder.add(10.34, 89.11);

// Adds two ints
double sum2 = adder.add(10, 89);

// Joins two strings
String str = joiner.join("Hello", " lambda");

System.out.println("sumi = " + sumi);
System.out.println("sum2 = " + sum2);
System.out.println("str = " + str);
}
}
suml = 99.45
sum2 = 99.0

str = Hello lambda

CHAPTER 5 LAMBDA EXPRESSIONS

Inow discuss the target typing in the context of method calls. You can pass lambda expressions as
arguments to methods. Consider the code for the LambdaUtil class shown in Listing 5-5.

Listing 5-5. A LambdaUtil Class That Uses Functional Interfaces as an Argument in Methods

// LambdaUtil.java
package com.jdojo.lambda;

public class LambdaUtil {
public void testAdder(Adder adder) {
double x = 190.90;
double y = 8.50;
double sum = adder.add(x, y);
System.out.print("Using an Adder:");

System.out.println(x + " + " +y + " = " + sum);

}

public void testJoiner(Joiner joiner) {
String s1 = "Hello";
String s2 = "World";
String s3 = joiner.join(s1,s2);
System.out.print("Using a Joiner:");
System.out.printIn("\"" + s1 + "\" + \"" + s2 + "\"

- \uu n 53 + n\uu);

179

CHAPTER 5 © LAMBDA EXPRESSIONS

The LambdaUtil class contains two methods: testAdder () and testJoiner(). One method takes an
Adder as an argument and another a Joiner as an argument. Both methods have simple implementations.
Consider the following snippet of code:

LambdaUtil util = new LambdaUtil();
util.testAdder((x, y) -> x +y);

The first statement creates an object of the LambdaUtil class. The second statement calls the
testAdder () method on the object, passing a lambda expression of (x, y) -> x + y.The compiler must
infer the type of the lambda expression. The target type of the lambda expression is the type Adder because
the argument type of the testAdder (Adder adder) is Adder. The rest of the target typing process is the
same as you saw in the assignment statement before. Finally, the compiler infers that the type of the lambda
expression is Adder.

The program in Listing 5-6 creates an object of the LambdaUtil class and calls the testAdder () and
testJoiner() methods

Listing 5-6. Using Lambda Expressions as Method Arguments

// LambdaUtilTest.java
package com.jdojo.lambda;

public class LambdaUtilTest {
public static void main(String[] args) {
LambdaUtil util = new LambdaUtil();

// Call the testAdder() method
util.testAdder((x, y) -> x + y);

// Call the testJoiner() method
util.testJoiner((x, y) -> x + y);

// Call the testJoiner() method. The Joiner will add a space between the two strings
util.testJoiner((x, y) -> x + " " +y);

// Call the testJoiner() method. The Joiner will reverse the strings and join resulting
// strings in reverse order adding a comma in between
util.testJoiner((x, y) -> {

StringBuilder sbx = new StringBuilder(x);

StringBuilder sby = new StringBuilder(y);

sby.reverse().append(",").append(sbx.reverse());

return sby.toString();
1;

Using an Adder:190.9 + 8.5 = 199.4

Using a Joiner:"Hello" + "World" = "HelloWorld"
Using a Joiner:"Hello" + "World" = "Hello World"
Using a Joiner:"Hello" + "World" = "dlroW,olleH"

180

CHAPTER 5 LAMBDA EXPRESSIONS

Notice the output of the LambdaUtilTest class. The testJoiner () method was called three times,
and every time it printed a different result of joining the two strings "Hello" and "World". This is possible
because different lambda expressions were passed to this method. At this point, you can say that you have
parameterized the behavior of the testJoiner () method. That is, how the testJoiner() method behaves
depends on its parameter. Changing the behavior of a method through its parameters is known as behavior
parameterization. This is also known as passing code as data because you pass code (logic, functionality, or
behavior) encapsulated in lambda expressions to methods as if it were data.

It is not always possible for the compiler to infer the type of a lambda expression. In some contexts,
there is no way the compiler can infer the type of a lambda expression; those contexts do not allow the
use of lambda expressions. Some contexts may allow using lambda expressions, but the use itself may be
ambiguous to the compiler; one such case is passing lambda expressions to overloaded methods.

Consider the code for the LambdaUtil2 class shown in Listing 5-7. The code for this class is the same as
for the LambdaUtil class in Listing 5-5, except that this class changed the names of the two methods to the
same name, test(), making it an overloaded method.

Listing 5-7. A LambdaUtil2 Class That Uses Functional Interfaces as an Argument in Methods

// LambdaUtil2.java
package com.jdojo.lambda;

public class LambdaUtil2 {
public void test(Adder adder) {
double x = 190.90;
double y = 8.50;
double sum = adder.add(x, y);
System.out.print("Using an Adder:");

System.out.println(x + " + " +y + " =" + sum);

}

public void test(Joiner joiner) {
String s1 = "Hello";
String s2 = "World";
String s3 = joiner.join(si,s2);
System.out.print("Using a Joiner:");
System.out.printIn("\"" + s1 + "\" + \"" + s2 + "\" = \"" + s3 + "\"");

Consider the following snippet of code:

LambdaUtil2 util = new LambdaUtil2();
util.test((x, y) -> x +y); // A compile-time error

The second statement results in the following compile-time error:

Reference to test is ambiguous. Both method test(Adder) in LambdaUtil2 and method
test(Joiner) in LambdaUtil2 match.

181

CHAPTER 5 © LAMBDA EXPRESSIONS

The call to the test () method fails because the lambda expression is implicit and it matches both
versions of the test () method. The compiler does not know which method to use: test (Adder adder)
or test(Joiner joiner).In such circumstances, you need to help the compiler by providing some more
information. The following are the some of the ways to help the compiler resolve the ambiguity:

e Ifthelambda expression is implicit, make it explicit by specifying the type of the
parameters.

e Useacast.

e Do notuse the lambda expression directly as the method argument. First, assign it to
avariable of the desired type, and then pass the variable to the method.

Let’s discuss all three ways to resolve the compile-time error. The following snippet of code changes the
lambda expression to an explicit lambda expression:

LambdaUtil2 util = new LambdaUtil2();
util.test((double x, double y) -> x + y); // OK. Will call test(Adder adder)

Specifying the type of parameters in the lambda expression resolved the issue. The compiler has two
candidate methods: test (Adder adder) and test(Joiner joiner).With the (double x, double y)
parameter information, only the test(Adder adder) method matches.

The following snippet of code uses a cast to cast the lambda expression to the type Adder:

LambdaUtil2 util = new LambdaUtil2();
util.test((Adder)(x, y) -> x +y); // OK. Will call test(Adder adder)

Using a cast tells the compiler that the type of the lambda expression is Adder, and therefore, helps it
choose the test(Adder adder) method.
Consider the following snippet of code that breaks down the method call into two statements:

LambdaUtil2 util = new LambdaUtil2();
Adder adder = (x, y) -> x +y;
util.test(adder); // OK. Will call test(Adder adder)

The lambda expression is assigned to a variable of type Adder and the variable is passed to the test()
method. Again, it helps the compiler choose the test (Adder adder) method based on the compile-time
type of the adder variable.

The program in Listing 5-8 is similar to the one shown in Listing 5-6, except that it uses the LambdaUtil2
class. It uses explicit lambda expressions and a cast to resolve the ambiguous matches for lambda
expressions.

Listing 5-8. Resolving Ambiguity During Target Typing
// LambdaUtil2Test.java

package com.jdojo.lambda;

public class LambdaUtil2Test {
public static void main(String[] args) {
LambdaUtil2 util = new LambdaUtil2();

// Calls the testAdder() method
util.test((double x, double y) -> x + y);

182

CHAPTER 5 LAMBDA EXPRESSIONS

// Calls the testJoiner() method
util.test((String x, String y) -> x +y);

// Calls the testJoiner() method. The Joiner will add a space between the two strings
util.test((Joiner) (x, y) -> x + " " +y);

// Calls the testJoiner() method. The Joiner will reverse the strings and join
// resulting strings in reverse order adding a comma in between
util.test((Joiner) (x, y) -> {

StringBuilder sbx = new StringBuilder(x);

StringBuilder sby = new StringBuilder(y);

sby.reverse().append(",").append(sbx.reverse());

return sby.toString();
D;

Using an Adder:190.9 + 8.5 = 199.4

Using a Joiner:"Hello" + "World" = "HelloWorld"
Using a Joiner:"Hello" + "World" = "Hello World"
Using a Joiner:"Hello" + "World" = "dlroW,olleH"

Lambda expressions can be used only in the following contexts:

e Assignment context: A lambda expression may appear to the right side of the
assignment operator in an assignment statement. For example

ReferenceType variablel = LambdaExpression;

e Method invocation context: A lambda expression may appear as an argument to a
method or constructor call. For example

util.testJoiner(LambdaExpression);

e Return context: Alambda expression may appear in a return statement inside a
method, as its target type is the declared return type of the method. For example

return LambdaExpression;

e Cast context: Alambda expression may be used if it is preceded by a cast. The type
specified in the cast is its target type. For example

(Joiner) LambdaExpression;

183

CHAPTER 5 © LAMBDA EXPRESSIONS

Functional Interfaces

A functional interface is simply an interface that has exactly one abstract method. The following types of
methods in an interface do not count for defining a functional interface:

e Default methods
e static methods
e Public methods inherited from the Object class

Note that an interface may have more than one abstract method, and can still be a functional interface
if all but one of them is a redeclaration of the methods in the Object class. Consider the declaration of the
Comparator class thatis in the java.util package, as shown:

package java.util;

@FunctionalInterface

public interface Comparator<T> {
// An abstract method declared in the interface
int compare(T o1, T 02);

// Re-declaration of the equals() method in the Object class
boolean equals(Object obj);

// Many more static and default methods that are not shown here.

The Comparator interface contains two abstract methods: compare() and equals(). The equals()
method in the Comparator interface is a re-declaration of the equals() method of the Object class, and
therefore it does not count against the one abstract method requirement for it to be a functional interface.
The Comparator interface contains several default and static methods that are not shown here.

Alambda expression is used to represent an unnamed function as used in functional programming.
A functional interface represents one type of functionality/operation in terms of its lone abstract method.
This commonality is the reason why the target type of a lambda expression is always a functional interface.

Using the @Functionallnterface Annotation

The declaration of a functional interface may optionally be annotated with the annotation
@FunctionalInterface, which is in the java.lang package. So far, all functional interfaces declared in this
chapter, such as Adder and Joiner, have been annotated with @FunctionalInterface. The presence of this
annotation tells the compiler to make sure that the declared type is a functional interface. If the annotation
@FunctionalInterface is used on a non-functional interface or other types such as classes, a compile-time
error occurs. If you do not use the annotation @FunctionalInterface on an interface with one abstract
method, the interface is still a functional interface and it can be the target type for lambda expressions.
Using this annotation gives you an additional assurance from the compiler. The presence of the annotation
also protects you from inadvertently changing a functional interface into a non-functional interface, as the
compiler will catch it.

184

CHAPTER 5 LAMBDA EXPRESSIONS

The following declaration for an Operations interface will not compile, as the interface declaration uses
the @FunctionalInterface annotation and it is not a functional interface (defines two abstract methods):

@FunctionalInterface

public interface Operations {
double add(double ni, double n2);
double subtract(double ni, double n2);

To compile the Operations interface, either remove one of the two abstract methods or remove
the @FunctionalInterface annotation. The following declaration for a Test class will not compile, as
@FunctionalInterface cannot be used on a type other than a functional interface:

@FunctionalInterface
public class Test {

// Code goes here
}

Generic Functional Interface

A functional interface can have type parameters. That is, a functional interface can be generic. An example of
a generic functional parameter is the Comparator interface with one type parameter T.

@FunctionalInterface

public interface Comparator<T> {
int compare(T o1, T 02);

}

A functional interface may have a generic abstract method. That is, the abstract method may declare
type parameters. The following is an example of a non-generic functional interface called Processor whose
abstract method process() is generic:

@FunctionalInterface

public interface Processor {
<T> void process(T[] list);

}

A lambda expression cannot declare type parameters, and therefore, it cannot have a target type whose
abstract method is generic. For example, you cannot represent the Processor interface using alambda
expression. In such cases, you need to use a method reference, which I discuss in the next section, or an
anonymous class.

Let’s look at a short example of a generic functional interface and instantiate it using lambda
expressions. Listing 5-9 shows the code for a functional interface named Mapper.

Listing 5-9. A Mapper Functional Interface

// Mapper.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Mapper<T> {

185

CHAPTER 5 © LAMBDA EXPRESSIONS

// An abstract method
int map(T source);

// A generic static method
public static <U> int[] mapToInt(U[] list, Mapper<? super U> mapper) {
int[] mappedValues = new int[list.length];

for (int i = 0; i < list.length; i++) {
// Map the object to an int
mappedValues[i] = mapper.map(list[i]);

return mappedValues;

Mapper is a generic functional interface with a type parameter T. Its abstract method map () takes an
object of type T as a parameter and returns an int. The mapToInt() method is a generic static method that
accepts an array of type U and a Mapper of a type that is U itself or a supertype of U. The method returns an int
array whose elements contain the mapped value for the corresponding elements passed as an array.

The program in Listing 5-10 shows how to use lambda expressions to instantiate the Mapper<T>
interface. The program maps a String array and an Integer array to int arrays.

Listing 5-10. Using the Mapper Functional Interface

// MapperTest.java
package com.jdojo.lambda;

public class MapperTest {
public static void main(String[] args) {
// Map names using their length
System.out.println("Mapping names to their lengths:");
String[] names = {"David", "Li", "Doug"};
int[] lengthMapping = Mapper.mapToInt(names, (String name) -> name.length());
printMapping(names, lengthMapping);

System.out.println("\nMapping integers to their squares:");
Integer[] numbers = {7, 3, 67};

int[] countMapping = Mapper.mapToInt(numbers, (Integer n) -> n * n);
printMapping(numbers, countMapping);

}

public static void printMapping(Object[] from, int[] to) {
for (int i = 0; i < from.length; i++) {
System.out.println(from[i] + " mapped to " + to[i]);
}

186

CHAPTER 5 LAMBDA EXPRESSIONS

Mapping names to their lengths:
David mapped to 5

Li mapped to 2

Doug mapped to 4

Mapping integers to their squares:
7 mapped to 49

3 mapped to 9

67 mapped to 4489

Intersection Type and Lambda Expressions

Java 8 introduced a new type called an infersection type that is an intersection (or subtype) of multiple types.
An intersection type may appear as the target type in a cast. An ampersand (8) is used between two types,
such as (Typel & Type2 & Type3), and it represents a new type that is an intersection of Type1, Type2, and
Type3. Consider a marker interface called Sensitive, shown in Listing 5-11.

Listing 5-11. A Marker Interface Named Sensitive

// Sensitive.java
package com.jdojo.lambda;

public interface Sensitive {
// It is a marker interface. So, no methods exist.
}

Suppose you have a lambda expression assigned to a variable of the Sensitive type.
Sensitive sen = (x, y) -> x +y; // A compile-time error

This statement does not compile. The target type of a lambda expression must be a functional interface;
Sensitive is not a functional interface. However, you should be able to make such an assignment, as a
marker interface does not contain any methods. In such cases, you need to use a cast with an intersection
type that creates a new synthetic type that is a subtype of all types. The following statement will compile:

Sensitive sen = (Sensitive & Adder) (x, y) -> x +vy; // OK

The intersection type Sensitive & Adder is still a functional interface, and therefore, the target type of
the lambda expression is a functional interface with one method from the Adder interface.

In Java, you can convert an object to a stream of bytes and restore the object back later. This is called
serialization. A class must implement the java.io.Serializable marker interface for its objects to be
serialized. If you want a lambda expression to be serialized, you will need to use a cast with an intersection
type. The following statement assigns a lambda expression to a variable of the Serializable interface:

Serializable ser = (Serializable & Adder) (x, y) -> x +y;

Tip | cover the Serializable interface and the serialization of objects in Chapter 7.

187

http://dx.doi.org/10.1007/978-1-4842-3348-1_7

CHAPTER 5 © LAMBDA EXPRESSIONS

Commonly Used Functional Interfaces

Java 8 has added many frequently used functional interfaces in the java.util.function package . They are
listed in Table 5-2.

Table 5-2. Functional Interfaces Declared in the java.util.function Package

Interface Name Method Description

Function<T,R> R apply(T t) Represents a function that takes an argument of type T
and returns a result of type R.

BiFunction<T,U,R> R apply(T t, U u) Represents a function that takes two arguments of
types T and U and returns a result of type R.

Predicate<T> boolean test(T t) In mathematics, a predicate is a boolean-valued
function that takes an argument and returns true
or false. The function represents a condition that
returns true or false for the specified argument.

BiPredicate<T,U> boolean test(T t, U u) Represents a predicate with two arguments.

Consumer<T> void accept(T t) Represents an operation that takes an argument,
operates on it to produce some side effects, and
returns no result.

BiConsumer<T,U> void accept(T t, U u) Representsan operation that takes two arguments,
operates on them to produce some side effects, and
returns no result.

Supplier<T> T get() Represents a supplier that returns a value.

UnaryOperator<T> T apply(T t) Inherits from Function<T, T>. Represents a function that
takes an argument and returns a result of the same type.

BinaryOperator<T> T apply(T t1, T t2) Inherits from BiFunction<T,T,T>. Represents a
function that takes two arguments of the same type
and returns a result of the same.

shows only the generic versions of the functional interfaces. Several specialized versions of these interfaces
exist. They have been specialized for frequently used primitive data types; for example, IntConsumer is a
specialized version of Consumer<T>. Some interfaces in the table contain convenience default and static
methods. The table lists only the abstract method, not the default and static methods.

Using the Function<T,R> Interface
Six specializations of the Function<T,R> interface exist:
e IntFunction<R>
e LongFunction<R>
e DoubleFunction<R>
e ToIntFunction<T>
e TolongFunction<T>

e ToDoubleFunction<T>

188

CHAPTER 5 LAMBDA EXPRESSIONS

IntFunction<R>, LongFunction<R>, and DoubleFunction<R> take an int, a long, and a double as
an argument, respectively, and return a value of type R. ToIntFunction<T>, ToLongFunction<T>, and
ToDoubleFunction<T> take an argument of type T and return an int, a long, and a double, respectively.
Similar specialized functions exist for other types of generic functions listed in the table.

Tip Your com.jdojo.lambda.Mapper<T> interface represents the same function type as
ToIntFunction<T> in the java.util.function package. You created the Mapper<T> interface to learn how
to create and use a generic functional interface. From now on, look at the built-in functional interfaces before
creating your own; use them if they meet your needs.

The following snippet of code shows how to use the same lambda expression to represent a function
that accepts an int and returns its square, using four variants of the Function<T, R> function type:

// Takes an int and returns its square
Function<Integer, Integer> squarel = x -> x * Xx;
IntFunction<Integer> square2 = x -> x * Xx;
ToIntFunction<Integer> square3 = x -> x * x;
UnaryOperator<Integer> square4 = x -> x * x;

System.out.println(square1.apply(5));
System.out.println(square2.apply(5));
System.out.println(square3.applyAsInt(5));
System.out.println(square4.apply(5));

25
25
25
25

The Function interface contains the following default and static methods:
e default <V> Function<T,V> andThen(Function<? super R,? extends V> after)

e default <V> Function<V,R> compose(Function<? super V,? extends T>
before)

e static <T> Function<T,T> identity()

The andThen() method returns a composed Function that applies this function to the argument, and
then applies the specified after function to the result. The compose() function returns a composed function
that applies the specified before function to the argument, and then applies this function to the result. The
identify() method returns a function that always returns its argument.

The following snippet of code demonstrates how to use default and static methods of the Function
interface to compose new functions:

// Create two functions
Function<lLong, Long> square = x -> X * Xx;
Function<lLong, Long> addOne = x -> x + 1;

189

CHAPTER 5 © LAMBDA EXPRESSIONS

// Compose functions from the two functions
Function<Long, Long> squareAddOne = square.andThen(addOne);
Function<Long, Long> addOneSquare = square.compose(addOne);

// Get an identity function
Function<Long, Long> identity = Function.<Long>identity();

// Test the functions

long num = 5L;

System.out.println("Number: " + num);

System.out.println("Square and then add one: " + squareAddOne.apply(num));
System.out.println("Add one and then square: " + addOneSquare.apply(num));
System.out.println("Identity: " + identity.apply(num));

Number: 5

Square and then add one: 26
Add one and then square: 36
Identity: 5

You are not limited to composing a function that consists of two functions that are executed in a specific
order. A function may be composed of as many functions as you want. You can chain lambda expressions
to create a composed function in one expression. Note that when you chain lambda expressions, you may
need to provide hints to the compiler to resolve the target type ambiguity that may arise. The following is
an example of a composed function by chaining three functions. A cast is provided to help the compiler.
Without the cast, the compiler will not be able to infer the target type.

// Square the input, add one to the result, and square the result
Function<Long, Long> chainedFunction = ((Function<Long, Long>)(x -> x * x))
.andThen(x -> x + 1)
.andThen(x -> x * x);
System.out.println(chainedFunction.apply(3L));

100

Using the Predicate<T> Interface

A predicate represents a condition that is either true or false for a given input. The Predicate interface
contains the following default and static methods that let you compose a predicate based on other
predicates using logical NOT, AND, and OR.

e default Predicate<T> negate()

e default Predicate<T> and(Predicate<? super T> other)
e default Predicate<T> or(Predicate<? super T> other)
e static <T> Predicate<T> isEqual(Object targetRef)

The negate() method returns a Predicate that is a logical negation of the original predicate. The and()
method returns a short-circuiting logical AND predicate of this predicate and the specified predicate. The
or () method returns a short-circuiting logical OR predicate of this predicate and the specified predicate.
The isEqual() method returns a predicate that tests if the specified targetRef is equal to the specified

190

CHAPTER 5 LAMBDA EXPRESSIONS

argument for the predicate according to Objects.equals(Object o1, Object 02);if two inputs are null,
this predicate evaluates to true. You can chain the calls to these methods to create complex predicates. The
following snippet of code shows some examples of creating and using predicates:

// Create some predicates

Predicate<Integer> greaterThanTen = x -> x > 10;
Predicate<Integer> divisibleByThree = x -> x % 3 == 0;
Predicate<Integer> divisibleByFive = x -> x % 5 == 0;
Predicate<Integer> equalToTen = Predicate.isEqual(null);

// Create predicates using NOT, AND, and OR on other predicates

Predicate<Integer> lessThanOrEqualToTen = greaterThanTen.negate();
Predicate<Integer> divisibleByThreeAndFive = divisibleByThree.and(divisibleByFive);
Predicate<Integer> divisibleByThreeOrFive = divisibleByThree.or(divisibleByFive);

// Test the predicates

int num = 10;

System.out.println("Number: " + num);

System.out.println("greaterThanTen: " + greaterThanTen.test(num));
System.out.println("divisibleByThree: " + divisibleByThree.test(num));
System.out.println("divisibleByFive: " + divisibleByFive.test(num));
System.out.println("lessThanOrEqualToTen: " + lessThanOrEqualToTen.test(num));
System.out.println("divisibleByThreeAndFive: " + divisibleByThreeAndFive.test(num));
System.out.println("divisibleByThreeOrFive: " + divisibleByThreeOrFive.test(num));
System.out.println("equalsToTen: " + equalToTen.test(num));

Number: 10

greaterThanTen: false
divisibleByThree: false
divisibleByFive: true
lessThanOrEqualToTen: true
divisibleByThreeAndFive: false
divisibleByThreeOrFive: true
equalsToTen: false

Using Functional Interfaces

Functional interfaces are used in two contexts by two different types of users:
e Bylibrary designers for designing APIs
e Bylibrary users for using the APIs

Functional interfaces are used to design APIs by library designers. They are used to declare a
parameter’s type and return type in method declarations. They are used the same way non-functional
interfaces are used. Functional interfaces existed in Java since the beginning, and Java 8 has not changed the
way they are used in designing the APIs.

In Java 8, library users use functional interfaces as target types for lambda expressions. That is, when
amethod in the API takes a functional interface as an argument, the user of the API should use alambda
expression to pass the argument. Using lambda expressions has the benefit of making the code concise and
more readable.

191

CHAPTER 5 © LAMBDA EXPRESSIONS

In this section, I show you how to design APIs using functional interfaces and how to use lambda
expressions to use the APIs. Functional interfaces have been used heavily in designing the Java library for the
Collections and Streams APIs that I cover in Chapters 12 and 13.

I use one enum and two classes in subsequent examples. The Gender enum, shown in Listing 5-12,
contains two constants to represent the gender of a person. The Person class, shown in Listing 5-13,
represents a person; it contains, apart from other methods, a getPersons () method that returns a list of
persons.

Listing 5-12. A Gender enum

// Gender.java
package com.jdojo.lambda;

public enum Gender {
MALE, FEMALE
}

Listing 5-13. A Person Class

// Person.java
package com.jdojo.lambda;

import java.time.localDate;

import java.util.Arraylist;

import java.util.list;

import static com.jdojo.lambda.Gender.MALE;
import static com.jdojo.lambda.Gender.FEMALE;

public class Person {
private String firstName;
private String lastName;
private LocalDate dob;
private Gender gender;

public Person(String firstName, String lastName, LocalDate dob, Gender gender) {
this.firstName = firstName;
this.lastName = lastName;
this.dob = dob;
this.gender = gender;

}

public String getFirstName() {
return firstName;
}

public void setFirstName(String firstName) {
this.firstName = firstName;
}

public String getlLastName() {
return lastName;
}

192

http://dx.doi.org/10.1007/978-1-4842-3348-1_12
http://dx.doi.org/10.1007/978-1-4842-3348-1_13

CHAPTER 5 LAMBDA EXPRESSIONS

public void setlLastName(String lastName) {
this.lastName = lastName;
}

public LocalDate getDob() {
return dob;
}

public void setDob(LocalDate dob) {
this.dob = dob;
}

public Gender getGender() {
return gender;
}

public void setGender(Gender gender) {
this.gender = gender;
}

@0verride

public String toString() {
return firstName + " "

}

+ lastName + ", " + gender + ", " + dob;

// A convenience method

public static List<Person> getPersons() {
ArraylList<Person> list = new ArraylList<>();
list.add(new Person("John", "Jacobs", LocalDate.of(1975, 1, 20), MALE));
list.add(new Person("Wally", "Inman", LocalDate.of(1965, 9, 12), MALE));
list.add(new Person("Donna", "Jacobs", LocalDate.of(1970, 9, 12), FEMALE));

return list;

The FunctionUtil class in Listing 5-14 is a utility class. Its methods apply a functionona List. List
is an interface that is implemented by the ArrayList class. The forEach() method applies an action on
each item in the list, typically producing side effects; the action is represented by a Consumer. The filter()
method filters a list based on a specified Predicate. The map () method maps each item in the list to a value
using a Function. As a library designer, you will design these methods using functional interfaces. Note that
the FunctionUtil class contains no mention of lambda expressions. You could have designed this class the
same way even before Java 8.

Listing 5-14. A FunctionUtil Class

// FunctionUtil.java
package com.jdojo.lambda;

import java.util.Arraylist;
import java.util.list;
import java.util.function.Consumer;

193

CHAPTER 5 © LAMBDA EXPRESSIONS

import java.util.function.Function;
import java.util.function.Predicate;

public class FunctionUtil {
// Applies an action on each item in a list
public static <T> void forEach(List<T> list, Consumer<? super T> action) {
for (T item : list) {
action.accept(item);
}

}

// Applies a filter to a list and returns the filtered list items
public static <T> List<T> filter(List<T> list, Predicate<? super T> predicate) {
List<T> filteredlList = new Arraylist<>();
for (T item : list) {
if (predicate.test(item)) {
filteredList.add(item);
}

}

return filteredlist;

}

// Maps each item in a list to a value
public static <T, R> List<R> map(List<T> list, Function<? super T, R> mapper) {
List<R> mappedList = new ArraylList<>();
for (T item : list) {
mappedList.add(mapper.apply(item));

}

return mappedList;

You will now use the FunctionUtil class as a library user and use the functional interfaces as target
types of lambda expressions. Listing 5-15 shows how to use the FunctionUtil class.

Listing 5-15. Using Functional Interfaces as Target Types of Lambda Expressions as Library Users

// FunctionUtilTest.java
package com.jdojo.lambda;

import static com.jdojo.lambda.Gender.MALE;
import java.util.list;

public class FunctionUtilTest {
public static void main(String[] args) {
List<Person> list = Person.getPersons();

// Use the forEach() method to print each person in the list

System.out.println("Original 1list of persons:");
FunctionUtil.forEach(list, p -> System.out.println(p));

194

CHAPTER 5 LAMBDA EXPRESSIONS

// Filter only males
List<Person> malelist = FunctionUtil.filter(list, p -> p.getGender() == MALE);

System.out.println("\nMales only:");
FunctionUtil.forEach(maleList, p -> System.out.println(p));

// Map each person to his/her year of birth
List<Integer> dobYearlList = FunctionUtil.map(list, p -> p.getDob().getYear());

System.out.println("\nPersons mapped to year of their birth:");
FunctionUtil.forEach(dobYearList, year -> System.out.println(year));

// Apply an action to each person in the list. Add one year to each male's dob
FunctionUtil.forEach(maleList, p -> p.setDob(p.getDob().plusYears(1)));

System.out.println("\nMales only after adding 1 year to DOB:");
FunctionUtil.forEach(maleList, p -> System.out.println(p));

Original list of persons:

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12

Males only:
John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12

Persons mapped to year of their birth:
1975
1965
1970

Males only after adding 1 year to DOB:
John Jacobs, MALE, 1976-01-20
Wally Inman, MALE, 1966-09-12

The program gets a list of persons, applies a filter to the list to get a list of only males, maps persons to
the year of their birth, and adds one year to each male’s date of birth. It performs each of these actions using
lambda expressions. Note the conciseness of the code; it uses only one line of code to perform each action.
Most notable is the use of the forEach() method. This method takes a Consumer function. Then each item is
passed to this function. The function can take any action on the item. You passed a Consumer that prints the
item on the standard output as shown:

FunctionUtil.forEach(list, p -» System.out.println(p));

Typically, a Consumer applies an action on the item it receives to produce side effects. In this case, it
simply prints the item, without producing any side effects.

195

CHAPTER 5 © LAMBDA EXPRESSIONS

Method References

A lambda expression represents an anonymous function that is treated as an instance of a functional
interface. A method reference is a shorthand way to create a lambda expression using an existing method.
Using method references makes your lambda expressions more readable and concise; it also lets you use the
existing methods as lambda expressions. If a lambda expression contains a body that is an expression using
a method call, you can use a method reference in place of that lambda expression.

Tip A method reference is not a new type in Java. It is not a function pointer as used in some other
programming languages. It is simply shorthand for writing a lambda expression using an existing method. It can
only be used where a lambda expression can be used.

Let’s consider an example before I explain the syntax for method references. Consider the following
snippet of code:

import java.util.function.ToIntFunction;

ToIntFunction<String> lengthFunction = str -» str.length();
String name = "Ellen";

int len = lengthFunction.applyAsInt(name);
System.out.println("Name = " + name + ", length ="'

+ len);
Name = Ellen, length =5

The code uses a lambda expression to define an anonymous function that takes a String as an
argument and returns its length. The body of the lambda expression consists of only one method call that is
the length() method of the String class. You can rewrite the lambda expression using a method reference
to the length() method of the String class, as shown:

import java.util.function.ToIntFunction;
ToIntFunction<String> lengthFunction = String::length;

String name = "Ellen";
int len = lengthFunction.applyAsInt(name);

System.out.println("Name = " + name + ", length = " + len);
Name = Ellen, length =5

The general syntax for a method reference is
<Qualifier>::<MethodName>
The <Qualifier> depends on the type of the method reference. Two consecutive colons act

as a separator. The <MethodName> is the name of the method. For example, in the method reference
String::length, String is the qualifier and length is the method name.

196

CHAPTER 5 LAMBDA EXPRESSIONS

Tip A method reference does not call the method when it is declared. The method is called later when the
method of its target type is called.

The syntax for method references allows specifying only the method name. You cannot specify the
parameter types and return type of the method. Recall that a method reference is shorthand for a lambda
expression. The target type, which is always a functional interface, determines the method’s details. If the
method is an overloaded method, the compiler will choose the most specific method based on the context.
See Table 5-3.

Table 5-3. Types of Method References

Syntax Description

TypeName: : staticMethod A method reference to a static method of a class, an interface, or
an enum

objectRef: :instanceMethod A method reference to an instance method of the specified object

ClassName: :instanceMethod A method reference to an instance method of an arbitrary object

of the specified class

TypeName.super: :instanceMethod A method reference to an instance method of the supertype of a

particular object
ClassName: :new A constructor reference to the constructor of the specified class
ArrayTypeName: :new An array constructor reference to the constructor of the specified
array type

Using method references may be a little confusing in the beginning. The main point of confusion is the
process of mapping the number and type of arguments in the actual method to the method reference. To
help understand the syntax, I use a method reference and its equivalent lambda expression in all examples.

static Method References

A static method reference uses a static method of a type as a lambda expression. The type could be a class,
an interface, or an enum. Consider the following static method of the Integer class:

static String toBinaryString(int i)

The toBinaryString() method represents a function that takes an int as an argument and returns a
String. You can use it in a lambda expression as shown:

// Using a lambda expression
Function<Integer,String> funcl = x -> Integer.toBinaryString(x);
System.out.println(funci.apply(17));

10001

197

CHAPTER 5 © LAMBDA EXPRESSIONS

The compiler infers the type of x as Integer and the return type of the lambda expression as String,
by using the target type Function<Integer, String>. You can rewrite this statement using a static method
reference, as shown:

// Using a method reference
Function<Integer, String> func2 = Integer::toBinaryString;
System.out.println(func2.apply(17));

10001

The compiler finds a static method reference to the toBinaryString() method of the Integer class on
the right side of the assignment operator. The toBinaryString() method takes an int as an argument and
returns a String. The target type of the method reference is a function that takes an Integer as an argument
and returns a String. The compiler verifies that after unboxing the Integer argument type of the target type
to int, the method reference and target type are assignment compatible.

Consider another static method sum() in the Integer class:

static int sum(int a, int b)

The method reference would be Integer: :sum. Let’s use it in the same way you used the
toBinaryString() method in the previous example.

Function<Integer,Integer> func2 = Integer::sum; // A compile-time error

Error: incompatible types: invalid method reference
Function<Integer, Integer> func2 = Integer::sum;

method sum in class Integer cannot be applied to given types

required: int,int

found: Integer

reason: actual and formal argument lists differ in length

The error message is stating that the method reference Integer: : sumis not assignment compatible
with the target type Function<Integer,Integer>. The sum(int, int) method takes two int arguments,
whereas the target type takes only one Integer argument. The mismatch in the number of arguments
caused the compile-time error.

To fix the error, the target type of the method reference Integer: : sum should be a functional interface
whose abstract method takes two int arguments and returns an int. Using a BiFunction<Integer,Integer,
Integer> as the target type will work. The following snippet of code shows how to use a method reference
Integer::sumas well as the equivalent lambda expression:

// Uses a lambda expression
BiFunction<Integer,Integer,Integer> funcl
System.out.println(funci.apply(17, 15));

(x, y) -> Integer.sum(x, y);

// Uses a method reference
BiFunction<Integer,Integer,Integer> func2
System.out.println(func2.apply(17, 15));

Integer::sum;

32
32

198

CHAPTER 5 LAMBDA EXPRESSIONS

Let’s try using a method reference of the overloaded static method valueOf() of the Integer class. The
method has three versions:

e static Integer valueOf(int i)
e static Integer valueOf(String s)
e static Integer valueOf(String s, int radix)

The following snippet of code shows how different target types will use the three different versions of
the Integer.valueOf() static method. It is left as an exercise for readers to write the following snippet of
code using lambda expressions:

// Uses Integer.valueOf(int)
Function<Integer,Integer> funcl = Integer::valueOf;

// Uses Integer.valueOf(String)
Function<String,Integer> func2 = Integer::valueOf;

// Uses Integer.valueOf(String, int)
BiFunction<String,Integer,Integer> func3 = Integer::valueOf;

System.out.println(funci.apply(17));
System.out.println(func2.apply("17"));
System.out.println(func3.apply("10001", 2));

17
17
17

The following is the last example in this category. The Person class, shown in Listing 5-13, contains a
getPersons () static method that is declared as follows:

static List<Person> getPersons()

The method takes no argument and returns a List<Person>. A Supplier<T> represents a function that
takes no arguments and returns a result of type T. The following snippet of code uses the method reference
Person::getPersons as a Supplier<List<Person>>:

Supplier<lList<Person>> supplier = Person::getPexsons;
List<Person> personList = supplier.get();
FunctionUtil.forEach(personList, p -> System.out.println(p));

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12

199

CHAPTER 5 © LAMBDA EXPRESSIONS

Instance Method References

An instance method is invoked on an object’s reference. The object reference on which an instance method
is invoked is known as the receiver of the method invocation. The receiver of a method invocation can be an
object reference or an expression that evaluates to an object’s reference. The following snippet of code shows
the receiver of the length() instance method of the String class:

String name = "Kannan";

// name is the receiver of the length() method
int len1 = name.length();

// "Hello" is the receiver of the length() method
int len2 = "Hello".length();

// (new String("Kannan")) is the receiver of the length() method
int len3 = (new String("Kannan")).length();

In a method reference of an instance method, you can specify the receiver of the method invocation
explicitly or you can provide it implicitly when the method is invoked. The former is called a bound receiver and
the latter is called an unbound receiver. The syntax for an instance method reference supports two variants:

e objectRef::instanceMethod

e (lassName::instanceMethod

Bound Receiver

For a bound receiver, use the objectRef: :instanceMethod syntax. Consider the following snippet of code:

Supplier<Integer> supplier = () -> "Ellen".length();
System.out.println(supplier.get());

This statement uses a lambda expression that represents a function that takes no arguments and returns
an int. The body of the expression uses a String object called "Ellen" to invoke the length() instance
method of the String class. You can rewrite this statement using an instance method reference with the
"Ellen" object as the bound receiver and using a Supplier<Integer> as the target type, as shown:

Supplier<Integer> supplier = "Ellen"::length;
System.out.println(supplier.get());

200

CHAPTER 5 LAMBDA EXPRESSIONS

Consider the following snippet of code to represent a Consumer<String> that takes a String as an
argument and returns void:

Consumer<String> consumer = str -» System.out.println(str);
consumer.accept("Hello");

Hello

This lambda expression invokes the print1n() method on the System.out object. This can be rewritten
using a method reference with System.out as the bound receiver, as shown:

Consumer<String> consumer = System.out::println;
consumer.accept("Hello");

Hello

When the method reference System.out: :printlnis used, the compiler looks at its target type, which
is Consumer<String>. It represents a function type that takes a String as an argument and returns void. The
compiler finds a println(String) method in the PrintStream class of the System.out object and uses that
method for the method reference.

As the last example in this category, you will use the method reference System.out: :println to print
the list of persons, as shown:

List<Person> list = Person.getPersons();
FunctionUtil.forEach(list, System.out::println);

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12

Unbound Receiver

For an unbound receiver, use the ClassName: : instanceMethod syntax. Consider the following statement in
which the lambda expression takes a Person as an argument and returns a String:

Function<Person,String> fNameFunc = (Person p) -» p.getFirstName();
This statement can be rewritten using the instance method reference, as shown:
Function<Person,String> fNameFunc = Pexson::getFirstName;

In the beginning, this is confusing for two reasons:
e The syntax is the same as the syntax for a method reference to a static method.
e Itraises a question: which object is the receiver of the instance method invocation?

The first confusion can be cleared up by looking at the method name and checking whether it is a static
or instance method. If the method is an instance method, the method reference represents an instance
method reference.

201

CHAPTER 5 © LAMBDA EXPRESSIONS

The second confusion can be cleared up by keeping a rule in mind that the first argument to the
function represented by the target type is the receiver of the method invocation. Consider an instance
method reference called String: :1ength that uses an unbound receiver. The receiver is supplied as the first
argument to the apply() method, as shown:

Function<String,Integer> strlLengthFunc = String::length;
String name ="Ellen";
// name is the receiver of String::length

int len = strlLengthFunc.apply(name);
System.out.println("name = " + name + ", length = " + len);

name = Ellen, length = 5

The instance method concat() of the String class has the following declaration:
String concat(String str)

The method reference String: : concat represents an instance method reference for a target type whose
function takes two String arguments and returns a String. The first argument will be the receiver of the
concat() method and the second argument will be passed to the concat() method. The following snippet of
code shows an example:

String greeting = "Hello";
String name = " Laynie";

// Uses a lambda expression

BiFunction<String,String,String> funcl = (s1, s2) -> si.concat(s2);
System.out.println(funci.apply(greeting, name));

// Uses an instance method reference on an unbound receiver

BiFunction<String,String,String> func2 = String::concat;
System.out.println(func2.apply(greeting, name));

Hello Laynie
Hello Laynie

As the last example in this category, you will use the method reference Person: :getFirstName that is an
instance method reference on an unbound receiver, as shown:

List<Person> personList = Person.getPersons();

// Maps each Person object to its first name
List<String> firstNamelist = FunctionUtil.map(personList, Person::getFirstName);

// Prints the first name list
FunctionUtil.forEach(firstNamelist, System.out::println);

202

CHAPTER 5 LAMBDA EXPRESSIONS

John
Wally
Donna

Supertype Instance Method References

The keyword super is used as a qualifier to invoke the overridden method in a class or an interface. The
keyword is available only in an instance context. Use the following syntax to construct a method reference
that refers to the instance method in the supertype and the method that’s invoked on the current instance:

TypeName. super: : instanceMethod

Consider the Priced interface and the Item class in Listing 5-16 and Listing 5-17. The Priced interface
contains a default method that returns 1.0. The Item class implements the Priced interface. It overrides the
toString() method of the Object class and the getPrice() method of the Priced interface. I added three
constructors to the I'tem class that display a message on the standard output. I use them in examples in the
next section.

Listing 5-16. A Priced Interface with a Default Method of getPrice()

// Priced.java
package com.jdojo.lambda;

public interface Priced {
default double getPrice() {
return 1.0;
}

Listing 5-17. An Item Class That Implements the Priced Interface
// Item.java
package com.jdojo.lambda;

import java.util.function.Supplier;

public class Item implements Priced {
private String name = "Unknown";
private double price = 0.0;

public Item() {
System.out.println("Constructor Item() called.");
}

public Item(String name) {
this.name = name;
System.out.println("Constructor Item(String) called.");

203

CHAPTER 5 © LAMBDA EXPRESSIONS

204

public Item(String name, double price) {

this.name = name;

this.price = price;

System.out.println("Constructor Item(String, double) called.");
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public void setPrice(double price) {
this.price = price;
}

@0verride

public double getPrice() {
return price;

}

@0verride
public String toString() {

return "name = " + getName() + ", price = " + getPrice();
}

public void test() {
// Uses the Item.toString() method
Supplier<String> s1 = this::toString;

// Uses the Object.toString() method
Supplier<String> s2 = Item.super::toString;

// Uses the Item.getPrice() method
Supplier<Double> s3 = this::getPrice;

// Uses the Priced.getPrice() method
Supplier<Double> s4 = Priced.super::getPrice;

// Uses all method references and prints the results
System.out.println("this::toString: " + si.get());
System.out.println("Item.super::toString: " + s2.get());
System.out.println("this::getPrice: " + s3.get());
System.out.println("Priced.super::getPrice: " + s4.get());

CHAPTER 5 LAMBDA EXPRESSIONS

The test() method in the Item class uses four method references with a bound receiver. The receiver is
the ITtem object on which the test() method is called.

e The method reference this: :toString refers to the toString() method of the Item
class.

e The method reference Item.super: :toString refers to the toString() method of
the Object class, which is the superclass of the I'tem class.

e The method reference this: :getPrice refers to the getPrice() method of the ITtem
class.

e The method reference Priced.super: :getPrice refers to the getPrice() method of
the Priced interface, which is the superinterface of the Item class.

The program in Listing 5-18 creates an object of the Item class and calls its test () method. The output
shows the method being used by the four method references.

Listing 5-18. Testing the Item Class

// ItemTest.java
package com.jdojo.lambda;

public class ItemTest {
public static void main(String[] args) {
Item apple = new Item("Apple", 0.75);
apple.test();

Constructor Item(String, double) called.
this::toString: name = Apple, price = 0.75
Item.super::toString: com.jdojo.lambda.Item@24d46ca6
this::getPrice: 0.75

Priced.super::getPrice: 1.0

Constructor References

Sometimes the body of a lambda expression may be just an object creation expression. Consider the
following two statements that use a String object creation expression as the body for lambda expressions:

Supplier<String> funci = () -» new String();
Function<String,String> func2 = str -» new String(str);

You can rewrite these statements by replacing the lambda expressions with constructor references
as shown:

Supplier<String> funcl = String::new;
Function<String,String> func2 = String::new;

205

CHAPTER 5 © LAMBDA EXPRESSIONS

The syntax for using a constructor is as follows:
e (lassName::new

e ArrayTypeName: :new

The ClassName in ClassName: : new is the name of the class that can be instantiated; it cannot be the

name of an abstract class. The keyword new refers to the constructor of the class. A class may have multiple

constructors. The syntax does not provide a way to refer to a specific constructor. The compiler selects a
specific constructor based on the context. It looks at the target type and the number of arguments in the

abstract method of the target type. The constructor whose number of arguments matches the number of
arguments in the abstract method of the target type is chosen. Consider the following snippet of code that

uses three constructors of the I'tem class, shown in Listing 5-17, in lambda expressions:

Supplier<Item> funcl = () -» new Item();
Function<String,Item> func2 = name -» new Item(name);
BiFunction<String,Double,Item> func3 = (name, price) ->» new Item(name, price);

System.out.println(funci.get());
System.out.println(func2.apply("Apple"));
System.out.println(func3.apply("Apple”, 0.75));

Constructor Item() called.

name = Unknown, price = 0.0

Constructor Item(String) called.

name = Apple, price = 0.0

Constructor Item(String, double) called.
name = Apple, price = 0.75

The following snippet of code replaces the lambda expressions with a constructor reference Item:

The output shows the same constructors as before.

Supplier<Item> funcl = Item::new;
Function<String,Item> func2 = Items:new;
BiFunction<String,Double,Item> func3 = Item::new;

System.out.println(funci.get());
System.out.println(func2.apply("Apple"));
System.out.println(func3.apply("Apple", 0.75));

Constructor Item() called.

name = Unknown, price = 0.0

Constructor Item(String) called.

name = Apple, price = 0.0

Constructor Item(String, double) called.
name = Apple, price = 0.75

206

tnew.

CHAPTER 5 LAMBDA EXPRESSIONS

When the statement
Supplier<Item> funcl = Item::new;

is executed, the compiler finds that the target type Supplier<Item> does not accept an argument. Therefore,
it uses the no-args constructor of the Item class.
When the statement

Function<String,Item> func2 = Item::new;

is executed, the compiler finds that the target type Function<String, Item> takes a String argument.
Therefore, it uses the constructor of the I'tem class that takes a String argument.
When the statement

BiFunction<String,Double,Item> func3 = Item::new;

is executed, the compiler finds that the target type BiFunction<String,Double, Item> takes two arguments:
a String and a Double. Therefore, it uses the constructor of the Item class that takes a String and a double
argument.

The following statement generates a compile-time error, as the compiler does not find a constructor in
the Item class that accepts a Double argument:

Function<Double,Item> func4 = Item::new; // A compile-time error

Arrays in Java do not have constructors. There is special syntax to use constructor references for arrays.
Array constructors are treated to have one argument of int type that is the size of the array. The following
snippet of code shows the lambda expression and its equivalent constructor reference for an int array:

// Uses a lambda expression
IntFunction<int[]> arrayCreatorl = size -> new int[size];
int[] empIdsi = arrayCreatori.apply(5); // Creates an int array of five elements

// Uses an array constructor reference
IntFunction<int[]> arrayCreator2 = int[]::new;
int[] empIds2 = arrayCreator2.apply(5); // Creates an int array of five elements

You can also use a Function<Integer,R> type to use an array constructor reference, where R is the array

type.

// Uses an array constructor reference
Function<Integer,int[]> arrayCreator3 = int[]::new;
int[] empIds3 = arrayCreator3.apply(5); // Creates an int array of five elements

The syntax for the constructor reference for arrays supports creating an array of multiple dimensions.
However, you can specify the length for only the first dimension. The following statement creates a two-
dimensional int array with the first dimension having the length of 5:

// Uses an array constructor reference

IntFunction<int[][]> TwoDimArrayCreator = int[][]::new;
int[][] matrix = TwoDimArrayCreator.apply(5); // Creates an int[5][] array

207

CHAPTER 5 © LAMBDA EXPRESSIONS

You might be tempted to use a BiFunction<Integer,Integer,int[][]> to use a constructor reference
for a two-dimensional array to supply the length for both dimensions. However, the syntax is not supported.
Array constructors are supposed to accept only one parameter—the length of the first dimension. The
following statement generates a compile-time error:

BiFunction<Integer,Integer,int[][]> arrayCreator = int[][]::new;

Generic Method References

Typically, the compiler figures out the actual type for generic type parameters when a method reference
refers to a generic method. Consider the following generic method in the java.util.Arrays class:

static <T> List<T> asList(T... a)

The asList() method takes a varargs argument of type T and returns a List<T>. You can use
Arrays::aslList as a method reference. The syntax for the method reference allows you to specify the actual
type parameter for the method just after the two consecutive colons. For example, if you are passing String
objects to the asList() method, its method reference can be written as Arrays: :<String>asList.

Tip The syntax for a method reference also supports specifying the actual type parameters for generic
types. The actual type parameters are specified just before the two consecutive colons. For example, the
constructor reference ArrayList<Long>: :new Specifies Long as the actual type parameter for the generic
ArraylList<T> class.

The following snippet of code contains an example of specifying the actual type parameter for the
generic method Arrays.asList(). In the code, Arrays: :asList will work the same, as the compiler will
infer String as the type parameter for the asList () method by examining the target type.

import java.util.Arrays;
import java.util.list;
import java.util.function.Function;

Function<String[],List<String>> aslList = Arrays::<String>aslList;

String[] namesArray = {"Jim", "Ken", "Li"};

List<String> nameslList = asList.apply(namesArray);

for(String name : namesList) {
System.out.println(name);

}

Jim
Ken
Li

208

CHAPTER 5 LAMBDA EXPRESSIONS

Lexical Scoping

A scope is the part of a Java program within which a name can be used without a qualifier. Classes and
methods define their own scope. Scopes may be nested. For example, a method scope does not exist
independently, as a method is always part of another construct, for example a class; an inner class appears
inside the scope of another class; a local and an anonymous class appear inside the scope of a method.

Even though a lambda expression looks like a method declaration, it does not define a scope of its own.
It exists in its enclosing scope. This is known as lexical scoping for lambda expressions. For example, when a
lambda expression is used inside a method, the lambda expression exists in the scope of the method.

The meanings of the keywords this and super are the same inside the lambda expression and its
enclosing method. Note that this is different from the meanings of these keywords inside a local and
anonymous inner class in which the keyword this refers to the current instance of the local and anonymous
inner class, not its enclosing class.

Listing 5-19 contains code for a functional interface named Printer that you will use to print messages
in the examples in this section.

Listing 5-19. A Printer Functional Interface

// Printer.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Printer {
void print(String msg);

The program in Listing 5-20 creates two instances of the Printer interface: one using a lambda
expression in the getLambdaPrinter () method and one using an anonymous inner class in the
getAnonymousPrinter () method. Both instances use the keyword this inside the print() method. Both
methods print the class name that the keyword this refers to. The output shows that the keyword this
has the same meaning inside the getLambdaPrinter() method and the lambda expression. However, the
keyword this has different meanings inside the getAnonymousPrinter () method and the anonymous class.

Listing 5-20. Testing Scope of a Lambda Expression and an Anonymous Class

// ScopeTest.java
package com.jdojo.lambda;

public class ScopeTest {
public static void main(String[] args) {
ScopeTest test = new ScopeTest();
Printer lambdaPrinter = test.getLambdaPrinter();
lambdaPrinter.print("Lambda Expressions");

Printer anonymousPrinter = test.getAnonymousPrinter();
anonymousPrinter.print("Anonymous Class");

}

public Printer getlLambdaPrinter() {
System.out.println("getLambdaPrinter(): " + this.getClass());

209

CHAPTER 5 © LAMBDA EXPRESSIONS

// Uses a lambda expression

Printer printer = msg -> {
// Here, this refers to the current object of the ScopeTest class
System.out.println(msg + ": " + this.getClass());

};

return printer;

}

public Printer getAnonymousPrinter() {
System.out.println("getAnonymousPrinter(): " + this.getClass());

// Uses an anonymous class
Printer printer = new Printer() {
@verride
public void print(String msg) {
// Here, this refers to the current object of the anonymous class
System.out.println(msg + ": " + this.getClass());

};

return printer;

getlambdaPrinter(): class com.jdojo.lambda.ScopeTest
Lambda Expressions: class com.jdojo.lambda.ScopeTest
getAnonymousPrinter(): class com.jdojo.lambda.ScopeTest
Anonymous Class: class com.jdojo.lambda.ScopeTest$1

Lexical scoping of a lambda expression means that variables declared in the lambda expression,
including its parameters, exist in the enclosing scope. Simple names in a scope must be unique. It means
that a lambda expression cannot redefine variables with the name that already exists in the enclosing scope.

The following code for a lambda expression inside the main() method generates a compile-time error,
as its parameter name msg is already defined in the main() method'’s scope:

public class Test {
public static void main(String[] args) {
String msg = "Hello";

// A compile-time error. The msg variable is already defined and

// the lambda parameter is attempting to redefine it.
Printer printer = msg -> System.out.println(msg);

210

CHAPTER 5 LAMBDA EXPRESSIONS

The following code generates a compile-time error for the same reason that the local variable named
msg is in scope inside the body of the lambda expression and the lambda expression is attempting to declare
alocal variable with the same name msg:

public class Test {
public static void main(String[] args) {
String msg = "Hello";

Printer printer = msgl -> {
String msg = "Hi"; // A compile-time error
System.out.println(msg1);

};

Variable Capture

Like a local and anonymous inner class, a lambda expression can access effectively finallocal variables. A
local variable is effectively final in the following two cases:

e Itisdeclared final.
e Itis notdeclared final, but initialized only once.

In the following snippet of code, the msg variable is effectively final, as it has been declared final. The
lambda expression accesses the variable inside its body.

public Printer test() {
final String msg = "Hello"; // msg is effectively final

Printer printer = msgl -> System.out.println(msg + + msgl);

return printer;

In the following snippet of code, the msg variable is effectively final, as it is initialized once. The lambda
expression accesses the variables inside its body.

public Printer test() {
String msg = "Hello"; // msg is effectively final
Printer printer = msgl -> System.out.println(msg + " "
return printer;

+ msgl);

The following snippet of code is a slight variation of the previous example. The msg variable is effectively
final, as it has been initialized only once.

public Printer test() {

String msg;
msg = "Hello"; // msg is effectively final

211

CHAPTER 5 © LAMBDA EXPRESSIONS

Printer printer = msgl -> System.out.println(msg + + msgl);

return printer;

In the following snippet of code, the msg variable is not effectively final, as it is assigned a value twice.
The lambda expression is accessing the msg variable that generates a compile-time error.

public Printer test() {
// msg is not effectively final as it is changed later
String msg = "Hello";

// A compile-time error
Printer printer = msgl -> System.out.println(msg +

+ msgl);

msg = "Hi"; // msg is changed making it effectively non-final

return printer;

The following snippet of code generates a compile-time error because the lambda expression accesses
the msg variable that is declared lexically after its use. In Java, forward referencing of variable names in
method’s scope is not allowed. Note that the msg variable is effectively final.
public Printer test() {

// A compile-time error. The msg variable is not declared yet.

Printer printer = msgl -> System.out.println(msg + " " + msgl);

String msg = "Hello"; // msg is effectively final

return printer;

Can you guess why the following snippet of code generates a compile-time error?

public Printer test() {
String msg = "Hello";

Printer printer = msgl -> {
msg = "Hi " + msgl; // A compile-time error. Attempting to modify msg.
System.out.println(msg);

};

return printer;

The lambda expression accesses the local variable msg. Any local variable accessed inside a lambda
expression must be effectively final. The lambda expression attempts to modify the msg variable inside its
body, and that causes the compile-time error.

212

CHAPTER 5 LAMBDA EXPRESSIONS

Tip Alambda expression can access instance and class variables of a class whether they are effectively
final or not. If instance and class variables are not final, they can be modified inside the body of the lambda
expressions. A lambda expression keeps a copy of the local variables used in its body. If the local variables are
reference variables, a copy of the references is kept, not a copy of the objects.

The program in Listing 5-21 demonstrates how to access the local and instance variables inside lambda
expressions.

Listing 5-21. Accessing Local and Instance Variables Inside Lambda Expressions

// VariableCapture.java
package com.jdojo.lambda;

public class VariableCapture {
private int counter = 0;

public static void main(String[] args) {
VariableCapture vcl = new VariableCapture();
VariableCapture vc2 = new VariableCapture();

// Create lambdas
Printer p1 = vci.createlambda(1);
Printer p2 = vc2.createlambda(100);

// Execute the lambda bodies
pl.print("Lambda #1");
p2.print("Lambda #2");
pl.print("Lambda #1");
p2.print("Lambda #2");
pl.print("Lambda #1");
p2.print("Lambda #2");
}

public Printer createlLambda(int incrementBy) {
Printer printer = msg -> {
// Accesses instance and local variables
counter += incrementBy;
System.out.println(msg +

: counter = " + counter);

¥

return printer;

213

CHAPTER 5 © LAMBDA EXPRESSIONS

Lambda #1: counter = 1
Lambda #2: counter = 100
Lambda #1: counter = 2
Lambda #2: counter = 200
Lambda #1: counter = 3
Lambda #2: counter = 300

The createlLambda() method uses a lambda expression to create an instance of the Printer functional
interface. The lambda expression uses the method’s parameter incrementBy. Inside the body, it increments
the instance variable counter and prints its value. The main() method creates two instances of the
VariableCapture class and calls the createLambda() method on those instances by passing 1 and 100 as
incrementBy values. The print() methods of the Printer objects are called three times for both instances.
The output shows that the lambda expression captures the incrementBy value and increments the counter
instance variable every time it is called.

Jumps and Exits

Statements such as break, continue, return, and throw are allowed inside the body of a lambda expression.
These statements indicate jumps inside a method and exits from a method. Inside a lambda expression,
they indicate jumps inside the body of the lambda expression and exits from the body of the lambda
expressions. They indicate local jumps and exits in the lambda expressions. Non-local jumps and exits in
lambda expressions are not allowed. The program in Listing 5-22 demonstrates the valid use of the break
and continue statements inside the body of a lambda expression.

Listing 5-22. Using Break and Continue Statements Inside the Body of a Lambda Expression

// LambdaJumps.java
package com.jdojo.lambda;

import java.util.function.Consumer;

public class LambdaJumps {
public static void main(String[] args) {
Consumer<int[]> printer = ids -> {

int printedCount = 0;

for (int id : ids) {
if (id % 2 !=0) {

continue;

}

System.out.println(id);
printedCount++;
// Break out of the loop after printing 3 ids

if (printedCount == 3) {
break;
}

};

214

CHAPTER 5 LAMBDA EXPRESSIONS

// Print an array of 8 integers
printer.accept(new int[]{1, 2, 3, 4, 5, 6, 7, 8});

In the following snippet of code, the break statement is inside a for loop statement and it is also inside
the body of a lambda statement. If this break statement is allowed, it will jump out of the body of the lambda
expression. This is the reason that the code generates a compile-time error.

public void test() {
for(int 1 = 0; i < 5; i++) {
Consumer<Integer> evenIdPrinter = id -> {

if (id < 0) {
// A compile-time error. Attempting to break out of the lambda body
break;

}

};

Recursive Lambda Expressions

Sometimes a function may invoke itself from its body. Such a function is called a recursive function. A lambda
expression represents a function. However, a lambda expression does not support recursive invocations. If
you need a recursive function, you need to use a method reference or an anonymous inner class.

The program in Listing 5-23 shows how to use a method reference when a recursive lambda expression
is needed. It defines a recursive method called factorial() that computes the factorial of an integer. In the
main() method, it uses the method reference RecursiveTest: : factorial in place of a lambda expression.

Listing 5-23. Using a Method Reference When a Recursive Lambda Expression Is Needed

// RecursiveTest.java
package com.jdojo.lambda;

import java.util.function.IntFunction;
public class RecursiveTest {
public static void main(String[] args) {
IntFunction<lLong> factorialCalc = RecursiveTest::factorial;
int n = 5;

long fact = factorialCalc.apply(n);
System.out.println("Factorial of " + n + " is " + fact);

215

CHAPTER 5 © LAMBDA EXPRESSIONS

public static long factorial(int n) {
if (n < 0) {
String msg = "Number must not be negative.";
throw new IllegalArgumentException(msg);

}
if (n == 0) {
return 1;
} else {
return n * factorial(n - 1);
}

factorial of 5 is 120

You can achieve the same results using an anonymous inner class as shown:

IntFunction<long> factorialCalc = new IntFunction<Long>() {
@verride
public Long apply(int n) {
if (n <0) {
String msg = "Number must not be negative.";
throw new IllegalArgumentException(msg);

}
if (n ==0) {
return 1L;
} else {
return n * this.apply(n - 1);
}

s

Comparing Objects

The Comparator interface is a functional interface with the following declaration:
package java.util;

@FunctionalInterface

public interface Comparator<T> {

int compare(T o1, T 02);

/* Other methods are not shown. */

216

CHAPTER 5 LAMBDA EXPRESSIONS

The Comparator<T> interface contains many default and static methods that can be used along with
lambda expressions to create its instances. It is worth exploring the API documentation for the interface. In
this section, I discuss the following two methods of the Comparator interface:

e static <T,U extends Comparable<? super U>> Comparator<T>
comparing(Function<? super T,? extends U> keyExtractor)

e default <U extends Comparable<? super U>> Comparator<T>
thenComparing(Function<? super T,? extends U> keyExtractor)

The comparing() method takes a Function and returns a Comparator. The Function should return a
Comparable that is used to compare two objects. You can create a Comparator object to compare Person
objects based on their first names, as shown:

Comparator<Person> firstNameComp = Comparator.comparing(Person::getFirstName);

The thenComparing() method is a default method. It is used to specify a secondary comparison if two
objects are the same in sorting order based on the primary comparison. The following statement creates a
Comparator<Person> that sorts Person objects based on their last names, first names, and DOBs:

Comparator<Person> lastFirstDobComp =
Comparator.comparing(Person: :getLastName)
.thenComparing(Person: :getFirstName)
.thenComparing(Person: :getDob);

The program in Listing 5-24 shows how to use the method references to create a Comparator object to
sort Person objects. It uses the sort () default method of the List interface to sort the list of persons. The
sort() method takes a Comparator as an argument. Thanks to lambda expressions and default methods in
interfaces for making the sorting task so easy!

Listing 5-24. Sorting a List of Person Objects

// ComparingObjects.java
package com.jdojo.lambda;

import java.util.Comparator;
import java.util.list;

public class ComparingObjects {
public static void main(String[] args) {
List<Person> persons = Person.getPersons();

// Sort using the first name
persons.sort(Comparator.comparing(Person: :getFirstName));

// Print the sorted list
System.out.println("Sorted by the first name:");
FunctionUtil.forEach(persons, System.out::println);

// Sort using the last name, first name, and then DOB

persons.sort(Comparator.comparing(Person: :getLastName)
.thenComparing(Person: :getFirstName)
.thenComparing(Person::getDob));

217

CHAPTER 5 © LAMBDA EXPRESSIONS

// Print the sorted list
System.out.println("\nSorted by the last name, first name, and dob:");
FunctionUtil.forEach(persons, System.out::println);

Sorted by the first name:

Donna Jacobs, FEMALE, 1970-09-12
John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12

Sorted by the last name, first name, and dob:
Wally Inman, MALE, 1965-09-12

Donna Jacobs, FEMALE, 1970-09-12

John Jacobs, MALE, 1975-01-20

Summary

A lambda expression is an unnamed block of code (or an unnamed function) with a list of formal parameters
and a body. A lambda expression provides a concise way, as compared to anonymous inner classes, to create
instances of functional interfaces. Lambda expressions and default methods in interfaces have given new life
to the Java programming languages as far as expressiveness and fluency in Java programming go. The Java
collection library has benefited the most from lambda expressions.

The syntax for defining lambda expressions is similar to declaring a method. A lambda expression may
have a list of formal parameters and a body. A lambda expression is evaluated to an instance of a functional
interface. The body of the lambda expression is not executed when the expression is evaluated. The body of
the lambda expression is executed when the method of the functional interface is invoked.

One of the design goals of lambda expressions was to keep it concise and readable. The lambda
expression syntax supports shorthand for common use-cases. Method references are shorthand to specify
lambda expressions that use existing methods.

A poly expression is an expression whose type depends on the context of its use. A lambda expression
is always a poly expression. A lambda expression cannot be used by itself. Its type is inferred by the compiler
from the context. A lambda expression can be used in assignments, method invocations, returns, and casts.

When a lambda expression occurs inside a method, it is lexically scoped. That is, alambda expression
does not define a scope of its own; rather, it occurs in the method’s scope. A lambda expression may use the
effectively final local variables of a method. A lambda expression may use the statements such as break,
continue, return, and throw. The break and continue statements specify local jumps inside the body of
the lambda expression. Attempting to jump outside the body of the lambda expression generates a compile-
time error. The return and throw statements exit the body of the lambda expression.

218

CHAPTER 5 LAMBDA EXPRESSIONS

QUESTIONS AND EXERCISES

What are lambda expressions and how are they related to functional interfaces?

How does a lambda expression differ from an anonymous class? Can you always
replace a lambda expression with an anonymous class and vice versa?

Are the following two lambda expressions different?
a. (int x, int y) -> { return x + y; }
b. (int x, inty) -> x +y

If someone shows you the following lambda expressions, explain the possible
functions they may represent.

a. (int x, inty) -> x +y

b. (x,y) >x+y

C. (String msg) -> { System.out.println(msg); }

d (O ->{}

What kind of function the following lambda expression may represent?
X -> X;

Will the following declaration of a Mathutil interface compile? Explain your
answer.

@FunctionalInterface
public interface Operations {
int factorial(int n);
int abs(int n);
}
Will the following statement compile? Explain your answer.
Object obj = x -> x + 1;

Will the following statements compile? Explain your answer.

Function<Integer,Integer> f = x -> x + 1;
Object obj = f;

What will be the output when you run the following Scope class?

// Scope.java
package com.jdojo.lambda.exercises;

import java.util.function.Function;

public class Scope {

219

CHAPTER 5 © LAMBDA EXPRESSIONS

10.

11.

12.

13.

220

private static long n = 100;
private static Function<Long,long> f = n ->n + 1;

public static void main(String[] args) {
System.out.println(n);
System.out.println(f.apply(n));
System.out.println(n);

}
Why does the following method declaration not compile?
public static void test() {

int n = 100;

Function<Integer,Integer> f = n -> n + 1;

System.out.println(f.apply(100));
}

What will be the output when the following Capture class is run?

// Capture.java
package com.jdojo.lambda.exercises;

import java.util.function.Function;

public class Capture {
public static void main(String[] args) {

test();
test();
}
public static void test() {
int n = 100;
Function<Integer,Integer> f = x -> n + 1;
System.out.println(f.apply(100));
}

}

Assume that there is a Person class, which contains four constructors. One of the
constructors is a no-args constructor. Given a constructor reference, Person: : new,
can you tell which constructor of the Person it refers to?

Will the following declaration of the FeelingLucky interface compile? Notice that it
has been annotated with @FunctionalInterface.

@FunctionalInterface
public interface FeelinglLucky {
void gamble();

public static void hitJackpot() {

14.

15.

16.

CHAPTER 5

System.out.println("You have won 80M dollars.");

}

Why does the following declaration of the Mystery interface not compile?

@FunctionalInterface
public interface Mystery {
@0verride
String toString();

}

What will be the output when the following PredicateTest class is run?

// PredicateTest.java
package com.jdojo.lambda.exercises;

import java.util.function.Predicate;

public class PredicateTest {
public static void main(String[] args) {
int[] nums = {1, 2, 3, 4, 5};
filterThenPrint(nums, n -> n%2 == 0);
filterThenPrint(nums, n -> n%2 == 1);

}

LAMBDA EXPRESSIONS

static void filterThenPrint(int[] nums, Predicate<Integer> p) {

for(int x : nums) {
if(p.test(x)) {
System.out.println(x);
}

}
}

What will be the output when the following SupplierTest class is run? Explain

your answer.

// SupplierTest.java
package com.jdojo.lambda.exercises;

import java.util.function.Supplier;
public class SupplierTest {
public static void main(String[] args) {
Supplier<Integer> supplier = () -> {
int counter = 0;
return ++counter;

};

221

CHAPTER 5 © LAMBDA EXPRESSIONS

System.out.println(supplier.get());
System.out.println(supplier.get());

}

17. What will be the output when the following ConsumerTest class is run?

// ConsumerTest.java
package com.jdojo.lambda.exercises;

import java.util.function.Consumer;

public class ConsumerTest {
public static void main(String[] args) {
Consumer<String> c1 = System.out::println;
Consumer<String> c2 = s -> {};

consume(c1, "Hello");
consume(c2, "Hello");

}

static <T> void consume(Consumer<T> consumer, T item) {
consumer.accept(item);

222

CHAPTER 6

Threads

In this chapter, you will learn:
e What threads are
e How to create threads in Java
e How to execute your code in separate threads
e What the Java Memory Model is
e Thelifecycle of threads
e How to use object monitors to synchronize access to a critical section by threads
e How to interrupt, stop, suspend, and resume threads

e Atomic variables, explicit locks, synchronizer, executor framework, fork/join
framework, and thread-local variables

All example programs in this chapter are members of a jdojo.threads module, as declared in
Listing 6-1.

Listing 6-1. The Declaration of a jdojo.threads Module

// module-info.java

module jdojo.threads {
exports com.jdojo.threads;

}

What Is a Thread?

Threads are a vast topic. They deserve an entire book. This chapter does not discuss the concept of threads
in detail. Rather, it discusses how to work with threads using Java constructs. Before I define the term thread,
itis necessary to understand the meaning of some related terms, such as program, process, multitasking,
sequential programming, concurrent programming, etc.

A program is an algorithm expressed in a programming language. A process is a running instance of
a program with all system resources allocated by the operating system to that instance of the program.
Typically, a process consists of a unique identifier, a program counter, executable code, an address space,
open handles to system resources, a security context, and many other things. A program counter, also called
an instruction pointer, is a value maintained in the CPU register that keeps track of the instruction being
executed by the CPU. It is automatically incremented at the end of the execution of an instruction. You can

© Kishori Sharan 2018 223
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_6

https://doi.org/10.1007/978-1-4842-3348-1_6

CHAPTER 6 © THREADS

also think of a process as a unit of activity (or a unit of work, or a unit of execution, or a path of execution)
within an operating system. The concept of process allows one computer system to support multiple units of
executions.

Multitasking is the ability of an operating system to execute multiple tasks (or processes) at once. On a
single CPU machine, multitasking is not possible in a true sense because one CPU can execute instructions
for only one process at a time. In such a case, the operating system achieves multitasking by dividing the
single CPU'’s time among all running processes and switching between processes quickly enough to give
an impression that all processes are running simultaneously. The switching of the CPU among processes is
called a context switch. In a context switch, the running process is stopped, its state is saved, the state of the
process that is going to get the CPU is restored, and the new process is run. It is necessary to save the state
of the running process before the CPU is allocated to another process, so when this process gets the CPU
again, it can start its execution from the same point where it left. Typically, the state of a process consists of a
program counter, register values used by the process, and any other pieces of information that are necessary
to restore the process later. An operating system stores a process state in a data structure, which is called a
process control block or a switchframe. A context switch is rather an expensive task.

There are two types of multitasking: cooperative and preemptive. In cooperative multitasking, the
running process decides when to release the CPU so that other processes can use the CPU. In preemptive
multitasking, the operating system allocates a time slice to each process. Once a process has used up its
time slice, it is preempted, and the operating system assigns the CPU to another process. In cooperative
multitasking, a process may monopolize the CPU for a long time and other processes may not get a chance
to run. In preemptive multitasking, the operating system makes sure all processes get CPU time. UNIX,
0S/2, and Windows (except Windows 3.x) use preemptive multitasking. Windows 3.x used cooperative
multitasking.

Multiprocessing is the ability of a computer to use more than one processor simultaneously. Parallel
processing is the ability of a system to simultaneously execute the same task on multiple processors. You may
note that, for parallel processing, the task must be split up into subtasks, so that the subtasks can be executed
on multiple processors simultaneously. Let’s consider a program that consists of six instructions:

Instruction-1
Instruction-2
Instruction-3
Instruction-4
Instruction-5
Instruction-6

To execute this program completely, the CPU has to execute all six instructions. Suppose the first
three instructions depend on each other. Assume that Instruction-2 uses the result of Instruction-1;
Instruction-3 uses the result of Instruction-2. Assume that the last three instructions also depend
on each other the same way the first three depend on each other. Suppose the first three and the last
three instructions, as two groups, do not depend on each other. How would you like to execute these six
instructions to get the best result? One of the ways to execute them is sequentially as they appear in the
program. This gives you one sequence of execution in your program. Another way of executing them is to
have two sequences of executions. One sequence of execution will execute Instruction-1, Instruction-2,
and Instruction-3, and at the same time, another sequence of execution will execute Instruction-4,
Instruction-5, and Instruction-6. The phrases “unit of execution” and “sequence of execution” mean the
same; I use them interchangeably. These two scenarios are depicted in Figure 6-1.

224

CHAPTER 6 © THREADS

One unit of execution Two units of executions
Instruction-1 Instruction-1 Instruction-4
Instruction-2 Instruction-2 Instruction-5
Instruction-3 Instruction-3 Instruction-6

Instruction-4
Instruction-5
Instruction-6

Figure 6-1. Dividing a program into multiple units of execution

Note that a process is also a unit of execution. Therefore, the two sets of instructions can be run as
two processes to achieve concurrency in their execution. So far, we have assumed that the two sets of
instructions are independent of each other. Suppose this assumption still holds true. What if the two sets of
instructions access a shared memory; or, when both sets of instructions finish running, you need to combine
the results from both to compute the final result? Processes are generally not allowed to access another
process’s address space. They must communicate using inter-process communication facilities such as
sockets, pipes, etc. The very nature of a process—that it runs independent of other processes—may pose
problems when multiple processes need to communicate or share resources. All modern operating systems
let you solve this problem by allowing you to create multiple units of execution within a process, where all
units of execution can share address space and resources allocated to the process. Each unit of execution
within a process is called a thread.

Every process has at least one thread. A process can create multiple threads, if needed. The resources
available to the operating system and its implementation determine the maximum number of threads a
process can create. All threads within a process share all resources including the address space; they can also
communicate with each other easily because they operate within the same process and they share the same
memory. Each thread within a process operates independent of the other threads within the same process.

A thread maintains two things: a program counter and a stack. The program counter lets a thread
keep track of the instruction that it is currently executing. It is necessary to maintain a separate program
counter for each thread because each thread within a process may be executing different instructions at
the same time. Each thread maintains its own stack to store the values of the local variables. A thread can
also maintain its private memory, which cannot be shared with other threads, even if they are in the same
process. The private memory maintained by a thread is called thread-local storage (TLS). Figure 6-2 depicts
threads represented within a process.

An operating system

Process Process Process

A thread within a process

Figure 6-2. Processes and threads

225

CHAPTER 6 © THREADS

In all modern operating systems, threads are scheduled on the CPU for execution, not the processes.
Therefore, the CPU context switch occurs between the threads. The context switch between threads is less
expensive compared to the context switch between processes. Because of the ease of communication,
sharing resources among threads within a process, and a cheaper context switch, it is preferred to split
a program into multiple threads, rather than multiple processes. Sometimes a thread is also called a
lightweight process. The program with six instructions as discussed previously can also be split into two
threads within a process, as depicted in Figure 6-3. On a multi-processor machine, multiple threads of a
process may be scheduled on different processors, thus providing true concurrent executions of a program.
A program that uses multiple threads is called a multi-threaded program.

A process with one thread A process with two threads
Instruction-1 Instruction-1 Instruction-4
Instruction-2 Instruction-2 Instruction-5
Instruction-3 Instruction-3 Instruction-6

Instruction-4
Instruction-5 E :
Instruction-6 Thread 1 Thread 1 Thread 2

Figure 6-3. Dividing the program logic to use two threads within a process

You can think of the relationship between a process and threads as
Process = address space + resources + threads

where threads are units of execution within the process; they maintain their own unique program counter
and stack; they share the process address space and resources; they are scheduled on a CPU independently
and may execute on different CPUs, if available.

Creating Threads in Java

The Java API makes it easy to work with threads. It lets you represent a thread as an object. An object of the
java.lang.Thread class represents a thread. Creating and using a thread in Java is as simple as creating
an object of the Thread class and using that object in a program. Let’s start with the simplest example of
creating a thread in Java. There are at least two steps involved in working with a thread:

e (Creating an object of the Thread class
e Invoking the start() method of the Thread class to start the thread

Creating an object of the Thread class is the same as creating an object of any other classes in Java. In its
simplest form, you can use the no-args constructor of the Thread class to create a Thread object.

// Creates a thread object
Thread simplestThread = new Thread();

226

CHAPTER 6 © THREADS

Creating an object of the Thread class allocates memory for that object on the heap. It does not start or
run the thread. You must call the start() method of the Thread object to start the thread:

// Starts the thread
simplestThread.start();

The start() method returns after doing some housekeeping work. It puts the thread in the runnable
state. In this state, the thread is ready to receive the CPU time. Note that invoking the start() method of
a Thread object does not guarantee “when” this thread will start getting the CPU time. That is, it does not
guarantee when the thread will start running. It just schedules the thread to receive the CPU time.

Let’s write a simple Java program with these two statements, as shown in Listing 6-2. The program will
not do anything useful. However, it will get you started using threads.

Listing 6-2. The Simplest Thread in Java

// SimplestThread.java
package com.jdojo.threads;

public class SimplestThread {
public static void main(String[] args) {
// Creates a thread object
Thread simplestThread = new Thread();

// Starts the thread
simplestThread.start();

When you run the SimplestThread class, you do not see any output. The program will start and finish
silently. Even though you did not see any output, here are a few things the JVM did when the two statements
in the main() method were executed:

e When the second statement, simplestThread.start(), is executed, the JVM
scheduled this thread for execution.

e Atsome point in time, this thread got the CPU time and started executing. What code
does a thread in Java start executing when it gets the CPU time?

e Athread in Java always starts its execution in a run() method. You can define the
run() method to be executed by a thread when you create an object of the Thread
class. In your case, you created an object of the Thread class using its no-args
constructor. When you use the no-args constructor of the Thread class to create its
object (as in new Thread()), the run() method of the Thread class is called when
the thread starts its execution. The following sections in this chapter explain how to
define your own run() method for a thread.

e The run() method of the Thread class checks how the object of the Thread class was
created. If the thread object was created using the no-args constructor of the Thread
class, it does not do anything, and immediately returns. Therefore, in your program,
when the thread got the CPU time, it called the run() method of the Thread class,
which did not execute any meaningful code, and returned.

e When the CPU finishes executing the run() method, the thread is dead, which
means the thread will not get the CPU time again.

227

CHAPTER 6 © THREADS

Figure 6-4 depicts how the simplest thread example works.

Thread simplestThread = new Thread();

simplestThread simplestThread.start();

object in
memory

Gets CPU time
Starts executing the run() P Created a thread and
method of the Thread class - schedulec.i it for
execution

The run() method finishes

Thread is dead

Figure 6-4. The simplest thread execution

There are two important points to add to the current discussion.

When a thread is dead, it does not mean the thread object is garbage collected.

Note that a thread is a unit of execution. “A thread is dead” means that the unit of
execution that the thread represented has finished its work. However, the thread
object representing the unit of execution still exists in memory. After the thread is
dead, the object will be garbage collected based on the same garbage collection
rules that are used for any other Java objects. Some restrictions exist that dictate the
methods you can call on a dead thread. For example, you cannot call its start()
method again. That is, a thread object can be started only once. However, you can
still check if the thread is dead by calling the isAlive() method of the thread object.

The thread does not get the CPU time in one go to execute the run() method. The
operating system decides on the amount of time to allocate and when to allocate that
time to the thread. This means that the multiple context switches may occur before
the thread finishes executing the run() method.

Specifying Your Code for a Thread

There are three ways you can specify your code to be executed by a thread:

228

By inheriting your class from the Thread class
By implementing the Runnable interface in your class

By using the method reference to a method that takes no parameters and
returns void

CHAPTER 6 © THREADS

Tip Inheriting your class from the Thread class may not be possible if your class already inherits from
another class. In that case, you need to use the second method. You can use the third method from Java 8.
Before Java 8, it was common to use an anonymous class to define a thread object where the anonymous class
would either inherit from the Thread class or implement the Runnable interface.

Inheriting Your Class from the Thread Class

When you inherit your class from the Thread class, you should override the run() method and provide the
code to be executed by the thread.

public class MyThreadClass extends Thread {
@0verride
public void run() {
System.out.println("Hello Java threads!");
}
// More code goes here }

The steps to create a thread object and start the thread are the same.

MyThreadClass myThread = new MyThreadClass();
myThread.start();

The thread will execute the run() method of the MyThreadClass class.

Implementing the Runnable Interface

You can create a class that implements the java.lang.Runnable interface. Runnable is a functional interface
and it is declared in the java.lang package as follows:

@FunctionalInterface
public interface Runnable {

void run();
}

From Java 8, you can use a lambda expression to create an instance of the Runnable interface.
Runnable aRunnableObject = () -> System.out.println("Hello Java threads!");

Create an object of the Thread class using the constructor that accepts a Runnable object.
Thread myThread = new Thread(aRunnableObject);

Start the thread by calling the start() method of the thread object.
myThread.start();

The thread will execute the code contained in the body of the lambda expression.

229

CHAPTER 6 © THREADS

Using a Method Reference

From Java 8, you can use the method reference of a method (static or instance) that takes no parameters and
returns void as the code to be executed by a thread. The following code declares a ThreadTest class that
contains an execute() method. The method contains the code to be executed in a thread.

public class ThreadTest {
public static void execute() {
System.out.println("Hello Java threads!");
}

The following snippet of code uses the method reference of the execute() method of the ThreadTest
class to create a Runnable object:

Thread myThread = new Thread(ThreadTest::execute);
myThread.start();

The thread will execute the code contained in the execute() method of the ThreadTest class.

A Quick Example

Let’s look at a simple example to print integers from 1 to 500 in a new thread. Listing 6-3 contains the code
for the PrinterThread class that performs this task. When the class is run, it prints integers from 1 to 500 on
the standard output.

Listing 6-3. Printing Integers from 1 to 500 in a New Thread

// PrinterThread.java
package com.jdojo.threads;

public class PrinterThread {
public static void main(String[] args) {
// Create a Thread object
Thread t = new Thread(PrinterThread::print);

// Start the thread
t.start();
}

public static void print() {

for (int i = 1; i <= 500; i++) {
System.out.print(i + " ");
}

1234567891011 12 13 14 ... 497 498 499 500

Tused a method reference to create the thread object in the example. You can use any of the other ways
discussed earlier to create a thread object.

230

CHAPTER 6 © THREADS

Using Multiple Threads in a Program

Using multiple threads in a Java program is as simple as creating multiple Thread objects and calling

their start () method. Java does not have any upper limit on the number of threads that can be used in a
program. It is limited by the operating system and the memory available to the program. Listing 6-4 uses two
threads. Both threads print integers from 1 to 500. The code prints a new line after each integer. However, the
output shows a space after each integer to keep the output short. Only partial output is shown.

Listing 6-4. Running Multiple Threads in a Program

// MultiPrinterThread.java
package com.jdojo.threads;

public class MultiPrinterThread {
public static void main(String[] args) {
// Create two Thread objects
Thread t1 = new Thread(MultiPrinterThread: :print);
Thread t2 = new Thread(MultiPrinterThread: :print);

// Start both threads
t1.start();
t2.start();

}

public static void print() {
for (int 1 = 1; 1 <= 500; i++) {
System.out.println(i);
}

12 3 45 1 2 3 456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 6 7 27 28 8 9 10 11 12 29 30 31 13 14 32 15 16 17
496 497 498 499 500 424 425 ... 492 493 494 495 496 497 498 499 500

You will find some interesting things in the output. Every time you run this program, you may get
different output. However, the nature of the output on your computer can be compared to the output shown
here. On a very fast machine, the output may print 1 to 500 and 1 to 500. However, let’s focus the discussion
assuming that your output is like the one shown.

The program created two threads. Each thread prints integers from 1 to 500. It starts the thread t1 first
and the thread t2 second. You might expect that the thread t1 will start first to print integers from 1 to 500,
and then the thread t2 will start to print integers from 1 to 500. However, it is obvious from the output that
the program did not run the way you might have expected.

The start() method of the Thread class returns immediately. That is, when you call the start()
method of a thread, the JVM takes note of your instruction to start the thread. However, it does not start the
thread right away. It has to do some housekeeping before it can really start a thread. When a thread starts, it
is up to the operating system to decide when and how much CPU time it will give to that thread. Therefore,
as soon as the t1.start() and t2.start() methods return, your program enters the indeterminate realm.
That is, both threads will start running; however, you do not know when they will start running and in what
sequence they will run to execute their code. When you start multiple threads, you do not even know which

231

CHAPTER 6 © THREADS

thread will start running first. Looking at the output, you can observe that one of the threads started and it
got enough CPU time to print integers from 1 to 5 before it was preempted. Another thread got CPU time to
print from 1 to 26 before it was preempted. The second time, the first thread (the thread that started printing
integers first) got the CPU time and it printed only two integers, 6 and 7, and so on. You can see that both
threads got CPU time. However, the amount of CPU time and the sequence in which they got the CPU time
are unpredictable. Each time you run this program, you may get different output. The only guarantee that
you get from this program is that all integers between 1 and 500 will be printed twice in some order.

Issues in Using Multiple Threads

Some issues are involved when you use multiple threads in a program. You need to consider these issues
only if multiple threads have to coordinate based on some conditions or some shared resources.

In the previous sections, the examples involving threads were trivial. They simply printed some integers
on the standard output. Let’s look at a different kind of example that uses multiple threads, which access and
modify the value of a variable. Listing 6-5 shows the code for the BalanceUpdate class.

Listing 6-5. Multiple Threads Modifying the Same Variable

// BalanceUpdate.java
package com.jdojo.threads;

public class BalanceUpdate {
// Initialize balance to 100
private static int balance = 100;

public static void main(String[] args) {
startBalanceUpdateThread(); // Thread to update the balance value
startBalanceMonitorThread(); // Thread to monitor the balance value

}

public static void updateBalance() {
// Add 10 to balance and subtract 10 from balance
balance = balance + 10;
balance = balance - 10;

}

public static void monitorBalance() {
int b = balance;
if (b != 100) {
System.out.println("Balance changed: " + b);
System.exit(0); // Exit the program

}

public static void startBalanceUpdateThread() {
// Start a new thread that calls the updateBalance() method in an infinite loop
Thread t = new Thread(() -> {

232

}

CHAPTER 6

while (true) {
updateBalance();
}

1

t.start();

public static void startBalanceMonitorThread() {

Balance

// Start a thread that monitors the balance value
Thread t = new Thread(() -> {
while (true) {
monitorBalance();
}

1

t.start();

changed: 110

A brief description of each component of this class follows:

balance: It is a static variable of type int. It is initialized to 100.

updateBalance(): It is a static method that adds 10 to the static variable balance and
subtracts 10 from it. Upon completion of this method, the value of the static variable
balance is expected to remain the same as 100.

startBalanceUpdateThread(): It starts a new thread that keeps calling the
updateBalance() method in an infinite loop. That is, once you call this method, a
thread keeps adding 10 to the balance variable and subtracting 10 from it.

startBalanceMonitorThread(): It starts a new thread that monitors the value of the
balance static variable by repeatedly calling the monitorBalance() method. When
the thread detects that the value of the balance variable is other than 100, it prints
the current value and exits the program.

main(): This method is used to run the program. It starts a thread that updates the
balance class variable in a loop using the updateBalance() method. It also starts
another thread that monitors the value of the balance class variable.

THREADS

The program consists of two threads. One thread calls the updateBalance() method, which adds 10
to balance and subtracts 10 from it. That is, after this method finishes executing, the value of the balance
variable is expected to remain unchanged. Another thread monitors the value of the balance variable.
When it detects that the value of the balance variable is anything other than 100, it prints the new value and
exits the program. Specifying zero in System.exit(0) method call indicates that you want to terminate the
program normally.

Intuitively, the balance monitor thread should not print anything because the balance should always
be 100 and the program should never end because both threads are using infinite loops. However, that is not
the case. If you run this program, you will find, in a short time, the program prints the balance value other
than 100 and exits.

233

CHAPTER 6 © THREADS

Suppose on a particular machine the statement "balance = balance + 10;" is implemented as the
following machine instructions assuming register-1 as a CPU register:

register-1 = balance;
register-1 = register-1 + 10;
balance = register-1;

Similarly, assume that the statement "balance = balance - 10;" is implemented as the following
machine instructions assuming register-2 as another CPU register:

register-2 = balance;
register-2 = register-2 - 10;
balance = register-2;

When the updateBalance() method is invoked, the CPU has to execute six instructions to add 10 to and
subtract 10 from the balance variable. When the balance update thread is in the middle of executing any of the
first three instructions, the balance monitor thread will read the balance value as 100. When the balance update
thread has finished executing the third instruction, the balance monitor thread will read its value as 110. The
value 110 for the balance variable will be restored to 100 only when the balance update thread executes the sixth
instruction. Note that if the balance monitor thread reads the value of the balance variable any time after the
execution of the third instruction and before the execution of the sixth instruction by the balance update thread,
it will read a value that is not the same as the value that existed at the start of the updateBalance() method
execution. Table 6-1 shows how the value of the balance variable will be modified and read by the two threads.

In your program, the monitor thread was able to read the value of the balance variable as 110 because
you allowed two threads to modify and read the value of the balance variable concurrently. If you allowed
only one thread at a time to work with (modify or read) the balance variable, the balance monitor thread
would never read the value of the balance variable other than 100.

Table 6-1. Instruction Executions for Multiple Threads

Statement Instructions Being Executed by The Value of Balance
(Suppose Balance the Balance Update Thread Read by the Balance
Value is 100 to Start With) Monitor Thread
balance = balance + 10; register-1 = balance; 100

register-1 = register-1 + 10; 100

balance = register-1; Before execution: 100

After execution: 110

balance = balance - 10; register-2 = balance; 110

register-2 = register-2 - 10; 110

balance = register-2; Before execution: 110

After execution: 100

The situation where multiple threads manipulate and access a shared data concurrently and the
outcome depends on the order in which the execution of threads take place is known as a race condition.
A race condition in a program may lead to unpredictable results. Listing 6-5 is an example of a race condition
where the program output depends on the sequence of execution of the two threads.

To avoid a race condition in a program, you need to make sure that only one of the racing threads works
with the shared data at a time. To solve this problem, you need to synchronize the access to the two methods

234

CHAPTER 6 * THREADS

updateBalance() and monitorBalance() of the BalanceUpdate class. That is, only one thread should access
one of these two methods at a time. In other words, if one thread is executing the updateBalance() method,
another thread that wants to execute the monitorBalance() method must wait until the thread executing the
updateBalance() method is finished. Similarly, if one thread is executing the monitorBalance() method,
another thread that wants to execute the updateBalance() method must wait until the thread executing the
monitorBalance() method is finished. This will ensure that when a thread is in the process of updating the
balance variable, no other threads will read the inconsistent value of the balance variable and if a thread is
reading the balance variable, no other threads will update the balance variable at the same time.

This kind of problem that needs synchronizing the access of multiple threads to a section of code in a
Java program can be solved using the synchronized keyword. To understand the use of the synchronized
keyword, I need to discuss the Java Memory Model in brief, and the lock and wait sets of an object.

Java Memory Model

All program variables (instance fields, static fields, and array elements) in a program are allocated memory
from the main memory of a computer. Each thread has a working memory (processor cache or registers).
The Java Memory Model (JMM) describes how, when, and in what order program variables are stored to,
and read from, the main memory. The JMM is described in the Java Language Specification in detail. You
may visualize the JMM as depicted in Figure 6-5.

Thread-1 Thread-2
Main memory
Object-1
Working Object-2 Working
memory Object-3 memory

Figure 6-5. The Java Memory Model

Figure 6-5 shows two threads sharing the main memory. Let’s assume that you have a Java program that
is running two threads, thread-1 and thread-2, and each thread is running on different processors. Suppose
thread-1 reads the value of an instance variable of object-1 in its working memory, updates the value, and
does not write the updated value back to the main memory. Let’s run through a few possible scenarios.

e What happens if thread-2 tries to read the value of the same instance variable of
object-1 from the main memory? Would thread-2 read the old value from the main
memory, or would it be able to read the updated value from the working memory of
thread-1?

e Suppose thread-1is in the middle of writing the updated value to the main memory,
and at the same time, thread-2 is trying to read the same value from the main
memory. Would thread-2 read the old value or some garbage value from the main
memory because the value is not written back to the main memory completely?

235

CHAPTER 6 © THREADS

The JMM answers all such questions. In essence, the JMM describes three important aspects of the
execution of instructions in a Java program. They are as follows:

e Atomicity
e Visibility
e Ordering

Atomicity

The JMM describes actions that should be executed atomically. It describes atomicity rules about read and
write actions on instance variables, static variables, and array elements. It guarantees that read and write on
an object’s field of any type, except long and double, are always atomic. However, if a field of type long or
double is declared volatile (I discuss the volatile keyword in detail later in this chapter), read and write
on that field are also guaranteed to be atomic.

Visibility

The JMM describes the conditions under which the effects produced by actions in one thread are visible to
other threads. Mainly, it determines when a thread writes a value to a field, at what point the new value of
that field can be visible to other threads. I discuss more about the visibility aspect of the JMM when I discuss

locks, synchronization, and volatile variables later in this chapter. For completeness, the following are some
of the visibility rules:

e When a thread reads the value of a field for the first time, it will read either the initial
value of the field or some value that was written to that field by some other thread.

e Awrite to a volatile variable is always written to the main memory. A read on a
volatile variable is always read from the main memory. That is, a volatile variable
is never cached in the working memory of a thread. In effect, any write to a volatile
variable is flushed to the main memory, immediately making the new value visible to
other threads.

e When a thread terminates, the working memory of the thread is written to the main
memory immediately. That is, after a thread terminates, all variables’ values visible
only to the terminated thread are made visible to all threads.

e When a thread enters a synchronized block, that thread reloads the values of all
variables in its working memory. When a thread leaves a synchronized block,
it writes all variables values from its working memory to the main memory.

Ordering

The JMM describes in what order actions are performed within a thread and among threads. It guarantees
that all actions performed within a thread are ordered. Actions in different threads are not guaranteed to be
performed in any order. You may achieve some ordering while working with multiple threads by using the
synchronization technique described later in this chapter.

236

CHAPTER 6 © THREADS

Tip Each thread in a Java program uses two kinds of memory: working memory and main memory.
A thread cannot access the working memory of another thread. Main memory is shared among the threads.
Threads communicate with each other using the main memory. Every thread has its own stack, which is used
to store local variables.

Object’s Monitor and Threads Synchronization

In a multi-threaded program, a section of code that may have undesirable effects on the outcome of the
program if executed by multiple threads concurrently is called a critical section. Often, the undesirable effects
result from the concurrent use of a resource by multiple threads in the critical section. It is necessary to control
the access to a critical section in a program so only one thread can execute the critical section at a time.

In a Java program, a critical section can be a block of statements or a method. Java has no built-in
mechanism to identify a critical section in a program. However, Java has many built-in constructs that allow
programmers to declare a critical section, and to control and coordinate access to it. It is the programmer’s
responsibility to identify critical sections in a program and control the access to those critical sections by
multiple threads. Controlling and coordinating the access to a critical section by multiple threads is
known as thread synchronization. Thread synchronization is always a challenging task when writing a
multi-threaded program. In Listing 6-5, the updateBalance() and monitorBalance() methods are critical
sections and you must synchronize the threads” access to these two methods to get a consistent output. Two
kinds of thread synchronizations are built into the Java programming language:

e Mutual exclusion synchronization
e Conditional synchronization

In mutual exclusion synchronization, only one thread is allowed to have access to a section of code at
a point in time. Listing 6-5 is an example of a program where mutual exclusion synchronization is needed
so that only one thread can execute updateBalance() and monitorBalance() at a point in time. In this case,
you can think of the mutual exclusion as an exclusive access to the balance variable by a thread.

The conditional synchronization allows multiple threads to work together to achieve a result.

For example, consider a multi-threaded program to solve a producer/consumer problem. There are two
threads in a program: one thread produces data (the producer thread) and another thread consumes the
data (the consumer thread). The consumer thread must wait until the producer thread produces data and
makes it available for consuming. The producer thread must notify the consumer thread when it produces
data so the consumer thread can consume it. In other words, producer and consumer threads must
coordinate/cooperate with each other to accomplish the task. During conditional synchronization,

mutual exclusion synchronization may also be needed. Suppose the producer thread produces data one byte
at a time and puts the data into a buffer whose capacity is also one byte. The consumer thread consumes
data from the same bulffer. In this case, only one of the threads should have access to the buffer at a time

(a mutual exclusion). If the buffer is full, the producer thread must wait for the consumer thread to empty
the buffer; if the buffer is empty, the consumer thread must wait for the producer thread to produce a byte of
data and put it into the buffer (a conditional synchronization).

The mutual exclusion synchronization is achieved through a lock. A lock supports two operations:
acquire and release. A thread that wants exclusive access to a resource must acquire the lock associated
with that resource. As long as a thread possesses the lock to a resource, other threads cannot acquire the
same lock. Once the thread that possesses the lock is finished with the resource, it releases the lock so
another thread can acquire it.

237

CHAPTER 6 © THREADS

The conditional synchronization is achieved through condition variables and three operations: wait,
signal, and broadcast. Condition variables define the conditions on which threads are synchronized.

The wait operation makes a thread wait on a condition to become true so it can proceed. The signal
operation wakes up one of the threads that was waiting on the condition variables. The broadcast operation
wakes up all threads that were waiting on the condition variables. Note that the difference between the
signal operation and broadcast operation is that the former wakes up only one waiting thread, whereas the
latter wakes up all waiting threads.

A monitor is a programming construct that has a lock, condition variables, and associated operations on
them. Thread synchronization in a Java program is achieved using monitors. Every object in a Java program
has an associated monitor.

A critical section in a Java program is defined with respect to an object’s monitor. A thread must acquire the
object’s monitor before it can start executing the piece of code declared as a critical section. The synchronized
keyword is used to declare a critical section. There are two ways to use the synchronized keyword:

e To declare a method as a critical section
e To declare a block of statements as a critical section

You can declare a method as a critical section by using the keyword synchronized before the method’s
return type, as shown:

public class CriticalSection {
public synchronized void someMethod 1() {
// Method code goes here
}

public static synchronized void someMethod 2() {
// Method code goes here
}

Tip You can declare both an instance method and a static method as synchronized. A constructor cannot
be declared as synchronized. A constructor is called only once by only one thread, which is creating the object.
So it makes no sense to synchronize access to a constructor.

In the case of a synchronized instance method, the entire method is a critical section and it is associated
with the monitor of the object for which this method is executed. That is, a thread must acquire the object’s
monitor lock before executing the code inside a synchronized instance method of that object. For example,

// Create an object called cs1
CriticalSection cs1 = new CriticalSection();

// Execute the synchronized instance method. Before this method execution starts, the thread

// that is executing this statement must acquire the monitor lock of the csi object
cs1.someMethod 1();

238

CHAPTER 6 * THREADS

In case of a synchronized static method, the entire method is a critical section and it is associated
with the class object that represents that class. That is, a thread must acquire the class object’s monitor lock
before executing the code inside a synchronized static method of that class. For example,

// Execute the synchronized static method. Before this method execution starts, the thread that
// is executing this statement must acquire the monitor lock of the CriticalSection.class object
CriticalSection.someMethod 2();

The syntax for declaring a block of code as a critical section is as follows:

synchronized(<objectReference>) {
// one or more statements of the critical section
}

The <objectReference> is the reference of the object whose monitor lock will be used to synchronize
the access to the critical section. This syntax is used to define part of a method body as a critical section.
This way, a thread needs to acquire the object’s monitor lock only, while executing a smaller part of the
method’s code, which is declared as a critical section. Other threads can still execute other parts of the body
of the method concurrently. Additionally, this method of declaring a critical section lets you declare a part
or whole of a constructor as a critical section. Recall that you cannot use the keyword synchronized in the
declaration part of a constructor. However, you can use it inside a constructor’s body to declare a block of
code as synchronized. The following snippet of code illustrates the use of the keyword synchronized:

public class CriticalSection2 {
public synchronized void someMethod10() {
// Method code goes here. Only one thread can execute here at a time.
}

public void someMethod11() {
synchronized(this) {
// Method code goes here. Only one thread can execute here at a time.
}

}

public void someMethod12() {
// Some statements go here. Multiple threads can execute here at a time.

synchronized(this) {

// Some statements go here. Only one thread can execute here at a time.
}

// Some statements go here. Multiple threads can execute here at a time.

}

public static synchronized void someMethod20() {
// Method code goes here. Only one thread can execute here at a time.
}

239

CHAPTER 6 © THREADS

public static void someMethod21() {
synchronized(CriticalSection2.class) {
// Method code goes here. Only one thread can execute here at a time.
}

}

public static void someMethod 22() {
// Some statements go here: section 1. Multiple threads can execute here at a time.

synchronized(CriticalSection2.class) {
// Some statements go here: section 2. Only one thread can execute here at a time.
}

// Some statements go here: section_ 3. Multiple threads can execute here at a time

The CriticalSection2 class has six methods: three instance methods and three class methods. The
someMethod10() method is synchronized as the synchronized keyword is used in the method declaration.
The someMethod11() method differs from the someMethod10() method only in the way it uses the
synchronized keyword. It puts the entire method body inside the synchronized keyword as a block, which
has practically the same effect as declaring the method synchronized. The method someMethod12() is
different. It declares only part of the method’s body as a synchronized block. There can be more than one
thread that can execute someMethod12() concurrently. However, only one of them can be executing inside
the synchronized block at one point in time. Other sets of methods—someMethod20(), someMethod21() and
someMethod22 () —are class methods, and they will behave the same way, except that class’s object monitor
will be used to achieve the thread synchronization.

The process of acquiring and releasing an object’s monitor lock is handled by the JVM. The only thing
you need to do is declare a method (or a block) as synchronized. Before entering a synchronized method or
block, the thread acquires the monitor lock of the object. On exiting the synchronized method or block, it
releases the object’s monitor lock. A thread that has acquired an object’s monitor lock can acquire it again as
many times as it wants. However, it must release the object’s monitor lock as many times as it had acquired it
in order for another thread to acquire the same object’s monitor lock. Let’s consider the following code for a
MultiLocks class:

public class Multilocks {
public synchronized void method1() {
// Some statements go here

this.method2();

// Some statements go here

}

public synchronized void method2() {
// Some statements go here
}

public static synchronized void method3() {
// Some statements go here

240

CHAPTER 6 © THREADS

MultiLocks.method4();

// Some statements go here

}

public static synchronized void method4() {
// Some statements go here
}

The Multilocks class has four methods and all of them are synchronized. Two of them are instance
methods, which are synchronized using the reference of the object on which the method call will be made.
Two of them are class methods, which are synchronized using the reference of the class object of the
Multilocks class. If a thread wants to execute method1() or method2(), it must first acquire the monitor lock
of the object on which the method is called. You are calling method2 () from inside the method method1().
Since a thread that is executing method1() must already have acquired the object’s monitor lock and a call
to method2 () requires the acquisition of the same lock, that thread will reacquire the same object’s monitor
lock automatically when it executes method2 () from inside method1 () without competing with other threads
to acquire the object’s monitor lock.

Therefore, when a thread executes method2 () from inside method1(), it will have acquired the object’s
monitor lock twice. When it exits method2 (), it will release the lock once; when it exits method1 (), it will
release the lock the second time; and then the object’s monitor lock will be available for other threads for
acquisition. The same argument applies to the call to method4 () from inside method3 () except that, in
this case, the Multilocks class object’s monitor lock is involved in the synchronization. Consider calling
method3 () from method1(), like so:

public class Multilocks {
public synchronized void method1() {
// Some statements go here

this.method2();
Multilocks.method3();

// Some statements go here

}

// Rest of the code remains the same as shown before

Suppose you call method1(), like so:

MultiLocks ml = new Multilocks();
ml.method1();

When ml.method1()is executed, the executing thread must acquire the monitor lock of the object ml.
However, the executing thread must acquire the monitor lock of the MultilLocks.class object to execute the
Multilocks.method3() method. Note thatml and MultilLocks.class are two different objects. The thread
that wants to execute the Multilocks.method3 () method from the method1() method must possess both
objects’ monitor locks at the same time.

241

CHAPTER 6 © THREADS

You can apply the same arguments to work with synchronized blocks. For example, you can have a
snippet of code like this

synchronized (objectReference) {
// Trying to synchronize again on the same object is ok
synchronized(objectReference) {
// Some statements go here
}

It is time to take a deeper look into the workings of threads synchronization using an object’s monitor.
Figure 6-6 depicts how multiple threads can use an object’s monitor.

Iuse a doctor-patient analogy while discussing threads synchronization. Suppose a doctor has a clinic
to treat patients. We know that it is very important to allow only one patient access to the doctor at a time.
Otherwise, the doctor may mix up one patient’s symptoms with another patient’s symptoms; a patient with
fever may get a prescription for a headache! Therefore, we will assume that only one patient can have access
to the doctor at any point in time. It is the same assumption that only one thread (patient) can have access to
an object’s monitor (doctor) at a time.

Any patient who wants an access to the doctor must sign in and wait in the waiting room. Similarly,
each object monitor has an entry set (waiting room for newcomers) and any thread that wants to acquire
the object’s monitor lock must enter the entry set first. If the patient signs in, he may get access to the doctor
immediately, if the doctor is not treating a patient and there were no patients waiting for his turn in the
waiting room. Similarly, if the entry set of an object’s monitor is empty and there is no other thread that
possesses the object’s monitor lock, the thread entering the entry set acquires the object’s monitor lock
immediately. However, if there were patients waiting in the waiting room or one being treated by the doctor,
the patient who signs in is blocked and he must wait for the doctor to become available again. Similarly, if a
thread enters the entry set, and other threads are already blocked in the entry set, or another thread already
possesses the object’s monitor lock, the thread that just signed in is said to be blocked and must wait in the
entry set.

242

CHAPTER 6 © THREADS

A thread entering the entry set is shown by the arrow labeled Enter. A thread itself is shown in
Figure 6-6 using a circle. A circle with the text B shows a thread that is blocked in the entry set. A circle with
the text R shows a thread that has acquired the object’s monitor.

Wait set Object’s monitor

@ | Acquire >
@ @ < Release and wait |

Entry set
Release and exit >

A blocked thread

A running thread (owns the object’s monitor)

A waiting thread

OGO

Figure 6-6. Multiple threads using an object’s monitor

What happens to the threads that are blocked in the entry set? When do they get a chance to acquire
the object’s monitor? You can think about the patients blocked in the waiting room and getting their turn
to be treated by the doctor. Many factors decide which patient will be treated next. First, the patient being
treated must free the doctor before another patient can have access to the doctor. In Java, the thread that has
the ownership of the object’s monitor must release the object’s monitor before any threads that are blocked
in the entry set can have the ownership of the object’s monitor. A patient may free the doctor for one of two
reasons:

e The patient is done with his treatment and he is ready to go home. This is a
straightforward case of a patient freeing the doctor after his treatment is over.

e Apatientisin the middle of his treatment. However, he must wait for some time
in order for the doctor to resume his treatment. Let’s assume that the clinic has a
special waiting room (separate from the one where patients who just signed in wait)
for those patients who are in the middle of their treatment. This case needs some
explanation. Let’s say that the doctor is an eye specialist and he has some patients
in his clinic. The patient who is being treated needs an eye examination for which
his pupils must be dilated first. It takes about 30 minutes after the patient receives
eye drops for full pupil dilation, which is required for the examination. Should the
doctor be waiting for 30 minutes for the patient’s pupils to dilate? Should this patient
release the doctor for 30 minutes and let other patient have access to the doctor?
You would agree that if doctor’s time can be used to treat other patients while this

243

CHAPTER 6 © THREADS

patient’s pupils are being dilated, it is fine for this patient to release the doctor. What
should happen when this patient’s pupils are dilated, however, and the doctor is still
busy treating another patient? The doctor cannot leave any patient in the middle

of treatment. Therefore, the patient who released the doctor and waited for some
condition to be true (here dilation process to complete) must wait until doctor is
free again. I explain this issue more later in this chapter and I try to correlate this
situation with threads and the object’s monitor lock.

I must discuss another issue in the context of the doctor-patient example before I can compare this
with the monitor-threads case. When the doctor is free and only one patient is waiting to get access to him,
there is no problem. The sole patient waiting for the doctor will get access to him immediately. However,
what happens when the doctor becomes available and there is more than one patient waiting to get access
to him? Which one of the waiting patients should get access to the doctor first? Should it be the patient who
came first (First In, First Out or FIFO)? Should it be the patient who came in last (Last In, First Out or LIFO)?
Should it be the patient who needs the least (or the most) amount of time for his treatment? Should it be
the patient who is in the most serious condition? The answer depends on the policy followed by the clinic
management.

Similar to a patient in the doctor-patient example, a thread can also release an object’s monitor lock for
two reasons:

e At this time, the thread has completed the work for which it had acquired the object’s
monitor lock. The arrow labeled “Release and Exit” in Figure 6-6 indicates this
scenario in the diagram. When a thread simply exits a synchronized method/block, it
releases the object’s monitor lock it had acquired.

e The thread is in the middle of a task and it needs to wait for some condition to be
true to complete its remaining task. Let’s consider the producer/consumer problem.
Suppose the producer acquires the buffer object’s monitor lock and wants to write
some data into the buffer. However, it finds that the buffer is full and the consumer
must consume the data and make the buffer empty before it can write to it. In this
case, the producer must release the buffer object’s monitor lock and wait until
the consumer acquires the lock and empties the buffer. The same logic applies for
the consumer when it acquires the buffer’s monitor lock and finds that buffer is
empty. At that time, the consumer must release the lock and wait until the producer
produces some data. This kind of temporarily releasing of the object’s monitor
lock and waiting for some condition to occur is shown in the diagram labeled as
the “Release and Wait” arrow. An object can have multiple threads that can be in
“Release and Wait” state at the same time. All threads that have released the object’s
monitor lock and are waiting for some conditions to occur are put in a set called a
wait set.

How is a thread placed in the wait set? Note that a thread can be placed in the wait set of an object
monitor only if it once acquired the object’s monitor lock. Once a thread has acquired the object’s monitor
lock, it must call the wait () method of the object in order to place itself into the wait set. This means a thread
must always call the wait () method from inside a synchronized method or a block. The wait() method is
defined in the java.lang.Object class and it is declared final; that is, no other class in Java can override this
method. You must consider the following two rules before you call the wait () method of an object.

Rule #1

The call to the wait () method must be placed inside a synchronized method (static or non-static) or a
synchronized block.

244

CHAPTER 6 © THREADS

Rule #2

The wait() method must be called on the object whose monitor the current thread has acquired. It throws a
java.lang.InterruptedException. The code that calls this method must handle this exception. The wait()
method throws an I1legalMonitorStateException when the current thread is not the owner of the object’s
monitor. The following snippet of code does not place the wait() method call inside a try-catch to keep
the code simple and readable. For example, inside a synchronized non-static method, the call to the wait()
method may look like the following:

public class WaitMethodCall {
// Object that is used to synchronize a block
private Object objectRef = new Object();

public synchronized void someMethod 1() {
// The thread running here has already acquired the monitor lock on
// the object represented by the reference this because it is a
// synchronized non-static method

// other statements go here

while (some condition is true) {
// It is ok to call the wait() method on this, because the
// current thread possesses monitor lock on this
this.wait();

}

// other statements go here

}

public static synchronized void someMethod 2() {
// The thread executing here has already acquired the monitor lock on
// the class object represented by the WaitMethodCall.class reference
// because it is a synchronized static method

while (some condition is true) {
// It is ok to call the wait() method on WaitMethodCall.class
// because the current thread possesses monitor lock on
// WaitMethodCall.class object
WaitMethodCall.class.wait();
}

// other statements go here

}

public void someMethod 3() {
// other statements go here

synchronized(objectRef) {
// Current thread possesses monitor lock of objectRef

while (some condition is true) {

// Tt is ok to call the wait() method on objectRef because
// the current thread possesses monitor lock on objectRef

245

CHAPTER 6 © THREADS

objectRef.wait();

}
}

// other statements go here

Note that objectRef is an instance variable and it is of the type java.lang.0Object. Its only use is to
synchronize threads’ access to a block inside the someMethod_3() method. Since it is declared an instance
variable, all threads calling someMethod_3() will use its monitor to execute the synchronized block. A
common mistake made by beginners is to declare objectRef as a local variable inside a method and use it to
in a synchronized block. The following snippet of code shows such a mistake:

public void wrongSynchronizationMethod {
// This objectRef is created every time a thread calls this method
Object objectRef = new Object();

// It is a blunder to use objectRef for synchronization below
synchronized(objectRef) {
// In fact, this block works as if there is no synchronization, because every
// thread creates a new objectRef and acquires its monitor lock immediately.

With this snippet of code in mind, you must use an object reference that is common to all threads to
synchronize access to a block.

Let’s get back to the question of which patient will get access to the doctor when he becomes available
again. Will it be a patient from the waiting room who is waiting after signing in or a patient from another
waiting room who was waiting in the middle of his treatment? Before you answer this question, let’s make it
clear that there is a difference between the patients in the waiting room who are waiting after signing in and
the patients waiting for some condition (e.g., dilation to complete) to occur in another waiting room. After
signing in, patients wait on the availability of the doctor, whereas patients in the middle of their treatments
wait on a particular condition to occur. For patients in the second category, a particular condition must
hold before they can seek access to the doctor, whereas patients in the first category are ready to grab access
to the doctor as soon as possible. Therefore, someone must notify a patient in the second category that a
particular condition has occurred and it is time for him to seek access to the doctor again to continue his
treatment. Let’s assume that this notification must come from a patient being currently treated by the doctor.
That is, the patient who currently has access to the doctor notifies the patients waiting in the middle of
their treatments to get ready to gain access to the doctor again. Note that it is just a notification that some
condition has occurred and it is delivered only to the patients waiting in the middle of their treatments.
Whether the patient in the middle of his treatment will get access to the doctor right after the current
patient is done with the doctor is not guaranteed. It only guarantees that the condition on which a patient
was waiting holds at the time of notification and the waiting patient may try to get access to the doctor to
continue his treatment. Let’s correlate this example to monitor-threads example.

The threads in the entry set are blocked and they are ready to grab access to the monitor as soon as
possible. The threads in the wait set are waiting for some condition to occur. A thread that has ownership of
the monitor must notify the threads waiting in the wait set about the fulfillment of the conditions on which
they are waiting. In Java, the notification is made by calling the notify() and notifyAll() methods of the
Object class. Like the wait() method, the notify() and notifyAll() methods are also declared final.

Like the wait() method, these two methods must be called by a thread using an object whose monitor

246

CHAPTER 6 © THREADS

has already been acquired by the thread. If a thread calls these methods on an object before acquiring the
object’s monitor, an I1legalMonitorStateException is thrown. The call to the notify() method wakes up
one thread from the wait set, whereas the call to the notifyAll() method wakes up all threads in the wait
set. In case of the notify() method call, the thread that is woken up is chosen arbitrarily. Note that when

a thread calls the notify() or notifyAll() method, it still holds the lock on the object’s monitor. Threads
in the wait set are only woken up by the notify() or notifyAll() call. They do not acquire the object’s
monitor lock immediately. When the thread that called the notify() or notifyAll() method releases

the object’s monitor lock by “Release and Exit” or “Release and Wait,” the woken up threads in the wait

set compete with the threads in the entry set to acquire the object’s monitor again. Therefore, a call to the
notify() and notifyAll() serves only as a wakeup call for threads in the wait set and it does not guarantee
access to the object’s monitor.

Tip There is no way to wake up a specific thread in the wait set. The call to notify() chooses a thread
arbitrarily, whereas the call to notifyA11() wakes up all threads. Use notifyAl1() when you are in doubt
about which method to use.

The following snippet of code shows pseudocode for using the notifyAll() method along with the wait()
method. You may observe that the call to the wait() and notify() methods are made on the same object,
because if objectRef.wait() puts a thread in the wait set of the objectRef object, the objectRef.notify() or
objectRef.notifyAll() method will wake that thread from the wait set of the objectRef object.

public class WaitAndNotifyMethodCall {
private Object objectRef = new Object();

public synchronized void someMethod 1() {
while (some condition is true) {
this.wait();
}

if (some other condition is true) {
// Notify all waiting threads
this.notifyAll();

}

public static synchronized void someMethod 2() {
while (some condition is true) {
WaitAndNotifyMethodCall.class.wait();
}

if (some other condition is true) {
// Notify all waiting threads
WaitAndNotifyMethodCall.class.notifyAll();

247

CHAPTER 6 © THREADS

public void someMethod 3() {
synchronized(objectRef) {
while (some condition is true) {
objectRef.wait();
}

if (some other condition is true) {
// Notify all waiting threads
objectRef.notifyAll();

Once a thread is woken up in the wait set, it has to compete with the threads in the entry set to acquire
the monitor lock of the object. After a thread is woken up in the wait set and acquires the object’s monitor
lock, it has choices: to do some work and release the lock by invoking the wait () method (release and
wait) again, or release the lock by exiting the synchronized section (release and exit). One important point
to remember about the call to the wait () method is that, typically, a call to the wait () method is placed
inside a loop. Here is the reason why it is necessary to do so. A thread looks for a condition to hold. It waits
by calling the wait() method and placing itself in the wait set if that condition does not hold. The thread
wakes up when it is notified by another thread, which calls the notify() or notifyAl1l() method. When the
thread that woke up acquires the lock, the condition that held at the time of notification may not still hold.
Therefore, it is necessary to check for the condition again, when the thread wakes up and acquires the lock,
to make sure the condition it was looking for is true, and it can continue its work. For example, consider the
producer/consumer problem. Suppose there is one producer and many consumers. Suppose a consumer
calls the wait() method as follows:

if (buffer is empty) {
buffer.wait();
}

buffer.consume();

Suppose the buffer is empty and all consumers are waiting in the wait set. The producer produces
some data and it calls the buffer.notifyAll() method to wake up all consumer threads in the wait set.
All consumer threads wake up; however, only one will get a chance to acquire the monitor lock next. The
first one acquires the lock and executes the buffer.consume() method to empty the buffer. When the next
consumer acquires the monitor lock, it will also execute the buffer.consume() statement. However, the
consumer that woke up and acquired the lock before this one had already emptied the buffer. The logical
mistake in the previous snippet of code is that the call to the wait () method is placed inside an if statement
instead of inside a loop. That is, after a thread wakes up, it is not checking if the buffer contains some data or
not, before trying to consume the data. The corrected snippet of code is the following:

while (buffer is empty) {
buffer.wait();
}

buffer.consume();

248

CHAPTER 6 * THREADS

I answer one more question before you can see this big discussion about thread synchronization in
action. The question is, “Which thread gets a chance to acquire the object’s monitor lock when there are
some blocked threads in the entry set and some woken up threads in the wait set?” Note that the threads
that are in the wait set do not compete for the object’s monitor until they are woken up by the notify()
or notifyAll() call. The answer to this question is that it depends on the scheduler’s algorithm of the
operating system.

Listing 6-6 contains the code for the BalanceUpdateSynchronized class, which is a modified version of
the BalanceUpdate class listed in Listing 6-5. The only difference between the two classes is the use of the
synchronized keyword to declare the updateBalance() and monitorBalance() methods in the new class,
so only one thread can enter one of the methods at a time. When you run the new class, you will not see any
output because the monitorBalance()method will never see the value of the balance variable other than
100. You will need to terminate the program manually, for example, using Ctrl+C on Windows.

Listing 6-6. Synchronized Balance Update

// BalanceUpdateSynchronized. java
package com.jdojo.threads;

public class BalanceUpdateSynchronized {
// Initialize balance to 100
private static int balance = 100;

public static void main(String[] args) {
startBalanceUpdateThread(); // Thread to update the balance value
startBalanceMonitorThread(); // Thread to monitor the balance value

}

public static synchronized void updateBalance() {
// Add 10 to balance and subtract 10 from balance
balance = balance + 10;
balance = balance - 10;

}

public static synchronized void monitorBalance() {
int b = balance;
if (b !'= 100) {
System.out.println("Balance changed: " + b);
System.exit(1); // Exit the program

}

public static void startBalanceUpdateThread() {
// Start a new thread that calls the updateBalance() method in an infinite loop
Thread t = new Thread(() -> {
while (true) {
updateBalance();
}

D;
t.start();

249

CHAPTER 6 © THREADS

public static void startBalanceMonitorThread() {
// Start a thread that monitors the balance value
Thread t = new Thread(() -> {
while (true) {
monitorBalance();
}

D;
t.start();

I show examples of using the wait() and notify() methods in the next section, which discusses
the producer/consumer problem. The wait() method in the Object class is overloaded and it has three
versions:

e wait(): The thread waits in the object’s wait set until another thread calls the
notify() ornotifyAll() method on the same object.

e wait(long timeinMillis): The thread waits in the object’s wait set until another
thread calls the notify() or notifyAll() method on the same object or the
specified amount of timeinMillis time has elapsed.

e wait(long timeinMillis, long timeinNanos): This version lets you specify time
in milliseconds and nanoseconds.

The Producer/Consumer Synchronization Problem

The producer/consumer is a typical thread synchronization problem that uses the wait() and notify()
methods. I keep it simple. The problem statement goes like this:

There are four classes: Buffer, Producer, Consumer, and ProducerConsumerTest. An object
of the Buffer class will have an integer data element that will be produced by the producer
and consumed by the consumer. Therefore, in this example, a Buffer object can hold only
one integer at a point in time. Your goal is to synchronize the access to the buffer, so the
Producer produces a new data element only when the Buffer is empty and the Consumer
consumes the buffer’s data only when it is available. The ProducerConsumerTest class is
used to test the program.

Listing 6-7, Listing 6-8, Listing 6-9, and Listing 6-10 contain the code for the four classes.

Listing 6-7. A Buffer Class for Producer/Consumer Synchronization

// Buffer.java
package com.jdojo.threads;

public class Buffer {
private int data;
private boolean empty;

250

CHAPTER 6

public Buffer() {

}

this.empty = true;

public synchronized void produce(int newData) {

}

// Wait until the buffer is empty
while (!this.empty) {
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}

}

// Store the new data produced by the producer
this.data = newData;

// Set the empty flag to false, so the consumer may consume the data
this.empty = false;

// Notify the waiting consumer in the wait set
this.notify();

System.out.println("Produced: " + newData);

public synchronized int consume() {

// Wait until the buffer gets some data
while (this.empty) {

try {
this.wait();

} catch (InterruptedException e) {
e.printStackTrace();

}

}

// Set the empty flag to true, so that the producer can store new data
this.empty = true;

// Notify the waiting producer in the wait set
this.notify();

System.out.println("Consumed: " + data);

return data;

THREADS

251

CHAPTER 6 © THREADS

Listing 6-8. A Producer Class for Producer/Consumer Synchronization

// Producer.java
package com.jdojo.threads;

import java.util.Random;

public class Producer extends Thread {
private final Buffer buffer;

public Producer(Buffer buffer) {
this.buffer = buffer;
}

@0verride
public void run() {
Random rand = new Random();
while (true) {
// Generate a random integer and store it in the buffer
int n = rand.nextInt();
buffer.produce(n);

Listing 6-9. A Consumer Class for Producer/Consumer Synchronization

// Consumer.java
package com.jdojo.threads;

public class Consumer extends Thread {
private final Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}
@verride
public void run() {
int data;
while (true) {
// Consume the data from the buffer. We are not using the consumed
// data for any other purpose here
data = buffer.consume();
}
}

252

CHAPTER 6 * THREADS

Listing 6-10. A ProducerConsumerTest Class to Test the Producer/Consumer Synchronization

// ProducerConsumerTest.java
package com.jdojo.threads;

public class ProducerConsumerTest {
public static void main(String[] args) {
// Create Buffer, Producer and Consumer objects
Buffer buffer = new Buffer();
Producer p = new Producer(buffer);
Consumer ¢ = new Consumer(buffer);

// Start the producer and consumer threads
p.start();
c.start();

Produced: 1872733184
Consumed: 1872733184

When you run the ProducerConsumerTest class, you may get different output. However, your output will
look similar in the sense that two lines printed will be always of the following form, where XXX indicates an
integer:

Produced: XXX
Consumed: XXX

In this example, the Buffer class needs some explanation. It has two instance variables:
e private int data
e private boolean empty

The producer uses the data instance variable to store the new data. The consumer reads it. The empty
instance variable is used as an indicator whether the buffer is empty or not. In the constructor, it is initialized
to true, indicating that the new bulffer is empty.

It has two synchronized methods: produce() and consume (). Both methods are declared synchronized
because the goal is to protect the Buffer object to be used by multiple threads concurrently. If the producer
is producing new data by calling the produce() method, the consumer must wait to consume the data until
the producer is done and vice versa. The producer thread calls the produce () method, passing the newly
generated data to it. However, before the new data is stored in the data instance variable, the producer
makes sure that the buffer is empty. If the buffer is not empty, it calls the this.wait() method to place itself
in the wait set of the buffer object until the consumer notifies it using the this.notify() method inside the
consume() method.

Once the producer thread detects that the buffer is empty, it stores the new data in the data instance
variable, sets the empty flag to false, and calls this.notify() to wake up the consumer thread in the wait
set to consume the data. At the end, it also prints a message on the console that data has been produced.

The consume () method of the Buffer class is similar to its counterpart, the produce() method. The
only difference is that the consumer-thread calls this method and it performs logic that’s opposite of the
produce() method. For example, it checks if the buffer is not empty before consuming the data.

253

CHAPTER 6 © THREADS

The Producer and Consumer classes inherit from the Thread class. They override the run() method of
the Thread class. Both of them accept an object of the Buffer class in their constructor to use it in their run()
method. The Producer class generates a random integer in its run() method inside an infinite loop and
keeps writing it to the buffer. The Consumer class keeps consuming data from the buffer in an infinite loop.

The ProducerConsumerTest class creates all three objects (a buffer, a producer, and a consumer) and
starts the producer and consumer threads. Since both classes (Producer and Consumer) use infinite loops
inside the run() method, you have to terminate the program forcibly, such as by pressing Ctrl+C, if you are
running this program from a Windows command prompt.

Which Thread Is Executing?

The Thread class has some useful static methods; one of them is the currentThread() method. It returns the
reference of the Thread object that calls this method. Consider the following statement:

Thread t = Thread.currentThread();

The statement will assign the reference of the thread object that executes this statement to the variable
t. Note that a statement in Java can be executed by different threads at different points in time during the
execution of a program. Therefore, t may be assigned the reference of a different Thread object when the
statement is executed at different times in the same program. Listing 6-11 demonstrates the use of the
currentThread() method. You may get the same text in the output, but in a different order.

Listing 6-11. Using the Thread.currentThread() Method

// CurrentThread.java
package com.jdojo.threads;

public class CurrentThread extends Thread {
public CurrentThread(String name) {
super(name);

@0verride

public void run() {
Thread t = Thread.currentThread();
String threadName = t.getName();
System.out.println("Inside run() method:

+ threadName);

}

public static void main(String[] args) {
CurrentThread ct1 = new CurrentThread("Thread #1");
CurrentThread ct2 = new CurrentThread("Thread #2");
cti.start();
ct2.start();

// Let’s see which thread is executing the following statement
Thread t = Thread.currentThread();

String threadName = t.getName();
System.out.println("Inside main() method:

+ threadName);

254

CHAPTER 6 * THREADS

Inside main() method: main
Inside run() method: Thread #1
Inside run() method: Thread #2

Two different threads call the Thread. currentThread() method inside the run() method of the
CurrentThread class. The method returns the reference of the thread executing the call. The program simply
prints the name of the thread that is executing. It is interesting to note that when you called the Thread.
currentThread() method inside the main() method, a thread named main executed the code. When you run
a class, the JVM starts a thread named main, which is responsible for executing the main() method.

Letting a Thread Sleep

The Thread class contains a static sleep() method, which makes a thread sleep for a specified duration.
It accepts a timeout as an argument. You can specify the timeout in milliseconds, milliseconds, and
nanoseconds. The thread that executes this method sleeps for the specified amount of time. A sleeping
thread is not scheduled by the operating system scheduler to receive the CPU time. If a thread has the
ownership of an object’s monitor lock before it goes to sleep, it continues to hold those monitor locks.
The sleep() method may throw an InterruptedException and your code should be ready to handle it.
Listing 6-12 demonstrates the use of the sleep() method.

Listing 6-12. A Sleeping Thread

// LetMeSleep.java
package com.jdojo.threads;

public class LetMeSleep {
public static void main(String[] args) {

try {
System.out.println("I am going to sleep for 5 seconds.");
Thread.sleep(5000); // The "main" thread will sleep
System.out.println("I woke up.");

} catch (InterruptedException e) {
System.out.println("Someone interrupted me in my sleep.");

}
System.out.println("I am done.");
}
}
I am going to sleep for 5 seconds.
I woke up.
I am done.

255

CHAPTER 6 © THREADS

Tip The TimeUnit enum in the java.util.concurrent package represents a measurement of time in
various units such as milliseconds, seconds, minutes, hours, days, etc. It has some convenience methods. One
of them is the sleep() method. The Thread.sleep() method accepts time in milliseconds. If you want a thread
to sleep for five seconds, you need to call this method as Thread. sleep(5000) by converting the seconds into
milliseconds. You can use the sleep() method of TimeUnit instead to avoid the time duration conversion, like so:

TimeUnit.SECONDS.sleep(5); // Same as Thread.sleep(5000);

| Will Join You in Heaven

I can rephrase this section heading as “I will wait until you die.” That’s right. A thread can wait for another
thread to die (or terminate). Suppose there are two threads, t1 and t2. If the thread t1 executes t2. join(),
thread t1 starts waiting until thread t2 is terminated. In other words, the call t2.join() blocks until t2
terminates. Using the join() method in a program is useful if one of the threads cannot proceed until
another thread has finished executing.

Listing 6-13 has an example where you want to print a message on the standard output when the
program has finished executing. The message to printis "We are done."

Listing 6-13. An Incorrect Way of Waiting for a Thread to Terminate

// JoinWrong.java
package com.jdojo.threads;

public class JoinWrong {
public static void main(String[] args) {
Thread t1 = new Thread(JoinWrong::print);
t1.start();
System.out.println("We are done.");

}

public static void print() {
for (int i = 1; i <= 5; i++) {

try {
System.out.println("Counter:
Thread.sleep(1000);

} catch (InterruptedException e) {
e.printStackTrace();

}

+1);

256

CHAPTER 6 * THREADS

We are done.

Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5

In the main() method, a thread is created and started. The thread prints integers from 1 to 5. It sleeps
for one second after printing an integer. In the end, the main() method prints a message. It seems that this
program should print the numbers from 1 to 5, followed by your last message. However, if you look at the
output, it is in the reverse order. What is wrong with this program?

The JVM starts a new thread called main that is responsible for executing the main() method of the class
that you run. In your case, the main() method of the JoinWrong class is executed by the main thread. This
thread will execute the following statements:

Thread t1 = new Thread(JoinWrong: :print);
ti.start();
System.out.println("We are done.");

When the t1.start() method call returns, you have one more thread running in your program
(thread t1)in addition to the main thread. The t1 thread is responsible for printing the integers from 1 to 5,
whereas the main thread is responsible for printing the message "We are done." Since there are two threads
responsible for two different tasks, it is not guaranteed which task will finish first. What is the solution? You
must make your main thread wait on the thread t1 to terminate. This can be achieved by calling the t1.
join() method inside the main() method.

Listing 6-14 contains the correct version of Listing 6-13 by using the t1.join() method call before
printing the final message. When the main thread executes the join() method call, it waits until the t1
thread is terminated. The join() method of the Thread class may throw an InterruptedException, and
your code should be ready to handle it.

Listing 6-14. A Correct Way of Waiting for a Thread to Terminate

// JoinRight.java
package com.jdojo.threads;

public class JoinRight {
public static void main(String[] args) {
Thread t1 = new Thread(JoinRight::print);
t1.start();

try {

t1.join(); // "main" thread waits until t1 is terminated
} catch (InterruptedException e) {

e.printStackTrace();
}

System.out.println("We are done.");

257

CHAPTER 6 © THREADS

public static void print() {
for (int i = 1; i <= 5; i++) {
try {
System.out.println("Counter:
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();

+1);

}
}
}

}

Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5

We are done.

The join() method of the Thread class is overloaded. Its other two versions accept a timeout argument.
If you use the join() method with a timeout, the caller thread will wait until the thread on which it is called
is terminated or the timeout has elapsed. If you replace the t1.join() statement in the JoinRight class with
t1.j0in(12000), you will find that the output is not in the same order because the main thread will wait only
for a second for the t1 thread to terminate before it prints the final message.

Can a thread join multiple threads? The answer is yes. A thread can join multiple threads like so:

t1.join(); // Join t1
t2.join(); // Join t2
t3.join(); // Join t3

You should call the join() method of a thread after it has been started. If you call the join() method
on a thread that has not been started, it returns immediately. Similarly, if you invoke the join() method on a
thread that is already terminated, it returns immediately.

Can a thread join itself? The answer is yes and no. Technically, it is allowed for a thread to join itself.
However, a thread should not join itself in most circumstances. In such a case, a thread waits to terminate
itself. In other words, the thread waits forever.

// "Bad" call (not if you know what you are doing) to join. It waits forever
// until another thread interrupts it.
Thread.currentThread().join();

If you write this statement, make sure that your program interrupts the waiting thread using some

other threads. In such a case, the waiting thread will return from the join() method call by throwing an
InterruptedException

258

CHAPTER 6 * THREADS

Be Considerate to Others and Yield

A thread may voluntarily give up the CPU by calling the static yield() method of the Thread class. The call
to the yield() method is a hint to the scheduler that it may pause the running thread and give the CPU

to other threads. A thread may want to call this method only if it executes in a long loop without waiting

or blocking. If a thread frequently waits or blocks, the yield() method call is not very useful because this
thread does not monopolize the CPU and other threads will get the CPU time when this thread is blocked

or waiting. It is advisable not to depend on the yield() method because it is just a hint to the scheduler. It is
not guaranteed to give a consistent result across different platforms. A thread that calls the yield() method
continues to hold the monitor locks. Note that there is no guarantee as to when the thread that yields will get
the CPU time again. You may use it like so:

// The run() method of a thread class
public void run() {
while(true) {
// do some processing here...
Thread.yield(); // Let’s yield to other threads

Lifecycle of a Thread

A thread is always in one of the following six states:
e New
e Runnable
e Blocked
e Waiting
e Timed-waiting
e Terminated

All these states of a thread are JVM states. They do not represent the states assigned to a thread by an
operating system.
When a thread is created and its start () method is not yet called, it is in the new state.

Thread t = new SomeThreadClass(); // t is in the new state

A thread that is ready to run or running is in the runnable state. In other words, a thread that is eligible
for getting the CPU time is in a runnable state.

Tip The JVM combines two 0S-level thread states: ready-to-run and running into a state called the
runnable state. A thread in the ready-to-run OS state means it is waiting for its turn to get the CPU time.
A thread in the running OS state means it is running on the CPU.

259

CHAPTER 6 © THREADS

A thread is said to be in a blocked state if it was trying to enter (or re-enter) a synchronized method or
block but the monitor is being used by another thread. A thread in the entry set that is waiting to acquire a
monitor lock is in the blocked state. A thread in the wait set that is waiting to reacquire the monitor lock after
it has been woken up is also in a blocked state.

A thread may place itself in a waiting state by calling one of the methods listed in Table 6-2. A thread
may place itself in a timed-waiting state by calling one of the methods listed in Table 6-3. I discuss the
parkNanos () and parkUntil() methods later in this chapter.

Table 6-2. Methods That Place a Thread in Waiting State

Method Description

wait() This is the wait() method of the Object class, which a thread may call if it wants to wait
for a specific condition to hold. Recall that a thread must own the monitor’s lock of an
object to call the wait() method on that object. Another thread must call the notify() or
notifyAll() method on the same object in order for the waiting thread to transition to the
runnable state.

join() This is the join() method of the Thread class. A thread that calls this method wants to wait
until the thread on which this method is called terminates.

park() This is the park () method of the LockSupport class, which is in the java.util.concurrent.
locks package. A thread that calls this method may wait until a permit is available by calling
the unpark() method on a thread. I cover the LockSupport class later in this chapter.

Table 6-3. Methods That Place a Thread in a Timed-Waiting State

Method Description

sleep() This method is in the Thread class.

wait (long millis) These methods are in the Object class.

wait(long millis, int nanos)

join(long millis) These methods are in the Thread class.

join(long millis, int nanos)

parkNanos (long nanos) These methods are in the LockSupport class, which is in
parkNanos (Object blocker, long nanos) the java.util.concurrent.locks package.

parkUntil (long deadline) These methods are in the LockSupport class, which is in
parkUntil (Object blocker, long nanos) the java.util.concurrent.locks package.

A thread that has completed its execution is said to be in the terminated state. A thread is terminated
when it exits its run() method or its stop() method is called. A terminated thread cannot transition to any
other state. You can use the isAlive() method of a thread after it has been started to know if it is alive or
terminated.

You can use the getState() method of the Thread class to get the state of a thread at any time.

This method returns one of the constants of the Thread.State enum type. Listing 6-15 and Listing 6-16
demonstrate the transition of a thread from one state to another. The output of Listing 6-16 shows some of
the states the thread transitions to during its lifecycle.

260

CHAPTER 6 * THREADS

Listing 6-15. A ThreadState Class

// ThreadState.java
package com.jdojo.threads;

public class ThreadState extends Thread {
private boolean keepRunning = true;
private boolean wait = false;
private final Object syncObject;

public ThreadState(Object syncObject) {
this.syncObject = syncObject;
}

@0verride
public void run() {
while (keepRunning) {
synchronized (syncObject) {
if (wait) {
try {
syncObject.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}

}

public void set