
Java Language 
Features

With Modules, Streams, Threads, I/O,  
and Lambda Expressions
—
Second Edition
—
Kishori Sharan

www.allitebooks.com

http://www.allitebooks.org


Java Language Features

With Modules, Streams, Threads, I/O,  
and Lambda Expressions

Second Edition

Kishori Sharan

www.allitebooks.com

http://www.allitebooks.org


Java Language Features:With Modules, Streams, Threads, I/O, and Lambda Expressions

Kishori Sharan    
Montgomery, Alabama, USA   

ISBN-13 (pbk): 978-1-4842-3347-4  ISBN-13 (electronic): 978-1-4842-3348-1
https://doi.org/10.1007/978-1-4842-3348-1

Library of Congress Control Number: 2018932349

Copyright © 2018 by Kishori Sharan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage 
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or 
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail  
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC 
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM 
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/ 
rights-permissions. 

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales  
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book’s product page, located at www.apress.com/9781484233474. For more 
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3348-1
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com
http://www.apress.com/bulk-sales
www.apress.com/9781484233474
http://www.apress.com/source-code
http://www.allitebooks.org


iii

Contents

About the Author ����������������������������������������������������������������������������������������������������xix

About the Technical Reviewers ������������������������������������������������������������������������������xxi

Acknowledgments ������������������������������������������������������������������������������������������������xxiii

Introduction �����������������������������������������������������������������������������������������������������������xxv

 ■Chapter 1: Annotations ������������������������������������������������������������������������������������������ 1

What Are Annotations? ����������������������������������������������������������������������������������������������������� 1

Declaring an Annotation Type ������������������������������������������������������������������������������������������� 4

Restrictions on Annotation Types ������������������������������������������������������������������������������������� 7

Restriction #1 ����������������������������������������������������������������������������������������������������������������������������������������� 7

Restriction #2 ����������������������������������������������������������������������������������������������������������������������������������������� 8

Restriction #3 ����������������������������������������������������������������������������������������������������������������������������������������� 8

Restriction #4 ����������������������������������������������������������������������������������������������������������������������������������������� 9

Restriction #5 ����������������������������������������������������������������������������������������������������������������������������������������� 9

Restriction #6 ����������������������������������������������������������������������������������������������������������������������������������������� 9

Default Value of an Annotation Element ��������������������������������������������������������������������������� 9

Annotation Type and Its Instances ���������������������������������������������������������������������������������� 10

Using Annotations ���������������������������������������������������������������������������������������������������������� 11

Primitive Types ������������������������������������������������������������������������������������������������������������������������������������� 12

String Types ������������������������������������������������������������������������������������������������������������������������������������������ 12

Class Types ������������������������������������������������������������������������������������������������������������������������������������������� 13

Enum Type �������������������������������������������������������������������������������������������������������������������������������������������� 14

Annotation Type ������������������������������������������������������������������������������������������������������������������������������������ 16

Array Type Annotation Element ������������������������������������������������������������������������������������������������������������� 16

www.allitebooks.com

http://www.allitebooks.org


 ■ Contents

iv

No Null Value in an Annotation ��������������������������������������������������������������������������������������� 17

Shorthand Annotation Syntax ����������������������������������������������������������������������������������������� 17

Marker Annotation Types ������������������������������������������������������������������������������������������������ 19

Meta-Annotation Types ��������������������������������������������������������������������������������������������������� 19

The Target Annotation Type ������������������������������������������������������������������������������������������������������������������� 20

The Retention Annotation Type ������������������������������������������������������������������������������������������������������������� 23

The Inherited Annotation Type �������������������������������������������������������������������������������������������������������������� 24

The Documented Annotation Type �������������������������������������������������������������������������������������������������������� 24

The Repeatable Annotation Type ���������������������������������������������������������������������������������������������������������� 25

Commonly Used Standard Annotations �������������������������������������������������������������������������� 26

Deprecating APIs ���������������������������������������������������������������������������������������������������������������������������������� 27

Suppressing Named Compile-Time Warnings  ������������������������������������������������������������������������������������� 38

Overriding Methods ������������������������������������������������������������������������������������������������������������������������������ 39

Declaring Functional Interfaces  ����������������������������������������������������������������������������������������������������������� 40

Annotating Packages ������������������������������������������������������������������������������������������������������ 41

Annotating Modules ������������������������������������������������������������������������������������������������������� 41

Accessing Annotations at Runtime ��������������������������������������������������������������������������������� 42

Evolving Annotation Types ���������������������������������������������������������������������������������������������� 47

Annotation Processing at Source Code Level ����������������������������������������������������������������� 47

Summary ������������������������������������������������������������������������������������������������������������������������ 53

 ■Chapter 2: Inner Classes ������������������������������������������������������������������������������������� 57

What Is an Inner Class? �������������������������������������������������������������������������������������������������� 57

Advantages of Using Inner Classes �������������������������������������������������������������������������������� 59

Types of Inner Classes ���������������������������������������������������������������������������������������������������� 59

Member Inner Class������������������������������������������������������������������������������������������������������������������������������ 59

Local Inner Class ���������������������������������������������������������������������������������������������������������������������������������� 61

Anonymous Inner Class ������������������������������������������������������������������������������������������������������������������������ 65

A static Member Class Is Not an Inner Class ������������������������������������������������������������������ 68

Creating Objects of Inner Classes ���������������������������������������������������������������������������������� 70

www.allitebooks.com

http://www.allitebooks.org


 ■ Contents

v

Accessing Enclosing Class Members  ���������������������������������������������������������������������������� 73

Restrictions on Accessing Local Variables ��������������������������������������������������������������������� 80

Inner Class and Inheritance �������������������������������������������������������������������������������������������� 81

No static Members in an Inner Class ����������������������������������������������������������������������������� 83

Generated Class Files for Inner Classes ������������������������������������������������������������������������� 84

Inner Classes and the Compiler Magic  �������������������������������������������������������������������������� 85

Closures and Callbacks �������������������������������������������������������������������������������������������������� 89

Defining Inner Classes in static Contexts ����������������������������������������������������������������������� 91

Summary ������������������������������������������������������������������������������������������������������������������������ 91

 ■Chapter 3: Reflection ������������������������������������������������������������������������������������������� 97

What Is Reflection? �������������������������������������������������������������������������������������������������������� 97

Reflection in Java ����������������������������������������������������������������������������������������������������������� 98

Loading a Class �������������������������������������������������������������������������������������������������������������� 99

Using Class Literals ������������������������������������������������������������������������������������������������������������������������������ 99

Using the Object::getClass() Method  ������������������������������������������������������������������������������������������������� 100

Using the Class::forName() Method  ��������������������������������������������������������������������������������������������������� 100

Class Loaders ��������������������������������������������������������������������������������������������������������������� 103

Class Loaders in JDK8 ������������������������������������������������������������������������������������������������������������������������ 103

Class Loaders in JDK9 ������������������������������������������������������������������������������������������������������������������������ 104

Reflecting on Classes ��������������������������������������������������������������������������������������������������� 107

Reflecting on Fields ������������������������������������������������������������������������������������������������������ 112

Reflecting on Executables �������������������������������������������������������������������������������������������� 114

Reflecting on Methods ������������������������������������������������������������������������������������������������������������������������ 116

Reflecting on Constructors ����������������������������������������������������������������������������������������������������������������� 118

Creating Objects ����������������������������������������������������������������������������������������������������������� 120

Invoking Methods ��������������������������������������������������������������������������������������������������������� 121

Accessing Fields ���������������������������������������������������������������������������������������������������������� 122

www.allitebooks.com

http://www.allitebooks.org


 ■ Contents

vi

Deep Reflection ������������������������������������������������������������������������������������������������������������ 124

Deep Reflection Within a Module �������������������������������������������������������������������������������������������������������� 125

Deep Reflection Across Modules �������������������������������������������������������������������������������������������������������� 129

Deep Reflection and Unnamed Modules ��������������������������������������������������������������������������������������������� 134

Deep Reflection on JDK Modules ������������������������������������������������������������������������������������������������������� 134

Reflecting on Arrays ����������������������������������������������������������������������������������������������������� 136

Expanding an Array ������������������������������������������������������������������������������������������������������ 138

Who Should Use Reflection? ���������������������������������������������������������������������������������������� 140

Summary ���������������������������������������������������������������������������������������������������������������������� 140

 ■Chapter 4: Generics ������������������������������������������������������������������������������������������� 143

What Are Generics? ������������������������������������������������������������������������������������������������������ 143

Supertype-Subtype Relationship ���������������������������������������������������������������������������������� 147

Raw Types �������������������������������������������������������������������������������������������������������������������� 148

Unbounded Wildcards �������������������������������������������������������������������������������������������������� 149

Upper-Bounded Wildcards �������������������������������������������������������������������������������������������� 152

Lower-Bounded Wildcards ������������������������������������������������������������������������������������������� 153

Generic Methods and Constructors ������������������������������������������������������������������������������ 155

Type Inference in Generic Object Creation ������������������������������������������������������������������� 157

No Generic Exception Classes �������������������������������������������������������������������������������������� 160

No Generic Anonymous Classes ����������������������������������������������������������������������������������� 160

Generics and Arrays ����������������������������������������������������������������������������������������������������� 160

Runtime Class Type of Generic Objects ������������������������������������������������������������������������ 161

Heap Pollution �������������������������������������������������������������������������������������������������������������� 162

Varargs Methods and Heap Pollution Warnings ����������������������������������������������������������� 163

Summary ���������������������������������������������������������������������������������������������������������������������� 165

 ■Chapter 5: Lambda Expressions ������������������������������������������������������������������������ 169

What Is a Lambda Expression? ������������������������������������������������������������������������������������ 169

Why Do We Need Lambda Expressions? ���������������������������������������������������������������������� 171

www.allitebooks.com

http://www.allitebooks.org


 ■ Contents

vii

Syntax for Lambda Expressions ����������������������������������������������������������������������������������� 173

Omitting Parameter Types ������������������������������������������������������������������������������������������������������������������ 174

Declaring a Single Parameter ������������������������������������������������������������������������������������������������������������� 175

Declaring No Parameters �������������������������������������������������������������������������������������������������������������������� 175

Parameters with Modifiers ����������������������������������������������������������������������������������������������������������������� 175

Declaring Body of Lambda Expressions ��������������������������������������������������������������������������������������������� 176

Target Typing ���������������������������������������������������������������������������������������������������������������� 176

Functional Interfaces ���������������������������������������������������������������������������������������������������� 184

Using the @FunctionalInterface Annotation ��������������������������������������������������������������������������������������� 184

Generic Functional Interface �������������������������������������������������������������������������������������������������������������� 185

Intersection Type and Lambda Expressions ���������������������������������������������������������������������������������������� 187

Commonly Used Functional Interfaces ����������������������������������������������������������������������������������������������� 188

Using the Function<T,R> Interface ����������������������������������������������������������������������������������������������������� 188

Using the Predicate<T> Interface ������������������������������������������������������������������������������������������������������ 190

Using Functional Interfaces ���������������������������������������������������������������������������������������������������������������� 191

Method References ������������������������������������������������������������������������������������������������������ 196

static Method References ������������������������������������������������������������������������������������������������������������������� 197

Instance Method References �������������������������������������������������������������������������������������������������������������� 200

Supertype Instance Method References ��������������������������������������������������������������������������������������������� 203

Constructor References ���������������������������������������������������������������������������������������������������������������������� 205

Generic Method References ��������������������������������������������������������������������������������������������������������������� 208

Lexical Scoping ������������������������������������������������������������������������������������������������������������ 209

Variable Capture ����������������������������������������������������������������������������������������������������������� 211

Jumps and Exits ����������������������������������������������������������������������������������������������������������� 214

Recursive Lambda Expressions������������������������������������������������������������������������������������ 215

Comparing Objects ������������������������������������������������������������������������������������������������������� 216

Summary ���������������������������������������������������������������������������������������������������������������������� 218

 ■Chapter 6: Threads �������������������������������������������������������������������������������������������� 223

What Is a Thread? ��������������������������������������������������������������������������������������������������������� 223

Creating Threads in Java ���������������������������������������������������������������������������������������������� 226

www.allitebooks.com

http://www.allitebooks.org


 ■ Contents

viii

Specifying Your Code for a Thread ������������������������������������������������������������������������������� 228

Inheriting Your Class from the Thread Class ��������������������������������������������������������������������������������������� 229

Implementing the Runnable Interface ������������������������������������������������������������������������������������������������ 229

Using a Method Reference ����������������������������������������������������������������������������������������������������������������� 230

A Quick Example ��������������������������������������������������������������������������������������������������������������������������������� 230

Using Multiple Threads in a Program ��������������������������������������������������������������������������� 231

Issues in Using Multiple Threads ���������������������������������������������������������������������������������� 232

Java Memory Model ����������������������������������������������������������������������������������������������������� 235

Atomicity ��������������������������������������������������������������������������������������������������������������������������������������������� 236

Visibility ���������������������������������������������������������������������������������������������������������������������������������������������� 236

Ordering ���������������������������������������������������������������������������������������������������������������������������������������������� 236

Object’s Monitor and Threads Synchronization ������������������������������������������������������������ 237

Rule #1 ����������������������������������������������������������������������������������������������������������������������������������������������� 244

Rule #2 ����������������������������������������������������������������������������������������������������������������������������������������������� 245

The Producer/Consumer Synchronization Problem ������������������������������������������������������ 250

Which Thread Is Executing? ����������������������������������������������������������������������������������������� 254

Letting a Thread Sleep ������������������������������������������������������������������������������������������������� 255

I Will Join You in Heaven ����������������������������������������������������������������������������������������������� 256

Be Considerate to Others and Yield ������������������������������������������������������������������������������ 259

Lifecycle of a Thread ���������������������������������������������������������������������������������������������������� 259

Priority of a Thread ������������������������������������������������������������������������������������������������������� 263

Is It a Demon or a Daemon? ����������������������������������������������������������������������������������������� 264

Am I Interrupted? ��������������������������������������������������������������������������������������������������������� 266

Threads Work in a Group ���������������������������������������������������������������������������������������������� 270

Volatile Variables ���������������������������������������������������������������������������������������������������������� 271

Stopping, Suspending, and Resuming Threads  ����������������������������������������������������������� 273

Spin-Wait Hints ������������������������������������������������������������������������������������������������������������ 277

Handling an Uncaught Exception in a Thread ��������������������������������������������������������������� 278

Thread Concurrency Packages ������������������������������������������������������������������������������������� 280

www.allitebooks.com

http://www.allitebooks.org


 ■ Contents

ix

Atomic Variables ����������������������������������������������������������������������������������������������������������� 280

Scalar Atomic Variable Classes ���������������������������������������������������������������������������������������������������������� 281

Atomic Arrays Classes ������������������������������������������������������������������������������������������������������������������������ 281

Atomic Field Updater Classes ������������������������������������������������������������������������������������������������������������� 282

Atomic Compound Variable Classes ��������������������������������������������������������������������������������������������������� 282

Explicit Locks ��������������������������������������������������������������������������������������������������������������� 283

Synchronizers ��������������������������������������������������������������������������������������������������������������� 288

Semaphores���������������������������������������������������������������������������������������������������������������������������������������� 289

Barriers ����������������������������������������������������������������������������������������������������������������������������������������������� 292

Phasers ����������������������������������������������������������������������������������������������������������������������������������������������� 295

Latches ����������������������������������������������������������������������������������������������������������������������������������������������� 304

Exchangers ����������������������������������������������������������������������������������������������������������������������������������������� 306

The Executor Framework ��������������������������������������������������������������������������������������������� 310

Result-Bearing Tasks �������������������������������������������������������������������������������������������������������������������������� 315

Scheduling a Task ������������������������������������������������������������������������������������������������������������������������������� 318

Handling Uncaught Exceptions in a Task Execution ��������������������������������������������������������������������������� 321

Executor’s Completion Service ����������������������������������������������������������������������������������������������������������� 322

The Fork/Join Framework �������������������������������������������������������������������������������������������� 325

Steps in Using the Fork/Join Framework ������������������������������������������������������������������������������������������� 326

A Fork/Join Example ��������������������������������������������������������������������������������������������������������������������������� 328

Thread-Local Variables ������������������������������������������������������������������������������������������������� 330

Setting Stack Size of a Thread ������������������������������������������������������������������������������������� 333

Summary ���������������������������������������������������������������������������������������������������������������������� 334

 ■Chapter 7: Input/Output ������������������������������������������������������������������������������������� 337

What Is Input/Output? �������������������������������������������������������������������������������������������������� 337

Working with Files �������������������������������������������������������������������������������������������������������� 338

Creating a File Object ������������������������������������������������������������������������������������������������������������������������� 338

Knowing the Current Working Directory ��������������������������������������������������������������������������������������������� 339

Checking for a File’s Existence ����������������������������������������������������������������������������������������������������������� 340

Which Path Do You Want to Go? ���������������������������������������������������������������������������������������������������������� 340

www.allitebooks.com

http://www.allitebooks.org


 ■ Contents

x

Creating, Deleting, and Renaming Files ���������������������������������������������������������������������������������������������� 342

Working with File Attributes ��������������������������������������������������������������������������������������������������������������� 346

Copying a File ������������������������������������������������������������������������������������������������������������������������������������� 346

Knowing the Size of a File ������������������������������������������������������������������������������������������������������������������ 346

Listing Directories and Files ��������������������������������������������������������������������������������������������������������������� 347

The Decorator Pattern �������������������������������������������������������������������������������������������������� 350

Input/Output Streams ��������������������������������������������������������������������������������������������������� 358

Reading from a File Using an Input Stream ���������������������������������������������������������������������������������������� 359

Writing Data to a File Using an Output Stream ����������������������������������������������������������������������������������� 363

Input Stream Meets the Decorator Pattern ������������������������������������������������������������������ 366

BufferedInputStream �������������������������������������������������������������������������������������������������������������������������� 369

PushbackInputStream ������������������������������������������������������������������������������������������������������������������������ 370

Output Stream Meets the Decorator Pattern ���������������������������������������������������������������� 371

PrintStream����������������������������������������������������������������������������������������������������������������������������������������� 373

Using Pipes ������������������������������������������������������������������������������������������������������������������� 375

Reading and Writing Primitive Data Types �������������������������������������������������������������������� 378

Object Serialization ������������������������������������������������������������������������������������������������������ 380

Serializing Objects ������������������������������������������������������������������������������������������������������������������������������ 381

Deserializing Objects �������������������������������������������������������������������������������������������������������������������������� 383

Externalizable Object Serialization ����������������������������������������������������������������������������������������������������� 385

Serializing transient Fields ������������������������������������������������������������������������������������������� 389

Advanced Object Serialization �������������������������������������������������������������������������������������� 389

Writing an Object Multiple Times to a Stream ������������������������������������������������������������������������������������ 389

Class Evolution and Object Serialization �������������������������������������������������������������������������������������������� 393

Stopping Serialization ������������������������������������������������������������������������������������������������������������������������� 394

Readers and Writers ����������������������������������������������������������������������������������������������������� 395

Custom Input/Output Streams �������������������������������������������������������������������������������������� 399

Random Access Files ��������������������������������������������������������������������������������������������������� 402

Copying the Contents of a File�������������������������������������������������������������������������������������� 404

Standard Input/Output/Error Streams �������������������������������������������������������������������������� 405



 ■ Contents

xi

Console and Scanner Classes �������������������������������������������������������������������������������������� 410

StringTokenizer and StreamTokenizer �������������������������������������������������������������������������� 412

Summary ���������������������������������������������������������������������������������������������������������������������� 415

 ■Chapter 8: Working with Archive Files �������������������������������������������������������������� 419

What Is an Archive File? ����������������������������������������������������������������������������������������������� 419

Data Compression �������������������������������������������������������������������������������������������������������� 419

Checksum��������������������������������������������������������������������������������������������������������������������� 420

Compressing Byte Arrays ��������������������������������������������������������������������������������������������� 422

Working with ZIP File Format ��������������������������������������������������������������������������������������� 427

Creating ZIP Files �������������������������������������������������������������������������������������������������������������������������������� 427

Reading the Contents of ZIP Files ������������������������������������������������������������������������������������������������������� 431

Working with the GZIP File Format ������������������������������������������������������������������������������� 434

Working with the JAR File Format �������������������������������������������������������������������������������� 435

Creating a JAR File ����������������������������������������������������������������������������������������������������������������������������� 437

Updating a JAR File ���������������������������������������������������������������������������������������������������������������������������� 438

Indexing a JAR File ����������������������������������������������������������������������������������������������������������������������������� 438

Extracting an Entry from a JAR File ���������������������������������������������������������������������������������������������������� 439

Listing the Contents of a JAR File ������������������������������������������������������������������������������������������������������� 439

The Manifest File �������������������������������������������������������������������������������������������������������������������������������� 439

Sealing a Package in a JAR File ��������������������������������������������������������������������������������������������������������� 441

Using the JAR API ��������������������������������������������������������������������������������������������������������� 442

Accessing Resources from a JAR File �������������������������������������������������������������������������� 446

Summary ���������������������������������������������������������������������������������������������������������������������� 447

 ■Chapter 9: New Input/Output ����������������������������������������������������������������������������� 449

What Is NIO? ����������������������������������������������������������������������������������������������������������������� 449

Buffers �������������������������������������������������������������������������������������������������������������������������� 450

Reading from and Writing to a Buffer ��������������������������������������������������������������������������� 453

Read-Only Buffers �������������������������������������������������������������������������������������������������������� 460

Different Views of a Buffer ������������������������������������������������������������������������������������������� 461



 ■ Contents

xii

Character Set ��������������������������������������������������������������������������������������������������������������� 462

Channels����������������������������������������������������������������������������������������������������������������������� 471

Reading/Writing Files ��������������������������������������������������������������������������������������������������� 473

Memory-Mapped File I/O ���������������������������������������������������������������������������������������������� 477

File Locking ������������������������������������������������������������������������������������������������������������������ 478

Copying the Contents of a File�������������������������������������������������������������������������������������� 480

Knowing the Byte Order of a Machine �������������������������������������������������������������������������� 481

Byte Buffer and Its Byte Order �������������������������������������������������������������������������������������� 482

Summary ���������������������������������������������������������������������������������������������������������������������� 483

 ■Chapter 10: New Input/Output 2 ������������������������������������������������������������������������ 487

What Is New Input/Output 2? ��������������������������������������������������������������������������������������� 487

Working with a File System ������������������������������������������������������������������������������������������ 488

Working with Paths ������������������������������������������������������������������������������������������������������ 490

Creating a Path Object ������������������������������������������������������������������������������������������������������������������������ 491

Accessing Components of a Path ������������������������������������������������������������������������������������������������������� 491

Comparing Paths �������������������������������������������������������������������������������������������������������������������������������� 493

Normalizing, Resolving, and Relativizing Paths ���������������������������������������������������������������������������������� 495

Symbolic Links ����������������������������������������������������������������������������������������������������������������������������������� 497

Different Forms of a Path ������������������������������������������������������������������������������������������������������������������� 497

Performing File Operations on a Path �������������������������������������������������������������������������� 499

Creating New Files ����������������������������������������������������������������������������������������������������������������������������� 499

Deleting Files �������������������������������������������������������������������������������������������������������������������������������������� 500

Checking for Existence of a File ��������������������������������������������������������������������������������������������������������� 501

Copying and Moving Files ������������������������������������������������������������������������������������������������������������������� 501

Commonly Used File Attributes ����������������������������������������������������������������������������������������������������������� 503

Probing the Content Type of a File ������������������������������������������������������������������������������������������������������ 504

Reading the Contents of a File ������������������������������������������������������������������������������������������������������������ 504

Writing to a File ���������������������������������������������������������������������������������������������������������������������������������� 507

Random Access to a File �������������������������������������������������������������������������������������������������������������������� 508



 ■ Contents

xiii

Traversing a File Tree ��������������������������������������������������������������������������������������������������� 511

Matching Paths ������������������������������������������������������������������������������������������������������������ 516

Managing File Attributes ���������������������������������������������������������������������������������������������� 517

Checking for a File Attribute View Support ����������������������������������������������������������������������������������������� 518

Reading and Updating File Attributes ������������������������������������������������������������������������������������������������� 520

Managing the Owner of a File ������������������������������������������������������������������������������������������������������������ 524

Managing ACL File Permissions ��������������������������������������������������������������������������������������������������������� 526

Managing POSIX File Permissions ������������������������������������������������������������������������������������������������������ 529

Watching a Directory for Modifications ������������������������������������������������������������������������ 532

Creating a Watch Service ������������������������������������������������������������������������������������������������������������������� 533

Registering the Directory with the Watch Service ������������������������������������������������������������������������������ 533

Retrieving a WatchKey from the Watch Service Queue ���������������������������������������������������������������������� 533

Processing the Events ������������������������������������������������������������������������������������������������������������������������ 534

Resetting the WatchKey after Processing Events ������������������������������������������������������������������������������� 534

Closing the Watch Service ������������������������������������������������������������������������������������������������������������������ 534

Asynchronous File I/O ��������������������������������������������������������������������������������������������������� 536

Summary ���������������������������������������������������������������������������������������������������������������������� 546

 ■Chapter 11: Garbage Collection ������������������������������������������������������������������������� 549

What Is Garbage Collection? ���������������������������������������������������������������������������������������� 549

Memory Allocation in Java ������������������������������������������������������������������������������������������� 551

Garbage Collection in Java ������������������������������������������������������������������������������������������� 552

Invoking the Garbage Collector ������������������������������������������������������������������������������������ 553

Object Finalization �������������������������������������������������������������������������������������������������������� 555

Finally or Finalize? ������������������������������������������������������������������������������������������������������� 557

Object Resurrection ������������������������������������������������������������������������������������������������������ 559

State of an Object ��������������������������������������������������������������������������������������������������������� 561

Weak References ��������������������������������������������������������������������������������������������������������� 562

Accessing and Clearing a Referent’s Reference ���������������������������������������������������������� 566



 ■ Contents

xiv

Using the SoftReference Class ������������������������������������������������������������������������������������� 569

Using the ReferenceQueue Class ��������������������������������������������������������������������������������� 573

Using the WeakReference Class ����������������������������������������������������������������������������������� 574

Using the PhantomReference Class ����������������������������������������������������������������������������� 578

Using the Cleaner Class ����������������������������������������������������������������������������������������������� 581

Summary ���������������������������������������������������������������������������������������������������������������������� 585

 ■Chapter 12: Collections ������������������������������������������������������������������������������������� 587

What Is a Collection? ���������������������������������������������������������������������������������������������������� 587

Need for a Collection Framework ��������������������������������������������������������������������������������� 589

Architecture of the Collection Framework �������������������������������������������������������������������� 590

The Collection<E> Interface ���������������������������������������������������������������������������������������� 591

Methods for Basic Operations ������������������������������������������������������������������������������������������������������������ 591

Methods for Bulk Operations �������������������������������������������������������������������������������������������������������������� 592

Methods for Aggregate Operations ����������������������������������������������������������������������������������������������������� 592

Methods for Array Operations ������������������������������������������������������������������������������������������������������������� 593

Methods for Comparison Operations �������������������������������������������������������������������������������������������������� 593

A Quick Example ���������������������������������������������������������������������������������������������������������� 593

Traversing Elements in Collections ������������������������������������������������������������������������������ 594

Using an Iterator ��������������������������������������������������������������������������������������������������������������������������������� 595

Using a for-each Loop ������������������������������������������������������������������������������������������������������������������������� 598

Using the forEach() Method ���������������������������������������������������������������������������������������������������������������� 599

Using Different Types of Collections ����������������������������������������������������������������������������� 600

Working with Sets ������������������������������������������������������������������������������������������������������������������������������ 600

Working with Lists ������������������������������������������������������������������������������������������������������������������������������ 613

Working with Queues�������������������������������������������������������������������������������������������������������������������������� 618

Working with Maps ����������������������������������������������������������������������������������������������������������������������������� 641

Applying Algorithms to Collections ������������������������������������������������������������������������������� 655

Sorting a List �������������������������������������������������������������������������������������������������������������������������������������� 655

Searching a List ���������������������������������������������������������������������������������������������������������������������������������� 656

Shuffling, Reversing, Swapping, and Rotating a List �������������������������������������������������������������������������� 657



 ■ Contents

xv

Creating Different Views of a Collection ����������������������������������������������������������������������� 659

Read-Only Views of Collections ���������������������������������������������������������������������������������������������������������� 659

Synchronized View of a Collection ������������������������������������������������������������������������������������������������������ 660

Checked Collections  �������������������������������������������������������������������������������������������������������������������������� 661

Creating Empty Collections ������������������������������������������������������������������������������������������ 662

Creating Singleton Collections ������������������������������������������������������������������������������������� 662

Understanding Hash-Based Collections ����������������������������������������������������������������������� 663

Summary ���������������������������������������������������������������������������������������������������������������������� 668

 ■Chapter 13: Streams ������������������������������������������������������������������������������������������ 675

What Are Streams? ������������������������������������������������������������������������������������������������������� 675

Streams Have No Storage ������������������������������������������������������������������������������������������������������������������� 676

Infinite Streams ���������������������������������������������������������������������������������������������������������������������������������� 676

Internal Iteration vs� External Iteration ����������������������������������������������������������������������������������������������� 676

Imperative vs� Functional ������������������������������������������������������������������������������������������������������������������� 678

Stream Operations ������������������������������������������������������������������������������������������������������������������������������ 678

Ordered Streams �������������������������������������������������������������������������������������������������������������������������������� 680

Streams Are Not Reusable ������������������������������������������������������������������������������������������������������������������ 680

Architecture of the Streams API ��������������������������������������������������������������������������������������������������������� 680

A Quick Example ���������������������������������������������������������������������������������������������������������� 682

Creating Streams���������������������������������������������������������������������������������������������������������� 686

Streams from Values �������������������������������������������������������������������������������������������������������������������������� 686

Empty Streams ����������������������������������������������������������������������������������������������������������������������������������� 689

Streams from Functions ��������������������������������������������������������������������������������������������������������������������� 689

Streams from Arrays ��������������������������������������������������������������������������������������������������������������������������� 694

Streams from Collections ������������������������������������������������������������������������������������������������������������������� 695

Streams from Files ����������������������������������������������������������������������������������������������������������������������������� 695

Streams from Other Sources �������������������������������������������������������������������������������������������������������������� 697

Representing an Optional Value ����������������������������������������������������������������������������������� 698

Applying Operations to Streams ����������������������������������������������������������������������������������� 703

Debugging a Stream Pipeline ������������������������������������������������������������������������������������������������������������� 704

Applying the ForEach Operation ��������������������������������������������������������������������������������������������������������� 705



 ■ Contents

xvi

Applying the Map Operation ��������������������������������������������������������������������������������������������������������������� 706

Flattening Streams ����������������������������������������������������������������������������������������������������������������������������� 708

Applying the Filter Operation �������������������������������������������������������������������������������������������������������������� 710

Applying the Reduce Operation ���������������������������������������������������������������������������������������������������������� 713

Collecting Data Using Collectors ���������������������������������������������������������������������������������� 721

Collecting Summary Statistics ������������������������������������������������������������������������������������� 725

Collecting Data in Maps ����������������������������������������������������������������������������������������������� 727

Joining Strings Using Collectors ���������������������������������������������������������������������������������� 729

Grouping Data �������������������������������������������������������������������������������������������������������������� 730

Partitioning Data ����������������������������������������������������������������������������������������������������������� 734

Adapting the Collector Results ������������������������������������������������������������������������������������� 735

Finding and Matching in Streams �������������������������������������������������������������������������������� 739

Parallel Streams ����������������������������������������������������������������������������������������������������������� 740

Summary ���������������������������������������������������������������������������������������������������������������������� 742

 ■Chapter 14: Implementing Services ������������������������������������������������������������������ 747

What Is a Service? �������������������������������������������������������������������������������������������������������� 747

Discovering Services ���������������������������������������������������������������������������������������������������� 749

Providing Service Implementations ������������������������������������������������������������������������������ 750

Defining the Service Interface �������������������������������������������������������������������������������������� 752

Obtaining Service Provider Instances �������������������������������������������������������������������������� 752

Defining the Service ����������������������������������������������������������������������������������������������������� 756

Defining Service Providers ������������������������������������������������������������������������������������������� 758

Defining a Default Prime Service Provider ����������������������������������������������������������������������������������������� 758

Defining a Faster Prime Service Provider ������������������������������������������������������������������������������������������� 760

Defining a Probable Prime Service Provider ��������������������������������������������������������������������������������������� 761

Testing the Prime Service �������������������������������������������������������������������������������������������� 763

Testing Prime Service in Legacy Mode ������������������������������������������������������������������������ 767

Summary ���������������������������������������������������������������������������������������������������������������������� 769



 ■ Contents

xvii

 ■Chapter 15: The Module API ������������������������������������������������������������������������������ 771

What Is the Module API?����������������������������������������������������������������������������������������������� 771

Representing Modules ������������������������������������������������������������������������������������������������� 773

Describing Modules ������������������������������������������������������������������������������������������������������ 773

Representing Module Statements ������������������������������������������������������������������������������������������������������ 774

Representing a Module Version ���������������������������������������������������������������������������������������������������������� 776

Other Properties of Modules ��������������������������������������������������������������������������������������������������������������� 777

Knowing Module Basic Info ���������������������������������������������������������������������������������������������������������������� 778

Querying Modules �������������������������������������������������������������������������������������������������������� 781

Updating Modules �������������������������������������������������������������������������������������������������������� 783

Accessing Module Resources �������������������������������������������������������������������������������������� 786

Accessing Resources Before JDK9 ����������������������������������������������������������������������������������������������������� 786

Accessing Resources in JDK9 ������������������������������������������������������������������������������������������������������������ 790

Annotation on Modules������������������������������������������������������������������������������������������������� 803

Working with Module Layers ���������������������������������������������������������������������������������������� 805

Finding Modules ��������������������������������������������������������������������������������������������������������������������������������� 807

Reading Module Contents ������������������������������������������������������������������������������������������������������������������� 809

Creating Configurations ���������������������������������������������������������������������������������������������������������������������� 811

Creating Module Layers ���������������������������������������������������������������������������������������������������������������������� 813

Summary ���������������������������������������������������������������������������������������������������������������������� 821

 ■Chapter 16: Breaking Module Encapsulation ���������������������������������������������������� 825

What Is Breaking Module Encapsulation? �������������������������������������������������������������������� 825

Command-Line Options ������������������������������������������������������������������������������������������������ 826

The --add-exports Option ������������������������������������������������������������������������������������������������������������������� 826

The --add-opens Option ��������������������������������������������������������������������������������������������������������������������� 827

The --add-reads Option ���������������������������������������������������������������������������������������������������������������������� 827

The --illegal-access Option ���������������������������������������������������������������������������������������������������������������� 828

An Example ������������������������������������������������������������������������������������������������������������������ 829

Using Manifest Attributes of a JAR ������������������������������������������������������������������������������� 837

Summary ���������������������������������������������������������������������������������������������������������������������� 841



 ■ Contents

xviii

 ■Chapter 17: Reactive Streams ��������������������������������������������������������������������������� 843

What Is a Stream? �������������������������������������������������������������������������������������������������������� 843

What Are Reactive Streams? ���������������������������������������������������������������������������������������� 844

The Reactive Streams API in JDK9 ������������������������������������������������������������������������������� 846

Publisher-Subscriber Interactions ������������������������������������������������������������������������������������������������������ 846

Creating Publishers ���������������������������������������������������������������������������������������������������������������������������� 847

Publishing Items ��������������������������������������������������������������������������������������������������������������������������������� 848

A Quick Example ��������������������������������������������������������������������������������������������������������������������������������� 849

Creating Subscribers �������������������������������������������������������������������������������������������������������������������������� 851

Using Processors �������������������������������������������������������������������������������������������������������������������������������� 856

Summary ���������������������������������������������������������������������������������������������������������������������� 859

 ■Chapter 18: Stack Walking �������������������������������������������������������������������������������� 861

What Is a Stack? ���������������������������������������������������������������������������������������������������������� 861

What Is Stack Walking? ������������������������������������������������������������������������������������������������ 862

Stack Walking in JDK8 ������������������������������������������������������������������������������������������������� 862

Drawbacks in Stack Walking ���������������������������������������������������������������������������������������� 865

Stack Walking in JDK9 ������������������������������������������������������������������������������������������������� 866

Specifying Stack-Walking Options ����������������������������������������������������������������������������������������������������� 866

Representing a Stack Frame �������������������������������������������������������������������������������������������������������������� 866

Obtaining a StackWalker Class ����������������������������������������������������������������������������������������������������������� 868

Walking the Stack ������������������������������������������������������������������������������������������������������������������������������� 869

Knowing the Caller’s Class ����������������������������������������������������������������������������������������������������������������� 874

Stack-Walking Permissions ���������������������������������������������������������������������������������������������������������������� 877

Summary ���������������������������������������������������������������������������������������������������������������������� 878

Index ��������������������������������������������������������������������������������������������������������������������� 881



xix

About the Author

Kishori Sharan works as a senior software engineer lead at IndraSoft, Inc. 
He earned a master’s of science degree in computer information systems 
from Troy State University, Alabama. He is a Sun-certified Java 2 
programmer and has over 20 years of experience in developing enterprise 
applications and providing training to professional developers using the 
Java platform.

www.allitebooks.com

http://www.allitebooks.org


xxi

About the Technical Reviewers

Manuel Jordan Elera is an autodidact developer and researcher who enjoys learning new technologies for 
his own experiments and creating new integrations.

Manuel won the 2010 Springy Award – Community Champion and Spring Champion 2013. In his little 
free time, he reads the Bible and composes music on his guitar. Manuel is known as dr_pompeii. He has tech 
reviewed numerous books for Apress, including Pro Spring Messaging (2017), Pro Spring, 4th Edition (2014), 
Practical Spring LDAP (2013), Pro JPA 2, Second Edition (2013), and Pro Spring Security (2013).

Read his 13 detailed tutorials about many Spring technologies, contact him through his blog at  
http://www.manueljordanelera.blogspot.com, and follow him on his Twitter account at @dr_pompeii.

Jeff Friesen is a freelance teacher and software developer with an emphasis on Java. In addition to authoring 
Java I/O, NIO, and NIO.2 (Apress) and Java Threads and the Concurrency Utilities (Apress), Jeff has written 
numerous articles on Java and other technologies (such as Android) for JavaWorld (JavaWorld.com), 
informIT (InformIT.com), Java.net, SitePoint (SitePoint.com), and other websites. Jeff can be contacted via 
his website at JavaJeff.ca or via his LinkedIn profile (www.linkedin.com/in/javajeff).

http://www.manueljordanelera.blogspot.com/
http://www.manueljordanelera.blogspot.com/
http://www.linkedin.com/in/javajeff


xxiii

Acknowledgments

I would like to thank my family members and friends for their encouragement and support: my mom 
Pratima Devi, my elder brothers, Janki Sharan and Dr. Sita Sharan, my nephews, Gaurav and Saurav; my 
sister Ratna; my friends Karthikeya Venkatesan, Rahul Nagpal, Ravi Datla, Mahbub Choudhury, Richard 
Castillo, and many more friends not mentioned here.

My wife, Ellen, was always patient when I spent long hours at my computer working on this book. I want 
to thank her for all of her support in writing this book.

Special thanks to my friend Preethi Vasudev, for offering her valuable time and providing solutions to 
the exercises in this book. She likes programming challenges, particularly with Google Code Jam. I bet she 
enjoyed solving the exercises in this book.

My sincere thanks are due to the wonderful team at Apress for their support during the publication of 
this book. Thanks to Mark Powers, the Editorial Operations Manager, for providing excellent support. Thanks 
to the technical reviewers Manuel Jordan Elera and Jeff Friesen, for their technical insights and feedback 
during the review process. They were instrumental in weeding out several technical errors. Last but not least, 
my sincere thanks to Steve Anglin, the Lead Editor at Apress, for taking the initiative to publish this book.



xxv

Introduction

How This Book Came About
My first encounter with the Java programming language was during a one-week Java training session in 1997. 
I did not get a chance to use Java in a project until 1999. I read two Java books and took a Java 2 programmer 
certification examination. I did very well on the test, scoring 95 percent. The three questions that I missed 
on the test made me realize that the books that I had read did not adequately cover details of all the topics. I 
made up my mind to write a book on the Java programming language. So, I formulated a plan to cover most 
of the topics that a Java developer needs to use Java effectively in a project, as well as to become certified. I 
initially planned to cover all essential topics in Java in 700 to 800 pages.

As I progressed, I realized that a book covering most of the Java topics in detail could not be written in 
700 to 800 pages. One chapter alone that covered data types, operators, and statements spanned 90 pages. 
I was then faced with the question, “Should I shorten the content of the book or include all the details that 
I think a Java developer needs?” I opted for including all the details in the book, rather than shortening 
its content to maintain the original number of pages. It has never been my intent to make lots of money 
from this book. I was never in a hurry to finish this book because that rush could have compromised the 
quality and coverage. In short, I wrote this book to help the Java community understand and use the Java 
programming language effectively, without having to read many books on the same subject. I wrote this 
book with the plan that it would be a comprehensive one-stop reference for everyone who wants to learn 
and grasp the intricacies of the Java programming language.

One of my high school teachers used to tell us that if one wanted to understand a building, one 
must first understand the bricks, steel, and mortar that make up the building. The same logic applies to 
most of the things that we want to understand in our lives. It certainly applies to an understanding of the 
Java programming language. If you want to master the Java programming language, you must start by 
understanding its basic building blocks. I have used this approach throughout this book, endeavoring 
to build upon each topic by describing the basics first. In the book, you will rarely find a topic described 
without first learning about its background. Wherever possible, I tried to correlate the programming 
practices with activities in daily life. Most of the books about the Java programming language available in 
the market either do not include any pictures at all or have only a few. I believe in the adage, “A picture is 
worth a thousand words.” To a reader, a picture makes a topic easier to understand and remember. I have 
included plenty of illustrations in the book to aid readers in understanding and visualizing the concepts. 
Developers who have little or no programming experience have difficulty in putting things together to make 
it a complete program. Keeping them in mind, the book contains over 390 complete Java programs that are 
ready to be compiled and run.

I spent countless hours doing research when writing this book. My main sources were the Java 
Language Specification, whitepapers, and articles on Java topics, and Java Specification Requests (JSRs). 
I also spent quite a bit of time reading the Java source code to learn more about some of the Java topics. 
Sometimes, it took a few months of researching a topic before I could write the first sentence on it. Finally, it 
was always fun to play with Java programs, sometimes for hours, to add them to the book.



 ■ IntroduCtIon

xxvi

Introduction to the Second Edition
I am pleased to present the second edition of the Java Language Features book. It is the second book in the 
three-volume Beginning Java 9 series. It was not possible to include all JDK9 changes in the one volume. I 
have included JDK9-specific changes at appropriate places in the three volumes, including this one. If you 
are interested in learning only JDK9-specific topics, I suggest you read my Java 9 Revealed book (ISBN 978-
1484225912), which contains only JDK9-specific topics. There are several changes in this edition, as follows:

•	 I added the following five chapters to this edition: Implementing Services (Chapter 
14), The Module API (Chapter 15), Breaking Module Encapsulation (Chapter 16), 
Reactive Streams (Chapter 17), and Stack Walking (Chapter 18).

•	 Implementing services in Java is not new to JDK9. I felt this book was missing a 
chapter on this topic. Chapter 14 covers in detail how to define services and service 
interfaces, and how to implement service interfaces using JDK9-specific and 
pre-JDK9 constructs. This chapter shows you how to use the uses and provides 
statements in a module declaration.

•	 Chapter 15 covers the Module API in detail, which gives you programmatic access to 
modules. This chapter also touches on some of the advanced topics, such as module 
layers. The first volume of this series covered basics on modules, such as how to 
declare modules and module dependence.

•	 Chapter 16 covers how to break module encapsulation using command-line options. 
When you migrate to JDK9, there will be cases requiring you to read the module's 
internal APIs or export non-exported packages. You can achieve these tasks using 
command-line options covered in this chapter.

•	 Reactive Streams is an initiative for providing a standard for asynchronous stream 
processing with non-blocking backpressure. It is aimed at solving the problems 
processing a stream of items, including how to pass a stream of items from a 
publisher to a subscriber without requiring the publisher to block or the subscriber 
to have an unbounded buffer. Chapter 17 covers the Reactive Streams API, which 
was added in JDK9.

•	 Chapter 18 covers the Stacking-Walking API, which was added in JDK9. This API lets 
you inspect the stack frames of threads and get the class reference of the caller class 
of a method. Inspecting a thread's stack and getting the caller's class name were 
possible before JDK9, which I covered in Chapter 13 of the first volume. The new 
Stack-Walking API lets you achieve this easily and efficiently.

•	 I received several e-mails from the readers about the fact that the books in this series 
do not include questions and exercises, which are needed mainly for students and 
beginners. Students use this series in their Java classes and many beginners use it to 
learn Java. Due to this popular demand, I spent over 60 hours preparing questions 
and exercises at the end of each chapter. My friend Preethi offered her help and 
provided the solutions.

Apart from these additions, I updated all the chapters that were part of the first edition. I edited the 
contents to make them flow better, changed or added new examples, and updated the contents to include 
JDK9-specific features.

It is my sincere hope that this edition will help you learn Java better.

http://dx.doi.org/10.1007/978-1-4842-3348-1_14
http://dx.doi.org/10.1007/978-1-4842-3348-1_15
http://dx.doi.org/10.1007/978-1-4842-3348-1_16
http://dx.doi.org/10.1007/978-1-4842-3348-1_17
http://dx.doi.org/10.1007/978-1-4842-3348-1_18
http://dx.doi.org/10.1007/978-1-4842-3348-1_14
http://dx.doi.org/10.1007/978-1-4842-3348-1_15
http://dx.doi.org/10.1007/978-1-4842-3348-1_16
http://dx.doi.org/10.1007/978-1-4842-3348-1_17
http://dx.doi.org/10.1007/978-1-4842-3348-1_18
http://dx.doi.org/10.1007/978-1-4842-3348-1_13


 ■ IntroduCtIon

xxvii

Structure of the Book
This is the second book in the three-book Beginning Java series. This book contains 18 chapters. The 
chapters contain language-level topics of Java such as annotations, generics, lambda expressions, threads, 
I/O, collections, streams, etc. Chapters introduce Java topics in increasing order of complexity. The new 
features of Java 9 are included wherever they fit in these chapters. The Module API, Reactive Streams, and 
Stack-Walking API, which were added in Java 9, are covered in depth in their own chapters.

After finishing this book, you can take your Java knowledge to the next level by learning the Java APIs 
and modules, which are covered in the final book in the series, Java APIs, Extensions and Libraries.

Audience
This book is designed to be useful to anyone who wants to learn the Java programming language. If you are 
a beginner, with little or no programming background in Java, you are advised to read the companion book, 
Beginning Java 9 Fundamentals, before reading this book. This book contains topics of various degrees of 
complexity. As a beginner, if you find yourself overwhelmed while reading a section in a chapter, you can 
skip to the next section or the next chapter, and revisit it later when you gain more experience.

If you are a Java developer with an intermediate or advanced level of experience, you can jump to a 
chapter or to a section in a chapter directly. If a section covers an unfamiliar topic, you need to visit that 
topic before continuing the current one.

If you are reading this book to get a certification in the Java programming language, you need to 
read almost all of the chapters, paying attention to all of the detailed descriptions and rules. Most of the 
certification programs test your fundamental knowledge of the language, not the advanced knowledge. 
You need to read only those topics that are part of your certification test. Compiling and running over 390 
complete Java programs will help you prepare for your certification.

If you are a student who is attending a class in the Java programming language, you should read the 
chapters of this book selectively. Some topics—such as lambda expressions, collections, and streams—are 
used extensively in developing Java applications, whereas other topics—such as threads and archive files—
are infrequently used. You need to read only those chapters that are covered in your class syllabus. I am sure 
that you, as a Java student, do not need to read the entire book page by page.

How to Use This Book
This book is the beginning, not the end, of learning the Java programming language. If you are reading this 
book, it means you are heading in the right direction to learn the Java programming language, which will 
enable you to excel in your academic and professional career. However, there is always a higher goal for 
you to achieve and you must constantly work hard to achieve it. The following quotations from some great 
thinkers may help you understand the importance of working hard and constantly looking for knowledge 
with both your eyes and mind open.

The learning and knowledge that we have, is, at the most, but little compared with that of 
which we are ignorant.

—Plato

True knowledge exists in knowing that you know nothing. And in knowing that you know 
nothing, that makes you the smartest of all.

—Socrates



 ■ IntroduCtIon

xxviii

Readers are advised to use the API documentation for the Java programming language as much 
as possible while reading this book. The Java API documentation includes a complete list of everything 
available in the Java class library. You can download (or view) the Java API documentation from the official 
website of Oracle Corporation at www.oracle.com. While you read this book, you need to practice writing 
Java programs. You can also practice by tweaking the programs provided in the book. It does not help 
much in your learning process if you just read this book and do not practice writing your own programs. 
Remember that “practice makes perfect,” which is also true in learning how to program in Java.

Source Code and Errata
Source code for this book can be accessed by clicking the Download Source Code button located at  
www.apress.com/9781484233474.

 ■ Note At the time of going to print, Java 10 had just been announced. to provide you with useful information 
on some of its features and the new Java versioning scheme, I have written three appendices that you can 
download for free via the Download Source Code button referenced above. these appendices will give you a 
head-start on the most important features of Java 10.

Questions and Comments
Please direct all your questions and comments for the author to ksharan@jdojo.com.

http://www.oracle.com/
http://www.apress.com/9781484233474


1© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_1

CHAPTER 1

Annotations

In this chapter, you will learn:

•	 What annotations are

•	 How to declare annotations

•	 How to use annotations

•	 What meta-annotations are and how to use them

•	 Commonly used annotations that are used to deprecate APIs, to suppress named 
compile-time warnings, override methods, and declare functional interfaces

•	 How to access annotations at runtime

•	 How to process annotations in source code

All example programs in this chapter are a member of a jdojo.annotation module, as declared in 
Listing 1-1.

Listing 1-1. The Declaration of a jdojo.annotation Module

// module-info.java
module jdojo.annotation {
    exports com.jdojo.annotation;
}

What Are Annotations?
Before I define annotations and discuss their importance in programming, let’s look at a simple example. 
Suppose you have an Employee class, which has a method called setSalary() that sets the salary of an 
employee. The method accepts a parameter of the type double. The following snippet of code shows a trivial 
implementation for the Employee class:

public class Employee {
    public void setSalary(double salary) {    
        System.out.println("Employee.setSalary():" + salary);
    }
}

Electronic supplementary material The online version of this chapter  
(https://doi.org/10.1007/978-1-4842-3348-1_1) contains supplementary material, which is available to  
authorized users.

https://doi.org/10.1007/978-1-4842-3348-1_1
https://doi.org/10.1007/978-1-4842-3348-1_1


Chapter 1 ■ annotations

2

A Manager class inherits from the Employee class. You want to set the salary for managers differently. You 
decide to override the setSalary() method in the Manager class. The code for the Manager class is as follows:

public class Manager extends Employee {
    // Override setSalary() in the Employee class
    public void setSalary(int salary) {
        System.out.println("Manager.setSalary():" + salary);
    }
}

There is a mistake in the Manager class, when you attempt to override the setSalary() method. You’ll 
correct the mistake shortly. You have used the int data type as the parameter type for the incorrectly 
overridden method. It is time to set the salary for a manager. The following code is used to accomplish this:

Employee ken = new Manager();
int salary = 200;
ken.setSalary(salary);

Employee.setSalary():200.0

This snippet of code was expected to call the setSalary() method of the Manager class but the output 
does not show the expected result.

What went wrong in your code? The intention of defining the setSalary() method in the Manager 
class was to override the setSalary() method of the Employee class, not to overload it. You made a mistake. 
You used the type int as the parameter type in the setSalary() method, instead of the type double in the 
Manager class. You put comments indicating your intention to override the method in the Manager class. 
However, comments do not stop you from making logical mistakes. You might spend, as every programmer 
does, hours and hours debugging errors resulting from this kind of logical mistake. Who can help you in 
such situations? Annotations might help you in a few situations like this.

Let’s rewrite your Manager class using an annotation. You do not need to know anything about 
annotations at this point. All you are going to do is add one word to your program. The following code is the 
modified version of the Manager class:

public class Manager extends Employee {
    @Override
    public void setSalary(int salary) {
        System.out.println("Manager.setSalary():" + salary);
    }
}

All you have added is a @Override annotation to the Manager class and removed the “dumb” comments. 
Trying to compile the revised Manager class results in a compile-time error that points to the use of the  
@Override annotation for the setSalary() method of the Manager class:

Manager.java:2: error: method does not override or implement a method from a supertype
        @Override
        ^
1 error



Chapter 1 ■ annotations

3

The use of the @Override annotation did the trick. The @Override annotation is used with a non-static 
method to indicate the programmer’s intention to override the method in the superclass. At source code 
level, it serves the purpose of documentation. When the compiler comes across the @Override annotation, 
it makes sure that the method really overrides the method in the superclass. If the method annotated does 
not override a method in the superclass, the compiler generates an error. In your case, the setSalary(int 
salary) method in the Manager class does not override any method in the superclass Employee. This is the 
reason that you got the error. You may realize that using an annotation is as simple as documenting the 
source code. However, they have compiler support. You can use them to instruct the compiler to enforce 
some rules. Annotations provide benefits much more than you have seen in this example. Let’s go back to 
the compile-time error. You can fix the error by doing one of the following two things:

•	 You can remove the @Override annotation from the setSalary(int salary) 
method in the Manager class. It will make the method an overloaded method, not a 
method that overrides its superclass method.

•	 You can change the method signature from setSalary(int salary) to 
setSalary(double salary).

Since you want to override the setSalary() method in the Manager class, use the second option and 
modify the Manager class as follows:

public class Manager extends Employee {
    @Override
    public void setSalary(double salary) {
        System.out.println("Manager.setSalary():" + salary);
    }
}

Now the following code will work as expected:

Employee ken = new Manager();
int salary = 200;
ken.setSalary(salary);

Manager.setSalary():200.0

Note that the @Override annotation in the setSalary() method of the Manager class saves you 
debugging time. Suppose you change the method signature in the Employee class. If the changes in the 
Employee class make this method no longer overridden in the Manager class, you will get the same error 
when you compile the Manager class again. Are you starting to understand the power of annotations? With 
this background in mind, let’s start digging deep into annotations.

According to the Merriam Webster dictionary, the meaning of annotation is

“A note added by way of comment or explanation”.

This is exactly what an annotation is in Java. It lets you associate (or annotate) metadata (or notes) to the 
program elements in a Java program. The program elements may be a module, a package, a class, an interface, 
a field of a class, a local variable, a method, a parameter of a method, an enum, an annotation, a type parameter 
in a generic type/method declaration, a type use, etc. In other words, you can annotate any declaration or type 
use in a Java program. An annotation is used as a “modifier” in a declaration of a program element like any other 
modifiers (public, private, final, static, etc.). Unlike a modifier, an annotation does not modify the meaning 
of the program elements. It acts like a decoration or a note for the program element that it annotates.



Chapter 1 ■ annotations

4

An annotation differs from regular documentation in many ways. A regular documentation is only for 
humans to read and it is “dumb.” It has no intelligence associated with it. If you misspell a word, or state 
something in the documentation and do just the opposite in the code, you are on your own. It is very difficult 
and impractical to read the elements of documentation programmatically at runtime. Java lets you generate 
Javadocs from your documentation and that’s it for regular documentation. This does not mean that you do 
not need to document your programs. You do need regular documentation. At the same time, you need a 
way to enforce your intent using a documentation-like mechanism. Your documentation should be available 
to the compiler and the runtime. An annotation serves this purpose. It is human readable, which serves as 
documentation. It is compiler readable, which lets the compiler verify the intention of the programmer; for 
example, the compiler makes sure that the programmer has really overridden the method if it comes across an 
@Override annotation for a method. Annotations are also available at runtime so that a program can read and 
use it for any purpose it wants. For example, a tool can read annotations and generate boilerplate code.  
If you have worked with Enterprise JavaBeans (EJB), you know the pain of keeping all the interfaces and classes 
in sync and adding entries to XML configuration files. EJB 3.0 uses annotations to generate the boilerplate 
code, which makes EJB development painless for programmers. Another example of an annotation being used 
in a framework/tool is JUnit version 4.0. JUnit is a unit test framework for Java programs. It uses annotations to 
mark methods that are test cases. Before that, you had to follow a naming convention for the test case methods. 
Annotations have a variety of uses, which are documentation, verification, and enforcement by the compiler, 
the runtime validation, code generation by frameworks/tools, etc.

To make an annotation available to the compiler and the runtime, an annotation has to follow rules. 
In fact, an annotation is another type like a class and an interface. As you have to declare a class type or an 
interface type before you can use it, you must also declare an annotation type.

An annotation does not change the semantics (or meaning) of the program element that it annotates.  
In that sense, an annotation is like a comment, which does not affect the way the annotated program 
element works. For example, the @Override annotation for the setSalary() method did not change the way 
the method works. You (or a tool/framework) can change the behavior of a program based on an annotation. 
In such cases, you use the annotation rather than the annotation doing anything on its own. The point is that 
an annotation by itself is always passive.

Declaring an Annotation Type
Declaring an annotation type is similar to declaring an interface type, except for some restrictions. 
According to Java specification, an annotation type declaration is a special kind of interface type declaration. 
You use the interface keyword, which is preceded by the @ sign (at sign) to declare an annotation type.  
The following is the general syntax for declaring an annotation type:

[modifiers] @ interface <annotation-type-name> {
    // Annotation type body goes here
}

[modifiers] for an annotation declaration is the same as for an interface declaration. For example, 
you can declare an annotation type at the public or package level. The @ sign and the interface keyword 
may be separated by whitespace or they can be placed together. By convention, they are placed together 
as @interface. The interface keyword is followed by an annotation type name. It should be a valid Java 
identifier. The annotation type body is placed within braces.

Suppose you want to annotate your program elements with the version information, so you can 
prepare a report about new program elements added in a specific release of your product. To use a custom 
annotation type (as opposed to a built-in annotation, such as @Override), you must declare it first. You want 
to include the major and the minor versions of the release in the version information. Listing 1-2 contains 
the complete code for your first annotation declaration.



Chapter 1 ■ annotations

5

Listing 1-2. The Declaration of an Annotation Type Named Version

// Version.java
package com.jdojo.annotation;

public @interface Version {
    int major();
    int minor();
}

Compare the declaration of the Version annotation with the declaration of an interface. It differs 
from an interface definition only in one aspect: it uses the @ sign before its name. You have declared two 
abstract methods in the Version annotation type: major() and minor(). Abstract methods in an annotation 
type are known as its elements. You can think about it in another way: an annotation can declare zero or 
more elements, and they are declared as abstract methods. The abstract method names are the names of 
the elements of the annotation type. You have declared two elements, major and minor, for the Version 
annotation type. The data types of both elements are int.

 ■ Tip  although you can declare static and default methods in interface types, they are not allowed in 
annotation types. static and default methods are meant to contain some logic. annotations are meant to 
represent just the values for elements in the annotation type. this is the reason that static and default methods 
are not allowed in annotation types.

You need to compile the annotation type. When Version.java file is compiled, it will produce a 
Version.class file. The simple name of your annotation type is Version and its fully qualified name is  
com.jdojo.annotation.Version. Using the simple name of an annotation type follows the rules of any  
other types (e.g., classes, interfaces, etc.). You will need to import an annotation type the same way you 
import any other types.

How do you use an annotation type? You might be thinking that you will declare a new class that will 
implement the Version annotation type, and you will create an object of that class. You might be relieved to 
know that you do not need to take any additional steps to use the Version annotation type. An annotation 
type is ready to be used as soon as it is declared and compiled. To create an instance of an annotation type 
and use it to annotate a program element, you need to use the following syntax:

@annotationType(name1=value1, name2=value2, name3=value3...)

The annotation type is preceded by an @ sign. It is followed by a list of comma-separated name=value 
pairs enclosed in parentheses. The name in a name=value pair is the name of the element declared in the 
annotation type and the value is the user-supplied value for that element. The name=value pairs do not have 
to appear in the same order as they are declared in the annotation type, although by convention name=value 
pairs are used in the same order as the declaration of the elements in the annotation type.

Let’s use an instance of the Version type, which has the major element value as 1 and the minor element 
value as 0. The following is an instance of your Version annotation type:

@Version(major=1, minor=0)

You can rewrite this annotation as @Version(minor=0, major=1) without changing its meaning.  
You can also use the annotation type’s fully qualified name as

@com.jdojo.annotation.Version(major=0, minor=1)



Chapter 1 ■ annotations

6

You use as many instances of the Version annotation type in your program as you want. For example, 
you have a VersionTest class, which has been in your application since release 1.0. You have added some 
methods and instance variables in release 1.1. You can use your Version annotation to document additions 
to the VersionTest class in different releases. You can annotate your class declaration as

@Version(major=1, minor=0)
public class VersionTest {
    // Code goes here
}

An annotation is added in the same way you add a modifier for a program element. You can mix the 
annotation for a program element with its other modifiers. You can place annotations in the same line as 
other modifiers or in a separate line. It is a personal choice whether you use a separate line to place the 
annotations or you mix them with other modifiers. By convention, annotations for a program element are 
placed before all other modifiers. Let’s follow this convention and place the annotation in a separate line by 
itself, as shown. Both of the following declarations are technically the same:

// Style #1
@Version(major=1, minor=0) public class VersionTest {
    // Code goes here
}

// Style #2
public @Version(major=1, minor=0) class VersionTest {
    // Code goes here
}

Listing 1-3 shows the sample code for the VersionTest class.

Listing 1-3. A VersionTest Class with Annotated Elements

// VersionTest.java
package com.jdojo.annotation;

// Annotation for class VersionTest
@Version(major=1, minor=0)
public class VersionTest {
    // Annotation for instance variable xyz
    @Version(major=1, minor=1)
    private int xyz = 110;

    // Annotation for constructor VersionTest()
    @Version(major=1, minor=0)
    public VersionTest() {
    }

    // Annotation for constructor VersionTest(int xyz)
    @Version(major=1, minor=1)
    public VersionTest(int xyz) {
        this.xyz = xyz;
    }



Chapter 1 ■ annotations

7

    // Annotation for the printData() method
    @Version(major=1, minor=0)
    public void printData() {
    }

    // Annotation for the setXyz() method
    @Version(major=1, minor=1)
    public void setXyz(int xyz) {
        // Annotation for local variable newValue
        @Version(major=1, minor=2)
        int newValue = xyz;

        this.xyz = xyz;
    }
}

In Listing 1-3, you use @Version annotation to annotate the class declaration, class field, local variables, 
constructors, and methods. There is nothing extraordinary in the code for the VersionTest class. You just 
added the @Version annotation to various elements of the class. The VersionTest class would work the 
same, even if you remove all @Version annotations. It is to be emphasized that using annotations in your 
program does not change the behavior of the program at all. The real benefit of annotations comes from 
reading it at compile-time and runtime.

What do you do next with the Version annotation type? You have declared it as a type. You have used 
it in your VersionTest class. Your next step is to read it at runtime. Let’s defer this step for now; I cover it in 
detail in a later section. I discuss more on annotation type declarations first.

Restrictions on Annotation Types
An annotation type is a special type of interface with some restrictions. I cover some of the restrictions in the 
sections to follow.

Restriction #1
An annotation type cannot inherit from another annotation type. That is, you cannot use the extends clause 
in an annotation type declaration. The following declaration will not compile because you have used the 
extends clause to declare the WrongVersion annotation type:

// Won't compile
public @interface WrongVersion extends BasicVersion {
    int extended();
}

Every annotation type implicitly inherits from the java.lang.annotation.Annotation interface, which 
is declared as follows:

package java.lang.annotation;

public interface Annotation {
    boolean equals(Object obj);
    int hashCode();



Chapter 1 ■ annotations

8

    String toString();
    Class<? extends Annotation> annotationType();
}

This implies that all of the four methods declared in the Annotation interface are available in all 
annotation types. A word of caution needs to be mentioned here. You declare elements for an annotation 
type using abstract method declarations. The methods declared in the Annotation interface do not declare 
elements in an annotation type. Your Version annotation type has only two elements, major  
and minor, which are declared in the Version type itself. You cannot use the annotation type Version as  
@Version(major=1, minor=2, toString="Hello"). The Version annotation type does not declare 
toString as an element. It inherits the toString() method from the Annotation interface.

The first three methods in the Annotation interface are the methods from the Object class. The 
annotationType() method returns the class reference of the annotation type to which the annotation 
instance belongs. The Java creates a proxy class dynamically at runtime, which implements the annotation 
type. When you obtain an instance of an annotation type, that instance class is the dynamically generated 
proxy class, whose reference you can get using the getClass() method on the annotation instance. If you get 
an instance of the Version annotation type at runtime, its getClass() method will return the class reference 
of the dynamically generated proxy class, whereas its annotationType() method will return the class 
reference of the com.jdojo.annotation.Version annotation type.

Restriction #2
Method declarations in an annotation type cannot specify any parameters. A method declares an element 
for the annotation type. An element in an annotation type lets you associate a data value to an annotation’s 
instance. A method declaration in an annotation is not called to perform any kind of processing. Think of 
an element as an instance variable in a class having two methods, a setter and a getter, for that instance 
variable. For an annotation, the Java runtime creates a proxy class that implements the annotation type 
(which is an interface). Each annotation instance is an object of that proxy class. The method you declare in 
your annotation type becomes the getter method for the value of that element you specify in the annotation. 
The Java runtime will take care of setting the specified value for the annotation elements. Since the goal of 
declaring a method in an annotation type is to work with a data element, you do not need to (and are not 
allowed to) specify any parameters in a method declaration. The following declaration of an annotation type 
would not compile because it declares a concatenate() method, which accepts two parameters:

// Won't compile
public @interface WrongVersion {
    // Cannot have parameters
    String concatenate(int major, int minor);
}

Restriction #3
Method declarations in an annotation type cannot have a throws clause. A method in an annotation type is 
defined to represent a data element. Throwing an exception to represent a data value does not make sense. The 
following declaration of an annotation type would not compile because the major() method has a throws clause:

// Won't compile
public @interface WrongVersion {
    int major() throws Exception; // Cannot have a throws clause
    int minor(); // OK
}



Chapter 1 ■ annotations

9

Restriction #4
The return type of a method declared in an annotation type must be one of the following types:

•	 Any primitive type: byte, short, int, long, float, double, boolean, and char

•	 java.lang.String

•	 java.lang.Class

•	 An enum type

•	 An annotation type

•	 An array of any of the previously mentioned types, for example, String[], int[], etc. 
The return type cannot be a nested array. For example, you cannot have a return type 
of String[][] or int[][].

 ■ Tip  the reason behind these data type restrictions is that all values for allowed data types must be 
represented in the source code, which the compiler should be able to represent for compile-time analysis.

The return type of Class needs a little explanation. Instead of the Class type, you can use a generic return 
type that will return a user-defined class type. Suppose you have a Test class and you want to declare the return 
type of a method in an annotation type of type Test. You can declare the annotation method as shown:

public @interface GoodOne {
    Class element1();                 // Any Class type
    Class<Test> element2();           // Only Test class type
    Class<? extends Test> element3(); // Test or its subclass type
}

Restriction #5
An annotation type cannot declare a method, which would be equivalent to overriding a method in the 
Object class or the Annotation interface.

Restriction #6
An annotation type cannot be generic.

Default Value of an Annotation Element
The syntax for an annotation type declaration lets you specify a default value for its elements. You are not 
required to, but you can, specify a value for an annotation element that has a default value specified in its 
declaration. The default value for an element can be specified using the following general syntax:

[modifiers] @interface <annotation-type-name> {
    <data-type> <element-name>() default <default-value>;
}



Chapter 1 ■ annotations

10

The keyword default is used to specify the default value. The default value of the type must be 
compatible with the data type for the element.

Suppose you have a product that is not frequently released, so it is less likely that it will have a minor 
version other than zero. You can simplify your Version annotation type by specifying a default value for its 
minor element as zero, as shown:

public @interface Version {
    int major();
    int minor() default 0; // Set zero as default value for minor
}

Once you set the default value for an element, you do not have to pass its value when you use an 
annotation of this type. Java will use the default value for the missing element.

@Version(major=1)          // minor is zero, which is its default value
@Version(major=2)          // minor is zero, which is its default value
@Version(major=2, minor=1) // minor is 1, which is the specified value

All default values must be compile-time constants. How do you specify the default value for an array 
type? You need to use the array initializer syntax. The following snippet of code shows how to specify default 
values for an array and other data types:

// Shows how to assign default values to elements of different types
public @interface DefaultTest {
    double d() default 12.89;
    int num() default 12;    
    int[] x() default {1, 2};
    String s() default "Hello";
    String[] s2() default {"abc", "xyz"};
    Class c() default Exception.class;
    Class[] c2() default {Exception.class, java.io.IOException.class};
}

The default value for an element is not compiled with the annotation. It is read from the annotation type 
definition when a program attempts to read the value of an element at runtime. For example, when you use 
@Version(major=2), this annotation instance is compiled as is. It does not add the minor element with its 
default value as zero. In other words, this annotation is not modified to @Version(major=2, minor=0) at the 
time of compilation. However, when you read the value of the minor element for this annotation at runtime, 
Java will detect that the value for the minor element was not specified. It will consult the Version annotation 
type definition for its default value. The implication of this mechanism is that if you change the default value 
of an element, the changed default value will be read whenever a program attempts to read it, even if the 
annotated program was compiled before you changed the default value.

Annotation Type and Its Instances
I use the terms “annotation type” and “annotation” frequently. Annotation type is a type like an interface. 
Theoretically, you can use annotation type wherever you can use an interface type. Practically, we limit its 
use only to annotate program elements. You can declare a variable of an annotation type as shown:

Version v = null; // Here, Version is an annotation type



Chapter 1 ■ annotations

11

Like an interface, you can also implement an annotation type in a class. However, you are never 
supposed to do that, as it will defeat the purpose of having an annotation type as a new construct. You 
should always implement an interface in a class, not an annotation type. Technically, the code in Listing 1-4  
for the DoNotUseIt class is valid. This is just for the purposes of demonstration. Do not implement an 
annotation in a class even if it works.

Listing 1-4. A Class Implementing an Annotation Type

// DoNotUseIt.java
package com.jdojo.annotation;

import java.lang.annotation.Annotation;

public class DoNotUseIt implements Version {
    // Implemented method from the Version annotation type
    @Override
    public int major() {
        return 0;
    }

    // Implemented method from the Version annotation type
    @Override
    public int minor() {
        return 0;
    }

    // Implemented method from the Annotation annotation type,
    // which is the supertype of the Version annotation type
    @Override
    public Class<? extends Annotation> annotationType() {
        return null;
    }
}

The Java runtime implements the annotation type to a proxy class. It provides you with an object 
of a class that implements your annotation type for each annotation you use in your program. You must 
distinguish between an annotation type and instances (or objects) of that annotation type. In your example, 
Version is an annotation type. Whenever you use it as @Version(major=2, minor=4), you are creating 
an instance of the Version annotation type. An instance of an annotation type is simply referred to as an 
annotation. For example, we say that @Version(major=2, minor=4) is an annotation or an instance of the 
Version annotation type. An annotation should be easy to use in a program. The syntax @Version(...) is 
shorthand for creating a class, creating an object of that class, and setting the values for its elements. I cover 
how to get to the object of an annotation type at runtime later in this chapter.

Using Annotations
In this section, I discuss the details of using different types of elements while declaring annotation types. 
Keep in mind that the supplied value for elements of an annotation must be a compile-time constant 
expression and you cannot use null as the value for any type of elements in an annotation.



Chapter 1 ■ annotations

12

Primitive Types
The data type of an element in an annotation type could be any of the primitive data types: byte, short, 
int, long, float, double, boolean, and char. The Version annotation type declares two elements, major 
and minor, and both are of int data type. The following code snippet declares an annotation type called 
PrimitiveAnnTest:

public @interface PrimitiveAnnTest {
    byte a();
    short b();
    int c();
    long d();
    float e();
    double f();
    boolean g();
    char h();
}

You can use an instance of the PrimitiveAnnTest type as

@PrimitiveAnnTest(a=1, b=2, c=3, d=4, e=12.34F, f=1.89, g=true, h='Y')

You can use a compile-time constant expression to specify the value for an element of an annotation. 
The following two instances of the Version annotation are valid and have the same values for their elements:

@Version(major=2+1, minor=(int)13.2)
@Version(major=3, minor=13)

String Types
You can use an element of the String type in an annotation type. Listing 1-5 contains the code for an 
annotation type called Name. It has two elements, first and last, which are of the String type.

Listing 1-5. Name Annotation Type, Which Has Two Elements, first and last, of the String Type

// Name.java
package com.jdojo.annotation;

public @interface Name {
    String first();
    String last();
}

The following snippet of code shows how to use the Name annotation type in a program:

@Name(first="John", last="Jacobs")
public class NameTest {
    @Name(first="Wally", last="Inman")
    public void aMethod() {
        // More code goes here...
    }
}



Chapter 1 ■ annotations

13

It is valid to use the string concatenation operator (+) in the value expression for an element of a String 
type. The following two annotations are equivalent:

@Name(first="Jo" + "hn", last="Ja" + "cobs")
@Name(first="John", last="Jacobs")

Typically, you will use string concatenation in an annotation when you want to use compile-time 
constant such as a final class variable as part of the value for an annotation element. In the following 
annotation, Test is a class that defines a compile-time constant String class variable named UNKNOWN:

@Name(first="Mr. " + Test.UNKNWON, last=Test.UNKNOWN)

The following use of the @Name annotation is not valid because the expression new String("John") is 
not a compile-time constant expression:

@Name(first=new String("John"), last="Jacobs")

Class Types
The benefits of using the Class type as an element in an annotation type are not obvious. Typically, it is used 
where a tool/framework reads the annotations with elements of a class type and performs some specialized 
processing on the element’s value or generates code. Let’s go through a simple example of using a class 
type element. Suppose you are writing a test runner tool for running test cases for a Java program. Your 
annotation will be used in writing test cases. If your test case must throw an exception when it is invoked 
by the test runner, you need to use an annotation to indicate that. Let’s create a DefaultException class, as 
shown in Listing 1-6.

Listing 1-6. A DefaultException Class That Is Inherited from the Throwable Exception Class

// DefaultException.java
package com.jdojo.annotation;

public class DefaultException extends java.lang.Throwable {
    public DefaultException() {
    }

    public DefaultException(String msg) {
        super(msg);
    }
}

Listing 1-7 shows the code for a TestCase annotation type.

Listing 1-7. A TestCase Annotation Type Whose Instances Are Used to Annotate Test Case Methods

// TestCase.java
package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;



Chapter 1 ■ annotations

14

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface TestCase {
    Class<? extends Throwable> willThrow() default DefaultException.class;
}

The return type of the willThrow element is defined as the wildcard of the Throwable class, so that the 
user will specify only the Throwable class or its subclasses as the element’s value. You could have used the 
Class<?> type as the type of your willThrow element. However, that would have allowed the users of this 
annotation type to pass any class type as its value. Note that you have used two annotations, @Retention and 
@Target, for the TestCase annotation type. The @Retention annotation type specified that the @TestCase 
annotation would be available at runtime. It is necessary to use the retention policy of RUNTIME for your 
TestCase annotation type because it is meant for the test runner tool to read it at runtime. The @Target 
annotation states that the TestCase annotation can be used only to annotate methods. I cover the @Retention 
and @Target annotation types in detail in later sections when I discuss meta-annotations. Listing 1-8 shows 
the use of your TestCase annotation type.

Listing 1-8. A Test Case That Uses the TestCase Annotations

// PolicyTestCases.java
package com.jdojo.annotation;

import java.io.IOException;

public class PolicyTestCases {
    // Must throw IOException
    @TestCase(willThrow=IOException.class)
    public static void testCase1(){
        // Code goes here
    }

    // We are not expecting any exception
    @TestCase()
    public static void testCase2(){
        // Code goes here
    }
}

The testCase1() method specifies, using the @TestCase annotation, that it will throw an IOException. 
The test runner tool will make sure that when it invokes this method, the method does throw an 
IOException. Otherwise, it will fail the test case. The testCase2() method does not specify that it will throw 
an exception. If it throws an exception when the test is run, the tool should fail this test case.

Enum Type
An annotation can have elements of an enum type. Suppose you want to declare an annotation type called 
Review that can describe the code review status of a program element. Let’s assume that it has a status 
element and it can have one of the four values: PENDING, FAILED, PASSED, and PASSEDWITHCHANGES. You can 
declare an enum as an annotation type member. Listing 1-9 shows the code for a Review annotation type.



Chapter 1 ■ annotations

15

Listing 1-9. An Annotation Type That Uses an enum Type Element

// Review.java
package com.jdojo.annotation;

public @interface Review {
    ReviewStatus status() default ReviewStatus.PENDING;
    String comments() default "";

    // ReviewStatus enum is a member of the Review annotation type
    public enum ReviewStatus {PENDING, FAILED, PASSED, PASSEDWITHCHANGES};
}

 ■ Tip  the enum type used as the type of an annotation element need not be declared as a nested enum type of 
the annotation type, as you did in this example. the enum type can also be declared outside the annotation type.

The Review annotation type declares a ReviewStatus enum type and the four review statuses are the 
elements of the enum. It has two elements, status and comments. The type of the status element is the 
enum type ReviewStatus. The default value for the status element is ReviewStatus.PENDING. You have an 
empty string as the default value for the comments element.

Here are some of the instances of the Review annotation type. You will need to import the com.jdojo.
annotation.Review.ReviewStatus enum in your program to use the simple name of the ReviewStatus 
enum type.

// Have default for status and comments. Maybe the code is new.
@Review()

// Leave status as Pending, but add some comments
@Review(comments="Have scheduled code review on December 1, 2017")

// Fail the review with comments
@Review(status=ReviewStatus.FAILED, comments="Need to handle errors")

// Pass the review without comments
@Review(status=ReviewStatus.PASSED)

Here is the sample code that annotates a Test class indicating that it passed the code review:

import com.jdojo.annotation.Review.ReviewStatus;
import com.jdojo.annotation.Review;

@Review(status=ReviewStatus.PASSED)
public class Test {
    // Code goes here
}



Chapter 1 ■ annotations

16

Annotation Type
An annotation type can be used anywhere a type can be used in a Java program. For example, you can use 
an annotation type as the return type for a method. You can also use an annotation type as the type of an 
element inside another annotation type’s declaration. Suppose you want to have a new annotation type 
called Description, which will include the name of the author, version, and comments for a program 
element. You can reuse your Name and Version annotation types as its name and version elements type. 
Listing 1-10 shows the code for the Description annotation type.

Listing 1-10. An Annotation Type Using Other Annotation Types as Its Elements

// Description.java
package com.jdojo.annotation;

public @interface Description {
    Name name();
    Version version();
    String comments() default "";
}

To provide a value for an element of an annotation type, you need to use the syntax that creates an 
annotation type instance. For example, @Version(major=1, minor=2) creates an instance of the Version 
annotation. Note the nesting of an annotation inside another annotation in the following snippet of code:

@Description(name=@Name(first="John", last="Jacobs"),
             version=@Version(major=1, minor=2),
             comments="Just a test class")
public class Test {
    // Code goes here
}

Array Type Annotation Element
An annotation can have elements of an array type. The array type could be one of the following types:

•	 A primitive type

•	 java.lang.String type

•	 java.lang.Class type

•	 An enum type

•	 An annotation type

You need to specify the value for an array element inside braces. Elements of the array are separated by 
a comma. Suppose you want to annotate your program elements with a short description of a list of things 
that you need to work on. Listing 1-11 creates a ToDo annotation type for this purpose.

Listing 1-11. ToDo Annotation Type with String[] as Its Sole Element

// ToDo.java
package com.jdojo.annotation;



Chapter 1 ■ annotations

17

public @interface ToDo {
    String[] items();
}

The following snippet of code shows how to use a @ToDo annotation:

@ToDo(items={"Add readFile method", "Add error handling"})
public class Test {
    // Code goes here
}

If you have only one element in the array, you can omit the braces. The following two annotation 
instances of the ToDo annotation type are equivalent:

@ToDo(items={"Add error handling"})
@ToDo(items="Add error handling")

 ■ Tip  if you do not have valid values to pass to an element of an array type, you can use an empty array.  
For example, @ToDo(items={}) is a valid annotation where the items element has been assigned an empty array.

No Null Value in an Annotation
You cannot use a null reference as a value for an element in an annotation. Note that it is allowed to use an 
empty string for the String type element and an empty array for an array type element. Using the following 
annotations will result in compile-time errors:

@ToDo(items=null)
@Name(first=null, last="Jacobs")

Shorthand Annotation Syntax
The shorthand annotation syntax is little easier to use in a few circumstances. Suppose you have an 
annotation type Enabled with an element having a default value, as shown:

public @interface Enabled {
    boolean status() default true;
}

If you want to annotate a program element with the Enabled annotation type using the default value 
for its element, you can use the @Enabled() syntax. You do not need to specify the values for the status 
element because it has a default value. You can use shorthand in this situation, which allows you to omit the 
parentheses. You can just use @Enabled instead of using @Enabled(). The Enabled annotation can be used in 
either of the following two forms:

@Enabled
public class Test {
    // Code goes here
}



Chapter 1 ■ annotations

18

@Enabled()
public class Test {
    // Code goes here
}

An annotation type with only one element also has a shorthand syntax. You can use this shorthand 
if you adhere to a naming rule for the sole element in the annotation type. The name of the element must 
be value. If an annotation type has only one element that is named value, you can omit the name from 
name=value pair from your annotation. The following snippet of code declares a Company annotation type, 
which has only one element named value:

public @interface Company {
    String value(); // the element name is value
}

You can omit the name from name=value pair when you use the Company annotation, as shown  
here. If you want to use the element name with the Company annotation, you can always do so as  
@Company(value="Abc Inc.").

@Company("Abc Inc.")
public class Test {
    // Code goes here
}

You can use this shorthand of omitting the name of the element from annotations, even if the element 
data type is an array. Consider the following annotation type called Reviewers:

public @interface Reviewers {
    String[] value(); // the element name is value
}

Since the Reviewers annotation type has only one element, which is named value, you can omit the 
element name when you are using it.

// No need to specify name of the element
@Reviewers({"John Jacobs", "Wally Inman"})
public class Test {
    // Code goes here
}

You can also omit the braces if you specify only one element in the array for the value element of the 
Reviewers annotation type.

@Reviewers("John Jacobs")
public class Test {
    // Code goes here
}

You just saw several examples using the name of the element as value. Here is the general rule of 
omitting the name of the element in an annotation: if you supply only one value when using an annotation, 
the name of the element is assumed value. This means that you are not required to have only one element 
in the annotation type, which is named value, to omit its name in the annotations. If you have an annotation 



Chapter 1 ■ annotations

19

type, which has an element named value (with or without a default value) and all other elements have 
default values, you can still omit the name of the element in annotation instances of this type. Here are some 
examples to illustrate this rule:

public @interface A {
    String value();
    int id() default 10;
}

// Same as @A(value="Hello", id=10)
@A("Hello")
public class Test {
    // Code goes here
}

// Won't compile. Must use only one value to omit the element name
@A("Hello", id=16)
public class WontCompile {
    // Code goes here
}

// OK. Must use name=value pair when passing more than one value
@A(value="Hello", id=16)
public class Test {
    // Code goes here
}

Marker Annotation Types
A marker annotation type does not declare any elements, not even one with a default value. Typically, a 
marker annotation is used by the annotation processing tools, which generate boilerplate code based on the 
marker annotation type.

public @interface Marker {
    // No element declarations
}

@Marker
public class Test {
    // Code goes here
}

Meta-Annotation Types
Meta-annotation types are used to annotate other annotation type declarations. The following are  
meta-annotation types:

•	 Target

•	 Retention



Chapter 1 ■ annotations

20

•	 Inherited

•	 Documented

•	 Repeatable

Meta-annotation types are part of the Java class library. They are declared in the java.lang.annotation 
package. I discuss meta-annotation types in detail in subsequent sections.

 ■ Tip  the java.lang.annotation package contains a Native annotation type, which is not a meta-
annotation. it is used to annotate fields indicating that the field may be referenced from native code. it is a 
marker annotation. typically, it is used by tools that generate some code based on this annotation.

The Target Annotation Type
The Target annotation type is used to specify the context in which an annotation type can be used. It has 
only one element named value, which is an array of the java.lang.annotation.ElementType enum type. 
Table 1-1 lists all constants in the ElementType enum.

The following declaration of the Version annotation type annotates the annotation type declaration 
with the Target meta-annotation, which specifies that the Version annotation type can be used with 
program elements of only three types: any type (class, interface, enum, and annotation types), constructors, 
and method.

Table 1-1. List of Constants in the java.lang.annotation.ElementType enum

Constant Name Description

ANNOTATION_TYPE Used to annotate another annotation type declaration. This makes the annotation 
type a meta-annotation.

CONSTRUCTOR Used to annotate constructors.

FIELD Used to annotate fields and enum constants.

LOCAL_VARIABLE Used to annotate local variables.

METHOD Used to annotate methods.

MODULE Used to annotate modules. It was added in Java 9.

PACKAGE Used to annotate package declarations.

PARAMETER Used to annotate parameters.

TYPE Used to annotate class, interface (including annotation type), or enum 
declarations.

TYPE_PARAMETER Used to annotate type parameters in generic classes, interfaces, methods, etc.  
It was added in Java 8.

TYPE_USE Used to annotate all uses of types. It was added in Java 8. The annotation can also 
be used where an annotation with ElementType.TYPE and ElementType.TYPE_
PARAMETER can be used. It can also be used before constructors, in which case it 
represents the objects created by the constructor.



Chapter 1 ■ annotations

21

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Target;
import java.lang.annotation.ElementType;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR, ElementType.METHOD})
public @interface Version {
    int major();
    int minor();
}

The Version annotation type cannot be used on any program elements other than the three types specified 
in its Target annotation. Its following use is incorrect because it is being used on an instance variable (a field):

public class WontCompile {
    // A compile-time error. Version annotation cannot be used on a field.
    @Version(major = 1, minor = 1)
    int id = 110;
}

The following uses of the Version annotation are valid:

// OK. A class type declaration
@Version(major = 1, minor = 0)
public class VersionTest {
    // OK. A constructor declaration
    @Version(major = 1, minor = 0)
    public VersionTest() {
        // Code goes here
    }

    // OK. A method declaration
    @Version(major = 1, minor = 1)
    public void doSomething() {
        // Code goes here
    }
}

Prior to Java 8, annotations were allowed on formal parameters of methods and declarations of 
packages, classes, methods, fields, and local variables. Java 8 added support for using annotations on any 
use of a type and on type parameter declarations. The phrase “any use of a type” needs little explanation. 
A type is used in many contexts, for example, after the extends clause as a supertype, in an object creation 
expression after the new operator, in a cast, in a throws clause, etc. From Java 8, annotations may appear 
before the simple name of the types wherever a type is used. Note that the simple name of the type may be 
used only as a name, not as a type, for example, in an import statement. Consider the declarations of the 
Fatal and NonZero annotation types shown in Listing 1-12 and Listing 1-13.



Chapter 1 ■ annotations

22

Listing 1-12. A Fatal Annotation Type That Can Be Used with Any Type Use

// Fatal.java
package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target({ElementType.TYPE_USE})
public @interface Fatal {
}

Listing 1-13. A NonZero Annotation Type That Can Be Used with Any Type Use

// NonZero.java
package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target({ElementType.TYPE_USE})
public @interface NonZero {    
}

The Fatal and NonZero annotation types can be used wherever a type is used. Their uses in the 
following contexts are valid:

public class Test {
    public void processData() throws @Fatal Exception {        
        double value = getValue();
        int roundedValue = (@NonZero int) value;

        Test t = new @Fatal Test();

        // More code goes here
    }

    public double getValue() {
        double value = 189.98;

        // More code goes here

        return value;
    }
}

 ■ Tip  if you do not annotate an annotation type with the Target annotation type, the annotation type can be 
used everywhere, except in a type parameter declaration.



Chapter 1 ■ annotations

23

The Retention Annotation Type
You can use annotations for different purposes. You may want to use them solely for documentation purposes, 
to be processed by the compiler, and/or to use them at runtime. An annotation can be retained at three levels.

•	 Source code only

•	 Class file only (the default)

•	 Class file and the runtime

The Retention meta-annotation type is used to specify how an annotation instance of an annotation 
type should be retained by Java. This is also known as the retention policy of an annotation type. If an 
annotation type has a “source code only” retention policy, instances of its type are removed when compiled 
into a class file. If the retention policy is “class file only,” annotation instances are retained in the class file, 
but they cannot be read at runtime. If the retention policy is “class file and runtime” (simply known as 
runtime), the annotation instances are retained in the class file and they are available for reading at runtime.

The Retention meta-annotation type declares one element, named value, which is of the java.
lang.annotation.RetentionPolicy enum type. The RetentionPolicy enum has three constants, 
SOURCE, CLASS, and RUNTIME, which are used to specify the retention policy of source only, class only, and 
class-and-runtime, respectively. The following code uses the Retention meta-annotation on the Version 
annotation type. It specifies that the Version annotations should be available at runtime. Note the use of 
two meta-annotations on the Version annotation type: Target and Retention.

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Target;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,   
         ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Version {
    int major();
    int minor();
}

 ■ Tip  if you do not use the Retention meta-annotation on an annotation type, its retention policy defaults 
to class file only. this implies that you will not be able to read those annotations at runtime. You will make 
this common mistake in the beginning. You would try to read annotations and the runtime will not return any 
values. Make sure that your annotation type has been annotated with the Retention meta-annotation with the 
retention policy of RetentionPolicy.RUNTIME before you attempt to read them at runtime. an annotation on 
a local variable declaration is never available in the class file or at runtime irrespective of the retention policy 
of the annotation type. the reason for this restriction is that the Java runtime does not let you access the local 
variables using reflection at runtime; unless you have access to the local variables at runtime, you cannot read 
annotations for them.



Chapter 1 ■ annotations

24

The Inherited Annotation Type
The Inherited annotation type is a marker meta-annotation type. If an annotation type is annotated with 
an Inherited meta-annotation, its instances are inherited by a subclass declaration. It has no effect if an 
annotation type is used to annotate any program elements other than a class declaration. Let’s consider 
two annotation type declarations: Ann2 and Ann3. Note that Ann2 is not annotated with an Inherited meta-
annotation, whereas Ann3 is.

public @interface Ann2 {
    int id();
}

@Inherited
public @interface Ann3 {
    int id();
}

Let’s declare two classes, A and B, as follows. Note that class B inherits class A.

@Ann2(id=505)
@Ann3(id=707)
public class A {
    // Code for class A goes here
}

// Class B inherits Ann3(id=707) annotation from the class A
public class B extends A {
    // Code for class B goes here
}

In this snippet of code, class B inherits the @Ann3(id=707) annotation from class A because the Ann3 
annotation type has been annotated with an Inherited meta-annotation. Class B does not inherit the @
Ann2(id=505) annotation because the Ann2 annotation type is not annotated with an Inherited meta-
annotation.

The Documented Annotation Type
The Documented annotation type is a marker meta-annotation type. If an annotation type is annotated with a 
Documented annotation, the Javadoc tool will generate documentation for all of its instances. Listing 1-14 has 
the code for the final version of the Version annotation type, which has been annotated with a Documented 
meta-annotation.

Listing 1-14. The Final Version of the Version Annotation Type

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ annotations

25

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR, ElementType.METHOD, ElementType.MODULE,
         ElementType.PACKAGE, ElementType.LOCAL_VARIABLE, ElementType.TYPE_USE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Version {
    int major();
    int minor();
}

Suppose you annotate a Test class with your Version annotation type as follows:

package com.jdojo.annotation;

@Version(major=1, minor=0)
public class Test {
    // Code for Test class goes here
}

When you generate documentation for the Test class using the Javadoc tool, the Version annotation 
on the Test class declaration is also generated as part of the documentation. If you remove the Documented 
annotation from the Version annotation type declaration, the Test class documentation would not contain 
information about its Version annotation.

The Repeatable Annotation Type
Prior to Java 8, you could not repeat an annotation in the same context. For example, the following repeated 
use of the Version annotation would generate a compile-time error in Java 7:

@Version(major=1, minor=1)
@Version(major=1, minor=2)
public class Test {
    // Code goes here
}

Java 8 added a Repeatable meta-annotation type. An annotation type declaration must be annotated 
with a @Repeatable annotation if its repeated use is to be allowed. The Repeatable annotation type has 
only one element named value whose type is a class type of another annotation type. Creating a repeatable 
annotation type is a two-step process:

•	 Declare an annotation type (say T) and annotate it with the Repeatable meta-
annotation. Specify the value for the annotation as another annotation that is known 
as containing an annotation for the repeatable annotation type being declared.

•	 Declare the containing annotation type with one element that is an array of the 
repeatable annotation.

Listing 1-15 and Listing 1-16 contain declarations for the ChangeLog and ChangeLogs annotation types. 
ChangeLog is annotated with the @Repeatable(ChangeLogs.class) annotation, which means that it is a 
repeatable annotation type and its containing annotation type is ChangeLogs.



Chapter 1 ■ annotations

26

Listing 1-15. A Repeatable Annotation Type That Uses the ChangeLogs as the Containing Annotation Type

// ChangeLog.java
package com.jdojo.annotation;

import java.lang.annotation.Repeatable;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
@Repeatable(ChangeLogs.class)
public @interface ChangeLog {
    String date();
    String comments();
}

Listing 1-16. A Containing Annotation Type for the ChangeLog Repeatable Annotation Type

// ChangeLogs.java
package com.jdojo.annotation;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
public @interface ChangeLogs {
    ChangeLog[] value();
}

You can use the ChangeLog annotation to log change history for the Test class, as shown:

@ChangeLog(date="08/28/2017", comments="Declared the class")
@ChangeLog(date="09/21/2017", comments="Added the process() method")
public class Test {
    public static void process() {
        // Code goes here
    }    
}

Commonly Used Standard Annotations
Java API defines many standard annotation types. This section discusses four of the most commonly used 
standard annotations. They are defined in the java.lang package. They are

•	 Deprecated

•	 Override

•	 SuppressWarnings

•	 FunctionalInterface



Chapter 1 ■ annotations

27

Deprecating APIs
Deprecating APIs in Java is a way to provide information about the lifecycle of the APIs. You can deprecate 
modules, packages, types, constructors, methods, fields, parameters, and local variables. When you 
deprecate an API, you are telling its users:

•	 Not to use the API because it is dangerous.

•	 To migrate away from the API because a better replacement for the API exists.

•	 To migrate away from the API because the API will be removed in a future release.

How to Deprecate an API
The JDK contains two constructs that are used to deprecate APIs:

•	 The @deprecated Javadoc tag

•	 The java.lang.Deprecated annotation type

The @deprecated Javadoc tag was added in JDK 1.1 and it lets you specify the details about the 
deprecation with a rich set of text formatting features of HTML. The java.lang.Deprecated annotation 
type was added to JDK 5.0 and it can be used on the API elements, which are deprecated. Before JDK9, the 
Deprecated annotation type did not contain any elements. It is retained at runtime.

The @deprecated tag and the @Deprecated annotation are supposed to be used together. Both should 
be present or both absent. The @Deprecation annotation does not let you specify a description of the 
deprecation, so you must use the @deprecated tag to provide the description.

 ■ Tip  Using a @deprecated tag, but not a @Deprecated annotation, on an api element generates a compiler 
warning. prior to JDK9, you needed to use the -Xlint:dep-ann compiler flag to see such warnings.

Listing 1-17 contains the declaration for a class named FileCopier. Suppose this class is shipped as 
part of a library.

Listing 1-17. A FileCopier Utility Class

// FileCopier.java
package com.jdojo.deprecation;

import java.io.File;

/**
 * The class consists of static methods that can be used to
 * copy files and directories.
 *
 * @deprecated Deprecated since 1.4. Not safe to use. Use the
 * <code>java.nio.file.Files</code> class instead. This class
 * will be removed in a future release of this library.
 *
 * @since 1.2
 */



Chapter 1 ■ annotations

28

@Deprecated
public class FileCopier {
    // No direct instantiation supported
    private FileCopier() {
    }

    /**
     * Copies the contents of src to dst.
     * @param src The source file
     * @param dst The destination file
     * @return true if the copy is successfully, false otherwise.
     */
    public static boolean copy(File src, File dst) {
        // More code goes here
        return true;
    }

    // More code goes here
}

The FileCopier class is deprecated using the @Deprecated annotation. Its Javadoc uses the @deprecated 
tag to give the deprecation details such as when it was deprecated, its replacement, and its removal notice. 
Before JDK9, the @Deprecated annotation type did not contain any elements, so you had to provide all  
details about the deprecation using the @deprecated tag in the Javadoc for the deprecated API. Note that the  
@since tag used in the Javadoc indicates that the FileCopier class has existed since version 1.2 of this library, 
whereas the @deprecated tag indicates that the class has been deprecated since version 1.4 of the library.

The Javadoc tool moves the contents of the @deprecated tag to the top in the generated Javadoc to draw 
the reader’s attention. The compiler generates a warning when non-deprecated code uses a deprecated API. 
Annotating an API with @Deprecated does not generate a warning; however, using an API that has been 
annotated with a @Deprecated annotation does. If you used the FileCopier class outside the class itself, you 
will receive a compile-time warning about using the deprecated class.

Enhancements to the Deprecated Annotation in JDK9
Suppose you compiled your code and deployed it to production. If you upgraded the JDK version or 
libraries/frameworks that contain new, deprecated APIs that your old application uses, you do not receive 
any warnings and you would miss a chance to migrate away from the deprecated APIs. You must recompile 
your code to receive warnings. There was no tool to scan and analyze the compiled code (e.g., JAR files) 
and report the use of deprecated APIs. Even worse is the case when a deprecated API is removed from the 
newer version and your old, compiled code receives unexpected runtime errors. Developers were also 
confused when they looked at a deprecated element Javadoc—there was no way to express when the API was 
deprecated and whether the deprecated API will be removed in a future release. All you could do was specify 
these pieces of information in text as part of the @deprecated tag. JDK9 attempted to solve these issues by 
enhancing the @Deprecated annotation. The annotation received two new elements in JDK9: since and 
forRemoval. They are declared as follows:

•	 String since() default "";

•	 boolean forRemoval() default false;



Chapter 1 ■ annotations

29

Both new elements have default values specified, so the existing uses of the annotation do not break. 
The since element specifies the version in which the annotated API element became deprecated. It is a 
string and you are expected to follow the same version naming convention as the JDK version scheme, 
for example “9” for JDK9. It defaults to the empty string. Note that JDK9 did not add an element to the 
@Deprecated annotation type to specify a description of the deprecation. This was done for two reasons:

•	 The annotation is retained at runtime. Adding descriptive text to the annotation 
would add to the runtime memory.

•	 The descriptive text cannot be just plain text. For example, it needs to provide a link 
to the replacement of the deprecated API. The existing @deprecated Javadoc tag 
already provides this feature.

The forRemoval element indicates that the annotated API element is subject to removal in a future 
release and you should migrate away from the API. It defaults to false.

 ■ Tip  the @since Javadoc tag on an element indicates when the api element was added, whereas the 
since element of the @Deprecated annotation indicates when the api element was deprecated. in JDK9, 
reasonable efforts have been made to backfill these two elements’ values in most, if not all, use-sites of the  
@Deprecated annotations in the Java se apis.

Before JDK9, the deprecation warnings were issued based on the use of the @Deprecated annotation on 
the API element and its use-site, as shown in Table 1-2. The warnings were issued when a deprecated API 
element was used at a non-deprecated use-site. If both the declaration and its use-site were deprecated, no 
warnings were issued. You were able to suppress deprecation warnings by annotating the use-sites with a  
@SuppressWarnings("deprecation") annotation.

Addition of the forRemoval element in the @Deprecation annotation type has added five more use-cases. 
When an API is deprecated with forRemoval set to false, such a deprecation is known as ordinary deprecation 
and the warnings issued in such cases are called ordinary deprecation warnings. When an API is deprecated 
with forRemoval set to true, such a deprecation is known as terminal deprecation and the warnings issued 
in such cases are called terminal deprecation warnings or removal warnings. Table 1-3 shows the matrix of 
deprecation warnings issued in JDK9.

Table 1-2. Matrix of Deprecation Warnings Issued Before JDK9

API Use-Site API Declaration Site

Not Deprecated Deprecated

Not Deprecated N W

Deprecated N N

N = No warning, W = Warning



Chapter 1 ■ annotations

30

For backward compatibility, four upper-left uses cases in Table 1-3 are the same as in Table 1-2. That is, 
if your code generated a deprecation warning in JDK8, it will continue to generate an ordinary deprecation 
warning in JDK9. If the API has been terminally deprecated, its use-sites will generate removal warnings 
irrespective of the deprecated status of the use-site.

In JDK9, the warning issued in one case, where both the API and its use-site are terminally deprecated, 
needs a little explanation. Both API and the code that uses it have been deprecated and both will be removed 
in the future, so what is the point of getting a warning in such a case? This is done to cover cases where the 
terminally deprecated API and its use-site are in two different codebases and are maintained independently. 
If the use-site codebase outlives the API codebase, the use-site will get an unexpected runtime error because 
the API it uses no longer exists. Issuing a warning at the use-site will give its maintainers a chance to plan for 
alternatives in case the terminally deprecated API goes away before the code at use-sites.

Suppressing Deprecation Warnings
Introduction of removal warnings in JDK9 has added a new use-case for suppressing deprecation warnings. 
Before JDK9, you could suppress all deprecation warnings by annotating the use-site with a @SuppressWarnings
("deprecation") annotation. Consider a scenario:

•	 In JDK8, an API is deprecated and the use-site suppresses the deprecation warning.

•	 In JDK9, the API’s deprecation changes from ordinary deprecation to terminal 
deprecation.

•	 The use-site compiles fine in JDK9 because it has suppressed deprecation warnings 
in JDK8.

•	 The API is removed and the use-site receives an unexpected runtime error without 
receiving any removal warning earlier.

To cover such scenarios, JDK9 does not suppress removal warnings when you use @SuppressWarnings 
("deprecation"). It suppresses only ordinary deprecation warnings. To suppress removal warnings, 
you need to use @SuppressWarnings("removal"). If you want to suppress both ordinary and removal 
deprecation warnings, you need to use @SuppressWarnings({"deprecation", "removal"}).

An Example
In this section, I show you all use-cases of deprecating APIs, using the deprecated API with and without 
suppressing warnings with a simple example. In the example, I deprecate only methods and use them to 
generate compile-time warnings. You are, however, not limited to deprecating only methods. Comments 
on the methods should help you understand the expected behavior. Listing 1-18 contains the code for a 
class named Box. The class contains three methods—one in each category of deprecation—not deprecated, 

Table 1-3. Matrix of Deprecation Warnings Issued in JDK9

API Use-Site API Declaration Site

Not Deprecated Ordinarily Deprecated Terminally Deprecated

Not Deprecated N OW RW

Ordinarily Deprecated N N RW

Terminally Deprecated N N RW

N = No warning, OW = Ordinary deprecation warning, RW = Removal deprecation warning



Chapter 1 ■ annotations

31

ordinarily deprecated, and terminally deprecated. I have kept the class simple, so you can focus on the 
deprecation being used. Compiling the Box class will not generate any deprecation warnings because the 
class does not use any deprecated API, rather it contains the deprecated APIs.

Listing 1-18. A Box Class with Three Types of Methods: Not Deprecated, Ordinarily Deprecated, and 
Terminally Deprecated

// Box.java
package com.jdojo.annotation;

/**
 * This class is used to demonstrate how to deprecate APIs.
 */
public class Box {
    /**
     * Not deprecated
     */    
    public static void notDeprecated() {
        System.out.println("notDeprecated...");
    }

    /**
     * Deprecated ordinarily.
     * @deprecated  Do not use it.
     */    
    @Deprecated(since="2")
    public static void deprecatedOrdinarily() {
        System.out.println("deprecatedOrdinarily...");
    }

    /**
     * Deprecated terminally.
     * @deprecated  It will be removed in a future release. Migrate your code now.
     */    
    @Deprecated(since="2", forRemoval=true)
    public static void deprecatedTerminally() {
        System.out.println("deprecatedTerminally...");
    }
}

Listing 1-19 contains the code for a BoxTest class. The class uses all methods of the Box class. A few 
methods in the BoxTest class have been deprecated ordinarily and terminally. The first nine methods 
correspond to nine use-cases in Table 1-3, which will generate four deprecation warnings—one ordinary 
warning and three terminal warnings. Methods named like m4X(), where X is a digit, show you how to 
suppress ordinary and terminal deprecation warnings.

Listing 1-19. A BoxTest Class That Uses Deprecated APIs and Suppresses Deprecation Warnings

// BoxTest.java
package com.jdojo.annotation;



Chapter 1 ■ annotations

32

public class BoxTest {
    /**
     * API: Not deprecated
     * Use-site: Not deprecated
     * Deprecation warning: No warning
     */
    public static void m11() {
        Box.notDeprecated();
    }

    /**
    * API: Ordinarily deprecated
    * Use-site: Not deprecated
    * Deprecation warning: No warning
    */
    public static void m12() {
        Box.deprecatedOrdinarily();
    }

    /**
     * API: Terminally deprecated
     * Use-site: Not deprecated
     * Deprecation warning: Removal warning
     */
    public static void m13() {
        Box.deprecatedTerminally();
    }

    /**
     * API: Not deprecated
     * Use-site: Ordinarily deprecated
     * Deprecation warning: No warning
     * @deprecated Dangerous to use.
     */
    @Deprecated(since="1.1")
    public static void m21() {
        Box.notDeprecated();
    }

    /**
    * API: Ordinarily deprecated
    * Use-site: Ordinarily deprecated
    * Deprecation warning: No warning
    * @deprecated Dangerous to use.
    */
    @Deprecated(since="1.1")    
    public static void m22() {
        Box.deprecatedOrdinarily();
    }



Chapter 1 ■ annotations

33

    /**
     * API: Terminally deprecated
     * Use-site: Ordinarily deprecated
     * Deprecation warning: Removal warning
     * @deprecated Dangerous to use.
    */
    @Deprecated(since="1.1")
    public static void m23() {
        Box.deprecatedTerminally();
    }

    /**
     * API: Not deprecated
     * Use-site: Terminally deprecated
     * Deprecation warning: No warning
     * @deprecated Going away.
     */
    @Deprecated(since="1.1", forRemoval=true)
    public static void m31() {
        Box.notDeprecated();
    }

    /**
    * API: Ordinarily deprecated
    * Use-site: Terminally deprecated
    * Deprecation warning: No warning
    * @deprecated Going away.
    */
    @Deprecated(since="1.1", forRemoval=true)
    public static void m32() {
        Box.deprecatedOrdinarily();
    }

    /**
     * API: Terminally deprecated
     * Use-site: Terminally deprecated
     * Deprecation warning: Removal warning
     * @deprecated Going away.
    */
    @Deprecated(since="1.1", forRemoval=true)
    public static void m33() {
        Box.deprecatedTerminally();
    }

    /**
     * API: Ordinarily and Terminally deprecated
     * Use-site: Not deprecated
     * Deprecation warning: Ordinary and removal warnings
    */    
    public static void m41() {
        Box.deprecatedOrdinarily();
        Box.deprecatedTerminally();
    }



Chapter 1 ■ annotations

34

    /**
     * API: Ordinarily and Terminally deprecated
     * Use-site: Not deprecated
     * Deprecation warning: Ordinary warnings
    */    
    @SuppressWarnings("deprecation")
    public static void m42() {
        Box.deprecatedOrdinarily();
        Box.deprecatedTerminally();        
    }

    /**
     * API: Ordinarily and Terminally deprecated
     * Use-site: Not deprecated
     * Deprecation warning: Removal warnings
    */    
    @SuppressWarnings("removal")
    public static void m43() {
        Box.deprecatedOrdinarily();
        Box.deprecatedTerminally();        
    }

    /**
     * API: Ordinarily and Terminally deprecated
     * Use-site: Not deprecated
     * Deprecation warning: Removal warnings
    */    
    @SuppressWarnings({"deprecation", "removal"})
    public static void m44() {
        Box.deprecatedOrdinarily();
        Box.deprecatedTerminally();        
    }
}

You need to compile the BoxTest class using the -Xlint:deprecation compiler flag, so the compiler 
emits deprecation warnings. Note that the following command is entered on one line, not two lines.

C:\Java9LanguageFeatures>javac -Xlint:deprecation -d build\modules\jdojo.annotation
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java

src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:20: warning: [deprecation] 
deprecatedOrdinarily() in Box has been deprecated
        Box.deprecatedOrdinarily();
           ^
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:29: warning: [removal] 
deprecatedTerminally() in Box has been deprecated and marked for removal
        Box.deprecatedTerminally();
           ^
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:62: warning: [removal] 
deprecatedTerminally() in Box has been deprecated and marked for removal
        Box.deprecatedTerminally();



Chapter 1 ■ annotations

35

           ^
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:95: warning: [removal] 
deprecatedTerminally() in Box has been deprecated and marked for removal
        Box.deprecatedTerminally();
           ^
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:104: warning: [deprecation] 
deprecatedOrdinarily() in Box has been deprecated
        Box.deprecatedOrdinarily();
           ^
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:105: warning: [removal] 
deprecatedTerminally() in Box has been deprecated and marked for removal
        Box.deprecatedTerminally();
           ^
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:116: warning: [removal] 
deprecatedTerminally() in Box has been deprecated and marked for removal
        Box.deprecatedTerminally();
           ^
src\jdojo.annotation\classes\com\jdojo\annotation\BoxTest.java:126: warning: [deprecation] 
deprecatedOrdinarily() in Box has been deprecated
        Box.deprecatedOrdinarily();
           ^
8 warnings

static Analysis of Deprecated APIs
Recall that deprecation warnings are compile-time warnings. You will not get any warnings if compiled code 
for your deployed application starts using an ordinarily deprecated API or generates a runtime error because 
an API that was once valid had been terminally deprecated and removed. Before JDK9, you had to recompile 
your source code to see deprecation warnings when you upgraded your JDK or other libraries/frameworks. 
JDK9 improves this situation by providing a static analysis tool called jdeprscan that scans compiled code 
to give you the list of deprecated APIs being used. Currently, the tool reports the use of only deprecated JDK 
APIs. If your compiled code uses deprecated APIs from other libraries, say, Spring or Hibernate, or your own 
libraries, this tool will not report those uses.

The jdeprscan tool is in the JDK_HOME\bin directory. The general syntax to use the tool is as follows:

jdeprscan [options] {dir|jar|class}

Here, [options] is a list of zero or more options. You can specify a list of space-separated directories, 
JARs, fully qualified class names, or class file paths as arguments to scan. The available options are as follows:

•	 -l, --list

•	 --class-path <CLASSPATH>

•	 --for-removal

•	 --release <6|7|8|9>

•	 -v, --verbose

•	 --version

•	 --full-version

•	 -h, --help



Chapter 1 ■ annotations

36

The --list option lists the set of deprecated APIs in Java SE. No arguments specifying the location of 
compiled classes should be specified when this option is used.

The --class-path specifies the class path to be used to find dependent classes during the scan.
The --for-removal option restricts the scan or list to only those APIs that have been deprecated for 

removal. It can be used only with a release value of 9 or later because the @Deprecated annotation type did 
not contain the forRemoval element before JDK9.

The --release option specifies Java SE release that provides the set of deprecated APIs during 
scanning. For example, to list all deprecated APIs in JDK 6, you will the tool as follows:

jdeprscan --list --release 6

The --verbose option prints additional messages during the scanning process.
The --version and --full-version options print the abbreviated and full versions of the jdeprscan 

tool, respectively.
The --help option prints a detailed help message about the jdeprscan tool.
Listing 1-20 contains the code for a JDeprScanTest class. The code is trivial. It is intended to just compile, 

not run. Running it will not produce any interesting output. It creates two threads. One thread is stopped using 
the stop() method of the Thread class and another thread is destroyed using the destroy() method of the 
Thread class. The stop() and destroy() methods have been ordinarily deprecated since JDK 1.2 and JDK 1.5, 
respectively. JDK9 has terminally deprecated the destroy() method, whereas it continued to keep the stop() 
method ordinarily deprecated. I use this class in the following examples.

Listing 1-20. A JDeprScanTest Class That Uses The Ordinarily Deprecated Method stop() and the 
Terminally Deprecated Method destroy() of the Thread Class

// JDeprScanTest.java
package com.jdojo.annotation;

public class JDeprScanTest {
    public static void main(String[] args) {
        Thread t = new Thread(() -> System.out.println("Test"));
        t.start();
        t.stop();
        Thread t2 = new Thread(() -> System.out.println("Test"));
        t2.start();
        t2.destroy();
    }
}

The following command prints the list of all deprecated APIs in JDK9. It will print a long list. The 
command takes a few seconds to start printing the results because it scans the entire JDK.

C:\Java9LanguageFeatures>jdeprscan --list

@Deprecated java.lang.ClassLoader
javax.tools.ToolProvider.getSystemToolClassLoader()
...



Chapter 1 ■ annotations

37

The following command prints all terminally deprecated APIs in JDK9. That is, it prints all deprecated 
APIs that have been marked for removal in a future release:

C:\Java9LanguageFeatures>jdeprscan --list --for-removal

@Deprecated(since="9", forRemoval=true) class java.lang.Compiler
...

The following command prints the list of all APIs deprecated in JDK8:

C:\ Java9LanguageFeatures >jdeprscan --list --release 8

@Deprecated class javax.swing.text.TableView.TableCell
...

The following command prints the list of deprecated APIs used by the java.lang.Thread class.

C:\Java9LanguageFeatures>jdeprscan java.lang.Thread

 class java/lang/Thread uses deprecated method java/lang/Thread::resume()V

Note that the previous command does not print the list of deprecated APIs in the Thread class. Rather, it 
prints the list of APIs in the Thread class that uses those deprecated APIs.

The following command lists all uses of deprecated JDK APIs in this chapter’s compiled code. The 
Java9LanguageFeatures/build/modules/jdojo.annotation directory in the downloadable code for this 
book contains the compiled code for this chapter.

C:\Java9LanguageFeatures>jdeprscan build/modules/jdojo.annotation

Directory build/modules/jdojo.annotation:
class com/jdojo/annotation/ImportDeprecationWarning uses deprecated class java/io/
StringBufferInputStream
class com/jdojo/annotation/JDeprScanTest uses deprecated method java/lang/Thread::stop()V
class com/jdojo/annotation/JDeprScanTest uses deprecated method java/lang/
Thread::destroy()V (forRemoval=true)

C:\Java9LanguageFeatures>jdeprscan --for-removal build/modules/jdojo.annotation

Directory build/modules/jdojo.annotation:
class com/jdojo/annotation/JDeprScanTest uses deprecated method java/lang/
Thread::destroy()V (forRemoval=true)



Chapter 1 ■ annotations

38

Dynamic Analysis of Deprecated APIs
The jdeprscan tool is a static analysis tool, so it will skip dynamic uses of deprecated APIs. For example, you 
can call a deprecated method using reflection, which this tool will miss during scanning. You can also call 
deprecated methods in providers loaded by a ServiceLoader, which will be missed by this tool.

In a future release, the JDK may provide a dynamic analysis tool named jdeprdetect that will track the 
uses of deprecated APIs at runtime. The tool will be useful to find dead code referencing deprecated APIs 
that are reported by the static analysis tool jdeprscan.

No Deprecation Warnings on Imports
Until JDK9, the compiler generated a warning if you imported deprecated constructs using import 
statements, even if you used a @SuppressWarnings annotation on all use-sites of the deprecated imported 
constructs. This was an annoyance if you were trying to get rid of all deprecation warnings in your code. You 
just could not get rid of them because you cannot annotate import statements. JDK9 improved on this by 
omitting the deprecation warnings on import statements.

Suppressing Named Compile-Time Warnings 
The SuppressWarnings annotation type is used to suppress named compile-time warnings. It declares 
one element named value whose data type is an array of String. Let’s consider the code for the 
SuppressWarningsTest class, which uses the raw type for the ArrayList<T> in the test() method.  
The compiler generates an unchecked named warning when you use a raw type.

Listing 1-21. A Class That Will Generate Warnings When Compiled

// SuppressWarningsTest.java
package com.jdojo.annotation;

import java.util.ArrayList;

public class SuppressWarningsTest {
    public void test() {
        ArrayList list = new ArrayList();
        list.add("Hello"); // The compiler issues an unchecked warning
    }
}

Compile the SuppressWarningsTest class with an option to generate an unchecked warning using the 
command

javac -Xlint:unchecked SuppressWarningsTest.java

com\jdojo\annotation\SuppressWarningsTest.java:10: warning: [unchecked] unchecked call to 
add(E) as a member of the raw type ArrayList
                list.add("Hello"); // The compiler issues an unchecked warning
                        ^
  where E is a type-variable
    E extends Object declared in class ArrayList
1 warning



Chapter 1 ■ annotations

39

As a developer, sometimes you are aware of such compiler warnings and you want to suppress them 
when your code is compiled. You can do so by using a @SuppressWarnings annotation on your program 
element by supplying a list of the names of the warnings to be suppressed. For example, if you use it on a 
class declaration, all specified warnings will be suppressed from all methods inside that class declaration. 
It is recommended that you use this annotation on the innermost program element on which you want to 
suppress the warnings.

Listing 1-22 uses a @SuppressWarnings annotation on the test() method. It specifies two named 
warnings: "unchecked" and "deprecation". The test() method does not contain code that will generate a 
"deprecated" warning. It was included here to show you that you could suppress multiple named warnings 
using a SuppressWarnings annotation. If you recompile the SuppressWarningsTest class with the same 
options shown previously, it will not generate any compiler warnings.

Listing 1-22. The Modified Version of the SuppressWarningsTest Class

// SuppressWarningsTest.java
package com.jdojo.annotation;

import java.util.ArrayList;

public class SuppressWarningsTest {
    @SuppressWarnings({"unchecked", "deprecation"})
    public void test() {
        ArrayList list = new ArrayList();
        list.add("Hello"); // The compiler does not issue an unchecked warning
    }
}

Overriding Methods
The java.lang.Override annotation type is a marker annotation type. It can only be used on methods.  
It indicates that a method annotated with this annotation overrides a method declared in its supertype. 
This is very helpful for developers to avoid typos that lead to logical errors in the program. If you mean to 
override a method in a supertype, it is recommended to annotate the overridden method with a @Override 
annotation. The compiler will make sure that the annotated method really overrides a method in the 
supertype. If the annotated method does not override a method in the supertype, the compiler will generate 
an error.

Consider two classes, A and B. Class B inherits from class A. The m1() method in the class B overrides 
the m1() method in its superclass A. The annotation @Override on the m1() method in class B just makes a 
statement about this intention. The compiler verifies this statement and finds it to be true in this case.

public class A {
    public void m1() {
    }
}

public class B extends A {
    @Override
    public void m1() {
    }
}



Chapter 1 ■ annotations

40

Let’s consider class C.

// Won't compile because m2() does not override any method
public class C extends A {
    @Override
    public void m2() {
    }
}

The method m2() in class C has a @Override annotation. However, there is no m2() method in its 
superclass A. The method m2() is a new method in class C. The compiler finds out that method m2() in 
class C does not override any superclass method, even though its developer has indicated so. The compiler 
generates an error in this case.

Declaring Functional Interfaces 
An interface with one abstract method declaration is known as a functional interface. Previously, a 
functional interface was known as a SAM (Single Abstract Method) type. The compiler verifies that all 
interfaces annotated with a @FunctionalInterface really contain one and only one abstract method. 
A compile-time error is generated if the interfaces annotated with this annotation are not functional. 
It is also a compile-time error to use this annotation on classes, annotation types, and enums. The 
FunctionalInterface annotation type is a marker annotation.

The following declaration of the Runner interface uses a @FunctionalInterface annotation. The 
interface declaration will compile fine.

@FunctionalInterface
public interface Runner {
    void run();
}

The following declaration of the Job interface uses a @FunctionalInterface annotation, which will 
generate a compile-time error because the Job interface declares two abstract methods, and therefore it is 
not a functional interface.

@FunctionalInterface
public interface Job {
    void run();
    void abort();
}

The following declaration of the Test class uses a @FunctionalInterface annotation, which will 
generate a compile-time error because a @FunctionalInterface annotation can only be used on interfaces.

@FunctionalInterface
public class Test {
    public void test() {
        // Code goes here
    }
}



Chapter 1 ■ annotations

41

 ■ Tip  an interface with only one abstract method is always a functional interface whether it is annotated 
with a @FunctionalInterface annotation or not. Use of the annotation instructs the compiler to verify the fact 
that the interface is really a functional interface.

Annotating Packages
Annotating program elements such as classes and fields are intuitive, as you annotate them when they are 
declared. How do you annotate a package? A package declaration appears in a compilation unit as part 
of top-level type declarations. Further, the same package declaration occurs multiple times in different 
compilation units. The question arises: how and where do you annotate a package declaration?

You need to create a file, which should be named package-info.java, and place the annotated package 
declaration in it. Listing 1-23 shows the contents of the package-info.java file. When you compile the 
package-info.java file, a class file will be created.

Listing 1-23. Contents of a package-info.java File

// package-info.java
@Version(major=1, minor=0)
package com.jdojo.annotation;

You may need some import statements to import annotation types or you can use the fully qualified 
names of the annotation types in the package-info.java file. Even though the import statements appear 
after the package declaration, it should be okay to use the imported types. You can have contents like the 
following in a package-info.java file:

// package-info.java
@com.jdojo.myannotations.Author("John Jacobs")
@Reviewer("Wally Inman")
package com.jdojo.annotation;

import com.jdojo.myannotations.Reviewer;

Annotating Modules
You can use annotations on module declarations. In JDK9, the java.lang.annotation.ElementType enum 
has a new value called MODULE. If you use MODULE as a target type on an annotation declaration, it allows the 
annotation type to be used on modules. In JDK9, two annotations—java.lang.Deprecated and java.lang.
SuppressWarnings—have been updated to be used on module declarations. They can be used as follows:

@Deprecated(since="1.2", forRemoval=true)
@SuppressWarnings("unchecked")
module com.jdojo.myModule {
    // Module statements go here
}



Chapter 1 ■ annotations

42

When a module is deprecated, the use of that module in requires, but not in exports or opens 
statements, causes a warning to be issued. This rule is based on the fact that if module M is deprecated, a 
"requires M" statement will be used by the module’s users who need to get the deprecation warnings. Other 
statements such as exports and opens are within the module that is deprecated. A deprecated module does 
not cause warnings to be issued for uses of types within the module. Similarly, if a warning is suppressed in 
a module declaration, the suppression applies to elements within the module declaration and not to types 
contained in that module.

 ■ Tip  You cannot annotate individual module statements. For example, you cannot annotate an exports 
statement with a @Deprecated annotation indicating that the exported package will be removed in a future 
release. During the early design phase, it was considered and rejected on the ground that this feature will take 
a considerable amount of time that is not needed at this time. this could be added in the future, if needed.

Accessing Annotations at Runtime
Accessing annotations on a program element is easy. Annotations on a program element are Java objects.  
All you need to know is how to get the reference of objects of an annotation type at runtime. Program 
elements that let you access their annotations implement the java.lang.reflect.AnnotatedElement 
interface. There are several methods in the AnnotatedElement interface that let you access annotations of 
a program element. The methods in this interface let you retrieve all annotations on a program element, 
all declared annotations on a program element, and annotations of a specified type on a program 
element. I show some examples of using those methods shortly. The following classes implement the 
AnnotatedElement interface:

•	 java.lang.Class

•	 java.lang.reflect.Executable

•	 java.lang.reflect.Constructor

•	 java.lang.reflect.Field

•	 java.lang.reflect.Method

•	 java.lang.reflect.Module

•	 java.lang.reflect.Parameter

•	 java.lang.Package

•	 java.lang.reflect.AccessibleObject

Methods of the AnnotatedElement interface are used to access annotations on these types of objects.

 ■ Caution  it is very important to note that an annotation type must be annotated with the Retention 
meta-annotation with the retention policy of runtime to access it at runtime. if a program element has multiple 
annotations, you would be able to access only annotations, which have runtime as their retention policy.



Chapter 1 ■ annotations

43

Suppose you have a Test class and you want to print all its annotations. The following snippet of code 
will print all annotations on the class declaration of the Test class:

// Get the class object reference
Class<Test> cls = Test.class;

// Get all annotations on the class declaration    
Annotation[] allAnns = cls.getAnnotations();
System.out.println("Annotation count: " + allAnns.length);

// Print all annotations
for (Annotation ann : allAnns) {
    System.out.println(ann.toString());
}

The toString() method of the Annotation interface returns the string representation of an annotation. 
Suppose you want to print the Version annotation on the Test class. You can do so as follows:

Class<Test> cls = Test.class;    

// Get the instance of the Version annotation of Test class
Version v = cls.getAnnotation(Version.class);
if (v == null) {
    System.out.println("Version annotation is not present.");
} else {
    int major = v.major();
    int minor = v.minor();
    System.out.println("Version: major=" + major + ", minor=" + minor);
}

This snippet of code shows that you can use the major() and minor() methods to read the value of the 
major and minor elements of the Version annotation. It also shows that you can declare a variable of an 
annotation type (e.g., Version v), which can refer to an instance of that annotation type. The instances of an 
annotation type are created by the Java runtime. You never create an instance of an annotation type using 
the new operator.

You will use the Version and Deprecated annotation types to annotate your program elements and 
access those annotations at runtime. You will also annotate a package declaration and a method declaration. 
You will use the code for the Version annotation type, as listed in Listing 1-24. Note that it uses the  
@Retention(RetentionPolicy.RUNTIME) annotation, which is needed to read its instances at runtime.

Listing 1-24. A Version Annotation Type

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;



Chapter 1 ■ annotations

44

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR, ElementType.METHOD, ElementType.MODULE, 
ElementType.PACKAGE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Version {
    int major();
    int minor();
}

Listing 1-25 shows the code that you need to save in a package-info.java file and compile it along with 
other programs. It annotates the com.jdojo.annotation package. Listing 1-26 contains the code for a class 
for demonstration purposes that has some annotations.

Listing 1-25. Contents of package-info.java File

// package-info.java
@Version(major=1, minor=0)
package com.jdojo.annotation;

Listing 1-26. AccessAnnotation Class Has Some Annotations, Which Will Be Accessed at Runtime

// AccessAnnotation.java
package com.jdojo.annotation;

@Version(major=1, minor=0)
public class AccessAnnotation {
    @Version(major=1, minor=1)
    public void testMethod1() {
        // Code goes here
    }

    @Version(major=1, minor=2)
    @Deprecated
    public void testMethod2() {
        // Code goes here
    }
}

Listing 1-27 is the program that demonstrates how to access annotations at runtime. Its output  
shows that you are able to read all annotations used in the AccessAnnotation class successfully.  
The printAnnotations() method accesses the annotations. It accepts a parameter of the AnnotatedElement 
type and prints all annotations of its parameter. If the annotation is of the Version annotation type, it prints 
the values for its major and minor versions.

Listing 1-27. Using the AccessAnnotationTest Class to Access Annotations

// AccessAnnotationTest.java
package com.jdojo.annotation;

import java.lang.annotation.Annotation;
import java.lang.reflect.AnnotatedElement;
import java.lang.reflect.Method;



Chapter 1 ■ annotations

45

public class AccessAnnotationTest {
    public static void main(String[] args) {
        // Read annotations on the class declaration
        Class<AccessAnnotation> cls = AccessAnnotation.class;
        System.out.println("Annotations for class: " + cls.getName());
        printAnnotations(cls);

        // Read annotations on the package declaration
        Package p = cls.getPackage();
        System.out.println("Annotations for package: " + p.getName());
        printAnnotations(p);

        // Read annotations on the methods declarations
        System.out.println("Method annotations:");
        Method[] methodList = cls.getDeclaredMethods();
        for (Method m : methodList) {
            System.out.println("Annotations for method: " + m.getName());
            printAnnotations(m);
        }
    }

    public static void printAnnotations(AnnotatedElement programElement) {
        Annotation[] annList = programElement.getAnnotations();
        for (Annotation ann : annList) {
            System.out.println(ann);
            if (ann instanceof Version) {
                Version v = (Version) ann;
                int major = v.major();
                int minor = v.minor();
                System.out.println("Found Version annotation: "
                        + "major=" + major + ", minor=" + minor);
            }
        }

        System.out.println();
    }
}

Annotations for class: com.jdojo.annotation.AccessAnnotation
@com.jdojo.annotation.Version(major=1, minor=0)
Found Version annotation: major=1, minor=0

Annotations for package: com.jdojo.annotation
@com.jdojo.annotation.Version(major=1, minor=0)
Found Version annotation: major=1, minor=0

Method annotations:
Annotations for method: testMethod1
@com.jdojo.annotation.Version(major=1, minor=1)
Found Version annotation: major=1, minor=1



Chapter 1 ■ annotations

46

Annotations for method: testMethod2
@com.jdojo.annotation.Version(major=1, minor=2)
Found Version annotation: major=1, minor=2
@java.lang.Deprecated(forRemoval=false, since="")

Accessing instances of a repeatable annotation is a little different. Recall that a repeatable annotation 
has a companion containing annotation type. For example, you declared a ChangeLogs annotation 
type that is a containing annotation type for the ChangeLog repeatable annotation type. You can access 
repeated annotations using either the annotation type or the containing annotation type. Use the 
getAnnotationsByType() method, passing it the class reference of the repeatable annotation type to get the 
instances of the repeatable annotation in an array. Use the getAnnotation() method, passing it the class 
reference of the containing annotation type to get the instances of the repeatable annotation as an instance 
of its containing annotation type.

Listing 1-28 contains the code for a RepeatableAnnTest class. The class declaration has been annotated 
with the ChangeLog annotation twice. The main() method accesses the repeated annotations on the class 
declaration using both of these methods.

Listing 1-28. Accessing Instances of Repeatable Annotations at Runtime

// RepeatableAnnTest.java
package com.jdojo.annotation;

@ChangeLog(date = "09/18/2017", comments = "Declared the class")
@ChangeLog(date = "10/22/2017", comments = "Added the main() method")
public class RepeatableAnnTest {
    public static void main(String[] args) {
        Class<RepeatableAnnTest> mainClass = RepeatableAnnTest.class;
        Class<ChangeLog> annClass = ChangeLog.class;

        // Access annotations using the ChangeLog type
        System.out.println("Using the ChangeLog type...");
        ChangeLog[] annList = mainClass.getAnnotationsByType(ChangeLog.class);
        for (ChangeLog log : annList) {
            System.out.println("Date=" + log.date() + ", Comments=" + log.comments());
        }

        // Access annotations using the ChangeLogs containing annotation type
        System.out.println("\nUsing the ChangeLogs type...");

        Class<ChangeLogs> containingAnnClass = ChangeLogs.class;
        ChangeLogs logs = mainClass.getAnnotation(containingAnnClass);
        for (ChangeLog log : logs.value()) {
            System.out.println("Date=" + log.date() + ", Comments=" + log.comments());
        }
    }
}

Using the ChangeLog type...
Date=09/18/2017, Comments=Declared the class
Date=10/22/2017, Comments=Added the main() method



Chapter 1 ■ annotations

47

Using the ChangeLogs type...
Date=09/18/2017, Comments=Declared the class
Date=10/22/2017, Comments=Added the main() method

Evolving Annotation Types
An annotation type can evolve without breaking the existing code that uses it. If you add a new element to 
an annotation type, you need to supply its default value. All existing instances of the annotation will use 
the default value for the new elements. If you add a new element to an existing annotation type without 
specifying a default value for the element, the code that uses the annotation will break.

Annotation Processing at Source Code Level
This section is for experienced programmers. You may skip this section if you are learning Java for the first time.

This section discusses in detail how to develop annotation processors to process annotation at the source 
code level when you compile Java programs. The University of Washington developed a Checker Framework 
that contains a lot of annotations to be used in programs. It also ships with many annotation processors. You 
can download the Checker Framework from http://types.cs.washington.edu/checker-framework.  
It contains a tutorial for using different types of processors and a tutorial on how to create your own processor.

Java lets you process annotations at runtime as well as at compile time. You have already seen how to 
process annotations at runtime. Now, I discuss, in brief, how to process annotations at compile time (or at 
the source code level).

Why would you want to process annotations at compile time? Processing annotations at compile time opens 
up a wide variety of possibilities that can help Java programmers during development of applications. It also helps 
developers of Java tools immensely. For example, boilerplate code and configuration files can be generated based 
on annotations in the source code; custom annotation-based rules can be validated at compile time, etc.

Annotation processing at compile time is a two-step process. First, you need to write a custom 
annotation processor. Second, you need to use the javac command line utility tool. You need to specify the 
module path for your custom annotation processor to the javac compiler using the --processor-module-
path option. The following command compiles the Java source file, MySourceFile.java:

javac --processor-module-path <path> MySourceFile.java

Using -proc option, the javac command lets you specify if you want to process annotation and/or 
compile the source files. You can use the -proc option as -proc:none or -proc:only. The -proc:none option 
does not perform annotation processing. It only compiles source files. The -proc:only option performs 
only annotation processing and skips the source files compilation. If the -proc:none and the -processor 
options are specified in the same command, the -processor option is ignored. The following command 
processes annotations in the source file MySourceFile.java using custom processors: MyProcessor1 and 
MyProcessor2. It does not compile the source code in the MySourceFile.java file.

javac -proc:only --processor-module-path <path> MySourceFile.java

To see the compile-time annotation processing in action, you must write an annotation processor using 
the classes in the javax.annotation.processing package, which is in the java.compiler module.

While writing a custom annotation processor, you often need to access the elements from the source code, 
for example, the name of a class and its modifiers, the name of a method and its return type, etc. You need to 
use classes in the javax.lang.model package and its subpackages to work with the elements of the source 

http://types.cs.washington.edu/checker-framework


Chapter 1 ■ annotations

48

code. In your example, you will write an annotation processor for your @Version annotation. It will validate all 
@Version annotations that are used in the source code to make sure the major and minor values for a Version 
are always zero or greater than zero. For example, if @Version(major=-1, minor=0) is used in source code, 
your annotation processor will print an error message because the major value for the version is negative.

An annotation processor is an object of a class, which implements the Processor interface. The 
AbstractProcessor class is an abstract annotation processor, which provides a default implementation 
for all methods of the Processor interface, except an implementation for the process() method. The 
default implementation is fine in most circumstances. To create your own processor, you need to inherit 
your processor class from the AbstractProcessor class and provide an implementation for the process() 
method. If the AbstractProcessor class does not suit your need, you can create your own processor class, 
which implements the Processor interface. Let’s call your processor class VersionProcessor, which inherits 
the AbstractProcessor class, as shown:

public class VersionProcessor extends AbstractProcessor {
    // Code goes here
}

The annotation processor object is instantiated by the compiler using a no-args constructor. You must 
have a no-args constructor for your processor class, so that the compiler can instantiate it. The default 
constructor for your VersionProcessor class will meet this requirement.

The next step is to add two pieces of information to the processor class. The first one is about what kind 
of annotations processing are supported by this processor. You can specify the supported annotation type 
using @SupportedAnnotationTypes annotation at the class level. The following snippet of code shows that 
the VersionProcessor supports processing of com.jdojo.annotation.Version annotation type:

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})
public class VersionProcessor extends AbstractProcessor {
    // Code goes here
}

You can use an asterisk (*) by itself or as part of the annotation name of the supported annotation 
types. The asterisk works as a wildcard. For example, "com.jdojo.*" means any annotation types whose 
names start with "com.jdojo.". An asterisk only ("*") means all annotation types. Note that when an 
asterisk is used as part of the name, the name must be of the form PartialName.*. For example, "com*" 
and "com.*jdojo" are invalid uses of an asterisk in the supported annotation types. You can pass multiple 
supported annotation types using the SupportedAnnotationTypes annotation. The following snippet of 
code shows that the processor supports processing for the com.jdojo.Ann1 annotation and any annotations 
whose name begins with com.jdojo.annotation:

@SupportedAnnotationTypes({"com.jdojo.Ann1", "com.jdojo.annotation.*"})

You need to specify the latest source code version that is supported by your processor using a  
@SupportedSourceVersion annotation. The following snippet of code specifies the source code version 9 as 
the supported source code version for the VersionProcessor class:

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})
@SupportedSourceVersion(SourceVersion.RELEASE_9)
public class VersionProcessor extends AbstractProcessor {
    // Code goes here
}



Chapter 1 ■ annotations

49

The next step is to provide the implementation for the process() method in the processor class. 
Annotation processing is performed in rounds. An instance of the RoundEnvironment interface represents a 
round. The javac compiler calls the process() method of your processor by passing all annotations that the 
processor declares to support and a RoundEnvironment object. The return type of the process() method is 
boolean. If it returns true, the annotations passed to it are considered to be claimed by the processor. The 
claimed annotations are not passed to other processors. If it returns false, the annotations passed to it are 
considered as not claimed and other processor will be asked to process them. The following snippet of code 
shows the skeleton of the process() method:

public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv) {
    // The processor code goes here
}

The code you write inside the process() method depends on your requirements. In your case, you want 
to look at the major and minor values for each @Version annotation in the source code. If either of them 
is less than zero, you want to print an error message. To process each Version annotation, you will iterate 
through all Version annotation instances passed to the process() method as follows:

for (TypeElement currentAnnotation : annotations) {
    // Code to validate each Version annotation goes here
}

You can get the fully qualified name of an annotation using the getQualifiedName() method of the 
TypeElement interface.

Name qualifiedName = currentAnnotation.getQualifiedName();

// Check if it is a Version annotation
if (qualifiedName.contentEquals("com.jdojo.annotation.Version")) {
    // Get Version annotation values to validate
}

Once you are sure that you have a Version annotation, you need to get all its instances from the source 
code. To get information from the source code, you need to use the RoundEnvironment object. The following 
snippet of code will get all elements of the source code (e.g., classes, methods, constructors, etc.) that are 
annotated with a Version annotation:

Set<? extends Element> annotatedElements = roundEnv.getElementsAnnotatedWith(currentAnnotation);

At this point, you need to iterate through all elements that are annotated with a Version annotation; 
get the instance of the Version annotation present on them; and validate the values of the major and minor 
elements. You can perform this logic as follows:

for (Element element : annotatedElements) {
    Version v = element.getAnnotation(Version.class);
    int major = v.major();
    int minor = v.minor();
    if (major < 0 || minor < 0) {
        // Print the error message here
    }
}



Chapter 1 ■ annotations

50

You can print the error message using the printMessage() method of the Messager. The processingEnv 
is an instance variable defined in the AbstractProcessor class that you can use inside your processor to 
get the Messager object reference, as shown next. If you pass the source code element’s reference to the 
printMessage() method, your message will be formatted to include the source code file name and the line 
number in the source code for that element. The first argument to the printMessage() method indicates 
the type of the message. You can use Kind.NOTE and Kind.WARNING as the first argument to print a note and 
warning, respectively.

String errorMsg = "Version cannot be negative. major=" + major + " minor=" + minor;
Messager messager = this.processingEnv.getMessager();
messager.printMessage(Kind.ERROR, errorMsg, element);

Finally, you need to return true or false from the process() method. If a processor returns true,  
it means it claimed all the annotations that were passed to it. Otherwise, those annotations are considered 
unclaimed and they will be passed to other processors. Typically, your annotation processors should be 
packaged in a separate module. Listing 1-29 contains the declaration for a jdojo.annotation.processor 
module, which contains the annotation processor named VersionProcessor for the Version annotation 
type, as shown in Listing 1-30.

Listing 1-29. The Declaration for a jdojo.annotation.processor Module

// module-info.java
module jdojo.annotation.processor {
    exports com.jdojo.annotation.processor;
    requires jdojo.annotation;
    requires java.compiler;
    provides javax.annotation.processing.Processor
        with com.jdojo.annotation.processor.VersionProcessor;
}

The module reads the jdojo.annotation module because it uses the Version annotation type in 
the VersionProcessor class. It reads the java.compiler module to use annotation processor related 
types. Notice the use of the provides statement in the module’s declaration. JDK9 will load all annotation 
processors on the processor module path mentioned in the with clause of the provides statement. The 
statement specifies that the VersionProcessor class provides an implementation for the Processor service 
interface. Refer to Chapter 14 for more details on the provides statement and implementing services.

Listing 1-30. An Annotation Processor to Process Version Annotations

// VersionProcessor.java
package com.jdojo.annotation.processor;

import java.util.Set;
import javax.annotation.processing.AbstractProcessor;
import javax.annotation.processing.Messager;
import javax.annotation.processing.RoundEnvironment;
import javax.annotation.processing.SupportedAnnotationTypes;
import javax.annotation.processing.SupportedSourceVersion;
import javax.lang.model.SourceVersion;
import javax.lang.model.element.Element;
import javax.lang.model.element.Name;
import javax.lang.model.element.TypeElement;
import javax.tools.Diagnostic.Kind;

http://dx.doi.org/10.1007/978-1-4842-3348-1_14


Chapter 1 ■ annotations

51

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})
@SupportedSourceVersion(SourceVersion.RELEASE_9)
public class VersionProcessor extends AbstractProcessor {
    // A no-args constructor is required for an annotation processor
    public VersionProcessor() {    
    }

    @Override
     public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment 

roundEnv) {
        // Process all annotations
        for (TypeElement currentAnnotation: annotations) {
            Name qualifiedName = currentAnnotation.getQualifiedName();

            // check if it is a Version annotation
            if (qualifiedName.contentEquals("com.jdojo.annotation.Version" )) {
                // Look at all elements that have Version annotations
                Set<? extends Element> annotatedElements;
                annotatedElements = roundEnv.getElementsAnnotatedWith(currentAnnotation);
                for (Element element: annotatedElements) {
                    Version v = element.getAnnotation(Version.class);
                    int major = v.major();
                    int minor = v.minor();
                    if (major < 0 || minor < 0) {
                        // Print the error message
                        String errorMsg = "Version cannot be negative." +
                                    " major=" + major +
                                    " minor=" + minor;

                        Messager messager = this.processingEnv.getMessager();

                        messager.printMessage(Kind.ERROR, errorMsg, element);
                    }
                }
            }
        }

        return true;
    }
}

Now you have an annotation processor. It is time to see it in action. You need to have a source code that 
uses invalid values for the major and minor elements in the Version annotation. You will place the source 
code in a module named jdojo.annotation.test, as shown in Listing 1-31. The VersionProcessorTest 
class in Listing 1-32 uses the Version annotation three times. It uses negative values for major and minor 
elements for the class itself and for the method m2(). The processor should catch these two errors when you 
compile the source code for the VersionProcessorTest class.



Chapter 1 ■ annotations

52

Listing 1-31. The Declaration of a jdojo.annotation.test Module

// module-info.java
module jdojo.annotation.test {
    exports com.jdojo.annotation.test;
    requires jdojo.annotation;
}

Listing 1-32. A Test Class to Test VersionProcessor

// VersionProcessorTest.java
package com.jdojo.annotation.test;

@Version(major = -1, minor = 2)
public class VersionProcessorTest {
    @Version(major = 1, minor = 1)
    public void m1() {
    }

    @Version(major = -2, minor = 1)
    public void m2() {
    }
}

To see the processor in action, you need to run the following command. You need to specify the path 
for the VersionProcessor class’ module using the --processor-module-path option. The modules that 
the annotation processor depends on should also be specified in the processor module path. When the 
command is run, the compiler will automatically discover the VersionProcessor as an annotation processor 
and it will pass all @Version instances to this processor. The output displays two errors with the source file 
name and the line number at which errors were found in the source file.

C:\Java9LanguageFeatures>javac --module-path dist\jdojo.annotation.jar
--processor-module-path dist\jdojo.annotation.processor.jar;dist\jdojo.annotation.jar
-d build\modules\jdojo.annotation.test
src\jdojo.annotation.test\classes\module-info.java
src\jdojo.annotation.test\classes\com\jdojo\annotation\test\VersionProcessorTest.java  

src\jdojo.annotation.test\classes\com\jdojo\annotation\test\VersionProcessorTest.java:7: 
error: Version cannot be negative. major=-1 minor=2
public class VersionProcessorTest {
       ^
src\jdojo.annotation.test\classes\com\jdojo\annotation\test\VersionProcessorTest.java:13: 
error: Version cannot be negative. major=-2 minor=1
    public void m2() {
                ^
2 errors



Chapter 1 ■ annotations

53

Summary
Annotations are types in Java. They are used to associate information to the declarations of program 
elements or type uses in a Java program. Using annotations does not change the semantics of the program.

Annotations can be available in the source code only, in the class files, or at runtime. Their availability is 
controlled by the retention policy that is specified when the annotation types are declared.

There are two types of annotations: regular annotation or simply annotations, and meta-annotations. 
Annotations are used to annotate program elements, whereas meta-annotations are used to annotate other 
annotations. When you declare an annotation, you can specify its targets that are the types of program 
elements that it can annotate. Prior to Java 8, annotations were not allowed to be repeated on the same 
element. Java 8 lets you create repeatable annotations.

Java library contains many annotation types that you can use in your Java programs—Deprecated, 
Override, SuppressWarnings, FunctionalInterface, etc. are a few of the commonly used annotation types. 
They have compiler support, which means that the compiler generates errors if the program elements 
annotated with these annotations do not adhere to specific rules.

Java lets you write annotation processors that can be plugged into the Java compiler to process 
annotations when Java programs are compiled. You can write processors to enforce custom rules based on 
annotations.

Deprecation in Java is a way to provide information about the lifecycle of the API. Deprecating an API 
tells its users to migrate away because the API is dangerous to use, a better replacement exists, or it will be 
removed in a future release. Using deprecated APIs generates compile-time deprecation warnings. The 
 @deprecated Javadoc tag and the @Deprecated annotation are used together to deprecate API elements such 
as modules, packages, types, constructors, methods, fields, parameters, and local variables. Before JDK9, the 
annotation did not contain any elements. It is retained at runtime.

JDK9 has added two elements to the Deprecated annotation type: since and forRemoval. The since 
element defaults to an empty string. Its value denotes the version of the API in which the API element was 
deprecated. The forRemoval element’s type is boolean and it defaults to false. Its value of true denotes that 
the API element will be removed in a future release.

The JDK9 compiler generates two types of deprecation warnings depending on the value of 
the forRemoval element of the @Deprecated annotation: ordinary deprecation warnings when 
forRemoval=false and removal warnings for forRemoval=true.

Before JDK9, you could suppress the deprecation warnings by annotating the use-sites of the 
deprecated APIs with a @SuppressWarnings("deprecation") annotation. In JDK9, you need to use 
@SuppressWarnings(“deprecation”) to suppress ordinary warnings, @SuppressWarnings(“removal”) 
to suppress removal warnings, and @SuppressWarnings({“deprecation”, “removal”}) to suppress both 
types of warnings. Before JDK9, importing a deprecated construct using an import statement generated a 
compile-time deprecation warning. JDK9 omits such warnings.

QUESTIONS AND EXERCISES

1. What are annotations? how do you declare them?

2. What are meta-annotations?

3. What is the difference between an annotation type and annotation instances?

4. Can you inherit an annotation type from another annotation type?

5. What are marker annotations? Describe their use. name two marker annotations 
available in Java se api.



Chapter 1 ■ annotations

54

6. name the annotation type whose instances are used to annotate an overridden 
method. What is the fully qualified name of this annotation type?

7. What are the allowed return types for methods in an annotation type declaration?

8. Declare an annotation type named Table. it contains one String element named 
name. the sole element does not have any default value. this annotation must be 
used only on classes. its instances should be available at runtime.

9. What is wrong with the following annotation type declaration?

public @interface Version extends BasicVersion {
    int extended();
}

10. What is wrong with the following annotation type declaration?

public @interface Author {
    void name(String firstName, String lastName);
}

11. Briefly describe the use of the following built-in meta-annotations: Target, 
Retention, Inherited, Documented, Repeatable, and Native.

12. Declare an annotation type named ModuleOwner, which contains one element 
name, which is of the String type. the instances of the ModuleOwner type should 
be retained only in the source code and they should be used only on module 
declarations.

13. Declare a repeatable annotation type named Author. it contains two elements of 
String type: firstName and lastName. this annotation can be used on types, 
methods, and constructors. its instances should be available at runtime. name the 
containing annotation type for the Author annotation type as Authors.

14. What annotation type do you use to deprecate your apis? Describe all the elements 
of such an annotation type.

15. What annotation type do you use to annotate a functional interface?

16. how do you annotate a package?

17. Create an annotation type named Owner. it should have one element, name, of the 
String type. its instances should be retained at runtime. it should be repeatable. 
it should be used only on types, methods, constructors, and modules. Create a 
module named jdojo.annotation.test and create a class named Test in the 
com.jdojo.annotation.exercises package. add a constructor and a method to 
the class. annotate the class, its module, constructor, and method with the Owner 
annotation type. add a main() method to the Test class and write code to access 
and print the details of these instances of the Owner annotation.

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ annotations

55

18. Consider the following declaration of an annotation type named Status:

public @interface Status {
    boolean approved() default false;
    String approvedBy();
}

Later you need to add another element to the Status annotation type. Modify the 
declaration of the annotation to include a new element named approvedOn, which 
is of the String type. the new element will contain a date in iso format whose 
default value may be set to "1900-01-01".

19. Consider the declaration of the following annotation type named LuckyNumber:

public @interface LuckyNumber {
    int[] value() default {19};
}

Which of the following uses of the LuckyNumber annotation type is/are invalid? 
explain your answer.

a) @LuckyNumber
b) @LuckyNumber({})
c) @LuckyNumber(10)
d) @LuckyNumber({8, 10, 19, 28, 29, 26})
e) @LuckyNumber(value={8, 10, 19, 28, 29, 26})
f ) @LuckyNumber(null)

20. Given a LuckyNumber annotation type, is the following variable declaration valid?

LuckNumber myLuckNumber = null;

21. Consider the following declaration for a jdojo.annotation.exercises module:

module jdojo.annotation.exercises {
    exports com.jdojo.annotation.exercises;
}

the module exists since version 1.0. the module has been deprecated and will be removed in 
the next version. annotate the module declaration to reflect these pieces of information.



57© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_2

CHAPTER 2

Inner Classes

In this chapter, you will learn:

•	 What inner classes are

•	 How to declare inner classes

•	 How to declare member, local, and anonymous inner classes

•	 How to create objects of inner classes

All example programs in this chapter are a member of a jdojo.innerclasses module, as declared in 
Listing 2-1.

Listing 2-1. The Declaration of a jdojo.innerclasses Module

// module-info.java
module jdojo.innerclasses {
    exports com.jdojo.innerclasses;
}

What Is an Inner Class?
You have worked with classes that are members of a package. A class, which is a member of a package, is 
known as a top-level class. For example, Listing 2-2. shows a top-level class named TopLevel.

Listing 2-2. An Example of a Top-Level Class

// TopLevel.java
package com.jdojo.innerclasses;

public class TopLevel {
    private int value = 101;

    public int getValue() {
        return value;
    }    

    public void setValue (int value) {
        this.value = value;
    }
}

https://doi.org/10.1007/978-1-4842-3348-1_2


Chapter 2 ■ Inner Classes

58

The TopLevel class is a member of the com.jdojo.innerclasses package. The class has three 
members:

•	 One instance variable: value

•	 Two methods: getValue() and setValue()

A class can also be declared within another class. This type of class is called an inner class. If the class 
declared within another class is explicitly or implicitly declared static, it is called a nested class, not an 
inner class. The class that contains the inner class is called an enclosing class or an outer class. Consider the 
following declaration of the Outer and Inner classes:

// Outer.java
package com.jdojo.innerclasses;

public class Outer {
    public class Inner {
        // Members of the Inner class go here
    }

    // Other members of the Outer class go here
}

The Outer class is a top-level class. It is a member of the com.jdojo.innerclasses package. The Inner 
class is an inner class. It is a member of the Outer class. The Outer class is the enclosing (or outer) class for 
the Inner class. An inner class can be the enclosing class for another inner class. There are no limits on the 
levels of nesting of inner classes.

An instance of an inner class can only exist within an instance of its enclosing class. That is, you must 
have an instance of the enclosing class before you can create an instance of an inner class. This is useful 
in enforcing the rule that one object cannot exist without the other. For example, a computer must exist 
before a processor can exist; an organization must exist before a president for that organization exists. In 
such cases, Processor and President can be defined as inner classes whereas Computer and Organization 
are their enclosing classes, respectively. An inner class has full access to all the members, including private 
members, of its enclosing class.

Java 1.0 did not support inner classes. They were added to Java 1.1 without any changes to the way the 
JVM used to handle the class files. How was it possible to add a new construct like an inner class without 
affecting the JVM? Inner classes have been implemented fully with the help of the compiler. The compiler 
generates a separate class file for each inner class in the compilation unit. The class files for inner classes 
have the same format as the class files for the top-level classes. Therefore, the JVM treats the class files for 
inner and top-level classes the same. However, the compiler has to do a lot of behind-the-scenes work to 
implement inner classes. I discuss some of the work done by the compiler to implement inner classes later 
in this chapter.

You may ask whether it is possible to achieve everything in Java that is facilitated by inner classes 
without using them. To some extent, the answer is yes. You can implement most of the functionalities, if 
not all, provided by inner classes without using inner classes. The compiler generates additional code for 
an inner class. Instead of using inner class constructs and letting the compiler generate the additional 
code for you, you can write the same code yourself. This idea sounds easy. However, who wants to 
reinvent the wheel?



Chapter 2 ■ Inner Classes

59

Advantages of Using Inner Classes
The following are some of the advantages of inner classes. Subsequent sections in this chapter explain all of 
the advantages of inner classes with examples.

•	 They let you define classes near other classes that will use them. For example, a 
computer will use a processor, so it is better to define a Processor class as an inner 
class of the Computer class.

•	 They provide an additional namespace to manage class structures. For example, 
before the introduction of inner classes, a class can only be a member of a package. 
With the introduction of inner classes, top-level classes, which can contain inner 
classes, provide an additional namespace.

•	 Some design patterns are easier to implement using inner classes. For example, the 
adaptor pattern, enumeration pattern, and state pattern can be easily implemented 
using inner classes.

•	 Implementing a callback mechanism is elegant and convenient using inner classes. 
Lambda expressions in Java 8 offer a better and more concise way of implementing 
callbacks in Java. I discuss lambda expressions in Chapter 5.

•	 It helps implement closures in Java.

•	 You can have a flavor of multiple inheritance of classes using inner classes. An inner 
class can inherit another class. Thus, the inner class has access to its enclosing class 
members as well as members of its superclass. Note that accessing members of two 
or more classes is one of the aims of multiple inheritance, which can be achieved 
using inner classes. However, just having access to members of two classes is not 
multiple inheritance in a true sense.

Types of Inner Classes
You can define an inner class anywhere inside a class where you can write a Java statement. There are three 
types of inner classes. The type of an inner class depends on the location of its declaration and the way it is 
declared.

•	 Member inner class

•	 Local inner class

•	 Anonymous inner class

Member Inner Class
A member inner class is declared inside a class the same way a member field or a member method for 
the class is declared. It can be declared as public, private, protected, or package-level. The instance of 
a member inner class may exist only within the instance of its enclosing class. Consider the example of a 
member inner class shown in Listing 2-3.

http://dx.doi.org/10.1007/978-1-4842-3348-1_5


Chapter 2 ■ Inner Classes

60

Listing 2-3. Tire Is a Member Inner Class of the Car Class

// Car.java
package com.jdojo.innerclasses;

public class Car {
    // A member variable for the Car class
    private final int year;

    // A member inner class named Tire
    public class Tire {
        // A member variable for the Tire class
        private final double radius;

        // A constructor for the Tire class
        public Tire(double radius) {
            this.radius = radius;
        }

        // A member method for the Tire class
        public double getRadius() {
            return radius;
        }
    } // The member inner class declaration ends here

    // A constructor for the Car class
    public Car(int year) {
        this.year = year;
    }

    // A member method for the Car class
    public int getYear() {
        return year;
    }
}

In Listing 2-3, Car is a top-level class and Tire is a member inner class of the Car class. The fully 
qualified name for the Car class is com.jdojo.innerclasses.Car. The fully qualified name of the Tire class 
is com.jdojo.innerclasses.Car.Tire. The Tire inner class has been declared public. That is, its name can 
be used outside the Car class. For example, you can declare a variable of Car.Tire type outside the Car class 
as follows:

Car.Tire t;

The constructor for the Tire class is also declared public. This means you can create an object of the 
Tire class outside the Car class. Since Tire is a member inner class of the Car class, you must have an object 
of the Car class before you can create an object of the Tire class. The new operator is used differently to 
create an object of a member inner class. The “Creating Objects of Inner Classes” section in this chapter 
explains how to create objects of an inner member class.



Chapter 2 ■ Inner Classes

61

Local Inner Class
A local inner class is declared inside a block. Its scope is limited to the block in which it is declared. Since 
its scope is always limited to its enclosing block, its declaration cannot use any access modifiers such as 
public, private, or protected. Typically, a local inner class is defined inside a method. However, it can also 
be defined inside static initializers, non-static initializers, and constructors. You would use a local inner class 
when you need to use the class only inside a block. Listing 2-4 shows an example of a local inner class.

Listing 2-4. An Example of a Local Inner Class

// TitleList.java
package com.jdojo.innerclasses;

import java.util.ArrayList;
import java.util.Iterator;

public class TitleList {
    private ArrayList<String> titleList = new ArrayList<>();

    public void addTitle (String title) {
        titleList.add(title);
    }

    public void removeTitle(String title) {
        titleList.remove(title);
    }

    public Iterator<String> titleIterator() {
        // A local inner class - TitleIterator
        class TitleIterator implements Iterator<String> {
            int count = 0;

            @Override
            public boolean hasNext() {
                return (count < titleList.size());
            }

            @Override
            public String next() {
                return titleList.get(count++);
            }            
        } // Local Inner Class TitleIterator ends here

        // Create an object of the local inner class and return the reference
        TitleIterator titleIterator = new TitleIterator();
        return titleIterator;
    }
}



Chapter 2 ■ Inner Classes

62

A TitleList object can hold a list of book titles. The addTitle() method adds a title to the list.  
The removeTitle() method removes a title from the list. The titleIterator() method returns an iterator for 
the title list. The titleIterator() method defines a local inner class called TitleIterator, which implements 
the Iterator interface. Note that the TitleIterator class uses the private instance variable titleList of its 
enclosing class. At the end, the titleIterator() method creates an object of the TitleIterator class and 
returns the object’s reference. Listing 2-5 shows how to use the titleIterator() method of the TitleList class.

Listing 2-5. Using a Local Inner Class

// TitleListTest.java
package com.jdojo.innerclasses;

import java.util.Iterator;

public class TitleListTest {
    public static void main(String[] args) {
        TitleList tl = new TitleList();

        // Add three titles
        tl.addTitle("Java 9 Revealed");
        tl.addTitle("Beginning Java 9");
        tl.addTitle("Learn JavaFX 9");

        // Get the iterator
        Iterator<String> iterator = tl.titleIterator();

        // Print all titles using the iterator
        while (iterator.hasNext()) {
            System.out.println(iterator.next());
        }
    }
}

Java 9 Revealed
Beginning Java 9
Learn JavaFX 9

The fact that the scope of a local inner class is limited to its enclosing block has some implications on 
how to declare a local inner class. Consider the following class declaration:

package com.jdojo.innerclasses;

public class SomeTopLevelClass {
    public void someMethod() {
        class SomeLocalInnerClass {
            // Code for SomeLocalInnerClass goes here
        }

        // SomeLocalInnerClass can only be used here
    }
}



Chapter 2 ■ Inner Classes

63

SomeTopLevelClass is a top-level class. The someMethod() method of SomeTopLevelClass declares the 
SomeLocalInnerClass local inner class. Note that the name of the local inner class, SomeLocalInnerClass, 
can only be used inside the someMethod() method. This implies that objects of the SomeLocalInnerClass 
can only be created and used inside the someMethod() method. This limits the use of a local inner class to 
only being used inside its enclosing block—in your case the someMethod() method. At this point, it may 
seem that a local inner class is not very useful. However, Listing 2-5 demonstrated that the code for the local 
inner class TitleIterator can be called from another class, TitleListTest. This was possible because the 
local inner class TitleIterator implemented the Iterator interface.

To use a local inner class outside its enclosing block, the local inner class must do one or both of the 
following:

•	 Implement a public interface

•	 Inherit from another public class and override some of its superclass methods

The name of the interface or another class must be available outside the enclosing block that defines 
the local inner class. Listing 2-4 and Listing 2-5 illustrate the first case where a local inner class implements 
an interface. Listing 2-6 and Listing 2-7 illustrate the second case, where a local inner class inherits from 
another public class. Listing 2-8 provides a test class to test a local inner class. The example is trivial. 
However, it illustrates the concept of how to use a local inner class by inheriting it from another class. Note 
that you may get a different output when you run the program in Listing 2-8.

Listing 2-6. Declaring a Top-Level Class, Which Is Used as the Superclass for a Local Class

// RandomInteger.java
package com.jdojo.innerclasses;

import java.util.Random;

public class RandomInteger {
    protected Random rand = new Random();

    public int getValue() {
        return rand.nextInt();
    }
}

Listing 2-7. A Local Inner Class That Inherits from Another Class

// RandomLocal.java
package com.jdojo.innerclasses;

public class RandomLocal {
    public RandomInteger getRandomInteger() {
        // A local inner class that inherits from the RandomInteger class
        class RandomIntegerLocal extends RandomInteger {
            @Override
            public int getValue() {
                // Get two random integers and return the average ignoring the fraction part
                long n1 = rand.nextInt();
                long n2 = rand.nextInt();



Chapter 2 ■ Inner Classes

64

                int value = (int) ((n1 + n2)/2);
                return value;
            }
        }

        return new RandomIntegerLocal();
    } // End of the getRandomInteger() method
}

Listing 2-8. Testing a Local Inner Class

// LocalInnerTest.java
package com.jdojo.innerclasses;

public class LocalInnerTest {
    public static void main(String[] args) {
        // Generate random integers using the RandomInteger class
        RandomInteger rTop = new RandomInteger();
        System.out.println("Random integers using a top-level class:");
        System.out.println(rTop.getValue());
        System.out.println(rTop.getValue());
        System.out.println(rTop.getValue());

        // Generate random integers using the RandomIntegerLocal class
        RandomLocal local = new RandomLocal();
        RandomInteger rLocal = local.getRandomInteger();

        System.out.println("\nRandom integers using a local inner class:");
        System.out.println(rLocal.getValue());
        System.out.println(rLocal.getValue());
        System.out.println(rLocal.getValue());
    }
}

Random integers using a top-level class:
-947391317
-678893674
-826257063

Random integers using a local inner class:
-120430809
2074796197
-293854159

The RandomInteger class contains a getValue() method. The only purpose of the RandomInteger 
class is to get a random integer using this method. The RandomLocal class is another class, which has a 
getRandomInteger() method, which declares a local inner class called RandomIntegerLocal, which inherits 
from the RandomInteger class. The RandomIntegerLocal class overrides its parent’s getValue() method. The 
overridden version of the getValue() method generates two random integers. It returns the average of the 



Chapter 2 ■ Inner Classes

65

two integers. The LocalInnerTest class illustrates the use of the two classes. The name RandomIntegerLocal 
is not available outside the method in which it is declared because it is a local inner class. Two things are 
worth noting.

•	 The getRandomInteger() method of the RandomLocal class declares that it returns 
an object of the RandomInteger class, not the RandomIntegerLocal class. Inside the 
method, it is allowed to return an object of the RandomIntegerLocal class because 
the RandomIntegerLocal local inner class inherits from the RandomInteger class.

•	 In the LocalInnerTest class, you declared the rLocal reference variable of the 
RandomInteger type.

// Generate random integers using the RandomIntegerLocal class
RandomLocal local = new RandomLocal();
RandomInteger rLocal = local.getRandomInteger();

However, at runtime, rLocal will receive a reference of the RandomIntegerLocal 
class. Since getValue() method is overridden in the local inner class, the rLocal 
object will generate random integers differently.

Anonymous Inner Class
An anonymous inner class is the same as a local inner class with one difference: it does not have a name. 
Since it does not have a name, it cannot have a constructor. Recall that a constructor name is the same as 
the class name. You may wonder how you can create objects of an anonymous class if it does not have a 
constructor. An anonymous class is a one-time class. You define an anonymous class and create its object 
at the same time. You cannot create more than one object of an anonymous class. Since anonymous class 
declaration and its object creation are interlaced, an anonymous class is always created using the new 
operator as part of an expression. The general syntax for creating an anonymous class and its object is as 
follows:

new <interface-name or class-name> (<argument-list>) {
    // The body of the anonymous class goes here  
}

The new operator is used to create an instance of the anonymous class. It is followed by either an 
existing interface name or an existing class name. Note that the interface name or class name is not the 
name for the newly created anonymous class. Rather, it is an existing interface/class name. If an interface 
name is used, the anonymous class implements that interface. If a class name is used, the anonymous class 
inherits from that class.

The <argument-list> is used only if the new operator is followed by a class name. It is left empty if 
the new operator is followed by an interface name. If <argument-list> is present, it contains the actual 
parameter list for a constructor of the existing class to be invoked. The anonymous class body is written, as 
usual, inside braces. The previous syntax can be broken into two for simplicity: the first syntax is used when 
the anonymous class implements an interface and the second one is used when it inherits a class.

new Interface() {
    // The body of the anonymous class goes here
}



Chapter 2 ■ Inner Classes

66

and

new Superclass(<argument-list-for-a-superclass-constructor>) {
    // The body of the anonymous class goes here
}

Anonymous classes are very powerful. However, the syntax is not easy to read and is somewhat 
unintuitive. The anonymous class body should be short for better readability. Let’s start with a simple 
example of an anonymous class. You will inherit your anonymous class from the Object class, as shown:

new Object() {
    // The body of the anonymous class goes here
}

This is the simplest anonymous class you can have in Java. It is created and it dies anonymously without 
making any noise!

Now you want to print a message when an object of an anonymous class is created. An anonymous 
class does not have a constructor. Where do you place the code to print the message? Recall that all instance 
initializers of a class are invoked when an object of the class is created. Therefore, you can use an instance 
initializer to print the message in your case. The following snippet of code shows your anonymous class with 
an instance initializer:

new Object() {
    // An instance initializer
    {
        System.out.println ("Hello from an anonymous class.");
    }
}

Listing 2-9 contains the complete code for a simple anonymous class, which prints a message on the 
standard output.

Listing 2-9. An Anonymous Class Example

// HelloAnonymous.java
package com.jdojo.innerclasses;

public class HelloAnonymous {
    public static void main(String[] args) {
        new Object() {
            // An instance initializer
            {
                System.out.println ("Hello from an anonymous class.");
            }
        }; // A semicolon is necessary to end the statement
    }
}

Hello from an anonymous class.



Chapter 2 ■ Inner Classes

67

Since an anonymous inner class is the same as a local class without a class name, you can also 
implement the examples in Listing 2-4 and Listing 2-5 by replacing the local inner classes with anonymous 
inner classes. Listing 2-10 rewrites the code for the TitleList class to use an anonymous class. You will notice 
the difference in the syntax inside the titleIterator() method shown in Listing 2-4 and Listing 2-10. When 
using an anonymous class, it is important to indent the code properly for better readability. You can test the 
TitleListWithInnerClass by replacing TitleList with TitleListWithInnerClass in Listing 2-5 and you 
will get the same output.

Listing 2-10. The TitleList Class Rewritten Using an Anonymous Class as TitleListWithInnerClass

// TitleListWithInnerClass.java
package com.jdojo.innerclasses;

import java.util.ArrayList;
import java.util.Iterator;

public class TitleListWithInnerClass {
    private final ArrayList<String> titleList = new ArrayList<>();

    public void addTitle(String title) {
        titleList.add(title);
    }

    public void removeTitle(String title) {
        titleList.remove(title);
    }

    public Iterator<String> titleIterator() {
        // An anonymous class
        Iterator<String> iterator  = new Iterator<String>() {
            int count = 0;

            @Override
            public boolean hasNext() {
                return (count < titleList.size());
            }

            @Override
            public String next() {
                return titleList.get(count++);
            }
        }; // The anonymous inner class ends here

        return iterator;
    }
}



Chapter 2 ■ Inner Classes

68

The titleIterator() method of TitleListWithInnerClass has two statements. The first statement 
creates an object of an anonymous class and stores the object’s reference in the iterator variable. The 
second statement returns the object reference stored in the iterator variable. In such cases, you can 
combine the two statements into one statement. The getRandomInteger() method shown in Listing 2-7 can 
be rewritten using an anonymous class as follows:

public RandomInteger getRandomInteger() {
    // Anonymous inner class that inherits from the RandomInteger class
    return new RandomInteger() {
        public int getValue() {
            // Get two random integers and return the average ignoring the fraction part
            long n1 = rand.nextInt();
            long n2 = rand.nextInt();

            int value = (int)((n1 + n2)/2);
            return value;
        }
    };
}

A static Member Class Is Not an Inner Class
A member class defined within the body of another class may be declared static. The following snippet of 
code declares a top-level class A and a static member class B:

package com.jdojo.innerclasses;

public class A {
    // A static member class
    public static class B {
        // The body of class B goes here
    }
}

A static member class is not an inner class. It is considered a top-level class. It is also called a nested 
top-level class. Since it is a top-level class, you do not need an instance of its enclosing class to create its 
object. An instance of class A and an instance of class B can exist independently because both are top-level 
classes. A static member class can be declared public, protected, package-level, or private to restrict its 
accessibility outside its enclosing class.

What is the use of a static member class if it is nothing but another top-level class? There are two 
advantages of using a static member class:

•	 A static member class can access the static members of its enclosing class, including 
the private static members. In your example, if class A has any static members, those 
static members can be accessed inside class B. However, class B cannot access any 
instance members of class A because an instance of class B can exist without an 
instance of class A.



Chapter 2 ■ Inner Classes

69

•	 A package acts like a container for top-level classes by providing a namespace. 
Within a namespace, all entities must have unique names. Top-level classes having 
static member classes provide an additional layer of namespaces. A static member 
class is the direct member of its enclosing top-level class, not a member of the 
package in which it is declared. In your example, class A is a member of the package 
com.jdojo.innerclasses, whereas class B is a member of class A. The fully qualified 
name of class A is com.jdojo.innerclasses.A. The fully qualified name of class B 
is com.jdojo.innerclasses.A.B. This way, a top-level class can be used to group 
together related classes defined as its static member classes.

An object of a static member class is created the same way you create an object of a top-level class using 
the new operator. To create an object of class B, you write

A.B bReference = new A.B();

Since the simple name of class B is in the scope inside class A, you can use its simple name to create its 
object inside class A as

// This statement appears inside the code for class A
B bReference2 = new B();

You can also use the simple name B outside class A by importing the com.jdojo.innerclasses.A.B 
class. However, using the simple name B outside class A is not intuitive. It gives an impression to the reader 
that class B is a top-level class, not a nested top-level class. You should use A.B for class B outside class A 
for better readability. Listing 2-11 declares two static member classes, Monitor and Keyboard, which have 
ComputerAccessory as their enclosing class. Listing 2-12 shows how to create objects of these static member 
classes.

Listing 2-11. An Example of Declaring static Member Classes

// ComputerAccessory.java
package com.jdojo.innerclasses;

public class ComputerAccessory {
    // A static member class - Monitor
    public static class Monitor {
        private final int size;

        public Monitor(int size) {
            this.size = size;
        }

        public String toString() {
            return "Monitor - Size:" + this.size + " inch";
        }
    }

    // A static member class - Keyboard
    public static class Keyboard {
        private final int keys;



Chapter 2 ■ Inner Classes

70

        public Keyboard(int keys) {
            this.keys = keys;
        }

        public String toString() {
            return "Keyboard - Keys:" + this.keys;
        }
    }
}

Listing 2-12. An Example of Using static Member Classes

// ComputerAccessoryTest.java
package com.jdojo.innerclasses;

public class ComputerAccessoryTest {
    public static void main(String[] args) {
        // Create two monitors
        ComputerAccessory.Monitor m17 = new ComputerAccessory.Monitor(17);
        ComputerAccessory.Monitor m19 = new ComputerAccessory.Monitor(19);

        // Create two Keyboards
        ComputerAccessory.Keyboard k122 = new ComputerAccessory.Keyboard(122);
        ComputerAccessory.Keyboard k142 = new ComputerAccessory.Keyboard(142);

        System.out.println(m17);
        System.out.println(m19);
        System.out.println(k122);
        System.out.println(k142);
    }
}

Monitor - Size:17 inch
Monitor - Size:19 inch
Keyboard - Keys:122
Keyboard - Keys:142

Creating Objects of Inner Classes
Creating objects of a local inner class, an anonymous class, and a static member class is straightforward. 
Objects of a local inner class are created using the new operator inside the block, which declares the class. 
An object of an anonymous class is created at the same time the class is declared. A static member class is 
another type of top-level class. You create objects of a static member class the same way you create objects of 
a top-level class.

Note that to have an object of a member inner class, a local inner class, and an anonymous class, you 
must have an object of the enclosing class. In the previous examples of local inner classes and anonymous 
inner classes, you placed these classes inside instance methods. You had an instance of the enclosing 
class on which you called those instance methods. Therefore, instances of those local inner classes and 



Chapter 2 ■ Inner Classes

71

anonymous inner classes had the instance of their enclosing classes on which those methods were called. 
For example, in Listing 2-5, first you created an instance of TitleList class and you stored its reference in t1 
as shown:

TitleList tl = new TitleList();

To get the iterator of t1, you called the titleIterator() method:

Iterator iterator = tl.titleIterator();

The method call t1.titleIterator() creates an instance of the TitleIterator local inner class inside 
the titleIterator() method as

TitleIterator titleIterator = new TitleIterator();

Here, titleIterator is an instance of the local inner class and it exists within t1, which is an instance 
of its enclosing class. This relationship exists for all inner classes, as depicted in Figure 2-1.

 ■ Note  there are situations where an instance of the enclosing class is not required for the existence 
of an instance of a local inner class or an anonymous inner class. this happens when local inner classes or 
anonymous inner classes are defined inside a static-context, for example, inside a static method or a static 
initializer. I discuss these cases later in this chapter.

An instance of a member inner class always exists within an instance of its enclosing class. The new 
operator is used to create the instance of the member inner class with a slightly different syntax. The general 
syntax to create an instance of a member inner class is as follows:

outerClassReference.new MemberInnerClassConstructor()

t1

titleIterator

An instance of the
enclosing class -TitleList

An instance of the local
inner class -TitleIterator

Figure 2-1. The relationship between an instance of an inner class and an instance of its enclosing class



Chapter 2 ■ Inner Classes

72

Here, outerClassReference is the reference of the enclosing class followed by a dot, which is followed 
by the new operator. The member inner class’s constructor call follows the new operator. Let’s revisit the first 
example of the member inner class, which is as follows:

package com.jdojo.innerclasses;

public class Outer {
    public class Inner {
    }
}

To create an instance of the Inner member inner class, you must first create an instance of its enclosing 
class Outer:

Outer out = new Outer();

Now, you need to use the new operator on the out reference variable to create an object of the Inner 
class.

out.new Inner();

To store the reference of the instance of the Inner member inner class in a reference variable, you can 
write the following statement:

Outer.Inner in = out.new Inner();

After the new operator, you always use the constructor name, which is the same as the simple class 
name for the member inner class. Since the new operator is already qualified with the enclosing instance 
reference (as in out.new), the Java compiler figures out the fully qualified name of the enclosing class name 
automatically. It is a compile-time error to qualify the inner class constructor with its outer class name while 
creating an instance of an inner class. The following statement will result in a compile-time error:

Outer.Inner in = out.new Outer.Inner(); // A compile-time error

Consider the following class declaration with inner classes nested at multiple levels:

package com.jdojo.innerclasses;

public class OuterA {
    public class InnerA {    
        public class InnerAA {
            public class InnerAAA {
            }
        }
    }
}

To create an instance of InnerAAA, you must have an instance of InnerAA. To create an instance of 
InnerAA, you must have an instance of InnerA. To create an instance of InnerA, you must have an instance 
of OuterA. Therefore, to create an instance of InnerAAA, you must start by creating an instance of OuterA. 



Chapter 2 ■ Inner Classes

73

The important point is that to create an instance of a member inner class, you must have an instance of its 
immediate enclosing class. The following snippet of code illustrates how to create an instance of InnerAAA:

OuterA outa = new OuterA();
OuterA.InnerA ina = outa.new InnerA();
OuterA.InnerA.InnerAA inaa = ina.new InnerAA();
OuterA.InnerA.InnerAA.InnerAAA inaaa = inaa.new InnerAAA();

Listing 2-13 uses the member inner class called Car.Tire from Listing 2-3 to illustrate the steps needed 
to create an instance of a member inner class.

Listing 2-13. Creating Objects of a Member Inner Class

// CarTest.java
package com.jdojo.innerclasses;

public class CarTest {
    public static void main(String[] args) {
        // Create an instance of Car with year as 2018
        Car c = new Car(2018);

        // Create a Tire for that car of 9.0 inch radius
        Car.Tire t = c.new Tire(9.0);

        System.out.println("Car's year: " + c.getYear());
        System.out.println("Car's tire radius: " + t.getRadius());
    }
}

Car's year: 2018
Car's tire radius: 9.0

Accessing Enclosing Class Members 
An inner class has access to all instance members, instance fields, and instance methods of its enclosing 
class. Listing 2-14 declares a class called Outer and a member inner class called Inner.

Listing 2-14. Accessing Instance Members of the Enclosing Class from an Inner Class

// Outer.java
package com.jdojo.innerclasses;

public class Outer {
    private int value = 1116;

    // The Inner class starts here
    public class Inner {
        public void printValue() {
            System.out.println("Inner: value = " + value);
        }
    } // The Inner class ends here



Chapter 2 ■ Inner Classes

74

    // An instance method for the Outer class
    public void printValue() {
        System.out.println("Outer: value = " + value);
    }

    // Another instance method for the Outer class
    public void setValue(int newValue) {
        this.value = newValue;
    }
}

The Outer class has a private instance variable called value, which is initialized to 1116. It also defines 
two instance methods: printValue() and setValue(). The Inner class also defines an instance method 
called printValue(), which prints the value of the value instance variable of its enclosing class Outer.

Listing 2-15 creates an instance of the Inner class and invokes its printValue() method. The output 
shows that the inner class instance can access the instance variable value of its enclosing instance out.

Listing 2-15. Testing an Inner Class That Accesses the Instance Members of its Enclosing Class

// OuterTest.java
package com.jdojo.innerclasses;

public class OuterTest {
    public static void main(String[] args) {
        Outer out = new Outer();
        Outer.Inner in = out.new Inner();

        // Print the value
        out.printValue();
        in.printValue();

        // Set a new value
        out.setValue(828);

        // Print the value
        out.printValue();
        in.printValue();
    }
}

Outer: value = 1116
Inner: value = 1116
Outer: value = 828
Inner: value = 828

Let’s make things a little complex by adding an instance variable named value to the inner class. Let’s 
call the classes Outer2 and Inner2, as shown in Listing 2-16. Note that the instance variables for the Outer2 
and Inner2 classes have the same name as value.



Chapter 2 ■ Inner Classes

75

Listing 2-16. A Member Inner Class Having the Same Instance Variable Name as Its Enclosing Class

// Outer2.java
package com.jdojo.innerclasses;

public class Outer2 {
    // An instance variable for the Outer2 class
    private int value = 1116;

    // The Inner2 class starts here
    public class Inner2 {
        // An instance variable for Inner2 class
        private int value = 1720;

        public void printValue() {
            System.out.println("Inner2: value = " + value);
        }
    } // The Inner2 class ends here

    // An instance method for the Outer2 class
    public void printValue() {
        System.out.println("Outer2: value = " + value);
    }

    // Another instance method for the Outer2 class
    public void setValue(int newValue) {
        this.value = newValue;
    }
}

If you run the Outer2Test class as shown in Listing 2-17, the output is different from the output when 
you ran the OuterTest class in Listing 2-15.

Listing 2-17. Testing an Inner Class That Accesses the Instance Members of Its Enclosing Class

// Outer2Test.java
package com.jdojo.innerclasses;

public class Outer2Test {
    public static void main(String[] args) {
        Outer2 out = new Outer2();
        Outer2.Inner2 in = out.new Inner2();

        // Print the value
        out.printValue();
        in.printValue();

        // Set a new value
        out.setValue(828);



Chapter 2 ■ Inner Classes

76

        // Print the value
        out.printValue();
        in.printValue();
    }
}

Outer2: value = 1116
Inner2: value = 1720
Outer2: value = 828
Inner2: value = 1720

Note that the output has changed. When printing the value for the first time, the Outer2 class’s 
instance prints 1116, whereas the Inner2 class’s instance prints 1720. After you set the new value using out.
setValue(828), the Outer2 class’s instance prints the new value of 828, whereas Inner2 class’s instance still 
prints 1720. Why does the output differ?

To fully understand this output, you need to understand the concept of the current instance and the 
keyword this. So far, you understand that the keyword this refers to the current instance of the class. For 
example, inside the setValue() instance method of the Outer2 class, this.value refers to the value field of 
the current instance of the Outer class.

You need to revise the meaning of the keyword this with respect to the instance of a class. The meaning 
of the keyword this that it refers to the current instance is sufficient as long as you deal with only instances 
of top-level classes. In dealing with only top-level classes, there is only one current instance in context 
when a piece of code is executed. In such cases, you can use the keyword this to qualify the instance 
member names to refer to the instance members of the class. You can also qualify the keyword this with 
the class name to refer to the instance of the class in context. For example, inside the setValue() method 
of the Outer2 class, instead of writing this.value, you can also write Outer2.this.value. If the name of a 
variable used inside a class in a non-static context is an instance variable name, the use of the keyword this 
is implicit. That is, the use of the simple name of a variable inside a class in a non-static context refers to 
the instance variable of that class unless that variable hides the name of an instance variable with the same 
name in its superclass. The use of the keyword this alone and its use qualified with class name is illustrated 
in Listing 2-18. The program in Listing 2-19 tests the uses of the keyword this concept.

Listing 2-18. Use of the Keyword this Qualified with the Class Name

// QualifiedThis.java
package com.jdojo.innerclasses;

public class QualifiedThis {
    // Instance variable - value
    private int value = 828;

    public void printValue() {
        // Print value using simple name of instance variable
        System.out.println("value = " + value);

        // Print value using keyword this
        System.out.println("this.value = " + this.value);

        // Print value using keyword this qualified with the class name
        System.out.println("QualifiedThis.this.value = " + QualifiedThis.this.value);
    }



Chapter 2 ■ Inner Classes

77

    public void printHiddenValue() {
        // Declare a local variable named value, which hides the value instance variable
        int value = 131;

        // Print value using simple name, which refers to the local variable - 131
        System.out.println("value = " + value);

        // Print value using keyword this, which refers to the instance
        // variable value with value 828
        System.out.println("this.value = " + this.value);

        // Print value using keyword this qualified with the class name,
        // which refers to instance variable value as 828
        System.out.println("QualifiedThis.this.value = " + QualifiedThis.this.value);
    }
}

Listing 2-19. Testing the Use of the Keyword this Qualified with the Class Name

// QualifiedThisTest.java
package com.jdojo.innerclasses;

public class QualifiedThisTest {
    public static void main(String[] args) {
        QualifiedThis qt = new QualifiedThis();
        System.out.println("printValue():");
        qt.printValue();

        System.out.println("\nprintHiddenValue():");
        qt.printHiddenValue();
    }
}

printValue():
value = 828
this.value = 828
QualifiedThis.this.value = 828

printHiddenValue():
value = 131
this.value = 828
QualifiedThis.this.value = 828

You can refer to an instance variable in any of the following three ways, if its name is not hidden:

•	 Using the simple name, such as value

•	 Using the simple name qualified with the keyword this, such as this.value

•	 Using the simple name qualified with the class name and the keyword this, such as 
QualifiedThis.this.value



Chapter 2 ■ Inner Classes

78

If the instance variable name is hidden, you must qualify its name with the keyword this or the class 
name as well as the keyword this. The code inside an inner class always executes in the context of more 
than one current instance. The number of current instances depends on the level of nesting of the inner 
class. Consider the following class declaration:

public class TopLevelOuter {
    private int v1 = 100;

    // Here, only v1 is in scope

    public class InnerLevelOne {
        private int v2 = 200;

        // Here, only v1 and v2 are in scope

        public class InnerLevelTwo {
            private int v3 = 300;

            // Here, only v1, v2, and v3 are in scope

            public class InnerLevelThree {
                private int v4 = 400;

                // Here, all v1, v2, v3, and v4 are in scope

            }
        }
    }
}

When the code for the InnerLevelThree class is executed, there are four current instances: one 
for the InnerLevelThree class and one for each of its three enclosing classes. When the code for the 
InnerLevelTwo class is executed, there are three current instances: one for the InnerLevelTwo class and 
one for each of its two enclosing classes. When the code for the InnerLevelOne class is executed, there are 
two current instances: one for the InnerLevelOne class and one for its enclosing class. When the code for 
the TopLevelOuter class is executed, there is only one current instance because it is a top-level class. When 
the code for an inner class is executed, all instance members, instance variables, and methods of all current 
instances are in scope unless hidden by local variable declarations.

The previous example has comments indicating which instance variables are in scope in an inner class. 
When an instance member is hidden inside an inner class, you can always refer to the hidden member by 
using the keyword this qualified with the class name. Listing 2-20 is the modified version of Listing 2-16. It 
illustrates the use of the class name with the keyword this to refer to the instance member of the enclosing 
class of an inner class. Listing 2-21 contains the code to test the ModifiedOuter2 class.

Listing 2-20. Using the Keyword this Qualified with the Class Name

// ModifiedOuter2.java
package com.jdojo.innerclasses;

public class ModifiedOuter2 {
    // An instance variable for the ModifiedOuter2 class
    private int value = 1116;



Chapter 2 ■ Inner Classes

79

    // The Inner class starts here
    public class Inner {
        // An instance variable for the Inner class
        private int value = 1720;

        public void printValue() {
            System.out.println("\nInner - printValue()...");
            System.out.println("Inner: value = " + value);
            System.out.println("Outer: value = " + ModifiedOuter2.this.value);
        }
    } // The Inner class ends here

    // An instance method for the ModifiedOuter2 class
    public void printValue() {
        System.out.println("\nOuter - printValue()...");
        System.out.println("Outer: value = " + value);
    }

    // Another instance method for the ModifiedOuter2 class
    public void setValue(int newValue) {
        System.out.println("\nSetting Outer's value to " + newValue);
        this.value = newValue;
    }
}

Listing 2-21. Testing the ModifiedOuter2 Class

// ModifiedOuter2Test.java
package com.jdojo.innerclasses;

public class ModifiedOuter2Test {
    public static void main(String[] args) {
        ModifiedOuter2 out = new ModifiedOuter2();
        ModifiedOuter2.Inner in = out.new Inner();

        // Print the value
        out.printValue();
        in.printValue();

        // Set a new value
        out.setValue(828);

        // Print the value
        out.printValue();
        in.printValue();
    }
}



Chapter 2 ■ Inner Classes

80

Outer - printValue()...
Outer: value = 1116

Inner - printValue()...
Inner: value = 1720
Outer: value = 1116

Setting Outer's value to 828

Outer - printValue()...
Outer: value = 828

Inner - printValue()...
Inner: value = 1720
Outer: value = 828

 ■ Note  Java restricts you from naming the inner class the same as its enclosing class. this is needed for the 
inner classes to access the hidden members of their enclosing classes using the enclosing class name with the 
keyword this.

Restrictions on Accessing Local Variables
A local inner class is declared inside a block—typically inside a method of a class. A local inner class can 
access the instance variables of its enclosing class as well as the local variables, which are in scope. The 
instance of an inner class exists within an instance of its enclosing class. Therefore, accessing the instance 
variables of the enclosing class inside a local inner class is not a problem because they exist throughout the 
lifecycle of the instance of the local inner class. However, the local variables in a method exist only during 
the execution of that method. All local variables become inaccessible when method execution is over. Java 
makes a copy of the local variables that are used inside a local inner class and stores that copy along with 
the inner class object. However, to guarantee that the values of the local variables can be reproduced when 
accessed inside the local inner class code after the method call is over, Java puts a restriction that the local 
variables must be effectively final. An effectively final variable is a variable whose value does not change after 
it is initialized. One way to have an effectively final variable is to declare the variable final. Another way 
is not to change its value after it is initialized. Therefore, a local variable or an argument to a method must 
be effectively final if it is used inside a local inner class. This restriction also applies to an anonymous inner 
class declared inside a method.

 ■ Tip  prior to Java 8, a local variable must be declared final if it is accessed inside a local inner class or 
an anonymous class. Java 8 changed this rule: the local variable need not be declared final, but it should be 
effectively final.



Chapter 2 ■ Inner Classes

81

The program in Listing 2-22 demonstrates the rules for accessing local variables inside a local inner 
class. The main() method declares two local variables called x and y. Both variables are effectively final. The 
variable x is never changed after it is initialized and the variable y cannot be changed because it is declared 
as final.

Listing 2-22. Accessing Local Variables Inside Local Classes

// AccessingLocalVariables.java
package com.jdojo.innerclasses;

public class AccessingLocalVariables {
    public static void main(String... args) {
        int x = 100;
        final int y = 200;

        class LocalInner {
            void print() {
                // Accessing the local variable x is fine as it is effectively final.
                System.out.println("x = " + x);

                // The local variable y is effectively final as it has been declared final.
                System.out.println("y = " + y);
            }
        }

        /* Uncommenting the following statement will make the variable x no longer
           an effectively final variable and the LocalInner class will not compile.
         */
        // x = 100;    
        LocalInner li = new LocalInner();
        li.print();
    }
}

x = 100
y = 200

Inner Class and Inheritance
An inner class can inherit from another inner class, a top-level class, or its enclosing class. For example, 
in the following snippet of code, inner class C inherits from inner class B; inner class D inherits from its 
enclosing top-level class A, and inner class F inherits from inner class A.B:

public class A {
    public class B {
    }

    public class C extends B {
    }



Chapter 2 ■ Inner Classes

82

    public class D extends A {
    }
}

public class E extends A {
    public class F extends B {
    }
}

The situation becomes trickier when you want to inherit a top-level class from an inner class:

public class G extends A.B {
    // This code won't compile
}

Before I discuss why this code will not compile, recall that you must have an instance of the enclosing 
class before you can create an instance of an inner class. In this case, if you want to create an instance of 
class G (using new G()), you must also create (indirectly though) an instance of A.B, because A.B is its parent 
class. Here, A.B is an inner class. Therefore, in order to create an instance of the inner class A.B, you must 
have an instance of its enclosing class A. Therefore, you must create an instance of class A before you can 
create an instance of class G. You must also make the instance of class A available to class G so that it can be 
used as the enclosing instance when A.B instance is created while creating an instance of its subclass G. The 
Java compiler enforces this rule. In this case, you must declare a constructor for class G, which accepts an 
instance of class A and calls the parent’s constructor on that instance. The previous class declaration for class 
G must be changed to the following:

public class G extends A.B {
    public G(A a) {
        a.super(); // Must be the first statement
    }
}

To create an instance of class G, you should follow two steps:

// Create an instance of class A first
A a = new A();

// Pass class A's instance to G's constructor
G g = new G(a);

You can combine these two statements into one:

G g = new G(new A());

Note that inside G’s constructor you have added one statement: a.super(). The compiler requires this 
to be the first statement. At the time of compilation, the compiler modifies a.super() to super(a). Here, 
super(a) means call the constructor of its parent, which is class B, passing the reference of class A. In other 
words, with the coding rule, the Java compiler ensures that the constructor of class B gets a reference to its 
enclosing class A when the instance of class B is created.



Chapter 2 ■ Inner Classes

83

Let’s change the declaration of the class E in the example to the following:

// The following code won't compile
public class E {
    public class F extends A.B {
    }
}

This code will not compile. To create an instance of the inner class F, you need an instance of A.B, 
which in turn requires an instance of class A. In the earlier case, E was inherited from A. Therefore, it was 
guaranteed that an instance of A exists when an instance of E is created. An instance of F can only be 
created when you have an instance of its ancestor’s A.B’s enclosing class A. When E inherited from A, it was 
guaranteed, when an instance of E was created, you always had an instance of class A. To make this code 
work, you need to apply the same logic as you did for class G. You need to declare a constructor for class F 
that takes an instance of class A as its parameter, like so:

// The following code will compile
public class E {
    public class F extends A.B {
        public F(A a) {
            a.super(); // Must be the first statement
        }
    }
}

No static Members in an Inner Class
The keyword static in Java makes a construct a top-level construct. Therefore, you cannot declare any static 
members (fields, methods, or initializers) for an inner class. The following code will not compile because 
inner class B declares a static field DAYS_IN_A_WEEK:

public class A {
    public class B {
        // Cannot have the following declaration
        public static int DAYS_IN_A_WEEK = 7; // A compile-time error
    }
}

However, it is allowed to have static fields in an inner class that are compile-time constants.

public class A {
    public class B {
        // Can have a compile-time static constant field
        public final static int DAYS_IN_A_WEEK = 7; // OK

        // Cannot have the following declaration, because it is not
        // a compile-time constant, even though it is final
        public final static String str = new String("Hello");    
    }
}



Chapter 2 ■ Inner Classes

84

 ■ Tip  a member interface and a member enum are implicitly static and, therefore, they cannot be declared 
inside an inner class.

Generated Class Files for Inner Classes
Each inner class is compiled into a separate class file. The names of the generated class files follow a naming 
convention. The class file name format for a member inner class and a nested class is as follows:

<outer-class-name>$<member-or-nested-class-name>

The format for the class file name for a local inner class is as follows:

<outer-class-name>$<a-number><local-inner-class-name>

The format for the class file name for an anonymous class is as follows:

<outer-class-name>$<a-number>

<a-number> in a class file name is a number that is generated sequentially starting from 1 to avoid any 
name conflicts. The following nine class files, one for the top-level and eight for inner classes, are generated 
when you compile the source code in Listing 2-23:

•	 InnerClassFile.class

•	 InnerClassFile$MemberInnerClass.class

•	 InnerClassFile$NestedClass.class

•	 InnerClassFile$1$LocalInnerClass.class

•	 InnerClassFile$1$LocalInnerClass$LocalInnerClass2.class

•	 InnerClassFile$1$AnotherLocalInnerClass.class

•	 InnerClassFile$1.class

•	 InnerClassFile$2$AnotherLocalInnerClass.class

•	 InnerClassFile$1$TestLocalClass.class

Listing 2-23. An Example for Generating File Names for Inner Classes

// InnerClassFile.java
package com.jdojo.innerclasses;

public class InnerClassFile {
    public class MemberInnerClass {
    }

    public static class NestedClass {
    }



Chapter 2 ■ Inner Classes

85

    public void testMethod1() {
        // A local class
        class LocalInnerClass {
            // A local class
            class LocalInnerClass2 {
            }
        }

        // A local class
        class AnotherLocalInnerClass {
        }

        // Anonymous Inner class
        new Object() {
        };
    }

    public void testMethod2() {
        // A local class. Its name is the same as a local class in testMethod1() method
        class AnotherLocalInnerClass {
        }

        // Another local class
        class TestLocalClass {
        }
    }
}

Inner Classes and the Compiler Magic 
Inner classes are implemented with the help of the compiler. The compiler does all the magic behind the 
scenes for the features provided by inner classes by altering your code and adding new code. Here is the 
simplest example of an inner class:

public class Outer {
    public class Inner {
    }
}

When the Outer class is compiled, two class files are generated: Outer.class and Outer$Inner.class. 
If you decompile these two class files, you get the following output. You can use any available decompilers 
for class files. Some Java class file decompilers are available free on the Internet. You can also use the javap 
tool, which ships with the JDK, to decompile class files. The javap utility is located on your machine in the 
JAVA_HOME\bin folder, where JAVA_HOME is the JDK installation folder.

// Decompiled code from Outer.class file
public class Outer {
    public Outer() {
    }
}



Chapter 2 ■ Inner Classes

86

// Decompiled code from Outer$Inner.class file
public class Outer$Inner {
    final Outer this$0;
    public Outer$Inner(Outer outer) {
        this$0 = outer;
        super();
    }
}

The following points may be observed in the decompiled code:

•	 As usual, the compiler provided a default constructor for the Outer class because you 
did not provide one in your source code.

•	 The Inner class definition is removed entirely from the body of the Outer class. 
Therefore, the Inner class becomes a class that stands by itself in its compiled form. 
Its class name is changed to Outer$Inner per the rules discussed earlier in this 
chapter. By just looking at the definition of only the Outer$Inner class, no one can 
notice that Outer$Inner is an inner class.

•	 In the Inner class definition (the Outer$Inner class in the decompiled code), the 
compiler added an instance variable named this$0, which is of its enclosing class 
type Outer (see the declaration "final Outer this$0;" in the decompiled code).

Since you did not include any constructors for the Inner class, you were expecting that the compiler 
would add a default constructor. However, that is not the case. In the case of an inner class, if you do 
not provide a constructor, the compiler includes a constructor, which has one argument. The argument 
type is the same as its enclosing class. If you include a constructor for an inner class, the compiler adds 
one argument to all the constructors you have included. The argument is added in the beginning of the 
constructor’s arguments list. The argument type is the same as the enclosing class type. Consider the 
following declaration of the Inner class:

public class Outer {
    public class Inner {
        public Inner(int a) {
        }
    }
}

Now the compiler will add an extra argument to its constructor, as shown:

public class Outer$Inner {
    final Outer this$0;
    public Outer$Inner(Outer outer, int i) {
       this$0 = outer;
       super();
   }
}

The constructor’s body for the compiled Inner class is as follows:

this$0 = outer;
super();



Chapter 2 ■ Inner Classes

87

The first statement assigns the constructor’s argument, which is the reference to its enclosed class 
instance, to the instance variable. The second statement calls the default constructor of the parent of the 
Inner class, which is the Object class in this case. Recall that if there is a call to the parent’s constructor 
inside a constructor of a class, it must be the first statement inside the constructor. However, it is the second 
statement for the synthesized inner class, as shown previously. Can you think of a reason why the call to the 
ancestor’s constructor is placed as the second statement as opposed to the first statement?

Let’s add an instance variable to the outer class and access that instance variable inside the inner class. 
To keep the example simple, you have added a new getValue() method to the Inner class in order to access 
the Outer class’s instance variable called dummy. The modified code is as follows:

public class Outer {
    int dummy = 101;

    public class Inner {
        public int getValue() {
            // Access Outer's class dummy field
            int x = dummy + 200;
            return x;
        }
    }
}

The decompiled code for the Outer.class and Outer$Inner.class files are as follows:

// Decompiled code from the Outer.class file
public class Outer {
    int dummy = 0;

    public Outer() {
        dummy = 101;
    }
}

// The decompiled code from the Outer$Inner.class file
public class Outer$Inner {
    final Outer this$0;

    public Outer$Inner(Outer outer) {
        this$0 = outer;
        super();
    }

    public int getValue() {
        int x = this$0.dummy + 200;
        return x;
    }
}

Note the use of this$0.dummy to access the instance variable of the Outer class inside the getValue() 
method of the Inner class. The dummy instance variable in the Outer class has a package-level access. 
Since an inner class is always part of the same package as its enclosing class, this method of referring to 



Chapter 2 ■ Inner Classes

88

the instance variable of the Outer class from outside works fine. However, if the instance variable dummy is 
declared private, the Outer$Inner class code cannot refer to it directly as it did in the previous example. The 
compiler uses a different way to access the private instance variable of the outer class from an inner class. 
The following is the modified code and the corresponding decompiled code for the Outer and Inner classes:

// Modified Outer class code with dummy as private instance variable
public class Outer {
    private int dummy = 101; // Declare dummy as private

    public class Inner {
        public int getValue() {
            int x = dummy + 200; // Access Outer's dummy field
            return x;
        }
    }
}

// Decompiled code from the Outer.class file
public class Outer {
    private int dummy = 0;

    public Outer() {
        dummy = 101;
    }

    // A method added by the compiler to access the dummy private field
    static int access$000(Outer outer) {
        return outer.dummy;
    }
}

// Decompiled code from the Outer$Inner.class file
public class Outer$Inner {
    final Outer this$0;
    public Outer$Inner(Outer outer) {
        this$0 = outer;
        super();
    }

    public int getValue() {
        int x = Outer.access$000(this$0) + 200;
        return x;
    }
}

Note that the compiler added a new static method to the Outer class, which is declared as

static int access$000(Outer outer)



Chapter 2 ■ Inner Classes

89

The compiler adds a new method to the enclosing class for each of its private instance variables 
accessed inside the inner class. The method, access$000(), is known as a synthetic method because 
it is synthesized by the compiler. The compiler sets a flag for each synthetic method in order to 
prevent direct access to these methods from the source code. Another difference for you to note is that 
inside the getValue() method of the Inner class the compiler has used the synthetic method Outer.
access$000(this$0) to access the Outer class’s dummy instance variable.

The compiler does many things to implement inner classes. To learn more about the implementation 
details of inner classes, you can write inner classes; compile the code to generate class files; and then, 
decompile the generated class files to see the work done by the compiler.

Closures and Callbacks
In functional programming, a higher order function is an anonymous function that can be treated as a data 
object. That is, it can be stored in a variable and passed around from one context to another. It might be 
invoked in a context that did not necessarily define it. Note that a higher order function is an anonymous 
function, so the invoking context does not have to know its name. A closure is a higher order function 
packaged with its defining environment. A closure carries with it the variables in scope when it was defined, 
and it can access those variables even when it is invoked in a context other than the context in which it was 
defined.

In object-oriented programming, a function is called a method and it is always part of a class. An 
anonymous class in Java allows a method to be packaged in an object that can be treated much as a higher 
order function. The object can be stored in a variable and passed around from one method to another. 
The method defined in an anonymous class can be invoked in a context other than the one in which it was 
defined. However, one important difference between a higher order function and a method defined in an 
anonymous class is that a higher order function is anonymous, whereas a method in an anonymous class 
is named. The invoker of the anonymous class method must know the method name. An anonymous class 
carries with it its environment. An anonymous class can use the local variables and the parameters of a 
method inside which it is defined. However, Java places a restriction that local variables and parameters to 
the method must be effectively final if they are accessed inside an anonymous class.

The callback mechanism can be implemented using anonymous classes and interfaces. In the simplest 
form, you register an object, which implements an interface. A particular method is called (back) on the 
registered object later. Let’s define an interface named Callable with one method named call(), as shown 
in Listing 2-24.

Listing 2-24. A Callable Interface to Implement a Callback Mechanism

// Callable.java
package com.jdojo.innerclasses;

public interface Callable {
    void call();
}

The CallbackTest class in Listing 2-25 illustrates the implementation details of the callback 
mechanism. The main() method creates three Callable objects using anonymous inner classes and 
registers them to be called later. The register() method registers a Callable object and stores the object’s 
reference in an ArrayList so that these object’s call() method can be executed later. The callback() 
method calls back all registered objects by invoking their call() methods.



Chapter 2 ■ Inner Classes

90

Listing 2-25. Implementing the Callback Mechanism Using Anonymous Classes

// CallbackTest.java
package com.jdojo.innerclasses;

import java.util.ArrayList;

public class CallbackTest {
    // To hold all registered Callable objects
    private final ArrayList<Callable> callableList = new ArrayList<>();

    public static void main(String[] args) {
        CallbackTest cbt = new CallbackTest();

        // Create three Callable objects and register them
        cbt.register(new Callable() {
            @Override
            public void call() {
                System.out.println("Called #1");
            }
        });

        cbt.register(new Callable() {
            @Override
            public void call() {
                System.out.println("Called #2");
            }
        });

        cbt.register(new Callable() {
            @Override
            public void call() {
                System.out.println("Called #3");
            }
        });

        // Callback all the registered Callable objects
        cbt.callback();
    }

    private void callback() {
        // Callback all the registered Callable objects
        for (Callable c: callableList) {
            c.call();
        }
    }

    public void register(Callable c) {
        this.callableList.add(c);
    }    
}



Chapter 2 ■ Inner Classes

91

Called #1
Called #2
Called #3

The callback mechanism described in this section is used extensively in Java when working with GUI 
applications developed using Swing and JavaFX.

 ■ Note  Java 8 introduced lambda expressions that make working with callbacks more concise. I discuss 
lambda expressions in Chapter 5.

Defining Inner Classes in static Contexts
You can also define an inner class in a static context such as inside a static method or a static initializer. 
There is no current instance of the outer class present in a static context, and therefore such an inner class 
cannot access instance fields of the outer class. However, all static field members are accessible to such an 
inner class.

public class Outer {
    static int k = 1001;
    int m = 9008;

    public static void staticMethod() {
        // Class Inner is defined in a static context
        class Inner {
            int j = k; // OK. Referencing static field k
            int n = m; // An error. Referencing non-static field m
        }
    }
}

Summary
Classes declared inside the body of another class are called inner classes. The class within which the inner 
class is declared is known as the enclosing class. Inner classes have direct access to all members of their 
enclosing class. Instances of inner classes exist only within an instance of the enclosing class, except when 
they are declared in a static context, for example, inside a static method.

There are three types of inner classes: member inner class, local inner class, and anonymous inner 
class. Inner classes are declared in non-static contexts. A member inner class is declared inside a class 
the same way a member field or a member method for the class is declared. It can be declared as public, 
private, protected, or package-level. A local inner class is declared inside a block. Its scope is limited 
to the block in which it is declared. An anonymous inner class is the same as a local inner class with one 
difference: it does not have a name. An anonymous class is a one-shot class; it is declared and an object of 
the class is created at the same time.

A class declared inside another class as a static member is simply called a nested class. A nested class 
has access to the static members of the enclosing class.

http://dx.doi.org/10.1007/978-1-4842-3348-1_5


Chapter 2 ■ Inner Classes

92

Inside an inner class, the keyword this refers to the current instance of the inner class. To refer to the 
current instance of the enclosing class, you need to qualify the keyword this with the class name of the 
enclosing class.

You cannot declare a static member for inner classes. This implies that interfaces and enums cannot be 
declared as members for inner classes.

QUESTIONS AND EXERCISES

1. What is an inner class? Differentiate between member, local, and anonymous inner 
classes.

2. What is the fully qualified name of the inner class B, which is declared as follows?

// A.java
package com.jdojo.innerclasses.exercises;

public class A {
   public class B {
   }
}

3. Consider the following declaration for top-level class named Cup and a member 
inner class named Handle:

// Cup.java
package com.jdojo.innerclasses.exercises;

public class Cup {
   public class Handle {
       public Handle() {
          System.out.println("Created a handle for the cup");
       }
   }

   public Cup() {
       System.out.println("Created a cup");
   }
}

Complete the code in the main() method of the following CupTest class that will 
create an instance of the Cup.Handle inner class:

// CupTest.java
package com.jdojo.innerclasses.exercises;



Chapter 2 ■ Inner Classes

93

public class CupTest {
   public static void main(String[] args) {
       // Create a Cup
       Cup c = new Cup();

       // Create a Handle
       Cup.Handle h = /* Your code goes here */ ;
   }
}

4. What will be the output when the following Outer class is run?

// Outer.java
package com.jdojo.innerclasses.exercises;

public class Outer {
    private final int value = 19680112;

    public class Inner {
        private final int value = 19690919;
            public void print() {
            System.out.println("Inner: value = " + value);
            System.out.println("Inner: this.value = " + this.value);
            System.out.println("Inner: Inner.this.value = " +
                                Inner.this.value);
            System.out.println("Inner: Outer.this.value = " +
                                Outer.this.value);
        }        
    }

    public void print() {
        System.out.println("Outer: value = " + value);
        System.out.println("Outer: this.value = " + this.value);
        System.out.println("Outer: Outer.this.value = " +
                           Outer.this.value);
    }

    public static void main(String[] args) {
        Outer out = new Outer();
        Inner in = out.new Inner();
        out.print();
        in.print();
    }
}



Chapter 2 ■ Inner Classes

94

5. the following declaration of an AnonymousTest class does not compile. Describe 
the reasons and steps you might take to fix the error.

// AnonymousTest.java
package com.jdojo.innerclasses.exercises;

public class AnonymousTest {
   public static void main(String[] args) {
       int x = 100;

       Object obj = new Object() {
           {
               System.out.println("Inside. x = " + x);
           }
       };

       x = 300;
       System.out.println("Outside. x = " + x);
   }
}

6. Consider the following declaration for a top-level class A and a member inner 
class B:

// A.java
package com.jdojo.innerclasses.exercises;

public class A {
    public class B {
        public B() {
            System.out.println("B is created.");
        }
    }

    public A() {
        System.out.println("A is created.");
    }
}

Consider the following incomplete declaration of class C, which inherits from the 
inner class A.B:

// C.java
package com.jdojo.innerclasses.exercises;

public class C extends A.B {



Chapter 2 ■ Inner Classes

95

   /* Define a constructor for class C here */

   public static void main(String[] args) {
       C c = /* Your code goes here */;
   }
}

add an appropriate constructor for class C and complete the statement in the 
main() method. When class C is run, it should print the following to the standard 
output:

A is created.
B is created.
C is created.

7. Which of the following is true about an anonymous inner class?

 a. It can inherit from one class and implement one interface.

 b. It can inherit from one class and implement multiple interfaces.

 c. It can inherit from one class or implement one interface.

 d. It can implement multiple interfaces, but inherits from only one class.

8. how many class files will be generated when the following declaration of the 
Computer class is compiled? list the names of all generated class files.

// Computer.java
package com.jdojo.innerclasses.exercises;

public class Computer {
    public class Mouse {
        public class Button {
        }
    }

   public static void main(String[] args) {
       Object obj = new Object() {
       };

       System.out.println(obj.hashCode());
   }
}



Chapter 2 ■ Inner Classes

96

9. the following declaration of class H does not compile. point out the problem and 
suggest a solution.

// H.java
package com.jdojo.innerclasses.exercises;

public class H {
   private int x = 100;

   public static class J {
       private int y = x * 2;
   }
}

10. Consider the following declaration of a top-level class P and a nested static class Q:

// P.java
package com.jdojo.innerclasses.exercises;

public class P {
   public static class Q {
       {
            System.out.println("Hello from Q.");
       }
   }
}

Complete the main() method of the following PTest class that will create an object 
of the nested static class Q. When class PTest is run, it should print a message 
"Hello from Q." to the standard output.

// PTest.java
package com.jdojo.innerclasses.exercises;

public class PTest {
   public static void main(String[] args) {
       P.Q q = /* Your code goes here */;
   }
}



97© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_3

CHAPTER 3

Reflection

In this chapter, you will learn:

•	 What reflection is

•	 What a class loader is and about the built-in class loaders

•	 How to use reflection to get information about classes, constructors, methods, etc. at 
runtime

•	 How to access fields of an object and a class using reflection

•	 How to create objects of a class using reflection

•	 How to invoke methods of a class using reflection

•	 How to create arrays using reflection

Most example programs in this chapter are a member of a jdojo.reflection module, as declared in 
Listing 3-1. I use more modules in this chapter, which I show later.

Listing 3-1. The Declaration of a jdojo.reflection Module

// module-info.java
module jdojo.reflection {
    exports com.jdojo.reflection;
}

What Is Reflection?
Reflection is the ability of a program to query and modify its state “as data” during the execution of the 
program. The ability of a program to query or obtain information about itself is known as introspection. 
The ability of a program to modify its execution state, modify its own interpretation or its meaning, or add 
new behaviors to the program as it is executing is called intercession. Reflection is further divided into two 
categories:

•	 Structural reflection

•	 Behavioral reflection

The ability of a program to query about the implementation of its data and code is called structural 
introspection, whereas its ability to modify or create new data structure and code is called structural 
intercession.

https://doi.org/10.1007/978-1-4842-3348-1_3


Chapter 3 ■ refleCtion

98

The ability of a program to obtain information about its runtime environment is called behavioral 
introspection, whereas its ability to modify the runtime environment is called behavioral intercession.

Providing the ability to a program to query or modify its state requires a mechanism for encoding the 
execution state as data. In other words, the program should be able to represent its execution state as data 
elements (as objects in objected-oriented languages such as Java) so that it can be queried and modified. 
The process of encoding the execution state into data is called reification. A programming language is called 
reflective if it provides the programs with reflection capability.

Reflection in Java
The support for reflection in Java is mostly limited to introspection. It supports intercession in a very limited 
form. The introspection features provided by Java let you obtain class information about an object at 
runtime. Java also lets you obtain information about the fields, methods, modifiers, and the superclass of a 
class at runtime.

The intercession features provided by Java let you create an instance of a class whose name is not known 
until runtime, invoke methods on such instances, and get/set its fields. However, Java does not allow you to 
change the data structure at runtime. For example, you cannot add a new field or a method to an object at 
runtime. All fields of an object are always determined at compile-time. Examples of behavioral intercession 
are the ability to change the method execution at runtime or add a new method to a class at runtime. Java 
does not provide any of these intercession features. That is, you cannot change a class’s method code at 
runtime to change its execution behavior; neither can you add a new method to a class at runtime.

Java provides reification by providing an object representation for a class and its methods, constructors, 
fields, etc. at runtime. In most cases, Java does not support reification for generic types. Java 5 added support 
for generic types. Refer to Chapter 4 for more details on generic types. A program can work on the reified 
objects in order to get information about the runtime execution. For example, you have been using the 
object of java.lang.Class class to get the information about the class of an object. A Class object is the 
reification of the bytecode for the class of an object. When you want to gather information about the class of 
an object, you do not have to worry about the bytecode of the class from which the object was instantiated. 
Rather, Java provides the reification of the bytecode as an object of the Class class.

The reflection facility in Java is provided through the reflection API. Most of the reflection API classes 
and interfaces are in the java.lang.reflect package. The Class class, which is central to the reflection in 
Java, is in the java.lang package. Some of the frequently used classes in reflection are listed in Table 3-1.

Table 3-1. Commonly Used Classes in Reflection

Class Name Description

Class An object of this class represents a single class loaded by a class loader in the JVM.

Field An object of this class represents a single field of a class or an interface. The field 
represented by this object may be a static field or an instance field.

Constructor An object of this class represents a single constructor of a class.

Method An object of this class represents a method of a class or an interface. The method 
represented by this object may be a class method or an instance method.

Modifier This class has static methods that are used to decode the access modifiers for a class and 
its members.

Parameter An object of this class represents a method’s parameter.

Array This class provides static methods that are used to create arrays at runtime.

http://dx.doi.org/10.1007/978-1-4842-3348-1_4


Chapter 3 ■ refleCtion

99

Some of the things you can do using the reflection features in Java are as follows:

•	 If you have an object reference, you can determine the class name of the object.

•	 If you have a class name, you can know its full description, for example, its package 
name, its access modifiers, etc.

•	 If you have a class name, you can determine the methods defined in the class, their 
return type, access modifiers, parameters type, parameter names, etc. The support 
for parameter names was added in Java 8.

•	 If you have a class name, you can determine all field descriptions of the class.

•	 If you have a class name, you can determine all constructors defined in the class.

•	 If you have a class name, you can create an object of the class using one of its 
constructors.

•	 If you have an object reference, you can invoke its method knowing just the method’s 
name and method’s parameter types.

•	 You can get or set the state of an object at runtime.

•	 You can create an array of a type dynamically at runtime and manipulate its 
elements.

Loading a Class
The Class<T> class is central to reflection in Java. The Class<T> class is a generic class. It takes a type 
parameter, which is the type of the class represented by the Class object. For example, Class<String> 
represents the class object for the String class. Class<?> represents a class type whose class is unknown.

The Class class lets you discover everything about a class at runtime. An object of the Class class 
represents a class in a program at runtime. When you create an object in your program, Java loads the class’s 
byte code and creates an object of the Class class to represent the byte code. Java uses that Class object 
to create any object of that class. No matter how many objects of a class you create in your program, Java 
creates only one Class object for each class loaded by a class loader in a JVM from one module. Each class 
from a module is also loaded only once by a particular class loader. In a JVM, a class is uniquely identified by 
its fully qualified name, its class loader, and its module. If two different class loaders load the same class, the 
two loaded classes are considered two different classes and their objects are not compatible with each other.

You can get the reference to the Class object of a class in one of the followings ways:

•	 Using class literal

•	 Using the getClass() method of the Object class

•	 Using the forName() static method of the Class class

Using Class Literals
A class literal is the class name or interface name followed by a dot and the word “class.” For example, if you 
have a class Test, its class literal is Test.class and you can write

Class<Test> testClass = Test.class;



Chapter 3 ■ refleCtion

100

Note that the class literal is always used with a class name, not with an object reference. The following 
statement to get the class reference is invalid:

Test t = new Test();
Class<Test> testClass = t.class; // A compile-time error. Must use Test.class

You can also get the class object for primitive data types and the keyword void using class literals as 
boolean.class, byte.class, char.class, short.class, int.class, long.class, float.class, double.
class, and void.class. Each wrapper class for these primitive data types has a static field named TYPE, 
which has the reference to the class object of the primitive data type it represents. Therefore, int.class and 
Integer.TYPE refer to the same class object and the expression int.class == Integer.TYPE evaluates to 
true. Table 3-2 shows the class literals for all primitive data types and the void keyword.

Table 3-2. Class Literals for Primitive Data Types and the void Keyword

Data Type Primitive Class Literal Wrapper Class static Field

boolean boolean.class Boolean.TYPE

byte byte.class Byte.TYPE

char char.class Character.TYPE

short short.class Short.TYPE

int int.class Integer.TYPE

long long.class Long.TYPE

float float.class Float.TYPE

double double.class Double.TYPE

void void.class Void.TYPE

Using the Object::getClass() Method 
The Object class contains a getClass() method, , which returns the reference to the Class object of the 
class of the object. This method is available in every class in Java because every class in Java, explicitly or 
implicitly, inherits the Object class. The method is declared final, so no descendant class can override it. For 
example, if you have testRef as a reference to an object of class Test, you can get the reference to the Class 
object of the Test class as follows:

Test testRef = new Test();
Class<Test> testClass = testRef.getClass();

Using the Class::forName() Method 
The Class class has a forName() static method, which loads a class and returns the reference to its Class 
object. It is an overloaded method. Its declarations are as follows:

•	 Class<?> forName(String className) throws ClassNotFoundException

•	 Class<?> forName(String className, boolean initialize, ClassLoader 
loader) throws ClassNotFoundException

•	 Class<?> forName(Module module, String className)



Chapter 3 ■ refleCtion

101

The forName(String className) method takes the fully qualified name of the class to be loaded. It 
loads the class, initializes it, and returns the reference to its Class object. If the class is already loaded, it 
simply returns the reference to the Class object of that class.

The forName(String className, boolean initialize, ClassLoader loader) method gives you 
options to initialize or not to initialize the class when it is loaded, and which class loader should load the 
class. The first two versions of the method throw a ClassNotFoundException if the class could not be loaded.

The forName(Module module, String className) method loads the class with the specified 
className in the specified module without initializing the loaded class. If the class is not found, the method 
returns null. This method was added to the Class class in JDK9.

To load a class named pkg1.Test, you would write:

Class testClass = Class.forName("pkg1.Test");

To get a Class object reference using the forName() method, you do not have to know the name of 
the class until runtime. The forName(String className) method initializes the class if it is not already 
initialized, whereas the use of a class literal does not initialize the class. When a class is initialized, all its 
static initializers are executed and all static fields are initialized. Listing 3-2 lists a Bulb class with only 
one static initializer, which prints a message on the console. Listing 3-3 uses various methods to load and 
initialize the Bulb class.

Listing 3-2. A Bulb Class to Demonstrate Initialization of a Class

// Bulb.java
package com.jdojo.reflection;

public class Bulb {
    static {
        // This will execute when this class is loaded and initialized
        System.out.println("Loading class Bulb...");
    }
}

Listing 3-3. Testing Class Loading and Initialization

// BulbTest.java
package com.jdojo.reflection;

public class BulbTest {
    public static void main(String[] args) {
        /* Uncomment only one of the following statements at a time.
           Observe the output to see the difference in the way the Bulb
           class is loaded and initialized.
         */

        BulbTest.createObject();
        // BulbTest.forNameVersion1();
        // BulbTest.forNameVersion2();
        // BulbTest.forNameVersion3();
        // BulbTest.classLiteral();
    }



Chapter 3 ■ refleCtion

102

    public static void classLiteral() {
        // Will load the class, but won't initialize it.
        Class<Bulb> c = Bulb.class;
    }

    public static void forNameVersion1() {
        try {
            String className = "com.jdojo.reflection.Bulb";

            // Will load and initialize the class  
            Class c = Class.forName(className);
        } catch (ClassNotFoundException e) {
            System.out.println(e.getMessage());
        }
    }

    public static void forNameVersion2() {
        try {
            String className = "com.jdojo.reflection.Bulb";
            boolean initialize = false;

            // Get the classloader for the current class  
            ClassLoader cLoader = BulbTest.class.getClassLoader();

            // Will load, but not initialize the class, because we have
            // set the initialize variable to false  
            Class c = Class.forName(className, initialize, cLoader);
        } catch (ClassNotFoundException e) {
            System.out.println(e.getMessage());
        }
    }

    public static void forNameVersion3() {
        String className = "com.jdojo.reflection.Bulb";

        // Get the module reference for the current class  
        Module m = BulbTest.class.getModule();

        // Will load, but not initialize, the class
        Class c = Class.forName(m, className);

        if(c == null) {
            System.out.println("The bulb class was not loaded.");
        } else {
            System.out.println("The bulb class was loaded.");
        }

    }



Chapter 3 ■ refleCtion

103

    public static void createObject() {
        // Will load and initialize the Bulb class  
        new Bulb();
    }
}

Loading class Bulb...

Class Loaders
At runtime, every type is loaded by a class loader, which is represented by an instance of the java.lang.
ClassLoader class. You can get the reference of the class loader of a type by using the getClassLoader() 
method of the Class class. The following snippet of code shows how to get the class loader of the Bulb class:

Class<Bulb> cls = Bulb.class;
ClassLoader loader = cls.getClassLoader();

Class loaders have changed a bit in JDK9. However, the code behavior of class loading and class loaders 
remains the same in JDK9. The following sections describe the class loaders in JDK8 and JDK9.

Class Loaders in JDK8
Prior to JDK9, the runtime used three class loaders to load classes as shown in Figure 3-1. The direction of 
the arrows indicates the delegation direction. These class loaders load classes from different locations and of 
different types. You can add more class loaders, which would be a subclass of the ClassLoader class. Using 
custom class loaders, you can load classes from custom locations, partition user code, and unload classes. 
For simple applications, the built-in class loaders are sufficient.

Bootstrap class loader

Extension class loader 

Application class loader 

Figure 3-1. Class loaders hierarchy in the JDK prior to version 9

Class loaders work in a hierarchical fashion—the bootstrap class loader being at the top of the 
hierarchy. A class loader delegates a request to load a class to the one above it. For example, if the 
application class loader is requested to load a class, it delegates the request to the extension class loader, 
which in turn delegates the request to the bootstrap class loader. If the bootstrap class loader cannot 
load the class, the extension class loader attempts to load it. If the extension class loader cannot load 
the class, the application class loader attempts to load it. If the application class loader cannot load it, a 
ClassNotFoundException is thrown.



Chapter 3 ■ refleCtion

104

The bootstrap class loader is the parent of the extension class loader. The extension class loader is the 
parent of the application class loader. The bootstrap class loader has no parent. By default, the application 
class loader will be the parent of additional class loaders you create.

 ■ Tip  You can get the reference of the parent of a class loader by using the getParent() method of the 
ClassLoader class.

The bootstrap class loader loads bootstrap classes that consist of the Java platform, including the 
classes in the JAVA_HOME\lib\rt.jar and several other runtime JARs. It is entirely implemented in the 
virtual machine. You can use the -Xbootclasspath/p and -Xbootclasspath/a command-line options to 
prepend and append additional bootstrap directories. You can specify a bootstrap class path using the 
-Xbootclasspath option, which will replace the default bootstrap class path. At runtime, the sun.boot.
class.path system property contains the read-only value of the boot class path. The bootstrap class loader 
is represented by null. That is, you cannot get its reference. For example, the Object class is loaded by the 
bootstrap class loader and the expression Object.class.getClassLoader() returns null.

The extension class loader is used to load classes available through the extension mechanism located in 
JARs in the directories specified by the java.ext.dirs system property. To get the reference of the extension 
class loader, you need to get the reference of the application class loader (see the next paragraph) and use 
the getParent() method on that reference.

The application class loader loads classes from the application class path that is specified by the 
CLASSPATH environment variable or command-line option -cp or -classpath. The application class loader 
is also known as the system class loader, which is a kind of misnomer that gives a false impression that it 
loads system classes. You can get a reference of the application class loader using the static method named 
getSystemClassLoader() of the ClassLoader class.

Class Loaders in JDK9
JDK9 keeps the three-level hierarchical class loader architecture for backward compatibility. However, there 
are a few changes to the way they load classes from the module system. Figure 3-2 shows the JDK9 class 
loader hierarchy.

Bootstrap class loader

Platform class loader

Application class loader 

Figure 3-2. Class loaders hierarchy in JDK9

Notice that in JDK9, the application class loader can delegate to the platform class loader as well as the 
bootstrap class loader; the platform class loader can delegate to the application class loader.



Chapter 3 ■ refleCtion

105

In JDK9, the bootstrap class loader is implemented in the library code and in the virtual machine. 
For backward compatibility, it is still represented by null in a program. For example, Object.class.
getClassLoader() still returns null. Not all Java SE Platform and JDK modules are loaded by the bootstrap 
class loader. To name a few, modules loaded by the bootstrap class loader are java.base, java.logging, 
java.prefs, and java.desktop. Other Java SE Platform and JDK modules are loaded by the platform class 
loader and the application class loader, which are described next. Options to specify the boot class path, 
-Xbootclasspath, and -Xbootclasspath/p, and the system property, sun.boot.class.path, are no longer 
supported in JDK9. The -Xbootclasspath/a option is still supported and its value is stored in the system 
property jdk.boot.class.path.append.

JDK9 no longer supports the extension mechanism. However, it retains the extension class loader 
under a new name called platform class loader. The ClassLoader class contains a new static method named 
getPlatformClassLoader(), which returns the reference of the platform class loader. Table 3-3 lists the 
modules loaded by the platform class loader.

Table 3-3. The JDK Modules Loaded by the Platform Class Loader in JDK9

java.activation java.transaction jdk.deploy

java.compiler java.xml.bind jdk.dynalink

java.corba java.xml.crypto jdk.localedata

java.scripting java.xml.ws jdk.naming.dns

java.se java.xml.ws.annotation jdk.scripting.nashorn

java.se.ee jdk.accessibility jdk.security.auth

java.security.jgss jdk.charsets jdk.security.jgss

java.smartcardio jdk.crypto.cryptoki jdk.zipfs

java.sql jdk.crypto.ec

java.sql.rowset jdk.crypto.mscapi

The platform class loader serves another purpose. Classes loaded by the bootstrap class loader are 
granted all permissions by default. However, several classes did not need all permissions. Such classes have 
been de-privileged in JDK9 and they are loaded by the platform class loader.

The application class loader loads the application modules found on the module path and a few JDK 
modules that provide tools or export tool APIs, as listed in Table 3-4. In JDK9, you can still use the static 
method named getSystemClassLoader() of the ClassLoader class to get the reference of the application 
class loader.

Table 3-4. The JDK Modules Loaded by the Application Class Loader in JDK9

jdk.attach jdk.internal.le jdk.jdi

jdk.compiler jdk.internal.opt jdk.jdwp.agent

jdk.editpad jdk.jartool jdk.jlink

jdk.internal.ed jdk.javadoc jdk.jshell

jdk.internal.jvmstat jdk.jdeps jdk.jstatd



Chapter 3 ■ refleCtion

106

 ■ Tip  Before JDK9, the extension class loader and the application class loader were an instance of the 
java.net.URLClassLoader class. in JDK9, the platform class loader (the erstwhile extension class loader) and 
the application class loader are an instance of an internal JDK class. if your code relied on the methods specific 
to the URLClassLoader class, your code may break in JDK9.

The JDK modules not listed in Table 3-3 and Table 3-4 are loaded by the bootstrap class loader. Listing 3-4  
shows you how to print module names and their class loader names. A partial output is shown. The output 
depends on the modules resolved by the runtime. To print all JDK modules and their class loaders, you 
should add a "requires java.se.ee" in your module declaration before running this class. I discuss 
module layers in Chapter 15.

Listing 3-4. Listing the Names of Loaded Modules by Class Loader

// ModulesByClassLoader.java
package com.jdojo.reflection;

public class ModulesByClassLoader {
    public static void main(String[] args) {
        // Get the boot layer
        ModuleLayer layer = ModuleLayer.boot();

        // Print all module's names and their class loader names in the boot layer
        for (Module m : layer.modules()) {
            ClassLoader loader = m.getClassLoader();
            String moduleName = m.getName();
            String loaderName = loader == null ? "bootstrap" : loader.getName();
            System.out.printf("%s: %s%n", loaderName, moduleName);
        }
    }
}

platform: java.xml.ws
app: jdk.compiler
platform: java.transaction
platform: jdk.naming.dns
bootstrap: java.datatransfer
bootstrap: jdk.jfr
app: jdk.jlink
...

The class loading mechanism in JDK9 has changed a bit. The three built-in class loaders work in tandem 
to load classes. When the application class loader needs to load a class, it searches modules defined to all 
class loaders. If a suitable module is defined to one of these class loaders, that class loader loads the class, 
implying that the application class loader can now delegate to the bootstrap class loader and the platform 
class loader. If a class is not found in a named module defined to these class loaders, the application class 
loader delegates to its parent, which is the platform class loader. If class is still not loaded, the application 
class loader searches the class path. If it finds the class on the class path, it loads the class as a member of its 
unnamed module. If it does not find the class on the class path, a ClassNotFoundException is thrown.

http://dx.doi.org/10.1007/978-1-4842-3348-1_15


Chapter 3 ■ refleCtion

107

When the platform class loader needs to load a class, it searches modules defined to all class loaders. If 
a suitable module is defined to one of these class loaders, that class loader loads the class, implying that the 
platform class loader can delegate to the bootstrap class loader as well as the application class loader. If a 
class is not found in a named module defined to these class loaders, the platform class loader delegates to its 
parent, which is the bootstrap class loader.

When the bootstrap class loader needs to load a class, it searches its own list of named modules. If a 
class is not found, it searches the list of files and directories specified through the command-line option 
-Xbootclasspath/a. If it finds a class on the bootstrap class path, it loads the class as a member of its 
unnamed module. If a class is still not found, a ClassNotFoundException is thrown.

Reflecting on Classes
This section demonstrates the features of Java reflection that enable you to get the description of a class, 
such as its package name, access modifiers, etc. You will use a Person class, as listed in Listing 3-5, to 
demonstrate the reflection features. It is a simple class with two instance fields, two constructors, and some 
methods. It implements two interfaces.

Listing 3-5. A Person Class Used to Demonstrate Reflection

// Person.java
package com.jdojo.reflection;

import java.io.Serializable;

public class Person implements Cloneable, Serializable {
    private int id = -1;
    private String name = "Unknown";

    public Person() {
    }

    public Person(int id, String name) {
        this.id = id;
        this.name = name;
    }

    public int getId() {
        return id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }



Chapter 3 ■ refleCtion

108

    @Override
    public Person clone() {
        try {
            return (Person) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new RuntimeException(e.getMessage());
        }
    }

    @Override
    public String toString() {
        return "Person: id=" + this.id + ", name=" + this.name;
    }
}

Listing 3-6 illustrates how to get the description of a class. It lists the class access modifiers, the class 
name, its superclass name, and all interfaces implemented by the class.

Listing 3-6. Reflecting on a Class

// ClassReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Modifier;
import java.lang.reflect.TypeVariable;

public class ClassReflection {
    public static void main(String[] args) {
        // Print the declaration of the Person class
        String clsDecl = getClassDescription(Person.class);
        System.out.println(clsDecl);

        // Print the declaration of the Class class
        clsDecl = getClassDescription(Class.class);
        System.out.println(clsDecl);

        // Print the declaration of the Runnable interface
        clsDecl = getClassDescription(Runnable.class);
        System.out.println(clsDecl);

        // Print the declaration of the class representing the int data type
        clsDecl = getClassDescription(int.class);
        System.out.println(clsDecl);
    }

    public static String getClassDescription(Class<?> cls) {
        StringBuilder classDesc = new StringBuilder();

        // Prepare the modifiers and construct keyword (class, enum, interface etc.)
        int modifierBits = 0;
        String keyword = "";



Chapter 3 ■ refleCtion

109

        // Add keyword @interface, interface or class
        if (cls.isPrimitive()) {
            // We do not want to add anything  
        } else if (cls.isInterface()) {
            modifierBits = cls.getModifiers() & Modifier.interfaceModifiers();

            // An annotation is an interface
            if (cls.isAnnotation()) {
                keyword = "@interface";
            } else {
                keyword = "interface";
            }
        } else if (cls.isEnum()) {
            modifierBits = cls.getModifiers() & Modifier.classModifiers();
            keyword = "enum";
        } else {
            modifierBits = cls.getModifiers() & Modifier.classModifiers();
            keyword = "class";
        }

        // Convert modifiers to their string representation  
        String modifiers = Modifier.toString(modifierBits);

        // Append modifiers
        classDesc.append(modifiers);

        // Append the construct keyword
        classDesc.append(" ");
        classDesc.append(keyword);

        // Append simple name
        String simpleName = cls.getSimpleName();
        classDesc.append(" ");
        classDesc.append(simpleName);

        // Append generic parameters
        String genericParms = getGenericTypeParams(cls);
        classDesc.append(genericParms);

        // Append super class  
        Class superClass = cls.getSuperclass();
        if (superClass != null) {
            String superClassSimpleName = superClass.getSimpleName();
            classDesc.append(" extends ");
            classDesc.append(superClassSimpleName);
        }

        // Append Interfaces  
        String interfaces = ClassReflection.getClassInterfaces(cls);
        if (interfaces != null) {



Chapter 3 ■ refleCtion

110

            classDesc.append(" implements ");
            classDesc.append(interfaces);
        }

        return classDesc.toString().trim();
    }

    public static String getClassInterfaces(Class<?> cls) {
        // Get a comma-separated list of interfaces implemented by the class
        Class<?>[] interfaces = cls.getInterfaces();
        if (interfaces.length == 0) {
            return null;
        }

        String[] names = new String[interfaces.length];
        for (int i = 0; i < interfaces.length; i++) {
            names[i] = interfaces[i].getSimpleName();
        }

        String interfacesList = String.join(", ", names);
        return interfacesList;
    }

    public static String getGenericTypeParams(Class<?> cls) {
        StringBuilder sb = new StringBuilder();
        TypeVariable<?>[] typeParms = cls.getTypeParameters();

        if (typeParms.length == 0) {
            return "";
        }

        String[] paramNames = new String[typeParms.length];
        for (int i = 0; i < typeParms.length; i++) {
            paramNames[i] = typeParms[i].getTypeName();
        }

        sb.append('<');
        String parmsList = String.join(",", paramNames);
        sb.append(parmsList);
        sb.append('>');

        return sb.toString();
    }
}

public class Person extends Object implements Cloneable, Serializable
public final class Class<T> extends Object implements Serializable, GenericDeclaration, 
Type, AnnotatedElement
public abstract interface Runnable
int



Chapter 3 ■ refleCtion

111

The getName() method of the Class class returns the fully qualified name of the class. To get the simple 
class name, use the getSimpleName() method of the Class class, like so:

String simpleName = c.getSimpleName();

The modifiers of a class are the keywords that appear before the keyword class in the class declaration. 
In the following example, public and abstract are the modifiers for the MyClass class:

public abstract class MyClass {
    // Code goes here  
}

The getModifiers() method of the Class class returns all modifiers for the class. Note that the 
getModifiers() method returns an integer. To get the textual form of the modifiers, you need to call the 
toString(int modifiers) static method of the Modifier class, passing the modifiers value in an integer 
form. Assuming cls is the reference of a Class object, you get the modifiers of the class as shown:

// You need to AND the returned value from the getModifiers() method with
// appropriate value returned from xxxModifiers() method of the Modifiers class
int mod = cls.getModifiers() & Modifier.classModifiers();
String modStr = Modifier.toString(mod);

It is straightforward to get the name of the superclass of a class. Use the getSuperclass() method of 
the Class class to get the reference of the superclass. Note that every class in Java has a superclass except the 
Object class. If the getSuperclass() method is invoked on the Object class, it returns null.

Class superClass = cls.getSuperclass();
if (superClass != null) {
    String superClassName = superClass.getSimpleName();
}

 ■ Tip  the getSuperclass() method of the Class class returns null when it represents the Object class, 
a class for an interface such as List.class, and a class for a primitive type such as int.class, void.class, 
etc.

To get the names of all interfaces implemented by a class, you use the getInterfaces() method 
of the Class class. It returns an array of Class object. Each element in the array represents an interface 
implemented by the class.

// Get all interfaces implemented by cls
Class<?>[] interfaces = cls.getInterfaces();

The getClassDescription() method of the ClassReflection class puts all parts of a class declaration 
into a string and returns that string. The main() method of this class demonstrates how to use this class.



Chapter 3 ■ refleCtion

112

 ■ Note  Java 8 added a method called toGenericString() to the Class class that returns a string 
describing the class. the string contains the modifiers and type parameters for the class. the call Person.
class.toGenericString() will return public class com.jdojo.reflection.Person.

Reflecting on Fields
A field of a class is represented by an object of the java.lang.reflect.Field class. The following four 
methods in the Class class can be used to get information about the fields of a class:

•	 Field[] getFields()

•	 Field[] getDeclaredFields()

•	 Field getField(String name)

•	 Field getDeclaredField(String name)

The getFields() method returns all the accessible public fields of the class or interface. The 
accessible public fields include public fields declared in the class or inherited from its superclass. The 
getDeclaredFields() method returns all the fields that appear in the declaration of the class. It does not 
include inherited fields. The other two methods, getField() and getDeclaredField(), are used to get the 
Field object if you know the name of the field. Let’s consider the following declarations of classes A and B, 
and an interface IConstants:

interface IConstants {
    int DAYS_IN_WEEK = 7;
}

class A implements IConstants {
    private int aPrivate;
    public int aPublic;
    protected int aProtected;
}

class B extends A {
    private int bPrivate;
    public int bPublic;
    protected int bProtected;
}

If bClass is the reference of the Class object for class B, the expression bClass.getFields() will return 
the following three fields that are accessible and public:

•	 public int B.bPublic

•	 public int A.aPublic

•	 public static final int IConstants.DAYS_IN_WEEK



Chapter 3 ■ refleCtion

113

The bClass.getDeclaredFields() method will return the three fields that are declared in class B:

•	 private int B.bPrivate

•	 public int B.bPublic

•	 protected int B.bProtected

To get all the fields of a class and its superclass, you must get the reference of the superclass using the 
getSuperclass() method and use the combinations of these methods. Listing 3-7 illustrates how to get the 
information about the fields of a class. Note that you do not get anything when you call the getFields() 
method on the Class object of the Person class because the Person class does not contain any public fields.

Listing 3-7. Reflecting on Fields of a Class

// FieldReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.util.ArrayList;

public class FieldReflection {
    public static void main(String[] args) {
        Class<Person> cls = Person.class;

        // Print declared fields
        ArrayList<String> fieldsDescription = getDeclaredFieldsList(cls);

        System.out.println("Declared Fields for " + cls.getName());
        for (String desc : fieldsDescription) {
            System.out.println(desc);
        }

        // Get the accessible public fields  
        fieldsDescription = getFieldsList(cls);

        System.out.println("\nAccessible Fields for " + cls.getName());
        for (String desc : fieldsDescription) {
            System.out.println(desc);
        }

    }

    public static ArrayList<String> getFieldsList(Class c) {
        Field[] fields = c.getFields();
        ArrayList<String> fieldsList = getFieldsDescription(fields);
        return fieldsList;
    }

    public static ArrayList<String> getDeclaredFieldsList(Class c) {
        Field[] fields = c.getDeclaredFields();
        ArrayList<String> fieldsList = getFieldsDescription(fields);
        return fieldsList;
    }



Chapter 3 ■ refleCtion

114

    public static ArrayList<String> getFieldsDescription(Field[] fields) {
        ArrayList<String> fieldList = new ArrayList<>();

        for (Field f : fields) {
            // Get the modifiers for the field  
            int mod = f.getModifiers() & Modifier.fieldModifiers();
            String modifiers = Modifier.toString(mod);

            // Get the simple name of the field type
            Class<?> type = f.getType();
            String typeName = type.getSimpleName();

            // Get the name of the field  
            String fieldName = f.getName();

            fieldList.add(modifiers + " " + typeName + " " + fieldName);
        }

        return fieldList;
    }
}

Declared Fields for com.jdojo.reflection.Person
private int id
private String name

Accessible Fields for com.jdojo.reflection.Person

 ■ Tip  You cannot use this technique to describe the length field of an array object. each array type has a 
corresponding class. When you try to get the fields of an array class using the getFields() method, you get 
an array of Field objects of zero length. the array length is not part of the array’s class definition. rather, it 
is stored as part of the array object in the object header. for more information on array’s length field, refer to 
Chapter 11.

Reflecting on Executables
An instance of the Method class represents a method. An instance of the Constructor class represents a 
constructor. Structurally, methods and constructors have a few things in common. Both use modifiers, 
parameters, and throws clause. Both can be executed. Java 8 refactored these classes to inherit them from 
a common abstract superclass, Executable. Methods to retrieve information common to both have been 
added/moved to the Executable class.

A parameter in an Executable is represented by an object of the Parameter class, which was added 
in Java 8. The getParameters() method in the Executable class returns all parameters of an Executable 

http://dx.doi.org/10.1007/978-1-4842-3348-1_11


Chapter 3 ■ refleCtion

115

Parameter[]. By default, the formal parameter names are not stored in the class files to keep the file size 
smaller. The getName() method of the Parameter class returns synthesized parameter names like arg0, arg1, 
etc. unless the actual parameter names are retained. If you want to retain the actual parameter names in 
class files, you need to compile the source code using the -parameters option with the javac compiler.

The getExceptionTypes() method of the Executable class returns an array of Class objects, which 
describes the exceptions thrown by the Executable. If no exceptions are listed in the throws clause, it 
returns an array of length zero.

The getModifiers() method of the Executable class returns the modifiers as an int.
The getTypeParameters() method of the Executable class returns an array of TypeVariable that 

represents the type parameters for generic methods/constructors. The examples in this chapter do not 
include the generic type variable declarations in method/constructors.

Listing 3-8 contains a utility class that consists of static methods to get information about an Executable 
such as the list of modifiers, parameters, and exceptions. I use this class when I discuss methods and 
constructors in the subsequent sections.

Listing 3-8. A Utility Class to Get Information for an Executable

// ExecutableUtil.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Executable;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.lang.reflect.Parameter;
import java.util.ArrayList;

public class ExecutableUtil {
    public static ArrayList<String> getParameters(Executable exec) {
        Parameter[] parms = exec.getParameters();
        ArrayList<String> parmList = new ArrayList<>();
        for (int i = 0; i < parms.length; i++) {
            // Get modifiers, type, and name of the parameter
            int mod = parms[i].getModifiers() & Modifier.parameterModifiers();
            String modifiers = Modifier.toString(mod);
            String parmType = parms[i].getType().getSimpleName();
            String parmName = parms[i].getName();
            String temp = modifiers + " " + parmType + " " + parmName;

            // Trim it as it may have leading spaces when modifiers are absent
            parmList.add(temp.trim());
        }
        
        return parmList;
    }

    public static ArrayList<String> getExceptionList(Executable exec) {
        ArrayList<String> exceptionList = new ArrayList<>();
        for (Class<?> c : exec.getExceptionTypes()) {
            exceptionList.add(c.getSimpleName());
        }
        



Chapter 3 ■ refleCtion

116

        return exceptionList;
    }

    public static String getThrowsClause(Executable exec) {
        ArrayList<String> exceptionList = getExceptionList(exec);
        String exceptions = ExecutableUtil.arrayListToString(exceptionList, ",");
        String throwsClause = "";
        
        if (exceptionList.size() > 0) {
            throwsClause = "throws " + exceptions;
        }

        return throwsClause;
    }

    public static String getModifiers(Executable exec) {
        // Get the modifiers for the class  
        int mod = exec.getModifiers();

        if (exec instanceof Method) {
            mod = mod & Modifier.methodModifiers();
        } else if (exec instanceof Constructor) {
            mod = mod & Modifier.constructorModifiers();
        }

        return Modifier.toString(mod);
    }

    public static String arrayListToString(ArrayList<String> list, String saparator) {
        String[] tempArray = new String[list.size()];
        tempArray = list.toArray(tempArray);
        String str = String.join(saparator, tempArray);
        return str;
    }
}

Reflecting on Methods
The following four methods in the Class class can be used to get information about the methods of a class:

•	 Method[] getMethods()

•	 Method[] getDeclaredMethods()

•	 Method getMethod(String name, Class... parameterTypes)

•	 Method getDeclaredMethod(String name, Class... parameterTypes)

The getMethods() method returns all the accessible public methods of the class. The accessible 
public methods include any public method declared in the class or inherited from the superclass. 
The getDeclaredMethods() method returns all the methods declared only in the class. It does not 
return any methods that are inherited from the superclass. The other two methods, getMethod() and 



Chapter 3 ■ refleCtion

117

getDeclaredMethod(), are used to get the Method object if you know the name of the method and its 
parameter types.

The getReturnType() method of the Method class returns the Class object, which contains information 
about the return type of the method.

Listing 3-9 illustrates how to get information about the methods of a class. You can uncomment the 
code in the main() method to print all methods in the Person class—declared in the Person class and 
inherited from the Object class.

Listing 3-9. Reflecting on Methods of a Class

// MethodReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Method;
import java.util.ArrayList;

public class MethodReflection {
    public static void main(String[] args) {
        Class<Person> cls = Person.class;

        // Get the declared methods  
        ArrayList<String> methodsDescription = getDeclaredMethodsList(cls);
        System.out.println("Declared Methods for " + cls.getName());
        for (String desc : methodsDescription) {
            System.out.println(desc);
        }

        /* Uncomment the following code to print all methods in the Person class
        // Get the accessible public methods  
        methodsDescription = getMethodsList(c);
        System.out.println("\nMethods for " + c.getName());
        for (String desc : methodsDescription) {
            System.out.println(desc);
        }
         */
    }

    public static ArrayList<String> getMethodsList(Class c) {
        Method[] methods = c.getMethods();
        ArrayList<String> methodsList = getMethodsDescription(methods);
        return methodsList;
    }

    public static ArrayList<String> getDeclaredMethodsList(Class c) {
        Method[] methods = c.getDeclaredMethods();
        ArrayList<String> methodsList = getMethodsDescription(methods);
        return methodsList;
    }

    public static ArrayList<String> getMethodsDescription(Method[] methods) {
        ArrayList<String> methodList = new ArrayList<>();



Chapter 3 ■ refleCtion

118

        for (Method m : methods) {
            String modifiers = ExecutableUtil.getModifiers(m);

            // Get the method return type  
            Class returnType = m.getReturnType();
            String returnTypeName = returnType.getSimpleName();

            // Get the name of the method  
            String methodName = m.getName();

            // Get the parameters of the method  
            ArrayList<String> paramsList = ExecutableUtil.getParameters(m);
            String params = ExecutableUtil.arrayListToString(paramsList, ",");

            // Get the Exceptions thrown by method              
            String throwsClause = ExecutableUtil.getThrowsClause(m);

            methodList.add(modifiers + " " + returnTypeName + " "
                    + methodName + "(" + params + ") " + throwsClause);
        }

        return methodList;
    }
}

Declared Methods for com.jdojo.reflection.Person
public String toString()
public Object clone()
public String getName()
public int getId()
public void setName(String arg0)

Reflecting on Constructors
Getting information about constructors of a class is similar to getting information about methods of a 
class. The following four methods in the Class class are used to get information about the constructors 
represented by a Class object:

•	 Constructor[] getConstructors()

•	 Constructor[] getDeclaredConstructors()

•	 Constructor<T> getConstructor(Class... parameterTypes)

•	 Constructor<T> getDeclaredConstructor(Class... parameterTypes)

The getConstructors() method returns all public constructors. The getDeclaredConstructors() 
method returns all declared constructors. The other two methods, getConstructor() and 
getDeclaredConstructor(), are used to get the Constructor object if you know the parameter types of 
the constructor. Listing 3-10 illustrates how to get information for the constructors represented by a Class 
object.



Chapter 3 ■ refleCtion

119

Listing 3-10. Reflecting on Constructors of a Class

// ConstructorReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.util.ArrayList;

public class ConstructorReflection {
    public static void main(String[] args) {
        Class<Person> cls = Person.class;

        // Get the declared constructors
        System.out.println("Constructors for " + cls.getName());
        Constructor[] constructors = cls.getConstructors();
        ArrayList<String> constructDescList = getConstructorsDescription(constructors);
        for (String desc : constructDescList) {
            System.out.println(desc);
        }
    }

    public static ArrayList<String> getConstructorsDescription(Constructor[] constructors) {
        ArrayList<String> constructorList = new ArrayList<>();
        for (Constructor constructor : constructors) {
            String modifiers = ExecutableUtil.getModifiers(constructor);

            // Get the name of the constructor  
            String constructorName = constructor.getName();

            // Get the parameters of the constructor  
            ArrayList<String> paramsList
                    = ExecutableUtil.getParameters(constructor);
            String params = ExecutableUtil.arrayListToString(paramsList, ",");

            // Get the Exceptions thrown by the constructor
            String throwsClause = ExecutableUtil.getThrowsClause(constructor);

            constructorList.add(modifiers + " " + constructorName
                    + "(" + params + ") " + throwsClause);
        }

        return constructorList;
    }
}

Constructors for com.jdojo.reflection.Person
public com.jdojo.reflection.Person()
public com.jdojo.reflection.Person(int arg0,String arg1)



Chapter 3 ■ refleCtion

120

Creating Objects
Java lets you use reflection to create objects of a class. The class name need not be known until runtime. You 
can create the object by invoking one of the constructors of the class using reflection. You can also access the 
values of fields of objects, set their values, and invoke their methods. If you know the class name and have 
access to the class code at compile-time, do not use reflection to create its object; rather use the new operator 
in your code to create objects of the class. Typically, frameworks and libraries use reflection to create objects.

You can create an object of a class using reflection. You need to get the reference of the constructor 
before you can create an object. The previous section showed you how to get the reference of a specific 
constructor of a class. Use the newInstance() method of the Constructor class to create an object. You can 
pass the actual parameter to the constructor to the newInstance() method, which is declared as follows:

public T newInstance(Object... initargs) throws InstantiationException, 
IllegalAccessException, IllegalArgumentException, InvocationTargetException

Here, initargs are the actual parameters for the constructor. You will not pass any parameters for the 
no-args constructor.

 ■ Tip  the newInstance() method of the Class class creates a new object of the class using its no-args 
constructor. the method has been deprecated since JDK9 because it does not propagate the exceptions thrown 
by the no-args constructor properly. Use the newInstance() method of the Constructor class to create an 
object of a class using its no-args and all other constructors.

The following snippet of code gets the reference of the no-args constructor of the Person class and 
invokes it. I have omitted the exception handling for brevity:

Class<Person> cls = Person.class;

// Get the reference of the Person() constructor
Constructor<Person> noArgsCons = cls.getConstructor();
Person p = noArgsCons.newInstance();

Listing 3-11 contains the complete code to illustrate how to use the Person(int, String) 
constructor of the Person class to create a Person object using reflection. Note that the Constructor<T> 
class is a generic type. Its type parameter is the class type that declares the constructor, for example, the 
Constructor<Person> type represents a constructor for the Person class.

Listing 3-11. Using a Specific Constructor to Create a New Object

// InvokeConstructorTest.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;

public class InvokeConstructorTest {
    public static void main(String[] args) {
        Class<Person> personClass = Person.class;



Chapter 3 ■ refleCtion

121

        try {
            // Get the constructor "Person(int, String)"  
            Constructor<Person> cons = personClass.getConstructor(int.class, String.class);

            // Invoke the constructor with values for id and name  
            Person chris = cons.newInstance(1994, "Chris");
            System.out.println(chris);
        } catch (NoSuchMethodException | SecurityException
                | InstantiationException | IllegalAccessException
                | IllegalArgumentException | InvocationTargetException e) {
            System.out.println(e.getMessage());
        }
    }
}

Person: id=1994, name=Chris

Invoking Methods
You can invoke methods of an object using reflection. You need to get the reference to the method that you 
want to invoke. Suppose you want to invoke the setName() method of the Person class. You can get the 
reference to the setName() method as follows:

Class<Person> personClass = Person.class;
Method setName = personClass.getMethod("setName", String.class);

To invoke this method, call the invoke() method on the method’s reference, which is declared as 
follows:

public Object invoke(Object obj, Object... args) throws IllegalAccessException, 
lllegalArgumentException, InvocationTargetException

The first parameter of the invoke() method is the object on which you want to invoke the method. If 
the Method object represents a static method, the first argument is ignored or it may be null. The second 
parameter is a varargs parameter in which you pass all the actual parameters in the same order as declared 
in the method’s declaration.

Since the setName() method of the Person class takes a String argument, you need to pass a String 
object as the second argument to the invoke() method. Listing 3-12 illustrates how to invoke a method on a 
Person object using reflection.

Listing 3-12. Invoking a Method on an Object Reference Using Reflection

// InvokeMethodTest.java
package com.jdojo.reflection;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;



Chapter 3 ■ refleCtion

122

public class InvokeMethodTest {
    public static void main(String[] args) {
        Class<Person> personClass = Person.class;

        try {
            // Create an object of Person class  
            Person p = personClass.newInstance();

            // Print the details of the Person object
            System.out.println(p);

            // Get the reference of the setName() method  
            Method setName = personClass.getMethod("setName", String.class);

            // Invoke the setName() method on p passing passing "Ann"
            // as the actual parameter
            setName.invoke(p, "Ann");

            // Print the details of the Person object
            System.out.println(p);
        } catch (InstantiationException | IllegalAccessException
                | NoSuchMethodException | SecurityException
                | IllegalArgumentException | InvocationTargetException e) {
            System.out.println(e.getMessage());
        }
    }
}

Person: id=-1, name=Unknown
Person: id=-1, name=Ann

Accessing Fields
You can read or set the value of a field of an object using reflection. First, you need get the reference of 
the field you want to work with. To read the field’s value, you need to call the getXxx() method on the 
field, where Xxx is the data type of the field. For example, to read a boolean field value, you would call the 
getBoolean() method, and to read an int field you would call the getInt() method. To set the value of 
a field, you call the corresponding setXxx() method. The following are the declarations of the getInt() 
and setInt() methods where the first argument, obj, is the object’s reference whose field is being read or 
written:

•	 int getInt(Object obj) throws IllegalArgumentException, 
IllegalAccessException

•	 void setInt(Object obj, int newValue) throws IllegalArgumentException, 
IllegalAccessException



Chapter 3 ■ refleCtion

123

 ■ Tip  static and instance fields are accessed the same way. in case of static fields, the first argument to the 
get() and set() methods is the reference of the class/interface.

Note that you can access fields only that have been declared as accessible, such as a public field. In the 
Person class, all fields are declared private. Therefore, you cannot access any of these fields using normal 
Java programming language rules. To access a field that is not normally accessible, for example, if it is 
declared private, refer to the “Deep Reflection” section later in this chapter. You will use the PublicPerson 
class listed in Listing 3-13 to learn the technique to access the fields.

Listing 3-13. A PublicPerson Class with a Public Name Field

// PublicPerson.java
package com.jdojo.reflection;

public class PublicPerson {
    private int id = -1;
    public String name = "Unknown";

    public PublicPerson() {
    }

    @Override
    public String toString() {
        return "Person: id=" + this.id + ", name=" + this.name;
    }
}

Listing 3-14 demonstrates how to get the reference of a field of an object and how to read and set its 
value.

Listing 3-14. Accessing Fields Using Reflection

// FieldAccessTest.java
package com.jdojo.reflection;

import java.lang.reflect.Field;

public class FieldAccessTest {
    public static void main(String[] args) {
        Class<PublicPerson> ppClass = PublicPerson.class;

        try {
            // Create an object of the PublicPerson class  
            PublicPerson p = ppClass.newInstance();

            // Get the reference of the name field  
            Field name = ppClass.getField("name");

            // Get and print the current value of the name field  
            String nameValue = (String) name.get(p);
            System.out.println("Current name is " + nameValue);



Chapter 3 ■ refleCtion

124

            // Set the value of name to Ann  
            name.set(p, "Ann");

            // Get and print the new value of name field  
            nameValue = (String) name.get(p);
            System.out.println("New name is " + nameValue);
        } catch (InstantiationException | IllegalAccessException
                | NoSuchFieldException | SecurityException
                | IllegalArgumentException e) {
            System.out.println(e.getMessage());
        }
    }
}

Current name is Unknown
New name is Ann

Deep Reflection
There are two things you can do using reflection:

•	 Describe an entity

•	 Access the members of an entity

Describing an entity means knowing the entity’s details. For example, describing a class means knowing 
its name, modifiers, packages, modules, fields, methods, and constructors. Accessing the members of 
an entity means reading and writing fields and invoking methods and constructors. Describing an entity 
does not pose any issues of access control. If you have access to a class file, you should be able to know the 
details of the entity represented in that class file. However, accessing members of an entity is controlled by 
the Java language access control. For example, if you declare a field of a class as private, the field should 
be accessible only within the class. Code outside the class should not be able to access the private field of 
the class. However, this is half-true. The Java language access control rules are applied when you access 
members statically. The access control rules can be suppressed when you access members using reflection. 
The following snippet of code accesses the private name field of the Person class. This code will compile only 
within the Person class:

Person john = new Person();
String name = john.name; // Accessing the private field name statically

Java has been allowing access to rather inaccessible members such as a private field of a class outside 
the class using reflection. This is called deep reflection. Reflective access to inaccessible members made it 
possible to have many great frameworks in Java such as Hibernate and Spring. These frameworks perform 
most of their work using deep reflection. You can access the private name field of the Person class outside the 
Person class using deep reflection.

So far in this chapter, I kept the examples simple and stayed away from violating the Java language access 
control. I accessed only public fields, methods, and constructors; the accessed members and the accessing 
code were in the same module. Before JDK9, accessing inaccessible members was easy. All you had to do was 



Chapter 3 ■ refleCtion

125

call the setAccessible(true) method on the inaccessible Field, Method, and Constructor objects before 
accessing them. Introduction of the module system in JDK9 has made deep reflection a bit complicated. In 
this section and its sub-sections, I walk you through rules and examples for deep reflection in JDK9.

 ■ Tip  if a security manager is present, the code performing deep reflection must have a ReflectPermissio
n("suppressAccessChecks") permission.

To perform deep reflection, you need to get the reference of the desired field, method, and 
constructor using the getDeclaredXxx() method of the Class object, where Xxx can be Field, Method, or 
Constructor… Note that using the getXxx() method to get the reference of an inaccessible field, method, or 
constructor will throw an IllegalAccessException. The Field, Method, and Constructor classes have the 
AccessibleObject class as their superclass. The AccessibleObject class contains the following methods to 
let you work with the accessible flag:

•	 void setAccessible(boolean flag)

•	 static void setAccessible(AccessibleObject[] array,  boolean flag)

•	 boolean trySetAccessible()

•	 boolean canAccess(Object obj)

The setAccessible(boolean flag) method sets the accessible flag for a member (Field, Method,  
and Constructor) to true or false. If you are trying to access an inaccessible member, you need to  
call setAccessible(true) on the member object before accessing the member. The method throws  
an InaccessibleObjectException if the accessible flag cannot be set. The static setAccessible 
(AccessibleObject[] array,  boolean flag) is a convenience method to set the accessible flag for all 
AccessibleObject in the specified array.

JDK9 added the trySetAccessible() method that attempts to set the accessible flag to true on 
the object on which it is called. It returns true if the accessible flag was set to true and false otherwise. 
Compare this method with the setAccessible(true) method. This method does not throw a runtime 
exception on failure, whereas the setAccessible(true) does.

JDK9 added the canAccess(Object obj) method, which returns true if the caller can access the 
member for the specified obj object. Otherwise, it returns false. If the member is a static member or a 
constructor, the obj must be null.

I discuss accessing rather inaccessible members within a module, across modules, in unnamed 
modules, and of JDK modules in the next sections.

Deep Reflection Within a Module
Let’s start with an example. You want to access the private name field of a Person object. First, you get the 
reference of the name field in a Field object and try reading its current value. Listing 3-15 contains the code 
for the IllegalAccess1 class.

Listing 3-15. Accessing the Private Name Field of the Person Class

// IllegalAccess1.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;



Chapter 3 ■ refleCtion

126

public class IllegalAccess1 {
    public static void main(String[] args) throws Exception {
        // Get the class reference for the Person class
        String className = "com.jdojo.reflection.Person";
        Class<?> cls = Class.forName(className);

        // Create a Person object
        Constructor<?> cons = cls.getConstructor();
        Object person = cons.newInstance();

        // Get the reference of the name field
        Field nameField = cls.getDeclaredField("name");

        // Try accessing the name field by reading its value
        String name = (String) nameField.get(person);

        // Print the person and its name separately
        System.out.println(person);
        System.out.println("name=" + name);
    }
}

Exception in thread "main" java.lang.IllegalAccessException: class com.jdojo.reflection.
IllegalAccess1 (in module jdojo.reflection) cannot access a member of class com.jdojo.
reflection.Person (in module jdojo.reflection) with modifiers "private"
        at java.base/jdk.internal.reflect.Reflection.newIllegalAccessException(Reflection.

java:361)
        at java.base/java.lang.reflect.AccessibleObject.checkAccess(AccessibleObject.

java:589)
       at java.base/java.lang.reflect.Field.checkAccess(Field.java:1075)
       at java.base/java.lang.reflect.Field.get(Field.java:416)
        at jdojo.reflection/com.jdojo.reflection.IllegalAccess1.main(IllegalAccess1.

java:21)

In Listing 3-15, I added the Exception class in the throws clause of the main() method to keep the 
logic simple inside the method. I keep doing this for all examples in this section, so you can focus on the 
illegal access rules rather than on exception handling. The IllegalAccess1 and the Person class are in the 
same jdojo.reflection module. You were able to create a Person object successfully because you used 
the public no-args constructor of the Person class. The name field in the Person class is declared as private 
and accessing it from another class failed. Fixing this error is simple—you set the accessible flag to the 
Field object using the setAccessible(true) or the trySetAccessible() method. Listing 3-16 contains the 
complete code.

Listing 3-16. Accessing the Private Name Field of the Person Class After Making It Accessible

// IllegalAccess1.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;



Chapter 3 ■ refleCtion

127

public class IllegalAccess2 {
    public static void main(String[] args) throws Exception {
        // Get the class reference for the Person class
        String className = "com.jdojo.reflection.Person";
        Class<?> cls = Class.forName(className);

        // Create a Person object
        Constructor<?> cons = cls.getConstructor();
        Object person = cons.newInstance();

        // Get the reference of the name field
        Field nameField = cls.getDeclaredField("name");

        // Try making the name field accessible before accessing it
        boolean accessEnabled = nameField.trySetAccessible();

        if (accessEnabled) {
            // Try accessing the name field by reading its value
            String name = (String) nameField.get(person);

            // Print the person and its name separately
            System.out.println(person);
            System.out.println("name=" + name);
        } else {
            System.out.println("The Person.name field is not accessible.");
        }
    }
}

Person: id=-1, name=Unknown
name=Unknown

So far, everything looks fine. You might think that if you cannot access the private member of a 
class, you can always use reflection to access them. However, this is not always true. Access to otherwise 
inaccessible members of a class is handled through the Java security manager. By default, when you run 
your application on your computer, the security manager is not installed for your application. The absence 
of the security manager for your application lets you access all fields, methods, and constructors of a class 
in the same module after you set the accessible flag to true as you did in the previous example. However, if 
a security manager is installed for your application, whether you can access an inaccessible class member 
depends on the permission granted to your application to access such members. You can check if the 
security manager is installed for your application or not by using the following piece of code:

SecurityManager smgr = System.getSecurityManager();
if (smgr == null) {
    System.out.println("Security manager is not installed.");
}



Chapter 3 ■ refleCtion

128

You can install a default security manager by passing the -Djava.security.manager option on the 
command line when you run the Java application. The security manager uses a Java security policy file 
to enforce the rules specified in that policy file. The Java security policy file is specified using the -Djava.
security.policy command-line option. If you want to run the IllegalAccess2 class with a Java security 
manager with the Java policy file stored in the C:\Java9LanguageFetaures\conf\myjava.policy file, you 
would use the following command:

C:\Java9LanguageFeatures>java -Djava.security.manager
-Djava.security.policy=conf\myjava.policy --module-path build\modules\jdojo.reflection
--module jdojo.reflection/com.jdojo.reflection.IllegalAccess2

Exception in thread "main" java.security.AccessControlException: access denied  
("java.lang.reflect.ReflectPermission" "suppressAccessChecks")
         at java.base/java.security.AccessControlContext.checkPermission 

(AccessControlContext.java:472)
         at java.base/java.security.AccessController.checkPermission 

(AccessController.java:895)
        at java.base/java.lang.SecurityManager.checkPermission(SecurityManager.java:558)
         at java.base/java.lang.reflect.AccessibleObject.checkPermission 

(AccessibleObject.java:85)
         at java.base/java.lang.reflect.AccessibleObject.trySetAccessible 

(AccessibleObject.java:245)
         at jdojo.reflection/com.jdojo.reflection.IllegalAccess2.main 

(IllegalAccess2.java:26)

The myjava.policy file is empty when this command was run, which means that the application did 
not have permission to suppress the Java language access control.

If you want to allow your program to access an inaccessible field of a class using reflection, the contents 
of the myjava.policy file would look as shown in Listing 3-17.

Listing 3-17. Contents of the conf\myjava.policy File

grant {
    // Grant permission to all programs to access inaccessible members
    permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
};

Let’s re-run the IllegalAccess2 class with a security manager and the Java policy as shown in  
Listing 3-17:

C:\Java9LanguageFeatures>java -Djava.security.manager
-Djava.security.policy=conf\myjava.policy
--module-path build\modules\jdojo.reflection
--module jdojo.reflection/com.jdojo.reflection.IllegalAccess2

Person: id=-1, name=Unknown
name=Unknown



Chapter 3 ■ refleCtion

129

This time, you were able to access the private name field of the Person class when you granted the 
appropriate security permission. The rules for accessing the inaccessible members have just begun. You 
saw the rules for deep reflection within a module, when the code gaining illegal access and the code being 
illegally accessed were in the same module. The next section describes the illegal access behavior across 
modules.

Deep Reflection Across Modules
Let’s set up a new module named jdojo.reflection.model, as shown in Listing 3-18, and a simple class in 
it called Phone, as shown in Listing 3-19. The module declaration contains no module statements. The Phone 
class contains a number instance variable, two constructors, and a getter and a setter for the number instance 
variable. The toString() method returns the phone number.

Listing 3-18. The Declaration of a jdojo.reflection.model Module

// module-info.java
module jdojo.reflection.model {
    // No module statements at this time
}

Listing 3-19. A Phone Class

// Phone.java
package com.jdojo.reflection.model;

public class Phone {   
    private String number = "9999999999";
    
    public Phone() {
    }

    public Phone(String number) {
        this.number = number;
    }

    public String getNumber() {
        return number;
    }

    public void setNumber(String number) {
        this.number = number;
    }

    @Override
    public String toString() {
        return this.number;
    }
}



Chapter 3 ■ refleCtion

130

Let’s create a class called IllegalAccess3 in the jdojo.reflection module. The class will try to 
create an object of the Phone class in the jdojo.reflection.model module and read the object’s private 
field, number. The IllegalAccess3 class in Listing 3-20 contains the complete code. It is very similar to the 
IllegalAccess2 class. The only difference is that you are accessing the Phone class and its private instance 
variable across the module’s boundary.

Listing 3-20. Accessing the Private Number Field of the Phone Class

// IllegalAccess1.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;

public class IllegalAccess3 {
    public static void main(String[] args) throws Exception {
        // Get the class reference for the Phone class
        String className = "com.jdojo.reflection.model.Phone";
        Class<?> cls = Class.forName(className);

        // Create a Phone object
        Constructor<?> cons = cls.getConstructor();
        Object phone = cons.newInstance();

        // Get the reference of the number field
        Field numberField = cls.getDeclaredField("number");

        // try making the number field accessible before accessing it
        boolean accessEnabled = numberField.trySetAccessible();

        if (accessEnabled) {
            // Try accessing the number field by reading its value
            String number = (String) numberField.get(phone);

            // Print the phone number
            System.out.println("number=" + number);
        } else {
            System.out.println("The Phone.number field is not accessible.");
        }
    }
}

Let’s run the IllegalAccess3 class using the following command:

C:\Java9LanguageFeatures>java
--module-path build\modules\jdojo.reflection;build\modules\jdojo.reflection.model
--module jdojo.reflection/com.jdojo.reflection.IllegalAccess3



Chapter 3 ■ refleCtion

131

Exception in thread "main" java.lang.ClassNotFoundException: com.jdojo.reflection.model.Phone
         at java.base/jdk.internal.loader.BuiltinClassLoader.loadClass(BuiltinClassLoader.

java:582)
         at java.base/jdk.internal.loader.ClassLoaders$AppClassLoader.loadClass(ClassLoaders.

java:185)
        at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:496)
        at java.base/java.lang.Class.forName0(Native Method)
        at java.base/java.lang.Class.forName(Class.java:292)
        at jdoj9o.reflection/com.jdojo.reflection.IllegalAccess3.main(IllegalAccess3.java:11)

Can you guess what is wrong with the command? The error is indicating that the runtime did not find 
the Phone class. You were able to compile the IllegalAccess3 class because the class does not use the 
Phone class reference in the source code. It attempts to use the Phone class using reflection at runtime. You 
have included the jdojo.reflection.model module in the module path. However, including a module in 
the module path does not resolve the module. The jdojo.reflection module does not read the jdojo.
reflection.model module, so running the IllegalAccess3 did not resolve the jdojo.reflection.model 
module and this is why the runtime did not find the Phone class. You need to resolve the module manually 
by using the --add-modules command-line option:

C:\Java9LanguageFeatures>java
--module-path build\modules\jdojo.reflection;build\modules\jdojo.reflection.model
--add-modules jdojo.reflection.model
--module jdojo.reflection/com.jdojo.reflection.IllegalAccess3

Exception in thread "main" java.lang.IllegalAccessException: class com.jdojo.reflection.
IllegalAccess3 (in module jdojo.reflection) cannot access class com.jdojo.reflection.
model.Phone (in module jdojo.reflection.model) because module jdojo.reflection.model does 
not export com.jdojo.reflection.model to module jdojo.reflection
         at java.base/jdk.internal.reflect.Reflection.newIllegalAccessException 

(Reflection.java:361)
         at java.base/java.lang.reflect.AccessibleObject.checkAccess 

(AccessibleObject.java:589)
        at java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:479)
        at jdojo.reflection/com.jdojo.reflection.IllegalAccess3.main(IllegalAccess3.java:15)

This time, the runtime was able to find the Phone class, but it complained about accessing the Phone 
class in the jdojo.reflection.model module from another module, jdojo.reflection. The error is stating 
that the jdojo.reflection.model module does not export the com.jdojo.reflection.model package, so 
the Phone class is in the com.jdojo.reflection.model package and is not accessible outside the jdojo.
reflection.model module. Listing 3-21 contains the modified version of the jdojo.reflection.model 
module. Now it exports the com.jdojo.reflection.model package.

Listing 3-21. The Modified Declaration of a jdojo.reflection.model Module

// module-info.java
module jdojo.reflection.model {
    exports com.jdojo.reflection.model;
}



Chapter 3 ■ refleCtion

132

Let’s re-run the IllegalAccess3 class using the previous command:

C:\Java9LanguageFeatures>java
--module-path build\modules\jdojo.reflection;build\modules\jdojo.reflection.model
--add-modules jdojo.reflection.model
--module jdojo.reflection/com.jdojo.reflection.IllegalAccess3

The Phone.number field is not accessible.

This time, you were able to instantiate the Phone class, but you would not access its private number 
field. Notice that the jdojo.reflection module does not read the jdojo.reflection.model module. Still 
the IllegalClass3 class is able to access the Phone class and instantiate it using reflection. If you write the 
following snippet of code in the IllegalAccess3 class, it would not compile:

Phone phone = new Phone();

When module M accesses the types in module N using reflection, a read from module M to module N is 
granted implicitly. Such a read must be specified explicitly using a requires statement when such access is 
needed statically (without reflection). This is what the previous command did when creating an object of the 
Phone class.

If you used the setAccessible(true) in the IllegalAccess3 class to make the number field accessible, 
the previous command would have produced an error message similar to the following:

Exception in thread "main" java.lang.reflect.InaccessibleObjectException: Unable to make 
field private java.lang.String com.jdojo.reflection.model.Phone.number accessible: module 
jdojo.reflection.model does not "opens com.jdojo.reflection.model" to module jdojo.
reflection
...

This error message is loud and clear. It is stating that the runtime could not make the private number 
field accessible because the jdojo.reflection.model module does not open the com.jdojo.reflection.
model package to the jdojo.reflection module. Here comes the concept of opening a module’s package 
and opening an entire module.

Exporting a package of a module grants access to the public types in the package and the accessible 
public members of those types to another module. Exporting a package grants the access at compile-time and 
at runtime. You can use reflection to access the same accessible public members that you can access without 
reflection. That is, Java language access control is always enforced for exported packages of a module.

If you want to allow deep reflection on types of a package in a module by code in other modules at 
runtime, you need to open the package of the module using the opens statement. The syntax for the opens 
statement is as follows:

opens <package-name> [to <module-name>,<module-name>...];

The syntax allows you to open a package to all other modules or a set of specific modules. In the 
following declaration, module M opens its package p to modules S and T:

module M {
    opens p to S, T;
}



Chapter 3 ■ refleCtion

133

In the following declaration, module N opens its package q to all other modules:

module N {
    opens q;
}

It is possible that a module exports and opens the same package. It is needed if other modules need to 
access the types in the package statically at compile-time and runtime, and using deep reflection at runtime. 
The following module declaration exports and opens the same package p to all other modules:

module J {
    exports p;
    opens p;
}

An opens statement in a module declaration allows you open one package to all other modules or 
selective modules. If you want to open all packages of a module to all other modules, you can declare the 
module itself as an open module. You can declare an open module by using the open modifier in the module 
declaration. The following declares an open module named K:

open module K {
    // Other module statements go here
}

An open module cannot contain an opens statement. This is because an open module means it has 
opened all its packages to all other modules for deep reflection. The following declaration of module L is 
invalid because it declares the module as open and, at the same time, contains an opens statement:

open module L {
    opens p; // A compile-time error

    // Other module statements go here
}

It is fine to export package in an open module. The following declaration of module D is valid:

open module D {
    exports p;

    // Other module statements go here
}

So, now you know what to do with the jdojo.reflection.model module for the jdojo.reflection 
module to perform deep reflection on the Phone class. You need to do either of the following:

•	 Open the com.jdojo.reflection.model package of the jdojo.reflection.model 
module to all other modules or at least to the jdojo.reflection module.

•	 Declare the jdojo.reflection.model module as an open module.

Listing 3-22 and Listing 3-23 contain the modified module declaration of the jdojo.reflection.model 
module. You will need to use one of them, not both. For this example, you do not need to export the package 
in the module’s declaration because you are not accessing the Phone class at compile-time in the jdojo.
reflection module.



Chapter 3 ■ refleCtion

134

Listing 3-22. The Modified Declaration of a jdojo.reflection.model Module, Which Opens the com.jdojo.
reflection.model Package to All Other Modules

// module-info.java
module jdojo.reflection.model {
    exports com.jdojo.reflection.model;
    opens com.jdojo.reflection.model;
}

Listing 3-23. The Modified Declaration of a jdojo.reflection.model Module, Which Declares it as an open 
Module

// module-info.java
open module jdojo.reflection.model {
    exports com.jdojo.reflection.model;
}

Let’s re-run the IllegalAccess3 class using the previous command with the com.jdojo.reflection.
model package open. This time, you will received the desired output.

C:\Java9LanguageFeatures>java
--module-path build\modules\jdojo.reflection;build\modules\jdojo.reflection.model
--add-modules jdojo.reflection.model
--module jdojo.reflection/com.jdojo.reflection.IllegalAccess3

number=9999999999

Deep Reflection and Unnamed Modules
All packages in an unnamed module are open to all other modules. Therefore, you can always perform deep 
reflection on types in unnamed modules.

Deep Reflection on JDK Modules
Prior to JDK9, deep reflection was allowed on members of all types—JDK internals and your types. One of 
the main goals of JDK9 is strong encapsulation and you should not be able to access rather inaccessible 
members of an object using deep reflection. However, enforcing strong encapsulation for JDK types would 
have broken many existing applications or required them to be changed before migrating to JDK9. This 
meant that either those applications will be migrated to JDK9 slowly or they will never be migrated to JDK9 
at all. Java designers try their best to keep the new JDK backward compatible. To deliver on the backward 
compatibility, JDK9 allows deep reflection on members of JDK internal types from the code in unnamed 
modules. Upon the first such illegal access, the runtime issues a warning. Such illegal access to JDK internal 
types will be disallowed in a future version. This means that applications using deep reflection on JDK types 
in JDK8 will continue to work in JDK9 if they are deployed on the class path. Recall that all types loaded from 
the class path are part of unnamed modules. If such applications are modularized in JDK9, the code using 
illegal reflective access to JDK internals in such applications needs to be fixed. Refer to Chapter 16 for more 
on this topic.

http://dx.doi.org/10.1007/978-1-4842-3348-1_16


Chapter 3 ■ refleCtion

135

Let’s walk through an example of this. The java.lang.Long class is immutable. It contains a private field 
named value to hold the long value that this object represents. Listing 3-24 shows you how to access and 
modify the private value field of the Long class using deep reflection, which is not possible using the Long 
class statically.

Listing 3-24. Accessing and Modifying the Private Value Field of the java.lang.Long Class Using Deep 
Reflection

// IllegalAccess1.java
package com.jdojo.reflection;

import java.lang.reflect.Field;

public class IllegalAccessJDKType {
    public static void main(String[] args) throws Exception {
        // Create a Long object
        Long num = 1969L;
        System.out.println("#1: num = " + num);

        // Get the class reference for the Long class
        String className = "java.lang.Long";
        Class<?> cls = Class.forName(className);

        // Get the value field reference
        Field valueField = cls.getDeclaredField("value");

        // try making the value field accessible before accessing it
        boolean accessEnabled = valueField.trySetAccessible();

        if (accessEnabled) {
            // Get and print the current value of the Long.value private field of the
            // num object that you created in the beginning of this method
            Long value = (Long) valueField.get(num);

            System.out.println("#2: num = " + value);

            // Change the value of the Long.value field
            valueField.set(num, 1968L);
            value = (Long) valueField.get(num);

            System.out.println("#3: num = " + value);
        } else {
            System.out.println("The Long.value field is not accessible.");
        }
    }
}

In the beginning of the main() method, you create a Long object, called num, and set its value to 1969L.

Long num = 1969L;
System.out.println("#1: num = " + num);



Chapter 3 ■ refleCtion

136

Later, you get the reference of the Class object for the Long class and get the reference of the private 
value field and try to make it accessible. If you were able to make the field accessible, you read its current 
value, which would be 1969L. Now you change its value to 1968L and read it back in your program.

The IllegalAccessJDKType class is a member of the jdojo.reflection module. Let’s run it using the 
following command:

C:\Java9LanguageFeatures>java --module-path build\modules\jdojo.reflection
--module jdojo.reflection/com.jdojo.reflection.IllegalAccessJDKType

#1: num = 1969
The Long.value field is not accessible.

You were not able to make the private value field of the Long class accessible because the 
IllegalAccessJDKType class is part of a named module and code in named modules is not allowed to have 
illegal access to the members of the JDK internal types. The following command re-runs the class from the 
class path and you get the desired output. Notice the one-time warnings even though you have accessed the 
private field three times.

C:\Java9LanguageFeatures>java --class-path build\modules\jdojo.reflection com.jdojo.
reflection.IllegalAccessJDKType

#1: num = 1969
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by com.jdojo.reflection.IllegalAccessJDKType  
(file:/C:/Java9LanguageFeatures/build/modules/jdojo.reflection/) to field java.lang.Long.value
WARNING: Please consider reporting this to the maintainers of com.jdojo.reflection.
IllegalAccessJDKType
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access 
operations
WARNING: All illegal access operations will be denied in a future release
#2: num = 1969
#3: num = 1968

Reflecting on Arrays
Java provides special APIs to work with arrays. The Class class lets you find out if a Class reference 
represents an array by using its isArray() method. You can also create an array and read and modify its 
element’s values using reflection. The java.lang.reflect.Array class is used to dynamically create an 
array and manipulate its elements. As stated before, you cannot reflect on the length field of an array using 
a normal reflection procedure. However, the Array class provides the getLength() method to get the length 
value of an array. Note that all methods in the Array class are static and most of them have the first argument 
as the array object’s reference on which they operate.

To create an array, use the newInstance() static method of the Array class. The method is overloaded 
and has two versions.

•	 Object newInstance(Class<?> componentType, int arrayLength)

•	 Object newInstance(Class<?> componentType, int... dimensions)



Chapter 3 ■ refleCtion

137

One version of the method creates an array of the specified component type and the array length. The 
other version creates an array of the specified component type and dimensions. Note that the return type of 
the newInstance() method is Object. You need to use an appropriate cast to convert it to the actual array type.

If you want to create an array of int of length 5, you would write

int[] ids = (int[]) Array.newInstance(int.class, 5);

This statement has the same effect as the following statement:

int[] ids = new int[5];

If you want to create an array of int of dimension 5x8, you would write:

int[][] matrix = (int[][]) Array.newInstance(int.class, 5, 8);

Listing 3-25 illustrates how to create an array dynamically and manipulate its elements.

Listing 3-25. Reflecting on Arrays

// ArrayReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Array;

public class ArrayReflection {
    public static void main(String[] args) {
        try {
            // Create the array of int of length 2  
            Object arrayObject = Array.newInstance(int.class, 2);

            // Print the values in array element. Default values will be zero
            int n1 = Array.getInt(arrayObject, 0);
            int n2 = Array.getInt(arrayObject, 1);
            System.out.println("n1 = " + n1 + ", n2 = " + n2);

            // Set the values to both elements
            Array.set(arrayObject, 0, 101);
            Array.set(arrayObject, 1, 102);

            // Print the values in array element again  
            n1 = Array.getInt(arrayObject, 0);
            n2 = Array.getInt(arrayObject, 1);
            System.out.println("n1 = " + n1 + ", n2 = " + n2);
        } catch (NegativeArraySizeException | IllegalArgumentException
                | ArrayIndexOutOfBoundsException e) {
            System.out.println(e.getMessage());
        }
    }
}



Chapter 3 ■ refleCtion

138

n1 = 0, n2 = 0
n1 = 101, n2 = 102

Java does not support a truly multi-dimensional array. Rather, it supports an array of arrays. The Class 
class contains a method called getComponentType(), which returns the Class object for an array’s element 
type. Listing 3-26 illustrates how to get the dimension of an array.

Listing 3-26. Getting the Dimension of an Array

// ArrayDimension.java
package com.jdojo.reflection;

public class ArrayDimension {
    public static void main(String[] args) {
        int[][][] intArray = new int[6][3][4];
        System.out.println("int[][][] dimension is " + getArrayDimension(intArray));
    }

    public static int getArrayDimension(Object array) {
        int dimension = 0;
        Class c = array.getClass();

        // Perform a check that the object is really an array  
        if (!c.isArray()) {
            throw new IllegalArgumentException("Object is not an array.");
        }

        while (c.isArray()) {
            dimension++;
            c = c.getComponentType();
        }
        
        return dimension;
    }
}

int[][][] dimension is 3

Expanding an Array
After you create an array, you cannot change its length. You can create an array of a bigger size and copy 
the old array elements to the new one at runtime. The Java collection classes such as ArrayList apply this 
technique to let you add elements to the collection without worrying about its length. You can use the 
combination of the getComponentType() method of the Class class and the newInstance() method of the 
Array class to create a new array of a given type. You can use the arraycopy() static method of the System 
class to copy the old array elements to the new array. Listing 3-27 illustrates how to create an array of a 
particular type using reflection. All runtime checks have been left out for clarity.



Chapter 3 ■ refleCtion

139

Listing 3-27. Expanding an Array Using Reflection

// ExpandingArray.java
package com.jdojo.reflection;

import java.lang.reflect.Array;
import java.util.Arrays;

public class ExpandingArray {
    public static void main(String[] args) {
        // Create an array of length 2  
        int[] ids = {101, 102};

        System.out.println("Old array length: " + ids.length);
        System.out.println("Old array elements: " + Arrays.toString(ids));

        // Expand the array by 1  
        ids = (int[]) expandBy(ids, 1);

        // Set the third element to 103  
        ids[2] = 103; // This is newly added element  
        System.out.println("New array length: " + ids.length);
        System.out.println("New array elements: " + Arrays.toString(ids));
    }

    public static Object expandBy(Object oldArray, int increment) {
        // Get the length of old array using reflection
        int oldLength = Array.getLength(oldArray);
        int newLength = oldLength + increment;

        // Get the class of the old array
        Class<?> cls = oldArray.getClass();

        // Create a new array of the new length
        Object newArray = Array.newInstance(cls.getComponentType(), newLength);

        // Copy the old array elements to new array
        System.arraycopy(oldArray, 0, newArray, 0, oldLength);

        return newArray;
    }
}

Old array length: 2
Old array elements: [101, 102]
New array length: 3
New array elements: [101, 102, 103]



Chapter 3 ■ refleCtion

140

Who Should Use Reflection?
If you have used any integrated development environment (IDE) to develop a GUI application using drag-
and-drop features, you have already used an application that uses reflection in one form or another. All GUI 
tools that let you set the properties of a control, say a button, at design time use reflection to get the list of 
the properties for that control. Other tools such as class browsers and debuggers also use reflection. As an 
application programmer, you will not use reflection much unless you are developing advanced applications 
that use dynamism provided by the reflection API. It should be noted that using too much reflection slows 
down the performance of your application.

Summary
Reflection is the ability of a program to query and modify its state “as data” during the execution of the 
program. Java represents the byte code of a class as an object of the Class class to facilitate reflection. The 
class fields, constructors, and methods can be accessed as an object of the Field, Constructor, and Method 
classes, respectively. Using a Field object, you can access and change the value of the field. Using a Method 
object, you can invoke the method. Using a Constructor object, you can invoke a given constructor of a 
class. Using the Array class, you can also create arrays of a specified type and dimension using reflection and 
manipulate the elements of the arrays.

Java has been allowing access to rather inaccessible members such as a private field of a class outside 
the class using reflection. This is called deep reflection. Before you can access the inaccessible member, you 
need to call the setAccessible(true) on that member, which could be a Field, a Method or a Constructor. 
The setAccessible() method throws a runtime exception if the accessibility cannot be enabled. JDK9 
added a trySetAccessible() method for the same purpose, which does not throw a runtime exception. 
Rather it returns true if accessibility is enabled and false otherwise.

Deep reflection in JDK9 across modules is prohibited by default. If a module wants to allow deep 
reflection on types in a given package, the module must open that package to at least the module that will 
use deep reflection. You can open a package using the opens statement in a module declaration. You can 
declare a module as an open module, which opens all packages in the module for deep reflection. If a named 
module M uses reflection to access types in another module N, the module M implicitly reads module N. All 
packages in an unnamed module open for deep reflection.

JDK9 allows deep reflection on JDK internal types by code on the class path. JDK9 issues a warning on 
the first such illegal access to the member of JDK internal types. The illegal reflective-access to JDK internal 
types will be removed in a future release.

QUESTIONS AND EXERCISES

1. What is reflection?

2. name two Java packages that contain the reflection related classes and interfaces.

3. What does an instance of the Class class represent?

4. list three ways to get the reference of an instance of the Class class.

5. When do you use the forName() method of the Class class to get an instance of 
the Class class?

6. name three built-in class loaders. how do you get references of these class 
loaders?



Chapter 3 ■ refleCtion

141

7. if you get a reference of the Class class, how do you know if this reference 
represents an interface?

8. What do instances of the Field, Constructor, and Method classes represent?

9. What is the difference between using the getFields() and getDeclaredFields() 
methods of the Class class?

10. You need to use setAccessible(true) or trySetAccessible() method of the 
AccessibleObject class to make a Field, Constructor, and Method object 
accessible even if they are inaccessible (e.g., they are declared private). What is the 
difference between these two methods?

11. assume that you have two modules named R and S. Module R contains a public p.Test 
class with a public method m(). the code in module S needs to use the class p.Test 
to declare variables and create its objects. Module S also needs to use reflection to 
access the public method m() of the p.Test class in module R. What is the minimum 
you need to do while declaring module R, so module S can perform these tasks?

12. What is opening a package in a module? What is an open module?

13. What is the difference between exporting and opening a package of a module? Give 
an example when you will need to export and open the same package of a module.

14. Consider the declarations of a module named jdojo.reflection.exercise.model 
and a MagicNumber class in that module as follows:

// module-info.java
module jdojo.reflection.exercises.model {
    /* Add your module statements here */
}

// MagicNumber.java
package com.jdojo.reflection.exercises.model;

public class MagicNumber {
    private int number;

    public int getNumber() {
        return number;
    }

    public void setNumber(int number) {
        this.number = number;
    }
}

Modify the module declaration so that code in other modules can perform 
deep reflection on the objects of the MagicNumber class. Create a class named 
MagicNumberTest in a module named jdojo.reflection.exercises. the code 
in the MagicNumberTest class should use reflection to create an object of the 
MagicNumber class, set its private number field directly, and read the current value 
of the number field using the getNumber() method.



Chapter 3 ■ refleCtion

142

15. Can you access private members of JDK classes in Java 9? if your answer is yes, 
describe the rules and restrictions for such access.

16. assume there are two modules, P and Q. Module P is an open module. Module Q 
wants to perform deep reflection on types in module P. is module Q required to read 
module P in its module’s declaration?

17. assume there are two modules, M and N. Module M does not open any of its 
packages to any modules, but it exports a com.jdojo.m to all other modules.  
Can module N use reflection to access publically accessible members of the  
com.jdojo.m package of module M?



143© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_4

CHAPTER 4

Generics

In this chapter, you will learn:

•	 What generics are

•	 How to define generic types, methods, and constructors

•	 How to define bounds for type parameters

•	 How to use wildcards as the actual type parameters

•	 How the compiler infers the actual type parameters for generic type uses

•	 Generics and their limitations in array creations

•	 How the incorrect use of generics may lead to heap pollution

All example programs in this chapter are a member of a jdojo.generics module, as declared in 
Listing 4-1.

Listing 4-1. The Declaration of a jdojo.generics Module

// module-info.java
module jdojo.generics {
    exports com.jdojo.generics;
}

What Are Generics?
Generics let you write true polymorphic code that works with any type. Refer to Chapter 1 of the first volume 
of this Beginning Java 9 series for more information on polymorphism and writing polymorphic code.

Let’s discuss a simple example before I define what generics are and what they do for you. Suppose you 
want to create a new class whose sole job is to store a reference to any type, where “any type” means any 
reference type. Let’s call this class ObjectWrapper, as shown in Listing 4-2.

Listing 4-2. A Wrapper Class to Store a Reference of Any Type

// ObjectWrapper.java
package com.jdojo.generics;

public class ObjectWrapper {
    private Object ref;

https://doi.org/10.1007/978-1-4842-3348-1_4
http://dx.doi.org/10.1007/978-1-4842-3348-1_1


Chapter 4 ■ GeneriCs

144

    public ObjectWrapper(Object ref) {
        this.ref = ref;
    }

    public Object get() {
        return ref;
    }

    public void set(Object ref) {
        this.ref = ref;
    }
}

As a Java developer, you would agree that you write this kind of code when you do not know the type 
of the objects that you have to deal with. The ObjectWrapper class can store a reference of any type in Java, 
such as String, Integer, Person, etc. How do you use the ObjectWrapper class? The following is one of the 
ways to use it to work with the String type:

ObjectWrapper stringWrapper = new ObjectWrapper("Hello");
stringWrapper.set("Another string");
String myString = (String) stringWrapper.get();

There’s one problem in this snippet of code. Even though you knew that you stored (and wanted to) a 
String in the stringWrapper object, you had to cast the return value of the get() method to a String type in 
(String) stringWrapper.get(). Consider writing the following snippet of code:

ObjectWrapper stringWrapper = new ObjectWrapper("Hello");
stringWrapper.set(new Integer(101));
String myString =(String) stringWrapper.get();

This snippet of code compiles fine. However, the third statement throws a ClassCastException at 
runtime because you stored an Integer in the second statement and attempted to cast an Integer to a 
String in the third statement. First, it allowed you to store an Integer in stringWrapper. Second, it did not 
complain about the code in the third statement because it had no knowledge of your intent that you only 
wanted to use a String with stringWrapper.

Java has made some progress with the way it helps developers write type-safe programs. Wouldn’t it be 
nice if the ObjectWrapper class allowed you to specify that you want to use this class only for a specific type, 
say, String this time and Integer the next? Your wish is fulfilled by generics in Java. They let you specify a 
type parameter with a type (class or interface). Such a type is called a generic type (more specifically generic 
class or generic interface). The type parameter value could be specified when you declare a variable of the 
generic type and create an object of your generic type. You have seen specifying parameters for method. This 
time, I am talking about specifying parameters for types such as classes or interfaces.

 ■ Tip  a type with type parameters in its declaration is called a generic type.



Chapter 4 ■ GeneriCs

145

Let’s rewrite the ObjectWrapper class to use generics naming the new class simply Wrapper. The formal 
parameters of a generic type are specified in the generic type’s declaration. Parameter names are valid Java 
identifiers and are specified in angle brackets (< >) after the name of the parameterized type. You will use T 
as the type parameter name for the Wrapper class:

public class Wrapper<T> {
}

It is an unwritten convention that type parameter names are one character, and to use T to indicate that 
the parameter is a type, E to indicate that the parameter is an element, K to indicate that the parameter is a 
key, N to indicate the parameter is a number, and V to indicate that the parameter is a value. In the previous 
example, you could have used any name for the type parameter, like so:

public class Wrapper<Hello> {
}

public class Wrapper<MyType> {
}

Multiple type parameters are separated by a comma. The following declaration for MyClass takes four 
type parameters named T, U, V, and W:

public class MyClass<T, U, V, W> {
}

You will be using your type parameter named T inside the class code in instance variable declarations, 
constructors, the get() method, and the set() method. Right now, T means any type for you, which will be 
known when you use this class. Listing 4-3 contains the complete code for the Wrapper class.

Listing 4-3. Using a Type Parameter to Define a Generic Class

// Wrapper.java
package com.jdojo.generics;

public class Wrapper<T> {
    private T ref;

    public Wrapper(T ref) {
        this.ref = ref;
    }

    public T get() {
        return ref;
    }

    public void set(T ref) {
        this.ref = ref;
    }
}



Chapter 4 ■ GeneriCs

146

Are you confused about using T in Listing 4-3? Here, T means any class type or interface type. It could be 
String, Object, com.jdojo.generics.Person, etc. If you replace T with Object everywhere in this program 
and remove <T> from the class name, it is the same code that you had for the ObjectWrapper class.

How do you use the Wrapper class? Since its class name is not just Wrapper, rather it is Wrapper<T>, you 
may specify (but do not have to) the value for T. To store a String reference in the Wrapper object, you create 
it as follows:

Wrapper<String> greetingWrapper = new Wrapper<String>("Hello");

How do you use the set() and get() methods of the Wrapper class? Since you have specified the type 
parameter for class Wrapper<T> to be String, the set() and get() method will work only with String 
types. This is because you used T as an argument type in the set() method and T as the return type in the 
get() method declarations. Imagine replacing T in the class definition with String and you should have no 
problem understanding the following code:

greetingWrapper.set("Hi");               // OK to pass a String
String greeting = greetingWrapper.get(); // No need to cast

This time, you did not have to cast the return value of the get() method. The compiler knows that 
greetingWrapper has been declared of type Wrapper<String>, so its get() method returns a String. Let’s 
try to store an Integer object in greetingWrapper.

// A compile-time error. You can use greetingWrapper only to store a String.
greetingWrapper.set(new Integer(101));

The statement will generate the following compile-time error:

error: incompatible types: Integer cannot be converted to String
        greetingWrapper.set(new Integer(101));

You cannot pass an Integer to the set() method. The compiler will generate an error. If you want to 
use the Wrapper class to store an Integer, your code will be as follows:

Wrapper<Integer> idWrapper = new Wrapper<Integer>(new Integer(101));
idWrapper.set(new Integer(897)); // OK to pass an Integer
Integer id = idWrapper.get();

// A compile-time error. You can use idWrapper only with an Integer.
idWrapper.set("hello");

Assuming that a Person class exists that contains a constructor with two parameters, you store a Person 
object in Wrapper as follows:

Wrapper<Person> personWrapper = new Wrapper<Person>(new Person(1, "Chris"));
personWrapper.set(new Person(2, "Laynie"));
Person laynie = personWrapper.get();

The parameter that is specified in the type declaration is called a formal type parameter; for example, T 
is a formal type parameter in the Wrapper<T> class declaration. When you replace the formal type parameter 
with the actual type (e.g., in Wrapper<String> you replace the formal type parameter T with String), it is 
called a parameterized type. A reference type in Java, which accepts one or more type parameters, is called a 



Chapter 4 ■ GeneriCs

147

generic type. A generic type is mostly implemented in the compiler. The JVM has no knowledge of generic 
types. All actual type parameters are erased at compile time using a process known as erasure. Compile-time 
type-safety is the benefit that you get when you use a parameterized generic type in your code without the 
need to use casts.

Polymorphism is about writing code in terms of a type that also works with many other types. In the 
first volume of this Beginning Java 9 series, you learned how to write polymorphic code using inheritance 
and interfaces. Inheritance in Java offers inclusion polymorphism where you write code in terms of the base 
type and the code also works with all subtypes of that base type. In this case, you are forced to have all other 
types fall under a single inheritance hierarchy. That is, all types for which the polymorphic code works must 
inherit from the single base type. Interfaces in Java lifts this restriction and lets you write code in terms of 
an interface. The code works with all types that implement the interface. This time, all types for which the 
code works do not have to fall under one type hierarchy. Still, you had one constraint that all those types 
must implement the same interface. Generics in Java takes you a step closer to writing “true” polymorphic 
code. The code written using generics works for any type. Generics in Java do have some restrictions as to 
what you can do with the generic type in your code. Showing you what you can do with generics in Java and 
elaborating on the restrictions are the topics of discussion in this chapter.

Supertype-Subtype Relationship
Let’s play a trick. The following code creates two parameterized instances of the Wrapper<T> class, one for 
the String type and one for the Object type:

Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
stringWrapper.set("a string");

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
objectWrapper.set(new Object());

// Use a String object with objectWrapper
objectWrapper.set("a string"); // OK

It is fine to store a String object in objectWrapper. After all, if you intended to store an Object in 
objectWrapper, a String is also an Object. Is the following assignment allowed?

objectWrapper = stringWrapper;

No, this assignment is not allowed. That is, a Wrapper<String> is not assignment compatible to a 
Wrapper<Object>. To understand why this assignment is not allowed, let’s assume for a moment that it was 
allowed and you could write code like the following:

// Now objectWrapper points to stringWrapper
objectWrapper = stringWrapper;

// We could store an Object in stringWrapper using objectWrapper
objectWrapper.set(new Object());

// The following statement will throw a runtime ClassCastException
String s = stringWrapper.get();



Chapter 4 ■ GeneriCs

148

Do you see the danger of allowing an assignment like objectWrapper = stringWrapper? The compiler 
cannot make sure that stringWrapper will store only a reference of String type if this assignment was 
allowed.

Remember that a String is an Object because String is a subclass of Object. However, a 
Wrapper<String> is not a Wrapper<Object>. The normal supertype/subtype rules do not apply to 
parameterized types. Don’t worry about memorizing this rule if you do not understand it. If you attempt 
such assignments, the compiler will tell you that you can’t.

Raw Types
Implementation of generic types in Java is backward compatible. If an existing non-generic class is rewritten 
to take advantage of generics, the existing code that uses the non-generic version of the class should keep 
working. The code may use (though it is not recommended) a non-generic version of a generic class by just 
omitting references to the generic type parameters. The non-generic version of a generic type is called a raw 
type. Using raw types is discouraged. If you use raw types in your code, the compiler will generate unchecked 
warnings, as shown in the following snippet of code:

// Use the Wrapper<T> generic type as a raw type Wrapper
Wrapper rawType = new Wrapper("Hello"); // An unchecked warning

// Using the Wrapper<T> generic type as a parameterized type Wrapper<String>
Wrapper<String> genericType = new Wrapper<String>("Hello");

// Assigning the raw type to the parameterized type
genericType = rawType; // An unchecked warning

// Assigning the parameterized type to the raw type
rawType = genericType;

The compiler generates the following warnings when this snippet of code is compiled:

warning: [unchecked] unchecked call to Wrapper(T) as a member of the raw type Wrapper
        Wrapper rawType = new Wrapper("Hello"); // An unchecked warning  
                          ^
  where T is a type-variable:
    T extends Object declared in class Wrapper

warning: [unchecked] unchecked conversion
        genericType = rawType; // An unchecked warning
                      ^
  required: Wrapper<String>
  found:    Wrapper
2 warnings



Chapter 4 ■ GeneriCs

149

Unbounded Wildcards
Let’s start with an example. It will help you understand the need for as well as the use of wildcards in generic 
types. Let’s build a utility class for the Wrapper class and call it WrapperUtil. Add a static utility method 
called printDetails() to this class, which will take an object of the Wrapper<T> class. How should you 
define the argument of this method? The following is the first attempt:

public class WrapperUtil {
    public static void printDetails(Wrapper<Object> wrapper){
        // More code goes here
    }
}

Since your printDetails() method is supposed to print details about a Wrapper<T> of any type, Object 
as the type parameter seems to be more suitable. Let’s use your new printDetails() method, as shown:

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
WrapperUtil.printDetails(objectWrapper); // OK

Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
WrapperUtil.printDetails(stringWrapper); // A compile-time error

The compile-time error is as follows:

error: method printDetails in class WrapperUtil cannot be applied to given types;
        WrapperUtil.printDetails(stringWrapper); // A compile-time error  
                   ^
  required: Wrapper<Object>
  found: Wrapper<String>
  reason: argument mismatch; Wrapper<String> cannot be converted to Wrapper<Object>
1 error

You are able to call the printDetails() method with the Wrapper<Object> type, but not with the 
Wrapper<String> type because they are not assignment compatible, which is contradictory to what your 
intuition tells you. To understand it fully, you need to know about the wildcard type in generics. A wildcard 
type is denoted by a question mark, as in <?>. For a generic type, a wildcard type is what an Object type is for 
a raw type. You can assign a generic of known type to a generic of wildcard type. Here is the sample code:

// Wrapper of String type
Wrapper<String> stringWrapper = new Wrapper<String>("Hi");

// You can assign a Wrapper<String> to Wrapper<?> type
Wrapper<?> wildCardWrapper = stringWrapper;

The question mark in a wildcard generic type (e.g., <?>) denotes an unknown type. When you declare a 
parameterized type using a wildcard (means unknown) as a parameter type, it means that it does not know 
about its type.

// wildCardWrapper has unknown type
Wrapper<?> wildCardWrapper;



Chapter 4 ■ GeneriCs

150

// Better to name it as an unknownWrapper
Wrapper<?> unknownWrapper;

Can you create a Wrapper<T> object of an unknown type? Let’s assume that John cooks something for 
you. He packs the food in a packet and hands it over to you. You hand over the packet to Donna. Donna asks 
you what is inside the packet. Your answer is that you do not know. Can John answer the same way you did? 
No. He must know what he cooked because he was the person who cooked the food. Even if you did not 
know what was inside the packet, you had no problem in carrying it and giving it to Donna. What would be 
your answer if Donna asked you to give her the vegetables from the packet? You would say that you do not 
know if vegetables are inside the packet.

Here are the rules for using a wildcard (unknown) generic type. Since it does not know its type, you 
cannot use it to create an object of its unknown type. The following code is illegal:

// Cannot use <?> with new operator. It is a compile-time error.
new Wrapper<?>("");

error: unexpected type
        new Wrapper<?>("");
                   ^
  required: class or interface without bounds
  found:    ?
1 error

As you were holding the packet of unknown food type (John knew the type of food when he cooked it), a 
wildcard generic type can refer to a known generic type object, as shown:

Wrapper<?> unknownWrapper = new Wrapper<String>("Hello");

There is a complicated list of rules as to what a wildcard generic type reference can do with the object. 
However, there is a simple rule of thumb to remember. The purpose of using generics is to have compile-
time type-safety. As long as the compiler is satisfied that the operation will not produce any surprising 
results at runtime, it allows the operation on the wildcard generic type reference.

Let’s apply the rule of thumb to your unknownWrapper reference variable. One thing that this 
unknownWrapper variable is sure about is that it refers to an object of the Wrapper<T> class of a known type. 
However, it does not know what that known type is. Can you use the following get() method? The following 
statement generates a compile-time error:

String str = unknownWrapper.get(); // A compile-time error

error: incompatible types: CAP#1 cannot be converted to String
        String str = unknownWrapper.get(); // A compile -time error
                                       ^
  where CAP#1 is a fresh type-variable:
    CAP#1 extends Object from capture of ?
1 error



Chapter 4 ■ GeneriCs

151

The compiler knows that the get() method of the Wrapper<T> class returns an object of type T. 
However, for the unknownWrapper variable, type T is unknown. Therefore, the compiler cannot ensure 
that the method call, unknownWrapper.get(), will return a String and its assignment to str variable 
is fine at runtime. All you have to do is convince the compiler that the assignment will not throw a 
ClassCastException at runtime. Will the following line of code compile?

Object obj = unknownWrapper.get(); // OK

This code will compile because the compiler is convinced that this statement will not throw a 
ClassCastException at runtime. It knows that the get() method returns an object of a type, which is not 
known to the unknownWrapper variable. No matter what type of object the get() method returns, it will 
always be assignment-compatible with the Object type. After all, all reference types in Java are subtypes of 
the Object type. Will the following snippet of code compile?

unknownWrapper.set("Hello");        // A compile-time error
unknownWrapper.set(new Integer());  // A compile-time error
unknownWrapper.set(new Object());   // A compile-time error
unknownWrapper.set(null);           // OK

Were you surprised by errors in this snippet of code? You will find out that it is not as surprising 
as it seems. The set(T a) method accepts the generic type argument. This type, T, is not known to 
unknownWrapper, and therefore the compiler cannot make sure that the unknown type is a String type, 
an Integer type, or an Object type. This is why the first three calls to set() are rejected by the compiler. 
Why is the fourth call to the set() method correct? A null is assignment-compatible to any reference type 
in Java. The compiler thought that no matter what type T would be in the set(T a) method for the object 
to which unknownWrapper reference variable is pointing to, a null can always be safe to use. The following 
is your printDetails() method’s code. If you pass a null Wrapper object to this method, it will throw a 
NullPointerException.

public class WrapperUtil {
    public static void printDetails(Wrapper<?> wrapper) {
        // Can assign get() return value to an Object
        Object value = wrapper.get();
        String className = null;

        if (value != null) {
            className = value.getClass().getName();
        }

        System.out.println("Class: " + className);
        System.out.println("Value: " + value);
    }
}

 ■ Tip  Using only a question mark as a parameter type (<?>) is known as an unbounded wildcard. it places 
no bounds as to what type it can refer. You can also place an upper bound or a lower bound with a wildcard. i 
discuss bounded wildcards in the next two sections.



Chapter 4 ■ GeneriCs

152

Upper-Bounded Wildcards
Suppose you want to add a method to your WrapperUtil class. The method should accept two numbers that 
are wrapped in your Wrapper objects and it will return their sum. The wrapped objects may be an Integer, 
Long, Byte, Short, Double, or Float. Your first attempt is to write the sum() method as shown:

public static double sum(Wrapper<?> n1, Wrapper<?> n2) {
    //Code goes here
}

There are some obvious problems with this method signature. The parameters n1 and n2 could be of 
any parameterized type of Wrapper<T> class. For example, the following call would be a valid call for the 
sum() method:

// Try adding an Integer and a String
sum(new Wrapper<Integer>(new Integer(125)), new Wrapper<String>("Hello"));

Computing the sum of an Integer and a String does not make sense. However, the code will compile 
and you should be ready to get some runtime exceptions depending on the implementation of the sum() 
method. You must restrict this kind of code from compiling. It should accept two Wrapper objects of type 
Number or its subclasses, not just anything. Therefore, you know the upper bound of the type of the actual 
parameter that the Wrapper object should have. The upper bound is the Number type. If you pass any other 
type, which is a subclass of the Number type, it is fine. However, anything that is not a Number type or its 
subclass type should be rejected at compile-time. You express the upper bound of a wildcard as

<? extends T>

Here, T is a type. <? extends T> means anything that is of type T or its subclass is acceptable. Using 
your upper bound as Number, you can define your method as

public static double sum(Wrapper<? extends Number> n1, Wrapper<? extends Number> n2) {
    Number num1 = n1.get();
    Number num2 = n2.get();
    double sum = num1.doubleValue() + num2.doubleValue();
    return sum;
}

The following snippet of code inside the method compiles fine:

Number num1 = n1.get();
Number num2 = n2.get();

No matter what you pass for n1 and n2, they will always be assignment-compatible with Number because 
the compiler will make sure that the parameters passed to the sum() method follow the rules specified in its 
declaration of <? extends Number>. The attempt to compute the sum of an Integer and a String will be 
rejected by the compiler. Consider the following snippet of code:

Wrapper<Integer> intWrapper = new Wrapper<Integer>(new Integer(10));
Wrapper<? extends Number> numberWrapper = intWrapper; // OK
numberWrapper.set(new Integer(1220)); // A compile-time error
numberWrapper.set(new Double(12.20)); // A compile-time error



Chapter 4 ■ GeneriCs

153

Can you figure out the problem with this snippet of code? The type of numberWrapper is <? extends 
Number>, which means it can refer to (or it is assignment-compatible with) anything that is a subtype of 
the Number class. Since Integer is a subclass of Number, the assignment of intWrapper to numberWrapper is 
allowed. When you try to use the set() method on numberWrapper, the compiler starts complaining because 
it cannot make sure at compile-time that numberWrapper is a type of Integer or Double, which are subtypes 
of a Number. Be careful with this kind of compile-time error when working with generics. On the surface, it 
might look obvious to you and you would think that code should compile and run fine. Unless the compiler 
ensures that the operation is type-safe, it will not allow you to proceed. After all, compile-time and runtime 
type-safety is the primary goal of generics!

Lower-Bounded Wildcards
Specifying a lower-bound wildcard is the opposite of specifying an upper-bound wildcard. The syntax for 
using a lower-bound wildcard is <? super T>, which means “anything that is a supertype of T”. Let’s add 
another method to the WrapperUtil class. You will call the new method copy() and it will copy the value 
from a source wrapper object to a destination wrapper object. Here is the first attempt. The <T> is the formal 
type parameter for the copy() method. It specifies that the source and dest parameters must be of the same 
type. I explain generic methods in detail in the next section.

public class WrapperUtil {
    public static <T> void copy(Wrapper<T> source, Wrapper<T> dest) {
        T value = source.get();
        dest.set(value);
    }
}

Copying the content of a Wrapper<String> to a Wrapper<Object> using your copy() method will not work.

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
WrapperUtil.copy(stringWrapper, objectWrapper); // A compile-time error

This code will generate a compile-time error because the copy() method requires the source and the 
dest arguments be of the same type. However, for all practical purposes a String is always an Object. Here, 
you need to use a lower-bounded wildcard, as shown:

public class WrapperUtil {
    // New definition of the copy() method
    public static <T> void copy(Wrapper<T> source, Wrapper<? super T> dest){
        T value = source.get();
        dest.set(value);
    }
}



Chapter 4 ■ GeneriCs

154

Now you are saying that the dest argument of the copy() method could be either T, same as source, 
or any of its supertype. You can use the copy() method to copy the contents of a Wrapper<String> to a 
Wrapper<Object> as follows:

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
WrapperUtil.copy(stringWrapper, objectWrapper); // OK with the new copy() method

Since Object is the supertype of String, the new copy() method will work. However, you cannot use it 
to copy from an Object type wrapper to a String type wrapper, because “an Object is a String is not always 
true. Listing 4-4 shows the complete code for the WrapperUtil class.

Listing 4-4. A WrapperUtil Utility Class That Works with Wrapper Objects

// WrapperUtil.java
package com.jdojo.generics;

public class WrapperUtil {
    public static void printDetails(Wrapper<?> wrapper) {
        // Can assign get() return value to Object
        Object value = wrapper.get();
        String className = null;

        if (value != null) {
            className = value.getClass().getName();
        }

        System.out.println("Class: " + className);
        System.out.println("Value: " + value);
    }

    public static double sum(Wrapper<? extends Number> n1, Wrapper<? extends Number> n2) {
        Number num1 = n1.get();
        Number num2 = n2.get();
        double sum = num1.doubleValue() + num2.doubleValue();
        return sum;
    }

    public static <T> void copy(Wrapper<T> source, Wrapper<? super T> dest) {
        T value = source.get();
        dest.set(value);
    }
}

Listing 4-5 shows you how to use the Wrapper and WrapperUtil classes.

Listing 4-5. Using the WrapperUtil Class

// WrapperUtilTest.java
package com.jdojo.generics;



Chapter 4 ■ GeneriCs

155

public class WrapperUtilTest {
   public static void main(String[] args) {
       Wrapper<Integer> n1 = new Wrapper<>(10);
       Wrapper<Double> n2 = new Wrapper<>(15.75);

       // Print the details
       WrapperUtil.printDetails(n1);
       WrapperUtil.printDetails(n2);

       // Add numeric values in two WrapperUtil
       double sum = WrapperUtil.sum(n1, n2);
       System.out.println("sum: " + sum);

       // Copy the value of a Wrapper<Double> to a Wrapper<Number>
       Wrapper<Number> holder = new Wrapper<>(45);
       System.out.println("Original holder: " + holder.get());
       WrapperUtil.copy(n2, holder);
       System.out.println("After copy holder: " + holder.get());
   }
}

Class: java.lang.Integer
Value: 10
Class: java.lang.Double
Value: 15.75
sum: 25.75
Original holder: 45
After copy holder: 15.75

Generic Methods and Constructors
You can define type parameters in a method declaration. They are specified in angle brackets before the 
return type of the method. The type that contains the generic method declaration does not have to be a 
generic type, so you can have generic methods in a non-generic type. It is also possible for a type and its 
methods to define different type parameters.

 ■ Tip  type parameters defined for a generic type are not available in static methods of that type. therefore, 
if a static method needs to be generic, it must define its own type parameters. if a method needs to be generic, 
define just that method as generic rather than defining the entire type as generic.

The following snippet of code defines a generic type Test with its type parameter named as T. It also 
defines a generic instance method m1() that defines its own generic type parameter named V. The method 
also uses the type parameter T, which is defined by its class. Note the use of <V> before the return type void of 
the m1() method. It defines a new generic type named V for the method.



Chapter 4 ■ GeneriCs

156

public class Test<T> {
    public <V> void m1(Wrapper<V> a, Wrapper<V> b, T c) {
        // Do something
    }
}

Can you think of the implication of defining and using the generic type parameter V for the m1() 
method? Look at its use in defining the first and second parameters of the method as Wrapper<V>. It forces 
the first and the second parameters to be of the same type. The third argument must be of the same type T, 
which is the type of the class instantiation.

How do you specify the generic type for a method when you want to call the method? Usually, you do 
not need to specify the actual type parameter when you call the method. The compiler figures it out for you 
using the value you pass to the method. However, if you ever need to pass the actual type parameter for the 
method’s formal type parameter, you must specify it in angle brackets (< >) between the dot and the method 
name in the method call, as shown:

Test<String> t = new Test<String>();
Wrapper<Integer> iw1 = new Wrapper<Integer>(new Integer(201));
Wrapper<Integer> iw2 = new Wrapper<Integer>(new Integer(202));

// Specify that Integer is the actual type for the type parameter for m1()
t.<Integer>m1(iw1, iw2, "hello");

// Let the compiler figure out the actual type parameters using types for iw1 and iw2
t.m1(iw1, iw2, "hello"); // OK

Listing 4-4 demonstrated how to declare a generic static method. You cannot refer to the type 
parameters of the containing class inside the static method. A static method can refer only to its own 
declared type parameters.

Here is the copy of your copy() static method from the WrapperUtil class. It defines a type parameter T, 
which is used to constrain the type of arguments source and dest.

public static <T> void copy(Wrapper<T> source, Wrapper<? super T> dest) {
    T value = source.get();
    dest.set(value);
}

The compiler will figure out the actual type parameter for a method whether the method is non-static 
or static. However, if you want to specify the actual type parameter for a static method call, you can do so as 
follows:

WrapperUtil.<Integer>copy(iw1, iw2);

You can also define type parameters for constructors the same way as you do for methods. The 
following snippet of code defines a type parameter U for the constructor of class Test. It places a constraint 
that the constructor’s type parameter U must be the same or a subtype of the actual type of its class type 
parameter T.

public class Test<T> {
    public <U extends T> Test(U k) {
        // Do something
    }
}



Chapter 4 ■ GeneriCs

157

The compiler will figure out the actual type parameter passed to a constructor by examining the 
arguments you pass to the constructor. If you want to specify the actual type parameter value for the 
constructor, you can specify it in angle brackets between the new operator and the name of the constructor, 
as shown in the following snippet of code:

// Specify the actual type parameter for the constructor as Double
Test<Number> t1 = new <Double>Test<Number>(new Double(12.89));

// Let the compiler figure out that we are using Integer as the actual type parameter
// for the constructor
Test<Number> t2 = new Test<Number>(new Integer(123));

Type Inference in Generic Object Creation
In many cases, the compiler can infer the value for the type parameter in an object-creation expression when 
you create an object of a generic type. Note that the type inference support in the object-creation expression 
is limited to the situations where the type is obvious. Consider the following statement:

List<String> list = new ArrayList<String>();

With the declaration of list as List<String>, it is obvious that you want to create an ArrayList with 
type parameter as <String>. In this case, you can specify empty angle brackets, <> (known as the diamond 
operator or simply the diamond), as the type parameter for ArrayList. You can rewrite this statement as 
shown:

List<String> list = new ArrayList<>();

Note that if you do not specify a type parameter for a generic type in an object-creation expression, the 
type is the raw type and the compiler generates unchecked warnings. For example, the following statement 
will compile with an unchecked warning:

// Using ArrayList as a raw type, not a generic type
List<String> list = new ArrayList(); // Generates an unchecked warning

warning: [unchecked] unchecked conversion
        List<String> list = new ArrayList(); // Generates an unchecked warning
                            ^
  required: List<String>
  found:    ArrayList
1 warning

Sometimes the compiler cannot correctly infer the parameter type of a type in an object-creation 
expression. In those cases, you need to specify the parameter type instead of using the diamond operator 
(<>). Otherwise, the compiler will infer a wrong type, which will generate an error.



Chapter 4 ■ GeneriCs

158

When the diamond operator is used in an object creation expression, the compiler uses a four-step 
process to infer the parameter type for the parameterized type. Let’s consider a typical object-creation 
expression:

T1<T2> var = new T3<>(constructor-arguments);

 1. First, it tries to infer the type parameter from the static type of the constructor-
arguments. Note that constructor-arguments may be empty, for example, 
new ArrayList<>(). If the type parameter is inferred in this step, the process 
continues to the next step.

 2. It uses the left side of the assignment operator to infer the type. In the previous 
statement, it will infer T2 as the type if the constructor-arguments are empty. 
Note that an object-creation expression may not be part of an assignment 
statement. In such cases, it will use the next step.

 3. If the object-creation expression is used as an actual parameter for a method call, 
the compiler tries to infer the type by looking at the type of the formal parameter 
for the method being called.

 4. If all else fails and it cannot infer the type using these steps, it infers Object as the 
type parameter.

Let’s discuss a few examples that involve all steps in the type inference process. Create the two lists, 
list1 of List<String> type and list2 of List<Integer> type:

import java.util.Arrays;
import java.util.List;

// More code goes here...

List<String> list1 = Arrays.asList("A", "B");
List<Integer> list2 = Arrays.asList(9, 19, 1969);

Consider the following statement that uses the diamond operator:

List<String> list3 = new ArrayList<>(list1); // Inferred type is String

The compiler used the constructor argument list1 to infer the type. The static type of list1 is 
List<String>, so the type String was inferred by the compiler. The previous statement compiles fine. The 
compiler did not use the left side of the assignment operator, List<String> list3, during the inference 
process. You may not trust this argument. Consider the following statement to prove this:

List<String> list4 = new ArrayList<>(list2); // A compile-time error

required: List<String>
found:    ArrayList<Integer>
1 error



Chapter 4 ■ GeneriCs

159

Do you believe it now? The constructor argument is list2 whose static type is List<Integer>. The 
compiler inferred the type as Integer and replaced ArrayList<> with ArrayList<Integer>. The type of 
list4 is List<String>, which is not assignment-compatible with the ArrayList<Integer>, which resulted 
in the compile-time error.

Consider the following statement:

List<String> list5 = new ArrayList<>(); // Inferred type is String

This time, there is no constructor argument. The compiler uses the second step to look at the left side 
of the assignment operator to infer the type. On the left side, it finds List<String> and it correctly infers the 
type as String. Consider a process() method that is declared as follows:

public static void process(List<String> list) {
    // Code goes here
}

The following statement makes a call to the process() method and the inferred type parameter is 
String:

// The inferred type is String
process(new ArrayList<>());

The compiler looks at the type of the formal parameter of the process() method, finds List<String>, 
and infers the type as String.

 ■ Tip  Using the diamond operator saves some typing. Use it when the type inference is obvious. however, 
it is better, for readability, to specify the type, instead of the diamond operator, in a complex object-creation 
expression. always choose readability over brevity.

JDK9 added support for the diamond operator in anonymous classes if the inferred types are denotable. 
You cannot use the diamond operator with anonymous classes—even in JDK9—if the inferred types are 
non-denotable. The Java compiler uses types that cannot be written in Java programs. Types that can be 
written in Java programs are known as denotable types. Types that the compiler knows but cannot be written 
in Java programs are known as non-denotable types. For example, String is a denotable type because 
you can use it in programs to denote a type; however, Serializable & CharSequence is not a denotable-
type, even though it is a valid type for the compiler. It is an intersection type that represents a type that 
implements both interfaces, Serializable and CharSequence. Intersection types are allowed in generic type 
definitions, but you cannot declare a variable using this intersection type:

// Not allowed in Java code. Cannot declare a variable of an intersection type.
Serializable & CharSequence var;

// Allowed in Java code
class Magic<T extends Serializable & CharSequence> {
    // More code goes here
}



Chapter 4 ■ GeneriCs

160

Java contains a generic Callable<V> interface in the java.util.concurrent package. It is declared as 
follows:

public interface Callable<V> {
    V call() throws Exception;
}

In JDK9, the compiler will infer the type parameter for the anonymous class as Integer in the following 
snippet of code. Prior to JDK9, you had to write "new Callable<Integer>()".

// A compile-time error in JDK8, but allowed in JDK9.
Callable<Integer> c = new Callable<>() {
    @Override
    public Integer call() {
        return 100;
    }
};

No Generic Exception Classes
Exceptions are thrown at runtime. The compiler cannot ensure the type-safety of exceptions at runtime if 
you use a generic exception class in a catch clause, because the erasure process erases the mention of any 
type parameter during compilation. This is the reason that it is a compile-time error to attempt to define a 
generic class, which is a direct or indirect subclass of java.lang.Throwable.

No Generic Anonymous Classes
An anonymous class is a one-time class. You need a class name to specify the actual type parameter. An 
anonymous class does not have a name. Therefore, you cannot have a generic anonymous class. However, 
you can have generic methods inside an anonymous class. Your anonymous class can inherit a generic class. 
An anonymous class can implement generic interfaces. Any class, except an exception type, enums, and 
anonymous inner classes, can have type parameters.

Generics and Arrays
Let’s look at the following code for a class called GenericArrayTest:

public class GenericArrayTest<T> {
    private T[] elements;

    public GenericArrayTest(int howMany) {
        elements = new T[howMany]; // A compile-time error
    }

    // More code goes here
}



Chapter 4 ■ GeneriCs

161

The GenericArrayTest class declares a type parameter T. In the constructor, it attempts to create an 
array of the generic type. You cannot compile the previous code. The compiler will complain about the 
following statement:

elements = new T[howMany]; // A compile-time error

Recall that all references to the generic type parameter are erased from the code when a generic class or 
code using it is compiled. An array needs to know its type when it is created, so that it can perform a check 
at runtime when an element is stored in it to make sure that the element is assignment-compatible with the 
array type. An array’s type information will not be available at runtime if you use a type parameter to create 
the array. This is the reason that the statement is not allowed.

You cannot create an array of generic type because the compiler cannot ensure the type-safety of the 
assignment to the array element. You cannot write the following code:

Wrapper<String>[] gsArray = null;

// Cannot create an array of generic type
gsArray = new Wrapper<String>[10]; // A compile-time error

It is allowed to create an array of unbounded wildcard generic types, as shown:

Wrapper<?>[] anotherArray = new Wrapper<?>[10]; // Ok

Suppose you want to use an array of a generic type. You can do so by using the newInstance() method 
of the java.lang.reflect.Array class as follows. You will have to deal with the unchecked warnings at 
compile-time because of the cast used in the array creation statement. The following snippet of code shows 
that you can still bypass the compile-time type-safety check when you try to sneak in an Object into an array 
of Wrapper<String>. However, this is the consequence you have to live with when using generics, which 
does not carry its type information at runtime. Java generics are as skin deep as you can imagine.

Wrapper<String>[] a = (Wrapper<String>[]) Array.newInstance(Wrapper.class, 10);

Object[] objArray = (Object[]) a;
objArray[0] = new Object();  // Will throw a java.lang.ArrayStoreExceptionxception
a[0] = new Wrapper<String>("Hello"); // OK. Checked by compiler

Runtime Class Type of Generic Objects
What is the class type of the object for a parameterized type? Consider the program in Listing 4-6.

Listing 4-6. All Objects of a Parameterized Type Share the Same Class at Runtime

// GenericsRuntimeClassTest.java
package com.jdojo.generics;

public class GenericsRuntimeClassTest {
    public static void main(String[] args) {
        Wrapper<String> a = new Wrapper<String>("Hello");
        Wrapper<Integer> b = new Wrapper<Integer>(new Integer(123));



Chapter 4 ■ GeneriCs

162

        Class aClass = a.getClass();
        Class bClass = b.getClass();

        System.out.println("Class for a: " + aClass.getName());
        System.out.println("Class for b: " + bClass.getName());
        System.out.println("aClass == bClass: " + (aClass == bClass));
    }
}

Class for a: com.jdojo.generics.Wrapper
Class for b: com.jdojo.generics.Wrapper
aClass == bClass: true

The program creates objects of the Wrapper<String> and Wrapper<Integer>. It prints the class names 
for both objects and they are the same. The output shows that all parameterized objects of the same generic 
type share the same class object at runtime. As mentioned earlier, the type information you supply to the 
generic type is removed from the code during compilation. The compiler changes the Wrapper<String> a; 
statement to Wrapper a;. For the JVM, it’s business as usual (before pre-generics)!

Heap Pollution
Representing a type at runtime is called reification. A type that can be represented at runtime is called 
a reifiable type. A type that is not completely represented at runtime is called a non-reifiable type. Most 
generic types are non-reifiable because generics are implemented using erasure, which removes the type’s 
parameters information at compile time. For example, when you write Wrapper<String>, the compiler 
removes the type parameter <String> and the runtime sees only Wrapper instead of Wrapper<String>.

Heap pollution is a situation that occurs when a variable of a parameterized type refers to an object 
not of the same parameterized type. The compiler issues an unchecked warning if it detects possible 
heap pollution. If your program compiles without any unchecked warnings, heap pollution will not occur. 
Consider the following snippet of code:

Wrapper nWrapper = new Wrapper<Integer>(101);    // #1

// Unchecked warning at compile-time and heap pollution at runtime
Wrapper<String> sWrapper = nWrapper; // #2
String str = sWrapper.get();         // #3 - ClassCastException

The first statement (labeled #1) compiles fine. The second statement (labeled #2) generates an 
unchecked warning because the compiler cannot determine if nWrapper is of the type Wrapper<String>. 
Since parameter type information is erased at compile-time, the runtime has no way of detecting this type 
mismatch. The heap pollution in the second statement makes it possible to get a ClassCastException in the 
third statement (labeled #3) at runtime. If the second statement was not allowed, the third statement will not 
cause a ClassCastException.



Chapter 4 ■ GeneriCs

163

Heap pollution may also occur because of an unchecked cast operation. Consider the following snippet 
of code:

Wrapper<? extends Number> nW = new Wrapper<Long>(1L); // #1

// Unchecked cast and unchecked warning occurs when the
// following statement #2 is compiled. Heap pollution occurs,
// when it is executed.
Wrapper<Short> sw = (Wrapper<Short>) nW; // #2
short s = sw.get();                      // #3 - ClassCastException

The statement labeled #2 uses an unchecked cast. The compiler issues an unchecked warning. 
At runtime, it leads to heap pollution. As a result, the statement labeled #3 generates a runtime 
ClassCastException.

Varargs Methods and Heap Pollution Warnings
Java implements the varargs parameter of a varargs method by converting the varargs parameter into an 
array. If a varargs method uses a generic type varargs parameter, Java cannot guarantee the type-safety. 
A non-reifiable generic type varargs parameter may possibly lead to heap pollution.

Consider the following snippet of code that declares a process() method with a parameterized type 
parameter. The comments in the method’s body indicate the heap pollution and other types of problems.

public static void process(Wrapper<Long>...nums) {
    Object[] obj = nums;               // Heap pollution
    obj[0] = new Wrapper<>("Hello");   // An array corruption
    Long lv = nums[0].get();           // A ClassCastException
    // Other code goes here
}

 ■ Tip  You need to use the -Xlint:unchecked,varargs option with the javac compiler to see the 
unchecked and varargs warnings.

When the process() method is compiled, the compiler removes the type information <Long> from its 
parameterized type parameter and changes its signature to process(Wrapper[] nums). When you compile 
the declaration of the process() method, you get the following unchecked warning:

warning: [unchecked] Possible heap pollution from parameterized vararg type Wrapper<Long>
        public static void process(Wrapper<Long>...nums) {
                                                          ^
1 warning

Consider the following snippet of code that calls the process() method:

Wrapper<Long> v1 = new Wrapper<>(10L);
Wrapper<Long> v2 = new Wrapper<>(11L);
process(v1, v2); // An unchecked warning



Chapter 4 ■ GeneriCs

164

When this snippet of code is compiled, it generates the following compiler unchecked warning:

warning: [unchecked] unchecked generic array creation for varargs parameter of type 
Wrapper<Long>[]
                process(v1, v2);
                       ^
1 warning

Warnings are generated at the method declaration as well as at the location of the method call. If you 
create such a method, it is your responsibility to ensure that heap pollution does not occur inside your 
method’s body.

If you create a varargs method with a non-reifiable type parameter, you can suppress the unchecked 
warnings at the location of the method’s declaration as well as the method’s call by using @SafeVarargs 
annotation. By using @SafeVarargs, you are asserting that your varargs method with non-reifiable type 
parameter is safe to use. The following snippet of code uses the @SafeVarargs annotation with the 
process() method:

@SafeVarargs
public static void process(Wrapper<Long>...nums) {
    Object[] obj = nums;                   // Heap pollution
    obj[0] = new Wrapper<String>("Hello"); // An array corruption
    Long lv = nums[0].get();               // A ClassCastException
    // Other code goes here
}

When you compile this declaration of the process() method, you do not get an unchecked warning. 
However, you get the following varargs warning because the compiler sees possible heap pollution when the 
varargs parameter nums is assigned to the Object array obj:

warning: [varargs] Varargs method could cause heap pollution from non-reifiable varargs 
parameter nums
                Object[] obj = nums; // Heap pollution
                               ^
1 warning

You can suppress the unchecked and varargs warnings for a varargs method with a non-reifiable type 
parameter by using the @SuppressWarnings annotation as follows:

@SuppressWarnings({"unchecked", "varargs"})
public static void process(Wrapper<Long>...nums) {
    // Code goes here
}

Note that when you use the @SuppressWarnings annotation with a varargs method, it suppresses 
warnings only at the location of the method’s declaration, not at the locations where the method is called.



Chapter 4 ■ GeneriCs

165

Summary
Generics are the Java language features that allow you to declare types (classes and interfaces) that use type 
parameters. Type parameters are specified when the generic type is used. The type when used with the 
actual type parameter is known as a parameterized type. When a generic type is used without specifying its 
type parameters, it is called a raw type. For example, if Wrapper<T> is a generic class, Wrapper<String> is a 
parameterized type with String as the actual type parameter and Wrapper as the raw type. Type parameters 
can also be specified for constructors and methods. Generics allow you to write true polymorphic code in 
Java—code using a type parameter that works for all types.

By default, a type parameter is unbounded, meaning that you can specify any type for the type 
parameter. For example, if a class is declared with a type parameter <T>, you can specify any type available 
in Java, such as <String>, <Object>, <Person>, <Employee>, <Integer>, etc., as the actual type for T. 
Type parameters in a type declaration can also be specified as having upper bounds or lower bounds. The 
declaration Wrapper<U extends Person> is an example of specifying an upper bound for the type parameter 
U that specifies that U can be of a type that is Person or a subtype of Person. The declaration Wrapper<? 
super Person> is an example of specifying a lower bound; it specifies that the type parameter is the type 
Person or a supertype of Person.

Java also lets you specify the wildcard, which is a question mark, as the actual type parameter. A 
wildcard as the actual parameter means the actual type parameter is unknown; for example, Wrapper<?> 
means that the type parameter T for the generic type Wrapper<T> is unknown.

The compiler attempts to infer the type of an expression using generics, depending on the context in 
which the expression is used. If the compiler cannot infer the type, it generates a compile-time error and you 
will need to specify the type explicitly.

The supertype–subtype relationship does not exist with parameterized types. For example, 
Wrapper<Long> is not a subtype of Wrapper<Number>.

The generic type parameters are erased by the compiler using a process called type erasure. Therefore, 
the generic type parameters are not available at runtime. For example, the runtime type of Wrapper<Long> 
and Wrapper<String> are the same, which is Wrapper.

EXERCISES

1. What are generics (or generic types), parameterized types, and raw types? Give an 
example of a generic type and its parameterized type.

2. the Number class is the superclass of the Long class. the following snippet of code 
does not compile. explain.

List<Number> list1= new ArrayList<>();
List<Long> list2= new ArrayList<>();
list1 = list2;  // A compile-time error

3. Write the output when the following ClassNamePrinter class is run. rewrite 
the code for the print() method of this class after the compiler erases the type 
parameter T during compilation .



Chapter 4 ■ GeneriCs

166

// ClassNamePrinter.java
package com.jdojo.generics.exercises;

public class ClassNamePrinter {
    public static void main(String[] args) {
        ClassNamePrinter.print(10);
        ClassNamePrinter.print(10L);
        ClassNamePrinter.print(10.2);
    }

    public static <T extends Number> void print(T obj) {
        String className = obj.getClass().getSimpleName();
       System.out.println(className);
    }
}

4. What are unbounded wildcards? Why does the following snippet of code not 
compile?

List<?> list = new ArrayList<>();
list.add("Hello"); // A compile-time error

5. Consider the following incomplete declaration of the Util class:

// Util.java
package com.jdojo.generics.exercises;

import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class Util {
    public static void main(String[] args) {
        Integer[] n1 = {1, 2};
        Integer[] n2 = {3, 4};
        Integer[] m = merge(n1, n2);
        System.out.println(Arrays.toString(m));

        String[] s1 = {"one", "two"};
        String[] s2 = {"three", "four"};
        String[] t = merge(s1, s2);
        System.out.println(Arrays.toString(t));

        List<Number> list = new ArrayList<>();
        add(list, 10, 20, 30L, 40.5F, 50.9);
        System.out.println(list);
    }



Chapter 4 ■ GeneriCs

167

    public static <T> T[] merge(T[] a, T[] b) {

    }

    public static /* Add type parameters here */ void add(List<T> list,  
U... elems) {

        /* Your code to add elems to list goes here */
    }
}

Complete the body of the merge() method, so it can concatenate the two arrays 
passed in as its parameters and return the concatenated array.

Complete the add() method by specifying its type parameters and adding the code 
in its body. the first parameter to the method is a parameterized List<T> and the 
second parameter is a varargs parameter of the type T or its descendant. that is, 
the second parameter type is any type whose objects can be added to the List<T>.

running the Util class should produce the following output:

[1, 2, 3, 4]
[one, two, three, four]
[10, 20, 30, 40.5, 50.9]

6. Create a generic Stack<E> class. its objects represent a stack that can store 
elements of its type parameter E. the following is a template for the class. You need 
to provide implementation for all its methods. Write test code to test all methods. 
Method names are standard method names for a stack. any illegal access to the 
stack should throw a runtime exception.

// Stack.java
package com.jdojo.generics.exercises;

import java.util.LinkedList;
import java.util.List;

public class Stack<E> {
    // Use LinkedList instead of ArrayList
    private final List<E> stack = new LinkedList<>();

    public void push(E e) {}
    public E pop() { }
    public E peek() { }
    public boolean isEmpty() { }
    public int size() { }    
}



Chapter 4 ■ GeneriCs

168

7. What is heap pollution? What types of warnings does the compiler generate when 
it detects a possibility of heap pollution? how do you print such warnings during 
compilation? how do you suppress such warnings?

8. Describe the reasons that the following declaration of the Test class does not 
compile.

public class Test {    
   public <T> void test(T t) {  
      // More code goes here    
   }

   public <U> void test(U u) {
      // More code goes here
   }
}



169© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_5

CHAPTER 5

Lambda Expressions

In this chapter, you will learn:

•	 What lambda expressions are

•	 Why we need lambda expressions

•	 The syntax for defining lambda expressions

•	 Target typing for lambda expressions

•	 Commonly used built-in functional interfaces

•	 Method and constructor references

•	 Lexical scoping of lambda expressions

All example programs in this chapter are a member of a jdojo.lambda module, as declared in Listing 5-1.

Listing 5-1. The Declaration of a jdojo.lambda Module

// module-info.java
module jdojo.lambda {
    exports com.jdojo.lambda;
}

What Is a Lambda Expression?
A lambda expression is an unnamed block of code (or an unnamed function) with a list of formal parameters 
and a body. Sometimes a lambda expression is simply called a lambda. The body of a lambda expression 
can be a block statement or an expression. An arrow (->) is used to separate the list of parameters and the 
body. The term “lambda” has its origin in Lambda calculus that uses the Greek letter lambda (λ) to denote a 
function abstraction. The following are some examples of lambda expressions in Java:

// Takes an int parameter and returns the parameter value incremented by 1
(int x) -> x + 1

// Takes two int parameters and returns their sum
(int x, int y) -> x + y

// Takes two int parameters and returns the maximum of the two
(int x, int y) -> { int max = x > y ? x : y;
                    return max;
                  }

https://doi.org/10.1007/978-1-4842-3348-1_5


Chapter 5 ■ Lambda expressions

170

// Takes no parameters and returns void
() -> { }

// Takes no parameters and returns a string "OK"
() -> "OK"

// Takes a String parameter and prints it on the standard output
(String msg) -> { System.out.println(msg); }

// Takes a parameter and prints it on the standard output
msg -> System.out.println(msg)

// Takes a String parameter and returns its length
(String str) -> str.length()

At this point, you will not be able to understand the syntax of lambda expressions completely. I cover 
the syntax in detail shortly. For now, just get the feel of it, keeping in mind that the syntax for lambda 
expressions is similar to the syntax for declaring methods.

 ■ Tip  a lambda expression is not a method, although its declaration looks similar to a method. as the name 
suggests, a lambda expression is an expression that represents an instance of a functional interface.

Every expression in Java has a type, and so does a lambda expression. The type of a lambda expression 
is a functional interface type. When the abstract method of the functional interface is called, the body of the 
lambda expression is executed. Consider the lambda expression that takes a String parameter and returns 
its length:

(String str) -> str.length()

What is the type of this lambda expression? The answer is that we do not know. By looking at the 
lambda expression, all you can say is that it takes a String parameter and returns an int, which is the length 
of the String parameter. Its type can be any functional interface type with an abstract method that takes a 
String as a parameter and returns an int. The following is an example of such a functional interface:

@FunctionalInterface
interface StringToIntMapper {
    int map(String str);
}

The lambda expression represents an instance of the StringToIntMapper functional interface when it 
appears in the assignment statement, like so:

StringToIntMapper mapper = (String str) -> str.length();

In this statement, the compiler finds that the right side of the assignment operator is a lambda 
expression. To infer its type, it looks at the left side of the assignment operator that expects an instance of 
the StringToIntMapper interface; it verifies that the lambda expression conforms to the declaration of the 
map() method in the StringToIntMapper interface; finally, it infers that the type of the lambda expression 
is the StringToIntMapper interface type. When you call the map() method on the mapper variable passing a 
String, the body of the lambda expression is executed as shown in the following snippet of code:



Chapter 5 ■ Lambda expressions

171

StringToIntMapper mapper = (String str) -> str.length();
String name = "Kristy";
int mappedValue = mapper.map(name);
System.out.println("name=" + name + ", mapped value=" + mappedValue);

name=Kristy, mapped value=6

So far, you have not seen anything that you could not do in Java without using lambda expressions. The 
following snippet of code uses an anonymous class to achieve the same result as the lambda expression used 
in the previous example:

StringToIntMapper mapper = new StringToIntMapper() {
    @Override
    public int map(String str) {
        return str.length();
    }
};

String name = "Kristy";
int mappedValue = mapper.map(name);
System.out.println("name=" + name + ", mapped value=" + mappedValue);

name=Kristy, mapped value=6

At this point, a lambda expression may seem to be a concise way of writing an anonymous class, which 
is true as far as the syntax goes. There are some subtle differences in semantics between the two. I discuss 
those differences when I discuss more details later.

 ■ Tip  Java is a strongly-typed language, which means that the compiler must know the type of all 
expressions used in a Java program. a lambda expression by itself does not have a type, and therefore, it 
cannot be used as a standalone expression. the type of a lambda expression is always inferred by the compiler 
by the context in which it is used.

Why Do We Need Lambda Expressions?
Java has supported object-oriented programming since the beginning. In object-oriented programming, the 
program logic is based on mutable objects. Methods of classes contain the logic. Methods are invoked on 
objects, which typically modify objects’ states. In object-oriented programming, the order of method invocation 
matters as each method invocation may potentially modify the state of the object, thus producing side effects. 
static analysis of the program logic is difficult as the program state depends on the order in which the code will 
be executed. Programming with mutating objects also poses a challenge in concurrent programming in which 
multiple parts of the program may attempt to modify the state of the same object concurrently.



Chapter 5 ■ Lambda expressions

172

As the processing power of computers has increased in recent years, so has the amount of data to 
be processed. Nowadays, it is common to process data as big as terabytes in size, requiring the need for 
parallel programming. Now it is common for computers to have a multi-core processor that give users the 
opportunity to run software programs faster; at the same time, this poses a challenge to programmers to 
write more parallel programs, taking advantage of all the available cores in the processor. Java has supported 
concurrent programming since the beginning. It added support for parallel programming in Java 7 through 
the fork/join framework, which was not easy to use.

Functional programming, which is based on Lambda calculus, existed long before object-oriented 
programming. It is based on the concept of functions, a block of code that accepts values, known as 
parameters, and the block of code is executed to compute a result. A function represents a functionality or 
operation. Functions do not modify data, including its input, thus producing no side-effects; for this reason, the 
order of the execution of functions does not matter in functional programming. In functional programming, 
a higher order function is an anonymous function that can be treated as a data object. That is, it can be stored 
in a variable and passed around from one context to another. It might be invoked in a context that did not 
necessarily define it. Note that a higher order function is an anonymous function, so the invoking context does 
not have to know its name. A closure is a higher order function packaged with its defining environment. A 
closure carries with it the variables in scope when it was defined, and it can access those variables even when it 
is invoked in a context other than the context in which those variables were defined.

In recent years, functional programming has become popular because of its suitability in concurrent, 
parallel, and event-driven programming. Modern programming languages such as C#, Groovy, Python, and 
Scala support functional programming. Java did not want to be left behind, and hence, it introduced lambda 
expressions to support functional programming, which can be mixed with its already popular object-
oriented features to develop robust, concurrent, parallel programs. Java adopted the syntax for lambda 
expressions that is very similar to the syntax used in other programming languages, such as C# and Scala.

In object-oriented programming, a function is called a method and it is always part of a class. If you 
wanted to pass functionality around in Java, you needed to create a class, add a method to the class to 
represent the functionality, create an object of the class, and pass the object around. A lambda expression 
in Java is like a higher-order function in functional programming, which is an unnamed block of code 
representing a functionality that can be passed around like data. A lambda expression may capture the 
variables in its defining scope and it may access those variables later in a context that did not define the 
captured variable. This features let you use lambda expressions to implement closures in Java.

Java 8 introduced lambda expressions that represent an instance of a functional interface. You were 
able to do everything prior to Java 8 using anonymous classes that you can do with lambda expressions. 
Functional interfaces are not new to Java 8; they have existed since the beginning.

So why and where do we need lambda expressions? Anonymous classes use a bulky syntax. Lambda 
expressions use a very concise syntax to achieve the same result. Lambda expressions are not a complete 
replacement for anonymous classes. You will still need to use anonymous classes in a few situations. Just 
to appreciate the conciseness of the lambda expressions, compare the following two statements from the 
previous section that create an instance of the StringToIntMapper interface; one uses an anonymous class, 
taking six lines of code, and another uses a lambda expression, taking just one line of code:

// Using an anonymous class
StringToIntMapper mapper = new StringToIntMapper() {
    @Override
    public int map(String str) {
        return str.length();
    }
};

// Using a lambda expression
StringToIntMapper mapper = (String str) -> str.length();



Chapter 5 ■ Lambda expressions

173

Syntax for Lambda Expressions
A lambda expression describes an anonymous function. The general syntax for using lambda expressions is 
very similar to declaring a method. The general syntax is

(<LambdaParametersList>) -> { <LambdaBody> }

A lambda expression consists of a list of parameters and a body separated by an arrow (->). The list of 
parameters is declared the same way as the list of parameters for methods. The list of parameters is enclosed 
in parentheses, as is done for methods. The body of a lambda expression is a block of code enclosed in 
braces. Like a method’s body, the body of a lambda expression may declare local variables; use statements 
including break, continue, and return; throw exceptions, etc. Unlike a method, a lambda expression does 
not have the following four parts:

•	 A lambda expression does not have a name.

•	 A lambda expression does not have a return type. It is inferred by the compiler from 
the context of its use and from its body.

•	 A lambda expression does not have a throws clause. It is inferred from the context of 
its use and its body.

•	 A lambda expression cannot declare type parameters. That is, a lambda expression 
cannot be generic.

Table 5-1 contains some examples of lambda expressions and equivalent methods. I have given a 
suitable name to methods as you cannot have a method without a name in Java. The compiler infers the 
return type of lambda expressions.

Table 5-1. Examples of Lambda Expressions and Equivalent Methods

Lambda Expression Equivalent Method

(int x, int y) -> {
    return x + y;
}

int sum(int x, int y) {
    return x + y;
}

(Object x) -> {
    return x;
}

Object identity(Object x)  {
    return x;
}

(int x, int y) -> {
    if (x > y) {
        return x;
    } else {
        return y;
    }
}

int getMax(int x, int y) {
    if (x > y) {
        return x;
    } else {
        return y;
    }
}

(continued)



Chapter 5 ■ Lambda expressions

174

One of the goals of lambda expressions is to keep its syntax concise and let the compiler infer the 
details. The following sections discuss the shorthand syntax for declaring lambda expressions.

Omitting Parameter Types
You can omit the declared type of the parameters. The compiler will infer the types of parameters from the 
context in which the lambda expression is used.

// Types of parameters are declared
(int x, int y) -> { return x + y; }

// Types of parameters are omitted
(x, y) -> { return x + y; }

If you omit the types of parameters, you must omit it for all parameters or for none. You cannot omit for 
some and not for others. The following lambda expression will not compile because it declares the type of 
one parameter and omits for the other:

// A compile-time error
(int x, y) -> { return x + y; }

 ■ Tip  a lambda expression that does not declare the types of its parameters is known as an implicit lambda 
expression or an implicitly-typed lambda expression. a lambda expression that declares the types of its 
parameters is known as an explicit lambda expression or an explicitly-typed lambda expression.

Lambda Expression Equivalent Method

(String msg) -> {
    System.out.println(msg);
}

void print(String msg) {
    System.out.println(msg);
}

() -> {
    System.out.println(LocalDate.now());
}

void printCurrentDate() {
    System.out.println(LocalDate.now());
}

() -> {
    // No code goes here
}

void doNothing() {
    // No code goes here
}

Table 5-1. (continued)



Chapter 5 ■ Lambda expressions

175

Declaring a Single Parameter
Sometimes a lambda expression takes only one parameter. You can omit the parameter type for a single 
parameter lambda expression as you can do for a lambda expression with multiple parameters. You can also 
omit the parentheses if you omit the parameter type in a single parameter lambda expression. The following 
are three ways to declare a lambda expression with a single parameter:

// Declares the parameter type
(String msg) -> { System.out.println(msg); }

// Omits the parameter type
(msg) -> { System.out.println(msg); }

// Omits the parameter type and parentheses
msg -> { System.out.println(msg); }

The parentheses can be omitted only if the single parameter also omits its type. The following lambda 
expression will not compile:

// Omits parentheses, but not the parameter type, which is not allowed.
String msg -> { System.out.println(msg); }

Declaring No Parameters
If a lambda expression does not take any parameters, you need to use empty parentheses.

// Takes no parameters
() -> { System.out.println("Hello"); }

It is not allowed to omit the parentheses when the lambda expression takes no parameter. The following 
declaration will not compile:

-> { System.out.println("Hello"); }

Parameters with Modifiers
You can use modifiers, such as final, in the parameter declaration for explicit lambda expressions. The 
following two lambda expressions are valid:

(final int x, final int y) -> { return x + y; }

(int x, final int y) -> { return x + y; }

The following lambda expression will not compile because it uses the final modifier in parameter 
declarations, but omits the parameter type:

(final x, final y) -> { return x + y; }



Chapter 5 ■ Lambda expressions

176

Declaring Body of Lambda Expressions
The body of a lambda expression can be a block statement or a single expression. A block statement is 
enclosed in braces; a single expression is not enclosed in braces.

The body of a lambda expression is executed the same way as a method’s body. A return statement or 
the end of the body returns the control to the caller of the lambda expression.

When an expression is used as the body, it is evaluated and returned to the caller. If the expression 
evaluates to void, nothing is returned to the caller. The following two lambda expressions are the same; one 
uses a block statement and the other an expression:

// Uses a block statement. Takes two int parameters and returns their sum.
(int x, int y) -> { return x + y; }

// Uses an expression. Takes two int parameters and returns their sum.
(int x, int y) -> x + y

The following two lambda expressions are the same; one uses a block statement as the body and the 
other an expression that evaluates to void:

// Uses a block statement
(String msg) -> { System.out.println(msg); }

// Uses an expression
(String msg) -> System.out.println(msg)

Target Typing
Every lambda expression has a type, which is a functional interface type. In other words, a lambda 
expression represents an instance of a functional interface. Consider the following lambda expression:

(x, y) -> x + y

What is the type of this lambda expression? In other words, an instance of which functional interface 
does this lambda expression represent? We do not know the type of this lambda expression at this point. 
All we can say about this lambda expression with confidence is that it takes two parameters named x and 
y. We cannot tell its return type as the expression x + y, depending on the type of x and y, may evaluate to 
a number (int, long, float, or double) or a String. This is an implicit lambda expression, and therefore, 
the compiler has to infer the types of two parameters using the context in which the expression is used. This 
lambda expression may be of different functional interface types depending on the context in which it is used.

There are two types of expressions in Java:

•	 Standalone expressions

•	 Poly expressions

A standalone expression is an expression whose type can be determined without knowing the context of 
its use. The following are examples of standalone expressions:

// The type of expression is String
new String("Hello")

// The type of expression is String (a String literal is also an expression)
"Hello"



Chapter 5 ■ Lambda expressions

177

// The type of expression is ArrayList<String>
new ArrayList<String>()

A poly expression is an expression that has different types in different contexts. The compiler 
determines the type. The contexts that allow the use of poly expressions are known as poly contexts. 
All lambda expressions in Java are poly expressions. You must use it in a context to know its type. Poly 
expressions existed in Java prior to Java 8 and lambda expressions. For example, the expression new 
ArrayList<>() is a poly expression. You cannot tell its type unless you provide the context of its use. This 
expression is used in the following two contexts to represent two different types:

// The type of new ArrayList<>() is ArrayList<Long>
ArrayList<Long> idList = new ArrayList<>();

// The type of new ArrayList<>() is ArrayList<String>
ArrayList<String> nameList = new ArrayList<>();

The compiler infers the type of a lambda expression. The context in which a lambda expression is used 
expects a type, which is called the target type. The process of inferring the type of a lambda expression from 
the context is known as target typing. Consider the following pseudocode for an assignment statement, 
where a variable of type T is assigned a lambda expression:

T t = <LambdaExpression>;

The target type of the lambda expression in this context is T. The compiler uses the following rules to 
determine whether the <LambdaExpression> is assignment compatible with its target type T:

•	 T must be a functional interface type.

•	 The lambda expression has the same number and type of parameters as the abstract 
method of T. For an implicit lambda expression, the compiler will infer the types of 
parameters from the abstract method of T.

•	 The type of the returned value from the body of the lambda expression is assignment 
compatible to the return type of the abstract method of T.

•	 If the body of the lambda expression throws any checked exceptions, those 
exceptions must be compatible with the declared throws clause of the abstract 
method of T. It is a compile-time error to throw checked exceptions from the body of 
a lambda expression, if its target type’s method does not contain a throws clause.

Let’s look at a few examples of target typing. Consider two functional interfaces, Adder and Joiner, as 
shown in Listing 5-2 and Listing 5-3, respectively.

Listing 5-2. A Functional Interface Named Adder

// Adder.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Adder {
    double add(double n1, double n2);
}



Chapter 5 ■ Lambda expressions

178

Listing 5-3. A Functional Interface Named Joiner

// Joiner.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Joiner {
    String join(String s1, String s2);
}

The add() method of the Adder interface adds two numbers. The join() method of the Joiner interface 
concatenates two strings. Both interfaces are used for trivial purposes; however, they will serve the purpose 
of demonstrating the target typing for lambda expressions very well. Consider the following assignment 
statement:

Adder adder = (x, y) -> x + y;

The type of the adder variable is Adder. The lambda expression is assigned to the variable adder, 
and therefore, the target type of the lambda expression is Adder. The compiler verifies that Adder is a 
functional interface. The lambda expression is an implicit lambda expression. The compiler finds that the 
Adder interface contains a double add(double, double) abstract method. It infers the types for x and y 
parameters as double and double, respectively. At this point, the compiler treats this statement as shown:

Adder adder = (double x, double y) -> x + y;

The compiler now verifies the compatibility of the returned value from the lambda expression and the 
return type of the add() method. The return type of the add() method is double. The lambda expression 
returns x + y, which would be of a double as the compiler already knows that the types of x and y are 
double. The lambda expression does not throw any checked exceptions. Therefore, the compiler does not 
have to verify anything for that. At this point, the compiler infers that the type of the lambda expression is the 
type Adder.

Apply the rules of target typing for the following assignment statement: 

Joiner joiner = (x, y) -> x + y;

This time, the compiler infers the type for the lambda expression as Joiner. Do you see an example of a 
poly expression where the same lambda expression (x, y) -> x + y is of the type Adder in one context and 
of the type Joiner in another?

Listing 5-4 shows how to use these lambda expressions in a program. Note that it’s business as usual 
after you use a lambda expression to create an instance of a functional interface. That is, after you create an 
instance of a functional interface, you use the instance as you used before Java 8. The lambda expression 
does not change the way the instance of a functional interface is used to invoke its method.

Listing 5-4. Examples of Using Lambda Expressions

// TargetTypeTest.java
package com.jdojo.lambda;

public class TargetTypeTest {
    public static void main(String[] args)  {
        // Creates an Adder using a lambda expression
        Adder adder = (x, y) -> x + y;



Chapter 5 ■ Lambda expressions

179

        // Creates a Joiner using a lambda expression
        Joiner joiner = (x, y) -> x + y;

        // Adds two doubles
        double sum1 = adder.add(10.34, 89.11);

        // Adds two ints
        double sum2 = adder.add(10, 89);

        // Joins two strings
        String str = joiner.join("Hello", " lambda");

        System.out.println("sum1 = " + sum1);
        System.out.println("sum2 = " + sum2);        
        System.out.println("str = " + str);
    }
}

sum1 = 99.45
sum2 = 99.0
str = Hello lambda

I now discuss the target typing in the context of method calls. You can pass lambda expressions as 
arguments to methods. Consider the code for the LambdaUtil class shown in Listing 5-5.

Listing 5-5. A LambdaUtil Class That Uses Functional Interfaces as an Argument in Methods

// LambdaUtil.java
package com.jdojo.lambda;

public class LambdaUtil {
    public void testAdder(Adder adder) {
        double x = 190.90;
        double y = 8.50;
        double sum = adder.add(x, y);        
        System.out.print("Using an Adder:");
        System.out.println(x + " + " + y + " = " + sum);
    }

    public void testJoiner(Joiner joiner) {
        String s1 = "Hello";
        String s2 = "World";
        String s3 = joiner.join(s1,s2);        
        System.out.print("Using a Joiner:");
        System.out.println("\"" + s1 + "\" + \"" + s2 + "\" = \"" + s3 + "\"");
    }
}



Chapter 5 ■ Lambda expressions

180

The LambdaUtil class contains two methods: testAdder() and testJoiner(). One method takes an 
Adder as an argument and another a Joiner as an argument. Both methods have simple implementations. 
Consider the following snippet of code:

LambdaUtil util = new LambdaUtil();
util.testAdder((x, y) -> x + y);

The first statement creates an object of the LambdaUtil class. The second statement calls the 
testAdder() method on the object, passing a lambda expression of (x, y) -> x + y. The compiler must 
infer the type of the lambda expression. The target type of the lambda expression is the type Adder because 
the argument type of the testAdder(Adder adder) is Adder. The rest of the target typing process is the 
same as you saw in the assignment statement before. Finally, the compiler infers that the type of the lambda 
expression is Adder.

The program in Listing 5-6 creates an object of the LambdaUtil class and calls the testAdder() and 
testJoiner() methods.

Listing 5-6. Using Lambda Expressions as Method Arguments

// LambdaUtilTest.java
package com.jdojo.lambda;

public class LambdaUtilTest {
    public static void main(String[] args)  {
        LambdaUtil util = new LambdaUtil();

        // Call the testAdder() method
        util.testAdder((x, y) -> x + y);

        // Call the testJoiner() method
        util.testJoiner((x, y) -> x + y);

        // Call the testJoiner() method. The Joiner will add a space between the two strings
        util.testJoiner((x, y) -> x + " " + y);

        // Call the testJoiner() method. The Joiner will reverse the strings and join resulting
        // strings in reverse order adding a comma in between
        util.testJoiner((x, y) -> {        
            StringBuilder sbx = new StringBuilder(x);
            StringBuilder sby = new StringBuilder(y);

            sby.reverse().append(",").append(sbx.reverse());

            return sby.toString();
        });
    }
}

Using an Adder:190.9 + 8.5 = 199.4
Using a Joiner:"Hello" + "World" = "HelloWorld"
Using a Joiner:"Hello" + "World" = "Hello World"
Using a Joiner:"Hello" + "World" = "dlroW,olleH"



Chapter 5 ■ Lambda expressions

181

Notice the output of the LambdaUtilTest class. The testJoiner() method was called three times, 
and every time it printed a different result of joining the two strings "Hello" and "World". This is possible 
because different lambda expressions were passed to this method. At this point, you can say that you have 
parameterized the behavior of the testJoiner() method. That is, how the testJoiner() method behaves 
depends on its parameter. Changing the behavior of a method through its parameters is known as behavior 
parameterization. This is also known as passing code as data because you pass code (logic, functionality, or 
behavior) encapsulated in lambda expressions to methods as if it were data.

It is not always possible for the compiler to infer the type of a lambda expression. In some contexts, 
there is no way the compiler can infer the type of a lambda expression; those contexts do not allow the 
use of lambda expressions. Some contexts may allow using lambda expressions, but the use itself may be 
ambiguous to the compiler; one such case is passing lambda expressions to overloaded methods.

Consider the code for the LambdaUtil2 class shown in Listing 5-7. The code for this class is the same as 
for the LambdaUtil class in Listing 5-5, except that this class changed the names of the two methods to the 
same name, test(), making it an overloaded method.

Listing 5-7. A LambdaUtil2 Class That Uses Functional Interfaces as an Argument in Methods

// LambdaUtil2.java
package com.jdojo.lambda;

public class LambdaUtil2 {
    public void test(Adder adder) {
        double x = 190.90;
        double y = 8.50;
        double sum = adder.add(x, y);        
        System.out.print("Using an Adder:");
        System.out.println(x + " + " + y + " = " + sum);
    }

    public void test(Joiner joiner) {
        String s1 = "Hello";
        String s2 = "World";
        String s3 = joiner.join(s1,s2);        
        System.out.print("Using a Joiner:");
        System.out.println("\"" + s1 + "\" + \"" + s2 + "\" = \"" + s3 + "\"");
    }
}

Consider the following snippet of code:

LambdaUtil2 util = new LambdaUtil2();
util.test((x, y) -> x + y); // A compile-time error

The second statement results in the following compile-time error:

Reference to test is ambiguous. Both method test(Adder) in LambdaUtil2 and method 
test(Joiner) in LambdaUtil2 match.



Chapter 5 ■ Lambda expressions

182

The call to the test() method fails because the lambda expression is implicit and it matches both 
versions of the test() method. The compiler does not know which method to use: test(Adder adder) 
or test(Joiner joiner). In such circumstances, you need to help the compiler by providing some more 
information. The following are the some of the ways to help the compiler resolve the ambiguity:

•	 If the lambda expression is implicit, make it explicit by specifying the type of the 
parameters.

•	 Use a cast.

•	 Do not use the lambda expression directly as the method argument. First, assign it to 
a variable of the desired type, and then pass the variable to the method.

Let’s discuss all three ways to resolve the compile-time error. The following snippet of code changes the 
lambda expression to an explicit lambda expression:

LambdaUtil2 util = new LambdaUtil2();
util.test((double x, double y) -> x + y); // OK. Will call test(Adder adder)

Specifying the type of parameters in the lambda expression resolved the issue. The compiler has two 
candidate methods: test(Adder adder) and test(Joiner joiner). With the (double x, double y) 
parameter information, only the test(Adder adder) method matches.

The following snippet of code uses a cast to cast the lambda expression to the type Adder:

LambdaUtil2 util = new LambdaUtil2();        
util.test((Adder)(x, y) -> x + y); // OK. Will call test(Adder adder)

Using a cast tells the compiler that the type of the lambda expression is Adder, and therefore, helps it 
choose the test(Adder adder) method.

Consider the following snippet of code that breaks down the method call into two statements:

LambdaUtil2 util = new LambdaUtil2();
Adder adder = (x, y) -> x + y;
util.test(adder); // OK. Will call test(Adder adder)

The lambda expression is assigned to a variable of type Adder and the variable is passed to the test() 
method. Again, it helps the compiler choose the test(Adder adder) method based on the compile-time 
type of the adder variable.

The program in Listing 5-8 is similar to the one shown in Listing 5-6, except that it uses the LambdaUtil2 
class. It uses explicit lambda expressions and a cast to resolve the ambiguous matches for lambda 
expressions.

Listing 5-8. Resolving Ambiguity During Target Typing

// LambdaUtil2Test.java
package com.jdojo.lambda;

public class LambdaUtil2Test {
    public static void main(String[] args) {
        LambdaUtil2 util = new LambdaUtil2();

        // Calls the testAdder() method        
        util.test((double x, double y) -> x + y);



Chapter 5 ■ Lambda expressions

183

        // Calls the testJoiner() method
        util.test((String x, String y) -> x + y);

        // Calls the testJoiner() method. The Joiner will add a space between the two strings
        util.test((Joiner) (x, y) -> x + " " + y);

        // Calls the testJoiner() method. The Joiner will reverse the strings and join
        // resulting strings in reverse order adding a comma in between
        util.test((Joiner) (x, y) -> {
            StringBuilder sbx = new StringBuilder(x);
            StringBuilder sby = new StringBuilder(y);

            sby.reverse().append(",").append(sbx.reverse());

            return sby.toString();
        });
    }
}

Using an Adder:190.9 + 8.5 = 199.4
Using a Joiner:"Hello" + "World" = "HelloWorld"
Using a Joiner:"Hello" + "World" = "Hello World"
Using a Joiner:"Hello" + "World" = "dlroW,olleH"

Lambda expressions can be used only in the following contexts:

•	 Assignment context: A lambda expression may appear to the right side of the 
assignment operator in an assignment statement. For example

ReferenceType variable1 = LambdaExpression;

•	 Method invocation context: A lambda expression may appear as an argument to a 
method or constructor call. For example

util.testJoiner(LambdaExpression);

•	 Return context: A lambda expression may appear in a return statement inside a 
method, as its target type is the declared return type of the method. For example

return LambdaExpression;

•	 Cast context: A lambda expression may be used if it is preceded by a cast. The type 
specified in the cast is its target type. For example

(Joiner) LambdaExpression;



Chapter 5 ■ Lambda expressions

184

Functional Interfaces
A functional interface is simply an interface that has exactly one abstract method. The following types of 
methods in an interface do not count for defining a functional interface:

•	 Default methods

•	 static methods

•	 Public methods inherited from the Object class

Note that an interface may have more than one abstract method, and can still be a functional interface 
if all but one of them is a redeclaration of the methods in the Object class. Consider the declaration of the 
Comparator class that is in the java.util package, as shown:

package java.util;

@FunctionalInterface
public interface Comparator<T> {
    // An abstract method declared in the interface
    int compare(T o1, T o2);    

    // Re-declaration of the equals() method in the Object class
    boolean equals(Object obj);

    // Many more static and default methods that are not shown here.
}

The Comparator interface contains two abstract methods: compare() and equals(). The equals() 
method in the Comparator interface is a re-declaration of the equals() method of the Object class, and 
therefore it does not count against the one abstract method requirement for it to be a functional interface. 
The Comparator interface contains several default and static methods that are not shown here.

A lambda expression is used to represent an unnamed function as used in functional programming.  
A functional interface represents one type of functionality/operation in terms of its lone abstract method. 
This commonality is the reason why the target type of a lambda expression is always a functional interface.

Using the @FunctionalInterface Annotation
The declaration of a functional interface may optionally be annotated with the annotation  
@FunctionalInterface, which is in the java.lang package. So far, all functional interfaces declared in this 
chapter, such as Adder and Joiner, have been annotated with @FunctionalInterface. The presence of this 
annotation tells the compiler to make sure that the declared type is a functional interface. If the annotation 
@FunctionalInterface is used on a non-functional interface or other types such as classes, a compile-time 
error occurs. If you do not use the annotation @FunctionalInterface on an interface with one abstract 
method, the interface is still a functional interface and it can be the target type for lambda expressions. 
Using this annotation gives you an additional assurance from the compiler. The presence of the annotation 
also protects you from inadvertently changing a functional interface into a non-functional interface, as the 
compiler will catch it.



Chapter 5 ■ Lambda expressions

185

The following declaration for an Operations interface will not compile, as the interface declaration uses 
the @FunctionalInterface annotation and it is not a functional interface (defines two abstract methods):

@FunctionalInterface
public interface Operations {
    double add(double n1, double n2);
    double subtract(double n1, double n2);
}

To compile the Operations interface, either remove one of the two abstract methods or remove  
the @FunctionalInterface annotation. The following declaration for a Test class will not compile, as  
@FunctionalInterface cannot be used on a type other than a functional interface:

@FunctionalInterface
public class Test {
    // Code goes here
}

Generic Functional Interface
A functional interface can have type parameters. That is, a functional interface can be generic. An example of 
a generic functional parameter is the Comparator interface with one type parameter T.

@FunctionalInterface
public interface Comparator<T> {
    int compare(T o1, T o2);    
}

A functional interface may have a generic abstract method. That is, the abstract method may declare 
type parameters. The following is an example of a non-generic functional interface called Processor whose 
abstract method process() is generic:

@FunctionalInterface
public interface Processor {
    <T> void process(T[] list);    
}

A lambda expression cannot declare type parameters, and therefore, it cannot have a target type whose 
abstract method is generic. For example, you cannot represent the Processor interface using a lambda 
expression. In such cases, you need to use a method reference, which I discuss in the next section, or an 
anonymous class.

Let’s look at a short example of a generic functional interface and instantiate it using lambda 
expressions. Listing 5-9 shows the code for a functional interface named Mapper.

Listing 5-9. A Mapper Functional Interface

// Mapper.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Mapper<T> {



Chapter 5 ■ Lambda expressions

186

    // An abstract method
    int map(T source);

    // A generic static method
    public static <U> int[] mapToInt(U[] list, Mapper<? super U> mapper) {
        int[] mappedValues = new int[list.length];

        for (int i = 0; i < list.length; i++) {
            // Map the object to an int
            mappedValues[i] = mapper.map(list[i]);
        }

        return mappedValues;
    }
}

Mapper is a generic functional interface with a type parameter T. Its abstract method map() takes an 
object of type T as a parameter and returns an int. The mapToInt() method is a generic static method that 
accepts an array of type U and a Mapper of a type that is U itself or a supertype of U. The method returns an int 
array whose elements contain the mapped value for the corresponding elements passed as an array.

The program in Listing 5-10 shows how to use lambda expressions to instantiate the Mapper<T> 
interface. The program maps a String array and an Integer array to int arrays.

Listing 5-10. Using the Mapper Functional Interface

// MapperTest.java
package com.jdojo.lambda;

public class MapperTest {
    public static void main(String[] args) {
        // Map names using their length
        System.out.println("Mapping names to their lengths:");
        String[] names = {"David", "Li", "Doug"};
        int[] lengthMapping = Mapper.mapToInt(names, (String name) -> name.length());
        printMapping(names, lengthMapping);

        System.out.println("\nMapping integers to their squares:");
        Integer[] numbers = {7, 3, 67};
        int[] countMapping = Mapper.mapToInt(numbers, (Integer n) -> n * n);
        printMapping(numbers, countMapping);
    }

    public static void printMapping(Object[] from, int[] to) {
        for (int i = 0; i < from.length; i++) {
            System.out.println(from[i] + " mapped to " + to[i]);
        }
    }
}



Chapter 5 ■ Lambda expressions

187

Mapping names to their lengths:
David mapped to 5
Li mapped to 2
Doug mapped to 4

Mapping integers to their squares:
7 mapped to 49
3 mapped to 9
67 mapped to 4489

Intersection Type and Lambda Expressions
Java 8 introduced a new type called an intersection type that is an intersection (or subtype) of multiple types. 
An intersection type may appear as the target type in a cast. An ampersand (&) is used between two types, 
such as (Type1 & Type2 & Type3), and it represents a new type that is an intersection of Type1, Type2, and 
Type3. Consider a marker interface called Sensitive, shown in Listing 5-11.

Listing 5-11. A Marker Interface Named Sensitive

// Sensitive.java
package com.jdojo.lambda;

public interface Sensitive {
    // It is a marker interface. So, no methods exist.
}

Suppose you have a lambda expression assigned to a variable of the Sensitive type.

Sensitive sen = (x, y) -> x + y; // A compile-time error

This statement does not compile. The target type of a lambda expression must be a functional interface; 
Sensitive is not a functional interface. However, you should be able to make such an assignment, as a 
marker interface does not contain any methods. In such cases, you need to use a cast with an intersection 
type that creates a new synthetic type that is a subtype of all types. The following statement will compile:

Sensitive sen = (Sensitive & Adder) (x, y) -> x + y; // OK

The intersection type Sensitive & Adder is still a functional interface, and therefore, the target type of 
the lambda expression is a functional interface with one method from the Adder interface.

In Java, you can convert an object to a stream of bytes and restore the object back later. This is called 
serialization. A class must implement the java.io.Serializable marker interface for its objects to be 
serialized. If you want a lambda expression to be serialized, you will need to use a cast with an intersection 
type. The following statement assigns a lambda expression to a variable of the Serializable interface:

Serializable ser = (Serializable & Adder) (x, y) -> x + y;

 ■ Tip  i cover the Serializable interface and the serialization of objects in Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-3348-1_7


Chapter 5 ■ Lambda expressions

188

Commonly Used Functional Interfaces
Java 8 has added many frequently used functional interfaces in the java.util.function package . They are 
listed in Table 5-2.

Table 5-2. Functional Interfaces Declared in the java.util.function Package

Interface Name Method Description

Function<T,R> R apply(T t) Represents a function that takes an argument of type T 
and returns a result of type R.

BiFunction<T,U,R> R apply(T t, U u) Represents a function that takes two arguments of 
types T and U and returns a result of type R.

Predicate<T> boolean test(T t) In mathematics, a predicate is a boolean-valued 
function that takes an argument and returns true 
or false. The function represents a condition that 
returns true or false for the specified argument.

BiPredicate<T,U> boolean test(T t, U u) Represents a predicate with two arguments.

Consumer<T> void accept(T t) Represents an operation that takes an argument, 
operates on it to produce some side effects, and 
returns no result.

BiConsumer<T,U> void accept(T t, U u) Represents an operation that takes two arguments, 
operates on them to produce some side effects, and 
returns no result.

Supplier<T> T get() Represents a supplier that returns a value.

UnaryOperator<T> T apply(T t) Inherits from Function<T,T>. Represents a function that 
takes an argument and returns a result of the same type.

BinaryOperator<T> T apply(T t1, T t2) Inherits from BiFunction<T,T,T>. Represents a 
function that takes two arguments of the same type 
and returns a result of the same.

shows only the generic versions of the functional interfaces. Several specialized versions of these interfaces 
exist. They have been specialized for frequently used primitive data types; for example, IntConsumer is a 
specialized version of Consumer<T>. Some interfaces in the table contain convenience default and static 
methods. The table lists only the abstract method, not the default and static methods.

Using the Function<T,R> Interface
Six specializations of the Function<T,R> interface exist:

•	 IntFunction<R>

•	 LongFunction<R>

•	 DoubleFunction<R>

•	 ToIntFunction<T>

•	 ToLongFunction<T>

•	 ToDoubleFunction<T>



Chapter 5 ■ Lambda expressions

189

IntFunction<R>, LongFunction<R>, and DoubleFunction<R> take an int, a long, and a double as 
an argument, respectively, and return a value of type R. ToIntFunction<T>, ToLongFunction<T>, and 
ToDoubleFunction<T> take an argument of type T and return an int, a long, and a double, respectively. 
Similar specialized functions exist for other types of generic functions listed in the table.

 ■ Tip  Your com.jdojo.lambda.Mapper<T> interface represents the same function type as 
ToIntFunction<T> in the java.util.function package. You created the Mapper<T> interface to learn how 
to create and use a generic functional interface. From now on, look at the built-in functional interfaces before 
creating your own; use them if they meet your needs.

The following snippet of code shows how to use the same lambda expression to represent a function 
that accepts an int and returns its square, using four variants of the Function<T, R> function type:

// Takes an int and returns its square
Function<Integer, Integer> square1 = x -> x * x;
IntFunction<Integer> square2 = x -> x * x;
ToIntFunction<Integer> square3 = x -> x * x;
UnaryOperator<Integer> square4 = x -> x * x;

System.out.println(square1.apply(5));
System.out.println(square2.apply(5));
System.out.println(square3.applyAsInt(5));
System.out.println(square4.apply(5));

25
25
25
25

The Function interface contains the following default and static methods:

•	 default <V> Function<T,V> andThen(Function<? super R,? extends V> after)

•	 default <V> Function<V,R> compose(Function<? super V,? extends T> 
before)

•	 static <T> Function<T,T> identity()

The andThen() method returns a composed Function that applies this function to the argument, and 
then applies the specified after function to the result. The compose() function returns a composed function 
that applies the specified before function to the argument, and then applies this function to the result. The 
identify() method returns a function that always returns its argument.

The following snippet of code demonstrates how to use default and static methods of the Function 
interface to compose new functions:

// Create two functions
Function<Long, Long> square = x -> x * x;
Function<Long, Long> addOne = x -> x + 1;        



Chapter 5 ■ Lambda expressions

190

// Compose functions from the two functions
Function<Long, Long> squareAddOne = square.andThen(addOne);
Function<Long, Long> addOneSquare = square.compose(addOne);

// Get an identity function
Function<Long, Long> identity = Function.<Long>identity();

// Test the functions
long num = 5L;
System.out.println("Number: " + num);
System.out.println("Square and then add one: " + squareAddOne.apply(num));
System.out.println("Add one and then square: " + addOneSquare.apply(num));
System.out.println("Identity: " + identity.apply(num));

Number: 5
Square and then add one: 26
Add one and then square: 36
Identity: 5

You are not limited to composing a function that consists of two functions that are executed in a specific 
order. A function may be composed of as many functions as you want. You can chain lambda expressions 
to create a composed function in one expression. Note that when you chain lambda expressions, you may 
need to provide hints to the compiler to resolve the target type ambiguity that may arise. The following is 
an example of a composed function by chaining three functions. A cast is provided to help the compiler. 
Without the cast, the compiler will not be able to infer the target type.

// Square the input, add one to the result, and square the result
Function<Long, Long> chainedFunction = ((Function<Long, Long>)(x -> x * x))
                        .andThen(x -> x + 1)
                        .andThen(x -> x * x);
System.out.println(chainedFunction.apply(3L));

100

Using the Predicate<T> Interface
A predicate represents a condition that is either true or false for a given input. The Predicate interface 
contains the following default and static methods that let you compose a predicate based on other 
predicates using logical NOT, AND, and OR.

•	 default Predicate<T> negate()

•	 default Predicate<T> and(Predicate<? super T> other)

•	 default Predicate<T> or(Predicate<? super T> other)

•	 static <T> Predicate<T> isEqual(Object targetRef)

The negate() method returns a Predicate that is a logical negation of the original predicate. The and() 
method returns a short-circuiting logical AND predicate of this predicate and the specified predicate. The 
or() method returns a short-circuiting logical OR predicate of this predicate and the specified predicate. 
The isEqual() method returns a predicate that tests if the specified targetRef is equal to the specified 



Chapter 5 ■ Lambda expressions

191

argument for the predicate according to Objects.equals(Object o1, Object o2); if two inputs are null, 
this predicate evaluates to true. You can chain the calls to these methods to create complex predicates. The 
following snippet of code shows some examples of creating and using predicates:

// Create some predicates
Predicate<Integer> greaterThanTen = x -> x > 10;
Predicate<Integer> divisibleByThree = x -> x % 3 == 0;
Predicate<Integer> divisibleByFive = x -> x % 5 == 0;
Predicate<Integer> equalToTen = Predicate.isEqual(null);

// Create predicates using NOT, AND, and OR on other predicates
Predicate<Integer> lessThanOrEqualToTen = greaterThanTen.negate();
Predicate<Integer> divisibleByThreeAndFive = divisibleByThree.and(divisibleByFive);
Predicate<Integer> divisibleByThreeOrFive = divisibleByThree.or(divisibleByFive);

// Test the predicates
int num = 10;
System.out.println("Number: " + num);
System.out.println("greaterThanTen: " + greaterThanTen.test(num));
System.out.println("divisibleByThree: " + divisibleByThree.test(num));
System.out.println("divisibleByFive: " + divisibleByFive.test(num));
System.out.println("lessThanOrEqualToTen: " + lessThanOrEqualToTen.test(num));
System.out.println("divisibleByThreeAndFive: " + divisibleByThreeAndFive.test(num));
System.out.println("divisibleByThreeOrFive: " + divisibleByThreeOrFive.test(num));
System.out.println("equalsToTen: " + equalToTen.test(num));

Number: 10
greaterThanTen: false
divisibleByThree: false
divisibleByFive: true
lessThanOrEqualToTen: true
divisibleByThreeAndFive: false
divisibleByThreeOrFive: true
equalsToTen: false

Using Functional Interfaces
Functional interfaces are used in two contexts by two different types of users:

•	 By library designers for designing APIs

•	 By library users for using the APIs

Functional interfaces are used to design APIs by library designers. They are used to declare a 
parameter’s type and return type in method declarations. They are used the same way non-functional 
interfaces are used. Functional interfaces existed in Java since the beginning, and Java 8 has not changed the 
way they are used in designing the APIs.

In Java 8, library users use functional interfaces as target types for lambda expressions. That is, when 
a method in the API takes a functional interface as an argument, the user of the API should use a lambda 
expression to pass the argument. Using lambda expressions has the benefit of making the code concise and 
more readable.



Chapter 5 ■ Lambda expressions

192

In this section, I show you how to design APIs using functional interfaces and how to use lambda 
expressions to use the APIs. Functional interfaces have been used heavily in designing the Java library for the 
Collections and Streams APIs that I cover in Chapters 12 and 13.

I use one enum and two classes in subsequent examples. The Gender enum, shown in Listing 5-12, 
contains two constants to represent the gender of a person. The Person class, shown in Listing 5-13, 
represents a person; it contains, apart from other methods, a getPersons() method that returns a list of 
persons.

Listing 5-12. A Gender enum

// Gender.java
package com.jdojo.lambda;

public enum Gender {
    MALE, FEMALE
}

Listing 5-13. A Person Class

// Person.java
package com.jdojo.lambda;

import java.time.LocalDate;
import java.util.ArrayList;
import java.util.List;
import static com.jdojo.lambda.Gender.MALE;
import static com.jdojo.lambda.Gender.FEMALE;

public class Person {
    private String firstName;
    private String lastName;
    private LocalDate dob;
    private Gender gender;

    public Person(String firstName, String lastName, LocalDate dob, Gender gender) {
        this.firstName = firstName;
        this.lastName = lastName;
        this.dob = dob;
        this.gender = gender;
    }

    public String getFirstName() {
        return firstName;
    }

    public void setFirstName(String firstName) {
        this.firstName = firstName;
    }

    public String getLastName() {
        return lastName;
    }

http://dx.doi.org/10.1007/978-1-4842-3348-1_12
http://dx.doi.org/10.1007/978-1-4842-3348-1_13


Chapter 5 ■ Lambda expressions

193

    public void setLastName(String lastName) {
        this.lastName = lastName;
    }

    public LocalDate getDob() {
        return dob;
    }

    public void setDob(LocalDate dob) {
        this.dob = dob;
    }

    public Gender getGender() {
        return gender;
    }

    public void setGender(Gender gender) {
        this.gender = gender;
    }

    @Override
    public String toString() {
        return firstName + " " + lastName + ", " + gender + ", " + dob;
    }

    // A convenience method
    public static List<Person> getPersons() {
        ArrayList<Person> list = new ArrayList<>();
        list.add(new Person("John", "Jacobs", LocalDate.of(1975, 1, 20), MALE));
        list.add(new Person("Wally", "Inman", LocalDate.of(1965, 9, 12), MALE));
        list.add(new Person("Donna", "Jacobs", LocalDate.of(1970, 9, 12), FEMALE));

        return list;
    }
}

The FunctionUtil class in Listing 5-14 is a utility class. Its methods apply a function on a List. List 
is an interface that is implemented by the ArrayList class. The forEach() method applies an action on 
each item in the list, typically producing side effects; the action is represented by a Consumer. The filter() 
method filters a list based on a specified Predicate. The map() method maps each item in the list to a value 
using a Function. As a library designer, you will design these methods using functional interfaces. Note that 
the FunctionUtil class contains no mention of lambda expressions. You could have designed this class the 
same way even before Java 8.

Listing 5-14. A FunctionUtil Class

// FunctionUtil.java
package com.jdojo.lambda;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Consumer;



Chapter 5 ■ Lambda expressions

194

import java.util.function.Function;
import java.util.function.Predicate;

public class FunctionUtil {
    // Applies an action on each item in a list
    public static <T> void forEach(List<T> list, Consumer<? super T> action) {
        for (T item : list) {
            action.accept(item);
        }
    }

    // Applies a filter to a list and returns the filtered list items
    public static <T> List<T> filter(List<T> list, Predicate<? super T> predicate) {
        List<T> filteredList = new ArrayList<>();
        for (T item : list) {
            if (predicate.test(item)) {
                filteredList.add(item);
            }
        }

        return filteredList;
    }

    // Maps each item in a list to a value
    public static <T, R> List<R> map(List<T> list, Function<? super T, R> mapper) {
        List<R> mappedList = new ArrayList<>();
        for (T item : list) {
            mappedList.add(mapper.apply(item));

        }

        return mappedList;
    }
}

You will now use the FunctionUtil class as a library user and use the functional interfaces as target 
types of lambda expressions. Listing 5-15 shows how to use the FunctionUtil class.

Listing 5-15. Using Functional Interfaces as Target Types of Lambda Expressions as Library Users

// FunctionUtilTest.java
package com.jdojo.lambda;

import static com.jdojo.lambda.Gender.MALE;
import java.util.List;

public class FunctionUtilTest {
    public static void main(String[] args) {
        List<Person> list = Person.getPersons();

        // Use the forEach() method to print each person in the list
        System.out.println("Original list of persons:");
        FunctionUtil.forEach(list, p -> System.out.println(p));



Chapter 5 ■ Lambda expressions

195

        // Filter only males
        List<Person> maleList = FunctionUtil.filter(list, p -> p.getGender() == MALE);

        System.out.println("\nMales only:");
        FunctionUtil.forEach(maleList, p -> System.out.println(p));

        // Map each person to his/her year of birth
        List<Integer> dobYearList = FunctionUtil.map(list, p -> p.getDob().getYear());

        System.out.println("\nPersons mapped to year of their birth:");
        FunctionUtil.forEach(dobYearList, year -> System.out.println(year));

        // Apply an action to each person in the list. Add one year to each male's dob
        FunctionUtil.forEach(maleList, p -> p.setDob(p.getDob().plusYears(1)));

        System.out.println("\nMales only after adding 1 year to DOB:");
        FunctionUtil.forEach(maleList, p -> System.out.println(p));
    }
}

Original list of persons:
John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12

Males only:
John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12

Persons mapped to year of their birth:
1975
1965
1970

Males only after adding 1 year to DOB:
John Jacobs, MALE, 1976-01-20
Wally Inman, MALE, 1966-09-12

The program gets a list of persons, applies a filter to the list to get a list of only males, maps persons to 
the year of their birth, and adds one year to each male’s date of birth. It performs each of these actions using 
lambda expressions. Note the conciseness of the code; it uses only one line of code to perform each action. 
Most notable is the use of the forEach() method. This method takes a Consumer function. Then each item is 
passed to this function. The function can take any action on the item. You passed a Consumer that prints the 
item on the standard output as shown:

FunctionUtil.forEach(list, p -> System.out.println(p));

Typically, a Consumer applies an action on the item it receives to produce side effects. In this case, it 
simply prints the item, without producing any side effects.



Chapter 5 ■ Lambda expressions

196

Method References
A lambda expression represents an anonymous function that is treated as an instance of a functional 
interface. A method reference is a shorthand way to create a lambda expression using an existing method. 
Using method references makes your lambda expressions more readable and concise; it also lets you use the 
existing methods as lambda expressions. If a lambda expression contains a body that is an expression using 
a method call, you can use a method reference in place of that lambda expression.

 ■ Tip  a method reference is not a new type in Java. it is not a function pointer as used in some other 
programming languages. it is simply shorthand for writing a lambda expression using an existing method. it can 
only be used where a lambda expression can be used.

Let’s consider an example before I explain the syntax for method references. Consider the following 
snippet of code:

import java.util.function.ToIntFunction;
...
ToIntFunction<String> lengthFunction = str -> str.length();
String name = "Ellen";
int len = lengthFunction.applyAsInt(name);
System.out.println("Name = " + name + ", length = " + len);

Name = Ellen, length = 5

The code uses a lambda expression to define an anonymous function that takes a String as an 
argument and returns its length. The body of the lambda expression consists of only one method call that is 
the length() method of the String class. You can rewrite the lambda expression using a method reference 
to the length() method of the String class, as shown:

import java.util.function.ToIntFunction;
...
ToIntFunction<String> lengthFunction = String::length;
String name = "Ellen";
int len = lengthFunction.applyAsInt(name);
System.out.println("Name = " + name + ", length = " + len);

Name = Ellen, length = 5

The general syntax for a method reference is

<Qualifier>::<MethodName>

The <Qualifier> depends on the type of the method reference. Two consecutive colons act 
as a separator. The <MethodName> is the name of the method. For example, in the method reference 
String::length, String is the qualifier and length is the method name.



Chapter 5 ■ Lambda expressions

197

 ■ Tip  a method reference does not call the method when it is declared. the method is called later when the 
method of its target type is called.

The syntax for method references allows specifying only the method name. You cannot specify the 
parameter types and return type of the method. Recall that a method reference is shorthand for a lambda 
expression. The target type, which is always a functional interface, determines the method’s details. If the 
method is an overloaded method, the compiler will choose the most specific method based on the context. 
See Table 5-3.

Table 5-3. Types of Method References

Syntax Description

TypeName::staticMethod A method reference to a static method of a class, an interface, or 
an enum

objectRef::instanceMethod A method reference to an instance method of the specified object

ClassName::instanceMethod A method reference to an instance method of an arbitrary object 
of the specified class

TypeName.super::instanceMethod A method reference to an instance method of the supertype of a 
particular object

ClassName::new A constructor reference to the constructor of the specified class

ArrayTypeName::new An array constructor reference to the constructor of the specified 
array type

Using method references may be a little confusing in the beginning. The main point of confusion is the 
process of mapping the number and type of arguments in the actual method to the method reference. To 
help understand the syntax, I use a method reference and its equivalent lambda expression in all examples.

static Method References
A static method reference uses a static method of a type as a lambda expression. The type could be a class, 
an interface, or an enum. Consider the following static method of the Integer class:

static String toBinaryString(int i)

The toBinaryString() method represents a function that takes an int as an argument and returns a 
String. You can use it in a lambda expression as shown:

// Using a lambda expression
Function<Integer,String> func1 = x -> Integer.toBinaryString(x);
System.out.println(func1.apply(17));

10001



Chapter 5 ■ Lambda expressions

198

The compiler infers the type of x as Integer and the return type of the lambda expression as String, 
by using the target type Function<Integer,String>. You can rewrite this statement using a static method 
reference, as shown:

// Using a method reference
Function<Integer, String> func2 = Integer::toBinaryString;
System.out.println(func2.apply(17));

10001

The compiler finds a static method reference to the toBinaryString() method of the Integer class on 
the right side of the assignment operator. The toBinaryString() method takes an int as an argument and 
returns a String. The target type of the method reference is a function that takes an Integer as an argument 
and returns a String. The compiler verifies that after unboxing the Integer argument type of the target type 
to int, the method reference and target type are assignment compatible.

Consider another static method sum() in the Integer class:

static int sum(int a, int b)

The method reference would be Integer::sum. Let’s use it in the same way you used the 
toBinaryString() method in the previous example.

Function<Integer,Integer> func2 = Integer::sum; // A compile-time error

Error: incompatible types: invalid method reference
        Function<Integer, Integer> func2 = Integer::sum;
method sum in class Integer cannot be applied to given types
required: int,int
found: Integer
reason: actual and formal argument lists differ in length

The error message is stating that the method reference Integer::sum is not assignment compatible 
with the target type Function<Integer,Integer>. The sum(int, int) method takes two int arguments, 
whereas the target type takes only one Integer argument. The mismatch in the number of arguments 
caused the compile-time error.

To fix the error, the target type of the method reference Integer::sum should be a functional interface 
whose abstract method takes two int arguments and returns an int. Using a BiFunction<Integer,Integer, 
Integer> as the target type will work. The following snippet of code shows how to use a method reference 
Integer::sum as well as the equivalent lambda expression:

// Uses a lambda expression
BiFunction<Integer,Integer,Integer> func1 = (x, y) -> Integer.sum(x, y);
System.out.println(func1.apply(17, 15));

// Uses a method reference
BiFunction<Integer,Integer,Integer> func2 = Integer::sum;
System.out.println(func2.apply(17, 15));

32
32



Chapter 5 ■ Lambda expressions

199

Let’s try using a method reference of the overloaded static method valueOf() of the Integer class. The 
method has three versions:

•	 static Integer valueOf(int i)

•	 static Integer valueOf(String s)

•	 static Integer valueOf(String s, int radix)

The following snippet of code shows how different target types will use the three different versions of 
the Integer.valueOf() static method. It is left as an exercise for readers to write the following snippet of 
code using lambda expressions:

// Uses Integer.valueOf(int)
Function<Integer,Integer> func1 = Integer::valueOf;

// Uses Integer.valueOf(String)
Function<String,Integer> func2 = Integer::valueOf;

// Uses Integer.valueOf(String, int)
BiFunction<String,Integer,Integer> func3 = Integer::valueOf;

System.out.println(func1.apply(17));
System.out.println(func2.apply("17"));
System.out.println(func3.apply("10001", 2));

17
17
17

The following is the last example in this category. The Person class, shown in Listing 5-13, contains a 
getPersons() static method that is declared as follows:

static List<Person> getPersons()

The method takes no argument and returns a List<Person>. A Supplier<T> represents a function that 
takes no arguments and returns a result of type T. The following snippet of code uses the method reference 
Person::getPersons as a Supplier<List<Person>>:

Supplier<List<Person>> supplier = Person::getPersons;        
List<Person> personList = supplier.get();
FunctionUtil.forEach(personList, p -> System.out.println(p));

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12



Chapter 5 ■ Lambda expressions

200

Instance Method References
An instance method is invoked on an object’s reference. The object reference on which an instance method 
is invoked is known as the receiver of the method invocation. The receiver of a method invocation can be an 
object reference or an expression that evaluates to an object’s reference. The following snippet of code shows 
the receiver of the length() instance method of the String class:

String name = "Kannan";

// name is the receiver of the length() method
int len1 = name.length();

// "Hello" is the receiver of the length() method
int len2 = "Hello".length();

// (new String("Kannan")) is the receiver of the length() method
int len3 = (new String("Kannan")).length();

In a method reference of an instance method, you can specify the receiver of the method invocation 
explicitly or you can provide it implicitly when the method is invoked. The former is called a bound receiver and 
the latter is called an unbound receiver. The syntax for an instance method reference supports two variants:

•	 objectRef::instanceMethod

•	 ClassName::instanceMethod

Bound Receiver
For a bound receiver, use the objectRef::instanceMethod syntax. Consider the following snippet of code:

Supplier<Integer> supplier = () -> "Ellen".length();
System.out.println(supplier.get());

5

This statement uses a lambda expression that represents a function that takes no arguments and returns 
an int. The body of the expression uses a String object called "Ellen" to invoke the length() instance 
method of the String class. You can rewrite this statement using an instance method reference with the 
"Ellen" object as the bound receiver and using a Supplier<Integer> as the target type, as shown:

Supplier<Integer> supplier = "Ellen"::length;
System.out.println(supplier.get());

5



Chapter 5 ■ Lambda expressions

201

Consider the following snippet of code to represent a Consumer<String> that takes a String as an 
argument and returns void:

Consumer<String> consumer = str -> System.out.println(str);
consumer.accept("Hello");

Hello

This lambda expression invokes the println() method on the System.out object. This can be rewritten 
using a method reference with System.out as the bound receiver, as shown:

Consumer<String> consumer = System.out::println;
consumer.accept("Hello");

Hello

When the method reference System.out::println is used, the compiler looks at its target type, which 
is Consumer<String>. It represents a function type that takes a String as an argument and returns void. The 
compiler finds a println(String) method in the PrintStream class of the System.out object and uses that 
method for the method reference.

As the last example in this category, you will use the method reference System.out::println to print 
the list of persons, as shown:

List<Person> list = Person.getPersons();
FunctionUtil.forEach(list, System.out::println);

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12

Unbound Receiver
For an unbound receiver, use the ClassName::instanceMethod syntax. Consider the following statement in 
which the lambda expression takes a Person as an argument and returns a String:

Function<Person,String> fNameFunc = (Person p) -> p.getFirstName();

This statement can be rewritten using the instance method reference, as shown:

Function<Person,String> fNameFunc = Person::getFirstName;

In the beginning, this is confusing for two reasons:

•	 The syntax is the same as the syntax for a method reference to a static method.

•	 It raises a question: which object is the receiver of the instance method invocation?

The first confusion can be cleared up by looking at the method name and checking whether it is a static 
or instance method. If the method is an instance method, the method reference represents an instance 
method reference.



Chapter 5 ■ Lambda expressions

202

The second confusion can be cleared up by keeping a rule in mind that the first argument to the 
function represented by the target type is the receiver of the method invocation. Consider an instance 
method reference called String::length that uses an unbound receiver. The receiver is supplied as the first 
argument to the apply() method, as shown:

Function<String,Integer> strLengthFunc = String::length;

String name ="Ellen";

// name is the receiver of String::length
int len = strLengthFunc.apply(name);
System.out.println("name = " + name + ", length = " + len);

name = Ellen, length = 5

The instance method concat() of the String class has the following declaration:

String concat(String str)

The method reference String::concat represents an instance method reference for a target type whose 
function takes two String arguments and returns a String. The first argument will be the receiver of the 
concat() method and the second argument will be passed to the concat() method. The following snippet of 
code shows an example:

String greeting = "Hello";
String name = " Laynie";

// Uses a lambda expression
BiFunction<String,String,String> func1 = (s1, s2) -> s1.concat(s2);
System.out.println(func1.apply(greeting, name));

// Uses an instance method reference on an unbound receiver
BiFunction<String,String,String> func2 = String::concat;
System.out.println(func2.apply(greeting, name));

Hello Laynie
Hello Laynie

As the last example in this category, you will use the method reference Person::getFirstName that is an 
instance method reference on an unbound receiver, as shown:

List<Person> personList = Person.getPersons();

// Maps each Person object to its first name
List<String> firstNameList = FunctionUtil.map(personList, Person::getFirstName);

// Prints the first name list
FunctionUtil.forEach(firstNameList, System.out::println);



Chapter 5 ■ Lambda expressions

203

John
Wally
Donna

Supertype Instance Method References
The keyword super is used as a qualifier to invoke the overridden method in a class or an interface. The 
keyword is available only in an instance context. Use the following syntax to construct a method reference 
that refers to the instance method in the supertype and the method that’s invoked on the current instance:

TypeName.super::instanceMethod

Consider the Priced interface and the Item class in Listing 5-16 and Listing 5-17. The Priced interface 
contains a default method that returns 1.0. The Item class implements the Priced interface. It overrides the 
toString() method of the Object class and the getPrice() method of the Priced interface. I added three 
constructors to the Item class that display a message on the standard output. I use them in examples in the 
next section.

Listing 5-16. A Priced Interface with a Default Method of getPrice()

// Priced.java
package com.jdojo.lambda;

public interface Priced {
    default double getPrice() {
        return 1.0;
    }
}

Listing 5-17. An Item Class That Implements the Priced Interface

// Item.java
package com.jdojo.lambda;

import java.util.function.Supplier;

public class Item implements Priced {
    private String name = "Unknown";
    private double price = 0.0;

    public Item() {
        System.out.println("Constructor Item() called.");
    }

    public Item(String name) {
        this.name = name;
        System.out.println("Constructor Item(String) called.");
    }



Chapter 5 ■ Lambda expressions

204

    public Item(String name, double price) {
        this.name = name;
        this.price = price;
        System.out.println("Constructor Item(String, double) called.");
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public void setPrice(double price) {
        this.price = price;
    }

    @Override
    public double getPrice() {
        return price;
    }

    @Override
    public String toString() {
        return "name = " + getName() + ", price = " + getPrice();
    }

    public void test() {
        // Uses the Item.toString() method
        Supplier<String> s1 = this::toString;

        // Uses the Object.toString() method
        Supplier<String> s2 = Item.super::toString;

        // Uses the Item.getPrice() method
        Supplier<Double> s3 = this::getPrice;

        // Uses the Priced.getPrice() method
        Supplier<Double> s4 = Priced.super::getPrice;

        // Uses all method references and prints the results
        System.out.println("this::toString: " + s1.get());
        System.out.println("Item.super::toString: " + s2.get());
        System.out.println("this::getPrice: " + s3.get());
        System.out.println("Priced.super::getPrice: " + s4.get());
    }
}



Chapter 5 ■ Lambda expressions

205

The test() method in the Item class uses four method references with a bound receiver. The receiver is 
the Item object on which the test() method is called.

•	 The method reference this::toString refers to the toString() method of the Item 
class.

•	 The method reference Item.super::toString refers to the toString() method of 
the Object class, which is the superclass of the Item class.

•	 The method reference this::getPrice refers to the getPrice() method of the Item 
class.

•	 The method reference Priced.super::getPrice refers to the getPrice() method of 
the Priced interface, which is the superinterface of the Item class.

The program in Listing 5-18 creates an object of the Item class and calls its test() method. The output 
shows the method being used by the four method references.

Listing 5-18. Testing the Item Class

// ItemTest.java
package com.jdojo.lambda;

public class ItemTest {
    public static void main(String[] args) {
        Item apple = new Item("Apple", 0.75);
        apple.test();
    }
}

Constructor Item(String, double) called.
this::toString: name = Apple, price = 0.75
Item.super::toString: com.jdojo.lambda.Item@24d46ca6
this::getPrice: 0.75
Priced.super::getPrice: 1.0

Constructor References
Sometimes the body of a lambda expression may be just an object creation expression. Consider the 
following two statements that use a String object creation expression as the body for lambda expressions:

Supplier<String> func1 = () -> new String();
Function<String,String> func2 = str -> new String(str);

You can rewrite these statements by replacing the lambda expressions with constructor references  
as shown:

Supplier<String> func1 = String::new;
Function<String,String> func2 = String::new;



Chapter 5 ■ Lambda expressions

206

The syntax for using a constructor is as follows:

•	 ClassName::new

•	 ArrayTypeName::new

The ClassName in ClassName::new is the name of the class that can be instantiated; it cannot be the 
name of an abstract class. The keyword new refers to the constructor of the class. A class may have multiple 
constructors. The syntax does not provide a way to refer to a specific constructor. The compiler selects a 
specific constructor based on the context. It looks at the target type and the number of arguments in the 
abstract method of the target type. The constructor whose number of arguments matches the number of 
arguments in the abstract method of the target type is chosen. Consider the following snippet of code that 
uses three constructors of the Item class, shown in Listing 5-17, in lambda expressions:

Supplier<Item> func1 = () -> new Item();
Function<String,Item> func2 = name -> new Item(name);
BiFunction<String,Double,Item> func3 = (name, price) -> new Item(name, price);

System.out.println(func1.get());
System.out.println(func2.apply("Apple"));
System.out.println(func3.apply("Apple", 0.75));

Constructor Item() called.
name = Unknown, price = 0.0
Constructor Item(String) called.
name = Apple, price = 0.0
Constructor Item(String, double) called.
name = Apple, price = 0.75

The following snippet of code replaces the lambda expressions with a constructor reference Item::new. 
The output shows the same constructors as before.

Supplier<Item> func1 = Item::new;
Function<String,Item> func2 = Item::new;
BiFunction<String,Double,Item> func3 = Item::new;

System.out.println(func1.get());
System.out.println(func2.apply("Apple"));
System.out.println(func3.apply("Apple", 0.75));

Constructor Item() called.
name = Unknown, price = 0.0
Constructor Item(String) called.
name = Apple, price = 0.0
Constructor Item(String, double) called.
name = Apple, price = 0.75



Chapter 5 ■ Lambda expressions

207

When the statement

Supplier<Item> func1 = Item::new;

is executed, the compiler finds that the target type Supplier<Item> does not accept an argument. Therefore, 
it uses the no-args constructor of the Item class.

When the statement

Function<String,Item> func2 = Item::new;

is executed, the compiler finds that the target type Function<String,Item> takes a String argument. 
Therefore, it uses the constructor of the Item class that takes a String argument.

When the statement

BiFunction<String,Double,Item> func3 = Item::new;

is executed, the compiler finds that the target type BiFunction<String,Double,Item> takes two arguments: 
a String and a Double. Therefore, it uses the constructor of the Item class that takes a String and a double 
argument.

The following statement generates a compile-time error, as the compiler does not find a constructor in 
the Item class that accepts a Double argument:

Function<Double,Item> func4 = Item::new; // A compile-time error

Arrays in Java do not have constructors. There is special syntax to use constructor references for arrays. 
Array constructors are treated to have one argument of int type that is the size of the array. The following 
snippet of code shows the lambda expression and its equivalent constructor reference for an int array:

// Uses a lambda expression
IntFunction<int[]> arrayCreator1 = size -> new int[size];        
int[] empIds1 = arrayCreator1.apply(5); // Creates an int array of five elements

// Uses an array constructor reference
IntFunction<int[]> arrayCreator2 = int[]::new;        
int[] empIds2 = arrayCreator2.apply(5); // Creates an int array of five elements

You can also use a Function<Integer,R> type to use an array constructor reference, where R is the array 
type.

// Uses an array constructor reference
Function<Integer,int[]> arrayCreator3 = int[]::new;        
int[] empIds3 = arrayCreator3.apply(5); // Creates an int array of five elements

The syntax for the constructor reference for arrays supports creating an array of multiple dimensions. 
However, you can specify the length for only the first dimension. The following statement creates a two-
dimensional int array with the first dimension having the length of 5:

// Uses an array constructor reference
IntFunction<int[][]> TwoDimArrayCreator = int[][]::new;        
int[][] matrix = TwoDimArrayCreator.apply(5); // Creates an int[5][] array



Chapter 5 ■ Lambda expressions

208

You might be tempted to use a BiFunction<Integer,Integer,int[][]> to use a constructor reference 
for a two-dimensional array to supply the length for both dimensions. However, the syntax is not supported. 
Array constructors are supposed to accept only one parameter—the length of the first dimension. The 
following statement generates a compile-time error:

BiFunction<Integer,Integer,int[][]> arrayCreator = int[][]::new;

Generic Method References
Typically, the compiler figures out the actual type for generic type parameters when a method reference 
refers to a generic method. Consider the following generic method in the java.util.Arrays class:

static <T> List<T> asList(T... a)

The asList() method takes a varargs argument of type T and returns a List<T>. You can use 
Arrays::asList as a method reference. The syntax for the method reference allows you to specify the actual 
type parameter for the method just after the two consecutive colons. For example, if you are passing String 
objects to the asList() method, its method reference can be written as Arrays::<String>asList.

 ■ Tip  the syntax for a method reference also supports specifying the actual type parameters for generic 
types. the actual type parameters are specified just before the two consecutive colons. For example, the 
constructor reference ArrayList<Long>::new specifies Long as the actual type parameter for the generic 
ArrayList<T> class.

The following snippet of code contains an example of specifying the actual type parameter for the 
generic method Arrays.asList(). In the code, Arrays::asList will work the same, as the compiler will 
infer String as the type parameter for the asList() method by examining the target type.

import java.util.Arrays;
import java.util.List;
import java.util.function.Function;
...
Function<String[],List<String>> asList = Arrays::<String>asList;

String[] namesArray = {"Jim", "Ken", "Li"};
List<String> namesList = asList.apply(namesArray);
for(String name : namesList) {
    System.out.println(name);
}

Jim
Ken
Li



Chapter 5 ■ Lambda expressions

209

Lexical Scoping
A scope is the part of a Java program within which a name can be used without a qualifier. Classes and 
methods define their own scope. Scopes may be nested. For example, a method scope does not exist 
independently, as a method is always part of another construct, for example a class; an inner class appears 
inside the scope of another class; a local and an anonymous class appear inside the scope of a method.

Even though a lambda expression looks like a method declaration, it does not define a scope of its own. 
It exists in its enclosing scope. This is known as lexical scoping for lambda expressions. For example, when a 
lambda expression is used inside a method, the lambda expression exists in the scope of the method.

The meanings of the keywords this and super are the same inside the lambda expression and its 
enclosing method. Note that this is different from the meanings of these keywords inside a local and 
anonymous inner class in which the keyword this refers to the current instance of the local and anonymous 
inner class, not its enclosing class.

Listing 5-19 contains code for a functional interface named Printer that you will use to print messages 
in the examples in this section.

Listing 5-19. A Printer Functional Interface

// Printer.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Printer {
    void print(String msg);
}

The program in Listing 5-20 creates two instances of the Printer interface: one using a lambda 
expression in the getLambdaPrinter() method and one using an anonymous inner class in the 
getAnonymousPrinter() method. Both instances use the keyword this inside the print() method. Both 
methods print the class name that the keyword this refers to. The output shows that the keyword this 
has the same meaning inside the getLambdaPrinter() method and the lambda expression. However, the 
keyword this has different meanings inside the getAnonymousPrinter() method and the anonymous class.

Listing 5-20. Testing Scope of a Lambda Expression and an Anonymous Class

// ScopeTest.java
package com.jdojo.lambda;

public class ScopeTest {
    public static void main(String[] args) {
        ScopeTest test = new ScopeTest();
        Printer lambdaPrinter = test.getLambdaPrinter();
        lambdaPrinter.print("Lambda Expressions");

        Printer anonymousPrinter = test.getAnonymousPrinter();
        anonymousPrinter.print("Anonymous Class");
    }

    public Printer getLambdaPrinter() {
        System.out.println("getLambdaPrinter(): " + this.getClass());



Chapter 5 ■ Lambda expressions

210

        // Uses a lambda expression
        Printer printer = msg -> {
            // Here, this refers to the current object of the ScopeTest class
            System.out.println(msg + ": " + this.getClass());
        };

        return printer;    
    }

    public Printer getAnonymousPrinter() {
        System.out.println("getAnonymousPrinter(): " + this.getClass());

        // Uses an anonymous class
        Printer printer = new Printer() {
            @Override
            public void print(String msg) {
                // Here, this refers to the current object of the anonymous class
                System.out.println(msg + ": " + this.getClass());
            }
        };

        return printer;
    }
}

getLambdaPrinter(): class com.jdojo.lambda.ScopeTest
Lambda Expressions: class com.jdojo.lambda.ScopeTest
getAnonymousPrinter(): class com.jdojo.lambda.ScopeTest
Anonymous Class: class com.jdojo.lambda.ScopeTest$1

Lexical scoping of a lambda expression means that variables declared in the lambda expression, 
including its parameters, exist in the enclosing scope. Simple names in a scope must be unique. It means 
that a lambda expression cannot redefine variables with the name that already exists in the enclosing scope.

The following code for a lambda expression inside the main() method generates a compile-time error, 
as its parameter name msg is already defined in the main() method’s scope:

public class Test {
    public static void main(String[] args) {
        String msg = "Hello";

        // A compile-time error. The msg variable is already defined and
        // the lambda parameter is attempting to redefine it.
        Printer printer = msg -> System.out.println(msg);        
    }
}



Chapter 5 ■ Lambda expressions

211

The following code generates a compile-time error for the same reason that the local variable named 
msg is in scope inside the body of the lambda expression and the lambda expression is attempting to declare 
a local variable with the same name msg:

public class Test {
    public static void main(String[] args) {
        String msg = "Hello";

        Printer printer = msg1 -> {
            String msg = "Hi"; // A compile-time error
            System.out.println(msg1);
        };        
    }    
}

Variable Capture
Like a local and anonymous inner class, a lambda expression can access effectively final local variables. A 
local variable is effectively final in the following two cases:

•	 It is declared final.

•	 It is not declared final, but initialized only once.

In the following snippet of code, the msg variable is effectively final, as it has been declared final. The 
lambda expression accesses the variable inside its body.

public Printer test() {
    final String msg = "Hello"; // msg is effectively final

    Printer printer = msg1 -> System.out.println(msg + " " + msg1);        
    return printer;
}

In the following snippet of code, the msg variable is effectively final, as it is initialized once. The lambda 
expression accesses the variables inside its body.

public Printer test() {
    String msg = "Hello"; // msg is effectively final

    Printer printer = msg1 -> System.out.println(msg + " " + msg1);        
    return printer;
}

The following snippet of code is a slight variation of the previous example. The msg variable is effectively 
final, as it has been initialized only once.

public Printer test() {        
    String msg;
    msg = "Hello"; // msg is effectively final



Chapter 5 ■ Lambda expressions

212

    Printer printer = msg1 -> System.out.println(msg + " " + msg1);        
    return printer;
}

In the following snippet of code, the msg variable is not effectively final, as it is assigned a value twice. 
The lambda expression is accessing the msg variable that generates a compile-time error.

public Printer test() {
    // msg is not effectively final as it is changed later
    String msg = "Hello";

    // A compile-time error
    Printer printer = msg1 -> System.out.println(msg + " " + msg1);        

    msg = "Hi"; // msg is changed making it effectively non-final

    return printer;
}

The following snippet of code generates a compile-time error because the lambda expression accesses 
the msg variable that is declared lexically after its use. In Java, forward referencing of variable names in 
method’s scope is not allowed. Note that the msg variable is effectively final.

public Printer test() {
    // A compile-time error. The msg variable is not declared yet.
    Printer printer = msg1 -> System.out.println(msg + " " + msg1);

    String msg = "Hello";  // msg is effectively final

    return printer;
}

Can you guess why the following snippet of code generates a compile-time error?

public Printer test() {    
    String msg = "Hello";

    Printer printer = msg1 ->  {
        msg = "Hi " + msg1; // A compile-time error. Attempting to modify msg.
        System.out.println(msg);
    };

    return printer;
}

The lambda expression accesses the local variable msg. Any local variable accessed inside a lambda 
expression must be effectively final. The lambda expression attempts to modify the msg variable inside its 
body, and that causes the compile-time error.



Chapter 5 ■ Lambda expressions

213

 ■ Tip  a lambda expression can access instance and class variables of a class whether they are effectively 
final or not. if instance and class variables are not final, they can be modified inside the body of the lambda 
expressions. a lambda expression keeps a copy of the local variables used in its body. if the local variables are 
reference variables, a copy of the references is kept, not a copy of the objects.

The program in Listing 5-21 demonstrates how to access the local and instance variables inside lambda 
expressions.

Listing 5-21. Accessing Local and Instance Variables Inside Lambda Expressions

// VariableCapture.java
package com.jdojo.lambda;

public class VariableCapture {
    private int counter = 0;

    public static void main(String[] args) {
        VariableCapture vc1 = new VariableCapture();
        VariableCapture vc2 = new VariableCapture();

        // Create lambdas
        Printer p1 = vc1.createLambda(1);
        Printer p2 = vc2.createLambda(100);

        // Execute the lambda bodies
        p1.print("Lambda #1");
        p2.print("Lambda #2");
        p1.print("Lambda #1");
        p2.print("Lambda #2");
        p1.print("Lambda #1");
        p2.print("Lambda #2");
    }

    public Printer createLambda(int incrementBy) {
        Printer printer = msg -> {
            // Accesses instance and local variables
            counter += incrementBy;
            System.out.println(msg + ": counter = " + counter);
        };

        return printer;
    }
}



Chapter 5 ■ Lambda expressions

214

Lambda #1: counter = 1
Lambda #2: counter = 100
Lambda #1: counter = 2
Lambda #2: counter = 200
Lambda #1: counter = 3
Lambda #2: counter = 300

The createLambda() method uses a lambda expression to create an instance of the Printer functional 
interface. The lambda expression uses the method’s parameter incrementBy. Inside the body, it increments 
the instance variable counter and prints its value. The main() method creates two instances of the 
VariableCapture class and calls the createLambda() method on those instances by passing 1 and 100 as 
incrementBy values. The print() methods of the Printer objects are called three times for both instances. 
The output shows that the lambda expression captures the incrementBy value and increments the counter 
instance variable every time it is called.

Jumps and Exits
Statements such as break, continue, return, and throw are allowed inside the body of a lambda expression. 
These statements indicate jumps inside a method and exits from a method. Inside a lambda expression, 
they indicate jumps inside the body of the lambda expression and exits from the body of the lambda 
expressions. They indicate local jumps and exits in the lambda expressions. Non-local jumps and exits in 
lambda expressions are not allowed. The program in Listing 5-22 demonstrates the valid use of the break 
and continue statements inside the body of a lambda expression.

Listing 5-22. Using Break and Continue Statements Inside the Body of a Lambda Expression

// LambdaJumps.java
package com.jdojo.lambda;

import java.util.function.Consumer;

public class LambdaJumps {
    public static void main(String[] args) {
        Consumer<int[]> printer = ids -> {
            int printedCount = 0;
            for (int id : ids) {            
                if (id % 2 != 0) {
                    continue;                    
                }

                System.out.println(id);                
                printedCount++;

                // Break out of the loop after printing 3 ids
                if (printedCount == 3) {
                    break;
                }
            }
        };



Chapter 5 ■ Lambda expressions

215

        // Print an array of 8 integers
        printer.accept(new int[]{1, 2, 3, 4, 5, 6, 7, 8});
    }
}

2
4
6

In the following snippet of code, the break statement is inside a for loop statement and it is also inside 
the body of a lambda statement. If this break statement is allowed, it will jump out of the body of the lambda 
expression. This is the reason that the code generates a compile-time error.

public void test() {
    for(int i = 0; i < 5; i++) {
        Consumer<Integer> evenIdPrinter = id -> {
            if (id < 0) {
                // A compile-time error. Attempting to break out of the lambda body
                break;
            }
        };
    }
}

Recursive Lambda Expressions
Sometimes a function may invoke itself from its body. Such a function is called a recursive function. A lambda 
expression represents a function. However, a lambda expression does not support recursive invocations. If 
you need a recursive function, you need to use a method reference or an anonymous inner class.

The program in Listing 5-23 shows how to use a method reference when a recursive lambda expression 
is needed. It defines a recursive method called factorial() that computes the factorial of an integer. In the 
main() method, it uses the method reference RecursiveTest::factorial in place of a lambda expression.

Listing 5-23. Using a Method Reference When a Recursive Lambda Expression Is Needed

// RecursiveTest.java
package com.jdojo.lambda;

import java.util.function.IntFunction;

public class RecursiveTest {
    public static void main(String[] args) {
        IntFunction<Long> factorialCalc = RecursiveTest::factorial;

        int n = 5;
        long fact = factorialCalc.apply(n);
        System.out.println("Factorial of " + n + " is " + fact);
    }



Chapter 5 ■ Lambda expressions

216

    public static long factorial(int n) {
        if (n < 0) {
            String msg = "Number must not be negative.";
            throw new IllegalArgumentException(msg);
        }

        if (n == 0) {
            return 1;
        } else {
            return n * factorial(n - 1);
        }
    }
}

factorial of 5 is 120

You can achieve the same results using an anonymous inner class as shown:

IntFunction<Long> factorialCalc = new IntFunction<Long>() {
    @Override
    public Long apply(int n) {
        if (n < 0) {
            String msg = "Number must not be negative.";
            throw new IllegalArgumentException(msg);
        }

        if (n == 0) {
            return 1L;
        } else {
            return n * this.apply(n - 1);
        }
    }
};

Comparing Objects
The Comparator interface is a functional interface with the following declaration:

package java.util;

@FunctionalInterface
public interface Comparator<T> {
    int compare(T o1, T o2);

    /* Other methods are not shown. */
}



Chapter 5 ■ Lambda expressions

217

The Comparator<T> interface contains many default and static methods that can be used along with 
lambda expressions to create its instances. It is worth exploring the API documentation for the interface. In 
this section, I discuss the following two methods of the Comparator interface:

•	 static <T,U extends Comparable<? super U>> Comparator<T> 
comparing(Function<? super T,? extends U> keyExtractor)

•	 default <U extends Comparable<? super U>> Comparator<T> 
thenComparing(Function<? super T,? extends U> keyExtractor)

The comparing() method takes a Function and returns a Comparator. The Function should return a 
Comparable that is used to compare two objects. You can create a Comparator object to compare Person 
objects based on their first names, as shown:

Comparator<Person> firstNameComp = Comparator.comparing(Person::getFirstName);

The thenComparing() method is a default method. It is used to specify a secondary comparison if two 
objects are the same in sorting order based on the primary comparison. The following statement creates a 
Comparator<Person> that sorts Person objects based on their last names, first names, and DOBs:

Comparator<Person> lastFirstDobComp =
    Comparator.comparing(Person::getLastName)
              .thenComparing(Person::getFirstName)
              .thenComparing(Person::getDob);

The program in Listing 5-24 shows how to use the method references to create a Comparator object to 
sort Person objects. It uses the sort() default method of the List interface to sort the list of persons. The 
sort() method takes a Comparator as an argument. Thanks to lambda expressions and default methods in 
interfaces for making the sorting task so easy!

Listing 5-24. Sorting a List of Person Objects

// ComparingObjects.java
package com.jdojo.lambda;

import java.util.Comparator;
import java.util.List;

public class ComparingObjects {
    public static void main(String[] args) {
        List<Person> persons = Person.getPersons();

        // Sort using the first name
        persons.sort(Comparator.comparing(Person::getFirstName));

        // Print the sorted list
        System.out.println("Sorted by the first name:");
        FunctionUtil.forEach(persons, System.out::println);

        // Sort using the last name, first name, and then DOB
        persons.sort(Comparator.comparing(Person::getLastName)
                               .thenComparing(Person::getFirstName)
                               .thenComparing(Person::getDob));



Chapter 5 ■ Lambda expressions

218

        // Print the sorted list
        System.out.println("\nSorted by the last name, first name, and dob:");
        FunctionUtil.forEach(persons, System.out::println);
    }
}

Sorted by the first name:
Donna Jacobs, FEMALE, 1970-09-12
John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12

Sorted by the last name, first name, and dob:
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12
John Jacobs, MALE, 1975-01-20

Summary
A lambda expression is an unnamed block of code (or an unnamed function) with a list of formal parameters 
and a body. A lambda expression provides a concise way, as compared to anonymous inner classes, to create 
instances of functional interfaces. Lambda expressions and default methods in interfaces have given new life 
to the Java programming languages as far as expressiveness and fluency in Java programming go. The Java 
collection library has benefited the most from lambda expressions.

The syntax for defining lambda expressions is similar to declaring a method. A lambda expression may 
have a list of formal parameters and a body. A lambda expression is evaluated to an instance of a functional 
interface. The body of the lambda expression is not executed when the expression is evaluated. The body of 
the lambda expression is executed when the method of the functional interface is invoked.

One of the design goals of lambda expressions was to keep it concise and readable. The lambda 
expression syntax supports shorthand for common use-cases. Method references are shorthand to specify 
lambda expressions that use existing methods.

A poly expression is an expression whose type depends on the context of its use. A lambda expression 
is always a poly expression. A lambda expression cannot be used by itself. Its type is inferred by the compiler 
from the context. A lambda expression can be used in assignments, method invocations, returns, and casts.

When a lambda expression occurs inside a method, it is lexically scoped. That is, a lambda expression 
does not define a scope of its own; rather, it occurs in the method’s scope. A lambda expression may use the 
effectively final local variables of a method. A lambda expression may use the statements such as break, 
continue, return, and throw. The break and continue statements specify local jumps inside the body of 
the lambda expression. Attempting to jump outside the body of the lambda expression generates a compile-
time error. The return and throw statements exit the body of the lambda expression.



Chapter 5 ■ Lambda expressions

219

QUESTIONS AND EXERCISES

1. What are lambda expressions and how are they related to functional interfaces?

2. how does a lambda expression differ from an anonymous class? Can you always 
replace a lambda expression with an anonymous class and vice versa?

3. are the following two lambda expressions different?

a. (int x, int y) -> { return x + y; }

b. (int x, int y) -> x + y

4. if someone shows you the following lambda expressions, explain the possible 
functions they may represent.

a. (int x, int y) -> x + y

b. (x, y) -> x + y

c. (String msg) -> { System.out.println(msg); }

d. () -> {}

5. What kind of function the following lambda expression may represent?

x -> x;

6. Will the following declaration of a MathUtil interface compile? explain your 
answer.

@FunctionalInterface
public interface Operations {
    int factorial(int n);
    int abs(int n);
}

7. Will the following statement compile? explain your answer.

Object obj = x -> x + 1;

8. Will the following statements compile? explain your answer.

Function<Integer,Integer> f = x -> x + 1;
Object obj = f;

9. What will be the output when you run the following Scope class?

// Scope.java
package com.jdojo.lambda.exercises;

import java.util.function.Function;

public class Scope {



Chapter 5 ■ Lambda expressions

220

    private static long n = 100;
    private static Function<Long,Long> f = n -> n + 1;

    public static void main(String[] args) {
        System.out.println(n);
        System.out.println(f.apply(n));
        System.out.println(n);
    }
}

10. Why does the following method declaration not compile?

public static void test() {
    int n = 100;
    Function<Integer,Integer> f = n -> n + 1;
    System.out.println(f.apply(100));
}

11. What will be the output when the following Capture class is run?

// Capture.java
package com.jdojo.lambda.exercises;

import java.util.function.Function;

public class Capture {
    public static void main(String[] args) {
        test();
        test();
    }

    public static void test() {
        int n = 100;
        Function<Integer,Integer> f = x -> n + 1;
        System.out.println(f.apply(100));
    }
}

12. assume that there is a Person class, which contains four constructors. one of the 
constructors is a no-args constructor. Given a constructor reference, Person::new, 
can you tell which constructor of the Person it refers to?

13. Will the following declaration of the FeelingLucky interface compile? notice that it 
has been annotated with @FunctionalInterface.

@FunctionalInterface
public interface FeelingLucky {
    void gamble();

    public static void hitJackpot() {



Chapter 5 ■ Lambda expressions

221

        System.out.println("You have won 80M dollars.");
    }
}

14. Why does the following declaration of the Mystery interface not compile?

@FunctionalInterface
public interface Mystery {
    @Override
    String toString();
}

15. What will be the output when the following PredicateTest class is run?

// PredicateTest.java
package com.jdojo.lambda.exercises;

import java.util.function.Predicate;

public class PredicateTest {
   public static void main(String[] args) {
       int[] nums = {1, 2, 3, 4, 5};
       filterThenPrint(nums, n -> n%2 == 0);
       filterThenPrint(nums, n -> n%2 == 1);
   }

   static void filterThenPrint(int[] nums, Predicate<Integer> p) {
       for(int x : nums) {
           if(p.test(x)) {
               System.out.println(x);
           }
       }
   }
}

16. What will be the output when the following SupplierTest class is run? explain 
your answer.

// SupplierTest.java
package com.jdojo.lambda.exercises;

import java.util.function.Supplier;
public class SupplierTest {
    public static void main(String[] args) {
        Supplier<Integer> supplier = () -> {
            int counter = 0;
            return ++counter;
        };



Chapter 5 ■ Lambda expressions

222

        System.out.println(supplier.get());
        System.out.println(supplier.get());
    }
}

17. What will be the output when the following ConsumerTest class is run?

// ConsumerTest.java
package com.jdojo.lambda.exercises;

import java.util.function.Consumer;

public class ConsumerTest {
    public static void main(String[] args) {
         Consumer<String> c1 = System.out::println;
         Consumer<String> c2 = s -> {};

         consume(c1, "Hello");
         consume(c2, "Hello");
    }

    static <T> void consume(Consumer<T> consumer, T item) {
        consumer.accept(item);
    }
}



223© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_6

CHAPTER 6

Threads

In this chapter, you will learn:

•	 What threads are

•	 How to create threads in Java

•	 How to execute your code in separate threads

•	 What the Java Memory Model is

•	 The lifecycle of threads

•	 How to use object monitors to synchronize access to a critical section by threads

•	 How to interrupt, stop, suspend, and resume threads

•	 Atomic variables, explicit locks, synchronizer, executor framework, fork/join 
framework, and thread-local variables

All example programs in this chapter are members of a jdojo.threads module, as declared in  
Listing 6-1.

Listing 6-1. The Declaration of a jdojo.threads Module

// module-info.java
module jdojo.threads {
    exports com.jdojo.threads;
}

What Is a Thread?
Threads are a vast topic. They deserve an entire book. This chapter does not discuss the concept of threads 
in detail. Rather, it discusses how to work with threads using Java constructs. Before I define the term thread, 
it is necessary to understand the meaning of some related terms, such as program, process, multitasking, 
sequential programming, concurrent programming, etc.

A program is an algorithm expressed in a programming language. A process is a running instance of 
a program with all system resources allocated by the operating system to that instance of the program. 
Typically, a process consists of a unique identifier, a program counter, executable code, an address space, 
open handles to system resources, a security context, and many other things. A program counter, also called 
an instruction pointer, is a value maintained in the CPU register that keeps track of the instruction being 
executed by the CPU. It is automatically incremented at the end of the execution of an instruction. You can 

https://doi.org/10.1007/978-1-4842-3348-1_6


Chapter 6 ■ threads

224

also think of a process as a unit of activity (or a unit of work, or a unit of execution, or a path of execution) 
within an operating system. The concept of process allows one computer system to support multiple units of 
executions.

Multitasking is the ability of an operating system to execute multiple tasks (or processes) at once. On a 
single CPU machine, multitasking is not possible in a true sense because one CPU can execute instructions 
for only one process at a time. In such a case, the operating system achieves multitasking by dividing the 
single CPU’s time among all running processes and switching between processes quickly enough to give 
an impression that all processes are running simultaneously. The switching of the CPU among processes is 
called a context switch. In a context switch, the running process is stopped, its state is saved, the state of the 
process that is going to get the CPU is restored, and the new process is run. It is necessary to save the state 
of the running process before the CPU is allocated to another process, so when this process gets the CPU 
again, it can start its execution from the same point where it left. Typically, the state of a process consists of a 
program counter, register values used by the process, and any other pieces of information that are necessary 
to restore the process later. An operating system stores a process state in a data structure, which is called a 
process control block or a switchframe. A context switch is rather an expensive task.

There are two types of multitasking: cooperative and preemptive. In cooperative multitasking, the 
running process decides when to release the CPU so that other processes can use the CPU. In preemptive 
multitasking, the operating system allocates a time slice to each process. Once a process has used up its 
time slice, it is preempted, and the operating system assigns the CPU to another process. In cooperative 
multitasking, a process may monopolize the CPU for a long time and other processes may not get a chance 
to run. In preemptive multitasking, the operating system makes sure all processes get CPU time. UNIX, 
OS/2, and Windows (except Windows 3.x) use preemptive multitasking. Windows 3.x used cooperative 
multitasking.

Multiprocessing is the ability of a computer to use more than one processor simultaneously. Parallel 
processing is the ability of a system to simultaneously execute the same task on multiple processors. You may 
note that, for parallel processing, the task must be split up into subtasks, so that the subtasks can be executed 
on multiple processors simultaneously. Let’s consider a program that consists of six instructions:

Instruction-1
Instruction-2
Instruction-3
Instruction-4
Instruction-5
Instruction-6

To execute this program completely, the CPU has to execute all six instructions. Suppose the first 
three instructions depend on each other. Assume that Instruction-2 uses the result of Instruction-1; 
Instruction-3 uses the result of Instruction-2. Assume that the last three instructions also depend 
on each other the same way the first three depend on each other. Suppose the first three and the last 
three instructions, as two groups, do not depend on each other. How would you like to execute these six 
instructions to get the best result? One of the ways to execute them is sequentially as they appear in the 
program. This gives you one sequence of execution in your program. Another way of executing them is to 
have two sequences of executions. One sequence of execution will execute Instruction-1, Instruction-2, 
and Instruction-3, and at the same time, another sequence of execution will execute Instruction-4, 
Instruction-5, and Instruction-6. The phrases “unit of execution” and “sequence of execution” mean the 
same; I use them interchangeably. These two scenarios are depicted in Figure 6-1.



Chapter 6 ■ threads

225

Note that a process is also a unit of execution. Therefore, the two sets of instructions can be run as 
two processes to achieve concurrency in their execution. So far, we have assumed that the two sets of 
instructions are independent of each other. Suppose this assumption still holds true. What if the two sets of 
instructions access a shared memory; or, when both sets of instructions finish running, you need to combine 
the results from both to compute the final result? Processes are generally not allowed to access another 
process’s address space. They must communicate using inter-process communication facilities such as 
sockets, pipes, etc. The very nature of a process—that it runs independent of other processes—may pose 
problems when multiple processes need to communicate or share resources. All modern operating systems 
let you solve this problem by allowing you to create multiple units of execution within a process, where all 
units of execution can share address space and resources allocated to the process. Each unit of execution 
within a process is called a thread.

Every process has at least one thread. A process can create multiple threads, if needed. The resources 
available to the operating system and its implementation determine the maximum number of threads a 
process can create. All threads within a process share all resources including the address space; they can also 
communicate with each other easily because they operate within the same process and they share the same 
memory. Each thread within a process operates independent of the other threads within the same process.

A thread maintains two things: a program counter and a stack. The program counter lets a thread 
keep track of the instruction that it is currently executing. It is necessary to maintain a separate program 
counter for each thread because each thread within a process may be executing different instructions at 
the same time. Each thread maintains its own stack to store the values of the local variables. A thread can 
also maintain its private memory, which cannot be shared with other threads, even if they are in the same 
process. The private memory maintained by a thread is called thread-local storage (TLS). Figure 6-2 depicts 
threads represented within a process.

Instruction-1
Instruction-2
Instruction-3
Instruction-4
Instruction-5
Instruction-6

Instruction-1 Instruction-4
Instruction-2 Instruction-5
Instruction-3 Instruction-6

One unit of execution Two units of executions

Figure 6-1. Dividing a program into multiple units of execution

An operating system

Process Process Process

A thread within a process

Figure 6-2. Processes and threads



Chapter 6 ■ threads

226

In all modern operating systems, threads are scheduled on the CPU for execution, not the processes. 
Therefore, the CPU context switch occurs between the threads. The context switch between threads is less 
expensive compared to the context switch between processes. Because of the ease of communication, 
sharing resources among threads within a process, and a cheaper context switch, it is preferred to split 
a program into multiple threads, rather than multiple processes. Sometimes a thread is also called a 
lightweight process. The program with six instructions as discussed previously can also be split into two 
threads within a process, as depicted in Figure 6-3. On a multi-processor machine, multiple threads of a 
process may be scheduled on different processors, thus providing true concurrent executions of a program. 
A program that uses multiple threads is called a multi-threaded program.

Instruction-1
Instruction-2
Instruction-3
Instruction-4
Instruction-5
Instruction-6

Instruction-1 Instruction-4
Instruction-2 Instruction-5
Instruction-3 Instruction-6

Thread 1 Thread 2

A process with one thread A process with two threads

Thread 1

Figure 6-3. Dividing the program logic to use two threads within a process

You can think of the relationship between a process and threads as

Process = address space + resources + threads

where threads are units of execution within the process; they maintain their own unique program counter 
and stack; they share the process address space and resources; they are scheduled on a CPU independently 
and may execute on different CPUs, if available.

Creating Threads in Java
The Java API makes it easy to work with threads. It lets you represent a thread as an object. An object of the 
java.lang.Thread class represents a thread. Creating and using a thread in Java is as simple as creating 
an object of the Thread class and using that object in a program. Let’s start with the simplest example of 
creating a thread in Java. There are at least two steps involved in working with a thread:

•	 Creating an object of the Thread class

•	 Invoking the start() method of the Thread class to start the thread

Creating an object of the Thread class is the same as creating an object of any other classes in Java. In its 
simplest form, you can use the no-args constructor of the Thread class to create a Thread object.

// Creates a thread object
Thread simplestThread = new Thread();



Chapter 6 ■ threads

227

Creating an object of the Thread class allocates memory for that object on the heap. It does not start or 
run the thread. You must call the start() method of the Thread object to start the thread:

// Starts the thread
simplestThread.start();

The start() method returns after doing some housekeeping work. It puts the thread in the runnable 
state. In this state, the thread is ready to receive the CPU time. Note that invoking the start() method of 
a Thread object does not guarantee “when” this thread will start getting the CPU time. That is, it does not 
guarantee when the thread will start running. It just schedules the thread to receive the CPU time.

Let’s write a simple Java program with these two statements, as shown in Listing 6-2. The program will 
not do anything useful. However, it will get you started using threads.

Listing 6-2. The Simplest Thread in Java

// SimplestThread.java
package com.jdojo.threads;

public class SimplestThread {
    public static void main(String[] args) {
        // Creates a thread object  
        Thread simplestThread = new Thread();

        // Starts the thread  
        simplestThread.start();
    }
}

When you run the SimplestThread class, you do not see any output. The program will start and finish 
silently. Even though you did not see any output, here are a few things the JVM did when the two statements 
in the main() method were executed:

•	 When the second statement, simplestThread.start(), is executed, the JVM 
scheduled this thread for execution.

•	 At some point in time, this thread got the CPU time and started executing. What code 
does a thread in Java start executing when it gets the CPU time?

•	 A thread in Java always starts its execution in a run() method. You can define the 
run() method to be executed by a thread when you create an object of the Thread 
class. In your case, you created an object of the Thread class using its no-args 
constructor. When you use the no-args constructor of the Thread class to create its 
object (as in new Thread()), the run() method of the Thread class is called when 
the thread starts its execution. The following sections in this chapter explain how to 
define your own run() method for a thread.

•	 The run() method of the Thread class checks how the object of the Thread class was 
created. If the thread object was created using the no-args constructor of the Thread 
class, it does not do anything, and immediately returns. Therefore, in your program, 
when the thread got the CPU time, it called the run() method of the Thread class, 
which did not execute any meaningful code, and returned.

•	 When the CPU finishes executing the run() method, the thread is dead, which 
means the thread will not get the CPU time again.



Chapter 6 ■ threads

228

Figure 6-4 depicts how the simplest thread example works.

Thread simplestThread = new Thread();

Created a thread and
scheduled it for

execution 

Gets CPU time

The run() method finishes

Starts executing the run()
method of the Thread class 

simplestThread.start();simplestThread
object in
memory

Thread is dead

Figure 6-4. The simplest thread execution

There are two important points to add to the current discussion.

•	 When a thread is dead, it does not mean the thread object is garbage collected. 
Note that a thread is a unit of execution. “A thread is dead” means that the unit of 
execution that the thread represented has finished its work. However, the thread 
object representing the unit of execution still exists in memory. After the thread is 
dead, the object will be garbage collected based on the same garbage collection 
rules that are used for any other Java objects. Some restrictions exist that dictate the 
methods you can call on a dead thread. For example, you cannot call its start() 
method again. That is, a thread object can be started only once. However, you can 
still check if the thread is dead by calling the isAlive() method of the thread object.

•	 The thread does not get the CPU time in one go to execute the run() method. The 
operating system decides on the amount of time to allocate and when to allocate that 
time to the thread. This means that the multiple context switches may occur before 
the thread finishes executing the run() method.

Specifying Your Code for a Thread
There are three ways you can specify your code to be executed by a thread:

•	 By inheriting your class from the Thread class

•	 By implementing the Runnable interface in your class

•	 By using the method reference to a method that takes no parameters and  
returns void



Chapter 6 ■ threads

229

 ■ Tip  Inheriting your class from the Thread class may not be possible if your class already inherits from 
another class. In that case, you need to use the second method. You can use the third method from Java 8. 
Before Java 8, it was common to use an anonymous class to define a thread object where the anonymous class 
would either inherit from the Thread class or implement the Runnable interface.

Inheriting Your Class from the Thread Class
When you inherit your class from the Thread class, you should override the run() method and provide the 
code to be executed by the thread.

public class MyThreadClass extends Thread {
    @Override
    public void run() {
        System.out.println("Hello Java threads!");
    }
    // More code goes here }

The steps to create a thread object and start the thread are the same.

MyThreadClass myThread = new MyThreadClass();
myThread.start();

The thread will execute the run() method of the MyThreadClass class.

Implementing the Runnable Interface
You can create a class that implements the java.lang.Runnable interface. Runnable is a functional interface 
and it is declared in the java.lang package as follows:

@FunctionalInterface
public interface Runnable {
    void run();
}

From Java 8, you can use a lambda expression to create an instance of the Runnable interface.

Runnable aRunnableObject = () -> System.out.println("Hello Java threads!");

Create an object of the Thread class using the constructor that accepts a Runnable object.

Thread myThread = new Thread(aRunnableObject);

Start the thread by calling the start() method of the thread object.

myThread.start();

The thread will execute the code contained in the body of the lambda expression.



Chapter 6 ■ threads

230

Using a Method Reference
From Java 8, you can use the method reference of a method (static or instance) that takes no parameters and 
returns void as the code to be executed by a thread. The following code declares a ThreadTest class that 
contains an execute() method. The method contains the code to be executed in a thread.

public class ThreadTest {
    public static void execute() {
        System.out.println("Hello Java threads!");
    }
}

The following snippet of code uses the method reference of the execute() method of the ThreadTest 
class to create a Runnable object:

Thread myThread = new Thread(ThreadTest::execute);
myThread.start();

The thread will execute the code contained in the execute() method of the ThreadTest class.

A Quick Example
Let’s look at a simple example to print integers from 1 to 500 in a new thread. Listing 6-3 contains the code 
for the PrinterThread class that performs this task. When the class is run, it prints integers from 1 to 500 on 
the standard output.

Listing 6-3. Printing Integers from 1 to 500 in a New Thread

// PrinterThread.java
package com.jdojo.threads;

public class PrinterThread {
    public static void main(String[] args) {
        // Create a Thread object
        Thread t = new Thread(PrinterThread::print);

        // Start the thread
        t.start();
    }

    public static void print() {
        for (int i = 1; i <= 500; i++) {
            System.out.print(i + " ");
        }
    }
}

1 2 3 4 5 6 7 8 9 10 11 12 13 14  ... 497 498 499 500

I used a method reference to create the thread object in the example. You can use any of the other ways 
discussed earlier to create a thread object.



Chapter 6 ■ threads

231

Using Multiple Threads in a Program
Using multiple threads in a Java program is as simple as creating multiple Thread objects and calling 
their start() method. Java does not have any upper limit on the number of threads that can be used in a 
program. It is limited by the operating system and the memory available to the program. Listing 6-4 uses two 
threads. Both threads print integers from 1 to 500. The code prints a new line after each integer. However, the 
output shows a space after each integer to keep the output short. Only partial output is shown.

Listing 6-4. Running Multiple Threads in a Program

// MultiPrinterThread.java
package com.jdojo.threads;

public class MultiPrinterThread {
    public static void main(String[] args) {
        // Create two Thread objects
        Thread t1 = new Thread(MultiPrinterThread::print);
        Thread t2 = new Thread(MultiPrinterThread::print);

        // Start both threads
        t1.start();
        t2.start();
    }

    public static void print() {
        for (int i = 1; i <= 500; i++) {
            System.out.println(i);
        }
    }
}

1  2  3  4  5  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21   
22  23  24  25  26  6  7  27  28  8  9  10  11  12  29  30  31  13  14  32  15  16  17   
...  496  497  498  499  500  424  425 ... 492  493  494  495  496  497  498  499  500  

You will find some interesting things in the output. Every time you run this program, you may get 
different output. However, the nature of the output on your computer can be compared to the output shown 
here. On a very fast machine, the output may print 1 to 500 and 1 to 500. However, let’s focus the discussion 
assuming that your output is like the one shown.

The program created two threads. Each thread prints integers from 1 to 500. It starts the thread t1 first 
and the thread t2 second. You might expect that the thread t1 will start first to print integers from 1 to 500, 
and then the thread t2 will start to print integers from 1 to 500. However, it is obvious from the output that 
the program did not run the way you might have expected.

The start() method of the Thread class returns immediately. That is, when you call the start() 
method of a thread, the JVM takes note of your instruction to start the thread. However, it does not start the 
thread right away. It has to do some housekeeping before it can really start a thread. When a thread starts, it 
is up to the operating system to decide when and how much CPU time it will give to that thread. Therefore, 
as soon as the t1.start() and t2.start() methods return, your program enters the indeterminate realm. 
That is, both threads will start running; however, you do not know when they will start running and in what 
sequence they will run to execute their code. When you start multiple threads, you do not even know which 



Chapter 6 ■ threads

232

thread will start running first. Looking at the output, you can observe that one of the threads started and it 
got enough CPU time to print integers from 1 to 5 before it was preempted. Another thread got CPU time to 
print from 1 to 26 before it was preempted. The second time, the first thread (the thread that started printing 
integers first) got the CPU time and it printed only two integers, 6 and 7, and so on. You can see that both 
threads got CPU time. However, the amount of CPU time and the sequence in which they got the CPU time 
are unpredictable. Each time you run this program, you may get different output. The only guarantee that 
you get from this program is that all integers between 1 and 500 will be printed twice in some order.

Issues in Using Multiple Threads
Some issues are involved when you use multiple threads in a program. You need to consider these issues 
only if multiple threads have to coordinate based on some conditions or some shared resources.

In the previous sections, the examples involving threads were trivial. They simply printed some integers 
on the standard output. Let’s look at a different kind of example that uses multiple threads, which access and 
modify the value of a variable. Listing 6-5 shows the code for the BalanceUpdate class.

Listing 6-5. Multiple Threads Modifying the Same Variable

// BalanceUpdate.java
package com.jdojo.threads;

public class BalanceUpdate {
    // Initialize balance to 100  
    private static int balance = 100;

    public static void main(String[] args) {
        startBalanceUpdateThread(); // Thread to update the balance value  
        startBalanceMonitorThread(); // Thread to monitor the balance value  
    }

    public static void updateBalance() {
        // Add 10 to balance and subtract 10 from balance  
        balance = balance + 10;
        balance = balance - 10;
    }

    public static void monitorBalance() {
        int b = balance;
        if (b != 100) {
            System.out.println("Balance changed: " + b);
            System.exit(0); // Exit the program  
        }
    }

    public static void startBalanceUpdateThread() {
        // Start a new thread that calls the updateBalance() method in an infinite loop  
        Thread t = new Thread(() -> {



Chapter 6 ■ threads

233

            while (true) {
                updateBalance();
            }
        });

        t.start();
    }

    public static void startBalanceMonitorThread() {
        // Start a thread that monitors the balance value  
        Thread t = new Thread(() -> {
            while (true) {
                monitorBalance();
            }
        });

        t.start();
    }
}

Balance changed: 110

A brief description of each component of this class follows:

•	 balance: It is a static variable of type int. It is initialized to 100.

•	 updateBalance(): It is a static method that adds 10 to the static variable balance and 
subtracts 10 from it. Upon completion of this method, the value of the static variable 
balance is expected to remain the same as 100.

•	 startBalanceUpdateThread(): It starts a new thread that keeps calling the 
updateBalance() method in an infinite loop. That is, once you call this method, a 
thread keeps adding 10 to the balance variable and subtracting 10 from it.

•	 startBalanceMonitorThread(): It starts a new thread that monitors the value of the 
balance static variable by repeatedly calling the monitorBalance() method. When 
the thread detects that the value of the balance variable is other than 100, it prints 
the current value and exits the program.

•	 main(): This method is used to run the program. It starts a thread that updates the 
balance class variable in a loop using the updateBalance() method. It also starts 
another thread that monitors the value of the balance class variable.

The program consists of two threads. One thread calls the updateBalance() method, which adds 10 
to balance and subtracts 10 from it. That is, after this method finishes executing, the value of the balance 
variable is expected to remain unchanged. Another thread monitors the value of the balance variable. 
When it detects that the value of the balance variable is anything other than 100, it prints the new value and 
exits the program. Specifying zero in System.exit(0) method call indicates that you want to terminate the 
program normally.

Intuitively, the balance monitor thread should not print anything because the balance should always 
be 100 and the program should never end because both threads are using infinite loops. However, that is not 
the case. If you run this program, you will find, in a short time, the program prints the balance value other 
than 100 and exits.



Chapter 6 ■ threads

234

Suppose on a particular machine the statement "balance = balance + 10;" is implemented as the 
following machine instructions assuming register-1 as a CPU register:

register-1 = balance;
register-1 = register-1 + 10;
balance = register-1;

Similarly, assume that the statement "balance = balance - 10;" is implemented as the following 
machine instructions assuming register-2 as another CPU register:

register-2 = balance;
register-2 = register-2 - 10;
balance = register-2;

When the updateBalance() method is invoked, the CPU has to execute six instructions to add 10 to and 
subtract 10 from the balance variable. When the balance update thread is in the middle of executing any of the 
first three instructions, the balance monitor thread will read the balance value as 100. When the balance update 
thread has finished executing the third instruction, the balance monitor thread will read its value as 110. The 
value 110 for the balance variable will be restored to 100 only when the balance update thread executes the sixth 
instruction. Note that if the balance monitor thread reads the value of the balance variable any time after the 
execution of the third instruction and before the execution of the sixth instruction by the balance update thread, 
it will read a value that is not the same as the value that existed at the start of the updateBalance() method 
execution. Table 6-1 shows how the value of the balance variable will be modified and read by the two threads.

In your program, the monitor thread was able to read the value of the balance variable as 110 because 
you allowed two threads to modify and read the value of the balance variable concurrently. If you allowed 
only one thread at a time to work with (modify or read) the balance variable, the balance monitor thread 
would never read the value of the balance variable other than 100.

Table 6-1. Instruction Executions for Multiple Threads

Statement
(Suppose Balance  
Value is 100 to Start With)

Instructions Being Executed by
the Balance Update Thread

The Value of Balance  
Read by the Balance  
Monitor Thread

balance = balance + 10; register-1 = balance; 100

register-1 = register-1 + 10; 100

balance = register-1; Before execution: 100
After execution: 110

balance = balance - 10; register-2 = balance; 110

register-2 = register-2 - 10; 110

balance = register-2; Before execution: 110
After execution: 100

The situation where multiple threads manipulate and access a shared data concurrently and the 
outcome depends on the order in which the execution of threads take place is known as a race condition.  
A race condition in a program may lead to unpredictable results. Listing 6-5 is an example of a race condition 
where the program output depends on the sequence of execution of the two threads.

To avoid a race condition in a program, you need to make sure that only one of the racing threads works 
with the shared data at a time. To solve this problem, you need to synchronize the access to the two methods 



Chapter 6 ■ threads

235

Thread–1

Working 
memory

Thread–2

Working 
memory

Main memory

Object-1
Object-2
Object-3

Figure 6-5. The Java Memory Model

updateBalance() and monitorBalance() of the BalanceUpdate class. That is, only one thread should access 
one of these two methods at a time. In other words, if one thread is executing the updateBalance() method, 
another thread that wants to execute the monitorBalance() method must wait until the thread executing the 
updateBalance() method is finished. Similarly, if one thread is executing the monitorBalance() method, 
another thread that wants to execute the updateBalance() method must wait until the thread executing the 
monitorBalance() method is finished. This will ensure that when a thread is in the process of updating the 
balance variable, no other threads will read the inconsistent value of the balance variable and if a thread is 
reading the balance variable, no other threads will update the balance variable at the same time.

This kind of problem that needs synchronizing the access of multiple threads to a section of code in a 
Java program can be solved using the synchronized keyword. To understand the use of the synchronized 
keyword, I need to discuss the Java Memory Model in brief, and the lock and wait sets of an object.

Java Memory Model
All program variables (instance fields, static fields, and array elements) in a program are allocated memory 
from the main memory of a computer. Each thread has a working memory (processor cache or registers). 
The Java Memory Model (JMM) describes how, when, and in what order program variables are stored to, 
and read from, the main memory. The JMM is described in the Java Language Specification in detail. You 
may visualize the JMM as depicted in Figure 6-5.

Figure 6-5 shows two threads sharing the main memory. Let’s assume that you have a Java program that 
is running two threads, thread-1 and thread-2, and each thread is running on different processors. Suppose 
thread-1 reads the value of an instance variable of object-1 in its working memory, updates the value, and 
does not write the updated value back to the main memory. Let’s run through a few possible scenarios.

•	 What happens if thread-2 tries to read the value of the same instance variable of 
object-1 from the main memory? Would thread-2 read the old value from the main 
memory, or would it be able to read the updated value from the working memory of 
thread-1?

•	 Suppose thread-1 is in the middle of writing the updated value to the main memory, 
and at the same time, thread-2 is trying to read the same value from the main 
memory. Would thread-2 read the old value or some garbage value from the main 
memory because the value is not written back to the main memory completely?



Chapter 6 ■ threads

236

The JMM answers all such questions. In essence, the JMM describes three important aspects of the 
execution of instructions in a Java program. They are as follows:

•	 Atomicity

•	 Visibility

•	 Ordering

Atomicity
The JMM describes actions that should be executed atomically. It describes atomicity rules about read and 
write actions on instance variables, static variables, and array elements. It guarantees that read and write on 
an object’s field of any type, except long and double, are always atomic. However, if a field of type long or 
double is declared volatile (I discuss the volatile keyword in detail later in this chapter), read and write 
on that field are also guaranteed to be atomic.

Visibility
The JMM describes the conditions under which the effects produced by actions in one thread are visible to 
other threads. Mainly, it determines when a thread writes a value to a field, at what point the new value of 
that field can be visible to other threads. I discuss more about the visibility aspect of the JMM when I discuss 
locks, synchronization, and volatile variables later in this chapter. For completeness, the following are some 
of the visibility rules:

•	 When a thread reads the value of a field for the first time, it will read either the initial 
value of the field or some value that was written to that field by some other thread.

•	 A write to a volatile variable is always written to the main memory. A read on a 
volatile variable is always read from the main memory. That is, a volatile variable 
is never cached in the working memory of a thread. In effect, any write to a volatile 
variable is flushed to the main memory, immediately making the new value visible to 
other threads.

•	 When a thread terminates, the working memory of the thread is written to the main 
memory immediately. That is, after a thread terminates, all variables’ values visible 
only to the terminated thread are made visible to all threads.

•	 When a thread enters a synchronized block, that thread reloads the values of all 
variables in its working memory. When a thread leaves a synchronized block,  
it writes all variables values from its working memory to the main memory.

Ordering
The JMM describes in what order actions are performed within a thread and among threads. It guarantees 
that all actions performed within a thread are ordered. Actions in different threads are not guaranteed to be 
performed in any order. You may achieve some ordering while working with multiple threads by using the 
synchronization technique described later in this chapter.



Chapter 6 ■ threads

237

 ■ Tip  each thread in a Java program uses two kinds of memory: working memory and main memory.  
a thread cannot access the working memory of another thread. Main memory is shared among the threads. 
threads communicate with each other using the main memory. every thread has its own stack, which is used 
to store local variables.

Object’s Monitor and Threads Synchronization
In a multi-threaded program, a section of code that may have undesirable effects on the outcome of the 
program if executed by multiple threads concurrently is called a critical section. Often, the undesirable effects 
result from the concurrent use of a resource by multiple threads in the critical section. It is necessary to control 
the access to a critical section in a program so only one thread can execute the critical section at a time.

In a Java program, a critical section can be a block of statements or a method. Java has no built-in 
mechanism to identify a critical section in a program. However, Java has many built-in constructs that allow 
programmers to declare a critical section, and to control and coordinate access to it. It is the programmer’s 
responsibility to identify critical sections in a program and control the access to those critical sections by 
multiple threads. Controlling and coordinating the access to a critical section by multiple threads is  
known as thread synchronization. Thread synchronization is always a challenging task when writing a  
multi-threaded program. In Listing 6-5, the updateBalance() and monitorBalance() methods are critical 
sections and you must synchronize the threads’ access to these two methods to get a consistent output. Two 
kinds of thread synchronizations are built into the Java programming language:

•	 Mutual exclusion synchronization

•	 Conditional synchronization

In mutual exclusion synchronization, only one thread is allowed to have access to a section of code at 
a point in time. Listing 6-5 is an example of a program where mutual exclusion synchronization is needed 
so that only one thread can execute updateBalance() and monitorBalance() at a point in time. In this case, 
you can think of the mutual exclusion as an exclusive access to the balance variable by a thread.

The conditional synchronization allows multiple threads to work together to achieve a result.  
For example, consider a multi-threaded program to solve a producer/consumer problem. There are two 
threads in a program: one thread produces data (the producer thread) and another thread consumes the 
data (the consumer thread). The consumer thread must wait until the producer thread produces data and 
makes it available for consuming. The producer thread must notify the consumer thread when it produces 
data so the consumer thread can consume it. In other words, producer and consumer threads must 
coordinate/cooperate with each other to accomplish the task. During conditional synchronization,  
mutual exclusion synchronization may also be needed. Suppose the producer thread produces data one byte 
at a time and puts the data into a buffer whose capacity is also one byte. The consumer thread consumes 
data from the same buffer. In this case, only one of the threads should have access to the buffer at a time  
(a mutual exclusion). If the buffer is full, the producer thread must wait for the consumer thread to empty 
the buffer; if the buffer is empty, the consumer thread must wait for the producer thread to produce a byte of 
data and put it into the buffer (a conditional synchronization).

The mutual exclusion synchronization is achieved through a lock. A lock supports two operations: 
acquire and release. A thread that wants exclusive access to a resource must acquire the lock associated 
with that resource. As long as a thread possesses the lock to a resource, other threads cannot acquire the 
same lock. Once the thread that possesses the lock is finished with the resource, it releases the lock so 
another thread can acquire it.



Chapter 6 ■ threads

238

The conditional synchronization is achieved through condition variables and three operations: wait, 
signal, and broadcast. Condition variables define the conditions on which threads are synchronized.  
The wait operation makes a thread wait on a condition to become true so it can proceed. The signal 
operation wakes up one of the threads that was waiting on the condition variables. The broadcast operation 
wakes up all threads that were waiting on the condition variables. Note that the difference between the 
signal operation and broadcast operation is that the former wakes up only one waiting thread, whereas the 
latter wakes up all waiting threads.

A monitor is a programming construct that has a lock, condition variables, and associated operations on 
them. Thread synchronization in a Java program is achieved using monitors. Every object in a Java program 
has an associated monitor.

A critical section in a Java program is defined with respect to an object’s monitor. A thread must acquire the 
object’s monitor before it can start executing the piece of code declared as a critical section. The synchronized 
keyword is used to declare a critical section. There are two ways to use the synchronized keyword:

•	 To declare a method as a critical section

•	 To declare a block of statements as a critical section

You can declare a method as a critical section by using the keyword synchronized before the method’s 
return type, as shown:

public class CriticalSection {
    public synchronized void someMethod_1() {
        // Method code goes here  
    }

    public static synchronized void someMethod_2() {
        // Method code goes here  
    }
}

 ■ Tip  You can declare both an instance method and a static method as synchronized. a constructor cannot 
be declared as synchronized. a constructor is called only once by only one thread, which is creating the object. 
so it makes no sense to synchronize access to a constructor.

In the case of a synchronized instance method, the entire method is a critical section and it is associated 
with the monitor of the object for which this method is executed. That is, a thread must acquire the object’s 
monitor lock before executing the code inside a synchronized instance method of that object. For example,

// Create an object called cs1
CriticalSection cs1 = new CriticalSection();

// Execute the synchronized instance method. Before this method execution starts, the thread
// that is executing this statement must acquire the monitor lock of the cs1 object
cs1.someMethod_1();



Chapter 6 ■ threads

239

In case of a synchronized static method, the entire method is a critical section and it is associated 
with the class object that represents that class. That is, a thread must acquire the class object’s monitor lock 
before executing the code inside a synchronized static method of that class. For example,

// Execute the synchronized static method. Before this method execution starts, the thread that
// is executing this statement must acquire the monitor lock of the CriticalSection.class object  
CriticalSection.someMethod_2();

The syntax for declaring a block of code as a critical section is as follows:

synchronized(<objectReference>) {
    // one or more statements of the critical section  
}

The <objectReference> is the reference of the object whose monitor lock will be used to synchronize 
the access to the critical section. This syntax is used to define part of a method body as a critical section. 
This way, a thread needs to acquire the object’s monitor lock only, while executing a smaller part of the 
method’s code, which is declared as a critical section. Other threads can still execute other parts of the body 
of the method concurrently. Additionally, this method of declaring a critical section lets you declare a part 
or whole of a constructor as a critical section. Recall that you cannot use the keyword synchronized in the 
declaration part of a constructor. However, you can use it inside a constructor’s body to declare a block of 
code as synchronized. The following snippet of code illustrates the use of the keyword synchronized:

public class CriticalSection2 {
    public synchronized void someMethod10() {
        // Method code goes here. Only one thread can execute here at a time.  
    }

    public void someMethod11() {
        synchronized(this) {
            // Method code goes here. Only one thread can execute here at a time.  
        }
    }

    public void someMethod12() {
        // Some statements go here. Multiple threads can execute here at a time.  

        synchronized(this) {
            // Some statements go here. Only one thread can execute here at a time.
        }

        // Some statements go here. Multiple threads can execute here at a time.
    }

    public static synchronized void someMethod20() {
        // Method code goes here. Only one thread can execute here at a time.
    }



Chapter 6 ■ threads

240

    public static void someMethod21() {
        synchronized(CriticalSection2.class) {
            // Method code goes here. Only one thread can execute here at a time.  
        }
    }

    public static void someMethod_22() {
        // Some statements go here: section_1. Multiple threads can execute here at a time.

        synchronized(CriticalSection2.class) {
            // Some statements go here: section_2. Only one thread can execute here at a time.
        }

        // Some statements go here: section_3.  Multiple threads can execute here at a time  
    }
}

The CriticalSection2 class has six methods: three instance methods and three class methods. The 
someMethod10() method is synchronized as the synchronized keyword is used in the method declaration. 
The someMethod11() method differs from the someMethod10() method only in the way it uses the 
synchronized keyword. It puts the entire method body inside the synchronized keyword as a block, which 
has practically the same effect as declaring the method synchronized. The method someMethod12() is 
different. It declares only part of the method’s body as a synchronized block. There can be more than one 
thread that can execute someMethod12() concurrently. However, only one of them can be executing inside 
the synchronized block at one point in time. Other sets of methods—someMethod20(), someMethod21() and 
someMethod22()—are class methods, and they will behave the same way, except that class’s object monitor 
will be used to achieve the thread synchronization.

The process of acquiring and releasing an object’s monitor lock is handled by the JVM. The only thing 
you need to do is declare a method (or a block) as synchronized. Before entering a synchronized method or 
block, the thread acquires the monitor lock of the object. On exiting the synchronized method or block, it 
releases the object’s monitor lock. A thread that has acquired an object’s monitor lock can acquire it again as 
many times as it wants. However, it must release the object’s monitor lock as many times as it had acquired it 
in order for another thread to acquire the same object’s monitor lock. Let’s consider the following code for a 
MultiLocks class:

public class MultiLocks {
    public synchronized void method1() {
        // Some statements go here  

        this.method2();

        // Some statements go here  
    }

    public synchronized void method2() {
        // Some statements go here  
    }

    public static synchronized void method3() {
        // Some statements go here  



Chapter 6 ■ threads

241

        MultiLocks.method4();

        // Some statements go here  
    }

    public static synchronized void method4() {
        // Some statements go here  
    }
}

The MultiLocks class has four methods and all of them are synchronized. Two of them are instance 
methods, which are synchronized using the reference of the object on which the method call will be made. 
Two of them are class methods, which are synchronized using the reference of the class object of the 
MultiLocks class. If a thread wants to execute method1() or method2(), it must first acquire the monitor lock 
of the object on which the method is called. You are calling method2() from inside the method method1(). 
Since a thread that is executing method1() must already have acquired the object’s monitor lock and a call 
to method2() requires the acquisition of the same lock, that thread will reacquire the same object’s monitor 
lock automatically when it executes method2() from inside method1() without competing with other threads 
to acquire the object’s monitor lock.

Therefore, when a thread executes method2() from inside method1(), it will have acquired the object’s 
monitor lock twice. When it exits method2(), it will release the lock once; when it exits method1(), it will 
release the lock the second time; and then the object’s monitor lock will be available for other threads for 
acquisition. The same argument applies to the call to method4() from inside method3() except that, in 
this case, the MultiLocks class object’s monitor lock is involved in the synchronization. Consider calling 
method3() from method1(), like so:

public class MultiLocks {
    public synchronized void method1() {
        // Some statements go here  

        this.method2();    
        MultiLocks.method3();

        // Some statements go here  
    }

    // Rest of the code remains the same as shown before  
}

Suppose you call method1(), like so:

MultiLocks ml = new MultiLocks();
ml.method1();

When ml.method1()is executed, the executing thread must acquire the monitor lock of the object ml. 
However, the executing thread must acquire the monitor lock of the MultiLocks.class object to execute the 
MultiLocks.method3() method. Note that ml and MultiLocks.class are two different objects. The thread 
that wants to execute the MultiLocks.method3() method from the method1() method must possess both 
objects’ monitor locks at the same time.



Chapter 6 ■ threads

242

You can apply the same arguments to work with synchronized blocks. For example, you can have a 
snippet of code like this

synchronized (objectReference) {    
    // Trying to synchronize again on the same object is ok  
    synchronized(objectReference) {
        // Some statements go here  
    }
}

It is time to take a deeper look into the workings of threads synchronization using an object’s monitor. 
Figure 6-6 depicts how multiple threads can use an object’s monitor.

I use a doctor-patient analogy while discussing threads synchronization. Suppose a doctor has a clinic 
to treat patients. We know that it is very important to allow only one patient access to the doctor at a time. 
Otherwise, the doctor may mix up one patient’s symptoms with another patient’s symptoms; a patient with 
fever may get a prescription for a headache! Therefore, we will assume that only one patient can have access 
to the doctor at any point in time. It is the same assumption that only one thread (patient) can have access to 
an object’s monitor (doctor) at a time.

Any patient who wants an access to the doctor must sign in and wait in the waiting room. Similarly, 
each object monitor has an entry set (waiting room for newcomers) and any thread that wants to acquire 
the object’s monitor lock must enter the entry set first. If the patient signs in, he may get access to the doctor 
immediately, if the doctor is not treating a patient and there were no patients waiting for his turn in the 
waiting room. Similarly, if the entry set of an object’s monitor is empty and there is no other thread that 
possesses the object’s monitor lock, the thread entering the entry set acquires the object’s monitor lock 
immediately. However, if there were patients waiting in the waiting room or one being treated by the doctor, 
the patient who signs in is blocked and he must wait for the doctor to become available again. Similarly, if a 
thread enters the entry set, and other threads are already blocked in the entry set, or another thread already 
possesses the object’s monitor lock, the thread that just signed in is said to be blocked and must wait in the 
entry set.



Chapter 6 ■ threads

243

A thread entering the entry set is shown by the arrow labeled Enter. A thread itself is shown in  
Figure 6-6 using a circle. A circle with the text B shows a thread that is blocked in the entry set. A circle with 
the text R shows a thread that has acquired the object’s monitor.

What happens to the threads that are blocked in the entry set? When do they get a chance to acquire 
the object’s monitor? You can think about the patients blocked in the waiting room and getting their turn 
to be treated by the doctor. Many factors decide which patient will be treated next. First, the patient being 
treated must free the doctor before another patient can have access to the doctor. In Java, the thread that has 
the ownership of the object’s monitor must release the object’s monitor before any threads that are blocked 
in the entry set can have the ownership of the object’s monitor. A patient may free the doctor for one of two 
reasons:

•	 The patient is done with his treatment and he is ready to go home. This is a 
straightforward case of a patient freeing the doctor after his treatment is over.

•	 A patient is in the middle of his treatment. However, he must wait for some time 
in order for the doctor to resume his treatment. Let’s assume that the clinic has a 
special waiting room (separate from the one where patients who just signed in wait) 
for those patients who are in the middle of their treatment. This case needs some 
explanation. Let’s say that the doctor is an eye specialist and he has some patients 
in his clinic. The patient who is being treated needs an eye examination for which 
his pupils must be dilated first. It takes about 30 minutes after the patient receives 
eye drops for full pupil dilation, which is required for the examination. Should the 
doctor be waiting for 30 minutes for the patient’s pupils to dilate? Should this patient 
release the doctor for 30 minutes and let other patient have access to the doctor? 
You would agree that if doctor’s time can be used to treat other patients while this 

Entry set 

Wait set Object’s monitor 

A blocked thread 

A running thread (owns the object’s monitor)

A waiting thread

Enter

W

W

W

W

B

B

B

B

B

Acquire

Acquire

Release and wait

R

R

Release and exit

Figure 6-6. Multiple threads using an object’s monitor



Chapter 6 ■ threads

244

patient’s pupils are being dilated, it is fine for this patient to release the doctor. What 
should happen when this patient’s pupils are dilated, however, and the doctor is still 
busy treating another patient? The doctor cannot leave any patient in the middle 
of treatment. Therefore, the patient who released the doctor and waited for some 
condition to be true (here dilation process to complete) must wait until doctor is 
free again. I explain this issue more later in this chapter and I try to correlate this 
situation with threads and the object’s monitor lock.

I must discuss another issue in the context of the doctor-patient example before I can compare this 
with the monitor-threads case. When the doctor is free and only one patient is waiting to get access to him, 
there is no problem. The sole patient waiting for the doctor will get access to him immediately. However, 
what happens when the doctor becomes available and there is more than one patient waiting to get access 
to him? Which one of the waiting patients should get access to the doctor first? Should it be the patient who 
came first (First In, First Out or FIFO)? Should it be the patient who came in last (Last In, First Out or LIFO)? 
Should it be the patient who needs the least (or the most) amount of time for his treatment? Should it be 
the patient who is in the most serious condition? The answer depends on the policy followed by the clinic 
management.

Similar to a patient in the doctor-patient example, a thread can also release an object’s monitor lock for 
two reasons:

•	 At this time, the thread has completed the work for which it had acquired the object’s 
monitor lock. The arrow labeled “Release and Exit” in Figure 6-6 indicates this 
scenario in the diagram. When a thread simply exits a synchronized method/block, it 
releases the object’s monitor lock it had acquired.

•	 The thread is in the middle of a task and it needs to wait for some condition to be 
true to complete its remaining task. Let’s consider the producer/consumer problem. 
Suppose the producer acquires the buffer object’s monitor lock and wants to write 
some data into the buffer. However, it finds that the buffer is full and the consumer 
must consume the data and make the buffer empty before it can write to it. In this 
case, the producer must release the buffer object’s monitor lock and wait until 
the consumer acquires the lock and empties the buffer. The same logic applies for 
the consumer when it acquires the buffer’s monitor lock and finds that buffer is 
empty. At that time, the consumer must release the lock and wait until the producer 
produces some data. This kind of temporarily releasing of the object’s monitor 
lock and waiting for some condition to occur is shown in the diagram labeled as 
the “Release and Wait” arrow. An object can have multiple threads that can be in 
“Release and Wait” state at the same time. All threads that have released the object’s 
monitor lock and are waiting for some conditions to occur are put in a set called a 
wait set.

How is a thread placed in the wait set? Note that a thread can be placed in the wait set of an object 
monitor only if it once acquired the object’s monitor lock. Once a thread has acquired the object’s monitor 
lock, it must call the wait() method of the object in order to place itself into the wait set. This means a thread 
must always call the wait() method from inside a synchronized method or a block. The wait() method is 
defined in the java.lang.Object class and it is declared final; that is, no other class in Java can override this 
method. You must consider the following two rules before you call the wait() method of an object.

Rule #1
The call to the wait() method must be placed inside a synchronized method (static or non-static) or a 
synchronized block.



Chapter 6 ■ threads

245

Rule #2
The wait() method must be called on the object whose monitor the current thread has acquired. It throws a 
java.lang.InterruptedException. The code that calls this method must handle this exception. The wait() 
method throws an IllegalMonitorStateException when the current thread is not the owner of the object’s 
monitor. The following snippet of code does not place the wait() method call inside a try-catch to keep 
the code simple and readable. For example, inside a synchronized non-static method, the call to the wait() 
method may look like the following:

public class WaitMethodCall {
    // Object that is used to synchronize a block  
    private Object objectRef = new Object();

    public synchronized void someMethod_1() {
        // The thread running here has already acquired the monitor lock on
        // the object represented by the reference this because it is a
        // synchronized non-static method

        // other statements go here  

        while (some condition is true) {
            // It is ok to call the wait() method on this, because the
            // current thread possesses monitor lock on this  
            this.wait();
        }
        // other statements go here  
    }

    public static synchronized void someMethod_2() {
        // The thread executing here has already acquired the monitor lock on
        // the class object represented by the WaitMethodCall.class reference
        // because it is a synchronized static method  

        while (some condition is true) {
            // It is ok to call the wait() method on WaitMethodCall.class
            // because the current thread possesses monitor lock on
            // WaitMethodCall.class object  
            WaitMethodCall.class.wait();
        }
        // other statements go here  
    }

    public void someMethod_3() {
        // other statements go here  

        synchronized(objectRef) {
            // Current thread possesses monitor lock of objectRef  

            while (some condition is true) {
                // It is ok to call the wait() method on objectRef because
                // the current thread possesses monitor lock on objectRef  



Chapter 6 ■ threads

246

                objectRef.wait();
            }
        }    
        // other statements go here  
    }
}

Note that objectRef is an instance variable and it is of the type java.lang.Object. Its only use is to 
synchronize threads’ access to a block inside the someMethod_3() method. Since it is declared an instance 
variable, all threads calling someMethod_3() will use its monitor to execute the synchronized block. A 
common mistake made by beginners is to declare objectRef as a local variable inside a method and use it to 
in a synchronized block. The following snippet of code shows such a mistake:

public void wrongSynchronizationMethod {
    // This objectRef is created every time a thread calls this method  
    Object objectRef = new Object();

    // It is a blunder to use objectRef for synchronization below  
    synchronized(objectRef) {
        // In fact, this block works as if there is no synchronization, because every
        // thread  creates a new objectRef and acquires its monitor lock immediately.  
    }
}

With this snippet of code in mind, you must use an object reference that is common to all threads to 
synchronize access to a block.

Let’s get back to the question of which patient will get access to the doctor when he becomes available 
again. Will it be a patient from the waiting room who is waiting after signing in or a patient from another 
waiting room who was waiting in the middle of his treatment? Before you answer this question, let’s make it 
clear that there is a difference between the patients in the waiting room who are waiting after signing in and 
the patients waiting for some condition (e.g., dilation to complete) to occur in another waiting room. After 
signing in, patients wait on the availability of the doctor, whereas patients in the middle of their treatments 
wait on a particular condition to occur. For patients in the second category, a particular condition must 
hold before they can seek access to the doctor, whereas patients in the first category are ready to grab access 
to the doctor as soon as possible. Therefore, someone must notify a patient in the second category that a 
particular condition has occurred and it is time for him to seek access to the doctor again to continue his 
treatment. Let’s assume that this notification must come from a patient being currently treated by the doctor. 
That is, the patient who currently has access to the doctor notifies the patients waiting in the middle of 
their treatments to get ready to gain access to the doctor again. Note that it is just a notification that some 
condition has occurred and it is delivered only to the patients waiting in the middle of their treatments. 
Whether the patient in the middle of his treatment will get access to the doctor right after the current 
patient is done with the doctor is not guaranteed. It only guarantees that the condition on which a patient 
was waiting holds at the time of notification and the waiting patient may try to get access to the doctor to 
continue his treatment. Let’s correlate this example to monitor-threads example.

The threads in the entry set are blocked and they are ready to grab access to the monitor as soon as 
possible. The threads in the wait set are waiting for some condition to occur. A thread that has ownership of 
the monitor must notify the threads waiting in the wait set about the fulfillment of the conditions on which 
they are waiting. In Java, the notification is made by calling the notify() and notifyAll() methods of the 
Object class. Like the wait() method, the notify() and notifyAll() methods are also declared final. 
Like the wait() method, these two methods must be called by a thread using an object whose monitor 



Chapter 6 ■ threads

247

has already been acquired by the thread. If a thread calls these methods on an object before acquiring the 
object’s monitor, an IllegalMonitorStateException is thrown. The call to the notify() method wakes up 
one thread from the wait set, whereas the call to the notifyAll() method wakes up all threads in the wait 
set. In case of the notify() method call, the thread that is woken up is chosen arbitrarily. Note that when 
a thread calls the notify() or notifyAll() method, it still holds the lock on the object’s monitor. Threads 
in the wait set are only woken up by the notify() or notifyAll() call. They do not acquire the object’s 
monitor lock immediately. When the thread that called the notify() or notifyAll() method releases 
the object’s monitor lock by “Release and Exit” or “Release and Wait,” the woken up threads in the wait 
set compete with the threads in the entry set to acquire the object’s monitor again. Therefore, a call to the 
notify() and notifyAll() serves only as a wakeup call for threads in the wait set and it does not guarantee 
access to the object’s monitor.

 ■ Tip  there is no way to wake up a specific thread in the wait set. the call to notify() chooses a thread 
arbitrarily, whereas the call to notifyAll() wakes up all threads. Use notifyAll() when you are in doubt 
about which method to use.

The following snippet of code shows pseudocode for using the notifyAll() method along with the wait() 
method. You may observe that the call to the wait() and notify() methods are made on the same object, 
because if objectRef.wait() puts a thread in the wait set of the objectRef object, the objectRef.notify() or 
objectRef.notifyAll() method will wake that thread from the wait set of the objectRef object.

public class WaitAndNotifyMethodCall {
    private Object objectRef = new Object();

    public synchronized void someMethod_1() {
        while (some condition is true) {
            this.wait();
        }

        if (some other condition is true) {
            // Notify all waiting threads      
            this.notifyAll();
        }
    }

    public static synchronized void someMethod_2() {
        while (some condition is true) {
            WaitAndNotifyMethodCall.class.wait();
        }

        if (some other condition is true) {
            // Notify all waiting threads  
            WaitAndNotifyMethodCall.class.notifyAll();
        }
    }



Chapter 6 ■ threads

248

    public void someMethod_3() {
        synchronized(objectRef) {
            while (some condition is true) {
                objectRef.wait();
            }

            if (some other condition is true) {
                // Notify all waiting threads  
                objectRef.notifyAll();
            }
        }    
    }
}

Once a thread is woken up in the wait set, it has to compete with the threads in the entry set to acquire 
the monitor lock of the object. After a thread is woken up in the wait set and acquires the object’s monitor 
lock, it has choices: to do some work and release the lock by invoking the wait() method (release and 
wait) again, or release the lock by exiting the synchronized section (release and exit). One important point 
to remember about the call to the wait() method is that, typically, a call to the wait() method is placed 
inside a loop. Here is the reason why it is necessary to do so. A thread looks for a condition to hold. It waits 
by calling the wait() method and placing itself in the wait set if that condition does not hold. The thread 
wakes up when it is notified by another thread, which calls the notify() or notifyAll() method. When the 
thread that woke up acquires the lock, the condition that held at the time of notification may not still hold. 
Therefore, it is necessary to check for the condition again, when the thread wakes up and acquires the lock, 
to make sure the condition it was looking for is true, and it can continue its work. For example, consider the 
producer/consumer problem. Suppose there is one producer and many consumers. Suppose a consumer 
calls the wait() method as follows:

if (buffer is empty) {
    buffer.wait();
}

buffer.consume();

Suppose the buffer is empty and all consumers are waiting in the wait set. The producer produces 
some data and it calls the buffer.notifyAll() method to wake up all consumer threads in the wait set. 
All consumer threads wake up; however, only one will get a chance to acquire the monitor lock next. The 
first one acquires the lock and executes the buffer.consume() method to empty the buffer. When the next 
consumer acquires the monitor lock, it will also execute the buffer.consume() statement. However, the 
consumer that woke up and acquired the lock before this one had already emptied the buffer. The logical 
mistake in the previous snippet of code is that the call to the wait() method is placed inside an if statement 
instead of inside a loop. That is, after a thread wakes up, it is not checking if the buffer contains some data or 
not, before trying to consume the data. The corrected snippet of code is the following:

while (buffer is empty) {
    buffer.wait();
}

buffer.consume();



Chapter 6 ■ threads

249

I answer one more question before you can see this big discussion about thread synchronization in 
action. The question is, “Which thread gets a chance to acquire the object’s monitor lock when there are 
some blocked threads in the entry set and some woken up threads in the wait set?” Note that the threads 
that are in the wait set do not compete for the object’s monitor until they are woken up by the notify() 
or notifyAll() call. The answer to this question is that it depends on the scheduler’s algorithm of the 
operating system.

Listing 6-6 contains the code for the BalanceUpdateSynchronized class, which is a modified version of 
the BalanceUpdate class listed in Listing 6-5. The only difference between the two classes is the use of the 
synchronized keyword to declare the updateBalance() and monitorBalance() methods in the new class, 
so only one thread can enter one of the methods at a time. When you run the new class, you will not see any 
output because the monitorBalance()method will never see the value of the balance variable other than 
100. You will need to terminate the program manually, for example, using Ctrl+C on Windows.

Listing 6-6. Synchronized Balance Update

// BalanceUpdateSynchronized.java
package com.jdojo.threads;

public class BalanceUpdateSynchronized {
    // Initialize balance to 100  
    private static int balance = 100;

    public static void main(String[] args) {
        startBalanceUpdateThread(); // Thread to update the balance value  
        startBalanceMonitorThread(); // Thread to monitor the balance value  
    }

    public static synchronized void updateBalance() {
        // Add 10 to balance and subtract 10 from balance  
        balance = balance + 10;
        balance = balance - 10;
    }

    public static synchronized void monitorBalance() {
        int b = balance;
        if (b != 100) {
            System.out.println("Balance changed: " + b);
            System.exit(1); // Exit the program  
        }
    }

    public static void startBalanceUpdateThread() {
        // Start a new thread that calls the updateBalance() method in an infinite loop  
        Thread t = new Thread(() -> {
            while (true) {
                updateBalance();
            }
        });
        t.start();
    }



Chapter 6 ■ threads

250

    public static void startBalanceMonitorThread() {
        // Start a thread that monitors the balance value  
        Thread t = new Thread(() -> {
            while (true) {
                monitorBalance();
            }
        });
        t.start();
    }
}

I show examples of using the wait() and notify() methods in the next section, which discusses 
the producer/consumer problem. The wait() method in the Object class is overloaded and it has three 
versions:

•	 wait(): The thread waits in the object’s wait set until another thread calls the 
notify() or notifyAll() method on the same object.

•	 wait(long timeinMillis): The thread waits in the object’s wait set until another 
thread calls the notify() or notifyAll() method on the same object or the 
specified amount of timeinMillis time has elapsed.

•	 wait(long timeinMillis, long timeinNanos): This version lets you specify time 
in milliseconds and nanoseconds.

The Producer/Consumer Synchronization Problem
The producer/consumer is a typical thread synchronization problem that uses the wait() and notify() 
methods. I keep it simple. The problem statement goes like this:

There are four classes: Buffer, Producer, Consumer, and ProducerConsumerTest. An object 
of the Buffer class will have an integer data element that will be produced by the producer 
and consumed by the consumer. Therefore, in this example, a Buffer object can hold only 
one integer at a point in time. Your goal is to synchronize the access to the buffer, so the 
Producer produces a new data element only when the Buffer is empty and the Consumer 
consumes the buffer’s data only when it is available. The ProducerConsumerTest class is 
used to test the program.

Listing 6-7, Listing 6-8, Listing 6-9, and Listing 6-10 contain the code for the four classes.

Listing 6-7. A Buffer Class for Producer/Consumer Synchronization

// Buffer.java
package com.jdojo.threads;

public class Buffer {
    private int data;
    private boolean empty;



Chapter 6 ■ threads

251

    public Buffer() {
        this.empty = true;
    }

    public synchronized void produce(int newData) {
        // Wait until the buffer is empty  
        while (!this.empty) {
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        // Store the new data produced by the producer  
        this.data = newData;

        // Set the empty flag to false, so the consumer may consume the data  
        this.empty = false;

        // Notify the waiting consumer in the wait set  
        this.notify();

        System.out.println("Produced: " + newData);
    }

    public synchronized int consume() {
        // Wait until the buffer gets some data  
        while (this.empty) {
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        // Set the empty flag to true, so that the producer can store new data  
        this.empty = true;

        // Notify the waiting producer in the wait set  
        this.notify();

        System.out.println("Consumed: " + data);

        return data;
    }
}



Chapter 6 ■ threads

252

Listing 6-8. A Producer Class for Producer/Consumer Synchronization

// Producer.java
package com.jdojo.threads;

import java.util.Random;

public class Producer extends Thread {
    private final Buffer buffer;

    public Producer(Buffer buffer) {
        this.buffer = buffer;
    }

    @Override
    public void run() {
        Random rand = new Random();
        while (true) {
            // Generate a random integer and store it in the buffer  
            int n = rand.nextInt();
            buffer.produce(n);
        }
    }
}

Listing 6-9. A Consumer Class for Producer/Consumer Synchronization

// Consumer.java
package com.jdojo.threads;

public class Consumer extends Thread {
    private final Buffer buffer;

    public Consumer(Buffer buffer) {
        this.buffer = buffer;
    }

    @Override
    public void run() {
        int data;
        while (true) {
            // Consume the data from the buffer. We are not using the consumed
            // data for any other purpose here  
            data = buffer.consume();
        }
    }
}



Chapter 6 ■ threads

253

Listing 6-10. A ProducerConsumerTest Class to Test the Producer/Consumer Synchronization

// ProducerConsumerTest.java
package com.jdojo.threads;

public class ProducerConsumerTest {
    public static void main(String[] args) {
        // Create Buffer, Producer and Consumer objects  
        Buffer buffer = new Buffer();
        Producer p = new Producer(buffer);
        Consumer c = new Consumer(buffer);

        // Start the producer and consumer threads  
        p.start();
        c.start();
    }
}

Produced: 1872733184
Consumed: 1872733184
...

When you run the ProducerConsumerTest class, you may get different output. However, your output will 
look similar in the sense that two lines printed will be always of the following form, where XXX indicates an 
integer:

Produced: XXX
Consumed: XXX

In this example, the Buffer class needs some explanation. It has two instance variables:

•	 private int data

•	 private boolean empty

The producer uses the data instance variable to store the new data. The consumer reads it. The empty 
instance variable is used as an indicator whether the buffer is empty or not. In the constructor, it is initialized 
to true, indicating that the new buffer is empty.

It has two synchronized methods: produce() and consume(). Both methods are declared synchronized 
because the goal is to protect the Buffer object to be used by multiple threads concurrently. If the producer 
is producing new data by calling the produce() method, the consumer must wait to consume the data until 
the producer is done and vice versa. The producer thread calls the produce() method, passing the newly 
generated data to it. However, before the new data is stored in the data instance variable, the producer 
makes sure that the buffer is empty. If the buffer is not empty, it calls the this.wait() method to place itself 
in the wait set of the buffer object until the consumer notifies it using the this.notify() method inside the 
consume() method.

Once the producer thread detects that the buffer is empty, it stores the new data in the data instance 
variable, sets the empty flag to false, and calls this.notify() to wake up the consumer thread in the wait 
set to consume the data. At the end, it also prints a message on the console that data has been produced.

The consume() method of the Buffer class is similar to its counterpart, the produce() method. The 
only difference is that the consumer-thread calls this method and it performs logic that’s opposite of the 
produce() method. For example, it checks if the buffer is not empty before consuming the data.



Chapter 6 ■ threads

254

The Producer and Consumer classes inherit from the Thread class. They override the run() method of 
the Thread class. Both of them accept an object of the Buffer class in their constructor to use it in their run() 
method. The Producer class generates a random integer in its run() method inside an infinite loop and 
keeps writing it to the buffer. The Consumer class keeps consuming data from the buffer in an infinite loop.

The ProducerConsumerTest class creates all three objects (a buffer, a producer, and a consumer) and 
starts the producer and consumer threads. Since both classes (Producer and Consumer) use infinite loops 
inside the run() method, you have to terminate the program forcibly, such as by pressing Ctrl+C, if you are 
running this program from a Windows command prompt.

Which Thread Is Executing?
The Thread class has some useful static methods; one of them is the currentThread() method. It returns the 
reference of the Thread object that calls this method. Consider the following statement:

Thread t = Thread.currentThread();

The statement will assign the reference of the thread object that executes this statement to the variable 
t. Note that a statement in Java can be executed by different threads at different points in time during the 
execution of a program. Therefore, t may be assigned the reference of a different Thread object when the 
statement is executed at different times in the same program. Listing 6-11 demonstrates the use of the 
currentThread() method. You may get the same text in the output, but in a different order.

Listing 6-11. Using the Thread.currentThread() Method

// CurrentThread.java
package com.jdojo.threads;

public class CurrentThread extends Thread {
    public CurrentThread(String name) {
        super(name);
    }

    @Override
    public void run() {
        Thread t = Thread.currentThread();         
        String threadName = t.getName();
        System.out.println("Inside run() method: " + threadName);
    }

    public static void main(String[] args) {
        CurrentThread ct1 = new CurrentThread("Thread #1");
        CurrentThread ct2 = new CurrentThread("Thread #2");
        ct1.start();
        ct2.start();

        // Let’s see which thread is executing the following statement
        Thread t = Thread.currentThread();
        String threadName = t.getName();
        System.out.println("Inside main() method: " + threadName);
    }
}



Chapter 6 ■ threads

255

Inside main() method: main
Inside run() method: Thread #1
Inside run() method: Thread #2

Two different threads call the Thread.currentThread() method inside the run() method of the 
CurrentThread class. The method returns the reference of the thread executing the call. The program simply 
prints the name of the thread that is executing. It is interesting to note that when you called the Thread.
currentThread() method inside the main() method, a thread named main executed the code. When you run 
a class, the JVM starts a thread named main, which is responsible for executing the main() method.

Letting a Thread Sleep
The Thread class contains a static sleep() method, which makes a thread sleep for a specified duration. 
It accepts a timeout as an argument. You can specify the timeout in milliseconds, milliseconds, and 
nanoseconds. The thread that executes this method sleeps for the specified amount of time. A sleeping 
thread is not scheduled by the operating system scheduler to receive the CPU time. If a thread has the 
ownership of an object’s monitor lock before it goes to sleep, it continues to hold those monitor locks.  
The sleep() method may throw an InterruptedException and your code should be ready to handle it. 
Listing 6-12 demonstrates the use of the sleep() method.

Listing 6-12. A Sleeping Thread

// LetMeSleep.java
package com.jdojo.threads;

public class LetMeSleep {
    public static void main(String[] args) {
        try {
            System.out.println("I am going to sleep for 5 seconds.");
            Thread.sleep(5000); // The "main" thread will sleep  
            System.out.println("I woke up.");
        } catch (InterruptedException e) {
            System.out.println("Someone interrupted me in my sleep.");
        }
        System.out.println("I am done.");
    }
}

I am going to sleep for 5 seconds.
I woke up.
I am done.



Chapter 6 ■ threads

256

 ■ Tip  the TimeUnit enum in the java.util.concurrent package represents a measurement of time in 
various units such as milliseconds, seconds, minutes, hours, days, etc. It has some convenience methods. One 
of them is the sleep() method. the Thread.sleep() method accepts time in milliseconds. If you want a thread 
to sleep for five seconds, you need to call this method as Thread.sleep(5000) by converting the seconds into 
milliseconds. You can use the sleep() method of TimeUnit instead to avoid the time duration conversion, like so:

TimeUnit.SECONDS.sleep(5); // Same as Thread.sleep(5000);

I Will Join You in Heaven
I can rephrase this section heading as “I will wait until you die.” That’s right. A thread can wait for another 
thread to die (or terminate). Suppose there are two threads, t1 and t2. If the thread t1 executes t2.join(), 
thread t1 starts waiting until thread t2 is terminated. In other words, the call t2.join() blocks until t2 
terminates. Using the join() method in a program is useful if one of the threads cannot proceed until 
another thread has finished executing.

Listing 6-13 has an example where you want to print a message on the standard output when the 
program has finished executing. The message to print is "We are done."

Listing 6-13. An Incorrect Way of Waiting for a Thread to Terminate

// JoinWrong.java
package com.jdojo.threads;

public class JoinWrong {
    public static void main(String[] args) {
        Thread t1 = new Thread(JoinWrong::print);
        t1.start();
        System.out.println("We are done.");
    }

    public static void print() {
        for (int i = 1; i <= 5; i++) {
            try {
                System.out.println("Counter: " + i);
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}



Chapter 6 ■ threads

257

We are done.
Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5

In the main() method, a thread is created and started. The thread prints integers from 1 to 5. It sleeps 
for one second after printing an integer. In the end, the main() method prints a message. It seems that this 
program should print the numbers from 1 to 5, followed by your last message. However, if you look at the 
output, it is in the reverse order. What is wrong with this program?

The JVM starts a new thread called main that is responsible for executing the main() method of the class 
that you run. In your case, the main() method of the JoinWrong class is executed by the main thread. This 
thread will execute the following statements:

Thread t1 =  new Thread(JoinWrong::print);
t1.start();
System.out.println("We are done.");

When the t1.start() method call returns, you have one more thread running in your program 
(thread t1) in addition to the main thread. The t1 thread is responsible for printing the integers from 1 to 5, 
whereas the main thread is responsible for printing the message "We are done." Since there are two threads 
responsible for two different tasks, it is not guaranteed which task will finish first. What is the solution? You 
must make your main thread wait on the thread t1 to terminate. This can be achieved by calling the t1.
join() method inside the main() method.

Listing 6-14 contains the correct version of Listing 6-13 by using the t1.join() method call before 
printing the final message. When the main thread executes the join() method call, it waits until the t1 
thread is terminated. The join() method of the Thread class may throw an InterruptedException, and 
your code should be ready to handle it.

Listing 6-14. A Correct Way of Waiting for a Thread to Terminate

// JoinRight.java
package com.jdojo.threads;

public class JoinRight {
    public static void main(String[] args) {
        Thread t1 = new Thread(JoinRight::print);
        t1.start();

        try {
            t1.join(); // "main" thread waits until t1 is terminated  
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        System.out.println("We are done.");
    }



Chapter 6 ■ threads

258

    public static void print() {
        for (int i = 1; i <= 5; i++) {
            try {
                System.out.println("Counter: " + i);
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5
We are done.

The join() method of the Thread class is overloaded. Its other two versions accept a timeout argument. 
If you use the join() method with a timeout, the caller thread will wait until the thread on which it is called 
is terminated or the timeout has elapsed. If you replace the t1.join() statement in the JoinRight class with 
t1.join(1000), you will find that the output is not in the same order because the main thread will wait only 
for a second for the t1 thread to terminate before it prints the final message.

Can a thread join multiple threads? The answer is yes. A thread can join multiple threads like so:

t1.join(); // Join t1  
t2.join(); // Join t2  
t3.join(); // Join t3  

You should call the join() method of a thread after it has been started. If you call the join() method 
on a thread that has not been started, it returns immediately. Similarly, if you invoke the join() method on a 
thread that is already terminated, it returns immediately.

Can a thread join itself? The answer is yes and no. Technically, it is allowed for a thread to join itself. 
However, a thread should not join itself in most circumstances. In such a case, a thread waits to terminate 
itself. In other words, the thread waits forever.

// "Bad" call (not if you know what you are doing) to join. It waits forever
// until another thread interrupts it.  
Thread.currentThread().join();

If you write this statement, make sure that your program interrupts the waiting thread using some 
other threads. In such a case, the waiting thread will return from the join() method call by throwing an 
InterruptedException.



Chapter 6 ■ threads

259

Be Considerate to Others and Yield
A thread may voluntarily give up the CPU by calling the static yield() method of the Thread class. The call 
to the yield() method is a hint to the scheduler that it may pause the running thread and give the CPU 
to other threads. A thread may want to call this method only if it executes in a long loop without waiting 
or blocking. If a thread frequently waits or blocks, the yield() method call is not very useful because this 
thread does not monopolize the CPU and other threads will get the CPU time when this thread is blocked 
or waiting. It is advisable not to depend on the yield() method because it is just a hint to the scheduler. It is 
not guaranteed to give a consistent result across different platforms. A thread that calls the yield() method 
continues to hold the monitor locks. Note that there is no guarantee as to when the thread that yields will get 
the CPU time again. You may use it like so:

// The run() method of a thread class  
public void run() {
    while(true) {
        // do some processing here...  
        Thread.yield(); // Let’s yield to other threads  
    }
}

Lifecycle of a Thread
A thread is always in one of the following six states:

•	 New

•	 Runnable

•	 Blocked

•	 Waiting

•	 Timed-waiting

•	 Terminated

All these states of a thread are JVM states. They do not represent the states assigned to a thread by an 
operating system.

When a thread is created and its start() method is not yet called, it is in the new state.

Thread t = new SomeThreadClass(); // t is in the new state  

A thread that is ready to run or running is in the runnable state. In other words, a thread that is eligible 
for getting the CPU time is in a runnable state.

 ■ Tip  the JVM combines two Os-level thread states: ready-to-run and running into a state called the 
runnable state. a thread in the ready-to-run Os state means it is waiting for its turn to get the CpU time.  
a thread in the running Os state means it is running on the CpU.



Chapter 6 ■ threads

260

A thread is said to be in a blocked state if it was trying to enter (or re-enter) a synchronized method or 
block but the monitor is being used by another thread. A thread in the entry set that is waiting to acquire a 
monitor lock is in the blocked state. A thread in the wait set that is waiting to reacquire the monitor lock after 
it has been woken up is also in a blocked state.

A thread may place itself in a waiting state by calling one of the methods listed in Table 6-2. A thread 
may place itself in a timed-waiting state by calling one of the methods listed in Table 6-3. I discuss the 
parkNanos() and parkUntil() methods later in this chapter.

Table 6-3. Methods That Place a Thread in a Timed-Waiting State

Method Description

sleep() This method is in the Thread class.

wait (long millis)
wait(long millis, int nanos)

These methods are in the Object class.

join(long millis)
join(long millis, int nanos)

These methods are in the Thread class.

parkNanos (long nanos)
parkNanos (Object blocker, long nanos)

These methods are in the LockSupport class, which is in 
the java.util.concurrent.locks package.

parkUntil (long deadline)
parkUntil (Object blocker, long nanos)

These methods are in the LockSupport class, which is in 
the java.util.concurrent.locks package.

Table 6-2. Methods That Place a Thread in Waiting State

Method Description

wait() This is the wait() method of the Object class, which a thread may call if it wants to wait 
for a specific condition to hold. Recall that a thread must own the monitor’s lock of an 
object to call the wait() method on that object. Another thread must call the notify() or 
notifyAll() method on the same object in order for the waiting thread to transition to the 
runnable state.

join() This is the join() method of the Thread class. A thread that calls this method wants to wait 
until the thread on which this method is called terminates.

park() This is the park() method of the LockSupport class, which is in the java.util.concurrent.
locks package. A thread that calls this method may wait until a permit is available by calling 
the unpark() method on a thread. I cover the LockSupport class later in this chapter.

A thread that has completed its execution is said to be in the terminated state. A thread is terminated 
when it exits its run() method or its stop() method is called. A terminated thread cannot transition to any 
other state. You can use the isAlive() method of a thread after it has been started to know if it is alive or 
terminated.

You can use the getState() method of the Thread class to get the state of a thread at any time. 
This method returns one of the constants of the Thread.State enum type. Listing 6-15 and Listing 6-16 
demonstrate the transition of a thread from one state to another. The output of Listing 6-16 shows some of 
the states the thread transitions to during its lifecycle.



Chapter 6 ■ threads

261

Listing 6-15. A ThreadState Class

// ThreadState.java
package com.jdojo.threads;

public class ThreadState extends Thread {
    private boolean keepRunning = true;
    private boolean wait = false;
    private final Object syncObject;

    public ThreadState(Object syncObject) {
        this.syncObject = syncObject;
    }

    @Override
    public void run() {
        while (keepRunning) {
            synchronized (syncObject) {
                if (wait) {
                    try {
                        syncObject.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
    }

    public void setKeepRunning(boolean keepRunning) {
        this.keepRunning = keepRunning;
    }

    public void setWait(boolean wait) {
        this.wait = wait;
    }
}

Listing 6-16. A ThreadStateTest Class to Demonstrate the States of a Thread

// ThreadStateTest.java
package com.jdojo.threads;

public class ThreadStateTest {
    public static void main(String[] args) {
        Object syncObject = new Object();
        ThreadState ts = new ThreadState(syncObject);
        System.out.println("Before start()-ts.isAlive(): " + ts.isAlive());
        System.out.println("#1: " + ts.getState());



Chapter 6 ■ threads

262

        // Start the thread  
        ts.start();
        System.out.println("After start()-ts.isAlive(): " + ts.isAlive());
        System.out.println("#2: " + ts.getState());
        ts.setWait(true);

        // Make the current thread sleep, so the thread starts waiting  
        sleepNow(100);

        synchronized (syncObject) {
            System.out.println("#3: " + ts.getState());
            ts.setWait(false);

            // Wake up the waiting thread  
            syncObject.notifyAll();
        }

        // Make the current thread sleep, so ts thread wakes up  
        sleepNow(2000);
        System.out.println("#4: " + ts.getState());
        ts.setKeepRunning(false);

        // Make the current thread sleep, so the ts thread will wake up  
        sleepNow(2000);
        System.out.println("#5: " + ts.getState());
        System.out.println("At the end. ts.isAlive(): " + ts.isAlive());
    }

    public static void sleepNow(long millis) {
        try {
            Thread.currentThread().sleep(millis);
        } catch (InterruptedException e) {
        }
    }
}

Before start()-ts.isAlive(): false
#1: NEW
After start()-ts.isAlive(): true
#2: RUNNABLE
#3: WAITING
#4: RUNNABLE
#5: TERMINATED
At the end. ts.isAlive(): false



Chapter 6 ■ threads

263

Priority of a Thread
A thread has a priority. The priority is indicated by an integer between 1 and 10. A thread with the priority 
of 1 is said to have the lowest priority. A thread with the priority of 10 is said to have the highest priority. 
There are three constants defined in the Thread class to represent three different thread priorities, as listed in 
Table 6-4.

Table 6-4. Thread’s Priority Constants Defined in the Thread Class

Thread Priority Constants Integer Value

MIN_PRIORITY 1

NORM_PRIORITY 5

MAX_PRIORITY 10

The priority of a thread is a hint to the scheduler that indicates the importance (or the urgency) with 
which it should schedule the thread. The higher priority of a thread indicates that the thread is of higher 
importance and the scheduler should give priority in giving the CPU time to that thread. Note that the 
priority of a thread is just a hint to the scheduler; it is up to the scheduler to respect that hint. It is not 
recommended to depend on the thread priority for the correctness of a program. For example, if there are 
ten maximum priority threads and one minimum priority thread, that does not mean that the scheduler 
will schedule the minimum priority thread after all ten maximum priority threads have been scheduled and 
finished. This scheduling scheme will result in a thread starvation, where a lower priority thread will have to 
wait indefinitely or for a long time to get CPU time.

The setPriority() method of the Thread class sets a new priority for the thread. The getPriority() 
method returns the current priority for a thread. When a thread is created, its priority is set by default to the 
priority of the thread that creates the new thread.

Listing 6-17 demonstrates how to set and get the priority of a thread. It also demonstrates how a new 
thread gets the priority of the thread that creates it. In the example, threads t1 and t2 get the priority of the 
main thread at the time they are created.

Listing 6-17. Setting and Getting a Thread’s Priority

// ThreadPriority.java
package com.jdojo.threads;

public class ThreadPriority {
    public static void main(String[] args) {
        // Get the reference of the current thread  
        Thread t = Thread.currentThread();
        System.out.println("main Thread Priority: " + t.getPriority());

        // Thread t1 gets the same priority as the main thread at this point  
        Thread t1 = new Thread();
        System.out.println("Thread(t1) Priority: " + t1.getPriority());

        t.setPriority(Thread.MAX_PRIORITY);
        System.out.println("main Thread Priority: " + t.getPriority());

        // Thread t2 gets the same priority as main thread at this point, which is
        // Thread.MAX_PRIORITY (10)  



Chapter 6 ■ threads

264

        Thread t2 = new Thread();
        System.out.println("Thread(t2) Priority: " + t2.getPriority());

        // Change thread t2 priority to minimum  
        t2.setPriority(Thread.MIN_PRIORITY);
        System.out.println("Thread(t2) Priority: " + t2.getPriority());
    }
}

main Thread Priority: 5
Thread(t1) Priority: 5
main Thread Priority: 10
Thread(t2) Priority: 10
Thread(t2) Priority: 1

Is It a Demon or a Daemon?
A thread can be a daemon thread or a user thread. The word “daemon” is pronounced the same as “demon.” 
However, the word daemon in a thread’s context has nothing to do with a demon!

A daemon thread is a kind of a service provider thread, whereas a user thread (or non-daemon thread) 
is a thread that uses the services of daemon threads. A service provider should not exist if there is no service 
consumer. The JVM applies this logic. When the JVM detects that all threads in an application are only 
daemon threads, it exits the application. Note that if there are only daemon threads in an application, the 
JVM does not wait for those daemon threads to finish before exiting the application.

You can make a thread a daemon thread by using the setDaemon() method by passing true as an 
argument. You must call the setDaemon() method of a thread before you start the thread. Otherwise, an 
IllegalThreadStateException is thrown. You can use the isDaemon() method to check if a thread is a 
daemon thread.

 ■ Tip  the JVM starts a garbage collector thread to collect all unused object’s memory. the garbage collector 
thread is a daemon thread.

When a thread is created, its daemon property is the same as the thread that creates it. In other words, a 
new thread inherits the daemon property of its creator thread.

Listing 6-18 creates a thread and sets the thread as a daemon thread. The thread prints an integer and 
sleeps for some time in an infinite loop. At the end of the main() method, the program prints a message to 
the standard output stating that it is exiting the main() method. Since thread t is a daemon thread, the JVM 
will terminate the application when the main() method is finished executing. You can see this in the output. 
The application prints only one integer from the thread before it exits. You may get different output when 
you run this program.



Chapter 6 ■ threads

265

Listing 6-18. A Daemon Thread Example

// DaemonThread.java
package com.jdojo.threads;

public class DaemonThread {
    public static void main(String[] args) {
        Thread t = new Thread(DaemonThread::print);
        t.setDaemon(true);
        t.start();
        System.out.println("Exiting main method");
    }

    public static void print() {
        int counter = 1;
        while (true) {
            try {
                System.out.println("Counter: ^^" + counter++);
                Thread.sleep(2000); // sleep for 2 seconds  
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

Exiting main method
Counter:1

Listing 6-19 is the same program as Listing 6-18, except that it sets the thread as a non-daemon thread. 
Since this program has a non-daemon (or a user) thread, the JVM will keep running the application, even 
after the main() method finishes. You have to stop this application manually because the thread runs in an 
infinite loop.

Listing 6-19. A Non-Daemon Thread Example

// NonDaemonThread.java
package com.jdojo.threads;

public class NonDaemonThread {
    public static void main(String[] args) {
        Thread t = new Thread(NonDaemonThread::print);

        // t is already a non-daemon thread because the "main" thread that runs
        // the main() method is a non-daemon thread. You can verify it by using
        // t.isDaemon() method. It will return false. Still we will use
        // the following statement to make it clear that we want t to be
        // a non-daemon thread.  
        t.setDaemon(false);
        t.start();
        System.out.println("Exiting main method");
    }



Chapter 6 ■ threads

266

    public static void print() {
        int counter = 1;
        while (true) {
            try {
                System.out.println("Counter: " + counter++);
                Thread.sleep(2000); // sleep for 2 seconds  
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

Exiting main method
Counter: 1
Counter: 2
...

Am I Interrupted?
You can interrupt a thread that is alive by using the interrupt() method. This method invocation on a 
thread is just an indication to the thread that some other part of the program is trying to draw its attention. It 
is up to the thread how it responds to the interruption. Java implements the interruption mechanism using 
an interrupted status flag for every thread.

A thread could be in one of the two states when it is interrupted: running or blocked. If a thread is 
interrupted when it is running, its interrupted status is set by the JVM. The running thread can check its 
interrupted status by calling the Thread.interrupted() static method, which returns true if the current 
thread was interrupted. The call to the Thread.interrupted() method clears the interrupted status 
of a thread. That is, if you call this method again on the same thread and if the first call returned true, 
the subsequent calls will return false, unless the thread is interrupted after the first call but before the 
subsequent calls.

Listing 6-20 shows the code that interrupts the main thread and prints the interrupted status of the 
thread. Note that the second call to the Thread.interrupted() method returns false, as indicated in 
the output #3: false. This example also shows that a thread can interrupt itself. The main thread that is 
responsible for running the main() method is interrupting itself in this example.

Listing 6-20. A Simple Example of Interrupting a Thread

// SimpleInterrupt.java
package com.jdojo.threads;

public class SimpleInterrupt {
    public static void main(String[] args) {
        System.out.println("#1: " + Thread.interrupted());

        // Now interrupt the main thread  
        Thread.currentThread().interrupt();



Chapter 6 ■ threads

267

        // Check if it has been interrupted  
        System.out.println("#2: " + Thread.interrupted());

        // Check again if it has been interrupted  
        System.out.println("#3: " + Thread.interrupted());
    }
}

#1: false
#2: true
#3: false

Let’s look at another example of the same kind. This time, one thread will interrupt another thread. 
Listing 6-21 starts a thread that increments a counter until the thread is interrupted. At the end, the 
thread prints the value of the counter. The main() method starts the thread; it sleeps for one second to let 
the counter thread do some work; it interrupts the thread. Since the thread checks whether it has been 
interrupted or not before continuing in the while loop, it exits the loop once it is interrupted. You may get 
different output when you run this program.

Listing 6-21. A Thread Interrupting Another Thread

// SimpleInterruptAnotherThread.java
package com.jdojo.threads;

public class SimpleInterruptAnotherThread {
    public static void main(String[] args) {
        Thread t = new Thread(SimpleInterruptAnotherThread::run);
        t.start();

        try {
            // Let the main thread sleep for 1 second
            Thread.currentThread().sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        // Now interrupt the thread  
        t.interrupt();
    }

    public static void run() {
        int counter = 0;

        while (!Thread.interrupted()) {
            counter++;
        }

        System.out.println("Counter: " + counter);
    }
}



Chapter 6 ■ threads

268

Counter: 1313385352

The Thread class has a non-static isInterrupted() method that can be used to test if a thread has been 
interrupted. When you call this method, unlike the interrupted() method, the interrupted status of the 
thread is not cleared. Listing 6-22 demonstrates the difference between these methods.

Listing 6-22. Difference Between the interrupted() and isInterrupted() Methods

// SimpleIsInterrupted.java
package com.jdojo.threads;

public class SimpleIsInterrupted {
    public static void main(String[] args) {
        // Check if the main thread is interrupted  
        System.out.println("#1: " + Thread.interrupted());

        // Now interrupt the main thread  
        Thread mainThread = Thread.currentThread();
        mainThread.interrupt();

        // Check if it has been interrupted  
        System.out.println("#2: " + mainThread.isInterrupted());

        // Check if it has been interrupted  
        System.out.println("#3: " + mainThread.isInterrupted());

        // Now check if it has been interrupted using the static method
        // which will clear the interrupted status  
        System.out.println("#4: " + Thread.interrupted());

        // Now, isInterrupted() should return false, because previous
        // statement Thread.interrupted() has cleared the flag  
        System.out.println("#5: " + mainThread.isInterrupted());
    }
}

#1: false
#2: true
#3: true
#4: true
#5: false

You may interrupt a blocked thread. Recall that a thread may block itself by executing one of the 
sleep(), wait(), and join() methods. If a thread blocked on these three methods is interrupted, an 
InterruptedException is thrown and the interrupted status of the thread is cleared because the thread has 
already received an exception to signal the interruption.



Chapter 6 ■ threads

269

Listing 6-23 starts a thread that sleeps for one second and prints a message until it is interrupted. The 
main thread sleeps for five seconds, so the sleeping thread gets a chance to sleep and print messages a few 
times. When the main thread wakes up, it interrupts the sleeping thread. You may get different output when 
you run the program.

Listing 6-23. Interrupting a Blocked Thread

// BlockedInterrupted.java
package com.jdojo.threads;

public class BlockedInterrupted {
    public static void main(String[] args) {
        Thread t = new Thread(BlockedInterrupted::run);
        t.start();

        // main thread sleeps for 5 seconds  
        try {
            Thread.sleep(5000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        // Interrupt the sleeping thread  
        t.interrupt();
    }

    public static void run() {
        int counter = 1;
        while (true) {
            try {
                Thread.sleep(1000);
                System.out.println("Counter: " + counter++);
            } catch (InterruptedException e) {
                System.out.println("I got interrupted!");

                // Terminate the thread by returning  
                return;
            }
        }

    }
}

Counter: 1
Counter: 2
Counter: 3
Counter: 4
I got interrupted!



Chapter 6 ■ threads

270

If a thread is blocked on an I/O, interrupting a thread does not really do anything if you are using the old 
I/O API. However, if you are using the new I/O API, your thread will receive a ClosedByInterruptException, 
which is declared in the java.nio.channels package. I discuss I/O in detail in subsequent chapters.

Threads Work in a Group
A thread is always a member of a thread group. By default, the thread group of a thread is the group of its 
creator thread. The JVM creates a thread group called main and a thread in this group called main, which is 
responsible for running the main() method of the main class at startup. A thread group in a Java program 
is represented by an object of the ThreadGroup class. The getThreadGroup() method of the Thread class 
returns the reference to the ThreadGroup of a thread. Listing 6-24 demonstrates that, by default, a new thread 
is a member of the thread group of its creator thread.

Listing 6-24. Determining the Default Thread Group of a Thread

// DefaultThreadGroup.java
package com.jdojo.threads;

public class DefaultThreadGroup {
    public static void main(String[] args) {
        // Get the current thread, which is called "main"  
        Thread t1 = Thread.currentThread();

        // Get the thread group of the main thread  
        ThreadGroup tg1 = t1.getThreadGroup();

        System.out.println("Current thread's name: " + t1.getName());
        System.out.println("Current thread's group name: " + tg1.getName());

        // Creates a new thread. Its thread group is the same that of the main thread.
        Thread t2 = new Thread("my new thread");

        ThreadGroup tg2 = t2.getThreadGroup();
        System.out.println("New thread's name: " + t2.getName());
        System.out.println("New thread's group name: " + tg2.getName());
    }
}

Current thread's name: main
Current thread's group name: main
New thread's name: my new thread
New thread's group name: main

You can also create a thread group and place a new thread in that thread group. To place a new thread 
in your thread group, you must use one of the constructors of the Thread class that accepts a ThreadGroup 
object as an argument. The following snippet of code places a new thread in a particular thread group:

// Create a new ThreadGroup  
ThreadGroup myGroup = new ThreadGroup("My Thread Group");



Chapter 6 ■ threads

271

// Make the new thread a member of the myGroup thread group  
Thread t = new Thread(myGroup, "myThreadName");

Thread groups are arranged in a tree-like structure. A thread group can contain another thread group. 
The getParent() method of the ThreadGroup class returns the parent thread group of a thread group. The 
parent of the top-level thread group is null.

The activeCount() method of the ThreadGroup class returns an estimate of the number of active 
threads in the group. The enumerate(Thread[] list) method of the ThreadGroup class can be used to get 
the threads in a thread group.

A thread group in a Java program can be used to implement a group-based policy that applies to all 
threads in a thread group. For example, by calling the interrupt() method of a thread group, you can 
interrupt all threads in the thread group and its subgroups.

Volatile Variables
I discussed the use of the synchronized keyword in previous sections. Two things happen when a thread 
executes a synchronized method/block.

•	 The thread must obtain the monitor lock of the object on which the method/block is 
synchronized.

•	 The thread’s working copy of the shared variables is updated with the values of those 
variables in the main memory just after the thread gets the lock. The values of the 
shared variables in the main memory are updated with the thread’s working copy 
value just before the thread releases the lock. That is, at the start and at the end of a 
synchronized method/block, the values of the shared variables in thread’s working 
memory and the main memory are synchronized.

What can you do to achieve only the second point without using a synchronized method/block? That is, 
how can you keep the values of variables in a thread’s working memory in sync with their values in the main 
memory? The answer is the keyword volatile. You can declare a variable volatile like so:

volatile boolean flag = true;

For every read request for a volatile variable, a thread reads the value from the main memory. For every 
write request for a volatile variable, a thread writes the value to the main memory. In other words, a thread 
does not cache the value of a volatile variable in its working memory. Note that using a volatile variable is 
useful only in a multi-threaded environment for variables that are shared among threads. It is faster and 
cheaper than using a synchronized block.

You can declare only a class member variable (instance or static fields) as volatile. You cannot declare 
a local variable as volatile because a local variable is always private to the thread, which is never shared 
with other threads. You cannot declare a volatile variable final because the volatile keyword is used with a 
variable that changes.

You can use a volatile variable to stop a thread by using the variable’s value as a flag. If the flag is set, the 
thread can keep running. If another thread clears the flag, the thread should stop. Since two threads share 
the flag, you need to declare it volatile, so that on every read the thread will get its updated value from the 
main memory.

Listing 6-25 demonstrates the use of a volatile variable. If the keepRunning variable is not declared 
volatile, the JVM is free to run the while loop in the run() method forever, as the initial value of keepRunning 
is set to true and a thread can cache this value in its working memory. Since the keepRunning variable is 
declared volatile, the JVM will read its value from the main memory every time it is used. When another 
thread updates the keepRunning variable’s value to false using the stopThread() method, the next iteration 



Chapter 6 ■ threads

272

of the while loop will read its updated value and stop the loop. Your program may work the same way 
as in Listing 6-25 even if you do not declare the keepRunning as volatile. However, according to the JVM 
specification, this behavior is not guaranteed. If the JVM specification is implemented correctly, using a 
volatile variable in this way ensures the correct behavior for your program.

Listing 6-25. Using a volatile Variable in a Multi-Threaded Program

// VolatileVariable.java
package com.jdojo.threads;

public class VolatileVariable extends Thread {
    private volatile boolean keepRunning = true;

    @Override
    public void run() {
        System.out.println("Thread started...");

        // keepRunning is volatile. So, for every read, the thread reads its
        // latest value from the main memory  
        while (keepRunning) {
            try {
                System.out.println("Going to sleep ...");
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        System.out.println("Thread stopped...");
    }

    public void stopThread() {
        this.keepRunning = false;
    }

    public static void main(String[] args) {
        // Create the thread  
        VolatileVariable vv = new VolatileVariable();

        // Start the thread  
        vv.start();

        // Let the main thread sleep for 3 seconds  
        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }



Chapter 6 ■ threads

273

        // Stop the thread  
        System.out.println("Going to set the stop flag to true...");
        vv.stopThread();
    }
}

Thread started...
Going to sleep ...
Going to sleep ...
Going to sleep ...
Going to set the stop flag to true...
Thread stopped...

 ■ Tip  a volatile variable of long and double types is treated atomically for read and write purposes. recall 
that a non-volatile variable of long and double types is treated non-atomically. that is, if two threads are 
writing two different values, say v1 and v2 to a non-volatile long or double variable, respectively, your program 
may see a value for that variable that is neither v1 nor v2. however, if that long or double variable is declared 
volatile, your program sees the value v1 or v2 at a given point in time. You cannot make array elements volatile.

Stopping, Suspending, and Resuming Threads 
The stop(), suspend(), and resume() methods in the Thread class let you stop a thread, suspend a thread, 
and resume a suspended thread, respectively. These methods have been deprecated because their use is 
error-prone.

You can stop a thread by calling the stop() method. When the stop() method of a thread is called, 
the JVM throws a ThreadDeath error. Because of throwing this error, all monitors locked by the thread 
being stopped are unlocked. Monitor locks are used to protect some important shared resources (typically 
Java objects). If any of the shared resources protected by the monitors were in inconsistent states when 
the thread was stopped, other threads may see that inconsistent state of those resources. This will result in 
incorrect behavior of the program. This is the reason why the stop() method has been deprecated; you are 
advised not to use it in your program.

How can you stop a thread without using its stop() method? You can stop a thread by setting a flag 
that the running thread will check regularly. If the flag is set, the thread should stop executing. This way of 
stopping a thread was illustrated in Listing 6-25 in the previous section.

You can suspend a thread by calling its suspend() method. To resume a suspended thread, you need 
to call its resume() method. However, the suspend() method has been deprecated because it is error-prone 
and it may cause a deadlock. Let’s assume that the suspended thread holds the monitor lock of an object. 
The thread that will resume the suspended thread is trying to obtain the monitor lock of the same object. 
This will result in a deadlock. The suspended thread will remain suspended because there is no thread that 
will resume it, and the thread that will resume it will remain blocked because the monitor lock it is trying 
to obtain is held by the suspended thread. This is the why the suspend() method has been deprecated. The 
resume() method is also deprecated because it is called in conjunction with the suspend() method. You 
can use a similar technique to simulate the suspend() and resume() methods of the Thread class in your 
program as you did to simulate the stop() method.

Listing 6-26 demonstrates how to simulate the stop(), suspend(), and resume() methods of the Thread 
class in your thread.



Chapter 6 ■ threads

274

Listing 6-26. Stopping, Suspending, and Resuming a Thread

// StopSuspendResume.java
package com.jdojo.threads;

public class StopSuspendResume extends Thread {
    private volatile boolean keepRunning = true;
    private boolean suspended = false;

    public synchronized void stopThread() {
        this.keepRunning = false;

        // Notify the thread in case it is suspended when this method
        // is called, so  it will wake up and stop.
        this.notify();
    }

    public synchronized void suspendThread() {
        this.suspended = true;
    }

    public synchronized void resumeThread() {
        this.suspended = false;
        this.notify();
    }

    @Override
    public void run() {
        System.out.println("Thread started...");
        while (keepRunning) {
            try {
                System.out.println("Going to sleep...");
                Thread.sleep(1000);

                // Check for a suspended condition must be made inside a
                // synchronized block to call the wait() method  
                synchronized (this) {
                    while (suspended) {
                        System.out.println("Suspended...");
                        this.wait();
                        System.out.println("Resumed...");
                    }
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println("Thread stopped...");
    }



Chapter 6 ■ threads

275

    public static void main(String[] args) {
        StopSuspendResume t = new StopSuspendResume();

        // Start the thread  
        t.start();

        // Sleep for 2 seconds  
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        // Suspend the thread  
        t.suspendThread();

        // Sleep for 2 seconds  
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        // Resume the thread  
        t.resumeThread();

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        // Stop the thread  
        t.stopThread();
    }
}

Thread started...
Going to sleep...
Going to sleep...
Going to sleep...
Suspended...
Resumed...
Going to sleep...
Going to sleep...
Going to sleep...
Thread stopped...



Chapter 6 ■ threads

276

Note that you have two instance variables in the StopSuspendResume class. The suspended instance 
variable is not declared volatile. It is not necessary to declare it volatile because it is always accessed 
inside a synchronized method/block. The following code in the run() method is used to implement the 
suspend and resume features:

synchronized (this) {
    while (suspended) {
        System.out.println("Suspended...");
        this.wait();
        System.out.println("Resumed...");
    }
}

When the suspended instance variable is set to true, the thread calls the wait() method on itself to 
wait. Note the use of the synchronized block. It uses this as the object to synchronize. This is the reason that 
you can call this.wait() inside the synchronized block because you have obtained the lock on this object 
before entering the synchronized block. Once the this.wait() method is called, the thread releases the lock 
on this object and keeps waiting until another thread calls the resumeThread() method to notify it. I also 
use the this.notify() method call inside the stopThread() method because if the thread is suspended 
when the stopThread() method is called, the thread will not stop; rather, it will remain suspended.

The thread in this example sleeps for only one second in its run() method. Suppose your thread 
sleeps for an extended period. In such a case, calling the stopThread() method will not stop the thread 
immediately because the thread will stop only when it wakes up and checks its keepRunning instance 
variable value in its next loop iteration. In such cases, you can use the interrupt() method inside the 
stopThread() method to interrupt sleeping/waiting threads, and when an InterruptedException is 
thrown, you need to handle it appropriately.

If you use the technique used in Listing 6-26 to stop a thread, you may run into problems in some 
situations. The while loop inside the run() method depends on the keepRunning instance variable, which 
is set in the stopThread() method. The example in this listing is simple. It is just meant to demonstrate the 
concept of how to stop, suspend, and resume a thread. Suppose inside the run() method, your code waits 
for other resources like calling a method someBlockingMethodCall() as shown:

while (keepRunning) {
    try {
        someBlockingMethodCall();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
}

If you call the stopThread() method while this thread is blocked on the method call 
someBlockingMethodCall(), this thread will not stop until it returns from the blocked method call or it is 
interrupted. To overcome this problem, you need to change the strategy for how to stop a thread. It is a good 
idea to rely on the interruption technique of a thread to stop it prematurely. The stopThread() method can 
be changed as follows:

public void stopThread() {
    // interrupt this thread  
    this.interrupt();
}



Chapter 6 ■ threads

277

In addition, the while loop inside the run() method should be modified to check if the thread is 
interrupted. You need to modify the exception handling code to exit the loop if this thread is interrupted 
while it is blocked. The following snippet of code illustrates this logic:

public void run() {
    while (Thread.currentThread().isInterrupted())) {
        try {
            // Do the processing  
        } catch (InterruptedException e) {
            // Stop the thread by exiting the loop  
            break;
        }
    }
}

Spin-Wait Hints
Sometimes, one thread may have to wait for another thread to update a volatile variable. When the volatile 
variable is updated with a certain value, the first thread may proceed. If the wait could be longer, it is 
suggested that the first thread relinquish the CPU by sleeping or waiting and it be notified when it can 
resume work. However, making a thread sleep or wait has latency. For a short time wait and to reduce 
latency, it is common for a thread to wait in a loop by checking for a certain condition to be true. Consider 
the code in a class that uses a loop to wait for a volatile variable named dataReady to be true:

volatile boolean dataReady;
...

@Override
public void run() {
    // Wait in a loop until data is ready
    while (!dataReady) {
        // No code
    }

    processData();
}

private void processData() {
    // Data processing logic goes here
}

The while loop in this code is called a spin-loop, busy-spin, busy-wait, or spin-wait. The while loop 
keeps looping until the value of the dataReady variable becomes true.

While spin-wait is discouraged because of its unnecessary use of resources, it is commonly needed. In 
this example, the advantage is that the thread will start processing data as soon as the dataReady variable 
becomes true. However, you pay for performance and power consumption because the thread is actively 
looping.

Certain processors can be hinted that a thread is in a spin-wait and, if possible, can optimize the 
resource usage. For example, x86 processors support a PAUSE instruction to indicate a spin-wait. The 
instruction delays the execution of the next instruction for the thread for a finite small amount of time, thus 
improving resource usage.



Chapter 6 ■ threads

278

JDK9 added a new static onSpinWait() method to the Thread class. It is a pure hint to the processor 
that the caller thread is momentarily not able to proceed, so resource usage can be optimized. A possible 
implementation of this method may be no-op when the underlying platform does not support such hints.

Listing 6-27 contains sample code. Note that your program’s semantics do not change by using a spin-
wait hint. It may perform better if the underlying hardware supports the hint.

Listing 6-27. Sample Code for Using a Spin-Wait Hint to the Processor Using the static Thread.onSpinWait() 
Method

// SpinWaitTest.java
package com.jdojo.misc;

public class SpinWaitTest implements Runnable {
    private volatile boolean dataReady = false;

    @Override
    public void run() {
        // Wait while data is ready
        while (!dataReady) {
            // use a spin-wait hint
            Thread.onSpinWait();
        }

        processData();
    }

    private void processData() {
        // Data processing logic goes here
    }

    public void setDataReady(boolean dataReady) {
        this.dataReady = dataReady;
    }
}

Handling an Uncaught Exception in a Thread
You can handle an uncaught exception thrown in your thread. It is handled using an object of a class that 
implements the nested Thread.UncaughtExceptionHandler interface. The interface contains one method:

void uncaughtException(Thread t, Throwable e);

Here, t is the thread object reference that throws the exception and e is the uncaught exception thrown. 
Listing 6-28 contains the code for a class whose object can be used as an uncaught exception handler for a 
thread.



Chapter 6 ■ threads

279

Listing 6-28. An Uncaught Exception Handler for a Thread

// CatchAllThreadExceptionHandler.java
package com.jdojo.threads;

public class CatchAllThreadExceptionHandler implements Thread.UncaughtExceptionHandler {
    @Override
    public void uncaughtException(Thread t, Throwable e) {
        System.out.println("Caught Exception from Thread: " + t.getName());
    }
}

The class simply prints a message and the thread name stating that an uncaught exception from a 
thread has been handled. Typically, you may want to do some cleanup work or log the exception to a file or 
a database in the uncaughtException() method of the handler. The Thread class contains two methods to 
set an uncaught exception handler for a thread: one is a static setDefaultUncaughtExceptionHandler() 
method and another is a non-static setUncaughtExceptionHandler() method. Use the static method 
to set a default handler for all threads in your application. Use the non-static method to set a handler for a 
particular thread. When a thread has an uncaught exception, the following steps are taken:

•	 If the thread sets an uncaught exception handler using the 
setUncaughtExceptionHandler() method, the uncaughtException() method of 
that handler is invoked.

•	 If a thread does not have an uncaught exception handler set, its thread group’s 
uncaughtException() method is called. If the thread group has a parent thread 
group, it calls the uncaughtException() method of its parent. Otherwise, it checks 
if there is a default uncaught exception handler set. If it finds a default uncaught 
exception handler, it calls the uncaughtException() method on it. If it does not 
find a default uncaught exception handler, a message is printed on the standard 
error stream. It does not do anything if it does not find a default uncaught exception 
handler and a ThreadDeath exception is thrown.

Listing 6-29 demonstrates how to set a handler for uncaught exceptions in a thread. It creates an object 
of class CatchAllThreadExceptionHandler and sets it as a handler for the uncaught exceptions for the main 
thread. The main thread throws an unchecked exception in its last statement. The output shows that the 
handler handles the exception thrown in the main() method.

Listing 6-29. Setting an Uncaught Exception Handler for a Thread

// UncaughtExceptionInThread.java
package com.jdojo.threads;

public class UncaughtExceptionInThread {
    public static void main(String[] args) {
        CatchAllThreadExceptionHandler handler = new CatchAllThreadExceptionHandler();

        // Set an uncaught exception handler for the main thread  
        Thread.currentThread().setUncaughtExceptionHandler(handler);

        // Throw an exception  
        throw new RuntimeException();
    }
}



Chapter 6 ■ threads

280

Caught Exception from Thread: main

Thread Concurrency Packages
Although Java had support for multi-threading built into the language from the very beginning, it was not 
easy to develop a multi-threaded Java program that used an advanced level of concurrency constructs. For 
example, the synchronized keyword, used to lock an object’s monitor, has existed since the beginning. 
However, a thread that tries to lock an object’s monitor simply blocks if the lock is not available. In this case, 
developers had no choice but to back out. Wouldn’t it be nice to have a construct that is based on a “try and 
lock” philosophy rather than a “lock or block” philosophy? In this strategy, if an object’s monitor lock is not 
available, the call to lock the monitor returns immediately.

The java.util.concurrent package and its two subpackages, java.util.concurrent.atomic and 
java.util.concurrent.locks, include very useful concurrency constructs. You use them only when you 
are developing an advanced level multi-threaded program. I don’t cover all concurrency constructs in this 
section because describing everything available in these packages could take more than a hundred pages. I 
briefly cover some of the most useful concurrency constructs available in these packages. You can broadly 
categorize these concurrency features into four categories:

•	 Atomic variables

•	 Locks

•	 Synchronizers

•	 Concurrent collections (refer to Chapter 12 for concurrent collections)

Atomic Variables
Typically, when you need to share an updateable variable among threads, synchronization is used. 
Synchronization among multiple threads used to be achieved using the synchronized keyword and it was 
based on an object’s monitor. If a thread is not able to acquire an object’s monitor, that thread is suspended 
and it has to be resumed later. This way of synchronization (suspending and resuming) uses a great deal 
of system resources. The problem is not in the locking and unlocking the mechanism of the monitor lock; 
rather it is in suspending and resuming threads. If there is no contention for acquiring a lock, using the 
synchronized keyword to synchronize threads does not hurt much.

An atomic variable uses a lock-free synchronization of a single variable. Note that if your program needs 
to synchronize on more than one shared variable, you still need to use the old synchronization methods. 
By lock-free synchronization, I mean that multiple threads can access a shared variable safely using no 
object monitor lock. JDK takes advantage of a hardware instruction called “compare-and-swap” (CAS) to 
implement the lock-free synchronization for one variable.

CAS is based on three operands: a memory location M, an expected old value V, and a new value N. If 
the memory location M contains a value V, CAS updates it atomically to N; otherwise, it does not do anything. 
CAS always returns the current value at the location M that existed before the CAS operation started. The 
pseudocode for CAS is as follows:

CAS(M, V, N) {
    currentValueAtM = get the value at Location M;

http://dx.doi.org/10.1007/978-1-4842-3348-1_12


Chapter 6 ■ threads

281

    if (currentValueAtM == V) {
        set value at M to N;
    }

    return currentValueAtM;
}

The CAS instruction is lock free. It is directly supported in most modern computer hardware. However, 
CAS is not always guaranteed to succeed in a multi-threaded environment. CAS takes an optimistic 
approach by assuming that there are no other threads updating the value at location M; if the location M 
contains value V, update it to N; if the value at location M is not V, do not do anything. Therefore, if multiple 
threads attempt to update the value at location M to different values simultaneously, only one thread will 
succeed and the others will fail.

The synchronization using locks takes a pessimistic approach by assuming that other threads may be 
working with location M and acquires a lock before it starts working at location M, so that other threads will 
not access location M while one is working with it. In case CAS fails, the caller thread may try the action again 
or give up; the caller thread using CAS never blocks. However, in case of synchronization using a lock, the 
caller thread may have to be suspended and resumed if it could not acquire the lock. Using synchronization, 
you also run the risk of a deadlock, a livelock, and other synchronization-related failures.

Atomic variable classes are named like AtomicXxx and can be used to execute multiple instructions on 
a single variable atomically without using any lock. Here, Xxx is replaced with different words to indicate 
different classes that are used for different purposes; for example, the AtomicInteger class is used to 
represent an int variable, which is supposed to be manipulated atomically. Twelve classes in the Java  
class library support read-modify-write operations on a single variable atomically. They are in the  
java.util.concurrent.atomic package. They can be categorized in four categories, which are discussed  
in the following sections.

Scalar Atomic Variable Classes
The AtomicInteger, AtomicLong, and AtomicBoolean classes support operations on primitive data types 
int, long, and boolean, respectively.

If you need to work with other primitive data types, use the AtomicInteger class. You can  
use it directly to work with the byte and short data types. Use it to work with the float data type by  
using the Float.floatToIntBits() method to convert a float value to the int data type and the 
AtomicInteger.floatValue() method to convert an int value to the float data type.

You can use the AtomicLong class to work with the double data type by using the  
Double.doubleToLongBits() method to convert a double value to the long data type and the  
AtomicLong.doubleValue() method to convert the long value to the double data type.

The AtomicReference<V> class is used to work with a reference data type when a reference variable 
needs to be updated atomically.

Atomic Arrays Classes
There are three classes—called AtomicIntegerArray, AtomicLongArray, and AtomicReferenceArray 
<E>—that represent an array of int, long, and reference types whose elements can be updated atomically.



Chapter 6 ■ threads

282

Atomic Field Updater Classes
There are three classes—called AtomicLongFieldUpdater, AtomicIntegerFieldUpdater, and AtomicRefer
enceFieldUpdater<T,V>—that can be used to update a volatile field of a class atomically using reflection. 
These classes have no constructors. To get a reference to an object of these classes, you need to use their 
factory method called newUpdater().

Atomic Compound Variable Classes
CAS works by asking “Is the value at location M still V?” If the answer is yes, it updates the value at location M 
from V to N. In a typical scenario, one thread may read the value from location M as V. By the time this thread 
tries to update the value from V to N, another thread has changed the value at location M from V to P, and 
back from P to V. Therefore, the call CAS(M, V, N) will succeed because the value at location M is still V, even 
though it was changed (v to P and back to V) twice after the thread read the value V last time. In some cases, it 
is fine. The thread that wants to update the value at location M does not care if the old value V that it read last 
time was updated before its own update as long as the value at location M is V at the time it is updating the 
value to N. However, in some cases, it is not acceptable. If a thread reads the value V from a location M, this 
thread wants to make sure that after it read the value, no other thread has updated the value. In such cases, 
CAS needs to ask “Has the value at location M changed since I last read it as V?” To achieve this functionality, 
you need to store a pair of values: the value you want to work with and its version number. Each update will 
also update the version number. The AtomicMarkableReference and AtomicStampedReference classes fall 
into this category of atomic compound variable class.

Let’s look at a simple example that uses an atomic class. If you want to write a class to generate a 
counter using built-in Java synchronization, it will resemble the code shown in Listing 6-30.

Listing 6-30. A Counter Class That Uses Synchronization

// SynchronizedCounter.java
package com.jdojo.threads;

public class SynchronizedCounter {
    private long value;

    public synchronized long next() {
        return ++value;
    }
}

You would rewrite the SynchronizedCounter class using the AtomicLong class, as shown in Listing 6-31.

Listing 6-31. A Counter Class Using Atomic Variable

// AtomicCounter.java
package com.jdojo.threads;

import java.util.concurrent.atomic.AtomicLong;

public class AtomicCounter {
    private final AtomicLong value = new AtomicLong(0L);



Chapter 6 ■ threads

283

    public long next() {
        return value.incrementAndGet();
    }
}

Note that the AtomicCounter class does not use any explicit synchronization. It takes advantage of 
CAS hardware instruction. The call to the incrementAndGet() method inside the next() method of the 
AtomicCounter class is performed atomically for you.

You can also use an object of the AtomicLong class as a thread-safe counter object like so:

AtomicLong aCounter = new AtomicLong(0L);

Then you can use the aCounter.incrementAndGet() method to generate a new counter. The 
incrementAndGet() method of the AtomicLong class increments its current value and returns the new value. 
You also have its counterpart method called getAndIncrement(), which increments its value and returns its 
previous value.

The AtomicXxx variable classes have a compareAndSet() method. It is a variant of compare and 
swap (CAS). The only difference is that the compareAndSet() method returns a boolean. It returns 
true if it succeeds; otherwise it returns false. The following is the pseudocode representation of the 
compareAndSet() method:

compareAndSet(M, V, N) {
    // Call CAS (see CAS pseudocode) if CAS succeeded, return true;
    // otherwise, return false.
    return (CAS(M, V, N) == V)
}

Explicit Locks
The explicit locking mechanism can be used to coordinate access to shared resources in a multi-threaded 
environment without using the synchronized keyword. The Lock interface, which is declared in the java.
util.concurrent.locks package, defines the explicit locking operations. The ReentrantLock class, in 
the same package, is the concrete implementation of the Lock interface. The Lock interface contains the 
following methods:

•	 void lock();

•	 Condition newCondition();

•	 void lockInterruptibly() throws InterruptedException;

•	 boolean tryLock();

•	 boolean tryLock(long time, TimeUnit unit) throws InterruptedException;

•	 void unlock();

The use of the lock() method to acquire a lock behaves the same as the use of the synchronized 
keyword. The use of the synchronized keyword requires that a thread should acquire and release an object’s 
monitor lock in the same block of code. When you use the synchronized keyword to acquire an object’s 
monitor lock, the lock is released by the JVM when the program leaves the block in which the lock was 
acquired. This feature makes working with intrinsic locks very simple and less error prone. However, in the 
case of the Lock interface, the restriction of acquiring and releasing the lock in the same block of code does 



Chapter 6 ■ threads

284

not apply. This makes it a little flexible to use; however, it is more error prone because the responsibility 
of acquiring as well as releasing the lock is on the developer. It is not difficult to acquire the lock and 
forget to release it, resulting in hard-to-find bugs. You must make sure that you release the lock by calling 
the unlock() method of the Lock interface after you are done with the lock. You can use the lock() and 
unlock() methods in their simplest form, shown in Listing 6-32.

Listing 6-32. Using an Explicit Lock in its Simplest Form

// SimpleExplicitLock.java
package com.jdojo.threads;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SimpleExplicitLock {
    // Instantiate the lock object  
    private final Lock myLock = new ReentrantLock();

    public void updateResource() {
        // Acquire the lock  
        myLock.lock();

        try {
            // Logic for updating/reading the shared resource goes here
        } finally {
            // Release the lock  
            myLock.unlock();
        }
    }
}

Note the use of a try-finally block to release the lock in the updateResource() method. The use of a 
try-finally block is necessary in this case because no matter how you finish returning from this method 
after you call myLock.lock(), you would like to release the lock. This can be assured only if you place the call 
to the unlock() method inside the finally block.

You may wonder why you would use the code structure listed in Listing 6-32 when you could have used 
the synchronized keyword to achieve the same effect, like so:

public void updateResource() {
    // Acquire the lock and the lock will be released automatically by the
    // JVM when your code exits the block  
    synchronized (this) {
        // Logic for updating/reading the shared resource goes here
    }
}

You are correct in thinking that using the synchronized keyword would have been better in this 
case. It is much simpler and less error prone to use the synchronized keyword in such situations. The 
power of using the new Lock interface becomes evident when you come across situations where using the 
synchronized keyword is not possible or very cumbersome. For example, if you want to acquire the lock 
in the updateResource() method and release it in some other methods, you cannot use the synchronized 
keyword. If you need to acquire two locks to work with a shared resource and if only one lock is available, 



Chapter 6 ■ threads

285

you want to do something else rather than waiting for the other lock to become available. If you use the 
synchronized keyword or the lock() method of the Lock interface to acquire a lock, the call blocks if the 
lock is not available immediately, which gives you no option to back off once you asked for the lock. Such 
blocked threads cannot be interrupted either. The two methods of the Lock interface, tryLock() and 
lockInterruptibly(), give you the ability to try to acquire a lock (rather than acquire a lock or block). The 
thread that has acquired the lock can be interrupted if it is blocked. The syntax to acquire and release a 
lock using the Lock interface should use a try-finally or a try-catch-finally block structure, to avoid 
unintended bugs, by placing the unlock() call in a finally block.

You will solve a classic synchronization problem known as the dining-philosophers problem using the 
explicit lock constructs. The problem goes like this: five philosophers spend all of their time either thinking 
or eating. They sit around a circular table with five chairs and five forks, as shown in Figure 6-7. There are 
only five forks and all five philosophers need to pick the two nearest (one from his left and one from his 
right) forks to eat.

Figure 6-7. Five philosophers at a dining table

Once a philosopher finishes eating, he puts down both forks and starts thinking. A philosopher cannot 
pick up a fork if his neighbor is using it. What happens if each of the five philosophers picks up one fork from 
his right and waits for his left fork to be released by his neighbor? This would be a deadlock situation and 
no philosopher would be able to eat. This deadlock condition can be avoided easily by using the tryLock() 
method of the Lock interface. This method returns immediately and it never blocks. If the lock is available, 
it gets the lock and returns true. If the lock is not available, it returns false. The class in Listing 6-33 can be 
used to model the philosophers assuming that an object of the ReentrantLock class represents a fork.

Listing 6-33. A Philosopher Class to Represent a Philosopher

// Philosopher.java
package com.jdojo.threads;

import java.util.concurrent.locks.Lock;

public class Philosopher {
    private final Lock leftFork;
    private final Lock rightFork;
    private final String name; // Philosopher's name  

    public Philosopher(Lock leftFork, Lock rightFork, String name) {
        this.leftFork = leftFork;



Chapter 6 ■ threads

286

        this.rightFork = rightFork;
        this.name = name;
    }

    public void think() {
        System.out.println(name + " is thinking...");
    }

    public void eat() {
        // Try to get the left fork  
        if (leftFork.tryLock()) {
            try {
                // try to get the right fork  
                if (rightFork.tryLock()) {
                    try {
                        // Got both forks. Eat now  
                        System.out.println(name + " is eating...");
                    } finally {
                        // release the right fork  
                        rightFork.unlock();
                    }
                }
            } finally {
                // release the left fork  
                leftFork.unlock();
            }
        }
    }
}

To create philosophers, you would use code like:

Lock fork1 = new ReentrantLock();
Lock fork2 = new ReentrantLock();
...
Lock fork5 = new ReentrantLock();

Philosopher p1 = new Philosopher(fork1, fork2, "John");
Philosopher p2 = new Philosopher(fork2, fork3, "Wallace");
...
Philosopher p5 = new Philosopher(fork5, fork1, "Charles");

It is left for the reader as an exercise to complete the code and run all five philosophers in five different 
threads to simulate the dining-philosophers problem. You can also think about how to use the synchronized 
keyword to solve the same problem. Read the code in the eat() method carefully. It tries to get the left and 
right forks one at a time. If you can get only one fork and not the other, you put down the one you got so 
others can have it. The code in the eat() method has only the logic to get the forks. In a real program, if you 
cannot get both forks, you would like to wait for some time and try again to pick up the forks. You will have to 
write that logic.



Chapter 6 ■ threads

287

You can specify the fairness of a lock when you instantiate the ReentrantLock class. The fairness 
indicates the way of allocating the lock to a thread when multiple threads are waiting to get the lock. In a 
fair lock, threads acquire the lock in the order they request it. In a non-fair lock, jumping ahead by a thread 
is allowed. For example, in a non-fair lock, if some threads are waiting for a lock and another thread, which 
requests the same lock later, gets the lock before the waiting threads, if the lock becomes available at the 
time the second thread requested it. This may sound a little strange because it is not fair to the waiting 
threads to leave them waiting and granting the lock to the thread that requested it later. However, it has a 
performance gain. The overhead of suspending and resuming a thread is reduced using non-fair locking. 
The tryLock() method of the ReentrantLock class always uses a non-fair lock. You can create fair and non-
fair locks as follows:

Lock nonFairLock1 = new ReentrantLock();       // A non-fair lock (Default is non-fair)
Lock nonFairLock2 = new ReentrantLock(false);  // A non-fair lock  
Lock fairLock2 = new ReentrantLock(true);      // A fair lock  

A ReentrantLock provides a mutually exclusive locking mechanism. That is, only one thread can own 
the ReentrantLock at a time. If you have a data structure guarded by a ReentrantLock, a writer thread as 
well as a reader thread must acquire the lock one at a time to modify or to read the data. This restriction of 
ReentrantLock, to be owned by only one thread at a time, may downgrade the performance if your data 
structure is read frequently and modified infrequently. In such situations, you may want multiple reader 
threads to have concurrent access to the data structure. However, if the data structure is being modified, only 
one writer thread should have the access to the data structure. The Read-Write lock allows you to implement 
this kind of locking mechanism using an instance of the ReadWriteLock interface. It has two methods: one to 
get the reader lock and another to get the writer lock, as shown:

public interface ReadWriteLock {
    Lock readLock();
    Lock writeLock();
}

A ReentrantReadWriteLock class is an implementation of the ReadWriteLock Interface. Only one 
thread can hold the write lock of ReentrantReadWriteLock, whereas multiple threads can hold its read lock. 
Listing 6-34 demonstrates the usage of ReentrantReadWriteLock. Note that in the getValue() method, you 
use read lock so multiple threads can read the data concurrently. The setValue() method uses a write lock 
so only one thread can modify the data at a given time.

 ■ Tip  the ReadWriteLock allows you have a read and a write version of the same lock. Multiple threads can 
own a read lock as long as another thread does not own the write lock. however, only one thread can own the 
write lock at a time.

Listing 6-34. Using a ReentrantReadWriteLock to Guard a Read-Mostly Data Structure

// ReadMostlyData.java
package com.jdojo.threads;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;



Chapter 6 ■ threads

288

public class ReadMostlyData {
    private int value;
    private final ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
    private final Lock rLock = rwLock.readLock();
    private final Lock wLock = rwLock.writeLock();

    public ReadMostlyData(int value) {
        this.value = value;
    }

    public int getValue() {
        // Use the read lock, so multiple threads may read concurrently  
        rLock.lock();
        try {
            return this.value;
        } finally {
            rLock.unlock();
        }
    }

    public void setValue(int value) {
        // Use the write lock, so only one thread can write at a time  
        wLock.lock();  
        try {
            this.value = value;
        } finally {
            wLock.unlock();
        }
    }
}

Synchronizers
I discussed how to coordinate access to a critical section by multiple threads using a mutually exclusive 
mechanism of intrinsic locks and explicit locks. Some classes known as synchronizers are used to coordinate 
the control flow of a set of threads in a situation that needs other than mutually exclusive access to a critical 
section. A synchronizer object is used with a set of threads. It maintains a state, and depending on its state, it 
lets a thread pass through or forces it to wait. This section discusses the following types of synchronizers:

•	 Semaphores

•	 Barriers

•	 Phasers

•	 Latches

•	 Exchangers

Other classes can also act as synchronizers, such as a blocking queue.



Chapter 6 ■ threads

289

Semaphores
A semaphore is used to control the number of threads that can access a resource. A synchronized block 
also controls the access to a resource that is the critical section. So, how is a semaphore different from a 
synchronized block? A synchronized block allows only one thread to access a resource (a critical section), 
whereas a semaphore allows N threads (N can be any positive number) to access a resource.

If N is set to one, a semaphore can act as a synchronized block to allow a thread to have mutually 
exclusive access to a resource. A semaphore maintains a number of virtual permits. To access a resource, 
a thread acquires a permit and it releases the permit when it is done with the resource. If a permit is not 
available, the requesting thread is blocked until a permit becomes available. You can think of a semaphore’s 
permit as a token.

Let’s discuss a daily life example of using a semaphore. Suppose there is a restaurant with three dining 
tables. Only three people can eat in that restaurant at a time. When a person arrives at the restaurant, he 
must take a token for a table. When he is done eating, he will return the token. Each token represents a 
dining table. If a person arrives at the restaurant when all three tables are in use, he must wait until a table 
becomes available. If a table is not available immediately, you have a choice to wait until one becomes 
available or to go to another restaurant. Let’s simulate this example using a semaphore. You will have a 
semaphore with three permits. Each permit will represent a dining table. The Semaphore class in the java.
util.concurrent package represents the semaphore synchronizer. You create a semaphore using one of its 
constructors:

final int MAX_PERMITS = 3;
Semaphore s = new Semaphores(MAX_PERMITS);

Another constructor for the Semaphore class takes fairness as the second argument:

final int MAX_PERMITS = 3;
Semaphore s = new Semaphores(MAX_PERMITS, true); // A fair semaphore

The fairness of a semaphore has the same meaning as that for locks. If you create a fair semaphore, in 
the situation of multiple threads asking for permits, the semaphore will guarantee first in, first out (FIFO). 
That is, the thread that asked for the permit first will get the permit first.

To acquire a permit, use the acquire() method. It returns immediately if a permit is available. It 
blocks if a permit is not available. The thread can be interrupted while it is waiting for the permit to become 
available. Other methods of the Semaphore class let you acquire one or multiple permits in one go.

To release a permit, use the release() method.
Listing 6-35 contains the code for a Restaurant class. It takes the number of tables available in a 

restaurant as an argument in its constructor and creates a semaphore, which has the number of permits 
that is equal to the number of tables. A customer uses its getTable() and returnTable() methods to get 
and return a table, respectively. Inside the getTable() method, you acquire a permit. If a customer calls the 
getTable() method and no table is available, he must wait until one becomes available. This class depends 
on a RestaurantCustomer class that is declared in Listing 6-36.

Listing 6-35. A Restaurant Class, Which Uses a Semaphore to Control Access to Tables

// Restaurant.java
package com.jdojo.threads;

import java.util.concurrent.Semaphore;

public class Restaurant {
    private final Semaphore tables;



Chapter 6 ■ threads

290

    public Restaurant(int tablesCount) {
        // Create a semaphore using number of tables we have  
        this.tables = new Semaphore(tablesCount);
    }

    public void getTable(int customerID) {
        try {
            System.out.println("Customer #" + customerID
                    + " is trying to get a table.");

            // Acquire a permit for a table  
            tables.acquire();

            System.out.println("Customer #" + customerID + " got a table.");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    public void returnTable(int customerID) {
        System.out.println("Customer #" + customerID + " returned a table.");
        tables.release();
    }

    public static void main(String[] args) {
        // Create a restaurant with two dining tables  
        Restaurant restaurant = new Restaurant(2);

        // Create five customers  
        for (int i = 1; i <= 5; i++) {
            RestaurantCustomer c = new RestaurantCustomer(restaurant, i);
            c.start();
        }
    }
}

Customer #4 is trying to get a table.
Customer #5 is trying to get a table.
Customer #1 is trying to get a table.
Customer #3 is trying to get a table.
...

Listing 6-36 contains the code for a RestaurantCustomer class whose object represents a customer in 
a restaurant. The run() method of the customer thread gets a table from the restaurant, eats for a random 
amount of time, and returns the table to the restaurant. When you run the Restaurant class, you may get 
similar but not the same output. You may observe that you have created a restaurant with only two tables 
and five customers are trying to eat. At any given time, only two customers are eating, as shown by the 
output.



Chapter 6 ■ threads

291

Listing 6-36. A RestaurantCustomer Class to Represent a Customer in a Restaurant

// RestaurantCustomer.java
package com.jdojo.threads;

import java.util.Random;

class RestaurantCustomer extends Thread {
    private final Restaurant r;
    private final int customerID;
    private static final Random random = new Random();

    public RestaurantCustomer(Restaurant r, int customerID) {
        this.r = r;
        this.customerID = customerID;
    }

    @Override
    public void run() {
        r.getTable(this.customerID); // Get a table  

        try {
            // Eat for some time. Use number between 1 and 30 seconds  
            int eatingTime = random.nextInt(30) + 1;
            System.out.println("Customer #" + this.customerID
                    + " will eat for " + eatingTime + " seconds.");

            Thread.sleep(eatingTime * 1000);

            System.out.println("Customer #" + this.customerID
                    + " is done eating.");
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            r.returnTable(this.customerID);
        }
    }
}

A semaphore is not limited to the number of permits it was created with. Each release() method adds 
one permit to it. Therefore, if you call the release() method more than the times you call its acquire() 
method, you end up having more permits than the one you started with. A permit is not acquired on a per 
thread basis. One thread can acquire a permit from a semaphore and another can return it. This leaves the 
burden of the correct usage of acquiring and releasing a permit on the developers. A semaphore has other 
methods to acquire a permit, which will let you back off instead of forcing you to wait if a permit is not 
immediately available, such as the tryAcquire() and acquireUninterruptibly() methods.



Chapter 6 ■ threads

292

Barriers
A barrier is used to make a group of threads meet at a barrier point. A thread from a group arriving at the 
barrier waits until all threads in that group arrive. Once the last thread from the group arrives at the barrier, 
all threads in the group are released. You can use a barrier when you have a task that can be divided into 
subtasks; each subtask can be performed in a separate thread and each thread must meet at a common 
point to combine their results. Figure 6-8 through Figure 6-11 depict how a barrier synchronizer lets a group 
of three threads meet at the barrier point and lets them proceed.

B
A
R
R
I
E
R

Figure 6-9. One thread waits for the two other threads to arrive at the barrier

B
A
R
R
I
E
R

Figure 6-8. Three threads arriving at a barrier

B
A
R
R
I
E
R

Figure 6-10. All three threads arrive at the barrier and are then released at once



Chapter 6 ■ threads

293

The CyclicBarrier class in the java.util.concurrent package provides the implementation of the 
barrier synchronizer. It is called a cyclic barrier because once all waiting threads at the barrier point are 
released, you can reuse the barrier by calling its reset() method. It also allows you to associate a barrier 
action to it, which is a Runnable task (an object of a class that implements the Runnable interface). The 
barrier action is executed just before all threads are released. You can think of the barrier action as a “party 
time” when all threads meet at the barrier, but before they are released. Here are the steps you need to 
perform to use a barrier in a program:

 1. Create an object of the CyclicBarrier class with the number of threads in  
the group.

CyclicBarrier barrier = new CyclicBarrier(5); // 5 threads

If you want to execute a barrier action when all threads meet at the barrier, you 
can use another constructor of the CyclicBarrier class.

// Assuming a BarrierAction class implements the Runnable interface
Runnable barrierAction = new BarrierAction();
CyclicBarrier barrier = new CyclicBarrier(5, barrierAction);

 2. When a thread is ready to wait at the barrier, the thread executes the await() 
method of the CyclicBarrier class. The await() method comes in two flavors. 
One lets you wait for all other threads unconditionally and the other lets you 
specify a timeout.

The program in Listing 6-37 demonstrates how to use a cyclic barrier. You may get different output. 
However, the sequence of events will be the same: all three threads will work for some time, wait at the 
barrier for others to arrive, have a party time, and pass the barrier.

Listing 6-37. A Class That Demonstrates How to Use a CyclicBarrier in a Program

// MeetAtBarrier.java
package com.jdojo.threads;

import java.util.Random;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.BrokenBarrierException;

public class MeetAtBarrier extends Thread {
    private final CyclicBarrier barrier;

B
A
R
R
I
E
R

Figure 6-11. All three threads pass the barrier successfully



Chapter 6 ■ threads

294

    private final int ID;
    private static final Random random = new Random();

    public MeetAtBarrier(int ID, CyclicBarrier barrier) {
        this.ID = ID;
        this.barrier = barrier;
    }

    @Override
    public void run() {
        try {
            // Generate a random number between 1 and 30 to wait  
            int workTime = random.nextInt(30) + 1;

            System.out.println("Thread #" + ID + " is going to work for "
                    + workTime + " seconds");

            // Yes. Sleeping is working for this thread!!!  
            Thread.sleep(workTime * 1000);

            System.out.println("Thread #" + ID + " is waiting at the barrier...");

            // Wait at barrier for other threads in group to arrive  
            this.barrier.await();

            System.out.println("Thread #" + ID + " passed the barrier...");
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (BrokenBarrierException e) {
            System.out.println("Barrier is broken...");
        }
    }

    public static void main(String[] args) {
        // Create a barrier for a group of three threads with a barrier action
        String msg = "We are all together. It's party time...";
        Runnable barrierAction = () -> System.out.println(msg);
        CyclicBarrier barrier = new CyclicBarrier(3, barrierAction);

        for (int i = 1; i <= 3; i++) {
            MeetAtBarrier t = new MeetAtBarrier(i, barrier);
            t.start();
        }
    }
}

Thread #2 is going to work for 15 seconds
Thread #3 is going to work for 2 seconds
Thread #1 is going to work for 30 seconds
Thread #3 is waiting at the barrier...
Thread #2 is waiting at the barrier...



Chapter 6 ■ threads

295

Thread #1 is waiting at the barrier...
We are all together. It's party time...
Thread #3 passed the barrier...
Thread #2 passed the barrier...
Thread #1 passed the barrier...

You might have noticed that inside the run() method of the MeetAtBarrier class, you are catching 
BrokenBarrierException. If a thread times out or it is interrupted while waiting at the barrier point, the 
barrier is considered broken. The thread that times out is released with a TimeoutException, whereas all 
waiting threads at the barrier are released with a BrokenBarrierException.

 ■ Tip  the await() method of the CyclicBarrier class returns the arrival index of the thread calling it. the 
last thread to arrive at the barrier has an index of zero and the first has an index of the number of threads in 
the group minus one. You can use this index to do any special processing in your program. For example, the 
last thread to arrive at the barrier may log the time when a particular round of computation is finished by all 
participating threads.

Phasers
The Phaser class in the java.util.concurrent package provides an implementation for another 
synchronization barrier called phaser. A Phaser provides functionality similar to the CyclicBarrier and 
CountDownLatch synchronizers. I cover the CountDownLatch synchronizer in the next section. However, it is 
more powerful and flexible. It provides the following features:

•	 Like a CyclicBarrier, a Phaser is also reusable.

•	 Unlike a CyclicBarrier, the number of parties to synchronize on a Phaser can 
change dynamically. In a CyclicBarrier, the number of parties is fixed at the time the 
barrier is created. However, in a Phaser, you can add or remove parties at any time.

•	 A Phaser has an associated phase number, which starts at zero. When all registered 
parties arrive at a Phaser, the Phaser advances to the next phase and the phase 
number is incremented by one. The maximum value of the phase number is 
Integer.MAX_VALUE. After its maximum value, the phase number restarts at zero.

•	 A Phaser has a termination state. All synchronization methods called on a Phaser in 
a termination state return immediately without waiting for an advance. The Phaser 
class provides different ways to terminate a phaser.

•	 A Phaser has three types of parties count: a registered parties count, an arrived 
parties count, and an unarrived parties count. The registered parties count is the 
number of parties that are registered for synchronization. The arrived parties count 
is the number of parties that have arrived at the current phase of the phaser. The 
unarrived parties count is the number of parties that have not yet arrived at the 
current phase of the phaser. When the last party arrives, the phaser advances to the 
next phase. Note that all three types of party counts are dynamic.



Chapter 6 ■ threads

296

•	 Optionally, a Phaser lets you execute a phaser action when all registered parties 
arrive at the phaser. Recall that a CyclicBarrier lets you execute a barrier action, 
which is a Runnable task. Unlike a CyclicBarrier, you specify a phaser action by 
writing code in the onAdvance() method of your Phaser class. It means you need 
to use your own phaser class by inheriting it from the Phaser class and override the 
onAdvance() method to provide a Phaser action. I discuss an example of this kind 
shortly.

Figure 6-12 shows a phaser with three phases. It synchronizes on a different number of parties in each 
phase. An arrow in the figure represents a party.

P
H
A
S
E
R

P
H
A
S
E
R

P
H
A
S
E
R

Phase-0 Phase-1 Phase-2

Figure 6-12. A Phaser with three phases with a different number of parties in each phase

There are several steps to work with a Phaser. You can create a Phaser with no initially registered party 
using its default constructor.

// A phaser with no registered parties
Phaser phaser = new Phaser();

Another constructor lets you register parties when the Phaser is created.

// A phaser with 5 registered parties
Phaser phaser = new Phaser(5);

A Phaser may be arranged in a tree-like structure. Other constructors let you create a Phaser by 
specifying the parent of the newly created Phaser. Once you have created a Phaser, the next step is to register 
parties that are interested in synchronizing on the phaser. You can register a party in the following ways:

•	 By specifying the number of parties to register in the constructor of the Phaser class 
when you create a Phaser object

•	 By using the register() method of the Phaser class to register one party at a time

•	 By using the bulkRegister(int parties) method of the Phaser class to register the 
specified number of parties in bulk

The registered parties of a Phaser may change at any time by registering new parties or deregistering the 
already registered parties. You can deregister a registered party using the arriveAndDeregister() method 
of the Phaser class. This method lets a party arrive at the Phaser and deregister without waiting for other 
parties to arrive. If a party is deregistered, the number of parties is reduced by one in the next phase of the 
Phaser.



Chapter 6 ■ threads

297

Typically, a party in a Phaser means a thread. However, a Phaser does not associate the registration of 
a party with a specific thread. It simply maintains a count that is increased by one when a party is registered 
and decreased by one when a party is deregistered.

The most important part of a Phaser is the way multiple parties synchronize on it. A typical way to 
synchronize on a Phaser is to let the registered number of parties arrive and wait at the Phaser for other 
registered parties to arrive. Once the last registered party arrives at the Phaser, all parties advance to the next 
phase of the Phaser.

The arriveAndAwaitAdvance() method of the Phaser class lets a party arrive at the Phaser and waits for 
other parties to arrive before it can proceed.

The arriveAndDeregister() method of the Phaser class lets a party arrive at the Phaser and deregister 
without waiting for other parties to arrive. Upon deregistration, the number of parties required to advance to 
the future phase reduces by one. Typically, the arriveAndDeregister() method is used by a controller party 
whose job is to control the advance of other parties without participating in the advance itself. Typically, the 
controller party registers itself with the Phaser and waits for some conditions to occur; when the required 
condition occurs, it arrives and deregisters itself from the Phaser so parties can synchronize on the Phaser 
and advance.

Let’s walk through an example of using a Phaser to synchronize a group of tasks so they can all start at 
the same time. An instance of the StartTogetherTask class, shown in Listing 6-38, represents a task in this 
example.

Listing 6-38. A StartTogetherTask Class to Represent Tasks That Start Together by Synchronizing on a Phaser

// StartTogetherTask.java
package com.jdojo.threads;

import java.util.Random;
import java.util.concurrent.Phaser;

public class StartTogetherTask extends Thread {
    private final Phaser phaser;
    private final String taskName;
    private static Random rand = new Random();

    public StartTogetherTask(String taskName, Phaser phaser) {
        this.taskName = taskName;
        this.phaser = phaser;
    }

    @Override
    public void run() {
        System.out.println(taskName + ":Initializing...");

        // Sleep for some time between 1 and 5 seconds  
        int sleepTime = rand.nextInt(5) + 1;
        try {
            Thread.sleep(sleepTime * 1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }



Chapter 6 ■ threads

298

        System.out.println(taskName + ":Initialized...");

        // Wait for all parties to arrive to start the task  
        phaser.arriveAndAwaitAdvance();
        System.out.println(taskName + ":Started...");
    }
}

The StartTogetherTask class inherits from the Thread class. Its constructor accepts a task name and 
a Phaser instance. In its run() method, it prints a message that it is initializing. It fakes its initialization by 
sleeping for a random period of 1 to 5 seconds. After that, it prints a message that it is initialized. At this stage, 
it waits on a Phaser advance by calling the arriveAndAwaitAdvance() method of the Phaser. This method 
will block until all registered parties arrive at the Phaser. When this method returns, it prints a message that 
the task has started. Listing 6-39 contains the code to test three tasks of StartTogetherTask type.

Listing 6-39. Testing Some Objects of the StartTogetherTask Class with a Phaser

// StartTogetherTaskTest.java
package com.jdojo.threads;

import java.util.concurrent.Phaser;

public class StartTogetherTaskTest {
    public static void main(String[] args) {
        // Start with 1 registered party  
        Phaser phaser = new Phaser(1);

        // Let's start three tasks  
        final int TASK_COUNT = 3;

        for (int i = 1; i <= TASK_COUNT; i++) {
            // Register a new party with the phaser for each task  
            phaser.register();

            // Now create the task and start it  
            String taskName = "Task #" + i;
            StartTogetherTask task = new StartTogetherTask(taskName, phaser);
            task.start();
        }

        // Now, deregister the self, so all tasks can advance  
        phaser.arriveAndDeregister();
    }
}



Chapter 6 ■ threads

299

Task #3:Initializing...
Task #2:Initializing...
Task #1:Initializing...
Task #3:Initialized...
Task #1:Initialized...
Task #2:Initialized...
Task #2:Started...
Task #1:Started...
Task #3:Started...

First, the program creates a Phaser object by specifying 1 as the initially registered party.

// Start with 1 registered party  
Phaser phaser = new Phaser(1);

You register a task with the Phaser one at a time. If a task (or a party) is registered and started before 
other tasks are registered, the first task will advance the phaser because there will be one registered 
party and it will arrive at the phaser by itself. Therefore, you need to start with one registered party in the 
beginning. It acts like the controller party for other tasks.

You create three tasks in a loop. Inside the loop, you register a party (that represents a task) 
with the Phaser, create a task, and start it. Once you are done setting up the tasks, you call the 
arriveAndDeregister() method of the Phaser. This takes care of one extra party that you had registered 
when you created the Phaser. This method makes a party arrive at the Phaser and deregister without waiting 
for other registered parties to arrive. After this method call is over, it is up to the three tasks to arrive at the 
Phaser and advance. Once all three tasks arrive at the Phaser, they will all advance at the same time, thus 
making them start at the same time. You may get different output. However, the last three messages in the 
output will always be about starting the three tasks.

If you do not want to use an additional party to act as a controller, you need to register all tasks in 
advance to make this program work correctly. You can rewrite the code in the main() method of the 
StartTogetherTaskTest class as follows:

public static void main(String[] args) {
    // Start with 0 registered party  
    Phaser phaser = new Phaser();

    // Let's start three tasks  
    final int TASK_COUNT = 3;

    // Initialize all tasks in one go  
    phaser.bulkRegister(TASK_COUNT);

    for(int i = 1; i <= TASK_COUNT; i++) {
        // Now create the task and start it  
        String taskName = "Task #" + i;
        StartTogetherTask task = new StartTogetherTask(taskName, phaser);
        task.start();        
    }        
}



Chapter 6 ■ threads

300

This time, you create a Phaser with no registered party. You register all the parties using the 
bulkRegister() method in one go. Note that you do not register a party inside the loop anymore. The new 
code has the same effect as the old one. It is just a different way to write the same logic.

Like a CyclicBarrier, a Phaser lets you execute an action upon a phase advance using its onAdvance() 
method. You will need to create your own phaser class by inheriting it from the Phaser class and override 
the onAdvance() method to write your custom Phaser action. On each phase advance, the onAdvance() 
method of the phaser is invoked. The onAdvance() method in the Phaser class is declared as follows. The 
first argument is the phase number and the second is the number of registered parties.

protected boolean onAdvance(int phase, int registeredParties)

Besides defining a phase advance action, the onAdvance() method of the Phaser class also controls 
the termination state of a Phaser. A Phaser is terminated if its onAdvance() method returns true. You can 
use the isTerminated() method of the Phaser class to check if a phaser is terminated or not. You can also 
terminate a phaser using its forceTermination() method.

Listing 6-40 demonstrates how to add a Phaser action. This is a trivial example. However, it 
demonstrates the concept of adding and executing a Phaser action. It uses an anonymous class to create a 
custom Phaser class. The anonymous class overrides the onAdvance() method to define a Phaser action. It 
simply prints a message in the onAdvance() method as the Phaser action. It returns false, which means the 
phaser will not be terminated from the onAdvance() method. Later, it registers the self as a party and triggers 
a phase advance using the arriveAndDeregister() method. On every phase advance, the Phaser action 
that is defined by the onAdvance() method is executed.

Listing 6-40. Adding a Phaser Action to a Phaser

// PhaserActionTest.java
package com.jdojo.threads;

import java.util.concurrent.Phaser;

public class PhaserActionTest {
    public static void main(String[] args) {
        // Create a Phaser object using an anonymous class and override its
        // onAdvance() method to define a phaser action  
        Phaser phaser = new Phaser() {
            @Override
            protected boolean onAdvance(int phase, int parties) {
                System.out.println("Inside onAdvance(): phase = "
                        + phase + ", Registered Parties = " + parties);

                // Do not terminate the phaser by returning false  
                return false;
            }
        };

        // Register the self (the "main" thread) as a party  
        phaser.register();

        // Phaser is not terminated here  
        System.out.println("#1: isTerminated(): " + phaser.isTerminated());



Chapter 6 ■ threads

301

        // Since we have only one party registered, this arrival will advance
        // the phaser and registered parties reduces to zero  
        phaser.arriveAndDeregister();

        // Trigger another phase advance  
        phaser.register();
        phaser.arriveAndDeregister();

        // Phaser is still not terminated  
        System.out.println("#2: isTerminated(): " + phaser.isTerminated());

        // Terminate the phaser  
        phaser.forceTermination();

        // Phaser is terminated  
        System.out.println("#3: isTerminated(): " + phaser.isTerminated());
    }
}

#1: isTerminated(): false
Inside onAdvance(): phase = 0, Registered Parties = 0
Inside onAdvance(): phase = 1, Registered Parties = 0
#2: isTerminated(): false
#3: isTerminated(): true

Let’s consider using a Phaser to solve a complex task. This time, the Phaser works in multiple phases 
by synchronizing multiple parties in each phase. Multiple tasks generate random integers in each phase 
and add them to a List. After the Phaser is terminated, you compute the sum of all the randomly generated 
integers.

Listing 6-41 contains the code for a task. Let’s call this task AdderTask. In its run() method, it creates 
a random integer between 1 and 10, adds the integer to a List, and waits for a Phaser to advance. It keeps 
adding an integer to the list in each phase of the Phaser until the Phaser is terminated.

Listing 6-41. An AdderTask Class Whose Instances Can Be Used with a Phaser to Generate Some Integers

// AdderTask.java
package com.jdojo.threads;

import java.util.List;
import java.util.Random;
import java.util.concurrent.Phaser;

public class AdderTask extends Thread {
    private final Phaser phaser;
    private final String taskName;
    private final List<Integer> list;
    private static Random rand = new Random();



Chapter 6 ■ threads

302

    public AdderTask(String taskName, Phaser phaser, List<Integer> list) {
        this.taskName = taskName;
        this.phaser = phaser;
        this.list = list;
    }

    @Override
    public void run() {
        do {
            // Generate a random integer between 1 and 10  
            int num = rand.nextInt(10) + 1;

            System.out.println(taskName + " added " + num);

            // Add the integer to the list  
            list.add(num);

            // Wait for all parties to arrive at the phaser  
            phaser.arriveAndAwaitAdvance();
        } while (!phaser.isTerminated());
    }
}

Listing 6-42 creates a Phaser by inheriting an anonymous class from the Phaser class. In its 
onAdvance() method, it terminates the phaser after the second advance, which is controlled by the 
PHASE_COUNT constant, or if the registered parties reduces to zero. You use a synchronized List to gather the 
random integers generated by the adder tasks. You plan to use three adder tasks, so you register four parties 
(one more than the number of tasks) with the phaser. The additional party will be used to synchronize each 
phase. It waits for each phase advance until the Phaser is terminated. At the end, the sum of the random 
integers generated by all adder tasks is computed and displayed on the standard output. You may get 
different output.

Listing 6-42. A Program to Use Multiple AdderTask Tasks with a Phaser

// AdderTaskTest.java
package com.jdojo.threads;

import java.util.List;
import java.util.ArrayList;
import java.util.Collections;
import java.util.concurrent.Phaser;

public class AdderTaskTest {
    public static void main(String[] args) {
        final int PHASE_COUNT = 2;
        Phaser phaser
                = new Phaser() {
            @Override
            public boolean onAdvance(int phase, int parties) {
                // Print the phaser details  
                System.out.println("Phase:" + phase
                        + ", Parties:" + parties



Chapter 6 ■ threads

303

                        + ", Arrived:" + this.getArrivedParties());
                boolean terminatePhaser = false;

                // Terminate the phaser when we reach the PHASE_COUNT
                // or there is no registered party  
                if (phase >= PHASE_COUNT - 1 || parties == 0) {
                    terminatePhaser = true;
                }

                return terminatePhaser;
            }
        };

        // Use a synchronized List  
        List<Integer> list = Collections.synchronizedList(new ArrayList<>());

        // Let’s start three tasks  
        final int ADDER_COUNT = 3;

        // Register parties one more than the number of adder tasks.
        // The extra party will synchronize to compute the result of
        // all generated integers by all adder tasks  
        phaser.bulkRegister(ADDER_COUNT + 1);

        for (int i = 1; i <= ADDER_COUNT; i++) {
            // Create the task and start it  
            String taskName = "Task #" + i;
            AdderTask task = new AdderTask(taskName, phaser, list);
            task.start();
        }

        // Wait for the phaser to terminate, so we can compute the sum
        // of all generated integers by the adder tasks  
        while (!phaser.isTerminated()) {
            phaser.arriveAndAwaitAdvance();
        }

        // Phaser is terminated now. Compute the sum  
        int sum = 0;
        for (Integer num : list) {
            sum = sum + num;
        }

        System.out.println("Sum = " + sum);
    }
}



Chapter 6 ■ threads

304

Task #2 added 2
Task #1 added 2
Task #3 added 5
Phase:0, Parties:4, Arrived:4
Task #3 added 5
Task #1 added 1
Task #2 added 7
Phase:1, Parties:4, Arrived:4
Sum = 22

Latches
A latch works similar to a barrier in the sense that it also makes a group of threads wait until it reaches its 
terminal state. Once a latch reaches its terminal state, it lets all threads pass through. Unlike a barrier, it is a 
one-time object. Once it has reached its terminal state, it cannot be reset and reused. A latch can be used in 
situations where a number of activities cannot proceed until a certain number of one-time activities have 
completed. For example, a service should not start until all services that it depends on have started.

The CountDownLatch class in the java.util.concurrent package provides the implementation of 
a latch. It is initialized to a count using its constructor. All threads that call the await() method of the 
latch object are blocked until latch’s countDown() method is called as many times as its count is set. 
When the number of calls to the countDown() method is the same as its count, it reaches its terminal state 
and all blocked threads are released. Once a latch reaches its terminal state, its await() method returns 
immediately. You can think of the count that is set for the latch as the same as the number of events that a 
group of thread will wait to occur. Each occurrence of an event will call its countDown() method.

Listing 6-43 and Listing 6-44 contain classes that represent a helper service and a main service, 
respectively. The main service depends on helper services to start. After all helper services have started, only 
then can the main service start.

Listing 6-43. A Class to Represent a Helper Service

// LatchHelperService.java
package com.jdojo.threads;

import java.util.concurrent.CountDownLatch;
import java.util.Random;

public class LatchHelperService extends Thread {
    private final int ID;
    private final CountDownLatch latch;
    private final Random random = new Random();

    public LatchHelperService(int ID, CountDownLatch latch) {
        this.ID = ID;
        this.latch = latch;
    }

    @Override
    public void run() {
        try {



Chapter 6 ■ threads

305

            int startupTime = random.nextInt(30) + 1;

            System.out.println("Service #" + ID + " starting in "
                    + startupTime + " seconds...");

            Thread.sleep(startupTime * 1000);

            System.out.println("Service #" + ID + " has started...");
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            // Count down on the latch to indicate that it has started  
            this.latch.countDown();
        }
    }
}

Listing 6-44. A Class to Represent the Main Service That Depends on Helper Services to Start

// LatchMainService.java
package com.jdojo.threads;

import java.util.concurrent.CountDownLatch;

public class LatchMainService extends Thread {
    private final CountDownLatch latch;

    public LatchMainService(CountDownLatch latch) {
        this.latch = latch;
    }

    @Override
    public void run() {
        try {
            System.out.println("Main service is waiting for helper services to start...");
            latch.await();
            System.out.println("Main service has started...");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

Listing 6-45 lists a program to test the concept of helper and main services with a latch. You create a 
latch that is initialized to two. The main service thread is started first and it calls latch’s await() method to 
wait for the helper service to start. Once both helper threads call the countDown() method of the latch, the 
main service starts. The output explains the sequence of events clearly.



Chapter 6 ■ threads

306

Listing 6-45. A Class to Test the Concept of a Latch with Helper and Main Services

// LatchTest.java
package com.jdojo.threads;

import java.util.concurrent.CountDownLatch;

public class LatchTest {
    public static void main(String[] args) {
        // Create a countdown latch with 2 as its counter  
        CountDownLatch latch = new CountDownLatch(2);

        // Create and start the main service  
        LatchMainService ms = new LatchMainService(latch);
        ms.start();

        // Create and start two helper services  
        for (int i = 1; i <= 2; i++) {
            LatchHelperService lhs = new LatchHelperService(i, latch);
            lhs.start();
        }
    }
}

Main service is waiting for helper services to start...
Service #1 starting in 12 seconds...
Service #2 starting in 2 seconds...
Service #2 has started...
Service #1 has started...
Main service has started...

Exchangers
An exchanger is another form of a barrier. Like a barrier, an exchanger lets two threads wait for each other 
at a synchronization point. When both threads arrive, they exchange an object and continue their activities. 
This is useful in building a system where two independent parties need to exchange information from time 
to time. Figure 6-13 through Figure 6-15 depict how an exchanger works with two threads and lets them 
exchange an object.

E
X
C
H
A
N
G
E
R

Figure 6-13. Two threads perform their work independently



Chapter 6 ■ threads

307

The Exchanger<V> class provides an implementation for an exchanger synchronizer. It has one 
constructor, which takes no arguments. The type parameter V is the type of Java object that will be exchanged 
between two parties. You can create an exchanger that will let two threads exchange a Long as follows:

Exchanger<Long> exchanger = new Exchanger<>();

The Exchanger class has only one method, exchange(). When a thread is ready to exchange an object 
with another thread, it calls the exchange() method of the exchanger and waits for another thread to 
exchange the object. A thread that is waiting to exchange an object may be interrupted. Another overloaded 
version of the exchange() method accepts a timeout period. If the timeout period is specified, the thread 
calling this method will wait for another thread to exchange an object until the timeout period is elapsed. 
The exchange() method takes the object to pass on to another thread as an argument and it returns the 
object passed by another thread. You call the exchange() method like so:

objectReceived = exchanger.exchange(objectedPassed);

Listing 6-46, Listing 6-47, and Listing 6-48 demonstrate the use of an exchanger in building a producer/
consumer system that exchanges a buffer, which is an ArrayList of Integer objects. To declare an array list 
of integer objects, you have to declare it as follows:

ArrayList<Integer> buffer = new ArrayList<Integer>();

In Listing 6-48, you have created an exchanger as

Exchanger<ArrayList<Integer>> exchanger = new Exchanger<ArrayList<Integer>>();

E
X
C
H
A
N
G
E
R

Figure 6-14. One thread arrives at the exchange point and waits for another thread to arrive

E
X
C
H
A
N
G
E
R

An object 

An object

Figure 6-15. Two threads meet at exchange point and exchange objects



Chapter 6 ■ threads

308

The type declaration Exchanger<ArrayList<Integer>> indicates that the exchanger will let two 
threads exchange objects of type ArrayList<Integer>. You can also note that the type declarations in the 
ExchangerProducer and ExchangerConsumer classes match the previous declaration. The producer fills up 
the data and waits for some time to give the users the impression that it is really filling up data. It waits for the  
consumer to exchange the filled buffer with an empty buffer from the consumer. The consumer does the 
opposite. It waits for the producer to exchange the buffer. When it gets a full buffer from the producer, it 
empties the buffer and again waits for the producer to exchange its empty buffer for a full one. Since the 
producer and consumer run in infinite loops, the program will not end. You will have to end the program 
manually. You will get a similar output to that shown in Listing 6-48.

Listing 6-46. A Producer Thread That Will Use an Exchanger to Exchange Data with a Consumer

// ExchangerProducer.java
package com.jdojo.threads;

import java.util.concurrent.Exchanger;
import java.util.ArrayList;
import java.util.Random;

public class ExchangerProducer extends Thread {
    private final Exchanger<ArrayList<Integer>> exchanger;
    private ArrayList<Integer> buffer = new ArrayList<>();
    private final int bufferLimit;
    private final Random random = new Random();
    private int currentValue = 0; // to produce values            

    public ExchangerProducer(Exchanger<ArrayList<Integer>> exchanger,
            int bufferLimit) {
        this.exchanger = exchanger;
        this.bufferLimit = bufferLimit;
    }

    @Override
    public void run() {
        // keep producing integers  
        while (true) {
            try {
                System.out.println("Producer is filling the buffer with data...");

                // Wait for some time by sleeping  
                int sleepTime = random.nextInt(20) + 1;
                Thread.sleep(sleepTime * 1000);

                // Fill the buffer  
                this.fillBuffer();
                System.out.println("Producer has produced:" + buffer);



Chapter 6 ■ threads

309

                // Let’s wait for the consumer to exchange data  
                System.out.println("Producer is waiting to exchange the data...");
                buffer = exchanger.exchange(buffer);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    public void fillBuffer() {
        for (int i = 1; i <= bufferLimit; i++) {
            buffer.add(++currentValue);
        }
    }
}

Listing 6-47. A Consumer Thread That Will Use an Exchanger to Exchange Data with a Producer

// ExchangerConsumer.java
package com.jdojo.threads;

import java.util.concurrent.Exchanger;
import java.util.ArrayList;
import java.util.Random;

public class ExchangerConsumer extends Thread {
    private final Exchanger<ArrayList<Integer>> exchanger;
    private ArrayList<Integer> buffer = new ArrayList<>();
    private final Random random = new Random();

    public ExchangerConsumer(Exchanger<ArrayList<Integer>> exchanger) {
        this.exchanger = exchanger;
    }

    @Override
    public void run() {
        // keep consuming the integers  
        while (true) {
            try {
                // Let’s wait for the consumer to exchange data  
                System.out.println("Consumer is waiting to exchange the data...");

                buffer = exchanger.exchange(buffer);
                System.out.println("Consumer has received:" + buffer);
                System.out.println("Consumer is emptying data from the buffer...");

                // Wait for some time by sleeping  
                int sleepTime = random.nextInt(20) + 1;

                // Sleep for some time  
                Thread.sleep(sleepTime * 1000);



Chapter 6 ■ threads

310

                // Empty the buffer  
                this.emptyBuffer();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    public void emptyBuffer() {
        buffer.clear();
    }
}

Listing 6-48. A Class to Test a Producer/Consumer System with an Exchanger

// ExchangerProducerConsumerTest.java
package com.jdojo.threads;

import java.util.concurrent.Exchanger;
import java.util.ArrayList;

public class ExchangerProducerConsumerTest {
    public static void main(String[] args) {
        Exchanger<ArrayList<Integer>> exchanger = new Exchanger<>();

        // The producer will produce 5 integers at a time  
        ExchangerProducer producer = new ExchangerProducer(exchanger, 5);
        ExchangerConsumer consumer = new ExchangerConsumer(exchanger);

        producer.start();
        consumer.start();
    }
}

Producer is filling the buffer with data...
Consumer is waiting to exchange the data...
Producer has produced:[1, 2, 3, 4, 5]
Producer is waiting to exchange the data...
Producer is filling the buffer with data...
Consumer has received:[1, 2, 3, 4, 5]
Consumer is emptying data from the buffer...
...

The Executor Framework
A task is a logical unit of work, and typically a thread is used to represent and execute a task. Many aspects of 
task execution should be considered before modeling it in a program. A few aspects of a task are as follows:

•	 How it is created.

•	 How it is submitted for execution.



Chapter 6 ■ threads

311

•	 How it is executed. Is it executed synchronously or asynchronously?

•	 The time at which it is executed. Is it executed immediately upon submission or 
queued?

•	 Which thread executes it? Is it executed in the thread that submits it or in another 
thread?

•	 How do we get the result of a task when it is finished executing?

•	 How do we know the error that occurs during its execution?

•	 Does it depend on other tasks to finish its execution?

A task may be represented as a Runnable. If you want to manage tasks using threads, follow the steps 
described next. You can create a class to represent a task.

public class MyTask implements Runnable {
    public void run() {
        // Task processing logic goes here  
    }
}

You create tasks as follows:

MyTask task1 = new MyTask();
MyTask task2 = new MyTask();
MyTask task3 = new MyTask();

To execute the tasks, you use threads as follows:

Thread t1 = new Thread(task1);
Thread t2 = new Thread(task2);
Thread t3 = new Thread(task3);
t1.start();
t2.start();
t3.start();

If you want to get the result of a task execution, you have to write additional code. You may notice that 
managing tasks like this is difficult, if not impossible. There is another aspect of tasks execution that is very 
important: how many threads should be created to execute a group of tasks? One approach would be to 
create a thread per task. Creating a thread per task has the following disadvantages:

•	 Creating and destroying threads requires overhead and takes time, which in turn 
delays the start of the execution of the tasks.

•	 Each thread consumes resources. If the number of threads is more than the available 
CPUs, other threads will be sitting idle and will consume resources.

•	 Each platform has a limit on how many maximum threads it can support. If an 
application exceeds that limit, it may even crash!



Chapter 6 ■ threads

312

Another approach is to create one thread and let it handle the execution of all tasks. This is another 
extreme case, which has the following disadvantages:

•	 Having one thread executing all tasks makes it a sequential executor.

•	 This policy is deadlock-prone if one task submits another task and it depends on the 
result of the task it has submitted.

•	 If you have long-running tasks, other tasks waiting for their execution seem to be 
unresponsive because of the long time it will take to start the pending tasks.

The executor framework attempts to solve all of these problems of task’s execution. The framework 
provides a way to separate task submission from task execution. You create a task and submit it to an 
executor. The executor takes care of the execution details of the task. It provides configurable policies to 
control many aspects of the task execution.

The Executor interface in the java.util.concurrent package is the foundation for the executor 
framework. The interface contains only one method, as shown:

public interface Executor {
    void execute (Runnable command);
}

You can use the executor framework to execute the previously mentioned three tasks as follows:

// Get an executor instance.
Executor executor = Executors.newCachedThreadPool();

// Submit three tasks to the executor  
executor.execute(task1);
executor.execute(task2);
executor.execute(task3);

Note that when you used an executor, you did not create three threads to execute the three tasks. The 
executor will decide that for you. You just called the execute() method of the executor to submit a task. The 
executor will manage the threads that will execute the tasks and other details about the task execution.

The executor framework provides a class library to select the policies on the thread usage to execute the 
tasks. You can choose to run all tasks in one thread, in a fixed number of threads, or in a variable number of 
threads. In fact, you can choose a thread pool to execute your tasks, and the thread pool is configurable as 
to how many threads will be in the pool and how those threads will be maintained. In any case, all threads 
in the pool are reused as they become available. Using a thread pool to execute the submitted tasks has two 
important advantages:

•	 The overhead of creating new threads and destroying them when you are done with 
them is reduced. The executor reuses the threads from the thread pool.

•	 If a thread is available in the thread pool at the time of a task submission, the task 
may start immediately. This eliminates the time delay between the thread creation 
and the task execution.

It is important to mention another interface called ExecutorService at this point. It provides some 
advanced features of an executor, which include managing the shutdown of the executor and checking the 
status of the submitted tasks. It inherits from the Executor interface. Some of the important methods of this 
interface are shutdown(), shutdownNow(), submit(), and awaitTermination(). I discuss them shortly.

It is important that you shut down the executor when it is no longer needed. The executor framework 
creates non-daemon threads to execute the tasks. Generally, when a thread is done executing a task, it is not 



Chapter 6 ■ threads

313

destroyed. Rather it is kept in the thread pool for reuse in the future—whether a thread is destroyed or kept 
depends on the thread pool configuration. A Java application will not exit if some non-daemon threads are 
still alive. Therefore, if you forget to shut down the executor, your application may never exit.

How does an executor handle a task execution? To avoid a detailed and lengthy discussion, here is a 
simple explanation. You specify the type of thread pool that the executor should use to manage the tasks at 
the time you create the executor. All tasks that you submit to an executor are queued in a queue known as 
the work queue. As a thread becomes available, it removes a task from the work queue and executes it. When 
a thread is done executing a task, depending on your thread pool type, your executor either destroys the 
thread or puts it back into the pool so it can be reused to execute another task. You have a number of options 
to decide on what kind of thread pool to use for an executor:

•	 You can use one of the factory methods of the Executors class to get an executor, 
which has a preconfigured thread pool and lets you reconfigure it, if you desire so. 
You will use this approach to get an executor in your examples. You can also use this 
class to get a preconfigured executor that cannot be reconfigured. The commonly 
used methods of the Executors class to get an executor service are as follows:

•	 newCachedThreadPool(): It returns an ExecutorService object. The thread pool 
reuses the previously created threads if they are available. Otherwise, it creates a 
new thread to execute a task. It destroys and removes idle threads from the pool. 
The thread pool has characteristics of expanding and shrinking depending on 
the workload.

•	 newFixedThreadPool(int nThreads): It returns an ExecutorService object. 
The thread pool maintains a fixed number of threads. At any time, the thread 
pool will have the maximum nThread number of threads. If a task arrives in 
the work queue and all threads are busy executing other tasks, the task has to 
wait for its execution until a thread becomes available. If a thread is terminated 
because of an unexpected failure during a task execution, it is replaced with a 
new thread.

•	 newSingleThreadExecutor(): It returns an ExecutorService object. The thread 
pool maintains only one thread to execute all tasks. It guarantees that only 
one task will be executed at a time. If the lone thread dies unexpectedly, it is 
replaced with a new one.

•	 You can instantiate the ThreadPoolExecutor class and configure the thread pool.

•	 You can create your own executor from scratch.

Listing 6-49 contains the complete code for a RunnableTast class.

Listing 6-49. A Runnable Task

// RunnableTask.java
package com.jdojo.threads;

import java.util.Random;

public class RunnableTask implements Runnable {
    private final int taskId;
    private final int loopCounter;
    private final Random random = new Random();



Chapter 6 ■ threads

314

    public RunnableTask(int taskId, int loopCounter) {
        this.taskId = taskId;
        this.loopCounter = loopCounter;
    }

    @Override
    public void run() {
        for (int i = 1; i <= loopCounter; i++) {
            try {
                int sleepTime = random.nextInt(10) + 1;
                System.out.println("Task #" + this.taskId
                        + " - Iteration #" + i
                        + " is going to sleep for "
                        + sleepTime + " seconds.");

                Thread.sleep(sleepTime * 1000);
            } catch (InterruptedException e) {
                System.out.println("Task #" + this.taskId
                        + " has been interrupted.");
                break;
            }
        }
    }
}

An object of the RunnableTask class represents a task in your program. You will have a task that will 
sleep for some time and print a message on the standard output. The time to sleep will be determined 
randomly between 1 and 10 seconds. Every task will be assigned a task ID and a loop counter. The task ID is 
used to identify the task. The loop counter is used to control the loop inside the run() method. Listing 6-50 
contains the complete code to test the Runnable task class.

Listing 6-50. A Class to Test an Executor to Run Some Runnable Tasks

// RunnableTaskTest.java
package com.jdojo.threads;

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;

public class RunnableTaskTest {
    public static void main(String[] args) {
        final int THREAD_COUNT = 3;
        final int LOOP_COUNT = 3;
        final int TASK_COUNT = 5;

        // Get an executor with three threads in its thread pool  
        ExecutorService exec = Executors.newFixedThreadPool(THREAD_COUNT);



Chapter 6 ■ threads

315

        // Create five tasks and submit them to the executor  
        for (int i = 1; i <= TASK_COUNT; i++) {
            RunnableTask task = new RunnableTask(i, LOOP_COUNT);
            exec.submit(task);
        }

        // Let’s shutdown the executor  
        exec.shutdown();
    }
}

Task #1 - Iteration #1 is going to sleep for 9 seconds.
Task #2 - Iteration #1 is going to sleep for 2 seconds.
Task #3 - Iteration #1 is going to sleep for 7 seconds.
Task #2 - Iteration #2 is going to sleep for 5 seconds.
Task #2 - Iteration #3 is going to sleep for 7 seconds.
Task #3 - Iteration #2 is going to sleep for 2 seconds.
...

The RunnableTaskTest class creates an Executor with three threads. It creates five instances of the 
RunnableTask class—each task making three iterations in its run() method. All five tasks are submitted to 
the Executor. You have used an executor with its thread pool with a fixed number of threads. Your executor 
will have only three threads in its thread pool to execute only three tasks at a time. When the executor is 
done with one of the first three tasks, it starts the fourth one. Note the exec.shutdown() method call to shut 
down the executor after submitting all tasks. The shutdownNow() method call of executor attempts to stop 
the executing tasks by interrupting it and discards the pending tasks. It returns the list of all pending tasks 
that were discarded. If you replace the exec.shutdown() to exec.shutdownNow() in the main() method, you 
may get an output similar to the one shown:

Task #1 - Iteration #1 is going to sleep for 7 seconds.
Task #2 - Iteration #1 is going to sleep for 10 seconds.
Task #3 - Iteration #1 is going to sleep for 9 seconds.
Task #2 has been interrupted.
Task #3 has been interrupted.
Task #1 has been interrupted.

Result-Bearing Tasks
How do you get the result of a task when it is complete? The task that can return a result upon its execution 
has to be represented as an instance of the Callable<V> interface:

public interface Callable<V> {
    V call() throws Exception;
}

The type parameter V is the type of the result of the task. Note that the run() method of the Runnable 
interface cannot return a value and it cannot throw any checked exception. The call() method of the 
Callable interface can return a value of any type. It also allows you to throw an exception.



Chapter 6 ■ threads

316

Let’s redo your RunnableTask class from Listing 6-49 as CallableTask, which is shown in Listing 6-51.

Listing 6-51. A Callable Task

// CallableTask.java
package com.jdojo.threads;

import java.util.Random;
import java.util.concurrent.Callable;

public class CallableTask implements Callable<Integer> {
    private final int taskId;
    private final int loopCounter;
    private final Random random = new Random();

    public CallableTask(int taskId, int loopCounter) {
        this.taskId = taskId;
        this.loopCounter = loopCounter;
    }

    @Override
    public Integer call() throws InterruptedException {
        int totalSleepTime = 0;

        for (int i = 1; i <= loopCounter; i++) {
            try {
                int sleepTime = random.nextInt(10) + 1;

                System.out.println("Task #" + this.taskId
                        + " - Iteration #" + i
                        + " is going to sleep for "
                        + sleepTime + " seconds.");

                Thread.sleep(sleepTime * 1000);
                totalSleepTime = totalSleepTime + sleepTime;
            } catch (InterruptedException e) {
                System.out.println("Task #" + this.taskId
                        + " has been interrupted.");
                throw e;
            }
        }

        return totalSleepTime;
    }
}

The call() method of the task returns the sum of all its sleeping periods. Listing 6-52 illustrates the use 
of the Callable task. You may get different output every time you run the program.



Chapter 6 ■ threads

317

Listing 6-52. A Class to Demonstrate How to Use a Callable Task with an Executor

// CallableTaskTest.java
package com.jdojo.threads;

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;

public class CallableTaskTest {
    public static void main(String[] args) {
        // Get an executor with three threads in its thread pool  
        ExecutorService exec = Executors.newFixedThreadPool(3);

        // Create the callable task with loop counter as 3  
        CallableTask task = new CallableTask(1, 3);

        // Submit the callable task to executor  
        Future<Integer> submittedTask = exec.submit(task);

        try {
            Integer result = submittedTask.get();
            System.out.println("Task's total sleep time: " + result + " seconds");
        } catch (ExecutionException e) {
            System.out.println("Error in executing the task.");
        } catch (InterruptedException e) {
            System.out.println("Task execution has been interrupted.");
        }

        // Let’s shutdown the executor  
        exec.shutdown();
    }
}

Task #1 - Iteration #1 is going to sleep for 6 seconds.
Task #1 - Iteration #2 is going to sleep for 5 seconds.
Task #1 - Iteration #3 is going to sleep for 4 seconds.
Task's total sleep time: 15 seconds

I explain the logic in the two listings step by step:
The CallableTask class defines the call() method, which contains the logic for task processing.  

It sums up all the sleep times for the task and returns it.
The CallableTaskTest class uses an executor with three threads in its thread pool.
The ExecutorService.submit() method returns a Future<V> object. Future is an interface that lets you 

track the progress of the task that you submit. It contains the following methods:

•	 boolean cancel(boolean mayInterruptIfRunning)

•	 V get() throws InterruptedException, ExecutionException



Chapter 6 ■ threads

318

•	 V get(long timeout, TimeUnit unit) throws InterruptedException, 
ExecutionException, TimeoutException

•	 boolean isCancelled()

•	 boolean isDone()

The get() method returns the result of the task execution, which is the same as the returned value from 
the call() method of a Callable object. If the task has not yet finished executing, the get() method blocks. 
You can use another version of the get() method to specify a timeout period for waiting for the result of a 
task execution.

The cancel() method cancels a submitted task. Its call has no effect on a completed task. It accepts a 
boolean argument to indicate if the executor should interrupt the task if the task is still running. If you use 
cancel(true) to cancel a task, make sure the task responds to the interruption properly.

The isDone() method tells you if the task has finished executing. It returns true if the task is finished 
executing normally, it has been cancelled, or it had an exception during its execution.

In the CallableTaskTest class, you keep the returned Future object in the submittedTask variable.  
The Future<Integer> declaration indicates that your task returns an Integer object as its result.

Future<Integer> submittedTask = exec.submit(task);

Another important method call is the get() method on submittedTask.

Integer result = submittedTask.get();

I placed the call to the get() method in a try-catch block because it may throw an exception. If the 
task has not finished executing, the get() method will block. The program prints the result of the task 
execution, which is the total time that the task spent sleeping during its execution.

Finally, you shut down the executor using its shutdown() method.

Scheduling a Task
The executor framework lets you schedule a task that will run in the future. You can run a task 
to execute after a given delay or periodically. Scheduling a task is done using an instance of the 
ScheduledExecutorService interface, which you can get using one of the static factory methods of 
the Executors class. You can also use the concrete implementation of this interface, which is the 
ScheduledThreadPoolExecutor class. To get an instance of the ScheduledExecutorService interface, use 
the following snippet of code:

// Get scheduled executor service with 3 threads  
ScheduledExecutorService sexec = Executors.newScheduledThreadPool(3);

To schedule a task (say task1) after a certain delay (say 10 seconds), use

sexec.schedule(task1, 10, TimeUnit.SECONDS);

To schedule a task (say task2) after a certain delay (say 10 seconds), and repeat after a certain period 
(say 25 seconds), use

sexec.scheduleAtFixedRate(task2, 10, 25, TimeUnit.SECONDS);

After a 10 second delay, task2 will execute for the first time. Subsequently, it will keep executing  
after 10 + 25 seconds, 10 + 2 * 25 seconds, 10 + 3 * 25 seconds, and so on.



Chapter 6 ■ threads

319

You can also schedule a task with a set delay period between the end of an execution and the start of 
the next execution. To schedule task3 for the first time after 40 seconds, and every 60 seconds after every 
execution finishes, use

sexec.scheduleWithFixedDelay(task3, 40, 60, TimeUnit.SECONDS);

The ScheduledExecutorService interface does not provide a method to schedule a task using 
an absolute time. However, you can schedule a task to execute at an absolute time using the following 
technique. Suppose scheduledDateTime is the date and time at which you want to execute the task.

import java.time.LocalDateTime;
import static java.time.temporal.ChronoUnit.SECONDS;
import java.util.concurrent.TimeUnit;
...
LocalDateTime scheduledDateTime = get the scheduled date and time for the task...

// Compute the delay from the time you schedule the task  
long delay = SECONDS.between(LocalDateTime.now(), scheduledDateTime);

// Schedule the task  
sexec.schedule(task, delay, TimeUnit.MILLISECONDS);

 ■ Tip  the submit() method of ExecutorService submits the task for immediate execution. You can submit 
a task for immediate execution using the ScheduledExecutorService.schedule() method by specifying an 
initial delay of zero. a negative initial delay schedules a task for immediate execution.

Listing 6-53 contains the code for a Runnable task. It simply prints the date and time when it is run.

Listing 6-53. A Scheduled Task

// ScheduledTask.java
package com.jdojo.threads;

import java.time.LocalDateTime;    

public class ScheduledTask implements Runnable {
    private final int taskId;

    public ScheduledTask(int taskId) {
        this.taskId = taskId;
    }

    @Override
    public void run() {
        LocalDateTime now = LocalDateTime.now();
        System.out.println("Task #" + this.taskId + " ran at " + now);
    }
}



Chapter 6 ■ threads

320

Listing 6-54 demonstrates how to schedule a task. The second task has been scheduled to run 
repeatedly. To let it run a few times, make the main thread sleep for 60 seconds before you shut down the 
executor. Shutting down an executor discards any pending tasks. A good way to stop a scheduled task that 
repeats is to cancel it after a certain delay using another scheduled task. You may get different output when 
you run the ScheduledTaskTest class.

Listing 6-54. A Class to Test Scheduled Task Executions Using the Executor Framework

// ScheduledTaskTest.java
package com.jdojo.threads;

import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;

public class ScheduledTaskTest {
    public static void main(String[] args) {
        // Get an executor with 3 threads  
        ScheduledExecutorService sexec = Executors.newScheduledThreadPool(3);

        // Task #1 and Task #2  
        ScheduledTask task1 = new ScheduledTask(1);
        ScheduledTask task2 = new ScheduledTask(2);

        // Task #1 will run after 2 seconds  
        sexec.schedule(task1, 2, TimeUnit.SECONDS);

        // Task #2 runs after 5 seconds delay and keep running every 10 seconds
        sexec.scheduleAtFixedRate(task2, 5, 10, TimeUnit.SECONDS);

        // Let the current thread sleep for 60 seconds and shut down the
        // executor that will cancel the task #2 because it is scheduled
        // to run after every 10 seconds
        try {
            TimeUnit.SECONDS.sleep(60);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        // Shut down the executor  
        sexec.shutdown();
    }
}

Task #1 ran at 2017-10-07T10:47:48.800387200
Task #2 ran at 2017-10-07T10:47:51.753682400
Task #2 ran at 2017-10-07T10:48:01.754210400
Task #2 ran at 2017-10-07T10:48:11.754739100
Task #2 ran at 2017-10-07T10:48:21.755259400
Task #2 ran at 2017-10-07T10:48:31.755795600
Task #2 ran at 2017-10-07T10:48:41.756322800



Chapter 6 ■ threads

321

Handling Uncaught Exceptions in a Task Execution
What happens when an uncaught exception occurs during a task execution? The executor framework 
handles occurrences of such uncaught exception nicely for you. If you execute a Runnable task using the 
execute() method of an Executor, any uncaught runtime exceptions will halt the task execution, and the 
exception stack trace will be printed on the console, as shown in the output of Listing 6-55.

Listing 6-55. Printing the Runtime Stack Trace from the execute() Method of the Executor

// BadRunnableTask.java
package com.jdojo.threads;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class BadRunnableTask {
    public static void main(String[] args) {
        Runnable badTask = () -> {
            throw new RuntimeException("The task threw an exception...");
        };

        ExecutorService exec = Executors.newSingleThreadExecutor();
        exec.execute(badTask);
        exec.shutdown();
    }
}

Exception in thread "pool-1-thread-1" java.lang.RuntimeException: The task threw an 
exception...
        at jdojo.threads/com.jdojo.threads.BadRunnableTask.lambda$main$0(BadRunnableTask.java:10)
        at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1167)
        at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:641)
        at java.base/java.lang.Thread.run(Thread.java:844)

If you are submitting a task using the submit() method of the ExecutorService, the executor framework 
handles the exception and indicates that to you when you use the get() method to get the result of the task 
execution. The get() method of the Future instance throws an ExecutionException, wrapping the actual 
exception as its cause. Listing 6-56 illustrates this kind of example. You can use the get() method of the Future 
instance even if you submit a Runnable task. On successful execution of the task, the get() method will return 
null. If an uncaught exception is thrown during the task execution, it throws an ExecutionException.

Listing 6-56. Future’s get() Method Throws ExecutionException, Wrapping the Actual Exception Thrown in 
Task Execution as Its Cause

// BadCallableTask.java
package com.jdojo.threads;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Callable;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;



Chapter 6 ■ threads

322

public class BadCallableTask {
    public static void main(String[] args) {
        Callable<Object> badTask = () -> {
            throw new RuntimeException("The task threw an exception...");
        };

        // Create an executor service
        ExecutorService exec = Executors.newSingleThreadExecutor();

        // Submit a task
        Future submittedTask = exec.submit(badTask);

        try {
            // The get method should throw ExecutionException  
            Object result = submittedTask.get();
        } catch (ExecutionException e) {
            System.out.println("Execution exception has occurred: "
                    + e.getMessage());
            System.out.println("Execution exception cause is: "
                    + e.getCause().getMessage());
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        exec.shutdown();
    }
}

Execution exception has occurred: java.lang.RuntimeException: The task threw an exception...
Execution exception cause is: The task threw an exception...

Executor’s Completion Service
In the previous sections, I explained how to fetch the result of a task execution using a Future object. 
To fetch the result of a submitted task, you must keep the reference of the Future object returned from 
the executor, as demonstrated in Listing 6-52. However, if you have a number of tasks that you have 
submitted to an executor and you want to know their results as they become available, you need to use 
the completion service of the executor. It is represented by an instance of the CompletionService<V> 
interface. It combines an executor and a blocking queue to hold the completed tasks references. The 
ExecutorCompletionService<V> class is a concrete implementation of the CompletionService<V> interface. 
Here are the steps to use it:

 1. Create an executor object.

ExecutorService exec = Executors.newScheduledThreadPool(3);

 2. Create an object of ExecutorCompletionService class, passing the executor 
created in the previous step to its constructor.

ExecutorCompletionService CompletionService = new ExecutorCompletionService(exec);



Chapter 6 ■ threads

323

The executor completion service uses a blocking queue internally to hold 
the completed task. You can also use your own blocking queue to hold the 
completed tasks.

 3. The take() method of the completion service returns the reference of a 
completed task. It blocks if no completed task is present. If you do not want to 
wait, in case there is no completed task, you can use the poll() method, which 
returns null if there is no completed task in the queue. Both methods remove the 
completed task from the queue if they find one.

Listing 6-57, Listing 6-58, and Listing 6-59 illustrate the use of the completion service. An instance of the 
TaskResult class represents the result of a task. It was necessary to have a custom object like a TaskResult 
to represent the result of a task because the completion service just tells you that a task is completed and you 
get its result. It does not tell you which task is completed. To identify the task that was completed, you need 
to identify the task in the result of the task. Your SleepingTask returns a TaskResult from its call() method 
by embedding the task ID and the total sleeping time for the task.

Listing 6-57. A Class to Represent the Result of a Task

// TaskResult.java
package com.jdojo.threads;

public class TaskResult {
    private final int taskId;
    private final int result;

    public TaskResult(int taskId, int result) {
        this.taskId = taskId;
        this.result = result;
    }

    public int getTaskId() {
        return taskId;
    }

    public int getResult() {
        return result;
    }

    @Override
    public String toString() {
        return "Task Name: Task #" + taskId + ", Task Result:" + result + " seconds";
    }
}

Listing 6-58. A Class Whose Object Represents a Callable Task and Produces a TaskResult as Its Result

// SleepingTask.java
package com.jdojo.threads;

import java.util.Random;
import java.util.concurrent.Callable;



Chapter 6 ■ threads

324

public class SleepingTask implements Callable<TaskResult> {
    private int taskId;
    private int loopCounter;
    private Random random = new Random();

    public SleepingTask(int taskId, int loopCounter) {
        this.taskId = taskId;
        this.loopCounter = loopCounter;
    }

    @Override
    public TaskResult call() throws InterruptedException {
        int totalSleepTime = 0;

        for (int i = 1; i <= loopCounter; i++) {
            try {
                int sleepTime = random.nextInt(10) + 1;

                System.out.println("Task #" + this.taskId + " - Iteration #" + i
                        + " is going to sleep for " + sleepTime + " seconds.");

                Thread.sleep(sleepTime * 1000);

                totalSleepTime = totalSleepTime + sleepTime;
            } catch (InterruptedException e) {
                System.out.println("Task #" + this.taskId
                        + " has been interrupted.");
                throw e;
            }
        }

        return new TaskResult(taskId, totalSleepTime);
    }
}

Listing 6-59. A Class to Test the Completion Service

// CompletionServiceTest.java
package com.jdojo.threads;

import java.util.concurrent.Future;
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorCompletionService;

public class CompletionServiceTest {
    public static void main(String[] args) {
        // Get an executor with three threads in its thread pool  
        ExecutorService exec = Executors.newFixedThreadPool(3);



Chapter 6 ■ threads

325

        // Completed task returns an object of the TaskResult class  
        ExecutorCompletionService<TaskResult> completionService
                = new ExecutorCompletionService<>(exec);

        // Submit five tasks and each task will sleep three times for a
        // random period between 1 and 10 seconds  
        for (int i = 1; i <= 5; i++) {
            SleepingTask task = new SleepingTask(i, 3);
            completionService.submit(task);
        }

        // Print the result of each task as they are completed  
        for (int i = 1; i <= 5; i++) {
            try {
                Future<TaskResult> completedTask = completionService.take();
                TaskResult result = completedTask.get();
                System.out.println("Completed a task - " + result);
            } catch (ExecutionException ex) {
                System.out.println("Error in executing the task.");
            } catch (InterruptedException ex) {
                System.out.println("Task execution has been interrupted.");
            }
        }

        // Let’s shut down the executor  
        exec.shutdown();
    }
}

Task #3 - Iteration #1 is going to sleep for 3 seconds.
...
Task #4 - Iteration #1 is going to sleep for 5 seconds.
Completed a task - Task Name: Task #2, Task Result:15 seconds
...
Completed a task - Task Name: Task #4, Task Result:15 seconds
Completed a task - Task Name: Task #5, Task Result:18 seconds

The Fork/Join Framework
The fork/join framework is an implementation of the executor service whose focus is to solve those 
problems efficiently, which may use the divide-and-conquer algorithm by taking advantage of the 
multiple processors or multiple cores on a machine. The framework helps solve the problems that involve 
parallelism. Typically, the fork/join framework is suitable in a situation where

•	 A task can be divided in multiple subtasks that can be executed in parallel.

•	 When subtasks are finished, the partial results can be combined to get the  
final result.



Chapter 6 ■ threads

326

The fork/join framework creates a pool of threads to execute the subtasks. When a thread is waiting 
on a subtask to finish, the framework uses that thread to execute other pending subtasks of other threads. 
The technique of an idle thread executing other thread’s task is called work-stealing. The framework uses 
the work-stealing algorithm to enhance the performance. The following four classes in the java.util.
concurrent package are central to learning the fork/join framework:

•	 ForkJoinPool

•	 ForkJoinTask<V>

•	 RecursiveAction

•	 RecursiveTask<V>

An instance of the ForkJoinPool class represents a thread pool. An instance of the ForkJoinTask 
class represents a task. The ForkJoinTask class is an abstract class. It has two concrete subclasses: 
RecursiveAction and RecursiveTask. Java 8 added an abstract subclass of the ForkJoinTask class that is 
called CountedCompleter<T>. The framework supports two types of tasks:

•	 A task that does not yield a result and a task that yields a result. An instance of the 
RecursiveAction class represents a task that does not yield a result.

•	 An instance of the RecursiveTask class represents a task that yields a result.

A CountedCompleter task may or may not yield a result. Both classes, RecursiveAction and 
RecursiveTask, provide an abstract compute() method. Your class whose object represents a fork/join 
task should inherit from one of these classes and provide an implementation for the compute() method. 
Typically, the logic inside the compute() method is written similar to the following:

if (Task is small) {
    Solve the task directly.
} else {
    Divide the task into subtasks.
    Launch the subtasks asynchronously (the fork stage).
    Wait for the subtasks to finish (the join stage).
    Combine the results of all subtasks.
}

The following two methods of the ForkJoinTask class provide two important features during a  
task execution:

•	 The fork() method launches a new subtask from a task for an asynchronous 
execution.

•	 The join() method lets a task wait for another task to complete.

Steps in Using the Fork/Join Framework
Using the fork/join framework involves the following five steps.



Chapter 6 ■ threads

327

Step 1: Declaring a Class to Represent a Task
Create a class inheriting from the RecursiveAction or RecursiveTask class. An instance of this class 
represents a task that you want to execute. If the task yields a result, you need to inherit it from the 
RecursiveTask class. Otherwise, you will inherit it from the RecursiveAction class. The RecursiveTask is a 
generic class. It takes a type parameter, which is the type of the result of your task. A MyTask class that returns 
a Long result may be declared as follows:

public class MyTask extends RecursiveTask<Long> {
    // Code for your task goes here  
}

Step 2: Implementing the compute() Method
The logic to execute your task goes inside the compute() method of your class. The return type of the 
compute() method is the same as the type of the result that your task returns. The declaration for the 
compute() method of the MyTask class look like the following:

public class MyTask extends RecursiveTask<Long> {
    public Long compute() {
        // Logic for the task goes here  
    }
}

Step 3: Creating a Fork/Join Thread Pool
You can create a pool of worker threads to execute your task using the ForkJoinPool class. The default 
constructor of this class creates a pool of threads, which has the same parallelism as the number of 
processors available on the machine.

ForkJoinPool pool = new ForkJoinPool();

Other constructors let you specify the parallelism and other properties of the pool.

Step 4: Creating the Fork/Join Task
You need to create an instance of your task.

MyTask task = MyTask();

Step 5: Submitting the Task to the Fork/Join Pool for Execution
You need to call the invoke() method of the ForkJoinPool class, passing your task as an argument. The 
invoke() method will return the result of the task if your task returns a result. The following statement will 
execute your task:

long result = pool.invoke(task);



Chapter 6 ■ threads

328

A Fork/Join Example
Let’s consider a simple example of using the fork/join framework. Your task will generate a few random 
integers and compute their sum. Listing 6-60 shows the complete code for your task.

Listing 6-60. A ForkJoinTask Class to Compute the Sum of a Few Random Integers

// RandomIntSum.java
package com.jdojo.threads;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.RecursiveTask;

public class RandomIntSum extends RecursiveTask<Long> {
    private static final Random randGenerator = new Random();
    private final int count;

    public RandomIntSum(int count) {
        this.count = count;
    }

    @Override
    protected Long compute() {
        long result = 0;

        if (this.count <= 0) {
            return 0L; // We do not have anything to do  
        }

        if (this.count == 1) {
            // Compute the number directly and return the result  
            return (long) this.getRandomInteger();
        }

        // Multiple numbers. Divide them into many single tasks. Keep the
        // references of all tasks to call their join() method later  
        List<RecursiveTask<Long>> forks = new ArrayList<>();

        for (int i = 0; i < this.count; i++) {
            RandomIntSum subTask = new RandomIntSum(1);
            subTask.fork(); // Launch the subtask

            // Keep the subTask references to combine the results later  
            forks.add(subTask);
        }



Chapter 6 ■ threads

329

        // Now wait for all subtasks to finish and combine the results  
        for (RecursiveTask<Long> subTask : forks) {
            result = result + subTask.join();
        }

        return result;
    }

    public int getRandomInteger() {
        // Generate the next random integer between 1 and 100  
        int n = randGenerator.nextInt(100) + 1;

        System.out.println("Generated a random integer: " + n);
        return n;
    }
}

The RandomIntSum class inherits from the RecursiveTask<Long> class because it yields a result of the 
type Long. The result is the sum of all random integers. It declares a randGenerator instance variable that is 
used to generate random numbers. The count instance variable stores the number of random numbers that 
you want to use. The value for the count instance variable is set in the constructor.

The getRandomInteger() method generates a random integer between 1 and 100, prints the integer 
value on the standard output, and returns the random integer.

The compute() method contains the main logic to perform the task. If the number of random numbers 
to use is one, it computes the result and returns it to the caller. If the number of random number is more 
than one, it launches as many subtasks as the number of random numbers. Note that if you use ten random 
numbers, it will launch ten subtasks because each random number can be computed independently. 
Finally, you need to combine the results from all subtasks. Therefore, you need to keep the references of 
the subtask for later use. You used a List to store the references of all subtasks. Note the use of the fork() 
method to launch a subtask. The following snippet of code performs this logic:

List<RecursiveTask<Long>> forks = new ArrayList<>();
for(int i = 0; i < this.count; i++) {
    RandomIntSum subTask = new RandomIntSum(1);
    subTask.fork(); // Launch the subtask

    // Keep the subTask references to combine the results at the end  
    forks.add(subTask);
}

Once all subtasks are launched, you need to wait for all subtasks to finish and combine all random 
integers to get the sum. The following snippet of code performs this logic. Note the use of the join() 
method, which will make the current task wait for the subtask to finish.

for(RecursiveTask<Long> subTask : forks) {
    result = result + subTask.join();
}

Finally, the compute() method returns the result, which is the sum of all the random integers.  
Listing 6-61 has the code to execute a task, which is an instance of the RandomIntSum class. You may get 
different output.



Chapter 6 ■ threads

330

Listing 6-61. Using a Fork/Join Pool to Execute a Fork/Join Task

// ForkJoinTest.java
package com.jdojo.threads;

import java.util.concurrent.ForkJoinPool;

public class ForkJoinTest {
    public static void main(String[] args) {
        // Create a ForkJoinPool to run the task  
        ForkJoinPool pool = new ForkJoinPool();

        // Create an instance of the task  
        RandomIntSum task = new RandomIntSum(3);

        // Run the task  
        long sum = pool.invoke(task);

        System.out.println("Sum is " + sum);
    }
}

Generated a random integer: 26
Generated a random integer: 5
Generated a random integer: 68
Sum is 99

This is a very simple example of using the fork/join framework. You are advised to explore the fork/join 
framework classes to know more about the framework. Inside the compute() method of your task, you can 
have complex logic to divide tasks into subtasks. Unlike in this example, you may not know in advance how 
many subtasks you need to launch. You may launch a subtask that may launch another subtask and so on.

Thread-Local Variables
A thread-local variable provides a way to maintain a separate value for a variable for each thread. The 
ThreadLocal<T> class in the java.lang package provides the implementation of a thread-local variable.  
It has five methods:

•	 T get()

•	 protected T initialValue()

•	 void remove()

•	 void set(T value)

•	 static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier)

The get() and set() methods are used to get and set the value for a thread-local variable, respectively. 
The initialValue() method is used to set the initial value of the variable, and it has a protected access. To 
use it, you need to subclass the ThreadLocal class and override this method. You can remove the value by 
using the remove() method. The withInitial() method lets you create a ThreadLocal with an initial value.



Chapter 6 ■ threads

331

Let’s create a CallTracker class, shown in Listing 6-62, to keep track of the number of times a thread 
calls its call() method.

Listing 6-62. A Class That Uses a ThreadLocal Object to Track Calls to Its Method

// CallTracker.java
package com.jdojo.threads;

public class CallTracker {
    // threadLocal variable is used to store counters for all threads  
    private static final ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>();

    public static void call() {
        Integer counterObject = threadLocal.get();

        // Initialize counter to 1
        int counter = 1;

        if (counterObject != null) {
            counter = counterObject + 1;
        }

        // Set the new counter  
        threadLocal.set(counter);

        // Print how many times this thread has called this method  
        String threadName = Thread.currentThread().getName();
        System.out.println("Call counter for " + threadName + " = " + counter);
    }
}

The get() method of the ThreadLocal class works on a thread basis. It returns the value set by the set() 
method by the same thread, which is executing the get() method. If a thread calls the get() method the 
very first time, it returns null. The program sets the call counter for the caller thread to 1 if it is its first call. 
Otherwise, it increments the call counter by 1. It sets the new counter back in the threadLocal object. In the 
end, the call() method prints a message about how many times the current thread has called this method.

Listing 6-63 uses the CallTracker class in three threads. Each thread calls this method a random 
number of times between 1 and 5. You can observe in the output that the counter is maintained for each 
thread’s call separately. You may get different output.

Listing 6-63. A Test Class for the CallTracker Class

// CallTrackerTest.java
package com.jdojo.threads;

import java.util.Random;

public class CallTrackerTest {
    public static void main(String[] args) {
        // Let’s start three threads to the CallTracker.call() method
        new Thread(CallTrackerTest::run).start();



Chapter 6 ■ threads

332

        new Thread(CallTrackerTest::run).start();
        new Thread(CallTrackerTest::run).start();
    }

    public static void run() {
        Random random = new Random();

        // Generate a random value between 1 and 5  
        int counter = random.nextInt(5) + 1;

        // Print the thread name and the generated random number by the thread
        System.out.println(Thread.currentThread().getName()
                + " generated counter: " + counter);

        for (int i = 0; i < counter; i++) {
            CallTracker.call();
        }
    }
}

Thread-0 generated counter: 4
Thread-1 generated counter: 2
Thread-2 generated counter: 3
Call counter for Thread-0 = 1
Call counter for Thread-2 = 1
Call counter for Thread-1 = 1
Call counter for Thread-2 = 2
Call counter for Thread-0 = 2
Call counter for Thread-2 = 3
Call counter for Thread-1 = 2
Call counter for Thread-0 = 3
Call counter for Thread-0 = 4

The initialValue() method sets the initial value of the thread-local variable for each thread. If you 
have set the initial value, the call to the get() method, before you call the set() method, will return that 
initial value. It is a protected method. You must override it in a subclass. You can set the initial value for the 
call counter to 1000 by using an anonymous class as shown:

// Create an anonymous subclass ThreadLocal class and override its initialValue()
// method to return 1000 as the initial value  
private static ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>() {
                        @Override
                        public Integer initialValue() {
                            return 1000;
                        }
                     };



Chapter 6 ■ threads

333

Sub-classing the ThreadLocal class just to have an instance of ThreadLocal with an initial value 
was overkill. Finally, the class designers realized it (in Java 8) and provided a factory method called 
withInitial() in the ThreadLocal class that can specify an initial value. The method is declared as follows:

public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier)

The specified supplier provides the initial value for the ThreadLocal. The get() method of the 
supplier is used to get the initial value. You can rewrite this logic and replace the anonymous class with a 
lambda expression as follows:

// Create a ThreadLocal with an initial value of 1000
ThreadLocal<Integer> threadLocal = ThreadLocal.withInitial(() -> 1000);

Having a Supplier as the supplier for the initial value, you can generate the initial value lazily and 
based on some logic. The following statement creates a ThreadLocal with the initial value as the second part 
of the current time when the initial value is retrieved:

// Return the second part of the current time as the initial value
ThreadLocal<Integer> threadLocal = ThreadLocal.withInitial(() -> LocalTime.now().getSecond());

You can use the remove() method to reset the value of the thread-local variable for a thread. After the 
call to the remove() method, the first call to the get() method works as if it were called the first time by 
returning the initial value.

The typical use of a thread-local variable is to store user ID, transaction ID, or transaction context for a 
thread. The thread sets those values in the beginning, and any code during the execution of that thread can use 
those values. Sometimes a thread may start child threads that may need to use the value set for a thread-local 
variable in the parent thread. You can achieve this by using an object of the InheritableThreadLocal<T> class, 
which is inherited from the ThreadLocal class. The child thread inherits its initial value from the parent thread. 
However, the child thread can set its own value using the set() method.

Setting Stack Size of a Thread
Each thread in a JVM is allocated its own stack. A thread uses its stack to store all local variables during its 
execution. Local variables are used in constructors, methods, or blocks (static or non-static). The stack size 
of each thread will limit the number of threads that you can have in a program. Local variables are allocated 
memory on stack during their scope. Once they are out of scope, the memory used by them is reclaimed. It is 
essential to optimize the stack size of a thread in your program if it uses too many threads. If the stack size is 
too big, you can have a fewer number of threads in your program. The number of threads will be limited by 
the available memory to the JVM. If the stack size is too small to store all local variables used at a time, you 
may encounter a StackOverflowError. To set the stack size for each thread, you can use a non-standard JVM 
option called –Xss<size>, where <size> is the size of the thread stack. To set the stack size to 512 KB, you 
can use a command, like so:

java –Xss512k <other-arguments>



Chapter 6 ■ threads

334

Summary
A thread is a unit of execution in a program. An instance of the Thread class represents a thread in a Java 
program. The thread starts its execution in the run() method of the Thread class or its subclass. To execute 
your code in a thread, you need to subclass the Thread class and override its run() method; you can also use 
an instance of the Runnable interface as the target for a thread. Beginning with Java 8, you can use a method 
reference of any method that takes no parameters and returns void as the target for a thread. A thread is 
scheduled by using the start() method of the Thread class.

There are two types of threads: daemon and non-daemon. A non-daemon thread is also known as a 
user thread. The JVM exits when only threads running in the JVM are all daemon threads.

Each thread in Java has a priority that is an integer between 1 and 10, 1 being the lowest priority and 10 
being the highest priority. The priority of a thread is a hint, which can be ignored, to the operating system 
about its importance for getting the CPU time.

In a multi-threaded program, a section of code that may have undesirable effects on the outcome of 
the program if executed by multiple threads concurrently is called a critical section. You can mark a critical 
section in a Java program using the synchronized keyword. Methods can also be declared as synchronized. 
Only one synchronized instance method of an object can be executed at a time by any threads. Only one 
synchronized class method of a class can be executed at a time by any threads.

A thread in a Java program goes through a set of states that determines its lifecycle. A thread can 
be in any one of these states: new, runnable, blocked, waiting, timed-waiting, or terminated. States are 
represented by constants of the Thread.State enum. Use the getState() method of the Thread class to get 
the current state of the thread.

A thread can be interrupted, stopped, suspended, and resumed. A stopped thread or a thread that has 
finished executing cannot be restarted.

Atomic variables, explicit locks, the synchronizer, the executor framework, and the fork/join framework 
are provided as class libraries to the Java developers to assist in developing concurrent applications. Atomic 
variables are variables that can be atomically updated without using explicit synchronization. Explicit locks 
have features that let you acquire locks and back off if the locks are not available. The executor framework 
helps schedule tasks. The fork/join framework is written on top of the executor framework to assist in 
working with tasks that can be divided in subtasks and finally their results can be combined.

Thread-local variables are implemented through the ThreadLocal<T> class. They store values based on 
threads. They are suitable for values that are local to threads and that cannot be seen by other threads.

QUESTIONS AND EXERCISES

1. What is a thread? Can threads share memory? What is thread local storage?

2. What is a multi-threaded program?

3. What is the name of the class whose objects represent threads in Java programs?

4. suppose you create an object of the Thread class:

Thread t = new Thread();

What do you need to do next so that this Thread object will get CpU time?

5. What is a race condition when using multiple threads? how do you avoid a race 
condition in your program?

6. What is a critical section in a program?



Chapter 6 ■ threads

335

7. What is the effect of using the synchronized keyword in a method’s declaration?

8. What is thread synchronization? how is thread synchronization achieved in a Java 
program?

9. What are an entry set and a wait set of an object?

10. describe the user of the wait(), notify(), and notifyAll() methods in thread 
synchronization.

11. What method of the Thread class do you use to check if a thread is terminated  
or alive?

12. describe the following six states of a thread: New, Runnable, Blocked, Waiting, 
Timed-waiting, and Terminated. What method in the Thread class returns the 
state of a thread?

13. Can you restart a thread by calling its start() method after the thread is 
terminated?

14. What is thread starvation?

15. What is a daemon thread? What happens when the JVM detects that there are 
only daemon threads running in the application? are the main thread and garbage 
collector thread daemon threads?

16. how do you interrupt a thread? What is the difference in calling the instance 
isInterrupted() method and static interrupted() method of the Thread class? 
What happens when a blocked thread is interrupted?

17. What is a thread group? What is the default thread group of a thread? how do you 
get an estimate of active threads in a thread group?

18. describe the use of volatile variables in Java programs.

19. What is the difference between using an AtomicLong variable and a long variable 
with a synchronized getter and setter?

20. What are semaphores, barriers, phasers, latches, and exchangers? Name the 
classes in Java that represent instances of these synchronizers.

21. What is the executor framework? What is the difference between an instance of the 
Executor interface and an instance of the ExecutorService interface? What class 
do you use to get a preconfigured Executor instance?

22. If you want to submit a result-bearing task to an Executor, the task needs to be an 
instance of which interface: Runnable or Callable<T>?

23. What does an instance of the Future<T> interface represent?

24. What is the difference in using the shutdown() and shutdownNow() methods to 
shut down an executor?

25. What is the Fork/Join framework?

26. describe the use of the ThreadLocal<T> class.



Chapter 6 ■ threads

336

27. What JVM option do you use to set the Java thread’s stack size?

28. Create a class inheriting it from the Thread class. When an instance of the class 
is run as a thread, it should print text like 1<name> 2<name>, …N<name> where 
<name> is the name of the thread you specify and N is the upper limit on the 
number of integers starting from 1 to be printed. For example, if you create an 
instance of your class with 100 and “a”, it should print 1a 2a 3a…100a. Create 
three threads of your class and run them simultaneously.

29. Create a class named BankAccount. an instance of this class represents a 
bank account. It should contain three methods—deposit(), withdraw(), and 
balance(). they deposit, withdraw, and return the balance in the account. Its 
balance instance variable should store the balance in the account and it is 
initialized to 100. the balance in the account must not go below 100. do not use 
any thread synchronization constructs or keywords in this class. Create an instance 
of the BankAccount class. pass this instance to four threads—two threads should 
deposit money and two should withdraw money. the deposit and withdrawal 
amount should be selected randomly between 1 and 10. start another thread, a 
monitor thread, that keeps calling the balance() method to check if the balance 
goes below 100. When the balance goes below 100, it should print a message and 
exit the application.

30. Create another copy of the BankAccount class and name it Account. Use thread 
synchronization to guard the access to the balance instance variable in the 
Account class, so its value never goes below 100. run the same number of threads 
as in the previous exercise for five minutes. this time, the monitor thread should 
not print any message. after five minutes, all your threads should be interrupted 
and your threads should respond to the interruption by finishing its task. this way, 
your application should exit normally after five minutes.



337© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_7

CHAPTER 7

Input/Output

In this chapter, you will learn:

•	 What input/output is

•	 How to work with a File object to represent an abstract pathname for a file or a 
directory in a file system

•	 The decorator pattern

•	 Byte-based and character-based input/output streams

•	 Reading data from a file and writing data to a file

•	 Reading and writing primitive type and reference type data to input/output streams

•	 Object serialization and deserialization

•	 How to develop custom input/output stream classes

•	 Using the Console and Scanner classes to interact with the console

•	 The StringTokenizer and StreamTokenizer classes to split text into tokens based  
on delimiters

All example programs in this chapter are members of a jdojo.io module, as declared in Listing 7-1.

Listing 7-1. The Declaration of a jdojo.io Module

// module-info.java
module jdojo.io {
    exports com.jdojo.io;
}

What Is Input/Output?
Input/output (I/O) deals with reading data from a source and writing data to a destination. Data is read from 
the input source (or simply input) and written to the output destination (or simply output). For example, 
your keyboard works as a standard input, letting you read data entered using the keyboard into your 
program. You have been using the System.out.println() method to print text on the standard output from 
the very first Java program without your knowledge that you have been performing I/O.

Typically, you read data stored in a file or you write data to a file using I/O. However, your input and 
output are not limited to only files. You may read data from a String object and write it to another String 
object. In this case, the input is a String object; the output is also a String object. You may read data from 

https://doi.org/10.1007/978-1-4842-3348-1_7


Chapter 7 ■ Input/Output

338

a file and write it to a String object, which will use a file as an input and a String object as an output. Many 
combinations for input and output are possible. Input and output do not have to be used together all the 
time. You may use only input in your program, such as reading the contents of a file into a Java program. You 
may use only output in your program, such as writing the result of a computation to a file.

The java.io and java.nio (nio stands for New I/O) packages contain Java classes that deal with I/O. 
The java.io package has an overwhelming number of classes to perform I/O. It makes learning Java I/O a 
little complex. The situation where the number of classes increases to an unmanageable extent is called a 
class explosion and the java.io package is a good example of that. It is no wonder that there are some books 
in the market that deal only with Java I/O. These books describe all Java I/O classes one by one. This chapter 
looks at Java I/O from a different perspective. First, you will look at the design pattern that was used to design 
the Java I/O classes. Once you understand the design pattern, it is easy to understand how to use those 
classes to perform I/O. After all, I/O is all about reading and writing data and it should not be that hard to 
understand! Before you start looking at the design pattern for the I/O classes, you will learn how to deal with 
files in the next section.

Working with Files
How do you refer to a file in your computer? You refer to it by its pathname. A file’s pathname is a sequence 
of characters by which you can identify it uniquely in a file system. A pathname consists of a file name and 
its unique location in the file system. For example, on a Windows platform, C:\users\dummy.txt is the 
pathname for a file named dummy.txt, which is located in the directory named users, which in turn is 
located in the root directory in the C: drive. On a UNIX platform, /users/dummy is the pathname for a file 
named dummy, which is located in the directory named users, which in turn is located in the root directory.

A pathname can be either absolute or relative. An absolute pathname points to the same location in a 
file system irrespective of the current working directory. For example, on a Windows platform, C:\users\
dummy.txt is an absolute pathname.

A relative pathname is resolved with respect to the working directory. Suppose dummy.txt is your 
pathname. If the working directory is C:\, this pathname points to C:\dummy.txt. If the working directory 
is C:\users, it points to C:\users\dummy.txt. Note that if you specify a relative pathname for a file, it points 
to a different file depending on the current working directory. A pathname that starts with a root is an 
absolute pathname. The forward slash (/) is the root on the UNIX platform and a drive letter followed with a 
backslash such as A:\ or C:\ defines the root for the Windows platform.

 ■ Tip  the pathname syntax is platform-dependent. programs using platform-dependent syntax to represent 
pathnames may not work correctly on other platforms. In this chapter, most of the time I use the term “file” to 
mean a file or a directory.

Creating a File Object
An object of the File class is an abstract representation of a pathname of a file or a directory in a platform-
independent manner. Using the following constructors of the File class, you can create a File object from a 
pathname, a parent pathname and a child pathname, and a URI:

•	 File(String pathname)

•	 File(File parent, String child)



Chapter 7 ■ Input/Output

339

•	 File(String parent, String child)

•	 File(URI uri)

If you have a file pathname called “dummy.txt”, you can create a File object, like so:

File dummyFile = new File("dummy.txt");

Note that a file named dummy.txt does not have to exist to create a File object using this statement. The 
dummyFile object represents an abstract pathname, which may or may not point to a real file in a file system.

The File class contains several methods to work with files and directories. Using a File object, you can 
create a new file, delete an existing file, rename a file, change permissions on a file, and so on. You will see all 
these operations on a file in action in subsequent sections.

 ■ Tip  the File class contains two methods, isFile() and isDirectory(). use these methods to 
determine whether a File object represents a file or a directory.

Knowing the Current Working Directory
The concept of the current working directory is related to operating systems, not to the Java programming 
language or Java I/O. When a process starts, it uses the current working directory to resolve the relative paths 
of files. When you run a Java program, the JVM runs as a process, and therefore it has a current working 
directory. The value for the current working directory for a JVM is set depending on how you run the java 
command. You can get the current working directory for the JVM by reading the user.dir system property 
as follows:

String workingDir = System.getProperty("user.dir");

At this point, you may be tempted to use the System.setProperty() method to change the current 
working directory for the JVM in a running Java program. The following snippet of code will not generate any 
errors; it will not change the current working directory either:

System.setProperty("user.dir", "C:\\kishori");

After you try to set the current working directory in your Java program, the  
System.getProperty("user.dir") will return the new value. However, to resolve the relative file paths, the 
JVM will continue to use the current working directory that was set when the JVM was started, not the one 
changed using the System.setProperty() method.

 ■ Tip  Java designers found it too complex to allow changing the current working directory for the JVM in  
the middle of a running Java program. For example, if it were allowed, the same relative pathname would 
resolve to different absolute paths at different times in the same running JVM, giving rise to inconsistent 
behavior of the program.



Chapter 7 ■ Input/Output

340

You can also specify the current working directory for the JVM as the user.dir property value as a JVM 
option. To specify C:\test as the user.dir system property value on Windows, you run your program like so:

java –Duser.dir=C:\test <other-arguments>

Checking for a File’s Existence
You can check if the abstract pathname of a File object exists using the exists() method of the File class:

// Create a File object
File dummyFile = new File("dummy.txt");

// Check for the file's existence
boolean fileExists = dummyFile.exists();
if (fileExists) {
    System.out.println("The dummy.txt file exists.");
} else {
    System.out.println("The dummy.txt file does not exist.");
}

I have used dummy.txt as the file name that is a relative path for this file. Where in the file system does 
the exists() method look for this file for its existence? There could be no file with this name or there could 
be multiple files with this name. When a relative file path is used, the JVM prepends the current working 
directory to the file path and uses the resulting absolute path for all file-related actual operations. Note that 
the absolute path is constructed in a platform-dependent way. For example, if the current working directory 
on Windows is C:\ksharan, the file name will be resolved to C:\ksharan\dummy.txt; if the current working 
directory on UNIX is /users/ksharan, the file name will be resolved to /users/ksharan/dummy.txt.

Which Path Do You Want to Go?
In addition to a relative path, a file has an absolute path and a canonical path. The absolute path identifies 
the file uniquely on a file system. A canonical path is the simplest path that uniquely identifies the file on a 
file system. The only difference between the two paths is that the canonical path is simplest in its form. For 
example, on Windows, if you have pathname dummy.txt whose absolute pathname is C:\users\dummy.txt, 
the pathname C:\users\sharan\..\dummy.txt also represents an absolute pathname for the same file. The 
two consecutive dots in the pathname represent one level up in the file hierarchy. Among the two absolute 
paths, the second one is not the simplest one. The canonical path for dummy.txt is the simplest absolute 
path, which is C:\users\dummy.txt.

The getAbsolutePath() and getCanonicalPath() methods in the File class return the absolute and 
canonical paths, respectively. Note that in a Java program you need to use double backslashes in a string 
literal to represent one backward slash; for example, the path C:\users\sharan needs to be written as  
"C:\\users\\sharan" as a string.

 ■ Tip  the getAbsoluteFile() and getCanonicalFile() methods of the File class returns the absolute 
and canonical paths, respectively, as a File, whereas the getAbsolutePath() and getCanonicalPath() 
methods return the same paths as a String.



Chapter 7 ■ Input/Output

341

Different platforms use different name-separate character to separate parts in a pathname. For 
example, Windows uses a backslash (\) as name-separator, whereas UNIX-like operating systems use a 
slash (/). The File class defines two constants, File.separator and File.separatorChar, to represent a 
platform-dependent name-separator as a String and as a char, respectively. For example, on Windows, the 
value of the File.separator is "\\" and the value of File.separatorChar is '\\' and on UNIX their values 
are "/" and '/'. The benefit of using these constants in your program is that Java will use the appropriate 
file-separator character in your file pathname depending on the operating system in which your program is 
executed.

Listing 7-2 illustrates how to get the absolute and canonical paths of a file. You may get different output 
when you run the program. All examples in this chapters were run on Windows and the output will show 
Windows pathnames, unless specified otherwise.

Listing 7-2. Getting the Absolute and Canonical Paths of a File

// FilePath.java
package com.jdojo.io;

import java.io.File;
import java.io.IOException;

public class FilePath {
    public static void main(String[] args) {
        String workingDir = System.getProperty("user.dir");
        System.out.println("Working Directory: " + workingDir);

        System.out.println("----------------------");

        String pathname = "dummy.txt";
        printFilePath(pathname);

        System.out.println("----------------------");

        pathname = ".." + File.separator + "notes.txt";
        printFilePath(pathname);
    }

    public static void printFilePath(String pathname) {
        File f = new File(pathname);
        System.out.println("File Name: " + f.getName());
        System.out.println("File exists: " + f.exists());
        System.out.println("Absolute Path: " + f.getAbsolutePath());

        try {
            System.out.println("Canonical Path: " + f.getCanonicalPath());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}



Chapter 7 ■ Input/Output

342

Working Directory: C:\Java9LanguageFeatures
----------------------
File Name: dummy.txt
File exists: false
Absolute Path: C:\Java9LanguageFeatures\dummy.txt
Canonical Path: C:\Java9LanguageFeatures\dummy.txt
----------------------
File Name: notes.txt
File exists: false
Absolute Path: C:\Java9LanguageFeatures\..\notes.txt
Canonical Path: C:\notes.txt

You have to deal with two “devils” when you work with I/O in Java. If you do not specify the absolute 
pathname, your absolute path will be decided by the Java runtime and the operating system. If you specify 
the absolute pathname, your code may not run on different operating systems. One way to handle this 
situation is to use a configuration file, where you specify a different file pathname for different operating 
systems, and you pass the configuration file path to your program at startup.

The canonical path of a file is system-dependent and the call to the getCanonicalPath() may throw an 
IOException. You must place this method call inside a try-catch block or throw an IOException from the 
method in which you invoke this method. Some of the I/O method calls throw an IOException in situations 
when the requested I/O operation fails.

Creating, Deleting, and Renaming Files
You can create a new file using the createNewFile() method of the File class:

// Create a File object to represent the abstract pathname
File dummyFile = new File("dummy.txt");

// Create the file in the file system
boolean fileCreated = dummyFile.createNewFile();

The createNewFile() method creates a new, empty file if the file with the specified name does not 
already exist. It returns true if the file is created successfully; otherwise, it returns false. The method throws 
an IOException if an I/O error occurs.

You can also create a temporary file in the default temporary file directory or a directory of your choice 
using the following createTempFile() static method of the File class:

•	 File createTempFile(String prefix, String suffix) throws IOException

•	 File createTempFile(String prefix, String suffix, File directory) throws 
IOException

The method accepts a prefix (at least three characters in length) and a suffix to generate the temporary 
file name. The following snippet of code shows examples of using both versions of the method:

// Create a temporary file in the default temporary directory
File tempFile1 = File.createTempFile("kkk", ".txt");

// Create a temporary file in the existing C:\kishori\temp directory
File tempDir = new File("C:\\kishori\\temp");
File tempFile2 = File.createTempFile("kkk", ".txt", tempDir);



Chapter 7 ■ Input/Output

343

You can use the mkdir() or mkdirs() method to create a new directory. The mkdir() method creates a 
directory only if the parent directories specified in the pathname already exists. For example, if you want to 
create a new directory called home in the users directory in the C: drive on Windows, you construct the File 
object representing this pathname like so:

File newDir = new File("C:\\users\\home");

Now the newDir.mkdir() method will create the home directory only if the C:\users directory already 
exists. However, the newDir.mkdirs() method will create the users directory if it does not exist in the C: 
drive, and hence, it will create the home directory under the C:\users directory.

Deleting a file is easy. You need to use the delete() method of the File class to delete a file/directory. 
A directory must be empty before you can delete it. The method returns true if the file/directory is deleted; 
otherwise, it returns false. You can also delay the deletion of a file until the JVM terminates by using the 
deleteOnExit() method. This is useful if you create temporary files in your program that you want to delete 
when your program exits.

File dummyFile = new File("dummy.txt");

// To delete the dummy.txt file immediately
dummyFile.delete();

// To delete the dummy.txt file when the JVM terminates
dummyFile.deleteOnExit();

 ■ Tip  the call to the deleteOnExit() method is final. that is, once you call this method, there is no way for 
you to change your mind and tell the JVM not to delete this file when it terminates. You can use the delete() 
method to delete the file immediately even after you have requested the JVM to delete the same file on exit.

To rename a file, you can use the renameTo() method, which takes a File object to represent the new file:

// Rename old-dummy.txt to new_dummy.txt
File oldFile = new File("old_dummy.txt");
File newFile = new File("new_dummy.txt");

boolean fileRenamed = oldFile.renameTo(newFile);
if (fileRenamed) {
    System.out.println(oldFile + " renamed to " + newFile);
} else {
    System.out.println("Renaming " + oldFile + " to " + newFile + " failed.");
}

The renameTo() method returns true if renaming the file succeeds; otherwise, it returns false. You are 
advised to check the return value of this method to make sure the renaming succeeded because the behavior 
of this method is very system-dependent.



Chapter 7 ■ Input/Output

344

 ■ Tip  the File object is immutable. Once created, it always represents the same pathname, which is 
passed to its constructor. When you rename a file, the old File object still represents the original pathname. an 
important point to remember is that a File object represents a pathname, not an actual file in a file system.

Listing 7-3 illustrates the use of some of the methods described in this section. You may get different 
output; the output is shown when the program ran on Windows. When you run the program the second time, 
you may get different output because it may not be able to rename the file if it already existed from the first run.

Listing 7-3. Creating, Deleting, and Renaming a File

// FileCreateDeleteRename.java
package com.jdojo.io;

import java.io.File;
import java.io.IOException;

public class FileCreateDeleteRename {
    public static void main(String[] args) {
        try {
            File newFile = new File("my_new_file.txt");
            System.out.println("Before creating the new file:");
            printFileDetails(newFile);

            // Create a new file
            boolean fileCreated = newFile.createNewFile();
            if (!fileCreated) {
                System.out.println(newFile + " could not be created.");
            }

            System.out.println("After creating the new file:");
            printFileDetails(newFile);

            // Delete the new file
            newFile.delete();

            System.out.println("After deleting the new file:");
            printFileDetails(newFile);

            // Let's recreate the file
            newFile.createNewFile();

            System.out.println("After recreating the new file:");
            printFileDetails(newFile);

            // Let's tell the JVM to delete this file on exit
            newFile.deleteOnExit();

            System.out.println("After using deleteOnExit() method:");
            printFileDetails(newFile);



Chapter 7 ■ Input/Output

345

            // Create a new file and rename it
            File firstFile = new File("my_first_file.txt");
            File secondFile = new File("my_second_file.txt");

            fileCreated = firstFile.createNewFile();
            if (fileCreated || firstFile.exists()) {
                System.out.println("Before renaming file:");
                printFileDetails(firstFile);
                printFileDetails(secondFile);

                boolean renamedFlag = firstFile.renameTo(secondFile);
                if (!renamedFlag) {
                    System.out.println("Could not rename " + firstFile);
                }

                System.out.println("After renaming file:");
                printFileDetails(firstFile);
                printFileDetails(secondFile);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public static void printFileDetails (File f) {
        System.out.println("Absolute Path: " + f.getAbsoluteFile());
        System.out.println("File exists: " + f.exists());
        System.out.println("------------------------------");
    }
}

Before creating the new file:
Absolute Path: C:\Java9LanguageFeatures\my_new_file.txt
File exists: false
------------------------------
After creating the new file:
Absolute Path: C:\Java9LanguageFeatures\my_new_file.txt
File exists: true
------------------------------
After deleting the new file:
Absolute Path: C:\Java9LanguageFeatures\my_new_file.txt
File exists: false
------------------------------
After recreating the new file:
Absolute Path: C:\Java9LanguageFeatures\my_new_file.txt
File exists: true
------------------------------
After using deleteOnExit() method:
Absolute Path: C:\Java9LanguageFeatures\my_new_file.txt
File exists: true
------------------------------



Chapter 7 ■ Input/Output

346

Before renaming file:
Absolute Path: C:\Java9LanguageFeatures\my_first_file.txt
File exists: true
------------------------------
Absolute Path: C:\Java9LanguageFeatures\my_second_file.txt
File exists: false
------------------------------
After renaming file:
Absolute Path: C:\Java9LanguageFeatures\my_first_file.txt
File exists: false
------------------------------
Absolute Path: C:\Java9LanguageFeatures\my_second_file.txt
File exists: true
------------------------------

Working with File Attributes
The File class contains methods that let you get/set attributes of files and directories in a limited ways. You 
can set a file as read-only, readable, writable, and executable using the setReadOnly(), setReadable(), 
setWritable(), and setExecutable() methods, respectively. You can use the lastModified() and 
setLastModified() methods to get and set the last modified date and time of a file. You can check if a file is 
hidden using the isHidden() method. Note that the File class does not contain a setHidden() method, as 
the definition of a hidden file is platform-dependent.

 ■ Tip  I discuss working with file attributes using the new Input/Output 2 (nIO.2) apI in Chapter 10. nIO.2 has 
extensive support for file attributes.

Copying a File
The File class does not provide a method to copy a file. To copy a file, you must create a new file, read the 
content from the original file, and write it into the new file. I discuss how to copy the contents of a file into 
another file later in this chapter, after I discuss the input and output streams. The NIO 2.0 API, which was added 
in Java 7, provides a direct way to copy a file contents and its attributes. Refer to Chapter 10 for more details.

Knowing the Size of a File
You can get the size of a file in bytes using the length() method of the File class.

File myFile = new File("myfile.txt");
long fileLength = myFile.length();

If a File object represents a non-existent file, the length() method returns zero. If it is a directory 
name, the return value is not specified. Note that the return type of the length() method is long, not int.

http://dx.doi.org/10.1007/978-1-4842-3348-1_10
http://dx.doi.org/10.1007/978-1-4842-3348-1_10


Chapter 7 ■ Input/Output

347

Listing Directories and Files
You can get a list of the available root directories in a file system by using the listRoots() static method of 
the File class. It returns an array of File objects.

// Get the list of all root directories
File[] roots = File.listRoots();

Root directories are different across platforms. On Windows, you have a root directory for each drive 
(e.g., C:\, A:\, D:\, etc.). On UNIX, you have a single root directory represented by a slash (/).

Listing 7-4 illustrates how to get the root directories on a machine. The output is shown when this 
program ran on Windows. You may get different output when you run this program on your machine. The 
output will depend on the operating system and the drives that are attached to your machine.

Listing 7-4. Listing All Available Root Directories on a Machine

// RootList.java
package com.jdojo.io;

import java.io.File;

public class RootList {
    public static void main(String[] args) {
        File[] roots = File.listRoots();
        System.out.println("List of root directories:");
        for (File f : roots) {
            System.out.println(f.getPath());
        }
    }
}

List of root directories:
C:\
E:\

You can list all files and directories in a directory by using the list() or listFiles() methods of the 
File class. The only difference between them is that the list() method returns an array of String, whereas 
the listFiles() method returns an array of File. You can also use a file filter with these methods to exclude 
some files and directories from the returned results.

Listing 7-5 illustrates how to list the files and directories in a directory. Note that the list() and 
listFiles() methods do not list the files and directories recursively. You need to write the logic to list 
files recursively. You need to change the value of the dirPath variable in the main() method. You may get 
different output. The output shows the results when the program ran on Windows.



Chapter 7 ■ Input/Output

348

Listing 7-5. Listing All Files and Directories in a Directory

// FileLists.java
package com.jdojo.io;

import java.io.File;

public class FileLists {
    public static void main(String[] args) {
        // Change the dirPath value to list files from your directory
        String dirPath = "C:\\";

        File dir = new File(dirPath);
        File[] list = dir.listFiles();

        for (File f : list) {
            if (f.isFile()) {
                System.out.println(f.getPath() + " (File)");
            } else if (f.isDirectory()) {
                System.out.println(f.getPath() + " (Directory)");
            }
        }
    }
}

C:\gradle (Directory)
C:\hiberfil.sys (File)
C:\Java9LanguageFeatures (Directory)
C:\virtualbox (Directory)
C:\VS_EXPBSLN_x64_enu.CAB (File)
C:\Windows (Directory)
...

Suppose you wanted to exclude all files from the list with an extension .SYS. You can do this by using a 
file filter that is represented by an instance of the functional interface FileFilter. It contains an accept() 
method that takes the File being listed as an argument and returns true if the File should be listed. 
Returning false does not list the file. The following snippet of code creates a file filter that will filter files with 
the extension .SYS:

// Create a file filter to exclude any .SYS file
FileFilter filter = file -> {
    if (file.isFile()) {
        String fileName = file.getName().toLowerCase();
        if (fileName.endsWith(".sys")) {
            return false;
        }
    }
    return true;
};



Chapter 7 ■ Input/Output

349

Using lambda expressions makes it easy to build the file filters. The following snippet of code creates 
two file filters—one filters only files and another only directories:

// Filters only files
FileFilter fileOnlyFilter = File::isFile;

// Filters only directories
FileFilter dirOnlyFilter = File::isDirectory;

Listing 7-6 illustrates how to use a file filter. The program is the same as in Listing 7-5 except that it uses 
a filter to exclude all .SYS files from the list. You can compare the output of these two listings to see the effect 
of the filter.

Listing 7-6. Using FileFilter to Filter Files

// FilteredFileList.java
package com.jdojo.io;

import java.io.File;
import java.io.FileFilter;

public class FilteredFileList {
    public static void main(String[] args) {
        // Change the dirPath value to list files from your directory
        String dirPath = "C:\\";
        File dir = new File(dirPath);

        // Create a file filter to exclude any .SYS file
        FileFilter filter = file -> {
            if (file.isFile()) {
                String fileName = file.getName().toLowerCase();
                if (fileName.endsWith(".sys")) {
                    return false;
                }
            }
            return true;
        };

        // Pass the filter object to listFiles() method to exclude the .sys files
        File[] list = dir.listFiles(filter);

        for (File f : list) {
            if (f.isFile()) {
                System.out.println(f.getPath() + " (File)");
            } else if (f.isDirectory()) {
                System.out.println(f.getPath() + " (Directory)");
            }
        }
    }
}



Chapter 7 ■ Input/Output

350

C:\gradle (Directory)
C:\Java9LanguageFeatures (Directory)
C:\virtualbox (Directory)
C:\VS_EXPBSLN_x64_enu.CAB (File)
C:\Windows (Directory)
...

The Decorator Pattern
Suppose you need to design classes for a bar that sells alcoholic drinks. The available drinks are rum, 
vodka, and whiskey. It also sells two drink flavorings: honey and spices. You have to design classes for a Java 
application so that when a customer orders a drink, the application will let the user print a receipt with the 
drink name and its price.

What are the things that you need to maintain in the classes to compute the price of a drink and get its 
name? You need to maintain the name and price of all ingredients of the drink separately. When you need to 
print the receipt, you will concatenate the names of all ingredients and add up the prices for all ingredients. 
One way to design the classes for this application would be to have a Drink class with two instance variables: 
name and price. There would be a class for each kind of drink; the class would inherit from the Drink class. 
Some of the possible classes would be as follows:

•	 Drink

•	 Rum

•	 Vodka

•	 Whiskey

•	 RumWithHoney

•	 RumWithSpices

•	 VodkaWithHoney

•	 VodkaWithSpices

•	 WhiskeyWithHoney

•	 WhiskeyWithSpices

•	 WhiskeyWithHoneyAndSpices

Note that we have already listed 11 classes and the list is not complete yet. Consider ordering whiskey 
with two servings of honey. You can see that the number of classes involved is huge. If you add some more 
drinks and flavorings, the classes will increase tremendously. With this class design, you will have a problem 
maintaining the code. If the price of honey changes, you will need to revisit every class that has honey in it 
and change its price. This design will produce a class explosion. Fortunately, there is a design pattern to deal 
with such a problem. It is called the decorator pattern. Typically, classes are organized as shown in Figure 7-1 
to use the decorator pattern.



Chapter 7 ■ Input/Output

351

The decorator pattern requires you to have a common abstract superclass from which you inherit your 
concrete component classes and an abstract decorator class. Name the common superclass Component. You 
can use an interface instead of an abstract class. Concrete components, shown as ConcreteComponentA and 
ConcreteComponentB in the class diagram, are inherited from the Component class. The Decorator class is 
the abstract decorator class, which is inherited from the Component class. Concrete decorators, shown as 
ConcreteDecoratorA and ConcreteDecoratorB in the class diagram, are inherited from the Decorator class. 
The Decorator class keeps a reference to its superclass Component. The reference of a concrete component is 
passed to a concrete decorator as an argument in its constructor as follows:

ConcreteComponentA ca = new ConcreteComponentA();
ConcreteDecoratorA cd = new ConcreteDecoratorA(ca);

When a method is called on a concrete decorator, it takes some actions and calls the method on the 
component it encloses. The decorator may decide to take its action before and/or after it calls the method 
on the component. This way, a decorator extends the functionality of a component. This pattern is called 
a decorator pattern because the decorator class adds functionality to (or decorates) the component it 
encloses. It is also known as the wrapper pattern for the same reason: it encloses (wraps) the component 
that it decorates.

The decorator has the same interface as the concrete components because both of them are inherited 
from the common superclass, Component. Therefore, you can use a Decorator object wherever a Component 
object is expected. Sometimes decorators add functionality by adding new methods that are not present in 
the component, as shown in the class diagram: newMethodB(), newMethodC() and newMethodD().

Let’s apply this discussion about the generic class diagram of the decorator pattern to model classes for 
your drink application. The class diagram is shown in Figure 7-2.

Figure 7-1. A generic class diagram based on the decorator pattern



Chapter 7 ■ Input/Output

352

In the drink application, Rum, Vodka, and Whiskey are the concrete components (main drinks). Honey 
and Spices are the two decorators that are added to decorate (or to change the flavor) of the main drinks.

The Drink class, shown in Listing 7-7, serves as the abstract common ancestor class for the main drinks 
and decorators. The name and price instance variables in the Drink class hold the name and price of a drink; 
the class also contains the getters for these instance variables. These methods define the common interface 
for the main drinks as well as the flavors.

Listing 7-7. An Abstract Drink Class to Model the Abstract Component in the Decorator Pattern

// Drink.java
package com.jdojo.io;

public abstract class Drink {
    protected String name;
    protected double price;

    public String getName() {
        return name;
    }

    public double getPrice() {
        return price;
    }
}

Figure 7-2. The class diagram for the drink application based on the decorator pattern



Chapter 7 ■ Input/Output

353

Listing 7-8 contains the code for the Rum class that inherits from the Drink class. It sets the name and 
price in its constructor. Listing 7-9 and Listing 7-10 list the Vodka and Whiskey classes, respectively.  
The three classes are similar.

Listing 7-8. A Rum Class

// Rum.java
package com.jdojo.io;

public class Rum extends Drink {
    public Rum() {
        this.name = "Rum";
        this.price = 0.9;
    }
}

Listing 7-9. A Vodka Class

// Vodka.java
package com.jdojo.io;

public class Vodka extends Drink {
    public Vodka() {
        this.name = "Vodka";
        this.price = 1.2;
    }
}

Listing 7-10. A Whiskey Class

// Whiskey.java
package com.jdojo.io;

public class Whiskey extends Drink {
    public Whiskey() {
        this.name = "Whisky";
        this.price = 1.5;
    }
}

The DrinkDecorator, shown in Listing 7-11, is the abstract decorator class that is inherited from the 
Drink class. The concrete decorators Honey and Spices inherit from the DrinkDecorator class. It has an 
instance variable named drink, which is of the type Drink. This instance variable represents the Drink 
object that a decorator will decorate. It overrides the getName() and getPrice() methods for decorators. 
In its getName() method, it gets the name of the drink it is decorating and appends its own name to it. This 
is what I mean by adding functionality to a component by a decorator. The getPrice() method works the 
same way. It gets the price of the drink it decorates and adds its own price to it.



Chapter 7 ■ Input/Output

354

Listing 7-11. An Abstract DrinkDecorator Class

// DrinkDecorator.java
package com.jdojo.io;

public abstract class DrinkDecorator extends Drink {
    protected Drink drink;

    @Override
    public String getName() {
        // Append its name after the name of the drink it is decorating
        return drink.getName() + ", " + this.name;
    }

    @Override
    public double getPrice() {
        // Add its price to the price of the drink it is decorating/
        return drink.getPrice() + this.price;
    }

    public Drink getDrink() {
        return drink;
    }
}

Listing 7-12 lists a concrete decorator, the Honey class, which inherits from the DrinkDecorator class. It 
accepts a Drink object as an argument in its constructor. It requires that before you can create an object of 
the Honey class, you must have a Drink object. In its constructor, it sets its name, price, and the drink it will 
work with. It will use the getName() and getPrice() methods of its superclass DrinkDecorator class.

Listing 7-12. A Honey Class, a Concrete Decorator

// Honey.java
package com.jdojo.io;

public class Honey extends DrinkDecorator{
    public Honey(Drink drink) {
        this.drink = drink;
        this.name = "Honey";
        this.price = 0.25;
    }
}



Chapter 7 ■ Input/Output

355

Listing 7-13 lists another concrete decorator, the Spices class, which is implemented the same way as 
the Honey class.

Listing 7-13. A Spices Class, a Concrete Decorator

// Spices.java
package com.jdojo.io;

public class Spices extends DrinkDecorator {
    public Spices(Drink drink) {
        this.drink = drink;
        this.name = "Spices";
        this.price = 0.10;
    }
}

It is the time to see the drink application in action. Let’s order whiskey with honey. How will you 
construct the objects to order whiskey with honey? It’s simple. You always start by creating the concrete 
component. Concrete decorators are added to the concrete component. Whiskey is your concrete 
component and honey is your concrete decorator. You always work with the last component object you 
created in the series. Typically, the last component that you created is one of the concrete decorators unless 
you are dealing with only a concrete component.

// Create a Whiskey object
Whiskey w = new Whiskey();

// Add Honey to the Whiskey. Pass the object w in Honey's constructor
Honey h = new Honey(w);

// At this moment onwards, we will work with the last component we have
// created, which is h (a honey object). To get the name of the drink,
// call the getName() method on the honey object
String drinkName = h.getName();

Note that the Honey class uses the getName() method, which is implemented in the DrinkDecorator 
class. It will get the name of the drink, which is Whiskey in your case, and add its own name. The 
h.getName() method will return “Whiskey, Honey”.

// Get the price
double drinkPrice = h.getPrice();

The h.getPrice() method will return 1.75. It will get the price of whiskey, which is 1.5 and add the 
price of honey, which is 0.25.

You do not need a two-step process to create a whiskey with honey drink. You can use the following one 
statement to create it:

Drink myDrink = new Honey(new Whiskey());

By using this coding style, you get a feeling that Honey is really enclosing (or decorating) Whiskey. You 
ordered a drink: whiskey with honey. Therefore, it is better to store the reference of the final drink to a Drink 
variable (Drink myDrink) rather than a Honey variable (Honey h). However, if the Honey class implemented 



Chapter 7 ■ Input/Output

356

some additional methods than those inherited from the Drink class and you intended to use one of those 
additional methods, you need to use a variable of the Honey class to store the final reference.

// If our Honey class has additional methods, which are not defined in the Drink
// class, store the reference in Honey type variable
Honey h = new Honey(new Whiskey());

How would you order a drink of whiskey with two servings of honey? It’s simple. Create a Whiskey 
object, enclose it in a Honey object, and enclose the Honey object in another Honey object, like so:

// Create a drink of whiskey with double honey
Drink myDrink = new Honey(new Honey(new Whiskey()));

Similarly, you can create a drink of vodka with honey and spices, and get its name and price as follows:

// Create a drink of vodka with honey and spices
Drink myDrink = new Spices(new Honey(new Vodka()));
String drinkName = myDrink.getName();
double drinkPrice = myDrink.getPrice();

Sometimes reading the construction of objects based on the decorator pattern may be confusing 
because of several levels of object wrapping in the constructor call. You need to read the object’s constructor 
starting from the innermost level. The innermost level is always a concrete component and all subsequent 
levels will be concrete decorators. In the previous example of vodka with honey and spices, the innermost 
level is the creation of vodka, new Vodka(), which is wrapped in honey, new Honey(new Vodka()), which 
in turn is wrapped in spices, new Spices(new Honey(new Vodka())). Figure 7-3 depicts how these three 
objects are arranged. Listing 7-14 demonstrates how to use your drink application.

Spices
Honey

Vodka

The getName() and getPrice() 
methods are called on the outermost 

component, which forwards the 
request to the next level

Figure 7-3. The arrangement of components in the decorator pattern

Listing 7-14. Testing the Drink Application

// DrinkTest.java
package com.jdojo.io;

public class DrinkTest {
    public static void main(String[] args) {
        // Have Whiskey only
        Drink d1 = new Whiskey();
        printReceipt(d1);

        // Have Whiskey with Honey
        Drink d2 = new Honey(new Whiskey());
        printReceipt(d2);



Chapter 7 ■ Input/Output

357

        // Have Vodka with Spices
        Drink d3 = new Spices(new Vodka());
        printReceipt(d3);

        // Have Rum with double Honey and Spices
        Drink d4 = new Spices(new Honey(new Honey(new Rum())));
        printReceipt(d4);
    }

    public static void printReceipt(Drink drink) {
        String name = drink.getName();
        double price = drink.getPrice();
        System.out.println(name + " - $" + price);
    }
}

Whisky - $1.5
Whisky, Honey - $1.75
Vodka, Spices - $1.3
Rum, Honey, Honey, Spices - $1.5

You need to consider the other aspects of the decorator pattern:

•	 The abstract Component class (the Drink class in the example) can be replaced with 
an interface. Note that you have included two instance variables in the Drink class. 
If you want to replace the Drink class with an interface, you must move these two 
instance variables down the class hierarchy.

•	 You may add any number of new methods in abstract decorators and concrete 
decorators to extend the behavior of its component.

•	 With the decorator pattern, you end up with lots of small classes, which may make 
your application hard to learn. However, once you understand the class hierarchy, it 
is easy to customize and use them.

•	 The goal of the decorator pattern is achieved by having a common superclass for the 
concrete components and concrete decorators. This makes it possible for a concrete 
decorator to be treated as a component, which in turn allows for wrapping a decorator 
inside another decorator. While constructing the class hierarchy, you can introduce 
more classes or remove some. For example, you could have introduced a class named 
MainDrink between the Drink class, and the Rum, Vodka, and Whiskey classes.

•	 The concrete decorator need not be inherited from an abstract decorator class. 
Sometimes you may want to inherit a concrete decorator directly from the abstract 
Component class. For example, the ObjectInputStream class is inherited from the 
InputStream class in the java.io package, not from the FilterInputStream class. 
Refer to Figure 7-5 for details. The main requirement for a concrete decorator is 
that it should have the abstract component as its immediate or non-immediate 
superclass and it should accept an abstract component type argument in its 
constructor.



Chapter 7 ■ Input/Output

358

Input/Output Streams
The literal meaning of the word stream is “an unbroken flow of something.” In Java I/O, a stream means an 
unbroken flow (or sequential flow) of data. The data in the stream could be bytes, characters, objects, etc.

A river is a stream of water where the water flows from a source to its destination in an unbroken 
sequence. Similarly, in Java I/O, the data flows from a source known as a data source to a destination known 
as a data sink. The data is read from a data source to a Java program. A Java program writes data to a data 
sink. The stream that connects a data source and a Java program is called an input stream. The stream that 
connects a Java program and a data sink is called an output stream. In a natural stream, such as a river, the 
source and the destination are connected through the continuous flow of water. However, in Java I/O, a Java 
program comes between an input stream and an output stream. Data flows from a data source through an 
input stream to a Java program. The data flows from the Java program through an output stream to a data 
sink. In other words, a Java program reads data from the input stream and writes data to the output stream. 
Figure 7-4 depicts the flow of data from an input stream to a Java program and from a Java program to an 
output stream.

Java 
Program

An input stream

An output stream

A Java IO program reads data from the input 
stream and/or writes data to the output stream

Data Source

Data Sink

Figure 7-4. Flow of data using an input/output stream in a Java program

To read data from a data source into a Java program, you need to perform the following steps:

•	 Identify the data source. It may be a file, a string, an array, a network connection, etc.

•	 Construct an input stream using the data source.

•	 Read the data from the input stream. Typically, you read the data in a loop until you 
have read all the data from the input stream. The methods of an input stream return 
a special value to indicate the end of the input stream.

•	 Close the input stream. Note that constructing an input stream itself opens it for 
reading. There is no explicit step to open an input stream. However, you must close 
the input stream when you are done reading data from it. From Java 7, you can use a 
try-with-resources block, which closes the input stream automatically.



Chapter 7 ■ Input/Output

359

To write data to a data sink from a Java program, you need to perform the following steps:

 1. Identify the data sink. That is, identify the destination where data will be written. 
It may be a file, a string, an array, a network connection, etc.

 2. Construct an output stream using the data sink.

 3. Write the data to the output stream.

 4. Close the output stream. Note that constructing an output stream itself opens 
it for writing. There is no explicit step to open an output stream. However, you 
must close the output stream when you are done writing data to it. From Java 7,  
you can use a try-with-resources block, which closes the output stream 
automatically.

Input/output stream classes in Java are based on the decorator pattern. By now, you know that a class 
design based on the decorator pattern results in several small classes. So is the case with Java I/O. There 
are many classes involved in Java I/O. Learning each class at a time is no easy task. However, learning these 
classes can be made easy by comparing them with the class arrangements in the decorator pattern. I compare 
the Java I/O classes with the decorator pattern later. In the next two sections, you will see input/output 
streams in action using simple programs, which will read data from a file and write data to a file.

Reading from a File Using an Input Stream
In this section, I show you how to read data from a file. The data will be displayed on the standard output. 
You have a file called luci1.txt, which contains the first stanza from the poem Lucy by William Wordsworth 
(1770-1850). One stanza from the poem is as follows:

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.

You can create a luci1.txt file with this text and save it in your current working directory. The 
following steps are needed to read from the file:

 1. Identify the data source, which is the file path for the luci1.txt file in this case.

 2. Create an input stream using the file.

 3. Read the data from the file using the input stream.

 4. Close the input stream.

Identifying the Data Source
Your data source could be simply the file name as a string or a File object representing the pathname of the 
file. Let’s assume that the luci1.txt file is in the current working directory.

// The data source
String srcFile = "luci1.txt";



Chapter 7 ■ Input/Output

360

Creating the Input Stream
To read from a file, you need to create an object of the FileInputStream class, which will represent the  
input stream:

// Create a file input stream
FileInputStream fin = new FileInputStream(srcFile);

When the data source for an input stream is a file, Java wants you to make sure that the file exists 
when you construct the file input stream. The constructor of the FileInputStream class throws a 
FileNotFoundException if the file does not exist. To handle this exception, you need to place your code in a 
try-catch block, like so:

try {
    // Create a file input stream
    FileInputStream fin = new FileInputStream(srcFile);
} catch (FileNotFoundException e){
    // The error handling code goes here
}

Reading the Data
The FileInputStream class has an overloaded read() method to read data from the file. You can read one 
byte or multiple bytes at a time using the different versions of this method. Be careful when using the read() 
method. Its return type is int, although it returns a byte value. It returns -1 if the end of the file is reached, 
indicating that there are no more bytes to read. You need to convert the returned int value to a byte to get 
the byte read from the file. You can read a byte at a time in a loop, like so:

int data;
byte byteData;

// Read the first byte
data = fin.read();
while (data != -1) {
    // Display the read data on the console. Note the cast from int to byte
    byteData = (byte) data;

    // Cast the byte data to char to display the data
    System.out.print((char) byteData);

    // Try reading another byte
    data = fin.read();
}

You can rewrite the previous file-reading logic in a compact form, like so:

byte byteData;
while ((byteData = (byte) fin.read()) != -1){
    System.out.print((char) byteData);
}



Chapter 7 ■ Input/Output

361

I use the compact form of reading the data from an input stream in subsequent examples. You need 
to place the code for reading data from an input stream in a try-catch block because it may throw an 
IOException.

Closing the Input Stream
Finally, you need to close the input stream using its close() method:

// Close the input stream
fin.close();

The close() method may throw an IOException, and because of that, you need to enclose this call 
inside a try-catch block.

try {
    // Close the input stream
    fin.close();
} catch (IOException e) {
    e.printStackTrace();
}

Typically, you construct an input stream inside a try block and close it in a finally block to make sure 
it is always closed after you are done with it.

All input/output streams are auto closeable. You can use a try-with-resources to create their 
instances, so they will be closed automatically regardless of an exception being thrown, avoiding the need 
to call their close() method explicitly. The following snippet of code shows using a try-with-resources to 
create a file input stream:

String srcFile = "luci1.txt";
try (FileInputStream fin = new FileInputStream(srcFile)) {
    // Use fin to read data from the file here
} catch (FileNotFoundException e) {
    // Handle the exception here
}

A Utility Class
You will frequently need to perform things such as closing an input/output stream and printing a message 
on the standard output when a file is not found, etc. Listing 7-15 contains the code for a FileUtil class that 
you will use in the example programs.

Listing 7-15. A Utility Class Containing Convenience Methods to Work with I/O Classes

// FileUtil.java
package com.jdojo.io;

import java.io.Closeable;
import java.io.IOException;



Chapter 7 ■ Input/Output

362

public class FileUtil {
    // Prints the location details of a file
    public static void printFileNotFoundMsg(String fileName) {
        String workingDir = System.getProperty("user.dir");
        System.out.println("Could not find the file '"
                + fileName + "' in '" + workingDir + "' directory ");
    }

    // Closes a Closeable resource such as an input/output stream
    public static void close(Closeable resource) {
        if (resource != null) {
            try {
                resource.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }
}

Completing the Example
Listing 7-16 illustrates the steps involved in reading the file luci1.txt. If you receive an error message 
indicating that the file does not exist, it will also print the directory where it is expecting the file. You may use 
an absolute path of the source file instead of a relative path by replacing the statement

String srcFile = "luci1.txt";

with an absolute path like c:\smith\luci1.txt on Windows or /users/smith/luci1.txt on UNIX. 
Note that you must use c:\\smith\\luci1.txt (two backslashes to escape a backslash) when you construct 
a string that contains a backslash.

String srcFile = "absolute path of luci1.txt file";

By simply using luci1.txt as the data source file path, the program expects that the file is present in 
your current working directory when you run the program.

Listing 7-16. Reading a Byte at a Time from a File Input Stream

// SimpleFileReading.java
package com.jdojo.io;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class SimpleFileReading {
    public static void main(String[] args) {
        String dataSourceFile = "luci1.txt";
        try (FileInputStream fin = new FileInputStream(dataSourceFile)) {



Chapter 7 ■ Input/Output

363

            byte byteData;
            while ((byteData = (byte) fin.read()) != -1) {
                System.out.print((char) byteData);
            }
        } catch (FileNotFoundException e) {
            FileUtil.printFileNotFoundMsg(dataSourceFile);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.

Writing Data to a File Using an Output Stream
In this section, I show you how to write a stanza from the poem Lucy by William Wordsworth to a file named 
luci2.txt. The stanza is as follows:

When she I loved look'd every day
Fresh as a rose in June,
I to her cottage bent my way,
Beneath an evening moon.

The following steps are needed to write to the file:

 1. Identify the data sink, which is the file to which the data will be written.

 2. Create an output stream using the file.

 3. Write the data to the file using the output stream.

 4. Flush the output stream.

 5. Close the output stream.

Identifying the Data Sink
Your data sink could be simply the file path as a string or a File object representing the pathname of the file. 
Let’s assume that the luci2.txt file is in the current working directory.

// The data sink
String destFile = "luci2.txt";



Chapter 7 ■ Input/Output

364

Creating the Output Stream
To write to a file, you need to create an object of the FileOutputStream class, which will represent the  
output stream.

// Create a file output stream
FileOutputStream fos = new FileOutputStream(destFile);

When the data sink for an output stream is a file, Java tries to create the file if the file does not exist.  
Java may throw a FileNotFoundException if the file name that you have used is a directory name, or if it 
could not open the file for any reason. You must be ready to handle this exception by placing your code in a 
try-catch block, as shown:

try {
    FileOutputStream fos = new FileOutputStream(srcFile);
} catch (FileNotFoundException e){
    // Error handling code goes here
}

If your file contains data at the time of creating a FileOutputStream, the data will be erased. If you want 
to keep the existing data and append the new data to the file, you need to use another constructor of the 
FileOutputStream class, which accepts a boolean flag for appending the new data to the file.

// To append data to the file, pass true in the second argument
FileOutputStream fos = new FileOutputStream(destFile, true);

Writing the Data
Write data to the file using the output stream. The FileOutputStream class has an overloaded write() 
method to write data to a file. You can write one byte or multiple bytes at a time using the different versions 
of this method. You need to place the code for writing data to the output stream in a try-catch block 
because it may throw an IOException if data cannot be written to the file.

Typically, you write binary data using a FileOutputStream. If you want to write a string such as “Hello” 
to the output stream, you need to convert the string to bytes. The String class has a getBytes() method that 
returns an array of bytes that represents the string. You write a string to the FileOutputStream as follows:

String text = "Hello";
byte[] textBytes = text.getBytes();
fos.write(textBytes);

You want to write four lines of text to luci2.txt. You need to insert a new line after every line for the 
first three lines of text. A new line is different on different platforms. You can get a new line for the platform 
on which your program is running by reading the line.separator system variable as follows:

// Get the new line for the platform
String lineSeparator = System.getProperty("line.separator");

Note that a line separator may not necessarily be one character. To write a line separator to a file output 
stream, you need to convert it to a byte array and write that byte array to the file as follows:

fos.write(lineSeparator.getBytes());



Chapter 7 ■ Input/Output

365

Flushing the Output Stream
You need to flush the output stream using the flush() method:

// Flush the output stream
fos.flush();

Flushing an output stream indicates that if any written bytes were buffered, they may be written to 
the data sink. For example, if the data sink is a file, you write bytes to a FileOutputStream, which is an 
abstraction of a file. The output stream passes the bytes to the operating system, which is responsible for 
writing them to the file. For a file output stream, if you call the flush() method, the output stream passes the 
bytes to the operating system for writing. It is up to the operating system when it writes the bytes to the file. If 
an implementation of an output stream buffers the written bytes, it flushes the bytes automatically when its 
buffer is full or when you close the output stream by calling its close() method.

Closing the Output Stream
Closing an output stream is similar to closing an input stream. You need to close the output stream using its 
close() method.

// Close the output stream
fos.close();

The close() method may throw an IOException. Use a try-with-resources to create an output stream 
if you want it to be closed automatically.

Completing the Example
Listing 7-17 illustrates the steps involved in writing to a file named luci2.txt. If the file does not exist in 
your current directory, the program will create it. If it exists, it will be overwritten. The file path displayed in 
the output may be different when you run the program.

Listing 7-17. Writing Bytes to a File Output Stream

// SimpleFileWriting.java
package com.jdojo.io;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class SimpleFileWriting {
    public static void main(String[] args) {
        String destFile = "luci2.txt";

        // Get the line separator for the current platform
        String lineSeparator = System.getProperty("line.separator");



Chapter 7 ■ Input/Output

366

        String line1 = "When she I loved look'd every day";
        String line2 = "Fresh as a rose in June,";
        String line3 = "I to her cottage bent my way,";
        String line4 = "Beneath an evening moon.";

        try (FileOutputStream fos = new FileOutputStream(destFile)) {
            // Write all four lines to the output stream as bytes
            fos.write(line1.getBytes());
            fos.write(lineSeparator.getBytes());

            fos.write(line2.getBytes());
            fos.write(lineSeparator.getBytes());

            fos.write(line3.getBytes());
            fos.write(lineSeparator.getBytes());

            fos.write(line4.getBytes());

            // Flush the written bytes to the file
            fos.flush();

            // Display the output file path
            System.out.println("Text has been written to "
                    + (new File(destFile)).getAbsolutePath());
        } catch (FileNotFoundException e1) {
            FileUtil.printFileNotFoundMsg(destFile);
        } catch (IOException e2) {
            e2.printStackTrace();
        }
    }
}

Text has been written to C:\Java9LanguageFeatures\luci2.txt

Input Stream Meets the Decorator Pattern
Figure 7-5 depicts the class diagram that includes some commonly used input stream classes. You can 
refer to the API documentation of the java.io package for the complete list of the input stream classes. 
The comments in the class diagram compare input stream classes with the classes in the decorator pattern. 
Notice that the class diagram for the input streams is similar to the class diagram for your drink application, 
which was also based on the decorator pattern. Table 7-1 compares the classes in the decorator pattern, the 
drink application, and the input streams.



Chapter 7 ■ Input/Output

367

Table 7-1. Comparing the Class Design in the Decorator Pattern, the Drink Application, and Input Streams

Decorator Pattern Drink Application Input Stream

Component Drink InputStream

ConcreteComponentA
ConcreteComponentB

Rum
Vodka
Whisky

FileInputStream
ByteArrayInputStream
PipedInputStream

Decorator DrinkDecorator FilterInputStream

ConcreteDecoratorA
ConcreteDecoratorB

Honey
Spices

BufferedInputStream
PushbackInputStream
DataInputStream
ObjectInputStream

Figure 7-5. Commonly used classes for input streams compared with the decorator pattern

The abstract base component is the InputStream class, which is similar to the Drink class. You have 
concrete component classes of FileInputStream, ByteArrayInputStream, and PipedInputStream, which 
are similar to the Rum, Vodka, and Whiskey classes. You have a FilterInputStream class, which is similar 
to the DrinkDecorator class. Notice the decorator class in the input stream family does not use the word 
“Decorator” in its class name; it is named as FilterInputStream instead. It is also not declared abstract 
as you had declared the DrinkDecorator class. Not declaring it abstract seems to be an inconsistency in 
the class design. You have concrete decorator classes of BufferedInputStream, DataInputStream, and 
PushbackInputStream, which are similar to the Honey and Spices classes in the drink application. One 
noticeable difference is that the ObjectInputStream class is a concrete decorator and it is inherited from 
the abstract component InputStream, not from the abstract decorator FilterInputStream. Note that the 
requirement for a concrete decorator is that it should have the abstract component class in its immediate 
or non-immediate superclass and it should have a constructor that accepts an abstract component as its 
argument. The ObjectInputStream class fulfills these requirements.



Chapter 7 ■ Input/Output

368

Once you understand that the class design for input streams in Java I/O is based on the decorator 
pattern, it should be easy to construct an input stream using these classes. The superclass InputStream 
contains the basic methods to read data from an input stream, which are supported by all concrete 
component classes as well as all concrete decorator classes. The basic operation on an input stream is to 
read data from it. Some important methods defined in the InputStream class are listed in Table 7-2. Note 
that you have already used two of these methods, read() and close(), in the SimpleFileReading class to 
read data from a file.

Table 7-2. Some Important Methods of the InputStream Class

Method Description

int read() Reads one byte from the input stream and returns the read byte as 
an int. It returns -1 when the end of the input stream is reached.

int read(byte[] buffer) Reads maximum up to the length of the specified buffer. It 
returns the number of bytes read in the buffer. It returns –1 if the 
end of the input stream is reached.

int read(byte[] buffer,
int offset, int length)

Reads maximum up to the specified length bytes. The data is 
written in the buffer starting from the offset index. It returns 
the number of bytes read or -1 if the end of the input stream is 
reached.

byte[] readAllBytes() Reads all remaining bytes from the input stream and returns the 
read bytes in a byte[].This method was added to the InputStream 
class in JDK9.

int readNBytes(byte[] buffer,  
int offset, int length)

Reads the requested number of bytes, as specified by length, from 
the input stream into the given byte array. It returns the actual 
number of bytes read into the buffer. The read data is stored 
in the buffer starting at offset. This method was added to the 
InputStream class in JDK9.

void close() Closes the input stream.

int available() Returns the estimated number of bytes that can be read from this 
input stream without blocking.

long  
transferTo(OutputStream out)

Reads all bytes from this input stream and writes the bytes to 
the specified output stream. It returns the number of bytes 
transferred. This method was added to the InputStream class in 
JDK9.

 ■ Tip  all methods in InputStream that read data block until the input data is available for reading, the end 
of the input stream is reached, or an exception is thrown.

Let’s briefly discuss the four input stream concrete decorators: BufferedInputStream, 
PushbackInputStream, DataInputStream, and ObjectInputStream. I discuss BufferedInputStream and 
PushbackInputStream in this section. I discuss DataInputStream in the “Reading and Writing Primitive Data 
Types” section. I discuss ObjectInputStream in the “Object Serialization” section.



Chapter 7 ■ Input/Output

369

BufferedInputStream
A BufferedInputStream adds functionality to an input stream by buffering the data. It maintains an internal 
buffer to store bytes read from the underlying input stream. When bytes are read from an input stream, the 
BufferedInputStream reads more bytes than requested and buffers them in its internally maintained buffer. 
When a byte read is requested, it checks if the requested byte already exists in its buffer. If the requested byte 
exists in its buffer, it returns the byte from its buffer. Otherwise, it reads some more bytes in its buffer and 
returns only the requested bytes. It also adds support for the mark and reset operations on an input stream 
to let you reread bytes from an input stream. The main benefit of using BufferedInputStream is faster speed 
because of buffering. Listing 7-18 shows how to use a BufferedInputStream to read contents of a file.

Listing 7-18. Reading from a File Using a BufferedInputStream for Faster Speed

// BufferedFileReading.java
package com.jdojo.io;

import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class BufferedFileReading {
    public static void main(String[] args) {
        String srcFile = "luci1.txt";

        try (BufferedInputStream bis
                = new BufferedInputStream(new FileInputStream(srcFile))) {
            // Read one byte at a time and display the read data
            byte byteData;
            while ((byteData = (byte) bis.read()) != -1) {
                System.out.print((char) byteData);
            }
        } catch (FileNotFoundException e1) {
            FileUtil.printFileNotFoundMsg(srcFile);
        } catch (IOException e2) {
            e2.printStackTrace();
        }
    }
}

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.



Chapter 7 ■ Input/Output

370

The code in the BufferedFileReading class reads the text in the luci1.txt file. The only difference 
between SimpleFileReading in Listing 7-14 and BufferedFileReading in Listing 7-18 is that the latter uses 
a decorator BufferedInputStream for a FileInputStream and the former simply uses a FileInputStream. In 
SimpleFileReading, you constructed the input stream as follows:

String srcFile = "luci1.txt";
FileInputStream fis = new FileInputStream(srcFile);

In BufferedFileReading, you constructed the input stream as follows:

String srcFile = "luci1.txt";
BufferedInputStream bis = new BufferedInputStream(new FileInputStream(srcFile));

You may not find any noticeable speed gain using BufferedFileReading over SimpleFileReading in 
this example because the file size is small. You are reading one byte at a time in both examples to keep the 
code simpler to read. You should be using another version of the read() method of the input stream so you 
can read more bytes at a time. Using the readAllBytes() method, which was added to the InputStream in 
JDK9, you can read the entire contents of the file in one go.

PushbackInputStream
A PushbackInputStream adds functionality to an input stream that lets you unread bytes (or push back the 
read bytes) using its unread() method. There are three versions of the unread() method.

•	 void unread(byte[] buffer)

•	 void unread(byte[] buffer, int offset, int length)

•	 void unread(int buffer)

The unread(int buffer) method lets you push back one byte at a time and other two methods let you 
push back multiple bytes at a time. If you call the read() method on the input stream after you have called its 
unread() method, you will first read those bytes that you have pushed back. Once all unread bytes are read 
again, you start reading fresh bytes from the input stream. For example, suppose your input stream contains a 
string of bytes, HELLO. If you read two bytes, you would have read HE. If you call unread((byte) 'E') to push 
back the last byte you have read, the subsequent read will return E and the next reads will read LLO.

Listing 7-19 illustrates the use of the PushbackInputStream. The program reads the first stanza of the 
poem Lucy by William Wordsworth from the luci1.txt in the current working directory. It reads each byte 
from the file twice, as shown in the output. For example, STRANGE is read as SSTTRRAANNGGEE. You may notice 
a blank line between two lines because each new line is read twice.

Listing 7-19. Using the PushbackInputStream Class

// PushbackFileReading.java
package com.jdojo.io;

import java.io.PushbackInputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;



Chapter 7 ■ Input/Output

371

public class PushbackFileReading {
    public static void main(String[] args) {
        String srcFile = "luci1.txt";

        try (PushbackInputStream pis
                = new PushbackInputStream(new FileInputStream(srcFile))) {

            // Read one byte at a time and display it
            byte byteData;
            while ((byteData = (byte) pis.read()) != -1) {
                System.out.print((char) byteData);

                // Unread the last byte that we have just read
                pis.unread(byteData);

                // Reread the byte we unread (or pushed back)
                byteData = (byte) pis.read();
                System.out.print((char) byteData);
            }
        } catch (FileNotFoundException e1) {
            FileUtil.printFileNotFoundMsg(srcFile);
        } catch (IOException e2) {
            e2.printStackTrace();
        }
    }
}

SSTTRRAANNGGEE  ffiittss  ooff  ppaassssiioonn  hhaavvee  II  kknnoowwnn::
AAnndd  II  wwiillll  ddaarree  ttoo  tteellll,,

BBuutt  iinn  tthhee  lloovveerr''ss  eeaarr  aalloonnee,,

WWhhaatt  oonnccee  ttoo  mmee  bbeeffeellll..

Output Stream Meets the Decorator Pattern
Figure 7-6 depicts the class diagram that includes some commonly used output stream classes. You can refer 
to the API documentation of the java.io package for the complete list of the output stream classes. The 
comments in the class diagram compare the output stream classes with the classes required to implement 
the decorator pattern. Notice that the class diagram for the output stream is similar to that of the input 
stream and the drink application.



Chapter 7 ■ Input/Output

372

Most of the time, if you know the name of the input stream class, you can get the corresponding output 
stream class by replacing the word “Input” in the class name with the word “Output.” For example, for the 
FileInputStream class, you have a corresponding FileOutputStream class; for the BufferedInputStream 
class, you have a corresponding BufferedOutputStream class, and so on. You may not find a corresponding 
output stream class for every input stream class; for example, PushbackInputStream class has no 
corresponding output stream class. You may find some new classes that are not in the input stream class 
hierarchy because they do not make sense while reading data; for example, you have a new concrete 
decorator class PrintStream in the output stream class hierarchy. Table 7-3 compares the classes in the 
decorator pattern, your drink application, and the output streams.

Figure 7-6. Some commonly used classes for output streams compared with the decorator pattern

Table 7-3. Comparing Classes in the Decorator Pattern, the Drink Application, and the Output Streams

Decorator Pattern Drink Application Output Stream

Component Drink OutputStream

ConcreteComponentA
ConcreteComponentB

Rum
Vodka
Whisky

FileOutputStream 
ByteArrayOutputStream
PipedOutputStream

Decorator DrinkDecorator FilterOutputStream

ConcreteDecoratorA
ConcreteDecoratorB

Honey
Spices

BufferedOutputStream
DataOutputStream
ObjectOutputStream

There are three important methods defined in the abstract superclass OutputStream: write(), flush(), 
and close(). The write() method is used to write bytes to an output stream. It has three versions that let 
you write one byte or multiple bytes at a time. You used it to write data to a file in the SimpleFileWriting 
class in Listing 7-17. The flush() method is used to flush any buffered bytes to the data sink. The close() 
method closes the output stream.



Chapter 7 ■ Input/Output

373

The technique to use concrete decorators with the concrete component classes for the output stream is 
the same as for the input stream classes. For example, to use the BufferedOutputStream decorator for better 
speed to write to a file, use the following statement:

BufferedOutputStream bos = new BufferedOutputStream(
                               new FileOutputStream("your output file path")
                           );

To write data to a ByteArrayOutputStream, use the following statements:

ByteArrayOutputStream baos = new ByteArrayOutputStream();
baos.write(buffer); // Here, buffer is a byte array

ByteArrayOutputStream provides some important methods: reset(), size(), toString(), and 
writeTo(). The reset() method discards all bytes written to it; the size() method returns the number 
of bytes written to the stream; the toString() method returns the string representation of the bytes in the 
stream; the writeTo() method writes the bytes in the stream to another output stream. For example, if you 
have written some bytes to a ByteArrayOutputStream called baos and want to write its content to a file 
represented by FileOutputStream named fos, you would use the following statement:

// All bytes written to baos is written to fos
baos.writeTo(fos);

I don’t cover any more examples of writing to an output stream in this section. You can use 
SimpleFileWriting class in Listing 7-17 as an example to use any other type of output stream. You can use 
any output stream’s concrete decorators by using them as an enclosing object for a concrete component or 
another concrete decorator. I discuss the DataOutputStream, ObjectOutputStream, and PrintStream classes 
with examples in subsequent sections.

PrintStream
The PrintStream class is a concrete decorator for the output stream as shown in Figure 7-6. It adds the 
following functionality to an output stream:

•	 It contains methods that let you print any data type values, primitive or object, in a 
suitable format for printing.

•	 Its methods to write data to the output stream do not throw an IOException. If a 
method call throws an IOException, it sets an internal flag, rather than throwing 
the exception to the caller. The flag can be checked using its checkError() method, 
which returns true if an IOException occurs during the method execution.

•	 It has an auto-flush capability. You can specify in its constructor that it should flush 
the contents written to it automatically. If you set the auto-flush flag to true, it will 
flush its contents when a byte array is written, one of its overloaded println() 
methods is used to write data, a new line character is written, or a byte (\n) is written.



Chapter 7 ■ Input/Output

374

Some of the important methods in PrintStream class are as follows:

•	 void print(Xxx arg)

•	 void println(Xxx arg)

•	 PrintStream printf(String format, Object... args)

•	 PrintStream printf(Locale l, String format, Object... args)

Here, Xxx is any primitive data type (int, char, float, etc.), String, or Object.
The print(Xxx arg) method writes the specified arg value to the output stream in a printable format. 

For example, you can use print(10) to write an integer to an output stream. Xxx also includes two reference 
types: String and Object. If your argument is an object, the toString() method on that object is called, 
and the returned string is written to the output stream. If the object type argument is null, a string “null” 
is written to the output stream. Note that all input and output streams are byte based. When I mention that 
the print stream writes a “null” string to the output stream, it means that the print stream converts the string 
“null” into bytes and writes those bytes to the output stream. The character-to-byte conversion is done based 
on the platform’s default character encoding. You can also provide the character encoding to use for such 
conversions in some of the constructors of the PrintStream class.

The println(XXX arg) method works like the print(XXX arg) method with one difference. It appends 
a line separator string to the specified arg. That is, it writes an arg value and a line separator to the output 
stream. The method println() with no argument is used to write a line separator to the output stream. The 
line separator is platform-dependent and it is determined by the system property named line.separator.

The printf() method is used to write a formatted string to the output stream. For example, if you 
want to write a string in the form "Today is: <today-date>" to a output stream, you can use its printf() 
method as follows:

// Assuming that date format is mm/dd/yyyy and ps is the PrintStream object reference
ps.printf("Today is: %1$tm/%1$td/%1$tY", java.time.LocalDate.now());

Listing 7-20 illustrates how to use a PrintStream to write to a file. It writes another stanza from the 
poem Lucy by William Wordsworth to a file named luci3.txt. The contents of the file after you run this 
program would be as follows:

Upon the moon I fix'd my eye,
All over the wide lea;
With quickening pace my horse drew nigh
Those paths so dear to me.

Listing 7-20. Using the PrintStream Class to Write to a File

// FileWritingWithPrintStream.java
package com.jdojo.io;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

public class FileWritingWithPrintStream {
    public static void main(String[] args) {
        String destFile = "luci3.txt";



Chapter 7 ■ Input/Output

375

        try (PrintStream ps = new PrintStream(destFile)) {
            // Write data to the file. println() appends a new line
            // and print() does not append a new line
            ps.println("Upon the moon I fix'd my eye,");
            ps.println("All over the wide lea;");
            ps.println("With quickening pace my horse drew nigh");
            ps.print("Those paths so dear to me.");

            // flush the print stream
            ps.flush();

            System.out.println("Text has been written to "
                    + (new File(destFile).getAbsolutePath()));
        } catch (FileNotFoundException e1) {
            FileUtil.printFileNotFoundMsg(destFile);
        }
    }
}

Text has been written to C:\Java9LanguageFeatures\luci3.txt

Listing 7-20 is very similar in structure to Listing 7-17. It creates a PrintStream object using the data 
sink file name. You can also create a PrintStream object using any other OutputStream object. You may 
notice that you do not have to handle the IOException in the catch block because unlike another output 
stream, a PrintStream object does not throw this exception. In addition, you use the println() and print() 
methods to write the four lines of text without worrying about converting them to bytes. If you want to use 
auto-flush in this program, you need to create the PrintStream object using another constructor as follows:

boolean autoFlush = true;
PrintStream ps = new PrintStream(new FileOutputStream(destFile), autoFlush);

Using Pipes
A pipe connects an input stream and an output stream. A piped I/O is based on the producer-consumer 
pattern. The producer produces data and the consumer consumes the data, without caring about each other. 
It works similar to a physical pipe, where you inject something at one end and gather it at the other end. In a 
piped I/O, you create two streams representing two ends of the pipe. A PipedOutputStream object represents 
one end and a PipedInputStream object the other end. You connect the two ends using the connect() 
method on the either object. You can also connect them by passing one object to the constructor when you 
create another object. You can imagine the logical arrangement of a piped input stream and a piped output 
stream as depicted in Figure 7-7.



Chapter 7 ■ Input/Output

376

The following snippet of code shows two ways of creating and connecting the two ends of a pipe:

// Method #1: Create piped input and output streams and connect them
PipedInputStream pis = new PipedInputStream();
PipedOutputStream pos = new PipedOutputStream();
pis.connect(pos); /* Connect the two ends */

// Method #2: Create piped input and output streams and connect them
PipedInputStream pis = new PipedInputStream();
PipedOutputStream pos = new PipedOutputStream(pis);

You can produce and consume data after you connect the two ends of the pipe. You produce data by 
using one of the write() methods of the PipedOutputStream object. Whatever you write to the piped output 
stream automatically becomes available to the piped input stream object for reading. You use the read() 
method of PipedInputStream to read data from the pipe. The piped input stream is blocked if data is not 
available when it attempts to read from the pipe.

Have you wondered where the data is stored when you write it to a piped output stream? Similar to a 
physical pipe, a piped stream has a buffer with a fixed capacity to store data between the time it is written to 
and read from the pipe. You can set the pipe capacity when you create it. If a pipe’s buffer is full, an attempt 
to write on the pipe blocks.

// Create piped input and output streams with the buffer capacity of 2048 bytes
PipedOutputStream pos = new PipedOutputStream();
PipedInputStream pis = new PipedInputStream(pos, 2048);

 ■ Tip  typically, a pipe is used to transfer data from one thread to another. One thread will produce data and 
another thread will consume the data. note that the synchronization between two threads is taken care of by 
the blocking read and write.

Listing 7-21 demonstrates how to use a piped I/O. The main() method creates and connects a piped 
input and a piped output stream. The piped output stream is passed to the produceData() method, 
producing numbers from 1 to 50. The thread sleeps for a half second after producing a number. The 
consumeData() method reads data from the piped input stream. I used a quick and dirty way of handling the 
exceptions to keep the code smaller and readable. Data is produced and read in two separate threads.

PipedOutputStream
(Write data to it)

Pipe
(The connection)

PipedInputStream
(Read data from it)

Figure 7-7. The logical arrangement of piped input and output streams



Chapter 7 ■ Input/Output

377

Listing 7-21. Using Piped Input and Output Streams

// PipedStreamTest.java
package com.jdojo.io;

import java.io.PipedInputStream;
import java.io.PipedOutputStream;

public class PipedStreamTest {
    public static void main(String[] args) throws Exception {
        // Create and connect piped input and output streams
        PipedInputStream pis = new PipedInputStream();
        PipedOutputStream pos = new PipedOutputStream();
        pos.connect(pis);

        // Creates and starts two threads, one to produce data (write data)
        // and one to consume data (read data)
        Runnable producer = () -> produceData(pos);
        Runnable consumer = () -> consumeData(pis);
        new Thread(producer).start();
        new Thread(consumer).start();
    }

    public static void produceData(PipedOutputStream pos) {
        try {
            for (int i = 1; i <= 50; i++) {
                pos.write((byte) i);
                pos.flush();
                System.out.println("Writing: " + i);
                Thread.sleep(500);
            }
            pos.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public static void consumeData(PipedInputStream pis) {
        try {
            int num = -1;
            while ((num = pis.read()) != -1) {
                System.out.println("Reading: " + num);
            }
            pis.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}



Chapter 7 ■ Input/Output

378

Writing: 1
Reading: 1
...
Writing: 50
Reading: 50

Reading and Writing Primitive Data Types
An object of the DataInputStream class is used to read values of the primitive data types in a machine-
independent way from an input stream. An object of the DataOutputStream class is used to write values of 
the primitive data type in a machine-independent way to an output stream.

The DataInputStream class contains readXxx() methods to read a value of data type Xxx, where Xxx is a 
primitive data type such as int, char, etc. For example, to read an int value, it contains a readInt() method; 
to read a char value, it has a readChar() method, etc. It also supports reading strings using the readUTF() 
method.

The DataOutputStream class contains a writeXxx(Xxx value) method corresponding to each the 
readXxx() method of the DataInputStream class, where Xxx is a Java primitive data type. It supports writing 
a string to an output stream using the writeUTF(String text) method.

The DataInputStream and DataOutputStream classes are concrete decorators, which provide you a 
convenient way to read and write values of the primitive data types and strings using input and output 
streams, respectively. You must have an underlying concrete component linked to a data source or a data 
sink to use these classes. For example, to write values of the primitive data types to a file named primitives.
dat, you construct an object of DataOutputStream as follows:

DataOutputStream dos = new DataOutputStream(new FileOutputStream("primitives.dat"));

Listing 7-22 writes an int value, a double value, a boolean value, and a string to a file named 
primitives.dat. The file path in the output may be different when you run this program.

Listing 7-22. Writing Java Primitive Values and Strings to a File

// WritingPrimitives.java
package com.jdojo.io;

import java.io.DataOutputStream;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class WritingPrimitives {
    public static void main(String[] args) {
        String destFile = "primitives.dat";

        try (DataOutputStream dos = new DataOutputStream(
                new FileOutputStream(destFile))) {



Chapter 7 ■ Input/Output

379

            // Write some primitive values and a string
            dos.writeInt(765);
            dos.writeDouble(6789.50);
            dos.writeBoolean(true);
            dos.writeUTF("Java Input/Output is cool!");

            // Flush the written data to the file
            dos.flush();

            System.out.println("Data has been written to "
                    + (new File(destFile)).getAbsolutePath());
        } catch (FileNotFoundException e) {
            FileUtil.printFileNotFoundMsg(destFile);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Data has been written to C:\Java9LanguageFeatures\primitives.dat

Listing 7-23 reads those primitive values back. Note that you must read the values in the same 
order using a DataInputStream as they were written using the DataOutputStream. You need to run the 
WritingPrimitives class before you run the ReadingPrimitives class.

Listing 7-23. Reading Primitive Values and Strings from a File

// ReadingPrimitives.java
package com.jdojo.io;

import java.io.IOException;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.DataInputStream;

public class ReadingPrimitives {
    public static void main(String[] args) {
        String srcFile = "primitives.dat";

        try (DataInputStream dis = new DataInputStream(
                new FileInputStream(srcFile))) {
            // Read the data in the same order they were written
            int intValue = dis.readInt();
            double doubleValue = dis.readDouble();
            boolean booleanValue = dis.readBoolean();
            String msg = dis.readUTF();

            System.out.println(intValue);
            System.out.println(doubleValue);
            System.out.println(booleanValue);
            System.out.println(msg);



Chapter 7 ■ Input/Output

380

        } catch (FileNotFoundException e) {
            FileUtil.printFileNotFoundMsg(srcFile);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

765
6789.5
true
Java Input/Output is cool!

Object Serialization
You create an object using the new operator. For example, if you have a Person class that accepts a person’s 
name, gender, and height as arguments in its constructor, you can create a Person object as follows:

Person john = new Person("John", "Male", 6.7);

What would you do if you wanted to save the object john to a file and later restore it in memory without 
using the new operator again? You have not learned how to do it yet. This is the subject of the discussion in 
this section.

The process of converting an object in memory to a sequence of bytes and storing the sequence of 
bytes in a storage medium such as a file is called object serialization. You can store the sequence of bytes to 
permanent storage such as a file or a database. You can also transmit the sequence of bytes over a network. 
The process of reading the sequence of bytes produced by a serialization process and restoring the object 
back in memory is called object deserialization. The serialization of an object is also known as deflating or 
marshaling the object. The deserialization of an object is also known as inflating or unmarshaling the object. 
You can think of serialization as writing an object from memory to a storage medium and deserialization as 
reading an object into memory from a storage medium.

An object of the ObjectOutputStream class is used to serialize an object. An object of the 
ObjectInputStream class is used to deserialize an object. You can also use objects of these classes to 
serialize values of the primitive data types such as int, double, boolean, etc.

The ObjectOutputStream and ObjectInputStream classes are the concrete decorator classes for output 
and input streams, respectively. However, they are not inherited from their abstract decorator classes. They 
are inherited from their respective abstract component classes. ObjectOutputStream is inherited from 
OutputStream and ObjectInputStream is inherited from InputStream. This seems to be an inconsistency. 
However, this still fits into the decorator pattern.

Your class must implement the Serializable or Externalizable interface to be serialized or 
deserialized. The Serializable interface is a marker interface. If you want the objects of a Person class to be 
serialized, you need to declare the Person class as follows:

public class Person implements Serializable {
    // Code for the Person class goes here
}

Java takes care of the details of reading/writing a Serializable object from/to a stream. You just need 
to pass the object to write/read to/from a stream to one of the methods of the stream classes.



Chapter 7 ■ Input/Output

381

Implementing the Externalizable interface gives you more control in reading and writing objects 
from/to a stream. It inherits the Serializable interface. It is declared as follows:

public interface Externalizable extends Serializable {
    void readExternal(ObjectInput in) throws IOException, ClassNotFoundException;
    void writeExternal(ObjectOutput out) throws IOException;
}

The readExternal() method is called when you read an object from a stream. The writeExternal() 
method is called when you write an object to a stream. You have to write the logic to read and write 
the object’s fields inside the readExternal() and writeExternal() methods, respectively. Your class 
implementing the Externalizable interface looks like the following:

public class Person implements Externalizable {
    public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
        // Write the logic to read the Person object fields from the stream
    }

    public void writeExternal(ObjectOutput out) throws IOException {
        // Write the logic to write Person object fields to the stream
    }
}

Serializing Objects
To serialize an object, you need to perform the following steps:

 1. Have the references of the objects to be serialized.

 2. Create an object output stream for the storage medium to which the objects will 
be written.

 3. Write objects to the output stream.

 4. Close the object output stream.

Create an object of the ObjectOutputStream class by using it as a decorator for another output stream 
that represents the storage medium to save the object. For example, to save an object to a person.ser file, 
create an object output stream as follows:

// Create an object output stream to write objects to a file
ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("person.ser"));

To save an object to a ByteArrayOutputStream, you construct an object output stream as follows:

// Creates a byte array output stream to write data to
ByteArrayOutputStream baos = new ByteArrayOutputStream();

// Creates an object output stream to write objects to the byte array output stream
ObjectOutputStream oos = new ObjectOutputStream(baos);



Chapter 7 ■ Input/Output

382

Use the writeObject() method of the ObjectOutputStream class to serialize the object by passing the 
object reference as an argument, like so:

// Serializes the john object
oos.writeObject(john);

Finally, use the close() method to close the object output stream when you are done writing all objects 
to it:

// Close the object output stream
oos.close();

Listing 7-24 defines a Person class that implements the Serializable interface. The Person class 
contains three fields: name, gender, and height. It overrides the toString() method and returns the Person 
description using the three fields. I have not added getters and setters for the fields in the Person class to 
keep the class short and simple.

Listing 7-24. A Person Class That Implements the Serializable Interface

// Person.java
package com.jdojo.io;

import java.io.Serializable;

public class Person implements Serializable {
    private String name = "Unknown";
    private String gender = "Unknown";
    private double height = Double.NaN;

    public Person(String name, String gender, double height) {
        this.name = name;
        this.gender = gender;
        this.height = height;
    }

    @Override
    public String toString() {
        return "Name: " + this.name + ", Gender: " + this.gender
                + ", Height: " + this.height;
    }
}

Listing 7-25 demonstrates how to write Person objects to a person.ser file. The output displays the 
objects written to the file and the absolute path of the file, which may be different on your machine.

Listing 7-25. Serializing an Object

// PersonSerializationTest.java
package com.jdojo.io;

import java.io.File;
import java.io.FileOutputStream;



Chapter 7 ■ Input/Output

383

import java.io.IOException;
import java.io.ObjectOutputStream;

public class PersonSerializationTest {
    public static void main(String[] args) {
        // Create three Person objects
        Person john = new Person("John", "Male", 6.7);
        Person wally = new Person("Wally", "Male", 5.7);
        Person katrina = new Person("Katrina", "Female", 5.4);

        // The output file
        File fileObject = new File("person.ser");

        try (ObjectOutputStream oos
                = new ObjectOutputStream(new FileOutputStream(fileObject))) {

            // Write (or serialize) the objects to the object output stream
            oos.writeObject(john);
            oos.writeObject(wally);
            oos.writeObject(katrina);

            // Display the serialized objects on the standard output
            System.out.println(john);
            System.out.println(wally);
            System.out.println(katrina);

            // Print the output path
            System.out.println("Objects were written to "
                    + fileObject.getAbsolutePath());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Name: John, Gender: Male, Height: 6.7
Name: Wally, Gender: Male, Height: 5.7
Name: Katrina, Gender: Female, Height: 5.4
Objects were written to C:\Java9LanguageFeatures\person.ser

Deserializing Objects
It is time to read the objects back from the person.ser file. Reading a serialized object is the opposite of 
serializing it. To deserialize an object, you need to perform the following steps:

 1. Create an object input stream for the storage medium from which objects  
will be read.

 2. Read the objects.

 3. Close the object input stream.



Chapter 7 ■ Input/Output

384

Create an object of the ObjectInputStream class by using it as a decorator for another input stream that 
represents the storage medium where serialized objects were stored. For example, to read an object from a 
person.ser file, create an object input stream as follows:

// Create an object input stream to read objects from a file
ObjectInputStream ois = new ObjectInputStream(new FileInputStream("person.ser"));

To read objects from a ByteArrayInputStream, create an object output stream as follows:

// Create an object input stream to read objects from a byte array input stream
ObjectInputStream ois = new ObjectInputStream(Byte-Array-Input-Stream-Reference);

Use the readObject() method of the ObjectInputStream class to deserialize the object, like so:

// Read an object from the stream
Object obj = oos.readObject();

Make sure to call the readObject() method to read objects in the same order you called the 
writeObject() method to write objects. For example, if you wrote three pieces of information in the order 
object-1, a float, and object-2, you must read them in the same order: object-1, a float, and object-2.

Finally, close the object input stream as follows:

// Close the object input stream
ois.close();

Listing 7-26 demonstrates how to read objects from the person.ser file. Make sure that the person.ser 
file exists in your current directory. Otherwise, the program will print an error message with the expected 
location of this file.

Listing 7-26. Reading Objects from a File

// PersonDeserializationTest.java
package com.jdojo.io;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.ObjectInputStream;

public class PersonDeserializationTest {
    public static void main(String[] args) {
        // The input file
        File fileObject = new File("person.ser");

        try (ObjectInputStream ois
                = new ObjectInputStream(new FileInputStream(fileObject))) {

            // Read (or deserialize) the three objects
            Person john = (Person) ois.readObject();
            Person wally = (Person) ois.readObject();
            Person katrina = (Person) ois.readObject();



Chapter 7 ■ Input/Output

385

            // Let's display the objects that are read
            System.out.println(john);
            System.out.println(wally);
            System.out.println(katrina);

            // Print the input path
            System.out.println("Objects were read from "
                    + fileObject.getAbsolutePath());
        } catch (FileNotFoundException e) {
            FileUtil.printFileNotFoundMsg(fileObject.getPath());
        } catch (ClassNotFoundException | IOException e) {
            e.printStackTrace();
        }
    }
}

Name: John, Gender: Male, Height: 6.7
Name: Wally, Gender: Male, Height: 5.7
Name: Katrina, Gender: Female, Height: 5.4
Objects were read from C:\Java9LanguageFeatures\person.ser

Externalizable Object Serialization
In the previous sections, I showed you how to serialize and deserialize Serializable objects. In this section, 
I show you how to serialize and deserialize Externalizable objects. I have modified the Person class to 
implement the Externalizable interface. I named the new class PersonExt and it’s shown in Listing 7-27.

Listing 7-27. A PersonExt Class That Implements the Externalizable Interface

// PersonExt.java
package com.jdojo.io;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

public class PersonExt implements Externalizable {
    private String name = "Unknown";
    private String gender = "Unknown";
    private double height = Double.NaN;

    // You must define a no-arg constructor for this class. It is
    // used to construct the object during deserialization process
    // before the readExternal() method of this class is called.
    public PersonExt() {
    }



Chapter 7 ■ Input/Output

386

    public PersonExt(String name, String gender, double height) {
        this.name = name;
        this.gender = gender;
        this.height = height;
    }

    // Override the toString() method to return the person description
    @Override
    public String toString() {
        return "Name: " + this.name + ", Gender: " + this.gender
                + ", Height: " + this.height;
    }

    @Override
    public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
        // Read name and gender in the same order they were written
        this.name = in.readUTF();
        this.gender = in.readUTF();
    }

    @Override
    public void writeExternal(ObjectOutput out) throws IOException {
        // Write only the name and gender to the stream
        out.writeUTF(this.name);
        out.writeUTF(this.gender);
    }
}

Java will pass the reference of the object output stream and object input stream to the writeExternal() 
and readExternal() methods of the PersonExt class, respectively.

In the writeExternal() method, you write the name and gender fields to the object output stream. Note 
that the height field is not written to the object output stream. It means that you will not get the value of the 
height field back when you read the object from the stream in the readExternal() method. The writeUTF() 
method is used to write strings (name and gender) to the object output stream.

In the readExternal() method, you read the name and gender fields from the stream and set them in 
the name and gender instance variables.

Listing 7-28 and Listing 7-29 contain the serialization and deserialization logic for PersonExt objects.

Listing 7-28. Serializing PersonExt Objects That Implement the Externalizable Interface

// PersonExtSerializationTest.java
package com.jdojo.io;

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;

public class PersonExtSerializationTest {
    public static void main(String[] args) {
        // Create three Person objects
        PersonExt john = new PersonExt("John", "Male", 6.7);



Chapter 7 ■ Input/Output

387

        PersonExt wally = new PersonExt("Wally", "Male", 5.7);
        PersonExt katrina = new PersonExt("Katrina", "Female", 5.4);

        // The output file
        File fileObject = new File("personext.ser");

        try (ObjectOutputStream oos = new ObjectOutputStream(
                new FileOutputStream(fileObject))) {

            // Write (or serialize) the objects to the object output stream
            oos.writeObject(john);
            oos.writeObject(wally);
            oos.writeObject(katrina);

            // Display the serialized objects on the standard output
            System.out.println(john);
            System.out.println(wally);
            System.out.println(katrina);

            // Print the output path
            System.out.println("Objects were written to "
                    + fileObject.getAbsolutePath());
        } catch (IOException e1) {
            e1.printStackTrace();
        }
    }
}

Name: John, Gender: Male, Height: 6.7
Name: Wally, Gender: Male, Height: 5.7
Name: Katrina, Gender: Female, Height: 5.4
Objects were written to C:\Java9LanguageFeatures\personext.ser

Listing 7-29. Deserializing PersonExt Objects That Implement the Externalizable Interface

// PersonExtDeserializationTest.java
package com.jdojo.io;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.ObjectInputStream;

public class PersonExtDeserializationTest {
    public static void main(String[] args) {
        // The input file
        File fileObject = new File("personext.ser");



Chapter 7 ■ Input/Output

388

        try (ObjectInputStream ois
                = new ObjectInputStream(new FileInputStream(fileObject))) {

            // Read (or deserialize) the three objects
            PersonExt john = (PersonExt) ois.readObject();
            PersonExt wally = (PersonExt) ois.readObject();
            PersonExt katrina = (PersonExt) ois.readObject();

            // Let's display the objects that are read
            System.out.println(john);
            System.out.println(wally);
            System.out.println(katrina);

            // Print the input path
            System.out.println("Objects were read from "
                    + fileObject.getAbsolutePath());
        } catch (FileNotFoundException e) {
            FileUtil.printFileNotFoundMsg(fileObject.getPath());
        } catch (ClassNotFoundException | IOException e) {
            e.printStackTrace();
        }
    }
}

Name: John, Gender: Male, Height: NaN
Name: Wally, Gender: Male, Height: NaN
Name: Katrina, Gender: Female, Height: NaN
Objects were read from C:\Java9LanguageFeatures\personext.ser

The output of Listing 7-29 demonstrates that the value of the height field is the default value (Double.
NaN) after you deserialize a PersonExt object. Here are the steps to take to serialize and deserialize an object 
using Externalizable interface:

 1. When you call the writeObject() method to write an Externalizable 
object, Java writes the identity of the object to the output stream, and calls the 
writeExternal() method of its class. You write the data related to the object to 
the output stream in the writeExternal() method. You have full control over 
what object-related data you write to the stream in this method. If you want to 
store some sensitive data, you may want to encrypt it before you write it to the 
stream and decrypt the data when you read it from the stream.

 2. When you call the readObject() method to read an Externalizable object, Java 
reads the identity of the object from the stream. Note that for an Externalizable 
object, Java writes only the object’s identity to the output stream, not any details 
about its class definition. It uses the object class’s no-args constructor to create 
the object. This is the reason that you must provide a no-args constructor for an 
Externalizable object. It calls the object’s readExternal() method, so you can 
populate object’s fields values.

For a Serializable object, the JVM serializes only instance variables that are not declared as transient. 
I discuss serializing transient variables in the next section. For an Externalizable object, you have full 
control over what pieces of data are serialized.



Chapter 7 ■ Input/Output

389

Serializing transient Fields
The keyword transient is used to declare a class’s field. As the literal meaning of the word “transient” 
implies, a transient field of a Serializable object is not serialized. The following code for an Employee class 
declares the ssn and salary fields as transient:

public class Employee implements Serializable {
    private String name;
    private String gender;
    private transient String ssn;
    private transient double salary;
}

The transient fields of a Serializable object are not serialized when you use the writeObject() 
method of the ObjectOutputStream class.

Note that if your object is Externalizable, not Serializable, declaring a field transient has no effect 
because you control what fields are serialized in the writeExternal() method. If you want transient fields 
of your class to be serialized, you need to declare the class Externalizable and write the transient fields to 
the output stream in the writeExternal() method of your class. I don’t cover any examples of serializing 
transient fields because the logic is the same as shown in Listing 7-27, except that you declare some instance 
variables as transient and write them to the output stream in the writeExternal() method.

Advanced Object Serialization
The following sections discuss advanced serialization techniques. They are designed for experienced 
developers. If you are a beginner or an intermediate level developer, you may skip the following sections; 
you should, however, revisit them after you gain more experience with Java I/O.

Writing an Object Multiple Times to a Stream
The JVM keeps track of object references it writes to the object output stream using the writeObject() 
method. Suppose you have a PersonMutable object named john and you use an ObjectOutputStream object 
oos to write it to a file as follows:

PersonMutable john = new PersonMutable("John", "Male", 6.7);
oos.writeObject(john);

At this time, Java makes a note that the object john has been written to the stream. You may want to 
change some attributes of the john object and write it to the stream again as follows:

john.setName("John Jacobs");
john.setHeight(5.9);
oos.writeObject(john);

At this time, Java does not write the john object to the stream. Rather, the JVM back references it to 
the john object that you wrote the first time. That is, all changes made to the name and height fields are not 
written to the stream separately. Both writes for the john object share the same object in the written stream. 
When you read the objects back, both objects will have the same name, gender, and height.



Chapter 7 ■ Input/Output

390

An object is not written more than once to a stream to keep the size of the serialized objects smaller. 
Listing 7-30 shows this process. The MultipleSerialization class as shown in Listing 7-31, in its 
serialize() method, writes an object, changes object’s attributes and serializes the same object again. It 
reads the objects in its deserialize() method. The output shows that Java did not write the changes made 
to the object when it wrote the object the second time.

Listing 7-30. A MutablePerson Class Whose Name and Height Can Be Changed

// MutablePerson.java
package com.jdojo.io;

import java.io.Serializable;

public class MutablePerson implements Serializable {
    private String name = "Unknown";
    private String gender = "Unknown";
    private double height = Double.NaN;

    public MutablePerson(String name, String gender, double height) {
        this.name = name;
        this.gender = gender;
        this.height = height;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getName() {
        return name;
    }

    public void setHeight(double height) {
        this.height = height;
    }

    public double getHeight() {
        return height;
    }

    @Override
    public String toString() {
        return "Name: " + this.name + ", Gender: " + this.gender
                + ", Height: " + this.height;
    }
}



Chapter 7 ■ Input/Output

391

Listing 7-31. Writing an Object Multiple Times to the Same Output Stream

// MultipleSerialization.java
package com.jdojo.io;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class MultipleSerialization {
    public static void main(String[] args) {
        String fileName = "mutableperson.ser";

        // Write the same object twice to the stream
        serialize(fileName);

        System.out.println("--------------------------------------");

        // Read the two objects back
        deserialize(fileName);
    }

    public static void serialize(String fileName) {
        // Create a MutablePerson objects
        MutablePerson john = new MutablePerson("John", "Male", 6.7);

        File fileObject = new File(fileName);
        try (ObjectOutputStream oos
                = new ObjectOutputStream(new FileOutputStream(fileObject))) {

            // Let's display the objects we have serialized on the console
            System.out.println("Objects are written to "
                    + fileObject.getAbsolutePath());

            // Write the john object first time to the stream
            oos.writeObject(john);
            System.out.println(john); // Display what we wrote

            // Change john object's name and height
            john.setName("John Jacobs");
            john.setHeight(6.9);

            // Write john object again with changed name and height
            oos.writeObject(john);
            System.out.println(john); // display what we wrote again
        } catch (IOException e1) {
            e1.printStackTrace();
        }
    }



Chapter 7 ■ Input/Output

392

    public static void deserialize(String fileName) {
        // personmutable.ser file must exist in the current directory
        File fileObject = new File(fileName);

        try (ObjectInputStream ois
                = new ObjectInputStream(new FileInputStream(fileObject))) {

            // Read the two objects that were written in the serialize() method
            MutablePerson john1 = (MutablePerson) ois.readObject();
            MutablePerson john2 = (MutablePerson) ois.readObject();

            // Display the objects
            System.out.println("Objects are read from "
                    + fileObject.getAbsolutePath());
            System.out.println(john1);
            System.out.println(john2);
        } catch (IOException | ClassNotFoundException e) {
            e.printStackTrace();
        }
    }
}

Objects are written to C:\Java9LanguageFeatures\mutableperson.ser
Name: John, Gender: Male, Height: 6.7
Name: John Jacobs, Gender: Male, Height: 6.9
--------------------------------------
Objects are read from C:\Java9LanguageFeatures\mutableperson.ser
Name: John, Gender: Male, Height: 6.7
Name: John, Gender: Male, Height: 6.7

If you do not want Java to share an object reference, use the writeUnshared() method instead of the 
writeObject() method of the ObjectOutputStream class to serialize an object. An object written using the 
writeUnshared() method is not shared or back referenced by any subsequent call to the writeObject() 
method or the writeUnshared() method on the same object. You should read the object that was written 
using the writeUnshared() or the readUnshared() methods of the ObjectInputStream class. If you replace 
the call to writeObject() with writeUnshared() and the call to readObject() with readUnshared() in the 
MutipleSerialization class, you get the changed state of the object back when you read the object the 
second time.

You can control the serialization of a Serializable object in another way by defining a field named 
serialPersistentFields, which is an array of ObjectStreamField objects. This field must be declared 
private, static, and final. This field declares that all the fields mentioned in the array are serializable. 
Note that this is just the opposite of using the transient keyword with a field. When you use the transient 
keyword, you state that this field is not serializable, whereas by declaring a serialPersistentFields array, 
you state that these fields are serializable. The declaration of serialPersistentFields takes precedence 
over the declaration of transient fields in a class. For example, if you declare a field transient and include that 
field in the serialPersistentFields field, that field will be serialized. The following snippet of code shows 
how to declare a serialPersistentFields field in a Person class:



Chapter 7 ■ Input/Output

393

public class Person implements Serializable {
    private String name;
    private String gender;
    private double height;

    // Declare that only name and height fields are serializable
    private static final ObjectStreamField[] serialPersistentFields
        = {new ObjectStreamField("name", String.class),
           new ObjectStreamField("height", double.class)};
}

Class Evolution and Object Serialization
Your class may evolve (or change) over time. For example, you may remove an existing field or a method 
from a class. You may add new fields or methods to a class. During an object serialization, Java uses a 
number that is unique for the class of the object you serialize. This unique number is called the serial 
version unique ID (SUID). Java computes this number by computing the hash code of the class definition. If 
you change the class definition such as by adding new fields, the SUID for the class will change. When you 
serialize an object, Java also saves the class information to the stream. When you deserialize the object, Java 
computes the SUID for the class of the object being deserialized by reading the class definition from the 
stream. It compares the SUID computed from the stream with the SUID of the class loaded into the JVM.

If you change the definition of the class after you serialize an object of that class, the two numbers will 
not match and you will get a java.io.InvalidClassException during the deserialization process. If you 
never serialize the objects of your class or you never change your class definition after you serialize the 
objects and before you deserialize them, you do not need to worry about the SUID of your class. What should 
you do to make your objects deserialize properly, even if you change your class definition, after serializing 
objects of your class? You should declare a private, static, and final instance variable in your class that 
must be of the long type and named serialVersionUID.

public class MyClass {
    // Declare the SUID field.
    private static final long serialVersionUID = 801890L;

    // More code goes here
}

The MyClass uses 801890 as the value for serialVersionUID. This number was chosen arbitrarily. It 
does not matter what number you choose for this field. The JDK ships with a serialver tool that you can 
use to generate the value for the serialVersionUID field of your class. You can use this tool at the command 
prompt as follows:

serialver -classpath <class-path> <your-class-name>

When you run this tool with your class name, it prints the declaration of the serialVersionUID field 
for your class with the generated SUID for it. You just need to copy and paste that declaration into your class 
declaration.



Chapter 7 ■ Input/Output

394

 ■ Tip  Suppose you have a class that does not contain a serialVersionUID field and you have serialized its 
object. If you change your class and try to deserialize the object, the Java runtime will print an error message 
with the expected serialVersionUID. You need to add the serialVersionUID field in your class with the same 
value and try deserializing the objects.

Stopping Serialization
How do you stop the serialization of objects of your class? Not implementing the Serializable interface in 
your class seems to be an obvious answer. However, it is not a valid answer in all situations. For example, 
if you inherit your class from an existing class that implements the Serializable interface, your class 
implements the Serializable interface implicitly. This makes your class automatically serializable. To stop 
objects of your class from being serialized all the time, you can add the writeObject() and readObject() 
methods in your class. These methods should simply throw an exception.

Listing 7-32 contains partial code for a class named NotSerializable. The class implements the 
Serializable interface and still it is not serializable because it throws an exception in the readObject() and 
writeObject() methods.

Listing 7-32. Stopping a Class from Serializing

// NotSerializable.java
package com.jdojo.io;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

public class NotSerializable implements Serializable {
    // Instance variables go here

    private void readObject(ObjectInputStream ois)
            throws IOException, ClassNotFoundException {
        // Throw an exception
        throw new IOException("Not meant for serialization!!!");
    }

    private void writeObject(ObjectOutputStream os) throws IOException {
        // Throw an exception
        throw new IOException("Not meant for serialization!!!");
    }

    // Other code for the class goes here
}



Chapter 7 ■ Input/Output

395

Readers and Writers
Input and output streams are byte-based streams. In this section, I discuss readers and writers, which are 
character-based streams. A reader is used to read character-based data from a data source. A writer is used 
to write character-based data to a data sink.

Figure 7-8 and Figure 7-9 show some classes, and the relationship between them, for the Reader 
and Writer stream families. Recall that the input and output stream class names end with the words 
“InputStream” and “OutputStream,” respectively. The Reader and Writer class names end with the words 
“Reader” and “Writer,” respectively.

Figure 7-9. Commonly used classes for Writer streams compared with the decorator pattern

Figure 7-8. Commonly used classes for Reader streams compared with the decorator pattern



Chapter 7 ■ Input/Output

396

Table 7-4 and Table 7-5 compare classes in byte-based and character-based input/output streams.

Table 7-5. Comparing Classes from Byte-Based Output Streams and Character-Based Output Streams

Byte-Based Output Stream Class Character-Based Output Stream Class

OutputStream Writer

ByteArrayOutputStream CharArrayWriter

No corresponding class StringWriter

PipedOutputStream PipedWriter

FileOutputStream FileWriter

No corresponding class OutputStreamWriter

FilterOutputStream FilterWriter

BufferedOutputStream BufferedWriter

DataOutputStream No corresponding class

ObjectOutputStream No corresponding class

PrintStream PrintWriter

Table 7-4. Comparing Classes in Byte-based and Character-based Input Streams

Byte-Based Input Stream Class Character-Based Input Stream Class

InputStream Reader

ByteArrayInputStream CharArrayReader

StringBufferInputStream StringReader

PipedInputStream PipedReader

FileInputStream FileReader

No corresponding class InputStreamReader

FilterInputStream FilterReader

BufferedInputStream BufferedReader

PushbackInputStream PushbackReader

DataInputStream No corresponding class

ObjectInputStream No corresponding class

Some classes in the byte-based input/output streams do not have the corresponding character-based 
classes and vice versa. For example, reading and writing primitive data and objects are always byte-based; 
therefore, you do not have any classes in the reader/writer class family corresponding to the data/object 
input/output streams.

I discussed how to use the byte-based input/output classes in detail in the previous sections. You will 
find the classes in the reader/writer and the input/output categories similar. They are also based on the 
decorator pattern.



Chapter 7 ■ Input/Output

397

In the reader class hierarchy, BufferedReader, which is a concrete decorator, is directly inherited 
from the Reader class instead of the abstract decorator FilterReader class. In the writer class hierarchy, all 
concrete decorators have been inherited from the Writer class instead of the FilterWriter. No concrete 
decorator inherits the FilterWriter class.

The two classes, InputStreamReader and OutputStreamWriter, in the reader/writer class family provide 
the bridge between the byte-based and character-based streams. If you have an instance of InputStream and 
you want to get a Reader from it, you can get that by using the InputStreamReader class. That is, you need to 
use the InputStreamReader class if you have a stream that supplies bytes and you want to read characters by 
getting those bytes decoded into characters for you. For example, if you have an InputStream object called 
iso, and you want to get a Reader object instance, you can do so as follows:

// Create a Reader object from an InputStream object using the platform default encoding
Reader reader = new InputStreamReader(iso);

If you know the encoding used in the byte-based stream, you can specify it while creating a Reader 
object as follows:

// Create a Reader object from an InputStream using the "US-ASCII" encoding
Reader reader = new InputStreamReader(iso, "US-ASCII");

Similarly, you can create a Writer object to spit out characters from a bytes-based output stream as 
follows, assuming that oso is an OutputStream object:

// Create a Writer object from OutputStream using the platform default encoding
Writer writer = new OutputStreamWriter(oso);

// Create a Writer object from OutputStream using the "US-ASCII" encoding
Writer writer = new OutputStreamWriter(oso, "US-ASCII");

You do not have to write only a character at a time or a character array when using a writer. It has 
methods that let you write a String and a CharSequence object.

Let’s write another stanza from the poem Lucy by William Wordsworth to a file and read it back into the 
program. This time, you will use a BufferedWriter to write the text and a BufferedReader to read the text 
back. Here are the four lines of text in the stanza:

And now we reach'd the orchard-plot;
And, as we climb'd the hill,
The sinking moon to Lucy's cot
Came near and nearer still.

The text is saved in a luci4.txt file in the current directory. Listing 7-33 illustrates how to use a Writer 
object to write the text to this file. You may get different output when you run the program because it prints 
the path of the output file, which depends on the current working directory.

Listing 7-33. Using a Writer Object to Write Text to a File

// FileWritingWithWriter.java
package com.jdojo.io;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileNotFoundException;



Chapter 7 ■ Input/Output

398

import java.io.FileWriter;
import java.io.IOException;

public class FileWritingWithWriter {
    public static void main(String[] args) {
        // The output file
        String destFile = "luci4.txt";

        try (BufferedWriter bw = new BufferedWriter(new FileWriter(destFile))) {
            // Write the text to the writer
            bw.append("And now we reach'd the orchard-plot;");
            bw.newLine();
            bw.append("And, as we climb'd the hill,");
            bw.newLine();
            bw.append("The sinking moon to Lucy's cot");
            bw.newLine();
            bw.append("Came near and nearer still.");

            // Flush the written text
            bw.flush();

            System.out.println("Text was written to "
                    + (new File(destFile)).getAbsolutePath());
        } catch (FileNotFoundException e1) {
            FileUtil.printFileNotFoundMsg(destFile);
        } catch (IOException e2) {
            e2.printStackTrace();
        }
    }
}

Text was written to C:\Java9LanguageFeatures\luci4.txt

If you compare the code in this listing to any other listings that write data to a stream, you will not 
find any basic differences. The differences lie only in using classes to construct the output stream. In this 
case, you used the BufferedWriter and FileWriter classes to construct a Writer object. You used the 
append() method of the Writer class to write the strings to the file. You can use the write() method or the 
append() method to write a string using a Writer object. However, the append() method supports writing 
any CharSequence object to the stream, whereas the write() method supports writing only characters or a 
string. The BufferedWriter class provides a newLine() method to write a platform-specific new line to the 
output stream.

How would you read the text written to the file luci4.txt using a Reader object? It’s simple. Create 
a BufferedReader object by wrapping a FileReader object and read one line of text at a time using its 
readLine() method. The readLine() method considers a linefeed ('\n'), a carriage return ('\r'), and 
a carriage return immediately followed by a linefeed as a line terminator. It returns the text of the line 
excluding the line terminator. It returns null when the end of the stream is reached. The following is the 
snippet of code to read the text from the luci4.txt file. You can write the full program as an exercise.



Chapter 7 ■ Input/Output

399

String srcFile = "luci4.txt";
BufferedReader br = new BufferedReader(new FileReader(srcFile));
String text = null;

while ((text = br.readLine()) != null) {
   System.out.println(text);
}

br.close();

Converting a byte-based stream to a character-based stream is straightforward. If you have an 
InputStream object, you can get a Reader object by wrapping it inside an InputStreamReader object, like so:

InputStream is = /* Create your InputStream object here */
Reader reader = new InputStreamReader(is);

If you want to construct a BufferedReader object from an InputStream object, you can do that as follows:

InputStream is = /* Create your InputStream object here */
BufferedReader br = new BufferedReader(new InputStreamReader(is));

You can construct a Writer object from an OutputStream object as follows:

OutputStream os = /* Create your OutputStream object here */
Writer writer = new OutputStreamWriter(os);

Custom Input/Output Streams
Can you have your own I/O classes? The answer is yes. How difficult is it to have your own I/O classes? It 
is not that difficult if you understand the decorator pattern. Having your own I/O class is just a matter of 
adding a concrete decorator class in the I/O class hierarchy. In this section, you add a new reader class 
named LowerCaseReader. It will read characters from a character-based stream and convert all characters to 
lowercase.

The LowerCaseReader class is a concrete decorator class in the Reader class family. It should inherit 
from the FilterReader class. It needs to provide a constructor that will accept a Reader object.

public class LowerCaseReader extends FilterReader {
    public LowerCaseReader(Reader in) {
        // Code for the constructor goes here
    }

    // More code goes here
}

There are two versions of the read() method in the FilterReader class to read characters from a 
character-based stream. You need to override just one version of the read() method as follows. All other 
versions of the read() method delegate the reading job to this one.



Chapter 7 ■ Input/Output

400

public class LowerCaseReader extends FilterReader {
    public LowerCaseReader(Reader in) {
        // Code for the constructor goes here
    }

    @Override
    public int read(char[] cbuf, int off, int len) throws IOException {
        // Code goes here
    }
}

That is all it takes to have your own reader class. You can provide additional methods in your class, 
if needed. For example, you may want to have a readLine() method that will read a line in lowercase. 
Alternatively, you can also use the readLine() method of the BufferedReader class by wrapping an object 
of LowerCaseReader in a BufferedReader object. Using the new class is the same as using any other reader 
class. You can wrap a concrete reader component such as a FileReader or a concrete decorator such as a 
BufferedReader inside a LowerCaseReader object. Alternatively, you can wrap a LowerCaseReader object 
inside any other concrete reader decorator such as a BufferedReader. Listing 7-34 contains the complete 
code for the LowerCaseReader class.

Listing 7-34. A Custom Java I/O Reader Class Named LowerCaseReader

// LowerCaseReader.java
package com.jdojo.io;

import java.io.Reader;
import java.io.FilterReader;
import java.io.IOException;

public class LowerCaseReader extends FilterReader {
    public LowerCaseReader(Reader in) {
        super(in);
    }

    @Override
    public int read(char[] cbuf, int off, int len) throws IOException {
        int count = super.read(cbuf, off, len);
        if (count != -1) {
            // Convert all read characters to lowercase
            int limit = off + count;
            for (int i = off; i < limit; i++) {
                cbuf[i] = Character.toLowerCase(cbuf[i]);
            }
        }
        return count;
    }
}



Chapter 7 ■ Input/Output

401

Listing 7-35 shows how to use your new class. It reads from the file luci4.txt. It reads the file twice: the 
first time by using a LowerCaseReader object and the second time by wrapping a LowerCaseReader object 
inside a BufferedReader object. Note that while reading the licu4.txt file the second time, you are taking 
advantage of the readLine() method of the BufferedReader class. The luci4.txt file should exist in your 
current working directory. Otherwise, you will get an error when you run the test program.

Listing 7-35. Testing the Custom Reader Class, LowerCaseReader

// LowerCaseReaderTest.java
package com.jdojo.io;

import java.io.FileReader;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;

public class LowerCaseReaderTest {
    public static void main(String[] args) {
        String fileName = "luci4.txt";
        try (LowerCaseReader lcr
                = new LowerCaseReader(new FileReader(fileName))) {
            System.out.println("Reading luci4.txt using LowerCaseReader:");

            int c;
            while ((c = lcr.read()) != -1) {
                System.out.print((char) c);
            }
        } catch (FileNotFoundException e) {
            FileUtil.printFileNotFoundMsg(fileName);
        } catch (IOException e) {
            e.printStackTrace();
        }

        try (BufferedReader br = new BufferedReader(
                new LowerCaseReader(new FileReader(fileName)))) {

            System.out.println("\n\nReading luci4.txt using "
                    + "LowerCaseReader and BufferedReader:");

            String str;
            while ((str = br.readLine()) != null) {
                System.out.println(str);
            }
        } catch (FileNotFoundException e) {
            FileUtil.printFileNotFoundMsg(fileName);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}



Chapter 7 ■ Input/Output

402

Reading luci4.txt using LowerCaseReader:
And now we reach'd the orchard-plot;
And, as we climb'd the hill,
The sinking moon to Lucy's cot
Came near and nearer still.

Reading luci4.txt using LowerCaseReader and BufferedReader:
and now we reach'd the orchard-plot;
and, as we climb'd the hill,
the sinking moon to lucy's cot
came near and nearer still.

Random Access Files
A FileInputStream lets you read data from a file, whereas a FileOutputStream lets you write data to a file. 
A random access file is a combination of both. Using a random access file, you can read from a file as well as 
write to the file. Reading and writing using the file input and output streams are sequential processes. Using 
a random access file, you can read or write at any position within the file, hence the name random access.

An object of the RandomAccessFile class facilitates the random file access. It lets you read/write bytes 
and all primitive types values from/to a file. It also lets you work with strings using its readUTF() and 
writeUTF() methods. The RandomAccessFile class is not in the class hierarchy of the InputStream and 
OutputStream classes.

A random access file can be created in four different access modes. You need to provide one of the 
access modes in its constructor. The access mode value is a string. They are listed as follows:

•	 "r": The file is opened in a read-only mode. You will receive an IOException if you 
attempt to write to the file in this mode.

•	 "rw": The file is opened in a read-write mode. The file is created if it does not exist.

•	 "rws": The same as the "rw" mode, except that any modifications to the file’s content 
and its metadata are written to the storage device immediately.

•	 "rwd": The same as the "rw" mode, except that any modifications to the file’s content 
are written to the storage device immediately.

You create an instance of the RandomAccessFile class by specifying the file name and the access mode 
as shown:

RandomAccessFile raf = new RandomAccessFile("randomtest.txt", "rw");

A random access file has a file pointer that is advanced when you read data from it or write data 
to it. The file pointer is a kind of cursor where your next read or write will start. Its value indicates the 
distance of the cursor from the beginning of the file in byes. You can get the value of file pointer by using its 
getFilePointer() method. When you create an object of the RandomAccessFile class, the file pointer is set 
to zero, which indicates the beginning of the file. You can set the file pointer at a specific location in the file 
using the seek() method.

The length() method of a RandomAccessFile returns the current length of the file. You can extend or 
truncate a file by using its setLength() method. If you extend a file using this method, the contents of the 
extended portion of the file are not defined.



Chapter 7 ■ Input/Output

403

Reading from and writing to a random access file is performed the same way you have been reading/
writing from/to any input and output streams. Listing 7-36 demonstrates the use of a random access file. 
When you run this program, it writes two things to a file: the file read counter, which keeps track of how 
many times a file has been read using this program, and a text message of "Hello World!". The program 
increments the counter value in the file every time it reads the file. The counter value keeps incrementing 
when you run this program repeatedly. You may get different output every time you run this program

Listing 7-36. Reading and Writing Files Using a RandomAccessFile Object

// RandomAccessFileReadWrite.java
package com.jdojo.io;

import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;

public class RandomAccessFileReadWrite {
    public static void main(String[] args) throws IOException {
        String fileName = "randomaccessfile.txt";
        File fileObject = new File(fileName);

        if (!fileObject.exists()) {
            initialWrite(fileName);
        }

        // Read the file twice
        readFile(fileName);
        readFile(fileName);
    }

    public static void readFile(String fileName) throws IOException {
        // Open the file in read-write mode
        try (RandomAccessFile raf = new RandomAccessFile(fileName, "rw")) {
            int counter = raf.readInt();
            String msg = raf.readUTF();

            System.out.println("File Read Counter: " + counter);
            System.out.println("File Text: " + msg);
            System.out.println("----------------------------");

            // Increment the file read counter by 1
            incrementReadCounter(raf);
        }
    }

    public static void incrementReadCounter(RandomAccessFile raf) throws IOException {
        // Read the current file pointer position so that we can restore it at the end
        long currentPosition = raf.getFilePointer();

        // Set the file pointer in the beginning
        raf.seek(0);



Chapter 7 ■ Input/Output

404

        // Read the counter and increment it by 1
        int counter = raf.readInt();
        counter++;

        // Set the file pointer to zero again to overwrite the value of the counter
        raf.seek(0);
        raf.writeInt(counter);

        // Restore the file pointer
        raf.seek(currentPosition);
    }

    public static void initialWrite(String fileName) throws IOException {
        // Write the file read counter as zero. Open the file in read-write mode.
        try (RandomAccessFile raf = new RandomAccessFile(fileName, "rw")) {
            // Write the file read counter as zero
            raf.writeInt(0);

            // Write a message
            raf.writeUTF("Hello world!");
        }
    }
}

File Read Counter: 0
File Text: Hello world!
----------------------------
File Read Counter: 1
File Text: Hello world!
----------------------------

Copying the Contents of a File
After you learn about input and output streams, it is simple to write code that copies the contents of a file 
to another file. You need to use the byte-based input and output streams (InputStream and OutputStream 
objects) so that your file copy program will work on all kinds of files. The main logic in copying a file is to 
keep reading from the input stream until the end of file and keep writing to the output stream as data is read 
from the input stream. The following snippet of code shows this file-copy logic:

// Copy the contents of a file
int count = -1;
byte[] buffer = new byte[1024];
while ((count = in.read(buffer)) != -1) {
    out.write(buffer, 0, count);
}

Starting from JDK9, you can copy the contents of a file to another file using the 
transferTo(OutputStream out) method of the InputStream class. The following snippet of code copies the 
contents of the luci1.txt file to the luci1_copy.txt file. The exception handling logic is not shown.



Chapter 7 ■ Input/Output

405

FileInputStream fis = new FileInputStream("luci1.txt");
FileOutputStream fos = new FileOutputStream("luci1_copy.txt");
fis.transferTo(fos);
fos.close();
fis.close();

 ■ Tip  the file-copy logic copies only the file's contents. You will have to write logic to copy a file's attributes. 
the nIO 2.0 apI, covered in Chapter 10, provides a copy() method in the java.nio.file.Files class to copy 
the contents and attributes of a file to another file. use the Files.copy() method to copy a file.

Standard Input/Output/Error Streams
A standard input device is a device defined and controlled by the operating system from where your Java 
program may receive inputs. Similarly, the standard output and error are other operating system-defined 
(and controlled) devices where your program can send outputs. Typically, a keyboard is a standard input 
device, and a monitor acts as a standard output and a standard error device. Figure 7-10 depicts the 
interaction between the standard input, output, and error devices, and a Java program.

Standard Input
device 

Java Program

Standard Output
Device

Standard Error
Device

Figure 7-10. Interaction between a Java program and standard input, output, and error devices

What happens when you use the following statement to print a message?

System.out.println("This message goes to the standard output device!");

Typically, your message is printed on the console. In this case, the monitor is the standard output device 
and the Java program lets you send some data to the standard output device using a high-level println() 
method call. You saw a similar kind of println() method call in the previous section when you used the 
PrintStream class that is a concrete decorator class in the OutputStream class family. Java makes interacting 
with a standard output device on a computer easier. It creates an object of the PrintStream class and gives you 
access to it through a public static variable named out in the System class. Look at the code for the System class; 
it declares three public static variables (one for each device: standard input, output, and error) as follows:

public class System {
    public static PrintStream out; // the standard output
    public static InputStream in;  // the standard input
    public static PrintStream err; // the standard error

    // More code for the System class goes here
}

http://dx.doi.org/10.1007/978-1-4842-3348-1_10


Chapter 7 ■ Input/Output

406

The JVM initializes the three variables to appropriate values. You can use the System.out and System.
err object references wherever you can use an OutputStream object. You can use the System.in object 
wherever you can use an InputStream object.

Java lets you use these three objects in the System class in one more way. If you do not want the three 
objects to represent the standard input, output, and error devices, you can supply your own devices; Java will 
redirect the data flow to/from these objects to your devices.

Suppose, whenever you call the System.out.println() method to print a message on the console, 
you want to send all messages to a file instead. You can do so very easily. After all, System.out is just a 
PrintStream object and you know how to create a PrintStream object using a FileOutputStream object 
(refer to Listing 7-20) to write to a file. The System class provides three static setter methods, setOut(), 
setIn(), and setErr(), to replace these three standard devices with your own devices. To redirect all 
standard output to a file, you need to call the setOut() method by passing a PrintStream object that 
represents your file. If you want to redirect the output to a file named stdout.txt in your current directory, 
you do so by executing the following piece of code:

// Redirect all standard outputs to the stdout.txt file
PrintStream ps = new PrintStream(new FileOutputStream("stdout.txt"));
System.setOut(ps);

Listing 7-37 demonstrates how to redirect the standard output to a file. You may get different output on 
the console. After you run this program, you will see the following two messages in the stdout.txt file in 
your current working directory:

Hello world!
Java I/O is cool!

You may get different output when you run the program, as it prints the path to the stdout.txt file 
using your current working directory.

Listing 7-37. Redirecting Standard Outputs to a File

// CustomStdOut.java
package com.jdojo.io;

import java.io.PrintStream;
import java.io.FileOutputStream;
import java.io.File;

public class CustomStdOut {
    public static void main(String[] args) throws Exception {
        // Create a PrintStream for file stdout.txt
        File outFile = new File("stdout.txt");
        PrintStream ps = new PrintStream(new FileOutputStream(outFile));

        //Print a message on console
        System.out.println("Messages will be redirected to "
                + outFile.getAbsolutePath());

        // Set the standard out to the file
        System.setOut(ps);



Chapter 7 ■ Input/Output

407

        // The following messages will be sent to the stdout.txt file
        System.out.println("Hello world!");
        System.out.println("Java I/O is cool!");
    }
}

Messages will be redirected to C:\Java9LanguageFeatures\stdout.txt

Generally, you use System.out.println() calls to log debugging messages. Suppose you have been 
using this statement all over your application and it is time to deploy your application to production. If 
you do not take out the debugging code from your program, it will keep printing messages on the user’s 
console. You do not have time to go through all your code to remove the debugging code. Can you think of 
an easy solution? There is a simple solution to swallow all your debugging messages. You can redirect your 
debugging messages to a file as you did in Listing 7-37. Another solution is to create your own concrete 
component class in the OutputStream class family. Let’s call the new class DummyStandardOutput, as shown 
in Listing 7-38.

Listing 7-38. A Dummy Output Stream Class That Will Swallow All Written Data

// DummyStandardOutput.java
package com.jdojo.io;

import java.io.OutputStream;
import java.io.IOException;

public class DummyStandardOutput extends OutputStream {
    @Override
    public void write(int b) throws IOException {
        // Do not do anything. Swallow whatever is written
    }
}

You need to inherit the DummyStandardOutput class from the OutputStream class. The only code you 
have to write is to override the write(int b) method and do not do anything in this method. Then, create 
a PrintStream object by wrapping an object of the new class and set it as the standard output using the 
System.setOut() method shown in Listing 7-39. If you do not want to go for a new class, you can use an 
anonymous class to achieve the same result, as follows:

System.setOut(new PrintStream(new OutputStream() {
            @Override
            public void write(int b) {
                // Do nothing
            }
        }));



Chapter 7 ■ Input/Output

408

Listing 7-39. Swallowing All Data Sent to the Standard Output

// SwallowOutput.java
package com.jdojo.io;

import java.io.PrintStream;

public class SwallowOutput {
    public static void main(String[] args) {
        PrintStream ps = new PrintStream(new DummyStandardOutput());

        // Set the dummy standard output
        System.setOut(ps);

        // The following messages are not going anywhere
        System.out.println("Hello world!");
        System.out.println("Is someone listening?");
        System.out.println("No. We are all taking a nap!!!");
    }
}

(No output will be printed.)

You can use the System.in object to read data from a standard input device (usually a keyboard). You 
can also set the System.in object to read from any other InputStream object of your choice, such as a file. 
You can use the read() method of the InputStream class to read bytes from this stream. System.in.read() 
reads a byte at a time from the keyboard. Note that the read() method of the InputStream class blocks until 
data is available for reading. When a user enters data and presses the Enter key, the entered data becomes 
available, and the read() method returns one byte of data at a time. The last byte read will represent a new 
line character. When you read a new line character from the input device, you should stop further reading 
or the read() call will block until the user enters more data and presses the Enter key again. Listing 7-40 
illustrates how to read data entered using the keyboard.

Listing 7-40. Reading from the Standard Input Device

// EchoStdin.java
package com.jdojo.io;

import java.io.IOException;

public class EchoStdin {
    public static void main(String[] args) throws IOException {
        // Prompt the user to type a message
        System.out.print("Please type a message and press enter: ");

        // Display whatever user types in
        int c;
        while ((c = System.in.read()) != '\n') {
            System.out.print((char) c);
        }
    }
}



Chapter 7 ■ Input/Output

409

Since System.in is an instance of InputStream, you can use any concrete decorator to read data from 
the keyboard; for example, you can create a BufferedReader object and read data from the keyboard one 
line at a time as a string. Listing 7-41 illustrates how to use the System.in object with a BufferedReader. 
Note that this is the kind of situation when you will need to use the InputStreamReader class to get a 
character-based stream (BufferedReader) from a byte-based stream (System.in). The program keeps 
prompting the user to enter some text until the user enters Q or q to quit the program.

Listing 7-41. Using System.in with a BufferedReader

// EchoBufferedStdin.java
package com.jdojo.io;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class EchoBufferedStdin {
    public static void main(String[] args) throws IOException {
        // Get a BufferedReader, which wraps the System.in object. Note the use
        // of InputStreamReader, the bridge class between the byte-based and
        // the character-based stream
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

        String text;
        while (true) {
            // Prompt user to type some text
            System.out.print("Please type a message (Q/q to quit) "
                    + "and press enter: ");

            // Read the text
            text = br.readLine();
            if (text.equalsIgnoreCase("q")) {
                System.out.println("You have decided to exit the program");
                break;
            } else {
                System.out.println("You typed: " + text);
            }
        }
    }
}

If you want your standard input to come from a file, you have to create an input stream object to 
represent that file and set that object using the System.setIn() method as follows:

FileInputStream fis = new FileInputStream("stdin.txt");
System.setIn(fis); // Now System.in.read() will read from stdin.txt file

The standard error device (generally the console) is used to display error messages. Its use in your 
program is the same as a standard output device. Instead of System.out for a standard output device, Java 
provides another PrintStream object called System.err. You use it as follows:

System.err.println("This is an error message.");



Chapter 7 ■ Input/Output

410

Console and Scanner Classes
Although Java gives you three objects to represent the standard input, output, and error devices, it is not easy 
to use them for reading numbers from the standard input. The purpose of the Console class is to make the 
interaction between a Java program and the console easier. I discuss the Console class in this section. I also 
discuss the Scanner class used for parsing the text read from the console.

The Console class is a utility class in the java.io package that gives access to the system console, if any, 
associated with the JVM. The console is not guaranteed to be accessible in a Java program on all machines. 
For example, if your Java program runs as a service, no console will be associated to the JVM and you will not 
have access to it either. You get the instance of the Console class by using the static console() method of 
the System class as follows:

Console console = System.console();
if (console != null) {
    console.printf("Console is available.");
}

The Console class contains a printf() method that displays formatted string on the console. You also 
have a printf() method in the PrintStream class to write the formatted data. Refer to Chapter 17 of the first 
volume of this series for more details on using the printf() method and how to use the Formatter class to 
format text, numbers, and dates.

Listing 7-42 illustrates how to use the Console class. If the console is not available, it prints a message 
and exits. If you run this program using an IDE such as NetBeans, the console may not be available. Try 
to run this program using a command prompt. The program prompts the user to enter a user name and a 
password. If the user enters password letmein, the program prints a message. Otherwise, it prints that the 
password is not valid. The program uses the readLine() method to read a line of text from the console and 
the readPassword() method to read the password. When the user enters a password, it is not visible; the 
program receives it in a character array.

Listing 7-42. Using the Console Class to Enter a User Name and Password

// ConsoleLogin.java
package com.jdojo.io;

import java.io.Console;

public class ConsoleLogin {
    public static void main(String[] args) {
        Console console = System.console();
        if (console != null) {
            console.printf("Console is available.%n");
        } else {
            System.out.println("Console is not available.%n");
            return; // A console is not available
        }

        String userName = console.readLine("User Name: ");
        char[] passChars = console.readPassword("Password: ");
        String passString = new String(passChars);
        if (passString.equals("letmein")) {
            console.printf("Hello %s", userName);

http://dx.doi.org/10.1007/978-1-4842-3348-1_17


Chapter 7 ■ Input/Output

411

        } else {
            console.printf("Invalid password");
        }
    }
}

If you want to read numbers from the standard input, you have to read it as a string and parse it to a 
number. The Scanner class in java.util package reads and parses text, based on a pattern, into primitive 
types and strings. The text source can be an InputStream, a file, a String object, or a Readable object. 
You can use a Scanner to read primitive type values from the standard input System.in. It contains many 
methods, which are named liked hasNextXxx() and nextXxx(), where Xxx is a data type, such as int, 
double, etc. The hasNextXxx() method checks if the next token from the source can be interpreted as a value 
of the Xxx type. The nextXxx() method returns a value of a particular data type.

Listing 7-43 illustrates how to use the Scanner class by building a trivial calculator to perform addition, 
subtraction, multiplication, and division.

Listing 7-43. Using the Scanner Class to Read Inputs from the Standard Input

// Calculator.java
package com.jdojo.io;

import java.util.Scanner;

public class Calculator {
    public static void main(String[] args) {
        // Read three tokens from the console: operand-1 operation operand-2
        String msg = "You can evaluate an arithmetic expression.\n"
                + "Expression must be in the form: a op b\n"
                + "a and b are two numbers and op is +, -, * or /."
                + "\nPlease enter an expression and press Enter: ";
        System.out.print(msg);

        // Build a scanner for the standard input
        Scanner scanner = new Scanner(System.in);

        try {
            double n1 = scanner.nextDouble();
            String operation = scanner.next();
            double n2 = scanner.nextDouble();

            double result = calculate(n1, n2, operation);
            System.out.printf("%s %s %s = %.2f%n", n1,
                    operation, n2, result);
        } catch (Exception e) {
            System.out.println("An invalid expression.");
        }
    }

    public static double calculate(double op1, double op2, String operation) {
        switch (operation) {
            case "+":
                return op1 + op2;



Chapter 7 ■ Input/Output

412

            case "-":
                return op1 - op2;
            case "*":
                return op1 * op2;
            case "/":
                return op1 / op2;
        }

        return Double.NaN;
    }
}

You can evaluate an arithmetic expression.
Expression must be in the form: a op b
a and b are two numbers and op is +, -, * or /.
Please enter an expression and press Enter: 10 + 19
10.0 + 19.0 = 29.00

StringTokenizer and StreamTokenizer
Java has some utility classes that let you break a string into parts called tokens. A token in this context is a 
part of the string. You define the sequence of characters that are considered tokens by defining delimiter 
characters. Suppose you have a string “This is a test, which is simple”. If you define a space as a delimiter, 
this string contains seven tokens:

•	 This

•	 is

•	 a

•	 test,

•	 which

•	 is

•	 simple

If you define a comma as a delimiter, the same string contains two tokens:

•	 This is a test

•	 which is simple

The StringTokenizer class is in the java.util package. The StreamTokenizer class is in the  
java.io package. A StringTokenizer lets you break a string into tokens, whereas a StreamTokenizer gives 
you access to the tokens in a character-based stream.



Chapter 7 ■ Input/Output

413

A StringTokenizer object lets you break a string into tokens based on your definition of delimiters. 
It returns one token at a time. You also have the ability to change the delimiter anytime. You can create a 
StringTokenizer by specifying the string and accepting the default delimiters, which are a space, a tab, a 
new line, a carriage return, and a line-feed character (" \t\n\r\f") as follows:

// Create a string tokenizer
StringTokenizer st = new StringTokenizer("here is my string");

You can specify your own delimiters when you create a StringTokenizer as follows:

// Have a space, a comma, and a semi-colon as delimiters
String delimiters = " ,;";
StringTokenizer st = new StringTokenizer("my text...", delimiters);

You can use the hasMoreTokens() method to check if you have more tokens and the nextToken() 
method to get the next token from the string.

You can also use the split() method of the String class to split a string into tokens based on 
delimiters. The split() method accepts a regular expression as a delimiter. Listing 7-44 illustrates how to 
use the StringTokenizer and the split() method of the String class.

Listing 7-44. Breaking a String into Tokens Using a StringTokenizer and the String.split() Method

// StringTokens.java
package com.jdojo.io;

import java.util.StringTokenizer;

public class StringTokens {
    public static void main(String[] args) {
        String str = "This is a test, which is simple";
        String delimiters = " ,"; // a space and a comma
        StringTokenizer st = new StringTokenizer(str, delimiters);

        System.out.println("Tokens using a StringTokenizer:");
        while (st.hasMoreTokens()) {
            String token = st.nextToken();
            System.out.println(token);
        }

        // Split the same string using String.split() method
        System.out.println("\nTokens using the String.split() method:");
        String regex = "[ ,]+"; // a space or a comma
        String[] s = str.split(regex);
        for (String item : s) {
            System.out.println(item);
        }
    }
}



Chapter 7 ■ Input/Output

414

Tokens using a StringTokenizer:
This
is
a
test
which
is
simple

Tokens using the String.split() method:
This
is
a
test
which
is
simple

The StringTokenizer and the split() method of the String class return each token as a string. 
Sometimes you may want to distinguish between tokens based on their types; your string may contain 
comments. You can have these sophisticated features while breaking a character-based stream into tokens 
using the StreamTokenizer class. Listing 7-45 illustrates how to use a StreamTokenizer.

Listing 7-45. Reading Tokens from a Character-Based Stream

// StreamTokenTest.java
package com.jdojo.io;

import java.io.StreamTokenizer;
import static java.io.StreamTokenizer.*;
import java.io.StringReader;
import java.io.IOException;

public class StreamTokenTest {
    public static void main(String[] args) throws Exception {
        String str = "This is a test, 200.89 which is simple 50";
        StringReader sr = new StringReader(str);
        StreamTokenizer st = new StreamTokenizer(sr);

        try {
            while (st.nextToken() != TT_EOF) {
                switch (st.ttype) {
                    case TT_WORD:
                        /* a word has been read */
                        System.out.println("String value: "
                                + st.sval);
                        break;



Chapter 7 ■ Input/Output

415

                    case TT_NUMBER:
                        /* a number has been read */
                        System.out.println("Number value: "
                                + st.nval);
                        break;
                }
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

String value: This
String value: is
String value: a
String value: test
Number value: 200.89
String value: which
String value: is
String value: simple
Number value: 50.0

The program uses a StringReader object as the data source. You can use a FileReader object or any 
other Reader object as the data source. The syntax to get the tokens is not easy to use. The nextToken() 
method of StreamTokenizer is called repeatedly. It populates three fields of the StreamTokenizer object: 
ttype, sval, and nval. The ttype field indicates the type of the token that was read. The following are the 
four possible values for the ttype field:

•	 TT_EOF: End of the stream has been reached.

•	 TT_EOL: End of line has been reached.

•	 TT_WORD: A word (a string) has been read as a token from the stream.

•	 TT_NUMBER: A number has been read as a token from the stream.

If ttype is equal to TT_WORD, the string value is stored in the field sval field. If ttype is TT_NUMBER, the 
number value is stored in the nval field.

StreamTokenizer is a powerful class to break a stream into tokens. It creates tokens based on a 
predefined syntax. You can reset the entire syntax by using its resetSyntax() method. You can specify 
your own set of characters that can make up a word by using its wordChars() method. You can specify your 
custom whitespace characters using its whitespaceChars() method.

Summary
Reading data from a data source and writing data to a data sink is called input/output. A stream represents 
a data source or data sink for serial reading or writing. The Java I/O API contains several classes to support 
input and output streams. Java I/O classes are in the java.io and java.nio packages. The input/output 
stream classes in Java are based on the decorator pattern.



Chapter 7 ■ Input/Output

416

You refer to a file in your computer by its pathname. A file’s pathname is a sequence of characters 
by which you can identify it uniquely in a file system. A pathname consists of a file name and its unique 
location in the file system. An object of the File class is an abstract representation of a pathname of a file or 
directory in a platform-independent manner. The pathname represented by a File object may or may not 
exist in the file system. The File class provides several methods to work with files and directories.

Java I/O supports two types of streams: byte-based streams and character-based streams. Byte-based 
streams are inherited from the InputStream or OutputStream classes. Character-based stream classes are 
inherited from the Reader or Writer classes.

The process of converting an object in memory to a sequence of bytes and storing the sequence of 
bytes in a storage medium such as a file is called object serialization. The process of reading the sequence 
of bytes produced by a serialization process and restoring the object back in memory is called object 
deserialization. Java supports serialization and deserialization of object through the ObjectInputStream and 
ObjectOutputStream classes. An object must implement the Serializable interface to be serialized.

The Java I/O API provides the Console and Scanner classes to interact with the console.
You can use the StringTokenizer and StreamTokenizer classes to split text into tokens based on 

delimiters. The String class contains a convenience split() method to split a string into tokens based on a 
regular expression.

QUESTIONS AND EXERCISES

1. What does an instance of the File class represent?
2. explain the effect of the following statement:

File file = new File("test.txt");

Will this statement create a file named test.txt in the current directory if the file 
does not already exist?

3. What is the difference in using the delete() and deleteOnExit() methods of the 
File class?

4. What is the difference in using the mkdir() and mkdirs() methods of the  
File class?

5. Complete the code for the following method named isExistentDirectory(). 
It accepts a pathname as a parameter. It returns true if the specified pathname 
represents an existing directory and returns false otherwise.

public static boolean isExistentDirectory(String pathname) {
    /* your code goes here */
}

6. What classes in the java.io package would you use if you need to read and write 
values of primitive data types such as int and float?

7. What classes in the java.io package would you use if you need to serialize and 
deserialize objects to a file?

8. In the context of object serialization, what is the difference between implementing 
the Serializable and Externalizable interfaces in a class?



Chapter 7 ■ Input/Output

417

9. In the context of object serialization, what is the significance of declaring instance 
variables in a class as transient?

10. Is there a way to serialize transient instance variables while serializing objects?

11. how will you stop the objects of your class from being serialized?

12. What is serialVersionUID in the context of object serialization?

13. Suppose you have an existing text file named test.txt in your current directory. 
Write the code to append "Hello" to this file.

14. Which class in the java.io package would you if you need to read from and write 
to a file at the same time?

15. What is the difference between the InputStream and Reader classes while 
performing I/O?

16. Write a program using the Console and Scanner classes. the program prompts the 
user for an integer. When the user enters an integer, the program prints whether the 
integer is odd or even and the program prompts the user for another integer. the 
user can enter Q or q to exit the program any time.

17. Write a program that will read the contents of a file and it will print the number 
of times all vowels (a, e, i, o, and u) occurs in the file. Count should be case-
insensitive. that is, both 'a' and 'a' are counted as 'a'. You need to prompt the user 
to specify the pathname to the file. Include error handling in your code such as for 
the case when the specified file does not exist.



419© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_8

CHAPTER 8

Working with Archive Files

In this chapter, you will learn:

•	 What archive files are

•	 What data compression is and how to compress and decompress data

•	 How to compute checksum for data using different algorithms

•	 How to create files in ZIP, GZIP, and JAR file formats and read data from them

•	 How to use the jar command-line tool to work with JAR files

All example programs in this chapter are a member of a jdojo.archives module, as declared in 
Listing 8-1.

Listing 8-1. The Declaration of a jdojo.archives Module

// module-info.java
module jdojo.archives {
    exports com.jdojo.archives;
}

What Is an Archive File?
An archive file consists of one or more files. It also contains metadata that may include the directory 
structure of the files, comments, error detection and recovery information, etc. An archive file may also be 
encrypted. Typically, but not necessarily, an archive file is stored in a compressed format. An archive file 
is created using file archiver software. For example, the WinZip, 7-zip, etc. Utilities are used to create a file 
archive in a ZIP format on Microsoft Windows; the tar utility is used to create archive files on UNIX-based 
operating systems. An archive file makes it easier to store and transmit multiple files as one file. This chapter 
discusses in detail how to work with archive files using the Java I/O API and the jar command-line utility 
that is included in the JDK.

Data Compression
Data compression is the process of applying an encoding algorithm to the given data to represent it in a 
smaller size. Suppose you have a string, 777778888. One way to encode it is 5748, which can be interpreted 
as “five sevens and four eights.” By this encoding, you have reduced the length of the string from nine 
characters to four characters. The algorithm you applied to compress 777778888 as 5748 is called  

https://doi.org/10.1007/978-1-4842-3348-1_8


Chapter 8 ■ Working With arChive Files

420

Run Length Encoding (RLE). The RLE encodes the data by replacing the repeated sequence of data by the 
counter number and one copy of data. The RLE is easy to implement. It is suitable only in situations where 
you have more repeated data.

The reverse of data compression is called data decompression. Here, you apply an algorithm to the 
compressed data to get back the original data.

There are two types of data compression: lossless and lossy. In lossless data compression, you get your 
original data back when you decompress the data. For example, if you decompress 5748, you can get your 
original data (777778888) back without losing any information. You can get the information back in this 
example because RLE is a lossless data compression algorithm. Other lossless data compression algorithms 
are LZ77, LZ78, LZW, Huffman coding, Dynamic Markov Compression (DMC), etc.

In lossy data compression, you lose some of the data during the compression process and you will 
not be able to recover the original data fully when you decompress the compressed data. Lossy data 
compression is acceptable in some situations, such as viewing pictures, audios, and videos, where the 
audience will not see a noticeable difference when they use the decompressed data. Compared to the 
lossless data compression, lossy data compression achieves a higher compression ratio at the cost of the 
lower data quality. Examples of lossy data compression algorithms are Discrete Cosine Transform (DCT), 
A-Law Compander, Mu-Law Compander, Vector Quantization, etc.

DEFLATE is a lossless data compression algorithm, which is used for compressing data in ZIP and GZIP 
file formats. GZIP is an abbreviation for GNU ZIP. GNU is a recursive acronym for GNU’s Not UNIX. The ZIP 
file format is used for data compression and file archival. A file archival is the process of combining multiple 
files into one file for convenience of storage. Typically, you compress multiple files and put them together in 
an archive file.

You may have worked with files with an extension of .zip. A ZIP file uses the ZIP file format. It combines 
multiple files into one .zip file by, optionally, compressing them.

If you are a UNIX user, you must have worked with a .tar or .tar.gz file. Typically, on UNIX, you use 
a two-step process to create a compressed archive file. First, you combine multiple files into a .tar archive 
file using the tar file format (tar stands for Tape Archive), and then you compress that archive file using 
the GZIP file format to get a .tar.gz or .tgz file. A .tar.gz or .tgz file is also called a tarball. A tarball is 
more compressed as compared to a ZIP file. A ZIP file compresses multiple files separately and archives 
them. A tarball archives the multiple files first and then compresses them. Because a tarball compresses the 
combined files together, it takes advantage of data repetition among all files during compression, resulting in 
a better compression than a ZIP file.

ZLIB is a general-purpose lossless data compression library. It is free and not covered by any patents. 
Java provides support for data compression using the ZLIB library. Deflater and Inflater are two classes in 
the java.util.zip package that support general-purpose data compression/decompression functionality 
in Java using the ZLIB library. Java provides classes to support ZIP and GZIP file formats. It also supports 
another file format called the JAR file format, which is a variation of the ZIP file format. I discuss examples of 
the file formats supported by Java in the next few sections.

Checksum
A checksum is an integer that is computed by applying an algorithm on a stream of bytes. Sometimes, the 
algorithm to compute an integer from a stream of bytes is also known as checksum. Typically, it is used to 
check for errors during data transmission. The sender computes a checksum for a packet of data and sends 
that checksum with the packet to the receiver. The receiver computes the checksum for the packet of data 
it receives and compares it with the checksum it received from the sender. If the two match, the receiver 
may assume that there were no errors during the data transmission. The sender and the receiver must agree 
to compute the checksum for the data by applying the same algorithm. Otherwise, the checksum will not 
match. Using a checksum is not a data security measure to authenticate the data. It is used as an error-
detection method. A hacker can alter some bits of the data and you may still get the same checksum as for 
the original data.



Chapter 8 ■ Working With arChive Files

421

Let’s discuss an algorithm to compute a checksum. The algorithm is called Adler-32 after its inventor 
Mark Adler. Its name has the number 32 in it because it computes a checksum by computing two 16-bit 
checksums and concatenating them into a 32-bit integer. Let’s call the two 16-bit checksums A and B, and 
the final checksum C. A is the sum of all bytes plus one in the data. B is the sum of individual values of A 
from each step. In the beginning, A is set to 1 and B is set to 0. A and B are computed based on modulus 
65521. That is, if the value of A or B exceeds 65521, their values become their current values modulo 65521. 
The final checksum is computed as follows:

C = B * 65536 + A

The final checksum is computed by concatenating the 16-bit B and A values. You need to multiply the 
value of B by 65536 and add the value of A to it to get the decimal value of that 32-bit final checksum number.

Let’s apply the Adler-32 checksum algorithm to compute a checksum for a string HELLO, as shown in 
Table 8-1.

Table 8-1. Computing the Adler-32 checksum for the String HELLO

Character ASCII Value (Base 10) A B

H 72 1 + 72 = 73 0 + 73 = 73

E 69 73 + 69 = 142 73 + 142 = 215

L 76 142 + 76 = 218 215 + 218 = 433

L 76 218 + 76 = 294 433 + 294 = 727

O 79 294 + 79 = 373 727 + 373 = 1100

C = B * 65536 + A
     = 1100 * 65536 + 373
     = 72089973

Java provides an Adler32 class in the java.util.zip package to compute the Adler-32 checksum for 
bytes of data. You need to call the update() method of this class to pass bytes to it. Once you have passed 
all bytes to it, call its getValue() method to get the checksum. CRC32 (Cyclic Redundancy Check 32-bit) 
is another algorithm to compute a 32-bit checksum. There is also another class named CRC32 in the same 
package, which lets you compute a checksum using the CRC32 algorithm.

 ■ Tip  Java 9 added a CrC32C class in the java.util.zip package. the class lets you compute CrC-32C of 
a stream of bytes. CrC-32C is defined in rFC 3720 at http://www.ietf.org/rfc/rfc3720.txt.

Listing 8-2 illustrates how to use the Adler32, CRC32, and CRC32C classes to compute checksums.

Listing 8-2. Computing Adler32, CRC32, and CRC32C Checksums

// ChecksumTest.java
package com.jdojo.archives;

import java.util.zip.Adler32;
import java.util.zip.CRC32;
import java.util.zip.CRC32C;
import java.util.zip.Checksum;

http://www.ietf.org/rfc/rfc3720.txt


Chapter 8 ■ Working With arChive Files

422

public class ChecksumTest {
    public static void main(String[] args) throws Exception {
        String str = "HELLO";
        byte[] data = str.getBytes("UTF-8");
        System.out.println("Adler32, CRC32, and CRC32C checksums for " + str);

        // Compute Adler32 checksum
        Checksum ad = new Adler32();
        ad.update(data);
        long adler32Checksum = ad.getValue();
        System.out.println("Adler32: " + adler32Checksum);

        // Compute CRC32 checksum
        Checksum crc32 = new CRC32();
        crc32.update(data);
        long crc32Checksum = crc32.getValue();
        System.out.println("CRC32: " + crc32Checksum);

        // Compute CRC32C checksum
        Checksum crc32c = new CRC32C();
        crc32c.update(data);
        long crc32cChecksum = crc32c.getValue();
        System.out.println("CRC32C: " + crc32cChecksum);
    }
}

Adler32, CRC32, and CRC32C checksums for HELLO
Adler32: 72089973
CRC32: 3242484790
CRC32C: 3901656152

Adler32 is faster than CRC32. However, CRC32 gives a more robust checksum. Checksum is frequently 
used to check for data corruption. CheckedInputStream and CheckedOutputStream are two concrete 
decorator classes in the InputStream/OutputStream class family. They are in the java.util.zip package. 
They work with a Checksum object. Note that Checksum is an interface, and the Adler32 and CRC32 classes 
implement that interface. CheckedInputStream computes a checksum as you read data from a stream and 
CheckedOutputStream computes the checksum as you write data to a stream. The ZipEntry class lets you 
compute the CRC32 checksum for an entry in a ZIP file using its getCrc() method.

Compressing Byte Arrays
You can use the Deflater and Inflater classes in the java.util.zip package to compress and 
decompress data in a byte array, respectively. These classes are the basic building blocks for compression 
and decompression in Java. You may not use them directly very often. You have other high-level, 
easy-to-use classes in Java to deal with data compression. Those classes are DeflaterInputStream, 
DeflaterOutputStream, GZIPInputStream, ZipFile, GZIPOutputStream, ZipInputStream, and 
ZipOutputStream. I discuss these classes in detail in subsequent sections.



Chapter 8 ■ Working With arChive Files

423

Using the Deflater and Inflater classes is not straightforward. You need to use the following steps to 
compress data in a byte array.

 1. Create a Deflater object.

 2. Set the input data to be compressed using the setInput() method.

 3. Call the finish() method indicating that you have supplied all input data.

 4. Call the deflate() method to compress the input data.

 5. Call the end() method to end the compression process.

You can create an object of the Deflater class using one of its constructors.

// Uses the no-args constructor
Deflater compressor = new Deflater();

Other constructors of the Deflater class let you specify the level of compression. You can specify the 
compression level using one of the constants in the Deflater class. Those constant are BEST_COMPRESSION, 
BEST_SPEED, DEFAULT_COMPRESSION, and NO_COMPRESSION. There is a trade-off in choosing between the best 
compression and the best speed. The best speed means lower compression ratio and the best compression 
means slower compression speed.

// Uses the best compression
Deflater compressor = new Deflater(Deflater.BEST_COMPRESSION);

By default, the compressed data will be in the ZLIB format. If you want the compressed data to be in 
GZIP or PKZIP format, you need to specify that by using the boolean flag as true in the constructor.

// Uses the best speed compression and GZIP format
Deflater compressor = new Deflater(Deflater.BEST_SPEED, true);

You can supply the input data to the Deflater object in a byte array.

byte[] input = /* get a data filled byte array */;
compressor.setInput(input);

You call the finish() method to indicate that you have supplied all the input data.

compressor.finish();

You call the deflate() method to compress the input data. It accepts a byte array as its argument. It fills 
the byte array with the compressed data and returns the number of bytes in the byte array it has filled. After 
every call to the deflate() method, you need to call the finished() method to check if the compression 
process is over. Typically, you would place this check in a loop as follows:

// Try to read the compressed data 1024 bytes at a time
byte[] readBuffer = new byte[1024];
int readCount = 0;

while(!compressor.finished()) {
    readCount = compressor.deflate(readBuffer);



Chapter 8 ■ Working With arChive Files

424

    /* At this point, the readBuffer array has the compressed data 
       from index 0 to readCount - 1.
    */
}

You call the end() method to release any resources the Deflater object has held.

// Indicates that the compression process is over
compressor.end();

The following steps are used to decompress data in a byte array. The steps are just the reverse of what 
you did to compress a byte array.

 1. Create an Inflater object.

 2. Set the input data to be decompressed using the setInput() method.

 3. Call the inflate() method to decompress the input data.

 4. Call the end() method to end the decompression process.

You can create an object of the Inflater class using one of its constructors.

// Uses the no-args constructor
Inflater decompressor = new Inflater();

If the compressed data is in GZIP or PKZIP format, you use another constructor and pass true as its 
argument.

// Creates a decompressor to decompress data that is in GZIP or PKZIP format
Inflater decompressor = new Inflater(true);

You set the input for the decompressor, which is the compressed data in a byte array.

byte[] input = /* get the compressed data in the byte array */;
decompressor.setInput(input);

You call the inflate() method to decompress the input data. It accepts a byte array as its argument. It 
fills the byte array with the decompressed data and returns the number of bytes in the byte array. After every 
call to this method, you need to call the finished() method to check if the compression process is over. 
Typically, you use a loop, as follows:

// Try to read the decompressed data 1024 bytes at a time
byte[] readBuffer = new byte[1024];
int readCount = 0;

while(!decompressor.finished()) {
    readCount = decompressor.inflate(readBuffer);

    /* At this point, the readBuffer array has the decompressed 
       data from index 0 to readCount - 1.
    */
}



Chapter 8 ■ Working With arChive Files

425

You need to call the end() method to release any resources held by the Inflater object.

// Indicates that the decompression process is over
decompressor.end();

Listing 8-3 illustrates how to use the Deflater and Inflater classes. The compress() and decompress() 
methods accept the inputs and return the compressed and decompressed data, respectively. In this 
example, I tried to compress a small string of Hello world!. It is 12 bytes in length. It became 20 bytes after 
I compressed it. The goal of compression is to reduce, not to increase, the size of data. However, you cannot 
achieve reducing the data size just because you have attempted to compress it. The output of the program 
in Listing 8-3 is one such example. When you compress the data, the compressed format has to add some 
information to it to do some housekeeping. If the data you are attempting to compress is very small in size, 
as was the case in this example, or if it is already compressed, the compressed size of the data may increase 
because of additional information added by the compression process.

Listing 8-3. Compressing and Decompressing a Byte Array Using the Deflater and Inflater Classes

// DeflateInflateTest.java
package com.jdojo.archives;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.zip.DataFormatException;
import java.util.zip.Deflater;
import java.util.zip.Inflater;
import static java.util.zip.Deflater.BEST_COMPRESSION;

public class DeflateInflateTest {
    public static void main(String[] args) throws Exception {
        String input = "Hello world!";
        byte[] uncompressedData = input.getBytes("UTF-8");

        // Compress the data 
        byte[] compressedData = compress(uncompressedData, BEST_COMPRESSION, false);

        // Decompress the data 
        byte[] decompressedData = decompress(compressedData, false);

        String output = new String(decompressedData, "UTF-8");

        // Display the statistics 
        System.out.println("Input String: " + input);
        System.out.println("Uncompressed data length: " + uncompressedData.length);
        System.out.println("Compressed data length: " + compressedData.length);
        System.out.println("Decompressed data length: " + decompressedData.length);
        System.out.println("Output String: " + output);
    }

    public static byte[] compress(byte[] input, int compressionLevel,
            boolean GZIPFormat) throws IOException {



Chapter 8 ■ Working With arChive Files

426

        // Create a Deflater object to compress data 
        Deflater compressor = new Deflater(compressionLevel, GZIPFormat);

        // Set the input for the compressor 
        compressor.setInput(input);

        // Call the finish() method to indicate that we have 
        // no more input for the compressor object 
        compressor.finish();

        // Compress the data 
        ByteArrayOutputStream bao = new ByteArrayOutputStream();
        byte[] readBuffer = new byte[1024];

        while (!compressor.finished()) {
            int readCount = compressor.deflate(readBuffer);
            if (readCount > 0) {
                // Write compressed data to the output stream 
                bao.write(readBuffer, 0, readCount);
            }
        }

        // End the compressor 
        compressor.end();

        // Return the written bytes from output stream 
        return bao.toByteArray();
    }
    public static byte[] decompress(byte[] input, boolean GZIPFormat)
            throws IOException, DataFormatException {

        // Create an Inflater object to compress the data 
        Inflater decompressor = new Inflater(GZIPFormat);

        // Set the input for the decompressor 
        decompressor.setInput(input);

        // Decompress data 
        ByteArrayOutputStream bao = new ByteArrayOutputStream();
        byte[] readBuffer = new byte[1024];

        while (!decompressor.finished()) {
            int readCount = decompressor.inflate(readBuffer);
            if (readCount > 0) {
                // Write the data to the output stream 
                bao.write(readBuffer, 0, readCount);
            }
        }

        // End the decompressor 
        decompressor.end();



Chapter 8 ■ Working With arChive Files

427

        // Return the written bytes from the output stream 
        return bao.toByteArray();
    }
}

Input String: Hello world!
Uncompressed data length: 12
Compressed data length: 20
Decompressed data length: 12
Output String: Hello world!

You can use DeflaterInputStream and DeflaterOutputStream to compress data in the input and 
output streams. There are also InflaterInputStream and InflaterOutputStream classes for decompressing 
data in the input and output streams. The four classes are concrete decorators in the InputStream and 
OutputStream class families. Refer to Chapter 7 for more details on the decorator pattern and the concrete 
decorator classes.

Working with ZIP File Format
The Java API has direct support for the ZIP file format. Typically, you would be using the following four 
classes from the java.util.zip package:

•	 ZipEntry

•	 ZipInputStream

•	 ZipOutputStream

•	 ZipFile

A ZipEntry object represents an entry in an archive file in a ZIP file format. If you archived 10 files in 
a file called test.zip, each file in the archive is represented by a ZipEntry object in your program. A zip 
entry may be compressed or uncompressed. When you read all files from a ZIP file, you read each of them 
as a ZipEntry object. When you want to add a file to a ZIP file, you add a ZipEntry object to the ZIP file. The 
ZipEntry class has methods to set and get information about an entry in a ZIP file.

ZipInputStream is a concrete decorator class in the InputStream class family; you use it to read data 
from a ZIP file for each entry. ZipOutputStream is a concrete decorator class in the OutputStream class 
family; you use its class to write data to a ZIP file for each entry.

ZipFile is a utility class to read the entries from a ZIP file. You have the option to use the 
ZipInputStream class or the ZipFile class when you want to read entries from a ZIP file.

Creating ZIP Files
The following are the steps to create a ZIP file:

 1. Create a ZipOutputStream object.

 2. Create a ZipEntry object to represent an entry in the ZIP file.

 3. Add the ZipEntry to the ZipOutputStream.

 4. Write the contents of the entry to the ZipOutputStream.

 5. Close the ZipEntry.

http://dx.doi.org/10.1007/978-1-4842-3348-1_7


Chapter 8 ■ Working With arChive Files

428

 6. Repeat the last four steps for each zip entry you want to add to the archive.

 7. Close the ZipOutputStream.

You can create an object of ZipOutputStream using the name of the ZIP file. You need to create a 
FileOutputStream object and wrap it inside a ZipOutputStream object as follows:

// Create a zip output stream
ZipOutputStream zos = new ZipOutputStream(new FileOutputStream("ziptest.zip"));

You may use any other output stream concrete decorator to wrap your FileOutputStream object. For 
example, you may want to use BufferedOutputStream for a better speed as follows:

ZipOutputStream zos = new ZipOutputStream(new BufferedOutputStream(
                new FileOutputStream("ziptest.zip")));

Optionally, you can set the compression level for the ZIP file entries. By default, the compression level 
is set to DEFAULT_COMPRESSION. For example, the following statement sets the compression level to BEST_
COMPRESSION:

// Set the compression level for zip entries
zos.setLevel(Deflater.BEST_COMPRESSION);

You create a ZipEntry object using the file path for each entry and add the entry to the 
ZipOutputStream object using its putNextEntry() method, like so:

ZipEntry ze = new ZipEntry("test1.txt")
zos.putNextEntry(ze);

Optionally, you can set the storage method for the ZIP entry to indicate if the ZIP entry is stored 
compressed or uncompressed. By default, a ZIP entry is stored in a compressed form.

// To store the zip entry in a compressed form
ze.setMethod(ZipEntry.DEFLATED);

// To store the zip entry in an uncompressed form
ze.setMethod(ZipEntry.STORED);

Write the content of the entry you have added in the previous step to the ZipOutputStream object. Since 
a ZipEntry object represents a file, you need to read the file by creating a FileInputStream object.

// Create an input stream to read data for the entry file
BufferedInputStream bis = new BufferedInputStream(new FileInputStream("test1.txt"));
byte[] buffer = new byte[1024];
int count;

// Write the data for the entry
while((count = bis.read(buffer)) != -1) {
    zos.write(buffer, 0, count);
}

bis.close(); 



Chapter 8 ■ Working With arChive Files

429

Now, close the entry using the closeEntry() method of the ZipOutputStream.

// Close the zip entry
zos.closeEntry();

Repeat the previous steps for each entry that you want to add to the ZIP file. Finally, you need to close 
the ZipOutputStream.

// Close the zip entry
zos.close()

Listing 8-4 demonstrates how to create a ZIP file. It adds two files called test1.txt and notes\test2.
txt to the ziptest.zip file. The program expects these files in the current working directory. If the files 
do not exist, the program prints an error message with the path of the expected files and exits. When the 
program finishes successfully, a ziptest.zip file is created in the current directory that you can open using 
a ZIP file utility, such as WinZip on Windows. The program prints the path of the newly created ZIP file. You 
may get a different output when you run the program.

Listing 8-4. Creating a ZIP File

// ZipUtility.java
package com.jdojo.archives;

import java.util.zip.ZipOutputStream;
import java.util.zip.ZipEntry;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.util.zip.Deflater;

public class ZipUtility {
    public static void main(String[] args) {
        // We want to create a ziptest.zip file in the current directory. 
        // We want to add two files to this zip file. 
        // Both file paths are relative to the current directory. 
        String zipFileName = "ziptest.zip";
        String[] entries = new String[2];
        entries[0] = "test1.txt";
        entries[1] = "notes" + File.separator + "test2.txt";
        zip(zipFileName, entries);
    }

    public static void zip(String zipFileName, String[] zipEntries) {
        // Get the current directory for later use
        String currentDirectory = System.getProperty("user.dir");

        try (ZipOutputStream zos
                = new ZipOutputStream(
                        new BufferedOutputStream(
                                new FileOutputStream(zipFileName)))) {



Chapter 8 ■ Working With arChive Files

430

            // Set the compression level to best compression
            zos.setLevel(Deflater.BEST_COMPRESSION);

            // Add each entry to the ZIP file
            for (String zipEntry : zipEntries) {
                // Make sure the entry file exists
                File entryFile = new File(zipEntry);
                if (!entryFile.exists()) {
                    System.out.println("The entry file " + entryFile.getAbsolutePath()
                            + " does not exist");
                    System.out.println("Aborted processing.");
                    System.exit(1);
                }

                // Create a ZipEntry object
                ZipEntry ze = new ZipEntry(zipEntry);

                // Add the zip entry object to the ZIP file
                zos.putNextEntry(ze);

                // Add the contents of the entry to the ZIP file
                addEntryContent(zos, zipEntry);

                // We are done with the current entry
                zos.closeEntry();
            }

            System.out.println("Output has been written to "
                    + currentDirectory + File.separator + zipFileName);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public static void addEntryContent(ZipOutputStream zos, String entryFileName) {
        // Create an input stream to read data from the entry file
        try (BufferedInputStream bis = new BufferedInputStream(
                        new FileInputStream(entryFileName))) {
            byte[] buffer = new byte[1024];
            int count;
            while ((count = bis.read(buffer)) != -1) {
                zos.write(buffer, 0, count);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Output has been written to C:\Java9LanguageFeatures\ziptest.zip



Chapter 8 ■ Working With arChive Files

431

Reading the Contents of ZIP Files
Reading contents of a ZIP file is just the opposite of writing contents to it. Here are the steps to read the 
contents (or extract entries) of a ZIP file.

 1. Create a ZipInputStream object.

 2. Get a ZipEntry from the input stream calling the getNextEntry() method of the 
ZipInputStream object.

 3. Read the data for the ZipEntry from the ZipInputStream object.

 4. Repeat the last two steps to read another ZIP entry from the archive.

 5. Close the ZipInputStream.

You can create a ZipInputStream object using the ZIP file name as follows:

ZipInputStream zis = new ZipInputStream(
                         new BufferedInputStream(
                             new FileInputStream(zipFileName)));

The following snippet of code gets the next entry from the input stream:

ZipEntry entry = zis.getNextEntry();

Now, you can read the data from the ZipInputStream object for the current ZIP entry. You can save the 
data for the ZIP entry in a file or any other storage medium. You can check if the ZIP entry is a directory by 
using the isDirectory() method of the ZipEntry class.

Listing 8-5 illustrates how to read contents of a ZIP file. The example does not check for some of the 
errors. It does not check if a file already exists before overwriting it. It also assumes that all entries are files. 
The program expects a ziptest.zip file in your current working directory. It extracts all files from the ZIP 
file and outputs the path of the directory containing the extracted files. You may get a different output.

Listing 8-5. Reading Contents of a ZIP File

// UnzipUtility.java
package com.jdojo.archives;

import java.util.zip.ZipEntry;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.util.zip.ZipInputStream;

public class UnzipUtility {
    public static void main(String[] args) {
        String zipFileName = "ziptest.zip";
        String unzipdirectory = "extracted";
        unzip(zipFileName, unzipdirectory);
    }



Chapter 8 ■ Working With arChive Files

432

    public static void unzip(String zipFileName, String unzipdir) {
        try (ZipInputStream zis = new ZipInputStream(
                new BufferedInputStream(
                        new FileInputStream(zipFileName)))) {

            // Read each entry from the ZIP file 
            ZipEntry entry;
            while ((entry = zis.getNextEntry()) != null) {
                // Extract the entry's contents
                extractEntryContent(zis, entry, unzipdir);
            }

            System.out.println("ZIP file's contents have been extracted to "
                    + (new File(unzipdir)).getAbsolutePath());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public static void extractEntryContent(ZipInputStream zis,
            ZipEntry entry,
            String unzipdir)
            throws IOException, FileNotFoundException {

        String entryFileName = entry.getName();
        String entryPath = unzipdir + File.separator + entryFileName;

        // Create the entry file by creating necessary directories
        createFile(entryPath);

        // Create an output stream to extract the contents of the 
        // zip entry and write to the new file
        try (BufferedOutputStream bos = new BufferedOutputStream(
                                            new FileOutputStream(entryPath))) {
            byte[] buffer = new byte[1024];
            int count;
            while ((count = zis.read(buffer)) != -1) {
                bos.write(buffer, 0, count);
            }
        }
    }

    public static void createFile(String filePath) throws IOException {
        File file = new File(filePath);
        File parent = file.getParentFile();

        // Create all parent directories if they do not exist
        if (!parent.exists()) {
            parent.mkdirs();
        }



Chapter 8 ■ Working With arChive Files

433

        file.createNewFile();
    }
}

ZIP file's contents have been extracted to C:\Java9LanguageFeatures\extracted

It is easier to use the ZipFile class to read the contents of a ZIP file or list its entries. For example, 
a ZipFile allows random access to ZIP entries, whereas a ZipInputStream allows sequential access. 
The entries() method of a ZipFile object returns an enumeration of all ZIP entries in the file. The 
getInputStream() method returns the input stream to read the content of a ZipEntry object. The following 
snippet of code shows how to use the ZipFile class. You can rewrite the code in Listing 8-5 using the 
ZipFile class instead of the ZipOutputStream class as an exercise. The ZipFile class comes in handy when 
you just want to list the entries in a ZIP file.

import java.io.InputStream;
import java.util.Enumeration;
import java.util.zip.ZipEntry;
import java.util.zip.ZipFile;
...
// Create a ZipFile object using the ZIP file name
ZipFile zf = new ZipFile("ziptest.zip");

// Get the enumeration for all zip entries and loop through them
Enumeration<? extends ZipEntry> e = zf.entries();

ZipEntry entry;
while (e.hasMoreElements()) {
    entry = e.nextElement();

    // Get the input stream for the current zip entry
    InputStream is = zf.getInputStream(entry);

    /* Read data for the entry using the is object */

    // Print the name of the entry
    System.out.println(entry.getName());
}

Java 8 added a new stream() method to the ZipFile class that returns a Stream<? extends ZipEntry>. 
I cover the Stream class in Chapter 13. Let’s rewrite the previous snippet of code using the Stream class and a 
lambda expression:

import java.io.IOException;
import java.io.InputStream;
import java.util.stream.Stream;
import java.util.zip.ZipEntry;
import java.util.zip.ZipFile;
...

http://dx.doi.org/10.1007/978-1-4842-3348-1_13


Chapter 8 ■ Working With arChive Files

434

// Create a ZipFile object using the ZIP file name
ZipFile zf = new ZipFile("ziptest.zip");

// Get the Stream of all zip entries and apply some actions on each of them
Stream<? extends ZipEntry> entryStream = zf.stream();
entryStream.forEach(entry -> {    
    try {
        // Get the input stream for the current zip entry
        InputStream is = zf.getInputStream(entry);

        /* Read data for the entry using the is object */
    } catch(IOException e) {
        e.printStackTrace();
    }

    // Print the name of the entry
    System.out.println(entry.getName());
});

Working with the GZIP File Format
The GZIPInputStream and GZIPOutputStream classes are used to work with the GZIP file format. They are 
concrete decorator classes in the InputStream and OutputStream class families. Their usage is similar to 
any other concrete decorator classes for I/O. You need to wrap your OutputStream object in an object of 
GZIPOutputStream to apply GZIP compression to your data. You need to wrap your InputStream object in a 
GZIPInputStream object to apply GZIP decompression. The following snippet of code illustrates how to use 
these classes to compress and decompress data:

// Create a GZIPOutputStream object to compress data in GZIP format
// and write it to gziptest.gz file.
GZIPOutputStream gos = new GZIPOutputStream(new FileOutputStream("gziptest.gz"));

// Write uncompressed data to GZIP output stream and it will be 
// compressed and written to gziptest.gz file 
gos.write(byteBuffer);

If you want buffered writing for better speed, you should wrap the GZIPOutputStream in a 
BufferedOutputStream and write the data to the BufferedOutputStream.

BufferedOutputStream bos = new BufferedOutputStream(new GZIPOutputStream(
                                    new FileOutputStream("gziptest.gz")));

How would you compress an object while serializing it? It is simple. Just wrap the GZIPOutputStream in 
an ObjectOutputStream object. When you write an object to your ObjectOutputStream, its serialized form 
will be compressed using a GZIP format.

ObjectOutputStream oos = new ObjectOutputStream(new GZIPOutputStream(
                                   new FileOutputStream("gziptest.ser")));



Chapter 8 ■ Working With arChive Files

435

Apply the reverse logic to read the compressed data in GZIP format for decompressing. The following 
snippet of code shows how to construct an InputStream object to decompress data, which is in GZIP format:

// Decompress data in GZIP format from gziptest.gz file and read it
GZIPInputStream gis = new GZIPInputStream(new FileInputStream("gziptest.gz"));

/* Read uncompressed data from GZIP input stream, e.g., gis.read(byteBuffer);*/

// Construct a BufferedInputStream to read data, which is in GZIP format
BufferedInputStream bis = new BufferedInputStream (new GZIPInputStream(
                                  new FileInputStream(gziptest.gz")));

// Construct an ObjectInputStream to read compressed object
ObjectInputStream ois = new ObjectInputStream (new GZIPInputStream(
                new FileInputStream("gziptest.ser")));

Working with the JAR File Format
JAR (Java Archive) is a file format based on the ZIP file format. It is used to bundle resources, class files, 
sound files, images, etc. for a Java application or applet. It also provides data compression. Originally, it was 
developed to bundle resources for an applet to reduce download time over an HTTP connection.

You can think of a JAR file as a special kind of ZIP file. A JAR file provides many features that are not 
available in a ZIP file. You can digitally sign the contents of a JAR file to provide security. It provides a 
platform-independent file format. You can use the JAR API to manipulate a JAR file in a Java program.

A JAR file can have an optional META-INF directory to contain files and directories containing 
information about application configuration. Table 8-2 lists the entries in a META-INF directory.

Table 8-2. Contents of the META-INF Directory of a JAR File

Name Type Purpose

MANIFEST.MF File Contains extension and package related data.

INDEX.LIST File Contains location information of packages. Class loaders use it to speed 
up the class searching and loading process.

X.SF File X is the base file name. It stores the signature for the JAR file.

X.DSA File X is the base file name. It stores the digital signature of the corresponding 
signature file.

/services Directory Contains all service provider configuration files. This directory is not 
needed if your application is developed using the module system in 
JDK9, which lets you configure services in module declaration.

versions Directory Contains files specific to a JDK versions in a multi-release JAR file.  
I cover multi-release JARs in Chapter 11 of the third volume of this series.

The JDK ships with a jar tool to create and manipulate JAR files. You can also create and manipulate a 
JAR file using the Java API using classes in the java.util.jar package. Most of the classes in this package 
are similar to the classes in the java.util.zip package. In fact, most of the classes in this package are 
inherited from the classes that deal with the ZIP file format. For example, the JarFile class inherits from the 
ZipFile class; the JarEntry class inherits from the ZipEntry class; the JarInputStream class inherits from 

http://dx.doi.org/10.1007/978-1-4842-3348-1_11


Chapter 8 ■ Working With arChive Files

436

the ZipInputStream class; the JarOutputStream class inherits from the ZipOutputStream class, etc. The JAR 
API has some new classes to deal with a manifest file. The Manifest class represents a manifest file. I discuss 
how to use the JAR API later in this chapter. I discuss the jar tool in this section.

 ■ Tip  JDk9 added a few methods to the JarFile class to work with multi-release Jar files, which were 
introduced in JDk9. For example, the isMultiRelease() method returns true if a JarFile represents a multi-
release Jar.

To create a JAR file using the jar tool, many command-line options are available. There are four basic 
operations that you perform using the jar tool.

•	 Create a JAR file.

•	 Update a JAR file.

•	 Extract entries from a JAR file.

•	 List the contents of a JAR file.

Table 8-3 lists the command-line options for the jar tool. Chapter 3 of the first volume of this series 
explains a few of these options. The GNU-style options were added in JDK9. For the complete list of all 
options for the jar tool and the tool’s usage, run the tool with the --help or --help-extra option, like so:

C:\Java9LanguageFeatures>jar --help

Table 8-3. Command-line Options for the jar Tool

Option Description

-c, --create Create a new JAR file.

-u, --update Update an existing JAR file.

-x, --extract Extract a named file or all files from a JAR file.

-t, --list List the table of contents of a JAR file.

-f, --file=FILE Specify the JAR file name.

-m , --manifest=FILE Include the manifest information from the specified file.

-M, --no-manifest Do not create a manifest file.

-i, --generate-index=FILE Generate index information for the specified JAR file. It creates 
an INDEX.LIST file in JAR file under the META-INF directory.

-0, --no-compress Do not compress the entries in the JAR file. Only store them. The 
option value is zero, which means zero compression.

-e, --main-class=CLASSNAME Add the specified class name as the value for the Main-Class 
entry in the main section of the manifest file.

-v, --verbose Generate verbose output on the standard output.

-C DIR Change to the specified directory and include the following 
files in a JAR file. Note that the option is in uppercase (C). The 
lowercase (-c) is used to indicate the create JAR file option.

(continued)

http://dx.doi.org/10.1007/978-1-4842-3348-1_3


Chapter 8 ■ Working With arChive Files

437

Creating a JAR File
Use the following command to create a test.jar JAR file with two class files called A.class and B.class:

jar --create --file test.jar A.class B.class

If you get an error such as "jar is not recognized as a command" when you run this command, you 
need to use the full path of the jar command or add the directory containing the jar command to the PATH 
environment variable on your machine. On Windows, if you install the JDK in the C:\java9 directory, the 
jar command is stored in the C:\java9\bin directory.

In the previous command, the --create option indicates that you are creating a new JAR file and the 
--file test.jar option indicates that you are specifying the new JAR file name as test.jar. At the end of 
the command, you can specify one or more file names or directory names to include in the JAR file.

To view the contents of the test.jar file, you can execute the following command:

jar --list --file test.jar

META-INF/
META-INF/MANIFEST.MF
A.class
B.class

The --list option in this command indicates that you are interested in the table of contents of a JAR 
file. The --file option specifies the JAR file name, which is test.jar in this case. Note that when you 
created the test.jar file, the jar tool automatically created two extra entries for you: one directory called 
META-INF and a file named MANIFEST.MF in the META-INF directory. You see these entries when you list the 
contents of the JAR file.

The following command will create a test.jar file by including everything in the current working 
directory. Note the use of an asterisk as the wildcard character to denote everything in the current working 
directory.

jar --create --file test.jar *

Option Description

--release VERSION Place all following files in a versioned directory of the JAR (i.e., 
META-INF/versions/VERSION/).

-d, --describe-module Print the module descriptor, or automatic module name.

--module-version=VERSION The module version when creating a modular JAR or updating a 
non-modular JAR.

--hash-modules=PATTERN Compute and record the hashes of modules matched by 
the given pattern and that depend directly or indirectly on 
a modular JAR being created or a non-modular JAR being 
updated.

-p, --module-path Location of module dependence for generating the hash.

--version Print the program version.

-h, --help[:compat], --help-extra Print help for the jar tool.

Table 8-3. (continued)



Chapter 8 ■ Working With arChive Files

438

The following command will create a JAR file with all class files in the book/archives directory and all 
images from the book/images directory. Here, book is a subdirectory in the current working directory.

jar --create --file test.jar book/archives/*.class book/images

You can specify a manifest file using the command-line option while creating a JAR file. The manifest 
file you specify will be a text file that contains all manifest entries for your JAR file. Note that your manifest 
file must have a blank line at the end of the file. Otherwise, the last entry in the manifest file will not be 
processed. I discuss the contents of a manifest file in detail shortly.

The following command will use a manifest.txt file while creating the test.jar file, including all files 
and sub-directories in the current directory. Note the use of the option m.

jar --create --file test.jar --manifest manifest.txt *

Updating a JAR File
Use the option --update to update an existing JAR file entries or its manifest file. The following command 
will add a C.class file to an existing test.jar file:

jar --update --file test.jar C.class

Suppose you have a test.jar file and you want to change the Main-Class entry in its manifest file to 
pkg.HelloWorld class. You can do that by using the following command:

jar --update --file test.jar --main-class pkg.HelloWorld

Indexing a JAR File
You can generate an index file for your JAR file. It is used to speed up class loading. Use the --generate-
index option with the jar command in a separate command, after you have created a JAR file:

jar --generate-index test.jar

This command will add a META-INF/INDEX.LIST file to the test.jar file. You can verify it by listing the 
table of contents of the test.jar file using the following command:

jar --list --file test.jar

META-INF/INDEX.LIST
META-INF/
META-INF/MANIFEST.MF
A.class
B.class
manifest.txt

The generated INDEX.LIST file contains location information for all packages in all JAR files listed in the 
Class-Path attribute of the test.jar file. You can include an attribute called Class-Path in the manifest 
file of a JAR file. It is a space-separated list of JAR files. The attribute value is used to search and load classes 
when you run the JAR file.



Chapter 8 ■ Working With arChive Files

439

Extracting an Entry from a JAR File
You can extract all or some entries from a JAR file using the option --extract with the jar command. To 
extract all entries from a test.jar file, you use

jar --extract --file test.jar

This command extracts all entries from test.jar file in the current working directory. It creates 
the same directory structure as in the test.jar file. Any existing file during the extraction of an entry is 
overwritten. The JAR file, test.jar in this example, is unchanged by this command.

To extract individual entries from a JAR file, you need to list them at the end of the command. The 
entries should be separated by a space. The following command will extract A.class and book/HelloWorld.
class entries from a test.jar file:

jar --extract --file test.jar A.class book/HelloWorld.class

To extract all class files from a book directory, you can use the following command:

jar --extract --file test.jar book/*.class

Listing the Contents of a JAR File
Use the option t with the jar command to list the table of contents of a JAR file on the standard output:

jar --list --file test.jar

The Manifest File
A JAR file differs from a ZIP file in that it may optionally contain a manifest file named MANIFEST.MF in the 
META-INF directory. The manifest file contains information about the JAR file and its entries. It can contain 
information about the CLASSPATH setting for the JAR file. Its main entry class is a class with the “public 
static void main(String[])” method to start a stand-alone application, version information about 
packages, etc.

A manifest file is divided into sections separated by a blank line. Each section contains name-value 
pairs. A new line separates each name-value pair. A colon separates a name and its corresponding value.  
A manifest file must end with a new line. The following is a sample of the content of a manifest file:

Manifest-Version: 1.0
Created-By: 1.8.0_20-ea-b05 (Oracle Corporation)
Main-Class: com.jdojo.intro.Welcome
Multi-Release: true

This manifest file has one section with four attributes:

•	 Manifest-Version

•	 Created-By

•	 Main-Class

•	 Multi-Release



Chapter 8 ■ Working With arChive Files

440

There are two kinds of sections in a manifest file: the main section and the individual section. A blank 
line must separate any two sections. Entries in the main section apply to the entire JAR file. Entries in the 
individual section apply to a particular entry. An attribute in an individual section overrides the same 
attribute in the main section. An individual entry starts with a Name attribute, whose value is the name of 
the entry in the JAR file and is followed by other attributes for that entry. For example, suppose you have a 
manifest file with the following contents:

Manifest-Version: 1.0
Created-By: 1.6.0 (Sun Microsystems Inc.)
Main-Class: com.jdojo.chapter2.Welcome
Sealed: true

Name: book/data/
Sealed: false

Name: images/logo.bmp
Content-Type: image/bmp

The manifest file contains three sections: one main section and two individual sections. The first 
individual section indicates that the package book/data is not sealed. This individual section attribute of 
Sealed: false will override the main section’s attribute of Sealed: true. Another individual section is for 
an entry called images/logo.bmp. It states that the content type of the entry is an image of bmp type.

The jar command can create a default manifest file and add it to the JAR file. The default manifest file 
contains only two attributes: Manifest-Version and Created-By. You can use the option --no-manifest to 
tell the jar tool to omit the default manifest file. The following command will create a test.jar file without 
adding a default manifest file:

jar --create --no-manifest --file test.jar book/*.class

The jar command gives you an option to customize the contents of the manifest file. You can use the 
--manifest option to specify your file that contains the contents for the manifest file. The jar command will 
read the name-value pairs from the specified manifest file and add them to the MANIFEST.MF file. Suppose 
you have a file named manifest.txt with one attribute entry in it. Make sure to add a new line at the end of 
the file. The file’s contents are as follows:

Main-Class: com.jdojo.intro.Welcome

To add the Main-Class attribute value from manifest.txt file in a new test.jar file by including all 
class files in the current working directory, you execute the following command:

jar --create --manifest manifest.txt --file test.jar *.class

This command will add a manifest file with the following contents to the test.jar file:

Manifest-Version: 1.0
Created-By: 9.0.1 (Oracle Corporation)
Main-Class: com.jdojo.intro.Welcome

If you do not specify the Manifest-Version and Created-By attributes in your manifest file, the tool 
adds them. The Manifest-Version defaults to 1.0 and the Created-By defaults to the JDK version you use.



Chapter 8 ■ Working With arChive Files

441

You can also add the Main-Class attribute value in the manifest file without creating your own manifest 
file. Use the option --main-class with the jar tool when you create/update a JAR file. The following 
command will add com.jdojo.intro.Welcome as the value of the Main-Class in the MANIFEST.MF file in the 
test.jar file:

jar --create --main-class com.jdojo.intro.Welcome --file test.jar *.class

You can set the CLASSPATH for a JAR file in its manifest file. The attribute name is called Class-Path, 
which you must specify in a custom manifest file. It is a space-separated list of JAR files, ZIP files, and 
directories. The Class-Path attribute in a manifest file looks like this

Class-Path: chapter8.jar file:/c:/book/ http://www.jdojo.com/jutil.jar

This entry has three items for the CLASSPATH: a JAR file named chapter8.jar, a directory using the file 
protocol file:/c:/book/, and another JAR file using the HTTP protocol http://www.jdojo.com/jutil.jar. 
Note that the directory name must end with a forward slash. Suppose this Class-Path setting is included in 
the manifest file for the test.jar file. When you run the test.jar file using the following java command, 
this CLASSPATH will be used to search and load classes.

java –jar test.jar

When you run a JAR file with the –jar option using the java command, any CLASSPATH setting outside 
the manifest file of the JAR file (test.jar file in this case) is ignored. Another use of the Class-Path attribute 
is to generate an index of all packages using the --generate-index option of the jar tool.

Sealing a Package in a JAR File
You can seal a package in a JAR file. Sealing a package in a JAR file means that all classes declared in that 
package must be archived in the same JAR file. Typically, you seal a package to easily maintain versions of 
the package. If you change anything in the package, you just recreate a JAR file. To seal a package in a JAR 
file, you need to include two attributes: Name and Sealed. The value for the Name attribute is the name of the 
package and the Sealed attribute has a true value. The following entries in a manifest file will seal a package 
named com.jdojo.archives. Note that the package name must end with a forward slash (/).

Name: com/jdojo/archives/
Sealed: true

By default, packages in a JAR file are not sealed. If you want to seal the JAR file itself, you can include a 
Sealed attributed, as shown:

Sealed: true

Sealing the JAR file will seal all packages in that JAR file. However, you can override it by not sealing a 
package individually. The following entries in a manifest file will seal all packages in the JAR file, except the 
book/chapter8/ package:

Sealed: true

Name: book/chapter8/
Sealed: false

http://dx.doi.org/10.1007/978-1-4842-3348-1_8
http://www.jdojo.com/jutil.jar
http://dx.doi.org/10.1007/978-1-4842-3348-1_8


Chapter 8 ■ Working With arChive Files

442

Using the JAR API
Using JAR API is very similar to using the ZIP API, except that the JAR API includes classes for working with a 
manifest file. An object of the Manifest class represents a manifest file. You create a Manifest object in your 
code as follows:

Manifest manifest = new Manifest();

There are two things you can do with a manifest file: read entries from it and write entries to it. There are 
separate ways to deal with entries in the main and individual sections. To add an entry into a main section, 
get an instance of the Attributes class using the getMainAttributes() method of the Manifest class 
and keep adding a name-value pair to it using its put() method. The following snippet of code adds some 
attributes to the main section of a Manifest object. The known attribute names are defined as constants in 
the Attributes.Name class. For example, the constant Attributes.Name.MANIFEST_VERSION represents the 
Manifest-Version attribute name.

// Create a Manifest object
Manifest manifest = new Manifest();

/* Add main attributes
   1. Manifest Version
   2. Main-Class
   3. Sealed
*/
Attributes mainAttribs = manifest.getMainAttributes();
mainAttribs.put(Attributes.Name.MANIFEST_VERSION, "1.0");
mainAttribs.put(Attributes.Name.MAIN_CLASS, "com.jdojo.intro.Welcome");
mainAttribs.put(Attributes.Name.SEALED, "true");

Adding an individual entry to the manifest file is a little more complex than adding the main entry. 
Suppose you want to add the following individual entry to a manifest file:

Name: "com/jdojo/archives/"
Sealed: false

You need to perform the following steps.

 1. Get the Map object that stores the individual entries for a manifest.

 2. Create an Attributes object.

 3. Add the name-value pair to the Attributes object. You can add as many name-
value pairs as you want.

 4. Add the Attributes object to the attribute Map using the name of the individual 
section as the key.

The following snippet of code shows you how to add an individual entry to a Manifest object:

// Get the Attribute map for the Manifest
Map<String,Attributes> attribsMap = manifest.getEntries();

// Create an Attributes object
Attributes attribs = new Attributes();



Chapter 8 ■ Working With arChive Files

443

// Create an Attributes.Name object for the "Sealed" attribute
Attributes.Name name = new Attributes.Name("Sealed");

// Add the "name: value" pair (Sealed: false) to the attributes objects
attribs.put(name, "false");

// Add the Sealed: false attribute to the attributes map
attribsMap.put("com/jdojo/archives/", attribs);

If you want to add a manifest file to a JAR file, you can specify it in one of the constructors of the 
JarOutputStream class. For example, the following snippet of code creates a JAR output stream to create a 
test.jar file with a Manifest object:

// Create a Manifest object
Manifest manifest = new Manifest();

// Create a JarOutputStream with a Manifest object
JarOutputStream jos = new JarOutputStream(new BufferedOutputStream(
                          new FileOutputStream("test.jar")), manifest);

Listing 8-6 contains the code to create a JAR file that includes a manifest file. The code is similar to 
creating a ZIP file. The main() method contains the file names used to create the JAR file. All files are 
expected to be in the current working directory.

•	 It creates a JAR file named jartest.jar.

•	 It adds the images/logo.bmp and com/jdojo/archives/Test.class files to the 
jartest.jar file.

If the input files do not exist in your current working directory, you will get an error message when 
you run the program. If you want to add other files to the JAR file, change the code in the main() method 
accordingly.

Listing 8-6. Creating a JAR File Using the JAR API

// JARUtility.java
package com.jdojo.archives;

import java.util.jar.Manifest;
import java.util.jar.Attributes;
import java.util.Map;
import java.util.jar.JarOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.File;
import java.util.zip.Deflater;
import java.io.BufferedOutputStream;
import java.util.jar.JarEntry;



Chapter 8 ■ Working With arChive Files

444

public class JARUtility {
    public static void main(String[] args) throws Exception {
        // Create a Manifest object
        Manifest manifest = getManifest();

        // Store jar entries in a String array
        String jarFileName = "jartest.jar";
        String[] entries = new String[2];
        entries[0] = "images/logo.bmp";
        entries[1] = "com/jdojo/archives/Test.class";

        createJAR(jarFileName, entries, manifest);
    }

    public static void createJAR(String jarFileName, String[] jarEntries, Manifest manifest) 
{
        // Get the current directory for later use
        String currentDirectory = System.getProperty("user.dir");

        // Create the JAR file        
        try (JarOutputStream jos = new JarOutputStream(
                                    new BufferedOutputStream(
                                     new FileOutputStream(jarFileName)
                                    ), manifest)) {

            // Set the compression level to best compression
            jos.setLevel(Deflater.BEST_COMPRESSION);

            // Add each entry to JAR file
            for (String jarEntry : jarEntries) {
                // Make sure the entry file exists
                File entryFile = new File(jarEntry);

                if (!entryFile.exists()) {
                    System.out.println("The entry file " + entryFile.getAbsolutePath()
                            + " does not exist");
                    System.out.println("Aborted processing.");
                    System.exit(1);
                }

                // Create a JarEntry object
                JarEntry je = new JarEntry(jarEntry);

                // Add jar entry object to JAR file
                jos.putNextEntry(je);

                // Add the entry's contents to the JAR file
                addEntryContent(jos, jarEntry);

                // Inform the JAR output stream that we are done 
                // working with the current entry



Chapter 8 ■ Working With arChive Files

445

                jos.closeEntry();
            }

            System.out.println("Output has been written to "
                    + currentDirectory + File.separator + jarFileName);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public static void addEntryContent(JarOutputStream jos, String entryFileName)
            throws IOException, FileNotFoundException {

        // Create an input stream to read data from the entry file
        try (BufferedInputStream bis = new BufferedInputStream(
                                           new FileInputStream(entryFileName))) {
            byte[] buffer = new byte[1024];
            int count;
            while ((count = bis.read(buffer)) != -1) {
                jos.write(buffer, 0, count);
            }
        }
    }

    public static Manifest getManifest() {
        Manifest manifest = new Manifest();

        /* Add main attributes
         1. Manifest Version
         2. Main-Class
         3. Sealed
         */
        Attributes mainAttribs = manifest.getMainAttributes();
        mainAttribs.put(Attributes.Name.MANIFEST_VERSION, "1.0");
        mainAttribs.put(Attributes.Name.MAIN_CLASS, "com.jdojo.archives.Test");
        mainAttribs.put(Attributes.Name.SEALED, "true");

        /* Add two individual sections */
        /* Do not seal the com/jdojo/archives/ package. Note that you have sealed the whole
           JAR file and to exclude this package you we must add a Sealed: false attribute 
           for this package separately. 
         */
        Map<String, Attributes> attribsMap = manifest.getEntries();

        // Create an attribute "Sealed : false" and 
        // add it for individual entry "Name: com/jdojo/archives/"
        Attributes a1 = getAttribute("Sealed", "false");
        attribsMap.put("com/jdojo/archives/", a1);

        // Create an attribute "Content-Type: image/bmp" and add it for images/logo.bmp
        Attributes a2 = getAttribute("Content-Type", "image/bmp");
        attribsMap.put("images/logo.bmp", a2);



Chapter 8 ■ Working With arChive Files

446

        return manifest;
    }

    public static Attributes getAttribute(String name, String value) {
        Attributes a = new Attributes();
        Attributes.Name attribName = new Attributes.Name(name);
        a.put(attribName, value);
        return a;
    }
}

You can read the entries from a JAR file using similar code that reads entries from a ZIP file. To read 
the entries from a manifest file of a JAR file, you need to get the object of the Manifest class using the 
getManifest() class of JarInputStream as follows:

// Create a JAR input stream object
JarInputStream jis = new JarInputStream(new FileInputStream("jartest.jar"));

// Get the manifest file from the JAR file. Will return null if 
// there is no manifest file in the JAR file.
Manifest manifest = jis.getManifest();

if (manifest != null) {
    // Get the attributes from main section
    Attributes mainAttributes = manifest.getMainAttributes();
    String mainClass = mainAttributes.getValue("Main-Class");

    // Get the attributes from individual section
    Map<String, Attributes> entries = manifest.getEntries();
}

This section does not include code examples on reading entries from a JAR file. Refer to the code in 
the UnzipUtility class, which has the code to read entries from a ZIP file. The code to read from a JAR file 
would be similar, except you would be using JAR-related classes from the java.util.jar package instead of 
the ZIP-related classes from the java.util.zip package.

Accessing Resources from a JAR File
How would you access the resources stored in a JAR file? For example, how would you access a file named 
images/logo.bmp in a JAR file, so that you can display the BMP file as an image in your Java application? You 
can construct a URL object by using the reference of a resource in a JAR file. The JAR file URL syntax is of the 
form

jar:<url>!/{entry}

The following URL refers to an images/logo.bmp JAR entry in a test.jar file on www.jdojo.com using 
the HTTP protocol:

jar:http://www.jdojo.com/test.jar!/images/logo.bmp

http://www.jdojo.com/


Chapter 8 ■ Working With arChive Files

447

The following URL refers to an images/logo.bmp JAR entry in a test.jar file on the local file system in 
the C:\jarfiles\ directory using the file protocol:

jar:file:/C:/jarfiles/test.jar!/images/logo.bmp

Summary
An archive file consists of one or more files. Optionally, the files in an archive file may be compressed.  
It also contains metadata that may include the directory structure of the files, comments, error detection and 
recovery information, etc. An archive file may be encrypted as well.

A checksum is a number that is computed by applying an algorithm on a stream of bytes. Typically, it is 
used when data is transmitted across the network to check for errors during data transmission. The sender 
and receiver use the same algorithm to compute the checksum for the transmitted data. A mismatch signals 
an error in data transmission. Java contains the Adler32 and CRC32 classes to compute checksum for data 
using the Adler32 and CRC32 algorithms, respectively. Java provides Deflater and Inflater classes to work 
with data compression and decompression.

The JDK supports creating and manipulating archive files in ZIP, GZIP, and JAR formats through APIs 
and tools. The APIs are in the java.util.zip and java.util.jar packages. In addition to the JAR API to 
work with JAR files, the JDK provides a jar command-line tool that can be used create, read, and update JAR 
files. The jar tool is located in the JDK_HOME\bin directory.

QUESTIONS AND EXERCISES

1. What is an archive file?

2. What is the difference between lossless and lossy data compression? name one 
algorithm of each type.

3. What is use of the Deflater and Inflater classes?

4. What is checksum? name three algorithms to compute checksum and their 
corresponding Java classes.

5. What do instances of the following classes represent: ZipEntry, ZipFile, 
ZipInputStream, and ZipOutputStream?

6. What is the difference between a Zip file and a Jar file?

7. What types of content are stored in the versions directory of a Jar file?

8. What is a manifest file and how do you represent a manifest file in a Java program?

9. What is the name of the command-line tool that is used to work with Jar files?

10. name the options that you use with the jar tool to create a new Jar and to update 
an existing Jar.

11. Write the command to list the table of contents for a Jar file named test.jar.

12. What do instances of the following classes represent: JarEntry, JarFile, 
JarInputStream, and JarOutputStream?



449© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_9

CHAPTER 9

New Input/Output

In this chapter, you will learn:

•	 What the new input/output is

•	 How to create different types of buffers

•	 How to read data from buffers and write data to buffers

•	 How to manipulate position, limit, and mark properties of a buffer

•	 How to create different types of views of a buffer

•	 How to encode/decode data in a buffer using different charsets

•	 What channels are and how to use channels to read/write the file contents

•	 How to use memory-mapped files for faster I/O

•	 How to use file locks

•	 How to know the byte order of a machine and how to deal with byte order when 
using buffers

All example programs in this chapter are a member of a jdojo.nio module, as declared in Listing 9-1.

Listing 9-1. The Declaration of a jdojo.nio Module

// module-info.java
module jdojo.nio {
    exports com.jdojo.nio;
}

What Is NIO?
The stream-based I/O uses streams to transfer data between a data source/sink and a Java program. The Java 
program reads from or writes to a stream one byte at a time. This approach to performing I/O operations is 
slow. The new input/output (NIO) solves the slow speed problem in the old stream based I/O.

In NIO, you deal with channels and buffers for I/O operations. A channel is like a stream. It represents 
a connection between a data source/sink and a Java program for data transfer. There is one difference 
between a channel and a stream. A stream can be used for one-way data transfer. That is, an input stream 
can only transfer data from a data source to a Java program; an output stream can only transfer data from 
a Java program to a data sink. However, a channel provides a two-way data transfer facility. You can use a 

https://doi.org/10.1007/978-1-4842-3348-1_9


Chapter 9 ■ New INput/Output

450

channel to read data as well as to write data. You can obtain a read-only channel, a write-only channel, or a 
read-write channel, depending on your needs.

In stream-based I/O, the basic unit of data transfer is a byte. In channel-based NIO, the basic unit 
of data transfer is a buffer. A buffer is a bounded data container. That is, a buffer has a fixed capacity that 
determines the upper limit of the data it may contain. In stream-based I/O, you write data directly to the 
stream. In channel-based I/O, you write data into a buffer; you pass that buffer to the channel, which writes 
the data to the data sink. Similarly, when you want to read data from a data source, you pass a buffer to a 
channel. The channel reads data from the data source into the buffer. You read data from the buffer.  
Figure 9-1 depicts the interaction between a channel, a buffer, a data source, a data sink, and a Java program. 
It is evident that the most important parts in this interaction are reading from a buffer and writing into a 
buffer. I discuss buffers and channels in detail in subsequent sections.

Buffer

Buffer

Java Program

Channel writes data into a buffer Program reads data from a buffer

Channel reads data from a buffer Program writes data into a buffer

Channel
Data Sink

--------------
Data Source

Figure 9-1. Interaction between a channel, buffers, a Java program, a data source, and a data sink

Buffers
A buffer is a fixed-length data container. There is a separate buffer type to hold data for each type of primitive 
value, except for boolean type values. A buffer is an object in your program. You have a separate class to 
represent each type of buffer. All buffer classes are inherited from an abstract Buffer class. Buffer classes 
that hold primitive values are as follows:

•	 ByteBuffer

•	 ShortBuffer

•	 CharBuffer

•	 IntBuffer

•	 LongBuffer

•	 FloatBuffer

•	 DoubleBuffer



Chapter 9 ■ New INput/Output

451

An object of an XxxBuffer class is used to hold data of the Xxx primitive data type. For example, a 
ByteBuffer holds byte values; a ShortBuffer holds short values; a CharBuffer is holds characters, and 
so on. The following are the four important properties of a buffer, which you must understand to use it 
effectively:

•	 Capacity

•	 Position

•	 Limit

•	 Mark

The capacity of a buffer is the maximum number of elements that it can hold. The capacity of a buffer is 
fixed when the buffer is created. You can think of the capacity of a buffer as the length of an array. Once you 
create an array, its length is fixed. Similarly, once you create a buffer, its capacity is fixed. However, a buffer is 
not necessarily backed by an array. You can check if a buffer is backed by an array by calling its hasArray() 
method, which returns true if the buffer is backed by an array. You can get access to the backing array of a 
buffer by using the array() method of the buffer object. Once you get access to the backing array of a buffer, 
any changes made to that array will be reflected in the buffer. A buffer has a capacity() method that returns 
its capacity as an int.

You can create a buffer of a particular kind in many ways. You can create a buffer by using the 
allocate() factory method of a particular buffer class as follows:

// Create a byte buffer with the capacity as 8
ByteBuffer bb = ByteBuffer.allocate(8);

// Assigns 8 to the capacity variable
int capacity = bb.capacity();

// Create a character buffer with the capacity as 1024
CharBuffer cb = CharBuffer.allocate(1024);

A byte buffer gets special treatment in NIO. It has an extra method called allocateDirect() that creates 
a byte buffer for which the memory is allocated from the operating system memory, not from the JVM 
heap. This avoids copying the contents to intermediate buffers during I/O operations. A direct buffer has an 
additional creation cost. However, it is faster during the I/O operations. You should use a direct byte buffer 
when a buffer is long-lived. You can use the isDirect() method of the ByteBuffer class to check if a buffer 
is direct or non-direct.

// Create a direct byte buffer of 512 bytes capacity
ByteBuffer bbd = ByteBuffer.allocateDirect(512);

Another way to create a buffer is to wrap an array using the buffer’s static wrap() method:

// Create an array of bytes
byte[] byteArray = new byte[512];

// Create a byte buffer by wrapping the byteArray
ByteBuffer bb = ByteBuffer.wrap(byteArray);

You can use the same technique to create a buffer to store other primitive values. I discuss other ways of 
creating a buffer later in this section.



Chapter 9 ■ New INput/Output

452

When you create a buffer, all elements of the buffer are initialized to a value of zero. Each element of a 
buffer has an index. The first element has an index of 0 and the last element has an index of capacity – 1.

Position and limit are two properties of a buffer. When a buffer is created, its position is set to 0 and its 
limit is equal to its capacity. A buffer’s position is the index of the next element to be read or written.  
A buffer’s limit is the index of the first element that should not be read or written. So, a read/write operation 
start at the buffer’s position (inclusive) and may continue up to the buffer’s limit (exclusive).

Figure 9-2 shows the state of a buffer with a capacity of 8 just after its creation. All its elements have a 
value of 0. Its position is set to zero. Its limit is set to 8, which is equal to its capacity. In the figure, P and L 
denote the position and the limit of the buffer, respectively. Note that the figure shows the index at 8, which 
is out of range for the buffer, to show the value of the limit.

Buffer Elements -> 0 0 0 0 0 0 0 0

Element’s Index -> 0 1 2 3 4 5 6 7 8

P L

Figure 9-2. A buffer of capacity 8 after its creation

You can get/set the position of a buffer using its overloaded position() method. The position() 
method returns the current value of the position of a buffer. The position(int newPosition) method sets 
the position of the buffer to the specified newPosition value and returns the reference of the buffer.

You can get/set the limit of a buffer using its overloaded limit() method. The limit() method returns 
the current value of the limit of a buffer. The limit(int newLimit) method sets the limit of a buffer to the 
specified newLimit value and returns the reference of the buffer.

You can bookmark a position of a buffer by using the mark() method. When you call the mark() 
method, the buffer stores the current value of its position as its mark value. You can set the position of a 
buffer to its previously bookmarked value by using the reset() method. The buffer’s mark is not defined 
when it is created. You must call the reset() method on a buffer only when its mark is defined. Otherwise, 
the reset() method throws an InvalidMarkException.

The following invariant must hold during the lifetime of a buffer:

0 <= mark <= position <= limit <= capacity

Since the capacity of a buffer never changes and mark has limited use through the mark() and reset() 
methods, I limit the discussion only to the position and limit properties of a buffer. There are some indirect 
consequences of changing the position and limit values. Since the mark cannot be greater than the position, 
the mark is discarded if the position is set less than the current mark value. If you set the limit less than the 
position, the position is automatically set equal to the limit value.

So far, you have read a great deal on buffers. It’s time to see a buffer in action. Listing 9-2 contains the 
code to create a new buffer and display its four properties.

Listing 9-2. Mark, Position, Limit, and Capacity of a New Buffer

// BufferInfo.java
package com.jdojo.nio;

import java.nio.ByteBuffer;
import java.nio.InvalidMarkException;



Chapter 9 ■ New INput/Output

453

public class BufferInfo {
    public static void main(String[] args) {
        // Create a byte buffer of capacity 8
        ByteBuffer bb = ByteBuffer.allocate(8);

        System.out.println("Capacity: " + bb.capacity());
        System.out.println("Limit: " + bb.limit());
        System.out.println("Position: " + bb.position());

        // The mark is not set for a new buffer. Calling the reset() method
        // throws a runtime exception if the mark is not set. If the mark is set,
        // the position is set to the mark value.
        try {
            bb.reset();
            System.out.println("Mark: " + bb.position());
        } catch (InvalidMarkException e) {
            System.out.println("Mark is not set");
        }
    }
}

Capacity: 8
Limit: 8
Position: 0
Mark is not set

Reading from and Writing to a Buffer
There are two ways to read data from a buffer:

•	 Using absolute position

•	 Using relative position

In an absolute position read, you specify the index in the buffer from which you want to read the data. 
The position of the buffer is unchanged after an absolute position read.

In a relative position read, you specify how many data elements you want to read. The current position 
of the buffer determines which data elements will be read. In a relative position read, the read starts at the 
current position of the buffer and the position is incremented by one after reading each data element.

The get() method is used to read data from a buffer. The get() method is overloaded. It has four 
versions. Just replace the data type byte with another data type for other primitive type buffers in the 
following methods:

•	 get(int index): Returns the data at the given index. For example, get(2) will return 
the data at index 2 from the buffer. It is an absolute way of reading data from a buffer 
because you provide the absolute position of the element from which you want to 
read the data. This method does not change the current position of the buffer.

•	 get(): Returns the data from the current position in the buffer and increases the 
position by 1. For example, if position is set at index 2, calling the get() method will 
return the value at index 2 from the buffer and set the position to 3. It is a relative way 
of reading data from a buffer because you read the data relative to the current position.



Chapter 9 ■ New INput/Output

454

•	 get(byte[] destination, int offset, int length): Reads data from a 
buffer in bulk. It reads length number of bytes from the current position of the 
buffer and puts them in the specified destination array starting at the specified 
offset. If it cannot read the length number of bytes from the buffer, it throws a 
BufferUnderflowException. If there is no exception, it increases the current position 
by length. It is a relative read from a buffer.

•	 get(byte[] destination): Fills the specified destination array by reading data from 
the current position of the buffer and increments the current position by one each 
time it reads a data element. If there is not enough data to fill the array, it will throw 
a BufferUnderflowException. It is a relative way of reading data from a buffer. This 
method call is the same as calling get(byte[] destination, 0, destination.length).

Writing data to a buffer is the opposite of reading data from it. The put() method is used to write 
data to a buffer. The put() method has five versions: one for absolute position write and four for relative 
position write. The absolute version of the put() method does not affect the position of the buffer. The 
relative versions of the put() method write the data and advance the position of the buffer by one for each 
written element. Different buffer classes have different versions of the put() method; however, there are five 
versions that are common among all types of buffers. The following are the five versions of the put() method 
for ByteBuffer. These methods throw a ReadOnlyBufferException when the buffer is read-only. Just 
replace the data type byte with another data type for other primitive type buffers in the following methods.

•	 put(int index, byte b): Writes the specified b data at the specified index. The call 
to this method does not change the current position of the buffer.

•	 put(byte b): It is a relative put() method that writes the specified byte at the 
current position of the buffer and increments the position by 1. It throws a 
BufferOverflowException if there is not enough room in the buffer to the specified 
byte.

•	 put(byte[] source, int offset, int length): Writes the length number 
of bytes from the source array starting at offset to the buffer starting at the 
current position. The position of the buffer is incremented by length. It throws a 
BufferOverflowException if there is not enough room in the buffer to write all bytes.

•	 put(byte[] source): It is the same as calling put(byte[] source, 0, source.length).

•	 ByteBuffer put(ByteBuffer src): Reads the remaining bytes from the 
specified byte buffer src and writes them to the buffer. If the remaining space in 
the target buffer is less than the remaining bytes in the source buffer, a runtime 
BufferOverflowException is thrown.

Let’s have some pictorial views of the state of a buffer and its properties after each read and write. 
Figure 9-3 through Figure 9-6 depict how the position of a buffer with a capacity of 8 is advanced after 
each write in the buffer. After the eighth write in the buffer, the position and the limit become equal. If you 
attempt to write a ninth time, you would get a BufferOverflowException. Note that I have used a relative 
write using the put(byte b) method.



Chapter 9 ■ New INput/Output

455

Let’s read the data that you have just written into the buffer whose state is shown in Figure 9-6. Note 
that the position of the buffer is 8 and its limit is also 8. If you call the get() method (a relative read) to read 
data from this buffer, you would get a BufferUnderflowException. You have just filled the buffer with data. 
However, when you attempt to read the data, you get an exception because the get() method returns data 
from the current position of the buffer, which is out of range in this case. The get() method will return data 
only if the position of the buffer is in the range of 0 and 7. Let’s not lose hope and try to read the data using 
an absolute position with the get(int index) method. If you call get(0), get(1) ... get(7), you will be 
surprised to know that you can read all the data you had written. Listing 9-3 demonstrates this.

Listing 9-3. Writing to and Reading from a Buffer

// BufferReadWrite.java
package com.jdojo.nio;

import java.nio.ByteBuffer;

Buffer Elements >> 0 0 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-3. Buffer state with capacity 8 after creation; buffer state is (position=0, limit=8)

Buffer Elements >> 50 0 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-4. Buffer state after calling put((byte)50); buffer state is (position= 1, limit=8)

Buffer Elements >> 50 51 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-5. Buffer state after calling put((byte)51); buffer state is (position= 2, limit=8)

Buffer Elements >> 50 51 52 53 54 55 56 57

Element’s Index >> 0 1 2 3 4 5 6 7 8

P
L

Figure 9-6. Buffer state after calling put((byte)52), put((byte)53), put((byte)54), put((byte)55), put((byte)56), 
and put((byte)57); buffer state is (position= 8, limit=8)



Chapter 9 ■ New INput/Output

456

public class BufferReadWrite {
    public static void main(String[] args) {
        // Create a byte buffer with a capacity of 8
        ByteBuffer bb = ByteBuffer.allocate(8);

        // Print the buffer info
        System.out.println("After creation:");
        printBufferInfo(bb);

        // Populate buffer elements from 50 to 57
        for (int i = 50; i < 58; i++) {
            bb.put((byte) i);
        }

        // Print the buffer info
        System.out.println("After populating data:");
        printBufferInfo(bb);
    }

    public static void printBufferInfo(ByteBuffer bb) {
        int limit = bb.limit();
        System.out.println("Position = " + bb.position() + ", Limit = " + limit);

        // Use absolute reading without affecting the position
        System.out.print("Data: ");
        for (int i = 0; i < limit; i++) {
            System.out.print(bb.get(i) + " ");
        }
        System.out.println();
    }
}

After creation:
Position = 0, Limit = 8
Data: 0 0 0 0 0 0 0 0
After populating data:
Position = 8, Limit = 8
Data: 50 51 52 53 54 55 56 57

Now you understand that there is a big difference in using relative and absolute methods for reading 
from and writing to a buffer. Both methods have a working range. The data must be read and written in the 
working range. The working range for relative and absolute methods is different.

The working range for a relative read/write are the indices between position and limit –1 of the buffer, 
where position is less than limit -1. That is, you can read/write data using the relative get() and put() 
methods if the position of the buffer is less than its limit.



Chapter 9 ■ New INput/Output

457

The working range for the absolute read/write is the index between zero and limit -1. So, how do you 
read all the data from a buffer using a relative position read, after you have finished writing data into the 
buffer? One way to accomplish this is to set the limit of the buffer equal to its position and set its position to 
0. The following snippet of code shows this technique:

// Create a byte buffer of capacity 8 and populate its elements
ByteBuffer bb = ByteBuffer.allocate(8);
for(int i = 50; i < 58; i++) {
    bb.put((byte)i);
}

// Set the limit the same as the position and set the position to 0
bb.limit(bb.position());
bb.position(0);

// Now bb is set to read all data using relative get() method
int limit = bb.limit();
for(int i = 0; i < limit; i++) {
    byte b = bb.get(); // Uses a relative read
    System.out.println(b);
}

50
51
52
53
54
55
56
57

The Buffer class has a method to accomplish just what you have coded in this snippet of code. You 
can set the limit of the buffer to its position and set the position to 0 by using its flip() method. Figure 9-7 
shows the state of a buffer, which has a capacity of 8, after it has been created and after its two elements at 
index 0 and 1 have been written. Figure 9-8 shows the state of the buffer after its flip() method is called. 
The flip() method discards the mark of a buffer if it is defined.

Buffer Elements >> 50 51 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-7. Buffer’s state just after you have written two elements at indexes 0 and 1



Chapter 9 ■ New INput/Output

458

In the previous snippet of code, you used a for loop to read the data from the buffer. The index of the 
for loop runs from zero to limit –1. However, there is an easier way to read/write data from/to a buffer using 
a relative read/write method. The hasRemaining() method of a buffer returns true if you can use relative 
get() or put() method on the buffer to read/write at least one element. You can also get the maximum 
number of elements you can read/write using relative get() or put() methods by using its remaining() 
method. Listing 9-4 demonstrates the use of these methods.

Listing 9-4. Using the flip() and hasRemaining() Methods of a Buffer Between Relative Reads and Writes

// BufferReadWriteRelativeOnly.java
package com.jdojo.nio;

import java.nio.ByteBuffer;

public class BufferReadWriteRelativeOnly {
    public static void main(String[] args) {
        // Create a byte buffer of capacity 8
        ByteBuffer bb = ByteBuffer.allocate(8);

        // Print the buffer info
        System.out.println("After creation:");
        printBufferInfo(bb);

        // Must call flip() to reset the position to zero because the printBufferInfo()
        // method uses relative get() method, which increments the position.
        bb.flip();

        // Populate buffer elements from 50 to 57
        int i = 50;
        while (bb.hasRemaining()) {
            bb.put((byte) i++);
        }

        // Call flip() again to reset the position to zero,
        // because the above put() call incremented the position
        bb.flip();

        // Print the buffer info
        System.out.println("After populating data:");
        printBufferInfo(bb);
    }

Buffer Elements >> 50 51 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-8. Buffer’s state after writing two elements at indexes 0 and 1 and calling the flip() method



Chapter 9 ■ New INput/Output

459

    public static void printBufferInfo(ByteBuffer bb) {
        int limit = bb.limit();
        System.out.println("Position = " + bb.position() + ", Limit = " + limit);

        // We use relative method of reading the data, so it affects the
        // the position of the buffer
        System.out.print("Data: ");
        while (bb.hasRemaining()) {
            System.out.print(bb.get() + " ");
        }

        System.out.println();
    }
}

After creation:
Position = 0, Limit = 8
Data: 0 0 0 0 0 0 0 0
After populating data:
Position = 0, Limit = 8
Data: 50 51 52 53 54 55 56 57

Apart from the flip() method, there are three more methods of a buffer that change its mark, position, 
and/or limit. They are clear(), reset(), and rewind().

The clear() method of a buffer sets the position to zero, limit to its capacity, and discards its mark. That 
is, it sets the buffer’s properties as if the buffer has just been created. Note that it does not change any data in 
the buffer. Figure 9-9 and Figure 9-10 show the mark, position, and limit of a buffer before and after calling the 
clear() method. Typically, you call the clear() method on a buffer before you start filling it with fresh data.

Buffer Elements >> 50 51 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

PM L

Figure 9-9. Buffer’s state before calling its clear() method

Buffer Elements >> 50 51 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-10. Buffer’s state after calling its clear() method; the clear() method discarded the mark



Chapter 9 ■ New INput/Output

460

The reset() method sets the position of a buffer equal to its mark. If a mark is not defined, it throws 
an InvalidMarkException. It does not affect the limit and data of the buffer. Typically, it is called to revisit 
(for rereading or rewriting) the buffer’s elements starting from the previously marked position and up to 
the current position. The mark of the buffer remains unchanged by the reset() method. Figure 9-11 and 
Figure 9-12 show the states of a buffer before and after its reset() method is called.

Buffer Elements >> 50 51 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

PM L

Figure 9-11. Buffer’s state before calling its reset() method

Buffer Elements >> 50 51 52 53 54 55 56 57

Element’s Index >> 0 1 2 3 4 5 6 7 8

LP
M

Figure 9-12. Buffer’s state after calling its reset() method

Buffer Elements >> 50 51 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-13. Buffer’s state before calling its rewind() method

Buffer Elements >> 50 51 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-14. Buffer’s state after calling its rewind() method

The rewind() method sets the position of the buffer to zero and discards its mark. It does not affect the 
limit. Typically, you call this method between multiple read/write operations to use the same number of 
data elements in the buffer multiple times. Figure 9-13 and Figure 9-14 show the state of a buffer before and 
after calling its rewind() method.

Read-Only Buffers
A buffer can be read-only or read-write. You can only read the contents of a read-only buffer. Any attempt to 
change the contents of a read-only buffer results in a ReadOnlyBufferException. Note that the properties of a 
read-only buffer such as its position, limit, and mark can be changed during the read operations, but not its data.



Chapter 9 ■ New INput/Output

461

You may want to get a read-only buffer from a read-write buffer, so you can pass it as an argument to a 
method to make sure the method does not modify buffer’s contents. You can get a read-only buffer by calling 
the asReadOnlyBuffer() method of the specific buffer class. You can check if a buffer is read-only by calling 
the isReadOnly() method as follows:

// Create a buffer that is read-write by default
ByteBuffer bb = ByteBuffer.allocate(1024);
boolean readOnly = bb.isReadOnly(); // Assigns false to readOnly

// Get a read-only buffer
ByteBuffer bbReadOnly = bb.asReadOnlyBuffer();
readOnly = bbReadOnly.isReadOnly(); // Assigns true to readOnly

The read-only buffer returned by the asReadOnlyBuffer() method is a different view of the same buffer. 
That is, the new read-only buffer shares data with its original buffer. Any modifications to the contents of 
the original buffer are reflected in the read-only buffer. A read-only buffer has the same value of position, 
mark, limit, and capacity as its original buffer at the time of creation and it maintains them independently 
afterwards.

Different Views of a Buffer
You can obtain different views of a buffer. A view of a buffer shares data with the original buffer and 
maintains its own position, mark, and limit. I discussed getting a read-only view of a buffer in the previous 
section that does not let its contents be modified. You can also duplicate a buffer, in which case they share 
contents, but maintain mark, position, and limit independently. Use the duplicate() method of a buffer to 
get a copy of the buffer as follows:

// Create a buffer
ByteBuffer bb = ByteBuffer.allocate(1024);

// Create a duplicate view of the buffer
ByteBuffer bbDuplicate = bb.duplicate();

You can also create a sliced view of a buffer. That is, you can create a view of a buffer that reflects only a 
portion of the contents of the original buffer. You use the slice() method of a buffer to create its sliced view 
as follows:

// Create a buffer
ByteBuffer bb = ByteBuffer.allocate(8);

// Set the position and the limit before getting a slice
bb.position(3);
bb.limit(6);

// bbSlice buffer will share data of bb from index 3 to 5.
// bbSlice will have position set to 0 and its limit set to 3.
ByteBuffer bbSlice = bb.slice();



Chapter 9 ■ New INput/Output

462

 ■ Tip  JDK9 added the duplicate() and slice() methods to the Buffer class, which is the superclass of 
other buffer types. In JDK8, these methods were in subclasses of the Buffer class. the return type of these 
methods in the Buffer class is Buffer, whereas subclasses override these methods and their return types 
are specific subclass types. For example, the return types of these methods in the ByteBuffer class are 
ByteBuffer.

You can also get a view of a byte buffer for different primitive data types. For example, you can 
get a character view, a float view, etc. of a byte buffer. The ByteBuffer class contains methods such as 
asCharBuffer(), asLongBuffer(), asFloatBuffer(), etc. to obtain a view for other primitive data types.

// Create a byte buffer
ByteBuffer bb = ByteBuffer.allocate(8);

// Create a char view of the byte buffer
CharBuffer cb = bb.asCharBuffer();

// Create a float view of the byte buffer
FloatBuffer fb = bb.asFloatBuffer();

Character Set
A character is not always stored in one byte. The number of bytes used to store a character depends on the 
coded character set and the character-encoding scheme. A coded-character set is a mapping between a set 
of abstract characters and a set of integers. A character-encoding scheme is a mapping between a coded-
character set and a set of octet sequence. Refer to Appendix A in the first volume of this series for more 
details on character set and character encoding.

An instance of the java.nio.charset.Charset class represents a character set and a character-
encoding scheme. Examples of some character set names are US-ASCII, ISO-8859-1, UTF-8, UTF-16BE, 
UTF-16LE, and UTF-16.

The process of converting a character into a sequence of bytes based on an encoding scheme is called 
character encoding. The process of converting a sequence of bytes into a character based on an encoding 
scheme is called decoding.

In NIO, you can convert a Unicode character to a sequence of bytes and vice versa using an encoding 
scheme. The java.nio.charset package provides classes to encode/decode a CharBuffer to a ByteBuffer 
and vice versa. An object of the Charset class represents the encoding scheme. The CharsetEncoder class 
performs the encoding. The CharsetDecoder class performs the decoding. You can get an object of the 
Charset class using its forName() method by passing the name of the character set as its argument.

The String and InputStreamReader classes support character encoding and decoding. When you 
use str.getBytes("UTF-8"), you are encoding the Unicode-characters stored in the string object str to 
a sequence of bytes using the UTF-8 encoding-scheme. When you use the constructor of the String class 
String(byte[] bytes, Charset charset) to create a String object, you are decoding the sequence of 
bytes in the bytes array from the specified character set to the Unicode-character set. You are also decoding 
a sequence of bytes from an input stream into Unicode-characters when you create an object of the 
InputStreamReader class using a character set.



Chapter 9 ■ New INput/Output

463

For simple encoding and decoding tasks, you can use the encode() and decode() methods of the 
Charset class. Let’s encode a sequence of characters in the string Hello stored in a character buffer and 
decode it using the UTF-8 encoding-scheme. The snippet of code to achieve this is as follows:

// Get a Charset object for UTF-8 encoding
Charset cs = Charset.forName("UTF-8");

// Character buffer to be encoded
CharBuffer cb = CharBuffer.wrap("Hello");

// Encode character buffer into a byte buffer
ByteBuffer encodedData = cs.encode(cb);

// Decode the byte buffer back to a character buffer
CharBuffer decodedData = cs.decode(encodedData);

The encode() and decode() methods of the Charset class are easy to use. However, they cannot be 
used in all situations. They require you to know the inputs in advance. Sometimes you do not know the data 
to be encoded/decoded in advance.

CharsetEncoder and CharsetDecoder classes provide much more power during the encoding and 
decoding process. They accept a chunk of input to be encoded or decoded. The encode() and decode() 
methods of the Charset class return the encoded and decoded buffers to you. However, CharsetEncoder 
and CharsetDecoder will let you use your buffers for input and output data. The power comes with a little 
complexity! If you want more powerful encoding/decoding, you need to use the following five classes 
instead of just the Charset class:

•	 Charset

•	 CharsetEncoder

•	 CharsetDecoder

•	 CoderResult

•	 CodingErrorAction

You still need to use the Charset class to represent a character set. A CharsetEncoder object lets you 
encode characters into a sequence of bytes using its encode() method. A sequence of bytes is decoded using 
the decode() method of a CharsetDecoder object. The newEncoder() method of a Charset object returns 
an instance of the CharsetEncoder class, whereas its newDecoder() method returns an instance of the 
CharsetDecoder class.

// Get encoder and decoder objects from a Charset object
Charset cs = Charset.forName("UTF-8");
CharsetEncoder encoder = cs.newEncoder();
CharsetDecoder decoder = cs.newDecoder();

Two buffers, an input buffer and an output buffer, are needed for encoding and decoding. A character 
buffer supplies the input characters to the encoding process and receives the decoded characters from 
the decoding process. The encoding process writes the encoded result into a byte buffer and the decoding 
process reads its input from a byte buffer. The following snippet of code illustrates the few steps in using an 
encoder and a decoder:



Chapter 9 ■ New INput/Output

464

// Encode characters, which are in the inputChars buffer.
// The outputBytes buffer receives encoded bytes.
CharBuffer inputChars = /* get input characters to be encoded */;
ByteBuffer outputBytes = /* get the output buffer for the encoded data */;

boolean eoi = true; // Indicates the end of the input
CoderResult result = encoder.encode(inputChars, outputBytes, eoi);

// Decode bytes, which are in the inputBytes buffer.
// The outputChars buffer receives the decoded characters.
ByteBuffer inputBytes = /* get the input bytes to be decoded */;
CharBuffer outputChars = /* get the output buffer for the decoded characters */;

boolean eoi = true; // Indicates the end of the input
CoderResult result = decoder.decode(inputBytes, outputChars, eoi);

Consider a situation of encoding 16 characters stored in a character buffer using a 4-byte buffer. The 
encoding process cannot encode all characters in one call to the encode() method. There must be a way to 
read all encoded output repeatedly. You can apply the same argument for the decoding process. You can 
pass an input to the encoding/decoding process and receive an output from them in chunks. The encoder’s 
encode() method and decoder’s decode() method return an object of the CoderResult class, which contains 
the status of the encoding/decoding process. There are two important results that this object can indicate:

•	 Underflow

•	 Overflow

An underflow indicates that the process needs more input. You can test for this condition by using the 
isUnderflow() method of the CoderResult object. You can also test this condition by comparing the return 
value of the encode() or decode() method with CoderResult.UNDERFLOW object as follows:

CoderResult result = encoder.encode(input, output, eoi);
if (result == CoderResult.UNDERFLOW) {
    // Supply some more input
}

An overflow indicates that the process has produced more output than the capacity of the output buffer. 
You need to empty the output buffer and call the encode()/decode() method again to get more output. You 
can test for this condition by using the isOverflow() method of the CoderResult object. You can also test 
for this condition by comparing the return value of the encode() or decode() method with CoderResult.
OVERFLOW object as follows:

CoderResult result = encoder.encode(input, output, eoi);
if (result == CoderResult.OVERFLOW) {
    // Empty output buffer to make some room for more output
}



Chapter 9 ■ New INput/Output

465

 ■ Tip  apart from reporting buffer underflow and overflow, a CoderResult object is also capable of 
reporting a malformed-input error and an unmappable-character error. You can also customize the default 
action of the encoding/decoding engine for these error conditions by using their onMalformedInput() and 
onUnmappableCharacter() methods.

The last argument to the encode()/decode() method is a boolean value, which indicates the end of 
the input. You should pass true for the end of the input argument when you pass the last chunk of data for 
encoding or decoding.

After passing the last chunk of data, you need to call the flush() method to flush the internal buffer 
of the engine. It returns an object of CoderResult that can indicate underflow or overflow. If there is an 
overflow, you need to empty the output buffer and call the flush() method again. You need to keep calling 
the flush() method until its return value indicates an underflow. The flush() method call should be placed 
in a loop, so you get all of the encoded/decoded data.

The DataSourceSink class in Listing 9-5 serves as a data source and a data sink. I created this class 
only for illustration purposes; you would not need a class like this in a real-world application. It supplies a 
stanza from the poem Lucy by William Wordsworth in a character buffer. The getCharData() method fills 
the character buffer. It returns -1 when there are no more characters to supply. You use this method during 
the encoding process. The storeByteData() method is used to accumulate the encoded bytes during the 
encoding process. The getByteData() method is used during the decoding process to supply the encoded 
bytes in chunks that you accumulate during the encoding process.

Listing 9-5. A Data Source and Sink that Supplies Character Data and Stores and Supplies Byte Data

// DataSourceSink.java
package com.jdojo.nio;

import java.nio.ByteBuffer;
import java.nio.CharBuffer;

public class DataSourceSink {
    private CharBuffer cBuffer = null;
    private ByteBuffer bBuffer = null;

    public DataSourceSink() {
        String text = this.getText();
        cBuffer = CharBuffer.wrap(text);
    }

    public int getByteData(ByteBuffer buffer) {
        if (!bBuffer.hasRemaining()) {
            return -1;
        }

        int count = 0;
        while (bBuffer.hasRemaining() && buffer.hasRemaining()) {
            buffer.put(bBuffer.get());
            count++;
        }



Chapter 9 ■ New INput/Output

466

        return count;
    }

    public int getCharData(CharBuffer buffer) {
        if (!cBuffer.hasRemaining()) {
            return -1;
        }

        int count = 0;
        while (cBuffer.hasRemaining() && buffer.hasRemaining()) {
            buffer.put(cBuffer.get());
            count++;
        }

        return count;
    }

    public void storeByteData(ByteBuffer byteData) {
        if (this.bBuffer == null) {
            int total = byteData.remaining();
            this.bBuffer = ByteBuffer.allocate(total);
            while (byteData.hasRemaining()) {
                this.bBuffer.put(byteData.get());
            }
            this.bBuffer.flip();
        } else {
            this.bBuffer = this.appendContent(byteData);
        }
    }

    private ByteBuffer appendContent(ByteBuffer content) {
        // Create a new buffer to accommodate new data
        int count = bBuffer.limit() + content.remaining();
        ByteBuffer newBuffer = ByteBuffer.allocate(count);

        // Set the position of bBuffer that has some data
        bBuffer.clear();
        newBuffer.put(bBuffer);
        newBuffer.put(content);
        bBuffer.clear();
        newBuffer.clear();
        return newBuffer;
    }

    public final String getText() {
        String newLine = System.getProperty("line.separator");
        StringBuilder sb = new StringBuilder();
        sb.append("My horse moved on; hoof after hoof");
        sb.append(newLine);
        sb.append("He raised, and never stopped:");
        sb.append(newLine);



Chapter 9 ■ New INput/Output

467

        sb.append("When down behind the cottage roof,");
        sb.append(newLine);
        sb.append("At once, the bright moon dropped.");

        return sb.toString();
    }
}

Listing 9-6 demonstrates how to use a character set encoder/decoder. The encode() and decode() 
methods of the CharEncoderDecoder class have the encoding and decoding logic. This example displays the 
decoded characters on the standard output.

Listing 9-6. Charset Encoder and Decoder Using a DataSourceSink as a Data Supplier/Consumer for 
Encoding/Decoding

// CharEncoderDecoder.java
package com.jdojo.nio;

import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CharsetEncoder;
import java.nio.charset.CoderResult;

public class CharEncoderDecoder {
    public static void main(String[] args) throws Exception {
        DataSourceSink dss = new DataSourceSink();

        // Display the text we are going to encode
        System.out.println("Original Text:");
        System.out.println(dss.getText());
        System.out.println("--------------------");

        // Encode the text using UTF-8 encoding. We will store
        // encoded bytes in the dss object during the encoding process
        encode(dss, "UTF-8");

        // Decode bytes stored in the dss object using UTF-8 encoding
        System.out.println("Decoded Text:");
        decode(dss, "UTF-8");
    }

    public static void encode(DataSourceSink ds, String charset) {
        CharsetEncoder encoder = Charset.forName(charset).newEncoder();

        CharBuffer input = CharBuffer.allocate(8);
        ByteBuffer output = ByteBuffer.allocate(8);

        // Initialize variables for loop
        boolean endOfInput = false;
        CoderResult result = CoderResult.UNDERFLOW;



Chapter 9 ■ New INput/Output

468

        while (!endOfInput) {
            if (result == CoderResult.UNDERFLOW) {
                input.clear();
                endOfInput = (ds.getCharData(input) == -1);
                input.flip();
            }

            // Encode the input characters
            result = encoder.encode(input, output, endOfInput);

            // Drain output when
            // 1. It is an overflow. Or,
            // 2. It is an underflow and it is the end of the input
            if (result == CoderResult.OVERFLOW
                    || (endOfInput && result == CoderResult.UNDERFLOW)) {
                output.flip();
                ds.storeByteData(output);
                output.clear();
            }
        }

        // Flush the internal state of the encoder
        while (true) {
            output.clear();
            result = encoder.flush(output);
            output.flip();
            if (output.hasRemaining()) {
                ds.storeByteData(output);
                output.clear();
            }

            // Underflow means flush() method has flushed everything
            if (result == CoderResult.UNDERFLOW) {
                break;
            }
        }
    }

    public static void decode(DataSourceSink dss, String charset) {
        CharsetDecoder decoder = Charset.forName(charset).newDecoder();
        ByteBuffer input = ByteBuffer.allocate(8);
        CharBuffer output = CharBuffer.allocate(8);

        boolean endOfInput = false;
        CoderResult result = CoderResult.UNDERFLOW;

        while (!endOfInput) {
            if (result == CoderResult.UNDERFLOW) {
                input.clear();
                endOfInput = (dss.getByteData(input) == -1);
                input.flip();
            }



Chapter 9 ■ New INput/Output

469

            // Decode the input bytes
            result = decoder.decode(input, output, endOfInput);

            // Drain output when
            // 1. It is an overflow. Or,
            // 2. It is an underflow and it is the end of the input            
            if (result == CoderResult.OVERFLOW
                    || (endOfInput && result == CoderResult.UNDERFLOW)) {

                output.flip();
                while (output.hasRemaining()) {
                    System.out.print(output.get());
                }
                output.clear();
            }
        }

        // Flush the internal state of the decoder
        while (true) {
            output.clear();
            result = decoder.flush(output);
            output.flip();
            while (output.hasRemaining()) {
                System.out.print(output.get());
            }

            if (result == CoderResult.UNDERFLOW) {
                break;
            }
        }
    }
}

Original Text:
My horse moved on; hoof after hoof
He raised, and never stopped:
When down behind the cottage roof,
At once, the bright moon dropped.
--------------------
Decoded Text:
My horse moved on; hoof after hoof
He raised, and never stopped:
When down behind the cottage roof,
At once, the bright moon dropped.

You can get the list of all available character sets supported by the JVM using the static 
availableCharsets() method of the Charset class, which returns a SortedMap<String,Charset> whose 
keys are character set names and values are Charset objects.



Chapter 9 ■ New INput/Output

470

 ■ Tip  You can create your own character encoder/decoder by using the CharsetProvider class in java.
nio.charset.spi package. You need to explore the java.nio.charset and java.nio.charset.spi packages 
for details on how to create and install your own character set. this book does not cover how to create and 
install a custom character set.

Listing 9-7 demonstrates how to list all character sets supported by the JVM. A partial output is shown. 
You may get a different output.

Listing 9-7. List of Available Character Sets Supported by Your JVM

// AvailableCharsets.java
package com.jdojo.nio;

import java.util.Map;
import java.nio.charset.Charset;
import java.util.Set;

public class AvailableCharsets {
    public static void main(String[] args) {
        Map<String, Charset> map = Charset.availableCharsets();
        Set<String> keys = map.keySet();
        System.out.println("Available Character Set Count: " + keys.size());

        for(String charsetName : keys) {
            System.out.println(charsetName);
        }
    }
}

Available Character Set Count: 170
Big5
ISO-8859-1
US-ASCII
UTF-16
UTF-16BE
UTF-16LE
UTF-32
UTF-32BE
UTF-32LE
UTF-8
windows-1250
x-iso-8859-11
...



Chapter 9 ■ New INput/Output

471

Channels
A channel is an open connection between a data source/data sink and a Java program to perform some I/O 
operations. The Channel interface is in the java.nio.channels package. It is used as a base to implement 
channels in Java. It declares only two methods: close() and isOpen(). When a channel is created, it is open 
and its isOpen() method returns true. Once you are finished using a channel, you should call its close() 
method to close it. At that point, isOpen() returns false. Figure 9-15 depicts the class diagram for the 
Channel interface.

Figure 9-15. A class diagram for the channel interface

Java program interacts with a channel for an I/O operation using byte buffers. That is, even if you have 
many different kinds of buffers, you will need to convert them to a byte buffer before you can pass them to a 
channel for reading/writing data.

A ReadableByteChannel is used to read data from a data source into a byte buffer using its read() 
method. A WritableByteChannel is used to write data from a byte buffer to a data sink using its write() 
method. A ByteChannel is capable of both reading and writing byte data.

A ScatteringByteChannel reads data from a data source into multiple byte buffers. It is useful to read 
data from a known file format or a similar data source, where data is supplied in some fixed-length headers 
followed by a variable length body. For example, suppose a file has a 256-byte fixed-length header and a 
variable length body. An object of the ScatteringByteChannel class is used to read data from this kind of file 
using two byte buffers. The first byte buffer will be of capacity 256. The second buffer will be of a size of your 
choice. When you pass these two buffers to this channel, the fixed-length header of 256 bytes will be read in 
the first buffer. The second buffer will have the file data and you may have to use the second buffer multiple 
times to read the rest of bytes from the file. The advantage of using this channel is separating the fixed-length 
header data from other data.

A GatheringByteChannel performs just the opposite of what a ScatteringByteChannel performs.  
It writes data from multiple byte buffers to a data sink. It is used to write data in a format that is grouped in 
some fixed-length headers, followed by a variable length body.



Chapter 9 ■ New INput/Output

472

An InterruptibleChannel channel can be closed asynchronously. If a thread is blocked on an I/O 
operation on this channel, another thread can call its close() method to close it. The blocked thread 
will receive an AsynchronousCloseException. If a thread is blocked on an I/O operation on this channel, 
another thread can call the interrupt() method on the blocked thread. This channel is closed, and the 
blocked thread receives a ClosedByInterruptException exception.

Typically, you do not deal with these channel interfaces directly in your programs. You deal with 
concrete channel classes that implement one or more of these interfaces. Unlike I/O streams, you do not 
create a channel directly. You get it indirectly by calling a method. To obtain a channel for a data source and 
a data sink, you need to create an object of InputStream and OutputStream—using old ways of working with 
I/O using classes in the java.io package. The Channels class in the java.nio.channels package is a utility 
class that has many static methods to convert streams into channels and vice versa. The Channels class also 
provides methods to convert readers/writers to channels and vice versa. For example, if you have an input 
stream object named myInputStream, you can obtain a ReadableByteChannel as follows:

ReadableByteChannel rbc = Channels.newChannel(myInputStream);

If you have a ReadableByteChannel named rbc, you can obtain the underlying InputStream object  
as follows:

// Get the InputStream of the ReadableByteChannel
InputStream myInputStream = Channels.newInputStream(rbc);

The FileInputStream and FileOutputStream classes contain methods to work with channels. They 
have a method called getChannel() , which returns a FileChannel object. A FileChannel is used to read 
and write data to a file. A FileChannel obtained from a FileInputStream is opened in a read-only mode. 
A FileChannel obtained from a FileOutputStream object is opened in a write-only mode. If you obtain 
a FileChannel from a RandomAccessFile, it is opened in a read-only, write-only, or read-write mode, 
depending on the way you create that RandomAccessFile object. The following snippet of code obtains 
FileChannel objects for different kinds of file streams:

FileInputStream fis = new FileInputStream("luci1.txt");
FileChannel fcReadOnly = fis.getChannel(); // A read-only channel

FileOutputStream fos = new FileOutputStream("luci1.txt");
FileChannel fcWriteOnly = fos.getChannel(); // A write-only channel

// Open file in a read-only mode
RandomAccessFile raf1 = new RandomAccessFile("luci1.txt", "r");
FileChannel rafReadOnly = raf1.getChannel(); // A read-only channel

// Open file in a read-write mode
RandomAccessFile raf2 = new RandomAccessFile("luci1.txt", "rw");
FileChannel rafReadWrite = raf2.getChannel(); // A read-write channel

 ■ Tip  You can also obtain a FileChannel using the FileChannel.open() static method. this avoids the 
need to create an input/output stream to create a FileChannel. the new open() method uses a Path object, 
which is part of NIO 2. refer to Chapter 9 on NIO 2 for more details on using a Path object.

http://dx.doi.org/10.1007/978-1-4842-3348-1_9


Chapter 9 ■ New INput/Output

473

Reading/Writing Files
I covered the basic concepts of buffers and channels. A FileChannel maintains a position as a buffer does. 
The read() and write() methods for FileChannel come in two varieties: relative position read/write and 
absolute position read/write. The meanings of relative and absolute position read/write are the same as 
in the context of a buffer read/write. When you open a FileChannel, its position is set to 0, which is the 
beginning of the file. When you read from a FileChannel using a relative read() method, its position is 
incremented by the number of bytes read. An absolute position read from a FileChannel does not affect its 
position. You can get the current value of the position of a FileChannel using its position() method. You 
can set its position to a new position using its position(int newPosition) method. You need to follow a 
few easy steps to read data from a file and to write data to a file using NIO.

The steps to read data from a file using buffer and channel are as follows:

 1. Create an object of the FileInputStream class.

 2. Get a FileChannel object using the getChannel() method of the 
FileInputStream object that you created in the previous step.

 3. Create a ByteBuffer object to read data from the file.

 4. Call the read() method of the FileChannel object by passing a ByteBuffer 
object. Make sure that before you pass the ByteBuffer, the buffer’s position and 
limit are set appropriately. A simple rule of thumb is to always call the clear() 
method on the ByteBuffer before passing it to a channel to read data into it. The 
read() method of a channel returns the number of bytes read into the buffer.

 5. Call the flip() method of the ByteBuffer, so you can read data into your 
program from the buffer. The previous step will change the position of the buffer 
because the channel reads data into it. You may need to use a CharsetDecoder 
object to decode the ByteBuffer into a character buffer if the bytes you have read 
represent characters.

 6. Read data from the ByteBuffer into your program.

 7. Repeat the process of reading data from the FileChannel into the ByteBuffer by 
calling its read() method until the read() method returns 0 or –1.

 8. Close the channel using its close() method.

 ■ Tip  Like input/output streams, channels are also AutoCloseable. If you use a try-with-resources 
statement to obtain a channel, the channel will be closed automatically, thus avoiding a need for you to call the 
close() method of the channel explicitly.

Listing 9-8 puts all of these steps together. It reads text from a file named luci1.txt. The file should be 
in your current working directory. If the file does not exist, the program prints a message with the full path 
where the file is expected to exist. If you do not have this file, create it and enter the following text in the file, 
before you run the program:

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.



Chapter 9 ■ New INput/Output

474

You need to pay close attention to the call to the clear() and flip() methods on a buffer. When you 
call the read() or write() method of a channel, it performs a relative position read/write on the buffer. 
Therefore, you must call the flip() method of the buffer to read data from it after the channel writes data 
into the buffer.

Listing 9-8. Reading from a File Using a Buffer and a Channel

// FileChannelRead.java
package com.jdojo.nio;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

public class FileChannelRead {
    public static void main(String[] args) {
        // The input file to read from
        File inputFile = new File("luci1.txt");

        // Make sure the input file exists
        if (!inputFile.exists()) {
            System.out.println("The input file " + inputFile.getAbsolutePath()
                    + " does not exist.");
            System.out.println("Aborted the file reading process.");
            System.exit(1);
        }

        // Obtain channel for luci1.txt file to read from it
        try (FileChannel fileChannel = new FileInputStream(inputFile).getChannel()) {
            // Create a buffer
            ByteBuffer buffer = ByteBuffer.allocate(1024);

            // Read all data from the channel
            while (fileChannel.read(buffer) > 0) {
                // Flip the buffer before we can read data from it
                buffer.flip();

                // Display the read data as characters on the console.
                // Note that we are assuming that a byte represents a
                // character, which is not true all the time. In a
                // real world application, you should use
                // CharsetDecoder to decode the bytes into character
                // before you display/use them.
                while (buffer.hasRemaining()) {
                    byte b = buffer.get();

                    // Assuming a byte represents a character
                    System.out.print((char) b);
                }



Chapter 9 ■ New INput/Output

475

                // Clear the buffer before the next read into it
                buffer.clear();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.

The steps to write data to a file using a buffer and a channel are as follows:

 1. Create an object of the FileOutputStream class.

 2. Get a FileChannel object using the getChannel() method of the 
FileOutputStream object that you created in the previous step.

 3. Create a ByteBuffer object to write data to the file.

 4. Fill the ByteBuffer with data.

 5. Call the flip() method of the buffer to get it ready to be read by the channel.

 6. Call the write() method of the FileChannel object by passing the ByteBuffer 
object filled with data.

 7. Close the channel by calling its close() method.

Listing 9-9 puts all these steps together to write the following text to a luci5.txt file:

In one of those sweet dreams I slept,
Kind Nature's gentlest boon!
And all the while my eyes I kept
On the descending moon.

The code creates a string from the text inserting a platform-dependent new line character between two 
lines. It converts the text into a byte array, creates a ByteBuffer by wrapping the byte array, and writes the 
buffer to the file channel. Note that you do not need to use the flip() method on the buffer because, before 
passing it to the channel for writing, your buffer object was just created with the text, and its position and 
limit were set appropriately by the wrap() method. The program prints the path of the file in which the text 
was written that may be different on your machine.

Listing 9-9. Writing to a File Using a Buffer and a Channel

// FileChannelWrite.java
package com.jdojo.nio;

import java.io.File;
import java.nio.channels.FileChannel;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.io.FileOutputStream;



Chapter 9 ■ New INput/Output

476

public class FileChannelWrite {
    public static void main(String[] args) {
        // The output file to write to
        File outputFile = new File("luci5.txt");

        try (FileChannel fileChannel = new FileOutputStream(outputFile).getChannel()) {

            // Get the text as string
            String text = getText();

            // Convert text into byte array
            byte[] byteData = text.getBytes("UTF-8");

            // Create a ByteBuffer using the byte array
            ByteBuffer buffer = ByteBuffer.wrap(byteData);

            // Write bytes to the file
            fileChannel.write(buffer);

            System.out.println("Data has been written to "
                    + outputFile.getAbsolutePath());
        } catch (IOException e1) {
            e1.printStackTrace();
        }
    }

    public static String getText() {
        String lineSeparator = System.getProperty("line.separator");
        StringBuilder sb = new StringBuilder();
        sb.append("In one of those sweet dreams I slept,");
        sb.append(lineSeparator);
        sb.append("Kind Nature's gentlest boon!");
        sb.append(lineSeparator);
        sb.append("And all the while my eyes I kept");
        sb.append(lineSeparator);
        sb.append("On the descending moon.");

        return sb.toString();
    }
}

Data has been written to C:\Java9LanguageFeatures\luci5.txt

A file has two kinds of data associated with it. One is its contents and the other is metadata such as 
creation time, last-modified time, etc. When you write data to a file channel, the data may not be actually 
written to the storage device (for example, the hard disk) immediately. To write the data to the storage 
device immediately, after a call to the write() method on a file channel, you can call its force(boolean 



Chapter 9 ■ New INput/Output

477

metaData) method. It guarantees that the file’s contents and metadata are written to its storage device. If you 
call force(false), only the file’s metadata is written to the storage device. If you call force(true), both the 
file’s content and its metadata are written to the storage device. In fact, this is guaranteed only if the storage 
device is local. Otherwise, the JVM tries its best to write the data to the storage device.

 ■ Tip  a file channel works only with byte buffers. In the examples in this section, I assumed that a character 
is represented in a byte, which is true only when you are using an encoding such as uS-aSCII or utF-8 for 
english alphabets. refer to the “Character Set” section on how to encode a character buffer into a byte buffer 
and how to decode a byte buffer into a character buffer.

Memory-Mapped File I/O
There is another way to perform I/O on a file, which is by mapping a region of the file into physical memory 
and treating it as a memory array. This is the fastest way available to perform file I/O in Java. Using a special 
kind of byte buffer called MappedByteBuffer lets you perform memory-mapped file I/O.

For memory-mapped file I/O, start by obtaining a FileChannel for the file, and use the map() method 
of the FileChannel to get a MappedByteBuffer. Read or write directly to the mapped byte buffer instead 
of using the read() or write() method of the FileChannel. When you read from the mapped byte buffer, 
you read from the file’s region you have mapped. When you write to the mapped byte buffer, you write to 
the mapped region of the file. If you want to write the written data to the mapped byte buffer immediately 
to the storage device, you need to use the force() method of the mapped byte buffer. There is no boolean 
argument to force() related to metadata.

Once you obtain the mapped byte buffer from a FileChannel, closing the channel has no effect on your 
buffer. You can keep reading/writing the mapped byte buffer, even after the FileChannel is closed.

You can map a region of a file in a read-only, read-write, or private mode. In a read-only mode, you 
can only read from the mapped byte buffer. In a read-write mode, you can read from as well as write to the 
mapped byte buffer. The private mode needs a little explanation. This mode is also called a copy-on-write 
mode. When multiple programs map the same region of a file, a separate copy of that region is not created 
for each program. Rather, all programs share the same region of the file. When a program modifies the 
mapped region, a separate copy of that region is created only for that program, which is its private copy. Any 
modification to the private copy is not visible to other programs.

The following snippet of code maps the entire luci5.txt file in read-only mode. It reads the file and 
displays the contents on the standard output.

FileInputStream fis = new FileInputStream("luci5.txt");
FileChannel fc = fis.getChannel();

long startRegion = 0;
long endRegion = fc.size();
MappedByteBuffer mbb = fc.map(FileChannel.MapMode.READ_ONLY, startRegion, endRegion);       
while(mbb.hasRemaining()) {
   System.out.print((char) mbb.get());
}

fc.close();



Chapter 9 ■ New INput/Output

478

File Locking
NIO supports file locking to synchronize access to a file. You have the ability to lock a region of a file or the 
entire file. The file locking mechanism is handled by the operating system and, therefore, its exact effect is 
platform-dependent. On some operating systems, a file lock is advisory, whereas on some, it is mandatory. 
Since it is handled by the operating system, its effect is visible to other programs as well as to Java programs 
running in other JVMs.

 ■ Tip  an advisory lock lets other users use the file on which you have acquired the lock, but prevents them 
from acquiring a lock on the same file. a mandatory lock forces the user to acquire a lock on the file before the 
file can be used.

There are two kinds of file locking: exclusive and shared. Only one program can hold an exclusive lock 
on a region of a file. Multiple programs can hold shared locks on the same region of a file. You cannot mix 
an exclusive lock and a shared lock on the same region of a file. If a program has a shared lock on a region, 
another program must wait to get an exclusive lock on that region and vice versa. Some operating systems do 
not support a shared file lock, and, in that case, the request for a shared file lock is converted to a request for 
an exclusive file lock.

An object of the FileLock class, which is in the java.nio.channels package, represents a file lock. 
You acquire a lock on a file by using the lock() or tryLock() method of the FileChannel class. The lock() 
method blocks if the lock on the requested region of the file is not available. The tryLock() method does not 
block; it returns immediately. It returns an object of the FileLock class if the lock was acquired; otherwise, it 
returns null.

Both lock() and tryLock() methods have two versions: one without an argument and another with 
three arguments. The version without an argument locks the entire file. The version with three arguments 
accepts the starting position of the region to lock, the number of bytes to lock, and a boolean flag to indicate 
if the lock is shared. The isShared() method of the FileLock object returns true if the lock is shared; 
otherwise, it returns false.

The following snippet of code shows different ways of obtaining locks on a file. The exception handling 
code is omitted for clarity.

// Create a random access file and obtain a channel for it
RandomAccessFile raf = new RandomAccessFile("test.txt", "rw");
FileChannel fileChannel = raf.getChannel();

// Get an exclusive lock on the file
FileLock lock = fileChannel.lock();

// Get an exclusive lock on first 10 bytes
FileLock lock = fileChannel.lock(0, 10, false);

// Try to get an exclusive lock on the entire file
FileLock lock = fileChannel.tryLock();
if (lock == null) {
    // Could not get the lock
} else {
    // Got the lock
}



Chapter 9 ■ New INput/Output

479

// Try to lock 100 bytes starting from the 11th byte in a shared mode
FileLock lock = fileChannel.tryLock(11, 100, true);
if (lock == null) {
    // Could not get the lock
} else {
    // Got the lock
}

The region of a file that you lock may not be contained in the range of the file size. Suppose you have 
a file with a size of 100 bytes. When you request a lock on this file, you can specify that you want to lock 
a region of this file starting at byte 11 and covering 5000 bytes. Note that this file contains only 100 bytes; 
you are locking 5000 bytes. In such a case, if the file size grows beyond 100 bytes, your lock covers the 
additional region of the file. Suppose you locked the entire file, which is 100 bytes in size. If this file grows to 
150 bytes, your lock does not cover the last 50 bytes that was added after you acquired the lock. The lock() 
and tryLock() methods of the FileChannel object, where you do not specify any argument, lock a region 
from 0 to Long.MAX_VALUE of the file. The two method calls—fc.lock() and fc.lock(0, Long.MAX_VALUE, 
false)—have the same effect.

When you are done with the file lock, you need to release it by using the release() method. A file lock 
is released in three ways: by calling its release() method, by closing the file channel it is obtained from, and 
by shutting down the JVM. It is good practice to use a try-catch-finally block to acquire and release a file 
lock as follows:

RandomAccessFile raf = new RandomAccessFile("test.txt", "rw");
FileChannel fileChannel = raf.getChannel();
FileLock lock = null;

try {
    lock = fileChannel.lock(0, 10, true);

    /* Work with the file here */
} catch(IOException e) {
    // Handle the exception
} finally {
    if (lock != null) {
        try {
            lock.release();
        } catch(IOException e) {
            // Handle the exception
        }
    }
}



Chapter 9 ■ New INput/Output

480

Copying the Contents of a File
You can use buffers and channels to copy a file much faster. Copying the contents of a file to another 
file is just one method call when you use a FileChannel. Get the FileChannel object for the source file 
and the destination file, and call the transferTo() method on the source FileChannel object or call the 
transferFrom() method on the sink FileChannel object. The following snippet of code shows how to copy 
the luci5.txt file to luci5_copy.txt:

// Obtain the source and sink channels
FileChannel sourceChannel = new FileInputStream(sourceFile).getChannel();
FileChannel sinkChannel = new FileOutputStream(sinkFile).getChannel();

// Copy source file contents to the sink file
sourceChannel.transferTo(0, sourceChannel.size(), sinkChannel);

// Instead of using the transferTo() method on the source channel,
// you can also use the transferFrom() method on the sink channel
sinkChannel.transferFrom(sourceChannel, 0, sourceChannel.size());

Listing 9-10 contains the complete code. The program prints the path of the source and destination files 
when the file copy succeeds.

Listing 9-10. Copying a File’s Contents Using a FileChannel

// FastestFileCopy.java
package com.jdojo.nio;

import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.nio.channels.FileChannel;

public class FastestFileCopy {
    public static void main(String[] args) {
        File sourceFile = new File("luci5.txt");
        File sinkFile = new File("luci5_copy.txt");
        try {
            copy(sourceFile, sinkFile, false);
            System.out.println(sourceFile.getAbsoluteFile()
                    + " has been copied to " + sinkFile.getAbsolutePath());
        } catch (IOException e) {
            System.out.println(e.getMessage());
        }
    }

    public static void copy(File sourceFile,
            File sinkFile, boolean overwrite) throws IOException {



Chapter 9 ■ New INput/Output

481

        // Perform some error checks
        if (!sourceFile.exists()) {        
            throw new IOException("Source file "
                    + sourceFile.getAbsolutePath() + " does not exist.");
        }

        if (sinkFile.exists() && !overwrite) {        
            throw new IOException("Destination file "
                    + sinkFile.getAbsolutePath() + " already exists.");
        }

        // Obtain source and sink file channels in a
        // try-with-resources block, so they are closed automatically.
        try (FileChannel srcChannel = new FileInputStream(sourceFile).getChannel();
             FileChannel sinkChannel = new FileOutputStream(sinkFile).getChannel()) {
            // Copy source file contents to the sink file
            srcChannel.transferTo(0, srcChannel.size(), sinkChannel);
        }
    }
}

Knowing the Byte Order of a Machine
If you ever wanted to know the byte order (also called endian-ness) of your machine, you need to use the 
nativeOrder() method of the ByteOrder class, as shown in Listing 9-11. The byte order of a machine/buffer 
is discussed in detail in the next section. The program prints the byte order of the machine on which it is run. 
You may get a different output.

Listing 9-11. Knowing the Endian-ness (Byte Order) of Your Machine

// MachineByteOrder.java
package com.jdojo.nio;

import java.nio.ByteOrder;

public class MachineByteOrder {
    public static void main(String args[]) {
        ByteOrder b = ByteOrder.nativeOrder();
        if (b.equals(ByteOrder.BIG_ENDIAN)) {
            System.out.println("Big endian");
        } else {
            System.out.println("Little endian");
        }
    }
}

Little endian



Chapter 9 ■ New INput/Output

482

Byte Buffer and Its Byte Order
A byte order is the order in which bytes of a multi-byte value are stored. Suppose you have a short value 300 
stored in a variable as follows:

short s = 300;

A short value is stored in two bytes. The value 300 can be represented in 16-bits as 0000000100101100, 
where the right-most bit is the least significant bit and the left-most bit is the most significant bit. You can 
split the 16-bit into two bytes as 00000001 and 00101100. At the byte level, you can think of 00000001 as the 
most significant byte and 00101100 as the least significant byte. If you consider two bytes separately for a 
short value, you may store them as either 00000001 followed by 00101100 or 00101100 followed by 00000001. 
As long as you know the order of the bytes in which they are stored, you can compute the correct value 300 
using either form of the 16 bits: 0000000100101100 or 0010110000000001.

A byte order is called big endian if the bytes of a multi-byte value are stored from the most significant 
byte to the least significant byte. If the bytes of a multi-byte value are stored from the least significant byte 
to the most significant byte, it is known as little endian. To remember the two definitions easily, you can 
replace the word “big” with “most significant,” “little” with “least significant,” and “endian” with “first”. That 
is, remember “big endian” as “most significant first” and “little endian” as “least significant first.”

If you store a short value of 300 as 0000000100101100, you are using the big endian byte order. In the 
little endian byte order, you would store 300 as 0010110000000001, which seems backwards for representing 
a 16-bit value.

When you deal with byte data in a byte buffer, you may be considering each byte as an independent 
byte. A byte in a byte buffer may be part of a bigger value. When a byte value in a byte buffer is independent, 
the byte order is not a consideration. When a byte in a byte buffer is part of a bigger value (e.g., two bytes of a 
short value 300), the byte order becomes very important in reading. If you read two bytes from a byte buffer 
to compute a short value, you must know how those two bytes are stored. Suppose you read two bytes as 
0000000100101100. If it is in a big endian byte order, it represents a value of 300. If it is in a little endian byte 
order, it represents a value of 11265.

Java uses a big-endian byte order to store data. By default, a byte buffer uses a big endian byte order. An 
instance of the java.nio.ByteOrder class represents a byte order. You will not need to instantiate this class 
because you always use the value that represents a byte order; you don’t create a new byte order. In fact, 
this class has no public constructor. You can use two constants, BIG_ENDIAN and LITTLE_ENDIAN, which are 
defined in the ByteOrder class to represent these byte orders.

 ■ Tip  a byte order is meaningful only in a multi-byte value stored in a byte buffer. You may also need to deal 
with byte orders when you are dealing with two different systems that use different byte orders.

Listing 9-12 demonstrates how to get and set byte order for a byte buffer. You use the order() method 
of the ByteBuffer class to get or set the byte order. The program stores a short value of 300 in two bytes of 
a byte buffer. It displays the values stored in the first and the second bytes using both big endian and little 
endian byte orders. The output shows the values of bytes in decimal as 1 and 44, whose binary equivalents 
are 00000001 and 00101100, respectively.



Chapter 9 ■ New INput/Output

483

Listing 9-12. Setting the Byte Order of a Byte Buffer

// ByteBufferOrder.java
package com.jdojo.nio;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;

public class ByteBufferOrder {
    public static void main(String[] args) {
        ByteBuffer bb = ByteBuffer.allocate(2);
        System.out.println("Default Byte Order: " + bb.order());
        bb.putShort((short) 300);
        bb.flip();
        showByteOrder(bb);

        // Repopulate the buffer in little endian byte order
        bb.clear();
        bb.order(ByteOrder.LITTLE_ENDIAN);
        bb.putShort((short) 300);
        bb.flip();
        showByteOrder(bb);
    }

    public static void showByteOrder(ByteBuffer bb) {
        System.out.println("Byte Order: " + bb.order());
        while (bb.hasRemaining()) {
            System.out.print(bb.get() + "  ");
        }
        System.out.println();
    }
}

Default Byte Order: BIG_ENDIAN
Byte Order: BIG_ENDIAN
1  44  
Byte Order: LITTLE_ENDIAN
44  1

Summary
New input/output (NIO) provides faster I/O compared to the stream-based input/output. NIO uses buffers 
and channels for I/O operations. A channel represents a connection between a data source/sink and a Java 
program for data transfer. A buffer contains data to be written to a file or data that is read from a file. Buffers 
for holding different types of primitive values are supported as instances of separate classes. You can use 
only a ByteBuffer for file I/O operations. NIO also supports memory-mapped file I/O that is the fastest way 
to read/write files.

A buffer maintains several properties that are affected by reading its data or writing data to it. The 
position property of a buffer is the index in the buffer that is the starting position to be read or written in the 
next read/write operation. The limit property of a buffer is the index in the buffer that is the starting index 



Chapter 9 ■ New INput/Output

484

indicating the invalid read/write position. The buffer’s position may change as you read from the buffer or 
write to the buffer.

Buffer-related classes contain methods to manipulate those properties directly as well. A buffer 
supports absolute read/write and relative read/write. In absolute read/write, the buffer’s position is 
unaffected. In a relative read/write, the position property of the buffer is automatically advanced.

Byte buffers support different views. You can use a view of a buffer to access the data buffer’s data as 
different primitive type values or to see only part of the buffer’s data.

A character is not always stored in one byte. The number of bytes used to store a character depends on 
the coded character set and the character-encoding scheme. A coded-character set is a mapping between 
a set of abstract characters and a set of integers. A character-encoding scheme is a mapping between a 
coded-character set and a set of octet sequence. An instance of the java.nio.charset.Charset class 
represents a character set and a character-encoding scheme. Examples of some character set names are 
US-ASCII, ISO-8859-1, UTF-8, UTF-16BE, UTF-16LE, and UTF-16. The process of converting a character into 
a sequence of bytes based on an encoding scheme is called character encoding. The process of converting a 
sequence of bytes into a character based on an encoding scheme is called decoding. In NIO, you can convert 
a Unicode character to a sequence of bytes and vice versa using an encoding scheme. The java.nio.
charset package provides classes to encode/decode a CharBuffer to a ByteBuffer and vice versa. An object 
of the Charset class represents the encoding scheme. The CharsetEncoder class performs the encoding. The 
CharsetDecoder class performs the decoding. You can get an object of the Charset class using its forName() 
method by passing the name of the character set as its argument.

A FileChannel, along with buffers, are used to read/write files. You can obtain a FileChannel from an 
InputStream, an OutputStream, or using the factory method of the FileChannel class. You can also lock a file 
in exclusive or shared mode using the lock() method of the FileChannel class.

The byte order is the order in which bytes of a multi-byte value are stored. A byte order is called big 
endian if the bytes of a multi-byte value are stored from the most significant byte to the least significant byte. 
If the bytes of a multi-byte value are stored from the least significant byte to the most significant byte, it is 
known as little endian. You need to deal with the byte order of a byte buffer if the buffer represents multi-
byte data. The java.nio.ByteOrder class represents the byte order. It contains two constants, BIG_ENDIAN 
and LITTLE_ENDIAN, to represent big-endian and little-endian byte orders, respectively.

QUESTIONS AND EXERCISES

1. what is new input/output?

2. what is a buffer? Name three classes that represent three different types of buffers.

3. Define the capacity, position, and limit of a buffer. write the invariant that must be 
true all the time for these three properties of a buffer.

4. what is the difference between relative read and absolute read from a buffer?

5. after you have written into a Buffer, what method do you need to call on the 
Buffer before you start reading the written data using a relative read?

6. what is the difference between the remaining() and hasRemaining() methods of 
the Buffer class?

7. what is the effect of calling the clear() method of a Buffer?

8. what is the effect of calling the reset() method of a Buffer?

9. what is the effect of calling the rewind() method of a Buffer?



Chapter 9 ■ New INput/Output

485

10. write the output when the following code for a TestReadOnlyBufferTest class is 
run. this exercise is to test your knowledge about the properties of a read-only buffer.

// ReadOnlyBufferTest.java
package com.jdojo.nio;

import java.nio.IntBuffer;

public class ReadOnlyBufferTest {
    public static void main(String[] args) {
        // Create an IntBuffer of capacity 1
        IntBuffer data = IntBuffer.allocate(1);
        System.out.println(data.isReadOnly());

        // Get a read-only copy of the IntBuffer
        IntBuffer copy = data.asReadOnlyBuffer();
        System.out.println(copy.isReadOnly());

        // Print the contents of the read-only buffer
        System.out.println(copy.get());

        // Write into the original buffer
        data.put(64);

        // Print the contents of the read-only buffer again
        copy.rewind();
        System.out.println(copy.get());
    }
}

11. Suppose you have an IntBuffer. what is the difference between creating two 
copies of the IntBuffer, one by using the asReadOnlyBuffer() method and 
another by using the duplicate() method?

12. what do instances of the following classes represent: Charset, CharsetEncoder, 
and CharsetDecoder?

13. what is a channel? what is the fully qualified name of the interface that every 
implementation of a channel implements? If you have a reference to a channel, 
how would you tell if the channel is open?

14. when do you use instances of the GatheringByteChannel and 
ScatteringByteChannel classes?

15. Suppose you have a file named test.txt in your current directory. write a snippet 
of code to get a FileChannel for this file in read-write mode.

16. what is memory-mapped file I/O? Name a class whose instances are used to work 
with memory-mapped file I/O.

17. what is the difference in using the lock() and tryLock() methods of the 
FileChannel class while locking a region of a file?

18. write a snippet of code that prints the byte order (little-endian or big-endian) of the 
current machine.



487© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_10

CHAPTER 10

New Input/Output 2

In this chapter, you will learn:

•	 What New Input/Output 2 is

•	 How to work with a file system and file store

•	 How to represent a platform-dependent abstract pathname using a Path

•	 How to perform different file operations on a Path object

•	 How to traverse a file tree

•	 How to manage file attributes

•	 How to watch a directory for changes

•	 How to perform asynchronous file I/O operations

All example programs in this chapter are members of a jdojo.nio2 module, as declared in Listing 10-1. 
The JDK9 module system discourages including digits at the end of a module name. However, jdojo.nio2 
(note the 2 at the end of the name) is the best name that I can give to this module, as it contains examples for 
the New Input/Output 2 topic.

Listing 10-1. The Declaration of a jdojo.nio2 Module

// module-info.java
module jdojo.nio2 {
    exports com.jdojo.nio2;
}

What Is New Input/Output 2?
Java 7 introduced the New Input/Output 2 (NIO.2) API, which provides a new I/O API. It provides many 
features that were lacking in the original File I/O API. The features provided in NIO.2 are essential for 
working with a file system efficiently. It adds three packages to the Java class library: java.nio.file, java.
nio.file.attribute, and java.nio.file.spi. The following are some of the new features of NIO.2:

•	 It lets you deal with all file systems in a uniform way. The file system support 
provided by NIO.2 is extensible. You can use the default implementation for a file 
system or you can choose to implement your own file system.

https://doi.org/10.1007/978-1-4842-3348-1_10


Chapter 10 ■ New INput/Output 2

488

•	 It supports basic file operations (copy, move, and delete) on all file systems. It 
supports an atomic file move operation. It has improved exception handling support.

•	 It has support for symbolic links. Whenever applicable, operations on a symbolic link 
are redirected to the target file.

•	 One of the most important additions to NIO.2 is the support for accessing the 
attributes of file systems and files.

•	 It lets you create a watch service to watch for any events on a directory such as 
adding a new file or a subdirectory, deleting a file, etc. When such an event occurs on 
the directory, your program receives a notification through the watch service.

•	 It added an API that lets you walk through a file tree. You can perform a file operation 
on a node as you walk through the file tree.

•	 It supports asynchronous I/O on network sockets and files.

•	 It supports multicasting using a DatagramChannel.

Working with a File System
An object of the FileSystem class represents a file system in a Java program. A FileSystem object is used to 
perform two tasks:

•	 To act as an interface between a Java program and a file system.

•	 To act as a factory for creating many types of file system-related objects and services.

A FileSystem object is platform-dependent. You do not create an object of the FileSystem class 
directly. To obtain the default FileSystem object for a platform, you need to use the getDefault() static 
method of the FileSystems class as follows:

// Create the platform-specific default file system object
FileSystem fs = FileSystems.getDefault();

Typically, a file system consists of one or more file stores. A file store provides storage for files. The 
getFileStores() method of the FileSystem class returns an Iterable<FileStore>, which you can use to 
iterate over all file stores of a file system.

A file system may be represented differently on different platforms. One platform may represent a file 
system in a single hierarchy of files with one top-level root directory, whereas another may represent it 
in multiple hierarchies of files with multiple top-level directories. The getRootDirectories() method of 
the FileSystem class returns an Iterable<Path>, which can be used to iterate over paths to all top-level 
directories in the file system. I discuss the Path class in detail in the next section.

You can use the isReadOnly() method of the FileSystem object to test if it only allows read-only access 
to the file stores. You will work with the FileSystem class in subsequent sections to create the file system-
related objects and services.

Listing 10-2 demonstrates how to use a FileSystem object. It uses the default file system for the 
platform. The output shows the file system information when the program was run on Windows; you may 
get different output when you run the program.



Chapter 10 ■ New INput/Output 2

489

Listing 10-2. Retrieving Information About a File System

// FileSystemTest.java
package com.jdojo.nio2;

import java.nio.file.FileStore;
import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.Path;
import java.io.IOException;

public class FileSystemTest {
    public static void main(String[] args) {
        // Get the reference to the default file system
        FileSystem fs = FileSystems.getDefault();

        System.out.println("Read-only file system: " + fs.isReadOnly());
        System.out.println("File name separator: " + fs.getSeparator());

        System.out.println("\nAvailable file-stores are");

        for (FileStore store : fs.getFileStores()) {
            printDetails(store);
        }

        System.out.println("\nAvailable root directories are");

        for (Path root : fs.getRootDirectories()) {
            System.out.println(root);
        }
    }

    public static void printDetails(FileStore store) {
        try {
            String desc = store.toString();
            String type = store.type();
            long totalSpace = store.getTotalSpace();
            long unallocatedSpace = store.getUnallocatedSpace();
            long availableSpace = store.getUsableSpace();
            System.out.println(desc + ", Total: " + totalSpace
                    + ", Unallocated: " + unallocatedSpace
                    + ", Available: " + availableSpace);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}



Chapter 10 ■ New INput/Output 2

490

Read-only file system: false
File name separator: \

Available file-stores are
OS (C:), Total: 985563918336, Unallocated: 828183392256, Available: 828183392256

Available root directories are
C:\
E:\

Working with Paths
Typically, a file system stores objects (files, directories, symbolic links, etc.) in a hierarchical fashion. A 
file system uses one or more root nodes that serve as the root of the hierarchy. An object in a file system 
has a path, which is typically represented as a string, such as C:\home\test.txt on Windows, and /home/
test.txt on UNIX-like operating systems. A path string may contain multiple components separated by 
a special character called a separator or delimiter. For example, the path C:\home\test.txt consists of 
three components: C:\ as the root, home as a directory, and test.txt as a file name. A backslash is a path 
separator on Windows. UNIX-like operating systems use a forward slash (/) as the path separator. Note that 
path representation is platform-dependent.

A path can be absolute or relative. If a path starts with a root node, it is an absolute path. A relative path 
does not start with a root node. No additional information is needed to locate an object referred in a file 
system by an absolute path. Additional information is needed to locate an object referred in a file system by 
a relative path. For example, on Windows, the path C:\home\test.txt is an absolute path because it starts 
with the root node C:\, whereas the path luci1.txt is a relative path. To locate the luci1.txt file, you need 
more information, such as the path of the directory in which it exists.

A Path object is a programmatic representation of a path of an object in a file system such as a file, a 
directory, and a symbolic link. A file system path is platform-dependent, so is a Path object.

Path is an interface in the java.nio.file package. When you work with a Path object, it is most likely 
that you will also need to work with its two companion classes: Paths and Files. A path does not have to 
exist in a file system to create a Path object to represent it in a Java program.

 ■ Tip  as a developer, you will be using Path objects most of the time when working with NIO.2 apI. the path 
apI meets most of the file I/O-related needs of a developer. It has been designed to work with the old java.
io.File apI. You can get a Path object from a File object using the toPath() method of the File class. You 
can get a File object from a Path object using the toFile() method of a Path object.

You can perform two kinds of operations on a Path object:

•	 Path-related operations

•	 File I/O operations

The methods in the Path interface let you perform the following path-related operations:

•	 Accessing the components of a path such as the file name, root name, etc.

•	 Comparing and testing paths. For example, checking if a path ends with .txt, 
comparing if two paths are identical, checking if a path is absolute or relative, etc.

•	 Combining and resolving paths.



Chapter 10 ■ New INput/Output 2

491

The Path interface does not include any methods to perform file I/O operations. You need to use the 
Files class to perform the file I/O operations on a Path object. The Files class consists of all static methods. 
I cover using the Files class shortly. First I cover the details of using the Path interface.

Creating a Path Object
The getPath() method of the FileSystem class acts as a factory method to create Path objects. The 
following snippet of code creates a Path object for the file path C:\poems\luci1.txt on Windows:

Path p1 = FileSystems.getDefault().getPath("C:\\poems\\luci1.txt");

You can pass components of a path separately to the getPath() method when constructing a Path 
object. Java will take care of using the appropriate platform-dependent file name separators. The following 
statement creates a Path object to represent the C:\poems\luci1.txt path on Windows:

Path p2 = FileSystems.getDefault().getPath("C:", "poems", "luci1.txt");

The Path API includes a utility class called Paths whose sole job is to create a Path object from the 
components of a path string or a URI. The Paths class contains the following two static methods:

•	 Path get(String first, String... more)

•	 Path get(URI uri)

Both methods in the Paths class internally delegate the call to the default FileSystem. The following 
snippet of code creates Path objects to represent the same path, C:\poems\luci1.txt:

Path p3 = Paths.get("C:\\poems\\luci1.txt");
Path p4 = Paths.get("C:", "poems", "luci1.txt");

 ■ Tip  You can create a Path object from an empty path such as Paths.get(""). a Path object with an 
empty path refers to the default directory of the file system. a default directory is the same as the current 
working directory.

Accessing Components of a Path
A path in a file system consists of one or more components. The methods of the Path interface let you access 
those components.

The getNameCount() method returns the number of components in a Path excluding the root. For 
example, the C:\poems\luci1.txt path consists of three components: the root named C:, and two 
components named poems and luci1.txt. In this case, the getNameCount() method returns 2. The 
getName(int index) method returns the component name at the specified index. The component closest  
to the root has an index of 0. The component farthest from the root has an index of count - 1. In the path 
C:\poems\luci1.txt, the index of the poems component is 0 and the index of the luci1.txt component is 1.

The getParent() method returns the parent of a path. If a path does not have a parent, it returns null. 
The parent of a path is the path itself without the farthest component from the root. For example, the parent 
of the C:\poems\luci.txt path is C:\poems. The relative path test.txt has no parent.

The getRoot() method returns the root of the path. If a path does not have a root, it returns null. For 
example, the C:\poems\luci1.txt path on Windows has C:\ as its root.



Chapter 10 ■ New INput/Output 2

492

The getFileName() method returns the file name denoted by the path. If a path has no file name, it 
returns null. The file name is the farthest component from the root. For example, in the C:\poems\luci1.
txt path, luci1.txt is the file name.

You can check if a path represents an absolute path by using the isAbsolute() method.

 ■ Tip  a path does not have to exist in the file system to get information about its components. the Path 
apI uses the information provided in the path string to give you all these pieces of information about the path’s 
components.

Listing 10-3 demonstrates how to access components of a Path object. One of the paths used in this 
example is a Windows-based path. If you are not running the program on Windows, change the path in the 
main() method to represent a valid path on your platform. You may get different output when you run the 
program.

Listing 10-3. Demonstrating How to Access Components of a Path

// PathComponentsTest.java
package com.jdojo.nio2;

import java.nio.file.Path;
import java.nio.file.Paths;

public class PathComponentsTest {
    public static void main(String[] args) {
        Path p1 = Paths.get("C:\\poems\\luci1.txt");
        printDetails(p1);

        System.out.println("----------------------");

        Path p2 = Paths.get("luci1.txt");
        printDetails(p2);
    }

    public static void printDetails(Path p) {
        System.out.println("Details for path: " + p);

        int count = p.getNameCount();
        System.out.println("Name count: " + count);

        for (int i = 0; i < count; i++) {
            Path name = p.getName(i);
            System.out.println("Name at index " + i + " is " + name);
        }

        Path parent = p.getParent();
        Path root = p.getRoot();
        Path fileName = p.getFileName();
        System.out.println("Parent: " + parent + ", Root: " + root
                + ", File Name: " + fileName);



Chapter 10 ■ New INput/Output 2

493

        System.out.println("Absolute Path: " + p.isAbsolute());
    }
}

Details for path: C:\poems\luci1.txt
Name count: 2
Name at index 0 is poems
Name at index 1 is luci1.txt
Parent: C:\poems, Root: C:\, File Name: luci1.txt
Absolute Path: true
----------------------
Details for path: luci1.txt
Name count: 1
Name at index 0 is luci1.txt
Parent: null, Root: null, File Name: luci1.txt
Absolute Path: false

Comparing Paths
You can compare two Path objects for equality based on their textual representation. The equals() method 
tests for the equality of two Path objects by comparing their string forms. Whether the equality test is case-
sensitive depends on the file system. For example, the path comparison for equality is case-insensitive on 
Windows. The following snippet of code shows how to compare paths on Windows:

Path p1 = Paths.get("C:\\poems\\luci1.txt");
Path p2 = Paths.get("C:\\POEMS\\LUCI1.TXT");
Path p3 = Paths.get("C:\\poems\\..\\poems\\luci1.txt");
boolean b1 = p1.equals(p2); // Returns true on Windows
boolean b2 = p1.equals(p3); // Returns false on Windows

In this snippet of code, p1.equals(p3) returns false, even though p1 and p3 refer to the same file; this 
is so because the equals() method compares two paths textually without resolving the actual file references.

 ■ Tip  the Path.equals() method does not test a Path for existence in the file system.

The Path interface implements the java.lang.Comparable interface. You can use its compareTo() 
method to compare it with another Path object textually. The compareTo() method returns an int value, 
which is 0, less than 0, or greater than 0, when the two paths are equal, the path is less than the specified 
path, or the path is greater than the specified path, respectively. It is useful in sorting multiple paths in the 
textual order. The file system is not accessed when paths are compared using the compareTo() method. The 
ordering used by this method to compare two paths is platform-dependent. The following snippet of code 
shows examples of using the compareTo() method on Windows:

Path p1 = Paths.get("C:\\poems\\luci1.txt");
Path p2 = Paths.get("C:\\POEMS\\Luci1.txt");
Path p3 = Paths.get("C:\\poems\\..\\poems\\luci1.txt");
int v1 = p1.compareTo(p2); // Assigns 0 to v1  
int v2 = p1.compareTo(p3); // Assigns 30 to v2  



Chapter 10 ■ New INput/Output 2

494

You can use the endsWith()and startsWith() methods to test if a path ends with and starts with a 
given path, respectively. It is important to note that these methods do not test if a path ends and starts with 
a text, respectively. They test if a path ends and starts with components of another path, respectively. The 
following snippet of code shows some examples of using these methods with paths on Windows:

Path p1 = Paths.get("C:\\poems\\luci1.txt");
Path p2 = Paths.get("luci1.txt");
Path p3 = Paths.get("poems\\luci1.txt");
Path p4 = Paths.get(".txt");

// Using endsWith()  
boolean b1 = p1.endsWith(p2); // Assigns true to b1  
boolean b2 = p1.endsWith(p3); // Assigns true to b2  
boolean b3 = p1.endsWith(p4); // Assigns false to b3  

// Using startsWith()  
Path p5 = Paths.get("C:\\");
Path p6 = Paths.get("C:\\poems");
Path p7 = Paths.get("C:\\poem");

boolean b4 = p1.startsWith(p5); // Assigns true to b4
boolean b5 = p1.startsWith(p6); // Assigns true to b5  
boolean b6 = p1.startsWith(p7); // Assigns false to b6

The endsWith() method compares the components, not the text, of a path with the specified path. For 
example, the path C:\poems\luci1.txt ends with luci1.txt, poems\luci1.txt, and C:\poems\luci1.txt. 
The same logic is used by the startsWith() method, though in the reverse order.

You can use the isSameFile(Path p1, Path p2) method of the Files class to check if two paths 
refer to the same file. If p1.equals(p2) returns true, this method returns true without verifying the 
existence of the paths in the file system. Otherwise, it checks with the file system, if both paths locate 
the same file. The file system implementation may require this method to access or open both files. The 
isSameFile() method throws an IOException when an I/O error occurs. Listing 10-4 demonstrates how 
the isSameFile() method works.

Listing 10-4. Checking If Two Paths Will Locate the Same File

// SameFileTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class SameFileTest {
    public static void main(String[] args) {
        // Assume that C:\poems\luci1.txt file exists  
        Path p1 = Paths.get("C:\\poems\\luci1.txt");
        Path p2 = Paths.get("C:\\poems\\..\\poems\\luci1.txt");

        // Assume that C:\abc.txt file does not exist  
        Path p3 = Paths.get("C:\\abc.txt");
        Path p4 = Paths.get("C:\\abc.txt");



Chapter 10 ■ New INput/Output 2

495

        try {
            boolean isSame = Files.isSameFile(p1, p2);
            System.out.println("p1 and p2 are the same: " + isSame);

            isSame = Files.isSameFile(p3, p4);
            System.out.println("p3 and p4 are the same: " + isSame);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

p1 and p2 are the same: true
p3 and p4 are the same: true

Let’s assume that the file denoted by the C:\poems\luci1.txt path exists. Since paths p1 and p2 are 
not equal using the equals() method, the isSameFile() method looks for these two paths in the file system 
for existence. It returns true, because p1 and p2 will resolve to the same file in the file system. Assume that 
the file denoted by the C:\abc.txt path does not exist. The isSameFile(p3, p4) method call returns true 
because both paths are textually equal. The output depends on the existence and non-existence of these 
files. The program may print the stack trace of an error if it does not find files at the same location. Change 
the file paths in the program to play with these methods. If you are running the program on the platform 
other than Windows, you must change the file path to conform to the path syntax used on your platform.

Normalizing, Resolving, and Relativizing Paths
In a file system, it is common to use a dot and two dots to represent the current directory and the parent 
directory, respectively. Sometimes it is also acceptable to specify more than one consecutive delimiter 
between a file name and a directory name. The normalize() method of the Path interface returns a Path 
after removing these extra characters. This method does not access the file system. Sometimes a normalized 
path may not locate the same file as the original path if the original path contained a symbolic link. The 
following snippet of code shows some examples of normalizing paths on Windows. Change the paths to 
conform to your platform if you run this code on other platforms.

Path p1 = Paths.get("C:\\poems\\..\\\\poems\\luci1.txt");
Path p1n = p1.normalize();
System.out.println(p1 + " normalized to " + p1n);

Path p2 = Paths.get("C:\\poems\\luci1.txt");
Path p2n = p2.normalize();
System.out.println(p2 + " normalized to " + p2n);

Path p3 = Paths.get("a\\..\\.\\test.txt");
Path p3n = p3.normalize();
System.out.println(p3 + " normalized to " + p3n);

C:\poems\..\poems\luci1.txt normalized to C:\poems\luci1.txt
C:\poems\luci1.txt normalized to C:\poems\luci1.txt
a\..\.\test.txt normalized to test.txt



Chapter 10 ■ New INput/Output 2

496

You can combine two paths using the resolve(Path p) method of the Path interface. If the specified 
path is an absolute path, it returns the specified path. It returns the path if the specified path is an empty 
path. In other cases, it simply combines the two paths and returns the result, so the returned path ends with 
the specified path. The path on which this method is invoked is assumed to be a directory. The following 
snippet of code shows some examples of resolving paths on Windows. Change the paths to conform to your 
platform if you run this code on other platforms.

Path p1 = Paths.get("C:\\poems");
Path p2 = Paths.get("luci1.txt");
System.out.println(p1.resolve(p2));

Path p3 = Paths.get("C:\\test.txt");
System.out.println(p1.resolve(p3));

Path p4 = Paths.get("");
System.out.println(p1.resolve(p4));

Path p5 = Paths.get("poems\\Luci");
Path p6 = Paths.get("luci4.txt");
System.out.println(p5.resolve(p6));

C:\poems\luci1.txt
C:\test.txt
C:\poems
poems\Luci\luci4.txt

Relativizing is the process of getting a relative path for a given path against another path. The 
relativize(Path p) method of the Path interface does this job. The relative path that is returned from this 
method, when resolved against the same path against which the path was relativized, returns the same given 
path. A relative path cannot be obtained if one of the paths has a root element. Whether a relative path can 
be obtained is platform-dependent if both paths have root elements. The following snippet of code shows 
some examples of getting relative paths. When there is no common sub-path between the two paths, it is 
assumed that both paths locate sibling objects. For example, when getting a relative path for Doug against 
Bobby, it is assumed that Doug and Bobby are siblings. The output is shown when the program was run on 
Windows. On other platforms, you may get a slightly different output.

Path p1 = Paths.get("poems");
Path p2 = Paths.get("poems", "recent", "Luci");
System.out.println(p1.relativize(p2));
System.out.println(p2.relativize(p1));

Path p3 = Paths.get("Doug");
Path p4 = Paths.get("Bobby");
System.out.println(p3.relativize(p4));
System.out.println(p4.relativize(p3));

recent\Luci
..\..
..\Bobby
..\Doug



Chapter 10 ■ New INput/Output 2

497

Symbolic Links
A symbolic link is a special type of file that contains a reference to another file or directory. A symbolic link 
is also known as symlink or soft link. The file referenced by a symbolic link is known as the target file for the 
symbolic link. Some operating systems that support symbolic links are UNIX-like operating systems (Linux, 
Mac OS X, etc.), Windows 10, etc.

Operations on a symbolic link are transparent to the application. When an operation is performed 
on a symbolic link, the operating system performs the operation on the target of the link. For example, 
performing a read/write operation on a symbolic link performs a read/write on its target. However, the 
delete, move, and rename operations are performed directly on the link, rather than on its target. Sometimes 
it is possible to have a circular reference in a symbolic link, where the target of a symbolic link points back to 
the original link.

The NIO.2 API fully supports symbolic links. It has safeguards in place to detect a circular reference 
in a symbolic link. You can work with symbolic links using the java.nio.file.Files class. You can use its 
isSymbolicLink(Path p) method to check if the file denoted by the specified path is a symbolic link. The 
createSymbolicLink() method of the Files class is used to create a symbolic link.

 ■ Tip  the createSymbolicLink() method in the Files class is an optional operation, which may not be 
supported on all platforms.

The following snippet of code shows how to create a symbolic link for a file on Windows. When I use 
Windows, the administrative privilege is required to create symbolic links. If you do not have this privilege, 
you will get an exception with an appropriate error message indicating this.

Path existingFilePath = Paths.get("C:\\poems\\luci1.txt");
Path symLinkPath = Paths.get("C:\\luci1_link.txt");
try {
    Files.createSymbolicLink(symLinkPath, existingFilePath);
} catch (IOException e) {
    e.printStackTrace();
}

The NIO.2 API follows the symbolic link by default. In some cases, you can specify whether you want 
to follow a symbolic link or not. The option not to follow a symbolic link is indicated by using the enum 
constant LinkOption.NOFOLLOW_LINKS. The LinkOption enum is in the java.nio.file package. Methods 
supporting this option let you pass an argument of the LinkOption type.

 ■ Tip the NIO.2 apI also supports regular links (also known as hard links). You can use the createLink(Path 
newLink, Path existingPath) method of the Files class to create a hard link.

Different Forms of a Path
You can get different types of representations for a path. Suppose you create a Path object as follows:

// Create a Path object to represent a relative path
Path p1 = Paths.get("test.txt");



Chapter 10 ■ New INput/Output 2

498

Here, p1 represents a relative path. You can get the absolute path that is represented by p1 using its 
toAbsolutePath() method as follows:

// Get the absolute path represented by p1
Path p1AbsPath = p1.toAbsolutePath();

Now the p1AbsPath is the absolute path for p1. For example, on Windows, p1AbsPath may look like 
C:\testapp\test.txt. If a path is not an absolute path, the toAbsolutePath() method uses a platform-
dependent default directory to resolve the path to give you the absolute path. If the path is an absolute path, 
the toAbsolutePath() method returns the same path.

You can use the toRealPath() method to get the real path of an existing file. It returns a canonical path 
to an existing file. If the path represents a symbolic link, it returns the real path of the target file. You can pass 
a link option to this method indicating whether you do not want to follow the symbolic link to its target. If the 
file represented by the path does not exist, the toRealPath() throws an IOException. The following snippet 
of code demonstrates how to get the real path from a Path object:

import java.io.IOException;
import java.nio.file.LinkOption;
import java.nio.file.Path;
import java.nio.file.Paths;
...
try {
    Path p2 = Paths.get("test2.txt");

    // Follow link for p2 if it is a symbolic link  
    Path p2RealPath = p2.toRealPath();

    System.out.println("p2RealPath:" + p2RealPath);
} catch (IOException e) {
    e.printStackTrace();
}

try {
    Path p3 = Paths.get("test3.txt");

    // Do not follow link for p3, if it is a symbolic link  
    Path p3RealPath = p3.toRealPath(LinkOption.NOFOLLOW_LINKS);        

    System.out.println("p3RealPath:" + p3RealPath);
} catch (IOException e) {
    e.printStackTrace();
}

You can use the toUri() method of a Path object to get its URI representation. A URI representation of 
a path is highly platform-dependent. Typically, a URI form of a path can be used in a browser to open the 
file indicated by the path. The following snippet of code shows how to get the URI form of a path. The output 
was generated on Windows. You may get different output.

Path p2 = Paths.get("test2.txt");
java.net.URI p2UriPath = p2.toUri();
System.out.println("Absolute Path: " + p2.toAbsolutePath());
System.out.println("URI Path: " + p2UriPath);



Chapter 10 ■ New INput/Output 2

499

Absolute Path: C:\java_code\testapp\test2.txt
URI Path: file:///C:/java_code/testapp/test2.txt

Performing File Operations on a Path
The java.nio.file.Files class consists of all static methods that let you perform most of the file operations 
on a Path object.

Creating New Files
The Files class provides several methods to create regular files, directories, symbolic links, and temporary 
files/directories. These methods throw an IOException when an I/O error occurs during the file creation; 
for example, they throw a java.nio.file.FileAlreadyExistsException if you attempt to create a file that 
already exists. Most of the methods accept a varargs parameter of the FileAttribute type, which lets you 
specify the file attributes. I discuss file attributes shortly.

You can use the createFile() method to create a new regular file. The new file, if created, is empty. The 
file creation fails in case the file already exists, or the parent directory does not exist. Listing 10-5 shows how 
to create a new file. It attempts to create a text.txt file in your default directory. The program prints the 
details of the file creation status.

Listing 10-5. Creating a New File

// CreateFileTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileAlreadyExistsException;
import java.nio.file.Files;
import java.nio.file.NoSuchFileException;
import java.nio.file.Path;
import java.nio.file.Paths;

public class CreateFileTest {
    public static void main(String[] args) {
        Path p1 = Paths.get("test.txt");
        try {
            Files.createFile(p1);
            System.out.format("File created: %s%n", p1.toRealPath());
        } catch (FileAlreadyExistsException e) {
            System.out.format("File %s already exists.%n",
                    p1.normalize());
        } catch (NoSuchFileException e) {
            System.out.format("Directory %s does not exists.%n",
                    p1.normalize().getParent());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}



Chapter 10 ■ New INput/Output 2

500

The createDirectory() and createDirectories() methods are used to create a new directory. 
If the parent directory of the new directory does not exist, the createDirectory() method fails. 
The createDirectories() method creates a non-existent parent directory. You can use the 
createTempDirectory() and createTempFile() methods to create a temporary directory and a temporary 
file, respectively.

The following snippet of code shows how to create temporary files and directories. The output was 
generated when the program ran on Windows 10. The name generation for a temporary directory/file is 
implementation-dependent. Attempts are made to use the supplied prefix and suffix for the temporary file/
directory. You need to change the paths to conform to your platform and you may get different output.

try {
    String dirPrefix = "KDir";
    Path tDir = Files.createTempDirectory(dirPrefix);
    System.out.println("Temp directory: " + tDir);

    String fPrefix = "KF_";
    String fSuffix = ".txt";
    Path tFile1 = Files.createTempFile(fPrefix, fSuffix);
    System.out.println("Temp file1: " + tFile1);
} catch (IOException e) {
    e.printStackTrace();
}

Temp directory: C:\Users\ksharan\KDir15281773985593265118
Temp file1: C:\Users\ksharan\KF_18251942286323641819.txt

A temporary file/directory is not automatically deleted. You may want to use the deleteOnExit() 
method of the java.io.File class to delete the file when the JVM exits.

Path tempFile = Files.createTempFile("myTempFile", ".txt");

// Delete the file when the JVM exits
tempFile.toFile().deleteOnExit();

Deleting Files
The Files class contains the following two methods to delete a file, a directory, and a symbolic link:

•	 void delete(Path path) throws IOException

•	 boolean deleteIfExists(Path path) throws IOException

The delete() method throws an IOException if the deletion fails. For example, it throws a 
NoSuchFileException if the file being deleted does not exist and throws a DirectoryNotEmptyException if 
the directory being deleted is not empty.

The deleteIfExists() method does not throw a NoSuchFileException if the file being 
deleted does not exist. It returns true if it deletes the file. Otherwise, it returns false. It throws a 
DirectoryNotEmptyException if the directory being deleted is not empty.



Chapter 10 ■ New INput/Output 2

501

The following snippet of code shows how to delete a file and handle exceptions:

// Create a Path object on Windows
Path p = Paths.get("C:\\poems\\luci1.txt");

try {
    // Delete the file  
    Files.delete(p);
    System.out.println(p + " deleted successfully.");
} catch (NoSuchFileException e) {
    System.out.println(p + " does not exist.");
} catch (DirectoryNotEmptyException e) {
    System.out.println("Directory " + p + " is not empty.");
} catch (IOException e) {
    e.printStackTrace();
}

Checking for Existence of a File
The Files class provides the following two methods to check for existence and non-existence of a file:

•	 boolean exists(Path path, LinkOption... options)

•	 boolean notExists(Path path, LinkOption... options)

These two methods are not the opposite of each other. If it is not possible to determine whether a file 
exists, both methods return false. If you need to take an action when a file exists, use the exists() method 
in your logic. If you need to take an action when a file does not exist, use the notExists() method.

Copying and Moving Files
The Files class provides the following three versions of the copy() method to copy contents and attributes 
of a file to another file:

•	 long copy(InputStream in, Path target, CopyOption... options)

•	 long copy(Path source, OutputStream out)

•	 Path copy(Path source, Path target, CopyOption... options)

If the specified source file is a symbolic link, the target of the symbolic link is copied, not the symbolic 
link. If the specified source file is a directory, an empty directory at the target location is created without 
copying the contents of the directory. If the specified source and target files are the same, the copy() 
method does not do anything.

You can specify one or more of the following copy options with the copy() method:

•	 StandardCopyOption.REPLACE_EXISTING

•	 StandardCopyOption.COPY_ATTRIBUTES

•	 LinkOption.NOFOLLOW_LINKS



Chapter 10 ■ New INput/Output 2

502

If the target file already exists, the copy() method throws a FileAlreadyExistsException. You can 
specify the REPLACE_EXISTING option to replace the existing target file. If the target file is a non-empty 
directory, specifying the REPLACE_EXISTING option throws a DirectoryNotEmptyException. If the target file 
is a symbolic link and if it exists, the symbolic link is replaced by specifying the REPLACE_EXISTING option, 
not the target of the symbolic link.

The COPY_ATTRIBUTES option copies the attributes of the source file to the target file. The file attributes 
that are copied are highly platform- and file system-dependent. At least, the last-modified-time attribute of 
the source file is copied to the target file, if supported by both source and target file stores.

If the NOFOLLOW_LINKS option is used, the copy() method copies the symbolic link, not the target of the 
symbolic link.

Listing 10-6 demonstrates the use of the copy() method to copy a file. It handles the possible exceptions 
if the copy operation fails. You need to change the paths for the source and target files before running the 
program.

Listing 10-6. Copying a File, a Directory, and a Symbolic Link Using the Files.copy() Method

// CopyTest.java
package com.jdojo.nio2;

import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.Files;
import java.io.IOException;
import java.nio.file.FileAlreadyExistsException;
import java.nio.file.DirectoryNotEmptyException;
import static java.nio.file.StandardCopyOption.REPLACE_EXISTING;
import static java.nio.file.StandardCopyOption.COPY_ATTRIBUTES;

public class CopyTest {
    public static void main(String[] args) {
        // Change the paths for the source and target files before you run the program
        Path source = Paths.get("C:\\poems\\luci1.txt");
        Path target = Paths.get("C:\\poems\\luci1_backup.txt");

        try {
            Path p = Files.copy(source, target, REPLACE_EXISTING, COPY_ATTRIBUTES);
            System.out.println(source + " has been copied to " + p);
        } catch (FileAlreadyExistsException e) {
            System.out.println(target + " already exists.");
        } catch (DirectoryNotEmptyException e) {
            System.out.println(target + " is not empty.");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

The move(Path source, Path target, CopyOption... options) method of the Files class lets you 
move or rename a file. The move operation fails if the specified target file already exists. You can specify the 
REPLACE_EXISTING option to replace the existing target file. If the file to move is a symbolic link, it moves the 
symbolic link, not the target of the symbolic link. The move() method can only be used to move an empty 
directory. A DirectoryNotEmptyException is thrown if the directory is not empty.



Chapter 10 ■ New INput/Output 2

503

Apart from the REPLACE_EXISTING CopyOption, you can use the ATOMIC_MOVE as another CopyOption. 
If the ATOMIC_MOVE option is used, it throws an AtomicMoveNotSupportedException if the file could not be 
moved atomically. If ATOMIC_MOVE option is specified, all other options are ignored. The following snippet of 
code shows how to move a file by handling possible exceptions:

import java.io.IOException;
import java.nio.file.AtomicMoveNotSupportedException;
import java.nio.file.DirectoryNotEmptyException;
import java.nio.file.FileAlreadyExistsException;
import java.nio.file.Files;
import java.nio.file.NoSuchFileException;
import java.nio.file.Path;
import java.nio.file.Paths;
import static java.nio.file.StandardCopyOption.ATOMIC_MOVE;
...
// Create source and target paths using the syntax supported by your platform
Path source = Paths.get("C:\\poems\\luci1.txt");
Path target = Paths.get("C:\\poems\\dir2\\luci1.txt");

try {
    // Try moving the source to target atomically
    Path p = Files.move(source, target, ATOMIC_MOVE);
    System.out.println(source + " has been moved to " + p);
} catch (NoSuchFileException e) {
    System.out.println("Source/target does not exist.");
} catch (FileAlreadyExistsException e) {
    System.out.println(target + " already exists. Move failed.");
} catch (DirectoryNotEmptyException e) {
    System.out.println(target + " is not empty. Move failed.");
} catch (AtomicMoveNotSupportedException e){
    System.out.println("Atomic move is not supported. Move failed.");
} catch (IOException e) {
    e.printStackTrace();
}

Commonly Used File Attributes
The Files class contains many methods that let you access the commonly used attributes of a file. For example, 
you can use the Files.isHidden(Path p) method to test if a file represented by the specified Path is hidden. 
The following methods in the Files class let you access various types of commonly used attributes of a file. 
Refer to the “Managing File Attributes” section in this chapter for managing advanced file attributes.

•	 long size(Path)

•	 boolean isHidden(Path path)

•	 boolean isRegularFile(Path path, LinkOption... options)

•	 boolean isDirectory(Path, LinkOption... options)

•	 boolean isSymbolicLink(Path path)

•	 FileTime getLastModifiedTime(Path path, LinkOption... options)



Chapter 10 ■ New INput/Output 2

504

Probing the Content Type of a File
You can use the Files.probeContentType(Path path) method to probe the content type of a file. The 
method returns the content type in the string form of the value of a Multipurpose Internet Mail Extension 
(MIME) content type. If the content type of a file cannot be determined, it returns null.

Listing 10-7 shows how to probe the content type of a file. You may get different output when you run 
this program. The program uses the file path C:\poems\luci1.txt. Change this path to the path of the file 
whose content type you want to know.

Listing 10-7. Probing the Content Type of a File

// ProbeFileContent.java
package com.jdojo.nio2;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.io.IOException;

public class ProbeFileContent {
    public static void main(String[] args) {
        Path p = Paths.get("C:\\poems\\luci1.txt");

        try {
            String contentType = Files.probeContentType(p);
            System.out.format("Content type of %s is %s%n", p, contentType);
        } catch (IOException e) {
            e.printStackTrace();
        }        
    }
}

Content type of C:\poems\luci1.txt is text/plain

Reading the Contents of a File
The NIO.2 API supports reading the contents of a file in the following three ways:

•	 As bytes or lines of text

•	 Using InputStream and BufferedReader using the java.io API

•	 Using the channel API using a SeekableByteChannel object

The Files class contains the following methods to read the contents of a file as bytes and lines of text:

•	 byte[] readAllBytes(Path path)

•	 List<String> readAllLines(Path path)

•	 List<String> readAllLines(Path, Charset cs)

All three methods may throw an IOException. The readAllBytes() method reads all bytes from a file. 
The readAllLines() method reads the entire contents of a file as lines of text. The readAllLines() method 
uses a carriage return, a line feed, and a carriage returned followed by a line feed as a line terminator. The 
lines that are returned do not contain the line terminator. The version of this method that takes only the Path 
of the source file as an argument assumes the contents of the file in the UTF-8 charset.



Chapter 10 ■ New INput/Output 2

505

 ■ Tip  the readAllBytes() and readAllLines() methods in the Files class are intended to read the 
contents of a small file. Both methods take care of opening/closing the file before/after reading.

The Files class provides methods to obtain the InputStream and BufferedReader objects from a Path 
object. The newInputStream(Path path, OpenOption... options) method returns an InputStream for 
the specified path. The newBufferedReader(Path path) and newBufferedReader(Path path, Charset 
cs) methods return a BufferedReader; the former assumes that the file’s contents are in the UTF-8 charset, 
whereas the latter lets you specify the charset. Refer to Chapter 7 for more details on how to use InputStream 
and BufferedReader to read the contents of a file.

The Files class provides methods to obtain a SeekableByteChannel object from a Path using its 
newByteChannel(Path path, OpenOption... options) method. A SeekableByteChannel object provides 
random access to a file using the channel API. It can be used to read from and write to a file. You can cast a 
SeekableByteChannel to a FileChannel to use advanced features of the channel API such as locking a region 
of the file and mapping a region of the file directly into memory. It maintains a current position where you can 
start reading or writing. Refer to Chapter 9 for more details on how to use channels to read data from a file.  
I discuss an example of using a SeekableByteChannel to read/write the contents of a file later in this chapter.

Many of the methods of the Files class that deal with reading from and writing to files accept an 
optional argument of the OpenOption type. This option lets you configure the file being opened. Table 10-1  
lists the values with their descriptions for the OpenOption type. OpenOption is an interface in the java.
nio.file package. The StandardOpenOption enum in the java.nio.file package implements the 
OpenOption interface. Therefore, each enum constant in the StandardOpenOption represents a value of 
the OpenOption type.

Table 10-1. List of OpenOption Type Values That Are Enum Constants in the StandardOpenOption Enum

StandardOpenOption Constant Description

APPEND Appends the written data to the existing file, if the file is opened for 
writing.

CREATE Creates a new file if it does not exist.

CREATE_NEW Creates a new file if it does not exist. If the file already exists, it fails the 
operation.

DELETE_ON_CLOSE Deletes the file when the stream is closed. It is useful when used with a 
temporary file.

DSYNC Keeps the contents of the file synchronized with the underlying storage.

READ Opens a file with read access.

SPARSE If it is used with the CREATE_NEW option, it is a hint to the file system that 
the new file should be a sparse file. If a sparse file is not supported by a 
file system, this option is ignored.

SYNC Keeps the content and the metadata of the file synchronized with the 
underlying storage.

TRUNCATE_EXISTING Truncates the length of an existing file to zero if the file is opened for a 
write access.

WRITE Opens a file for a write access.

http://dx.doi.org/10.1007/978-1-4842-3348-1_7
http://dx.doi.org/10.1007/978-1-4842-3348-1_9


Chapter 10 ■ New INput/Output 2

506

The following snippet of code obtains a SeekableByteChannel object for the luci2.txt file in the 
default directory. It opens the file for READ and WRITE access. It uses the CREATE option, so the file is created if 
it does not exist.

import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.Files;
import java.nio.channels.SeekableByteChannel;
import static java.nio.file.StandardOpenOption.READ;
import static java.nio.file.StandardOpenOption.WRITE;
import static java.nio.file.StandardOpenOption.CREATE;
...
Path src = Paths.get("luci2.txt");
SeekableByteChannel sbc = Files.newByteChannel(src, READ, WRITE, CREATE);

Listing 10-8 demonstrates how to read and display the contents of the luci1.txt file in your default 
directory. The program displays an error message if the file does not exist.

Listing 10-8. Using the Files.readAllLines() Method to Read Contents of a File

// ReadAllLines.java
package com.jdojo.nio2;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.nio.charset.Charset;
import java.io.IOException;
import java.nio.file.NoSuchFileException;

public class ReadAllLines {
    public static void main(String[] args) {
        Charset cs = Charset.forName("US-ASCII");
        Path source = Paths.get("luci1.txt");

        try {
            // Read all lines in one go  
            List<String> lines = Files.readAllLines(source, cs);

            // Print each line  
            for (String line : lines) {
                System.out.println(line);
            }
        } catch (NoSuchFileException e) {
            System.out.println(source.toAbsolutePath() + " does not exist.");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}



Chapter 10 ■ New INput/Output 2

507

Writing to a File
The NIO.2 API supports writing to a file in the following three ways:

•	 Writing an array of bytes or a collection of lines of text to a file in one shot.

•	 Writing to a file using an OutputStream and a BufferedWriter  
using the java.io API.

•	 Writing to a file using the channel API using a SeekableByteChannel object.

You can use the following write() methods of the Files class to write contents to a file in one shot:

•	 Path write(Path path, byte[] bytes, OpenOption... options)

•	 Path write(Path path, Iterable<? extends CharSequence> lines, 
OpenOption... options)

•	 Path write(Path path, Iterable<? extends CharSequence> lines,  
Charset cs, OpenOption... options)

These methods are designed to write smaller contents to a file. You are advised to use other methods 
(discussed shortly) to write bigger contents to a file.

The write() method opens the file, writes the passed in contents to the file, and closes it. If no open 
options are present, it opens the file with the CREATE, TRUNCATE_EXISTING, and WRITE options. If you are 
writing lines of text to a file, it writes a platform-dependent line separator after every line of text. If a charset 
is not specified when the lines of text are written, the UTF-8 charset is assumed.

Listing 10-9 demonstrates how to write lines of text to a file using the write() method. The program 
writes a few lines of text in a file named twinkle.txt in the default directory. It prints the path of the file.  
You may get different output when you run this program.

Listing 10-9. Writing Lines of Text to a File in One Shot Using the NIO.2 API

// WriteLinesTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import static java.nio.file.StandardOpenOption.WRITE;
import static java.nio.file.StandardOpenOption.CREATE;

public class WriteLinesTest {
    public static void main(String[] args) {
        // Prepare the lines of text to write in a List  
        List<String> texts = new ArrayList<>();
        texts.add("Twinkle, twinkle, little star,");
        texts.add("How I wonder what you are.");
        texts.add("Up above the world so high,");
        texts.add("Like a diamond in the sky.");



Chapter 10 ■ New INput/Output 2

508

        Path dest = Paths.get("twinkle.txt");
        Charset cs = Charset.forName("US-ASCII");
        try {
            Path p = Files.write(dest, texts, cs, WRITE, CREATE);
            System.out.println("Text was written to "
                    + p.toAbsolutePath());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Text was written to C:\Java9LanguageFeatures\twinkle.txt

The Files class contains a newOutputStream(Path path, OpenOption... options) method that 
returns an OutputStream for the specified path. The class contains a newBufferedWriter(Path path, 
Charset cs, OpenOption... options) method that returns a BufferedWriter for the specified path. 
You can use the java.io API to write contents to a file using OutputStream and BufferedWriter. Refer to 
Chapter 7 for more details on how to use the java.io API.

You can use the newByteChannel(Path path, OpenOption... options) method to get a 
SeekableByteChannel for the specified path. You can use the write(ByteBuffer src) method of the 
SeekableByteChannel to write data to a file. Refer to Chapter 9 for more details on how to use the channel 
API to write to a file. I discuss an example of using SeekableByteChannel in the next section.

Random Access to a File
A SeekableByteChannel provides random access to a file using the channel API. You can use it to read data 
from and write data to a file. It is an interface declared in the java.nio.channels package. The FileChannel 
class in the java.nio.channels package implements this interface. You can get a SeekableByteChannel for 
a Path using the newByteChannel() method of the Files class as follows:

Path src = Paths.get("twinkle2.txt");
SeekableByteChannel seekableChannel =
        Files.newByteChannel(src, READ, WRITE, CREATE, TRUNCATE_EXISTING);

A SeekableByteChannel is connected to an entity such as a file. It maintains a current position. When 
you write to the channel, the data is written at the current position. If you read from it, the data is read 
from the current position. You can get the current position using its position() method. To set its current 
position, you need to use its position(long newPosition) method.

You can get the size of the entity of a SeekableByteChannel in bytes using its size() method. As the 
data is truncated or written to the channel, the size is updated.

The truncate(long size) method of the SeekableByteChannel lets you truncate the size of the entity 
to the specified size. If the specified size is less than the current size of the entity, it truncates the data to the 
specified size. If the specified size is greater than or equal to the current size of the entity, this method does 
not modify the entity.

Use the read(ByteBuffer destination) and write(ByteBuffer source) methods to read data from 
the channel and write data to the channel, respectively. Make sure to set the current position correctly, 
before you perform the read and write operations on the channel.

http://dx.doi.org/10.1007/978-1-4842-3348-1_7
http://dx.doi.org/10.1007/978-1-4842-3348-1_9


Chapter 10 ■ New INput/Output 2

509

Listing 10-10 shows how to read from and write to a file using a SeekableByteChannel. It creates a file 
named twinkle2.txt in the default directory and writes a few lines of text to it. It resets the position to zero 
after writing the data and reads the text to print it on the standard output. At every step, it prints the size and 
the current position.

Listing 10-10. A Sample Program That Uses a SeekableByteChannel to Read and Write Data from/to a File

// SeekableByteChannelTest.java
package com.jdojo.nio2;

import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.io.IOException;
import java.nio.CharBuffer;
import java.nio.channels.SeekableByteChannel;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.Files;
import static java.nio.file.StandardOpenOption.READ;
import static java.nio.file.StandardOpenOption.WRITE;
import static java.nio.file.StandardOpenOption.CREATE;
import static java.nio.file.StandardOpenOption.TRUNCATE_EXISTING;

public class SeekableByteChannelTest {
    public static void main(String[] args) {
        Path src = Paths.get("twinkle2.txt");

        // Get the file encoding for the system  
        String encoding = System.getProperty("file.encoding");
        Charset cs = Charset.forName(encoding);

        try (SeekableByteChannel seekableChannel
                = Files.newByteChannel(src, READ, WRITE, CREATE, TRUNCATE_EXISTING)) {

            // Print the details  
            printDetails(seekableChannel, "Before writing data");

            // First, write some data to the file  
            writeData(seekableChannel, cs);

            // Print the details  
            printDetails(seekableChannel, "After writing data");

            // Reset the position of the seekable channel to 0,
            // so we can read the data from the beginning  
            seekableChannel.position(0);

            // Print the details  
            printDetails(seekableChannel, "After resetting position to 0");

            // Read the data from the file  
            readData(seekableChannel, cs);



Chapter 10 ■ New INput/Output 2

510

            // Print the details  
            printDetails(seekableChannel, "After reading data");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public static void writeData(SeekableByteChannel seekableChannel,
            Charset cs) throws IOException {
        // Get the platform-dependent line separator
        String separator = System.getProperty("line.separator");

        // Prepare the text to write to the file  
        StringBuilder sb = new StringBuilder();
        sb.append("When the blazing sun is gone,");
        sb.append(separator);
        sb.append("When he nothing shines upon,");
        sb.append(separator);
        sb.append("Then you show your little light,");
        sb.append(separator);
        sb.append("Twinkle, twinkle, all the night");
        sb.append(separator);

        // Wrap the text into a char buffer  
        CharBuffer charBuffer = CharBuffer.wrap(sb);

        // Encode the char buffer data into a byte buffer  
        ByteBuffer byteBuffer = cs.encode(charBuffer);

        // Write the data to the file  
        seekableChannel.write(byteBuffer);
    }

    public static void readData(SeekableByteChannel seekableChannel,
            Charset cs) throws IOException {
        ByteBuffer byteBuffer = ByteBuffer.allocate(128);
        String encoding = System.getProperty("file.encoding");

        while (seekableChannel.read(byteBuffer) > 0) {
            byteBuffer.rewind();
            CharBuffer charBuffer = cs.decode(byteBuffer);
            System.out.print(charBuffer);
            byteBuffer.flip();
        }
    }

    public static void printDetails(SeekableByteChannel seekableChannel, String msg) {
        try {
            System.out.println(msg + ": Size = " + seekableChannel.size()
                    + ", Position = " + seekableChannel.position());



Chapter 10 ■ New INput/Output 2

511

        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Before writing data: Size = 0, Position = 0
After writing data: Size = 128, Position = 128
After resetting position to 0: Size = 128, Position = 0
When the blazing sun is gone,
When he nothing shines upon,
Then you show your little light,
Twinkle, twinkle, all the night
After reading data: Size = 128, Position = 128

Traversing a File Tree
NIO.2 provides a FileVisitor API to recursively process all files and directories in a file tree. The API is 
useful when you want to perform some actions on all or some files or directories in a file tree. For example, 
you cannot delete a directory until it is empty. Before you delete a directory, you must delete all files and 
directories underneath it, which can be achieved easily using the FileVisitor API. You need to use the 
following steps to traverse a file tree:

 1. Create a file visitor class by implementing the java.nio.file.FileVisitor 
interface.

 2. To start visiting the file tree, use the walkFileTree() method of the Files class 
by specifying the starting directory and a file visitor object of the class created 
in the previous step. One of the methods of the FileVisitor interface is called 
when a file/directory is visited or a file/directory visit fails.

 ■ Tip  the NIO.2 apI provides the SimpleFileVisitor class, which is a basic implementation of the 
FileVisitor interface. the methods in the SimpleFileVisitor class do not do anything when a file/directory 
is visited. when a failure occurs, it rethrows the original exception. You can inherit your file visitor class from the 
SimpleFileVisitor class and override only the methods that fit your needs.

Table 10-2 lists the methods of the FileVisitor interface with their descriptions. All methods throw an 
IOException and they all return an enum constant of FileVisitResult type. Table 10-3 lists the constants 
defined by the FileVisitResult enum type with their descriptions.



Chapter 10 ■ New INput/Output 2

512

Table 10-3. Enum Constants of FileVisitResult and Their Descriptions

Enum Constant Description

CONTINUE Continues processing.

SKIP_SIBLINGS Continues processing without visiting the siblings of the file or directory. If it 
is returned from the preVisitDirectory() method, the entries in the current 
directory are also skipped and the postVisitDirectory() method is not called on 
that directory.

SKIP_SUBTREE Continues processing without visiting entries in the directory. It is meaningful only 
when returned from the preVisitDirectory() method. Otherwise, its effect is the 
same as CONTINUE.

TERMINATE Terminates the file-visiting process.

Table 10-2. Methods of the FileVisitor Interface

Method Description

FileVisitResult preVisitDirectory 
(T dir, BasicFileAttributes attrs) 
throws IOException

This method is called once before visiting entries in a 
directory.

FileVisitResult postVisitDirectory 
(T dir, IOException exc)  
throws IOException

This method is called after entries in a directory (and all of 
their descendants) have been visited. It is invoked even if 
there are errors during the visit of entries in a directory.

If there was any exception thrown during the iteration of a 
directory, the exception object is passed to this method as the 
second argument. If the second argument to this method is 
null, there was no exception during the directory iteration.

FileVisitResult visitFile 
(T file, BasicFileAttributes attrs) 
throws IOException

This method is called when a file in a directory is visited.

FileVisitResult visitFileFailed 
(T file, IOException exc) throws 
IOException

This method is called when a file or directory could not be 
visited for any reason.

You do not need to write logic in all four methods of your file visitor class. For example, if you want to 
copy a directory, you would like the code in the preVisitDirectory() method to create a new directory and 
the visitFile() method to copy the file. If you want to delete a directory, you need to delete the entries first. 
In this case, you will implement the visitFile() method to delete the files and the postVisitDirectory() 
method to delete the directory afterward.

Let’s implement a file visitor that will print the names of all files and subdirectories of a directory. It will 
also print the size of the files in bytes. Listing 10-11 contains the complete program. It prints the details of 
files and subdirectories of the default directory.

Listing 10-11. A Program to the Print the Names of Subdirectories and Files of a Directory

// WalkFileTreeTest.java
package com.jdojo.nio2;



Chapter 10 ■ New INput/Output 2

513

import java.io.IOException;
import java.nio.file.FileVisitor;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.SimpleFileVisitor;
import java.nio.file.attribute.BasicFileAttributes;
import java.nio.file.FileVisitResult;
import java.nio.file.Files;
import static java.nio.file.FileVisitResult.CONTINUE;

public class WalkFileTreeTest {
    public static void main(String[] args) {
        // Get the Path object for the default directory
        Path startDir = Paths.get("");

        // Get a file visitor object
        FileVisitor<Path> visitor = getFileVisitor();

        try {
            // Traverse the contents of the startDir
            Files.walkFileTree(startDir, visitor);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public static FileVisitor<Path> getFileVisitor() {
        // Declare a local class DirVisitor that
        // inherits from the SimpleFileVisitor<Path> class
        class DirVisitor<Path> extends SimpleFileVisitor<Path> {
            @Override
            public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) {
                System.out.format("%s [Directory]%n", dir);
                return CONTINUE;
            }

            @Override
            public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) {

                System.out.format("%s [File, Size: %s bytes]%n", file, attrs.size());
                return CONTINUE;
            }
        }

        // Create an object of the DirVisitor
        FileVisitor<Path> visitor = new DirVisitor<>();

        return visitor;
    }
}



Chapter 10 ■ New INput/Output 2

514

The getFileVisitor() method creates a FileVisitor object whose class inherits from the 
SimpleFileVisitor class. In the preVisitDirectory() method, it prints the name of the directory and 
returns FileVisitResult.CONTINUE to indicate that it wants to continue processing the entries in the 
directory. In the visitFile() method, it prints the name and size of the file and continues the processing. 
The FileVisitor API traverses a file tree in depth-first order. However, it does not guarantee the order of the 
visits of the subdirectories of a directory. To traverse a file tree, you need to call the walkFileTree() method 
of the Files class. The walkFileTree() method will automatically call the method of the visitor object as it 
walks through the file tree.

The FileVisitor API is very useful whenever you want to take some actions on all entries or some 
selective entries in a file tree. Operations such as copying a directory tree, deleting a non-empty directory, 
finding a file, etc. can be implemented easily using the FileVisitor API. Listing 10-12 demonstrates how to 
use the FileVisitor API to delete a directory tree. You need to specify the path to the directory to be deleted 
before you run the program. Note that you will not be able to get the contents of the deleted directory 
back. Therefore, be careful when experimenting with this program and do not delete any useful directory 
accidently.

Listing 10-12. Using the FileVisitor API to Delete a Directory Tree

// DeleteDirectoryTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileVisitResult;
import static java.nio.file.FileVisitResult.CONTINUE;
import static java.nio.file.FileVisitResult.TERMINATE;
import java.nio.file.FileVisitor;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.SimpleFileVisitor;
import java.nio.file.attribute.BasicFileAttributes;

public class DeleteDirectoryTest {
    public static void main(String[] args) {
        /* WARNING!!!
           Replace YOUR_DIR_PATH_TO_DELETE in the following statement with
           the path of the directory whose contents you want to delete.
           You will not be able to get the contents of the directory back
           after you run this program.
         */
        Path dirToDelete = Paths.get("YOUR_DIR_PATH_TO_DELETE");
        FileVisitor<Path> visitor = getFileVisitor();

        try {
            Files.walkFileTree(dirToDelete, visitor);
        } catch (IOException e) {
            System.out.println(e.getMessage());
        }
    }



Chapter 10 ■ New INput/Output 2

515

    public static FileVisitor<Path> getFileVisitor() {
        // A inner local class that is used as a file visitor to delete a directory
        class DeleteDirVisitor extends SimpleFileVisitor<Path> {
            @Override
            public FileVisitResult postVisitDirectory(Path dir,
                    IOException e) throws IOException {

                FileVisitResult result = CONTINUE;

                // Now, delete the directory at the end  
                if (e != null) {
                    System.out.format("Error deleting %s. %s%n", dir, e.getMessage());
                    result = TERMINATE;
                } else {
                    Files.delete(dir);
                    System.out.format("Deleted directory %s%n", dir);
                }
                return result;
            }

            @Override
            public FileVisitResult visitFile(Path file,
                    BasicFileAttributes attrs) throws IOException {

                // Delete the file that we are visiting  
                Files.delete(file);

                System.out.format("Deleted file %s%n", file);
                return CONTINUE;
            }
        }

        // Create an object of the DirVisitor
        FileVisitor<Path> visitor = new DeleteDirVisitor();

        return visitor;
    }
}

By default, the Files.walkFileTree() method does not follow symbolic links. If you want to follow 
the symbolic links, you need to use another version of the walkFileTree() method that lets you specify 
the FileVisitOption.FOLLOW_LINKS as an option. It also lets you specify the maximum depth, which is the 
maximum number of levels of a directory to visit. Specifying the depth as 0 visits only the starting file. You 
can specify Integer.MAX_VALUE as the depth to visit all levels. The following snippet of code shows how to 
use the walkFileTree() method to follow a symbolic link:

import java.util.Set;
import java.util.EnumSet;
import java.nio.file.Path;
import java.nio.file.Files;
import java.io.IOException;



Chapter 10 ■ New INput/Output 2

516

import java.nio.file.FileVisitor;
import java.nio.file.FileVisitOption;
import static java.nio.file.FileVisitOption.FOLLOW_LINKS;
...
Path startDir = get the path to the starting directory;
FileVisitor<Path> visitor = get a file visitor;

// Prepare the set of options  
Set<FileVisitOption> options = EnumSet.of(FOLLOW_LINKS);

// Visit all levels  
int depth = Integer.MAX_VALUE;

// Walk the file tree with all levels and following the symbolic links  
Files.walkFileTree(startDir, options, depth, visitor);    

Matching Paths
The NIO.2 API lets you perform pattern matching on the string form of Path objects using the glob and 
regex patterns. An instance of the PathMatcher interface is used to perform the match. The PathMatcher 
interface is a functional interface. It contains the matches(Path path) method, which returns true if the 
specified path matches the pattern. It is a three-step process to match a pattern to a path:

 1. Prepare a glob or regex pattern string.

 2. Get a PathMatcher object using the getPathMatcher() method of a  
FileSystem object.

 3. Call the matches() method with a Path object to check if the specified path 
matches the pattern.

The pattern string consists of two parts, syntax and pattern, separated by a colon:

syntax:pattern

The value for syntax is either glob or regex. The pattern part follows the syntax that depends on the 
value of the syntax part. I list the syntax rules for the glob pattern briefly. For the regex pattern syntax rules, 
refer to Chapter 18 in the first volume of this series. The glob pattern uses the following syntax rules:

•	 An asterisk (*) matches zero or more characters without crossing directory 
boundaries.

•	 Two consecutive asterisks (**) match zero or more characters crossing directory 
boundaries.

•	 A question mark (?) matches exactly one character.

•	 A backslash (\) is used to escape the special meaning of the following character. For 
example, \\ matches a single backslash, and \* matches an asterisk.

•	 Characters placed inside brackets ([]) are called a bracket expression, which 
matches a single character. For example, [aeiou] matches a, e, i, o, or u. A dash 
between two characters specifies a range. For example, [a-z] matches all alphabets 
between a and z. The exclamation mark (!) after the left bracket is treated as 
negation. For example, [!tyu] matches all characters except t, y, and u.

http://dx.doi.org/10.1007/978-1-4842-3348-1_18


Chapter 10 ■ New INput/Output 2

517

•	 You can use a group of subpatterns by specifying comma-separated subpatterns 
inside braces ({}). For example, {txt, java, doc} matches txt, java, and doc.

•	 The matching of the root component of a path is implementation-dependent.

Listing 10-13 demonstrates how to use a PathMatcher object to match a path against a glob pattern. 
The program uses a glob pattern to match a path on Windows. Change the path syntax to conform to your 
platform before you run the program.

Listing 10-13. Matching a Path Against a Glob/Regex Pattern

// PathMatching.java
package com.jdojo.nio2;

import java.nio.file.FileSystems;
import java.nio.file.Path;
import java.nio.file.PathMatcher;
import java.nio.file.Paths;

public class PathMatching {
    public static void main(String[] args) {
        String globPattern = "glob:**txt";
        PathMatcher matcher = FileSystems.getDefault().getPathMatcher(globPattern);
        Path path = Paths.get("C:\\Java9LanguageFeatures\\luci1.txt");
        boolean matched = matcher.matches(path);
        System.out.format("%s matches %s: %b%n", globPattern, path, matched);
    }
}

glob:**txt matches C:\Java9LanguageFeatures\luci1.txt: true

Managing File Attributes
Through the File class, the java.io API provides support for accessing very basic file attributes such as the 
last modified time of a file. NIO.2 has extensive support for managing (reading and writing) the file attributes 
across platforms. The java.nio.attribute package contains the attribute-related classes. It bundles the file 
attributes in the following six types of views.

•	 BasicFileAttributeView: This attribute view allows you to manage the basic file 
attributes such as creation time, last access time, last modified time, size, file type 
(regular file, directory, symbolic link, or other), and file key (a unique number for a 
file). It lets you modify the creation time, the last accessed time, and the last modified 
time of a file. This view is supported on all platforms.

•	 DosFileAttributeView: It extends the BasicFileAttributeView. As the name 
suggests, it allows you to access the file attributes that are specific to DOS. It provides 
the support to check if a file is a hidden file, a system file, an archive file, and a 
read-only file. It is available only on the systems that support DOS, such as Microsoft 
Windows.



Chapter 10 ■ New INput/Output 2

518

•	 PosixFileAttributeView: POSIX stands for Portable Operating System Interface for 
UNIX. It extends the BasicFileAttributeView and adds support for attributes that 
are available on the systems that support POSIX standards such as UNIX. Apart from 
basic file attributes, it lets you manage owner, group, and related access permissions.

•	 FileOwnerAttributeView: This attribute view lets you manage the owner of a file.

•	 AclFileAttributeView: ACL stands for Access Control List. It is a list of permissions 
attached to a file. It lets you manage the ACL for a file.

•	 UserDefinedFileAttributeView: This view lets you manage a set of user-defined 
attributes for a file in the form of name-value pairs. Sometimes the user-defined 
attributes of a file are also known as extended attributes. The name of an attribute is a 
String. The value of an attribute could be of any data type.

Some attribute views are available across platforms and some only on specific platforms. An 
implementation may provide additional file attribute views.

Checking for a File Attribute View Support
Not all file attribute views are supported on all platforms, except the basic view. You can use the 
supportsFileAttributeView() method of the FileStore class to check whether a specific file attribute 
view is supported by a file store. The method accepts the class reference of the type of the file attribute view 
you want to check for support. If the specified file attribute view is supported, it returns true; otherwise, it 
returns false. The following snippet of code shows how to check for file attribute support:

Path path = /* get a path reference to a file store */;

// Get the file store reference for the path  
FileStore fs = Files.getFileStore(path);

// Check if POSIX file attribute is supported by the file store  
boolean supported = fs.supportsFileAttributeView(PosixFileAttributeView.class);
if (supported) {
    System.out.println("POSIX file attribute view is supported.");
} else {
    System.out.println("POSIX file attribute view is not supported.");
}

Listing 10-14 demonstrates how to check if a file store supports a file attribute view. It checks for the file 
attribute support for the C: drive on Windows. Change the file store path in the main() method to check for 
the supported file attribute views by your file store. You may get different output when you run the program.

Listing 10-14. Checking for Supported File Attribute Views by a File Store

// SupportedFileAttribViews.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileStore;
import java.nio.file.Files;
import java.nio.file.Path;



Chapter 10 ■ New INput/Output 2

519

import java.nio.file.Paths;
import java.nio.file.attribute.AclFileAttributeView;
import java.nio.file.attribute.BasicFileAttributeView;
import java.nio.file.attribute.DosFileAttributeView;
import java.nio.file.attribute.FileAttributeView;
import java.nio.file.attribute.FileOwnerAttributeView;
import java.nio.file.attribute.PosixFileAttributeView;
import java.nio.file.attribute.UserDefinedFileAttributeView;

public class SupportedFileAttribViews {
    public static void main(String[] args) {
        // Use C: as the file store path on Windows
        Path path = Paths.get("C:");

        try {
            FileStore fs = Files.getFileStore(path);
            printDetails(fs, AclFileAttributeView.class);
            printDetails(fs, BasicFileAttributeView.class);
            printDetails(fs, DosFileAttributeView.class);
            printDetails(fs, FileOwnerAttributeView.class);
            printDetails(fs, PosixFileAttributeView.class);
            printDetails(fs, UserDefinedFileAttributeView.class);
        } catch (IOException ex) {
            ex.printStackTrace();
        }
    }

    public static void printDetails(FileStore fs,
            Class<? extends FileAttributeView> attribClass) {

        // Check if the file attribute view is supported  
        boolean supported = fs.supportsFileAttributeView(attribClass);
        System.out.format("%s is supported: %s%n", attribClass.getSimpleName(), supported);
    }
}

AclFileAttributeView is supported: true
BasicFileAttributeView is supported: true
DosFileAttributeView is supported: true
FileOwnerAttributeView is supported: true
PosixFileAttributeView is supported: false
UserDefinedFileAttributeView is supported: true



Chapter 10 ■ New INput/Output 2

520

Reading and Updating File Attributes
The NIO.2 API provides many ways to work with file attributes. Sometimes it may be confusing to decide the 
method that you want to use to manage the file attributes.

You may need to work with only one attribute or many attributes of a file at a time. If you need to 
read or update the value of only one attribute of a file, you need to look at the available methods in the 
Files class that let you read/update that specific attribute. For example, if you want to check if a file is a 
directory, use the Files.isDirectory() method. If you want to read the owner of a file, use the Files.
getOwner() method. If you want to update the owner of a file, use the Files.setOwner() method. The 
Files class has the following two static methods that let you read and update a file attribute using the 
attribute name as a string:

•	 Object getAttribute(Path path, String attribute, LinkOption...options)

•	 Path setAttribute(Path path, String attribute, Object value, LinkOption...options)

If you need to read or update multiple attributes of a file, you need to work with a specific file attribute 
view. The types of attributes determine the file attribute view that you need to use. For most of the file 
attribute views, you have to work with two interfaces named as XxxAttributes and XxxAttributeView. For 
example, for the basic file attributes, you have the BasicFileAttributes and BasicFileAttributeView 
interfaces. The XxxAttributes lets you read the attributes. The XxxAttributeView lets you read as well as 
update the attributes. If you want only to read the attributes, use XxxAttributes. If you want to read and 
update attributes, use XxxAttributeView as well as XxxAttributes.

The following two methods of the Files class let you read the file attributes in bulk, which is much 
more efficient than reading one attribute at a time.

•	 <A extends BasicFileAttributes> A readAttributes(Path path, Class<A> 
type, LinkOption... options)

•	 Map<String,Object> readAttributes(Path path, String attributes, 
LinkOption... options)

The last argument of both methods lets you specify how a symbolic link is handled. By default, if a file is 
a symbolic link, the attributes of the target of the symbolic link are read. If you specify NOFOLLOW_LINKS as the 
option, the attributes of the symbolic link are read, not the attributes of its target.

The first readAttributes() method returns all file attributes of a specified type in an XxxAttributes 
object. For example, you would write the following snippet of code to read the basic file attributes:

// Create the Path object representing the path of the file
Path path = Paths.get("C:\\poems\\luci1.txt");

// Read the basic file attributes  
BasicFileAttributes bfa = Files.readAttributes(path, BasicFileAttributes.class);

// Get the last modified time
FileTime lastModifiedTime = bfa.lastModifiedTime();

// Get the size of the file  
long size = bfa.size();

The second readAttributes() method returns all or some of the attributes of a specific type. The list of 
attributes to read is supplied in a string form using the following syntax:

[view-name:]comma-separated-attributes



Chapter 10 ■ New INput/Output 2

521

The view-name is the name of the attribute view that you want to read, such as basic, posix, acl, etc. 
If view-name is omitted, it defaults to basic. If view-name is present, it is followed by a colon. You can read 
all attributes of a specific view type by specifying an asterisk (*) as the attributes list. For example, you can 
specify "basic:*" or "*" to read all basic file attributes. To read the size and the last modified time of the 
basic view, you would use "basic:size,lastModifiedTime" or "size,lastModifiedTime". To read the 
owner attribute of a file using an ACL view, you would use a string "acl:owner". To read all posix attributes 
of a file, you would use "posix:*". The following snippet of code prints the size and the last modified time of 
the C:\poems\luci1.txt file. Note that the file path uses Windows syntax.

// Get a Path object  
Path path = Paths.get("C:\\poems\\luci1.txt");

// Prepare the attribute list  
String attribList = "basic:size,lastModifiedTime";

// Read the attributes  
Map<String, Object> attribs = Files.readAttributes(path, attribList);

// Display the attributes on the standard output  
System.out.format("Size:%s, Last Modified Time:%s %n",
        attribs.get("size"), attribs.get("lastModifiedTime"));

Listing 10-15 reads the basic file attributes of the luci1.txt file in the current directory and prints some 
of them on the standard output. You need to change the file path in the main() method to work with another 
file on your platform. You may get different output when you run this program. If the specified file does not 
exist, a NoSuchFileException is thrown and the program prints the stack trace of the exception.

Listing 10-15. Reading the Basic File Attributes of a File

// BasicFileAttributesTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributes;

public class BasicFileAttributesTest {
    public static void main(String[] args) {
        // Change the file path to an existing file
        Path path = Paths.get("luci1.txt");

        try {
            // Read basic file attributes  
            BasicFileAttributes bfa =
                    Files.readAttributes(path, BasicFileAttributes.class);



Chapter 10 ■ New INput/Output 2

522

            // Print some of the basic file attributes  
            System.out.format("Size: %s bytes %n", bfa.size());
            System.out.format("Creation Time: %s %n", bfa.creationTime());
            System.out.format("Last Access Time: %s %n", bfa.lastAccessTime());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Size: 119 bytes
Creation Time: 2017-10-10T23:37:25.684588Z
Last Access Time: 2017-10-10T23:37:25.684588Z

You can also read file attributes using a specific view object. You can use the getFileAttributeView() 
method of the Files class to get a specific attribute view. It returns null if the file attribute view type is not 
available. The method declaration is as follows:

<V extends FileAttributeView> V getFileAttributeView(Path path, Class<V> type,  
LinkOption... options)

Once you get a view object of a specific view type, you can read all attributes of that view type using the 
view object’s readAttributes() method. Note that not all views provide readAttributes() method. For 
example, the FileOwnerAttributeView provides only the getOwner() method to read the owner attribute of 
a file. If an attribute view is updateable, the view object provides appropriate setter methods to update the 
attributes. The following snippet of code reads all basic attributes for the luci1.txt file using a basic view 
object:

// Get a Path object  
Path path = Paths.get("luci1.txt");

// Get the basic view  
BasicFileAttributeView bfv = Files.getFileAttributeView(path, BasicFileAttributeView.class);

// Read all basic attributes through the view  
BasicFileAttributes bfa = bfv.readAttributes();

The basic view lets you update the last modified time, the last accessed time, and the creation time of 
a file. The setTimes() method lets you update all three types of times. If you pass a null value for a time, 
it means you do not want to update that time. The time you need to pass to the setTimes() method is of 
FileTime type.

Listing 10-16 demonstrates how to use the basic file attribute view to read and update basic file 
attributes. Change the file path in the main() method to the path of an existing file whose attributes you want 
to read. The program uses a file path of luci1.txt, which means that the luci1.txt file is assumed to be in 
your current directory.



Chapter 10 ■ New INput/Output 2

523

Listing 10-16. Using Basic File Attribute View to Read and Update Basic File Attributes

// BasicFileAttributeViewTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributeView;
import java.nio.file.attribute.BasicFileAttributes;
import java.nio.file.attribute.FileTime;
import java.time.Instant;

public class BasicFileAttributeViewTest {
    public static void main(String[] args) {
        // Change the path to point to your file
        Path path = Paths.get("luci1.txt");

        try {
            // Get the basic view  
            BasicFileAttributeView bfv
                    = Files.getFileAttributeView(path, BasicFileAttributeView.class);

            // Read all basic attributes through the view  
            BasicFileAttributes bfa = bfv.readAttributes();

            // Print some basic attributes  
            System.out.format("Size: %s bytes %n", bfa.size());
            System.out.format("Creation Time: %s %n", bfa.creationTime());
            System.out.format("Last Access Time: %s %n", bfa.lastAccessTime());

            // Update the create time to the current time  
            FileTime newLastModifiedTime = null;
            FileTime newLastAccessTime = null;
            FileTime newCreateTime = FileTime.from(Instant.now());

            // A null for time means you do not want to update that time  
            bfv.setTimes(newLastModifiedTime, newLastAccessTime, newCreateTime);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}



Chapter 10 ■ New INput/Output 2

524

Managing the Owner of a File
There are three ways to manage the owner of a file:

•	 Using Files.getOwner() and Files.setOwner() methods

•	 Using Files.getAttribute() and Files.setAttribute() methods using "owner" 
as the attribute name

•	 Using the FileOwnerAttributeView

You need to work with UserPrincipal and GroupPrincipal interfaces to manage the owner of a file. 
The owner of a file could be a user or a group. A UserPrincipal represents a user, whereas a GroupPrincipal 
represents a group. When you read the owner of a file, you get an instance of UserPrincipal. Use the 
getName() method on the UserPrincipal object to get the name of the user. When you want to set the 
owner of a file, you need to get an object of the UserPrincipal from a user name in a string form. To get 
a UserPrincipal from the file system, you need to use an instance of the UserPrincipalLookupService 
class, which you can get using the getUserPrincipalLookupService() method of the FileSystem class. The 
following snippet of code gets a UserPrincipal object for a user whose user ID is ksharan:

FileSystem fs = FileSystems.getDefault();
UserPrincipalLookupService upls = fs.getUserPrincipalLookupService();

// Throws a UserPrincipalNotFoundException exception if the user ksharan does not exist
UserPrincipal user = upls.lookupPrincipalByName("ksharan");
System.out.format("User principal name is %s%n", user.getName());

You can use method chaining in the previous snippet of code to avoid intermediate variables.

UserPrincipal user = FileSystems.getDefault()
                                .getUserPrincipalLookupService()
                                .lookupPrincipalByName("ksharan");
System.out.format("User principal name is %s%n", user.getName());

The user principal lookup service is an optional operation for a file system. You need to handle the 
UnsupportedOperationException that is thrown when the file system does not support it.

To get a GroupPrincipal instance, use the lookupPrincipalByGroupName() method of the user 
principal lookup service. Once you get a UserPrincipal or GroupPrincipal instance that represents the 
owner of the file, you can use any of the three methods described at the beginning of this section to update 
the owner of a file.

Listing 10-17 demonstrates how to read and update the owner of a file using the 
FileOwnerAttributeView. Change the file path in the main() method to an existing file on your machine 
before you run the program. The program uses brice as the new user for the file. Change the new user 
ID to a user who exists on your machine. If the user does not exist on your machine, you may get a 
UserPrincipalNotFoundException exception. You may get different output when you run the program.



Chapter 10 ■ New INput/Output 2

525

Listing 10-17. Changing the Owner of a File Using the FileOwnerAttributeView

// FileOwnerManagement.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.FileOwnerAttributeView;
import java.nio.file.attribute.UserPrincipal;
import java.nio.file.attribute.UserPrincipalLookupService;

public class FileOwnerManagement {
    public static void main(String[] args) throws IOException {
        try {
            // Change the file path to an existing file on your machine
            Path path = Paths.get("luci1.txt");

            FileOwnerAttributeView foav
                    = Files.getFileAttributeView(path, FileOwnerAttributeView.class);

            UserPrincipal owner = foav.getOwner();
            System.out.format("Original owner of %s is %s%n", path, owner.getName());

            FileSystem fs = FileSystems.getDefault();
            UserPrincipalLookupService upls = fs.getUserPrincipalLookupService();

            // Change the file owner to brice  
            UserPrincipal newOwner = upls.lookupPrincipalByName("brice");
            foav.setOwner(newOwner);

            UserPrincipal changedOwner = foav.getOwner();
            System.out.format("New owner of %s is %s%n", path, changedOwner.getName());
        } catch (UnsupportedOperationException | IOException e) {
            e.printStackTrace();
        }
    }
}

Original owner of luci1.txt is kishori\ksharan
New owner of luci1.txt is kishori\brice

The following snippet of code uses the Files.setOwner() method to update the owner of a file 
identified with the luci1.txt path:

UserPrincipal owner = /* get the owner */;
Path path = Paths.get("luci1.txt");
Files.setOwner(path, owner);



Chapter 10 ■ New INput/Output 2

526

Managing ACL File Permissions
In this section, I cover managing the file permissions using AclFileAttributeView. Note that ACL type file 
attributes are supported on Microsoft Windows. An ACL consists of an ordered list of access control entries. 
Each entry consists of a UserPrincipal, the type of access, and the level of the access to an object. In NIO.2, 
an instance of the AclEntry class represents an entry in an ACL. You can get and set a List of AclEntry for a 
file using the getAcl() and setAcl() methods of the AclFileAttributeView. The following snippet of code 
gets the List of ACL entries for a file named luci1.txt in the current directory:

Path path = Paths.get("luci1.txt");
AclFileAttributeView view = Files.getFileAttributeView(path, AclFileAttributeView.class);
List<AclEntry> aclEntries = view.getAcl();

The AclEntry class has methods to read various properties of an ACL entry. Its principal() 
method returns the UserPrincipal to identify the user or the group. Its permissions() method returns a 
Set<AclEntryPermission> to identify the permissions. Its type() method returns an enum constant of the 
type AclEntryType such as ALARM, ALLOW, AUDIT, and DENY that indicates the type of the access. Its flags() 
method returns a Set<AclEntryFlag>, which contains the inheritance flags of the ACL entry.

Listing 10-18 demonstrates how to read ACL entries for file luci1.txt. If the file does not exist in the 
current directory, a NoSuchFileException is thrown. The program handles the exception and prints the 
stack trace of the exception. If you run the program on a UNIX-like platform, it will print an error message 
that the ACL view is not supported. Partial output is shown when the program ran on Windows. You may get 
different output.

Listing 10-18. Reading ACL Entries and Related Permissions

// AclReadEntryTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.util.Set;
import java.nio.file.attribute.AclEntry;
import java.nio.file.attribute.AclEntryPermission;
import java.nio.file.attribute.AclFileAttributeView;

public class AclReadEntryTest {
    public static void main(String[] args) {
        // Change the path to an existing file on Windows
        Path path = Paths.get("luci1.txt");

        AclFileAttributeView aclView =
                Files.getFileAttributeView(path, AclFileAttributeView.class);
        if (aclView == null) {
            System.out.format("ACL view is not supported.%n");
            return;
        }



Chapter 10 ■ New INput/Output 2

527

        try {
            List<AclEntry> aclEntries = aclView.getAcl();
            for (AclEntry entry : aclEntries) {
                System.out.format("Principal: %s%n", entry.principal());
                System.out.format("Type: %s%n", entry.type());
                System.out.format("Permissions are:%n");

                Set<AclEntryPermission> permissions = entry.permissions();
                for (AclEntryPermission p : permissions) {
                    System.out.format("%s %n", p);
                }

                System.out.format("------------------------%n");
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Principal: BUILTIN\Administrators (Alias)
Type: ALLOW
Permissions are:
READ_DATA
READ_ACL
DELETE_CHILD
DELETE
...
------------------------
Principal: NT AUTHORITY\SYSTEM (Well-known group)
Type: ALLOW
Permissions are:
READ_DATA
...
------------------------

Updating ACL entries for a file is more involved than reading them. You need to create an AclEntry 
object using the AclEntry.Builder class. The newBuilder() method of the AclEntry class returns an empty 
AclEntry.Builder object, which acts as a staging area for a new AclEntry object. You need to call various 
setter methods such as setPrincipal(), setType(), setPermissions(), etc. on the builder object. When 
you are finished with setting all properties, call the build() method on the builder object to create an 
AclEntry object. The following snippet of code demonstrates these steps:

// Let's build an ACL entry  
UserPrincipal user = /* get a user principal here */;
Set<AclEntryPermission> permissions = /* get permissions here */;

AclEntry newEntry = AclEntry.newBuilder()
                            .setPrincipal(user)
                            .setType(AclEntryType.ALLOW)
                            .setPermissions(permissions)
                            .build();



Chapter 10 ■ New INput/Output 2

528

Once you prepare a new AclEntry, you need to add it to the existing ACL entries for the file. The 
following snippet of code adds the new ACL entry to the existing ones and sets them back using an ACL 
attribute view:

// Get the ACL entry for the path  
List<AclEntry> aclEntries = aclView.getAcl();

// Add the ACL entry to the existing list  
aclEntries.add(newEntry);

// Update the ACL entries for the file  
aclView.setAcl(aclEntries);

Listing 10-19 demonstrates how to add a new ACL entry for a user named ksharan. It adds DATA_READ 
and DATA_WRITE permissions for the user ksharan on the luci1.txt file in the current directory. Make sure 
that the luci1.txt file and a user with the user ID of ksharan exist on the machine or change the file path 
and the user name in the program.

Listing 10-19. Updating ACL Entries for a File

// AclUpdateEntryTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.util.Set;
import java.nio.file.attribute.AclEntry;
import java.nio.file.attribute.AclEntryPermission;
import java.nio.file.attribute.AclEntryType;
import java.nio.file.attribute.AclFileAttributeView;
import java.nio.file.attribute.UserPrincipal;
import java.util.EnumSet;
import static java.nio.file.attribute.AclEntryPermission.READ_DATA;
import static java.nio.file.attribute.AclEntryPermission.WRITE_DATA;

public class AclUpdateEntryTest {
    public static void main(String[] args) {
        Path path = Paths.get("luci1.txt");

        AclFileAttributeView aclView
                = Files.getFileAttributeView(path, AclFileAttributeView.class);
        if (aclView == null) {
            System.out.format("ACL view is not supported.%n");
            return;
        }



Chapter 10 ■ New INput/Output 2

529

        try {
            // Get UserPrincipal for ksharan  
            UserPrincipal ksharanUser = FileSystems.getDefault()
                    .getUserPrincipalLookupService()
                    .lookupPrincipalByName("ksharan");

            // Prepare permissions set  
            Set<AclEntryPermission> permissions = EnumSet.of(READ_DATA, WRITE_DATA);

            // Let us build an ACL entry  
            AclEntry newEntry = AclEntry.newBuilder()
                    .setPrincipal(ksharanUser)
                    .setType(AclEntryType.ALLOW)
                    .setPermissions(permissions)
                    .build();

            // Get the ACL entry for the path  
            List<AclEntry> aclEntries = aclView.getAcl();

            // Add the ACL entry for ksharan to the existing list  
            aclEntries.add(newEntry);

            // Update the ACL entries  
            aclView.setAcl(aclEntries);

            System.out.println("ACL entry added for ksharan successfully");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Managing POSIX File Permissions
In this section, I cover managing file permissions using PosixFileAttributeView. Note that UNIX supports 
POSIX standard file attributes. POSIX file permissions consist of nine components: three for the owner, three 
for the group, and three for others. The three types of permissions are read, write, and execute. A typical 
POSIX file permission in a string form looks like "rw-rw----", which has read and write permissions for the 
owner and the group. The PosixFilePermission enum type defines nine constants, one for each permission 
component. The nine constants are named as XXX_YYY, where XXX is OWNER, GROUP, and OTHERS, and YYY is 
READ, WRITE, and EXECUTE.

PosixFilePermissions is a utility class. It contains methods to convert the POSIX permissions of a file 
from one form to another. Its toString() method converts a Set of PosixFilePermission enum constants 
into a string of the rwxrwxrwx form. Its fromString() method converts the POSIX file permissions in a 
string of the rwxrwxrwx form to a Set<PosixFilePermission>. Its asFileAttribute() method converts a 
Set<PosixFilePermission> into a FileAttribute object, which you can use in the Files.createFile() 
method as an argument when creating a new file.



Chapter 10 ■ New INput/Output 2

530

Reading POSIX file permissions is easy. You need to use the readAttributes() method of the 
PosixFileAttributeView class to get an instance of PosixFileAttributes. The permissions() method of 
PosixFileAttributes returns all POSIX file permissions in a Set<PosixFilePermission>. The following 
snippet of code reads and prints POSIX file permissions in the rwxrwxrwx form for a file named luci in the 
default directory:

// Get a Path object for luci file
Path path = Paths.get("luci");

// Get the POSIX attribute view for the file
PosixFileAttributeView posixView =
        Files.getFileAttributeView(path, PosixFileAttributeView.class);

// Here, make sure posixView is not null

// Read all POSIX attributes  
PosixFileAttributes attribs = posixView.readAttributes();

// Read the file permissions  
Set<PosixFilePermission> permissions = attribs.permissions();

// Convert the file permissions into the rwxrwxrwx string form  
String rwxFormPermissions = PosixFilePermissions.toString(permissions);

// Print the permissions  
System.out.println(rwxFormPermissions);

Updating POSIX file permissions is also easy. You need to get all permissions in a 
Set<PosixFilePermission>. To update the POSIX file permissions, call the setPermissions() method of 
PosixFileAttributeView, passing the Set<PosixFilePermission> as an argument. The following snippet of 
code shows how to set the POSIX file permissions:

// Get the permission in a string form  
String rwxFormPermissions = "rw-r-----";

// Convert the permission in the string form to a Set<PosixFilePermission>
Set<PosixFilePermission> permissions = PosixFilePermissions.fromString(rwxFormPermissions);

// Update the permissions  
posixView.setPermissions(permissions);

Alternatively, you can also create a Set of PosixFilePermission enum constants directly and set it as 
the file permissions, like so:

Set<PosixFilePermission> permissions = EnumSet.of(OWNER_READ, OWNER_WRITE, GROUP_READ);
posixView.setPermissions(permissions);

Listing 10-20 demonstrates how to read and update POSIX file permissions for a file named luci on 
UNIX-like platforms. If the file does not exist, the program outputs the stack trace of a NoSuchFileException. 
If you run the program on a non-UNIX-like platform, it will print a message that POSIX attribute view is not 
supported. You may get different output when you run this program.



Chapter 10 ■ New INput/Output 2

531

Listing 10-20. Reading and Writing POSIX File Permissions

// PosixPermissionsTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.EnumSet;
import java.util.Set;
import java.nio.file.attribute.PosixFileAttributeView;
import java.nio.file.attribute.PosixFileAttributes;
import java.nio.file.attribute.PosixFilePermission;
import java.nio.file.attribute.PosixFilePermissions;
import static java.nio.file.attribute.PosixFilePermission.OWNER_READ;
import static java.nio.file.attribute.PosixFilePermission.OWNER_WRITE;
import static java.nio.file.attribute.PosixFilePermission.GROUP_READ;

public class PosixPermissionsTest {
    public static void main(String[] args) {
        Path path = Paths.get("luci");
        PosixFileAttributeView posixView =
                Files.getFileAttributeView(path, PosixFileAttributeView.class);
        if (posixView == null) {
            System.out.println("POSIX attribute view is not supported.");
            return;
        }

        readPermissions(posixView);
        updatePermissions(posixView);
    }

    public static void readPermissions(PosixFileAttributeView posixView) {
        try {
            PosixFileAttributes attribs;
            attribs = posixView.readAttributes();
            Set<PosixFilePermission> permissions = attribs.permissions();

            // Convert the set of posix file permissions into rwxrwxrwx form
            String rwxFormPermissions = PosixFilePermissions.toString(permissions);
            System.out.println(rwxFormPermissions);
        } catch (IOException ex) {
            ex.printStackTrace();
        }
    }

    public static void updatePermissions(PosixFileAttributeView posixView) {
        try {
            Set<PosixFilePermission> permissions =
                    EnumSet.of(OWNER_READ, OWNER_WRITE, GROUP_READ);
            posixView.setPermissions(permissions);



Chapter 10 ■ New INput/Output 2

532

            System.out.println("Permissions set successfully.");
        } catch (IOException ex) {
            ex.printStackTrace();
        }
    }
}

rw-rw-r--
Permissions set successfully.

Watching a Directory for Modifications
NIO.2 supports a watch service that notifies the Java program when registered objects in a file system are 
modified. Currently, you can watch only directories for modifications. The watch service uses the native file 
event notification facility of the file system. If a file system does not provide a file event notification facility, 
it may use other mechanisms such as polling. The following classes and interfaces in the java.nio.file 
package are involved in the implementation of a watch service:

•	 The Watchable interface

•	 The WatchService interface

•	 The WatchKey interface

•	 The WatchEvent<T> interface

•	 The WatchEvent.Kind<T> interface

•	 The StandardWatchEventKinds class

A Watchable is a file system object that can be watched for changes. A Watchable can be registered with 
a watch service. A Path is a Watchable. Therefore, you can register a Path with a watch service.

A WatchService represents a watch service that watches registered objects for changes. When an 
object is registered with a WatchService, the WatchService returns a WatchKey that serves as a token for the 
registration. In other words, a WatchKey identifies the registration of an object with a WatchService.

A WatchEvent represents an event (or a repeated event) on an object registered with a watch service. Its 
kind() method returns the kind of event that occurs on the registered object. Its context() method returns 
a Path object that represents the entry on which the event occurs. The Path object represents a relative path 
between the registered directory with the watch service and the entry on which the event occurs. An event 
may be repeated before it is notified. The count() method returns the number of times the event occurs for a 
specific notification. If it returns a value greater than 1, it is a repeated event.

A WatchEvent.Kind<T> represents the kind of event that occurs on a registered object. The 
StandardWatchEventKinds class defines constants to represent the kind of an event.

The StandardWatchEventKinds class defines the following four constants to identify the kind of an 
event. Each constant is of the type WatchEvent.Kind type.

•	 ENTRY_CREATE

•	 ENTRY_DELETE

•	 ENTRY_MODIFY

•	 OVERFLOW



Chapter 10 ■ New INput/Output 2

533

The names of the first three constants are self-explanatory. They represent events when an entry is 
created, deleted, and modified in a registered directory. The last event kind is OVERFLOW, which represents a 
special kind of event to indicate that event may have been lost or discarded.

The following steps are needed to watch a directory for changes:

 1. Create a watch service.

 2. Register a directory with the watch service.

 3. Retrieve a watch key from the watch service queue.

 4. Process the events that occur on the registered directory.

 5. Reset the watch key after processing the events.

 6. Close the watch service.

Creating a Watch Service
You can create a watch service for the file system as follows:

WatchService ws = FileSystems.getDefault()
                             .newWatchService();

Registering the Directory with the Watch Service
You need to create a Path object representing the directory you want to watch and invoke its register() 
method to register it with the watch service. At the time of registration, you need to specify the kinds of 
events for which you want to register your directory. The register() method will return a WatchKey as a 
registration token.

// Get a Path object for C:\kishori directory to watch  
Path dirToWatch = Paths.get("C:\\kishori");

// Register the dirToWatch for create, modify, and delete events  
WatchKey token = dirToWatch.register(ws, ENTRY_CREATE, ENTRY_MODIFY, ENTRY_DELETE);

You can cancel the registration of a directory with the watch service using the cancel() method of 
the WatchKey. When a directory is registered, its WatchKey is said to be in the ready state. You can register 
multiple directories with a watch service. Note that the directory must exist at the time of registration.

Retrieving a WatchKey from the Watch Service Queue
When an event occurs on a registered directory, the WatchKey for that registered directory is said to be in 
the signaled state and the WatchKey is queued to the watch service. Another event may occur on a registered 
directory when its WatchKey is in the signaled state. If an event occurs on a directory while its WatchKey is in 
the signaled state, the event is queued to the WatchKey, but the WatchKey itself is not re-queued to the watch 
service. A WatchKey in the signaled state remains in this state until its reset() method is called to change its 
state to the ready state.



Chapter 10 ■ New INput/Output 2

534

You can use the take() or poll() method of the WatchService object to retrieve and remove a signaled 
and queued WatchKey. The take() method waits until a WatchKey is available. The poll() method lets you 
specify a timeout for the wait. Typically, an infinite loop is used to retrieve a signaled WatchKey:

while(true) {
    // Retrieve and remove the next available WatchKey from the watch service
    WatchKey key = ws.take();

    // More code goes here
}

Processing the Events
Once you retrieve and remove a WatchKey from the watch service queue, you can retrieve and remove all 
pending events for that WatchKey. A WatchKey may have more than one pending event. The pollEvents() 
method of the WatchKey retrieves and removes all its pending events. It returns a List<WatchEvent>. 
Each element in the list represents an event on the WatchKey. Typically, you will need to use the kind(), 
context(), and count() methods of the WatchEvent object to know the details of the event. The following 
snippet of code shows the typical logic for processing an event:

while(true) {
    // Retrieve and remove the next available WatchKey  
    WatchKey key = ws.take();

    // Process all events of the WatchKey  
    for(WatchEvent<?> event : key.pollEvents()) {
        // Process each event here  
    }
}

Resetting the WatchKey after Processing Events
You must reset the WatchKey object by calling its reset() method, so it may receive event notifications and 
be queued to the watch service again. The reset() method puts the WatchKey into the ready state. The 
reset() method returns true if the WatchKey is still valid. Otherwise, it returns false. A WatchKey may 
become invalid if it is cancelled or its watch service is closed.

// Reset the WatchKey  
boolean isKeyValid = key.reset();
if (!isKeyValid) {
    System.out.println("No longer watching " + dirToWatch);
}

Closing the Watch Service
When you are done with the watch service, close it by calling its close() method. You will need to handle 
the java.io.IOException when you call its close() method.

// Close the watch service  
ws.close();



Chapter 10 ■ New INput/Output 2

535

 ■ Tip  the WatchService is AutoCloseable. If you create an object of the WatchService in a try-with-
resources block, it will be automatically closed when the program exits the block.

Listing 10-21 contains a complete program that watches a C:\kishori directory for changes. You can 
replace the directory path in the Watcher class with the directory path that you want to watch for changes. 
You will need to make changes to the watched directory, such as creating a new file and changing an existing 
file, after you run the Watcher class. The output will show the details of the events that occur on an entry in 
the watched directory. You may get different output.

Listing 10-21. Implementing a Watch Service to Monitor Changes in a Directory

// Watcher.java
package com.jdojo.nio2;

import java.nio.file.WatchEvent.Kind;
import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.WatchService;
import java.nio.file.WatchEvent;
import java.nio.file.WatchKey;
import static java.nio.file.StandardWatchEventKinds.ENTRY_CREATE;
import static java.nio.file.StandardWatchEventKinds.ENTRY_MODIFY;
import static java.nio.file.StandardWatchEventKinds.ENTRY_DELETE;
import static java.nio.file.StandardWatchEventKinds.OVERFLOW;

public class Watcher {
    public static void main(String[] args) {
        try (WatchService ws = FileSystems.getDefault().newWatchService()) {
            // Get a Path object for C:\kishori directory to watch  
            Path dirToWatch = Paths.get("C:\\kishori");

            // Register the path with the watch service for create,
            // modify and delete events
            dirToWatch.register(ws, ENTRY_CREATE, ENTRY_MODIFY, ENTRY_DELETE);

            System.out.println("Watching " + dirToWatch + " for events.");

            // Keep watching for events on the dirToWatch  
            while (true) {
                // Retrieve and remove the next available WatchKey  
                WatchKey key = ws.take();

                for (WatchEvent<?> event : key.pollEvents()) {
                    Kind<?> eventKind = event.kind();
                    if (eventKind == OVERFLOW) {
                        System.out.println("Event overflow occurred");
                        continue;
                    }



Chapter 10 ■ New INput/Output 2

536

                    // Get the context of the event, which is the directory
                    // entry on which the event occurred.  
                    @SuppressWarnings("unchecked")
                    WatchEvent<Path> currEvent = (WatchEvent<Path>) event;
                    Path dirEntry = currEvent.context();

                    // Print the event details  
                    System.out.println(eventKind + " occurred on " + dirEntry);
                }

                // Reset the key  
                boolean isKeyValid = key.reset();

                if (!isKeyValid) {
                    System.out.println("No longer watching " + dirToWatch);
                    break;
                }
            }
        } catch (IOException | InterruptedException e) {
            e.printStackTrace();
        }
    }
}

Watching C:\kishori for events.
ENTRY_DELETE occurred on temp
ENTRY_CREATE occurred on hello.txt
ENTRY_MODIFY occurred on hello.txt

Asynchronous File I/O
NIO.2 supports asynchronous file I/O. In a synchronous file I/O, the thread that requests the I/O operation 
waits until the I/O operation is complete. In an asynchronous file I/O, the Java application requests the 
system for an I/O operation and the operation is performed by the system asynchronously. When the system 
is performing the file I/O operation, the application continues doing other work. When the system finishes 
the file I/O, it notifies the application about the completion of its request.

The asynchronous file I/O model is scalable as compared to the synchronous file I/O model. The 
requests for an asynchronous file I/O and the completion notification to the application are performed by a 
pool of threads that are specially created for this purpose. The asynchronous file I/O API has options to let 
you use the default thread pool or a custom thread pool. It offers enhanced scalability by using a predefined 
dedicated pool of threads to handle all asynchronous file I/O operations, instead of creating a new thread for 
each I/O operation.

An instance of the java.nio.channels.AsynchronousFileChannel class represents an asynchronous 
file channel that is used to read, write, and perform other operations on a file asynchronously. Multiple 
I/O operations can be performed simultaneously on an asynchronous file channel. An asynchronous file 
channel does not maintain a current position where a read or a write operation starts. You need to provide 
the position for each read and write operation with each request.



Chapter 10 ■ New INput/Output 2

537

The static open() method of the AsynchronousFileChannel class is used to get an instance of 
the AsynchronousFileChannel class. The method is overloaded. One version uses the default thread 
pool to handle the I/O operations and the completion notification. Another version lets you specify an 
ExecutorService to which the asynchronous tasks will be submitted for handling the I/O operations and 
the completion notifications. The following snippet of code gets an AsynchronousFileChannel on a file for 
writing. It creates the file if the file does not exist.

// Get a Path object  
Path path = Paths.get("rainbow.txt");

// Get an asynchronous file channel for WRITE. Create the file, if it does not exist  
AsynchronousFileChannel afc = AsynchronousFileChannel.open(path, WRITE, CREATE);

The AsynchronousFileChannel provides two ways to handle the result of an asynchronous file I/O 
operation.

•	 Using a java.util.concurrent.Future object.

•	 Using a java.nio.channels.CompletionHandler object.

Each method of the AsynchronousFileChannel class that supports asynchronous file I/O operation 
has two versions. One version returns a Future object, which you can use to handle the result of the 
requested asynchronous operation. The get() method of the Future object returns the number of bytes 
written to the file channel. The following snippet of code uses the version of the write() method that 
returns a Future object:

// Get the data to write in a ByteBuffer  
ByteBuffer dataBuffer = /* get a byte buffer filled with data */;

// Perform the asynchronous write operation  
long startPosition = 0;
Future<Integer> result = afc.write(dataBuffer, startPosition);

Once you get a Future object, you can use a polling method or a blocked waiting method to handle the 
result of the asynchronous file I/O. The following snippet of code shows the polling method, where it keeps 
calling the isDone() method of the Future object to check if the I/O operation is finished:

while (!result.isDone()) {
    // Async file I/O is not done yet. Keep working on something else  
}

// We are done with the async file I/O. Get the result  
int writtenNumberOfBytes = result.get();

 ■ Tip  Note that the call to the Future.get() method blocks until the result is available. the call to the 
Future.isDone() method is non-blocking.



Chapter 10 ■ New INput/Output 2

538

Another version of the methods of the AsynchronousFileChannel class that supports asynchronous file 
I/O lets you pass a CompletionHandler object whose methods are called when the requested asynchronous 
I/O operation completes or fails. The CompletionHandler interface has two methods: completed() and 
failed(). The completed() method is called when the requested I/O operation completes successfully. 
When the requested I/O operation fails, the failed() method is called. The API lets you pass an object of 
any type to the completed() and failed() methods. Such an object is called an attachment. You may want 
to pass an attachment such as the ByteBuffer or the reference to the channel, etc. to these methods so 
you can perform additional actions, such as reading the data from the ByteBuffer inside these methods. 
Pass null as an attachment if you do not have anything useful to pass to these methods as an attachment. 
Suppose you intend to use an object of the following Attachment class as an attachment to your completion 
handler:

// Used as an attachment  
public class Attachment {
    public Path path;
    public ByteBuffer buffer;
    public AsynchronousFileChannel asyncChannel;
}

Now you can declare your completion handler class as follows:

// A class to handle completion of an asynchronous I/O operation  
public class MyHandler implements CompletionHandler<Integer, Attachment> {
    @Override
    public void completed(Integer result, Attachment attach) {
        // Handle completion of the I/O operation  
    }

    @Override
    public void failed(Throwable e, Attachment attach) {
        // Handle failure of the I/O operation  
    }
}

You can use an object of the MyHandler class to handle the completion of an asynchronous file 
I/O operation. The following snippet of code uses a MyHandler instance as a completion handler for an 
asynchronous write operation. The completed() or failed() method of the MyHandler instance will be 
called depending on the result of the I/O operation.

// Get a completion handler  
MyHandler handler = new MyHandler();

// Get the data to write in a ByteBuffer  
ByteBuffer dataBuffer = /* get a data buffer */;

// Prepare the attachment  
Attachment attach = new Attachment();
attach.asyncChannel = afc;
attach.buffer = dataBuffer;
attach.path = path;

// Perform the asynchronous write operation  
afc.write(dataBuffer, 0, attach, handler);



Chapter 10 ■ New INput/Output 2

539

 ■ Tip  the ByteBuffer used to read or write in an asynchronous file operation should not be used by 
the application between the time it is used in an asynchronous file I/O request and the time the request 
is completed. Otherwise, it will have an unpredictable result. You can close AsynchronousFileChannel 
using its close() method. all pending operations are completed with java.nio.channels.
AsynchronousCloseException when its close() method is called.

Listing 10-22 demonstrates how to use a CompletionHandler object to handle the results of an 
asynchronous write to a file. After submitting the request for the asynchronous write on a file, the main 
thread sleeps for five seconds to give the asynchronous operation time to finish. In a real-world application, 
after submitting an asynchronous file I/O request, you would continue performing other tasks. The program 
writes some text to a rainbow.txt file in the default directory. You may get different output.

Listing 10-22. Using a CompletionHandler Object to Handle the Result of an Asynchronous File Write

// AsyncFileWrite.java
package com.jdojo.nio2;

import java.nio.ByteBuffer;
import java.io.IOException;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.channels.CompletionHandler;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.charset.Charset;
import static java.nio.file.StandardOpenOption.WRITE;
import static java.nio.file.StandardOpenOption.CREATE;

public class AsyncFileWrite {
    // Used as an attachment to the CompletionHandler  
    private static class Attachment {
        public Path path;
        public ByteBuffer buffer;
        public AsynchronousFileChannel asyncChannel;
    }

    // An inner class to handle completion of the asynchronous write operation  
    private static class WriteHandler implements CompletionHandler<Integer, Attachment> {
        @Override
        public void completed(Integer result, Attachment attach) {
            System.out.format("%s bytes written to %s%n",
                    result, attach.path.toAbsolutePath());

            try {
                // Close the channel  
                attach.asyncChannel.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }



Chapter 10 ■ New INput/Output 2

540

        @Override
        public void failed(Throwable e, Attachment attach) {
            System.out.format("Write operation on %s file failed."
                    + " The error is:  %s%n", attach.path, e.getMessage());
            try {
                // Close the channel  
                attach.asyncChannel.close();
            } catch (IOException e1) {
                e1.printStackTrace();
            }
        }
    }

    public static void main(String[] args) {
        Path path = Paths.get("rainbow.txt");

        try {
            // Get an async channel  
            AsynchronousFileChannel afc =
                    AsynchronousFileChannel.open(path, WRITE, CREATE);

            // Get a completion handler  
            WriteHandler handler = new WriteHandler();

            // Get the data to write in a ByteBuffer  
            ByteBuffer dataBuffer = getDataBuffer();

            // Prepare the attachment  
            Attachment attach = new Attachment();
            attach.asyncChannel = afc;
            attach.buffer = dataBuffer;
            attach.path = path;

            // Perform the asynchronous write operation  
            afc.write(dataBuffer, 0, attach, handler);

            try {
                // Let the thread sleep for 5 seconds,
                // to allow the asynchronous write is complete  
                System.out.println("Sleeping for 5 seconds...");
                Thread.sleep(5000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            System.out.println("Done...");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }



Chapter 10 ■ New INput/Output 2

541

    public static ByteBuffer getDataBuffer() {
        String lineSeparator = System.getProperty("line.separator");

        StringBuilder sb = new StringBuilder();
        sb.append("My heart leaps up when I behold");
        sb.append(lineSeparator);
        sb.append("A Rainbow in the sky");
        sb.append(lineSeparator);
        sb.append(lineSeparator);
        sb.append("So was it when my life began;");
        sb.append(lineSeparator);
        sb.append("So is it now I am a man;");
        sb.append(lineSeparator);
        sb.append("So be it when I shall grow old,");
        sb.append(lineSeparator);
        sb.append("Or let me die!");
        sb.append(lineSeparator);
        sb.append(lineSeparator);
        sb.append("The Child is father of the man;");
        sb.append(lineSeparator);
        sb.append("And I could wish my days to be");

        String str = sb.toString();
        Charset cs = Charset.forName("UTF-8");
        ByteBuffer bb = ByteBuffer.wrap(str.getBytes(cs));

        return bb;
    }
}

Sleeping for 5 seconds...
228 bytes written to C:\Java9LanguageFeatures\rainbow.txt
Done...

Listing 10-23 demonstrates how to use a Future to handle the results of an asynchronous write to a 
file. It uses a try-with-resources clause to open an AsynchronousFileChannel. It uses a polling method 
(Future.isDone() method calls) to check if the I/O operation has completed. The program writes some text 
to a file named rainbow.txt in the default directory. You may get different output.

Listing 10-23. Using a Future Object to Handle the Result of an Asynchronous File Write

// AsyncFileWriteFuture.java
package com.jdojo.nio2;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.nio.ByteBuffer;
import java.io.IOException;
import java.nio.file.Path;
import java.nio.file.Paths;



Chapter 10 ■ New INput/Output 2

542

import java.nio.channels.AsynchronousFileChannel;
import static java.nio.file.StandardOpenOption.WRITE;
import static java.nio.file.StandardOpenOption.CREATE;

public class AsyncFileWriteFuture {
    public static void main(String[] args) {
        Path path = Paths.get("rainbow.txt");

        try (AsynchronousFileChannel afc
                = AsynchronousFileChannel.open(path, WRITE, CREATE)) {

            // Get the data to write in a ByteBuffer  
            ByteBuffer dataBuffer = AsyncFileWrite.getDataBuffer();

            // Perform the asynchronous write operation  
            Future<Integer> result = afc.write(dataBuffer, 0);

            // Keep polling to see if I/O has finished  
            while (!result.isDone()) {
                try {
                    // Let the thread sleep for 2 seconds
                    // before the next polling  
                    System.out.println("Sleeping for 2 seconds...");
                    Thread.sleep(2000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }

            // I/O is complete  
            try {
                int writtenBytes = result.get();
                System.out.format("%s bytes written to %s%n",
                        writtenBytes, path.toAbsolutePath());
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Sleeping for 2 seconds...
228 bytes written to C:\Java9LanguageFeatures\rainbow.txt



Chapter 10 ■ New INput/Output 2

543

Listing 10-24 demonstrates how to use a CompletionHandler object to handle the results of an 
asynchronous read from a file. The program reads and prints the contents of a rainbow.txt file in the default 
directory. To read the contents of a different file, change the path of the file in the main() method. You may 
get different output.

Listing 10-24. Using a CompletionHandler to Handle the Result of an Asynchronous File Read

// AsyncFileRead.java
package com.jdojo.nio2;

import java.nio.ByteBuffer;
import java.io.IOException;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.channels.CompletionHandler;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.charset.Charset;
import static java.nio.file.StandardOpenOption.READ;

public class AsyncFileRead {
    // Used as an attachment to the CompletionHandler  
    private static class Attachment {
        public Path path;
        public ByteBuffer buffer;
        public AsynchronousFileChannel asyncChannel;
    }

    // An inner class to handle completion of the asynchronous read operation  
    private static class ReadHandler implements CompletionHandler<Integer, Attachment> {
        @Override
        public void completed(Integer result, Attachment attach) {
            System.out.format("%s bytes read from %s%n", result, attach.path);
            System.out.format("Read data is:%n");

            byte[] byteData = attach.buffer.array();
            Charset cs = Charset.forName("UTF-8");
            String data = new String(byteData, cs);
            System.out.println(data);

            try {
                // Close the channel  
                attach.asyncChannel.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }

        @Override
        public void failed(Throwable e, Attachment attach) {
            System.out.format("Read operation on %s file failed."
                    + " The error is: %s%n",
                    attach.path, e.getMessage());



Chapter 10 ■ New INput/Output 2

544

            try {
                // Close the channel  
                attach.asyncChannel.close();
            } catch (IOException e1) {
                e1.printStackTrace();
            }
        }
    }

    public static void main(String[] args) {
        Path path = Paths.get("rainbow.txt");
        try {
            // Get an async channel
            AsynchronousFileChannel afc = AsynchronousFileChannel.open(path, READ);

            // Get a completion handler  
            ReadHandler handler = new ReadHandler();

            // Get the data size in bytes to read  
            int fileSize = (int) afc.size();
            ByteBuffer dataBuffer = ByteBuffer.allocate(fileSize);

            // Prepare the attachment  
            Attachment attach = new Attachment();
            attach.asyncChannel = afc;
            attach.buffer = dataBuffer;
            attach.path = path;

            // Perform the asynchronous read operation  
            afc.read(dataBuffer, 0, attach, handler);

            try {
                // Let the thread sleep for five seconds,
                // to allow the asynchronous read to complete  
                System.out.println("Sleeping for 5 seconds...");
                Thread.sleep(5000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            System.out.println("Done...");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}



Chapter 10 ■ New INput/Output 2

545

Sleeping for 5 seconds...
228 bytes read from rainbow.txt
Read data is:
My heart leaps up when I behold
A Rainbow in the sky

So was it when my life began;
So is it now I am a man;
So be it when I shall grow old,
Or let me die!

The Child is father of the man;
And I could wish my days to be
Done...

Listing 10-25 demonstrates how to use a Future object to handle the results of an asynchronous read 
from a file. It uses the wait method (a Future.get() method call) to wait for the asynchronous file I/O to 
complete. The program reads the contents of a rainbow.txt file in the default directory. Change the path of 
this file if you want to read the contents of a different file. You may get different output.

Listing 10-25. Using a Future Object to Handle the Result of an Asynchronous File Read

// AsyncFileReadFuture.java
package com.jdojo.nio2;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.nio.ByteBuffer;
import java.io.IOException;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.charset.Charset;
import static java.nio.file.StandardOpenOption.READ;

public class AsyncFileReadFuture {
    public static void main(String[] args) {
        Path path = Paths.get("rainbow.txt");

        try (AsynchronousFileChannel afc = AsynchronousFileChannel.open(path, READ)) {

            // Get a data buffer of the file size to read  
            int fileSize = (int) afc.size();
            ByteBuffer dataBuffer = ByteBuffer.allocate(fileSize);

            // Perform the asynchronous read operation  
            Future<Integer> result = afc.read(dataBuffer, 0);

            System.out.println("Waiting for reading to be finished...");
            try {
                // Let us wait until reading is finished  
                int readBytes = result.get();



Chapter 10 ■ New INput/Output 2

546

                System.out.format("%s bytes read from %s%n", readBytes, path);
                System.out.format("Read data is:%n");

                // Read the data from the buffer  
                byte[] byteData = dataBuffer.array();
                Charset cs = Charset.forName("UTF-8");
                String data = new String(byteData, cs);

                System.out.println(data);
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        } catch (IOException ex) {
            ex.printStackTrace();
        }
    }
}

Waiting for reading to be finished... 
228 bytes read from rainbow.txt
Read data is:
My heart leaps up when I behold
A Rainbow in the sky

So was it when my life began;
So is it now I am a man;
So be it when I shall grow old,
Or let me die!

The Child is father of the man;
And I could wish my days to be

Summary
The New Input/Output 2 (NIO.2) is a new I/O API that provides improved, comprehensive support for 
working with platform-dependent file systems. An instance of the FileSystem class represents a platform-
dependent file system.

An instance of the Path class represents an abstract pathname in the file system. It contains several 
methods to manipulate a path. A Path is used with a utility class named Files to work with the contents and 
attributes of the file that it represents. The Files class consists of all static convenience methods to work 
with files, such as for deleting, copying, and moving files.

NIO.2 has extensive support for reading and modifying file attributes. Attribute support is provided 
through different attribute views. Some views are supported on all platforms and some are platform specific. 
Some views are optional.

NIO.2 provides a watch service to watch for changes to a directory’s contents. The Java program 
registers a directory with the watch service to get notified for specific events that occur in the directory, 
such as the creation of a new file/directory, change in the contents of a file, deletion of a file, etc. The watch 
service notifies the Java program when the event of interest occurs on the registered directories.



Chapter 10 ■ New INput/Output 2

547

NIO.2 provides comprehensive support for asynchronous file I/O. An instance of the java.nio.
channels.AsynchronousFileChannel class represents an asynchronous file channel that is used to read, 
write, and perform other operations on a file asynchronously. Multiple I/O operations can be performed 
simultaneously on an asynchronous file channel.

QUESTIONS AND EXERCISES

1. what are file systems and file stores?

2. how do you obtain an instance of the FileSystem class that represents the default 
file system on the current platform?

3. what is a path, an absolute path, and a relative path in a file system?

4. Instances of both the File class and the Path interface represent pathnames. 
Differentiate between the two. how do you get a File from a Path and vice versa?

5. what is purpose of the Paths class? write a snippet of code to get a Path instance 
using the Paths class to represent a file named test.txt in the current working 
directory.

6. write a snippet of code to print the path string of the current working directory.

7. what is the use of the startsWith() and endsWith() methods in the Path 
interface?

8. Suppose you have two instances of the Path interface named p1 and p2. what is 
the difference in calling p1.equals(p2) and Files.isSameFile(p1, p2)?

9. what is a symbolic link? how do you check if a Path represents a symbolic link?

10. what methods of the Files class are used to create regular files and temporary files?

11. what is the difference between using the delete() and deleteIfExists() 
methods of the Files class to delete a file?

12. using the NIO.2 apI, how do you check if a file exists?

13. what methods in the Files class are used to copy and move a file?

14. write a program that prints the creation time of a file named test in the current 
directory, changes the creation time of the file to five hours before the original time, 
and prints the new creation time.

15. how do you know the MIMe type of a file?

16. how do you know if a Path represents a directory, a regular file, or a symbolic link?

17. what file attribute view is guaranteed to be available on all platforms?

18. what types of file system objects can you watch using the watch service in the 
NIO.2 apI?

19. Briefly explain the uses of the following classes and interfaces: Watchable, 
WatchService, WatchKey, WatchEvent<T>, WatchEvent.Kind<T>, and 
StandardWatchEventKinds.

20. what is the purpose of the AsynchronousFileChannel class?



549© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_11

CHAPTER 11

Garbage Collection

In this chapter, you will learn:

•	 What garbage collection is

•	 How garbage collection is implemented in Java

•	 How to pass a hint to the JVM to run the garbage collector

•	 How to implement the finalizers

•	 Different states of an object based on its reachability and finalization status

•	 The difference between strong and weak references

•	 How to use weak references to implement memory-sensitive cache

•	 How to use PhantomReference and ReferenceQueue classes to implement cleanup 
tasks for objects

•	 How to use the new Cleaner class in JDK9 to perform cleanup work for phantom 
reachable objects

All example programs in this chapter are members of the jdojo.gc module, as declared in Listing 11-1.

Listing 11-1. The Declaration of a jdojo.gc Module

// module-info.java
module jdojo.gc {
    exports com.jdojo.gc;
}

What Is Garbage Collection?
In a programming language, memory management is central to the development of a fast, efficient, and  
bug-free application. Memory management involves two activities:

•	 Memory allocation

•	 Memory reclamation

https://doi.org/10.1007/978-1-4842-3348-1_11


Chapter 11 ■ GarbaGe ColleCtion

550

When a program needs memory, memory is allocated from a memory pool. When the program 
is finished with the memory, the memory is returned to the memory pool, so it can be reused by some 
other part of the program in the future. The process of returning memory to the pool is known as memory 
reclamation or memory recycling. The memory allocation and reclamation can be accomplished explicitly or 
implicitly.

In explicit memory allocation, the programmer decides how much memory is needed. The programmer 
requests that amount of memory from the program runtime environment, known as the memory allocator 
or simply the allocator. The allocator allocates the requested memory and marks that memory as in-use, so 
it will not allocate the same memory block again. Here, we assumed that our request for new memory block 
to allocator is always fulfilled. This can happen only if we have an infinite amount of memory. However, that 
is not the case with any computer. Some computers may have megabytes of memory and some may have 
gigabytes. However, there is always a limit to the memory available on a computer. If we run a program that 
always allocates memory blocks from the memory pool and never returns the memory back to the pool, we 
will soon run out of memory and the program will stop.

In explicit memory reclamation, the programmer decides when to return the memory to the memory 
pool. The allocator is free to allocate the returned memory when it receives a new request for memory 
allocation. Explicit memory reclamation often leads to subtle bugs in programs. It also complicates the inter-
modules interface design. Suppose there are two modules in an application and they are named m1 and m2. 
Module m1 allocates a block of memory and the reference to that memory is r1. Module m1 makes a call to 
module m2, passing the reference r1. Module m2 stores the reference r1 for future use. Which module should 
be responsible for the reclamation of the memory referenced by r1? There could be different scenarios 
depending on the program flow between the two modules. Suppose module m1 reclaims the memory 
immediately after a call to module m2. In such a case, you may come across two problems:

•	 At some point in the program execution, module m2 tries to access the memory using 
the reference r1. Because module m1 has already reclaimed the memory referenced 
by r1, the same memory might have been reallocated by the allocator and may have 
entirely different data stored at that memory location. In such a case, r1 is called a 
dangling reference because it is referencing a memory location that has already been 
reclaimed. If you try to read data using a dangling reference, the result would be 
unpredictable. You cannot have a dangling reference in Java.

•	 Module m1 may try to use reference r1 after it has reclaimed the memory referenced 
by r1. This will also lead to the problem of using a dangling reference.

If module m2 reclaims the memory referenced by r1, you may end up with the same dangling reference 
problem if any of the modules, m1 or m2, try to use reference r1. What happens if none of the modules 
reclaims the memory and never uses the reference r1 again? The memory will never be returned to the 
memory pool and will never be reused. This situation is known as a memory leak because the allocator has 
no knowledge of the memory block, which is not returned to it, even though it is never used again by the 
program. If memory leaks happen regularly, the program will eventually run out of memory and will cease 
to function. If your program runs for a short time with small memory leaks, you may not even notice this bug 
for years or for the entire life of your program!

In a programming language that allows explicit memory management, programmers spend a 
substantial amount of effort in the memory management aspect of the program. In another kind of memory-
related problem, a programmer may allocate a big amount of memory statically, so that he can use it 
throughout the lifecycle of the program. The static memory allocation may not always succeed, since static 
memory has an upper limit. The hardest part of the memory management decision is to decide when to 
reclaim the memory to avoid dangling references and memory leaks.

In implicit memory allocation, a programmer indicates to the runtime system that he wants to allocate 
memory to store a particular type of data. The runtime system computes the memory needed to store the 
requested type of data and allocates it to the running program. In implicit/automatic memory reclamation, 
a programmer does not need to worry about memory reclamation. The runtime system will automatically 



Chapter 11 ■ GarbaGe ColleCtion

551

reclaim all memory blocks, which will never be used by the program again. The process of automatic 
reclamation of unused memory is known as garbage collection. The program that performs garbage 
collection is known as a garbage collector or simply a collector. The garbage collector may be implemented 
as part of the language runtime system or as an add-on library.

Memory Allocation in Java
In Java, programmers deal with objects. The memory required for an object is always allocated on the heap. 
The memory is allocated implicitly using the new operator. Suppose you have a class called Employee. You 
create an object of the Employee class.

Employee emp = new Employee();

Depending on the definition of the Employee class, the Java runtime computes how much memory is 
needed, allocates the needed memory on heap, and stores the reference to that memory block in the emp 
reference variable. Note that when you want to create an Employee object, you do not specify how much 
memory you need. The new Employee() part of the previous statement indicates to Java that you want to 
create an object of the Employee class. Java queries the definition of the Employee class to compute the 
memory required to represent an Employee object.

Every Java object in memory has two areas: a header area and a data area. The header area stores 
bookkeeping information to be used by the Java runtime, for example, the pointer to the object’s class, 
object’s garbage collection status, object’s locking information, length of an array if the object is an array, etc. 
The data area is used to store the values of all instance variables of the object. The header area layout is fixed 
for a particular JVM implementation, whereas the data area layout is dependent on the object type. The Java 
Hotspot virtual machine uses two machine-words (in 32-bit architecture one word is 4 bytes) for the object 
header. If the object is an array, it uses three machine-words for its header. One extra word in the header is 
used to store the value of the array’s length. However, most JVMs use three machine-words for an object’s 
header. Figure 11-1 depicts the object layout for the Java Hotspot VM.

classptr

hash + age + lock

arraylength

Array Elements

classptr

hash + age + lock

Object Data

Java object layout in Hotspot VM Java array object layout in Hotspot VM 

Object header

Figure 11-1. The layout of an object in the Java Hotspot VM



Chapter 11 ■ GarbaGe ColleCtion

552

The Java Hotspot VM uses a variable length object header to save memory on the heap. Since most Java 
objects are small, one machine-word savings per object for non-array objects is a significant heap space 
savings. The Java Hotspot VM’s object header contains the following information:

•	 classptr: This is the first machine-word in the object layout. It contains a pointer 
to the class information of the object. The class information includes the object’s 
method table, the object’s size, and a pointer to a Class structure, which contains 
information about the class of the object, etc.

•	 hash + age + lock: This is the second machine-word in the object header. It 
contains the object’s hash code, age information, and lock fields. Age information is 
used in the process of reclaiming the object’s memory by the generational garbage 
collector. The generation garbage collector is a special type of garbage collector that 
uses the object’s age in its algorithm to reclaim an object’s memory.

•	 arraylength: This is the third machine-word in the object header. It is included only 
if the object is an array. It contains the length of the array. In this case, the object’s 
data area contains the array elements.

 ■ Note  in Java, all objects are created on heap. Java uses the new operator to allocate memory for an 
object on heap. an array’s length is not part of its class definition. it is defined at runtime. it is stored in the 
object header. You will not find the length instance variable in the array’s class definition when you perform 
introspection on an array’s object.

Java does not provide any direct means to compute the size of an object. You should not write a Java 
program that depends on the size of the objects anyway. The size of primitive types—for example, int, long, 
double, etc.—is fixed for all JVM implementations. The layout and size of an object depend on the JVM 
implementation. Therefore, any code that depends on the size of objects may work on one platform and not 
on others.

Garbage Collection in Java
The garbage collector is part of the Java platform. It runs in the background in a low priority thread. It 
automatically reclaims objects. However, before it reclaims objects, it makes sure that the running program 
in its current state will never use them again. This way, it ensures that the program will not have any 
dangling references. An object that cannot be used in the future by the running program is known as a dead 
object or garbage. An object that can be used in the future by the running program is known as a live object.

There are many algorithms to determine whether an object is live or dead. One of the simplest, but not 
very efficient, algorithms is based on reference counting, which stores the count of references that refer to 
an object. When an object’s reference is assigned to a reference variable, the reference count is incremented 
by 1. When a reference variable no longer refers to an object, the reference count is decremented by 1. When 
the reference count for an object is zero, it becomes garbage (or dead). This algorithm has a lot of overhead 
of updating the reference count of objects. Another type of algorithm, which is called a tracing algorithm, is 
based on the concept of a root set. A root set includes the following:

•	 Reference variables in the Java stack for each thread

•	 static reference variables defined in loaded classes

•	 Reference variables registered using the Java Native Interface (JNI)



Chapter 11 ■ GarbaGe ColleCtion

553

A garbage collector, which is based on the tracing algorithm, starts traversing references starting from 
the root set. Objects that can be reached (or accessed) from the reference variables in the root set are known 
as reachable objects. A reachable object is considered live. A reachable object from the root set may refer to 
other objects. These objects are also considered reachable. Therefore, all objects that can be reached directly 
or indirectly from the root set reference variables are considered live. Other objects are considered dead and 
are thus eligible for garbage collection.

An object may manage resources other than memory on heap. These resources may include network 
connections, file handles, memory managed explicitly by native code, etc. For example, an object may 
open a file when the object is created. File handles that can be opened simultaneously may have an upper 
limit depending on your operating system. When the object is garbage collected, you may want to close 
those file handles. The garbage collector gives the dying object a chance to perform the cleanup work. It 
does this by executing a predefined block of code before the memory for the dying object is reclaimed. The 
process of performing the cleanup work, before the object is reclaimed by the garbage collector, is known 
as finalization. The block of code that is invoked by the garbage collector to perform finalization is known 
as the finalizer. In Java, you can define an instance method called finalize() in a class, which serves as a 
finalizer for the objects of that class. The Java garbage collector invokes the finalize() method of an object 
before it reclaims the memory occupied by the object.

Invoking the Garbage Collector
Programmers have little control over the timing when the garbage collection is run. The JVM performs 
the garbage collection whenever it runs low on memory. The JVM tries its best to free up memory of all 
unreachable objects before it throws a java.lang.OutOfMemoryError error. The gc() method of the java.
lang.Runtime class may be used to pass a hint to the JVM that it may run the garbage collection. The call 
to the gc() method is just a hint to the JVM. The JVM is free to ignore the call. Suggesting that the garbage 
collection should run can be invoked as shown:

// Get runtime instance and invoke the garbage collection
Runtime.getRuntime().gc();

The System class contains a convenience method called gc(), which is equivalent to executing the 
previous statement. You can also use the following statement to run the garbage collector:

// Invoke the garbage collection
System.gc();

The program in Listing 11-2 demonstrates the use of the System.gc() method. The program creates 
2,000 objects of the Object class in the createObjects() method. The references of the new objects are not 
stored. You cannot refer to these objects again, and hence, they are garbage. When you invoke the System.gc() 
method, you suggest the JVM that it should try to reclaim the memory used by these objects. The memory freed 
by the garbage collector is displayed in the output section. Note that you will more than likely get a different 
output when you run this program. The freeMemory() method of the Runtime class returns the amount of free 
memory in the JVM.

Listing 11-2. Invoking Garbage Collection

// InvokeGC.java
package com.jdojo.gc;

public class InvokeGC {
    public static void main(String[] args) {
        long m1, m2, m3;



Chapter 11 ■ GarbaGe ColleCtion

554

        // Get a runtime instance
        Runtime rt = Runtime.getRuntime();

        for (int i = 0; i < 3; i++) {
            // Get free memory
            m1 = rt.freeMemory();

            // Create some objects
            createObjects(2000);

            // Get free memory
            m2 = rt.freeMemory();

            // Invoke garbage collection
            System.gc();

            // Get free memory
            m3 = rt.freeMemory();

            System.out.println("m1 = " + m1 + ", m2 = " + m2 + ", m3 = "
                    + m3 + "\nMemory freed by gc() = " + (m3 - m2));

            System.out.println("-------------------------");
        }
    }

    public static void createObjects(int count) {
        for (int i = 0; i < count; i++) {
            // Do not store the references of new objects, so they become
            // eligible for garbage collection immediately.
            new Object();
        }
    }
}

m1 = 130188712, m2 = 130188712, m3 = 7402320
Memory freed by gc() = -122786392
-------------------------
m1 = 6225808, m2 = 6225808, m3 = 7241760
Memory freed by gc() = 1015952
-------------------------
m1 = 7207408, m2 = 7207408, m3 = 7241832
Memory freed by gc() = 34424
-------------------------

In general, it is not advisable to invoke the garbage collector programmatically. Invoking the garbage 
collector has some overhead. It may slow down performance if it is invoked arbitrarily. The Java runtime 
takes care of reclaiming unused object’s memory automatically. You may get an OutOfMemoryError in your 
program. This error may be caused by many reasons. The Java runtime makes all efforts to free up memory, 



Chapter 11 ■ GarbaGe ColleCtion

555

invoking the garbage collector before throwing the OutOfMemoryError error. Therefore, simply invoking the 
garbage collector programmatically will not make this error go away. To resolve this error, you can look at the 
following:

•	 Review your program to make sure that you are not holding onto some object 
references that you will never use again. Set these references to null after you are 
done with them. Setting all references to an object to null makes the object eligible 
for the garbage collection. If you are storing large objects in static variables, those 
objects will remain in memory until the class itself is unloaded. Generally, the 
objects stored in static variables will take up memory forever. Review your program 
and try to avoid storing large objects in static variables.

•	 Review your code and make sure that you are not caching large amounts of data in 
objects. You can use weak references to cache large amounts of data in objects. Weak 
references have an advantage over regular references (regular references are also 
known as strong references), in that the objects referenced by weak references are 
garbage collected before the Java runtime throws an OutOfMemoryError. I discuss 
weak references later in this chapter.

•	 If none of these solutions works for you, you may try to adjust the heap size.

Object Finalization
Finalization is an action that is automatically performed on an object before the memory used by the object 
is reclaimed by the garbage collector. The block of code that contains the action to be performed is known as 
a finalizer. The Object class has a finalize() method, which is declared as

protected void finalize() throws Throwable

Because all Java classes inherit from the Object class, the finalize() method can be invoked on 
all Java objects. Any class can override and implement its own version of the finalize() method. The 
finalize() method serves as a finalizer for Java objects. That is, the garbage collector automatically invokes 
the finalize() method on an object before reclaiming the object’s memory. Understanding the correct use 
of the finalize() method is key to writing a good Java program, which manages resources other than the 
heap memory.

 ■ Note  the finalize() method in the Object class has been deprecated since JDK9. Use other ways 
clean up resources held by an object. i discuss them in this chapter. i also discuss how to use the finalize() 
method, even though it is deprecated, for the sake of completeness.

Let’s first start with a simple example that demonstrates the fact that the finalize() method is called 
before an object is garbage collected. Listing 11-3 defines a finalize() method in the Finalizer class. 
I used the @SuppressWarnings("deprecation") annotation on the finalize() method to suppress the 
compile-time deprecation warning because the method has been deprecated in JDK9.



Chapter 11 ■ GarbaGe ColleCtion

556

Listing 11-3. Using the finalize() Method

// Finalizer.java
package com.jdojo.gc;

public class Finalizer {
    // id is used to identify the object
    private final int id;

    // Constructor which takes the id as argument
    public Finalizer(int id){
        this.id = id;
    }

    // This is the finalizer for the object. The JVM will call this method,
    // before the object is garbage collected    
    @SuppressWarnings("deprecation")
    @Override
    public void finalize(){
        // Just print a message indicating which object is being garbage collected.
        // Print message when id is a multiple of 100 just to avoid a bigger output.
        if (id % 100 == 0) {
            System.out.println ("finalize() called for " + id ) ;    
        }    
    }

    public static void main(String[] args) {
        // Create 500000 objects of the Finalizer class
        for(int i = 1; i <= 500000; i++){
            // Do not store reference to the new object
            new Finalizer(i);
        }

        // Invoke the garbage collector
        System.gc();
    }    
}

finalize() called for 63700
finalize() called for 186000
finalize() called for 185000
finalize() called for 184400
...

The finalize() method prints a message if the object being garbage collected has an ID that’s a 
multiple of 100. The main() method creates 500,000 objects of the Finalizer class and calls System.gc() to 
invoke the garbage collector.



Chapter 11 ■ GarbaGe ColleCtion

557

When the garbage collector determines that an object is unreachable, it marks that object for 
finalization and places that object in a queue. If you want the Java runtime to finalize all objects that are 
pending finalization, you can do so by calling the runFinalization() method of the Runtime class as shown:

Runtime rt = Runtime.getRuntime();
rt.runFinalization();

The System class has a runFinalization() convenience method, which is equivalent to calling the 
runFinalization() method of the Runtime class. It can be called as shown:

System.runFinalization();

Invoking the runFinalization() method is only a hint to the Java runtime to invoke the finalize() 
method of all objects pending finalization. Technically, you may call the finalize() method on an object 
in your code as many times as you want. However, it is meant for the garbage collector to call an object’s 
finalize() method at most one time during the lifetime of the object. The garbage collector’s one-time call 
to the finalize() method of an object is not affected by the fact that the finalize() method of the object 
was called programmatically before.

Programmers should not override the finalize() method in a class trivially. A finalize() method 
with no code, or one which calls the finalize() method of the Object class, is an example of a trivially 
overridden finalize() method. The method in the Object class does nothing. If your class is a direct 
subclass of the Object class and you do not have any meaningful code in the finalize() method of your 
class, it is better not to include the finalize() method in your class at all. Memory reclamation is faster and 
sooner for the objects, which do not have an implementation of the finalize() method compared to those 
that have an implementation of the finalize() method.

Finally or Finalize?
The timing of object finalization is not guaranteed. Finalization of all unreachable objects is also not 
guaranteed. In short, there is no guarantee when the finalize() method of an unreachable object will be 
called or if it will be called at all. So, what good is the finalize() method? The main purpose of a garbage 
collector in Java is to relieve programmers from the burden of freeing the memory of unused objects to 
avoid the problem of memory leaks and dangling references. Its secondary job is to run the finalization on 
the objects with no guarantee about the timing. As a programmer, you should not depend much on the 
finalization process of garbage collection. You should not code the finalize() method or code it with care. 
If you need to clean up resources for sure when you are done with them, you may use a try-finally block. 
If your resources are AutoCloseable, you may use a try-with-resources block. A try-finally block works 
as follows:

try {
    /* Get your resources and work with them */
} finally {
    /* Release your resources */
}

You can acquire resources and use them in a try block and release them in the associated finally 
block. A finally block is guaranteed to be executed after a try block is executed. This way, you can be sure 
that scarce resources in your program are always freed once you are done with them. However, it may not 
always be feasible, because of performance issues, to release resources immediately after you are done with 
them. For example, you may not want to open a network connection every time you need it. You may open a 



Chapter 11 ■ GarbaGe ColleCtion

558

network connection once, use it, and close it when you no longer need it. Sometimes you may not know the 
exact point in a program from where you will not need that network connection. In such cases, you can code 
the finalize() method as a backup to free the resources if they have not been freed yet. You can call the 
finalize() method programmatically when you know for sure that the resources can be freed.  
Listing 11-4 contains the code for a FinalizeAsBackup class that shows the skeleton of the code that uses 
such a technique.

Listing 11-4. Template of a Class that Uses the finalize() Method as a Backup to Free Resources

// FinalizeAsBackup.java
package com.jdojo.gc;

public class FinalizeAsBackup {
    /* Other codes go here */
    SomeResource sr;
    public void aMethod() {
        sr = Obtain the resources here...;

        /* Do some processing . . . */

        /* Note the conditional freeing of resources */
        if (some condition is true) {
            /* Free resources here calling finalize() */
            this.finalize();
        }
    }

    public void finalize() {
        /* Free the resources if they have not been freed yet */
        if (resources not yet freed ) {
            free resources now;
        }
    }
}

The aMethod() method of the class gets the resource and stores its reference in the sr instance 
variable. Programmers call the finalize() method when they are sure they should free the resources. 
Otherwise, the garbage collector will call the finalize() method and resources will be freed. Note that the 
FinalizeAsBackup class is a template. It contains pseudocode to explain the technique. This class will not 
compile.

 ■ Tip  the moral of the story about using the finalize() method is to not use it or use it with care and use 
it only as a last resort to free resources. You can use a try-finally block to free resources. the order in which 
objects are finalized is not defined. For example, if object obj1 becomes eligible for garbage collection before 
object obj2, it is not guaranteed that obj1 will be finalized before obj2. When an uncaught exception is thrown, 
the main program is halted. however, an uncaught exception in a finalizer halts the finalization of only that 
object, not the entire application.



Chapter 11 ■ GarbaGe ColleCtion

559

Object Resurrection
Someone is about to die. God asks him for his last wish. He says, “Give me my life back.” God grants his last 
wish and he gets back his life. When he was about to die the second time God kept quiet and let him die 
without asking him for his last wish. Otherwise, he would ask for his life repeatedly and he would never die.

The same logic applies to an object’s finalization in Java. The call to the finalize() method of an 
object is like the garbage collector asking the object for its last wish. Generally, the object responds, “I want 
to clean up all my mess.” That is, an object responds to its finalize() method call by performing some 
cleanup work. It may respond to its finalize() method call by resurrecting itself by placing its reference 
in a reachable reference variable. Once it is reachable through an already reachable reference variable, it 
is back to life. The garbage collector marks an object using the object’s header bits as finalized, after it calls 
the object’s finalize() method. If an already finalized object becomes unreachable the next time during 
garbage collection, the garbage collector does not call the object’s finalize() method again.

The resurrection of an object is possible because the garbage collector does not reclaim an object’s 
memory just after calling its finalize() method. After calling the finalize() method, it just marks the 
object as finalized. In the next phase of the garbage collection, it determines again if the object is reachable. 
If the object is unreachable and finalized, only then will it reclaim the object’s memory. If an object is 
reachable and finalized, it does not reclaim object’s memory; this is a typical case of resurrection.

Resurrecting an object in its finalize() method is not a good programming practice. One simple 
reason is that if you have coded the finalize() method, you expect it to be executed every time an object 
dies. If you resurrect the object in its finalize() method, the garbage collector will not call its finalize() 
method again when it becomes unreachable a second time. After resurrection, you might have obtained 
some resources that you expect to be released in the finalize() method. This will leave subtle bugs in your 
program. It is also hard for other programmers to understand your program flow if your program resurrects 
objects in their finalize() methods. Listing 11-5 demonstrates how an object can be resurrected using its 
finalize() method.

Listing 11-5. Object Resurrection

// Resurrect.java
package com.jdojo.gc;

public class Resurrect {
    // Declare a static variable of the Resurrect type
    private static Resurrect res = null;

    // Declare an instance variable that stores the name of the object
    private String name = "";

    public Resurrect(String name) {
        this.name = name;
    }

    public static void main(String[] args) {
        // We will create objects of the Resurrect class and will not store
        // their references, so they are eligible for garbage collection immediately.
        for (int count = 1; count <= 1000; count++) {
            new Resurrect("Object #" + count);



Chapter 11 ■ GarbaGe ColleCtion

560

            // For every 100 objects created invoke garbage collection
            if (count % 100 == 0) {
                System.gc();
                System.runFinalization();
            }
        }
    }

    public void sayHello() {
        System.out.println("Hello from " + name);
    }

    public static void resurrectIt(Resurrect r) {
        // Set the reference r to static variable res, which makes it reachable
        // as long as res is reachable.
        res = r;

        // Call a method to show that we really got the object back
        res.sayHello();
    }

    @SuppressWarnings("deprecation")
    @Override
    public void finalize() {
        System.out.println("Inside finalize(): " + name);

        // Resurrect this object
        Resurrect.resurrectIt(this);
    }
}

Inside finalize(): Object #82
Hello from Object #82
Inside finalize(): Object #100
Hello from Object #100
Inside finalize(): Object #99
Hello from Object #99
...

The Resurrect class creates 1,000 objects in the main() method. It does not store references of those 
new objects, so they become garbage as soon as they are created. After creating 100 new objects, it invokes 
the garbage collector using the System.gc() method. It also calls the System.runFinalization() method, 
so the finalizers are run for the garbage objects. When the garbage collector calls the finalize() method 
for an object, that object passes its reference to the resurrectIt() method. This method stores the dying 
object’s reference in the static variable res, which is reachable. The method resurrectIt() also calls the 
sayHello() method on the resurrected object to show which object was resurrected. Note that once another 
object resurrects itself, you are overwriting the static res variable with the recently resurrected object 
reference. The previously resurrected object becomes garbage again. The garbage collector will reclaim the 
memory for the previously resurrected object without calling its finalize() method again. You may get 
different output when you run the program.



Chapter 11 ■ GarbaGe ColleCtion

561

State of an Object
The state of a Java object is defined based on two criteria:

•	 Finalization status

•	 Reachability

Based on the finalization status, an object can be in one of the following three states:

•	 Unfinalized

•	 Finalizable

•	 Finalized

When an object is instantiated, it is in the unfinalized state. For example,

Employee john = new Employee();

The object referred to by the john reference variable is in an unfinalized state after this statement is 
executed. The finalizer of an unfinalized object had never been invoked automatically by the JVM. An object 
becomes finalizable when the garbage collector determines that the finalize() method can be invoked on 
the object. A finalized object has its finalize() method invoked automatically by the garbage collector.

Based on reachability, an object can be in one of three states:

•	 Reachable

•	 Finalizer-reachable

•	 Unreachable

An object is reachable if it can be accessed through any chain of references from the root set. A finalizer-
reachable object can be reached through the finalizer of any finalizable object. A finalizer-reachable object 
may become reachable if the finalizer from which it is reachable stores its reference in an object that is 
reachable. This is the situation when an object resurrects. An object may resurrect itself in its finalize() 
method or through another object’s finalize() method. An unreachable object cannot be reached by any 
means.

There are nine combinations of object states based on their finalization status and reachability status. 
One of the nine combinations, finalizable and unreachable, is not possible. The finalize() method of a 
finalizable object may be called in the future. The finalize() method can still refer to the object using the 
this keyword. Therefore, a finalizable object cannot also be unreachable. An object can exist in one of the 
following eight states:

•	 Unfinalized - Reachable

•	 Unfinalized - Finalizer-reachable

•	 Unfinalized - Unreachable

•	 Finalizable - Reachable

•	 Finalizable - Finalizer-reachable

•	 Finalized - Reachable

•	 Finalized - Finalizer-reachable

•	 Finalized - Unreachable



Chapter 11 ■ GarbaGe ColleCtion

562

Weak References
The concept of weak references in the context of garbage collection is not new to Java. It existed before in 
other programming languages. So far, the object references I have discussed are strong references. That is, 
as long as the object reference is in scope, the object it refers to cannot be garbage collected. For example, 
consider the following object creation and reference assignment statement:

Employee john = new Employee("John Jacobs");

Here, john is a reference to the object created by the expression new Employee("John Jacobs"). The 
memory state that exists after executing this statement is depicted in Figure 11-2.

If at least one strong reference to an object exists, the garbage collector will not reclaim that object. In 
the previous section, I discussed the object state based on its reachability. By stating that there is a strong 
reference to an object, I mean that the object is reachable. With the introduction of weak references, now 
there are three more states of an object based on its reachability:

•	 Softly reachable

•	 Weakly reachable

•	 Phantom reachable

Therefore, when I called an object reachable in the last section, I will call it strongly reachable now 
onward. This change in terminology is because of the introduction of three new kinds of object reachability. 
Before I discuss the three new kinds of object reachability, you need to know about the classes included in 
the java.lang.ref package. There are four classes of interest, as shown in Figure 11-3. I do not discuss the 
Reference class from the diagram.

John Jacobs

john

A strong reference

X

Figure 11-2. An example of a strong reference

Figure 11-3. A class diagram for some classes in the java.lang.ref package



Chapter 11 ■ GarbaGe ColleCtion

563

Reference<T> is an abstract class and it is the superclass for the SoftReference<T>, WeakReference<T>, 
and PhantomReference<T> classes. They are generic classes; their type parameter T is the type of object 
they reference. The SoftReference, WeakReference, and PhantomReference classes are used to create weak 
references. Note that by the phrase “weak reference,” I mean a reference that is not a strong reference. By 
the phrase WeakReference, I mean the java.lang.ref.WeakReference class. The ReferenceQueue class is 
used to place the references of SoftReference, WeakReference, and PhantomReference objects in a queue. 
Let’s look at different ways to create these three types of objects. The constructors for these three classes are 
shown in Table 11-1.

You can create an object of the SoftReference class as follows:

Employee john = new Employee ("John Jacobs");
SoftReference<Employee> sr = new SoftReference<>(john);

The memory state after executing these two statements is depicted in Figure 11-4.

In Figure 11-4, there are two strong references and one soft reference. All three weak reference classes 
have two instance variables: referent and queue. They are used to hold the reference of the object and 
reference queue passed in to the constructors of these classes. A reference to any object stored in the 
referent instance variable of any of these three classes is known as a weak reference in general—and a 
soft reference, weak reference, or phantom reference in particular—depending on the class being used. 
Therefore, the link from a soft reference object to the employee object shown in Figure 11-4 is a weak 
reference. To be specific, I call it a soft reference because I used an object of the SoftReference class. Any 
reference that does not involve the referent instance variable of any of these three classes is a strong 
reference in Java. Therefore, john and sr are strong references.

Table 11-1. Constructors for the SoftReference, WeakReference, and PhantomReference Classes

Class Constructors

SoftReference<T> SoftReference(T referent)
SoftReference(T referent, ReferenceQueue<? super T> q)

WeakReference<T> WeakReference(T referent)
WeakReference(T referent, ReferenceQueue<? super T> q)

PhantomReference<T> PhantomReference(T referent, ReferenceQueue<? super T> q)

X John Jacobs

john
A strong reference

X

sr
A SoftReference

object

A strong reference

A soft reference (or a weak-
reference in general)

Figure 11-4. An example of a soft reference



Chapter 11 ■ GarbaGe ColleCtion

564

How are weak references different from strong references? The difference lies in how the garbage 
collector treats them. Weak references do not prevent the objects they reference from being collected by the 
garbage collector. That is, if there is a weak reference to an object, the garbage collector can still reclaim the 
object. However, if there is at least one strong reference to an object, the garbage collector will not reclaim 
the object. Before you start looking at details of how to use these three reference classes, let’s discuss the 
reachability of an object when these classes are involved in a program.

•	 Strongly reachable: An object is strongly reachable if it can be reached from the 
root set through at least one chain of references, which does not involve any weak 
reference.

•	 Softly reachable: An object is softly reachable if it is not strongly reachable and it can 
be reached from the root set through at least one chain of references, which involves 
at least one soft reference, but no weak and phantom references.

•	 Weakly reachable: An object is weakly reachable if it is not strongly and softly 
reachable and it can be reached from the root set through at least one chain of 
references, which involves at least a weak reference and no phantom references.

•	 Phantom reachable: An object is phantom reachable if it is not strongly, softly, and 
weakly reachable and it can be reached from the root set through at least one chain 
of references, which involves at least a phantom reference. A phantom reachable 
object is finalized, but not reclaimed.

Among the three kinds of weak references, a soft reference is considered stronger than a weak reference 
and a phantom reference. A weak reference is considered stronger than a phantom reference. Therefore, 
the rule to identify the reachability of an object is that if an object is not strongly reachable, it is as reachable 
as the weakest reference in the reference chain leading to that object. That is, if a chain of references to an 
object involves a phantom reference, the object must be phantom reachable. If a chain of references to an 
object does not involve a phantom reference, but it involves a weak reference, the object must be weakly 
reachable. If a chain of references to an object does not involve a phantom reference and a weak reference, 
but it involves a soft reference, the object must be softly reachable.

How do you determine the reachability of an object when there is more than one chain of references 
to the object? In such cases, you determine the object’s reachability using all possible chains of references 
and use the strongest one. That is, if an object is softly reachable through one chain of references and 
phantom reachable through another, the object is considered softly reachable. Figure 11-5 depicts the 
examples of how an object’s reachability is determined. The elliptical shape at the end of every reference 
chain represents an object. The reachability of the object has been indicated inside the elliptical shape. The 
rectangles denote references.



Chapter 11 ■ GarbaGe ColleCtion

565

Figure 11-5. Different kinds of an object’s reachability

Root 
Set

Strong 
Reference

Strongly 
reachable

Root 
Set

Strong 
Reference

Strong 
Reference

Strongly 
reachable

Root 
Set

Strong 
Reference

Soft 
Reference

Strong 
Reference

Softly 
reachable

Root 
Set

Strong 
Reference

Weak 
Reference

Strong 
Reference

Weakly 
reachable

Root 
Set

Strong 
Reference

Weak 
Reference

Soft
Reference

Weakly 
reachable

Root 
Set

Soft 
Reference

Phantom
Reference

Weak
Reference

Phantom 
reachable



Chapter 11 ■ GarbaGe ColleCtion

566

Root 
Set

Phantom 
Reference

Soft 
Reference

Weak
Reference

Weakly 
reachable

Strong 
Reference

Weak 
Reference

Root 
Set

Weak 
Reference

Soft 
Reference

Soft
Reference

Soft
reachable

Strong 
Reference

Strong 
Reference

Strong 
Reference

Strong 
Reference

Strong 
reference

Weak
Reference

Soft 
Reference

Soft
Reference

Strongly 
reachable

Figure 11-5. (continued)

Accessing and Clearing a Referent’s Reference
This section uses objects of a trivial class to demonstrate the use of reference classes. This class, called 
BigObject, is shown in Listing 11-6. It has a big array of long as an instance variable, so it uses a big chunk of 
memory. The id instance variable is used to track the objects of this class. The finalize() method prints a 
message on the console using the object’s id.

Listing 11-6. A BigObject Class, Which Uses Big Memory

// BigObject.java
package com.jdojo.gc;

public class BigObject {
    // Declare a big array of with room for 20480 long elements.
    private final long[] anArray = new long[20480];

    // Have an id to track the object
    private final long id;



Chapter 11 ■ GarbaGe ColleCtion

567

    public BigObject(long id) {
        this.id = id;
    }

    // Define finalize() to track the object's finalization
    @SuppressWarnings("deprecation")
    @Override
    public void finalize() {
        System.out.println("finalize() called for id: " + id);
    }

    @Override
    public String toString() {
        return "BigObject: id = " + id;
    }
}

The object that you pass to the constructors of the WeakReference, SoftReference, and 
PhantomReference classes is called a referent. In other words, the object referred to by the object of these 
three reference classes is called a referent. To get the reference of the referent of a reference object, you need 
to call the get() method.

// Create a big object with id as 101
BigObject bigObj = new BigObject(101);

/* At this point, the big object with id 101 is strongly reachable */

// Create a soft reference object using bigObj as referent
SoftReference<BigObject> sr = new SoftReference<>(bigObj);

/* At this point, the big object with id 101 is still strongly reachable, because bigObj
   is a strong reference referring to it. It also has a soft reference referring to it.
*/

// Set bigObj to null to make the object softly reachable
bigObj = null;

/* At this point, the big object with id 101 is softly reachable, because
   it can be reached only through a soft reference sr.
*/

// Get the reference of referent of soft reference object
BigObject referent = sr.get();

/* At this point, the big object with id 101 again becomes strongly reachable because
   referent is a strong reference. It also has a soft reference referring to it.
*/

Figure 11-6 depicts the memory states with all the references after you execute each statement in the 
previous snippet of code.



Chapter 11 ■ GarbaGe ColleCtion

568

id:101X

bigObj

BigObject bigObj = new BigObject(101);

BigObject bigObj  = new BigObject(101);
SoftReference<BigObject> sr = new SoftReference<>(bigObj);

id:101X

bigObj

SoftReference 
Object

X

sr

id:101X

bigObj

SoftReference 
Object

X

sr

BigObject bigObj  = new BigObject(101);
SoftReference<BigObject> sr = new SoftReference<>(bigObj);
bigObj = null;

referent

BigObject bigObj = new BigObject(101);
SoftReference<BigObject> sr = new SoftReference<>(bigObj);
bigObj = null;
BigObject referent = sr.get();

id:101

X

bigObj

SoftReference 
Object

X

sr

X

Figure 11-6. Accessing the referent of a reference object



Chapter 11 ■ GarbaGe ColleCtion

569

The clear() method clears the link between the reference (weak, soft, or phantom) object and its 
referent. The following piece of code illustrates its use:

// Create a soft reference object. Use a BigObject with id 976 as its referent.
SoftReference<BigObject> sr1 = new SoftReference<>(new BigObject(976));

/* At this point, the BigObject with id 976 is softly reachable, because it is reachable
   only through a soft reference sr.
*/

// Clear the referent
sr1.clear();

/* At this point, the big object with id 976 is unreachable (to be exact, it is
   finalizer-reachable), because we cleared the only one reference (soft reference)
   we had to the object.
*/

The memory state with all references, after each statement in the previous snippet of code is executed, 
is depicted in Figure 11-7. After the referent’s reference is cleared using the clear() method, the get() 
method returns null. Note that the get() method of a PhantomReference object always returns null.

Using the SoftReference Class
A softly reachable object is used to maintain memory-sensitive caches. That is, if you want to maintain a 
cache of objects as long as the program is not running low on memory, you can use softly reachable objects. 
When the program runs low on memory, the garbage collector clears the soft references to an object, 
making the object eligible for reclamation. At that point, your program will lose some or all of its objects 
from the cache. Java does not guarantee that soft references will not be cleared if the program is not running 
low on memory. However, it guarantees that all soft references will be cleared before the JVM throws an 

id:976SoftReference 
Object

X

sr1

SoftReference<BigObject> sr1 = new SoftReference<>(new BigObject(976));

id:976SoftReference 
Object

X

sr1

SoftReference<BigObject> sr1 = new SoftReference<>(new BigObject(976));
sr1.clear()

Figure 11-7. Clearing a referent



Chapter 11 ■ GarbaGe ColleCtion

570

OutOfMemoryError. There is also no guarantee of the order in which soft references will be cleared. However, 
JVM implementations are encouraged to clear the least-recently created/used soft reference first. Listing 11-7 
shows the wrong use of soft references to cache data.

Listing 11-7. An Incorrect Use of a Soft Reference

// WrongSoftRef.java
package com.jdojo.gc;

import java.lang.ref.SoftReference;
import java.util.ArrayList;

public class WrongSoftRef {
    public static void main(String[] args) {
        // Create a big object with an id 101 for caching
        BigObject bigObj = new BigObject(101);

        // Wrap soft reference inside a soft reference
        SoftReference<BigObject> sr = new SoftReference<>(bigObj);

        // Let us try to create many big objects storing their
        // references in an array list, just to use up big memory.
        ArrayList<BigObject> bigList = new ArrayList<>();
        long counter = 102;
        while (true) {
            bigList.add(new BigObject(counter++));
        }
    }
}

Exception: java.lang.OutOfMemoryError thrown from the UncaughtExceptionHandler in thread 
"main"

The intention of the programmer was to cache a big object with an ID of 101 using a soft reference. If the 
program runs low on memory, the cached big object with ID 101 may be reclaimed. The while loop inside 
the program is trying to create many big objects to make the program run low on memory. The programmer 
is expecting that when the program is executed, it should reclaim memory used by the big object with ID 
101, before throwing an OutOfMemoryError.

The output shows that the program did not reclaim the memory used by the big object with ID 101. Why 
did the garbage collector not behave the way it was expected to behave? There is an error in the code for the 
WrongSoftRef class. The big object with ID 101 is strongly reachable because the bigObj reference to it is a 
strong reference. You must set the bigObj reference variable to null to make it softly reachable.

Listing 11-8 shows the correct use of soft references. It is clear from the output that the finalize() 
method of the big object with ID 101 was called and the object was reclaimed before JVM threw an 
OutOfMemoryError. You still got an OutOfMemoryError because you are creating many new objects inside 
a while loop and all of them are strongly reachable from the array list. This proves the point that soft 
references are cleared and the referents are reclaimed by the garbage collector before JVM throws an 
OutOfMemoryError. You may get a different output. Sometimes, you get an OutOfMemoryError without the 
object being reclaimed.



Chapter 11 ■ GarbaGe ColleCtion

571

Listing 11-8. A Correct Use of a Soft Reference

// CorrectSoftRef.java
package com.jdojo.gc;

import java.lang.ref.SoftReference;
import java.util.ArrayList;

public class CorrectSoftRef {
    public static void main(String[] args) {
        // Create a big object with an id 101 for caching
        BigObject bigObj = new BigObject(101);

        // Wrap soft reference inside a soft reference
        SoftReference<BigObject> sr = new SoftReference<>(bigObj);

        // Set bigObj to null, so the big object will be
        // softly reachable and can be reclaimed, if necessary.
        bigObj = null;

        // Let us try to create many big objects storing their
        // references in an array list, just to use up big memory.
        ArrayList<BigObject> bigList = new ArrayList<>();
        long counter = 102;
        while (true) {
            bigList.add(new BigObject(counter++));
        }
    }
}

finalize() called for id: 101
Exception: java.lang.OutOfMemoryError thrown from the UncaughtExceptionHandler in thread 
"main"

Listing 11-9 illustrates how to use soft references to implement memory-sensitive caches.

Listing 11-9. Creating a Cache Using Soft References

// BigObjectCache.java
package com.jdojo.gc;

import java.lang.ref.SoftReference;

public class BigObjectCache {
    @SuppressWarnings("unchecked")
    private static final SoftReference<BigObject>[] cache = new SoftReference[10];

    public static BigObject getObjectById(int id) {
        // Check for valid cache id
        if (id < 0 || id >= cache.length) {
            throw new IllegalArgumentException("Invalid id");
        }



Chapter 11 ■ GarbaGe ColleCtion

572

        BigObject obj;

        // Check if we have a cache for this id
        if (cache[id] == null) {
            // We have not cached the object yet. Cache and return it.
            obj = createCacheForId(id);
            return obj;
        }

        // Get the BigObject reference using a soft reference
        obj = cache[id].get();

        // Make sure the object has not yet been reclaimed
        if (obj == null) {
            // Garbage collector has reclaimed the object.
            // Cache it again and return the newly cached object.
            obj = createCacheForId(id);
        }

        return obj;
    }

    // Creates cache for a given id
    private static BigObject createCacheForId(int id) {
        BigObject obj = null;
        if (id >= 0 && id < cache.length) {
            obj = new BigObject(id);
            cache[id] = new SoftReference<>(obj);
        }

        return obj;
    }
}

It can cache up to 10 objects of the BigObject class with IDs from 0 to 9. To get the cached object 
for a given ID, you need to call the getObjectById() method. If that ID has not yet been cached or it was 
reclaimed by the garbage collector, the method creates and caches the object. This example is very restrictive 
and its purpose is only to demonstrate the use of the SoftReference class to maintain a memory-sensitive 
cache. You can cache only objects with IDs from 0 to 9. It can be modified to meet specific requirements. 
For example, you can use an ArrayList to cache the objects instead of using an array. You can use the 
BigObjectCache class as shown:

// Get the object from cache
BigObject cachedObject = BigObjectCache.getObjectById(5);

/* Do some processing...*/

// You must set the cachedObject to null after you are done with it, so the cached object
// becomes softly reachable and may be reclaimed by the garbage collector.
cachedObject = null;



Chapter 11 ■ GarbaGe ColleCtion

573

If an object with an ID of 5 is not already in the cache, it will be cached and the new object reference will 
be assigned to cachedObject. If an object with an ID of 5 is already in the cache, the reference of that object 
from the cache will be returned and assigned to cachedObject.

Using the ReferenceQueue Class
An object of the ReferenceQueue<T> class is used in conjunction with objects of the SoftReference<T>, 
WeakReference<T>, and PhantomReference<T> classes if the object needs to be notified when its reachability 
changes. An object of any of these reference classes can be registered with a reference queue, as shown:

ReferenceQueue<BigObject> q = new ReferenceQueue<>();
SoftReference<BigObject> sr = new SoftReference<>(new BigObject(19), q);
WeakReference<BigObject> wr = new WeakReference<>(new BigObject(20), q);
PhantomReference<BigObject> pr = new PhantomReference<>(new BigObject(21), q);

It is optional to register the SoftReference and WeakReference objects with a reference queue. 
However, you must register a PhantomReference object with a reference queue. When a SoftReference or 
WeakReference is cleared by the garbage collector, the reference of the SoftReference or the WeakReference 
object is appended to the reference queue. Note the references of the SoftReference and WeakReference are 
placed in the queue, not the reference of their referent. For example, if the garbage collector clears the soft 
reference to a BigObject with ID 19 in the previous snippet of code, sr will be placed in the reference queue. 
In case of a PhantomReference, when its referent becomes phantom reachable, the garbage collector places 
the PhantomReference object in the reference queue.

Until JDK9, unlike soft and weak references, the garbage collector did not clear the phantom references 
as it placed them in their reference queue. The program must clear the phantom references by calling the 
clear() method. From JDK9, all three types of references are cleared before they are enqueued.

There are two ways to determine if a reference object has been placed in its reference queue. You can 
call the poll() or remove() method on a ReferenceQueue, or you can call the isEnqueued() method on the 
soft, weak, and phantom references. The poll() method removes a reference from the queue and returns the 
reference. If there is no reference available in the queue, it returns null. The remove() method works the same 
as the poll() method, except that if there is no reference available in the queue, it blocks until a reference 
becomes available. The isEnqueued() method for soft, weak, and phantom references returns true if they are 
placed in queue. Otherwise, it returns false. Listing 11-10 demonstrates how to use the ReferenceQueue class.

Listing 11-10. Using the ReferenceQueue Class

// ReferenceQueueDemo.java
package com.jdojo.gc;

import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;

public class ReferenceQueueDemo {
    public static void main(String[] args) {
        // Create a reference queue
        ReferenceQueue<BigObject> q = new ReferenceQueue<>();

        // Wrap a BigObject inside a soft reference.
        // Also register the soft reference with the reference queue
        BigObject bigObj = new BigObject(131);
        WeakReference<BigObject> wr = new WeakReference<>(bigObj, q);



Chapter 11 ■ GarbaGe ColleCtion

574

        // Clear the strong reference to the big object
        bigObj = null;

        // Check if weak reference has been queued
        System.out.println("Before calling gc():");
        printMessage(wr, q);

        // Invoke garbage collector. If it runs, it will clear the weak reference
        System.out.println("Invoking garbage collector...");
        System.gc();
        System.out.println("Garbage collector finished...");

        // Check if weak reference has been queued
        System.out.println("After calling gc():");
        printMessage(wr, q);
    }

    public static void printMessage(WeakReference<BigObject> wr,
            ReferenceQueue<BigObject> q) {

        System.out.println("wr.get() = " + wr.get());
        System.out.println("wr.isEnqueued() = " + wr.isEnqueued());
        WeakReference<BigObject> temp = (WeakReference<BigObject>) q.poll();
        if (temp == wr) {
            System.out.println("q.poll() returned wr");
        } else {
            System.out.println("q.poll() = " + temp);
        }
    }
}

Before calling gc():
wr.get()= BigObject: id = 131
wr.isEnqueued()= false
q.poll()= null
Invoking garbage collector...
Garbage collector finished...
After calling gc():
wr.get()= null
wr.isEnqueued()= true
q.poll() returned wr
finalize() called for id: 131

Using the WeakReference Class
The only difference between a softly reachable and a weakly reachable object is that the garbage collector 
clears and reclaims weakly reachable objects whenever it runs, whereas it uses some algorithm to decide 
whether it needs to clear and reclaim a softly reachable object or not. In other words, the garbage collector 
may or may not reclaim a softly reachable object, whereas it always reclaims a weakly reachable object.



Chapter 11 ■ GarbaGe ColleCtion

575

You may not see any important use of a weak reference because its referent is reclaimed when the 
garbage collector is run. Generally, weak references are not used to maintain caches. They are used to 
associate extra data with an object. Suppose you have a person’s details and his address. If you lose his 
details, you will not be interested in his address. However, as long as the person’s details are accessible, you 
want to keep his address information. This kind of information can be stored using weak references and a 
Hashtable. A Hashtable stores objects in key-value pairs. While adding a key-value pair to a Hashtable, you 
need to wrap the key object in a WeakReference object. The key and value are not garbage collected when 
the key is accessible or in use. When the key object is no longer in use, it will be garbage collected because 
it was wrapped inside a WeakReference. At that point, you can remove that entry from the Hashtable, so the 
value object will also be eligible for the garbage collection. The following is a sample snippet of code using 
Hashtable and WeakReference objects:

// Create a Hashtable object
Hashtable ht = new Hashtable();

// Create a reference queue, so  we can check when a key was garbage collected
Referencequeue q = new ReferenceQueue();

// Create key and value objects
key = your key object creation logic goes here
value = your value object creation logic goes here

// Create a weak reference object using the key object as the referent
WeakReference wKey = new WeakReference(key, q);

// Place the key-value pair in the Hashtable. Note that we place key wrapped
// in the weak reference. That is, we will use wKey as key
ht.put(wKey, value);

/* Use key and value objects in your program... */

// When done with the key object, set it to null, so it will not be strongly reachable.
key = null;

/* At this point, if garbage collector is run, weak reference to key object will be cleared
   and the WeakReference, wr, will be placed in reference queue, q.
*/

// Your logic to remove the entry for garbage collected key object will be as follows
if (wr.isEnqueued()) {
    // This will make value object eligible for reclamation
    ht.remove(wr);
}

Note that using a WeakReference object to associate extra information with an object using a Hashtable 
involves some complex code and logic. The java.util.WeakHashMap class provides this functionality 
without writing any complex logic. You add the key-value pairs to a WeakHashMap without wrapping the key 
object inside a WeakReference. The WeakHashMap class takes care of creating a reference queue and wrapping 
the key object in a WeakReference. There is one important point to remember while using a WeakHashMap. 
The key object is reclaimed when it is not strongly reachable. However, the value object is not reclaimed 
immediately. The value object is reclaimed after the entry is removed from the map. The WeakHashMap 



Chapter 11 ■ GarbaGe ColleCtion

576

removes the entry after the weak reference to the key has been cleared and one of its methods—put(), 
remove(), or clear()—is called. Listing 11-11 demonstrates the use of a WeakHashMap. The example uses 
objects of the BigObject class as keys as well as values. The messages in the output show when the key 
and value objects are reclaimed by the garbage collector. You may get different output when you run this 
program.

Listing 11-11. Using a WeakHashMap

// WeakHashMapDemo.java
package com.jdojo.gc;

import java.util.WeakHashMap;

public class WeakHashMapDemo {
    public static void main(String[] args) {
        // Create a WeakHashMap
        WeakHashMap<BigObject, BigObject> wmap = new WeakHashMap<>();

        // Add two key-value pairs to WeakHashMap
        BigObject key1 = new BigObject(10);
        BigObject value1 = new BigObject(110);
        BigObject key2 = new BigObject(20);
        BigObject value2 = new BigObject(210);

        wmap.put(key1, value1);
        wmap.put(key2, value2);

        // Print a message
        printMessage("After adding two entries:", wmap);

        /* Invoke gc(). This gc() invocation will not reclaim any of
           the key objects, because we are still having their strong references.
         */
        System.out.println("Invoking gc() first time...");
        System.gc();

        // Print a message
        printMessage("After first gc() call:", wmap);

        // Now remove strong references to keys and values
        key1 = null;
        key2 = null;
        value1 = null;
        value2 = null;

        /* Invoke gc(). This gc() invocation will reclaim two key objects
           with ids 10 and 20. However, the corresponding two value objects
           will still /be strongly referenced by WeakHashMap internally and hence
           will not be reclaimed at this point.
         */
        System.out.println("Invoking gc() second time...");
        System.gc();



Chapter 11 ■ GarbaGe ColleCtion

577

        // Print a message
        printMessage("After second gc() call:", wmap);

        /* Both keys have been reclaimed by now. Just to make value
           objects reclaimable, we will call clear() method on WeakHashMap.
           Usually, you will not call this method here in your program.
         */
        wmap.clear();

        // Invoke gc() so that value object will be reclaimed
        System.out.println("Invoking gc() third time...");
        System.gc();

        // Print message
        printMessage("After calling clear() method:", wmap);
    }

    public static void printMessage(String msgHeader, WeakHashMap wmap) {
        System.out.println(msgHeader);

        // Print the size and content of map */
        System.out.println("Size = " + wmap.size());
        System.out.println("Content = " + wmap);
        System.out.println();
    }
}

After adding two entries:
Size = 2
Content = {BigObject: id = 20=BigObject: id = 210, BigObject: id = 10=BigObject: id = 110}

Invoking gc() first time...
After first gc() call:
Size = 2
Content = {BigObject: id = 20=BigObject: id = 210, BigObject: id = 10=BigObject: id = 110}

Invoking gc() second time...
After second gc() call:
finalize() called for id: 20
finalize() called for id: 10
Size = 0
Content = {}

Invoking gc() third time...
finalize() called for id: 210
finalize() called for id: 110
After calling clear() method:
Size = 0
Content = {}



Chapter 11 ■ GarbaGe ColleCtion

578

Using the PhantomReference Class
A PhantomReference object must be created with a ReferenceQueue. When the garbage collector determines 
that there are only phantom references to an object, it finalizes the object and adds the phantom references 
to their reference queues.

Until JDK8, phantom references worked a little differently than soft and weak references. Unlike soft 
and weak references, it did not clear the phantom references to the object automatically. Programs must 
clear it by calling the clear() method. A garbage collector would not reclaim the object until the program 
clears the phantom references to that object. Therefore, a phantom reference acted as a strong reference as 
long as reclaiming of objects is concerned. This behavior has changed in JDK9. In JDK9, phantom references 
automatically clear references as soft and weak references do.

Why would you use a phantom reference instead of using a strong reference? A phantom reference is 
used to do post-mortem processing. Unlike the get() method of the soft and weak references, the phantom 
reference’s get() method always returns null. An object is phantom reachable when it has been finalized. If 
a phantom reference returns the referent’s reference from its get() method, it would resurrect the referent. 
This is why the phantom reference’s get() method always returns null.

Listing 11-12 demonstrates the use of a phantom reference to do some post-mortem processing for an 
object. You may get different output when you run this program.

Listing 11-12. Using PhantomReference Objects

// PhantomRef.java
package com.jdojo.gc;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

public class PhantomRef {
    public static void main(String[] args) {
        BigObject bigObject = new BigObject(1857);
        ReferenceQueue<BigObject> q = new ReferenceQueue<>();
        PhantomReference<BigObject> pr = new PhantomReference<>(bigObject, q);

        /* You can use BigObject reference here */

        // Set BigObject to null, so garbage collector will find only the
        // phantom reference to it and finalize it.
        bigObject = null;

        // Invoke garbage collector
        printMessage(pr, "Invoking gc() first time:");
        System.gc();
        printMessage(pr, "After invoking gc() first time:");

        // Invoke garbage collector again
        printMessage(pr, "Invoking gc() second time:");
        System.gc();
        printMessage(pr, "After invoking gc() second time:");
    }



Chapter 11 ■ GarbaGe ColleCtion

579

    public static void printMessage(PhantomReference<BigObject> pr, String msg) {
        System.out.println(msg);
        System.out.println("pr.isEnqueued = " + pr.isEnqueued());
        System.out.println("pr.get() = " + pr.get());

        // We will check if pr is queued. If it has been queued,
        // we will clear its referent's reference.
        if (pr.isEnqueued()) {
            // Calling pr.clear() was necessary before JDK9.
            // From JDK9, phantom references are clear automatically
            pr.clear();

            System.out.println("Cleared the referent's reference");
        }
        System.out.println("-----------------------");
    }
}

Invoking gc() first time:
pr.isEnqueued = false
pr.get() = null
-----------------------
finalize() called for id: 1857
After invoking gc() first time:
pr.isEnqueued = false
pr.get() = null
-----------------------
Invoking gc() second time:
pr.isEnqueued = false
pr.get() = null
-----------------------
After invoking gc() second time:
pr.isEnqueued = true
pr.get() = null
Cleared the referent's reference
-----------------------

You can also use phantom references to coordinate the post-mortem processing of more than one 
object. Suppose you have three objects called obj1, obj2, and obj3. All of them share a network connection. 
When all three objects become unreachable, you would like to close the shared network connection. You 
can achieve this by wrapping the three objects in a phantom reference object and using a reference queue. 
Your program can wait on a separate thread for all three phantom reference objects to be queued. When the 
last phantom reference is queued, you can close the shared network connection. Post-mortem coordination 
using a phantom reference is demonstrated in Listing 11-13. Note that the startThread() method of the 
PhantomRefDemo class creates and starts a thread that waits for three references to be enqueued. Once all 
three references are enqueued and their referents clears, the thread exits the application. The remove() 
method of the ReferenceQueue class blocks until there is a phantom reference in the queue. You may get 
different output when you run this program.



Chapter 11 ■ GarbaGe ColleCtion

580

Listing 11-13. Post-Finalization Coordination Using Phantom References

// PhantomRefDemo.java
package com.jdojo.gc;

import java.lang.ref.PhantomReference;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;

public class PhantomRefDemo {
    public static void main(String[] args) {
        final ReferenceQueue<BigObject> q = new ReferenceQueue<>();
        BigObject bigObject1 = new BigObject(101);
        BigObject bigObject2 = new BigObject(102);
        BigObject bigObject3 = new BigObject(103);
        PhantomReference<BigObject> pr1 = new PhantomReference<>(bigObject1, q);
        PhantomReference<BigObject> pr2 = new PhantomReference<>(bigObject2, q);
        PhantomReference<BigObject> pr3 = new PhantomReference<>(bigObject3, q);

        /* This method will start a thread that will wait for the arrival of new
           phantom references in reference queue q
         */
        startThread(q);

        /* You can use bigObject1, bigObject2 and bigObject3 here */

        // Set the bigObject1, bigObject2 and bigObject3 to null,
        // so the objects they are referring to may become phantom reachable.
        bigObject1 = null;
        bigObject2 = null;
        bigObject3 = null;

        /* Let us invoke garbage collection in a loop. One garbage collection will
           just finalize the three big objects with IDs 101, 102 and 103. They may
           not be placed in a reference queue. In another garbage collection run,
           they will become phantom reachable and they will be placed in a queue
           and the waiting thread will remove them from the queue and will clear
           their referent's reference. Note that we exit the application when all
           three objects are cleared inside the run() method of thread. Therefore, the
           following infinite loop is ok for demonstration purposes. If System.gc()
           does not invoke the garbage collector on your machine, you should replace
           the following loop with a loop which would create many big objects keeping
           their references, so the garbage collector would run.
         */
        while (true) {
            System.gc();
        }
    }



Chapter 11 ■ GarbaGe ColleCtion

581

    public static void startThread(final ReferenceQueue<BigObject> q) {        
        Thread t = new Thread(() -> {
            try {
                // Wait and clear 3 references
                for(int i = 0; i < 3; i++) {
                    Reference r = q.remove();    

                    // Calling r.clear() was necessary before JDK9.
                    // From JDK9, it has no effect.
                    r.clear();
                }

                System.out.println("All three objects have been queued and cleared.");

                /* Typically, you will release the network connection or
                   any resources shared by three objects here.
                */

                // Exit the application
                System.exit(1);
            } catch (InterruptedException e) {
                System.out.println(e.getMessage());
            }
        });

        // Start the thread, which will wait for three phantom references to be queued
        t.start();
    }
}

finalize() called for id: 103
finalize() called for id: 102
finalize() called for id: 101
All three objects have been queued and cleared.

Using the Cleaner Class
In the previous sections, you learned how to use PhantomReference and ReferenceQueue to perform cleanup 
work for objects when they become phantom reachable. To set up and perform the cleanup work was not 
easy. JDK9 introduced a new class named Cleaner in the java.lang.ref package. Its use to let you run a 
cleanup action for an object when the object becomes phantom reachable. The Cleaner class is intended to 
make setting up and performing the cleanup work easier for you. Here are the steps you need to perform:

 1. Create a Cleaner instance using one of its factory methods named create()… 
You can let the Cleaner use predefined threads to perform the cleanup actions or 
you can specify your own ThreadFactory in the create() method.

 2. Register the object and its cleaning action using the register() method of the 
Cleaner. A cleaning action is a Runnable.



Chapter 11 ■ GarbaGe ColleCtion

582

 3. The register() method of the Cleaner class returns an instance of the Cleaner.
Cleanable nested interface. The interface contains only one method named 
clean().

 4. Call the clean() method of a Cleanable to unregister the object and perform the 
cleanup work. Performing the cleanup work is simply calling the run() method 
of the registered Runnable. Calling the clean() method the second time has no 
effect because the first call to this method unregisters the object.

 5. Typically, the clean() method of a Cleanable is called by one of the threads in 
the Cleaner. However, if you know the time and place when the cleanup needs to 
happen, you can perform the cleanup explicitly by calling this method.

 6. If you intend to use the objects of your class inside try-with-resources blocks, 
you need to implement the AutoCloseable interface. You can call the clean() 
method of the Cleanable representing your registered object from inside the 
close() method.

Now I walk you through an example on how to use the Cleaner class. You can use one of the following 
methods of the Cleaner class to create a Cleaner:

•	 static Cleaner create()

•	 static Cleaner create(ThreadFactory threadFactory)

Typically, you would create a Cleaner object for the entire application or library and store its reference 
in a static variable. The following statement creates a Cleaner:

Cleaner cleaner = Cleaner.create();

Suppose you have the following object that needs cleanup work when it becomes phantom reachable:

Object myObject = /* get your object */;

The next step is to define a cleaning action, which is a Runnable. There are several ways to create a 
Runnable such as using a lambda expression, inner class, anonymous inner class, nested inner class, and 
having a top-level class, which implements the Runnable interface. It does not matter which method you 
choose to create a Runnable. It is important to make sure that the Runnable does not store the reference of 
the object whose cleanup work it is supposed to perform. Otherwise, the object will never become phantom 
reachable and your cleaning action will never be called by the Cleaner. You need to make all resources that 
need to be cleaned up are accessible to the Runnable. Suppose you have an object that stores a network 
connection and you want to close the connection as part of the object cleanup. You will need to make the 
network connection accessible to the Runnable, so it can close the connection when the cleanup work is 
performed. The following pseudo statement creates a Runnable:

Runnable cleaningAction = /* get a Runnable instance */;

The following statement registers myObject and its cleaningAction with the Cleaner:

Cleaner.Cleanable cleanable = cleaner.register(myObject, cleaningAction);

Typically, you will keep the reference of the Cleanable in an instance variable of your object, so you can 
call its clean() method directly to clean up your object explicitly, if needed. Listing 11-14 contains the code 
for a CleanBigObject class. Explanation of its parts follows the code.



Chapter 11 ■ GarbaGe ColleCtion

583

Listing 11-14. The CleanBigObject Class

// CleanBigObject.java
package com.jdojo.gc;

import java.lang.ref.Cleaner;

public class CleanBigObject implements AutoCloseable {
    // Declare a big array of 20KB.
    private final long[] anArray = new long[20480];

    // Have an id to track the object
    private final long id;

    // Let us use a Cleaner
    public static Cleaner cleaner = Cleaner.create();

    // Keep a reference of its cleaning action as a Cleanable
    private final Cleaner.Cleanable cleanable;

    // Declare a cleaning action class, which needs to implement Runnable
    private static class BigObjectCleaner implements Runnable {
        private final long id;
        BigObjectCleaner(long id) {
            this.id = id;            
        }

        @Override
        public void run() {
            System.out.println("Cleaning up CleanBigObject: id = " + this.id);
        }    
    }

    public CleanBigObject(long id) {
        this.id = id;

        // Register this object with the cleaner
        this.cleanable = cleaner.register(this, new BigObjectCleaner(id));
    }

    @Override
    public void close() {
        // Clean the object explicitly or as part of a try-with-resources block
        cleanable.clean();
    }

     @Override
    public String toString() {
        return "CleanBigObject: id = " + id;
    }
}



Chapter 11 ■ GarbaGe ColleCtion

584

Here are the different parts of the CleanBigObject class:

•	 The CleanBigObject class declares a big long array.

•	 Its id instance variable tracks the ID of each object.

•	 It creates and stores a Cleaner object in a public class variable. This Cleaner is 
supposed to be used by the object of this class and other classes to register cleaning 
actions.

•	 It declares a private instance variable of type Cleaner.Cleanable, which stores the 
registered cleaning action for later use such as in its close() method.

•	 The BigObjectCleaner class is a private nested static class, which implements 
Runnable; its instances represents a cleaning action for the object of the 
CleanBigObject class. The constructor of the class accepts the ID of the 
CleanBigObject. In a real-word application, the constructer would accept the 
resources to be cleaned. The run() method simply prints a message with the ID of 
the CleanBigObject that is being cleaned up.

•	 The constructor of the CleanBigObject class accepts an ID to identify the object. 
The ID is stored in its instance variable. The constructor registers the object and its 
cleaning action with the Cleaner.

•	 The close() method of the CleanBigObject class has been implemented because 
the class implements the AutoCloseable interface, so you can use the objects of this 
class in try-with-resources blocks. The method calls the clean() method of the 
Cleanable that will clean up the CleanBigObject if it has not already been cleaned.

•	 The toString() method returns a string representation of the object with its ID.

Listing 11-15 contains the code for a CleanerTest class. In its main() method, it creates three objects 
of the CleanBigObject class and tries to clean up those objects in three different ways. The first example 
uses a try-with-resources block, so the close() method of the CleanBigObject class is automatically 
called, which cleans up the object. The second example cleans up the object explicitly by calling its close() 
method. The third example creates the object without storing its reference and invokes the garbage 
collection by calling System.gc(). In the end, the program sleeps for two seconds to give the garbage 
collection time to finish if the previous call to System.gc() makes the JVM run the garbage collection. Note 
that there is no guarantee that garbage collection will run and, in that case, you may not see the last line in 
the output.

Listing 11-15. A Test Class to Test the Objects of the CleanBigObject Class

// CleanerTest.java
package com.jdojo.gc;

public class CleanerTest {
    public static void main(String[] args) throws InterruptedException {
        // Let us try a CleanBigObject in a try-with-resources block        
        try (CleanBigObject cbo1 = new CleanBigObject(1969);) {
            System.out.println(cbo1 + " created inside a try-with-resources block.");
        }

        // Let us create and clean a CleanBigObject explicitly
        CleanBigObject cbo2 = new CleanBigObject(1968);
        System.out.println(cbo2 + " created.");



Chapter 11 ■ GarbaGe ColleCtion

585

        cbo2.close();
        cbo2 = null;

        // Let us create many CleanBigObject and let the Cleaner
        // clean those objects automatically
        new CleanBigObject(1982);
        System.gc();

        // Wait for 2 seconds for the garbage collector to finish
        Thread.sleep(20000);
    }
}

CleanBigObject: id = 1969 created inside a try-with-resources block.
Cleaning up CleanBigObject: id = 1969
CleanBigObject: id = 1968 created.
Cleaning up CleanBigObject: id = 1968
Cleaning up CleanBigObject: id = 1982

Summary
The process of reclaiming the memory of dead objects is known as garbage collection. Garbage collection in 
Java is automatic. The Java runtime runs garbage collection in a low priority background thread. The JVM does 
its best to free up memory of dead objects before throwing an OutOfMemoryError. You can pass a hint, although 
it’s not needed in an application, to the JVM by calling Runtime.getRuntime().gc(). You can also use the 
convenience method System.gc() to pass the same hint to the JVM. The JVM is free to ignore the hint.

The memory occupied by an unreachable object is reclaimed in two phases. The first phase, called 
finalization, is an action automatically performed on an unreachable object before the memory used by 
the object is reclaimed by the garbage collector. The block of code that contains the action to be performed 
is known as a finalizer. A finalizer is implemented using the finalize() method of the object. In the 
finalize() method, the unreachable object may resurrect itself by storing its reference in a reachable 
object. In the second phase, if the object is still unreachable, the memory occupied by the object is 
reclaimed.

At times, you may want to use memory-sensitive objects, which are fine to be kept in memory if enough 
memory is available. However, if the application runs low on memory, it would be fine to reclaim those 
objects. Typically, objects cached for a better performance fall into this category of objects. Java provides the 
SoftReference<T>, WeakReference<T>, and PhantomReference<T> classes in the java.lang.ref package 
to work with such memory-sensitive objects. These objects may be queued to a ReferenceQueue when their 
referent’s reachability changes, so you can inspect the queue and perform cleanup work.

JDK9 added a new class named Cleaner to the java.lang.ref package. This class offers a better way 
to clean up objects when the objects become phantom reachable. The Cleaner lets you register objects and 
their cleaning actions as a Runnable. When a registered object becomes phantom reachable, the Cleaner 
performs the cleanup work using the registered Runnable for that object. The Cleaner also allows you to 
clean up the object explicitly. It guarantees that the cleanup will be performed only once in any case.



Chapter 11 ■ GarbaGe ColleCtion

586

QUESTIONS AND EXERCISES

  1. What is the difference between explicit and implicit memory allocation and memory 
reclamation?

  2. What is a dangling reference?

  3. What is memory leak?

  4. What is garbage collection and a garbage collector?

  5. Show two ways to call the garbage collector in your program.

  6. What is the finalize() method? how is it used by the garbage collector?

  7. What does the Java runtime do before throwing an OutOfMemoryError?

  8. What is an object resurrection in Java?

  9. how do you request that the Java runtime run garbage collection?

10. Describe the uses of the WeakReference<T>, SoftReference<T>, and 
PhantomReference<T> classes.

11. When do you use a ReferenceQueue?

12. how is the Cleaner class, which was introduced in JDK9, used?



587© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_12

CHAPTER 12

Collections

In this chapter, you will learn:

•	 What collections are

•	 What the Collections framework is and its architecture

•	 Different ways for traversing elements in a collection

•	 Different types of collections such as List, Set, Queue, Map, etc.

•	 Applying algorithms to collections

•	 Obtaining different views of a collection

•	 Creating empty and singleton collections

•	 How hash-based collections work internally

All example programs in this chapter are members of a jdojo.collections module, as declared in 
Listing 12-1.

Listing 12-1. The Declaration of a jdojo. collections Module

// module-info.java
module jdojo.collections {
    exports com.jdojo.collections;
}

What Is a Collection?
A collection is an object that contains a group of objects. A collection is also known as a container. Each 
object in a collection is called an element of the collection.

The concept of collections in Java is no different from the concept of collections in our daily life. You 
see different kinds of collections every day. Every collection contains a group of objects. What distinguishes 
one type of collection from that of another type? They are distinguished based on the way they manage their 
elements. Let’s take a few examples of collections from our daily life.

Let’s start with a money jar. A money jar is an example of a collection. It contains a group of coins. Do 
you put a coin in the jar in a specific order? Do you retrieve the coins from the jar in a specific order? Can 
you put many coins of the same kind in the jar? Can you remove all coins from the jar in one go or must you 
take them out one at a time?

https://doi.org/10.1007/978-1-4842-3348-1_12


Chapter 12 ■ ColleCtions

588

Can you call an alphabet a collection? Isn’t it a collection of letters? Does an alphabet have duplicate 
letters? No, you can’t have duplicate letters in an alphabet. However, you can have duplicate coins in your 
money jar.

Consider a queue of customers at a counter in a post office. Is the queue of customers not a collection of 
customers? Definitely, it is. Does this queue follow any specific rule? Yes, it does follow a rule, which is first 
come, first served. You can rephrase the rule of first come, first served as First In, First Out (FIFO).

Consider a stack of books on your desk. Is it not also a collection of books? Yes, it is. Assuming that you 
deal with one book at a time, does it follow the rule that the book that was placed on the stack last will be 
removed first? All right, this rule seems to be the opposite of the rule about the collection of customers in a 
queue in the post office. This time, the stack of books is following the rule of Last In, First Out (LIFO).

I just mentioned quite a few examples of collections that follow different rules to manage their 
elements. What would you do if you had to model these collections of objects into a Java program? First, 
you would categorize all possible kinds of collections that you would deal with in your programs. Then, you 
would write some reusable generic interfaces and classes that you could use in a situation where you need 
to deal with collection of objects. The good news is that you do not need to write generic code to manage 
collections. The designers of the Java language realized the need for it and incorporated a framework in the 
Java library, which is called the Collections framework.

The Collections framework consists of interfaces, implementation classes, and some utility classes that 
let you handle most types of collections that you would encounter in a Java application. If you encounter 
a collection type for which Java does not provide an implementation, you can always roll out your own 
implementation, which will work seamlessly with the Collections framework. The Collections framework is 
simple, powerful, and an exciting topic to learn. This chapter will explore the different types of collections 
available in the Collections framework. Figure 12-1 shows five types of collections: a bag, a list, a queue, a 
stack, and a map.

John  Donna 
Adam Ken
Ellen Ken  

0 1 2 3 4 5
Ken  John Ken Adam  Ellen  Donna  

Ken  John  Adam Ellen  Donna

John (234) 334-9087
Donna (341) 234-9087
Adam (876) 214-8977
Ellen (675) 129-9810
Ken (675) 189-7865

John
Donna
Adam
Ellen
Ken

A bag

A list

A queue

A stack
A map

Figure 12-1. A pictorial view of five different types of collections

One collection (the map) in the figure stands out: a collection of name-phone pairs. It maps a name to 
a phone number. At this point, these pictures are not associated with any specific types of collection classes 
in Java. They are just to help you visualize that Java collections are the same as collections in your daily life. 
Arrows in some collections indicate the entry and exit of an element to and from the collection. You may 
observe that some collections enforce that an element must be added in a certain way to the collection and 
it must exit (be removed) the collection in a certain way. For example, in a queue, elements enter from one 
end and exit from the other end; in a stack, elements enter and exit from the same end.



Chapter 12 ■ ColleCtions

589

Need for a Collection Framework
The support for arrays is built into the Java programming language right from the beginning. Using an array 
is also one of the most efficient ways to store and retrieve a group of object references and primitive values. 
Why did we need the Collections framework if we already had arrays in Java? Using an array in Java has the 
following advantages:

•	 It can be used to store and retrieve values using indexes, and it is fast.

•	 It knows its type. It provides compile-time type checking such as you cannot store 
a double value in an int array, though if the array is of type Object, there is no 
compile-time type-safety, as any type of objects can be stored in the array.

•	 You can have arrays of objects as well as primitives.

•	 You have the helper class named java.util.Arrays to help you work with arrays. 
For example, it provides methods for searching through an array, sorting the array’s 
elements, etc.

Using an array in Java has the following disadvantages:

•	 Arrays are fixed in size. You must specify the size at the time of creation. Once 
created, the array size cannot be changed. That is, arrays cannot expand or shrink if 
you need them to.

•	 If you store an element in an array at a specific position and later you want to remove 
it, there is no way to know that the element at that position was removed.

•	 Compile-time type checking, though an advantage, also becomes a disadvantage. It 
cannot store different kinds of values. For example, an array of a Car class will store 
only Car type objects. A primitive array of double will only store values of double type.

•	 You need to write a lot of code if you want to implement a specific type of collection 
using an array. Suppose you want to have a collection that should not allow duplicate 
values. Of course, you can develop a new class that uses an array to implement your 
collection. However, it is a time-consuming task.

The Collections framework provides all the features provided by arrays. It provides many other features 
that are not provided by arrays. The Collections framework team has already gone through the pain of 
designing, developing, and testing the interfaces and classes that are needed to use different kinds of 
collections. All you need to do is to learn those classes and interfaces, and use them in your Java programs. 
You need to keep the following points in mind when you learn about collections:

•	 Collections are designed to work only with objects. To work with collections of 
primitive types, either you wrap and unwrap your primitive values in wrapper 
objects or you can take advantage of the built-in autoboxing features in Java that will 
wrap and unwrap the primitive values as needed.

•	 All collection classes and interfaces in Java are generic. That is, you can specify the 
type of elements that your collection deals with as the type parameter.



Chapter 12 ■ ColleCtions

590

Architecture of the Collection Framework
The Collections framework types are mainly located in the java.util package. Types representing 
concurrent collections are in the java.util.concurrent package. The Collections framework consists of 
three main components:

•	 Interfaces

•	 Implementation classes

•	 Algorithm classes

Interfaces represent specific types of collections in the framework. There is one interface defined for 
every type of collection; for example, the List<E> interface represents a list, the Set<E> interface represents 
a set, the Map<K,V> interface represents a map, etc. Using an interface to define a collection (rather than a 
class) has the following advantages:

•	 Your code, which is written using interfaces, is not tied to any specific 
implementation.

•	 Classes that implement collections defined by interfaces may be changed without 
forcing you to change your code that was written using interfaces.

•	 You can have your own implementation for a collection interface to suit specific 
needs.

The Collections framework provides implementations of collection interfaces, which are called 
implementation classes. You need to create objects of these classes to have a collection. It is advised to write 
code using interfaces, rather than using their implementation classes. The following snippet of code shows 
how to use the implementation class ArrayList<E> to create a list and store the reference in a variable of the 
type List that is the interface representing a list:

// Create a list of strings using ArrayList as the implementation class
List<String> names = new ArrayList<>();

// Work with the names variable here onward

 ■ Note  the parameter E in all collections types stands for element type in the collections. the type 
parameters in maps are named K and V, which stand for type of keys and type of values in the map, 
respectively.

Sometimes you need to perform different actions on a collection, such as searching through a 
collection, converting a collection of one type to another type, copying elements from one collection to 
another, sorting elements of a collection in a specific order, etc. The algorithm classes let you apply these 
kinds of algorithms to your collections.

Typically, you do not need to develop interfaces or classes in any of these three categories. The 
Collections framework provides you with all the interfaces and classes you need. You can choose from a 
variety of collection interfaces and their implementations. Figure 12-2 shows the interfaces that define 
collections. I discuss each type of collection in detail in subsequent sections.



Chapter 12 ■ ColleCtions

591

The Collection<E> Interface
The Collection<E> interface is the root of the collection interface hierarchy. It defines a generic collection. 
The Collections framework does not provide an implementation for the Collection interface. This is the 
most generic type of collection. You can use it as an argument type in methods, where you do not care about 
the collection type of the argument, provided it isn’t a map. It declares methods that are inherited by other 
types of collection interfaces. Non-map collection interfaces inherit from the Collection interface and add 
methods of their own to provide functionalities that are specific to their types. Methods of the Collection 
interface may be classified into the following categories:

•	 Methods for basic operations

•	 Methods for bulk (or group) operations

•	 Methods for aggregate operations

•	 Methods for array operations

•	 Methods for comparison operations

Methods in the Collection interface are further classified as optional and required. An implementation 
class is not required to provide an implementation for the optional methods. If an implementation 
class chooses not to provide an implementation for optional methods, those methods must throw an 
UnsupportedOperationException.

Methods for Basic Operations
Methods for basic operations let you perform basic operations on a collection such as getting its size 
(number of elements), adding a new element to it, removing an element from it, checking if an object is an 
element of this collection, checking if the collection is empty, etc. Some of the methods in the Collection 
interface in this category are as follows:

•	 int size(): Returns the number of elements in the collection.

•	 boolean isEmpty(): Returns true if the collection is empty. Otherwise, it returns 
false. This acts the same as checking size() for zero.

Figure 12-2. A class diagram, including most interfaces in the Collections framework



Chapter 12 ■ ColleCtions

592

•	 boolean contains(Object o): Returns true if the collection contains the specified 
object. Otherwise, it returns false.

•	 boolean add(E o): Adds an element to the collection. It returns true if the collection 
changed. Otherwise, it returns false. If the implementation does not allow duplicate 
elements in a collection, this method will return false when you call it with an 
element that is already in the collection. If a collection is size-constrained and there 
is no space, the method throws an IllegalStateException.

•	 boolean remove(Object o): Removes the specified object from the collection. 
Returns true if the collection changed because of this call. Otherwise, it returns 
false.

•	 Iterator<E> iterator(): Returns an iterator that can be used to traverse elements 
in the collection.

Methods for Bulk Operations
Methods for bulk operations let you perform operations on a collection that involves a group of objects such 
as removing all elements from it, checking if a collection contains all elements from another collection, 
adding all elements of a collection to another collection, etc. Some of the methods in the Collection 
interface in this category are as follows:

•	 boolean addAll(Collection<? extends E> c): Adds all elements of the specified 
collection to this collection. Returns true if the collection changes because of this 
call. Otherwise, it returns false.

•	 void clear(): Removes all elements of the collection.

•	 boolean containsAll(Collection<?> c): Returns true if all the elements in the 
specified collection are also elements of the collection. Otherwise, it returns false.

•	 boolean removeAll(Collection<?> c): Removes all elements from the collection 
that are elements of the specified collection. Returns true if the collection changed 
as a result of this call. Otherwise, it returns false.

•	 boolean retainAll(Collection<?> c): Retains only those elements that are 
also elements of the specified collection. That is, it will remove all elements from 
the collection that are not elements of the specified collection. Returns true if the 
collection changes as a result of this call. Otherwise, it returns false.

Methods for Aggregate Operations
Java 8 added support for aggregate operations on collections through streams. A stream is a sequence of 
elements that supports sequential and parallel aggregate operations such as computing the sum of all 
elements of a collection whose elements are integers. Streams are a vast topic and I discuss them in  
Chapter 13. A stream is an instance of the Stream interface, which is in the java.util.stream package.  
You can create a Stream instance from a collection using the following methods of the Collection interface:

•	 default Stream<E> stream(): Returns a sequential Stream with the collection as 
the source of elements for the Stream.

•	 default Stream<E> parallelStream(): Returns a possibly parallel Stream with the 
collection as the source of elements for the Stream.

http://dx.doi.org/10.1007/978-1-4842-3348-1_13


Chapter 12 ■ ColleCtions

593

Methods for Array Operations
Methods for array operations let you convert a collection into an array. The following are the methods in this 
category:

•	 Object[] toArray(): Returns the elements of the collections in an array.

•	 <T> T[] toArray(T[] a): Returns an array of the specified type T that contains all 
elements of the collection. If the specified array’s length is equal to or greater than 
the size of the collection, all elements are copied to the specified array and the same 
array is returned. Any extra elements in the array are set to null. Otherwise, it creates 
a new array of type T whose length is equal to the size of the collection, copies all 
elements of the collection to the new array, and returns the new array.

Methods for Comparison Operations
Methods for comparison operations let you compare two collections for equality. The following are the 
methods in this category:

•	 boolean equals(Object o): Returns true if two collections are equal. Otherwise, 
it returns false. The specific collection type specifies the criteria for equality of two 
collections.

•	 int hashCode(): Returns the hash code for the collection. Suppose c1 and c2 are 
references of two collections. If c1.equals(c2) returns true, c1.hashCode() == 
c2.hashCode() must also return true.

A Quick Example
Before I discuss different types of collections, I present a quick example of using a list that is a collection of 
objects. A list is an ordered collection of objects. An instance of the List<E> interface represents a list. The 
ArrayList<E> class is an implementation of the List<E> interface. The program in Listing 12-2 creates a list 
to store names and manipulates the list using different methods of the Collection interface.

The program uses the add() method to add some names to the list. It uses the remove() method to 
remove a name from the list. The clear() method is used to remove all names from the list. At every stage, 
the program prints the size of the list and the elements in the list.

 ■ Tip  the toString() method of the list (and all types of collections) returns a comma-separated list of 
elements enclosed in brackets. if a collection is empty, an empty pair of brackets ([]) is returned. the string is 
very useful for debugging purposes, provided each element has a reasonable toString() implementation.

Listing 12-2. Using a List to Store Names

// NamesList.java
package com.jdojo.collections;

import java.util.ArrayList;
import java.util.List;



Chapter 12 ■ ColleCtions

594

public class NamesList {
    public static void main(String[] args) {
        // Create a list of strings
        List<String> names = new ArrayList<>();

        // Print the list details
        System.out.printf("After creation: Size = %d, Elements = %s%n",
                names.size(), names);

        // Add some names to the list
        names.add("Ken");
        names.add("Lee");
        names.add("Joe");

        // Print the list details
        System.out.printf("After adding 3 elements: Size = %d, Elements = %s%n",
                names.size(), names);

        // Remove Lee from the list
        names.remove("Lee");

        // Print the list details
        System.out.printf("After removing 1 element: Size = %d, Elements = %s%n",
                names.size(), names);

        // Clear all elements
        names.clear();

        // Print the list details
        System.out.printf("After clearing all elements: Size = %d, Elements = %s%n",
                names.size(), names);
    }
}

After creation: Size = 0, Elements = []
After adding 3 elements: Size = 3, Elements = [Ken, Lee, Joe]
After removing 1 element: Size = 2, Elements = [Ken, Joe]
After clearing all elements: Size = 0, Elements = []

Traversing Elements in Collections
Most often, you need to access all elements of a collection one at a time. Different types of collections store 
their elements differently. Some collections impose ordering on their elements and some do not. The 
Collections framework provides the following ways to traverse a collection:

•	 Using an Iterator

•	 Using a for-each loop

•	 Using the forEach() method



Chapter 12 ■ ColleCtions

595

 ■ Tip  some collections, such as lists, assign each element an index and they let you access their elements 
using indexes. You can traverse those collections using a regular for loop statement as well.

Using an Iterator
A collection provides an iterator to iterate over all its elements. Sometimes an iterator is also known as a 
generator or a cursor. An iterator lets you perform the following three operations on a collection:

•	 Check if there are elements that have not been yet accessed using this iterator.

•	 Access the next element in the collection.

•	 Remove the last accessed element of the collection.

 ■ Note  the meaning of the term “next element” of a collection depends on the collection type. the iterator 
itself does not impose any ordering in which it returns the elements from a collection. however, if the collection 
imposes ordering on its elements, the iterator will maintain the same ordering. in general, the “next element” 
means any element in the collection that has not been returned by this iterator yet.

An iterator in Java is an instance of the Iterator<E> interface. You can get an iterator for a collection 
using the iterator() method the Collection interface. The following snippet of code creates a list of strings 
and gets an iterator for the list:

// Create a list of strings
List<String> names = new ArrayList<>();

// Get an iterator for the list
Iterator<String> nameIterator = names.iterator();

The Iterator<E> interface contains the following methods:

•	 boolean hasNext()

•	 E next()

•	 default void remove()

•	 default void forEachRemaining(Consumer<? super E> action)

The hasNext() method returns true if there are more elements in the collection to iterate. Otherwise, 
it returns false. Typically, you call this method before asking the iterator for the next element from the 
collection.

The next() method returns the next element from the collection. You should always call the hasNext() 
method before calling the next() method. If you call the next() method and the iterator has no more 
elements to return, it throws a NoSuchElementException.



Chapter 12 ■ ColleCtions

596

Typically, the hasNext() and next() methods are used together in a loop. The following snippet of code 
prints all elements of a list using an iterator:

List<String> names = /* get a list */;

// Get an iterator for the list
Iterator<String> nameIterator = names.iterator();

// Iterate over all elements in the list
while(nameIterator.hasNext()) {
    // Get the next element from the list
    String name = nameIterator.next();

    // Print the name
    System.out.println(name);
}

The remove() method removes the element of the collection that was returned from the last call to the 
next() method of the iterator. The remove() method can be called only once per call to the next() method. 
If the remove() method is called more than once per next() method call or before the first call to the next() 
method, an IllegalStateException is thrown. The support for the remove() method is optional. Calling 
the remove() method of an iterator may throw an UnsupportedOperationException if the iterator does not 
support the remove operation.

The following snippet of code iterates over all elements of a list using an iterator and removes the 
element using the remove() method of the iterator if the element is only two characters long:

List<String> names = /* get a list */;

// Get an iterator for the list
Iterator<String> nameIterator = names.iterator();

// Iterate over all elements in the list
while(nameIterator.hasNext()) {
    String name = nameIterator.next();

    // Remove the name if it is two characters
    if (name.length() == 2) {
        nameIterator.remove();    
    }
}

The forEachRemaining() method takes an action on each element of the collection that has not been 
accessed by the iterator yet. The action is specified as a Consumer. You can use the following snippet of code 
to print all elements of a list:

List<String> names = /* get a list */;

// Get an iterator for the list
Iterator<String> nameIterator = names.iterator();

// Print the names in the list
nameIterator.forEachRemaining(System.out::println);



Chapter 12 ■ ColleCtions

597

The code uses method reference System.out::println as a Consumer for the forEachRemaining() 
method. Notice that using the forEachRemaining() method helps shorten the code by eliminating the need 
for a loop using the hasNext() and next() methods. Refer to Chapter 5 for more on using the Consumer 
interface and method references.

Listing 12-3 contains a complete program that uses an iterator and the forEachRemaining() of the 
iterator to print all elements of a list to the standard output.

Listing 12-3. Using an Iterator to Iterate Over Elements of a List

// NameIterator.java
package com.jdojo.collections;

import java.util.ArrayList;
import java.util.List;

public class NameIterator {
    public static void main(String[] args) {
        // Create a list of strings
        List<String> names = new ArrayList<>();

        // Add some names to the list
        names.add("Ken");
        names.add("Lee");
        names.add("Joe");

        // Print all elements of the names list
        names.iterator()
             .forEachRemaining(System.out::println);
    }
}

Ken
Lee
Joe

The Collections framework supports fail-fast concurrent iterators. You can obtain multiple iterators for 
a collection and all of them can be used to iterate over the same collection concurrently. If the collection is 
modified by any means, except using the remove() method of the same iterator after the iterator is obtained, 
the attempt to access the next element using the iterator will throw a ConcurrentModificationException.  
It means that you can have multiple iterators for a collection; however, all iterators must be accessing 
(reading) elements of the collection. If any of the iterators modify the collection using its remove() method, 
the iterator that modifies the collection will be fine and all other iterators will fail. If the collection is 
modified outside of all iterators, all iterators will fail.

 ■ Tip  an Iterator is a one-time object. You cannot reset an iterator. it cannot be reused to iterate over the 
elements of the collection. if you need to iterate over the elements of the same collection again, you need to 
obtain a new Iterator calling the iterator() method of the collection.

http://dx.doi.org/10.1007/978-1-4842-3348-1_5


Chapter 12 ■ ColleCtions

598

Using a for-each Loop
You can use the for-each loop to iterate over elements of a collection that hides the logic to set up an iterator 
for a collection. The general syntax for the for-each loop is as follows:

Collection<T> yourCollection = /* get a collection */;

for(T element : yourCollection) {
    /* The body of the for-each loop is executed once for each element in yourCollection. 
       Each time the body code is executed, the element variable holds the reference of the 
       current element in the collection.
    */
}

 ■ Tip  You can use the for-each loop to iterate over any collection whose implementation class implements 
the Iterable interface. the Collection interface inherits from the Iterable interface, and therefore, you can 
use the for-each loop with all types of collections that implement the Collection interface. the Map collection 
type does not inherit from the Iterable interface, and therefore, you cannot use the for-each loop to iterate 
over entries in a Map.

The for-each loop is simple and compact. Behind the scenes, it gets the iterator for your collection and 
calls the hasNext() and next() methods for you. You can iterate over all elements of a list of strings as follows:

List<String> names = /* get a list */;

// Print all elements of the list using a for-each loop
for(String name : names) {
    System.out.println(name);
}

Listing 12-4 contains the complete program that shows how to use the for-each loop to iterate over 
elements of a list of strings. The program is simple and self-explanatory.

Listing 12-4. Using a for-each Loop to Iterate Over Elements of a List

// ForEachLoop.java
package com.jdojo.collections;

import java.util.ArrayList;
import java.util.List;

public class ForEachLoop {
    public static void main(String[] args) {
        // Create a list of strings
        List<String> names = new ArrayList<>();

        // Add some names to the list
        names.add("Ken");
        names.add("Lee");



Chapter 12 ■ ColleCtions

599

        names.add("Joe");

        // Print all elements of the names list
        for(String name : names) {
            System.out.println(name);
        }
    }
}

Ken
Lee
Joe

The for-each loop is not a replacement for using an iterator. The compactness of the for-each loop 
wins over using an iterator in most use-cases. The for-each loop has several limitations, however.

You cannot use the for-each loop everywhere you can use an iterator. For example, you cannot 
use the for-each loop to remove elements from the collection. The following snippet of code throws a 
ConcurrentModificationException exception:

List<String> names = get a list;
for(String name : names) {
    // Throws a ConcurrentModificationException
    names.remove(name); 
}

Another limitation of the for-each loop is that you must traverse from the first element to the last 
element of the collection. It provides no way to start from the middle of the collection. The for-each loop 
provides no way to visit the previously visited elements, which is allowed by the iterator of some collection 
types such as lists.

Using the forEach() Method
The Iterable<T> interface contains a new forEach(Consumer<? super T> action) method that you can 
use in all collection types that inherit from the Collection interface. The method iterates over all elements 
and applies the action. It works similarly to the forEachRemaining(Consumer<? super E> action) method 
of the Iterator interface with a difference that the Iterable.forEach() method iterates over all elements, 
whereas the Iterator.forEachRemaining() method iterates over the elements in the collections that have 
not yet been retrieved by the Iterator.

 ■ Note  Using an Iterator is the fundamental (and a little cumbersome) way of iterating over elements 
of a collection. it has existed since the beginning of the Java programming language. all other ways, such as 
the for-each loop, the forEach() method, and the forEachRemaining() method, are syntactic sugar for the 
Iterator. internally, they all use an Iterator.

Listing 12-5 shows how to use the forEach() method to print all elements of a list of strings. Notice that 
using the forEach() method is the most compact way of iterating over elements of a collection.



Chapter 12 ■ ColleCtions

600

Listing 12-5. Using the forEach() Method of the Iterable Interface to Iterate Over Elements of a List

// ForEachMethod.java
package com.jdojo.collections;

import java.util.ArrayList;
import java.util.List;

public class ForEachMethod {
    public static void main(String[] args) {
        // Create a list of strings
        List<String> names = new ArrayList<>();

        // Add some names to the list
        names.add("Ken");
        names.add("Lee");
        names.add("Joe");

        // Print all elements of the names list
        names.forEach(System.out::println);
    }
}

Ken
Lee
Joe

Using Different Types of Collections
In this section, I discuss different types of collections and their variants, such as sets, lists, queues, maps, etc.

Working with Sets
A set is mathematical concept that represents a collection of unique objects. In mathematics, the ordering of 
elements in a set is irrelevant. The Collections framework offers three types of sets:

•	 Mathematical set

•	 Sorted set

•	 Navigable set

The following sections cover all types of sets in detail.

Mathematical Set
The Set<E> interface models a set in mathematics. In mathematics, a set is a collection of unique elements. 
That is, a set cannot contain duplicate elements. Java allows at most one null element in a Set because 
one null element is still distinguishable from all other non-null elements and thus, it is unique. Further, 
the ordering of the elements in a mathematical set is not important. Java follows the same rule; it does not 
guarantee the ordering of the elements in a Set. You can add elements to a Set in one order, and when 
you retrieve them, they may be supplied back in a different order. The only guarantee is that when looping 
through all elements of a Set, you get each element in the Set once.



Chapter 12 ■ ColleCtions

601

The Collections framework provides the HashSet<E> class as an implementation for the Set<E> 
interface. The following snippet of code creates a Set<String> and adds three elements to it:

Set<String> names = new HashSet<>(); 
names.add("John");
names.add("Donna");
names.add("Ken");
names.add("Ken"); // Duplicate!!! Has no effect  

Notice the last statement in the previous snippet of code adds the same name Ken again, which has no 
effect because the Ken element already exists in the Set.

It is often necessary to create and initialize a Set with a small number of elements. Until Java 9, you did 
not have the ability to create and initialize a Set at the same time. Notice in the previous snippet of code that 
you have to write four lines of code to create a Set and add three elements to it.

Java 9 added a static factory method named of() in the Set interface. The method is overloaded. It 
accepts no elements to any number of elements. One of the versions of the of() method accepts a varargs 
argument. It creates a Set, adds all specified elements, and returns the reference of the Set. The following 
statement uses the static of() method of the Set interface to create a Set and initialize it with three 
elements:

// Create an immutable Set of three names 
Set<String> names = Set.of("John", "Donna", "Ken");

The following statement creates an immutable empty Set:

// Create an immutable Set of three names 
Set<String> emptyNames = Set.of();

 ■ Tip  the static of() method of the Set interface creates an immutable Set. an attempt to modify the 
Set throws an UnsupportedOperationException. Unlike the add() method, the of() method throws an 
IllegalArgumentException if you specify duplicate elements. Unlike the add() method, the of() method 
throws a NullPointerException if you add a null element. the implementation of the of() method is highly 
optimized and it is the preferred way of creating an immutable Set with known elements.

Listing 12-6 demonstrates how to create a Set and add elements to it. Note that you can attempt to 
add duplicate elements to a Set and they are ignored silently. Two elements in a Set are considered equal if 
comparing them using the equals() method returns true. You may get different output containing the same 
elements in the Set in a different order.

Listing 12-6. Using the Set Interface with HashSet as Its Implementation Class

// SetTest.java
package com.jdojo.collections;

import java.util.HashSet;
import java.util.Set;



Chapter 12 ■ ColleCtions

602

public class SetTest {
    public static void main(String[] args) {
        // Create a set  
        Set<String> s1 = new HashSet<>();

        // Add a few elements  
        s1.add("John");
        s1.add("Donna");
        s1.add("Ken");
        s1.add("Ken"); // Duplicate!!! No effect  

        // Create another set by copying s1  
        Set<String> s2 = new HashSet<>(s1);

        // Add a few more elements  
        s2.add("Ellen");
        s2.add("Sara");
        s2.add(null); // one null is fine  
        s2.add(null); // Duplicate!!! No effect

        // Create an immutable Set using the Set.of() method
        Set<String> s3 = Set.of("Corky", "Paul", "Tom");

        // Create an empty immutable Set using the Set.of() method
        Set<String> s4 = Set.of();

        // Print the sets
        System.out.println("s1: " + s1);
        System.out.println("s1.size(): " + s1.size());

        System.out.println("s2: " + s2);
        System.out.println("s2.size(): " + s2.size());

        System.out.println("s3: " + s3);
        System.out.println("s3.size(): " + s3.size());

        System.out.println("s4: " + s4);
        System.out.println("s4.size(): " + s4.size());
    }
}

s1: [Donna, Ken, John]
s1.size(): 3
s2: [null, Ellen, Donna, Ken, John, Sara]
s2.size(): 6
s3: [Paul, Corky, Tom]
s3.size(): 3
s4: []
s4.size(): 0



Chapter 12 ■ ColleCtions

603

I used the toString() method of the Set instances to print the elements of the Set. In a real-world 
application, you would use an iterator, a for-each loop, or the forEach() method of the Set, as shown:

// Create a Set and print its elements using the forEach method
Set<String> names = Set.of(new String[] {"John", "Donna", "Ken"});        
names.forEach(System.out::println);

Ken
Donna
John

The Collections framework offers the LinkedHashSet<E> class as another implementation class for the 
Set<E> interface. The class adds one feature over the HashSet implementation. The HashSet implementation 
does not guarantee the ordering of elements during iteration. The LinkedHashSet implementation 
guarantees that the iterator of a Set will return the elements in the same order the elements were inserted 
(insertion order).

I discuss maintaining ordering of elements in a Set in the next section when I discuss SortedSet. The 
LinkedHashSet class provides insertion ordering without incurring any overhead.

 ■ Tip  a Set has a very useful application. You can use it when you are supplied with an unknown number of 
objects and you have to keep only unique objects. You can create a Set and add all the objects to it. it will keep 
only unique objects and ignore the duplicate ones. at the end, you will have only unique objects in your Set.

You can perform union, intersection, and difference (or minus) operations on mathematical sets. You 
can perform the same operations on sets in Java. For discussing these operations, I assume that you have two 
sets called s1 and s2. The union of two sets (written as s1 U s2 in mathematics) contains elements from both 
sets with no duplicates. The intersection of two sets (written as s1 – s2 in mathematics) contains elements 
that are common to both sets. The difference of two sets, s1 and s2 (written as s1 – s2), is a set that contains 
all elements of s1 that are not in s2. Here is how you perform these Set operations:

// Union of s1 and s2 will be stored in s1  
s1.add(s2);

// Intersection of s1 and s2 will be stored in s1  
s1.retainAll(s2);

// Difference of s1 and s2 will be stored in s1  
s1.removeAll(s2);

Note that during the Set operations such as union, intersection, and difference, the set on which you 
perform the operation is modified. For example, s1 is modified if you perform s1.addAll(s2) to compute 
the union of s1 and s2. If you want to compute the union of two sets and keep the original set unchanged, 
you must make a copy of the original set before you perform the union operation, like so:

/* Compute the union of two sets by keeping the original set unchanged */
// Make a copy of s1  
Set s1Unions2 = new HashSet(s1);



Chapter 12 ■ ColleCtions

604

// Now, s1Unions2 is the union of s1 and s2 and both s1 and s2 are unchanged  
s1Unions2.addAll(s2);

In mathematics, you can test if the set s1 is a subset of another set s2. Set s1 is a subset of set s2 if set s2 
contains all elements that are also present in set s1. You can use the s2.containsAll(s1) method to test if 
s1 is a subset of s2. This method will return true if s1 is a subset of s2. Otherwise, it will return false.

Listing 12-7 demonstrates how to use the Set interface to perform mathematical set operations.

Listing 12-7. Performing Mathematical Set Operations Using the Set Interface

// SetOperations.java
package com.jdojo.collections;

import java.util.HashSet;
import java.util.Set;

public class SetOperations {
    public static void main(String[] args) {
        // Create a set  
        Set<String> s1 = new HashSet<>();
        s1.add("John");
        s1.add("Donna");
        s1.add("Ken");

        // Create another set  
        Set<String> s2 = new HashSet<>();
        s2.add("Ellen");
        s2.add("Sara");
        s2.add("Donna");

        //Print  the elements of both sets 
        System.out.println("s1: " + s1);
        System.out.println("s2: " + s2);

        // Perform set operations  
        performUnion(s1, s2);
        performIntersection(s1, s2);
        performDifference(s1, s2);
        testForSubset(s1, s2);
    }

    public static void performUnion(Set<String> s1, Set<String> s2) {
        Set<String> s1Unions2 = new HashSet<>(s1);
        s1Unions2.addAll(s2);
        System.out.println("s1 union s2: " + s1Unions2);
    }

    public static void performIntersection(Set<String> s1, Set<String> s2) {
        Set<String> s1Intersections2 = new HashSet<>(s1);
        s1Intersections2.retainAll(s2);
        System.out.println("s1 intersection s2: " + s1Intersections2);
    }



Chapter 12 ■ ColleCtions

605

    public static void performDifference(Set<String> s1, Set<String> s2) {
        Set<String> s1Differences2 = new HashSet<>(s1);
        s1Differences2.removeAll(s2);

        Set<String> s2Differences1 = new HashSet<>(s2);
        s2Differences1.removeAll(s1);

        System.out.println("s1 difference s2: " + s1Differences2);
        System.out.println("s2 difference s1: " + s2Differences1);
    }

    public static void testForSubset(Set<String> s1, Set<String> s2) {
        System.out.println("s2 is subset s1: " + s1.containsAll(s2));
        System.out.println("s1 is subset s2: " + s2.containsAll(s1));
    }
}

s1: [Donna, Ken, John]
s2: [Ellen, Donna, Sara]
s1 union s2: [Ellen, Donna, Ken, John, Sara]
s1 intersection s2: [Donna]
s1 difference s2: [Ken, John]
s2 difference s1: [Ellen, Sara]
s2 is subset s1: false
s1 is subset s2: false

In this example, I kept the two original sets, s1 and s2, unmodified inside methods that performed 
some operations on these two sets. However, they could have been modified inside any of these methods.  
It is not wise to pass a collection to a method like the way I did in this example if you do not want the method 
to modify your collection. The Collections framework offers a way to get an unmodifiable view of a collection 
using the java.util.Collections class. I discuss this class and all other features that it offers later in this 
chapter. The Collections.unmodifiableSet(s1) method will return the unmodifiable version of the s1 set. 
An attempt to modify an unmodifiable collection results in an UnsupportedOperationException.

Sorted Set
A sorted set is a set that imposes ordering on its elements. An instance of the SortedSet<E> interface 
represents a sorted set. The SortedSet<E> interface inherits from the Set<E> interface.

The elements in a SortedSet can be sorted in a natural order or using a Comparator. A SortedSet must 
know how to sort its elements as they are added. The sorted set relies on two things to sort its elements:

•	 If its elements implement the Comparable interface, it will use the compareTo() 
method of elements to sort them. This is called sorting in natural order.

•	 You can supply a Comparator to use a custom sorting. The implementation class for 
SortedSet is recommended to provide a constructor that will accept a Comparator to 
use a custom sorting. If a Comparator is specified, the Comparator is used for sorting 
irrespective of the elements implementing the Comparable interface.

What would happen if the class of the elements of a SortedSet does not implement the Comparable 
interface and you don’t supply a Comparator object? The answer is that, in such cases, you cannot add any 
elements to a SortedSet. Attempting to add an element results in a ClassCastException.



Chapter 12 ■ ColleCtions

606

The TreeSet<E> class is one of the predefined implementation classes for the SortedSet interface in the 
Collections framework.

The String class implements the Comparable interface. If you are storing only strings in a SortedSet,  
its elements will be sorted using the natural order using the compareTo() method of the String class.  
Listing 12-8 demonstrates the use of SortedSet, which uses the natural order to sort its elements.

Listing 12-8. Using a SortedSet That Uses Natural Ordering to Sort Its Elements

// SortedSetTest.java
package com.jdojo.collections;

import java.util.SortedSet;
import java.util.TreeSet;

public class SortedSetTest {
    public static void main(String[] args) {
        // Create a sorted set of some names  
        SortedSet<String> sortedNames = new TreeSet<>();
        sortedNames.add("John");
        sortedNames.add("Adam");    
        sortedNames.add("Eve");
        sortedNames.add("Donna");

        // Print the sorted set of names
        System.out.println(sortedNames);
    }
}

 [Adam, Donna, Eve, John]

Let’s discuss a real-world example in which you want to store a list of people in a SortedSet. Listing 12-9 
contains the code for a Person class. It does not implement the Comparable interface. I use the objects of the 
Person class in a SortedSet to demonstrate custom sorting.

Listing 12-9. A Person Class

// Person.java
package com.jdojo.collections;

public class Person {
    private int id;
    private String name;

    public Person(int id, String name) {
        this.id = id;
        this.name = name;
    }

    public int getId() {
        return id;
    }



Chapter 12 ■ ColleCtions

607

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    @Override
    public boolean equals(Object o) {
        if (!(o instanceof Person)) {
            return false;
        }

        // id must be the same for two Persons to be equal  
        Person p = (Person) o;

        return this.id == p.getId();
    }

    @Override
    public int hashCode() {
        // A trivial implementation        
        return this.id;
    }

    @Override
    public String toString() {
        return "(" + id + ", " + name + ")";
    }
}

You cannot add a Person in a SortedSet unless you also supply a Comparator object. The following 
code throws a ClassCastException:

Set<Person> persons = new TreeSet<>();
persons.add(new Person(1, "John"));
persons.add(new Person(2, "Donna")); 

The following snippet of code creates a SortedSet of persons using a Comparator that sorts the persons 
using their names:

SortedSet<Person> personsSortedByName = new TreeSet<>(Comparator.
comparing(Person::getName));

The code uses a method reference to create a lambda expression for creating the Comparator object. 
Refer to Chapter 5 for more details on the lambda expressions and method references.

http://dx.doi.org/10.1007/978-1-4842-3348-1_5


Chapter 12 ■ ColleCtions

608

If you add two Person objects to the personsSortedByName sorted set with the same name, the second 
one will be ignored because the supplied Comparator compares names of two Person objects for equality.

personsSortedByName.add(new Person(1, "John"));
personsSortedByName.add(new Person(2, "Donna"));
personsSortedByName.add(new Person(3, "Donna")); // A duplicate Person. Will be ignored. 

Listing 12-10 demonstrates how to use a Comparator object to apply custom sorting in a SortedSet. 
It uses two custom sorting for Person objects, one by id and one by name. The output shows that one 
SortedSet is sorted by id and another by name.

Listing 12-10. Using Custom Sorting in a SortedSet

// SortedSetComparatorTest.java
package com.jdojo.collections;

import java.util.Comparator;
import java.util.SortedSet;
import java.util.TreeSet;

public class SortedSetComparatorTest {
    public static void main(String[] args) {
        // Create a sorted set sorted by id
        SortedSet<Person> personsById
                = new TreeSet<>(Comparator.comparing(Person::getId));

        // Add some persons to the set
        personsById.add(new Person(1, "John"));
        personsById.add(new Person(2, "Adam"));
        personsById.add(new Person(3, "Eve"));
        personsById.add(new Person(4, "Donna"));
        personsById.add(new Person(4, "Donna")); // A duplicate Person

        // Print the set
        System.out.println("People sorted by id:");
        personsById.forEach(System.out::println);

        // Create a sorted set sorted by name
        SortedSet<Person> personsByName
                = new TreeSet<>(Comparator.comparing(Person::getName));
        personsByName.add(new Person(1, "John"));
        personsByName.add(new Person(2, "Adam"));
        personsByName.add(new Person(3, "Eve"));
        personsByName.add(new Person(4, "Donna"));
        personsByName.add(new Person(4, "Kip")); // Not a duplicate person

        System.out.println("\nPeople sorted by name: ");
        personsByName.forEach(System.out::println);
    }
}



Chapter 12 ■ ColleCtions

609

People sorted by id:
(1, John)
(2, Adam)
(3, Eve)
(4, Donna)

People sorted by name: 
(2, Adam)
(4, Donna)
(3, Eve)
(1, John)
(4, Kip)

Suppose you have a group of strings and you want to remove duplicates and sort them in ascending 
order of their length. How difficult will it be to achieve this using your current knowledge of collections? The 
following snippet of code shows how to do this:

// Sort the names based on their length
SortedSet<String> names = new TreeSet<>(Comparator.comparing(String::length));
names.add("Ken");
names.add("Lo");
names.add("Ellen");
names.add("Ken"); // A duplicate that is ignored

// Print the unique sorted names
names.forEach(System.out::println);

Lo
Ken
Ellen

The SortedSet interface inherits all methods of the Set interface; it also adds some more methods 
to give you access to its subsets. For example, if you want to get a subset of the SortedSet, you can use 
its subSet(E fromElement, E toElement) method to get the elements between fromElement (inclusive) 
and toElement (exclusive). Listing 12-11 demonstrates how to use some of the methods of the SortedSet 
interface to get a subset of its elements.

Listing 12-11. Accessing Subsets of a SortedSet

// SortedSetSubset.java
package com.jdojo.collections;

import java.util.SortedSet;
import java.util.TreeSet;

public class SortedSetSubset {
    public static void main(String[] args) {
        // Create a sorted set of names
        SortedSet<String> names = new TreeSet<>();
        names.add("John");



Chapter 12 ■ ColleCtions

610

        names.add("Adam");
        names.add("Eve");
        names.add("Donna");

        // Print the sorted set
        System.out.println("Sorted Set: " + names);

        // Print the first and last elements in the sorted set
        System.out.println("First: " + names.first());
        System.out.println("Last: " + names.last());

        SortedSet ssBeforeDonna = names.headSet("Donna");
        System.out.println("Head Set Before Donna: " + ssBeforeDonna);

        SortedSet ssBetwenDonnaAndJohn = names.subSet("Donna", "John");
        System.out.println("Subset between Donna and John (exclusive): "
                + ssBetwenDonnaAndJohn);

        // Note the trick "John" + "\0" to include "John" in the subset  
        SortedSet ssBetwenDonnaAndJohn2 = names.subSet("Donna", "John" + "\0");
        System.out.println("Subset between Donna and John (Inclusive): "
                + ssBetwenDonnaAndJohn2);

        SortedSet ssDonnaAndAfter = names.tailSet("Donna");
        System.out.println("Subset from Donna onwards: " + ssDonnaAndAfter);
    }
}

Sorted Set: [Adam, Donna, Eve, John]
First: Adam
Last: John
Head Set Before Donna: [Adam]
Subset between Donna and John (exclusive): [Donna, Eve]
Subset between Donna and John (Inclusive): [Donna, Eve, John]
Subset from Donna onwards: [Donna, Eve, John]

How is a null element stored in a SortedSet? If a SortedSet uses natural order (uses the Comparable 
interface’s compareTo() method), adding a null element will throw a NullPointerException. If you use a 
Comparator to apply the ordering, it is up to you to allow a null element in the SortedSet. If you allow a null 
element in the SortedSet, you can decide whether the null element will be placed in the beginning or at the 
end of the sorted set. The following snippet of code creates a SortedSet using a Comparator that places the 
null element first:

// Sort the names based on their length, placing null first
SortedSet<String> names = 
    new TreeSet<>(Comparator.nullsFirst(Comparator.comparing(String::length)));

names.add("Ken");
names.add("Lo");
names.add("Ellen");
names.add(null); // Adds a null    



Chapter 12 ■ ColleCtions

611

// Print the names
names.forEach(System.out::println);

null
Lo
Ken
Ellen

Navigable Set
A navigable set is a specialized sorted set that lets you work with its subsets in a variety of ways. An instance 
of the NavigableSet<E> interface represents a navigable set. The NavigableSet interface inherits from 
the SortedSet interface and defines some additional methods to extend the functionality provided by the 
SortedSet. It extends SortedSet in the following ways:

•	 It lets you navigate the set in reverse order. The reverse order is the opposite order 
in which your SortedSet would be sorted normally. Its descendingSet() method 
returns a NavigableSet, which is another view of the same NavigableSet in the 
reverse order. If you modify the original NavigableSet or the one returned from the 
descendingSet() method, the modifications will be reflected in both sets.

•	 It adds another version of the three methods headSet(), tailSet(), and subSet() 
in SortedSet, which accept a boolean flag to include the element at the beginning or 
the end of the subset boundary.

The NavigableSet interface provides four methods—lower(), floor(), higher(), and ceiling()—to 
search for an element based on search criteria. The lower() method returns the greatest element in the 
NavigableSet that is less than the specified element. The floor() method is similar to the lower() method 
that returns the greatest element in the NavigableSet that is less than or equal to the specified element. 
The higher() method returns the least element in the NavigableSet that is greater than the specified 
element. The ceiling() method is similar to the higher() method in that it returns the least element in the 
NavigableSet that is greater than or equal to a specified element.

It provides two methods, pollFirst() and pollLast(), that retrieve and remove the first and the last 
element of the NavigableSet, respectively. If the NavigableSet is empty, they return null.

The TreeSet<E> class is one of the implementation classes for the NavigableSet<E> interface. Since a 
NavigableSet is also a SortedSet and a SortedSet is also a Set, you can use an object of TreeSet as a set, a 
sorted set, and a navigable set. If you do not need ordering of the elements in a set, you are better off using a 
HashSet rather than a TreeSet.

Listing 12-12 demonstrates how to use navigable sets. It uses integers as the elements of the 
NavigableSet because numbers seem to be more intuitive when you perform methods like higher() and 
lower(). The output shows how a NavigableSet performs all its operations on its elements.

Listing 12-12. Using a NavigableSet to Get a Subset of a Set

// NavigableSetTest.java
package com.jdojo.collections;

import java.util.TreeSet;
import java.util.NavigableSet;



Chapter 12 ■ ColleCtions

612

public class NavigableSetTest {
    public static void main(String[] args) {
        // Create a navigable set and add some integers  
        NavigableSet<Integer> ns = new TreeSet<>();
        ns.add(1);
        ns.add(2);
        ns.add(3);
        ns.add(4);
        ns.add(5);

        // Get a reverse view of the navigable set
        NavigableSet reverseNs = ns.descendingSet();

        // Print the normal and reverse views
        System.out.println("Normal view of the Set: " + ns);
        System.out.println("Reverse view of the set: " + reverseNs);

        // Get and print a subset of the navigable set
        System.out.println("\nGetting subset of the set");

        NavigableSet threeOrMore = ns.tailSet(3, true);
        System.out.println("3 or more: " + threeOrMore);

        // Search the navigable set        
        System.out.println("\nSearching through the set");

        System.out.println("lower(3): " + ns.lower(3));
        System.out.println("floor(3): " + ns.floor(3));
        System.out.println("higher(3): " + ns.higher(3));
        System.out.println("ceiling(3): " + ns.ceiling(3));

        // Poll the navigable set        
        System.out.println("\nPolling elements from the set");

        // Poll elements one by one and look at the set  
        System.out.println("pollFirst(): " + ns.pollFirst());
        System.out.println("Navigable Set: " + ns);

        System.out.println("pollLast(): " + ns.pollLast());
        System.out.println("Navigable Set: " + ns);

        System.out.println("pollFirst(): " + ns.pollFirst());
        System.out.println("Navigable Set: " + ns);

        System.out.println("pollFirst(): " + ns.pollFirst());
        System.out.println("Navigable Set: " + ns);

        System.out.println("pollFirst(): " + ns.pollFirst());
        System.out.println("Navigable Set: " + ns);



Chapter 12 ■ ColleCtions

613

        // Since the set is empty, polling will return null  
        System.out.println("pollFirst(): " + ns.pollFirst());
        System.out.println("pollLast(): " + ns.pollLast());
    }
}

Normal view of the Set: [1, 2, 3, 4, 5]
Reverse view of the set: [5, 4, 3, 2, 1]

Getting subset of the set
3 or more: [3, 4, 5]

Searching through the set
lower(3): 2
floor(3): 3
higher(3): 4
ceiling(3): 3

Polling elements from the set
pollFirst(): 1
Navigable Set: [2, 3, 4, 5]
pollLast(): 5
Navigable Set: [2, 3, 4]
pollFirst(): 2
Navigable Set: [3, 4]
pollFirst(): 3
Navigable Set: [4]
pollFirst(): 4
Navigable Set: []
pollFirst(): null
pollLast(): null

Working with Lists
A list is an ordered collection of objects. Sometimes a list is also known as a sequence. An instance of the 
List<E> interface represents a list in the Collections framework. A list can have duplicate elements. You can 
also store multiple null values in a list.

The List interface inherits from the Collection interface. It adds methods to support access to 
elements of the List using indexes. It also allows you to add an element to the end of the List or at any 
position identified by an integer called the index. The index of an element in a List is zero-based. That is, 
the first element of the List has an index of 0, the second element has an index of 1, and so on. Figure 12-3 
shows a List with four elements and their indexes.

Index   -> 0 1 2 3
Element -> John Richard Donna Ken

Figure 12-3. A pictorial view of a List with four elements



Chapter 12 ■ ColleCtions

614

A List provides the following additional features over a generic collection:

•	 It provides access to its elements using indexes. You can use its add(int index,  
E element), addAll(int index, Collection<? extends E> c), get(int index), 
remove(int index), and set(int index, E element) methods to add, get, remove, 
and replace its elements using indexes.

•	 You can search for the position of an element in the List using indexOf(Object o)  
or lastIndexOf(Object o) methods. The indexOf() method searches for the 
specified object in the List from the beginning and returns the index of the first 
occurrence of the object. The lastIndexOf() method does the same, starting from 
the end of the list. Both methods return -1 if the List does not contain the specified 
object.

•	 It provides a method called subList(int fromIndex, int toIndex) that gives you 
a sub-list of the original list starting at index fromIndex (inclusive) to index toIndex 
(exclusive). The sub-list is another view of the original list.

•	 It provides a specialized iterator for its elements, which is an instance of the 
ListIterator<E> interface. This iterator lets you iterate over its elements in both 
directions (forward and backward) at the same time. You can get the ListIterator 
for a List using its listIterator() method. Note that the Iterator returned from 
the iterator() method of the Collection interface returns a forward-only iterator.

The following are two of many implementation classes for the List interface:

•	 ArrayList<E>

•	 LinkedList<E>

An ArrayList is backed up by an array. A LinkedList is backed up by a linked list. An ArrayList 
performs better if you access (get and set) the elements of the list frequently. Accessing elements in an 
ArrayList is faster because the index of an element becomes the index in the backing array, and accessing 
an element from an array is always fast. Adding or removing elements from a list backed by an ArrayList 
performs slower, unless done from the end, because an ArrayList has to perform an array copy internally to 
keep the elements in sequence. The LinkedList performs better as compared to ArrayList for adding and 
removing elements from the middle of the list. However, it is slower for accessing elements of the list, unless 
at the head of the list.

You can create and add some elements to a list as follows:

// Create a list of strings
List<String> nameList = new ArrayList<>();
nameList.add("John");    // Adds John at the index 0  
nameList.add("Richard"); // Adds Richard at the index 1  

The add(E element) method of the List interface appends the element to the end of the List.  
The remove(Object o) method of List removes the first occurrence of the element from the beginning of 
the list.

You can also add elements to a List using positional indexes. Note that the index that you use to access 
any element must be between 0 and size, where size is the size of the List. You can use add(int index, 
E element) method to insert the specified element at the specified index. For example, nameList.add(1, 
"Sara") will insert "Sara" at index 1, which is the second element in the List. When you use an index to add 
an element to a List, the element at the specified index and elements to the right of the specified index are 
shifted to the right and their indexes are incremented by 1. Suppose you have a List as shown in Figure 12-3 
and you execute the following code:



Chapter 12 ■ ColleCtions

615

// Add an element at index 1  
nameList.add(1, "Sara");

Now the List will look as shown in Figure 12-4.

Index 0 1 2 3 4

Element John Sara Richard Donna Ken

Figure 12-4. The resulting List after a new element is added at index 1 in the List

 ■ Tip  a List does not allow inserting an element at any arbitrary index by using the add(int index,  
E element) method. if the List is empty, you can use only 0 as the index to add the first element to the list. 
if you have five elements in a List, you must use indexes between 0 and 5 to add a new element to the List. 
the index from 0 to 4 will insert an element between existing elements. the index of 5 will append the element 
to the end of the List. this implies that a List must grow sequentially. You cannot have a sparse List such 
as a List with a first element and tenth element, leaving second to ninth elements non-populated. this is the 
reason that a List is also known as a sequence.

Java 9 added a static factory method named of() in the List interface. The method is overloaded.  
It accepts no elements to any number of elements. One of the versions of the of() method accepts a varargs 
argument. It creates a List, adds all specified elements, and returns the reference of the List. The following 
statement uses the static of() method of the List interface to create a List and initialize it with three 
elements:

// Create an immutable List of three names 
List<String> names = List.of("John", "Donna", "Ken");

The following statement creates an immutable empty List:

// Create an immutable List of three names 
List<String> emptyNames = List.of();

 ■ Tip  the static of() method of the List interface creates an immutable List. an attempt to modify the 
List throws an UnsupportedOperationException. Unlike the add() method, the of() method throws a 
NullPointerException if you add a null element to the List. the implementation of the of() method is 
highly optimized and it is the preferred way of creating an immutable List with known elements.

Listing 12-13 demonstrates how to use a List. It shows how to add, remove, and iterate over its 
elements using indexes.



Chapter 12 ■ ColleCtions

616

Listing 12-13. Using a List with the ArrayList as Its Implementation

// ListTest.java
package com.jdojo.collections;

import java.util.List;
import java.util.ArrayList;

public class ListTest {
    public static void main(String[] args) {
        // Create a List and add a few elements  
        List<String> list = new ArrayList<>();
        list.add("John");
        list.add("Richard");
        list.add("Donna");
        list.add("Ken");

        System.out.println("List: " + list);

        int count = list.size();
        System.out.println("Size of List: " + count);

        // Print each element with its index  
        for(int i = 0; i < count; i++) {
            String element =  list.get(i);
            System.out.printf("list[%d] = %s%n", i, element);
        }

        List<String> subList = list.subList(1, 3);
        System.out.println("Sub List 1(inclusive) to 3(exclusive): " + subList);

        // Remove "Donna" from the list  
        list.remove("Donna"); // Same as list.remove(2);  
        System.out.println("List after removing Donna: " + list);

        // Create a List using the static factory method of()
        List<String> names = List.of("Li", "Xi", "Bo", "Da", "Fa", "Bo");
        System.out.println("List using List.of() method: " + names);        
    }
}

List: [John, Richard, Donna, Ken]
Size of List: 4
list[0] = John
list[1] = Richard
list[2] = Donna
list[3] = Ken
Sub List 1(inclusive) to 3(exclusive): [Richard, Donna]
List after removing Donna: [John, Richard, Ken]
List using List.of() method: [Li, Xi, Bo, Da, Fa, Bo]



Chapter 12 ■ ColleCtions

617

A List lets you iterate over its elements using a specialized iterator represented by an instance of the 
ListIterator interface. The ListIterator interface inherits from the Iterator interface; it adds a few more 
methods to give you access to elements in the list from the current position in the backward direction. You 
can get a list iterator for all elements of the list or a sub-list, like so:

List<String> list = new ArrayList<>(); 

// Populate the list here...

// Get a full list iterator
ListIterator<String> fullIterator = list.listIterator();

// Get a list iterator, which will start at index 5 in the forward direction. 
// You can iterate to an index that’s less than 5 if you choose to.
ListIterator<String> partialIterator = list.listIterator(5);

The hasPrevious() method of the ListIterator returns true if there is an element before the current 
position in the list iterator. To get the previous element, use its previous() method. You can observe that the 
hasPrevious() and previous() methods do the same work but in the opposite direction of the hasNext() 
and next() methods. You can also get to the index of the next and previous elements from the current 
position using its nextIndex() and previousIndex() methods. The ListIterator interface also contains 
methods to insert, replace, and remove an element at the current position.

 ■ Tip  a ListIterator lets you look ahead or look back in a List. if you use its next() method followed by 
the previous() method, the iterator goes back to the same position. the call to the next() method moves it 
one index forward and the call to the previous() method moves it one index backward.

Listing 12-14 demonstrates how to use a ListIterator. It iterates over elements of a List, first in the 
forward direction and then in the backward direction. You do not need to recreate the ListIterator again to 
iterate in the backward direction.

Listing 12-14. Iterating Over the Elements in a List in Forward and Backward Directions

// ListIteratorTest.java
package com.jdojo.collections;

import java.util.List;
import java.util.ListIterator;

public class ListIteratorTest {
    public static void main(String[] args) {
        List<String> list = List.of("John", "Richard", "Donna", "Ken");
        System.out.println("List: " + list);

        // Get the list iterator
        ListIterator<String> iterator = list.listIterator();

        System.out.println();
        System.out.println("List Iterator in the forward direction:");



Chapter 12 ■ ColleCtions

618

        while (iterator.hasNext()) {
            int index = iterator.nextIndex();
            String element = iterator.next();
            System.out.printf("list[%d] = %s%n", index, element);
        }

        System.out.println("\nList Iterator in the backward direction:");

        // Reuse the iterator to iterate from the end to the beginning  
        while (iterator.hasPrevious()) {
            int index = iterator.previousIndex();
            String element = iterator.previous();
            System.out.printf("list[%d] = %s%n", index, element);
        }
    }
}

List: [John, Richard, Donna, Ken]

List Iterator in the forward direction:
list[0] = John
list[1] = Richard
list[2] = Donna
list[3] = Ken

List Iterator in the backward direction:
list[3] = Ken
list[2] = Donna
list[1] = Richard
list[0] = John

Working with Queues
A queue is a collection based on the notion of a real-world queue. A queue is a collection of objects on which 
some kind of processing is applied one element at a time. A queue has two ends, known as the head and 
tail. In a simple queue, objects are added to the tail and removed from the head; the object added first will 
be removed first. However, queues can be categorized based on the way they allow insertion and removal of 
their elements. In this section, I discuss the following types of queues:

•	 A simple queue allows insertion at the tail and removal from the head.

•	 A priority queue associates a priority with every element of the queue and allows the 
element with the highest priority to be removed next from the queue.

•	 A delay queue associates a delay with every element of the queue and allows for the 
removal of the element only when its delay has elapsed.

•	 A doubly ended queue allows for insertion and removal of its elements from the head 
as well as the tail.

•	 A blocking queue blocks the thread that adds elements to it when it is full and it 
blocks the thread removing elements from it when it is empty.



Chapter 12 ■ ColleCtions

619

•	 A transfer queue is a special type of blocking queue where a handoff of an object 
occurs between two threads (a producer and a consumer).

•	 A blocking doubly ended queue is a combination of a doubly ended queue and a 
blocking queue.

Simple Queues
Simple queues are represented by an instance of the Queue<E> interface. Typically, you hold a group of 
objects in a queue for some kind of processing that is applied to one element at a time. For example, the line 
of customers at a counter in a post office is an example of a queue. You can classify a queue based on many 
criteria.

How many elements can a queue hold? Sometimes you have an unlimited (at least theoretically) 
number of elements in a queue, and sometimes it has a predefined capacity. When the length of a queue 
is unlimited, it is called an unbounded queue. When the length of the queue is predefined, it is called a 
bounded queue. The bound of a queue defines its behavior when an element is added to a full bounded 
queue. Attempting to add an element to a full queue may throw an exception; it may fail silently; it may wait 
indefinitely (or for a predefined time period) for the queue to have room to accommodate the new element, 
etc. The exact behavior depends on the type of the queue.

Which element of the queue comes out next? A queue always has an entry point and an exit point for 
its elements. The exit point is called the head of the queue and the entry point is called the tail. The head 
and the tail may be the same. If the head and the tail of a queue are the same, it is called a Last In, First Out 
(LIFO) queue. A LIFO queue is also known as a stack. The head and the tail of a queue may be different. If 
a queue follows a rule that the element entering the queue first will leave the queue first (first come, first 
served rule), it is called a First In, First Out (FIFO) queue. Have you ever had a chance to stand in a queue for 
a long time and as soon as your turn comes, another person, who showed up after you, is served before you, 
based on a priority? Java also has this kind of queue and it is called a priority queue. In a priority queue, you 
define the priority using a Comparator or implement the Comparable interface in the elements’ class, and the 
next element in the queue to come out is decided based on the priority of the elements in the queue.

 ■ Tip  typically, a null element does not make sense in a Queue. after all, the purpose of having a queue 
is to apply some processing logic on its elements or use the elements to perform some logic. in either case, a 
null value does not make sense. it is up to the implementation of the Queue interface to allow or disallow null 
values. the use of null elements in a queue is not recommended. if you use null elements in a queue, you will 
not be able to distinguish between the null value returned from its method to indicate a special situation and 
the null value of the element.

A queue lets you perform three basic operations:

•	 Add an element to its tail

•	 Remove an element from its head

•	 Peek the element at its head

The Queue interface defines two methods for each of the three operations. One method throws an 
exception if the operation is not possible; the other method returns a value (false or null) to indicate the 
failure. The method you use to perform the specific operation depends on your requirements. The Queue 
interface adds six methods to provide the functionality of a FIFO queue. They are listed in Table 12-1.



Chapter 12 ■ ColleCtions

620

The LinkedList<E> and PriorityQueue<E> are two implementation classes for the Queue<E> interface. 
Note that the LinkedList class is also the implementation class for the List interface. The LinkedList class 
is a multi-purpose collection implementation class. I mention its name a few more times in this chapter.

Listing 12-15 demonstrates how to use a LinkedList as a FIFO queue. In fact, it is the Queue interface 
that represents a FIFO queue. An instance of the LinkedList class can be used as a FIFO queue or a LIFO 
queue.

Listing 12-15. Using a FIFO Queue Using LinkedList as the Implementation Class

// QueueTest.java
package com.jdojo.collections;

import java.util.Queue;
import java.util.LinkedList;
import java.util.NoSuchElementException;

public class QueueTest {
    public static void main(String[] args) {
        Queue<String> queue = new LinkedList<>();
        queue.add("John");

        // offer() will work the same as add()
        queue.offer("Richard");
        queue.offer("Donna");
        queue.offer("Ken");

        System.out.println("Queue: " + queue);

Table 12-1. Additional Methods Declared by the Queue<E> Interface

Category Method Description

Adding an element to 
the queue

boolean add(E e) Adds an element to the queue if it is possible and returns 
true. Otherwise, it throws an IllegalStateException.

boolean offer(E e) Adds an element to the queue without throwing an 
exception if the element cannot not be added. It returns 
false on failure and true on success. It is the preferred 
way to add an element in a bounded queue.

Removing an element 
from the queue

E remove() Retrieves and removes the head of the queue. It throws an 
exception if the queue is empty.

E poll() Performs the same job as the remove() method. However, 
it returns null if the queue is empty instead of throwing an 
exception.

Peeking at the head of 
the queue

E element() Retrieves the head of the queue without removing it from 
the queue. It throws an exception if the queue is empty.

E peek() Performs the same job as the element() method. However, 
it returns null if the queue is empty instead of throwing an 
exception.



Chapter 12 ■ ColleCtions

621

        // Let’s remove elements until the queue is empty
        while (queue.peek() != null) {
            System.out.println("Head Element: " + queue.peek());
            queue.remove();
            System.out.println("Removed one element from Queue");
            System.out.println("Queue: " + queue);
        }

        // Now Queue is empty. Try  calling the peek(), 
        // element(), poll() and remove() methods  
        System.out.println("queue.isEmpty(): " + queue.isEmpty());
        System.out.println("queue.peek(): " + queue.peek());
        System.out.println("queue.poll(): " + queue.poll());

        try {
            String str = queue.element();
            System.out.println("queue.element(): " + str);
        } catch (NoSuchElementException e) {
            System.out.println("queue.element(): Queue is empty.");
        }

        try {
            String str = queue.remove();
            System.out.println("queue.remove(): " + str);
        } catch (NoSuchElementException e) {
            System.out.println("queue.remove(): Queue is empty.");
        }
    }
}

Queue: [John, Richard, Donna, Ken]
Head Element: John
Removed one element from Queue
Queue: [Richard, Donna, Ken]
Head Element: Richard
Removed one element from Queue
Queue: [Donna, Ken]
Head Element: Donna
Removed one element from Queue
Queue: [Ken]
Head Element: Ken
Removed one element from Queue
Queue: []
queue.isEmpty(): true
queue.peek(): null
queue.poll(): null
queue.element(): Queue is empty.
queue.remove(): Queue is empty.



Chapter 12 ■ ColleCtions

622

How do you create a LIFO queue? An instance of the Stack<E> class represents a LIFO queue. The Stack 
class was not designed properly. It inherits from the java.util.Vector class. You can roll out your own 
representation of a LIFO queue using the LinkedList class easily. I discuss the Deque collection interface in 
the next section and you will see how to use it as a LIFO queue. You will also develop your own LIFO queue.

Priority Queues
A priory queue is a queue in which each element has an associated priority. The element with the highest 
priority is removed next from the queue. Java provides PriorityQueue<E> as an implementation class 
for an unbounded priority queue. You can use natural order of the elements of the queue as its priority. 
In this case, the elements of the queue must implement the Comparable interface. You can also supply a 
Comparator, which will determine the priority order of the elements. When you add a new element to a 
priority queue, it is positioned in the queue based on its priority. How the priority is decided in the queue is 
up to you to implement.

Let’s develop a priority queue based on natural ordering of its elements. Let’s extend your Person class 
to implement the Comparable interface. You will call your new class ComparablePerson. The priority of a 
ComparablePerson will be decided on two criteria, id and name. If the id is higher, its priority is lower. If 
persons have the same id, the name will be used to decide the priority based on the alphabetical order of the 
names. Listing 12-16 contains the code for the ComparablePerson class.

Listing 12-16. A ComparablePerson Class

// ComparablePerson.java
package com.jdojo.collections;

public class ComparablePerson extends Person implements Comparable<ComparablePerson> {
    public ComparablePerson(int id, String name) {
        super(id, name);
    }

    @Override
    public int compareTo(ComparablePerson cp) {        
        int cpId = cp.getId();
        String cpName = cp.getName();

        if (this.getId() < cpId) {
            return -1;
        }

        if (this.getId() > cpId) {
            return 1;
        }

        if (this.getId() == cpId) {
            return this.getName().compareTo(cpName);
        }

        // Should not reach here  
        return 0;
    }
}



Chapter 12 ■ ColleCtions

623

Listing 12-17 demonstrates how to use a priority queue.

Listing 12-17. Using a Priority Queue

// PriorityQueueTest.java
package com.jdojo.collections;

import java.util.Queue;
import java.util.PriorityQueue;

public class PriorityQueueTest {
    public static void main(String[] args) {
        Queue<ComparablePerson> pq = new PriorityQueue<>();
        pq.add(new ComparablePerson(1, "John"));
        pq.add(new ComparablePerson(4, "Ken"));
        pq.add(new ComparablePerson(2, "Richard"));
        pq.add(new ComparablePerson(3, "Donna"));
        pq.add(new ComparablePerson(4, "Adam"));

        System.out.println("Priority queue: " + pq);

        while (pq.peek() != null) {
            System.out.println("Head Element: " + pq.peek());
            pq.remove();
            System.out.println("Removed one element from Queue");
            System.out.println("Priority queue: " + pq);
        }
    }
}

Priority queue: [(1, John), (3, Donna), (2, Richard), (4, Ken), (4, Adam)]
Head Element: (1, John)
Removed one element from Queue
Priority queue: [(2, Richard), (3, Donna), (4, Adam), (4, Ken)]
Head Element: (2, Richard)
Removed one element from Queue
Priority queue: [(3, Donna), (4, Ken), (4, Adam)]
Head Element: (3, Donna)
Removed one element from Queue
Priority queue: [(4, Adam), (4, Ken)]
Head Element: (4, Adam)
Removed one element from Queue
Priority queue: [(4, Ken)]
Head Element: (4, Ken)
Removed one element from Queue
Priority queue: []

There is one important thing that you will notice in the output. When you print the queue, its elements 
are not ordered the way you would expect. You would expect that the element returned by the next call to the 
peek() method should be at head of the queue. Note that a queue is never used to iterate over its elements. 
Rather, it is used to remove one element from it, process that element, and then remove another element. 



Chapter 12 ■ ColleCtions

624

The PriorityQueue class does not guarantee any ordering of the elements when you use an iterator. Its 
toString() method uses its iterator to give you the string representation of its elements. This is the reason 
that when we print the priority queue, its elements are not ordered according to their priority. However, 
when we use the peek() or remove() method, the correct element is peeked at or removed, which is based 
on the element’s priority. In the previous case, id and name are used to order the elements. Therefore, the 
element with the least id and name (alphabetical order) has the highest priority.

Using a Comparator in a priority queue is easy. You need to specify your Comparator when you create 
an object of the PriorityQueue class. Listing 12-18 demonstrates how to use a Comparator to have a priority 
queue for the list of ComparablePerson. It uses the alphabetical ordering of the name of a ComparablePerson 
as the criterion to determine its priority. The person whose name comes first in the alphabetical order has 
higher priority.

Listing 12-18. Using a Comparator Object in a Priority Queue

// PriorityQueueComparatorTest.java
package com.jdojo.collections;

import java.util.Queue;
import java.util.PriorityQueue;
import java.util.Comparator;

public class PriorityQueueComparatorTest {
    public static void main(String[] args) {
        Comparator<ComparablePerson> nameComparator
                = Comparator.comparing(ComparablePerson::getName);

        // Create a priority queue with a Comparator
        Queue<ComparablePerson> pq = new PriorityQueue<>(nameComparator);
        pq.add(new ComparablePerson(1, "John"));
        pq.add(new ComparablePerson(4, "Ken"));
        pq.add(new ComparablePerson(2, "Richard"));
        pq.add(new ComparablePerson(3, "Donna"));
        pq.add(new ComparablePerson(4, "Adam"));

        System.out.println("Priority queue: " + pq);

        while (pq.peek() != null) {
            System.out.println("Head Element: " + pq.peek());
            pq.remove();
            System.out.println("Removed one element from Queue");
            System.out.println("Priority queue: " + pq);
        }
    }
}

Priority queue: [(4, Adam), (3, Donna), (2, Richard), (4, Ken), (1, John)]
Head Element: (4, Adam)
Removed one element from Queue
Priority queue: [(3, Donna), (1, John), (2, Richard), (4, Ken)]
Head Element: (3, Donna)
Removed one element from Queue



Chapter 12 ■ ColleCtions

625

Priority queue: [(1, John), (4, Ken), (2, Richard)]
Head Element: (1, John)
Removed one element from Queue
Priority queue: [(4, Ken), (2, Richard)]
Head Element: (4, Ken)
Removed one element from Queue
Priority queue: [(2, Richard)]
Head Element: (2, Richard)
Removed one element from Queue
Priority queue: []

Double Ended Queues
A doubly ended queue or deque is an extended version of a queue to allow insertion and removal of 
elements from both ends (the head and the tail). An instance of the Deque<E> interface represents a doubly 
ended queue. The name Deque does not mean opposite of Queue. Rather, it means “Double ended queue”. It 
is pronounced “deck,” not “de queue.”

The Deque<E> interface extends the Queue<E> interface. It declares additional methods to facilitate all 
the operations for a queue at the head as well as at the tail. It can be used as a FIFO queue or a LIFO queue. 
You already know what a Queue is and how to use it. A Deque is just another version of a queue to represent 
different kinds of queues, not just a FIFO queue. All you have to do in this section is learn about the new 
methods that the Deque interface offers. Table 12-2 lists the new methods that are declared in the Deque 
interface to facilitate insertion, removal, and peeking at either end (head or tail) of a Deque. In the method 
names, first means head and last means tail.

Table 12-2. New Methods in Deque Interface for Insertion, Removal, and Peek Operations at Both Ends

Category Method Description

Adding an element to 
the Deque

void addFirst(E)
void addLast(E)

boolean offerFirst(E)
boolean offerLast(E)

The addXxx() methods add an element at the head 
or tail, and they throw an exception if an element 
cannot be added, such as in a full bounded Deque.
The offerXxx() methods work the same way as the 
addXxx() methods. However, they do not throw an 
exception on failure. Rather, they return false if the 
specified element cannot be added to a Deque.

Removing an element 
from the Deque

E removeFirst()
E removeLast()

E pollFirst()
E pollLast()

The removeXxx() methods retrieve and remove the 
element from the head or tail of the Deque. They 
throw an exception if the Deque is empty.
The pollXxx() methods perform the same job as the 
removeXxx() methods. However, they return null if 
the Deque is empty.

Peeking at an element 
at end of the Deque

E getFirst()
E getLast()

E peekFirst()
E peekLast()

The getXxx() methods retrieve without removing 
the element at the head or the tail of the Deque. They 
throw an exception if the Deque is empty.
The peekXxx() methods perform the same job as the 
getXxx() methods. However, they return null if the 
Deque is empty instead of throwing an exception.



Chapter 12 ■ ColleCtions

626

Since Deque inherits from Queue, a Deque can also act like a FIFO queue. Table 12-3 compares the 
methods in the Queue interface and their equivalent methods in the Deque interface.

Table 12-3. Method Comparison of the Queue and Deque Interfaces

Method in Queue Equivalent Method in Deque

add(e) addLast(e)

offer(e) offerLast(e)

remove() removeFirst()

poll() pollFirst()

element() getFirst()

peek() peekFirst()

Since, in a FIFO queue, you always add an element at the tail (or Last), the add() method in the Queue 
interface does the same thing as what the addLast() method does in the Deque interface.

You can also use a Deque as a stack (a LIFO queue) using familiar methods such as push(), pop(), and 
peek(). The push() method pushes (or adds) an element to the top of the stack that is the same as using the 
method addFirst(). The pop() method pops (or removes) the element from the top of the stack that is the 
same as calling the removeFirst() method. The peek() method retrieves, but does not remove, the element 
at the top of the stack; if the stack is empty, it returns null. Calling the peek() method is the same as calling 
the peekFirst() method. A stack needs four methods to perform its operations: isEmpty(), push(), pop(), 
and peek(). Table 12-4 lists the stack specific methods in the Deque interface and their alternate versions.

Table 12-4. Deque Methods Named Specifically to be Used with Stacks

Stack Specific Methods in Deque Equivalent Alternate Methods in Deque

isEmpty() Inherited from the Collection interface

push(E e) addFirst(E e)

pop() removeFirst()

peek() peekFirst()

Looking at the methods that you have seen so far in the Deque interface, you can say that it is a huge 
interface. A programmer can easily get confused if he does not learn this interface by breaking its methods 
down into separate categories. The Deque interface contains methods that fall into the following four 
categories:

•	 Methods that let you insert, remove, and peek elements at the head and tail of the 
Deque, as listed in Table 12-2. All these methods are sufficient to use a Deque as any 
queue you want. However, it offers some more methods with different names to 
accomplish the same thing.

•	 Methods that let you use a Deque as a FIFO queue (or simply as a Queue). They are 
listed in Table 12-3.

•	 Methods that let you use familiar method names that are used with stacks. Note that 
these methods are not performing anything new other than insertion, removal, and 
peeking. They just have different names. They are listed in Table 12-4.



Chapter 12 ■ ColleCtions

627

•	 Some utility methods that help you work with a Deque in specific situations. For 
example, its descendingIterator() method returns an Iterator that lets you iterate 
over its elements in reverse order (from tail to head). It also adds two methods called 
removeFirstOccurrence(Object o) and removeLastOccurrence(Object o) that let 
you remove the first occurrence (starting from the head and going towards the tail) 
and last occurrence (starting from the tail and going towards the head) of an object 
in the Deque, respectively. Now you can relax—there are no more new methods in the 
Deque to learn.

The ArrayDeque<E> and LinkedList<E> classes are two implementation classes for the Deque interface. 
The ArrayDeque class is backed by an array, whereas the LinkedList class is backed by a linked list. You 
should use the ArrayDeque as a Deque implementation if you are using a Deque as a LIFO queue (or a stack). 
The LinkedList implementation performs better if you use a Deque as a FIFO queue (or simply as a Queue).

Listing 12-19 demonstrates how to use a Deque as a FIFO queue. If you compare this program with the 
program in Listing 12-15, in this program you have just used Deque-specific methods to perform the same 
thing as what you accomplished with the methods of the Queue interface. Suppose a method accepts an 
argument of type Queue. If you pass a Deque to that method, your Deque will be used as a FIFO queue inside 
that method.

Listing 12-19. Using a Deque as a FIFO Queue

// DequeAsQueue.java
package com.jdojo.collections;

import java.util.Deque;
import java.util.LinkedList;
import java.util.NoSuchElementException;

public class DequeAsQueue {
    public static void main(String[] args) {
        // Create a Deque and add elements at its tail using 
        // addLast() or offerLast() method
        Deque<String> deque = new LinkedList<>();
        deque.addLast("John");
        deque.offerLast("Richard");
        deque.offerLast("Donna");
        deque.offerLast("Ken");

        System.out.println("Deque: " + deque);

        // Let’s remove elements from the Deque until it is empty 
        while (deque.peekFirst() != null) {
            System.out.println("Head Element: " + deque.peekFirst());
            deque.removeFirst();
            System.out.println("Removed one element from Deque");
            System.out.println("Deque: " + deque);
        }

        // Now, the Deque is empty. Try to call its peekFirst(), 
        // getFirst(), pollFirst() and removeFirst() methods  
        System.out.println("deque.isEmpty(): " + deque.isEmpty());



Chapter 12 ■ ColleCtions

628

        System.out.println("deque.peekFirst(): " + deque.peekFirst());
        System.out.println("deque.pollFirst(): " + deque.pollFirst());

        try {
            String str = deque.getFirst();
            System.out.println("deque.getFirst(): " + str);
        } catch (NoSuchElementException e) {
            System.out.println("deque.getFirst(): Deque is empty.");
        }

        try {
            String str = deque.removeFirst();
            System.out.println("deque.removeFirst(): " + str);
        } catch (NoSuchElementException e) {
            System.out.println("deque.removeFirst(): Deque is empty.");
        }
    }
}

Deque: [John, Richard, Donna, Ken]
Head Element: John
Removed one element from Deque
Deque: [Richard, Donna, Ken]
Head Element: Richard
Removed one element from Deque
Deque: [Donna, Ken]
Head Element: Donna
Removed one element from Deque
Deque: [Ken]
Head Element: Ken
Removed one element from Deque
Deque: []
deque.isEmpty(): true
deque.peekFirst(): null
deque.pollFirst(): null
deque.getFirst(): Deque is empty.
deque.removeFirst(): Deque is empty.

Listing 12-20 demonstrates how to use a Deque as a stack (or LIFO queue).

Listing 12-20. Using a Deque as a Stack

// DequeAsStack.java
package com.jdojo.collections;

import java.util.ArrayDeque;
import java.util.Deque;



Chapter 12 ■ ColleCtions

629

public class DequeAsStack {
    public static void main(String[] args) {
        // Create a Deque and use it as stack  
        Deque<String> deque = new ArrayDeque<>();
        deque.push("John");
        deque.push("Richard");
        deque.push("Donna");
        deque.push("Ken");

        System.out.println("Stack: " + deque);

        // Let’s remove all elements from the Deque  
        while (deque.peek() != null) {
            System.out.println("Element at top: " + deque.peek());
            System.out.println("Popped: " + deque.pop());
            System.out.println("Stack: " + deque);
        }

        System.out.println("Stack is empty: " + deque.isEmpty());
    }
}

Stack: [Ken, Donna, Richard, John]
Element at top: Ken
Popped: Ken
Stack: [Donna, Richard, John]
Element at top: Donna
Popped: Donna
Stack: [Richard, John]
Element at top: Richard
Popped: Richard
Stack: [John]
Element at top: John
Popped: John
Stack: []
Stack is empty: true

Note that even if the Deque provides all the methods that you need to use it as a stack, it does not give 
a programmer a collection type that can be truly used as a stack. If you need a stack in a method as its 
argument, you will need to declare it as a Deque type as shown:

public class MyClass {
    public void myMethod(Deque stack){
        /* This method is free to use (or misuse) stack argument
           as a FIFO even though it needs only a LIFO queue.
        */
    }
}



Chapter 12 ■ ColleCtions

630

The myMethod() is passed a Deque when it needs a stack. If you trust myMethod(), it’s fine. Otherwise, it 
can access elements of the Deque in any way the Deque interface allows. It is not limited to use only as a stack. 
The only way you can stop the user of your Deque to use it only as a stack is to roll out your own interface and 
an implementation class. The Stack class works as a stack. However, you are advised not to use the Stack 
class to work with a stack as it has the same problem that you are trying to solve.

You can create an interface named LIFOQueue with four methods: isEmpty(), push(), pop(), and 
peek(). You can create an implementation class named ArrayLIFOQueue, which implements the LIFOQueue 
interface. Your ArrayLIFOQueue class will wrap an ArrayDeque object. All of its methods will be delegated to 
ArrayDeque. And that is all. Note that by creating a new LIFOQueue interface and its implementation, you are 
diverting from the Collections framework. Your new interface and classes will be outside of the Collections 
framework. However, if you do need to implement your own version of a data structure that can be used 
strictly as a stack, you can do so.

There is another way to create a stack from a Deque. You can convert a Deque to a LIFO Queue using the 
asLifoQueue() static method of the Collections class. The method signature is as follows:

public static <T> Queue<T> asLifoQueue(Deque<T> deque)

The following snippet of code creates a stack from a Deque:

Deque<String> deque = /^ create a Deque */;

// Get a LIFO queue from Deque  
Queue<String> stack = Collections.asLifoQueue(deque); 

// Now, you can pass around stack reference, which can be used only as a LIFO queue 

Blocking Queues
You have seen the behavior of a Queue in two extreme cases:

•	 When you want to add an element to it when it is full

•	 When you want to remove an element from it when it is empty

A queue specifies two types of methods to deal with insertion, removal, and peeking in these two 
extreme cases: one type of method throws an exception whereas the other type of method returns a special 
value.

A blocking queue extends the behavior of a queue in dealing with these extreme cases. It adds two more 
sets of methods: one set of methods blocks indefinitely and another set of methods lets you specify a time 
period to block.

An instance of the BlockingQueue<E> interface represents a blocking queue. The BlockingQueue<E> 
interface inherits from the Queue<E> interface. Here are two additional features that the BlockingQueue 
interface offers:

•	 It adds two methods, put() and offer(), to let you add an element to the blocking 
queue at its tail. The put() method blocks indefinitely if the blocking queue is full 
until space becomes available in the queue. The offer() method lets you specify the 
time period to wait for space to become available in the blocking queue. It returns 
true if the specified element was added successfully; it returns false if the specified 
time period elapsed before the space became available for the new element.



Chapter 12 ■ ColleCtions

631

•	 It adds two methods, take() and poll(), to let you retrieve and remove the head 
from the blocking queue. The take() method blocks indefinitely if the blocking 
queue is empty. The poll() method lets you specify a time period to wait if the 
blocking queue is empty; it returns null if the specified time elapses before an 
element became available.

If you use methods from the Queue interface with a BlockingQueue, they would behave as if you are 
using a Queue. A BlockingQueue is designed to be thread-safe. Usually it is used in a producer/consumer-like 
situation where some threads (called producers) add elements to it and some threads (called consumers) 
remove elements from it.

A blocking queue does not allow a null element. A blocking queue can be bounded or unbounded.  
It adds another method called remainingCapacity() that returns the number of elements that can be added 
to the blocking queue without blocking. You need to be careful in basing your decision on the return value 
of this method. There may be other threads attempting to add elements to the blocking queue at the same 
time you call this method. In such cases, when you attempt to add new elements based on the return value 
of this method, your elements may not be added, even though you know that there is some space available. 
The real test as to whether an element can be added to a blocking queue or not is to attempt to add one and 
check the return value of the put() or offer() method.

There is one more thing that is related to a blocking queue: fairness. Fairness is used to handle situations 
where multiple threads are blocked to perform insertion or removal. If a blocking queue is fair, it will allow 
the longest waiting thread to perform the operation when a condition arises that allows the operation to 
proceed. If the blocking queue is not fair, the order in which the blocked threads are allowed to perform the 
operation is not specified. Specific implementations determine fairness availability.

The BlockingQueue interface and all its implementation classes are in the java.util.concurrent 
package. The following are the implementation classes for the BlockingQueue interface:

•	 ArrayBlockingQueue: It is a bounded implementation class for BlockingQueue.  
It is backed by an array. It also lets you specify the fairness of the blocking queue in 
its constructor. By default, it is not fair.

•	 LinkedBlockingQueue: It is another implementation class for BlockingQueue. It can 
be used as a bounded or unbounded blocking queue. It does not allow specifying a 
fairness rule for the blocking queue.

•	 PriorityBlockingQueue: It is an unbounded implementation class for 
BlockingQueue. It works the same way as PriorityQueue for ordering the elements 
in the blocking queue. It adds the blocking feature to PriorityQueue.

•	 SynchronousQueue: It is a special type of implementation of BlockingQueue. It does 
not have any capacity. The put operation waits for the take operation to take the 
element being put. It facilitates a kind of handshake between two threads. One 
thread tries to put an element to the blocking queue that must wait until there is a 
thread that tries to take the element. It facilitates an exchange of an object between 
two threads. You can also specify the fairness rule for the queue. For all practical 
purposes, this blocking queue is always empty. It seems to have an element only 
when there are two threads: one trying to add an element and one trying to remove 
an element. Its isEmpty() method always returns true.

•	 DelayQueue: It is another unbounded implementation class for BlockingQueue. 
It allows an element to be taken out only if a specified delay has passed for that 
element. If there are multiple elements in the blocking queue whose specified delay 
has passed, the element whose delay passed earliest will be placed at the head of the 
blocking queue.



Chapter 12 ■ ColleCtions

632

Let’s start with an example of a producer/consumer application. Listing 12-21 contains the code for 
a producer. It accepts a blocking queue and a producer name in its constructor. It generates a string and 
adds it to the blocking queue after waiting for a random number of seconds between 1 and 5. If the blocking 
queue is full, it will wait until the space is available in the queue.

Listing 12-21. The Producer Class for a Blocking Queue

// BQProducer.java
package com.jdojo.collections;

import java.util.concurrent.BlockingQueue;
import java.util.Random;

public class BQProducer extends Thread {
    private final BlockingQueue<String> queue;
    private final String name;
    private int nextNumber = 1;
    private final Random random = new Random();

    public BQProducer(BlockingQueue<String> queue, String name) {
        this.queue = queue;
        this.name = name;
    }

    @Override
    public void run() {
        while (true) {
            try {
                String str = name + "-" + nextNumber;
                System.out.println(name + " is trying to add: "
                        + str + ". Remaining capacity: "
                        + queue.remainingCapacity());
                this.queue.put(str);
                nextNumber++;
                System.out.println(name + " added: " + str);

                // Sleep between 1 and 5 seconds  
                int sleepTime = (random.nextInt(5) + 1) * 1000;
                Thread.sleep(sleepTime);
            } catch (InterruptedException e) {
                e.printStackTrace();
                break;
            }
        }
    }
}

Listing 12-22 contains code for a consumer. It does the opposite of what a producer does. It removes 
elements from the blocking queue. If the blocking queue is empty, it waits indefinitely for an element to 
become available. Both the producer and consumer run in an infinite loop.



Chapter 12 ■ ColleCtions

633

Listing 12-22. The Consumer Class for a Blocking Queue

// BQConsumer.java
package com.jdojo.collections;

import java.util.concurrent.BlockingQueue;
import java.util.Random;

public class BQConsumer extends Thread {
    private final BlockingQueue<String> queue;
    private final String name;
    private final Random random = new Random();

    public BQConsumer(BlockingQueue<String> queue, String name) {
        this.queue = queue;
        this.name = name;
    }

    @Override
    public void run() {
        while (true) {
            try {
                System.out.println(name + " is trying to take an element. "
                        + "Remaining capacity: "
                        + queue.remainingCapacity());

                String str = this.queue.take();
                System.out.println(name + " took: " + str);

                // Sleep between 1 and 5 seconds  
                int sleepTime = (random.nextInt(5) + 1) * 1000;
                Thread.sleep(sleepTime);
            } catch (InterruptedException e) {
                e.printStackTrace();
                break;
            }
        }
    }
}

Listing 12-23 creates a bounded and fair blocking queue. It creates one producer and two consumers. 
Each producer and consumer is created in a separate thread. Partial output has been shown. You will have 
to stop the application manually. You may experiment with adding more producers or consumers and 
adjusting their sleep times. Note that the messages printed in the output may not appear in the order that 
makes sense; this is typical in a multi-threaded program. A thread performs an action and it is preempted 
before it can print a message stating that it did perform the action. Meanwhile, you will see messages from 
another thread.



Chapter 12 ■ ColleCtions

634

Listing 12-23. A Class to Run the Producer/Consumer Program

// BQProducerConsumerTest.java
package com.jdojo.collections;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ArrayBlockingQueue;

public class BQProducerConsumerTest {
    public static void main(String[] args) {
        int capacity = 5;
        boolean fair = true;
        BlockingQueue<String> queue = new ArrayBlockingQueue<>(capacity, fair);

        // Create one producer and two consumer and let them produce 
        // and consume indefinitely  
        new BQProducer(queue, "Producer1").start();
        new BQConsumer(queue, "Consumer1").start();
        new BQConsumer(queue, "Consumer2").start();
    }
}

Consumer2 is trying to take an element. Remaining capacity: 5
Consumer1 is trying to take an element. Remaining capacity: 5
Producer1 is trying to add: Producer1-1. Remaining capacity: 5
Consumer2 took: Producer1-1
Producer1 added: Producer1-1
Consumer2 is trying to take an element. Remaining capacity: 5
Producer1 is trying to add: Producer1-2. Remaining capacity: 5
Producer1 added: Producer1-2
Consumer1 took: Producer1-2
Consumer1 is trying to take an element. Remaining capacity: 5
...

I do not discuss an example of PriorityBlockingQueue. You can use the PriorityBlockingQueue 
implementation class to create the blocking queue in Listing 12-23 and the same example will work. Note 
that a PriorityBlockingQueue is an unbounded queue. You may also want to use a different type of element 
(other than a string), which will emulate the priority of elements in a better way. Refer to Listing 12-17 for an 
example of a simple non-blocking priority queue.

Delay Queues
Let’s see an example of a DelayQueue. A DelayQueue is one of the implementation classes for the 
BlockingQueue interface. It lets you implement a queue whose elements must stay in a queue for a certain 
amount of time (known as a delay). How does the DelayQueue know about the amount of time an element 
has to be kept in the queue? It uses an interface called Delayed to know the time an element must stay in the 
queue. The interface is in the java.util.concurrent package. Its declaration is as follows:

public interface Delayed extends Comparable<Delayed> {
    long getDelay(TimeUnit timeUnit);
}



Chapter 12 ■ ColleCtions

635

It extends the Comparable interface whose compareTo() method accepts a Delayed object. The 
DelayQueue calls the getDelay() method of each element to know how long that element must be kept in 
the queue before it can be taken out. The DelayQueue will pass a TimeUnit to this method. Your job is to 
convert the delay time of an element to the TimeUnit being passed and return the value. For example, if you 
want to keep an element in the queue for 10 seconds, your getDelay(TimeUnit timeUnit) method will be 
implemented as follows:

public class DelayClass implement Delayed {
    public long getDelay(TimeUnit timeUnit){
        long delay = timeUnit.convert(10, TimeUnit.SECONDS);
        return delay;
    }
}

The element stays in the DelayQueue as long as the delay returned from the getDelay() method is 
a positive number. When the getDelay() method returns a zero or a negative number, it is time for the 
element to get out of the queue. However, there must be someone to take the element out of the queue when 
it is ready to get out. Typically, you would call the take() method to take an element out of the queue. There 
may be many elements that are ready (whose delay time has expired) to come out of the queue. Which one 
of the expired elements will be placed as the head of the queue? The queue determines this by calling the 
compareTo() method of the elements. This method determines the priority of an expired element to be 
removed from the queue with respect to the other expired elements. Typically, you would decide that the 
element that expired most recently would be the first one to be removed. However, it is up to you to decide 
which expired element will be ready to be removed next. You may decide just the opposite, such as the 
element that has expired earliest should be removed first.

Listing 12-24 contains code for a DelayedJob class, which implements the Delayed interface. Its 
constructor takes a job name and a scheduled time for the job as arguments. The scheduled time could be in 
the past, the present, or in the future. It is specified as a number, which represents the milliseconds passed 
between the specified time and midnight, January 1, 1970 UTC. Its getDelay() method returns the delay 
time for this job. Its compareTo() method uses the getDelay() method, so that the earliest expired element 
will be removed first. Its toString() method simply prints its job name and scheduled time.

Listing 12-24. A DelayedJob Class That Implements the Delayed Interface

// DelayedJob.java
package com.jdojo.collections;

import java.time.Instant;
import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;
import static java.util.concurrent.TimeUnit.MILLISECONDS;
import static java.time.temporal.ChronoUnit.MILLIS;

public class DelayedJob implements Delayed {
    private final Instant scheduledTime;
    String jobName;

    public DelayedJob(String jobName, Instant scheduledTime) {
        this.scheduledTime = scheduledTime;
        this.jobName = jobName;
    }



Chapter 12 ■ ColleCtions

636

    @Override
    public long getDelay(TimeUnit unit) {
        // Positive delay means it should stay in queue. Zero or negative delay 
        // means that it ready to be removed from the queue.
        long delay = MILLIS.between(Instant.now(), scheduledTime);

        // Convert the delay in millis into the specified unit
        long returnValue = unit.convert(delay, MILLISECONDS);
        return returnValue;
    }

    @Override
    public int compareTo(Delayed job) {
        long currentJobDelay = this.getDelay(MILLISECONDS);
        long jobDelay = job.getDelay(MILLISECONDS);

        int diff = 0;
        if (currentJobDelay > jobDelay) {
            diff = 1;
        } else if (currentJobDelay < jobDelay) {
            diff = -1;
        }
        return diff;
    }

    @Override
    public String toString() {
        String str = "(" + this.jobName + ", " + "Scheduled Time: "
                + this.scheduledTime + ")";
        return str;
    }
}

The program in Listing 12-25 shows how to use the DelayedJob objects as elements in a DelayQueue. It 
adds three jobs (“Print Data”, “Populate Data”, and “Balance Data”) to the queue that are scheduled to run 
nine, three, and six seconds after the current time on your computer, respectively. Note the sequence of 
adding these jobs in the queue. I have not added the job to be run first as the first element. It is the job of the 
DelayQueue to arrange the elements in its queue based on their delay time returned from their getDelay() 
method. When you run this program, there will be a delay of about three seconds because no elements will 
be expired and the take() method on the queue will be blocked. When elements start expiring, you will 
see them getting removed one by one by the take() method in the while loop. You may get different output 
when you run the program.

Listing 12-25. Using a DelayQueue with Instances of DelayedJob as Its Element

// DelayQueueTest.java
package com.jdojo.collections;

import java.time.Instant;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.DelayQueue;



Chapter 12 ■ ColleCtions

637

public class DelayQueueTest {
    public static void main(String[] args) throws InterruptedException {
        BlockingQueue<DelayedJob> queue = new DelayQueue<>();
        Instant now = Instant.now();

        // Create three delayed job and add them to the queue
        // Jobs should run in a sequence as
        // 1. Populate Data (After 3 seeconds)
        // 2. Balance Data (After 6 seconds)
        // 3. Print Data (After 9 seconds)        
        queue.put(new DelayedJob("Print Data", now.plusSeconds(9)));
        queue.put(new DelayedJob("Populate Data", now.plusSeconds(3)));
        queue.put(new DelayedJob("Balance Data", now.plusSeconds(6)));

        while (queue.size() > 0) {
            System.out.println("Waiting to take a job from the queue...");
            DelayedJob job = queue.take();
            System.out.println("Took Job: " + job);
        }

        System.out.println("Finished running all jobs.");
    }
}

Waiting to take a job from the queue...
Took Job: (Populate Data, Scheduled Time: 2017-11-13T03:36:23.197963600Z)
Waiting to take a job from the queue...
Took Job: (Balance Data, Scheduled Time: 2017-11-13T03:36:26.197963600Z)
Waiting to take a job from the queue...
Took Job: (Print Data, Scheduled Time: 2017-11-13T03:36:29.197963600Z)
Finished running all jobs.

Transfer Queues
The transfer queue extends the functionality of a blocking queue. An instance of the TransferQueue<E> 
interface represents a transfer queue. In a TransferQueue, a producer will wait to hand off an element to 
a consumer. This is a useful feature in a message passing application, where a producer makes sure that 
its message has been consumed by a consumer. A producer hands off an element to a consumer using the 
transfer(E element) method of the TransferQueue<E>. When a producer invokes this method, it waits 
until a consumer takes its element. If the TransferQueue has some elements, all its elements must be 
consumed before the element added by the transfer() method is consumed. The tryTransfer() method 
provides a non-blocking and a timeout version of the method, which lets a producer transfer an element 
immediately if a consumer is already waiting or has waited a specified amount of time.

The TransferQueue has two more methods to get more information about the waiting 
consumers. The getWaitingConsumerCount() method returns the number of waiting consumers. The 
hasWaitingConsumer() method returns true if there is a waiting consumer; otherwise, it returns false.

The LinkedTransferQueue<E> is an implementation class for the TransferQueue<E> interface. It 
provides an unbounded TransferQueue. It is based on FIFO.



Chapter 12 ■ ColleCtions

638

Listing 12-26 contains code for a TQProducer class whose instance represents a producer for a 
TransferQueue. The producer sleeps for a random number of seconds between 1 and 5. It generates an 
integer. If the integer is even, it puts it in the queue. If the integer is odd, it tries to hand it off to a consumer 
using the transfer() method. Note that if the TransferQueue has some elements, the consumer will 
consume those elements first, before it consumes the element that a producer is trying to hand off using the 
transfer() method.

Listing 12-26. A TQProducer Class That Represents a Producer for a TransferQueue

// TQProducer.java
package com.jdojo.collections;

import java.util.Random;
import java.util.concurrent.TransferQueue;
import java.util.concurrent.atomic.AtomicInteger;

public class TQProducer extends Thread {
    private final String name;
    private final TransferQueue<Integer> tQueue;
    private final AtomicInteger sequence;
    private Random rand = new Random();

    public TQProducer(String name, TransferQueue<Integer> tQueue, AtomicInteger sequence) {
        this.name = name;
        this.tQueue = tQueue;
        this.sequence = sequence;
    }

    @Override
    public void run() {
        while (true) {
            try {
                // Sleep for 1 to 5 random number of seconds  
                int sleepTime = rand.nextInt(5) + 1;
                Thread.sleep(sleepTime * 1000);

                // Generate a sequence number  
                int nextNum = this.sequence.incrementAndGet();

                // An even number is enqueued. An odd number is handed off 
                // to a consumer  
                if (nextNum % 2 == 0) {
                    System.out.printf("%s: Enqueuing: %d%n", name, nextNum);
                    tQueue.put(nextNum); // Enqueue  
                } else {
                    System.out.printf("%s: Handing off: %d%n", name, nextNum);
                    System.out.printf("%s: has a waiting consumer: %b%n",
                            name, tQueue.hasWaitingConsumer());
                    tQueue.transfer(nextNum); // A hand off  
                }



Chapter 12 ■ ColleCtions

639

            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

Listing 12-27 contains the code for a consumer that consumes elements from a TransferQueue. It sleeps 
for one to five seconds randomly and consumes an element from the TransferQueue.

Listing 12-27. A TQConsumer Class That Represents a Consumer for a TransferQueue

// TQConsumer.java
package com.jdojo.collections;

import java.util.Random;
import java.util.concurrent.TransferQueue;

public class TQConsumer extends Thread {
    private final String name;
    private final TransferQueue<Integer> tQueue;
    private final Random rand = new Random();

    public TQConsumer(String name, TransferQueue<Integer> tQueue) {
        this.name = name;
        this.tQueue = tQueue;
    }

    @Override
    public void run() {
        while (true) {
            try {
                // Sleep for 1 to 5 random number of seconds  
                int sleepTime = rand.nextInt(5) + 1;
                Thread.sleep(sleepTime * 1000);

                int item = tQueue.take();
                System.out.printf("%s removed: %d%n", name, item);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

Listing 12-28 contains the code to test a TransferQueue. You may get different output when you run the 
program



Chapter 12 ■ ColleCtions

640

Listing 12-28. A Class to Test a TransferQueue

// TQProducerConsumerTest.java
package com.jdojo.collections;

import java.util.concurrent.LinkedTransferQueue;
import java.util.concurrent.TransferQueue;
import java.util.concurrent.atomic.AtomicInteger;

public class TQProducerConsumerTest {
    public static void main(String[] args) {
        final TransferQueue<Integer> tQueue = new LinkedTransferQueue<>();
        final AtomicInteger sequence = new AtomicInteger();

        // Initialize transfer queue with five items  
        for (int i = 0; i < 5; i++) {
            try {
                tQueue.put(sequence.incrementAndGet());
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        System.out.println("Initial queue: " + tQueue);

        // Create and start a producer and a consumer  
        new TQProducer("Producer-1", tQueue, sequence).start();
        new TQConsumer("Consumer-1", tQueue).start();
    }
}

Initial queue: [1, 2, 3, 4, 5]
Producer-1: Enqueuing: 6
Consumer-1 removed: 1
Consumer-1 removed: 2
Producer-1: Handing off: 7
Producer-1: has a waiting consumer: false
Consumer-1 removed: 3
Consumer-1 removed: 4
Consumer-1 removed: 5
Consumer-1 removed: 6
Consumer-1 removed: 7
Producer-1: Enqueuing: 8
Consumer-1 removed: 8
...

The program creates a TransferQueue and adds five elements to it. It creates and starts a producer 
and a consumer. Its output needs a little explanation. You added five elements initially to make sure the 
consumer will have some elements to consume from the TransferQueue when the producer tries to transfer 
an element. The producer got the first go. It puts the integer 6 into the queue. The consumer removed 
the integer 1 from the queue. At this time, the producer tried to hand off the integer 7 to the consumer, 



Chapter 12 ■ ColleCtions

641

leaving five elements (2, 3, 4, 5, and 6) still queued in the TransferQueue. The consumer must remove all 
these elements from the TransferQueue, before it will accept the transfer request for the integer 7 from the 
producer. This is evident from the output. The consumer removes the elements 2, 3, 4, 5, and 6, and then 
the element 7. Both the producer and the consumer run in infinite loops. You need to stop the program 
manually.

Blocking Doubly Ended Queues
A blocking, doubly ended queue provides the functionality of a doubly ended queue and a blocking queue. An 
instance of the BlockingDeque<E> interface represents a blocking, doubly ended queue. It inherits from the 
Deque<E> and BlockingQueue<E> interfaces. It adds eight more methods to add and remove elements from 
the head and the tail. These methods block indefinitely or for a specified amount of time, as in the case of a 
BlockingQueue. The new methods are putXxx(), offerXxx(), takeXxx(), and pollXxx(), where Xxx is First or 
Last. The method with the suffix First is used to put or take an element from the head of the Deque, whereas the 
method with the suffix Last is used to put or take an element from its tail. Refer to the “Double Ended Queues” 
and “Blocking Queue” sections described earlier in this chapter for more details on using these methods.

The LinkedBlockingDeque<E> class is an implementation class for the BlockingDeque<E> interface.  
It supports bounded as well as unbounded blocking deques.

Working with Maps
A map represents a type of collection that is different from the collections that you have seen so far. It 
contains key-value mappings. It is easy to visualize a map as a table with two columns. The first column of 
the table contains keys; the second column contains the values associated with the keys. Table 12-5 shows 
person names as keys and their phone numbers as values. You can think of this table representing a map 
that contains mapping between names and phone numbers. Sometimes a map is also known as a dictionary. 
In a dictionary, you have a word and you look up its meanings. Similarly, in a map, you have a key and you 
look up its value.

Table 12-5. A Table with Two Columns, Key and Value. 
Each Row Contains a Key-Value Pair.

Key Value

John (342)113-9878

Richard (245)890-9045

Donna (205)678-9823

Ken (205)678-9823

If you still have problem visualizing a map, you can think of it as a collection in which each element 
represents a key-value pair as <key,value>. A <key,value> pair is also known as an entry in the map. The 
key and the value must be reference types. You cannot use primitive types (int, double, etc.) for either keys 
or values in a map.

A map is represented by an instance of the Map<K,V> interface, where the type parameters K and V are 
the types of keys and values, respectively. The Map interface is not inherited from the Collection interface. 
A Map does not allow any duplicate keys. Each key is mapped to exactly one value. In other words, each 
key in a Map has exactly one value. Values do not have to be unique. That is, two keys may map to the same 
value. A Map allows for at most one null value as its key and multiple null values as its values. However, an 
implementation class may restrict null as a value in a Map.



Chapter 12 ■ ColleCtions

642

The methods in the Map interface may be classified in the following four categories depending on the 
operations they perform:

•	 Methods for basic operations

•	 Methods for bulk operations

•	 Methods for view operations

•	 Methods for comparison operations

The methods in the basic operations category let you perform basic operations on a Map, for example, 
putting an entry into a Map, getting the value for a specified key, getting the number of entries, removing an 
entry, checking if the Map is empty, etc. Examples of methods in this category are as follows:

•	 int size()

•	 boolean isEmpty()

•	 boolean containsKey(Object key)

•	 boolean containsValue(Object value)

•	 V get(Object key)

•	 V getOrDefault(Object key, V defaultValue)

•	 V put(K key, V value)

•	 V putIfAbsent(K key, V value)

•	 V remove(Object key)

•	 boolean remove(Object key, Object value)

•	 boolean replace(K key, V oldValue, V newValue)

The methods in the bulk operations category let you perform bulk operations on a Map, such as copying 
entries to a Map from another Map and removing all entries from the Map. Examples of methods in this 
category are as follows:

•	 void clear()

•	 void putAll(Map<? extends K, ? extends V> m)

•	 void replaceAll(BiFunction<? super K,? super V,? extends V> function)

The view operations category contains three methods. Each returns a different view of the Map. You 
can view all keys in a Map<K,V> as a Set<K>, all values as a Collection<V>, and all <key,value> pairs as a 
Set<Map.Entry<K,V>>. Note that all keys and all <key,value> pairs are always unique in a Map and that is the 
reason why you get their Set views. Since a Map may contain duplicate values, you get a Collection view of 
its values. Examples of methods in this category are as follows:

•	 Set<K> keySet()

•	 Collection<V> values()

•	 Set<Map.Entry<K,V>> entrySet()



Chapter 12 ■ ColleCtions

643

The comparison operations methods deal with comparing two Maps for equality. Examples of methods 
in this category are as follows:

•	 boolean equals(Object o)

•	 int hashCode()

The HashMap<K,V>, LinkedHashMap<K,V>, and WeakHashMap<K,V> are three of the available 
implementation classes for the Map<K,V> interface.

The HashMap allows one null value as a key and multiple null values as the values. The following 
snippet of code demonstrates how to create and use a Map. A HashMap does not guarantee any specific 
iteration order of entries in the Map.

// Create a map using HashMap as the implementation class  
Map<String, String> map = new HashMap<>();

// Put an entry to the map - "John" as the key and "(342)113-9878" as the value  
map.put("John", "(342)113-9878");

The LinkedHashMap is another implementation class for the Map interface. It stores entries in the Map 
using a doubly linked list. It defines the iteration ordering as the insertion order of the entries. If you want to 
iterate over entries in a Map in its insertion order, you need to use LinkedHashMap instead of HashMap as the 
implementation class.

Listing 12-29 demonstrates how to use a Map. Note that the methods remove() and get() return the 
value of a key. If the key does not exist in the Map, they return null. You must use the containsKey() method 
to check if a key exists in a Map or use the getOrDefault() method that lets you specify the default value in 
case the key does not exist in the map. The toString() method returns a well-formatted string for all entries 
in the Map. It places all entries inside braces ({}). Each entry is formatted in the key=value format. A comma 
separates two entries. The toString() method of the Map returns a string like {key1=value1, key2=value2, 
key3=value3 ...}.

Listing 12-29. Using a Map

// MapTest.java
package com.jdojo.collections;

import java.util.HashMap;
import java.util.Map;

public class MapTest {
    public static void main(String[] args) {
        // Create a map and add some key-value pairs
        Map<String, String> map = new HashMap<>();
        map.put("John", "(342)113-9878");
        map.put("Richard", "(245)890-9045");
        map.put("Donna", "(205)678-9823");
        map.put("Ken", "(205)678-9823");

        // Print the details
        printDetails(map);

        // Remove all entries from the map  
        map.clear();



Chapter 12 ■ ColleCtions

644

        System.out.printf("%nRemoved all entries from the map.%n%n");

        // Print the details
        printDetails(map);
    }

    public static void printDetails(Map<String, String> map) {
        // Get the value for the "Donna" key
        String donnaPhone = map.get("Donna");

        // Print details
        System.out.println("Map: " + map);
        System.out.println("Map Size: " + map.size());
        System.out.println("Map is empty: " + map.isEmpty());
        System.out.println("Map contains Donna key: " + map.containsKey("Donna"));
        System.out.println("Donna Phone: " + donnaPhone);
        System.out.println("Donna key is removed: " + map.remove("Donna"));
    }
}

Map: {Donna=(205)678-9823, Ken=(205)678-9823, John=(342)113-9878, Richard=(245)890-9045}
Map Size: 4
Map is empty: false
Map contains Donna key: true
Donna Phone: (205)678-9823
Donna key is removed: (205)678-9823

Removed all entries from the map.

Map: {}
Map Size: 0
Map is empty: true
Map contains Donna key: false
Donna Phone: null
Donna key is removed: null

The WeakHashMap class is another implementation for the Map interface. As the name of the class 
implies, it contains weak keys. When there is no reference to the key except in the map, keys are candidates 
for garbage collection. If a key is garbage collected, its associated entry is removed from the Map. You use a 
WeakHashMap when you want to maintain a cache of key-value pairs and you do not mind if your key-value 
pairs are removed from the Map by the garbage collector. The WeakHashMap allows a null key and multiple 
null values. Refer to Chapter 11 for a complete example of using the WeakHashMap class.

Sometimes you want to iterate over keys, values, or entries of a Map. The keySet(), values(), and 
entrySet() methods of a map return a Set of keys, a Collection of values, and a Set of entries, respectively. 
Iterating over elements of a Set or a Collection is the same as described in the “Traversing Elements in 
Collections” section. The following snippet of code shows how to print all keys of a map:

Map<String,String> map = new HashMap<>();
map.put("John", "(342)113-9878");
map.put("Richard", "(245)890-9045");

http://dx.doi.org/10.1007/978-1-4842-3348-1_11


Chapter 12 ■ ColleCtions

645

map.put("Donna", "(205)678-9823");
map.put("Ken", "(205)678-9823");

// Get the set of keys
Set<String> keys = map.keySet();

// Print all keys using the forEach() method. 
// You can also use a for-each loop, an iterator, etc. to do the same.
keys.forEach(System.out::println);

Donna
Ken
John
Richard

Each key-value pair in a map is called an entry. An entry is represented by an instance of the Map.
Entry<K,V> interface. Map.Entry<K,V> is a nested static interface of the Map<K,V> interface. It has three 
commonly used methods called getKey(), getValue(), and setValue(), which returns the key of the entry, 
returns the value of the entry, and sets a new value in the entry, respectively. A typical iteration over an entry 
set of a Map is written as follows:

Map<String, String> map = new HashMap<>();
map.put("John", "(342)113-9878");
map.put("Richard", "(245)890-9045");
map.put("Donna", "(205)678-9823");
map.put("Ken", "(205)678-9823");

// Get the entry Set 
Set<Map.Entry<String,String>> entries = map.entrySet();

// Print all key-value pairs using the forEach() method of the Collection interface.
// You can use a for-each loop, an iterator, etc. to do the same.
entries.forEach((Map.Entry<String,String> entry) -> {
    String key = entry.getKey();
    String value = entry.getValue();
    System.out.println("key=" + key + ", value=" + value);            
});

key=Donna, value=(205)678-9823
key=Ken, value=(205)678-9823
key=John, value=(342)113-9878
key=Richard, value=(245)890-9045

Java 8 added a forEach(BiConsumer<? super K,? super V> action) method to the Map<K,V> 
interface that lets you iterate over all entries in the map in a cleaner way. The method takes a BiConsumer 
instance whose first argument is the key and second argument is the value for the current entry in the map. 
You can rewrite the previous snippet of code as follows:

Map<String, String> map = new HashMap<>();
map.put("John", "(342)113-9878");
map.put("Richard", "(245)890-9045");



Chapter 12 ■ ColleCtions

646

map.put("Donna", "(205)678-9823");
map.put("Ken", "(205)678-9823");

// Use the forEach() method of the Map interface
map.forEach((String key, String value) -> {            
    System.out.println("key=" + key + ", value=" + value);            
});

key=Donna, value=(205)678-9823
key=Ken, value=(205)678-9823
key=John, value=(342)113-9878
key=Richard, value=(245)890-9045

Listing 12-30 demonstrates how to get three different views of a Map and iterate over the elements in 
those views.

Listing 12-30. Using Keys, Values, and Entries Views of a Map

// MapViews.java
package com.jdojo.collections;

import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.Collection;

public class MapViews {
    public static void main(String[] args) {
        Map<String, String> map = new HashMap<>();
        map.put("John", "(342)113-9878");
        map.put("Richard", "(245)890-9045");
        map.put("Donna", "(205)678-9823");
        map.put("Ken", "(205)678-9823");

        System.out.println("Map: " + map.toString());

        // Print keys, values, and entries in the map
        listKeys(map);
        listValues(map);
        listEntries(map);
    }

    public static void listKeys(Map<String,String> map) {
        System.out.println("Key Set:");
        Set<String> keys = map.keySet();
        keys.forEach(System.out::println);
        System.out.println();
    }

    public static void listValues(Map<String,String> map) {
        System.out.println("Values Collection:");
        Collection<String> values = map.values();



Chapter 12 ■ ColleCtions

647

        values.forEach(System.out::println);
        System.out.println();
    }

    public static void listEntries(Map<String,String> map) {
        System.out.println("Entry Set:");

        // Get the entry Set 
        Set<Map.Entry<String, String>> entries = map.entrySet();
        entries.forEach((Map.Entry<String, String> entry) -> {            
            String key = entry.getKey();
            String value = entry.getValue();
            System.out.println("key=" + key + ", value=" + value);
        });
    }
}

Map: {Donna=(205)678-9823, Ken=(205)678-9823, John=(342)113-9878, Richard=(245)890-9045}
Key Set:
Donna
Ken
John
Richard

Values Collection:
(205)678-9823
(205)678-9823
(342)113-9878
(245)890-9045

Entry Set:
key=Donna, value=(205)678-9823
key=Ken, value=(205)678-9823
key=John, value=(342)113-9878
key=Richard, value=(245)890-9045

Java 9 added an overloaded of() static factory method to the Map<K,V> interface that provides a 
simple and compact way to create immutable maps. The methods’ implementations are fine-tuned for 
performance. The following are 11 versions of the of() method that let you create an immutable Map of zero 
to ten key-value entries:

•	 static <K,V> Map<K,V> of()

•	 static <K,V> Map<K,V> of(K k1, V v1)

•	 static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2)

•	 static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3)

•	 static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4)

•	 static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, 
K k5, V v5)



Chapter 12 ■ ColleCtions

648

•	 static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, 
K k5, V v5, K k6, V v6)

•	 static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, 
K k5, V v5, K k6, V v6, K k7, V v7)

•	 static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, 
K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8)

•	 static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, 
K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8, K k9, V v9)

•	 static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4,  
V v4, K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8, K k9, V v9, K k10, 
V v10)

Note the positions of the arguments in the of() method. The first and the second arguments are the key 
and the value of the first key-value entry in the map, respectively; the third and the fourth arguments are the 
key and the value of the second key-value entry in the map, respectively and so on. The following snippet of 
code shows how to create maps using the of() method:

// An empty, immutable Map
Map<Integer, String> emptyMap = Map.of();

// A singleton, unmodifiable Map
Map<String, String> singletonMap = Map.of("Ken", "(205)678-9823");

// A immutable Map with two entries
Map<Integer, String> luckyNumbers = Map.of(1, "One", 2, "Two");

To create an immutable Map with an arbitrary number of entries, Java 9 provided a static method named 
ofEntries() in the Map interface, which has the following signature:

<K,V> Map<K,V> ofEntries(Map.Entry<? extends K,? extends V>... entries)

To use the ofEntries() method, you need to box each map entry in a Map.Entry instance. Java 9 
provides a convenience entry() static method in the Map interface to create instances of Map.Entry. The 
signature of the entry() method is:

<K,V> Map.Entry<K,V> entry(K k, V v)

To keep the expression readable and compact, you need to use a static import for the Map.entry 
method and use a statement like the following to create an immutable Map with an arbitrary number of 
entries:

import java.util.Map;
import static java.util.Map.entry;

// ...

// Use the Map.ofEntries() and Map.entry() methods to create an immutable Map
Map<Integer, String> numberToWord = Map.ofEntries(entry(1, "One"), 
                                                  entry(2, "Two"), 
                                                  entry(3, "Three"));



Chapter 12 ■ ColleCtions

649

The returned maps from the of() and ofEntries() methods of the Map interface do not allow null in 
keys or values. A NullPointerException is thrown if a key or value in the map is null. They are serializable 
if all keys and values are serializable. Their implementation classes are optimized and there is no guarantee 
about the implementation class of the returned Map. That is, you should not make any assumptions about 
the implementation classes of the returned maps from these methods.

Listing 12-31 contains a complete program that shows how to use the new of(), ofEntries(), and 
entry() static methods of the Map interface to create immutable maps. You may get different output for 
maps, which will contain the same elements in a different order.

Listing 12-31. Using the of(), ofEntries(), and entry() static Methods of the Map Interface

// MapFactoryMethodTest.java
package com.jdojo.collections;

import java.util.Map;
import static java.util.Map.entry;

public class MapFactoryMethodTest {
    public static void main(String[] args) {
        // Create a few unmodifiable maps
        Map<Integer, String> emptyMap = Map.of();
        Map<Integer, String> luckyNumber = Map.of(19, "Nineteen");
        Map<Integer, String> numberToWord = Map.of(1, "One", 2, "Two", 3, "Three");

        Map<String, String> days = Map.ofEntries(
                entry("Mon", "Monday"),
                entry("Tue", "Tuesday"),
                entry("Wed", "Wednesday"),
                entry("Thu", "Thursday"),
                entry("Fri", "Friday"),
                entry("Sat", "Saturday"),
                entry("Sun", "Sunday"));

        System.out.println("emptyMap = " + emptyMap);
        System.out.println("singletonMap = " + luckyNumber);
        System.out.println("numberToWord = " + numberToWord);
        System.out.println("days = " + days);

        try {
            // Try using a null value
            Map<Integer, String> map = Map.of(1, null);
        } catch (NullPointerException e) {
            System.out.println("Nulls not allowed in Map.of().");
        }

        try {
            // Try using duplicate keys
            Map<Integer, String> map = Map.of(1, "One", 1, "OneAgain");
        } catch (IllegalArgumentException e) {
            System.out.println(e.getMessage());
        }
    }
}



Chapter 12 ■ ColleCtions

650

emptyMap = {}
singletonMap = {19=Nineteen}
numberToWord = {1=One, 3=Three, 2=Two}
days = {Tue=Tuesday, Wed=Wednesday, Mon=Monday, Sun=Sunday, Sat=Saturday, Thu=Thursday, 
Fri=Friday}
Nulls not allowed in Map.of().
duplicate key: 1

Sorted Maps
A sorted map stores entries in a map in an ordered way. It sorts the map entries on keys based on either 
natural sort order or a custom sort order. The natural sort order is defined by the Comparable interface of the 
keys. If the keys do not implement the Comparable interface, you must use a Comparator to sort the entries. 
If the keys implement the Comparable interface and you use a Comparator, the Comparator is used to sort the 
keys.

An instance of the SortedMap<K,V> interface represented a sorted map. The SortedMap<K,V> interface 
inherits from the Map<K,V> interface. A SortedMap is to a Map what a SortedSet is to a Set.

The SortedMap interface contains methods that let you take advantage of the sorted keys in the map. It 
has methods that let you get the first and the last key or a sub-map based on a criteria, etc. Those methods 
are as follows:

•	 Comparator<? super K> comparator(): It returns the Comparator used for 
custom sorting of the keys in the SortedMap. If you have not used a Comparator, it 
returns null and natural ordering will be used based on the implementation of the 
Comparable interface for the keys.

•	 K firstKey(): It returns the key of the first entry in the SortedMap. If the SortedMap 
is empty, it throws a NoSuchElementException.

•	 SortedMap<K, V> headMap(K toKey): It returns a view of the SortedMap whose 
entries will have keys less than the specified toKey. If you add a new entry to the 
view, its key must be less than the specified toKey. Otherwise, it will throw an 
exception. The view is backed by the original SortedMap.

•	 K lastKey(): It returns the key of the last entry in the SortedMap. If the SortedMap is 
empty, it throws a NoSuchElementException.

•	 SortedMap<K, V> subMap(K fromKey, K toKey): It returns a view of the SortedMap 
whose entries will have keys ranging from the specified fromKey (inclusive) and 
toKey (exclusive). The original SortedMap backs the partial view of the SortedMap. 
Any changes made to either map will be reflected in both. You can put new entries 
in the sub-map whose keys must fall in the range fromKey (inclusive) and toKey 
(Exclusive).

•	 SortedMap<K, V> tailMap(K fromKey): It returns a view of the SortedMap whose 
entries will have keys equal to or greater than the specified fromKey. If you add a 
new entry to the view, its key must be equal to or greater than the specified fromKey. 
Otherwise, it will throw an exception. The original SortedMap backs the tail view.

The TreeMap<K,V> class is the implementation class for the SortedMap<K.V> interface. For basic 
operations, you work with a SortedMap the same way as you work with a Map. Listing 12-32 demonstrates 
how to use a SortedMap.



Chapter 12 ■ ColleCtions

651

Listing 12-32. Using a SortedMap

// SortedMapTest.java
package com.jdojo.collections;

import java.util.SortedMap;
import java.util.TreeMap;

public class SortedMapTest {
    public static void main(String[] args) {
        SortedMap<String, String> sMap = new TreeMap<>();
        sMap.put("John", "(342)113-9878");
        sMap.put("Richard", "(245)890-9045");
        sMap.put("Donna", "(205)678-9823");
        sMap.put("Ken", "(205)678-9823");

        System.out.println("Sorted Map: " + sMap);

        // Get a sub map from Donna (inclusive) to Ken(exclusive)  
        SortedMap<String, String> subMap = sMap.subMap("Donna", "Ken");
        System.out.println("Sorted Submap from Donna to Ken(exclusive): " + subMap);

        // Get the first and last keys  
        String firstKey = sMap.firstKey();
        String lastKey = sMap.lastKey();
        System.out.println("First Key: " + firstKey);
        System.out.println("Last key: " + lastKey);
    }
}

Sorted Map: {Donna=(205)678-9823, John=(342)113-9878, Ken=(205)678-9823, 
Richard=(245)890-9045}
Sorted Submap from Donna to Ken(exclusive): {Donna=(205)678-9823, John=(342)113-9878}
First Key: Donna
Last key: Richard

If you want to use a Comparator to sort the entries based keys in a SortedMap, you need use the 
constructor of the TreeMap class that takes a Comparator as an argument. The following snippet of code 
shows how to sort entries in a sorted map based on the length of their keys followed by the alphabetical 
order of the keys ignoring the case:

// Sort entries on key's length and then on keys ignoring case
Comparator<String> keyComparator = 
    Comparator.comparing(String::length)
                 .thenComparing(String::compareToIgnoreCase);    
SortedMap<String, String> sMap = new TreeMap<>(keyComparator);
sMap.put("John", "(342)113-9878");
sMap.put("Richard", "(245)890-9045");
sMap.put("Donna", "(205)678-9823");



Chapter 12 ■ ColleCtions

652

sMap.put("Ken", "(205)678-9823");
sMap.put("Zee", "(205)679-9823");

System.out.println("Sorted Map: " + sMap);

Sorted Map: {Ken=(205)678-9823, Zee=(205)679-9823, John=(342)113-9878, 
Donna=(205)678-9823, Richard=(245)890-9045}

Refer to the “Sorted Set” section for more details on using a Comparator for sorting keys. A Comparator 
in a SortedMap works the same way for keys as it works for the elements in a SortedSet.

Navigable Maps
A navigable map is represented by an instance of the NavigableMap<K,V> interface. It extends the 
SortedMap<K,V> interface by adding some useful features like getting the closest match for a key, getting 
a view of the map in reverse order, etc. It also adds some methods that are similar to methods added by 
SortedMap, but they return an entry (a Map.Entry object) rather than just the key. The TreeMap<K,V> class is 
the implementation class for the NavigableMap<K,V> interface.

Replace Xxx with Entry or Key in methods names of the NavigableMap interface mentioned in this 
paragraph. The lowerXxx(K key) method returns the greatest entry or key that is lower than the specified 
key. The floorXxx(K key) method returns the greatest entry or key that is equal to or lower than the 
specified key. The higherXxx(K key) method returns the least entry or key that is higher than the specified 
key. The ceilingXxx(K key) method returns the least entry of key that is equal to or higher than the 
specified key.

The NavigableMap contains two methods called firstEntry() and lastEntry() that return the 
first and the last entries as Map.Entry objects; they return null if the map is empty. It contains methods 
to retrieve and remove the first and the last entries from the map using the pollFirstEntry() and 
pollLastEntry() methods. It adds other versions of the headMap(), tailMap(), and subMap() methods 
declared in SortedMap, which accept a boolean flag to indicate if you want to include the extreme values in 
the sub-map returned from these methods. Finally, it adds the descendingKeySet() and descendingMap() 
methods that give you a view of keys and the map itself in the reverse order. Listing 12-33 shows how to use a 
NavigableMap.

Listing 12-33. Using a NavigableMap

// NavigableMapTest.java
package com.jdojo.collections;

import java.util.TreeMap;
import java.util.NavigableMap;
import java.util.Map.Entry;

public class NavigableMapTest {
    public static void main(String[] args) {
        // Create a sorted map sorted on string keys alphabetically
        NavigableMap<String, String> nMap = new TreeMap<>();
        nMap.put("John", "(342)113-9878");
        nMap.put("Richard", "(245)890-9045");
        nMap.put("Donna", "(205)678-9823");
        nMap.put("Ken", "(205)678-9823");



Chapter 12 ■ ColleCtions

653

        System.out.println("Navigable Map:" + nMap);

        // Get the closest lower and higher matches for Ken  
        Entry<String, String> lowerKen = nMap.lowerEntry("Ken");
        Entry<String, String> floorKen = nMap.floorEntry("Ken");
        Entry<String, String> higherKen = nMap.higherEntry("Ken");
        Entry<String, String> ceilingKen = nMap.ceilingEntry("Ken");

        System.out.println("Lower Ken: " + lowerKen);
        System.out.println("Floor Ken: " + floorKen);
        System.out.println("Higher Ken: " + higherKen);
        System.out.println("Ceiling Ken: " + ceilingKen);

        // Get the reverse order view of the map  
        NavigableMap<String, String> reverseMap = nMap.descendingMap();
        System.out.println("Navigable Map(Reverse Order):" + reverseMap);
    }
}

Navigable Map:{Donna=(205)678-9823, John=(342)113-9878, Ken=(205)678-9823, 
Richard=(245)890-9045}
Lower Ken: John=(342)113-9878
Floor Ken: Ken=(205)678-9823
Higher Ken: Richard=(245)890-9045
Ceiling Ken: Ken=(205)678-9823
Navigable Map(Reverse Order):{Richard=(245)890-9045, Ken=(205)678-9823,  
John=(342)113-9878, Donna=(205)678-9823}

Concurrent Maps
Sometimes you need to perform multiple operations on a map atomically when the map is used by multiple 
threads concurrently. For example, you may want to put a new key-value pair in a map only if the key does 
not already exist in the map. Your code may look as follows:

Map<String,String> map = ...;
String key = ...;
String value = ...;

// Need to lock the entire map
synchronized(map) {
    if (map.containsKey(key)) {
        // Key is already in the map  
    } else {
        map.put(key, value); // Add the new key-value  
    }
}

In this code, you had to lock the entire map just to put a new key-value pair if the key was absent in the 
map. Locking the map was necessary because you needed to perform two things atomically: testing for a 
key’s existence and putting the key-value if the test fails. When these two operations are being performed on 



Chapter 12 ■ ColleCtions

654

the map by a thread, no other thread can lock the map for any other operations. A ConcurrentMap enables 
you to perform concurrent operations, like the one I discussed, without resorting to locking the map.

You can choose the level of concurrency when you create a concurrent map using its implementation 
class. The level of concurrency is specified as the estimated number of threads that would perform the write 
operations on the map. The map will try to adjust those many threads concurrently. A ConcurrentMap does 
not lock the entire map. Even if it locks the entire map, other threads will still be able to perform read and 
write operations on it because it uses a fine-grained synchronization mechanism based on a compare-and-
set primitive.

The ConcurrentHashMap<K,V> class is an implementation class for the ConcurrentMap<K,V> interface. 
Both of them are in the java.util.concurrent package.

Listing 12-34 demonstrates the use of the ConcurrentMap. The example simply shows how to create 
and use some of the methods of a ConcurrentMap. Typically, you should use a ConcurrentMap in a multi-
threaded environment. The program does not use multiple threads to access the map. It only demonstrates 
use of some of the methods of the ConcurrentMap interface.

Listing 12-34. Using a ConcurrentMap

// ConcurrentMapTest.java
package com.jdojo.collections;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;

public class ConcurrentMapTest {
    public static void main(String[] args) {
        ConcurrentMap<String, String> cMap = new ConcurrentHashMap<>();
        cMap.put("one", "one");

        System.out.println("Concurrent Map: " + cMap);

        System.out.println(cMap.putIfAbsent("one", "nine"));
        System.out.println(cMap.putIfAbsent("two", "two"));
        System.out.println(cMap.remove("one", "two"));
        System.out.println(cMap.replace("one", "two"));

        System.out.println("Concurrent Map: " + cMap);
    }
}

Concurrent Map: {one=one}
one
null
false
one
Concurrent Map: {one=two, two=two}



Chapter 12 ■ ColleCtions

655

Concurrent and Navigable Maps
A concurrent navigable map is the concurrent and navigable version of the map. An instance of the 
ConcurrentNavigableMap<K,V> interface represents a concurrent and navigable map. The interface inherits 
from the ConcurrentMap<K,V> and NavigableMap<K,V> interfaces. The ConcurrentSkipListMap<K,V> is the 
implementation class for the ConcurrentNavigableMap<K,V> interface. I discussed both the concurrent map 
and navigable map. Refer to the examples of both kinds for using the ConcurrentNavigableMap.

Applying Algorithms to Collections
The Collections framework lets you apply many types of algorithms on all or a few elements of a collection.  
It lets you search through a collection for a value; sort and shuffle elements of a collection; get a read-only view 
of a collection; etc. The good news is that all of these features are provided in one class named Collections. 
Notice that we have a similarly named interfaced called Collection, which is the ancestor of most of the 
collection interfaces defined in the Collections framework. The Collections class consists of all static 
methods. If you want to apply any algorithm to a collection, you need to look at the list of methods in this class 
before writing your own logic. I discuss many methods in the Collections class in the subsequent sections.

Sorting a List
You can use one of the following two static methods in the Collections class to sort the elements of a List:

•	 <T extends Comparable<? super T>> void sort(List<T> list): It sorts the 
elements in a List in the natural order defined by the Comparable interface that is 
implemented by the elements in the List. Each element in the List must implement 
the Comparable interface and they must be comparable to each other.

•	 <T> void sort(List<T> list, Comparator<? super T> c): It lets you pass a 
Comparator to define a custom ordering of the elements.

 ■ Tip  Java 8 added a default method named sort(Comparator<? super E> c) in the List<E> interface.  
it allows you to sort a List without using the Collections class.

The following snippet of code demonstrates how to sort a List:

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
...
List<String> list = new ArrayList<>();
list.add("John");
list.add("Richard");
list.add("Donna");
list.add("Ken");

System.out.println("List: " + list);



Chapter 12 ■ ColleCtions

656

// Uses Comparable implementation in String to sort the list in natural order  
Collections.sort(list);
System.out.println("Sorted List: " + list);

List: [John, Richard, Donna, Ken]
Sorted List: [Donna, John, Ken, Richard]

The following snippet of code sorts the same list in ascending order of the length of their elements using 
the sort() method in the List interface:

import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
...
List<String> list = new ArrayList<>();
list.add("John");
list.add("Richard");
list.add("Donna");
list.add("Ken");

System.out.println("List: " + list);

// Uses List.sort() method with a Comparator 
list.sort(Comparator.comparing(String::length));

System.out.println("Sorted List: " + list);

List: [John, Richard, Donna, Ken]
Sorted List: [Ken, John, Donna, Richard]

The sort() method uses a modified mergesort algorithm. It is a stable sort. That is, equal elements will 
stay at their current positions after the sort operation. Internally, all elements are copied to an array, sorted 
in the array, and copied back to the List. Sorting is guaranteed to give n*log(n) performance, where n is the 
number of elements in the List.

Searching a List
You can use one of the following two static binarySearch() methods in the Collections class to search for a 
specified object in a List.

•	 <T> int binarySearch(List<? extends Comparable<? super T>> list, T key)

•	 <T> int binarySearch(List<? extends T> list, T key, Comparator<?  
super T> c)

A List must be sorted in ascending order using the natural order or the Comparator before you use the 
binarySearch() method on the List. If the List is not sorted, the result of the binarySearch() method 
is not defined. If the object is found in the List, the method returns the index of the object in the List. 
Otherwise, it returns (-(insertion index)-1), where the insertion index is the index in the List where this 
object would have been placed, if it were present. This return value makes sure that you will get a negative 
value only if the key is not found in the List. If you get a negative number as the returned value from this 



Chapter 12 ■ ColleCtions

657

method, you can use the absolute value of the return index as the basis of the insertion point into the list 
-((return value) + 1). This method uses the binary search algorithm to perform the search. If the List 
supports random access, the search runs in log(n) time. If the List does not support random access, the 
search runs in n×log(n) time. The following snippet of code shows how to use this method:

List<String> list = new ArrayList<>();
list.add("John");
list.add("Richard");
list.add("Donna");
list.add("Ken");

// Must sort before performing the binary search  
Collections.sort(list);
System.out.println("List: " + list);

// Find Donna  
int index = Collections.binarySearch(list, "Donna");
System.out.println("Donna in List is at " + index);

// Find Ellen  
index = Collections.binarySearch(list, "Ellen");
System.out.println("Ellen in List is at " + index);

List: [Donna, John, Ken, Richard]
Donna in List is at 0
Ellen in List is at -2

Since "Ellen" is not in the List, the binary search returned -2. It means that if you insert "Ellen" in 
the List, it will be inserted at index 1, which is computed using the expression (-(-2+1)). Note that "Donna" 
has an index of 0 and "John" has an index of 1. If "Ellen" is added to the list, its index will be the same as the 
current index for "John" and "John" will be moved to the right at index 2.

Shuffling, Reversing, Swapping, and Rotating a List
In this section, I discuss applying different kinds of algorithms to a List, such as shuffling , reversing, 
swapping, and rotating its elements.

Shuffling gives you a random permutation of the elements in a List. The concept of shuffling 
elements of a List is the same as shuffling a deck of cards. You shuffle the elements of a List by using 
the Collections.shuffle() static method. You can supply a java.util.Random object or the shuffle() 
method can use a default randomizer. The two versions of the shuffle() methods are as follows:

•	 void shuffle(List<?> list)

•	 void shuffle(List<?> list, Random rnd)

Reversing is the algorithm that puts the elements of a List in the reverse order. You can use the 
following reverse() static method of the Collections class to accomplish this:

void reverse(List<?> list)



Chapter 12 ■ ColleCtions

658

Swapping lets you swap the position of two elements in a List. You can perform swapping using the 
swap() static method of the Collections class, which is defined as follows:

void swap(List<?> list, int i, int j)

Here i and j are indexes of two elements to be swapped and they must be between 0 and size – 1, 
where size is the size of the List. Otherwise, it throws an IndexOutOfBoundsException.

Rotating involves moving all elements of a List forward or backward by a distance. Suppose you have a 
List as [a, b, c, d]. You need to visualize that the List is a circular list and its first element is next to its last 
element. If you rotate this List by a distance of 1, the resulting List becomes [d, a, b, c]. If you rotate the 
[a, b, c, d] list by a distance of 2, the List becomes [c, d, a, b]. You can also rotate a List backward by 
using a negative distance. If you rotate the [a, b, c, d] list by a distance of -2, the List becomes [c, d, a, 
b]. You can also rotate only part of a List using a sub-list view. Suppose list is a reference variable of type 
List and it has [a, b, c, d] elements. Consider executing the following statement:

Collections.rotate(list.subList(1, 4), 1);

The statement will change the list to [a, d, b, c]. Note that list.subList(1, 4) returns a view of  
[b, c, d] elements and this statement rotates only the three elements that are in the sub-list.

The following snippet of code shows how to reorder elements of a List using these methods. You may 
get different output when you run the following code because shuffle() uses a random algorithm to shuffle 
the elements of the List.

List<String> list = new ArrayList<>();
list.add("John");
list.add("Richard");
list.add("Donna");
list.add("Ken");

System.out.println("List: " + list);

// Shuffle
Collections.shuffle(list);
System.out.println("After Shuffling: " + list);

// Reverse the list
Collections.reverse(list);
System.out.println("After Reversing: " + list);

// Swap elements at indexes 1 and 3
Collections.swap(list, 1, 3);
System.out.println("After Swapping (1 and 3): " + list);

// Rotate elements by 2
Collections.rotate(list, 2);
System.out.println("After Rotating by 2: " + list);

List: [John, Richard, Donna, Ken]
After Shuffling: [Ken, Donna, Richard, John]
After Reversing: [John, Richard, Donna, Ken]
After Swapping (1 and 3): [John, Ken, Donna, Richard]
After Rotating by 2: [Donna, Richard, John, Ken]



Chapter 12 ■ ColleCtions

659

Creating Different Views of a Collection
You can get a LIFO Queue view of a Deque using the asLifoQueue() static method of the Collections class:

<T> Queue<T> asLifoQueue(Deque<T> deque)

Some Map implementations have corresponding Set implementations too. For example, for HashMap, 
you have a HashSet; for TreeMap, you have a TreeSet. If you want to use a Map's implementation as a Set 
implementation, you can use the newSetFromMap() static method of the Collections class:

<E> Set<E> newSetFromMap(Map<E, Boolean> map)

Note that the idea is to use the implementation of the Map as a Set, not to share elements between 
a Map and a Set. This is the reason that the Map must be empty when you use it in this method and you 
are not supposed to use the Map directly at all. There is a WeakHashMap implementation class for the Map. 
However, there is no corresponding WeakHashSet implementation class for the Set. Here is how you can get 
a WeakHashSet:

Map<String,Boolean> map = new WeakHashMap<>();     // Do not populate and use the map
Set<String> wSet = Collections.newSetFromMap(map); // You can use wSet

Use the weak hash set wSet as a Set and it acts as the WeakHashMap implementation. Since you are 
not supposed to use the Map object, it is better to use the following statement to create the set using the 
WeakHashMap implementation class:

// Do not keep the reference of the Map
Set<String> wSet = Collections.newSetFromMap(new WeakHashMap<>());

When the JVM needs memory, the garbage collection can remove elements from wSet as it does from 
any WeakHashMap. By using one line of code, you get a Set that has features of a WeakHashMap.

Read-Only Views of Collections
You can get a read-only view (also called unmodifiable view) of a collection. This is useful when you want 
to pass around your collection without getting it modified. In such cases, you need to pass around a read-
only view of your collection. The Collections class offers the following methods to get read-only views of 
different types of collections:

•	 <T> Collection<T> unmodifiableCollection(Collection<? extends T> c)

•	 <T> List<T> unmodifiableList(List<? extends T> list)

•	 <K,V> Map<K,V> unmodifiableMap(Map<? extends K,? extends V> m)

•	 <K,V> NavigableMap<K,V> unmodifiableNavigableMap(NavigableMap<K,? 
extends V> m)

•	 <T> Set<T> unmodifiableSet(Set<? extends T> s)

•	 <T> NavigableSet<T> unmodifiableNavigableSet(NavigableSet<T> s)



Chapter 12 ■ ColleCtions

660

•	 <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s)

•	 <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K,? extends V> m)

Using any of these methods is straightforward. You pass a collection of a specific type and you get a 
read-only collection of the same type. These methods lets you get a read-only views of an existing modifiable 
collection. If you already know the elements of a collection, use the of() static method of the List, Set, and 
Map interfaces to create a read-only List, Set, and Map.

Synchronized View of a Collection
Most collections that are members of the Collections framework discussed in this chapter are not thread-
safe and you should not use them in a multi-threaded environment. Note that the collections whose names 
have the word "concurrent" in them are designed to be thread-safe. You can get a synchronized view of a 
collection using one of the following static methods of the Collections class. You have one method for each 
collection type to return the same type of synchronized version of the collection.

•	 <T> Collection<T> synchronizedCollection(Collection<T> c)

•	 <T> List<T> synchronizedList(List<T> list)

•	 <K,V> Map<K,V> synchronizedMap(Map<K,V> m)

•	 <K,V> NavigableMap<K,V> synchronizedNavigableMap(NavigableMap<K,V> m)

•	 <T> NavigableSet<T> synchronizedNavigableSet(NavigableSet<T> s)

•	 <T> Set<T> synchronizedSet(Set<T> s)

•	 <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s)

•	 <K,V> SortedMap<K,V> synchronizedSortedMap (SortedMap<K,V> m)

You need to pay attention when working with a synchronized view of a collection. All reads and writes 
through the synchronized view will be thread-safe, except when you are iterating over elements of the 
collection using an iterator. You must synchronize the entire collection during the time you get the iterator 
and use it. The following snippet of code illustrates this concept:

// Suppose you have a Set  
Set s = ...; // unsynchronized set  

// Get a synchronized view of the Set, s  
Set ss = Collections.synchronizedSet(s);

// We need to iterate over elements of ss. Must get a lock on ss first (not on s).
synchronized(ss) {
    Iterator iterator = ss.iterator();

    // use iterator while holding the lock  
    while (iterator.hasNext()) {
        Object obj = iterator.next();

        // Do something with obj here  
    }
}



Chapter 12 ■ ColleCtions

661

You need to follow the same logic while iterating over the key, value, or entry views of a synchronized 
Map. That is, you must get a lock on the synchronized view of the Map while iterating over any of its views.

Checked Collections 
Generics provide compile-time type-safety for collections. If the compiler determines that collections may 
have elements violating its type declaration, it issues an unchecked compile-time warnings. If you ignore the 
warnings, your code may bypass the generics rules at runtime. Let’s consider the following snippet of code:

Set<String> s = new HashSet<>();
s.add("Hello");
a.add(123); // A compile-time error  

You tried to add an Integer to the Set<String>. The compiler made sure that you do not succeed in 
doing this. Let’s bypass the compiler check this time by using the following snippet of code:

Set<String> s = new HashSet<>(); 
s.add("Hello");

Set anythingGoesSet = s;
anythingGoesSet.add(123); // No runtime exception  

This time, the compiler will issue an unchecked warning for the anythingGoesSet.add(123); 
statement because it has no way to know that you are adding an incorrect type of object to the Set. The result 
of this snippet of code is that you declared a Set<String> and you were able to add an Integer to it. You will 
get a runtime exception when you try to read the Integer object as a String object, and it will be too late to 
find out which line of code did it!

The Collections class helps you create a checked collection in which you will get a 
ClassCastException when a piece of code attempts to add an element that violates the rule. This makes 
debugging easier. When you create a checked collection, you mention the class type of the element it must 
hold. Adding any other type of element will throw a ClassCastException. You can use the following static 
methods of the Collections class to get a checked collection of a specific type:

•	 <E> Collection<E> checkedCollection(Collection<E> c, Class<E> type)

•	 <E> List<E> checkedList(List<E> list, Class<E> type)

•	 <K,V> Map<K,V> checkedMap(Map<K,V> m, Class<K> keyType, Class<V> 
valueType)

•	 <K,V> NavigableMap<K,V> checkedNavigableMap(NavigableMap<K,V> m, 
Class<K> keyType, Class<V> valueType)

•	 <E> NavigableSet<E> checkedNavigableSet(NavigableSet<E> s, Class<E> 
type)

•	 <E> Queue<E> checkedQueue(Queue<E> queue, Class<E> type)

•	 <E> Set<E> checkedSet(Set<E> s, Class<E> type)

•	 <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K,V> m, Class<K> 
keyType, Class<V> valueType)

•	 <E> SortedSet<E> checkedSortedSet(SortedSet<E> s, Class<E> type)



Chapter 12 ■ ColleCtions

662

Here is the solution to the previous example that will throw a ClassCastException when an attempt is 
made to add an Integer to the Set<String>:

// Work with a checked Set of String type 
Set<String> checkedSet = Collections.checkedSet(new HashSet<>(), String.class);

Set anythingGoesSet = checkedSet;
anythingGoesSet.add(123); // Throws a ClassCastException  

 ■ Note  Using a checked collection does not stop you from bypassing the compiler. rather, it helps you 
identify the offending code easily and exactly at runtime.

Creating Empty Collections
Sometimes you need to call a method that accepts a collection. However, you do not have any elements for 
the collection to pass. In such cases, you do not need to go through the hassle of creating a collection object. 
The Collections class provides an immutable empty collection object of each type as a return value of its 
static methods. It also provides methods that return an empty Iterator. The following is a partial list of such 
static methods in the Collections class:

•	 <T> List<T> emptyList()

•	 <K,V> Map<K,V> emptyMap()

•	 <T> Set<T> emptySet()

•	 <T> Iterator<T> emptyIterator()

•	 <T> ListIterator<T> emptyListIterator()

Using these methods is straightforward. Suppose there is a method called m1(Map<String,String> 
map). If you want to pass an empty map to this method, your call would be as follows:

m1(Collections.emptyMap());

Java 9 added an overloaded static of() method to the List, Set, and Map interfaces. The method creates 
an empty immutable list, set, and map, respectively. You can rewrite the previous statement in Java 9 as 
follows:

m1(Map.of());

Creating Singleton Collections
Sometimes you want to create a collection that needs to have one and only one element in it. This kind of 
situation arises when a method accepts a collection as its argument and you have only one object to pass 
to that method. Instead of going through the hassle of creating a new collection and adding a lone element 



Chapter 12 ■ ColleCtions

663

to it, you can use one of the three static methods of the Collections class, which will create an immutable 
collection with the one specified element. Those methods are as follows:

•	 <T> Set<T> singleton(T o)

•	 <T> List<T> singletonList(T o)

•	 <K,V> Map<K,V> singletonMap(K key, V value)

The following snippet of code creates a singleton set:

Set<String> singletonSet = Collections.singleton("Lonely");

Java 9 added an overloaded static of() method to the List, Set, and Map interfaces. The method creates 
an empty immutable singleton list, set, and map, respectively. You can rewrite the previous statement in Java 
9 as follows:

Set<String> singletonSet = Set.of("Lonely");

 ■ Tip  the implementation of the of() method in the List, Set, and Map interfaces are highly optimized. it’s 
better to use this method rather than the methods in the Collections class to have an immutable List, Set, 
and Map.

Understanding Hash-Based Collections
You have used many implementation classes for collections that have the word "hash" in their names, such 
as HashSet, LinkedHashSet, HashMap, etc. They are known as hash-based collections. They facilitate fast 
and efficient storage and retrieval of objects. This section discusses the internal workings of hash-based 
collections in brief.

Let’s start with a daily life example. Assume that you have been given many pieces of paper. Each piece 
of paper has a number written on it. Your task is to organize (or store) those pieces of paper so that you can 
tell us as quickly as possible whether a specific number exists in the collection of pieces of paper that you 
were given. You may be given more pieces of paper with a number on them in the future.

One way to organize your numbers is to place them all in one bucket, as shown in Figure 12-5.

1 2 10 99 3 
7 8 3 77 45 

12 90

Figure 12-5. Placing all numbers in one bucket



Chapter 12 ■ ColleCtions

664

When you are asked to verify the existence of number 89, you will have to look at all of the numbers 
in your bucket, one at a time, and finally you will say that number 89 does not exist in the collection. In the 
worst-case scenario, you will have to search the entire bucket to tell if a specific number exists in the bucket. 
In the best-case scenario, you may find the number on the very first attempt. The average time that it takes 
you to verify the existence of a number is proportional to the size of the collection. You may realize that 
organizing your numbers in one bucket is not very efficient for retrieval. As the numbers increase, you will 
take more time to search through them for a specific number.

Let’s try to find a more efficient way to organize the numbers. Let’s use more buckets, say four, to store 
them. Any number that is given to you will be stored in one of the four buckets. If you place a number in 
one of the four buckets arbitrarily, it poses the same problem in searching. In the worst-case scenario, you 
will have to search all four buckets for a number because you do not know which bucket contains a specific 
number. To avoid this inefficiency, let’s use an algorithm to place a specific number into a bucket.

To keep the algorithm simple, you will compute the modulus of the number by the number of buckets 
(four in your case) and place the number in the bucket that corresponds to the modulus value. If you 
compute a modulus of a number using 4, the value will be 0, 1, 2, or 3. You will name your four buckets as 
bucket-0, bucket-1, bucket-2, and bucket-3. Which bucket will hold the number 17? The result of 17 modulus 
4 is 1. Therefore, the number 17 will go to the bucket-1. Where will number 31 go? The result of 31 modulus 4 
is 3. Therefore, the number 31 will go to the bucket-3. Figure 12-6 shows an arrangement in which you have 
used four buckets to store some numbers based on this algorithm.

72 0 12 84 
32 8 24 16 
4 60 68 8 

80 

29 5 41 17 
93 9 49 13 
1 25 97

2 14 98 26 
50 6 30 42 

18 94

7 51 27 3 
99 15 43 31 

55 11

Bucket-0 Bucket-1 Bucket-2 Bucket-3

Figure 12-6. Using four buckets to hold numbers

Let’s walk through the steps to store a number in one of your four buckets. Suppose you are handed 
the number 94. Which one of the four buckets will store the number 94? First, you evaluate the result of 94 
modulus 4, which is 2. Therefore, the number 94 will be stored in the bucket-2. You will follow this logic to 
decide the bucket for every number that you need to store.

Now, let’s walk through the steps of verifying if a number exists in one of the buckets. Suppose you are 
asked to verify if the number 67 exists in the collection. First, you compute the result of 67 modulus 4, which 
is 3. According to the logic of storing a number, if the number 67 exists in the collection, it must exist in 
bucket-3. Once you know the bucket number, you look at each number in the bucket (bucket-3 in this case) 
for that number. In this case (see Figure 12-6), there are ten numbers in bucket-3 and none of them is 67. 
After looking at ten numbers in bucket-3, you respond that the number 67 does not exist in the collection. 
Note that you looked at numbers in only one of the buckets to tell whether the number 67 existed in the 
collection or not. You did not have to look at numbers in all four buckets. By using an algorithm to store and 
retrieve a number from the collection, you have shortened the time it takes to search for a number in the 
collection.

The story is not over yet. Let’s consider using four buckets to store numbers where all numbers are a 
multiple of 4 such as 4, 8, 12, 16, 20, 24, etc. The value of N modulus 4 for all N, which are multiple of 4 is 0. 
This means that all such numbers will be stored in only one bucket, which is the bucket-0. Is this scenario 



Chapter 12 ■ ColleCtions

665

better than storing all numbers in only one bucket? The answer is no. Using multiple buckets helps in the 
search process only if the numbers that are stored are uniformly distributed among all buckets. The best-
case scenario is when all buckets have only one number in them. In that case, you will be able to tell if a 
number exists in the collection by just looking at one number in one of the buckets. The search performance 
may degrade as the size of the collection increases even if numbers are distributed uniformly among the 
buckets. For example, suppose you have 100 numbers and they are uniformly distributed among four 
buckets. In the worst-case scenario, you need to search through 25 numbers in a bucket. Suppose the 
numbers increase to 10,000 and they are still uniformly distributed among the four buckets. Now, in the 
worst-case scenario, you need to search through 2,500 numbers. To keep your search process fast, you can 
increase the number of buckets as the numbers in one bucket increases to a point where the time taken to 
search for a number becomes a performance concern.

The hash-based collections in Java work similar to the collection of numbers that I discussed. Note 
that a Java collection stores only objects. They do not allow storing of primitive type values. Two methods 
in the Object class are central to the working of hash-based collections. Those methods are equals() and 
hashCode().

Hash-based collections maintain a number of buckets to store objects. When you add an object to a 
hash-based collection, Java gets the hash code of the object by calling object’s hashCode() method. Then, it 
applies an algorithm to the hash code to compute the bucket in which the object should be placed. When you 
want to check if an object exists in a hash-based collection, Java applies the same logic to compute the bucket 
in which the object might have been placed. It calls the hashCode() method of the object and applies some 
algorithm to compute the bucket in which it might have been placed. Then, it uses the equals() method of 
the object to compare the object with existing objects in the bucket to check if the object exists in that bucket.

The internal workings of the hash-based collections in Java sound easy. However, it is full of 
complications for programmers if the hashCode() and equals() methods are not implemented correctly 
in the class whose objects are stored in hash-based collections. Let’s consider the code for a BadKey class, 
shown in Listing 12-35.

Listing 12-35. A BadKey Class That Is Not a Good Candidate for Keys in Hash-Based Collections

// BadKey.java
package com.jdojo.collections;

public class BadKey {
    private int id;

    public BadKey(int id) {
        this.id = id;
    }

    public int getId() {
        return this.id;
    }

    public void setId(int id) {
        this.id = id;
    }

    @Override
    public int hashCode() {
        // Return the value of id as its hash code value  
        return id;
    }



Chapter 12 ■ ColleCtions

666

    @Override
    public boolean equals(Object obj) {
        if (obj == this) {
            return true;
        }

        if (obj instanceof BadKey) {
            BadKey bk = (BadKey) obj;
            if (bk.getId() == this.id) {
                return true;
            }
        }

        return false;
    }

    @Override
    public String toString() {
        return String.valueOf(this.id);
    }
}

The BadKey class stores an integer value. It is a mutable class. You can modify its state by calling the 
setId() method and supplying a new value for its id. It overrides the equals() and hashCode() methods 
of the Object class. The implementation of the hashCode() method is simple. It returns the value of the id 
instance variable as the hash code. The equals() method checks if the id instance variable’s value for two 
BadKey objects are the same. If two BadKey objects have the same id, they are considered equal.

Consider the program in Listing 12-36. It uses BadKey objects in a Set<BadKey>. Can you spot a problem 
by looking at the program and the output? Don’t worry if you do not see the problem. I will explain it.

Listing 12-36. Using BadKey Objects in a Set

// BadKeyTest.java
package com.jdojo.collections;

import java.util.HashSet;
import java.util.Set;

public class BadKeyTest {
    public static void main(String[] args) {
        Set<BadKey> s = new HashSet<>();
        BadKey bk1 = new BadKey(100);
        BadKey bk2 = new BadKey(200);

        // Add two objects bk1 and bk2 to the set  
        s.add(bk1);
        s.add(bk2);

        System.out.println("Set contains: " + s);
        System.out.println("Set contains bk1: " + s.contains(bk1));



Chapter 12 ■ ColleCtions

667

        // Set the id for bk1 to 300  
        bk1.setId(300);
        System.out.println("Set contains: " + s);
        System.out.println("Set contains bk1: " + s.contains(bk1));
    }
}

Set contains: [100, 200]
Set contains bk1: true
Set contains: [300, 200]
Set contains bk1: false

The program adds two BadKey objects called bk1 and bk2 to the Set. The first line in the output confirms 
that the set contains the two objects. Then, the value for the id of bk1 object is changed from 100 to 300, 
which is confirmed by the third line in the output. Since you have not removed the object bk1 from the set, 
the fourth line of the output is unexpected. The fourth line of the output states that the object bk1 does not 
exist in the set, whereas the third line of the output states that bk1 object is in the set.

What’s wrong? Is the object bk1 in the set or not? The answer is that the object bk1 is in the set until you 
remove it. If you use a for-each loop or an iterator to access all objects in the set, you will be able to get to it. 
However, the collection (the set in this case) will not be able to find the object bk1. The reason why the set is not 
able to find the bk1 object is that the hash code of the object bk1 changed after it was added to the set. Recall 
that HashSet is a hash-based collection in Java. It uses the hash code of the object to locate the bucket in which 
the object will be placed. When s.contains(bk1) is executed the second time, the hash code of bk1 will be 300, 
which is the returned value from its hashCode() method. When the object bk1 was placed in the set, its hash 
code was 200. Since the hash code of the object bk1 has changed, the set will mistakenly identify a different 
bucket to locate it. Since the set is looking for the object bk1 in a different bucket than the one in which it was 
placed, it does not find it. Where is the problem? The problem lies in the hashCode() method of the BadKey 
class. The BadKey class is a mutable class and the mutable state of this class (the id instance variable) has been 
used to compute its hash code, which is causing the problem in locating the object in the set.

One way to fix this problem of apparently losing the BadKey objects in the set is to return a constant 
value from its hashCode() method, say 99. The following is a valid implementation (not a good one, though) 
of the hashCode() method of the BadKey class:

// BadKey.java
package com.jdojo.collections;

public class BadKey {

    // Other code goes here... 

    public int hashCode() {
        // Return the same value 99 all the time  
        return 99;
    } 
}

This code will fix the problem of losing the object bk1 in the example shown in Listing 12-36 because 
hash code for an object of the BadKey class never changes. However, it introduces another issue that is 
related to the performance of the hash-based collection. If you store objects of the BadKey class in a hash-
based collection, say a set, all objects will hash to the same bucket because all objects of the BadKey class will 
have the same hash code value, which is 99. You fixed one problem and introduced another!



Chapter 12 ■ ColleCtions

668

The main issue with the BadKey class is its mutability. It has only one instance variable named id that 
is mutable. You should consider the following guidelines when you work with mutable objects with hash-
based collections:

•	 You should avoid using objects of a mutable class as elements in a Set and as keys in 
a Map, if possible. Consider using objects of immutable classes such String, Integer, 
or your own immutable class as keys for a Map and elements for a Set.

•	 Implement the equals() and hashCode() methods of your mutable class very 
carefully. You must return the same value from the hashCode() method of the object 
of the mutable class. Otherwise, you will lose track of the objects of your mutable 
class in hash-based collections. If a mutable class has some part of its state that is 
immutable, use those immutable parts of the class to compute its hash code value so 
that the hash code value does not change for an object of the mutable class. As a last 
resort, which is not recommended, consider returning a constant integer from the 
hashCode() method of your mutable class.

•	 Make sure that the contracts for the equals() and hashCode() methods are fulfilled.

Summary
A collection is a group of objects. Java provides the Collections framework containing several interfaces 
and classes for working with a wide range of collection types such as lists, queues, sets, and maps. The 
Collections framework provides an interface to represent a specific type of collection. Each interface in 
the framework has at least one implementation class, except the Collection interface. Collection-related 
interfaces and classes are in the java.util package. Collection classes to be used in multi-threaded 
programs where synchronization is needed are in the java.util.concurrent package.

The Collections framework contains a Collection interface that is the root for most of the collections. 
The Collection interface contains most of the methods used with all types of collection (except for the Map-
based collections). The interface provides methods for adding elements, removing elements, knowing the 
size of the collection, etc. Specific subinterfaces of the Collection interface provide additional methods to 
work with the specific type of collections.

The Collections framework provides a uniform way for traversing elements of all types of collections 
using iterators. An instance of the Iterator interface represents an iterator. All collections support traversing 
their elements using the for-each loop and a forEach() method.

In mathematics, a set is a collection of unordered unique elements. An instance of the Set interface 
represents a set in the Collections framework. HashSet is the implementation class for the mathematical set.

An instance of the SortedSet represents an ordered unique set. TreeSet is the implementation class for 
the SortedSet interface. Elements in a sorted set can be sorted in natural order or in a custom order using a 
Comparator.

A queue is a collection of objects used for processing objects one at a time. Objects enter the queue 
from one end and exit the queue from another end. The Queue interface in the Collections framework 
represents a queue. The Collections framework provides several implementation classes for the Queue 
interface to support different types of queues, such as a simple queue, blocking queue, priority queue, delay 
queue, etc.

A list is an ordered collection of objects. An instance of the List interface represents a list in the 
Collections framework. ArrayList and LinkedList are two implementation classes for the List interface 
that are backed up by an array and a linked list, respectively. Each element in the list has an index that starts 
from 0. The List interface provides methods that let you access its elements sequentially or randomly using 
indexes of the elements. The Collections framework supports only a dense list; that is, there cannot be a gap 
between two elements in the list.



Chapter 12 ■ ColleCtions

669

A map is another type of collection that stores key-value pairs. Keys in a map must be unique. An 
instance of the Map interface represents a map in the Collections framework. HashMap is the simple 
implementation class for the Map interface. The Collections framework also supports sorted, navigable, and 
concurrent maps. A sorted map stores all key-value pairs sorted based on keys. An instance of the SortedMap 
interface represents a sorted map. TreeMap is the implementation class for the SortedMap interface. 
An instance of the NavigableMap and ConcurrentMap represent a navigable map and concurrent map, 
respectively.

The Collections framework contains a utility class called Collections that contains only static methods. 
Methods in this class let you apply different types of algorithms to a collection—for example, shuffling 
elements in a collection, rotating its elements, sorting elements of a list, etc. The class also provides methods 
to obtain different views of collections, such as read-only view, synchronized view, unmodifiable view, etc.

A hash-based collection uses buckets to store its elements. The number of buckets is determined based 
on the number of elements in the collection and the required performance. When an element is added to 
the collection, the element’s hash code is used to determine the bucket in which the element will be stored. 
A reverse process is used when an element is searched in the collection. Hash-based collections provide 
faster element storage and retrieval.

QUESTIONS AND EXERCISES

1. What is the Collections framework?

2. What is the name of the interface that all collections in the Collections framework, 
except maps, implement?

3. list the names of different types of operations that you can perform on collections 
in the Collection Framework.

4. What method in the Collection<E> interface lets you obtain the size of the 
collection?

5. What methods in the Collection<E> interface let you remove all elements in the 
collection in one go and one element at a time?

6. What method in the Collection<E> interface would you use to check that the 
collection contains a given object?

7. how do you check if a collection is empty?

8. name the method in the Collection<E> interface that lets you convert a collection 
to an array.

9. enumerate three ways to iterate over elements of a collection. Can you use a 
simple for loop statement to iterate over the elements of a collection? What is a 
fail-fast iterator?

10. Java supports mathematical sets, sorted sets, and navigable sets. Differentiate 
between the three types of sets and name the interfaces and at least one 
implementation class for those interfaces representing these three types of sets.

11. how do you traverse the elements in a set?



Chapter 12 ■ ColleCtions

670

12. Consider the following two immutable sets of integers:

Set<Integer> s1 = Set.of(10, 20, 30, 40);
Set<Integer> s2 = Set.of(10, 15, 20, 25, 30); 

Write a snippet of code to print the union, intersection, and difference of the two 
sets, s1 and s2, as computed in mathematics.

13. spot the problem with the following snippet of code that attempts to create an 
immutable set of integers:

Set<Integer> s1 = Set.of(20, 10, 30, 10);

14. Consider the following snippet of code:

Set<Integer> s1 = Set.of();
System.out.println("s1.isEmpty(): " + s1.isEmpty());        
s1.add(2018);
System.out.println("s1.isEmpty(): " + s1.isEmpty());

Will this code compile? if your answer is yes, what will be the output? if you think 
the code will compile, but will throw a runtime exception, describe the reason for 
the exception and a way to fix the problem.

15. in your application, you need to work with a sorted range of unique integers. Which 
interface and implementation class of the set collection family will you use for this 
purpose?

16. how do you sort the elements in a set in natural order and custom order?

17. What is the difference between a List and a Set?

18. Consider the following incomplete snippet of code:

List<String> list = List.of("Li", "Xi", "Bo", "Da", "Fa", "Bo");
int i1 = /* your code goes here */;
int i2 = /* your code goes here */;
System.out.printf("First and last indexes of Bo are %d and %d.%n", i1, i2);

Complete this snippet of code to print the first and the last indexes of the element 
"Bo". the output should be as follows:

First and last indexes of Bo are 2 and 5.

19. What is the difference between an Iterator and ListIterator? Can you use an 
Iterator to traverse elements in a List?

20. suppose you need to use a list in your program in which you need to frequently 
insert and remove elements from the beginning of the list. What implementation 
class of the List interface would you choose to achieve this?



Chapter 12 ■ ColleCtions

671

21. the following snippet of code contains a logical error. Describe the error.

List<Integer> list = new ArrayList<>();
list.add(0, 0);
list.add(1, 10);
list.add(2, 20);
list.add(5, 50);
System.out.println(list);

22. Consider the following snippet of incomplete code:

List<Integer> list = new ArrayList<>();
list.add(10);
list.add(20);
list.add(30);

System.out.println(list); 

/* your code goes here */

System.out.println(list);

Complete this snippet of code so that each element in the list is replaced by a 
value, which is double the current value. You are encouraged to use the following 
replaceAll() method of the List<E> interface to achieve this:

default void replaceAll(UnaryOperator<E> operator)

the expected output is as follows:

[10, 20, 30]
[20, 40, 60]

23. name the interface whose instances represent simple queues in a Java program.

24. What is the difference between the FiFo and liFo queues? name the 
implementation class that implements a simple FiFo and liFo queue.

25. What is the difference between using the add(E e) and offer(E e) methods of 
the Queue<E> interface to insert elements to the queue?

26. What is a priority queue? name the implementation class for priority queues in 
Java.

27. Write a complete program that uses a priority queue to store names of a few 
people. the output of your program should demonstrate that a person with a 
shorter name has a higher priority in the queue. add a few names to the queue 
and remove them one at a time. print the removed elements and the remaining 
elements in the queue every time you remove an element.



Chapter 12 ■ ColleCtions

672

28. What is the difference between a Queue and a Deque? name two implementation 
classes of the Deque<E> interface.

29. Can you use a Deque to represent a stack? if your answer is yes, demonstrate it 
with an example.

30. What is a blocking queue? name the interface whose instances represent blocking 
queues. What is fairness of a blocking queue?

31. What is a map? name the interface whose instances represent maps in Java.

32. name two implementation classes for the Map<K,V> interface in Java.

33. What method do you use to get the number of entries in a Map? how do get a Set 
of all keys in a Map? how do you get a Collection of all values in a Map?

34. Consider the following snippet of code that creates a map and populates it with 
names and their lucky numbers. Complete the code to print the unique names and 
unique lucky numbers in the map.

Map<String,Integer> map = new HashMap<>();
map.put("Bo", 1);
map.put("Co", 8);
map.put("Do", 19);
map.put("Lo", 1);
map.put("Mo", 8);

/* your code goes here */

35. Create immutable maps with the following five <key, value> entries of country 
codes and country names, once using the of() method and once using the 
ofEntries() method of the Map interface: <1, "United States">, <24, 
"Austria">, <66, "Thailand">, <49, "Germany">, and <91, "India">. the keys 
are integers and values are strings. print each entry on a separate line.

36. What is the Collections class? name a few purposes for which this class is used.

37. What is wrong with the following snippet of code?

List<Integer> list = new ArrayList<>();
list.add(10);
list.add(20);
list.add(5, 50);

38. Complete the following snippet of code that sorts a List<Integer> using the 
default sort() method in the List interface:

List<Integer> list = new ArrayList<>();
list.add(40);
list.add(10);
list.add(30);
list.add(20);



Chapter 12 ■ ColleCtions

673

System.out.println("List: " + list);
list.sort(/* your code goes here */); 
System.out.println("Sorted List: " + list);

the expected output is as follows:

List: [40, 10, 30, 20]
Sorted List: [10, 20, 30, 40]

39. Consider the following snippet of code that uses a binary search to search for 20 in 
the list:

List<Integer> list = new ArrayList<>();
list.add(40);
list.add(10);
list.add(30);
list.add(20);
System.out.println("List: " + list);

int index = Collections.binarySearch(list, 20);  
System.out.println("Index of 20 us in the list is " + index);

the current output is as follows:

List: [40, 10, 30, 20]
Index of 20 us in the list is -3

the output indicates that 20 is not in the list. however, 20 is present in the list. Fix 
this snippet of code so that 20 is found in the list using the binary search. Describe 
your findings.

40. What will be the output when you run the following snippet of code:

List<Integer> list = new ArrayList<>();
list.add(10);
list.add(20);
list.add(30);
list.add(40);
System.out.println("List: " + list);

Collections.rotate(list, 4);
System.out.println("Rotated List: " + list)

41. Write a snippet of code to create a modifiable Set<Integer>. Get an unmodifiable 
view of this set and demonstrate that you can still modify the original modifiable set 
and those modifications are reflected in the read-only set. also demonstrate that an 
attempt to modify the read-only set throws an UnsupportedOperationException.



Chapter 12 ■ ColleCtions

674

42. What is the advantage of using checked collections?

43. Write a snippet of code to create a singleton immutable List<String> with a lone 
element, "Hello".

44. What are hash-based collections? What kind of special care must be taken with a 
class if the objects of the class will be stored in hash-based collections?



675© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_13

CHAPTER 13

Streams

In this chapter, you will learn:

•	 What streams are

•	 Differences between collections and streams

•	 How to create streams from different types of data sources

•	 How to represent an optional value using the Optional class

•	 Applying different types of operations on streams

•	 Collecting data from streams using collectors

•	 Grouping and partitioning a stream’s data

•	 Finding and matching data in streams

•	 How to work with parallel streams

All example programs in this chapter are members of a jdojo.streams module, as declared in 
Listing 13-1.

Listing 13-1. The Declaration of a jdojo.streams Module

// module-info.java
module jdojo.streams {
    exports com.jdojo.streams;
}

What Are Streams?
An aggregate operation computes a single value from a collection of values. The result of an aggregate 
operation may be simply a primitive value, an object, or a void. Note that an object may represent a single 
entity such as a person or a collection of values such as a list, a set, a map, etc.

A stream is a sequence of data elements supporting sequential and parallel aggregate operations. 
Computing the sum of all elements in a stream of integers, mapping all names in a list to their lengths, etc. 
are examples of aggregate operations on streams.

Looking at the definition of streams, it seems that they are like collections. So, how do streams differ 
from collections? Both are abstractions for a collection of data elements. Collections focus on storage of data 
elements for efficient access whereas streams focus on aggregate computations on data elements from a 
data source that is typically, but not necessarily, collections.

https://doi.org/10.1007/978-1-4842-3348-1_13


Chapter 13 ■ StreamS

676

In this section, I discuss the following features of streams, comparing them with collections when 
necessary:

•	 Streams have no storage.

•	 Streams can represent a sequence of infinite elements.

•	 The design of streams is based on internal iteration.

•	 Streams are designed to be processed in parallel with no additional work from the 
developers.

•	 Streams are designed to support functional programming.

•	 Streams support lazy operations.

•	 Streams can be ordered or unordered.

•	 Streams cannot be reused.

The following sections present brief snippets of code using streams. The code is meant to give you 
a feel for the Streams API and to compare the Streams API with the Collections API. You do not need to 
understand the code fully at this point. I explain it later in detail.

Streams Have No Storage
A collection is an in-memory data structure that stores all its elements. All elements must exist in memory 
before they are added to the collection. A stream has no storage; it does not store elements. A stream pulls 
elements from a data source on-demand and passes them to a pipeline of operations for processing.

Infinite Streams
A collection cannot represent a group of infinite elements, whereas a stream can. A collection stores all its 
elements in memory, and therefore, it is not possible to have an infinite number of elements in a collection. 
Having a collection of an infinite number of elements will require an infinite amount of memory and the 
storage process will continue forever. A stream pulls its elements from a data source that can be a collection, 
a function that generates data, an I/O channel, etc. Because a function can generate an infinite number 
of elements and a stream can pull data from it on demand, it is possible to have a stream representing a 
sequence of infinite data elements.

Internal Iteration vs. External Iteration
Collections are based on external iteration. You obtain an iterator for a collection and process elements of 
the collections in serial using the iterator. Suppose you have a list of integers from 1 to 5. You would compute 
the sum of the squares of all odd integers in the list as follows:

List<Integer> numbers = List.of(1, 2, 3, 4, 5);
int sum = 0;
for (int n : numbers) {
    if (n % 2 == 1) {
        int square = n * n;
        sum = sum + square;
    }
}



Chapter 13 ■ StreamS

677

This example uses a for-each loop that performs an external iteration on the list of integers. Simply put, 
the client code (the for loop in this case) pulls the elements out of collection and applies the logic to get the 
result. Consider the following snippet of code that uses a stream to compute the sum of the squares of all 
odd integers in the same list:

int sum = numbers.stream()
                 .filter(n -> n % 2 == 1)
                 .map(n -> n * n)
                 .reduce(0, Integer::sum);

Did you notice the power and the simplicity of streams? You replaced five statements with just one 
statement. However, the code brevity is not the point that I want to make. The point is that you did not iterate 
over the elements in the list when you used the stream. The stream did that for you internally. This is what 
I meant by internal iteration supported by streams. You specify to a stream what you want by passing an 
algorithm using lambda expressions to the stream and the stream applies your algorithm to its data element 
by iterating over its elements internally and gives you the result.

Using external iteration, typically, produces sequential code; that is, the code can be executed only by 
one thread. For example, when you wrote the logic to compute the sum using a for-each loop, the loop must 
be executed only by one thread. All modern computers come with a multicore processor. Wouldn’t it be 
nice to take advantage of the multicore processor to execute the logic in parallel? The Java library provides 
a Fork/Join framework to divide a task into subtasks recursively and execute the subtasks in parallel, taking 
advantage of a multicore processor. However, the Fork/Join framework is not so simple to use, especially for 
beginners.

Streams come to your rescue! They are designed to process their elements in parallel without you even 
noticing it! This does not mean that streams automatically decide for you when to process their elements in 
serial or parallel. You just need to tell a stream that you want to use parallel processing and the stream will 
take care of the rest. Streams take care of the details of using the Fork/Join framework internally. You can 
compute the sum of squares of odd integers in the list in parallel, like so:

int sum = numbers.parallelStream()
                 .filter(n -> n % 2 == 1)
                 .map(n -> n * n)
                 .reduce(0, Integer::sum);

All you had to do was replace the method called stream() with parallelStream()! The Streams API 
uses multiple threads to filter the odd integers, compute their squares and add them to compute partial 
sums. Finally, it joins the partial sums to give you the result. In this example, you have only five elements 
in the list and using multiple threads to process them is overkill. You will not use parallel processing for 
such a trivial computation. I have presented this example to drive home the point that parallelizing your 
computation using streams is free; you get it by just using a different method name! The second point is that 
parallelizing the computation was made possible because of the internal iteration provided by the stream.

Streams are designed to use internal iteration. They provide an iterator() method that returns an 
Iterator to be used for external iteration of its elements. You will “never” need to iterate elements of a 
stream yourself using its iterator. If you ever need it, here is how to use it:

// Get a list of integers from 1 to 5
List<Integer> numbers = List.of(1, 2, 3, 4, 5);
...

// Get an iterator from the stream
Iterator<Integer> iterator = numbers.stream().iterator();



Chapter 13 ■ StreamS

678

while(iterator.hasNext()) {
    int n = iterator.next();
    ...
}

Imperative vs. Functional
Collections support imperative programming whereas streams support declarative programming. This is 
an offshoot of collections supporting external iteration whereas streams support internal iteration. When 
you use collections, you need to know “what” you want and “how” to get it; this is the feature of imperative 
programming. When you use streams, you specify only “what” you want in terms of stream operations; 
the “how” part is taken care by the Streams API. The Streams API supports the functional programming. 
Operations on a stream produce a result without modifying the data source. Like in the functional 
programming, when you use streams, you specify “what” operations you want to perform on its elements 
using the built-in methods provided by the Streams API, typically by passing a lambda expression to those 
methods, customizing the behavior of those operations.

Stream Operations
A stream supports two types of operations:

•	 Intermediate operations

•	 Terminal operations

Intermediate operations are also known as lazy operations. Terminal operations are also known as 
eager operations. Operations are known as lazy and eager based on the way they pull the data elements 
from the data source. A lazy operation on a stream does not process the elements of the stream until another 
eager operation is called on the stream.

Streams connect through a chain of operations forming a stream pipeline. A stream is inherently 
lazy until you call a terminal operation on it. An intermediate operation on a stream produces another 
stream. When you call a terminal operation on a stream, the elements are pulled from the data source and 
pass through the stream pipeline. Each intermediate operation takes elements from an input stream and 
transforms the elements to produce an output stream. The terminal operation takes inputs from a stream 
and produces the result. Figure 13-1 shows a stream pipeline with a data source, three streams, and three 
operations. The filter and map operations are intermediate operations and the reduce operation is a terminal 
operation.

Data 
source

filter map reduce

Intermediate operations Terminal operation

Figure 13-1. A stream pipeline



Chapter 13 ■ StreamS

679

In the figure, the first stream (on the left) pulls data from the data source and becomes the input source 
for the filter operation. The filter operation produces another stream containing data for which the filter 
condition is true. The stream produced by the filter operation becomes the input for the map operation. 
The map operation produces another stream that contains the mapped data. The stream produced by the 
map operation becomes the input for the reduce operation. The reduce operation is a terminal operation. It 
computes and returns the result, and then the stream processing is over.

 ■ Note  I use the phrase “a stream pulls/consumes elements from its data source” in the preceding 
discussion. this does not mean that the stream removes the elements from the data source; it only reads them. 
Streams are designed to support functional programming in which data elements are read and operations on 
the read data elements produce new data elements. however, the data elements are not modified (or at least 
should not be modified).

Stream processing does not start until a terminal operation is called. If you just call intermediate 
operations on a stream, nothing exciting happens, except that they create another stream of objects in 
memory, without reading data from the data source. This implies that you must use a terminal operation on 
a stream for it to process the data to produce a result. This is also the reason that the terminal operation is 
called a result-bearing operation and intermediate operations are also called non-result-bearing operations.

You saw the following code that uses a pipeline of stream operations to compute the sum of the squares 
of odd integers from 1 to 5:

List<Integer> numbers = List.of(1, 2, 3, 4, 5);
int sum = numbers.stream()
                 .filter(n -> n % 2 == 1)
                 .map(n -> n * n)
                 .reduce(0, Integer::sum);

Figure 13-2 through Figure 13-5 show the states of the stream pipeline as operations are added. Notice 
that no data flows through the stream until the reduce operation is called. The last figure shows the integers 
in the input stream for an operation and the mapped (or transformed) integers produced by the operation. 
The reduce terminal operation produces the result 35.

1, 2, 
3, 4, 

5

numbers.stream()

Figure 13-2. The stream pipeline after the stream object is created

1, 2, 
3, 4, 

5
filter

numbers.stream().filter(n -> n % 2 == 1) 

Figure 13-3. The stream pipeline after the filter operation is called



Chapter 13 ■ StreamS

680

Ordered Streams
A stream can be ordered or unordered. An ordered stream preserves the order of its elements. The Streams 
API lets you convert an ordered stream into an unordered stream. A stream can be ordered because it 
represents an ordered data source such as a list or a sorted set. You can also convert an unordered stream 
into an ordered stream by applying an intermediate operation such as sorting.

A data source is said to have an encounter order if the order in which the elements are traversed by an 
iterator is predictable and meaningful. For example, arrays and lists always have an encounter order that 
is from the element at index 0 to the element at the last index. All ordered data sources have an encounter 
order for their elements. Streams based on data sources having an encounter order also have an encounter 
order for their elements. Sometimes a stream operation may impose an encounter order on an otherwise 
unordered stream. For example, a HashSet does not have an encounter order for its elements. However, 
applying a sort operation on a stream based on a HashSet imposes an encounter order so that elements are 
yielded in sorted order.

Streams Are Not Reusable
Unlike collections, streams are not reusable. They are one-shot objects. A stream cannot be reused after 
calling a terminal operation on it. If you need to perform a computation on the same elements from the 
same data source again, you must recreate the stream pipeline. A stream implementation may throw an 
IllegalStateException if it detects that the stream is being reused.

Architecture of the Streams API
Figure 13-6 shows a class diagram for the stream-related interfaces. Stream-related interfaces and classes are 
in the java.util.stream package.

reduce5, 4, 3, 2, 1 filter
1, 2, 
3, 4, 

5
map

numbers.stream().filter(n -> n % 2 == 1).map(n -> n * n).reduce(0, Integer::sum)

5, 3, 1 25, 9, 1 35

Figure 13-5. The stream pipeline after the reduce operation is called

1, 2, 
3, 4, 

5
filter map

numbers.stream().filter(n -> n % 2 == 1).map(n -> n * n)

Figure 13-4. The stream pipeline after the map operation is called



Chapter 13 ■ StreamS

681

All stream interfaces inherit from the BaseStream interface, which inherits from the AutoCloseable 
interface from the java.lang package. In practice, most streams use collections as their data source, and 
collections do not need to be closed. When a stream is based on a closeable data source such as a file I/O 
channel, you may create the instance of the stream using a try-with-resources statement to get it closed 
automatically. Methods common to all types of streams are declared in the BaseStream interface as follows.

•	 Iterator<T> iterator(): It returns an iterator for the stream. You will almost never 
need to use this method in your code. This is a terminal operation. After calling this 
method, you cannot call any other methods on the stream.

•	 S sequential(): It returns a sequential stream. If the stream is already sequential, it 
returns itself. Use this method to convert a parallel stream into a sequential stream. 
This is an intermediate operation.

•	 S parallel(): It returns a parallel stream. If the stream is already parallel, it returns 
itself. Use this method to convert a parallel stream into a sequential stream. This is 
an intermediate operation.

•	 boolean isParallel(): It returns true if the stream is parallel, false otherwise. The 
result is unpredictable when this method is called after invoking a terminal stream 
operation method.

•	 S unordered(): It returns an unordered version of the stream. If the stream is already 
unordered, it returns itself. This is an intermediate operation.

•	 void close(): It closes the stream. You do not need to close collection based 
streams. Operating on a closed stream throws a IllegalStateException.

•	 S onClose(Runnable closeHandler): It returns an equivalent stream with an 
additional close handler. Close handlers are run when the close() method is called 
on the stream and are executed in the order they were added.

The Stream<T> interface represents a stream of the element type T; for example, a Stream<Person> 
represents a stream of Person objects. The interface contains methods representing intermediate and 
terminal operations such as filter(), map(), reduce(), collect(), max(), min(), etc. When you work with 
streams, you will use these methods most of the time. I discuss each method in detail shortly.

Note that the Stream<T> interface takes a type parameter T, which means that you can use it only to 
work with the elements of the reference type. If you have to work with a stream of primitive type such as 
int, long, etc., using Stream<T> will involve an additional cost of boxing and unboxing the elements when 

Figure 13-6. A class diagram for stream-related interfaces in the Streams API



Chapter 13 ■ StreamS

682

primitive values are needed. For example, adding all elements of a Stream<Integer> will require unboxing 
all Integer elements to int. The designers of the Streams API realized this and they provided three 
specialized stream interfaces called IntStream, LongStream, and DoubleStream to work with primitives; 
these interfaces contain methods to deal with primitive values. Note that you do not have stream interfaces 
representing other primitive types such as float, short, etc. because the three stream types can be used to 
work with other primitive type values.

A Quick Example
Let’s look at a quick example of using streams. The code reads a list of integers and computes the sum of the 
squares of all odd integers in the list.

The stream() method in the Collection interface returns a sequential stream where the 
Collection acts as the data source. The following snippet of code creates a List<Integer> and obtains a 
Stream<Integer> from the list:

// Get a list of integers from 1 to 5
List<Integer> numbersList = List.of(1, 2, 3, 4, 5);

// Get a stream from the list
Stream<Integer> numbersStream = numbersList.stream();

The filter() method of the Stream<T> interface takes a Predicate<? super T> as an argument and 
returns a Stream<T> with elements of the original stream for which the specified Predicate returns true. 
The following statement obtains a stream of only odd integers:

// Get a stream of odd integers
Stream<Integer> oddNumbersStream = numbersStream.filter(n -> n % 2 == 1);

Notice the use of the lambda expression as the argument for the filter() method. The lambda 
expression returns true if the element in the stream is not divisible by 2.

The map() method of the Stream<T> interface takes Function<? super T,? extends R> as an 
argument. Each element in the stream is passed to this Function and a new stream is generated containing 
the returned values from the Function. The following statement takes all odd integers and maps them to 
their squares:

// Get a stream of the squares of odd integers
Stream<Integer> squaredNumbersStream = oddNumbersStream.map(n -> n * n);

Finally, you need to add the squares of all odd integers to get the result. The reduce(T identity, 
BinaryOperator<T> accumulator) method of the Stream<T> interface performs a reduction operation 
on the stream to reduce the stream to a single value. It takes an initial value and an accumulator that is a 
BinaryOperator<T> as arguments. The first time, the accumulator receives the initial value and the first 
element of the stream as arguments and returns a value. The second time, the accumulator receives the 
value returned from its previous call and the second element from the stream. This process continues until 
all elements of the stream have been passed to the accumulator. The returned value from the last call of the 
accumulator is returned from the reduce() method. The following snippet of code performs the sum of all 
integers in the stream:

// Sum all integers in the stream
int sum = squaredNumbersStream.reduce(0, (n1, n2) -> n1 + n2);



Chapter 13 ■ StreamS

683

The Integer class contains a static sum() method to perform the sum of two integers. You can rewrite 
the previous statement using a method reference, like so:

// Sum all integers in the stream
int sum = squaredNumbersStream.reduce(0, Integer::sum);

In this example, I break down each operation on the stream into a single statement. You cannot use 
the returned streams from intermediate operations, except to apply other operations on them. Typically, 
you care about the result of the terminal operation, not the intermediate streams. Streams are designed to 
support method chaining to avoid temporary variables, which you used in this example. You can combine 
these statements into one statement as follows:

// Sum the squares of all odd integers in the numbers list
int sum = numbersList.stream()
                     .filter(n -> n % 2 == 1)
                     .map(n -> n * n)
                     .reduce(0, Integer::sum);

I chain all method calls on streams to form only one statement in subsequent examples. Listing 13-2 
contains the complete program for this example. Note that you are working with only integers in this 
example. For better performance, you could have used an IntStream in this example. I show you how to use 
an IntStream later.

Listing 13-2. Computing the Sum of the Squares of All Odd Integers From 1 to 5

// SquaredIntsSum.java
package com.jdojo.streams;

import java.util.List;

public class SquaredIntsSum {
    public static void main(String[] args) {
        // Get a list of integers from 1 to 5
        List<Integer> numbers = List.of(1, 2, 3, 4, 5);

        // Compute the sum of the squares of all odd integers in the list
        int sum = numbers.stream()
                         .filter(n -> n % 2 == 1)
                         .map(n -> n * n)
                         .reduce(0, Integer::sum);

        System.out.println("Sum = " + sum);
    }
}

Sum = 35

I show many examples of performing aggregate operations on different types of streams. Most of the 
time, it is easier to explain the stream operations using streams of numbers and strings. I show some real-
world examples of using streams by using a stream of Person objects. Listing 13-3 contains the declaration 
for the Person class.



Chapter 13 ■ StreamS

684

Listing 13-3. A Person Class

// Person.java
package com.jdojo.streams;

import java.time.LocalDate;
import java.time.Month;
import java.util.List;

public class Person {
    // An enum to represent the gender of a person
    public static enum Gender {
        MALE, FEMALE
    }

    private long id;
    private String name;
    private Gender gender;
    private LocalDate dob;
    private double income;

    public Person(long id, String name, Gender gender, LocalDate dob, double income) {
        this.id = id;
        this.name = name;
        this.gender = gender;
        this.dob = dob;
        this.income = income;
    }

    public long getId() {
        return id;
    }

    public void setId(long id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Gender getGender() {
        return gender;
    }

    public boolean isMale() {
        return this.gender == Gender.MALE;
    }



Chapter 13 ■ StreamS

685

    public boolean isFemale() {
        return this.gender == Gender.FEMALE;
    }

    public void setGender(Gender gender) {
        this.gender = gender;
    }

    public LocalDate getDob() {
        return dob;
    }

    public void setDob(LocalDate dob) {
        this.dob = dob;
    }

    public double getIncome() {
        return income;
    }

    public void setIncome(double income) {
        this.income = income;
    }

    public static List<Person> persons() {
        Person ken = new Person(1, "Ken", Gender.MALE,
                LocalDate.of(1970, Month.MAY, 4), 6000.0);
        Person jeff = new Person(2, "Jeff", Gender.MALE,
                LocalDate.of(1970, Month.JULY, 15), 7100.0);
        Person donna = new Person(3, "Donna", Gender.FEMALE,
                LocalDate.of(1962, Month.JULY, 29), 8700.0);
        Person chris = new Person(4, "Chris", Gender.MALE,
                LocalDate.of(1993, Month.DECEMBER, 16), 1800.0);
        Person laynie = new Person(5, "Laynie", Gender.FEMALE,
                LocalDate.of(2012, Month.DECEMBER, 13), 0.0);
        Person lee = new Person(6, "Li", Gender.MALE,
                LocalDate.of(2001, Month.MAY, 9), 2400.0);

        // Create a list of persons
        List<Person> persons = List.of(ken, jeff, donna, chris, laynie, lee);

        return persons;
    }

    @Override
    public String toString() {
        String str = String.format("(%s, %s, %s, %s, %.2f)",
                id, name, gender, dob, income);
        return str;
    }
}



Chapter 13 ■ StreamS

686

The Person class contains a static Gender enum to represent the gender of a person. The class 
declares five instance variables (id, name, gender, dob, and income), getters, and setters. The isMale() and 
isFemale() methods have been declared to be used as method references in lambda expressions. You will 
use a list of people frequently, and, for that purpose, the class contains a static method called persons() to 
get a list of people.

Creating Streams
There are many ways to create streams. Many existing classes in the Java libraries have received new 
methods that return a stream. Based on the data source, stream creation can be categorized as follows:

•	 Streams from values

•	 Empty streams

•	 Streams from functions

•	 Streams from arrays

•	 Streams from collections

•	 Streams from files

•	 Streams from other sources

Streams from Values
The Stream interface contains the following three static methods to create a sequential Stream from a single 
value and multiple values:

•	 <T> Stream<T> of(T t)

•	 <T> Stream<T> of(T...values)

•	 <T> Stream<T> ofNullable(T t)

The following snippet of code creates two streams:

// Creates a stream with one string element
Stream<String> stream = Stream.of("Hello");

// Creates a stream with four string elements
Stream<String> stream = Stream.of("Ken", "Jeff", "Chris", "Ellen");

The ofNullable() method was added to the Stream interface in Java 9. It returns a stream with a single 
value if the specified value is non-null. Otherwise, it returns an empty stream.

String str = "Hello";

// Stream s1 will have one element "Hello"
Stream<String> s1 = Stream.ofNullable(str);

str = null;

// Stream s2 is an empty stream because str is null
Stream<String> s2 = Stream.ofNullable(str);



Chapter 13 ■ StreamS

687

You created a List<Integer> and called its stream() method to get a stream object in Listing 13-2. You 
can rewrite that example using the Stream.of() method as follows:

import java.util.stream.Stream;
...
// Compute the sum of the squares of all odd integers in the list
int sum = Stream.of(1, 2, 3, 4, 5)
                .filter(n -> n % 2 == 1)
                .map(n -> n * n)
                .reduce(0, Integer::sum);

System.out.println("Sum = " + sum);

Sum = 35

Note that the second version of the of() method takes a varargs argument and you can use it to create a 
stream from an array of objects as well. The following snippet of code creates a stream from a String array.

String[] names  = {"Ken", "Jeff", "Chris", "Ellen"};

// Creates a stream of four strings in the names array
Stream<String> stream = Stream.of(names);

 ■ Tip  the Stream.of() method creates a stream whose elements are of reference type. If you want to 
create a stream of primitive values from an array of primitive types, you need to use the Arrays.stream() 
method, which I explain shorty.

The following snippet of code creates a stream of strings from a String array returned from the split() 
method of the String class:

String str  = "Ken,Jeff,Chris,Ellen";

// The stream will contain 4 elements: "Ken", "Jeff", "Chris", and "Ellen"
Stream<String> stream = Stream.of(str.split(","));

The Stream interface also supports creating a stream using the builder pattern using the Stream.
Builder<T> interface whose instance represents a stream builder. The builder() static method of the 
Stream interface returns a stream builder.

// Gets a stream builder
Stream.Builder<String> builder = Stream.builder();

The Stream.Builder<T> interface contains the following methods:

•	 void accept(T t)

•	 Stream.Builder<T> add(T t)

•	 Stream<T> build()



Chapter 13 ■ StreamS

688

The accept() and add() methods add elements to the stream being built. You might wonder about the 
existence of two methods in the builder to add elements. The Stream.Builder<T> interface inherits from the 
Consumer<T> interface, and therefore it inherits the accept() method from the Consumer<T> interface. You 
can pass a builder’s instance to a method that accepts a consumer and the method can add elements to the 
builder using the accept() method.

The add() method returns the reference to the builder that makes it suitable for adding multiple 
elements using method chaining. Once you are done adding elements, call the build() method to create 
the stream. You cannot add elements to the stream after you call the build() method; doing so results in an 
IllegalStateException runtime exception. The following snippet of code uses the builder pattern to create 
a stream of four strings:

Stream<String> stream = Stream.<String>builder()
                              .add("Ken")
                              .add("Jeff")
                              .add("Chris")
                              .add("Ellen")
                              .build();

Note that the code specifies the type parameter as String when it obtains the builder 
Stream.<String>builder(). The compiler fails to infer the type parameter if you do not specify it. If you 
obtain the builder separately, the compiler will infer the type as String, as shown:

// Obtain a builder
Stream.Builder<String> builder = Stream.builder();

// Add elements and build the stream
Stream<String> stream = builder.add("Ken")
                               .add("Jeff")
                               .add("Chris")
                               .add("Ellen")
                               .build();

The IntStream interfaces contain four static methods that let you create IntStream from values:

•	 IntStream of(int value)

•	 IntStream of(int... values)

•	 IntStream range(int start, int end)

•	 IntStream rangeClosed(int start, int end).

The of() methods let you create a IntStream by specifying individual values. The range() and 
rangeClosed() methods produce an IntStream that contains ordered integers between the specified start 
and end. The specified end is exclusive in the range() method, whereas it is inclusive in the rangeClosed() 
method. The following snippet of code uses both methods to create an IntStream having integers 1, 2, 3, 4, 
and 5 as their elements:

// Create an IntStream containing 1, 2, 3, 4, and 5
IntStream oneToFive = IntStream.range(1, 6);

// Create an IntStream containing 1, 2, 3, 4, and 5
IntStream oneToFive = IntStream.rangeClosed(1, 5);



Chapter 13 ■ StreamS

689

The LongStream interface also contains range() and rangeClosed() methods, which take arguments 
of type long and return a LongStream. The LongStream and DoubleStream interfaces also contain of() 
methods, which work with the long and double values and return a LongStream and a DoubleStream, 
respectively.

Empty Streams
An empty stream is a stream with no elements. The Stream interface contains an empty() static method to 
create an empty sequential stream.

// Creates an empty stream of strings
Stream<String> stream = Stream.empty();

The IntStream, LongStream, and DoubleStream interfaces also contain an empty() static method to 
create an empty stream of primitive types. Here is one example:

// Creates an empty stream of integers
IntStream numbers = IntStream.empty();

Streams from Functions
An infinite stream is a stream with a data source capable of generating an infinite number of elements. Note 
that I am saying that the data source should be “capable of generating” an infinite number of elements, 
not that the data source should have or contain an infinite number of elements. It is impossible to store an 
infinite number of elements of any kind because of memory and time constraints. However, it is possible to 
have a function that can generate an infinite number of values on demand. The Stream interface contains 
the following two static methods to generate an infinite stream:

•	 <T> Stream<T> iterate(T seed, Predicate<? super T> hasNext, 
UnaryOperator<T> next)

•	 <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

•	 <T> Stream<T> generate(Supplier<? extends T> s)

The iterate() method creates a sequential ordered stream, whereas the generate() method creates a 
sequential unordered stream. The following sections show you how to use these methods.

The stream interfaces for primitive values IntStream, LongStream, and DoubleStream also contain 
iterate() and generate() static methods that take parameters specific to their primitive types. For 
example, these methods are defined as follows in the IntStream interface:

•	 static IntStream iterate(int seed, IntPredicate hasNext, 
IntUnaryOperator next)

•	 IntStream iterate(int seed, IntUnaryOperator f)

•	 IntStream generate(IntSupplier s)

Using the Stream.iterate() Method
The first version of the iterate() method is declared as follows:

static <T> Stream<T> iterate(T seed, Predicate<? super T> hasNext, UnaryOperator<T> next)



Chapter 13 ■ StreamS

690

The method takes three arguments: a seed, a predicate, and a function. It produces elements by 
iteratively applying the next function as long as the hasNext predicate is true. The seed argument is the 
initial element. Calling this method is similar to using a for loop as follows:

for (int index = seed; hasNext.test(index); index = next.applyAsInt(index)) {
    // index is the next element in the stream
}

The following snippet of code produces a stream of integers from 1 to 10:

Stream<Integer> nums = Stream.iterate(1, n -> n <= 10, n -> n + 1);

The second version of the iterate() method is declared as follows:

static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

The method takes two arguments: a seed and a function. The first argument is a seed that is the first 
element of the stream. The second element is generated by applying the function to the first element. The 
third element is generated by applying the function on the second element and so on. Its elements are seed, 
f(seed), f(f(seed)), f(f(f(seed))), and so on. The following statement creates an infinite stream of 
natural numbers and an infinite stream of all odd natural numbers:

// Creates a stream of natural numbers
Stream<Long> naturalNumbers = Stream.iterate(1L, n -> n + 1);

// Creates a stream of odd natural numbers
Stream<Long> oddNaturalNumbers = Stream.iterate(1L, n -> n + 2);

What do you do with an infinite stream? You understand that it is not possible to consume all elements 
of an infinite stream. This is simply because the stream processing will take forever to complete. Typically, 
you convert the infinite stream into a fixed-size stream by applying a limit operation that truncates the input 
stream to be no longer than a specified size. The limit operation is an intermediate operation that produces 
another stream. You apply the limit operation using the limit(long maxSize) method of the Stream 
interface. The following snippet of code creates a stream of the first 10 natural numbers:

// Creates a stream of the first 10 natural numbers
Stream<Long> tenNaturalNumbers = Stream.iterate(1L, n -> n + 1)
                                       .limit(10);

You can apply a forEach operation on a stream using the forEach(Consumer<? super T> action) 
method of the Stream interface. The method returns void. It is a terminal operation. The following snippet of 
code prints the first five odd natural numbers on the standard output:

Stream.iterate(1L, n -> n + 2)
      .limit(5)
      .forEach(System.out::println);

1
3
5
7
9



Chapter 13 ■ StreamS

691

Let’s look at a realistic example of creating an infinite stream of prime numbers. Listing 13-4 contains a 
utility class called PrimeUtil. The class contains two utility methods. The next() instance method returns 
the next prime number after the last found prime number. The next(long after) static method returns 
the prime number after the specified number. The isPrime() static method checks if a number is a prime 
number.

Listing 13-4. A Utility Class to Work with Prime Numbers

// PrimeUtil.java
package com.jdojo.streams;

public class PrimeUtil {
    // Used for a stateful PrimeUtil
    private long lastPrime = 0L;

    // Computes the prime number after the last generated prime
    public long next() {
        lastPrime = next(lastPrime);
        return lastPrime;
    }

    // Computes the prime number after the specified number
    public static long next(long after) {
        long counter = after;

        // Keep looping until you find the next prime number
        while (!isPrime(++counter));

        return counter;
    }

    // Checks if the specified number is a prime number
    public static boolean isPrime(long number) {
        // <= 1 is not a prime number
        if (number <= 1) {
            return false;
        }

        // 2 is a prime number
        if (number == 2) {
            return true;
        }

        // Even numbers > 2 are not prime numbers
        if (number % 2 == 0) {
            return false;
        }



Chapter 13 ■ StreamS

692

        long maxDivisor = (long) Math.sqrt(number);
        for (int counter = 3; counter <= maxDivisor; counter += 2) {
            if (number % counter == 0) {
                return false;
            }
        }

        return true;
    }
}

The following snippet of code creates an infinite stream of prime numbers and prints the first five prime 
numbers on the standard output:

Stream.iterate(2L, PrimeUtil::next)
      .limit(5)
      .forEach(System.out::println);

2
3
5
7
11

There is another way to get the first five prime numbers. You can generate an infinite stream of natural 
numbers, apply a filter operation to pick only the prime numbers, and limit the filtered stream to five. The 
following snippet of code shows this logic using the isPrime() method of the PrimeUtil class:

// Print the first 5 prime numbers
Stream.iterate(2L, n -> n + 1)
      .filter(PrimeUtil::isPrime)
      .limit(5)
      .forEach(System.out::println);

2
3
5
7
11

Sometimes you may want to discard some elements of a stream. This is accomplished using the skip 
operation. The skip(long n) method of the Stream interface discards (or skips) the first n elements of the 
stream. This is an intermediate operation. The following snippet of code uses this operation to print five 
prime numbers, skipping the first 100 prime numbers:

Stream.iterate(2L, PrimeUtil::next)
      .skip(100)
      .limit(5)
      .forEach(System.out::println);



Chapter 13 ■ StreamS

693

547
557
563
569
571

Using everything you have learned about streams, can you write a stream pipeline to print five prime 
numbers that are greater than 3000? This is left as an exercise for the readers.

Using the generate() Method
The generate(Supplier<? extends T> s) method uses the specified Supplier to generate an infinite 
sequential unordered stream. The following snippet of code prints five random numbers greater than or equal 
to 0.0 and less than 1.0 using the random() static method of the Math class. You may get different output.

Stream.generate(Math::random)
      .limit(5)
      .forEach(System.out::println);

0.05958352209327644
0.8122226657626394
0.5073323815997652
0.9327951597282766
0.4314430923877808

If you want to use the generate() method to generate an infinite stream in which the next element 
is generated based on the value of the previous element, you need to use a Supplier that stores the last 
generated element. Note that a PrimeUtil object can act as a Supplier whose next() instance method 
remembers the last generated prime number. The following snippet of code prints five prime numbers after 
skipping the first 100:

Stream.generate(new PrimeUtil()::next)
      .skip(100)
      .limit(5)
      .forEach(System.out::println);

547
557
563
569
571

Java 8 added many methods to the Random class in the java.util package to work with streams. 
Methods like ints(), longs(), and doubles() return infinite IntStream, LongStream, and DoubleStream, 
respectively, which contain random numbers of the int, long, and double types. The following snippet of 
code prints five random int values from an IntStream returned from the ints() method of the Random class:



Chapter 13 ■ StreamS

694

// Print five random integers
new Random().ints()
            .limit(5)
            .forEach(System.out::println);

-1147567659
285663603
-412283607
412487893
-22795557

You may get different output every time you run the code. You can use the nextInt() method of the 
Random class as the Supplier in the generate() method to achieve the same result.

// Print five random integers
Stream.generate(new Random()::nextInt)
      .limit(5)
      .forEach(System.out::println);

If you want to work with only primitive values, you can use the generate() method of the primitive 
type stream interfaces. For example, the following snippet of code prints five random integers using the 
generate() static method of the IntStream interface:

IntStream.generate(new Random()::nextInt)
         .limit(5)
         .forEach(System.out::println);

How would you generate an infinite stream of repeating values? For example, how would you generate 
an infinite stream of zeroes? The following snippet of code shows you how to do this:

IntStream zeroes = IntStream.generate(() -> 0);

Streams from Arrays
The Arrays class in the java.util package contains an overloaded stream() static method to create 
sequential streams from arrays. You can use it to create an IntStream from an int array, a LongStream from  
a long array, a DoubleStream from a double array, and a Stream<T> from an array of the reference type T.  
The following snippet of code creates an IntStream and a Stream<String> from an int array and a  
String array:

// Creates a stream from an int array with elements 1, 2, and 3
IntStream numbers = Arrays.stream(new int[]{1, 2, 3});

// Creates a stream from a String array with elements "Ken", and "Jeff"
Stream<String> names = Arrays.stream(new String[] {"Ken", "Jeff"});

 ■ Tip  You can create a stream from a reference type array using two methods: Arrays.stream(T[] t) and 
Stream.of(T...t) method. providing two methods in the library to accomplish the same thing is intentional.



Chapter 13 ■ StreamS

695

Streams from Collections
The Collection interface contains the stream() and parallelStream() methods that create sequential and 
parallel streams from a Collection, respectively. The following snippet of code creates streams from a set of 
strings:

import java.util.HashSet;
import java.util.Set;
import java.util.stream.Stream;
...
// Create and populate a set of strings
Set<String> names = Set.of("Ken", "jeff");

// Create a sequential stream from the set
Stream<String> sequentialStream = names.stream();

// Create a parallel stream from the set
Stream<String> parallelStream = names.parallelStream();

Streams from Files
Java 8 added many methods to the classes in the java.io and java.nio.file packages to support I/O 
operations using streams. For example,

•	 You can read text from a file as a stream of strings in which each element represents 
one line of text from the file.

•	 You can obtain a stream of JarEntry from a JarFile.

•	 You can obtain the list of entries in a directory as a stream of Path.

•	 You can obtain a stream of Path that is a result of a file search in a specified directory.

•	 You can obtain a stream of Path that contains the file tree of a specified directory.

I show some examples of using streams with file I/O in this section. Refer to the API documentation for 
the java.nio.file.Files, java.io.BufferedReader, and java.util.jar.JarFile classes for more details 
on the stream-related methods.

The BufferedReader and Files classes contain a lines() method that reads a file lazily and returns 
the contents as a stream of strings. Each element in the stream represents one line of text from the file. The 
file needs to be closed when you are done with the stream. Calling the close() method on the stream will 
close the underlying file. Alternatively, you can create the stream in a try-with-resources statement so the 
underlying file is closed automatically.

The program in Listing 13-5 shows how to read contents of a file using a stream. It also walks the entire 
file tree for the current working directory and prints the entries in the directory. The program assumes that 
you have the luci1.txt file, which is supplied with the source code, in the current working directory. If 
the file does not exist, an error message with the absolute path of the expected file is printed. You may get 
different output when you run the program.



Chapter 13 ■ StreamS

696

Listing 13-5. Performing File I/O Using Streams

// IOStream.java
package com.jdojo.streams;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.stream.Stream;

public class IOStream {
    public static void main(String[] args) {
        // Read the contents of the file luci1.txt
        readFileContents("luci1.txt");

        // Print the file tree for the current working directory
        listFileTree();
    }

    public static void readFileContents(String filePath) {
        Path path = Paths.get(filePath);
        if (!Files.exists(path)) {
            System.out.println("The file "
                    + path.toAbsolutePath() + " does not exist.");
            return;
        }

        try (Stream<String> lines = Files.lines(path)) {
            // Read and print all lines
            lines.forEach(System.out::println);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public static void listFileTree() {
        Path dir = Paths.get("");
        System.out.printf("%nThe file tree for %s%n", dir.toAbsolutePath());

        try (Stream<Path> fileTree = Files.walk(dir)) {
            fileTree.forEach(System.out::println);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.



Chapter 13 ■ StreamS

697

The file tree for C:\Java9LanguageFeatures
build
build\modules
build\modules\com
build\modules\com\jdojo
...

Streams from Other Sources
Java 8 added methods in many other classes to return the contents they represent in a stream. Two such 
methods that you may use frequently are explained next.

•	 The chars() method in the CharSequence interface returns an IntStream whose 
elements are int values representing the characters of the CharSequence. You 
can use the chars() method on a String, a StringBuilder, and a StringBuffer 
to obtain a stream of characters of their contents as these classes implement the 
CharSequence interface.

•	 The splitAsStream(CharSequence input) method of the java.util.regex.
Pattern class returns a stream of String whose elements match the pattern.

Let’s look at an example in both categories. The following snippet of code creates a stream of characters 
from a string, filters out all digits and whitespace, and prints the remaining characters:

String str = "5 apples and 25 oranges";
str.chars()
   .filter(n -> !Character.isDigit((char)n) && !Character.isWhitespace((char)n))
   .forEach(n -> System.out.print((char)n));

applesandoranges

The following snippet of code obtains a stream of strings by splitting a string using a regular expression 
(","). The matched strings are printed on the standard output.

String str = "Ken,Jeff,Lee";
Pattern.compile(",")
       .splitAsStream(str)
       .forEach(System.out::println);

Ken
Jeff
Lee



Chapter 13 ■ StreamS

698

Representing an Optional Value
In Java, null is used to represent “nothing” or an “empty” result. Most often, a method returns null if it does 
not have a result to return. This has been a source of frequent NullPointerException in Java programs. 
Consider printing a person’s year of birth, like so:

Person ken = new Person(1, "Ken", Person.Gender.MALE, null, 6000.0);
int year = ken.getDob().getYear(); // Throws a NullPointerException
System.out.println("Ken was born in the year " + year);

The code throws a NullPointerException at runtime. The problem is in the return value of the 
ken.getDob() method that returns null. Calling the getYear() method on a null reference results in 
the NullPointerException. So, what is the solution? In fact, there is no real solution to this. Java 8  
introduced an Optional<T> class in the java.util package to deal with NullPointerException 
gracefully. Methods that may return nothing should return an Optional instead of null.

An Optional is a container object that may or may not contain a non-null value. Its isPresent() 
method returns true if it contains a non-null value, and false otherwise. Its get() method returns the 
non-null value if it contains a non-null value, and throws a NoSuchElementException otherwise. This 
implies that when a method returns an Optional, you must, as a practice, check if it contains a non-null 
value before asking it for the value. If you use the get() method before making sure it contains a non-null 
value, you may get a NoSuchElementException instead of getting a NullPointerException. This is why 
I said in the previous paragraph that there is no real solution to the NullPointerException. However, 
returning an Optional is certainly a better way to deal with null, as developers will get used to using the 
Optional objects in the way they are designed to be used.

How do you create an Optional<T> object? The Optional<T> class provides the following static factory 
methods to create its objects:

•	 <T> Optional<T> empty(): Returns an empty Optional. That is, the Optional 
returned from this method does not contain a non-null value.

•	 <T> Optional<T> of(T value): Returns an Optional containing the 
specified value as the non-null value. If the specified value is null, it throws a 
NullPointerException.

•	 <T> Optional<T> ofNullable(T value): Returns an Optional containing the 
specified value if the value is non-null. If the specified value is null, it returns an 
empty Optional.

The following snippet of code shows how to create Optional objects:

// Create an empty Optional
Optional<String> empty = Optional.empty();

// Create an Optional for the string "Hello"
Optional<String> str = Optional.of("Hello");

// Create an Optional with a String that may be null
String nullableString = ""; // get a string that may be null...
Optional<String> str2 = Optional.of(nullableString);



Chapter 13 ■ StreamS

699

The following snippet of code prints the value in an Optional if it contains a non-null value:

// Create an Optional for the string "Hello"
Optional<String> str = Optional.of("Hello");

// Print the value in Optional
if (str.isPresent()) {
    String value = str.get();
    System.out.println("Optional contains " + value);
} else {
    System.out.println("Optional is empty.");
}

Optional contains Hello

You can use the ifPresent(Consumer<? super T> action) method of the Optional class to take an 
action on the value contained in the Optional. If the Optional is empty, this method does not do anything. 
You can rewrite the previous code to print the value in an Optional as follows. Note that if the Optional were 
empty, the code would not print anything.

// Create an Optional for the string "Hello"
Optional<String> str = Optional.of("Hello");

// Print the value in the Optional, if present
str.ifPresent(value -> System.out.println("Optional contains " + value));

Optional contains Hello

The following are four methods to get the value of an Optional:

•	 T get(): Returns the value contained in the Optional. If the Optional is empty, it 
throws a NoSuchElementException.

•	 T orElse(T defaultValue): Returns the value contained in the Optional. If the 
Optional is empty, it returns the specified defaultValue.

•	 T orElseGet(Supplier<? extends T> defaultSupplier): Returns the value 
contained in the Optional. If the Optional is empty, it returns the value returned 
from the specified defaultSupplier.

•	 <X extends Throwable> T orElseThrow(Supplier<? extends X> 
exceptionSupplier) throws X extends Throwable: Returns the value contained 
in the Optional. If the Optional is empty, it throws the exception returned from the 
specified exceptionSupplier.

The Optional<T> class describes a non-null reference type value or its absence. The java.util package 
contains three more classes named OptionalInt, OptionalLong, and OptionalDouble to deal with optional 
primitive values. They contain similarly named methods that apply to primitive data types, except for getting 
their values. They do not contain a get() method. To return their values, the OptionalInt class contains 
a getAsInt(), the OptionalLong class contains a getAsLong(), and the OptionalDouble class contains a 
getAsDouble() method. Like the get() method of the Optional class, the getters for primitive optional 
classes also throw a NoSuchElementException when they are empty. Unlike the Optional class, they do not 



Chapter 13 ■ StreamS

700

contain an ofNullable() factory method because primitive values cannot be null. The following snippet of 
code shows how to use the OptionalInt class:

// Create an empty OptionalInt
OptionalInt empty = OptionalInt.empty();

// Use an OptionalInt to store 287
OptionalInt number = OptionalInt.of(287);

if (number.isPresent()){
    int value = number.getAsInt();
    System.out.println("Number is " + value);
} else {
    System.out.println("Number is absent.");
}

Number is 287

Several methods in the Streams API return an instance of the Optional, OptionalInt, OptionalLong, 
and OptionalDouble when they do not have anything to return. For example, all types of streams let you 
compute the maximum element in the stream. If the stream is empty, there is no maximum element. Note 
that in a stream pipeline, you may start with a non-empty stream and end up with an empty stream because 
of filtering or other operations such as limit, skip, etc. For this reason, the max() method in all stream 
classes returns an optional object. The program in Listing 13-6 shows how to get the maximum integer from 
IntStream.

Listing 13-6. Working with Optional Values

// OptionalTest.java
package com.jdojo.streams;

import java.util.Comparator;
import java.util.Optional;
import java.util.OptionalInt;
import java.util.stream.IntStream;
import java.util.stream.Stream;

public class OptionalTest {
    public static void main(String[] args) {
        // Get the maximum of odd integers from the stream
        OptionalInt maxOdd = IntStream.of(10, 20, 30)
                                      .filter(n -> n % 2 == 1)
                                      .max();
        if (maxOdd.isPresent()) {
            int value = maxOdd.getAsInt();
            System.out.println("Maximum odd integer is " + value);
        } else {
            System.out.println("Stream is empty.");
        }



Chapter 13 ■ StreamS

701

        // Get the maximum of odd integers from the stream
        OptionalInt numbers = IntStream.of(1, 10, 37, 20, 31)
                                       .filter(n -> n % 2 == 1)
                                       .max();
        if (numbers.isPresent()) {
            int value = numbers.getAsInt();
            System.out.println("Maximum odd integer is " + value);
        } else {
            System.out.println("Stream is empty.");
        }

        // Get the longest name
        Optional<String> name = Stream.of("Ken", "Ellen", "Li")
                                      .max(Comparator.comparingInt(String::length));
        if (name.isPresent()) {
            String longestName = name.get();
            System.out.println("Longest name is " + longestName);
        } else {
            System.out.println("Stream is empty.");
        }
    }
}

Stream is empty.
Maximum odd integer is 37
Longest name is Ellen

Java 9 added the following methods to the Optional<T> class:

•	 void ifPresentOrElse(Consumer<? super T> action, Runnable emptyAction)

•	 Optional<T> or(Supplier<? extends Optional<? extends T>> supplier)

•	 Stream<T> stream()

Before I describe these methods and present a complete program showing their use, consider the 
following list of an Optional<Integer>:

List<Optional<Integer>> optionalList = List.of(Optional.of(1),
                                               Optional.empty(),
                                               Optional.of(2),
                                               Optional.empty(),
                                               Optional.of(3));

The list contains five Optional elements, two of which are empty and three contain values as 1, 2, and 3. 
I refer to this list in the subsequent discussion.



Chapter 13 ■ StreamS

702

The ifPresentOrElse() method lets you provide two alternate courses of actions. If a value is present, 
it performs the specified action with the value. Otherwise, it performs the specified emptyAction. The 
following snippet of code iterates over all the elements in the list using a stream to print the value if Optional 
contains a value and an "Empty" string if Optional is empty:

optionalList.stream()
            .forEach(p -> p.ifPresentOrElse(System.out::println,
                                            () -> System.out.println("Empty")));

1
Empty
2
Empty
3

The or() method returns the Optional itself if the Optional contains a non-null value. Otherwise, it 
returns the Optional returned by the specified supplier. The following snippet of code creates a stream 
from a list of Optional and uses the or() method to map all empty Optionals to an Optional with a value of 
zero.

optionalList.stream()
            .map(p -> p.or(() -> Optional.of(0)))
            .forEach(System.out::println);

Optional[1]
Optional[0]
Optional[2]
Optional[0]
Optional[3]

The stream() method returns a sequential stream of elements containing the value present in the 
Optional. If the Optional is empty, it returns an empty stream. Suppose you have a list of Optional and you 
want to collect all present values in another list. You can achieve this in Java 8 as follows:

// Print the values in all non-empty Optionals
optionalList.stream()
            .filter(Optional::isPresent)
            .map(Optional::get)
            .forEach(System.out::println);

1
2
3

You had to use a filter to filter out all empty Optionals and map the remaining Optionals to their values. 
With the new stream() method in JDK9, you can combine the filter() and map() operations into one 
flatMap() operation as shown. I discuss flattening streams in detail in the “Flattening Streams” section later 
in this chapter.



Chapter 13 ■ StreamS

703

// Print the values in all non-empty Optionals
optionalList.stream()
            .flatMap(Optional::stream)
            .forEach(System.out::println);

1
2
3

Applying Operations to Streams
Table 13-1 lists some of the commonly used stream operations, their types, and descriptions. The Stream 
interface contains a method with the same name as the name of the operation in the table. You have seen 
some of these operations in previous sections. Subsequent sections cover them in detail.

Table 13-1. List of Commonly Used Stream Operations Supported by the Streams API

Operation Type Description

distinct Intermediate Returns a stream consisting of the distinct elements of this stream. 
Elements e1 and e2 are considered equal if e1.equals(e2) returns 
true.

filter Intermediate Returns a stream consisting of the elements of this stream that match 
the specified predicate.

flatMap Intermediate Returns a stream consisting of the results of applying the specified 
function to the elements in this stream. The function produces a 
stream for each input element and the output streams are flattened. 
Performs one-to-many mapping.

limit Intermediate Returns a stream consisting of the elements in this stream, truncated to 
be no longer than the specified size.

map Intermediate Returns a stream consisting of the results of applying the specified 
function to the elements in this stream. Performs one-to-one mapping.

peek Intermediate Returns a stream whose elements consist of this stream. It applies the 
specified action as it consumes elements of this stream. It is mainly 
used for debugging purposes.

skip Intermediate Discards the first N elements in the stream and returns the remaining 
stream. If this stream contains fewer than N elements, an empty stream 
is returned.

dropWhile Intermediate Returns the elements of the stream, discarding the elements from the 
beginning for which a predicate is true. This operation was added to 
the Streams API in Java 9.

takeWhile Intermediate Returns elements from the beginning of the stream, which match 
a predicate, discarding the rest of the elements. This operation was 
added to the Streams API in Java 9.

sorted Intermediate Returns a stream consisting of the elements in this stream, sorted 
according to natural order or the specified Comparator. For an ordered 
stream, the sort is stable.

(continued)



Chapter 13 ■ StreamS

704

Debugging a Stream Pipeline
You apply a sequence of operations on a stream. Each operation transforms the elements of the input 
stream, either producing another stream or a result. Sometimes you may need to look at the elements of the 
streams as they pass through the pipeline. You can do so by using the peek(Consumer<? super T> action) 
method of the Stream<T> interface that is meant only for debugging purposes. It produces a stream after 
applying an action on each input element. The IntStream, LongStream, and DoubleStream methods also 
contain a peek() method that takes a IntConsumer, a LongConsumer, and a DoubleConsumer as an argument. 
Typically, you use a lambda expression with the peek() method to log messages describing elements being 
processed. The following snippet of code uses the peek() method at three places to print the elements 
passing through the stream pipeline:

int sum = Stream.of(1, 2, 3, 4, 5)
                .peek(e -> System.out.println("Taking integer: " + e))
                .filter(n -> n % 2 == 1)
                .peek(e -> System.out.println("Filtered integer: " + e))
                .map(n -> n * n)
                .peek(e -> System.out.println("Mapped integer: " + e))
                .reduce(0, Integer::sum);

System.out.println("Sum = " + sum);

Taking integer: 1
Filtered integer: 1
Mapped integer: 1
Taking integer: 2
Taking integer: 3
Filtered integer: 3
Mapped integer: 9
Taking integer: 4

Table 13-1. (continued)

Operation Type Description

allMatch Terminal Returns true if all elements in the stream match the specified 
predicate, false otherwise. Returns true if the stream is empty.

anyMatch Terminal Returns true if any element in the stream matches the specified 
predicate, false otherwise. Returns false if the stream is empty.

findAny Terminal Returns any element from the stream. An empty Optional is returned 
for an empty stream.

findFirst Terminal Returns the first element of the stream. For an ordered stream, it 
returns the first element in the encounter order; for an unordered 
stream, it returns any element.

noneMatch Terminal Returns true if no elements in the stream match the specified 
predicate, false otherwise. Returns true if the stream is empty.

forEach Terminal Applies an action for each element in the stream.

reduce Terminal Applies a reduction operation to compute a single value from the 
stream.



Chapter 13 ■ StreamS

705

Taking integer: 5
Filtered integer: 5
Mapped integer: 25
Sum = 35

Notice that the output shows the even numbers being taken from the data source, but not passing the 
filter operation.

Applying the ForEach Operation
The forEach operation takes an action for each element of the stream. The action may simply print each 
element of the stream to the standard output or increase the income of every person in a stream by 10%. The 
Stream<T> interface contains two methods to perform the forEach operation:

•	 void forEach(Consumer<? super T> action)

•	 void forEachOrdered(Consumer<? super T> action)

IntStream, LongStream, and DoubleStream also contain the same methods, except that their parameter 
type is the specialized consumer types for primitives; for example, the parameter type for the forEach() 
method in the IntStream is IntConsumer.

Why do you have two methods to perform the forEach operation? Sometimes the order in which 
the action is applied for the elements in a stream is important, and sometimes it is not. The forEach() 
method does not guarantee the order in which the action for each element in the stream is applied. The 
forEachOrdered() method performs the action in the encounter order of elements defined by the stream. 
Use the forEachOrdered() method for a parallel stream only when necessary because it may slow down 
processing. The following snippet of code prints the details of females in the person list:

Person.persons()
      .stream()
      .filter(Person::isFemale)
      .forEach(System.out::println);

(3, Donna, FEMALE, 1962-07-29, 8700.00)
(5, Laynie, FEMALE, 2012-12-13, 0.00)

The program in Listing 13-7 shows how to use the forEach() method to increase the income of all 
females by 10%. The output shows that only Donna got an increase because another female named Laynie 
had 0.0 income before.

Listing 13-7. Applying the ForEach Operation on a List of Persons

// ForEachTest.java
package com.jdojo.streams;

import java.util.List;

public class ForEachTest {
    public static void main(String[] args) {
        // Get the list of persons
        List<Person> persons = Person.persons();



Chapter 13 ■ StreamS

706

        // Print the list
        System.out.println("Before increasing the income: " + persons);

        // Increase the income of females by 10%
        persons.stream()
               .filter(Person::isFemale)
               .forEach(p -> p.setIncome(p.getIncome() * 1.10));

        // Print the list again
        System.out.println("After increasing the income: " + persons);
    }
}

Before increasing the income: [(1, Ken, MALE, 1970-05-04, 6000.00), (2, Jeff, MALE, 1970-
07-15, 7100.00), (3, Donna, FEMALE, 1962-07-29, 8700.00), (4, Chris, MALE, 1993-12-16, 
1800.00), (5, Laynie, FEMALE, 2012-12-13, 0.00), (6, Li, MALE, 2001-05-09, 2400.00)]
After increasing the income: [(1, Ken, MALE, 1970-05-04, 6000.00), (2, Jeff, MALE, 1970-
07-15, 7100.00), (3, Donna, FEMALE, 1962-07-29, 9570.00), (4, Chris, MALE, 1993-12-16, 
1800.00), (5, Laynie, FEMALE, 2012-12-13, 0.00), (6, Li, MALE, 2001-05-09, 2400.00)]

Applying the Map Operation
A map operation (also known as mapping) applies a function to each element of the input stream to produce 
another stream (also called an output stream or a mapped stream). The number of elements in the input 
and output streams is the same. The operation does not modify the elements of the input stream—at least it 
is not supposed to.

Figure 13-7 depicts the application of the map operation on a stream. It shows element e1 from the 
input stream being mapped to element et1 in the mapped stream, element e2 mapped to et2, etc.

e1

e2

e3

en

et1

et2

et3

etn

map(e)

Input stream Output stream

Figure 13-7. A pictorial view of the map operation

Mapping a stream to another stream is not limited to any specific type of elements. You can map a 
stream of T to a stream of type S, where T and S may be the same or different types. For example, you can 
map a stream of Person to a stream of int where each Person element in the input stream maps to the 



Chapter 13 ■ StreamS

707

Person’s ID in the mapped stream. You can apply the map operation on a stream using one of the following 
methods of the Stream<T> interface:

•	 <R> Stream<R> map(Function<? super T,? extends R> mapper)

•	 DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper)

•	 IntStream mapToInt(ToIntFunction<? super T> mapper)

•	 LongStream mapToLong(ToLongFunction<? super T> mapper)

The map operation takes a function as an argument. Each element from the input stream is passed to the 
function. The returned value from the function is the mapped element in the mapped stream. Use the map() 
method to perform the mapping to reference type elements. If the mapped stream is of a primitive type, use 
other methods; for example, use the mapToInt() method to map a stream of a reference type to a stream of 
int. The IntStream, LongStream, and DoubleStream interfaces contain similar methods to facilitate mapping 
of one type of stream to another. The methods supporting the map operation on an IntStream are as follows:

•	 IntStream map(IntUnaryOperator mapper)

•	 DoubleStream mapToDouble(IntToDoubleFunction mapper)

•	 LongStream mapToLong(IntToLongFunction mapper)

•	 <U> Stream<U> mapToObj(IntFunction<? extends U> mapper)

The following snippet of code creates an IntStream whose elements are integers from 1 to 5, maps  
the elements of the stream to their squares, and prints the mapped stream on the standard output. Note  
that the map() method used in the code is the map() method of the IntStream interface.

IntStream.rangeClosed(1, 5)
         .map(n -> n * n)
         .forEach(System.out::println);

1
4
9
16
25

The following snippet of code maps the elements of a stream of people to their names and prints the 
mapped stream. Note that the map() method used in the code is the map() method of the Stream interface.

Person.persons()
      .stream()
      .map(Person::getName)
      .forEach(System.out::println);

Ken
Jeff
Donna
Chris
Laynie
Li



Chapter 13 ■ StreamS

708

Flattening Streams
In the previous section, you saw the map operation that facilitates a one-to-one mapping. Each element of 
the input stream is mapped to an element in the output stream. The Streams API also supports one-to-many 
mapping through the flatMap operation. It works as follows:

 1. It takes an input stream and produces an output stream using a mapping 
function.

 2. The mapping function takes an element from the input stream and maps the 
element to a stream. The type of input element and the elements in the mapped 
stream may be different. This step produces a stream of streams. Suppose the 
input stream is a Stream<T> and the mapped stream is Stream<Stream<R>> 
where T and R may be the same or different.

 3. Finally, it flattens the output stream (that is, a stream of streams) to produce a 
stream. That is, the Stream<Stream<R>> is flattened to Stream<R>.

It takes some time to understand the flat map operation. Suppose that you have a stream of three 
numbers: 1, 2, and 3. You want to produce a stream that contains the numbers and the squares of the 
numbers. You want the output stream to contain 1, 1, 2, 4, 3, and 9. The following is the first, incorrect 
attempt to achieve this:

Stream.of(1, 2, 3)
      .map(n -> Stream.of(n, n * n))
      .forEach(System.out::println);

java.util.stream.ReferencePipeline$Head@372f7a8d
java.util.stream.ReferencePipeline$Head@2f92e0f4
java.util.stream.ReferencePipeline$Head@28a418fc

Are you surprised by the output? You do not see numbers in the output. The input stream to the map() 
method contains three integers: 1, 2, and 3. The map() method produces one element for each element in 
the input stream. In this case, the map() method produces a Stream<Integer> for each integer in the input 
stream. It produces three Stream<Integer>s. The first stream contains 1 and 1; the second one contains 2 
and 4; the third one contains 3 and 9. The forEach() method receives the Stream<Integer> object as its 
argument and prints the string returned from the toString() method of each Stream<Integer>. You can 
call the forEach() on a stream, so let’s nest its call to print the elements of the stream of streams, like so:

Stream.of(1, 2, 3)
      .map(n -> Stream.of(n, n * n))
      .forEach(e -> e.forEach(System.out::println));

1
1
2
4
3
9



Chapter 13 ■ StreamS

709

You were able to print the numbers and their squares. But you have not achieved the goal of getting 
those numbers in a Stream<Integer>. They are still in the Stream<Stream<Integer>>. The solution is to use 
the flatMap() method instead of the map() method. The following snippet of code does this:

Stream.of(1, 2, 3)
      .flatMap(n -> Stream.of(n, n * n))
      .forEach(System.out::println);

1
1
2
4
3
9

Figure 13-8 shows the pictorial view of how the flatMap() method works in this example. If you still 
have doubts about the workings of the flatMap operation, you can think of its name in the reverse order. 
Read it as mapFlat, which means “map the elements of the input stream to streams, and then flatten the 
mapped streams.”

9, 3, 4, 2, 1, 13, 2, 11, 2, 
3 

9, 3

4, 2

1, 1

forEach

flatMap

3

2

1

Figure 13-8. Flattening a stream using the flatMap() method

Let’s take another example of the flat map operation. Suppose you have a stream of strings. How will 
you count the number of the Es in the strings? The following snippet of code shows you how to do it:

long count = Stream.of("Ken", "Jeff", "Ellen")
                   .map(name -> name.chars())
                   .flatMap(intStream -> intStream.mapToObj(n -> (char)n))
                   .filter(ch -> ch == 'e' || ch == 'E')
                   .count();

System.out.println("Es count: " + count);

Es count: 4

The code maps the strings to IntStream. Note that the chars() method of the String class returns 
an IntStream, not a Stream<Character>. The output of the map() method is Stream<IntStream>. The 
flatMap() method maps the Stream<IntStream> to Stream<Stream<Character>> and finally, flattens it 
to produce a Stream<Character>. So, the output of the flatMap() method is Stream<Character>. The 
filter() method filters out any characters that are not an E or e. Finally, the count() method returns the 



Chapter 13 ■ StreamS

710

number of elements in the stream. The main logic is to convert the Stream<String> to a Stream<Character>. 
You can achieve the same using the following code as well:

long count = Stream.of("Ken", "Jeff", "Ellen")
                   .flatMap(name -> IntStream.range(0, name.length())
                                             .mapToObj(name::charAt))
                   .filter(ch -> ch == 'e' || ch == 'E')
                   .count();

The IntStream.range() method creates an IntStream that contains the indexes of all characters in the 
input string. The mapToObj() method converts the IntStream into a Stream<Character> whose elements are 
the characters in the input string.

Applying the Filter Operation
The filter operation is applied on an input stream to produce another stream, which is known as the filtered 
stream. The filtered stream contains all elements of the input stream for which a predicate evaluates to 
true. A predicate is a function that accepts an element of the stream and returns a boolean value. Unlike a 
mapped stream, the filtered stream is of the same type as the input stream.

The filter operation produces a subset of the input stream. If the predicate evaluates to false for all 
elements of the input stream, the filtered stream is an empty stream. Figure 13-9 shows a pictorial view of 
applying a filter operation to a stream. The figure shows that two elements (e1 and en) from the input stream 
made it to the filtered stream and the other two elements (e2 and e3) were filtered out.

X

X

e1

e2

e3

en

e1

en

filter(e)

Input stream Filtered stream

Figure 13-9. A pictorial view of the filter operation

You can apply a filter operation to a stream using the filter() method of the Stream, IntStream, 
LongStream, and DoubleStream interfaces. The method accepts a Predicate. The Streams API offers 
different flavors of the filter operations, which I discuss after a few examples of using the filter() method.

 ■ Tip  In a map operation, the new stream contains the same number of elements with different values from 
the input stream. In a filter operation, the new stream contains a different number of elements with the same 
values from the input stream.



Chapter 13 ■ StreamS

711

The following snippet of code uses a stream of people and filters in only females. It maps the females to 
their names and prints them to the standard output.

Person.persons()
      .stream()
      .filter(Person::isFemale)
      .map(Person::getName)
      .forEach(System.out::println);

Donna
Laynie

The following snippet of code applies two filter operations to print the names of all males having 
income more than 5000.0:

Person.persons()
      .stream()
      .filter(Person::isMale)
      .filter(p -> p.getIncome() > 5000.0)
      .map(Person::getName)
      .forEach(System.out::println);

Ken
Jeff

You could have accomplished the same using the following statement that uses only one filter operation 
that includes both predicates for filtering into one predicate:

Person.persons()
      .stream()
      .filter(p -> p.isMale() && p.getIncome() > 5000.0)
      .map(Person::getName)
      .forEach(System.out::println);

Ken
Jeff

The following methods can be used to apply filter operations to streams:

•	 Stream<T> skip(long count)

•	 Stream<T> limit(long maxCount)

•	 default Stream<T> dropWhile(Predicate<? super T> predicate)

•	 default Stream<T> takeWhile(Predicate<? super T> predicate)

The skip() method returns the elements of the stream after skipping the specified count elements from 
the beginning. The limit() method returns elements from the beginning of the stream that are equal to or 
less than the specified maxCount. One of these methods drop elements from the beginning and another takes 



Chapter 13 ■ StreamS

712

elements from the beginning dropping the remaining. Both work based on the number of elements. The 
dropWhile() and takeWhile() are like skip() and limit() methods, respectively; however, they work on a 
Predicate rather than on the number of elements.

 ■ Tip  the dropWhile() and takeWhile() methods were added to the Stream interface in Java 9. Java 9 
also added these methods to the IntStream, LongStream, and DoubleStream interfaces.

You can think of the dropWhile() and takeWhile() methods similar to the filter() method with 
an exception. The filter() method evaluates the predicate on all elements, whereas the dropWhile() 
and takeWhile() methods evaluate the predicate on elements from the beginning on the stream until the 
predicate evaluates to false.

For an ordered stream, the dropWhile() method returns the elements of the stream discarding the 
elements from the beginning for which the specified predicate is true. Consider the following ordered 
stream of integers:

1, 2, 3, 4, 5, 6, 7

If you use a predicate in the dropWhile() method that returns true for an integer less than 5, the 
method will drop the first four elements and return the rest:

Stream.of(1, 2, 3, 4, 5, 6, 7)
             .dropWhile(e -> e < 5)
             .forEach(System.out::println);

5
6
7

For an unordered stream, the behavior of the dropWhile() method is non-deterministic. It may choose 
to drop any subset of elements matching the predicate. The current implementation drops the matching 
elements from the beginning until it finds a non-matching element. The following snippet of code uses 
the dropWhile() method on an unordered stream and only one of the elements matching the predicate is 
dropped:

Stream.of(1, 5, 6, 2, 3, 4, 7)
      .dropWhile(e -> e < 5)
      .forEach(System.out::println);

5
6
2
3
4
7



Chapter 13 ■ StreamS

713

There are two extreme cases for the dropWhile() method. If the first element does not match the 
predicate, the method returns the original stream. If all elements match the predicate, the method returns an 
empty stream.

The takeWhile() method works the same way as the dropWhile() method, except that it returns the 
matching elements from the beginning of the stream and discards the rest.

 ■ Caution  Use the dropWhile() and takeWhile() methods with ordered, parallel streams with great care 
because you may see a performance hit. In an ordered, parallel stream, elements must be ordered and returned 
from all threads before these methods can return. these methods perform best with sequential streams.

Applying the Reduce Operation
The reduce operation combines all elements of a stream to produce a single value by applying a combining 
function repeatedly. It is also called reduction operation or a fold. Computing the sum, maximum, average, 
count, etc. of elements of a stream of integers are examples of reduce operations. Collecting elements of a 
stream in a List, Set, or Map is also an example of the reduce operation.

The reduce operation takes two parameters called a seed (also called an initial value) and an 
accumulator. The accumulator is a function. If the stream is empty, the seed is the result. Otherwise, the 
seed represents a partial result. The partial result and an element are passed to the accumulator, which 
returns another partial result. This repeats until all elements are passed to the accumulator. The last value 
returned from the accumulator is the result of the reduce operation. Figure 13-10 shows a pictorial view of 
the reduce operation.

e1

e2

e3

en

reduce(seed, op)

Input stream

result

seed

Figure 13-10. A pictorial view of applying the reduce operation

The stream-related interfaces contain two methods called reduce()and collect() to perform generic 
reduce operations. Methods such as sum(), max(), min(), count(), etc. are also available to perform 
specialized reduce operations. Note that the specialized methods are not available for all types of streams. 
For example, having a sum() method in the Stream<T> interface does not make sense because adding 
reference type elements, such as adding two people, is meaningless. So, you will find methods like sum() 
only in IntStream, LongStream, and DoubleStream interfaces. Counting the number of elements in a stream 
makes sense for all types of streams. So, the count() method is available for all types of streams. I discuss the 
reduce() method in this section. I discuss the collect() method in several subsequent sections.



Chapter 13 ■ StreamS

714

Let’s consider the following snippet of code, which performs the reduce operation in the imperative 
programming style. The code computes the sum of all integers in a list.

// Create the list of integers
List<Integer> numbers = List.of(1, 2, 3, 4, 5);

// Declare an accumulator called sum and initialize (or seed) it to zero
int sum = 0;

for(int num : numbers) {
    // Accumulate the partial result in sum
    sum = sum + num;
}

// Print the result
System.out.println(sum);

15

The code declares a variable named sum and initializes the variable to 0. If there is no element in the 
list, the initial value of sum becomes the result. The for-each loop traverses the list and keeps storing the 
partial results in the sum variable, using it as an accumulator. When the for-each loop finishes, the sum 
variable contains the result. As pointed out at the beginning of this chapter, such a for loop has no room for 
parallelization; the entire logic must be executed in a single thread.

Consider another example that computes the sum of incomes of persons in a list:

// Declare an accumulator called sum and initialize it to zero
double sum = 0.0;

for(Person person : Person.persons()) {
    // Map the Person to his income double
    double income = person.getIncome();

    // Accumulate the partial result in sum
    sum = sum + income;
}

System.out.println(sum);

This time, you had to perform an additional step to map the Person to his income before you could 
accumulate the partial results in the sum variable.

The Stream<T> interface contains a reduce() method to perform the reduce operation. The method has 
three overloaded versions:

•	 T reduce(T identity, BinaryOperator<T> accumulator)

•	 <U> U reduce(U identity, BiFunction<U,? super T,U> accumulator, 
BinaryOperator<U> combiner)

•	 Optional<T> reduce(BinaryOperator<T> accumulator)



Chapter 13 ■ StreamS

715

The first version of the reduce() method takes an identity and an accumulator as arguments and 
reduces the stream to a single value of the same type. You can rewrite the example of computing the sum of 
integers in a list as follows:

List<Integer> numbers = List.of(1, 2, 3, 4, 5);
int sum = numbers.stream()
                 .reduce(0, Integer::sum);
System.out.println(sum);

15

Let’s attempt to do the same with the second example, which computes the sum of the incomes. The 
following code generates a compile-time error. Only the relevant part of the error message is shown.

double sum = Person.persons()
                   .stream()
                   .reduce(0.0, Double::sum);

error: no suitable method found for reduce(double,Double::sum)
                        .reduce(0.0, Double::sum);
                        ^
    method Stream.reduce(Person,BinaryOperator<Person>) is not applicable
      (argument mismatch; double cannot be converted to Person) ...

The stream() method in Person.persons().stream() returns a Stream<Person>, and therefore, the 
reduce() method is supposed to perform a reduction on the Person objects. However, the first argument to 
the method is 0.0, which implies that the method is attempting to operate on the Double type, not the Person 
type. This mismatch in the expected argument type Person and the actual argument type Double resulted in 
the error.

You wanted to compute the sum of the incomes of all people. You need to map the stream of people to a 
stream of their incomes using the map operation as follows:

double sum = Person.persons()
                   .stream()
                   .map(Person::getIncome)
                   .reduce(0.0, Double::sum);
System.out.println(sum);

26000.0

Performing a map-reduce operation is typical in functional programming. The second version of the 
reduce method, shown again for easy reference, lets you perform a map operation, followed by a reduce 
operation.

<U> U reduce(U identity, BiFunction<U,? super T,U> accumulator, BinaryOperator<U> combiner)



Chapter 13 ■ StreamS

716

Note that the second argument, which is the accumulator, takes an argument whose type may be 
different from the type of the stream. This is used for the map operation as well as for the accumulating 
the partial results. The third argument is used for combining the partial results when the reduce operation 
is performed in parallel, which I elaborate on shortly. The following snippet of code prints the sum of the 
incomes of all people:

double sum = Person.persons()
    .stream()
    .reduce(0.0, (partialSum, person) -> partialSum + person.getIncome(), Double::sum);
System.out.println(sum);

26000.0

If you examine the code, the second argument to the reduce() method is sufficient to produce 
the desired result in this case. So, what is the purpose of the third argument, Double::sum, which is the 
combiner? In fact, the combiner was not used in the reduce() operation at all, even if you specified it. 
You can verify that the combiner was not used using the following code, which prints a message from the 
combiner:

double sum = Person.persons()
    .stream()
    .reduce(0.0, (partialSum, person) -> partialSum + person.getIncome(),
                (a, b) -> {
                    System.out.println("Combiner called: a = " + a + "b = " + b );
                    return a + b;
                });

System.out.println(sum);

26000.0

The output proves that the combiner was not called. Why do you need to provide the combiner when 
it is not used? It is used when the reduce operation is performed in parallel. In that case, each thread will 
accumulate the partial results using the accumulator. At the end, the combiner is used to combine the 
partial results from all threads to get the result. The following snippet of code shows how the sequential 
reduce operation works. The code prints a message at several steps along with the current thread name that 
is performing the operation.

double sum = Person.persons()
                   .stream()
                   .reduce(0.0,
                           (Double partialSum, Person p) -> {
                              double accumulated = partialSum + p.getIncome();
                              System.out.println(Thread.currentThread().getName() +
                                   " - Accumulator: partialSum = " +                          

partialSum + ", person = " + p +
                                ", accumulated = " + accumulated);
                             return accumulated;
                           },



Chapter 13 ■ StreamS

717

                           (a, b) -> {
                               double combined = a + b;
                               System.out.println(Thread.currentThread().getName() +
                               " - Combiner: a = " + a + ", b = " + b +
                               ", combined = " + combined);
                              return combined;
                           });

System.out.println(sum);

main - Accumulator: partialSum = 0.0, person = (1, Ken, MALE, 1970-05-04, 6000.00), 
accumulated = 6000.0
main - Accumulator: partialSum = 6000.0, person = (2, Jeff, MALE, 1970-07-15, 7100.00), 
accumulated = 13100.0
main - Accumulator: partialSum = 13100.0, person = (3, Donna, FEMALE, 1962-07-29, 8700.00), 
accumulated = 21800.0
main - Accumulator: partialSum = 21800.0, person = (4, Chris, MALE, 1993-12-16, 1800.00), 
accumulated = 23600.0
main - Accumulator: partialSum = 23600.0, person = (5, Laynie, FEMALE, 2012-12-13, 0.00), 
accumulated = 23600.0
main - Accumulator: partialSum = 23600.0, person = (6, Li, MALE, 2001-05-09, 2400.00), 
accumulated = 26000.0
26000.0

The output shows that the accumulator was sufficient to produce the result and the combiner was never 
called. Notice that there was only one thread named main that processed all people in the stream.

Let’s turn the stream into a parallel stream, keeping all the debugging messages. The following code 
uses a parallel stream to get the sum of the incomes of all people. You may get different output containing a 
different message, but the sum value would be the same as 26000.0.

double sum = Person.persons()
                   .parallelStream()
                   .reduce(0.0,
                           (Double partialSum, Person p) -> {
                              double accumulated = partialSum + p.getIncome();
                              System.out.println(Thread.currentThread().getName() +
                                   " - Accumulator: partialSum = " +  

partialSum + ", person = " + p +
                                ", accumulated = " + accumulated);
                             return accumulated;
                           },
                           (a, b) -> {
                               double combined = a + b;
                               System.out.println(Thread.currentThread().getName() +
                               " - Combiner: a = " + a + ", b = " + b +
                               ", combined = " + combined);
                              return combined;
                           });

System.out.println(sum);



Chapter 13 ■ StreamS

718

ForkJoinPool.commonPool-worker-4 - Accumulator: partialSum = 0.0, person = (5, Laynie, 
FEMALE, 2012-12-13, 0.00), accumulated = 0.0
ForkJoinPool.commonPool-worker-2 - Accumulator: partialSum = 0.0, person = (6, Li, MALE, 
2001-05-09, 2400.00), accumulated = 2400.0
ForkJoinPool.commonPool-worker-1 - Accumulator: partialSum = 0.0, person = (2, Jeff, MALE, 
1970-07-15, 7100.00), accumulated = 7100.0
ForkJoinPool.commonPool-worker-2 - Combiner: a = 0.0, b = 2400.0, combined = 2400.0
ForkJoinPool.commonPool-worker-5 - Accumulator: partialSum = 0.0, person = (3, Donna, 
FEMALE, 1962-07-29, 8700.00), accumulated = 8700.0
main - Accumulator: partialSum = 0.0, person = (4, Chris, MALE, 1993-12-16, 1800.00), 
accumulated = 1800.0
ForkJoinPool.commonPool-worker-3 - Accumulator: partialSum = 0.0, person = (1, Ken, MALE, 
1970-05-04, 6000.00), accumulated = 6000.0
main - Combiner: a = 1800.0, b = 2400.0, combined = 4200.0
ForkJoinPool.commonPool-worker-5 - Combiner: a = 7100.0, b = 8700.0, combined = 15800.0
ForkJoinPool.commonPool-worker-5 - Combiner: a = 6000.0, b = 15800.0, combined = 21800.0
ForkJoinPool.commonPool-worker-5 - Combiner: a = 21800.0, b = 4200.0, combined = 26000.0
26000.0

The output shows that six threads (five fork/join worker threads and one main thread) performed the 
parallel reduce operation. They all performed partial reduction using the accumulator to obtain partial 
results. Finally, the partial results were combined using the combiner to get the result.

Sometimes you cannot specify a default value for a reduce operation. Suppose you want to get 
maximum integer value from a stream of integers. If the stream is empty, you cannot default the maximum 
value to 0. In such a case, the result is not defined. The third version of the reduce(BinaryOperator<T> 
accumulator) method is used to perform such a reduction operation. The method returns an Optional<T> 
that wraps the result or the absence of a result. If the stream contains only one element, that element is the 
result. If the stream contains more than one element, the first two elements are passed to the accumulator, 
and subsequently, the partial result and the remaining elements are passed to the accumulator. The 
following snippet of code computes the maximum of integers in a stream:

Optional<Integer> max = Stream.of(1, 2, 3, 4, 5)
                              .reduce(Integer::max);
if (max.isPresent()) {
    System.out.println("max = " + max.get());
} else {
    System.out.println("max is not defined.");
}

max = 5

The following snippet of code tries to get the maximum of integers in an empty stream:

Optional<Integer> max = Stream.<Integer>empty()
                              .reduce(Integer::max);
if (max.isPresent()) {
    System.out.println("max = " + max.get());



Chapter 13 ■ StreamS

719

} else {
    System.out.println("max is not defined.");
}

max is not defined.

The following snippet of code prints the details of the highest earner in the person’s list:

Optional<Person> person = Person.persons()
                                .stream()
                                .reduce((p1, p2) -> p1.getIncome() > p2.getIncome() ? p1 : 
p2);
if (person.isPresent()) {
    System.out.println("Highest earner: " + person.get());
} else {
    System.out.println("Could not get the highest earner.");
}

Highest earner: (3, Donna, FEMALE, 1962-07-29, 8700.00)

To compute the sum, max, min, average, etc. of a numeric stream, you do not need to use the reduce() 
method. You can map the non-numeric stream into one of the three numeric stream types (IntStream, 
LongStream, or DoubleStream) and use the specialized methods for these purposes. The following snippet of 
code prints the sum of the incomes of all people. Note the use of the mapToDouble() method that converts a 
Stream<Person> to a DoubleStream. The sum() method is called on the DoubleStream.

double totalIncome = Person.persons()
                           .stream()
                           .mapToDouble(Person::getIncome)
                           .sum();
System.out.println("Total Income: " + totalIncome);

Total Income : 26000.0

To get the minimum and maximum values of a stream, use the min() and max() methods of the 
specific stream. These methods in the Stream<T> interface take a Comparator as an argument and return an 
Optional<T>. They do not take any arguments in the IntStream, LongStream, and DoubleStream interfaces 
and return OptionalInt, OptionalLong, and OptionalDouble, respectively. The following snippet of code 
prints the details of the highest earner in a list of people:

Optional<Person> person = Person.persons()
                                .stream()
                                .max(Comparator.comparingDouble(Person::getIncome));

if (person.isPresent()) {
    System.out.println("Highest earner: " + person.get());
} else {



Chapter 13 ■ StreamS

720

    System.out.println("Could not get the highest earner.");
}

Highest earner: (3, Donna, FEMALE, 1962-07-29, 8700.00)

The following snippet of code prints the highest income in the person list using the max() method of the 
DoubleStream:

OptionalDouble income = Person.persons()
                              .stream()
                              .mapToDouble(Person::getIncome)
                              .max();
if (income.isPresent()) {
    System.out.println("Highest income: " + income.getAsDouble());
} else {
    System.out.println("Could not get the highest income.");
}

Highest income: 8700.0

How will you get the highest earner among males and the highest among females in one stream 
pipeline? So far, you have learned how to compute a single value using the reduce operation. In this case, 
you need to group the people into two groups, males and females, and then compute the person with the 
highest income in each group. I show you how to perform grouping and collect multiple values when I 
discuss the collect() method in the next section.

Streams support a count operation through the count() method, which simply returns the number of 
elements in the stream as a long. The following snippet of code prints the number of elements in the stream 
of people:

long personCount = Person.persons()
                         .stream()
                         .count();
System.out.println("Person count: " + personCount);

Person count: 6

The count operation is a specialized reduce operation. Were you thinking of using the map() and 
reduce() methods to count the number of elements in a stream? The easier way is to map each element in 
the stream to 1 and compute the sum. This approach does not use the reduce() method. Here is how you do 
this:

long personCount = Person.persons()
                         .stream()
                         .mapToLong(p -> 1L)
                         .sum();



Chapter 13 ■ StreamS

721

The following snippet of code uses the map() and reduce() methods to implement the count operation:

long personCount = Person.persons()
                         .stream()
                         .map(p -> 1L)
                         .reduce(0L, Long::sum);

The following snippet of code uses only the reduce() method to implement the count operation:

long personCount = Person.persons()
                         .stream()
                          .reduce(0L, (partialCount, person) -> partialCount + 1L, 

Long::sum);

 ■ Tip  this section showed you many ways to perform the same reduction operation on a stream. Some 
ways may perform better than others depending on the stream type and the parallelization used. Use primitive 
type streams whenever possible to avoid the overhead of unboxing; use parallel streams whenever possible to 
take advantage of the multicores available on the machine.

Collecting Data Using Collectors
So far, you have been applying reduction on a stream to produce a single value (a primitive value or a 
reference value) or void. For example, you used the reduce() method of the Stream<Integer> interface to 
compute a long value that is the sum of its elements. There are several cases in which you want to collect the 
results of executing a stream pipeline into a collection such as a List, a Set, a Map, etc. Sometimes you may 
want to apply complex logic to summarize the stream’s data. For example, you may want to group people 
by their gender and compute the highest earner in every gender group. This is possible using the collect() 
method of the Stream<T> interface. The collect() method is overloaded with two versions:

•	 <R> R collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, 
BiConsumer<R,R> combiner)

•	 <R,A> R collect(Collector<? super T,A,R> collector)

The method uses a mutable reduction operation. It uses a mutable container such as a mutable 
Collection to compute the results from the input stream. The first version of the collect() method takes 
three arguments:

•	 A supplier that supplies a mutable container to store (or collect) the results.

•	 An accumulator that accumulates the results into the mutable container.

•	 A combiner that combines the partial results when the reduction operation takes 
place in parallel.

 ■ Tip  the container to collect the data using the collect() method need not be a Collection. It can be 
any mutable object that can accumulate results, such as a StringBuilder.



Chapter 13 ■ StreamS

722

Suppose you have a stream of people and you want to collect the names of all of the people in an 
ArrayList<String>. Here are the steps to accomplish this.

First, you need to have a supplier that will return an ArrayList<String> to store the names. You can use 
either of the following statements to create the supplier:

// Using a lambda expression
Supplier<ArrayList<String>> supplier = () -> new ArrayList<>();

// Using a constructor reference
Supplier<ArrayList<String>> supplier = ArrayList::new;

Second, you need to create an accumulator that receives two arguments. The first argument is the 
container returned from the supplier, which is the ArrayList<String> in this case. The second argument is 
the element of the stream. Your accumulator should simply add the names to the list. You can use either of 
the following statements to create an accumulator:

// Using a lambda expression
BiConsumer<ArrayList<String>, String> accumulator = (list, name) -> list.add(name);

// Using a method reference
BiConsumer<ArrayList<String>, String> accumulator = ArrayList::add;

Finally, you need a combiner that will combine the results of two ArrayList<String>s into one 
ArrayList<String>. Note that the combiner is used only when you collect the results using a parallel 
stream. In a sequential stream, the accumulator is sufficient to collect all results. Your combiner will be 
simple; it will add all the elements of the second list to the first list using the addAll() method. You can use 
either of the following statements to create a combiner:

// Using a lambda expression
BiConsumer<ArrayList<String>, ArrayList<String>> combiner =
    (list1, list2) -> list1.addAll(list2);

// Using a method reference
BiConsumer<ArrayList<String>, ArrayList<String>> combiner = ArrayList::addAll;

Now you are ready to use the collect() method to collect the names of all people in a list using the 
following snippet of code:

List<String> names = Person.persons()
                           .stream()
                           .map(Person::getName)
                           .collect(ArrayList::new, ArrayList::add, ArrayList::addAll);
System.out.println(names);

[Ken, Jeff, Donna, Chris, Laynie, Li]

You can use a similar approach to collect data in a Set and a Map. It seems to be a lot of plumbing just 
to collect data in a simple collection like a list. Another version of the collect() method provides a simpler 
solution. It takes an instance of the Collector interface as an argument and collects the data for you. The 



Chapter 13 ■ StreamS

723

Collector interface is in the java.util.stream package and it is declared as follows. Only abstract methods 
are shown.

public interface Collector<T,A,R> {
    Supplier<A> supplier();
    BiConsumer<A,T> accumulator();
    BinaryOperator<A> combiner();
    Function<A,R> finisher();
    Set<Collector.Characteristics> characteristics();
}

The Collector interface takes three type parameters called T, A, and R, where T is the type of input 
elements, A is the type of the accumulator, and R is the type of the result. The first three methods look 
familiar; you just used them in the previous example. The finisher is used to transform the intermediate 
type A to result type R. The characteristics of a Collector describe the properties that are represented by the 
constants of the Collector.Characteristics enum.

The designers of the Streams API realized that rolling out your own collector is too much work. They 
provided a utility class called Collectors that provides out-of-box implementations for commonly used 
collectors. Three of the most commonly used methods of the Collectors class are toList(), toSet(), and 
toCollection(). The toList() method returns a Collector that collects the data in a List; the toSet() 
method returns a Collector that collects data in a Set; the toCollection()takes a Supplier that returns 
a Collection to be used to collect data. The following snippet of code collects all names of people in a 
List<String>:

List<String> names = Person.persons()
                           .stream()
                           .map(Person::getName)
                           .collect(Collectors.toList());
System.out.println(names);

[Ken, Jeff, Donna, Chris, Laynie, Li]

Notice that this time you achieved the same result in a much cleaner way.
The following snippet of code collects all names in a Set<String>. Note that a Set keeps only unique 

elements.

Set<String> uniqueNames = Person.persons()
                                 .stream()
                                 .map(Person::getName)
                                 .collect(Collectors.toSet());
System.out.println(uniqueNames);

[Donna, Ken, Chris, Jeff, Laynie, Li]



Chapter 13 ■ StreamS

724

The output is not in a particular order because a Set does not impose any ordering on its elements. You 
can collect names in a sorted set using the toCollection() method as follows:

SortedSet<String> uniqueSortedNames= Person.persons()
                                           .stream()
                                           .map(Person::getName)
                                           .collect(Collectors.toCollection(TreeSet::new));
System.out.println(uniqueSortedNames);

[Chris, Donna, Jeff, Ken, Laynie, Li]

Recall that the toCollection() method takes a Supplier as an argument that is used to collect the data. 
In this case, you have used the constructor reference TreeSet::new as the Supplier. This has an effect of 
using a TreeSet, which is a sorted set, to collect the data.

You can also sort the list of names using the sorted operation. The sorted() method of the Stream 
interface produces another stream containing the same elements in a sorted order. The following snippet of 
code shows how to collect sorted names in a list:

List<String> sortedName = Person.persons()
                                .stream()
                                .map(Person::getName)
                                .sorted()
                                .collect(Collectors.toList());
System.out.println(sortedName);

[Chris, Donna, Jeff, Ken, Laynie, Li]

Note that the code applies the sorting before it collects the names. The collector notices that it is 
collecting an ordered stream (sorted names) and preserves the ordering during the collection process.

You will find many static methods in the Collectors class that return a Collector meant to be used as a 
nested collector. One of these methods is the counting() method that returns the number of input elements. 
Here is an example of counting the number of people in the streams:

long count = Person.persons()
                   .stream()
                   .collect(Collectors.counting());
System.out.println("Person count: " + count);

Person count: 6

You may argue that you could have achieved the same result using the count() method of the Stream 
interface as follows:

long count = Person.persons()
                   .stream()
                   .count();
System.out.println("Persons count: " + count);



Chapter 13 ■ StreamS

725

Persons count: 6

When do you use the Collectors.counting() method instead of the Stream.count() method to count 
the number of elements in a stream? As mentioned before, collectors can be nested. You will see examples of 
nested collectors shortly. These methods in the Collectors class are meant to be used as nested collectors, 
not in this case just to count the number of elements in the stream. Another difference between the two 
is their type: the Stream.count() method represents an operation on a stream, whereas the Collectors.
counting() method returns a Collector. Listing 13-8 shows the complete program to collect sorted names 
in a list.

Listing 13-8. Collecting Results into a Collection

// CollectTest.java
package com.jdojo.streams;

import java.util.List;
import java.util.stream.Collectors;

public class CollectTest {
    public static void main(String[] args) {
        List<String> sortedNames = Person.persons()
                                         .stream()
                                         .map(Person::getName)
                                         .sorted()
                                         .collect(Collectors.toList());
        System.out.println(sortedNames);
    }
}

[Chris, Donna, Jeff, Ken, Laynie, Li]

Collecting Summary Statistics
In a data-centric application, you need to compute the summary statistics on a group of numeric data. For 
example, you may want to know the maximum, minimum, sum, average, and count of the incomes of all 
people. The java.util package contains three classes to collect statistics:

•	 DoubleSummaryStatistics

•	 LongSummaryStatistics

•	 IntSummaryStatistics

These classes do not necessarily need to be used with streams. You can use them to compute the 
summary statistics on any group of numeric data. Using these classes is simple: create an object of the 
class, keep adding numeric data using the accept() method, and finally, call the getter methods such as 
getCount(), getSum(), getMin(), getAverage(), and getMax() to get the statistics for the group of data. 
Listing 13-9 shows how to compute the statistics on a number of double values.



Chapter 13 ■ StreamS

726

Listing 13-9. Computing Summary Statistics on a Group of Numeric Data

// SummaryStats.java
package com.jdojo.streams;

import java.util.DoubleSummaryStatistics;

public class SummaryStats {
    public static void main(String[] args) {
        DoubleSummaryStatistics stats = new DoubleSummaryStatistics();
        stats.accept(100.0);
        stats.accept(500.0);
        stats.accept(400.0);

        // Get stats
        long count = stats.getCount();
        double sum = stats.getSum();
        double min = stats.getMin();
        double avg = stats.getAverage();
        double max = stats.getMax();

        System.out.printf("count=%d, sum=%.2f, min=%.2f, max=%.2f, average=%.2f%n",
                count, sum, min, max, avg);
    }
}

count=3, sum=1000.00, min=100.00, max=500.00, average=333.33

The summary statistics classes were designed to be used with streams. They contain a combine() 
method that combines two summary statistics. Can you guess its use? Recall that you need to specify a 
combiner when you collect data from a stream and this method can act as a combiner for two summary 
statistics. The following snippet of code computes the summary statistics for incomes of all people:

DoubleSummaryStatistics incomeStats =
    Person.persons()
          .stream()
          .map(Person::getIncome)
          .collect(DoubleSummaryStatistics::new,
                   DoubleSummaryStatistics::accept,
                   DoubleSummaryStatistics::combine);

System.out.println(incomeStats);

DoubleSummaryStatistics{count=6, sum=26000.000000, min=0.000000, average=4333.333333, 
max=8700.000000}

The Collectors class contains methods to obtain a collector to compute the summary statistics of 
the specific type of numeric data. The methods are named summarizingDouble(), summarizingLong(), 
and summarizingInt(). They take a function to be applied on the elements of the stream and return a 



Chapter 13 ■ StreamS

727

DoubleSummaryStatistics, a LongSummaryStatistics, and an IntSummaryStatistics, respectively. You 
can rewrite the code for the previous example as follows:

DoubleSummaryStatistics incomeStats =
    Person.persons()
          .stream()
          .collect(Collectors.summarizingDouble(Person::getIncome));

System.out.println(incomeStats);

DoubleSummaryStatistics{count=6, sum=26000.000000, min=0.000000, average=4333.333333, 
max=8700.000000}

The Collectors class contains methods such as counting(), summingXxx(), averagingXxx(), minBy(), 
and maxBy() that return a collector to perform a specific type of summary computation on a group of 
numeric data that you get in one shot using the summarizingXxx() method. Here, Xxx can be Double, Long, 
and Int.

Collecting Data in Maps
You can collect data from a stream into a Map. The toMap() method of the Collectors class returns a 
collector to collect data in a Map. The method is overloaded and it has three versions:

•	 toMap(Function<? super T,? extends K> keyMapper, Function<? super T,? 
extends U> valueMapper)

•	 toMap(Function<? super T,? extends K> keyMapper, Function<? super T,? 
extends U> valueMapper, BinaryOperator<U> mergeFunction)

•	 toMap(Function<? super T,? extends K> keyMapper, Function<? super T,? 
extends U> valueMapper, BinaryOperator<U> mergeFunction, Supplier<M> 
mapSupplier)

The first version takes two arguments. Both arguments are Functions. The first argument maps the 
stream elements to keys in the map. The second argument maps stream elements to values in the map. If 
duplicate keys are found, an IllegalStateException is thrown. The following snippet of code collects a 
person’s data in a Map<long,String> whose keys are the person’s IDs and values are the person’s names:

Map<Long,String> idToNameMap = Person.persons()
                                     .stream()
                                     .collect(Collectors.toMap(Person::getId, 
Person::getName));
System.out.println(idToNameMap);

{1=Ken, 2=Jeff, 3=Donna, 4=Chris, 5=Laynie, 6=Li}



Chapter 13 ■ StreamS

728

Suppose you want collect a person’s name based on gender. The following is the first, incorrect attempt, 
which throws an IllegalStateException. Only partial output is shown.

Map<Person.Gender,String> genderToNamesMap = Person.persons()
        .stream()
        .collect(Collectors.toMap(Person::getGender, Person::getName));

Exception in thread "main" java.lang.IllegalStateException: Duplicate key Ken ...

The runtime is complaining about the duplicate keys because Person::getGender will return the 
gender of the person as the key and you have multiple males and females in the stream.

The solution is to use the second version of the toMap() method to obtain the collection. It lets you 
specify a merge function as a third argument. The merge function is passed the old and new values for the 
duplicate key. The function is supposed to merge the two values and return a new value that will be used for 
the key. In your case, you can concatenate the names of all males and females. The following snippet of code 
accomplishes this:

Map<Person.Gender,String> genderToNamesMap = Person.persons()
    .stream()
    .collect(Collectors.toMap(Person::getGender, Person::getName,
         (oldValue, newValue) -> String.join(", ", oldValue, newValue)));
System.out.println(genderToNamesMap);

{FEMALE=Donna, Laynie, MALE=Ken, Jeff, Chris, Li}

The first two versions of the toMap() method create the Map for you. The third version lets you pass a 
Supplier to provide a Map yourself. I do not cover an example of using this version of the toMap() method.

Armed with two examples of collecting the data in maps, can you think of the logic for collecting data in 
a map that summarizes the number of people by gender? Here is how you accomplish this:

Map<Person.Gender, Long> countByGender = Person.persons()
    .stream()
    .collect(Collectors.toMap(Person::getGender, p -> 1L,
                              (oldCount, newCount) -> oldCount + 1));

System.out.println(countByGender);

{MALE=4, FEMALE=2}

The key mapper function remains the same. The value mapper function is p -> 1L, which means when 
a person belonging to a gender is encountered the first time, its value is set to 1. In case of a duplicate key, 
the merge function is called that simply increments the old value by 1.

The last example in this category that collects the highest earner by gender in a Map is shown in  
Listing 13-10.



Chapter 13 ■ StreamS

729

Listing 13-10. Collecting the Highest Earner by Gender in a Map

// CollectIntoMapTest.java
package com.jdojo.streams;

import java.util.Map;
import java.util.function.Function;
import java.util.stream.Collectors;

public class CollectIntoMapTest {
    public static void main(String[] args) {
        Map<Person.Gender, Person> highestEarnerByGender =
          Person.persons()
            .stream()
            .collect(Collectors.toMap(Person::getGender, Function.identity(),
                (oldPerson, newPerson) ->
            newPerson.getIncome() > oldPerson.getIncome()?newPerson:oldPerson));

        System.out.println(highestEarnerByGender);
    }
}

{FEMALE=(3, Donna, FEMALE, 1962-07-29, 8700.00), MALE=(2, Jeff, MALE, 1970-07-15, 
7100.00)}

The program stores the Person object as the value in the map. Note the use of Function.identity() as 
the function to map values. This method returns an identity function that simply returns the value that was 
passed to it. You could have used a lambda expression of person -> person in its place. The merge function 
compares the income of the person already stored as the value for a key. If the new person has more income 
than the existing one, it returns the new person.

Collecting data into a map is a very powerful way of summarizing data. You will see maps again when I 
discuss grouping and partitioning of data shortly.

 ■ Tip  the toMap() method returns a non-concurrent map that has performance overhead when streams are 
processed in parallel. It has a companion method called toConcurrentMap() that returns a concurrent collector 
that should be used when streams are processed in parallel.

Joining Strings Using Collectors
The joining() method of the Collectors class returns a collector that concatenates the elements of a 
stream of CharSequence and returns the result as a String. The concatenation occurs in the encounter order. 
The joining() method is overloaded and it has three versions:

•	 joining()

•	 joining(CharSequence delimiter)

•	 joining(CharSequence delimiter, CharSequence prefix, CharSequence 
suffix)



Chapter 13 ■ StreamS

730

The version with no arguments simply concatenates all elements. The second version uses a delimiter 
between two elements. The third version uses a delimiter, a prefix, and a suffix. The prefix is added to 
the beginning of the result and the suffix is added to end of the result. Listing 13-11 shows how to use the 
joining() method.

Listing 13-11. Joining a Stream of CharSequence Using a Collector

// CollectJoiningTest.java
package com.jdojo.streams;

import java.util.List;
import java.util.stream.Collectors;

public class CollectJoiningTest {
    public static void main(String[] args) {
        List<Person> persons = Person.persons();
        String names = persons.stream()
                              .map(Person::getName)
                              .collect(Collectors.joining());

        String delimitedNames = persons.stream()
                                       .map(Person::getName)
                                       .collect(Collectors.joining(", "));

        String prefixedNames = persons.stream()
            .map(Person::getName)
            .collect(Collectors.joining(", ", "Hello ", ". Goodbye."));

        System.out.println("Joined names: " + names);
        System.out.println("Joined, delimited names: " + delimitedNames);
        System.out.println(prefixedNames);
    }
}

Joined names: KenJeffDonnaChrisLaynieLi
Joined, delimited names: Ken, Jeff, Donna, Chris, Laynie, Li
Hello Ken, Jeff, Donna, Chris, Laynie, Li. Goodbye.

Grouping Data
Grouping data for reporting purposes is common. For example, you may want to know the average income by 
gender, the youngest person by gender, etc. In previous sections, you used the toMap() method of the Collectors 
class to get collectors that can be used to group data in maps. The groupingBy() method of the Collectors class 
returns a collector that groups the data before collecting them in a Map. If you have worked with SQL statements, it 
is similar to using a “group by” clause. The groupingBy() method is overloaded and it has three versions:

•	 groupingBy(Function<? super T,? extends K> classifier)

•	 groupingBy(Function<? super T,? extends K> classifier,  Collector<? 
super T,A,D> downstream)

•	 groupingBy(Function<? super T,? extends K> classifier, Supplier<M> 
mapFactory, Collector<? super T,A,D> downstream)



Chapter 13 ■ StreamS

731

I discuss the first and second versions. The third version is the same as the second one, except that it 
lets you specify a Supplier that is used as the factory to get the Map. In the first two versions, the collector 
takes care of creating the Map for you.

 ■ Tip  the groupingBy() method returns a non-concurrent map that has performance overhead when the 
stream is processed in parallel. It has a companion method called groupingByConcurrent() that returns a 
concurrent collector that should be used in parallel stream processing for better performance.

In the most generic version, the groupingBy() method takes two parameters:

•	 A classifier that is a function to generate the keys in the map.

•	 A collector that performs a reduction operation on the values associated with  
each key.

The first version of the groupingBy() method returns a collector that collects data into a Map<K, 
List<T>>, where K is the return type of the classifier function and T is the type of elements in the input 
stream. Note that the value of a grouped key in the map is a list of elements from the stream. The following 
snippet of code collects the list of people by gender:

Map<Person.Gender, List<Person>> personsByGender =
    Person.persons()
          .stream()
          .collect(Collectors.groupingBy(Person::getGender));

System.out.println(personsByGender);

{FEMALE=[(3, Donna, FEMALE, 1962-07-29, 8700.00), (5, Laynie, FEMALE, 2012-12-13, 0.00)], 
MALE=[(1, Ken, MALE, 1970-05-04, 6000.00), (2, Jeff, MALE, 1970-07-15, 7100.00),  
(4, Chris, MALE, 1993-12-16, 1800.00), (6, Li, MALE, 2001-05-09, 2400.00)]}

Suppose you want to get a list of names grouped by gender. You need to use the second version of the 
groupingBy() method that lets you perform a reduction operation on the values of each key. Notice that 
the type of the second argument is Collector. The Collectors class contains many methods that return a 
Collector that you will be using as the second argument.

Let’s try a simple case where you want to group people by gender and count the number of people in 
each group. The counting() method of the Collectors class returns a Collector to count the number of 
elements in a stream. The following snippet of code accomplishes this:

Map<Person.Gender, Long> countByGender =
    Person.persons()
          .stream()
          .collect(Collectors.groupingBy(Person::getGender, Collectors.counting()));

System.out.println(countByGender);

{MALE=4, FEMALE=2}



Chapter 13 ■ StreamS

732

Let’s get back to the example of listing a person’s name by gender. You need to use the mapping() 
method of the Collectors class to get a collector that will map the list of people in the value of a key to their 
names and join them. The signature of the mapping() method is as follows:

mapping(Function<? super T,? extends U> mapper, Collector<? super U,A,R> downstream)

Notice the type of the second argument of the mapping() method. It is another Collector. This is 
where dealing with grouping data gets complex. You need to nest collectors inside collectors. To simplify the 
grouping process, you break down the things you want to perform on the data. You have already grouped 
people by their gender. The value of the each key in the map was a List<Person>. Now you want to reduce 
the List<Person> to a String that contains a comma-separated list of the names of all the people. You need 
to think about this operation separately to avoid confusion. You can accomplish this reduction as follows:

 1. Use a function to map each person to his/her name. This function could be as 
simple as a method reference like Person::getName. Think of the output of this 
step as a stream of person names in a group.

 2. What do you want to do with the stream of names generated in the first step? You 
may want to collect them in a String, a List, a Set, or some other data structure. 
In this case, you want to join the names of people, so you use the collector 
returned from the joining() method of the Collectors class.

The following snippet of code shows how to group the names of people by gender:

Map<Person.Gender, String> namesByGender =
    Person.persons()
          .stream()
          .collect(Collectors.groupingBy(Person::getGender,
             Collectors.mapping(Person::getName, Collectors.joining(", "))));

System.out.println(namesByGender);

{MALE=Ken, Jeff, Chris, Li, FEMALE=Donna, Laynie}

The code collects the names for a group in a comma-separated String. Can you think of a way to collect 
the names in a List? It is easy to accomplish this. Use the collector returned by the toList() method of the 
Collectors class, like so:

Map<Person.Gender, List<String>> namesByGender =
    Person.persons()
          .stream()
          .collect(Collectors.groupingBy(Person::getGender,
              Collectors.mapping(Person::getName, Collectors.toList())));

System.out.println(namesByGender);

{FEMALE=[Donna, Laynie], MALE=[Ken, Jeff, Chris, Li]}

Groups can be nested. Let’s create a report that groups people by gender. Within each gender group, 
it creates another group based on the month of their births and lists the names of the people born in this 
group. This is a very simple computation to perform. You already know how to group people by gender. 



Chapter 13 ■ StreamS

733

All you need to do is perform another grouping on the values of the keys, that is simply another collector 
obtained using the groupingBy() method again. In this case, the value for a key in the map representing 
the top-level grouping (by gender) is a Map. Listing 13-12 contains the complete code to accomplish this. 
Notice the use of the static imports to import the static methods from the Collectors class for better code 
readability. The program assumes that every person has a date of birth.

Listing 13-12. Using Nested Groupings

// NestedGroupings.java
package com.jdojo.streams;

import java.time.Month;
import java.util.Map;
import static java.util.stream.Collectors.groupingBy;
import static java.util.stream.Collectors.mapping;
import static java.util.stream.Collectors.joining;

public class NestedGroupings {
    public static void main(String[] args) {
        Map<Person.Gender, Map<Month, String>> personsByGenderAndDobMonth
            = Person.persons()
                    .stream()
                    .collect(groupingBy(Person::getGender,
                             groupingBy(p -> p.getDob().getMonth(),
                             mapping(Person::getName, joining(", ")))));

        System.out.println(personsByGenderAndDobMonth);
    }
}

{FEMALE={DECEMBER=Laynie, JULY=Donna}, MALE={DECEMBER=Chris, JULY=Jeff, MAY=Ken, Li}}

Notice that the output has two top-level groups based on gender: Male and Female. With each gender 
group, there are nested groups based on the month of the person’s birth. For each month group, you have a 
list of those born in that month. For example, Ken and Li were born in the month of May and they are males, 
so they are listed in the output together.

As the final example in this section, let’s summarize the income of people grouped by gender. The 
program in Listing 13-13 computes the summary statistics of income by gender. I used static imports to use 
the method names from the Collectors class to keep the code a bit cleaner. Looking at the output, you can 
tell the average income of females is 25 dollars more than that of males. You can keep nesting groups inside 
another group. There is no limit on levels of nesting for groups.

Listing 13-13. Summary Statistics of Income Grouped by Gender

// IncomeStatsByGender.java
package com.jdojo.streams;

import java.util.DoubleSummaryStatistics;
import java.util.Map;
import static java.util.stream.Collectors.groupingBy;
import static java.util.stream.Collectors.summarizingDouble;



Chapter 13 ■ StreamS

734

public class IncomeStatsByGender {
    public static void main(String[] args) {
        Map<Person.Gender, DoubleSummaryStatistics> incomeStatsByGender =
            Person.persons()
                  .stream()
                  .collect(groupingBy(Person::getGender,
                                      summarizingDouble(Person::getIncome)));

        System.out.println(incomeStatsByGender);
    }
}

{MALE=DoubleSummaryStatistics{count=4, sum=17300.000000, min=1800.000000, 
average=4325.000000, max=7100.000000}, FEMALE=DoubleSummaryStatistics{count=2, 
sum=8700.000000, min=0.000000, average=4350.000000, max=8700.000000}}

Partitioning Data
Partitioning data is a special case of grouping data. Grouping data is based on the keys returned from a 
function. There are as many groups as the number of distinct keys returned from the function. Partitioning 
collects data into two groups: for one group a condition is true; for the other, the same condition is false. 
The partitioning condition is specified using a Predicate. By now, you might have guessed the name of 
the method in the Collectors class that returns a collector to perform the partitioning. The method is 
partitioningBy(). It is overloaded and it has two versions:

•	 partitioningBy(Predicate<? super T> predicate)

•	 partitioningBy(Predicate<? super T> predicate, Collector<? super T,A,D> 
downstream)

Like the groupingBy() method, the partitioningBy() method also collects data in a Map whose keys 
are always of the type Boolean. Note that the Map returned from the collector always contains two entries: 
one with the key value as true and another with the key value as false.

The first version of the partitionedBy() method returns a collector that performs the partitioning 
based on the specified predicate. The values for a key are stored in a List. If the predicate evaluates to true 
for an element, the element is added to the list for the key with a true value; otherwise, the value is added 
to the list of values for the key with a false value. The following snippet of code partitions people based on 
whether the person is a male:

Map<Boolean, List<Person>> partionedByMaleGender =
    Person.persons()
          .stream()
          .collect(Collectors.partitioningBy(Person::isMale));

System.out.println(partionedByMaleGender);

{false=[(3, Donna, FEMALE, 1962-07-29, 8700.00), (5, Laynie, FEMALE, 2012-12-13, 0.00)], 
true=[(1, Ken, MALE, 1970-05-04, 6000.00), (2, Jeff, MALE, 1970-07-15, 7100.00), (4, Chris, 
MALE, 1993-12-16, 1800.00), (6, Li, MALE, 2001-05-09, 2400.00)]}



Chapter 13 ■ StreamS

735

The second version of the method lets you specify another collector that can perform a reduction 
operation on the values for each key. You have seen several examples of this kind in the previous section 
when you grouped data using the groupingBy() method. The following snippet of code partitions people 
into male and non-male and collects their names in a comma-separated string:

Map<Boolean,String> partionedByMaleGender =
    Person.persons()
          .stream()
          .collect(Collectors.partitioningBy(Person::isMale,
            Collectors.mapping(Person::getName, Collectors.joining(", "))));

System.out.println(partionedByMaleGender);

{false=Donna, Laynie, true=Ken, Jeff, Chris, Li}

Adapting the Collector Results
So far, you have seen collectors doing great work on their own: you specify what you want and the collector 
does all the work for you. There is one more type of collector that collects the data and lets you modify the 
result before and after collecting the data. You can adapt the result of the collector to a different type; you 
can filter the elements after they are grouped but before they are collected; you map elements as they are 
grouped, but before they are collected. The following static methods in the Collectors class return such 
collectors:

•	 <T,A,R,RR> Collector<T,A,RR> collectingAndThen(Collector<T,A,R> 
downstream, Function<R,RR> finisher)

•	 <T,A,R> Collector<T,?,R> filtering(Predicate<? super T> predicate, 
Collector<? super T,A,R> downstream)

•	 <T,U,A,R> Collector<T,?,R> flatMapping(Function<? super T,? extends 
Stream<? extends U>> mapper, Collector<? super U,A,R> downstream)

The filtering() and flatMapping() methods were added to the Collectors class in Java 9.
The collectingAndThen() method lets you modify the results of a collector after the collector has 

collected all elements. Its first argument is a collector that collects the data. The second argument is a 
finisher that is a function. The finisher is passed a result and it is free to modify the result, including its type. 
The return type of such a collector is the return type of the finisher. One of the common uses for the finisher 
is to return an unmodifiable view of the collected data. Here is an example that returns an unmodifiable list 
of person names:

List<String> names = Person.persons()
            .stream()
            .map(Person::getName)
            .collect(Collectors.collectingAndThen(Collectors.toList(),
                result -> Collections.unmodifiableList(result)));

System.out.println(names);

[Ken, Jeff, Donna, Chris, Laynie, Li]



Chapter 13 ■ StreamS

736

The collector collects the names in a mutable list and the finisher wraps the mutable list in an 
unmodifiable list. Let’s take another example of using the finisher. Suppose you want to print a calendar 
that contains the names of people by the month of their dates of birth. You have already collected the list 
of names grouped by months of their birth. You may have a month that doesn’t contain any birthdays. 
However, you want to print the month’s name anyway and just add “None”. Here is the first attempt:

Map<Month,String> dobCalendar = Person.persons()
    .stream()
    .collect(groupingBy(p -> p.getDob().getMonth(),
             mapping(Person::getName, joining(", "))));

dobCalendar.entrySet().forEach(System.out::println);

MAY=Ken, Li
DECEMBER=Chris, Laynie
JULY=Jeff, Donna

This calendar has three issues:

•	 It is not sorted by month.

•	 It does not include all months.

•	 It is modifiable. The returned Map from the collect() method is modifiable.

You can fix all three issues by using the collector returned from the collectingAndThen() method and 
specifying a finisher. The finisher will add the missing months in the map, convert the map to a sorted map, 
and finally, wrap the map in an unmodifiable map. The collect() method returns the map returned from 
the finisher. Listing 13-14 contains the complete code.

Listing 13-14. Adapting the Collector Result

// DobCalendar.java
package com.jdojo.streams;

import java.time.Month;
import java.util.Collections;
import java.util.Map;
import java.util.TreeMap;
import static java.util.stream.Collectors.collectingAndThen;
import static java.util.stream.Collectors.groupingBy;
import static java.util.stream.Collectors.joining;
import static java.util.stream.Collectors.mapping;

public class DobCalendar {
    public static void main(String[] args) {
        Map<Month, String> dobCalendar = Person.persons()
            .stream().collect(collectingAndThen(
                groupingBy(p -> p.getDob().getMonth(),
                mapping(Person::getName, joining(", "))),
                result -> {



Chapter 13 ■ StreamS

737

                    // Add missing months
                    for (Month m : Month.values()) {
                       result.putIfAbsent(m, "None");
                    }

                    // Return a sorted, unmodifiable map
                    return Collections.unmodifiableMap(new TreeMap<>(result));
                }));

        dobCalendar.entrySet().forEach(System.out::println);
    }
}

JANUARY=None
FEBRUARY=None
MARCH=None
APRIL=None
MAY=Ken, Li
JUNE=None
JULY=Jeff, Donna
AUGUST=None
SEPTEMBER=None
OCTOBER=None
NOVEMBER=None
DECEMBER=Chris, Laynie

The filtering() method lets you group the elements, apply a filter in each group, and collect the 
filtered elements. The following snippet of code shows you how to group people by gender and collect only 
those people who make more than 8000.00:

Map<Person.Gender, List<Person>> makingOver8000 = Person.persons()
                .stream()
                .collect(groupingBy(Person::getGender,
                         filtering(p -> p.getIncome() > 8000.00, toList())));

System.out.println(makingOver8000);

{MALE=[], FEMALE=[(3, Donna, FEMALE, 1962-07-29, 8700.00)]}

Notice an empty list in the male group. In the collector, two group were collected: male and female. The 
filtering( ) method filtered out all elements in the male group, so you got an empty list. If you had used 
the filter() method on the original stream to filter out people making 8000.00 or less, you would not have 
seen the male group in the output because the collector would have not seen the male group at all.

You have already seen the use of the collector returned by the mapping() function of the Collectors 
class in the “Grouping Data” section, which lets you apply a function to each element before accumulating 
the elements in a collector. The flatMapping() method lets you apply a flat mapping function on each 
element. Consider the list of people in Table 13-2. Suppose you want to summarize the table’s data by 
grouping people by their gender and the list of unique languages spoken by people of each gender type.



Chapter 13 ■ StreamS

738

For this example, I use a Map.Entry<String,Set<String>> instance to represent row in this table. I 
use only gender and spoken languages in each row of the table, ignoring the person’s name. Listing 13-15 
contains the complete code.

Listing 13-15. Applying a Flat Mapping Operation After Grouping

// FlatMappingTest.java
package com.jdojo.streams;

import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import static java.util.Map.entry;
import java.util.Set;
import static java.util.stream.Collectors.flatMapping;
import static java.util.stream.Collectors.groupingBy;
import static java.util.stream.Collectors.toSet;

public class FlatMappingTest {
    public static void main(String[] args) {
        // Represent the gender and the list of spoken languages
        List<Entry<String, Set<String>>> list = List.of(
                entry("Male", Set.of("English", "French")),
                entry("Male", Set.of("Spanish", "Wu")),
                entry("Female", Set.of("English", "French")),
                entry("Male", Set.of("Wu", "Lao")),
                entry("Female", Set.of("English", "German")),
                entry("Male", Set.of("English")));

        Map<String, Set<String>> langByGender = list.stream()
                .collect(groupingBy(Entry::getKey,
                        flatMapping(e -> e.getValue().stream(), toSet())));

        System.out.println(langByGender);
    }
}

{Female=[English, French, German], Male=[English, French, Spanish, Lao, Wu]}

Table 13-2. A List of People, Their Genders, and the List of Languages They Speak

Name Gender Language

Ken Male English, French

Jeff Male Spanish, Wu

Donna Female English, French

Chris Male Wu, Lao

Laynie Female English, German

Li Male English



Chapter 13 ■ StreamS

739

The Entry::getKey method reference is used to group the elements of the list by gender. The first 
argument maps each entry in the list to a Stream<String>, which contains the languages spoken for that 
element. The flatMapping() method flattens the stream produced and collects the results, which are the 
names of the spoken languages in a Set<String>, giving you a unique list of spoken languages by gender.

Finding and Matching in Streams
The Streams API supports different types of find and match operations on stream elements. For example, 
you can check if any elements in the stream match a predicate, if all elements match a predicate, etc. The 
following methods in the Stream interface are used to perform find and match operations:

•	 boolean allMatch(Predicate<? super T> predicate)

•	 boolean anyMatch(Predicate<? super T> predicate)

•	 boolean noneMatch(Predicate<? super T> predicate)

•	 Optional<T> findAny()

•	 Optional<T> findFirst()

The primitive type streams such as IntStream, LongStream, and DoubleStream also contain the same 
methods that work with a predicate and an optional one for primitive types. For example, the allMatch() 
method in the IntStream takes an IntPredicate as an argument and the findAny() method returns an 
OptionalInt.

All find and match operations are terminal operations. They are also short-circuiting operations.  
A short-circuiting operation may not have to process the entire stream to return the result. For example, 
the allMatch() method checks if the specified predicate is true for all elements in the stream. It is 
sufficient for this method to return false if the predicate evaluates to false for one element. Once the 
predicate evaluates to false for one element, it stops further processing (short-circuits) of elements and 
returns the result as false. The same argument goes for all other methods. Note that the return type of 
the findAny() and findFirst() methods is Optional<T> because these methods may not have a result if 
the stream is empty.

The program in Listing 13-16 shows how to perform find and match operations on streams. The 
program uses sequential stream because the stream size is very small. Consider using a parallel stream if the 
match has to be performed on large streams. In that case, any thread can find a match or not find a match to 
end the matching operations.

Listing 13-16. Performing Find and Match Operations on Streams

// FindAndMatch.java
package com.jdojo.streams;

import java.util.List;
import java.util.Optional;

public class FindAndMatch {
public static void main(String[] args) {
        // Get the list of persons
        List<Person> persons = Person.persons();

        // Check if all persons are males
        boolean allMales = persons.stream()
                                  .allMatch(Person::isMale);
        System.out.println("All males: " + allMales);



Chapter 13 ■ StreamS

740

        // Check if any person was born in 1970
        boolean anyoneBornIn1970 =  persons.stream()
                                           .anyMatch(p -> p.getDob().getYear() == 1970);
        System.out.println("Anyone born in 1970: " + anyoneBornIn1970);

        // Check if any person was born in 1955
        boolean anyoneBornIn1955 = persons.stream()
                                          .anyMatch(p -> p.getDob().getYear() == 1955);
        System.out.println("Anyone born in 1955: " + anyoneBornIn1955);

        // Find any male
        Optional<Person> anyMale = persons.stream()
                                          .filter(Person::isMale)
                                          .findAny();
        if (anyMale.isPresent()) {
            System.out.println("Any male: " + anyMale.get());
        } else {
            System.out.println("No male found.");
        }

        // Find the first male
        Optional<Person> firstMale = persons.stream()
                                            .filter(Person::isMale)
                                            .findFirst();
        if (firstMale.isPresent()) {
            System.out.println("First male: " + anyMale.get());
        } else {
            System.out.println("No male found.");
        }
    }
}

All males: false
Anyone born in 1970: true
Anyone born in 1955: false
Any male: (1, Ken, MALE, 1970-05-04, 6000.00)
First male: (1, Ken, MALE, 1970-05-04, 6000.00)

Parallel Streams
Streams can be sequential or parallel. Operations on a sequential stream are processed in serial using one 
thread. Operations on a parallel stream are processed in parallel using multiple threads. You do not need 
to take additional steps to process streams because they are sequential or parallel. All you need to do is 
call the appropriate method that produces a sequential or parallel stream. Everything else is taken care of 
by the Streams API. This is why I stated in the beginning of this chapter that you get parallelism in stream 
processing “almost” for free.

Most of the methods in the Streams API produce sequential streams by default. To produce a parallel 
stream from a collection, such as a List or a Set, you need to call the parallelStream() method of the 
Collection interface. Use the parallel() method on a stream to convert a sequential stream into a parallel 



Chapter 13 ■ StreamS

741

stream. Conversely, use the sequential() method on a stream to convert a parallel stream into a sequential 
stream. The following snippet of code shows serial processing of the stream pipeline because the stream is 
sequential:

String names = Person.persons()               // The data source
                     .stream()                // Produces a sequential stream
                     .filter(Person::isMale)  // Processed in serial
                     .map(Person::getName)    // Processed in serial
                     .collect(Collectors.joining(", ")); // Processed in serial

The following snippet of code shows parallel processing of the stream pipeline because the stream is 
parallel:

String names = Person.persons()           // The data source
                  .parallelStream()       // Produces a parallel stream
                  .filter(Person::isMale) // Processed in parallel
                  .map(Person::getName)   // Processed in parallel
                  .collect(Collectors.joining(", ")); // Processed in parallel

The following snippet of code shows processing of the stream pipeline in mixed mode because the 
operations in the pipeline produce serial and parallel streams:

String names = Person.persons()          // The data source
                .stream()                // Produces a sequential stream
                .filter(Person::isMale)  // Processed in serial
                .parallel()              // Produces a parallel stream
                .map(Person::getName)    // Processed in parallel
                .collect(Collectors.joining(", ")); // Processed in parallel

The operations following a serial stream are performed serially and the operations following a parallel 
stream are performed in parallel. You get parallelism when processing streams for free. So when do you use 
parallelism in stream processing? Do you get the benefits of parallelism whenever you use it? The answer is 
no. There are some conditions that must be met before you should use parallel streams. Sometimes using 
parallel streams may result in worse performance.

The Streams API uses the Fork/Join framework to process parallel streams. The Fork/Join framework 
uses multiple threads. It divides the stream elements into chunks; each thread processes a chunk of 
elements to produce a partial result, and the partial results are combined to give you the result. Starting 
up multiple threads, dividing the data into chunks, and combining partial results takes up CPU time. This 
overhead is justified by the overall time to finish the task. For example, a stream of six people is going to take 
longer to process in parallel than in serial. The overhead of setting up the threads and coordinating them for 
such a small amount of work is not worth it.

You have seen the use of an Iterator for traversing elements of collections. The Streams API uses 
a Spliterator (a splittable iterator) to traverse elements of streams. Spliterator is a generalization of 
Iterator. An iterator provides sequential access to data elements. A Spliterator provides sequential 
access and decomposition of data elements. When you create a Spliterator, it knows the chunk of data 
it will process. You can split a Spliterator into two: each will get its own chunk of data to process. The 
Spliterator is an interface in the java.util package. It is used heavily for splitting stream elements into 
chunks to be processed by multiple threads. As the user of the Streams API, you will never have to work 
directly with a Spliterator. The data source of the streams provides a Spliterator. Parallel processing of a 
stream is faster if the Spliterator can know the size of the streams. Streams can be based on a data source 
that may have a fixed size or an unknown size. Splitting the stream elements into chunks is not possible if the 



Chapter 13 ■ StreamS

742

size of the stream cannot be determined. In such cases, even though you can use a parallel stream, you may 
not get the benefits of parallelism.

Another consideration in parallel processing is the ordering of elements. If elements are ordered, 
threads need to keep the ordering at the end of the processing. If ordering is not important for you, you can 
convert an ordered stream into an unordered stream using the unordered() method.

Spliterators divide the data elements into chunks. It is important that the data source for the stream 
does not change during stream processing; otherwise the result is not defined. For example, if your stream 
uses a list/set as the data source, do not add or remove elements from the list/set when the stream is being 
processed.

Stream processing is based on functional programming that does not modify data elements during 
processing. It creates new data elements rather than modifying them. The same rule holds for stream 
processing, particularly when it is processed in parallel. The operations in a stream pipeline are specified as 
lambda expressions that should not modify the mutable states of the elements being processed.

Let’s take an example of counting the prime numbers in a big range of natural numbers, say from 2 
to 214748364. The number 214748364 is one tenth of Integer.MAX_VALUE. The following snippet of code 
performs the counting in serial:

// Process the stream in serial
long count = IntStream.rangeClosed(2, Integer.MAX_VALUE/10)
                      .filter(PrimeUtil::isPrime)
                      .count();

The code took 758 seconds to finish. Let’s try converting the stream to a parallel stream as follows:

// Process the stream in parallel
long count = IntStream.rangeClosed(2, Integer.MAX_VALUE/10)
                      .parallel()
                      .filter(PrimeUtil::isPrime)
                      .count();

This time, the code took only 181 seconds, which is roughly 24% of the time it took when it was 
processed in serial. This is a significant gain. Both pieces of code were run on a machine with a processor 
that had eight cores. The code may take a different amount of time to complete on your machine.

Summary
A stream is a sequence of data elements supporting sequential and parallel aggregate operations. Collections 
in Java focus on data storage and access to the data, whereas streams focus on computations on data. 
Streams do not have storage. They get the data from a data source, which is most often a collection. However, 
a stream can get its data from other sources, such as file I/O channel, a function, etc. A stream can also be 
based on a data source that is capable of generating infinite data elements.

Streams are connected through operations forming a pipeline. Streams support two types of operations: 
intermediate and terminal operations. An intermediate operation on a stream produces another stream that 
can serve as an input stream for another intermediate operation. A terminal operation produces a result in 
the form of a single value. A stream cannot be reused after a terminal operation is invoked on it.

Some operations on streams are called short-circuiting operations. A short-circuiting operation does 
not necessarily have to process all data in the stream. For example, findAny is a short-circuiting operation 
that finds any element in the stream for which the specified predicate is true. Once an element is found, the 
operation discards the remaining elements in the stream.



Chapter 13 ■ StreamS

743

Streams are inherently lazy. They process data on demand. Data is not processed when intermediate 
operations are invoked on a stream. Invocation of a terminal operation processes the stream data.

A stream pipeline can be executed in serial or in parallel. By default, streams are serial. You can convert 
a serial stream into a parallel stream by calling the stream’s parallel() method. You can convert a parallel 
stream into a serial stream by calling the stream’s sequential() method.

The Streams API supports most of the operations supported in the functional programming such as 
filter, map, forEach, reduce, allMatch, anyMatch, findAny, findFirst, etc. Streams contain a peek() method 
for debugging purposes that lets you take an action on every element passing through stream. The Streams 
API provides collectors that are used to collect data in collections, such as a map, a list, a set, etc. The 
Collectors class is a utility class that provides several implementations of collectors. Mapping, grouping, 
and partitioning of a stream’s data can be easily performed using the collect() method of streams and 
using the collector provided.

Parallel streams take advantage of multicore processors. They use the Fork/Join framework to process 
the stream’s element in parallel.

QUESTIONS AND EXERCISES

1. What are streams and aggregate operations on streams?

2. how do streams differ from collections?

3. Fill in the blanks:

a. Collections have storage, whereas streams have ____ storage.

b. Collections support external iteration, whereas streams support _______ 
iteration.

c. Collections support imperative programming, whereas streams support 
_______ programming.

d. Collections support a finite number of elements, whereas streams support 
_______ number of elements.

e. Streams support sequential and ______ processing of its elements.

f. a stream does not start pulling elements from its data source until a 
___________ operation is called on the stream.

g. Once a terminal operation is called on a stream, the stream ______ be 
reused.

4. Describe the difference between intermediate and terminal operations on streams.

5. Create a Stream<Integer> of all integers from 10 to 30 and compute the sum of 
all integers in the list.

6. Complete the following snippet of code, which computes the sum of characters in a 
list of names using a stream.

List<String> names = List.of("Mo", "Jeff", "Li", "Dola");
int sum = names.stream()
               ./* your code goes here */;
System.out.println("Total characters: " + sum);



Chapter 13 ■ StreamS

744

the expected output is as follows:

Total characters: 12

7. Complete the following snippet of code, which creates two empty 
Stream<String>s. You are supposed to use different methods of the Stream 
interface to complete the code.

Stream<String> noNames1 = Stream./* Your code goes here */;
Stream<String> noNames2 = Stream./* Your code goes here */;

8. What method of the Stream interface is used to limit the number of elements in a 
stream to a specified size?

9. What method of the Stream interface is used to skip a specified number of 
elements in a stream?

10. Describe the characteristics of the stream produced by the following snippet of 
code:

Stream<Integer> stream = Stream.generate(() -> 1969);

11. What is the use of the instances of the Optional<T> class?

12. Complete the following snippet of code, which is supposed to print the names 
of people along with the number of characters in the names in the non-empty 
Optionals in the list:

List<Optional<String>> names = List.of(Optional.of("Ken"),
                                       Optional.empty(),
                                       Optional.of("Li"),
                                       Optional.empty(),
                                       Optional.of("Toto"));

names.stream()
     .flatMap(/* Your code goes here */)
     .forEach(/* Your code goes here */);

the expected output is as follows:

Ken: 3
Li: 2
Toto: 4

13. What is the use of the peek() method in the Stream interface?

14. What is the use of the map() and flatMap() methods in the Stream interface?



Chapter 13 ■ StreamS

745

15. Compare the filter and map operations on a stream with respect to the type 
of elements and number of elements in the input and output streams of these 
operations.

16. What is a reduction operation on a stream? Name three commonly used reduction 
operations on streams.

17. Write the logic to compute the sum of all integers in the following array using a 
parallel stream and the reduce() method of the Stream interface.

int[] nums = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

18. Complete the following snippet of code to print the unique non-null values in  
a map:

Map<Integer, String> map = new HashMap<>();
map.put(1, "One");
map.put(2, "One");
map.put(3, null);
map.put(4, "Two");

map.entrySet()
   .stream()
   .flatMap(/* Your code goes here */)
   ./* Your code goes here */
   .forEach(System.out::println);

the expected output is as follows:

One
Two

19. Complete the missing piece code in the following snippet of code, which is 
supposed to count the number of even and odd integers in a list of integers:

List<Integer> list = List.of(10, 19, 20, 40, 45, 50);
Map<String,Long> oddEvenCounts = list.stream()
        .map(/* Your code goes here */)
        .collect(/* Your code goes here */);

System.out.println(oddEvenCounts);

the expected output is as follows:

{Even=4, Odd=2}



Chapter 13 ■ StreamS

746

20. the following snippet of code is supposed to print a sorted list of odd integers in 
the list, which are separated by colons. Complete the missing pieces of the code.

List<Integer> list = List.of(5, 1, 2, 7, 3, 4, 8);
String str = list.stream()
                 ./* Multiple method calls go here */;

System.out.println(str);

the expected output is as follows:

1:3:5:7



747© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_14

CHAPTER 14

Implementing Services

In this chapter, you will learn:

•	 What services, service interfaces, and service providers are

•	 How to implement a service in Java 9 and before Java 9

•	 How to use a Java interface as a service implementation in Java 9

•	 How to load service providers using the ServiceLoader class

•	 How to use the uses statement in a module declaration to specify the service 
interface that the current module discovers and loads using the ServiceLoader class

•	 How to use the provides statement to specify a service provider provided by the 
current module

•	 How to discover, filter, and select service providers based on their type without 
instantiating them

•	 How to package service providers before Java 9

What Is a Service?
A specific functionality provided by an application (or a library) is known as a service. For example, you 
can have different libraries providing a prime number service, which can check if a number is a prime and 
generate the next prime after a given number. Applications and libraries providing implementations for a 
service are known as service providers. Applications using the service are called service consumers or clients. 
How does a client use the service? Does a client know all service providers? Does a client get a service 
without knowing any service providers? I answer these questions in this chapter.

Java SE 6 provided a mechanism to allow for loose coupling between service providers and service 
consumers. That is, a service consumer can use a service provided by a service provider without knowing the 
service provider.

In Java, a service is defined by a set of interfaces and classes. The service contains an interface or an 
abstract class that defines the functionality provided by the service and it is known as the service provider 
interface or simply service interface. Note that the term “interface” in “service provider interface” and 
“service interface” does not refer to an interface construct in Java. A service interface can be a Java interface 
or an abstract class. It is possible, but not recommended, to use a concrete class as a service interface. 
Sometimes, a service interface is also called a service type—the type that is used to identify the service.

A specific implementation of a service is known as a service provider. There can be multiple service 
providers for a service interface. Typically, a service provider consists of several interfaces and classes to 
provide an implementation for the service interface.

https://doi.org/10.1007/978-1-4842-3348-1_14


Chapter 14 ■ ImplementIng ServICeS

748

The JDK contains a java.util.ServiceLoader<S> class whose sole purpose is to discover and load 
service providers at runtime for a service interface of type S. The ServiceLoader class allows decoupling 
of service providers from service consumers. A service consumer knows only the service interface; the 
ServiceLoader class makes the instances of the service providers that are implementing the service 
interface available to consumers. Figure 14-1 shows a pictorial view of the arrangement of a service, service 
providers, and a service consumer.

Service Provider

Service Provider

Service ProviderService 

Client

Figure 14-1. The arrangement of a service, service providers, and a service consumer

Table 14-1. Modules, Classes, and Interfaces Used in the Chapter Examples

Module Classes/Interfaces Description

jdojo.prime PrimeChecker It acts as a service, a service interface, and a service 
provider. It provides a default implementation for the 
service interface.

jdojo.prime.faster FasterPrimeChecker A service provider.

jdojo.prime.probable ProbablePrimeChecker A service provider.

jdojo.prime.client Main A service consumer.

Typically, the service will use the ServiceLoader class to load all service providers and make them 
available to service consumers (or clients). This architecture allows for a plugin mechanism in which a 
service provider can be added or removed without affecting the service and service consumers. Service 
consumers know only about the service interface. They do not know about any specific implementations 
(service providers) of the service interface.

 ■ Tip  I suggest reading the documentation for the java.util.ServiceLoader class for a complete 
understanding of the service-loading facility provided by JDK9.

In this chapter, I use a service and three service providers. Their modules, class/interface names, and 
brief descriptions are listed in Table 14-1.



Chapter 14 ■ ImplementIng ServICeS

749

Discovering Services
In order for a service to be used, its providers need to be discovered and loaded. The ServiceLoader class 
does the work of discovering and loading the service providers. The module that discovers and loads service 
providers must contain a uses statement in its declaration, which has the following syntax:

uses <service-interface>;

Here, <service-interface> is the name of the service interface, which is a Java interface name, a 
class name, or an annotation type name. If a module uses the ServiceLoader<S> class to load the instances 
of service providers for a service interface named S, the module declaration must contain the following 
statement:

uses S;

In my opinion, the statement name, uses, seems to be a misnomer. At first glance, it seems that the 
current module will use the specified service. However, that is not the case. A service is used by the clients, 
not by the module defining the service. A more intuitive statement name would have been discovers or 
loads. You can understand its meaning correctly if you read its definition as: The module having the uses 
statement uses the ServiceLoader class to load the service providers for this service interface. You do not 
need to use the uses statement in client modules unless your client modules load the service providers for 
services. It is unusual for client modules to load services.

A module may discover and load more than one service. The following module declaration uses two 
uses statements indicating that it will discover and load services identified by the com.jdojo.PrimeChecker 
and com.jdojo.CsvParser interfaces:

module jdojo.loader {
    uses com.jdojo.PrimeChecker;
    uses com.jdojo.CsvParser:

    // Other module statements go here
}

ProbablePrimeChecker

GenericPrimeChecker

FasterPrimeCheckerPrimeChecker 

Main

Figure 14-2. The arrangement of a service, three service providers, and a service consumer used in the 
chapter’s examples

Figure 14-2 shows the classes/interfaces arranged as services, service providers, and service consumers, 
which can be compared with Figure 14-1.



Chapter 14 ■ ImplementIng ServICeS

750

A module declaration allows import statements. For better readability, you can rewrite this module 
declaration as follows:

// Import types from other packages
import com.jdojo.PrimeChecker;
import com.jdojo.CsvParser:

module jdojo.loader {
    uses PrimeChecker;
    uses CsvParser:

    // Other module statements go here
}

The service interface specified in a uses statement may be declared in the current module or in another 
module. If it is declared in another module, the service interface must be accessible to the code in the 
current module; otherwise, a compile-time error occurs. For example, the com.jdojo.CsvParser service 
interface used in the uses statement in the previous declaration may be declared in the jdojo.loader 
module or another module, say jdojo.csvUtil. In the latter case, the com.jdojo.CsvParser interface must 
be accessible to the jdojo.loader module.

Service provider discovery occurs at runtime. Modules that discover service providers typically do not 
(and need not) declare compile-time dependency on the service provider modules because it is not possible 
to know all provider modules in advance. Another reason for service discoverer modules not declaring 
dependency on service provider modules is to keep the service provider and service consumer decoupled.

Providing Service Implementations
A module that provides implementations for a service interface must contain a provides statement. If a 
module contains a service provider, but does not contain a provides statements in its declaration, this 
service provider will not be loaded through the ServiceLoader class. That is, a provides statement in a 
module declaration is a way to tell the ServiceLoader class, “Hey! I provide an implementation for a service. 
You can use me as a service provider whenever you need that service.” The syntax for a provides statement 
is as follows:

provides <service-interface> with <service-implementation-name>;

Here, the provides clause specifies the name of the service interface and the with clause specifies the 
name of the class that implements the service provider interface. In JDK9, a service provider may specify an 
interface as an implementation for a service interface. This may sound incorrect, but it is true. I provide an 
example in this chapter where an interface serves as a service provider implementation type. The following 
module declaration contains two provides statements:

module com.jdojo.provider {
    provides com.jdojo.PrimeChecker with com.jdojo.impl.PrimeCheckerFactory;
    provides com.jdojo.CsvParser with com.jdojo.impl.CsvFastParser;

    // Other module statements go here
}



Chapter 14 ■ ImplementIng ServICeS

751

The first provides statement declares that com.jdojo.impl.PrimeCheckerFactory is one possible 
implementation for the service interface named com.jdojo.PrimeChecker. The second provides statement 
declares that com.jdojo.impl.CsvFastParser is one possible implementation for the service interface 
named com.jdojo.CsvParser. Before JDK9, PrimeCheckerFactory and CsvParser had to be classes.  
In JDK9, they can be classes or interfaces.

A module can contain any combination of uses and provides statements—the same module can 
provide implementation for a service and discover the same service; it can only provide implementation for 
one or more services, or it can provide implementation for one service and discover another type of service. 
The following module declaration discovers and provides the implementation for the same service:

module com.jdojo.parser {
    uses com.jdojo.XmlParser;

    provides com.jdojo.XmlParser with com.jdojo.xml.impl.XmlParserFactory;

    // Other module statements go here
}

 ■ Tip  the service implementation class/interface specified in the with clause of the provides statement 
must be declared in the current module. Otherwise, a compile-time error occurs.

The ServiceLoader class creates instances of the service implementation. When the service 
implementation is an interface, it calls the interface’s provider() static method to get an instance of the 
provider. The service implementation (a class or an interface) must follow these rules:

•	 If the service implementation implicitly or explicitly declares a public constructor 
with no formal parameters, that constructor is called the provider constructor.

•	 If the service implementation contains a public static method named provider with 
no formal parameters, this method is called the provider method.

•	 The return type of the provider method must be the service interface type or its 
subtype.

•	 If the service implementation does not contain the provider method, the type of the 
service implementation must be a class with a provider constructor and the class 
must be of the service interface type or its subtype.

When the ServiceLoader class is requested to discover and load a service provider, it checks whether 
the service implementation contains the provider method. If the provider method is found, the returned 
value of the method is the service returned by the ServiceLoader class. If the provider method is not found, 
it instantiates the service implementation using the provider constructor. If the service implementation 
contains neither the provider method nor the provider constructor, a compile-time error occurs.

With these rules, it is possible to use a Java interface as a service implementation. The interface should 
have a public static method named provider that returns an instance of the service interface type.

The following sections walk you through the steps to implement a service in JDK9. The last section 
explains how to make the same service work in a non-modular environment.



Chapter 14 ■ ImplementIng ServICeS

752

Defining the Service Interface
In this section, you develop a service called prime checker. I keep the service simple, so you can focus on 
working with the service provider mechanism in JDK9, rather than writing complex code to implement the 
service functionality. Requirements for this service are as follows:

•	 The service should provide an API to check if a number is a prime.

•	 Clients should be able to know the names of the available service providers. The 
name of a service provider will be the fully qualified name of the service provider 
class or interface.

•	 The service should provide a default implementation of the service interface.

•	 Clients should be able to retrieve a service instance without specifying the name of 
the service provider. In this case, the default service provider is returned.

•	 Clients should be able to retrieve a service instance by specifying a service provider 
fully qualified name. If a service provider with the specified name does not exist, 
null is returned.

Let’s design the service. The functionality provided by the service will be represented by an interface 
named PrimeChecker. It contains one method:

public interface PrimeChecker {
    boolean isPrime(long n);
}

The isPrime() method returns true if the specified argument is a prime, and it returns false 
otherwise. All service providers will implement the PrimeChecker interface. The PrimeChecker interface is 
our service interface (or service type).

Obtaining Service Provider Instances
The service needs to provide APIs to the clients to retrieve instances of the service providers. The service 
needs to discover and load all service providers before it can give them to clients. Service providers are 
loaded using the ServiceLoader class. The class has no public constructor. You can use one of its load() 
methods to get its instances. You need to specify the class reference of the service interface to the load() 
method. The ServiceLoader class contains an iterator() method that returns an Iterator for all service 
providers of a specific service interface loaded by this ServiceLoader. The ServiceLoader class also 
implements the Iterable interface, so you can also iterate over all the service providers using a for-each 
statement. The following snippet of code shows you how to load and iterate through all service provider 
instances for PrimeChecker:

// Load the service providers for PrimeChecker
ServiceLoader<PrimeChecker> loader = ServiceLoader.load(PrimeChecker.class);

// Iterate through all service provider instances
Iterator<PrimeChecker> iterator = loader.iterator();



Chapter 14 ■ ImplementIng ServICeS

753

if (iterator.hasNext()) {
   PrimeChecker checker = iterator.next();

   // Use the prime checker here...
}

The following snippet of code shows you how to use a ServiceLoader instance in a for-each statement 
to iterate over all service provider instances:

ServiceLoader<PrimeChecker> loader = ServiceLoader.load(PrimeChecker.class);
for (PrimeChecker checker : loader) {
    // checker is your service provider instance
}

At times, you’ll want to select providers based on their class names. For example, you may want to select 
only those prime service providers whose fully qualified class name starts with com.jdojo. Typical logic to 
achieve this would be to use the iterator returned by the iterator() method of the ServiceLoader class. 
However, this is costly. The iterator instantiates a provider before returning. JDK9 added a new stream() 
method to the ServiceLoader class:

public Stream<ServiceLoader.Provider<S>> stream()

The method returns a stream of instances of the ServiceProvider.Provider<S> interface, which is 
declared as a nested interface in the ServiceLoader class as follows:

public static interface Provider<S> extends Supplier<S> {
    // Returns a Class reference of the class of the service provider
    Class<? extends S> type();

    @Override
    S get();
}

An instance of the ServiceLoader.Provider interface represents a service provider. Its type() method 
returns the Class object of the service implementation. The get() method returns an instance of the service 
provider.

How does the ServiceLoader.Provider interface help? When you use the stream() method, each 
element in the stream is of the ServiceLoader.Provider type. You can filter the stream based on the class 
name or type of the provider, which will not instantiate the provider. You can use the type() method in your 
filters. When you find the desired provider, call the get() method to instantiate the provider. This way, you 
instantiate a provider when you know you need it, not when you are iterating through all providers. The 
following is an example of using the stream() method of the ServiceLoader class. It gives you a list of all 
prime service providers whose class name starts with com.jdojo.

static List<PrimeChecker> startsWith(String prefix) {
    return ServiceLoader.load(PrimeChecker.class)
                        .stream()
                        .filter((Provider p) -> p.type().getName().startsWith(prefix))
                        .map(Provider::get)
                        .collect(Collectors.toList());
}



Chapter 14 ■ ImplementIng ServICeS

754

Your prime checker service is supposed to let clients find a service provider using the service provider 
class or interface name. You can provide a newInstance(String providerName) method using the stream() 
method of the ServiceLoader class as follows:

static PrimeChecker newInstance(String providerName) {
    // Try to find the first service provider with the specified providerName
    Optional<Provider<PrimeChecker>> optional
            = ServiceLoader.load(PrimeChecker.class)
                    .stream()
                    .filter((Provider p) -> p.type().getName().equals(providerName))
                    .findFirst();

    PrimeChecker checker = null;

    // Instantiate the provider if we found one
    if (optional.isPresent()) {
        Provider<PrimeChecker> provider = optional.get();
        checker = provider.get();
    }

    return checker;
}

There is a big difference between using the Iterator and the stream() method of the ServiceLoader 
class to find a service provider. The Iterator supplies you with the instance of the service provider, which 
you can use to determine the details of the actual service provider implementation class. A service provider 
may use the provider constructor or the provider method to supply its instances. The stream() method does 
not create service provider instances. Rather, it looks at the provider constructors and provider methods to 
give you the type of the service provider implementation. If you use the provider constructor, the stream() 
method knows the actual class name of the service implementation. If you use the provider method, the 
stream() method does not (and cannot) peek inside the provider method to see the actual implementation 
class type. In this case, it simply looks at the return type of the provider method and its type() method 
returns the Class reference of that return type. Consider the following provider method implementation of 
the PrimeChecker service type.

// FasterPrimeChecker.java
package com.jdojo.prime.faster;

import com.jdojo.prime.PrimeChecker;

public class FasterPrimeChecker implements PrimeChecker {
    // No provider constructor
    private FasterPrimeChecker() {
        // No code
    }

    // Define a provider method
    public static PrimeChecker provider() {
        return new FasterPrimeChecker();
    }



Chapter 14 ■ ImplementIng ServICeS

755

    @Override
    public boolean isPrime(long n) {
        // More code goes here
    }
}

Suppose the FasterPrimeChecker class is available as a service provider. When you use the stream() 
method of the ServiceLoader class, you will get a ServiceLoader.Provider element for this service 
provider whose type() method will return the Class reference of the com.jdojo.prime.PrimeChecker 
interface, which is the return type of the provider() method. When you call the get() method of the 
ServiceLoader.Provider instance, it will call the provider() method and return the reference of an 
object of the FasterPrimeChecker class as it is returned from the provider() method. If you try to write the 
following code to find the FasterPrimeChecker provider, it will fail:

String providerName = "com.jdojo.prime.faster.FasterPrimeChecker";

Optional<Provider<PrimeChecker>> optional = ServiceLoader.load(PrimeChecker.class)
        .stream()
        .filter((Provider p) -> p.type().getName().equals(providerName))
        .findFirst();

If you want to find this service provider by its class name using the stream() method of the 
ServiceLoader class, you can change the return type of the provider() method as shown:

// FasterPrimeChecker.java
package com.jdojo.prime.faster;

import com.jdojo.prime.PrimeChecker;

public class FasterPrimeChecker implements PrimeChecker {
    // No provider constructor
    private FasterPrimeChecker() {
        // No code
    }

    // Define a provider method
    public static FasterPrimeChecker provider() {
        return new FasterPrimeChecker();
    }

    @Override
    public boolean isPrime(long n) {
        // More code goes here
    }
}



Chapter 14 ■ ImplementIng ServICeS

756

Defining the Service
Before JDK8, you had to create a class to provide the discovering, loading, and retrieving features for your 
service. From JDK8, you can add static methods to interfaces. Let’s add two static methods to the service 
interface for these purposes:

public interface PrimeChecker {
    // Part of the service interface
    boolean isPrime(long n);

    // Part of the service
    static PrimeChecker newInstance() { /*...*/ };
    static PrimeChecker newInstance(String providerName) { /*...*/ };
    static List<PrimeChecker> providers() { /*...*/ };
    static List<String> providerNames(/*...*/);
 }

The newInstance() method will return an instance of the PrimeChecker that is the default service 
provider. The newInstance(String providerName) method will return the instance of a service provider 
with the specified provider name. The providers() method will return all provider instances, whereas 
providerNames() method will return a list of all provider names.

Notice that your PrimeChecker interface is going to serve two purposes:

•	 It serves as a service interface with the isPrime() method as the only method in that 
service interface. Clients will use the PrimeChecker interface as the service type.

•	 It serves as a service with the two versions of the newInstance() method, the 
providers() method, and the providerNames() method.

At this point, you had a choice to have a separate service class, say PrimeService class, with 
newInstance(), providers(), and providerNames() methods in it– leaving only the isPrime() method 
in the PrimeChecker interface. If you decided to do so, clients would have used the PrimeService class to 
obtain a service provider.

Listing 14-1 contains the complete code for the PrimeChecker interface.

Listing 14-1. A Service Provider Interface Named PrimeChecker

// PrimeChecker.java
package com.jdojo.prime;

import java.util.ArrayList;
import java.util.List;
import java.util.Optional;
import java.util.ServiceLoader;
import java.util.ServiceLoader.Provider;
import java.util.stream.Collectors;

public interface PrimeChecker {
    boolean isPrime(long n);

    static PrimeChecker newInstance() {
        // Return the default service provider
        String defaultSP = "com.jdojo.prime.impl.GenericPrimeChecker";



Chapter 14 ■ ImplementIng ServICeS

757

        return newInstance(defaultSP);
    }

    static PrimeChecker newInstance(String providerName) {
        Optional<Provider<PrimeChecker>> optional
                = ServiceLoader.load(PrimeChecker.class)
                        .stream()
                        .filter((Provider p) -> p.type().getName().equals(providerName))
                        .findFirst();

        PrimeChecker checker = null;
        if (optional.isPresent()) {
            Provider<PrimeChecker> provider = optional.get();
            checker = provider.get();
        }

        return checker;
    }

    static List<PrimeChecker> providers() {
        List<PrimeChecker> providers = new ArrayList<>();
        ServiceLoader<PrimeChecker> loader = ServiceLoader.load(PrimeChecker.class);

        for (PrimeChecker checker : loader) {
            providers.add(checker);
        }
        return providers;
    }

    static List<String> providerNames() {
        List<String> providers
                = ServiceLoader.load(PrimeChecker.class)
                        .stream()
                        .map((Provider p) -> p.type().getName())
                        .collect(Collectors.toList());
        return providers;
    }
}

The declaration of the jdojo.prime module is shown in Listing 14-2. It exports the com.jdojo.prime 
package because other service provider modules need to use the PrimeChecker interface.

Listing 14-2. The Declaration of the jdojo.prime Module

// module-info.java
module jdojo.prime {
    exports com.jdojo.prime;

    uses com.jdojo.prime.PrimeChecker;
}



Chapter 14 ■ ImplementIng ServICeS

758

You need to use a uses statement with the fully qualified name of the PrimeChecker interface because 
the code in this module will use the ServiceLoader class to load the service providers for this interface. You 
are not done with the declaration of the jdojo.prime module yet. You will add a default service provider to 
this module in the next section.

Defining Service Providers
In the next sections, you will create three service providers for the PrimeChecker service interface. The first 
service provider will be your default prime checker service provider. You will package it with the jdojo.
prime module. You will call the second service provider as a faster prime checker provider. You will call the 
third service provider as the probable prime checker provider. Later, you will create a client to test the service. 
You will have a choice to use one of these service providers or all of them.

These service providers will implement algorithms to check whether a given number is a prime. It will 
be helpful for you to understand the definition of a prime number. A positive integer that is not divisible 
without a remainder by 1 or itself is called a prime. 1 is not a prime. A few examples of primes are 2, 3, 5, 7, 
and 11.

Defining a Default Prime Service Provider
In this section, you will define a default service provider for the PrimeChecker service. Defining a service 
provider for a service is simply creating a class that implements the service interface or creating an interface 
with a provider method. In this case, you will be creating a class named GenericPrimeChecker that 
implements the PrimeChecker interface and will contain a provider constructor.

This service provider will be defined in the same module, jdojo.prime, which also contains your 
service interface. Listing 14-3 contains the complete code for a class named GenericPrimeChecker. It 
implements the PrimeChecker interface and hence, its instances can be used as a service provider. Notice 
that I have placed this class in the com.jdojo.prime.impl package, just to keep the public interface 
and private implementation separate. The isPrime() method of the class checks whether the specified 
parameter is a prime. The implementation of this method is not optimal. The next service provides a better 
implementation.

Listing 14-3. A Service Implementation Class for the PrimeChecker Service Interface

// GenericPrimeChecker.java
package com.jdojo.prime.impl;

import com.jdojo.prime.PrimeChecker;

public class GenericPrimeChecker implements PrimeChecker {
    @Override
    public boolean isPrime(long n) {
        if (n <= 1) {
            return false;
        }

        if (n == 2) {
            return true;
        }



Chapter 14 ■ ImplementIng ServICeS

759

        if (n % 2 == 0) {
            return false;
        }

        for (long i = 3; i < n; i += 2) {
            if (n % i == 0) {
                return false;
            }
        }

        return true;
    }
}

To make the GenericPrimeChecker class available to the ServiceLoader class as a service provider for 
the PrimeChecker service interface, you need to include a provides statement in the jdojo.prime module’s 
declaration. Listing 14-4 contains the modified version of the jdojo.prime module’s declaration.

Listing 14-4. The Modified Declaration of the jdojo.prime Module

// module-info.java
module jdojo.prime {
    exports com.jdojo.prime;

    uses com.jdojo.prime.PrimeChecker;

    provides com.jdojo.prime.PrimeChecker
        with com.jdojo.prime.impl.GenericPrimeChecker;

}

The provides statement specifies that this module provides an implementation for the PrimeChecker 
interface and its with clause specifies the name of the implementation class. The implementation class must 
fulfill the following conditions:

•	 It must be a public concrete class or a public interface. It can be a top-level or nested 
static class. It cannot be an inner class or an abstract class.

•	 It must provide either the provider constructor or the provider method. You have a 
pubic no-args constructor, which serves as the provider constructor. This constructor 
is used by the ServiceLoader class to instantiate the service provider using 
reflection.

•	 An instance of the implementation class must be assignment-compatible with the 
service provider interface.

If any of these conditions are not met, a compile-time error occurs. Note that you do not need to 
export the com.jdojo.prime.impl package that contains the service implementation class because no 
client is supposed to directly depend on a service implementation. Clients need to reference only the 
service interface, not any specific service implementation classes. The ServiceLoader class can access and 
instantiate the implementation class without the package containing the service implementation being 
exported by the module.



Chapter 14 ■ ImplementIng ServICeS

760

 ■ Tip  If a module uses a provides statement, the specified service interface may be in the current module 
or another accessible module. the service implementation class/interface specified in the with clause must be 
defined in the current module.

That’s all you have for this module. Compile and package this module as a modular JAR. At this point, 
there is nothing to test.

Defining a Faster Prime Service Provider
In this section, you will define another service provider for the PrimeChecker service interface. Let’s call this 
a faster service provider because you will implement a faster algorithm to check for a prime. This service 
provider will be defined in a separate module named jdojo.prime.faster and the service implementation 
class is called FasterPrimeChecker.

Listing 14-5 contains the module declaration, which is similar to the one we had for the jdojo.prime 
module. This time, only the class name in the with clause has changed.

Listing 14-5. The Module Declaration for the com.jdojo.prime.faster Module

// module-info.java
module jdojo.prime.faster {
    requires jdojo.prime;

    provides com.jdojo.prime.PrimeChecker
        with com.jdojo.prime.faster.FasterPrimeChecker;
}

The FasterPrimechecker class will need to implement the PrimeChecker interface, which is in the 
jdojo.prime module. The requires statement is needed to read the jdojo.prime module.

Listing 14-6 contains the code for the FasterPrimeChecker class whose isPrime() method executes 
faster than the isPrime() method of the GenericPrimeChecker class. This time, the method loops through 
all the odd numbers starting at 3 and ending at the square root of the number being tested for a prime.

Listing 14-6. An Implementation for the PrimeChecker Service Interface

// FasterPrimeChecker.java
package com.jdojo.prime.faster;

import com.jdojo.prime.PrimeChecker;

public class FasterPrimeChecker implements PrimeChecker {
    // No provider constructor
    private FasterPrimeChecker() {
        // No code
    }

    // Define a provider method
    public static FasterPrimeChecker provider() {
        return new FasterPrimeChecker();
    }



Chapter 14 ■ ImplementIng ServICeS

761

    @Override
    public boolean isPrime(long n) {
        if (n <= 1) {
            return false;
        }

        if (n == 2) {
            return true;
        }

        if (n % 2 == 0) {
            return false;
        }

        long limit = (long) Math.sqrt(n);
        for (long i = 3; i <= limit; i += 2) {
            if (n % i == 0) {
                return false;
            }
        }

        return true;
    }
}

Note the difference between the GenericPrimeChecker and FasterPrimeChecker classes, as shown in 
Listing 14-3 and Listing 14-6. The GenericPrimeChecker class contains a default constructor that serves as 
the provider constructor. It does not contain the provider method. The FasterPrimeChecker class makes 
the no-args constructor private, which does not qualify the constructor to be the provider constructor. The 
FasterPrimeChecker class provides the provider method instead, which is declared as follows:

public static FasterPrimeChecker provider() { /*...*/ }

When the ServiceLoader class needs to instantiate the faster prime service, it will call this method. The 
method is very simple—it creates and returns an object of the FasterPrimeChecker class.

That’s all you need for this module at this time. To compile this module, the jdojo.prime module needs 
to be in the module path. Compile and package this module as a modular JAR. At this point, there is nothing 
to test.

Defining a Probable Prime Service Provider
In this section, I show you how to use a Java interface as a service implementation. You will define 
another service provider for the PrimeChecker service interface. Let’s call this a probable prime service 
provider because it tells you that a number is probably a prime. This service provider will be defined in 
a separate module named jdojo.prime.probable and the service implementation interface is called 
ProbablePrimeChecker.

The service is about checking for a prime number. The java.math.BigInteger class contains a method 
named isProbablePrime(int certainty). If the method returns true, the number may be a prime. If the 
method returns false, the number is certainly not a prime. The certainty parameter determines the degree 
to which the method makes sure the number is prime before returning true. The higher the value of the 
certainty parameter, the higher the cost this method incurs and the higher the probability that the number 
is a prime when the method returns true.



Chapter 14 ■ ImplementIng ServICeS

762

Listing 14-7 contains the module declaration, which is similar to the ones we had before for the jdojo.
prime.faster module. This time, only the class/interface name in the with clause has changed. Listing 14-8 
contains the code for the ProbablePrimeChecker class.

Listing 14-7. The Module Declaration for the com.jdojo.prime.probable Module

// module-info.java
module jdojo.prime.probable {
    requires jdojo.prime;

    provides com.jdojo.prime.PrimeChecker
        with com.jdojo.prime.probable.ProbablePrimeChecker;
}

Listing 14-8. An Implementation Interface for the PrimeChecker Service Interface

// ProbablePrimeChecker.java
package com.jdojo.prime.probable;

import com.jdojo.prime.PrimeChecker;
import java.math.BigInteger;

public interface ProbablePrimeChecker extends PrimeChecker {
    // A provider method
    public static ProbablePrimeChecker provider() {
        int certainty = 1000;
        ProbablePrimeChecker checker = n -> BigInteger.valueOf(n).isProbablePrime(certainty);
        return checker;
    }
}

The ProbablePrimeChecker interface extends the PrimeChecker interface and consists of only one 
method, which is the provider method:

public static ProbablePrimeChecker provider() {/*...*/}

When the ServiceLoader class needs to instantiate the probable prime service, it will call this method. 
The method is very simple—it creates and returns an instance of the ProbablePrimeChecker interface. It 
uses a lambda expression to create the provider. The isPrime() method uses the BigInteger class to check 
whether the number is a probable prime.

Listing 14-9 contains an alternative declaration of the ProbablePrimeChecker interface as a service 
provider.

Listing 14-9. An Alternative Declaration of the ProbablePrimechecker Interface

// ProbablePrimeChecker.java
package com.jdojo.prime.probable;

import com.jdojo.prime.PrimeChecker;
import java.math.BigInteger;



Chapter 14 ■ ImplementIng ServICeS

763

public interface ProbablePrimeChecker {
    // A provider method
    public static PrimeChecker provider() {
        int certainty = 1000;
        PrimeChecker checker = n -> BigInteger.valueOf(n).isProbablePrime(certainty);
        return checker;
    }
}

This time, the interface does not extend the PrimeChecker interface. To be a service implementation, its 
provider method must return an instance of the service interface (the PrimeChecker interface) or its subtype. 
By declaring the return type of the provider method as PrimeChecker, you have fulfilled this requirement. 
Declaring the ProbablePrimeChecker interface, as shown in Listing 14-9, has one drawback that you 
cannot find this service provider by its class name, com.jdojo.probable.ProbablePrimeChecker, using 
the stream() method of the ServiceLoader class without instantiating the service provider. The type() 
method of ServiceLoader.Provider will return the Class reference of the com.jdojo.prime.PrimeChecker 
interface, which is the return type of the provider() method. I use the declaration of this interface as shown 
in Listing 14-8.

That’s all you have for this module. To compile this module, you need to add the jdojo.prime module 
to the module path. Compile and package this module as a modular JAR. At this point, there is nothing to 
test.

Testing the Prime Service
In this section, you test the service by creating a client application, which will be defined in a separate 
module named jdojo.prime.client. Listing 14-10 contains the module declaration.

Listing 14-10. The Declaration of the jdojo.prime.client Module

// module-info.java
module jdojo.prime.client {
    requires jdojo.prime;
}

The client module needs to know only about the service interface. In this case, the jdojo.prime module 
defines the service interface. Therefore, the client module reads the service interface module and nothing 
else. In a real world, the client module will be much more complex than this and it may read other modules 
as well. Figure 14-3 shows the module graph for the jdojo.prime.client module.



Chapter 14 ■ ImplementIng ServICeS

764

 ■ Note  a client module is not aware of the service provider modules and it need not directly read them as 
such. It is the responsibility of the service to discover all service providers and make their instances available to 
the client. In this case, the jdojo.prime module defines the com.jdojo.prime.PrimeChecker interface, which 
is a service interface and also acts as a service.

Listing 14-11 contains the code for the client that uses the PrimeChecker service.

Listing 14-11. A Main Class to Test the PrimeChecker Service

// Main.java
package com.jdojo.prime.client;

import com.jdojo.prime.PrimeChecker;

public class Main {
    public static void main(String[] args) {
        // Numbers to be checked for prime
        long[] numbers = {3, 4, 121, 977};

        // Use the default service provider
        PrimeChecker checker = PrimeChecker.newInstance();
        System.out.println("Using default service provider:");
        checkPrimes(checker, numbers);

        // Try faster prime service provider
        String fasterProviderName = "com.jdojo.prime.faster.FasterPrimeChecker";
        PrimeChecker fasterChecker = PrimeChecker.newInstance(fasterProviderName);
        if (fasterChecker == null) {
            System.out.println("\nFaster service provider is not available.");
        } else {

Figure 14-3. The module graph for the com.jdojo.prime.client module



Chapter 14 ■ ImplementIng ServICeS

765

            System.out.println("\nUsing faster service provider:");
            checkPrimes(fasterChecker, numbers);
        }

        // Try probable prime service provider
        String probableProviderName = "com.jdojo.prime.probable.ProbablePrimeChecker";
        PrimeChecker probableChecker = PrimeChecker.newInstance(probableProviderName);
        if (probableChecker == null) {
            System.out.println("\nProbable service provider is not available.");
        } else {
            System.out.println("\nUsing probable service provider:");
            checkPrimes(probableChecker, numbers);
        }
    }

    public static void checkPrimes(PrimeChecker checker, long... numbers) {
        for (long n : numbers) {
            if (checker.isPrime(n)) {
                System.out.printf("%d is a prime.%n", n);
            } else {
                System.out.printf("%d is not a prime.%n", n);
            }
        }
    }
}

The checkPrimes() method takes a PrimeChecker instance and varargs long numbers. It uses the 
PrimeChecker to check whether numbers are prime and prints corresponding messages. The main() 
method retrieves the default PrimeChecker service provider instance and the instances of the faster and 
probable service providers. It uses all three service providers’ instances to check the same set of numbers to 
be prime. Compile and package the module’s code. Run the Main class with only two modules, jdojo.prime 
and jdojo.prime.client, in the module path, as follows:

C:\Java9LanguageFeatures>java --module-path dist\jdojo.prime.jar;dist\jdojo.prime.client.jar
--module jdojo.prime.client/com.jdojo.prime.client.Main

Using default service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

Faster service provider is not available.

Probable service provider is not available.

There was only one service provider in the module path, which was the default service provider 
packaged with the jdojo.prime module. Therefore, attempts to retrieve the faster and probable service 
providers failed. This is evident from the output.



Chapter 14 ■ ImplementIng ServICeS

766

 ■ Tip  When the module system encounters a uses statement in a module declaration in a resolved module, 
it scans the module path to find all modules that contain provides statements specifying implementations for 
the service interface specified in the uses statement. In this sense, a uses statement in a module indicates 
an indirect optional dependency on other modules, which is resolved automatically for you. therefore, to use a 
service provider, just drop the service provider module on the module path; it will be discovered and loaded by 
the ServiceLoader class.

Let’s run the same command by also including the jdojo.prime.faster module to the module path as 
follows:

C:\Java9LanguageFeatures>java
--module-path dist\jdojo.prime.jar;dist\jdojo.prime.client.jar;dist\jdojo.prime.faster.jar
--module jdojo.prime.client/com.jdojo.prime.client.Main

Using default service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

Using faster service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

Probable service provider is not available.

This time, you had two service providers on the module path and both were found by the runtime, 
which is evident from the output.

The following command includes the jdojo.prime, jdojo.prime.faster, and jdojo.prime.probable 
modules on the module path. All three service providers will be found, which is evident from the output:

c:\Java9LanguageFeatures>java --module-path dist\jdojo.prime.jar;dist\jdojo.prime.client.
jar;dist\jdojo.prime.faster.jar;dist\jdojo.prime.probable.jar
--module jdojo.prime.client/com.jdojo.prime.client.Main

Using default service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

Using faster service provider:
3 is a prime.
4 is not a prime.



Chapter 14 ■ ImplementIng ServICeS

767

121 is not a prime.
977 is a prime.

Using probable service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

This is how modules are resolved in this case:

•	 The main class is in the jdojo.prime.client module, so this module is the root 
module and it is resolved first.

•	 The jdojo.prime.client module reads the jdojo.prime module, so the jdojo.
prime module is resolved.

•	 The jdojo.prime module contains a uses statement that specifies com.jdojo.
prime.PrimeChecker as the service interface type. The runtime scans all modules in 
the module path to check if any of them contains a provides statement specifying 
the same service interface. It finds the jdojo.prime, jdojo.prime.faster, and 
jdojo.prime.probable modules containing such provides statements. The jdojo.
prime module was already resolved in the previous step. The jdojo.prime.faster 
and jdojo.probable modules are resolved at this time.

You can see the modules resolution process using the --show-module-resolution command-line 
option as follows. Partial output is shown.

c:\Java9LanguageFeatures>java --module-path dist\jdojo.prime.jar;dist\jdojo.prime.client.
jar;dist\jdojo.prime.faster.jar;dist\jdojo.prime.probable.jar
--show-module-resolution
--module jdojo.prime.client/com.jdojo.prime.client.Main

root jdojo.prime.client ...
jdojo.prime.client requires jdojo.prime ...
jdojo.prime binds jdojo.prime.probable ...
jdojo.prime binds jdojo.prime.faster...
...

Testing Prime Service in Legacy Mode
Not all applications will be migrated to use modules. Your modular JARs for the prime service may be used 
along with other JARs on the class path. Suppose you placed all modular JARs for the prime service in the 
C:\Java9LanguageFeatures\lib directory. Run the com.jdojo.prime.client.Main class by placing the four 
modular JARs on the class path using the following command:

C:\Java9Revealed>java --class-path lib\com.jdojo.prime.jar;lib\com.jdojo.prime.client.
jar;lib\com.jdojo.prime.faster.jar;lib\com.jdojo.prime.generic.jar;lib\com.jdojo.prime.
probable.jar com.jdojo.prime.client.Main



Chapter 14 ■ ImplementIng ServICeS

768

C:\Java9LanguageFeatures>java --class-path lib\jdojo.prime.jar;lib\jdojo.prime.client.
jar;lib\jdojo.prime.faster.jar;lib\jdojo.prime.probable.jar com.jdojo.prime.client.Main

Using default service provider:
Exception in thread "main" java.lang.NullPointerException
        at com.jdojo.prime.client.Main.checkPrimes(Main.java:39)
        at com.jdojo.prime.client.Main.main(Main.java:14)

The output indicates that using the legacy mode—the pre-JDK9 mode by placing all modular JARs on 
the class path—did not find any of the service providers. In legacy mode, the service provider discovery 
mechanism is different. The ServiceLoader class scans all JARs on the class path looking for files in the 
META-INF/services directory. The file name is the fully qualified service interface name. The file path looks 
like this:

META-INF/services/<service-interface>

The contents of this file is the list of the fully qualified names of the service provider implementation 
classes/interfaces. Each class name needs to be on a separate line. You can use a single-line comment in the 
file. Text on a line starting from a # character is considered a comment.

The service interface name is com.jdojo.prime.PrimeChecker, so the modular JARs for the three 
service providers will have a file named com.jdojo.prime.PrimeChecker with the following path:

META-INF/services/com.jdojo.prime.PrimeChecker

You need to add the META-INF/services directory to the root of the source code directory. If you are 
using an IDE such as NetBeans, the IDE will take care of packaging the file for you. Listing 14-12, Listing 
14-13, and Listing 14-14 contain the contents of this file for the modular JARs for the three prime service 
provider modules.

Listing 14-12. Contents of the META-INF/services/com.jdojo.prime.PrimeChecker File in the Modular JAR 
for the com.jdojo.prime Module

# The generic service provider implementation class name
com.jdojo.prime.impl.GenericPrimeChecker

Listing 14-13. Contents of the META-INF/services/com.jdojo.prime.PrimeChecker File in the Modular JAR 
for the com.jdojo.prime.faster Module

# The faster service provider implementation class name
com.jdojo.prime.faster.FasterPrimeChecker

Listing 14-14. Contents of the META-INF/services/com.jdojo.prime.PrimeChecker File in the Modular JAR 
for the com.jdojo.prime.probable Module

# The probable service provider implementation interface name
com.jdojo.prime.probable.ProbablePrimeChecker



Chapter 14 ■ ImplementIng ServICeS

769

Recompile and repackage the modular JARs for the generic and faster prime checker service providers. 
Run the following command:

C:\Java9LanguageFeatures>java --class-path lib\jdojo.prime.jar;lib\jdojo.prime.client.
jar;lib\jdojo.prime.faster.jar;lib\jdojo.prime.probable.jar com.jdojo.prime.client.Main

Using default service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.
Exception in thread "main" java.util.ServiceConfigurationError: com.jdojo.prime.
PrimeChecker: com.jdojo.prime.faster.FasterPrimeChecker Unable to get public no-arg 
constructor
...
   Caused by: java.lang.NoSuchMethodException: com.jdojo.prime.faster.
FasterPrimeChecker.<init>()

...

Partial output is shown. The output indicates a runtime exception when the ServiceLoader class 
tries to instantiate the faster prime service provider. You will get the same error when an attempt is made 
to instantiate the probable prime service provider. Adding information about a service in the META-INF/
services directory is the legacy way of implementing services. For backward compatibility, the service 
implementation must be a class with a public no-args constructor. Recall that you provided a provider 
constructor only for the GenericPrimeChecker class. Therefore, the default prime checker service 
provider works and the other two do not work in legacy mode. You can add a provider constructor to the 
FasterPrimeChecker class to make it work. However, it is not possible to add a provider constructor to an 
interface and the ProbablePrimeChecker will not work in the class path mode. You must load it from an 
explicit module to make it work.

Summary
A specific functionality provided by an application (or a library) is known as a service. Applications and 
libraries providing implementations of a service are known as service providers. Applications using the 
service provided by those service providers are called service consumers or clients.

In Java, a service is defined by a set of interfaces and classes. The service contains an interface or an 
abstract class that defines the functionality provided by the service and it is known as the service provider 
interface, service interface, or service type. A specific implementation of a service interface is known as a 
service provider. There can be multiple service providers for a single service interface. In JDK9, a service 
provider may be a class or an interface. Before JDK9, a service provider must be a class.

The JDK contains a java.util.ServiceLoader<S> class whose sole purpose is to discover and load 
service providers of type S at runtime for a specified service interface. If a JAR (modular or non-modular) 
containing a service provider is placed on the class path, the ServiceLoader class uses the META-INF/
services directory to find the service providers. The name of the file in this directory should be the same 
as the fully qualified name of the service interface. The file contains the fully qualified name of the service 
provider implementation classes—one class name per line. The file can use a # character as the start of 
single-line comments. The ServiceLoader class scans all META-INF/services directories on the class path to 
discover service providers.



Chapter 14 ■ ImplementIng ServICeS

770

In JDK9, the service provider discovery mechanism has changed. A module that uses the 
ServiceLoader class to discover and load the service providers needs to specify the service interface using a 
uses statement. The service interface specified in a uses statement may be declared in the current module 
or any module accessible to the current module. You can use the iterator() method of the ServiceLoader 
class to iterate over all service providers. The stream() method provides a stream of elements that are 
instances of the ServiceLoader.Provider interface. You can use the stream to filter and select a specific type 
of providers based on the provider’s class names without having to instantiate all providers.

A module that contains a service provider needs to specify the service interface and its implementation 
class using a provides statement. The implementation class must be declared in the current module.

QUESTIONS AND EXERCISES

1. What are services, service interfaces, and service providers in Java?

2. Write the declaration for a module named M, which loads service providers of a 
service interface whose fully qualified name is p.S.

3. Write the declaration for a module named N, which provides the implementation 
of a service interface p.S. the fully qualified name of the service implementation 
class is q.C.

4. how many types of services can a module load using the ServiceLoader class?

5. how many service implementations of a service type can a module provide?

6. When do you use the java.util.ServiceLoader<S> class?

7. When do you use the nested java.util.ServiceLoader.Provider<S> interface?

8. You can discover and load service providers of a specific type using the 
iterator() method or the stream() methods of the ServiceLoader class. Which 
method has better performance when you have to select a service provider based 
on the name of the service provider implementation class or interface?

9. What are the provider constructor and provider method? If both are available, which 
one is used when services are loaded from modular Jars?

10. What steps would you take while defining a service in JDK9 packaged in a modular 
Jar that should also work when placed in the class path?



771© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_15

CHAPTER 15

The Module API

In this chapter, you will learn:

•	 What the Module API is

•	 How to represent a module and a module descriptor in a program

•	 How to read a module descriptor in a program

•	 How to represent a module’s version

•	 How to read a module’s properties using the Module and ModuleDescriptor classes

•	 How to update a module’s definition at runtime using the Module class

•	 How to access resources in a module

•	 How to create annotations that can be used on modules and how to read annotations 
used on modules

•	 What module layers and configurations are

•	 How to create custom module layers and load modules into them

What Is the Module API?
The Module API consists of classes and interfaces that give you programmatic access to modules. Using the 
API, you can programmatically:

•	 Read, modify, and build module descriptors

•	 Load modules

•	 Read modules’ contents

•	 Search for loaded modules

•	 Create new layers of modules

The Module API is small. It consists of about 15 classes and interfaces spread across two packages:

•	 java.lang

•	 java.lang.module

https://doi.org/10.1007/978-1-4842-3348-1_15


Chapter 15 ■ the Module apI

772

The Module, ModuleLayer, and LayerInstantiationException classes are in the java.lang package and 
the rest are in the java.lang.module package. Table 15-1 contains the list of classes in the Module API with a brief 
description of each. The list is not sorted. I list Module and ModuleDescriptor first because application developers 
use them most frequently. All other classes are typically used by containers and libraries. The list does not contain 
exceptions classes in the Module API. I discuss these classes in detail in the subsequent sections.

Table 15-1. Commonly Used Classes and Their Descriptions in the Module API

Class Description

Module Represents a runtime module.

ModuleDescriptor Represents an immutable module descriptor.

ModuleDescriptor.Builder A nested builder class used to build module descriptors programmatically.

ModuleDescriptor.Exports A nested class that represents an exports statement in a module declaration.

ModuleDescriptor.Opens A nested class that represents an opens statement in a module declaration.

ModuleDescriptor.Provides A nested class that represents a provides statement in a module 
declaration.

ModuleDescriptor.Requires A nested class that represents a requires statement in a module 
declaration.

ModuleDescriptor.Version A nested class that represents a module’s version string. It contains a 
parse(String v) factory method that returns its instance from a  
version string.

ModuleDescriptor.Modifier An enum whose constants represent modifiers used on a module 
declaration such as OPEN for an open module.

ModuleDescriptor.Exports.
Modifier

An enum whose constants represent modifiers used on an exports 
statement in a module’s declaration.

ModuleDescriptor.Opens.
Modifier

An enum whose constants represent modifiers used on an opens  
statement in a module’s declaration.

ModuleDescriptor.Requires.
Modifier

An enum whose constants represent modifiers used on a requires 
statement in a module’s declaration.

ModuleReference A reference to a module’s contents. It contains the module’s descriptor  
and its location.

ResolvedModule Represents a resolved module in a module graph. Contains the module’s 
name, its dependencies, and a reference to its contents. It can be used to 
walk through all transitive dependencies of a module in a module graph.

ModuleFinder An interface used to find modules on specified paths or system modules. 
Found modules are returned as instances of ModuleReference. It contains 
factory methods to get its instances.

ModuleReader An interface used to read a module’s contents. You can obtain a 
ModuleReader from a ModuleReference.

Configuration Represents a module graph of resolved modules.

ModuleLayer Contains a module graph (a Configuration) and a mapping between 
modules in the graph and class loaders.

ModuleLayer.Controller A nested class used to control modules in a ModuleLayer. Methods in the 
ModuleLayer class return instances of this class.



Chapter 15 ■ the Module apI

773

Representing Modules
An instance of the Module class represents a runtime module. Every type loaded into the JVM belongs to a 
module. JDK9 added a method named getModule() to the Class<T> class that returns the reference of the 
module to which the type belongs. The following snippet of code shows how to get the module of a class 
named BasicInfo:

// Get the Class object for of the BasicInfo class
Class<BasicInfo> cls = BasicInfo.class;

// Get the module reference
Module module = cls.getModule();

A module can be named or unnamed. The isNamed() method of the Module class returns true for a 
named module and false for an unnamed module.

Every class loader contains an unnamed module that contains all types loaded by the class loader from 
the class path. If a class loader loads types from a module path, those types belong to named modules. The 
getModule() method of the Class class may return a named or unnamed module. JDK9 added a method 
named getUnnamedModule() to the ClassLoader class that returns the unnamed module of the class loader. 
In the following snippet of code, assuming that the BasicInfo class is loaded from the class path, m1 and m2 
refer to the same Module:

Class<BasicInfo> cls = BasicInfo.class;
Module m1 = cls.getClassLoader().getUnnamedModule();
Module m2 = cls.getModule();

The getName() method of the Module class returns the name of the module. For unnamed modules, it 
returns null.

// Get the module name
String moduleName = module.getName();

The getPackages() method in the Module class returns a Set<String> containing all packages in the 
module. The getClassLoader() method returns the class loader for the module.

The getLayer() method returns the ModuleLayer that contains the module; if the module is not in a 
layer, it returns null. A module layer contains only named modules. So, this method always returns null for 
unnamed modules.

Describing Modules
An instance of the ModuleDescriptor class represents a module definition, which is created from a module 
declaration—typically from a module-info.class file. A module descriptor can also be created on the fly 
using the ModuleDescriptor.Builder class. A module declaration may be augmented using command-line 
options such as --add-reads, --add-exports, and --add-opens, and using methods in the Module class such 
as addReads(), addOpens(), and addExports(). A ModuleDescriptor represents a module descriptor added 
at the time of module declaration, not an augmented module descriptor. The getDescriptor() method of 
the Module class returns a ModuleDescriptor:

Class<BasicInfo> cls = BasicInfo.class;
Module module = cls.getModule();

// Get the module descriptor
ModuleDescriptor desc = module.getDescriptor();



Chapter 15 ■ the Module apI

774

 ■ Tip  a ModuleDescriptor is immutable. an unnamed module does not have a module descriptor. the 
getDescriptor() method of the Module class returns null for an unnamed module.

You can also create a ModuleDescriptor object by reading the binary form of the module declaration 
from a module-info.class file using one of the static read() methods of the ModuleDescriptor class. The 
following snippet of code reads a module-info.class file from the current directory. Exception handling is 
excluded for clarity:

String moduleInfoPath = "module-info.class";
ModuleDescriptor desc = ModuleDescriptor.read(new FileInputStream(moduleInfoPath));

Representing Module Statements
The ModuleDescriptor class contains the following static nested classes whose instances represent a 
statement with the same name in a module declaration:

•	 ModuleDescriptor.Exports

•	 ModuleDescriptor.Opens

•	 ModuleDescriptor.Provides

•	 ModuleDescriptor.Requires

Notice that there is no ModuleDescriptor.Uses class to represent a uses statement. This is because a 
uses statement represents a service interface name that can be represented as a String.

Representing the exports Statement
An instance of the ModuleDescriptor.Exports class represents an exports statement in a module 
declaration. The following methods in the class return the components of the exports statement:

•	 boolean isQualified()

•	 Set<ModuleDescriptor.Exports.Modifier> modifiers()

•	 String source()

•	 Set<String> targets()

The isQualified() method returns true for a qualified export and false for a non-qualified export. 
The source() method returns the name of the exported package. For a qualified export, the targets() 
method returns an immutable set of module names to which the package is exported and, for a non-
qualified export, it returns an empty set. The modifiers() method returns the set of modifiers for the 
exports statement that are constants of the nested ModuleDescriptor.Exports.Modifier enum. It contains 
the following two constants:

•	 MANDATED: The export was implicitly declared in the source module declaration.

•	 SYNTHETIC: The export was not explicitly or implicitly declared in the source of the 
module declaration.



Chapter 15 ■ the Module apI

775

Representing the opens Statement
An instance of the ModuleDescriptor.Opens class represents an opens statement in a module declaration. 
The following methods in the class return the components of the opens statement:

•	 boolean isQualified()

•	 Set<ModuleDescriptor.Opens.Modifier> modifiers()

•	 String source()

•	 Set<String> targets()

The isQualified() method returns true for a qualified opens and false for a non-qualified opens. 
The source() method returns the name of the open package. For a qualified opens, the targets() method 
returns an immutable set of module names to which the package is open and, for a non-qualified opens, 
it returns an empty set. The modifiers() method returns the set of modifiers for the opens statement that 
are constants of the nested ModuleDescriptor.Opens.Modifier enum, which contains the following two 
constants:

•	 MANDATED: The opens was implicitly declared in the source of the module declaration.

•	 SYNTHETIC: The opens was not explicitly or implicitly declared in the source of the 
module declaration.

Representing the provides Statement
An instance of the ModuleDescriptor.Provides class represents one or more provides statements 
for a specific service type in a module declaration. The following two provides statements specify two 
implementation classes for the same service type X.Y:

provides X.Y with A.B;
provides X.Y with Y.Z;

One instance of the ModuleDescriptor.Provides class will represent both of these statements. The 
following methods in the class return the components of the provides statement:

•	 List<String> providers()

•	 String service()

The providers() method returns the list of the fully qualified class names of the provider classes 
or provider factories. In the previous example, the returned list will contain A.B and Y.Z. The service() 
method returns the fully qualified name of the service type. In the previous example, it will return X.Y.

Representing the requires Statement
An instance of the ModuleDescriptor.Requires class represents a requires statement in a module 
declaration. The following methods in the class return the components of the requires statement:

•	 Optional<ModuleDescriptor.Version> compiledVersion()

•	 Optional<String> rawCompiledVersion()

•	 String name()

•	 Set<ModuleDescriptor.Requires.Modifier> modifiers()



Chapter 15 ■ the Module apI

776

Suppose a module named M having the following requires statement is compiled:

module M {
    requires N;
}

If the module version of N is available at the time of compilation, that version is recorded in the module 
descriptor of M. The compiledVersion() method returns that recorded version of N in an Optional. If no 
version for N was available, the method returns an empty Optional. The module version of the module 
specified in the requires statement is recorded in the module descriptor only for informative purposes. It is 
not used at any phase by the module system. However, it can be used by tools and frameworks for diagnostic 
purposes. For example, a tool may verify that all modules specified as dependence using the requires 
statement must be available with the same or higher version than the one recorded during compilation.

Continuing with the previous example, the rawCompiledVersion() method returns the version 
of module N in an Optional<String>. In most cases, the two methods, compiledVersion() and 
rawCompiledVersion(), will return the same module version, but in two different formats: one in an 
Optional<ModuleDescriptor.Version> object and another in an Optional<String> object. You can have 
a module with an invalid module version. Such a module may be created and compiled outside the Java 
module system. You can load such a module with an invalid module version as a Java module. In such a 
case, the compiledVersion() method returns an empty Optional<ModuleDescriptor.Version> because 
the module version cannot be parsed as a valid Java module version, whereas the rawCompiledVersion() 
returns an Optional<String> that contains the invalid module version.

 ■ Tip  the rawCompiledVersion() method of the ModuleDescriptor.Requires class may return an 
unparseable version of the required module.

The name() method returns the name of the module specified in the requires statement. The 
modifiers() method returns the set of modifiers for the requires statement that are constants of the nested 
ModuleDescriptor.Requires.Modifier enum, which contain the following constants:

•	 MANDATED: The dependence was implicitly declared in the source of the module 
declaration.

•	 STATIC: The dependence is mandatory at compile time and optional at runtime.

•	 SYNTHETIC: The dependence was not explicitly or implicitly declared in the source of 
the module declaration.

•	 TRANSITIVE: The dependence causes any module that depends on the current 
module to have an implicitly declared dependence on the module named by this 
requires statement.

Representing a Module Version
An instance of the ModuleDescriptor.Version class represents a module’s version. It contains a static 
factory method named parse(String version) that returns its instance representing a version from the 
specified version string. Recall that you do not specify a module’s version in a module’s declaration. You add 
a module version when you package module’s code into a modular JAR, typically using the jar tool. The 
javac compiler also lets you specify a module version when you compile a module. A module version string 
contains three components:



Chapter 15 ■ the Module apI

777

•	 A mandatory version number

•	 An optional prerelease version

•	 An optional build version

A module version is of the following form:

vNumToken+ ('-' preToken+)? ('+' buildToken+)?

Each component is a sequence of tokens; each token is either a non-negative integer or a string. 
Tokens are separated by the punctuation characters ., -, or +, or by transition from a sequence of digits to 
a sequence of characters that are neither digits nor punctuation characters, or vice versa. A version string 
must start with a digit. The version number is a sequence of tokens separated by . characters, terminated 
by the first - or + character. The prerelease version is a sequence of tokens separated by . or - characters, 
terminated by the first + character. The build version is a sequence of tokens separated by ., -, or + 
characters.

The version() method of the ModuleDescriptor class returns an Optional<ModuleDescriptor.
Version>.

Other Properties of Modules
There are other module properties that can be set in the module-info.class file while packaging the 
modular JAR, such as the main class name, OS name, etc. The ModuleDescriptor class contains a method to 
get each of these properties. The following methods in the ModuleDescriptor class are of interest:

•	 Set<ModuleDescriptor.Exports> exports()

•	 boolean isAutomatic()

•	 boolean isOpen()

•	 Optional<String> mainClass()

•	 String name()

•	 Set<ModuleDescriptor.Opens> opens()

•	 Set<String> packages()

•	 Set<ModuleDescriptor.Provides> provides()

•	 Optional<String> rawVersion()

•	 Set<ModuleDescriptor.Requires> requires()

•	 String toNameAndVersion()

•	 Set<String> uses()

The method names are intuitive to understand their purposes. I cover two methods that need a little 
explanation: packages() and provides().



Chapter 15 ■ the Module apI

778

The ModuleDescriptor class contains a method named packages() and the Module class contains a 
method named getPackages(). Both return a set of package names. Why do you have two methods for the 
same purpose? In fact, they serve different purposes. In the ModuleDescriptor, the method returns the set 
of packages defined in the module declaration whether they are exported or not. Recall that you cannot 
get a ModuleDescriptor for an unnamed module and, in that case, you can get the package names in the 
unnamed module using the getPackages() method in the Module class. Another difference is that the 
package names reported by a ModuleDescriptor are static; the package names reported by a Module are 
dynamic, which reports the packages loaded in the module at the time the getPackages() method is called. 
A Module reports all packages currently loaded in it at runtime.

The provides() method returns a Set<ModuleDescriptor.Provides>. Consider the following provides 
statements in a module declaration:

provides A.B with X.Y1;
provides A.B with X.Y2;
provides P.Q with S.T1;

In this case, the set will contain two elements—one for the service type A.B and one for the service type 
P.Q. The service() and providers() methods of one element will return A.B and a list of X.Y1 and X.Y2, 
respectively. These methods for another element will return P.Q and a list of one element containing S.T1.

Knowing Module Basic Info
In this section, I show you an example of how to read basic information about a module at runtime. Listing 
15-1 contains the module declaration for a module named com.jdojo.module.api. It reads three modules 
and exports one package. Two of the read modules, com.jdojo.prime and com.jdojo.intro, are from 
previous chapters. You need to add these two modules to the module path to compile them and run the 
code in the com.jdojo.module.api module. The java.sql module is a JDK module.

Listing 15-1. The Declaration of a Module Named jdojo.module.api

// module-info.java
module jdojo.module.api {
    requires jdojo.prime;
    requires jdojo.intro;
    requires java.sql;
    exports com.jdojo.module.api;
}

Listing 15-2 contains the code for a class named ModuleBasicInfo that prints the module details of 
three modules using the Module and ModuleDescriptor classes.

Listing 15-2. A ModuleBasicInfo Class

// ModuleBasicInfo.java
package com.jdojo.module.api;

import com.jdojo.prime.PrimeChecker;
import java.lang.module.ModuleDescriptor;
import java.lang.module.ModuleDescriptor.Exports;
import java.lang.module.ModuleDescriptor.Provides;
import java.lang.module.ModuleDescriptor.Requires;



Chapter 15 ■ the Module apI

779

import java.sql.Driver;
import java.util.Set;

public class ModuleBasicInfo {
    public static void main(String[] args) {
        // Get the module of the current class
        Class<ModuleBasicInfo> cls = ModuleBasicInfo.class;
        Module module = cls.getModule();

        // Print module info
        printInfo(module);
        System.out.println("------------------");

        // Print module info
        printInfo(PrimeChecker.class.getModule());
        System.out.println("------------------");

        // Print module info
        printInfo(Driver.class.getModule());
    }

    public static void printInfo(Module m) {
        String moduleName = m.getName();
        boolean isNamed = m.isNamed();

        // Print module type and name
        System.out.printf("Module Name: %s%n", moduleName);
        System.out.printf("Named Module: %b%n", isNamed);

        // Get the module descriptor
        ModuleDescriptor desc = m.getDescriptor();

        // desc will be null for unnamed module
        if (desc == null) {
            Set<String> currentPackages = m.getPackages();
            System.out.printf("Packages: %s%n", currentPackages);
            return;
        }

        Set<Requires> requires = desc.requires();
        Set<Exports> exports = desc.exports();
        Set<String> uses = desc.uses();
        Set<Provides> provides = desc.provides();
        Set<String> packages = desc.packages();

        System.out.printf("Requires: %s%n", requires);
        System.out.printf("Exports: %s%n", exports);
        System.out.printf("Uses: %s%n", uses);
        System.out.printf("Provides: %s%n", provides);
        System.out.printf("Packages: %s%n", packages);
    }
}



Chapter 15 ■ the Module apI

780

Let’s run the ModuleBasicInfo class in module mode and in legacy mode. The following command uses 
the module mode:

c:\Java9LanguageFeatures>java --module-path dist --module jdojo.module.api/com.jdojo.module.
api.ModuleBasicInfo

Module Name: jdojo.module.api
Named Module: true
Requires: [java.sql (@9), jdojo.prime, jdojo.intro, mandated java.base (@9)]
Exports: []
Uses: []
Provides: []
Packages: [com.jdojo.module.api]
------------------
Module Name: jdojo.prime
Named Module: true
Requires: [mandated java.base (@9)]
Exports: [com.jdojo.prime]
Uses: [com.jdojo.prime.PrimeChecker]
Provides: [com.jdojo.prime.PrimeChecker with [com.jdojo.prime.impl.GenericPrimeChecker]]
Packages: [com.jdojo.prime, com.jdojo.prime.impl]
------------------
Module Name: java.sql
Named Module: true
Requires: [transitive java.xml, mandated java.base, transitive java.logging]
Exports: [javax.transaction.xa, javax.sql, java.sql]
Uses: [java.sql.Driver]
Provides: []
Packages: [java.sql, javax.transaction.xa, javax.sql]

Now let’s run the ModuleBasicInfo class in legacy mode by using the class path as follows:

c:\Java9LanguageFeatures>java -cp dist\jdojo.module.api.jar;dist\jdojo.module.api.jar;dist\
jdojo.prime.jar com.jdojo.module.api.ModuleBasicInfo

Module Name: null
Named Module: false
Packages: [com.jdojo.module.api]
------------------
Module Name: null
Named Module: false
Packages: [com.jdojo.module.api, com.jdojo.prime]
------------------
Module Name: java.sql
Named Module: true
Requires: [transitive java.xml, transitive java.logging, mandated java.base]
Exports: [java.sql, javax.transaction.xa, javax.sql]
Uses: [java.sql.Driver]
Provides: []
Packages: [javax.transaction.xa, javax.sql, java.sql]



Chapter 15 ■ the Module apI

781

The second time, the ModuleBasicInfo and PrimeChecker classes are loaded in an unnamed module of 
the application class loader, which is reflected in the isNamed() method returning false for both modules. 
Notice the dynamic nature of the getPackages() method of the Module class. When it is called the first time, 
it returns only one package name—com.jdojo.module.api. When it is called the second time, it returns two 
package names—com.jdojo.module.api and com.jdojo.prime. This is because packages in the unnamed 
module are added as types from the new packages are loaded into the unnamed module. The outputs for the 
java.sql module remain the same in both cases because platform types are always loaded into the same 
module irrespective of the mode the java launcher runs in.

Querying Modules
Typical queries that you may run against a module include:

•	 Can a module M read another module N?

•	 Can a module use a service of a specific type?

•	 Does a module export a specific package to all or some modules?

•	 Does a module open a specific package to all or some modules?

•	 Is this module named or unnamed?

•	 Is this an automatic module?

•	 Is this an open module?

You can augment a module descriptor using command-line options and programmatically using the 
Module API. You can put all queries for module’s properties in two categories: queries whose results may 
change after the module is loaded and queries whose results do not change after the module is loaded. The 
Module class contains methods for queries in the first category and the ModuleDescriptor class contains 
methods for queries in the second category. The Module class provides the following methods for queries in 
the first category:

•	 boolean canRead(Module other)

•	 boolean canUse(Class<?> service)

•	 boolean isExported(String packageName)

•	 boolean isExported(String packageName, Module other)

•	 boolean isOpen(String packageName)

•	 boolean isOpen(String packageName, Module other)

•	 boolean isNamed()

Methods names are intuitive enough to tell you what they do. The isNamed() method returns true for a 
named module and false for an unnamed module. A module’s type, named or unnamed, does not change 
after the module has been loaded. This method is provided in the Module class because you cannot get a 
ModuleDescriptor for an unnamed module.

The ModuleDescriptor contains three methods that tell you about the type of module and how the 
module descriptor was generated. The isOpen() method returns true if it is an open module and false 
otherwise. The isAutomatic() method returns true for an automatic module and false otherwise.

Listing 15-3 contains the code for a class named QueryModule, which is a member of the jdojo.module.
api module. It shows you how to query a module.



Chapter 15 ■ the Module apI

782

Listing 15-3. A QueryModule Class That Demonstrates How to Query a Module at Runtime

// QueryModule.java
package com.jdojo.module.api;

import java.sql.Driver;

public class QueryModule {
    public static void main(String[] args) throws Exception {
        Class<QueryModule> cls = QueryModule.class;
        Module m = cls.getModule();

        // Check if this module can read the java.sql module
        Module javaSqlModule = Driver.class.getModule();
        boolean canReadJavaSql = m.canRead(javaSqlModule);

        // Check if this module exports the com.jdojo.module.api package to all modules
        boolean exportsModuleApiPkg = m.isExported("com.jdojo.module.api");

        // Check if this module exports the com.jdojo.module.api package to java.sql module
        boolean exportsModuleApiPkgToJavaSql
                = m.isExported("com.jdojo.module.api", javaSqlModule);

        // Check if this module opens the com.jdojo.module.api package to java.sql module
        boolean openModuleApiPkgToJavaSql = m.isOpen("com.jdojo.module.api", javaSqlModule);

        // Print module type and name
        System.out.printf("Named Module: %b%n", m.isNamed());
        System.out.printf("Module Name: %s%n", m.getName());
        System.out.printf("Can read java.sql? %b%n", canReadJavaSql);
        System.out.printf("Exports com.jdojo.module.api? %b%n", exportsModuleApiPkg);
        System.out.printf("Exports com.jdojo.module.api to java.sql? %b%n",
                exportsModuleApiPkgToJavaSql);
        System.out.printf("Opens com.jdojo.module.api to java.sql? %b%n",
                openModuleApiPkgToJavaSql);
    }
}

Named Module: true
Module Name: jdojo.module.api
Can read java.sql? true
Exports com.jdojo.module.api? true
Exports com.jdojo.module.api to java.sql? true
Opens com.jdojo.module.api to java.sql? false



Chapter 15 ■ the Module apI

783

Updating Modules
In the next chapter, I show you how to add exports, opens, and reads to a module using the --add-exports, 
--add-opens, and --add-reads command-line options. In this section, I show you how to achieve the 
same programmatically. The Module class contains the following methods that let you modify a module 
declaration at runtime:

•	 Module addExports(String packageName, Module other)

•	 Module addOpens(String packageName, Module other)

•	 Module addReads(Module other)

•	 Module addUses(Class<?> serviceType)

There is a significant difference between using command-line options and one of these methods to 
modify a module’s declaration. Using command-line options, you can modify any module’s declaration. 
However, these methods are caller-sensitive. The code that calls these methods must be in the module 
whose declaration is being modified—except for calling the addOpens() method. That is, if you do not have 
access to the source code of a module, you cannot use these methods to modify that module’s declaration. 
These methods are typically meant to be used by frameworks, which can adapt to runtime needs to interact 
with other modules.

These methods throw an IllegalCallerException when dealing with a named module whereby the 
caller is not allowed to call these modules.

The addExports() method updates the module to export the specified package to the specified module. 
Calling this method has no effect if the specified package is already exported or open to the specified module 
or if the method is called on an unnamed or open module. An IllegalArgumentException is thrown if the 
specified package is null or does not exist in the module. Calling this method has the same effect as adding 
a qualified export to the module declaration:

exports <packageName> to <other>;

The addOpens() method works the same way as the addExports() method, except that it updates the 
module to open the specified package to the specified module. It is similar to adding the following statement 
in the module:

opens <packageName> to <other>;

The addOpens() method makes an exception to the rule about who can call this method. Other 
methods must be called from the code of the same module. However, the addOpens() method of a module 
can be called from the code of another module. Suppose module M opens package P to module N using the 
following declaration:

module M {
    opens P to N;
}



Chapter 15 ■ the Module apI

784

In this case, module N is allowed to call the addOpens("P", S) method on module M, which allowed 
module N to open package P to module S. This is done when the author of a module may open a package 
of a module to a known abstract framework module, which discovers and uses another implementation 
module at runtime. Both the dynamically known modules may need deep reflective access to the module 
being declared. In this case, the module’s author has to know only about the module name of the abstract 
framework and open the package to it. At runtime, the abstract framework’s module can open the same 
package to the dynamically discovered implementation module. Think about JPA as an abstract framework 
that defines a java.persistence module and discovers other JPA implementations such as Hibernate and 
EclipseLink at runtime. In this case, the module’s author can open a package only to the java.persistence 
module, which can open the same package to the Hibernate or EclipseLink modules at runtime.

The addReads() method adds a readability edge from this module to the specified module. This method 
has no effect if the specified module is itself because every module can read itself or if it is called on an 
unnamed module because an unnamed module can read all other modules. Calling this method is the same 
as adding a requires statement to the module declaration:

requires <other>;

The addUses() method updates the module to add a service dependence, so it can use the 
ServiceLoader class to load the service of the specified service type. It has no effect when called on an 
unnamed or automatic module. Its effect is the same as adding the following uses statement in the module’s 
declaration:

uses <serviceType>;

Listing 15-4 contains the code for an UpdateModule class. It is in the jdojo.module.api module as 
shown in Listing 15-1. Notice that the module declaration does not contain a uses statement. The class 
contains a findFirstService() method, which accepts a service type as an argument. It checks if the 
module can load the service type. Recall that a module must contain a uses statement with a specified 
service type to load that service type using the ServiceLoader class. The method uses the addUses() method 
of the Module class to add a uses statement for the service type if it was absent. In the end, the method loads 
and returns the first service provider loaded.

Listing 15-4. An UpdateModule Class Showing How to Add a uses Statement to a Module Declaration at 
Runtime

// UpdateModule.java
package com.jdojo.module.api;

import java.util.ServiceLoader;

public class UpdateModule {
    public static <T> T findFirstService(Class<T> service) {
        // Before loading the service providers, check if this module can use (or load)
        // the service. If not, update the module to use the service.        
        Module m = UpdateModule.class.getModule();
        if (!m.canUse(service)) {
            m.addUses(service);
        }



Chapter 15 ■ the Module apI

785

        return ServiceLoader.load(service)
                .findFirst()
                .orElseThrow(
              () -> new RuntimeException("No service provider found for the service: "
               + service.getName()));
    }
}

Now we’ll test the findFirstService() method of the UpdateModule class. Listing 15-5 contains the 
declaration for a module named jdojo.module.api.test.

Listing 15-5. The Declaration of a Module Named jdojo.module.api.test

// module-info.java
module jdojo.module.api.test {
    requires jdojo.prime;
    requires jdojo.module.api;
}

The jdojo.module.api.test module declares a dependence on the jdojo.prime module, so it can use 
the PrimeChecker service type interface. It declares a dependence on the jdojo.module.api module, so it 
can use the UpdateModule class to load the service. You need to add these two modules to the module path 
of the com.jdojo.module.api.test module in NetBeans. Listing 15-6 contains the code for a Main class in 
the com.jdojo.module.api.test module.

Listing 15-6. A Main Method in the com.jdojo.module.api.test Module

// Main.java
package com.jdojo.module.api.test;

import com.jdojo.module.api.UpdateModule;
import com.jdojo.prime.PrimeChecker;

public class Main {
    public static void main(String[] args) {
        long[] numbers = {3, 10};

        try {
            // Obtain a service provider for the com.jdojo.prime.PrimeChecker service type
            PrimeChecker pc = UpdateModule.findFirstService(PrimeChecker.class);

            // Check a few numbers for prime
            for (long n : numbers) {
                boolean isPrime = pc.isPrime(n);
                System.out.printf("%d is a prime: %b%n", n, isPrime);
            }
        } catch (RuntimeException e) {
            System.out.println(e.getMessage());
        }
    }
}



Chapter 15 ■ the Module apI

786

Try running the Main class as follows. Make sure to add the jdojo.intro module to the module path 
because the jdojo.module.api.test module reads the jdojo.module.api module, which reads the jdojo.
intro module.

c:\Java9LanguageFeatures>java --module-path dist\jdojo.prime.jar;dist\jdojo.intro.jar;dist\
jdojo.module.api.jar;dist\jdojo.module.api.test.jar --module jdojo.module.api.test/com.
jdojo.module.api.test.Main

3 is a prime: true
10 is a prime: false

Accessing Module Resources
Resources are made up of data that your application uses, such as images, audios, videos, text files, etc. 
Accessing resources is an important task that every Java developer performs. Java provides APIs to access 
resources in location-independent way. Typically, class files and resources are packaged in the same JAR. 
With the introduction of the module system in JDK9, the rules to access resources have changed. In the next 
sections, I explain the APIs to access resources in the JDK9 and before JDK9.

Accessing Resources Before JDK9
In this section, I explain how resources were accessed before JDK9. If you already know how to access 
resources before JDK9, you can skip to the next section that describes how to access resources in JDK9.

In Java code, a resource is identified by a resource name, which is a sequence of strings separated by a 
slash (/). For resources stored in JARs, a resource name is simply the path of the file stored in the JAR. For 
example, before JDK9, the Object.class file in the java.lang package stored in a file named rt.jar is a 
resource and its resource name is java/lang/Object.class.

Before JDK9, you could use methods in the following two classes to access resources:

•	 java.lang.Class

•	 java.lang.ClassLoader

A resource is located by a ClassLoader. The resource-finding methods in the Class class delegate to 
its ClassLoader. Therefore, once you understand the resource loading process used by a ClassLoader, 
you won’t have problems in using the methods of the Class class. The following two instance methods in 
both classes:

•	 URL getResource(String name)

•	 InputStream getResourceAsStream(String name)

Both methods find a resource the same way. They differ only in the return type. The first method returns 
an URL, whereas the second one returns an InputStream. The second method is equivalent to calling the first 
method and subsequently calling the openStream() on the returned URL object.

 ■ Tip  all resource-finding methods return null if the specified resource is not found.



Chapter 15 ■ the Module apI

787

The ClassLoader class contains three additional static methods to find resources:

•	 static URL getSystemResource(String name)

•	 static InputStream getSystemResourceAsStream(String name)

•	 static Enumeration<URL> getSystemResources(String name)

These methods use the system class loader, which is also known as the application class loader, to 
find a resource. The first method returns the URL of the first resource found. The second method returns 
the InputStream for the first resource found. The third method returns an Enumeration of the URLs of all 
resources found with the specified resource name.

To find a resource, you have two types of methods to select from—getSystemResource* and 
getResource*. Before I explain which method to use, it is important to understand that there are two types 
of resources that you can access:

•	 System resources

•	 Non-system resources

You must understand the difference between them to understand the resource finding mechanism. 
A system resource is a resource found on the class path—bootstrap class paths, JARs in the extension 
directories, and application class paths. A non-system resource may be stored in locations other than 
class path such as in specific directories, on the network, or in a database. The getSystemResource() 
method finds a resource using the application class loader delegating to its parent, which is the extension 
class loader, which in turn delegates to its parent, the bootstrap class loader. If your application is a stand-
alone application, and it uses only the three built-in JDK class loaders, you will be fine using the static 
methods named getSystemResource*. These methods will find all resources on the class path, including 
the resources in the runtime image such as in the rt.jar file. If your application is an applet running in a 
browser, or an enterprise application running in an application server or a web server, you should use the 
instance methods named getResource*, which let you find a resource using a specific class loader. If you call 
the getResource* methods on a Class object, the current class loader, the class loader that loads the Class 
object, is used to find the resource.

Resource names passed to all methods in the ClassLoader class are absolute and they do not start with 
a slash (/). For example, when calling the getSystemResource() method of the ClassLoader, you would use 
java/lang/Object.class as the resource name.

The resource-finding methods in the Class class let you specify absolute as well as relative resource 
names. An absolute resource name starts with a slash, whereas a relative resource name does not. When an 
absolute name is used, methods in the Class class remove the leading slash and delegate to the class loader 
that loaded the Class object to find the resource. The following call

Test.class.getResource("/resources/test.config");

is transformed into

Test.class.getClassLoader()
          .getResource("resources/test.config");

When a relative name is used, methods in the Class class prepend the package name, substituting dots 
in the package name with slashes followed with a slash, before delegating to the class loader that loaded 
the Class object to find the resource. Assuming that the Test class is in the com.jdojo.test package, the 
following call

Test.class.getResource("resources/test.config");



Chapter 15 ■ the Module apI

788

is transformed into

Test.class.getClassLoader()
          .getResource("com/jdojo/test/resources/test.config");

Let’s look at an example of finding resources before JDK9. I run the example using JDK8. You can find 
its source code along with a NetBeans project in the downloadable source code for this book. The NetBeans 
project is named jdojo.resource.preJDK9. If you create your own project, make sure to change the Java 
platform and source for your project to JDK8. The classes and resources are arranged as follows:

•	 wordtonumber.properties

•	 com/jdojo/resource/prejdk9/ResourceTest.class

•	 com/jdojo/resource/prejdk9/resources/numbertoword.properties

The project contains two resource files: wordtonumber.properties at the root and numbertoword.
properties in the com/jdojo/resource/prejdk9/resources directory. The contents of these property files 
are shown in Listing 15-7 and Listing 15-8.

Listing 15-7. Contents of the wordtonumber.properties File

One=1
Two=2
Three=3
Four=4
Five=5

Listing 15-8. Contents of the numbertoword.properties File

1=One
2=Two
3=Three
4=Four
5=Five

Listing 15-9 contains a complete program that shows how to find resources using different classes and 
their methods. The program demonstrates that you can use class files in your application as resources and 
you can find them using the same methods to find other types of resources. You may get different output, 
which depends on the location of your resources and JDK9 on your machine.

Listing 15-9. A Test Class to Demonstrate How to Find Resources in Pre-JDK9 Code

// ResourceTest.java
package com.jdojo.resource.prejdk9;

import java.io.IOException;
import java.net.URL;
import java.util.Properties;

public class ResourceTest {
    public static void main(String[] args) {
        System.out.println("Finding resources using the system class loader:");



Chapter 15 ■ the Module apI

789

        findSystemResource("java/lang/Object.class");
        findSystemResource("com/jdojo/resource/prejdk9/ResourceTest.class");
        findSystemResource("com/jdojo/prime/PrimeChecker.class");
        findSystemResource("sun/print/resources/duplex.png");

        System.out.println("\nFinding resources using the Class class:");

        // A relative resource name - Will not find Object.class
        findClassResource("java/lang/Object.class");

        // An absolute resource name - Will find Object.class
        findClassResource("/java/lang/Object.class");

        // A relative resource name - will find the class
        findClassResource("ResourceTest.class");

        // Load the wordtonumber.properties file
        loadProperties("/wordtonumber.properties");

        // Will not find the properties because we are using
        // an absolute resource name
        loadProperties("/resources/numbertoword.properties");

        // Will find the properties
        loadProperties("resources/numbertoword.properties");
    }

    public static void findSystemResource(String resource) {
        URL url = ClassLoader.getSystemResource(resource);
        System.out.println(url);
    }

    public static URL findClassResource(String resource) {
        URL url = ResourceTest.class.getResource(resource);
        System.out.println(url);
        return url;
    }

    public static Properties loadProperties(String resource) {
        Properties p1 = new Properties();
        URL url = ResourceTest.class.getResource(resource);
        if (url == null) {
            System.out.println("Properties not found: " + resource);
            return p1;
        }

        try {
            p1.load(url.openStream());
            System.out.println("Loaded properties from " + resource);
            System.out.println(p1);
        } catch (IOException e) {



Chapter 15 ■ the Module apI

790

            System.out.println(e.getMessage());
        }

        return p1;
    }
}

Finding resources using the system class loader:
jar:file:/C:/java8/jre/lib/rt.jar!/java/lang/Object.class
file:/C:/jdojo.resource.preJDK9/build/classes/com/jdojo/resource/prejdk9/ResourceTest.class
null
jar:file:/C:/java8/jre/lib/resources.jar!/sun/print/resources/duplex.png

Finding resources using the Class class:
null
jar:file:/C:/java8/jre/lib/rt.jar!/java/lang/Object.class
file:/C:/jdojo.resource.preJDK9/build/classes/com/jdojo/resource/prejdk9/ResourceTest.class
Loaded properties from /wordtonumber.properties
{One=1, Three=3, Four=4, Five=5, Two=2}
Properties not found: /resources/numbertoword.properties
Loaded properties from resources/numbertoword.properties
{5=Five, 4=Four, 3=Three, 2=Two, 1=One}

Accessing Resources in JDK9
Before JDK9, you were able to access resources from any JARs on the class path. In JDK9, classes and 
resources are encapsulated in modules. In the first attempt, JDK9 designers enforced the module 
encapsulation rules that resources in a module must be private to the module and, therefore, they should 
only be accessible to the code within that module. While this rule theoretically looked fine, it posed 
problems for frameworks that shared resources across modules and loaded class files as resources from 
other modules. A compromise was made to allow limited access to resources in modules and still enforce the 
module’s encapsulation. JDK9 contains resource-finding methods in three classes:

•	 java.lang.Class

•	 java.lang.ClassLoader

•	 java.lang.Module

The Class and ClassLoader classes have not received any new methods in JDK9. The Module class 
contains a getResourceAsStream(String name) method that returns an InputStream if the resource is 
found; otherwise, it returns null.



Chapter 15 ■ the Module apI

791

Resource Naming Syntax
A resource is named using a sequence of strings separated by a slash, for example, com/jdojo/states.png, 
/com/jdojo/words.png, and logo.png. If a resource name starts with a slash, it is considered an absolute 
resource name. A package name is computed from the resource name using the following rules:

•	 If the resource name starts with a slash, remove the leading slash. For example, for the 
resource named /com/jdojo/words.png, this step results in com/jdojo/words.png.

•	 Remove all characters from the resource name starting from the last slash. In this 
example, com/jdojo/words.png results in com/jdojo.

•	 Replace every remaining slash in the name with a period (.). So, com/jdojo is 
converted to com.jdojo. The resulting string is the package name.

There are situations when using these steps will result in an unnamed package or an invalid package 
name. Remember that a package name, if present, must consist of valid Java identifiers. If there is no package 
name, it is called an unnamed package. Consider META-INF/resource/logo.png as a resource name. 
Applying the previous set of rules, its package name will be computed as META-INF.resources, which is not 
a valid package name, but it is a valid path for a resource.

Rules to Find Resources
Because of backward compatibility and the string encapsulation promised by the module system, new rules 
to find resources in JDK9 are complicated and based on several factors:

•	 The type of the module that contains the resource: named, open, unnamed, or 
automatic module.

•	 The module that is accessing the resource: Is it the same module or a different one?

•	 The package name of the resource being accessed: Is it a valid or invalid Java 
package? Is it an unnamed package?

•	 Encapsulation of the package that contains the resource: Is the package that contains 
the resource exported, opened, or encapsulated to the module accessing the 
resource?

•	 The file extension of the resource being accessed: Is the resource a .class file or 
some other type of file?

•	 Which class’ method is being used to access the resource: Class, ClassLoader,  
or Module?

The following rules apply to a resource contained in a named module:

•	 If a resource name ends with .class, the resource can be accessed by code in any 
module. That is, any module can access class files in any named modules.

•	 If the package name computed from a resource name is not a valid Java package 
name, for example, META-INF.resources, the resource can be accessed by code in 
any module.

•	 If the package name computed from a resource name is an unnamed package, for 
example, for a resource name such as words.png, the resource can be accessed by 
code in any module.



Chapter 15 ■ the Module apI

792

•	 If the package containing the resource is opened to the module accessing the 
resource, the resource can be accessed by code in that module. A package can be 
opened to a module because the module defining the package is an open module, 
or the module opens the package to all other modules, or the module opens the 
package only to that specific module using a qualified opens statement. If a package 
is not opened in any of these ways, a resource in that package cannot be accessed by 
code outside that module.

•	 This rule is an offshoot of the previous rule. Every package in an unnamed, 
automatic, or open module is opened, so all resources in such modules can be 
accessed by code in all other modules.

 ■ Tip  a package in a named module must be opened, not exported, to access its resources. exporting a 
package of a module allows other modules to access public types (not resources) in that package.

Various resource-finding methods in the Module, Class, and ClassLoader classes behave differently 
while accessing resources in named modules:

•	 You can use the getResourceAsStream() method of the Module class to access a 
resource in a module. This method is caller-sensitive. If the caller module is different, 
this method applies all the resource accessibility rules as previously described.

•	 The getResource*() methods in the Class object for a class defined in a named 
module locate resources only in that named module. That is, you cannot use these 
methods to locate a resource outside the named module.

•	 The getResource*() methods in the ClassLoader class locate resources in named 
modules based on the list of rules described earlier. These methods are not caller-
sensitive. A class loader delegates a resource search to its parent before trying 
to locate the resource itself. These methods have two exceptions: 1) They locate 
resources only in unconditionally open packages. If a package is open to specific 
modules using a qualified opens statement, these methods will not locate resources 
in those packages. 2) They search modules defined in the class loader.

The Class object will find resources only in the module it is part of. It also supports absolute resource 
names that start with a slash and relative resource names that do not start with a slash. Here are a few 
examples of using the Class object:

// Will find the resource
URL url1 = Test.class.getResource("Test.class");

// Will not find the resource because the Test and Object classes are in different modules
URL url2 = Test.class.getResource("/java/lang/Object.class");

// Will find the resource because the Object and Class classes are
// in the same module, java.base
URL url3 = Object.class.getResource("/java/lang/Class.class");

// Will not find the resource because the Object class is in the java.base module
// whereas the Driver class is in the java.sql module
URL url4 = Object.class.getResource("/java/sql/Driver.class");



Chapter 15 ■ the Module apI

793

Using the Module class to locate resources requires you to have the reference of the module. If you have 
access to a class in that module, using the getModule() method on that Class object gives you the module 
reference. This is the easiest way to get a module reference. Sometimes, you have the module name as a 
string, but not the reference of a class in that module. You can find the module reference from a module 
name. Modules are organized into layers that are represented by instances of the ModuleLayer class in the 
java.lang package. The JVM contains at least one layer called the boot layer. Modules in the boot layer are 
mapped to the built-in class loaders—bootstrap, platform, and application class loaders. You can get the 
reference of the boot layer using the boot() static method of the ModuleLayer class:

// Get the boot layer
ModuleLayer bootLayer = ModuleLayer.boot();

Once you get the reference of the boot layer, you can use its findModule(String moduleName) method 
to get the reference of a module:

// Find the module named com.jdojo.resource in the boot layer
Optional<Module> m = bootLayer.findModule("jdojo.resource");

// If the module was found, find a resource in the module
if (m.isPresent()) {
    Module testModule = m.get();
    String resource = "com/jdojo/resource/opened/opened.properties";
    InputStream input = module.getResourceAsStream(resource);
    if (input != null) {
        System.out.println(resource + " found.");
    } else {
        System.out.println(resource + " not found.”);
    }
} else {
    System.out.println("Module jdojo.resource does not exist");
}

Let’s see the resource-finding rules in action. You will package resources in a module named jdojo.
resource whose declaration is shown in Listing 15-10.

Listing 15-10. A Module Declaration for a Module Named jdojo.resource

// module-info.java
module jdojo.resource {
    exports com.jdojo.exported;

    opens com.jdojo.opened;
}

The module exports the com.jdojo.exported package and opens the com.jdojo.opened package.  
The following is a list of all the files in the com.jdojo.resource module:

•	 module-info.class

•	 unnamed.properties

•	 META-INF\invalid_pkg.properties



Chapter 15 ■ the Module apI

794

•	 com\jdojo\encapsulated\encapsulated.properties

•	 com\jdojo\encapsulated\EncapsulatedTest.class

•	 com\jdojo\exported\AppResource.class

•	 com\jdojo\exported\exported.properties

•	 com\jdojo\opened\opened.properties

•	 com\jdojo\opened\OpenedTest.class

There are four class files. Only the module-info.class file is significant in this example. Other class files 
define a class with the same name without any details. All files with a .properties extension are resource 
files whose contents are not important in this example. The source code supplied with this book contains the 
contents of these files. To save space, I do not show the contents of these files here.

The unnamed.properties file is in the unnamed package, so it can be located by code in any other 
module. The invalid_pkg.properties file is in the META-INF directory, which is not a valid Java package 
name, so this file can also be located by code in any other module. The com.jdojo.encapsulated package 
is not open, so the encapsulated.properties file cannot be located by code in other modules. The com.
jdojo.exported package is not open, so the exported.properties file cannot be located by code in other 
modules. The com.jdojo.opened package is open, so the opened.properties file can be located by code in 
other modules. All class files in this module can be located by code in other modules.

Listing 15-11 contains the module declaration of a module named jdojo.resource.test. The code in 
this module accesses resources in the jdojo.resource module and the resources in this module itself. You 
need to add the jdojo.resource module to this module path to compile it.

Listing 15-11. A Module Declaration for a Module Named jdojo.resource.test

// module-info.java
module jdojo.resource.test {
    requires jdojo.resource;

    exports com.jdojo.resource.test;
}

The files in the jdojo.resource.test module are arranged as shown:

•	 module-info.class

•	 com\jdojo\resource\test\own.properties

•	 com\jdojo\resource\test\ResourceTest.class

The module contains a resource file named own.properties, which is in the com.jdojo.resource.test 
package. The own.properties file is empty. Listing 15-12 contains the code for the ResourceTest class.  
A detailed explanation of the code follows the output of this class.

Listing 15-12. A ResourceTest Class Demonstrating How to Access Resources in Named Modules

// ResourceTest
package com.jdojo.resource.test;

import com.jdojo.exported.AppResource;
import java.io.IOException;
import java.io.InputStream;



Chapter 15 ■ the Module apI

795

public class ResourceTest {
    public static void main(String[] args) {
        // A list of resources
        String[] resources = {
            "java/lang/Object.class",
            "com/jdojo/resource/test/own.properties",
            "com/jdojo/resource/test/ResourceTest.class",
            "unnamed.properties",
            "META-INF/invalid_pkg.properties",
            "com/jdojo/opened/opened.properties",
            "com/jdojo/exported/AppResource.class",
            "com/jdojo/resource/exported.properties",
            "com/jdojo/encapsulated/EncapsulatedTest.class",
            "com/jdojo/encapsulated/encapsulated.properties"
        };

        System.out.println("Using a Module:");
        Module otherModule = AppResource.class.getModule();
        for (String resource : resources) {
            lookupResource(otherModule, resource);
        }

        System.out.println("\nUsing a Class:");
        Class cls = ResourceTest.class;
        for (String resource : resources) {
            // Prepend a / to all resource names to make them absolute names
            lookupResource(cls, "/" + resource);
        }

        System.out.println("\nUsing the System ClassLoader:");
        ClassLoader clSystem = ClassLoader.getSystemClassLoader();
        for (String resource : resources) {
            lookupResource(clSystem, resource);
        }

        System.out.println("\nUsing the Platform ClassLoader:");
        ClassLoader clPlatform = ClassLoader.getPlatformClassLoader();
        for (String resource : resources) {
            lookupResource(clPlatform, resource);
        }
    }

    public static void lookupResource(Module m, String resource) {
        try {
            InputStream in = m.getResourceAsStream(resource);
            print(resource, in);
        } catch (IOException e) {
            System.out.println(e.getMessage());
        }
    }



Chapter 15 ■ the Module apI

796

    public static void lookupResource(Class cls, String resource) {
        InputStream in = cls.getResourceAsStream(resource);
        print(resource, in);
    }

    public static void lookupResource(ClassLoader cl, String resource) {
        InputStream in = cl.getResourceAsStream(resource);
        print(resource, in);
    }

    private static void print(String resource, InputStream in) {
        if (in != null) {
            System.out.println("Found: " + resource);
        } else {
            System.out.println("Not Found: " + resource);
        }
    }
}

Using a Module:
Not Found: java/lang/Object.class
Not Found: com/jdojo/resource/test/own.properties
Not Found: com/jdojo/resource/test/ResourceTest.class
Found: unnamed.properties
Found: META-INF/invalid_pkg.properties
Found: com/jdojo/opened/opened.properties
Found: com/jdojo/exported/AppResource.class
Not Found: com/jdojo/resource/exported.properties
Found: com/jdojo/encapsulated/EncapsulatedTest.class
Not Found: com/jdojo/encapsulated/encapsulated.properties

Using a Class:
Not Found: /java/lang/Object.class
Found: /com/jdojo/resource/test/own.properties
Found: /com/jdojo/resource/test/ResourceTest.class
Not Found: /unnamed.properties
Not Found: /META-INF/invalid_pkg.properties
Not Found: /com/jdojo/opened/opened.properties
Not Found: /com/jdojo/exported/AppResource.class
Not Found: /com/jdojo/resource/exported.properties
Not Found: /com/jdojo/encapsulated/EncapsulatedTest.class
Not Found: /com/jdojo/encapsulated/encapsulated.properties

Using the System ClassLoader:
Found: java/lang/Object.class
Not Found: com/jdojo/resource/test/own.properties
Found: com/jdojo/resource/test/ResourceTest.class
Found: unnamed.properties
Found: META-INF/invalid_pkg.properties
Found: com/jdojo/opened/opened.properties



Chapter 15 ■ the Module apI

797

Found: com/jdojo/exported/AppResource.class
Not Found: com/jdojo/resource/exported.properties
Found: com/jdojo/encapsulated/EncapsulatedTest.class
Not Found: com/jdojo/encapsulated/encapsulated.properties

Using the Platform ClassLoader:
Found: java/lang/Object.class
Not Found: com/jdojo/resource/test/own.properties
Not Found: com/jdojo/resource/test/ResourceTest.class
Not Found: unnamed.properties
Not Found: META-INF/invalid_pkg.properties
Not Found: com/jdojo/opened/opened.properties
Not Found: com/jdojo/exported/AppResource.class
Not Found: com/jdojo/resource/exported.properties
Not Found: com/jdojo/encapsulated/EncapsulatedTest.class
Not Found: com/jdojo/encapsulated/encapsulated.properties

The lookupResource() method is overloaded. They locate resources using the three classes: Module, 
Class, and ClassLoader. These methods pass the resource name and the resource reference to the print() 
method to print a message.

The main() method prepares a list of resources it wants to look up using different resource-finding 
methods. It stores the list in a String array:

// A list of resources
String[] resources = {/* List of resources */};

The main() method attempts to find all resources using the reference of the jdojo.resource 
module. Notice that the AppResource class is in the jdojo.resource module, so the AppResource.class.
getModule() method returns the reference of the jdojo.resource module.

System.out.println("Using a Module:");
Module otherModule = AppResource.class.getModule();
for (String resource : resources) {
    lookupResource(otherModule, resource);
}

The code found all the class files and all resources in the unnamed, invalid, and open packages in the 
jdojo.resource module. Notice that java/lang/Object.class was not found because it is in the java.base 
module, not in the jdojo.resource module. Resources in the jdojo.resource.test module were not found 
for the same reason.

Now, the main() method locates the same resources using a Class object representing the 
ResourceTest class, which is in the jdojo.resource.test module.

Class cls = ResourceTest.class;
for (String resource : resources) {
    // Prepend a / to all resource names to make them absolute names
    lookupResource(cls, "/" + resource);
}



Chapter 15 ■ the Module apI

798

This Class object will locate resources only in the jdojo.resource.test module, which is obvious in 
the output. In the code, I prepended the resource name with a slash, because the resource-finding methods 
in the Class class will treat a resource name, which does not start with a slash as a relative resource name 
and prepends the package name of the class to it.

In the end, the main() method uses the system and platform class loaders to locate the same set of 
resources:

ClassLoader clSystem = ClassLoader.getSystemClassLoader();
for (String resource : resources) {
    lookupResource(clSystem, resource);
}

ClassLoader clPlatform = ClassLoader.getPlatformClassLoader();
for (String resource : resources) {
    lookupResource(clPlatform, resource);
}

A class loader will locate resources in all modules known to the class loader itself or to its ancestor class 
loaders. The system class loader loads the jdojo.resource and jdojo.resource.test modules, so it finds 
resources in these modules subject to the restrictions imposed by the resource-finding rules. Its parent’s 
parent class loaders, which is the boot class loader, loads the Object class from the java.base module, so 
the system class loader can locate the java/lang/Object.class file.

The platform class loader does not load the jdojo.resource and jdojo.resource.test application 
modules. In the output, it is obvious that the platform class loader found only one resource, java/lang/
Object.class, which was loaded by its parent, the boot class loader.

Accessing Resources in the Runtime Image
Let’s walk through a few examples of accessing resources in the runtime image. Before JDK9, you could 
use the getSystemResource() static method of the ClassLoader class. Here is the code that looked up the 
Object.class file in JDK8. The output shows the returned URL using the jar scheme and pointing to the 
rt.jar file.

import java.net.URL;
...
String resource = "java/lang/Object.class";
URL url = ClassLoader.getSystemResource(resource);
System.out.println(url);

jar:file:/C:/java8/jre/lib/rt.jar!/java/lang/Object.class

JDK9 does not store a runtime image in JARs anymore. It is stored in an internal format that may be 
changed in the future. The JDK provides a way to access runtime resources in a format- and location-
independent way using the jrt scheme. The previous code works in JDK9 by returning an URL using the jrt 
scheme, not the jar scheme as shown:

jrt:/java.base/java/lang/Object.class



Chapter 15 ■ the Module apI

799

 ■ Tip  If your code accesses resources from the runtime image and expects an url using the jar scheme, it 
needs to be changed in JdK9 because you will get an url using the jrt scheme.

The syntax for using the jrt scheme is as follows:

jrt:/<module-name>/<path>

Here, <module-name> is the name of a module and <path> is the path to a specific class or resource file 
in the module. Both <module-name> and <path> are optional. The URL, jrt:/, refers to all class and resource 
files stored in the current runtime image. The jrt:/<module-name> refers to all class and resource files 
stored in the <module-name> module. The jrt:/<module-name>/<path> refers to a specific class or resource 
file named <path> in the <module-name> module. The following are examples of two URLs using the jrt 
scheme to refer to a class file and a resource file:

•	 jrt:/java.sql/java/sql/Driver.class

•	 jrt:/java.desktop/sun/print/resources/duplex.png

The first URL names the class file for the java.sql.Driver class in the java.sql module. The second 
URL names the image file sun/print/resources/duplex.png in the java.desktop module.

 ■ Tip  You can access resources in the runtime image using the jrt scheme, which are rather inaccessible 
using the resource-fining methods in the Module, Class, and ClassLoader classes.

You can create an URL using the jrt scheme. The following snippet of code shows how to read an image 
file into an Image object and a class file into a byte array from the runtime image. Do not worry about the 
details such as modules and packages involved in this code:

// Load the duplex.png into an Image object
URL imageUrl = new URL("jrt:/java.desktop/sun/print/resources/duplex.png");
Image image = ImageIO.read(imageUrl);

// Use the image object here
System.out.println(image);

// Load the contents of the Object.class file
URL classUrl = new URL("jrt:/java.base/java/lang/Object.class");
InputStream input = classUrl.openStream();
byte[] bytes = input.readAllBytes();
System.out.println("Object.class file size: " + bytes.length);

BufferedImage@26a7b76d: type = 6 ColorModel: #pixelBits = 32 numComponents = 4 color  
space = java.awt.color.ICC_ColorSpace@4cf4d528 transparency = 3 has alpha = true 
isAlphaPre = false ByteInterleavedRaster: width = 41 height = 24 #numDataElements 4 
dataOff[0] = 3

Object.class file size: 1932



Chapter 15 ■ the Module apI

800

When can you use the jrt scheme in other forms, in order to represent all files in the runtime image 
and all files in a module? You can use the jrt scheme to refer to a module to grant permissions in a Java 
policy file. The following entry in a Java policy file grants all permissions to the code in the java.activation 
module:

grant codeBase "jrt:/java.activation" {
    permission java.security.AllPermission;
}

Many tools and IDEs need to enumerate all modules, packages, and files in a runtime image. JDK9 ships 
with a read-only NIO FileSystem provider for the jrt URL scheme. You can use this provider to list all class 
and resource files in the runtime image. There are tools and IDEs that will run on JDK8, but will support 
the code development for JDK9. Those tools also need to get the list of class and resource files in the JDK9 
runtime image. When you install JDK9, it contains a jrt-fs.jar file in the lib directory. You can add this 
JAR file to the class path of the tools running on JDK8 and use the jrt file system as follows.

The jrt file system contains a root directory represented by a slash (/), which contains two sub-
directories named packages and modules:

/
/packages
/modules

The following snippet of code creates a NIO FileSystem for the jrt URL scheme:

// Create a jrt FileSystem
FileSystem fs = FileSystems.getFileSystem(URI.create("jrt:/"));

The following snippet of code reads an image file and the contents of the Object.class file:

// Load an image from a module
Path imagePath = fs.getPath("modules/java.desktop", "sun/print/resources/duplex.png");
Image image = ImageIO.read(Files.newInputStream(imagePath));

// Use the image object here
System.out.println(image);

// Read the Object.class file contents
Path objectClassPath = fs.getPath("modules/java.base", "java/lang/Object.class");
byte[] bytes = Files.readAllBytes(objectClassPath);
System.out.println("Object.class file size: " + bytes.length);

BufferedImage@371a67ec: type = 6 ColorModel: #pixelBits = 32 numComponents = 4 color  
space = java.awt.color.ICC_ColorSpace@fe18270 transparency = 3 has alpha = true isAlphaPre 
= false ByteInterleavedRaster: width = 41 height = 24 #numDataElements 4 dataOff[0] = 3

Object.class file size: 1932



Chapter 15 ■ the Module apI

801

The following snippet of code prints all entries—class and resource files—in all modules in the runtime 
image. Similarly, you can create a Path for packages to enumerate all packages in the runtime image.

// List all modules in the runtime image
Path modules = fs.getPath("modules");
Files.walk(modules)
     .forEach(System.out::println);

/modules
/modules/java.base
/modules/java.base/java
/modules/java.base/java/lang
/modules/java.base/java/lang/Object.class
...

Let’s look at a complete program that accesses resources from the runtime image. Listing 15-13 contains 
the module declaration for a module named jdojo.resource.jrt. Listing 15-14 contains the source code 
for a class named JrtFileSystem, which is in the jdojo.resource.jrt module.

Listing 15-13. A Module Declaration for a Module Named jdojo.resource.jrt

// module-info.java
module jdojo.resource.jrt {
    requires java.desktop;
}

Listing 15-14. A JrtFileSystem Class That Demonstrates the Use of the jrt URL Scheme to Access Resources 
from a Runtime Image

// JrtFileSystem.java
package com.jdojo.resource.jrt;

import java.awt.Image;
import java.io.IOException;
import java.net.URI;
import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import javax.imageio.ImageIO;

public class JrtFileSystem {
    public static void main(String[] args) throws IOException {
        // Create a jrt FileSystem
        FileSystem fs = FileSystems.getFileSystem(URI.create("jrt:/"));

        // Load an image from a module
        Path imagePath = fs.getPath("modules/java.desktop", "sun/print/resources/duplex.png");
        Image image = ImageIO.read(Files.newInputStream(imagePath));



Chapter 15 ■ the Module apI

802

        // Use the image object here
        System.out.println(image);

        // Read the Object.class file contents
        Path objectClassPath = fs.getPath("modules/java.base", "java/lang/Object.class");
        byte[] bytes = Files.readAllBytes(objectClassPath);
        System.out.println("Object.class file size: " + bytes.length);

        // List 5 packages in the runtime image
        Path packages = fs.getPath("packages");
        Files.walk(packages)
             .limit(5)
             .forEach(System.out::println);

        // List 5 modules’ entries in the runtime image
        Path modules = fs.getPath("modules");
        Files.walk(modules)
             .limit(5)
             .forEach(System.out::println);
    }
}

BufferedImage@371a67ec: type = 6 ColorModel: #pixelBits = 32 numComponents = 4 color  
space = java.awt.color.ICC_ColorSpace@fe18270 transparency = 3 has alpha = true  
isAlphaPre = false ByteInterleavedRaster: width = 41 height = 24 #numDataElements 4 
dataOff[0] = 3
Object.class file size: 1932
packages
packages/com
packages/com/java.activation
packages/com/java.base
packages/com/java.corba
modules
modules/java.desktop
modules/java.desktop/sun
modules/java.desktop/sun/print
modules/java.desktop/sun/print/resources

Notice that the program prints only five entries from the packages and modules directories. Also 
notice that you were able to access sun/print/resources/duplex.png, which is in the java.desktop 
module. The java.desktop module does not open the sun.print.resources package. Using any of the 
resource-finding methods in the Module, Class, and ClassLoader classes to locate sun/print/resources/
duplex.png fails.



Chapter 15 ■ the Module apI

803

Annotation on Modules
You can use annotations on module declarations. The java.lang.annotation.ElementType enum has 
a new value called MODULE. If you use MODULE as a target type on an annotation declaration, it allows the 
annotation to be used on modules. In Java 9, two annotations—java.lang.Deprecated and java.lang.
SuppressWarnings—have been updated to be used on module declarations. They can be used as follows:

@Deprecated(since="1.2", forRemoval=true)
@SuppressWarnings("unchecked")
module com.jdojo.myModule {
    // Module statements go here
}

When a module is deprecated, the use of that module in requires, but not in exports or opens 
statements, causes a warning to be issued. This rule is based on the fact that if module M is deprecated, a 
requires M will be used by the module’s users who need to get the deprecation warning. Other statements 
such as exports and opens are within the module that is being deprecated. A deprecated module does 
not cause warnings to be issued for uses of types within the module. Similarly, if a warning is suppressed 
in a module declaration, the suppression applies to elements within the module declaration, not to types 
contained in that module.

The Module class implements the java.lang.reflect.AnnotatedElement interface, so you can use a 
variety of annotation related methods to read them. An annotation type to be used on module declarations 
must include ElementType.MODULE as a target.

 ■ Tip  You cannot annotate individual module statements. For example, you cannot annotate an exports 
statement with a @Deprecated annotation to indicate that the exported package will be removed in a future 
release. during the early design phase, it was considered and rejected on the ground that this feature will take 
a considerable amount of time that is not needed at this time. this could be added in the future, if needed. as a 
result, you will not find any annotation-related methods in the ModuleDescriptor class.

Now we’ll create a new annotation type and use it on a module declaration. Listing 15-15 contains the 
module declaration for a module named jdojo.module.api.annotation that contains three annotations. 
The Version annotation type has been declared in the same module and its source code is shown in  
Listing 15-16. The retention policy of the new annotation type is RUNTIME.

Listing 15-15. A Module Declaration for a Module Named jdojo.module.api.annotation

// module-info.java
import com.jdojo.module.api.annotation.Version;

@Deprecated(since="1.2", forRemoval=false)
@SuppressWarnings("unchecked")
@Version(major=1, minor=2)
module jdojo.module.api.annotation {
    // No module statements
}



Chapter 15 ■ the Module apI

804

Listing 15-16. A Version Annotation Type That Can Be Used on Packages, Modules, and Types

// Version.java
package com.jdojo.module.api.annotation;

import static java.lang.annotation.ElementType.MODULE;
import static java.lang.annotation.ElementType.PACKAGE;
import static java.lang.annotation.ElementType.TYPE;
import java.lang.annotation.Retention;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;

@Retention(RUNTIME)
@Target({PACKAGE, MODULE, TYPE})
public @interface Version {
    int major();
    int minor();
}

Listing 15-17 contains the code for an AnnotationTest class. It reads the annotations on the jdojo.
module.api.annotation module. The output does not contain the @SuppressWarnings annotation that is 
present on the module because this annotation uses a retention policy of RetentionPolicy.SOURCE, which 
means the annotation is not retained at runtime.

Listing 15-17. An AnnotationTest Class to Demonstrate How to Read Annotations on Modules

// AnnotationTest.java
package com.jdojo.module.api.annotation;

import java.lang.annotation.Annotation;

public class AnnotationTest {
    public static void main(String[] args) {
        // Get the module reference of the com.jdojo.module.api.annotation module
        Module m = AnnotationTest.class.getModule();

        // Print all annotations
        Annotation[] a = m.getAnnotations();
        for (Annotation ann : a) {
            System.out.println(ann);
        }

        // Read the Deprecated annotation
        Deprecated d = m.getAnnotation(Deprecated.class);
        if (d != null) {
            System.out.printf("Deprecated: since=%s, forRemoval=%b%n",
                    d.since(), d.forRemoval());
        }



Chapter 15 ■ the Module apI

805

        // Read the Version annotation
        Version v = m.getAnnotation(Version.class);
        if (v != null) {
            System.out.printf("Version: major=%d, minor=%d%n", v.major(), v.minor());
        }
    }
}

@java.lang.Deprecated(forRemoval=false, since="1.2")
@com.jdojo.module.api.annotation.Version(major=1, minor=2)
Deprecated: since=1.2, forRemoval=false
Version: major=1, minor=2

Working with Module Layers
Working with module layers is an advanced topic. Typically, a Java developer will not need to work with 
module layers directly. Existing applications will not use module layers. If you migrate your applications to 
JDK9 or develop new applications using JDK9, whether you want it or not, you are using at least one module 
layer, which is created by the JVM at startup. Typically, applications using plugin or container architecture 
will use module layers. In this section, I give a brief overview of module layers using a simple example. I use 
the terms, module layers and layers, interchangeably.

A layer is a set of resolved modules (a module graph) with a function that maps each module to a class 
loader, which is loads all types in that module. The set of resolved modules is called a configuration. You can 
visualize the relationship between modules, class loaders, configurations, and layers like so:

Configuration = A module graph
Module Layer = Configuration + (Module -> Class loader)

Modules are arranged into layers. Layers are arranged hierarchically. A layer has at least one parent 
layer, except the empty layer, which, as its name suggests, contains no modules and primarily exists to 
serve as the parent layer for the boot layer. The boot layer is created by the JVM at startup by resolving the 
application’s initial modules (the root modules) against a set of observable modules. Loading types using 
class loaders has not changed in JDK9. Class loaders, typically, use the parent-first delegation model in 
which a request to load a type is delegated to the parent, which in turn delegates to its parent until the 
bootstrap class loader. If none of the parents loads the type, the class loader that initially received the request 
loads it. Figure 15-1 shows an example of the way modules, class loaders, and layers are arranged.



Chapter 15 ■ the Module apI

806

In the figure, an arrow pointing from X to Y means that X is the parent of Y, where X and Y could be class 
loaders or layers. Layers are stacked—the empty layer and the boot layer are the lowest two layers. I ignore 
referring to the empty layer in our further discussion and treat the boot layer as the lowest layer in the stack 
of layers. In the figure, the boot layer is the parent layer of the two custom layers named Layer1 and Layer2.

Modules in each layer in the stack can read modules in layers below it. That is, both Layer1 and Layer2 
can read modules in the boot layer. However, Layer1 cannot read modules in Layer2 because they are 
siblings. Neither can the boot layer read modules in Layer1 and Layer2 because the boot layer is the parent 
layer for them. As shown in figure, the class loaders in both user-defined layers have the application class 
loader as their parent, which most often would be the case. Making the application class loader the parent of 
the custom class loader ensures that the latter will be able to read all types in modules in the boot layer. The 
readability property of modules is respected when modules in one layer read modules in layers below it.

Allowing modules to be arranged in layers works for two use-cases—override mechanism and extension 
mechanism—that are often encountered in advanced Java applications like Java EE application/web servers 
that act as containers for hosted applications. In the override mechanism, a hosted application needs to 
override the functionalities provided by the container such as using a different version of the same module. 
In the extension mechanism, a hosted application needs to supplement the functionalities that are already 
provided by the container such as providing additional service providers. In Figure 15-1, the com.jdojo.test 
module is in the boot layer as well as Layer1. This is a case of overriding modules. The module version in 
Layer1 will be used by Layer1, whereas Layer2 will use the version of this module from the boot layer.

It is often required that a container allows hosted applications to provide their own set of modules that 
may override the modules embedded in the container. This is made possible by loading modules of the 
hosted applications in a layer on top of the container layer. Modules loaded into the application-specific 
layers will override the modules in the server-level layers. This way, you can use multiple versions of the 
same module in the same JVM.

Figure 15-1. An example of arranging modules into layers in an application



Chapter 15 ■ the Module apI

807

A hosted application may want to use a different service provider than the one provided by the 
container. This is possible by adding the application-specific service provider modules to a layer on top 
of the container layer. You can use the load(ModuleLayer layer, Class<S> service) method of the 
ServiceLoader<S> class to load service providers. The specified layer would be the hosted application 
specific layer. This method loads service providers from the specified layer and its parent layers.

 ■ Tip layers are immutable. once you create a layer, you cannot add modules to it or remove modules 
from it. If you need to add modules or substitute a module with another version of it, you must tear down the 
layer and recreate it.

Creating a layer is a multi-step process. You need to use the following steps to create a layer:

 1. Create module finders.

 2. Create a set of root modules.

 3. Create a configuration object.

 4. Create a layer.

Once you create a layer, you can use it to load types. I walk you through these steps in detail in the 
sections to follow. In the end, I show you how to use multiple versions of a module using layers.

Finding Modules
A module finder is an instance of the ModuleFinder interface. It is used to find modules during 
module resolution and service binding. A ModuleFinder returns the found modules as instances of the 
ModuleReference class. An instance of the ModuleReference class represents a reference to the contents of a 
module. The interface contains the two factory methods to create module finders:

•	 static ModuleFinder of(Path… entries)

•	 static ModuleFinder ofSystem()

The of() method locates modules by searching the specified sequence of paths, which can be paths 
to directories or packaged modules. The method finds the first occurrence of a module name searching 
the specified paths in order. The following snippet of code shows how to create a module finder that will 
search for modules in the C:\Java9LanguageFeatures\lib and C:\Java9LanguageFeatures\customLib 
directories:

// Create the module paths
Path mp1 = Paths.get("C:\\Java9LanguageFeatures\\lib");
Path mp2 = Paths.get("C:\\Java9LanguageFeatures\\customLib");

// Create a module finder using two module paths
ModuleFinder finder = ModuleFinder.of(mp1, mp2);

Sometimes, you need a reference to a ModuleFinder, for example, to pass to a method, but that module 
finder need not find any module. You can use the ModuleFinder.of() method without passing any paths as 
arguments to create such a module finder.



Chapter 15 ■ the Module apI

808

The ofSystem() method returns a module finder that finds system modules linked to the runtime. This 
method always finds the java.base module. Note that you can link a custom set of modules to a runtime 
image, which means that modules located using this method depend on the runtime image. A custom 
runtime image contains JDK modules as well as application modules. This method will find both types of 
modules.

You can also compose a module finder from a sequence of zero of more module finders using the static 
compose() method of the ModuleFinder interface:

ModuleFinder compose(ModuleFinder... finders)

This module finder will use each module finder in the order specified. The second module finder will 
find all modules not found by the first module finder, the third module finder will find all modules not found 
by the first and second module finders, and so on.

The ModuleFinder interface contains the following methods to find modules:

•	 Optional<ModuleReference> find(String name)

•	 Set<ModuleReference> findAll()

The find() method finds a module with the specified name. The findAll() method finds all modules 
that the finder can locate.

Listing 15-18 contains the code for a FindingModule class that shows you how to use a ModuleFinder. 
The code uses paths on Windows such as C:\Java9LanguageFeatures\dist, where modules are stored. You 
may need to change the module paths before you run the class. The class is a member of the com.jdojo.
module.api module. You may get different output.

Listing 15-18. Using a ModuleFinder to Locate Modules

// FindingModule.java
package com.jdojo.module.api;

import java.lang.module.ModuleDescriptor;
import java.lang.module.ModuleFinder;
import java.lang.module.ModuleReference;
import java.net.URI;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Optional;
import java.util.Set;

public class FindingModule {
    public static void main(String[] args) {
        // Create module paths. Change these paths to point to the directories
        // where modules are stored on your computer
        Path mp1 = Paths.get("C:\\Java9LanguageFeatures\\dist");
        Path mp2 = Paths.get("C:\\Java9LanguageFeatures\\lib");

        // Create a module finder
        ModuleFinder finder = ModuleFinder.of(mp1, mp2);

        // Find all modules that this finder can locate
        Set<ModuleReference> moduleRefs = finder.findAll();



Chapter 15 ■ the Module apI

809

        // Print the details of the modules found
        moduleRefs.forEach(FindingModule::printInfo);
    }

    public static void printInfo(ModuleReference mr) {
        ModuleDescriptor md = mr.descriptor();
        Optional<URI> location = mr.location();
        URI uri = null;
        if (location.isPresent()) {
            uri = location.get();
        }

        System.out.printf("Module: %s, Location: %s%n", md.name(), uri);
    }
}

Module: jdojo.reflection.model, Location: file:///C:/Java9LanguageFeatures/dist/jdojo.
reflection.model.jar

Module: jdojo.prime.probable, Location: file:///C:/Java9LanguageFeatures/dist/jdojo.prime.
probable.jar

Module: jdojo.module.api, Location: file:///C:/Java9LanguageFeatures/dist/jdojo.module.api.jar
...

Reading Module Contents
In the previous section, you learned how to use a ModuleFinder to find module references, which are 
instances of the ModuleReference class. A ModuleReference encapsulates the ModuleDescriptor and the 
location of a module. You can use the open() method of the ModuleReference class to obtain an instance 
of the ModuleReader interface. A ModuleReader is used to list, find, and read the contents of a module. The 
following snippet of code shows how to obtain a ModuleReader for the java.base module:

// Create a system module finder
ModuleFinder finder = ModuleFinder.ofSystem();

// The java.base module is guaranteed to exist
Optional<ModuleReference> omr = finder.find("java.base");
ModuleReference moduleRef = omr.get();

// Get a module reader
ModuleReader reader = moduleRef.open();

The open() method of the ModuleReference class throws an IOException. I have omitted the exception 
handling in the previous snippet of code to keep the code simple.

The following methods in the ModuleReader are used to work with the contents of a module.  
The method names are intuitive enough to tell you what they do.

•	 void close() throws IOException

•	 Optional<URI> find(String resourceName) throws IOException



Chapter 15 ■ the Module apI

810

•	 Stream<String> list() throws IOException

•	 default Optional<InputStream> open(String resourceName) throws 
IOException

•	 default Optional<ByteBuffer> read(String resourceName) throws 
IOException

•	 default void release(ByteBuffer bb)

The resource name passed to these methods is a slash (/) separated path string. For example, the 
resource name for the java.lang.Object class in the java.base module is java/lang/Object.class.

Once you are done working with a ModuleReader, you need to close it using its close() method. If you 
try to read a module’s contents using a closed ModuleReader, an IOException is thrown. The read() method 
returns an Optional<ByteBuffer>. You need to call the release(ByteBuffer bb) method to release the byte 
buffer after consuming it to avoid a resource leak.

Listing 15-19 contains a program that shows how to read contents of a module. It reads the contents of 
the Object class in a ByteBuffer and prints its size in bytes. It also prints the name of five resources in the 
java.base module. You may get different output.

Listing 15-19. Using a ModuleReader to Read a Module’s Contents

// ReadingModuleContents.java
package com.jdojo.module.api;

import java.io.IOException;
import java.lang.module.ModuleFinder;
import java.lang.module.ModuleReader;
import java.lang.module.ModuleReference;
import java.nio.ByteBuffer;
import java.util.Optional;

public class ReadingModuleContents {
    public static void main(String[] args) {
        // Create a system module finder
        ModuleFinder finder = ModuleFinder.ofSystem();

        // The java.base module is guaranteed to exist
        Optional<ModuleReference> omr = finder.find("java.base");
        ModuleReference moduleRef = omr.get();

        // Get a module reader and use it
        try (ModuleReader reader = moduleRef.open()) {
            // Read the Object class and print its size
            Optional<ByteBuffer> bb = reader.read("java/lang/Object.class");

            bb.ifPresent(
                buffer -> {System.out.println("Object.class Size: " + buffer.limit());

                // Release the byte buffer
                reader.release(buffer);
            });



Chapter 15 ■ the Module apI

811

            System.out.println("\nFive resources in the java.base module:");
            reader.list()
                  .limit(5)
                  .forEach(System.out::println);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Object.class Size: 1932

Five resources in the java.base module:
module-info.class
sun/util/BuddhistCalendar.class
sun/util/PreHashedMap$1$1.class
sun/util/PreHashedMap$1.class
sun/util/PreHashedMap$2$1$1.class

Creating Configurations
A configuration represents a set of resolved modules. A resolved module is a module whose dependences, 
specified using the requires statements, have been computed. The module resolution process uses two sets 
of modules: a set of root modules and a set of observable modules. Each module in the set of root modules 
is used as an initial module and its requires statements are resolved against the set of observable modules. 
A root module may require another module, which in turn may require another module, and so on. The 
resolution process computes the entire chain of dependencies for all root modules. The resulting graph of 
modules is called a dependency graph.

A dependency graph only takes into account the requires statements. If a module uses a requires 
transitive statement, modules depending on this module implicitly depend on the module specified in 
the requires transitive statement. The dependency graph is augmented with additional readability of 
modules caused by the requires transitive statements resulting in a module graph called a readability 
graph.

The uses and provides statements in modules also form a dependency. If a module M uses a service 
type S and another module N provides an implementation S with T, the module M depends on module N for 
using the service type S. The readability graph is augmented with modules computed for such service-use 
dependencies.

When the configuration for the boot layer is created, it contains modules by resolving the dependencies 
(requires statements), implied readability (requires transitive), and service-use dependencies (uses 
and provides statements). When you create a configuration for a user-defined layer, you have an option to 
include or exclude the service-use dependencies.

An instance of the Configuration class represents a configuration. A configuration has at least one 
parent, except an empty configuration.

An instance of the ResolvedModule class represents a resolved module in a configuration. The 
reads() method of the ResolvedModule class returns a Set<ResolvedModule> that a resolved module 
reads. Its configuration() method returns the Configuration that the resolved module is a member of. 
Its reference() method returns a ModuleReference that you can use to obtain a ModuleReader to read the 
module’s contents.



Chapter 15 ■ the Module apI

812

The following methods in the Configuration class create a Configuration object:

•	 static Configuration empty()

•	 Configuration resolve(ModuleFinder before, ModuleFinder after, 
Collection<String> roots)

•	 Configuration resolveAndBind(ModuleFinder before, ModuleFinder after, 
Collection<String> roots)

•	 static Configuration resolve(ModuleFinder before, List<Configuration> 
parents, ModuleFinder after, Collection<String> roots)

•	 static Configuration resolveAndBind(ModuleFinder before, 
List<Configuration> parents, ModuleFinder after, Collection<String> 
roots)

The empty() method returns an empty Configuration. This primarily exists to serve as the parent 
configuration for the configuration of the boot layer.

There are two versions of the resolve() and resolveAndBind() methods: ones as instance methods 
and others as static methods. There is only one difference between them. The instance methods create a 
new configuration using the current configuration as the parent configuration, whereas the static methods 
let you pass a list of parent configurations for the new configuration.

The resolve() method creates a new Configuration object by resolving dependencies resulting from 
requires and requires transitive statements in the module declarations. Modules in the specified roots 
are used as root modules. During the resolution process, modules are searched using the specified before 
module finder first. If the module is not found, the parent configurations are searched. If the module is 
still not found, the specified after module finder is used to search for the module. If your configuration 
is supposed to override a module in the parent configurations, you will place that module in the before 
module finder path.

The resolveAndBind() method works the same as the resolve() method, except that it also resolves 
service-use dependencies. The following snippet of code shows how to create a configuration using the boot 
layer’s configuration as its parent configuration:

// Define the module finders
String modulePath = "C:\\Java9LanguageFeatures\\dist";
Path path = Paths.get(modulePath);

ModuleFinder beforFinder = ModuleFinder.of(path);

// Our after module finder is empty
ModuleFinder afterFinder = ModuleFinder.of();

// Set up the root modules
Set<String> rootModules = Set.of("jdojo.layer");

// Create a configuration using the boot layer's configuration as its parent configuration
Configuration parentConfig = ModuleLayer.boot().configuration();
Configuration config = parentConfig.resolve(beforFinder, afterFinder, rootModules);



Chapter 15 ■ the Module apI

813

The following methods in the Configuration class are used to retrieve the details of resolved modules 
in a configuration:

•	 Optional<ResolvedModule> findModule(String name)

•	 Set<ResolvedModule> modules()

•	 List<Configuration> parents()

These methods’ names and signatures are intuitive enough to understand their use. I do not discuss the 
Configuration class any further in this section. In the next section, I show how to use a Configuration to 
create a module layer.

Creating Module Layers
A module layer is a configuration and a function that maps each module to a class loader. To create a layer, 
you must first create a configuration and have one or more class loaders to map modules to them. The class 
loader for a module loads all types in that module. You can map all modules in a configuration to one class 
loader; you can map each module to a different class loader; or you can have a custom mapping strategy. 
Typically, class loaders use a delegation strategy that delegates class loading requests to their parent class 
loaders. You can use this strategy as well when you define class loaders for modules in layers.

An instance of the ModuleLayer class, which is in the java.lang package, represents a module layer. The 
class contains two methods, empty() and boot(), that return an empty layer with an empty configuration and 
the boot layer, respectively. The following methods in the class are used to create a custom layer:

•	 ModuleLayer defineModules(Configuration cf, Function<String, 
ClassLoader> clf)

•	 static ModuleLayer.Controller defineModules(Configuration cf, 
List<ModuleLayer> parentLayers, Function<String,ClassLoader> clf)

•	 ModuleLayer defineModulesWithManyLoaders(Configuration cf, ClassLoader 
parentClassLoader)

•	 static ModuleLayer.Controller defineModulesWithManyLoaders(Configuration 
cf, List<ModuleLayer> parentLayers, ClassLoader parentLoader)

•	 ModuleLayer defineModulesWithOneLoader(Configuration cf, ClassLoader 
parentClassLoader)

•	 static ModuleLayer.Controller defineModulesWithOneLoader(Configuration 
cf, List<ModuleLayer> parentLayers, ClassLoader parentLoader)

The defineModulesXxx() methods have two variants: one set contains instance methods and another 
set contains static methods. Instance methods use the layer on which they are called as the parent layer, 
whereas static methods let you specify a list of parent layers for the new layer. The static methods return a 
ModuleLayer.Controller object, which you can use to work with modules in the new layer. ModuleLayer.
Controller is a nested class in the java.lang package with the following methods:

•	 ModuleLayer.Controller addExports(Module source, String packageName, 
Module target)

•	 ModuleLayer.Controller addOpens(Module source, String packageName, 
Module target)

•	 ModuleLayer.Controller addReads(Module source, Module target)

•	 ModuleLayer layer()



Chapter 15 ■ the Module apI

814

The addExports(), addOpens() and addReads() methods let you export a package in a module in this 
layer to another module, open a package in a module in this layer to another module, and add a read edge 
from a module in this layer to another module. The layer() method returns the ModuleLayer that this 
controller is managing.

The defineModules(Configuration cf, Function<String,ClassLoader> clf) method takes a 
configuration as its first argument. The second argument is a mapping function that takes a module name in 
the configuration and returns a class loader for that module. The method call may fail if:

•	 Multiple modules with the same package are mapped to the same class loader.

•	 A module is mapped to a class loader that already has a module of the same name 
defined in it.

•	 A module is mapped to a class loader that has already defined types in any of the 
packages in the module.

The defineModulesWithManyLoaders(Configuration cf, ClassLoader parentClassLoader) method 
creates a layer using the specified configuration. Each module in the configuration is mapped to a different 
class loader, which is created by this method. The specified parent class loader (the second argument) is 
set as the parent of the class loaders created by this method. Typically, you would use the application class 
loader as the parent class loader for all class loaders created by this method. You can use null as the second 
argument to use the bootstrap class loader as the parent for all the class loaders created by this method. This 
method will create a new class loader for each module in the configuration.

The defineModulesWithOneLoader(Configuration cf, ClassLoader parentClassLoader) method 
creates a layer using the specified configuration. It creates one class loader using the specified parent class 
loader as its parent. It maps all modules in the configuration to that one class loader. You can use null as 
the second argument to use the bootstrap class loader as the parent for all the class loaders created by this 
method.

The following snippet of code creates a layer with the boot layer as its parent layer. All modules in the 
layer will be loaded by one class loader whose parent is the system class loader.

Configuration config = /* create a configuration... */
ClassLoader sysClassLoader = ClassLoader.getSystemClassLoader();
ModuleLayer parentLayer = ModuleLayer.boot();
ModuleLayer layer = parentLayer.defineModulesWithOneLoader(config, sysClassLoader);

Once you create a layer, you need to load classes from modules in that layer. All types in a module are 
loaded by the class loader mapped to that module. Note that you may have the same module defined in 
more than one layer, but those modules will be mapped to different class loaders. The ModuleLayer class 
contains a findLoader(String moduleName) method that accepts a module name as an argument and 
returns the ClassLoader for that module. If the module in not defined in the layer, the parent layers are 
checked. If the module does not exist in this layer or its ancestor layers, an IllegalArgumentException 
is thrown. Once you get the ClassLoader for the module, you can call its loadClass(String className) 
method to load a class from that module. The following snippet of code, excluding the exception handling 
logic, shows how to load a class in a layer:

ModuleLayer layer = /* Create a layer... */

// Load a class using the layer
String moduleName = "jdojo.layer";
String className = "com.jdojo.layer.LayerInfo";



Chapter 15 ■ the Module apI

815

// Load the class
Class<?> cls = layer.findLoader(moduleName)
                    .loadClass(className);

Once you get the Class object, you can use it to instantiate its objects and call methods on that object. 
The following snippet of code creates an object of the loaded class and calls a method named printInfo on 
that object:

// A method name that prints the details of an object
String methodName = "printInfo";

// Instantiate the class using its no-args constructor
Object obj = cls.getConstructor().newInstance();

// Find the method
Method method = cls.getMethod(methodName);

// Call the method that will print the details
method.invoke(obj);

The following methods in the ModuleLayer class can be used to obtain information about the layer itself 
or the modules contained in the layer:

•	 Optional<Module> findModule(String moduleName)

•	 Set<Module> modules()

•	 List<ModuleLayer> parents()

The findModule() method finds a module with the specified name in the layer or its parent layers. The 
modules() method returns a set of modules in the layer, which may be an empty set if the layer does not 
contain any modules. The parent() method returns a list of parent layers for this layer, which will be empty 
for the empty layer.

Next, we walk through a complete example of how to create a custom layer and how to load the two 
versions of the same module in two layers in the same application.

The module name is jdojo.layer and it consists of one package named com.jdojo.layer that contains 
only one class named LayerInfo. You will have two versions of the same module, so everything will be 
repeated. I created two NetBeans projects in the source code with the names jdojo.layer.v1 and jdojo.
layer.v2.

Listing 15-20 and Listing 15-21 contain version 1.0 of the module definition for the com.jdojo.layer 
module and the class declaration for the LayerInfo class, respectively.

Listing 15-20. Version 1.0 of the com.jdojo.layer Module

// module-info.com version 1.0
module jdojo.layer {
    exports com.jdojo.layer;
}



Chapter 15 ■ the Module apI

816

Listing 15-21. The LayerInfo Class in Version 1.0 of the com.jdojo.layer Module

// LayerInfo.java
package com.jdojo.layer;

public class LayerInfo {
    private final static String VERSION = "1.0";

    static {
        System.out.println("Loading LayerInfo version " + VERSION);
    }

    public void printInfo() {
        Class cls = this.getClass();
        ClassLoader loader = cls.getClassLoader();
        Module module = cls.getModule();
        String moduleName = module.getName();
        ModuleLayer layer = module.getLayer();

        System.out.println("Class Version: " + VERSION);
        System.out.println("Class Name: " + cls.getName());
        System.out.println("Class Loader: " + loader);
        System.out.println("Module Name: " + moduleName);
        System.out.println("Layer Name: " + layer);
    }
}

The LayerInfo class is very simple. It stores its version information in a static variable named VERSION. 
It prints a message in a static initializer that includes the version information. This message will help you 
understand which version of the LayerInfo class is loaded. The printInfo() method prints the details of 
the class: the version, class name, class loader, the module name, and the layer.

Listing 15-22 and Listing 15-23 contain version 2.0 of the module definition for the com.jdojo.layer 
module and the class declaration for the LayerInfo class, respectively. Only one thing has changed from 
version 1.0 to version 2.0 of this module—the value of the static variable VERSION changed from 1.0 to 2.0.

Listing 15-22. Version 2.0 of the com.jdojo.layer Module

// module-info.com version 2.0
module com.jdojo.layer {
    exports com.jdojo.layer;
}

Listing 15-23. The LayerInfo Class in Version 2.0 of the com.jdojo.layer Module

// LayerInfo.java
package com.jdojo.layer;

public class LayerInfo {
    private final static String VERSION = "2.0";

    static {
        System.out.println("Loading LayerInfo version " + VERSION);
    }



Chapter 15 ■ the Module apI

817

    public void printInfo() {
        Class cls = this.getClass();
        ClassLoader loader = cls.getClassLoader();
        Module module = cls.getModule();
        String moduleName = module.getName();
        ModuleLayer layer = module.getLayer();

        System.out.println("Class Version: " + VERSION);
        System.out.println("Class Name: " + cls.getName());
        System.out.println("Class Loader: " + loader);
        System.out.println("Module Name: " + moduleName);
        System.out.println("Layer Name: " + layer);
    }
}

You are ready to test layers and load both versions of the com.jdojo.layer modules in two different 
layers in the same JVM. Create a modular JAR for version 2.0 of this module, name it jdojo.layer.v2.jar or 
give it any other name you want, and place the modular JAR into the C:\jdojo.layer.v2\dist directory. If 
you place your modular JAR in other directory, you need to change the path in the code in Listing 15-25.

The program to test layers is in a module named jdojo.layer.test whose declaration is shown in 
Listing 15-24.

Listing 15-24. A Module Declaration for a Module Named jdojo.layer.test

// module-info.java
module jdojo.layer.test {
    // This module reads version 1.0 of the jdojo.layer module
    requires jdojo.layer;
}

The jdojo.layer.test module declares a dependence on version 1.0 of the jdojo.layer module. How 
can you ensure that version 1.0 of the jdojo.layer module is used with the jdojo.layer.test module? All 
you have to do is place the code for version 1.0 of the jdojo.layer module on the module path when you 
run the jdojo.layer.test module. To achieve this in NetBeans, add the jdojo.layer.v1 project to the 
module path of the jdojo.layer.test module.

Listing 15-25 contains code for a LayerTest class that contains the logic to create a custom layer and 
load modules into it. A detailed explanation of the logic used in this class follows the output of this class.

Listing 15-25. The LayerTest Class

// LayerTest.java
package com.jdojo.layer.test;

import java.lang.module.Configuration;
import java.lang.module.ModuleFinder;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Set;



Chapter 15 ■ the Module apI

818

public class LayerTest {
    /* Location for the custom module. You will need to change the path
       to point to a directory on your PC that contains the modular JAR for
       the jdojo.layer (version 2.0) module.
     */
    private static final String MODULE_LOCATION = "C:\\jdojo.layer.v2\\dist";

    // Module name
    private static final String MODULE_NAME = "jdojo.layer";

    public static void main(String[] args) {
        // Define the set of root modules to be resolved in the custom layer
        Set<String> rootModules = Set.of(MODULE_NAME);

        // Create a custom layer
        ModuleLayer customLayer = createLayer(MODULE_LOCATION, rootModules);

        // Test the class in the boot layer
        ModuleLayer bootLayer = ModuleLayer.boot();
        testLayer(bootLayer);
        System.out.println();

        // Test the class in the custom layer
        testLayer(customLayer);
    }

    public static ModuleLayer createLayer(String modulePath, Set<String> rootModules) {
        Path path = Paths.get(modulePath);

        // Define the module finders to be used in creating a
        // configuration for the custom layer
        ModuleFinder beforFinder = ModuleFinder.of(path);
        ModuleFinder afterFinder = ModuleFinder.of();

        // Create a configuration for the custom layer
        Configuration parentConfig = ModuleLayer.boot().configuration();
        Configuration config = parentConfig.resolve(beforFinder, afterFinder, rootModules);

        /* Create a custom layer with one class loader. The parent for
           the class loader is the system class loader. The boot layer is
           the parent layer of this custom layer.
         */
        ClassLoader sysClassLoader = ClassLoader.getSystemClassLoader();
        ModuleLayer parentLayer = ModuleLayer.boot();
        ModuleLayer layer = parentLayer.defineModulesWithOneLoader(config, sysClassLoader);

        // Check if we loaded the module in this layer
        if (layer.modules().isEmpty()) {
            System.out.println("\nCould not find the module " + rootModules
                    + " at " + modulePath + ". "
                    + "Please make sure that the com.jdojo.layer.v2.jar exists "



Chapter 15 ■ the Module apI

819

                    + "at this location." + "\n");
        }

        return layer;
    }

    public static void testLayer(ModuleLayer layer) {
        final String className = "com.jdojo.layer.LayerInfo";
        final String methodName = "printInfo";

        try {
            // Load the class
            Class<?> cls = layer.findLoader(MODULE_NAME)
                    .loadClass(className);

            // Instantiate the class using its no-args constructor
            Object obj = cls.getConstructor().newInstance();

            // Find the method
            Method method = cls.getMethod(methodName);

            // Call the method that will print the details
            method.invoke(obj);
        } catch (ClassNotFoundException | IllegalAccessException
                | IllegalArgumentException | InstantiationException
                | NoSuchMethodException | SecurityException
                | InvocationTargetException e) {
            e.printStackTrace();
        }
    }
}

Loading LayerInfo version 1.0
Class Version: 1.0
Class Name: com.jdojo.layer.LayerInfo
Class Loader: jdk.internal.loader.ClassLoaders$AppClassLoader@63d4e2ba
Module Name: jdojo.layer
Layer Name: jdk.accessibility, jdk.unsupported, jdk.localedata, jdk.zipfs, java.security.
jgss, java.datatransfer, jdk.security.auth, java.scripting, java.desktop, jdk.scripting.
nashorn, java.prefs, jdk.jlink, jdk.management, jdk.security.jgss, jdk.dynalink, jdk.javadoc, 
jdojo.layer, jdk.compiler, java.security.sasl, jdk.naming.rmi, jdk.jdeps, jdojo.layer.test, 
java.xml.crypto, java.smartcardio, java.base, java.rmi, java.management.rmi, java.xml, jdk.
jartool, jdk.charsets, jdk.crypto.mscapi, jdk.crypto.ec, jdk.crypto.cryptoki, java.naming, 
java.compiler, jdk.deploy, jdk.internal.opt, java.management, jdk.naming.dns, java.logging

Loading LayerInfo version 2.0
Class Version: 2.0
Class Name: com.jdojo.layer.LayerInfo
Class Loader: jdk.internal.loader.Loader@34b7bfc0
Module Name: jdojo.layer
Layer Name: jdojo.layer



Chapter 15 ■ the Module apI

820

You have declared a class variable named MODULE_LOCATION, which stores the location of version 2.0 of 
the jdojo.layer module. You must change the path to point to a directory on your computer that contains 
the compiled module code for version 2.0 of the jdojo.layer module.

private static final String MODULE_LOCATION = "C:\\jdojo.layer.v2\\dist";

You have declared a class variable named MODULE_NAME, which stores the name of the module:

private static final String MODULE_NAME = "jdojo.layer";

The main() method stores jdojo.layer as the sole root module for the custom layer’s configuration:

Set<String> rootModules = Set.of(MODULE_NAME);

The createLayer() method is called to create a custom layer. The method uses logic to create a custom 
layer with version 2.0 of the jdojo.layer module from MODULE_LOCATION:

ModuleLayer customLayer = createLayer(MODULE_LOCATION, rootModules);

The main() method obtains the reference of the boot layer:

ModuleLayer bootLayer = ModuleLayer.boot();

Now, the testLayer() method is called—once for boot layer and once for the custom layer. The method 
finds the class loader for the jdojo.layer module in the layer and loads the com.jdojo.layer.LayerInfo 
class.

final String className = "com.jdojo.layer.LayerInfo";
final String methodName = "printInfo";
Class<?> cls = layer.findLoader(MODULE_NAME)
                    .loadClass(className);

An object of the LayerInfo class is created using its no-args constructor:

Object obj = cls.getConstructor().newInstance();

Finally, the reference of the printInfo() method of the LayerInfo class is obtained and the 
printInfo() method is invoked, which prints the details of the LayerInfo class:

Method method = cls.getMethod(methodName);
method.invoke(obj);

You can run the LayerTest class in NetBeans or use the following command. You may get different 
output. The layer name is the list of all the modules in that layer, which is returned by the toString() 
method of the ModuleLayer class.

C:\>java --module-path jdojo.layer.v1\dist;jdojo.layer.test\dist
--module jdojo.layer.test/com.jdojo.layer.test.LayerTest

The previous command uses relative paths in the module path such as jdojo.layer.v1. These paths 
will work if you have extracted the source code for this book in the C:\ directory on Windows. Replace the 
value for the module path if you have extracted the source code in a different directory.



Chapter 15 ■ the Module apI

821

Summary
The Module API consists of classes and interfaces that give you programmatic access to modules. Using the 
API, you can programmatically read/modify/build module descriptors, load modules, read module’s contents, 
create layers, etc. The Module API is small, comprising about 15 classes and interfaces spread across two 
packages: java.lang and java.lang.module. The Module, ModuleLayer, and LayerInstantiationException 
classes are in the java.lang package and the rest are in the java.lang.module package.

An instance of the Module class represents a runtime module. Every type loaded into the JVM belongs to 
a module. JDK9 added a method named getModule() to the Class class; it returns the module to which the 
class belongs.

An instance of the ModuleDescriptor class represents a module definition, which is created from a 
module declaration—typically from a module-info.class file. A module descriptor can also be created 
on the fly using the ModuleDescriptor.Builder class. A module declaration may be augmented using 
command-line options such as --add-reads, --add-exports, and --add-opens, and using methods in 
the Module class such as addReads(), addOpens(), and addExports(). A ModuleDescriptor represents a 
module descriptor that exists at the time of module declaration, not as an augmented module descriptor. 
The getDescriptor() method of the Module class returns a ModuleDescriptor. A ModuleDescriptor is 
immutable. An unnamed module does not have a module descriptor. The getDescriptor() method of the 
Module class returns null for an unnamed module. The ModuleDescriptor class contains several nested 
classes, for example, the ModuleDescriptor.Requires nested class; each of them represents a module 
statement in programs.

You can augment a module descriptor using command-line options and programmatically using the 
Module API. You can put all queries for a module’s properties in two categories: ones that may change after 
the module is loaded and ones that do not change after the module is loaded. The Module class contains 
methods for queries in the first category and the ModuleDescriptor class contains methods for queries in 
the second category.

You can update a module’s definition at runtime using one of the methods in the Module class: 
addExports(), addOpens(), addReads(), and addUses().

The rules to access resources in a module are a bit complicated. By default, resources in a named 
module are encapsulated, unless the package containing the resources is opened to the module accessing 
the resources. Resources in a named module contained in a directory whose name is not a valid Java 
package name are accessible to all other modules. The class files (.class files) in a module are always 
accessible to all other modules. The resource-finding methods in the Class class find resources only in the 
module in which the Class object is loaded. Use the getResourceAsStream() method in the Module class to 
access resources in other modules.

You can use annotations on module declarations. The java.lang.annotation.ElementType enum has 
a new value called MODULE. You can use MODULE as a target type on an annotation declaration, which allows 
the annotation type to be used on modules. In Java 9, two annotations—java.lang.Deprecated and java.
lang.SuppressWarnings—have been updated to be used on module declarations. Using these annotations 
on a module affects only the module declaration, not the types contained in the module.

Modules are arranged into layers. A layer is a set of resolved modules with a function that maps 
each module to a class loader that is responsible for loading all types in that module. The set of resolved 
module is called a configuration. Layers are arranged hierarchically. A layer has at least one parent 
layer, except the empty layer, which, as its name suggests, contains no modules and primarily exists to 
serve as the parent layer for the boot layer. The boot layer is created by the JVM at startup by resolving 
the application’s initial modules (the root modules) against a set of observable modules. You can create 
custom layers. Layers allow multiple versions of the same module to be loaded into different layers and 
used in the same JVM.



Chapter 15 ■ the Module apI

822

QUESTIONS AND EXERCISES

1. What is the fully qualified name of the class whose instances represent a module at 
runtime?

2. Write the code to get the reference of the module of a class named Person?

3. If you have a class named Person, how do you know whether this class is a 
member of a named module or unnamed module?

4. What does an instance of the ModuleDescriptor class represent? Is the instance 
of the ModuleDescriptor class immutable?

5. Can you directly obtain a ModuleDescriptor from a module-info.class file?  
If your answer is yes, explain how you do it.

6. Can you get a ModuleDescriptor for an unnamed module?

7. Name the classes whose instances represent exports, opens, provides, and 
requires statements in a module declaration.

8. What is the difference between the ModuleDescriptor::packages() and the 
Module::getPackages() methods? Both methods return a set of package names.

9. how do you check if a module exports a package to all other modules or to a 
specific module?

10. how do you know if a module is automatic?

11. Suppose there is a module named M, which contains a package named P, but 
does not export the package to any other module. Can the code in another module 
named N export the package P in module M to module N at runtime?

12. Suppose there is a module named M, which contains a package named Q and opens 
the package to module N. Can the code in module N open the package Q in module 
M to another module T at runtime?

13. If a module named M contains resources in a package named P. how can the 
module M make the resources available to all other modules?

14. If a module named M contains resources in a directory named META-INF, can other 
modules access those resources?

15. What is the name of the scheme you must use to access resources in Java runtime 
image in JdK9?

16. Write the url that you need to use to access to the Object.class file from the 
runtime image in JdK9.

17. Can you use annotations on module declarations?



Chapter 15 ■ the Module apI

823

18. Is the following statement true or false?

When a module is deprecated, the use of that module in requires, exports, and 
opens statements causes a warning to be issued.

19. Can you use annotation on requires, exports, and opens statements in a module 
declaration?

20. What is a module layer? how are the layers, configurations, and class loaders 
related?

21. What is the use of an instance of the ModuleFinder interface and an instance of 
the ModuleReference class?

22. Name the class whose instances represent a configuration in a module layer. Can a 
configuration have multiple parent configurations?

23. how many parent layers can exist for a given module layer? What is the parent 
layer of the boot layer?

24. Write a program that prints the names of all modules loaded into the boot layer.



825© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_16

CHAPTER 16

Breaking Module Encapsulation

In this chapter, you will learn:

•	 What breaking a module’s encapsulation means

•	 How to export non-exported packages of a module using the --add-exports 
command-line option and using the MANIFEST.MF file of an executable JAR

•	 How to open non-open packages of a module using the --add-opens command-line 
option and using the MANIFEST.MF file of an executable JAR

•	 How to increase readability of a module using the --add-reads command-line 
option

•	 How to use the --illegal-access command-line option to access the JDK internal 
API using deep reflection

What Is Breaking Module Encapsulation?
One of the main goals of JDK9 is to encapsulate types and resources in modules and export only those 
packages whose public types are intended to be accessed by other modules. Sometimes, you may need to 
break the encapsulation specified by a module to enable white-box testing, use unsupported JDK internal 
APIs, or use third-party libraries. This is possible by using non-standard command-line options at compile 
time and runtime. Another reason for having these options is backward compatibility. Not all existing 
applications will be fully migrated to JDK9 and modularized. If those applications need to use the JDK APIs 
or APIs provided by libraries that used to be public, but have been encapsulated in JDK9, those applications 
have a way to keep working. A few of these options have corresponding attributes that can be added to the 
MANIFEST.MF file of the executable JARs to avoid using the command-line options.

 ■ Tip  Every command-line option to break a module’s encapsulation is also supported programmatically 
using the Module API, which is covered in detail in Chapter 15.

Although it may sound like that these options do the same things as before JDK9, there is a word of 
caution when accessing JDK internal APIs without any restriction. If a package in a module is not exported 
or open, it means the module’s designer did not intend for these packages to be used outside the module. 
Such packages may be modified or even removed from the module without notice. If you still use these 
packages by exporting or opening them using command-line options, you do so at the risk of breaking your 
application in future!

https://doi.org/10.1007/978-1-4842-3348-1_16
http://dx.doi.org/10.1007/978-1-4842-3348-1_15


ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

826

Command-Line Options
Three module statements in a module declaration let a module encapsulate its types and resources and 
let other modules use the encapsulated types and resources from the first module. Those statements are 
exports, opens, and requires. There is a command-line option corresponding to each of these module 
statements. For the exports and opens statements, there are corresponding attributes that can be used in 
the manifest file of an executable JAR. Table 16-1 lists these statements and the corresponding command-
line options and manifest attributes. The --illegal-access command-line option lets you work with illegal 
access to the JDK internal APIs. I describe these options in detail in the following sections.

Table 16-1. Module Statements with the Corresponding Command-Line Options and Manifest Attributes

Module Statement Command-Line Option Manifest Attribute

exports --add-exports Add-Exports

opens --add-opens Add-Opens

requires --add-reads (No attribute is available)

(No statement is available) --illegal-access (No attribute is available)

 ■ Tip  You can use the --add-exports, --add-opens, and --add-reads command-line options more than 
once with the same command.

The --add-exports Option
The exports statement in a module declaration exports a package in the module to all or some other 
modules, so those modules can use the public APIs in the exported package. If a package is not exported by a 
module, you can export it using the --add-exports command-line option. Its syntax is as follows:

--add-exports <source-module>/<package>=<target-module-list>

Here, <source-module> is the module that exports <package> to <target-module-list>, which is a 
comma-separated list of target module names. It is equivalent to adding a qualified exports statement to the 
declaration of <source-module>:

module <source-module> {
    exports <package> to <target-module-list>;
}

 ■ Tip  If the target module list is a special value, ALL-UNNAMED, for the --add-exports option, the module’s 
package is exported to all unnamed modules. the --add-exports option is available with the java and javac 
commands.



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

827

The following option exports the sun.util.logging package in the java.base module to the jdojo.
test and jdojo.prime modules:

--add-exports java.base/sun.util.logging=jdojo.test,jdojo.prime

The following option exports the sun.util.logging package in the java.base module to all unnamed 
modules:

--add-exports java.base/sun.util.logging=ALL-UNNAMED

The --add-opens Option
The opens statement in a module declaration opens a package in a module to all or some other modules, 
so those modules can use deep reflection to access all member types in the opened package at runtime. If a 
package of a module is not open, you can open it using the --add-opens command-line option. Its syntax is 
as follows:

--add-opens <source-module>/<package>=<target-module-list>

Here, <source-module> is the module that opens <package> to <target-module-list>, which is a 
comma-separated list of target module names. It is equivalent to adding a qualified opens statement to the 
declaration of <source-module>:

module <source-module> {
    opens <package> to <target-module-list>;
}

 ■ Tip  If the target module list is a special value, ALL-UNNAMED for the --add-opens option, the module’s 
package is open to all unnamed modules. the --add-opens option is available with the java command.

The following option opens the sun.util.logging package in the java.base module to the jdojo.test 
and jdojo.prime modules:

--add-opens java.base/sun.util.logging=jdojo.test,jdojo.prime

The following option opens the sun.util.logging package in the java.base module to all unnamed 
modules:

--add-opens java.base/sun.util.logging=ALL-UNNAMED

The --add-reads Option
The --add-reads option is not about breaking encapsulation. Rather, it is about increasing the readability 
of a module. During testing and debugging, it is sometimes necessary for a module to read another module 
even though the first module does not depend on the second module. The requires statement in a module 
declaration is used to declare dependence of the current module on another module. You can use the 



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

828

--add-reads command-line option to add a readability edge from a module to another module. This has the 
same effect of adding a requires statement to the first module. Its syntax is as follows:

--add-reads <source-module>=<target-module-list>

Here, <source-module> is the module whose definition is updated to read the list of modules specified 
in the <target-module-list>, which is a comma-separated list of target module names. It is equivalent to 
adding a requires statement to the source module for each module in the target module list:

module <source-module> {
    requires <target-module1>;
    requires <target-module2>;
}

 ■ Tip  If the target module list is a special value, ALL-UNNAMED for the --add-reads option, the source 
module reads all unnamed modules. this is the only way a named module can read unnamed modules. there is 
no equivalent module statement that you can use in a named module declaration to read an unnamed module. 
this option is available with the java and javac commands.

The following option adds a read edge to the jdojo.common module to make it read the jdk.
accessibility module:

--add-reads jdojo.common=jdk.accessibility

The --illegal-access Option
Many applications written prior to JDK9 may not be modularized soon. To take advantage of the latest 
JDK, they may be migrated to JDK9 without modularizing them. Such applications will run from the class 
path. These applications were allowed to access non-public members of the JDK internal API using deep 
reflection. To ease migration of these applications, JDK9 allows deep reflection on the JDK9 modules by 
default, which breaks the JDK module’s encapsulation. This is allowed to help the Java community adapt 
JDK9 sooner. Another reason behind allowing this was backward compatibility. Applications performing 
deep reflections on the JDK internals will continue to work in JDK9 because the Java community did not get 
advanced notice that deep reflection on JDK internals will stop working in JDK9.

JDK9 provides an --illegal-access option for the java command. As its name suggests, it is to work 
with illegal access by code in any unnamed module (code on the class path) to members of types in any 
named modules of the JDK using deep reflection. Its syntax is as follows:

java --illegal-access=<permit|deny|warn|debug> <other-arguments>

The option takes one of the four parameters: permit, deny, warn, and debug. The default is permit, 
which means that the absence of the --illegal-access option is the same as --illegal-access=permit. 
That is, by default, all packages in all explicit modules in the JDK are open to the code in all unnamed 
modules. The code performing illegal reflective access should be fixed sooner or later. To help identify such 
offending code, the JDK9 issues a warning to standard error on the first such illegal access. You cannot 
suppress this warning.



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

829

The deny parameter disables all illegal access to the members of the JDK internal types using deep 
reflection, except when it is allowed using other options such as --add-opens. In a future release, deny will 
become the default mode. That is, by default, illegal reflective access will be disabled in a future release and 
you will need to use --illegal-access=permit explicitly to enable illegal reflective access.

The warn parameter issues a warning for each illegal-reflective access. This is helpful in identifying all 
code in existing applications that uses illegal reflective access.

The debug parameter issues a warning and prints a stack trace for each illegal-reflective access. This is 
helpful in identifying all code in existing applications that uses illegal reflective access.

The --illegal-access option does not permit illegal access by code in a named module to the 
members of types in other named modules. To perform illegal reflective access in such cases, you can 
combine this option with the --add-exports, --add-opens, and --add-reads options.

 ■ Tip  the --illegal-access option will be removed in a future release. First, its default mode will be 
changed from permit to deny and then the option itself will be removed. It is important to note that this option 
is only for allowing illegal access to the Jdk internals by the code on the class path. this option does not allow 
illegal access to the members of the non-Jdk modules; you must use the --add-opens option or open the 
module/package if illegal access is needed to the members of non-Jdk modules.

I present an example of using all these options that allow breaking a module’s encapsulation in the next 
section.

An Example
Let’s walk through a few examples of breaking a module’s encapsulation. I use trivial examples. However, 
they serve the purpose of demonstrating all concepts and command-line options that can be used to break a 
module’s encapsulation.

You created the jdojo.intro module as your first module in the first volume of this series. It contains 
a Welcome class in the com.jdojo.intro package. The module does not export the package, so the Welcome 
class is encapsulated and cannot be accessed outside the module. Listing 16-1 and Listing 16-2 contain the 
declaration of the jdojo.intro module and its Welcome class, respectively.

Listing 16-1. The Declaration of a Module Named jdojo.intro

// module-info.java
module jdojo.intro {    
}

Listing 16-2. A Welcome Class in the jdojo.intro Module

// Welcome.java
package com.jdojo.intro;

public class Welcome {
    public static void main(String[] args) {
        System.out.println("Welcome to Java 9!");        
    }
}



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

830

In this example, you call the main() method of the Welcome class from another module named 
jdojo.intruder, whose declaration is shown in Listing 16-3. Listing 16-4 contains the code for the 
TestNonExported class in this module.

Listing 16-3. The Declaration of a Module Named jdojo.intruder

// module-info.java
module jdojo.intruder {
    // No module statements
}

Listing 16-4. A Class Named TestNonExported

// TestNonExported.java
package com.jdojo.intruder;

import com.jdojo.intro.Welcome;

public class TestNonExported {
    public static void main(String[] args) {
        Welcome.main(new String[]{});
    }
}

The TestNonExported class contains only one line of code. It calls the static main() method of the 
Welcome class passing an empty String array. If this class is compiled and run, it will print the following 
message:

Welcome to Java 9!

If you try compiling the code for the jdojo.intruder module, you will get an error:

c:\Java9LanguageFeatures>javac -d build\modules\jdojo.intruder
--module-path build\modules\jdojo.intro
src\jdojo.intruder\classes\module-info.java src\jdojo.intruder\classes\com\jdojo\intruder\
TestNonExported.java

src\jdojo.intruder\classes\com\jdojo\intruder\TestNonExported.java:4: error: package com.
jdojo.intro is not visible
import com.jdojo.intro.Welcome;
                ^
  (package com.jdojo.intro is declared in module jdojo.intro, but module jdojo.intruder does 
not read it)
1 error

The command uses the --module-path option to include the jdojo.intro module in the module path. 
The error is pointing to the import statement that imports the com.jdojo.intro.Welcome class. It states that 
the package com.jdojo.intro is not visible to the jdojo.intruder module. That is, the jdojo.intro module 
does not export the com.jdojo.intro package that contains the Welcome class. To fix this error, you need to 



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

831

export the com.jdojo.intro package of the jdojo.intro module to the jdojo.intruder module using the 
--add-exports command-line option as follows:

c:\Java9LanguageFeatures>javac -d build\modules\jdojo.intruder
--module-path build\modules\jdojo.intro
--add-exports jdojo.intro/com.jdojo.intro=jdojo.intruder
src\jdojo.intruder\classes\module-info.java
src\jdojo.intruder\classes\com\jdojo\intruder\TestNonExported.java

warning: [options] module name in --add-exports option not found: jdojo.intro
src\jdojo.intruder\classes\com\jdojo\intruder\TestNonExported.java:4: error: package com.
jdojo.intro is not visible
import com.jdojo.intro.Welcome;
                ^
  (package com.jdojo.intro is declared in module jdojo.intro, but module jdojo.intruder does 
not read it)
1 error
1 warning

This time, you get a warning and an error. The error is the same as before. The warning message is 
stating that the compiler could not find the jdojo.intro module. Because there is no dependence on this 
module, this module is not resolved even if it is in the module path. To resolve the warning, you need to add 
the jdojo.intro module to the default set of root module using the --add-modules option:

c:\Java9LanguageFeatures>javac -d build\modules\jdojo.intruder
--module-path build\modules\jdojo.intro
--add-modules jdojo.intro
--add-exports jdojo.intro/com.jdojo.intro=jdojo.intruder
src\jdojo.intruder\classes\module-info.java
src\jdojo.intruder\classes\com\jdojo\intruder\TestNonExported.java

This time, the javac command succeeded even though the jdojo.intruder module does not read the 
jdojo.intro module. It seems to be a bug. If it is not a bug, there is no documentation that I could find to 
support this behavior. Later, you will see that the java command won’t work for the same modules. If this 
command errors out with a message that the TestNonExported class cannot access the Welcome class, add 
the following option to it to fix it:

--add-reads jdojo.intruder=jdojo.intro

Let’s try rerunning the TestNonExported class using the following command, which includes the com.
jdojo.intruder module in the module path:

c:\Java9LanguageFeatures>java
--module-path build\modules\jdojo.intro;build\modules\jdojo.intruder
--add-modules jdojo.intro
--add-exports jdojo.intro/com.jdojo.intro=jdojo.intruder
--module jdojo.intruder/com.jdojo.intruder.TestNonExported



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

832

Exception in thread "main" java.lang.IllegalAccessError: class com.jdojo.intruder.
TestNonExported (in module jdojo.intruder) cannot access class com.jdojo.intro.Welcome 
(in module jdojo.intro) because module jdojo.intruder does not read module jdojo.intro at 
jdojo.intruder/com.jdojo.intruder.TestNonExported.main(TestNonExported.java:8)

The error message is loud and clear. It states that the jdojo.intruder module must read the jdojo.
intro module in order for the former to use the latter’s Welcome class. You can fix the error by using the 
--add-reads option, which will add a read edge (an equivalent of a requires statement) in the jdojo.
intruder module to read the jdojo.intro module. The following command does this:

c:\Java9LanguageFeatures>java
--module-path build\modules\jdojo.intro;build\modules\jdojo.intruder
--add-modules jdojo.intro
--add-exports jdojo.intro/com.jdojo.intro=jdojo.intruder
--add-reads jdojo.intruder=jdojo.intro
--module jdojo.intruder/com.jdojo.intruder.TestNonExported

Welcome to Java 9!

This time, you receive the desired output. Figure 16-1 shows the module graph that is created when this 
command is run.

Figure 16-1. The module graph after using the --add-modules and --add-reads options

Both the jdojo.intruder and jdojo.intro modules are root modules. The jdojo.intruder module 
is added to the default set of root modules because the main class being run is in this module. The jdojo.
intro module is added to the default set of root modules by the --add-modules option. A read edge is added 
from the jdojo.intruder module to the jdojo.intro module by the --add-reads option. Use the --show-
module-resolution option with this command to see how the modules are resolved.

Let’s walk through another example that will show how to open a package of a module to another 
module using the --add-opens command-line option. Listing 16-5 contains the declaration of a module 
named jdojo.contact. Listing 16-6 contains a class named Phone, which is in the jdojo.contact module. 
The jdojo.contact module exports the com.jdojo.contact package–making the public members of the 
Phone class accessible from the outside of the jdojo.contact module.



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

833

Listing 16-5. The Declaration of a Module Named jdojo.contact

// module-info.java
module jdojo.contact {
    exports com.jdojo.contact;
}

Listing 16-6. A Phone Class, Which Is a Member of the jdojo.contact Module

// Phone.java
package com.jdojo.contact;

public class Phone {
    private String phoneNumber = "9999999999";

    public Phone(String phoneNumber) {
        this.phoneNumber = phoneNumber;
    }

    public String getPhoneNumber() {
        return phoneNumber;
    }

    public void setPhoneNumber(String phoneNUmber) {
        this.phoneNumber = phoneNUmber;
    }
}

The TestNonOpen class, as shown in Listing 16-7, tries to load the Phone class, creates an instance of 
the class, and accesses its public and private members. The TestNonOpen class is a member of the jdojo.
intruder module. The code in the main() method may throw several types of exceptions. I added only one 
exception in the throws clause to keep the logic simple.

Listing 16-7. A Class Named TestNonOpen

// TestNonOpen.java
package com.jdojo.intruder;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Method;

public class TestNonOpen {
    public static void main(String[] args) throws Exception {
        String className = "com.jdojo.contact.Phone";

        // Get the class reference
        Class<?> cls = Class.forName(className);

        // Get the no-args constructor
        Constructor constructor = cls.getConstructor(String.class);



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

834

        // Create an Object of the Phone class
        Object phone = constructor.newInstance("2222222222");

        // Call the getPhoneNumber() method to get the phone number value
        Method getPhoneNumberRef = cls.getMethod("getPhoneNumber");
        String phoneNumber = (String) getPhoneNumberRef.invoke(phone);
        System.out.println("Using method reference, Phone: " + phoneNumber);

        // Use the private phoneNumber instance variable to read its value
        Field phoneNumberField = cls.getDeclaredField("phoneNumber");
        phoneNumberField.setAccessible(true);
        String phoneNumber2 = (String)phoneNumberField.get(phone);
        System.out.println("Using private field reference, Phone: " + phoneNumber2);
    }
}

Try compiling the TestNonOpen class:

c:\Java9LanguageFeatures>javac -d build\modules\jdojo.intruder
src\jdojo.intruder\classes\com\jdojo\intruder\TestNonOpen.java

The TestNonOpen class compiles fine. Note that it accesses the Phone class using deep reflection and 
the compiler has no knowledge of the fact that this class is not allowed to read the Phone class and its private 
fields. Now try running the TestNonOpen class:

c:\Java9LanguageFeatures>java
--module-path build\modules\jdojo.contact;build\modules\jdojo.intruder
--add-modules jdojo.contact
--module jdojo.intruder/com.jdojo.intruder.TestNonOpen

Using method reference, Phone: 2222222222
Exception in thread "main" java.lang.reflect.InaccessibleObjectException: Unable to make 
field private java.lang.String com.jdojo.contact.Phone.phoneNumber accessible: module jdojo.
contact does not "opens com.jdojo.contact" to module jdojo.intruder
         at java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible(AccessibleObj

ect.java:337)
         at java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible(AccessibleObj

ect.java:281)
        at java.base/java.lang.reflect.Field.checkCanSetAccessible(Field.java:176)
        at java.base/java.lang.reflect.Field.setAccessible(Field.java:170)
        at jdojo.intruder/com.jdojo.intruder.TestNonOpen.main(TestNonOpen.java:28)

I added the jdojo.contact module to the default set of root modules using the --add-modules option. 
You were able to instantiate the Phone class even if the jdojo.intruder module does not read the jdojo.
contact module. There are two reasons for this:

•	 The jdojo.contact module exports the com.jdojo.contact package, which 
contains the Phone class. Therefore, the Phone class is accessible to other modules, 
provided other modules read the jdojo.contact module.



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

835

•	 The Java Reflection API assumes readability for all reflective operations. This rule 
assumes that the jdojo.intruder module reads the jdojo.contact module when 
reflection is used, even if in its module declaration the jdojo.intruder module does 
not read the jdojo.contact module. If you were to use types from the com.jdojo.
contact package at compile time, for example, declaring a variable of the Phone class 
type, the jdojo.intruder module must read the jdojo.contact module either in its 
declaration or at the command line.

The output shows that the TestNonOpen class was able to call the public getPhoneNumber() method of 
the Phone class. However, it threw an exception when it tried to access the private phoneNumber field. Recall 
that if a type is exported by a module, other modules can use reflection to access the public members of that 
type. For other named modules to access the private members of the type, the package containing the type 
must be open. The com.jdojo.contact package is not open. Therefore, the jdojo.intruder module cannot 
access the private phoneNumber field of the Phone class. You can use the --add-opens option to open the com.
jdojo.contact package to the jdojo.intruder module as follows:

c:\Java9LanguageFeatures>java
--module-path build\modules\jdojo.contact;build\modules\jdojo.intruder
--add-modules jdojo.contact
--add-opens jdojo.contact/com.jdojo.contact=jdojo.intruder
--module jdojo.intruder/com.jdojo.intruder.TestNonOpen

Using method reference, Phone: 2222222222
Using private field reference, Phone: 2222222222

It is time to see the --illegal-access option in action. You need to write code that will perform illegal 
access on a member of a JDK class. The java.lang.Long class contains a private instance field named value. 
Listing 16-8 contains the code for a TestIllegalAccess class that uses deep reflection to access the Long.
value field. It accesses the private value field of a Long object three times.

Listing 16-8. A Class Named TestIllegalAccess

// TestIllegalAccess.java
package com.jdojo.intruder;

import java.lang.reflect.Field;

public class TestIllegalAccess {
    public static void main(String[] args) throws Exception {
        Long id = 1969L;        
        Class<Long> cls = Long.class;
        Field valueField = cls.getDeclaredField("value");
        valueField.setAccessible(true);

        // Read the value in the Long variable using its private field value
        long idValue = (long) valueField.get(id);
        System.out.println("Long.value = " + idValue);

        // Read the value in the Long variable using its private field value
        valueField.set(id, 1968L);



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

836

        // Read the value in the Long variable using its private field value
        idValue = (long) valueField.get(id);
        System.out.println("Long.value = " + idValue);
    }
}

The TestIllegalAccess class must be run from the class path to see the effect of the --illegal-access 
option. Use the following command to compile the class.

c:\Java9LanguageFeatures>javac -d build\modules\jdojo.intruder
src\jdojo.intruder\classes\com\jdojo\intruder\TestIllegalAccess.java

Run the TestIllegalAccess class using the following command:

c:\Java9LanguageFeatures>java --class-path build\modules\jdojo.intruder com.jdojo.intruder.
TestIllegalAccess

WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by com.jdojo.intruder.TestIllegalAccess (file:/C:/
Java9LanguageFeatures/build/modules/jdojo.intruder/) to field java.lang.Long.value
WARNING: Please consider reporting this to the maintainers of com.jdojo.intruder.
TestIllegalAccess
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access 
operations
WARNING: All illegal access operations will be denied in a future release
Long.value = 1969
Long.value = 1968

Notice the warnings in the output. The command prints warnings about the illegal access of the JDK 
internals and allows the access. The following commands run the TestIllegalAccess class using different 
modes of the --illegal-access option. In the deny mode, the illegal access throws a runtime exception. All 
other modes allow the access with warnings and other details about the illegal access. Note that using the 
--illegal-access=permit option has the same effect when you do not use the --illegal-access option.

c:\Java9LanguageFeatures>java --illegal-access=deny --class-path build\modules\jdojo.
intruder com.jdojo.intruder.TestIllegalAccess

Exception in thread "main" java.lang.reflect.InaccessibleObjectException: Unable to make 
field private final long java.lang.Long.value accessible: module java.base does not "opens 
java.lang" to unnamed module @2f410acf
         at java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible(AccessibleObj

ect.java:337)
         at java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible(AccessibleObj

ect.java:281)
        at java.base/java.lang.reflect.Field.checkCanSetAccessible(Field.java:176)
        at java.base/java.lang.reflect.Field.setAccessible(Field.java:170)
        at com.jdojo.intruder.TestIllegalAccess.main(TestIllegalAccess.java:11)
        at com.jdojo.intruder.TestIllegalAccess.main(TestIllegalAccess.java:10)



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

837

c:\Java9LanguageFeatures>java --illegal-access=warn --class-path build\modules\jdojo.
intruder com.jdojo.intruder.TestIllegalAccess

WARNING: Illegal reflective access by com.jdojo.intruder.TestIllegalAccess (file:/C:/
Java9LanguageFeatures/build/modules/jdojo.intruder/) to field java.lang.Long.value
Long.value = 1969
Long.value = 1968

c:\Java9LanguageFeatures>java --illegal-access=debug --class-path build\modules\jdojo.
intruder com.jdojo.intruder.TestIllegalAccess

WARNING: Illegal reflective access by com.jdojo.intruder.TestIllegalAccess (file:/C:/
Java9LanguageFeatures/build/modules/jdojo.intruder/) to field java.lang.Long.value
        at com.jdojo.intruder.TestIllegalAccess.main(TestIllegalAccess.java:11)
Long.value = 1969
Long.value = 1968

c:\Java9LanguageFeatures>java --illegal-access=permit --class-path build\modules\jdojo.
intruder com.jdojo.intruder.TestIllegalAccess

WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by com.jdojo.intruder.TestIllegalAccess (file:/C:/
Java9LanguageFeatures/build/modules/jdojo.intruder/) to field java.lang.Long.value
WARNING: Please consider reporting this to the maintainers of com.jdojo.intruder.
TestIllegalAccess
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access 
operations
WARNING: All illegal access operations will be denied in a future release
Long.value = 1969
Long.value = 1968

Using Manifest Attributes of a JAR
An executable JAR is a JAR file that can be used to run a Java application using the -jar option:

java -jar myapp.jar

Here, myapp.jar is an executable JAR. An executable JAR in its MANIFEST.MF file contains an attribute 
named Main-Class whose value is the fully qualified name of the main class that the java command is 
supposed to run. Recall that there are other kinds of JARs such as modular JARs and multi-release JARs. It 
does not matter which kind of JAR a JAR is based on; an executable JAR is defined only in the context of the 
way it is used to launch an application using the -jar option.

Suppose an existing application bundled as an executable JAR uses deep reflection to access JDK 
internal APIs. It worked fine in JDK8. You want to run the executable JAR on JDK9. JDK internal APIs in JDK9 
have been encapsulated. Now, you must use the --add-exports and --add-opens command-line options 



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

838

along with the -jar option to run the same executable JAR. Using new command-line options in JDK9 
provides a solution. However, it is little inconvenient for the end users of the executable JAR to use these 
command-line options. To ease such migrations, two new attributes for the MANIFEST.MF file of executable 
JARs have been added to JDK9:

•	 Add-Exports

•	 Add-Opens

These attributes are added to the main section of the manifest file. They are counterparts of the two 
command-line options: --add-exports and --add-opens. There is one difference in using these attributes. 
These attributes export and open packages of modules to all unnamed modules. So, you specify a list of 
source modules and their packages without specifying target modules as values for these attributes. In other 
words, in a manifest file, you can export or open a package to all unnamed modules or none, but not to 
any named modules. Values of these attributes are space-separated lists of slash-separated module-name/
package-name pairs. Here is an example:

Add-Exports: m1/p1 m2/p2 m3/p3 m1/p1

This entry will export the package p1 in module m1, package p2 in module m2, and package p3 in module 
m3 to unnamed modules at runtime. Rules for parsing manifest files are lenient and allow for duplicates. 
Notice the duplicate entry m1/p1 in the value.

The syntax for including an Add-Opens attribute in the manifest file is the same as that of the Add-
Exports attribute. The following entry in the manifest file will open package p1 in module m1, package p2 in 
module m2, and package p3 in module m3 to unnamed modules at runtime.

Add-Opens: m1/p1 m2/p2 m3/p3

 ■ Tip  It is important to note that the Add-Exports and Add-Opens manifest attributes are used by the 
runtime only when the application is run using an executable JAr, which you do by using the -jar option with 
the java command. In other cases, these attributes are ignored.

Let’s create an example that will combine all three previous examples in this chapter. This time, 
you make the examples work using the Add-Exports and Add-Opens attributes in the manifest file. You 
create a class named BreakAll, as shown in Listing 16-9. The class simply calls the main() method of the 
TestNonExported, TestNonOpen, and TestIllegalAccess classes that you have already seen in action.

Listing 16-9. The BreakAll Class

// BreakAll.java
package com.jdojo.intruder;

public class BreakAll {
    public static void main(String[] args) {
        try {
            TestNonExported.main(new String[0]);
        } catch(Throwable e) {
            e.printStackTrace();
        }



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

839

        try {
            TestNonOpen.main(new String[0]);
        } catch(Throwable e) {
            e.printStackTrace();
        }

        try {
            TestIllegalAccess.main(new String[0]);
        } catch(Throwable e) {
            e.printStackTrace();
        }
    }
}

Listing 16-10 shows the contents of the MANIFEST.MF file. The file includes an Add-Exports entry 
that exports the com.jdojo.intro package in the jdojo.intro module to all unnamed modules. The file 
includes an Add-Opens entry that opens the com.jdojo.contact package in the jdojo.contact module and 
the java.lang package in the java.base module to all unnamed modules.

Listing 16-10. The Contents of the MANIFEST.MF File

Manifest-Version: 1.0
Main-Class: com.jdojo.intruder.BreakAll
Add-Exports: jdojo.intro/com.jdojo.intro
Add-Opens: jdojo.address/com.jdojo.address java.base/java.lang

The following command will compile all classes used in this example:

c:\Java9LanguageFeatures>javac -d build\classes\jdojo.intruder
--module-path build\modules\jdojo.intro
--add-modules jdojo.intro
--add-exports jdojo.intro/com.jdojo.intro=jdojo.intruder
src\jdojo.intruder\classes\module-info.java
src\jdojo.intruder\classes\com\jdojo\intruder\TestNonExported.java
src\jdojo.intruder\classes\com\jdojo\intruder\TestNonOpen.java
src\jdojo.intruder\classes\com\jdojo\intruder\TestIllegalAccess.java
src\jdojo.intruder\classes\com\jdojo\intruder\BreakAll.java

The following command creates an executable JAR with all classes for this example:

c:\Java9LanguageFeatures>jar --create
--file dist\jdojo.intruder.jar
--manifest=src\jdojo.intruder\classes\META_INF\MANIFEST.MF
-C build\modules\jdojo.intruder .

Now run the executable JAR using the following command:

c:\Java9LanguageFeatures>java
--module-path build\modules\jdojo.intro;build\modules\jdojo.contact
--add-modules jdojo.intro,jdojo.contact
-jar dist\jdojo.intruder.jar



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

840

Welcome to Java 9!
Using method reference, Phone: 2222222222
Using private field reference, Phone: 2222222222
Long.value = 1969
Long.value = 1968

The output indicates that you were able to break the encapsulation of the jdojo.intro, jdojo.contact, 
and java.base modules using the Add-Exports and Add-Opens manifest attributes in an executable JAR. 
Even though this example opened the java.lang package of the java.base module using the Add-Opens 
manifest attribute, it is not advisable to do so because you can run this example successfully without 
opening the java.lang package. The only difference in the output would be that you would get warnings for 
illegal access. Getting warnings for illegal access of the JDK internals is preferred because your code may not 
work in a future release. If you see the warnings, you need to take steps to fix your code.

Try running the BreakAll class from the class path, but not using an executable JAR with the -jar 
command:

c:\Java9LanguageFeatures>java --module-path build\modules\jdojo.intro;build\modules\jdojo.
contact --add-modules jdojo.intro,jdojo.contact --class-path dist\jdojo.intruder.jar com.
jdojo.intruder.BreakAll

java.lang.IllegalAccessError: class com.jdojo.intruder.TestNonExported (in unnamed module 
@0x9f70c54) cannot access class com.jdojo.intro.Welcome (in module jdojo.intro) because 
module jdojo.intro does not export com.jdojo.intro to unnamed module @0x9f70c54
        at com.jdojo.intruder.TestNonExported.main(TestNonExported.java:8)
        at com.jdojo.intruder.BreakAll.main(BreakAll.java:7)
Using method reference, Phone: 2222222222
java.lang.reflect.InaccessibleObjectException: Unable to make field private java.lang.String 
com.jdojo.contact.Phone.phoneNumber accessible: module jdojo.contact does not "opens com.
jdojo.contact" to unnamed module @9f70c54
         at java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible(AccessibleObj

ect.java:337)
         at java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible(AccessibleObj

ect.java:281)
        at java.base/java.lang.reflect.Field.checkCanSetAccessible(Field.java:176)
        at java.base/java.lang.reflect.Field.setAccessible(Field.java:170)
        at com.jdojo.intruder.TestNonOpen.main(TestNonOpen.java:28)
        at com.jdojo.intruder.BreakAll.main(BreakAll.java:13)
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by com.jdojo.intruder.TestIllegalAccess (file:/C:/
Java9LanguageFeatures/dist/jdojo.intruder.jar) to field java.lang.Long.value
WARNING: Please consider reporting this to the maintainers of com.jdojo.intruder.
TestIllegalAccess
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access 
operations
WARNING: All illegal access operations will be denied in a future release
Long.value = 1969
Long.value = 1968



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

841

The output indicates that the Add-Exports and Add-Opens entries in the manifest were ignored. 
However, you were able to perform illegal access to the JDK internal with warnings. To fix the errors, you 
have to resort to the --add-exports and --add-opens command-line options to export and open needed 
packages to all unnamed modules as follows:

c:\Java9LanguageFeatures>java
--module-path build\modules\jdojo.intro;build\modules\jdojo.contact
--add-modules jdojo.intro,jdojo.contact
--add-exports jdojo.intro/com.jdojo.intro=ALL-UNNAMED
--add-opens jdojo.contact/com.jdojo.contact=ALL-UNNAMED
--class-path dist\jdojo.intruder.jar com.jdojo.intruder.BreakAll

Welcome to Java 9!
Using method reference, Phone: 2222222222
Using private field reference, Phone: 2222222222
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by com.jdojo.intruder.TestIllegalAccess (file:/C:/
Java9LanguageFeatures/dist/jdojo.intruder.jar) to field java.lang.Long.value
WARNING: Please consider reporting this to the maintainers of com.jdojo.intruder.
TestIllegalAccess
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access 
operations
WARNING: All illegal access operations will be denied in a future release
Long.value = 1969
Long.value = 1968

Summary
One of the main goals of JDK9 is to encapsulate types and resources in modules and export only those 
packages whose public types are intended to be accessed by other modules. Sometimes, you may need 
to break the encapsulation specified by a module to enable white-box testing or use unsupported JDK 
internal APIs or libraries. This is possible by using non-standard command-line options at compile time and 
runtime. Another reason for having these options is backward compatibility.

JDK9 provides two command-line options, --add-exports and --add-opens, that let you break 
encapsulation defined in a module declaration. The --add-exports option lets you export a non-exported 
package in a module to other modules at compile time and runtime. The --add-opens option lets you 
open a non-open package in a module to other modules for deep reflection at runtime. The value for these 
options is of the form <source-module>/<package>=<target-module-list>, where <source-module> is 
the module that exports or opens <package> to <target-module-list>, which is a comma-separated list of 
target module names. You can use ALL-UNNAMED as a special value for the list of target modules that exports 
or opens those packages to all unnamed modules.

There are two new attributes named Add-Exports and Add-Opens that can be used in the main section 
of the manifest file of an executable JAR. Effects of using these attributes is the same as using the similarly 
named command-line options, except that these attributes export or open the specified packages to all 
unnamed modules. The value for these attributes is a space-separated list of slash-separated module-name/
package-name pairs. For example, an Add-Opens: java.base/java.lang entry in the main section of a 
manifest file of an executable JAR will open the java.lang package in the java.base module to all unnamed 
modules.



ChAPtEr 16 ■ BrEAkIng ModulE EnCAPsulAtIon

842

During testing and debugging, it is sometimes required that a module read another module where 
the first module does not use a requires statement in its declaration to read the second module. This can 
be achieved using the --add-reads command-line option whose value is specified in the form <source-
module>=<target-module-list>. The <source-module> is the module whose definition is updated to 
read the list of modules specified in the <target-module-list>, which is a comma-separated list of target 
module names. A special value of ALL-UNNAMED for the target module list makes the source module read all 
unnamed modules.

By default, JDK9 allows illegal reflective access to JDK internals by the code on the class path. This 
is allowed for backward compatibility. That is, an application performing illegal reflective access on JDK 
internal that ran on JDK8 will continue to run on JDK9 from the class path. A warning is printed to the 
standard error on the first use of such an illegal reflective access. You can use the --illegal-access for 
the java command to print warnings and stack traces for all such accesses. The option takes one of the 
following four parameters: permit, deny, warn, and debug. The default is permit. In a future release, this 
default behavior will be changed to deny such illegal access and you will need to explicitly use --illegal-
access=permit to allow such access. Further, in a future release, the --illegal-access option itself will be 
discontinued.

QUESTIONS AND EXERCISES

1. What is breaking module encapsulation?

2. describe the effects of using the --add-exports, --add-opens, and --add-reads 
command-line options.

3. What is the difference between using the --add-exports and --add-opens 
command-line options and their counterparts, the Add-Exports and Add-Opens 
attributes, in the manifest file?

4. suppose you have a module named M, which needs to use types in unnamed 
modules. Write the command-line option to achieve this.

5. describe the --illegal-access command-line option with its default behaviors in 
Jdk9 and its proposed behaviors in the future Jdk.



843© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_17

CHAPTER 17

Reactive Streams

In this chapter, you will learn:

•	 What a stream is

•	 What the Reactive Streams initiative is and its specification

•	 The Reactive Streams API in JDK and how to use it

•	 How to create publishers, subscribers, and processors using the Java API for Reactive 
Streams in JDK9

All example programs in this chapter are in the jdojo.reactive.stream module, as declared in  
Listing 17-1.

Listing 17-1. The Declaration of a jdojo.reactive.stream Module

// module-info.java
module jdojo.reactive.stream {
    exports com.jdojo.reactive.stream;
}

What Is a Stream?
A stream is a sequence of items produced by a producer and consumed by one or more consumers. This 
producer-consumer model is also known as source/sink model or publisher-subscriber model. I refer 
to it as a publisher-subscriber model in this chapter. I use the terms element, item, data item, and data 
interchangeably to mean a piece of information that is published by a publisher and received by subscribers.

There are several stream-processing mechanisms, the pull model and the push model being the most 
common. In the push model, the publisher pushes items to the subscriber. In the pull model, the subscriber 
pulls items from the publisher. These models work great when both the publisher and the subscriber work 
at the same rate, which is an ideal situation. We consider a few situations when they do not work at the same 
rate, the issues involved in such situations, and the possible solutions.

When the publisher is faster than the subscriber, the latter must have an unbounded buffer to store fast 
incoming items or it must drop items it cannot handle. Another solution is to use a strategy called backpressure 
in which the subscriber tells the publisher to slow down and hold the items until the subscriber is ready to 
process more. Using backpressure ensures that a faster publisher doesn’t overwhelm a slower subscriber. 
Using backpressure may require the publisher to have an unbounded buffer if it keeps producing and storing 
elements for slower subscribers. The publisher may implement a bounded buffer to store a limited number of 
elements and may choose to drop them if its buffer is full. Another strategy may be used in which the publisher 
retries publishing items to the subscriber, which could not accept the items when they were published.

https://doi.org/10.1007/978-1-4842-3348-1_17


Chapter 17 ■ reaCtive StreamS

844

What does the subscriber do when it requests items from the publisher and the items are not available? 
In a synchronous request, the subscriber must wait, possibly indefinitely, until items are available. If the 
publisher sends items to the subscriber synchronously and the subscriber processes them synchronously, 
the publisher must block until the data processing finishes. The solution is to have an asynchronous 
processing at both ends, where the subscriber may keep working on other tasks after requesting items from 
the publisher. When more items are ready, the publisher sends them to the subscriber asynchronously.

What Are Reactive Streams?
Reactive Streams started in 2013 as an initiative for providing a standard for asynchronous stream processing 
with non-blocking backpressure. It is aimed at solving the problems of processing a stream of items—how do 
you pass a stream of items from a publisher to a subscriber without requiring the publisher to block or the 
subscriber to have an unbounded buffer or drop.

The Reactive Streams model is very simple—the subscriber sends an asynchronous request to the 
publisher for N items. The publisher sends N or fewer items to the subscriber asynchronously.

 ■ Tip  reactive Streams dynamically switches between the pull model and the push model stream-
processing mechanisms. it uses the pull model when the subscriber is slower and uses the push model when 
the subscriber is faster.

In 2015, a specification and a Java API for handling Reactive Streams were published. Refer to the web 
page at http://www.reactive-streams.org/ for more information on Reactive Streams. The Java API for 
Reactive Streams consists of only four interfaces:

•	 Publisher<T>

•	 Subscriber<T>

•	 Subscription

•	 Processor<T,R>

A publisher is a producer of potentially an unbounded number of sequenced items. It publishes (or 
sends) items to its current subscribers based on the demands received from them.

A subscriber subscribes to a publisher to receive items. The publisher sends a subscription token to 
the subscriber. Using the subscription token, the subscriber requests N number of items from the publisher. 
When items are ready, the publisher sends N or fewer items to the subscriber. The subscriber can request 
more items. The publisher may have more than one pending request for items from a subscriber.

A subscription represents a token of a subscription of a subscriber to a publisher. The publisher passes 
this to the subscriber when a request to subscribe is successful. The subscriber uses the subscription to 
interact with the publisher, such as to request more items or to cancel the subscription.

Figure 17-1 shows a typical sequence of interactions between a publisher and a subscriber. The 
subscription is not shown in the diagram. The diagram does not show the error and cancellation events.

http://www.reactive-streams.org/


Chapter 17 ■ reaCtive StreamS

845

A processor represents a processing stage that acts as both a subscriber and a publisher. The Processor 
interface extends both the Publisher and the Subscriber interfaces. It is used to transform items in a 
publisher-subscriber pipeline. A Processor<T,R> subscribes for data elements of type T, receives and 
transforms the data to type R, and publishes the transformed data. Figure 17-2 shows the role of a processor 
as a transformer in a publisher-subscriber pipeline. You can have more than one processor in the pipeline.

The Reactive Streams Java API, as provided by the Reactive Streams initiative, is shown in  
Listing 17-2. Notice that the return type of all methods is void. This is because these methods represent 
either an asynchronous request or an asynchronous event notification. I explain how this API has been 
incorporated in JDK9 and how to use it in the next section.

Listing 17-2. The Reactive Streams Java API

public interface Publisher<T> {
    public void subscribe(Subscriber<? super T> s);
}

public interface Subscriber<T> {
    public void onSubscribe(Subscription s);
    public void onNext(T t);
    public void onError(Throwable t);
    public void onComplete();
}

public interface Subscription {
    public void request(long n);
    public void cancel();
}

public interface Processor<T,R> extends Subscriber<T>, Publisher<R> {
}

Requests N items

Subscribes

Sends a subscription

Sends N or less items

Sends an end of stream notification

Figure 17-1. A typical sequence of interactions between a publisher and a subscriber

Publisher SubscriberProcessor
RT

Figure 17-2. Using a processor as a transformer in a publisher-subscriber pipeline



Chapter 17 ■ reaCtive StreamS

846

The Java API for Reactive Streams seems very simple to understand. However, it is not simple to 
implement. The asynchronous nature of all interactions between publishers and subscribers and handling 
the backpressure make the implementation complex. As an application developer, you would find it 
complex to implement these interfaces. Libraries are supposed to provide implementations to support a 
broad range of use-cases. JDK9 provides a simple implementation of the Publisher interface that you can 
use for simple use-cases or can extend to suit your own needs. RxJava (https://github.com/ReactiveX/
RxJava) is one of the Java implementations for Reactive Streams.

The Reactive Streams API in JDK9
JDK9 provides a Reactive Streams-compliant API in the java.util.concurrent package, which is in the 
java.base module. The API consists of two classes:

•	 Flow

•	 SubmissionPublisher<T>

The Flow class is final. It encapsulates the Reactive Streams Java API and a static method. The four 
interfaces specified by the Reactive Streams Java API are included in the Flow class as nested static interfaces:

•	 Flow.Processor<T,R>

•	 Flow.Publisher<T>

•	 Flow.Subscriber<T>

•	 Flow.Subscription

These four interfaces contain the same methods as shown in Listing 17-2. The Flow class contains a 
static method named defaultBufferSize() that returns the default size for buffers used by publishers and 
subscribers. Currently, it returns 256.

The SubmissionPublisher<T> class is an implementation class for the Flow.Publisher<T> interface. 
The class implements the AutoCloseable interface, so you can manage its instances using a try-
with-resources block. JDK9 does not provide an implementation class for the Flow.Subscriber<T> 
interface; you will need to implement it yourself. However, the SubmissionPublisher<T> class contains a 
consume(Consumer<? super T> consumer) method that you can use to process all items published by this 
publisher. I explain it in more detail with examples later.

Publisher-Subscriber Interactions
Before you start using the JDK API, it is important to understand the sequence of events that occurs in a typical 
publisher-subscriber session using Reactive Streams. I include the methods that are used in each event.  
A publisher can have zero or more subscribers. For the purposes of this discussion, I use only one subscriber.

•	 You create a publisher and a subscriber and they are instances of the Flow.
Publisher and Flow.Subscriber interfaces, respectively.

•	 The subscriber attempts to subscribe to the publisher by calling the subscribe() 
method of the publisher. If the subscription is successful, the publisher 
asynchronously calls the onSubscribe() method of the subscriber passing a Flow.
Subscription. If the attempt to subscribe fails, the onError() method of the 
subscriber is called with an IllegalStateException and the publisher-subscriber 
interaction ends.

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava


Chapter 17 ■ reaCtive StreamS

847

•	 The subscriber sends a request to the publisher for N items by calling the request(N) 
method of the Subscription. The subscriber can send multiple requests for more 
items to the publisher without waiting for its earlier requested to be fulfilled.

•	 The publisher calls the onNext(T item) method of the subscriber up to the number 
of items requested by the subscriber in all its previous requests—sending an item 
to the subscriber in each call. If the publisher has no more items to send to the 
subscriber, the publisher calls the onComplete() method of the subscriber to signal 
the end of stream, thus ending the publisher-subscriber interaction. If a subscriber 
requests Long.MAX_VALUE elements, it is effectively an unbounded request and the 
stream is effectively a push stream.

•	 If the publisher encounters an error at any time, it calls the onError() method of the 
subscriber.

•	 The subscriber can cancel its subscription by calling the cancel() method of its 
Flow.Subscription. Once a subscription is cancelled, the publisher-subscriber 
interaction ends. However, it is possible for the subscriber to receive items after 
canceling its subscription if there were pending requests before requesting the 
cancellation.

To summarize the previous steps for terminal conditions, once the onComplete() or onError() method 
is called on the subscriber, the subscriber does not receive any more notifications from the publisher.

After the subscribe() method of the publisher is called, the following sequence of method calls on the 
subscriber is guaranteed, assuming that the subscriber does not cancel its subscription:

onSubscribe onNext* (onError | onComplete)?

Here, the * and ? symbols are used as keywords in a regular expression—an * meaning zero or more 
occurrences and a ? meaning zero or one occurrence.

The first method call on the subscriber is the onSubscribe() method, which is a notification for a 
successful subscription to the publisher. The onNext() method of the subscriber may be called zero or more 
times, each call indicating publication of an item. One of the onComplete() and onError() methods may be 
called zero or one time to indicate a terminate state; one of these methods is called as long as the subscriber 
does not cancel its subscription.

Creating Publishers
Creating a publisher depends on the implementation class of the Flow.Publisher<T> interface. I cover the 
use of the SubmissionPublisher<T> class that implements this interface. The class contains the following 
constructors:

•	 SubmissionPublisher()

•	 SubmissionPublisher(Executor executor, int maxBufferCapacity)

•	 SubmissionPublisher(Executor executor, int maxBufferCapacity, 
BiConsumer<? super Flow.Subscriber<? super T>,? super Throwable> 
handler)

A SubmissionPublisher uses the supplied Executor to deliver items to its subscribers. If multiple 
threads are used to generate items to be published and the number of subscribers can be estimated, you use 
an Executor with a fixed thread pool, which can be obtained using the newFixedThreadPool(int nThread) 
static method of the Executors class. Otherwise, you use the default Executor, which is obtained using the 
commonPool() method of the ForkJoinPool class.



Chapter 17 ■ reaCtive StreamS

848

The SubmissionPublisher class uses an independent buffer for each subscriber. The buffer size 
is specified by the maxBufferCapacity argument in the constructor. The default buffer size is the value 
returned by the defaultBufferSize() static method of the Flow class, which is 256. If the number 
of published items exceeds the buffer size of a subscriber, the extra elements will be dropped. You 
can get the current buffer size of each subscriber using the getMaxBufferCapacity() method of the 
SubmissionPublisher class.

When a subscriber’s method throws an exception, its subscription is cancelled. When the onNext() 
method of a subscriber throws an exception, the handler specified in the constructor is invoked, before its 
subscription is cancelled. By default, the handler is null.

The following snippet of code creates a SubmissionPublisher that publishes items of the type Long with 
all attributes set to their default values:

// Create a publisher that can publish Long values
SubmissionPublisher<Long> pub = new SubmissionPublisher<>();

The SubmissionPublisher class implements the AutoCloseable interface. Calling its close() method 
invokes the onComplete() method on its current subscribers. Attempting to publish elements after calling 
the close() method throws an IllegalStateException.

Publishing Items
The SubmissionPublisher<T> class contains the following methods for publishing elements:

•	 int offer(T item, long timeout, TimeUnit unit, BiPredicate<Flow.
Subscriber<? super T>,? super T> onDrop)

•	 int offer(T item, BiPredicate<Flow.Subscriber <? super T>,? super T> 
onDrop)

•	 int submit(T item)

The submit() method blocks until resources for current subscribers are available to publish the item. 
Consider a case with the buffer capacity of 10 for each subscriber. A subscriber subscribes with the publisher 
and does not request any items. The publisher publishes 10 items and buffers them for all subscribers. 
Attempting to publish another item using the submit() method will block because the subscriber’s buffer is 
full at the publisher’s end.

The offer() method is non-blocking. The first version of the method lets you specify a timeout, after 
which the item is dropped. You can specify a drop handler, which is a BiPredicate. The test() method of 
the drop handler is called before dropping the item for a subscriber. If the test() method returns true, the 
item is retried one more time. If the test() method returns false, the item is dropped without a retry. A 
negative integer returned from the offer() method indicates the number of failed attempts to issue the item 
to a subscriber; a positive integer indicates an estimate of the maximum number of items submitted but not 
yet consumed among all current subscribers.

Which method should you use to publish an item: submit() or offer()? It depends on your 
requirement. If each published item must be issued to all subscribers, submit() method is the option. If you 
want to wait to publish an item for a specific amount of time with a retry, the offer() method is the option.



Chapter 17 ■ reaCtive StreamS

849

A Quick Example
Let’s look at a quick example of using a SubmissionPublisher as a publisher. A SubmissionPublisher 
can publish an element using its submit(T item) method. The following snippet of code generates and 
publishes five integers (1, 2, 3, 4, and 5), assuming pub is a reference to a SubmissionPublisher object:

// Generate and publish 5 integers
LongStream.range(1L, 6L)
          .forEach(pub::submit);

You need a subscriber to consume items published by a publisher. The SubmissionPublisher class 
contains a consume(Consumer<? super T> consumer) method that lets you add a subscriber that wants 
to process all published items and is not interested in any other notifications such as on error and on 
completion notifications. The method returns a CompletableFuture<Void> that is completed when the 
publisher calls the onComplete() method of the subscriber. The following snippet of code adds a Consumer, 
which is internally added as a subscriber, to the publisher:

// Add a subscriber that prints the published items
CompletableFuture<Void> subTask = pub.consume(System.out::println);

Listing 17-3 contains the code for a NumberPrinter class, which shows how to use the 
SubmissionPublisher class to publish integers. A detailed explanation of the example code follows the 
output of the NumberPrinter class.

Listing 17-3. An Example of a Publisher-Subscriber in Which Five Integers Are Published and Printed

// NumberPrinter.java
package com.jdojo.reactive.stream;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.SubmissionPublisher;
import java.util.stream.LongStream;

public class NumberPrinter {
    public static void main(String[] args) {
        CompletableFuture<Void> subTask = null;
        
        // Create a publisher
        SubmissionPublisher<Long> pub = new SubmissionPublisher<>();
        
        // The publisher is closed when the try block exits
        try (pub) {
            // Print the buffer size used for each subscriber
            System.out.println("Subscriber Buffer Size: " + pub.getMaxBufferCapacity());

            // Add a subscriber to the publisher.
            // The subscriber prints the published elements
            subTask = pub.consume(System.out::println);



Chapter 17 ■ reaCtive StreamS

850

            // Generate and publish five integers
            LongStream.range(1L, 6L)
                      .forEach(pub::submit);
        }

        if (subTask != null) {
            try {
                // Wait until the subscriber is complete
                subTask.get();
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        }
    }
}

Subscriber Buffer Size: 256
1
2
3
4
5

The main() method declares a variable named subTask to store the reference of the subscriber’s task. 
The subTask.get() method will block until the subscriber is complete.

CompletableFuture<Void> subTask = null;

A publisher to publish items of the type Long is created and used in a try-with-resources block:

SubmissionPublisher<Long> pub = new SubmissionPublisher<>();
try (pub) {
  //...
}

The publisher is an instance of the SubmissionPublisher<Long> class. The publisher is closed 
automatically when the try-with-resources block exits.

The program prints the buffer size of each subscriber that will subscribe to the publisher.

// Print the buffer size used for each subscriber
System.out.println("Subscriber Buffer Size: " + pub.getMaxBufferCapacity());

A subscriber is added to the publisher using the consume() method. Note that the method lets you 
specify a Consumer, which is converted to a Subscriber internally. The subscriber will be signaled for each 
published item. The subscriber simply prints the item it receives.

// Add a subscriber to the publisher.
// The subscriber prints the published elements
subTask = pub.consume(System.out::println);



Chapter 17 ■ reaCtive StreamS

851

It is time to publish the integers. The program generates five integers, 1 to 5, and publishes them using 
the submit() method of the publisher.

// Generate and publish five integers
LongStream.range(1L, 6L)
          .forEach(pub::submit);

Published integers are signaled to the subscriber asynchronously. The publisher is closed when the 
try-with-resources block exits. To keep the program running until the subscriber is finished processing 
all published items, you must call subTask.get(). If you do not call this method, you may not see the five 
integers in the output.

Creating Subscribers
To have a subscriber, you need to create a class that implements the Flow.Subscriber<T> interface. How you 
implement the methods of the interface depends on your needs. In this section, you create a class named 
SimpleSubscriber that implements the Flow.Subscriber<Long> interface. Listing 17-4 contains the code 
for this class.

Listing 17-4. A SimpleSubscriber Class That Implements the Flow.Subscriber<Long> Interface

// SimpleSubscriber.java
package com.jdojo.reactive.stream;

import java.util.concurrent.Flow;

public class SimpleSubscriber implements Flow.Subscriber<Long> {
    private Flow.Subscription subscription;

    // Subscriber name
    private String name = "Unknown";

    // Maximum number of items to be processed by this subscriber
    private final long maxCount;

    // Keep track of the number of items processed
    private long counter;

    public SimpleSubscriber(String name, long maxCount) {
        this.name = name;
        this.maxCount = maxCount <= 0 ? 1 : maxCount;
    }

    public String getName() {
        return name;
    }

    @Override
    public void onSubscribe(Flow.Subscription subscription) {
        // Save the subscription for later use
        this.subscription = subscription;



Chapter 17 ■ reaCtive StreamS

852

        
        System.out.printf("%s subscribed with max count %d.%n", name, maxCount);
        
        // Request all items in one go
        subscription.request(maxCount);
    }

    @Override
    public void onNext(Long item) {
        counter++;
        
        System.out.printf("%s received %d.%n", name, item);
        
        if (counter >= maxCount) {
            System.out.printf("Cancelling %s. Processed item count: %d.%n", name, counter);

            // Cancel the subscription
            subscription.cancel();
        }
    }

    @Override
    public void onError(Throwable t) {
        System.out.printf("An error occurred in %s: %s.%n", name, t.getMessage());
    }

    @Override
    public void onComplete() {
        System.out.printf("%s is complete.%n", name);
    }
}

An instance of the SimpleSubscriber class represents a subscriber, which will have a name and the 
maximum number of items (maxCount) that it wants to process. You need to pass its name and maxCount to 
its constructor. If maxCount is less than 1, it is set to 1 in the constructor.

In the onSubscribe() method, it stores the subscription passed from the publisher in its instance 
variable named subscription. It prints a message about the subscription and requests all items it can 
process in one shot. This subscriber effectively uses a push model because, after this request, no more 
requests will be sent to the publisher for more items. The publisher will push maxCount or fewer number of 
items to this subscriber.

In the onNext() method, it increments the counter instance variable by 1. The counter instance 
variable keeps track of the number of items this subscriber has received. The method prints a message 
detailing the received item. If it has received the last item it can handle, it cancels the subscription. After 
cancelling the subscription, it will not receive any more items from the publisher.

In the onError() and onComplete() methods, it prints a message about its status.
The following snippet of code creates a SimpleSubscriber whose name is S1 that can process 

maximum 10 items.

SimpleSubscriber sub1 = new SimpleSubscriber("S1", 10);



Chapter 17 ■ reaCtive StreamS

853

It is time to see the SimpleSubscriber in action. Listing 17-5 contains a complete program. It publishes 
items periodically. After publishing an item, it waits for 1 to 3 seconds. The duration of the wait is random. 
A detailed explanation follows the output of this program. The program uses asynchronous processing that 
may result in a different output.

Listing 17-5. A Publisher-Subscriber Example in Which a Publisher Publishes Items Periodically and 
Instances of the SimpleSubscriber Subscribe to Those Items

// PeriodicPublisher.java
package com.jdojo.reactive.stream;

import java.util.Random;
import java.util.concurrent.Flow.Subscriber;
import java.util.concurrent.SubmissionPublisher;
import java.util.concurrent.TimeUnit;

public class PeriodicPublisher {
    final static int MAX_SLEEP_DURATION = 3;

    // Used to generate sleep time
    final static Random sleepTimeGenerator = new Random();

    public static void main(String[] args) {
        SubmissionPublisher<Long> pub = new SubmissionPublisher<>();

        // Create four subscribers
        SimpleSubscriber sub1 = new SimpleSubscriber("S1", 2);
        SimpleSubscriber sub2 = new SimpleSubscriber("S2", 5);
        SimpleSubscriber sub3 = new SimpleSubscriber("S3", 6);
        SimpleSubscriber sub4 = new SimpleSubscriber("S4", 10);

        // Subscribe three subscribers to the publisher
        pub.subscribe(sub1);
        pub.subscribe(sub2);
        pub.subscribe(sub3);
        
        // Subscribe the fourth subscriber after 2 seconds
        subscribe(pub, sub4, 2);

        // Start publishing items
        Thread pubThread = publish(pub, 5);

        try {
            // Wait until the publisher is finished
            pubThread.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }



Chapter 17 ■ reaCtive StreamS

854

    public static Thread publish(SubmissionPublisher<Long> pub, long count) {
        Thread t = new Thread(() -> {
            for (long i = 1; i <= count; i++) {
                pub.submit(i);
                sleep(i);
            }

            // Close the publisher
            pub.close();
        });

        // Start the thread
        t.start();

        return t;
    }

    private static void sleep(Long item) {
        // Wait for 1 to 3 seconds
        int sleepTime = sleepTimeGenerator.nextInt(MAX_SLEEP_DURATION) + 1;

        try {
            System.out.printf("Published %d. Sleeping for %d sec.%n", item, sleepTime);
            TimeUnit.SECONDS.sleep(sleepTime);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    private static void subscribe(SubmissionPublisher<Long> pub, Subscriber<Long> sub,
            long delaySeconds) {
        
        new Thread(() -> {
            try {
                TimeUnit.SECONDS.sleep(delaySeconds);
                pub.subscribe(sub);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }).start();
    }
}

S1 subscribed with max count 2.
Published 1. Sleeping for 2 sec.
S3 subscribed with max count 6.
S2 subscribed with max count 5.
S3 received 1.
S1 received 1.
S2 received 1.



Chapter 17 ■ reaCtive StreamS

855

S4 subscribed with max count 10.
Published 2. Sleeping for 2 sec.
S3 received 2.
S1 received 2.
S2 received 2.
Cancelling S1. Processed item count: 2.
S4 received 2.
Published 3. Sleeping for 2 sec.
S4 received 3.
S3 received 3.
S2 received 3.
Published 4. Sleeping for 3 sec.
S4 received 4.
S2 received 4.
S3 received 4.
Published 5. Sleeping for 1 sec.
S4 received 5.
S3 received 5.
S2 received 5.
Cancelling S2. Processed item count: 5.
S3 is complete.
S4 is complete.

The PeriodicPublisher class uses two static variables. The MAX_SLEEP_DURATION static variable stores 
the maximum number of seconds the publisher should wait to publish the next item. It is set to 3. The 
sleepTimeGenerator static variable stores the reference of a Random object, which is used in the sleep() 
method to generate the next random duration to wait. The main() method performs the following actions:

•	 It creates a publisher that is an instance of the SubmissionPublisher<Long> class.

•	 It creates four subscribers named S1, S2, S3, and S4. Each subscriber can process a 
different number of items.

•	 Three subscribers are subscribed immediately.

•	 The subscriber named S4 subscribes in a separate thread after a minimum delay of 
two seconds. The subscribe() method of the PeriodicPublisher class takes care of 
this delayed subscription. Notice in the output that S4 subscribes after one item, 1, 
was already published and it will not receive that item.

•	 It calls the publish() method, which starts a new thread to publish five items, which 
starts the thread and returns the thread reference.

•	 The main() method calls the join() method of the thread publishing the items, so 
the program does not terminate before all items are published.

•	 The publish() method takes care of publishing the five items. It closes the publisher 
in the end. It calls the sleep() method that makes the current thread sleep for a 
randomly chosen duration between one and MAX_SLEEP_DURATION seconds.

•	 Notice in the output that a few subscribers cancel their subscriptions because they 
receive the specified number of items from the publisher.



Chapter 17 ■ reaCtive StreamS

856

Note that this program guarantees that all items will be published before it terminates, but does not 
guarantee that all subscribers will receive those items. In the output, you see that subscribers received all 
items published. This happened because the publisher waits for at least one second after publishing the last 
item, which gives the subscribers enough time, in this small program, to receive and process the last item.

This program did not demonstrate backpressure in action because all subscribers used the push 
model by requesting items in one shot. You can modify the SimpleSubscriber class as an assignment to see 
backpressure in action:

•	 Request for one item in the onSubscribe() method using the subscription.
request(1) method.

•	 In the onNext() method, request more items after a delay. The delay should make 
the subscriber work at the slower rate at which the publisher publishes items.

•	 You will need to either publish more than 256 items, which is the default buffer 
used by the publisher for each subscriber, or use a smaller buffer size using another 
constructor of the SubmissionPublisher class. This will force the publisher to have 
more items published than the subscribers can handle.

•	 Subscribe the subscribers using a drop handler, so you can see when the publisher 
sees the backpressure.

•	 Use the offer() method of the SubmissionPublisher class to publish items, so the 
publisher does not wait indefinitely when the subscribers cannot handle more items.

Using Processors
A processor is a subscriber and a publisher at the same time. To use a processor, you need a class that 
implements the Flow.Processor<T,R> interface, where T is the subscribed item type and R is the published 
item type. In this section, I create a simple processor that filters items based on a Predicate<T>. The 
processor subscribes to a publisher that publishes six integers—1, 2, 3, 4, 5, and 6. A subscriber subscribes 
to the processor. The processor receives items from its publisher and republishes the same items if they pass 
the criterion specified by a Predicate<T>. Listing 17-6 contains the code for the FilterProcessor<T> class 
whose instances act as processors.

Listing 17-6. A Processor That Filters Items Based on a Predicate Before Republishing

// FilterProcessor.java
package com.jdojo.reactive.stream;

import java.util.concurrent.Flow;
import java.util.concurrent.Flow.Processor;
import java.util.concurrent.SubmissionPublisher;
import java.util.function.Predicate;

public class FilterProcessor<T> extends SubmissionPublisher<T> implements Processor<T, T> {
    private final Predicate<? super T> filter;

    public FilterProcessor(Predicate<? super T> filter) {
        this.filter = filter;
    }



Chapter 17 ■ reaCtive StreamS

857

    @Override
    public void onSubscribe(Flow.Subscription subscription) {
        // Request an unbounded number of items
        subscription.request(Long.MAX_VALUE);
    }

    @Override
    public void onNext(T item) {
        // If the item passes the filter publish it. Otherwise, no action is needed.
        System.out.println("Filter received: " + item);
        
        if (filter.test(item)) {
            this.submit(item);
        }
    }

    @Override
    public void onError(Throwable t) {
        // Pass the onError message to all subscribers asynchronously        
        this.getExecutor().execute(() -> this.getSubscribers()
                                            .forEach(s -> s.onError(t)));
    }

    @Override
    public void onComplete() {
        System.out.println("Filter is complete.");
        
        // Close this publisher, so all its subscribers will receive a onComplete message
        this.close();
    }
}

The FilterProcessor<T> class inherits from the SubmissionPublisher<T> class and implements the 
Flow.Processor<T,T> interface. A processor has to be a publisher as well as a subscriber. I inherited the 
class from the SubmissionPublisher<T> class, so I don’t have to write code to make it work as a publisher. 
The class implements all methods of the Processor<T,T> interface, so it will receive and publish the same 
type of items.

The constructor accepts a Predicate<? super T> and stores it in an instance variable name filter, 
which will be used in the onNext() method to filter items.

The onNext() method applies the filter. If the filter returns true, it republishes the item to its 
subscribers. The class inherits the submit() method, used for republishing items, from its superclass 
SubmissionPublisher.

The onError() method republishes the error to its subscribers asynchronously. It uses the 
getExecutor() and getSubscribers() methods of the SubmissionPublisher class, which return the 
Executor and a list of current subscribers. The Executor is used to publish messages to current subscribers 
asynchronously.

The onComplete() method closes the publisher part of the processor, which will send a onComplete 
message to all its subscribers.

Let’s see this processor in action. Listing 17-7 contains the code for the ProcessorTest class. You 
may get a different output because several asynchronous steps are involved in this program. A detailed 
explanation of the program follows the program’s output.



Chapter 17 ■ reaCtive StreamS

858

Listing 17-7. Using a Processor in a Publisher-Subscriber Chain

// ProcessorTest.java
package com.jdojo.reactive.stream;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.SubmissionPublisher;
import java.util.concurrent.TimeUnit;
import java.util.stream.LongStream;

public class ProcessorTest {
    public static void main(String[] args) {
        CompletableFuture<Void> subTask = null;

        // The publisher is closed when the try block exits
        try (SubmissionPublisher<Long> pub = new SubmissionPublisher<>()) {
            // Create a Subscriber
            SimpleSubscriber sub = new SimpleSubscriber("S1", 10);

            // Create a processor
            FilterProcessor<Long> filter = new FilterProcessor<>(n -> n % 2 == 0);

            // Subscribe the filter to the publisher and a subscriber to the filter
            pub.subscribe(filter);            
            filter.subscribe(sub);

            // Generate and publish 6 integers
            LongStream.range(1L, 7L)
                      .forEach(pub::submit);
        }

        try {
            // Sleep for two seconds to let subscribers finish handling all items
            TimeUnit.SECONDS.sleep(2);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

S1 subscribed with max count 10.
Filter received: 1
Filter received: 2
Filter received: 3
S1 received 2.
Filter received: 4
S1 received 4.
Filter received: 5
Filter received: 6
Filter is complete.
S1 received 6.
S1 is complete.



Chapter 17 ■ reaCtive StreamS

859

The main() method of the ProcessorTest class creates a publisher that will publish six integers—1, 2, 3, 
4, 5, and 6. The method does a number of things:

•	 It creates a publisher and uses it in a try-with-resources block, so it will be closed 
automatically when the try block exits.

•	 It creates a subscriber that’s an instance of the SimpleSubscriber class.  
The subscriber is named S1 and can handle a maximum of 10 items.

•	 It creates a processor that’s an instance of the FilterProcessor<Long> class.  
A Predicate<Long> is passed that lets the processor republish even integers and 
discard odd ones.

•	 The processor is subscribed to the publisher and the simple subscriber is subscribed 
to the processor. This completes the publisher-subscriber pipeline—publisher-to-
filter-to-subscriber.

•	 At the end of the first try block, the code generates the integers from 1 to 6 and 
publishes them using the publisher.

•	 At the end of the main() method, the program waits for two seconds to make 
sure that the filter and the subscriber get a chance to process their events. If you 
remove this logic, your program may not print anything. You had to include this 
logic because all events are processed asynchronously. The publisher will be done 
sending all notifications to the filter when the first try block exits. However, the filter 
and the subscriber need some time to receive and process those notifications.

Summary
A stream is a sequence of elements produced by a producer and consumed by one or more consumers. This 
producer-consumer model is also known as source/sink model or publisher-subscriber model.

There are several stream-processing mechanisms, the pull model and the push model being the most 
common. In the push model, the publisher pushes the stream of data to the subscriber. In the pull model, 
the subscriber pulls the data from the publisher. These models have problems when the two ends do not 
work at the same rate. The solution is to provide a stream that adapts to the speed of both the publisher and 
subscriber. A strategy known as backpressure is used in which the subscriber notifies the publisher as to how 
many items it can handle and the publisher sends only those many or fewer items to the subscriber.

Reactive Streams started in 2013 as an initiative for providing a standard for asynchronous stream 
processing with non-blocking backpressure. It is aimed at solving the problems with processing a stream 
of elements—how to pass a stream of elements from a publisher to a subscriber without requiring the 
publisher to block or the subscriber to have an unbounded buffer or drop. The Reactive Streams model 
dynamically switches between the pull model and the push model stream-processing mechanisms. It uses 
the pull model when the subscriber is slower and uses the push model when the subscriber is faster.

In 2015, a specification and Java API for handling Reactive Streams were published. The Java API 
for Reactive Streams consists of four interfaces: Publisher<T>, Subscriber<T>, Subscription, and 
Processor<T,R>.

A publisher publishes items to its subscribers based on the demands received from them. A subscriber 
subscribes to a publisher to receive items. The publisher sends a subscription token to the subscriber. Using 
the subscription token, the subscriber requests N number of items from the publisher. When the items are 
ready, the publisher sends N or fewer items to the subscriber. The subscriber can request more items.

JDK9 provides a Reactive Streams-compliant API in the java.util.concurrent package, which is in the 
java.base module. The API consists of two classes: Flow and SubmissionPublisher<T>.



Chapter 17 ■ reaCtive StreamS

860

The Flow class encapsulates the Reactive Streams Java API. The four interfaces specified by the Reactive 
Streams Java API are included in the Flow class as nested static interfaces: Flow.Processor<T,R>, Flow.
Publisher<T>, Flow.Subscriber<T>, and Flow.Subscription.

EXERCISES

1. What are reactive Streams? What are pull and push models in reactive Streams?

2. Describe the four components—publisher, subscriber, subscription, and 
processor—of reactive Streams.

3. List the fully qualified names of the four interfaces of the reactive Streams api.

4. is the following statement true or false?

The Reactive Streams API supports asynchronous processing of stream of data.

5. Which method on the subscriber is called when the subscriber’s subscription with a 
publisher succeeds?

6. Which method on the subscriber is called when the subscriber’s subscription with a 
publisher fails?

7. how does a subscriber requests 200 items from a publisher?

8. Which method on the subscriber is called when it receives an item from its 
publisher?

9. how does a subscriber cancel its subscription with a publisher? is it possible for a 
subscriber to receive more items from its publisher after it cancels its subscription?

10. What is the fully qualified name of the implementation class for the java.util.
concurrent.Flow.Publisher<T> interface?



861© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1_18

CHAPTER 18

Stack Walking

In this chapter, you will learn:

•	 What stacks and stack frames are

•	 How to traverse a thread’s stack before JDK9

•	 How to traverse a thread’s stack in JDK9 using the Stack-Walking API

•	 How to know about the class of a caller of a method in JDK9

All example programs in this chapter are a member of a jdojo.stackwalker module, as declared in 
Listing 18-1.

Listing 18-1. The Declaration of a jdojo.stackwalker Module

// module-info.java
module jdojo.stackwalker {
    exports com.jdojo.stackwalker;
}

What Is a Stack?
Each thread in a JVM has a private JVM stack that is created at the same time the thread is created. The stack 
is a Last-In-First-Out (LIFO) data structure. A stack stores frames. A new frame is created and pushed to the 
top of the stack each time a method is invoked. A frame is destroyed (popped out of stack) when the method 
invocation completes. Each frame on a stack contains its own array of local variables, its own operand stack, 
return value, and a reference to the runtime constant pool of the class of the current method. A specific 
implementation of the JVM may extend a frame to store more pieces of information.

A frame on a JVM stack represents a Java method invocation in a given thread. In a given thread, only 
one frame is active at any point. The active frame is known as the current frame and its method is known as 
the current method. The class that defines the current method is known as the current class. A frame is no 
longer the current frame when its method invokes another method—a new frame is pushed to the stack, the 
executing method becomes the current method, and the new frame becomes the current frame. When the 
method returns, the old frame becomes the current frame again. For more details on JVM stack and frames, 
refer to the Java Virtual Machine Specification at https://docs.oracle.com/javase/specs/jvms/se9/
html/index.html.

https://doi.org/10.1007/978-1-4842-3348-1_18
https://docs.oracle.com/javase/specs/jvms/se9/html/index.html
https://docs.oracle.com/javase/specs/jvms/se9/html/index.html


Chapter 18 ■ StaCk Walking

862

 ■ Tip  if a JVM supports native methods, a thread also contains a native method stack that contains a native 
method frame for each native method invocation.

Figure 18-1 shows two threads and their JVM stacks. The JVM stack for the first thread contains four 
frames and the stack of the second thread contains three frames. Frame 4 is the active frame in Thread-1 and 
Frame 3 is the active frame in Thread-2.

What Is Stack Walking?
Stack walking (or stack traversal) is the process of traversing the stack frames of a thread and inspecting the 
frames’ contents. Starting from Java 1.4, you can get a snapshot of the stack of a thread and get details about 
each frame, such as the class names and method names where the method invocation occurs, the source 
file name, the line number in the source file, etc. Classes and interfaces used for stack walking are part of the 
Stack-Walking API.

Stack Walking in JDK8
Before JDK9, it was possible to traverse all frames in a thread’s stack using the following classes in the  
java.lang package:

•	 Throwable

•	 Thread

•	 StackTraceElement

An instance of the StackTraceElement class represents a stack frame. The getStrackTrace() method 
of the Throwable class returns a StackTraceElement[] that contains the frames of the current thread’s stack. 
The getStrackTrace() method of the Thread class returns a StackTraceElement[] that contains the frames 
of the thread’s stack. The first element of the array is the top frame in the stack, which represents the last 

Frame 4

Frame 3

Frame 2

Frame 1

Thread-1

Frame 3

Frame 2

Frame 1

Thread-2

Figure 18-1. Arrangements of threads and their private JVM stacks in a JVM



Chapter 18 ■ StaCk Walking

863

method invocation in the sequence. Some implementations of JVM may omit some frames in the returned 
array. The StackTraceElement class contains the following methods that returns the details of the method 
invocation represented by the frame:

•	 String getClassLoaderName()

•	 String getClassName()

•	 String getFileName()

•	 int getLineNumber()

•	 String getMethodName()

•	 String getModuleName()

•	 String getModuleVersion()

•	 boolean isNativeMethod()

 ■ Tip  the getModuleName(), getModuleVersion(), and getClassLoaderName() methods were added to 
this class in JDk9.

Most of the methods in the StackTraceElement class have intuitive names, for example, the 
getMethodName() method returns the name of the method whose invocation is represented by this frame. 
The getFileName() method returns the name of the source file that contains the method invocation code 
and the getLineNumber() returns the method invocation code’s line number in the source file.

The following snippet of code shows how to inspect the stack of the current thread using the Throwable 
and Thread classes:

// Using the Throwable class
StackTraceElement[] frames = new Throwable().getStackTrace();

// Using the Thread class
StackTraceElement[] frames = Thread.currentThread()
                                   .getStackTrace();
// Process the frames here...

Listing 18-2 contains the code for a class named LegacyStackWalk. The output was generated when the 
class was run in JDK8.

Listing 18-2. Traversing a Thread’s Stack Before JDK9

// LegacyStackWalk.java
package com.jdojo.stackwalker;

import java.lang.reflect.InvocationTargetException;

public class LegacyStackWalk {
    public static void main(String[] args) {
        m1();
    }



Chapter 18 ■ StaCk Walking

864

    public static void m1() {
        m2();
    }

    public static void m2() {
        // Call m3() directly
        System.out.println("\nWithout using reflection: ");
        m3();

        // Call m3() using reflection        
        try {
            System.out.println("\nUsing reflection: ");
            LegacyStackWalk.class
                    .getMethod("m3")
                    .invoke(null);
        } catch (NoSuchMethodException
                | InvocationTargetException
                | IllegalAccessException
                | SecurityException e) {
            e.printStackTrace();
        }
    }

    public static void m3() {
        // Prints the call stack details
        StackTraceElement[] frames = Thread.currentThread()
                .getStackTrace();

        for (StackTraceElement frame : frames) {
            System.out.println(frame.toString());
        }
    }
}

Without using reflection:
java.lang.Thread.getStackTrace(Thread.java:1552)
com.jdojo.stackwalker.LegacyStackWalk.m3(LegacyStackWalk.java:37)
com.jdojo.stackwalker.LegacyStackWalk.m2(LegacyStackWalk.java:18)
com.jdojo.stackwalker.LegacyStackWalk.m1(LegacyStackWalk.java:12)
com.jdojo.stackwalker.LegacyStackWalk.main(LegacyStackWalk.java:8)

Using reflection:
java.lang.Thread.getStackTrace(Thread.java:1552)
com.jdojo.stackwalker.LegacyStackWalk.m3(LegacyStackWalk.java:37)
sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
java.lang.reflect.Method.invoke(Method.java:498)
com.jdojo.stackwalker.LegacyStackWalk.m2(LegacyStackWalk.java:25)
com.jdojo.stackwalker.LegacyStackWalk.m1(LegacyStackWalk.java:12)
com.jdojo.stackwalker.LegacyStackWalk.main(LegacyStackWalk.java:8)



Chapter 18 ■ StaCk Walking

865

The main() method of the LegacyStackWalk class calls the m1() method, which calls the m2() method. 
The m2() method calls the m3() method twice—once directly and once using reflection. The m3() method 
gets a snapshot of the stack for the current thread using the getStrackTrace() method of the Throwable 
class and prints the frame details using the toString() method of the StackTraceElement class. You 
could have used methods of this class to get the same information for each frame. When you run the 
LegacyStackWalk class in JDK9, the output includes the module name and module version at the beginning 
of each line. The output using JDK9 is as follows:

Without using reflection:
java.base/java.lang.Thread.getStackTrace(Thread.java:1654)
com.jdojo.stackwalker/com.jdojo.stackwalker.LegacyStackWalk.m3(LegacyStackWalk.java:37)
com.jdojo.stackwalker/com.jdojo.stackwalker.LegacyStackWalk.m2(LegacyStackWalk.java:18)
com.jdojo.stackwalker/com.jdojo.stackwalker.LegacyStackWalk.m1(LegacyStackWalk.java:12)
com.jdojo.stackwalker/com.jdojo.stackwalker.LegacyStackWalk.main(LegacyStackWalk.java:8)

Using reflection:
java.base/java.lang.Thread.getStackTrace(Thread.java:1654)
com.jdojo.stackwalker/com.jdojo.stackwalker.LegacyStackWalk.m3(LegacyStackWalk.java:37)
java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.
java:62)
java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessor
Impl.java:43)
java.base/java.lang.reflect.Method.invoke(Method.java:538)
com.jdojo.stackwalker/com.jdojo.stackwalker.LegacyStackWalk.m2(LegacyStackWalk.java:25)
com.jdojo.stackwalker/com.jdojo.stackwalker.LegacyStackWalk.m1(LegacyStackWalk.java:12)
com.jdojo.stackwalker/com.jdojo.stackwalker.LegacyStackWalk.main(LegacyStackWalk.java:8)

Drawbacks in Stack Walking
Prior to JDK9, the Stack-Walking API had several drawbacks:

•	 It was not efficient. The getStrackTrace() method of the Throwable class returned 
a snapshot of the entire stack. There was no way to get just a few top frames in the 
stack.

•	 The frames contained method names and class names, not the class reference.

•	 The JVM specification allowed a VM implementation to omit some frames in the 
stack for performance reasons. So, if you were interested in inspecting the entire 
stack, you could not do so if the VM hid some frames.

•	 Many APIs—in JDK and other libraries—are caller-sensitive. They function based 
on the caller’s class. In the existing APIs, there was no easy and efficient way to get 
the caller’s class reference. Such APIs depended on using the JDK internal API—the 
getCallerClass() static method of the sun.reflect.Reflection class.

•	 There was no easy way to filter out stack frames of specific implementation classes.

These drawbacks in the existing API led to a new Stack-Walking API in JDK9, which I explain in the next 
section.



Chapter 18 ■ StaCk Walking

866

Stack Walking in JDK9
JDK9 introduced a new Stack-Walking API, which consists of a single class named StackWalker in the java.
lang package. The class provides easy and efficient stack walking. It provides a sequential stream of stack 
frames for the current thread. The stack frames are reported in order, from the top-most frame where the 
stack was generated to the bottom-most frame. The StackWalker class is very efficient because it evaluates 
the stack frames lazily. It also contains a convenience method to get the reference of the caller’s class. The 
StackWalker class consists of the following members:

•	 The StackWalker.Option nested enum

•	 The StackWalker.StackFrame nested interface

•	 Methods to get an instance of the StackWalker class

•	 Methods to process stack frames

•	 A method to get the caller’s class

I explain each component of the StackWalker class and their uses in subsequent sections in detail.

Specifying Stack-Walking Options
You can configure a StackWalker by specifying zero or more options. An option is one of the constants of the 
StackWalker.Option enum. The constants are:

•	 RETAIN_CLASS_REFERENCE

•	 SHOW_HIDDEN_FRAMES

•	 SHOW_REFLECT_FRAMES

If the RETAIN_CLASS_REFERENCE option is specified, the frames returned by the StackWalker will contain 
the reference of the Class object of the declaring class of the method represented by the frame. You also 
need to specify this option if you want to get the Class object’s reference of the caller of a method. By default, 
this option is absent.

By default, implementation specific and reflection frames are not included in the stream of frames 
returned by the StackWalker class. Use the SHOW_HIDDEN_FRAMES option to include all hidden frames.

If the SHOW_REFLECT_FRAMES option is specified, the stream of frames returned by the StackWalker class 
includes the reflection frames. Using this option may still hide the implementation specific frames, which 
you can show using the SHOW_HIDDEN_FRAMES option.

I show how to use these options and their effects when I explain how to create instances of the 
StackWalker class in a subsequent section.

Representing a Stack Frame
Prior to JDK9, an instance of the StackTraceElement class was used to represent a stack frame. The Stack-
Walking API in JDK9 uses an instance of the StackWalker.StackFrame interface to represent a stack frame.

 ■ Tip  there are no concrete implementation class of the StackWalker.StackFrame interface for you to use 
directly. the Stack-Walking api in the JDk provides instances of the interface when you retrieve stack frames.



Chapter 18 ■ StaCk Walking

867

The StackWalker.StackFrame interface contains the following methods, most of which are the same as 
in the StackTraceElement class:

•	 int getByteCodeIndex()

•	 String getClassName()

•	 Class<?> getDeclaringClass()

•	 String getFileName()

•	 int getLineNumber()

•	 String getMethodName()

•	 boolean isNativeMethod()

•	 StackTraceElement toStackTraceElement()

In a class file, each method is described using a structure named method_info. The method_info 
structure contains an attribute table that holds a variable-length attribute named Code. The Code 
attribute contains an array named code, which holds the bytecode instructions of the method. The 
getByteCodeIndex() method returns the index to the code array in the Code attribute of the method 
containing the execution point represented by this frame. It returns -1 for native methods. For more 
information on the code array and Code attribute, refer to section 4.7.3 of the Java Virtual Specification at 
https://docs.oracle.com/javase/specs/jvms/se9/html/.

How do you work with the code array of a method? As an application developer, you will not use the 
bytecode index for an execution point in a method. The JDK does support reading a class file and all its 
attributes using internal APIs. You can see the bytecode index of each instruction in a method using the 
javap tool, which is located in JDK_HOME\bin directory. You will need to use the –c option with javap 
to print the code array of methods. The following command shows the code array for all methods in the 
LegacyStackWalk class:

C:\Java9LanguageFeatures>javap -c build\modules\jdojo.stackwalker\com\jdojo\stackwalker\
LegacyStackWalk.class

Compiled from "LegacyStackWalk.java"
public class com.jdojo.stackwalker.LegacyStackWalk {
  public com.jdojo.stackwalker.LegacyStackWalk();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

  public static void main(java.lang.String[]);
    Code:
       0: invokestatic  #2                  // Method m1:()V
       3: return

  public static void m1();
    Code:
       0: invokestatic  #3                  // Method m2:()V
       3: return

https://docs.oracle.com/javase/specs/jvms/se9/html/


Chapter 18 ■ StaCk Walking

868

  public static void m2();
    Code:
       0: getstatic     #4                  // Field java/lang/System.out:Ljava/io/
PrintStream;
       3: ldc           #5                  // String \nWithout using reflection:
       5: invokevirtual #6                   // Method java/io/PrintStream.println:(Ljava/

lang/String;)V
       8: invokestatic  #7                  // Method m3:()V
...
      32: anewarray     #13                 // class java/lang/Object
      35: invokevirtual #14                  // Method java/lang/reflect/Method.

invoke:(Ljava/lang/Object;[Ljava/lang/Object;)
Ljava/lang/Object;

...
  public static void m3();
    Code:
       0: invokestatic  #20                  // Method java/lang/Thread.currentThread:()

Ljava/lang/Thread;
       3: invokevirtual #21                  // Method java/lang/Thread.getStackTrace:()

[Ljava/lang/StackTraceElement;
...
}

When you take a snapshot of the call stack in method m3(), the outputs in the boldface font represent 
the execution points in each method—main(), m1(), m2(), and m3(). Note that the m2() method calls m3() 
twice. For the first call, the bytecode index is 8 and, for the second call, it is 35.

The getDeclaringClass() method returns the reference of the Class object of the class declaring the 
method represented by the frame. It throws an UnsupportedOperationException if this StackWalker is not 
configured with the RETAIN_CLASS_REFERENCE option.

The toStackTraceElement() method returns an instance of the StackTraceElement class representing 
the same stack frame. This method is handy if you want to use the JDK9 API to obtain a StackWalker.
StackFrame, but keep using your old code that uses the StackTraceElement class to analyze the frame.

Obtaining a StackWalker Class
The StackWalker class contains the following static factory methods that return a StackWalker instance:

•	 StackWalker getInstance()

•	 StackWalker getInstance (StackWalker.Option option)

•	 static StackWalker getInstance (Set<StackWalker.Option> options)

•	 static StackWalker getInstance (Set<StackWalker.Option> options, int 
estimateDepth)

You can configure a StackWalker differently using different versions of the getInstance() method. The 
default configuration is to exclude all hidden frames and not to retain class references. Versions that let you 
specify StackWalker.Option are configured using those options.

The estimateDepth argument is a hint that indicates the estimated number of stack frames this 
StackWalker is expected to traverse, so the size of an internal buffer may be optimized.



Chapter 18 ■ StaCk Walking

869

The following snippet of code creates four instances of the StackWalker class with different 
configurations:

import java.util.Set;
import static java.lang.StackWalker.Option.*;
...

// Get a StackWalker with the default configuration.
// It will exclude all hidden frames and retain no class references
StackWalker sw1 = StackWalker.getInstance();

// Get a StackWalker that shows reflection frames
StackWalker sw2 = StackWalker.getInstance(SHOW_REFLECT_FRAMES);

// Get a StackWalker that shows all hidden frames
StackWalker sw3 = StackWalker.getInstance(SHOW_HIDDEN_FRAMES);

// Get a StackWalker that shows reflection frames and retains class references
StackWalker sw4  
        = StackWalker.getInstance(Set.of(SHOW_REFLECT_FRAMES, RETAIN_CLASS_REFERENCE));

 ■ Tip  a StackWalker is thread-safe and reusable. Multiple threads can use the same instance to traverse 
their own stacks.

The next section explains how to use a StackWalker to walk through stack frames.

Walking the Stack
It is time to traverse stack frames of a thread. The StackWalker class contains two methods that let you 
traverse the stack of the current thread:

•	 void forEach(Consumer<? super StackWalker.StackFrame> action)

•	 <T> T walk(Function<? super Stream<StackWalker.StackFrame>,? extends T> 
function)

Use the forEach() method if you need to traverse the entire stack. The specified Consumer will be 
supplied with one frame at a time from the stack—starting with the top-most frame. The following snippet of 
code prints the details of each frame returned by a StackWalker:

// Prints the details of all stack frames of the current thread
StackWalker.getInstance()
           .forEach(System.out::println);

Use the walk() method if you want to customize the stack traversal such as by using filters and maps. 
The walk() method takes a Function, which accepts a Stream<StackWalker.StackFrame> as an argument 
and can return any type of object. The StackWalker will create the stream of stack frames and pass it to 
your function. When the function completes, the StackWalker will close the stream. The stream passed to 
the walk() method can be traversed only once. Attempting to traverse the stream second time throws an 
IllegalStateException. The following snippet of code uses the walk() method to traverse the entire stack, 



Chapter 18 ■ StaCk Walking

870

printing the details of each frame. This snippet of code does the same thing that the previous snippet of code 
did using the forEach() method.

// Prints the details of all stack frames of the current thread
StackWalker.getInstance()
           .walk(s -> {
               s.forEach(System.out::println);
               return null;
            });

 ■ Tip  the forEach() method of the StackWalker is used to process stack frames one at a time, whereas 
the walk() method is used to process the entire stack as a stream of frames. You can use the walk() method 
to simulate the functionality of the forEach() method, but not vice versa.

You might wonder why the walk() method does not return a stream of stack frames instead of passing 
the stream to your function. Not returning a stream of stack frames from the method is intentional. The 
elements of the stream are evaluated lazily. Once the stream of stack frames is created, the JVM is free to 
reorganize the stack and there is no definite way to detect that the stack has changed while you are still 
holding the reference to its stream. This is the reason that creation and closing of the stream of stack frames 
are controlled by the StackWalker class.

As the Streams API is extensive, so is the use of the walk() method. I show a few of its sample uses 
before showing a complete example. The following snippet of code gets a snapshot of the stack frames of the 
current thread in a List.

import java.lang.StackWalker.StackFrame;
import java.util.List;
import static java.util.stream.Collectors.toList;
...
List<StackFrame> frames = StackWalker.getInstance()
                            .walk(s -> s.collect(toList()));

The following snippet of code collects the string form of all stack frames of the current thread in a 
List—excluding frames that represent methods whose names start with m2:

import java.util.List;
import static java.util.stream.Collectors.toList;
...
List<String> list = StackWalker.getInstance()
  .walk(s -> s.filter(f -> !f.getMethodName().startsWith("m2"))
              .map(f -> f.toString())
              .collect(toList())
       );

The following snippet of code collects the string form of all stack frames of the current thread in a 
List—excluding frames that represent methods whose declaring class name ends with Test:

import static java.lang.StackWalker.Option.RETAIN_CLASS_REFERENCE;
import java.util.List;
import static java.util.stream.Collectors.toList;



Chapter 18 ■ StaCk Walking

871

...
List<String> list = StackWalker
    .getInstance(RETAIN_CLASS_REFERENCE)
    .walk(s -> s.filter(f -> !f.getDeclaringClass()
                               .getName().endsWith("Test"))
                .map(f -> f.toString())
                .collect(toList())
          );

The following snippet of code collects the entire stack in a string—separating each frame with a 
platform specific line-separator:

import static java.util.stream.Collectors.joining;
...
String stackStr = StackWalker.getInstance()
 .walk(s -> s.map(f -> f.toString())
             .collect(joining(System.getProperty("line.separator")
       )));

Listing 18-3 contains a complete program to show the use of the StackWalker class and its walk() 
method. Its main() method calls the m1() method twice—each time passing a different set of options for the 
StackWalker. The m2() method uses reflection to call the m3() method, which prints the stack frame details. 
The first time, the reflection frames are hidden and the class references are not available.

Listing 18-3. Using a StackWalker to Traverse Stack Frames of the Current Thread

// StackWalking.java
package com.jdojo.stackwalker;

import java.lang.StackWalker.Option;
import static java.lang.StackWalker.Option.RETAIN_CLASS_REFERENCE;
import static java.lang.StackWalker.Option.SHOW_REFLECT_FRAMES;
import java.lang.StackWalker.StackFrame;
import java.lang.reflect.InvocationTargetException;
import java.util.Set;
import java.util.stream.Stream;

public class StackWalking {
    public static void main(String[] args) {
        m1(Set.of());

        System.out.println();

        // Retain class references and show reflection frames
        m1(Set.of(RETAIN_CLASS_REFERENCE, SHOW_REFLECT_FRAMES));
    }

    public static void m1(Set<Option> options) {
        m2(options);
    }



Chapter 18 ■ StaCk Walking

872

    public static void m2(Set<Option> options) {
        // Call m3() using reflection
        try {
            System.out.println("Using StackWalker Options: " + options);
            StackWalking.class
                    .getMethod("m3", Set.class)
                    .invoke(null, options);
        } catch (NoSuchMethodException | InvocationTargetException
                | IllegalAccessException | SecurityException e) {
            e.printStackTrace();
        }
    }

    public static void m3(Set<Option> options) {
        // Prints the call stack details
        StackWalker.getInstance(options)
                .walk(StackWalking::processStack);
    }

    public static Void processStack(Stream<StackFrame> stack) {
        stack.forEach(frame -> {
            int bci = frame.getByteCodeIndex();
            String className = frame.getClassName();
            Class<?> classRef = null;
            try {
                classRef = frame.getDeclaringClass();
            } catch (UnsupportedOperationException e) {
                // No action to take
            }

            String fileName = frame.getFileName();
            int lineNumber = frame.getLineNumber();
            String methodName = frame.getMethodName();
            boolean isNative = frame.isNativeMethod();

            StackTraceElement sfe = frame.toStackTraceElement();

            System.out.printf("Native Method=%b", isNative);
            System.out.printf(", Byte Code Index=%d", bci);
            System.out.printf(", Module Name=%s", sfe.getModuleName());
            System.out.printf(", Module Version=%s", sfe.getModuleVersion());
            System.out.printf(", Class Name=%s", className);
            System.out.printf(", Class Reference=%s", classRef);
            System.out.printf(", File Name=%s", fileName);
            System.out.printf(", Line Number=%d", lineNumber);
            System.out.printf(", Method Name=%s.%n", methodName);
        });

        return null;
    }
}



Chapter 18 ■ StaCk Walking

873

Using StackWalker Options: []
Native Method=false, Byte Code Index=9, Module Name=jdojo.stackwalker, Module Version=null, 
Class Name=com.jdojo.stackwalker.StackWalking, Class Reference=null, File Name=StackWalking.
java, Line Number=42, Method Name=m3.
Native Method=false, Byte Code Index=37, Module Name=jdojo.stackwalker, Module Version=null, 
Class Name=com.jdojo.stackwalker.StackWalking, Class Reference=null, File Name=StackWalking.
java, Line Number=32, Method Name=m2.
Native Method=false, Byte Code Index=1, Module Name=jdojo.stackwalker, Module Version=null, 
Class Name=com.jdojo.stackwalker.StackWalking, Class Reference=null, File Name=StackWalking.
java, Line Number=23, Method Name=m1.
Native Method=false, Byte Code Index=3, Module Name=jdojo.stackwalker, Module Version=null, 
Class Name=com.jdojo.stackwalker.StackWalking, Class Reference=null, File Name=StackWalking.
java, Line Number=14, Method Name=main.

Using StackWalker Options: [RETAIN_CLASS_REFERENCE, SHOW_REFLECT_FRAMES]
Native Method=false, Byte Code Index=9, Module Name=jdojo.stackwalker, Module Version=null, 
Class Name=com.jdojo.stackwalker.StackWalking, Class Reference=class com.jdojo.stackwalker.
StackWalking, File Name=StackWalking.java, Line Number=42, Method Name=m3.
Native Method=true, Byte Code Index=-1, Module Name=java.base, Module Version=9.0.1, Class 
Name=jdk.internal.reflect.NativeMethodAccessorImpl, Class Reference=class jdk.internal.
reflect.NativeMethodAccessorImpl, File Name=NativeMethodAccessorImpl.java, Line Number=-2, 
Method Name=invoke0.
Native Method=false, Byte Code Index=100, Module Name=java.base, Module Version=9.0.1, Class 
Name=jdk.internal.reflect.NativeMethodAccessorImpl, Class Reference=class jdk.internal.
reflect.NativeMethodAccessorImpl, File Name=NativeMethodAccessorImpl.java, Line Number=62, 
Method Name=invoke.
Native Method=false, Byte Code Index=6, Module Name=java.base, Module Version=9.0.1, Class 
Name=jdk.internal.reflect.DelegatingMethodAccessorImpl, Class Reference=class jdk.internal.
reflect.DelegatingMethodAccessorImpl, File Name=DelegatingMethodAccessorImpl.java, Line 
Number=43, Method Name=invoke.
Native Method=false, Byte Code Index=59, Module Name=java.base, Module Version=9.0.1, 
Class Name=java.lang.reflect.Method, Class Reference=class java.lang.reflect.Method, File 
Name=Method.java, Line Number=564, Method Name=invoke.
Native Method=false, Byte Code Index=37, Module Name=jdojo.stackwalker, Module Version=null, 
Class Name=com.jdojo.stackwalker.StackWalking, Class Reference=class com.jdojo.stackwalker.
StackWalking, File Name=StackWalking.java, Line Number=32, Method Name=m2.
Native Method=false, Byte Code Index=1, Module Name=jdojo.stackwalker, Module Version=null, 
Class Name=com.jdojo.stackwalker.StackWalking, Class Reference=class com.jdojo.stackwalker.
StackWalking, File Name=StackWalking.java, Line Number=23, Method Name=m1.
Native Method=false, Byte Code Index=21, Module Name=jdojo.stackwalker, Module 
Version=null, Class Name=com.jdojo.stackwalker.StackWalking, Class Reference=class com.
jdojo.stackwalker.StackWalking, File Name=StackWalking.java, Line Number=19, Method 
Name=main.



Chapter 18 ■ StaCk Walking

874

Knowing the Caller’s Class
Before JDK9, developers depended on the following methods to get the reference of the caller’s class inside a 
method:

•	 The getClassContext() method of the SecurityManager class, which required sub-
classing because the method is protected.

•	 The getCallerClass() method of the sun.reflect.Reflection class, which is a 
JDK-internal class.

JDK9 made getting the caller class reference easy by adding a method named getCallerClass() 
in the StackWalker class. The method’s return type is Class<?>. Invoking this method throws 
UnsupportedOperationException if the StackWalker is not configured with the RETAIN_CLASS_REFERENCE 
option. Invoking this method throws an IllegalStateException if there is no caller frame in the stack, for 
example, running a class whose main() method invokes this method.

Which class is the caller class? You have two callable constructs in Java—methods and constructors. The 
following discussion uses the term method; however, it applies to both methods and constructors. Suppose 
you invoke the getCallerClass() method inside a method named S, which is called from a method named T. 
Further suppose that the method named T is in a class named C. In this case, class C is the caller class.

 ■ Tip  the getCallerClass() method of the StackWalker class filters out all hidden and reflection frames 
while finding the caller class, irrespective of the options used to obtain the StackWalker instance.

Listing 18-4 contains a complete program to show how to get the caller’s class. Its main() method calls 
the m1() method, which calls the m2() method, which calls the m3() method. The m3() method obtains 
an instance of the StackWalker class and gets the caller class. Note that the m2() method uses reflection 
to call the m3() method. In the end, the main() method attempts to get the caller class. When you run the 
CallerClassTest method, the main() method is called by the JVM and there will be no caller frame on the 
stack. This will throw an IllegalStateException.

Listing 18-4. Getting the Caller Class Reference Using the StackWalker Class

// CallerClassTest.java
package com.jdojo.stackwalker;

import java.lang.StackWalker.Option;
import static java.lang.StackWalker.Option.RETAIN_CLASS_REFERENCE;
import static java.lang.StackWalker.Option.SHOW_REFLECT_FRAMES;
import java.lang.reflect.InvocationTargetException;
import java.util.Set;

public class CallerClassTest {
    public static void main(String[] args) {
        // Will not be able to get caller class because the
        // RETAIN_CLASS_REFERENCE option is not set.
        m1(Set.of());

        // Will print the caller class
        m1(Set.of(RETAIN_CLASS_REFERENCE, SHOW_REFLECT_FRAMES));



Chapter 18 ■ StaCk Walking

875

        try {
            // The following statement will throw an IllegalStateException
             // if this class is run. If the main() method is called in code, no exception 

will be thrown.
            Class<?> cls = StackWalker
                    .getInstance(RETAIN_CLASS_REFERENCE)
                    .getCallerClass();

            System.out.println("In main method, Caller Class: " + cls.getName());
        } catch (IllegalCallerException e) {
            System.out.println("In main method, Exception: " + e.getMessage());
        }
    }

    public static void m1(Set<Option> options) {
        m2(options);
    }

    public static void m2(Set<Option> options) {
        // Call m3() using reflection
        try {
            CallerClassTest.class
                    .getMethod("m3", Set.class)
                    .invoke(null, options);
        } catch (NoSuchMethodException | InvocationTargetException
                | IllegalAccessException | SecurityException e) {
            e.printStackTrace();
        }
    }

    public static void m3(Set<Option> options) {
        try {
            // Print the caller class
            Class<?> cls = StackWalker.getInstance(options)
                    .getCallerClass();
            System.out.println("Caller Class: " + cls.getName());
        } catch (UnsupportedOperationException e) {
            System.out.println(e.getMessage());
        }
    }
}

This stack walker does not have RETAIN_CLASS_REFERENCE access
Caller Class: com.jdojo.stackwalker.CallerClassTest
In main method, Exception: no caller frame

In the previous example, the method collecting the stack frames was called from another method of 
the same class. Let’s call this method from a method of another class to see a different result. Listing 18-5 
contains the code for a class named CallerClassTest2.



Chapter 18 ■ StaCk Walking

876

Listing 18-5. Another Example of Getting the Caller Class Using the StackWalker Class

// CallerClassTest2.java
package com.jdojo.stackwalker;

import java.lang.StackWalker.Option;
import java.util.Set;
import static java.lang.StackWalker.Option.RETAIN_CLASS_REFERENCE;

public class CallerClassTest2 {
    public static void main(String[] args) {
        Set<Option> options = Set.of(RETAIN_CLASS_REFERENCE);
        CallerClassTest.m1(options);
        CallerClassTest.m2(options);
        CallerClassTest.m3(options);

        System.out.println("\nCalling the main() method:");
        CallerClassTest.main(null);

        System.out.println("\nUsing an anonymous class:");
        new Object() {
            {
                CallerClassTest.m3(options);
            }   
        };

        System.out.println("\nUsing a lambda expression:");
        new Thread(() -> CallerClassTest.m3(options))
            .start();        
    }
}

Caller Class: com.jdojo.stackwalker.CallerClassTest
Caller Class: com.jdojo.stackwalker.CallerClassTest
Caller Class: com.jdojo.stackwalker.CallerClassTest2

Calling the main() method:
This stack walker does not have RETAIN_CLASS_REFERENCE access
Caller Class: com.jdojo.stackwalker.CallerClassTest
In main method, Caller Class: com.jdojo.stackwalker.CallerClassTest2

Using an anonymous class:
Caller Class: com.jdojo.stackwalker.CallerClassTest2$1

Using a lambda expression:
Caller Class: com.jdojo.stackwalker.CallerClassTest2

The main() method of the CallerClassTest2 class calls four methods of the CallerClassTest class. 
The caller class is CallerClassTest2 when the CallerClassTest.m3() is called from the CallerClassTest2 
class directly. When you call the CallerClassTest.main() method from the CallerClassTest2 class, there 
is a caller frame and the caller class is the CallerClassTest2 class. Compare this with the output of the 



Chapter 18 ■ StaCk Walking

877

previous example when you ran the CallerClassTest class. At that time, the CallerClassTest.main() 
method was called from the JVM and you were not able to get a caller class inside the CallerClassTest.
main() method because there was no caller frame. In the end, the CallerClassTest.m3() method is called 
from an anonymous class and a lambda expression. The anonymous class is reported as the caller class. In 
case of the lambda expression, its enclosing class is reported as the caller class.

Stack-Walking Permissions
When a Java security manager is present and you configure a StackWalker with the RETAIN_CLASS_
REFERENCE option, a permission check is performed to make sure that the codebase is granted a java.lang.
RuntimePermission with a value of getStackWalkerWithClassReference. A SecurityException is thrown 
if the permission is not granted. The permission check is performed at the time the StackWalker instance is 
created, not when the stack walking is performed.

Listing 18-6 contains the code for the StackWalkerPermissionCheck class. Its printStackFrames() 
method creates a StackWalker instance with the RETAIN_CLASS_REFERENCE option. The main() method 
calls this method, which prints the stack trace without any problems, assuming that no security manager is 
present. A security manager is installed and the printStackFrames() method is called again. This time, a 
SecurityException is thrown, which is indicated in the output.

Listing 18-6. Creating a StackWalker to Retain Class References when a Java Security Manager Is Present

// StackWalkerPermissionCheck.java
package com.jdojo.stackwalker;

import static java.lang.StackWalker.Option.RETAIN_CLASS_REFERENCE;

public class StackWalkerPermissionCheck {
    public static void main(String[] args) {
        System.out.println("Before installing security manager:");
        printStackFrames();

        SecurityManager sm = System.getSecurityManager();
        if (sm == null) {
            sm = new SecurityManager();
            System.setSecurityManager(sm);
        }

        System.out.println("\nAfter installing security manager:");
        printStackFrames();
    }

    public static void printStackFrames() {
        try {
            StackWalker.getInstance(RETAIN_CLASS_REFERENCE)
                    .forEach(System.out::println);
        } catch (SecurityException e) {
            System.out.println("Could not create a StackWalker. Error: " + e.getMessage());
        }
    }
}



Chapter 18 ■ StaCk Walking

878

Before installing security manager:
jdojo.stackwalker/com.jdojo.stackwalker.StackWalkerPermissionCheck.printStackFrames(StackWal
kerPermissionCheck.java:24)
jdojo.stackwalker/com.jdojo.stackwalker.StackWalkerPermissionCheck.
main(StackWalkerPermissionCheck.java:9)

After installing security manager:
Could not create a StackWalker. Error: access denied ("java.lang.RuntimePermission" 
"getStackWalkerWithClassReference")

shows you how to grant the required permission to create a StackWalker with the RETAIN_CLASS_
REFERENCE option. The permission is granted to the entire codebase. You need to add this permission block 
to the java.policy file located in the JAVA_HOME\conf\security directory on your machine.

Listing 18-7. Granting java.lang.RuntimePermission with a getStackWalkerWithClassReference Value

grant {
    permission java.lang.RuntimePermission "getStackWalkerWithClassReference";
};

When you run the class in Listing 18-6 with the permission granted in , you should receive the following 
output:

Before installing security manager:
jdojo.stackwalker/com.jdojo.stackwalker.StackWalkerPermissionCheck.printStackFrames(StackWal
kerPermissionCheck.java:24)
jdojo.stackwalker/com.jdojo.stackwalker.StackWalkerPermissionCheck.
main(StackWalkerPermissionCheck.java:9)

After installing security manager:
jdojo.stackwalker/com.jdojo.stackwalker.StackWalkerPermissionCheck.printStackFrames(StackWal
kerPermissionCheck.java:24)
jdojo.stackwalker/com.jdojo.stackwalker.StackWalkerPermissionCheck.
main(StackWalkerPermissionCheck.java:18)

Summary
Each thread in a JVM has a private JVM stack that is created at the same time the thread is created. A stack 
stores frames. A frame on a JVM stack represents a Java method invocation in a given thread. A new frame 
is created and pushed to the top of the stack each time a method is invoked. A frame is destroyed (popped 
out of stack) when the method invocation completes. In a given thread, only one frame is active at any point. 
The active frame is known as the current frame and its method is known as the current method. The class that 
defines the current method is known as the current class.

Before JDK9, it was possible to walk through all frames in a thread’s stack using the following classes: 
Throwable, Thread, and StackTraceElement. An instance of the StackTraceElement class represents a 
stack frame. The getStrackTrace() method of the Throwable class returns a StackTraceElement[] that 
contains the frames of the current thread’s stack. The getStrackTrace() method of the Thread class returns 
a StackTraceElement[] that contains the frames of the thread’s stack. The first element of the array is the 



Chapter 18 ■ StaCk Walking

879

top frame in the stack, which represents the last method invocation in the sequence. Some implementation 
of JVM may omit some frames in the returned array.

JDK9 has made stack traversal easy. It introduced a new class named StackWalker in the java.
lang package. You can get an instance of the StackWalker using one of its static factory methods named 
getInstance(). A StackWalker can be configured using options, which are represented by the constants 
defined in the enum named StackWalker.Option. An instance of the nested interface named StackWalker.
StackFrame represents a stack frame. The StackWalker class works with StackWalker.StackFrame instance. 
The interface defined a method named toStackTraceElement() that can be used to get an instance of the 
StackTraceElement class from a StackWalker.StackFrame.

You can use the forEach() and walk() methods of the StackWalker instance to traverse stack frames 
of the current thread. The getCallerClass() method of the StackWalker instance returns the caller class 
reference. You must configure a StackWalker instance with the RETAIN_CLASS_REFERENCE if you want the 
reference of the class representing the stack frame and the reference of the caller’s class. By default, all 
reflection frames and implementation specific frames are not reported by a StackWalker. Use the SHOW_
REFLECT_FRAMES and SHOW_HIDDEN_FRAMES options to configure a StackWalker if you want those frames 
included in stack traversal. Using the SHOW_HIDDEN_FRAMES option also includes reflection frames.

When a Java security manager is present and you configure a StackWalker with the RETAIN_CLASS_
REFERENCE option, a permission check is performed to make sure that the codebase is granted a java.lang.
RuntimePermission with a value of getStackWalkerWithClassReference. A SecurityException is thrown 
if the permission is not granted. The permission check is performed at the time the StackWalker is created, 
not when the stack walking is performed.

QUESTIONS AND EXERCISES

1. is the following statement true or false?

Each thread in Java maintains its own stack in which each Java method invocation by 
the thread is represented as a frame on the stack.

2. What is stack walking?

3. What is the fully qualified name of the class that supports the Stack-Walking api in 
JDk9?

4. name the class whose instances represents a frame on the stack of a thread.

5. JDk9 added an interface named StackWalker.StackFrame. What does an instance 
of this interface represent?

6. explain the difference in behaviors of the StackWalker instance with respect to the 
following three options that you can use to configure it: RETAIN_CLASS_REFERENCE, 
SHOW_HIDDEN_FRAMES, and SHOW_REFLECT_FRAMES.

7. the following snippet of code obtains a StackWalker instance:

// Get a StackWalker with the default configuration
StackWalker sw1 = StackWalker.getInstance();

Will this StackWalker include hidden frames and retain class references?



Chapter 18 ■ StaCk Walking

880

8. When the following Test class is run, it throws an IllegalCallerException. 
explain the reason for this exception.

// Test.java
package com.jdojo.stackwalker.exercises;

import static java.lang.StackWalker.Option.RETAIN_CLASS_REFERENCE;

public class Test {
    public static void main(String[] args) {
        StackWalker stackWalker =
            StackWalker.getInstance(RETAIN_CLASS_REFERENCE);
        Class<?> callerCls = stackWalker.getCallerClass();
        System.out.println(callerCls);
    }
}

9. is the following statement true or false?

The getCallerClass( ) method of the StackWalker class filters out all hidden and 
reflection frames while finding the caller class, irrespective of the options used to 
obtain the StackWalker instance.

10. When a security manager is installed, what RuntimePermission must be granted 
to create a StackWalker with the RETAIN_CLASS_REFERENCE option?

11. What will be the output when the following class Test2 is run?

// Test2.java
package com.jdojo.stackwalker.exercises;

public class Test2 {
    public static void main(String[] args) {
        StackWalker.getInstance()
            .forEach(f -> System.out.println(f.getClassName()));
    }
}



881© Kishori Sharan 2018 
K. Sharan, Java Language Features, https://doi.org/10.1007/978-1-4842-3348-1

��������� A
add() method, 178, 593, 626, 688
Adler-32, 421
Advanced object serialization

class evolution, 393
stopping serialization, 394
writing object mulitple times, 389–392

Aggregate operation methods, 592
allocateDirect() method, 451
allocate() method, 451
Annotation element

array type, 16–17
default value, 9–10

Annotations
AccessAnnotation Test class, 44–45
AnnotatedElement interface, 42
element, 9–10
Employee class, 1
getAnnotationsByType() method, 46
Manager class, 2
modules, 41–42
null reference, 17
@Override annotation, 3
package, 41
processing

AbstractProcessor class, 48
getQualifiedName() method, 49
printMessage() method, 50
-proc option, 47
process() method, 49
process version annotations, 50
SupportedAnnotationTypes annotation, 48
test versionprocessor, 52

setSalary() method, 2
shorthand annotation syntax, 17
standard annotations (see Standard  

annotation types)
Test class, 43
toString() method, 43
types (see Annotations types)
version annotation type, 43, 44

Annotations types, 16
declaration, 4
DefaultException class, 13
enum type, 14–15
evolving, 47
instance, 10–11
interface, 11
marker annotation, 19
meta-annotations (see Meta-annotations types)
primitive types, 12
restrictions, 7
String type, 12–13
TestCase annotation type, 13–14

Anonymous inner class, 65
Archive file

byte array compressing
deflate() method, 423
Deflater and Inflater classes, 423, 425, 426
end() method, 424
finish() method, 423

byte array decompressing
end() method, 425
finished() method, 424
Inflater class, 424

checksum
Adler-32, 421
CRC32, 421
definition, 420

data compression
lossless, 420, 447
lossy, 420, 447
RLE, 420
.tar archive, 420
.tar.gz, 420
ZLIB library, 420

definition, 419
GZIP file

BufferedOutputStream, 434
GZIPInputStream class, 434
GZIPOutputStream class, 434
InputStream, 435
ObjectOutputStream, 434

Index

https://doi.org/10.1007/978-1-4842-3348-1


■ INDEX

882

JAR file (see Java Archive (JAR) file)
ZIP file

BufferedOutputStream, 428
closeEntry() method, 429
creation, 427–429
FileInputStream creation, 428
putNextEntry() method, 428
reading contents, 431
stream() method, 433
ZipOutputStream, 428

Array, Java, 589
array() method, 451
Array operation methods, 593
asList() method, 208
asReadOnlyBuffer() method, 461
Asynchronous file I/O

AsynchronousFileChannel, 537
completed()/failed(), 538
CompletionHandler, 538
CompletionHandler, asynchronous  

file read, 543–545
CompletionHandler object, asynchronous file 

write, 539–542
default/custom thread pool, 536
Future Object, asynchronous file  

read, 545–546
Atomic variables

arrays, 281
CAS, 280
compound variable, 282–283
field updater, 282
scalar, 281

��������� B
Backpressure, 843
Behavior parameterization, 181
Blocking doubly ended queues, 619, 641
Blocking queues

ArrayBlockingQueue, 631
consumer class, 633
definition, 618
DelayQueue, 631
fairness, 631
features, 630
LinkedBlockingQueue, 631
PriorityBlockingQueue, 631
producer class, 632
producer/consumer program, 634
remainingCapacity() method, 631
SynchronousQueue, 631

Bounded queue, 619
Bound receiver, 200
BreakAll class, 838–840

Breaking module encapsulation, 825
--add-exports command-line option, 831
--add-modules option, 831
command-line options, 826
declaration

jdojo.contact module, 832
jdojo.intro module, 829
jdojo.intruder, 830

jdojo.contact module, 834
jdojo.intruder module, 830, 832
module graph, 832
TestIllegalAccess class, 835–836
TestNonExported class, 830–831
TestNonOpen class, 833–834

BufferedInputStream class, 369–370
Buffers

clear() method, 459
flip() method, 457–458
hasRemaining() method, 458
primitive values, 450
properties, 451
reading data, 453, 455
read-only buffer, 460
relative vs. absolute methods, 456
reset() method, 460
rewind() method, 460
state, 454
views, 461
writing data, 454–455

Bulk operation methods, 592

��������� C
CallableTaskTest class, 317
Callback mechanism, 90
capacity() method, 451
Cyclic Redundancy Check, 421
Character set

CharsetDecoder class, 462, 463, 484
CharsetEncoder class, 462, 463, 484
CoderResult class, 464
data source and sink, 465
decoding, 462, 484
encoding, 462, 484
flush() method, 465
getByteData () method, 465
input characters, 463
isOverflow() method, 464
isUnderflow() method, 464
JVM list, 470
storeByteData () method, 465

Checked collections, 661
checkPrimes() method, 765
Checksum, 420, 447
Classes, 748

Archive file (cont.)



■ INDEX

883

Class explosion, 338
Cleaner class, 581–582, 584, 585
Collection interface

advantages, 590
aggregate operation methods, 592
array operation methods, 593
basic operation methods, 591
bulk operation methods, 592
categories, 591
class diagram, 591
comparison operation method, 593
definition, 591
implementation classes, 590
list, 593–594
List interface, 590

Collections
checked, 661
create empty collections, 662
create singleton collections, 662, 663
definition, 587
element, 587
framework (see Collections framework)
hash-based, 663
jdojo.collections module, 587
list (see List)
maps (see Maps)
money jar, 587
queue (see Queues)
read-only view, 659
reversing list, 657
rotating a list, 658
search list, 656
shuffling list, 657–658
sort list, 655
swapping list, 658
synchronized view, 660
WeakHashMap implementation class, 659

Collections framework
arrays, 589
collection of name-phone pairs, 588
components, 590
mathematical set (see Mathematical set)
navigable set, 611
pictorial view, 588
sorted set (see Sorted set)
traverse (see Traversing collections)

Collectors
accumulator, 721
argument, 735
calendar example, 736
collect(), 722
collectingAndThen(), 736–737
combiner, 721
counting(), 724
filtering(), 737

flatMapping(), 737, 739
grouping data, 730–731, 733
joining(), 729–730
map (see toMap() method)
parameters, 723
partitioning data (see Partitioning data)
sorted(), 724
summary statistics, 725–726
supplier, 721
toCollection(), 724

com.jdojo.CsvParser interfaces, 749
com.jdojo.PrimeChecker interfaces, 749
Command-line options

--add-exports option, 826–827
--add-opens option, 827
--add-reads option, 827
--illegal-access option, 828

Comparator interface, 184
Compare-and-swap (CAS), 280
comparing() method, 217
Comparison operation method, 593
Compress() and decompress() methods, 425
Concurrent maps, 653
Constructor references

array constructors, 207
ClassName, 206
compile-time error, 208
Item class, 206
String object, 205

Container, See Collections
CRC32 class, 421
Critical section, 237

��������� D
Data compression, 419
Decorator pattern

abstract Component class, 357
abstract superclass, 351

Drink class, 352
DrinkDecorator class, 354
Rum class, 353
Vodka class, 353
Whiskey class, 353

class diagram, 351–352
components arrangement, 356
concrete decorator

Honey class, 354, 355
Spices class, 355

input stream
abstract base component, 367
BufferedInputStream, 369–370
class design, 367
methods, 368
PushbackInputStream, 370



■ INDEX

884

output stream
BufferedOutputStream, 373
ByteArrayOutputStream, 373
class diagram, 371–372
vs. drink application, 372
methods, 372
PrintStream class, 373–375

testing drink application, 356
wrapper pattern, 351

Deep reflection, 124, 140
across modules, 129–133
on JDK modules, 134, 136
and unnamed modules, 134
with module, 125–129

Default prime service provider, 758–760
DEFLATE algorithm, 420
Deflater class, 422
Delay queues, 618, 634
Denotable types, 159
Deque, See Double ended queues
Deque interface, 625
Dictionary, See Maps
Documented annotation type, 24–25
Double ended queues

asLifoQueue() static method, 630
categories, 626
definition, 618
FIFO queue, 626, 627
for insertion, removal, and peek operations, 625
LIFO queue, 626, 628, 630
myMethod(), 630
vs. queue interfaces, 626
stacks, 626

��������� E
EJB 3.0, 4
Empty collections, 662
Enterprise JavaBeans (EJB), 4
equals() method, 493
Exclusive file locking, 478
Executor

advantages, 312
completion service, 322–325
disadvantages, 312
methods, 313
newCachedThreadPool(), 313
newFixedThreadPool(int nThreads), 313
newSingleThreadExecutor(), 313
result-bearing tasks, 315–318
RunnableTast, 311, 313–314
scheduling task, 318–320
uncaught exceptions, 321
work queue, 313

ExecutorService.submit(), 317

��������� F
Fairness, blocking queue, 631
FasterPrimeChecker class, 761
Faster prime service provider, 760–761
First In, First Out (FIFO), 588
File attributes

AclFileAttributeView, 518
ACL file permissions, 526–529
BasicFileAttributeView, 517
DosFileAttributeView, 517
FileOwnerAttributeView, 518, 525
Files.setOwner(), 525
getUserPrincipalLookupService(), 524
lookupPrincipalByGroupName(), 524
PosixFileAttributeView, 518
POSIX file permissions, 529–531
reading and updating

basic file attributes, 521–523
Files.getOwner(), 520
Files.isDirectory(), 520
Files.setOwner(), 520
getFileAttributeView(), 522
readAttributes(), 520, 522
setTimes(), 522
static, 520
view-name, 521

UserDefinedFileAttributeView, 518
view support, 518–519

flatMap, 708–709
for-each loop, 598–599
forEach() method, 193, 599–600, 705–706
Fork/join framework

compute(), 327, 329
creation, 327
execution, 327, 329
ForkJoinPool, 327
RecursiveAction/RecursiveTask, 327
types of tasks, 326
work-stealing, 326

Formal type parameter, 146
forName() static method, 100
FunctionUtil class, 193–194

��������� G
Garbage collection, 551

accessing referent, 568
BigObject Class, 566
Cleaner class, 581–582, 584
clear() method, 569
clearing referent, 569
dead object, 552
finalization process, 553, 557
finalize() method, 555
FinalizeAsBackup class, 558

Decorator pattern (cont.)



■ INDEX

885

invoking, 553
java.lang.Runtime class, 553
Java object, 561
memory management

memory allocation, 551
memory reclamation, 550

object resurrection, 559
OutOfMemoryError, 555
PhantomReference Objects, 578, 579
post-finalization coordination, 580
reachable objects, 553
ReferenceQueue class, 573
SoftReference Class, 569
System.gc() method, 553
tracing algorithm, 552
WeakReference Class, 574
weak references

constructors, 563
memory state, 563
object’s reachability, 564
PhantomReference, 563
referent instance, 563
SoftReference, 563
strong reference, 562, 564

Garbage collector, 551
Generic functional interface, 185
GenericPrimeChecker, 761
Generics

anonymous classes, 160
arrays class, 160
definition, 143
exception classes, 160
heap pollution, 162
lower bound wildcards

copy() method, 153
<? super T>, 153
WrapperUtil class, 154

methods and constructors, 155
object creation

ArrayList, 157
parameter type, 158
process() method, 159
type inference process, 158

printDeails()method
compile-time error, 149
nullpointerexception, 151
unknownWrapper variable, 150
Wrapper<Object> type, 149
Wrapper<String> type, 149

raw types, 148
RuntimeClassTest, 161–162
upper bound wildcards

<? extends Number>, 153
<? extends T>, 152
sum() method, 152

varargs method
compiler unchecked warning, 164
@java.lang.SuppressWarnings  

annotation, 164
process() method, 163
@SafeVarargs annotation, 164

wildcards
unbounded, 149–151
unknown type, 149
unknownWrapper.get(), 151

wildcard type, 149
Wrapper class, 143

compile-time error statement, 146
formal type parameter, 146
get() method, 146
MyClass, 145
parameter type, 145
printDetails() method, 149
set() method, 146
super/subtype rules, 147
ways, 144

WrapperUtil method, 149
Generic type, 147
getByteCodeIndex() method, 867
getCallerClass() method, 874
getClass() method, 100
getClassDescription() method, 111
getComponentType() method, 138
getConstructors() method, 118
getDeclaredConstructor() method, 118
getDeclaredField() method, 112
getDeclaredMethods() method, 116
getDeclaringClass() method, 868
getDefault() static method, 488
getExceptionTypes() method, 115
getFields() method, 112
getFileName(), 492
getFileStores(), 488
getInterfaces() method, 111
getLambdaPrinter() method, 209
getLength() method, 136
getMainAttributes() method, 442
get() method, 453
getMethods() method, 116
getModifiers() method, 111, 115
getName() method, 115
getNameCount(), 491
getParameters() method, 114
getParent(), 491
getPath() method, 491
getReturnType() method, 117
getRoot(), 491
getRootDirectories(), 488
getSimpleName() method, 111
getStrackTrace() method, 862



■ INDEX

886

getSuperclass() method, 111, 113
getTypeParameters() method, 115
groupingBy()

classifier, 731
collector, 731
mapping(), 732
nested groups, 733

GZIP file format, 420, 434–435

��������� H
hasArray() method, 451
Hash-based collections, 663
Heap pollution, 162

��������� I
Infinite streams, 676
Inflater class, 422
Inherited annotation type, 24
Inner class

accessing instance members, 73
accessing local variables  

restrictions, 80–81
advantages, 59
anonymous class, 89
callback mechanism, 89–90
compiler magic

decompile class files, 85
decompiled code, 86–87
instance variable, 87–88
synthetic method, 89

creating objects
class declaration, 72
instance, 71–73
member inner class, 73
titleIterator() method, 71
TitleList class, 71

declaration, 78
enclosing class, 58
generated class files, 84–85
inheritance, 81
ModifiedOuter2 class, 78, 79
no static members, 83
outer class, 58
qualified keyword, 76–77
same instance variable name, 75
setValue() instance method, 76
static context, 91
static member class, 68
testing, 74–75
top-level class, 57–58
types

anonymous inner class, 65
local inner class (see Local inner class)
member inner class, 59

Input/output (I/O)
advanced object serialization (see Advanced 

object serialization)
class explosion, 338
console, 410
decorator pattern (see Decorator pattern)
files

absolute and canonical path, 340, 342
attributes, 346
checking existence, 340
content copy, 404
copying, 346
creating, 342–346
current working directory, 339
deleting, 343–345
directories, 347–349
object creation, 338
pathname, 338
renaming, 343–345
size, 346

object serialization (see Object serialization)
pipes (see Piped I/O)
primitive data types, 378–379
readers and writers

append(), 398
BufferedReader class, 397, 399
BufferedWriter class, 397
byte-based vs. character, 396
character-based streams, 395
classes, 395
FilterReader class, 397
InputStreamReader class, 397
OutputStream class, 399
OutputStreamWriter class, 397
readLine(), 398
writer object, 397

Scanner class, 411–412
StreamTokenizer, 414–415
String object, 337
StringTokenizer, 412
transient fields serialization, 389

Input/output streams
decorator pattern (see Decorator pattern)
flow of data, 358
input stream

closing, 361
creating, 360
data source, 359
luci1.txt file, 359
reading, byte, 362
reading data, 360
Utility class, 361–362

LowerCaseReader, 399, 401–402
output stream

closing, 365
creating, 364



■ INDEX

887

data sink, 363
decorator pattern (see Decorator pattern)
flushing, 365
writing bytes, 365–366
writing data, 364

random access files, 402–404
reading data, 358
standard error streams

BufferedReader, 409
DummyStandardOutput, 407
Java program interaction, 405
output redirection, 406
PrintStream, 405–406
public static, 405
reading from input device, 408
swallowing sent data, 408

writing data, 359
Instance method references

bound receiver, 200–201
length() method, 200
test() method, 205
unbound receiver, 201–202

Integrated development environment (IDE), 140
Interfaces, 748
isDirect() method, 451
isReadOnly() method, 461, 488
iterate() method, 689–693
Iterator

creates list of strings, 595
forEachRemaining() method, 596–597
hasNext() method, 595
next() method, 595
remove() method, 596
using print elements, 596

��������� J
Java Archive (JAR) file

accessing resources, 446
API

getMainAttributes() method, 442
JAR file creation, 443–446
JarInputStream, 446
main() method, 443
Manifest object, 442
manifest file, 442–443

book/archives, 438
creation, 437
extracting, entry, 439
format, 435
indexing, 438
jar tool command-line options, 436–437
listing contents, 439
manifest file, 439–441
manifestMain-Class attribute, 440
MANIFEST.MF file, 838

META-INF directory, 435
sealed attribute, 441
sealing package, 441
test.jar file, 437
updation, 438

Java Hotspot VM, 552
Java Memory Model (JMM)

atomicity, 236
ordering, 236
visibility, 236

Java Virtual Machine (JVM), 862
jdojo.lambda module, 169

��������� K
Key-value mappings, 641, 645

��������� L
Lambda expression

anonymous class, 171
break and continue statements, 214–215
Comparator interface, 216
definition, 169
equivalent methods, 173–174
function abstraction, 169–170
functional interface

compare() and equals() methods, 184
default and static methods, 189
design APIs, 191
forEach() method, 195
@FunctionalInterface  

annotation, 184–185
function<T, R> interface, 188–189
FunctionUtil class, 193
Gender enum, 192
generic abstract method, 185
intersection type, 187
java.util package, 184
java.util.function package, 188
library users, 194–195
Mapper<T> interface, 186
Person class, 192–193
Predicate<T> Interface, 190–191

functional programming, 172
lexical scoping

anonymous class, 209–210
compile-time error, 210
getLambdaPrinter() method, 209
local/anonymous class, 209
printer functional interface, 209

local variables, 173
method references

constructor references (see Constructor 
references)

definition, 196



■ INDEX

888

generic method, 208
instance method (see Instance method 

references)
length() method, 196
static method (see static method  

references)
supertype instance, 203–205
types, 197

object-oriented programming, 172
parameters

block statement, 176
modifiers, 175
no parameter declaration, 175
single parameter declaration, 175
types, 174

recursive function, 215–216
string parameter, 170
StringToIntMapper interface, 170–172
target type

Adder and Joiner interface, 177
add() method, 177–178
assignment context, 183
assignment statement, 177–178
cast context, 183
compile-time error, 182
functional interface, 178
join() method, 178
LambdaUtil class, 179–180
LambdaUtil2 class, 181–182
method invocation context, 183
parameters, 176
poly expression, 177
return context, 183
standalone expression, 176

variable capture
compile-time error, 212
createLambda() method, 214
final declaration, 211
local and instance variables, 213
msg variable, 211
print() method, 214

LambdaUtil class
functional interfaces, 179
testAdder() method, 180
testJoiner() method, 181

Last In, First Out (LIFO), 588
Lexical scoping, 209
Lightweight process, 226
limit() method, 452
List

add(E element) method, 614
ArrayList, 614, 616
definition, 613
features, 614

forward and backward direction iterations, 617
index, 613
LinkedList, 614
ListIterator interface, 617
pictorial view, 613
positional indexes, 614
reversing, 657
rotating, 658
searching, 656
shuffling, 657–658
sorting, 655
static of() method, 615
to store names, 593–594
swapping, 658

Local inner class
addTitle() method, 62
class declaration, 62
RandomInteger class, 64
removeTitle() method, 62
someMethod() method, 63
testing, 64

lock() methods, 283
ReentrantLock, 285–287
ReentrantReadWriteLock, 287–288
synchronized keyword, 284–285

Lossless data compression algorithms, 420
Lossy data compression algorithms, 420
Lower-bounded wildcards, 153

��������� M
Manifest file, 439
MANIFEST.MF file, 839
Maps

basic operations, 642
bulk operations, 642
comparison operations, 643
concurrent, 653
concurrent navigable, 655
entry, 645, 648
HashMap, 643
keys, values, and entries views, 646
key-value mappings, 641
LinkedHashMap, 643
Map<K,V> interface, 641
navigable maps, 652
ofEntries() methods, 649
of() method, 647–648
sorted, 650–651
usage, 643
view operations, 642
WeakHashMap class, 644

mapToInt() method, 186
Marker annotation types, 19
mark() method, 452

Lambda expression (cont.)



■ INDEX

889

Mathematical set
add elements, 601
definition, 600
difference/minus operations, 603
HashSet class, 601
implementation class, 601, 603
intersection operation, 603
LinkedHashSet class, 603
of() method, 601
Set interface, 604
union operation, 603

Member inner class, 59
Memory

allocation, 550
leak, 550
-mapped file I/O, 477
reclamation, 550

Meta-annotations types
Documented, 24–25
Inherited, 24
Repeatable, 25, 26
Retention, 23
Target, 20

Method references
constructor references, 205–208
generic method, 208
instance

bound receiver, 200–201
unbound receiver, 201–202

lambda expressions, 196
length() method, 196
static (see static method references)
syntax, 196
types, 197

Module API
annotations, 803–804
classes and interfaces, 771–772
getModule(), 773
JDK9

ClassLoader, 786–787
main(), 797–798
named module, 791–796
numbertoword.properties, 788
resource naming syntax, 791
runtime image, 798–802
Test class, 788–789
wordtonumber.properties, 788

layers (see Module layers)
ModuleDescriptor (see ModuleDescriptor 

class)
ModuleDescriptor class

exports, 774
getDescriptor(), 773
ModuleBasicInfo, 778–780
opens, 775

packages(), 777
provides, 775, 778
requires, 775–776
version(), 777

Module layers
arranging modules, 805–806
configurations, 811–813
creation

defineModules, 814
defineModulesWithManyLoaders, 814
defineModulesWithOneLoader, 814
defineModulesXxx(), 813
empty() and boot(), 813
findModule(), 815
LayerInfo, 815–817
LayerTest, 817–820

finder, 807, 809
reading contents, 809–810

Money jar, 587
Multiple threads

BalanceUpdate, 232–234
execution, 231

Multiprocessing, 224
Multitasking, 224
Multi-threaded program, 226

��������� N
Navigable map, 652–653
Navigable set, 611
New input/output (NIO)

buffers
clear() method, 459
flip() method, 457–458
hasRemaining() method, 458
primitive values, 450
properties, 451
reading data, 453, 455
read-only buffer, 460
relative vs. absolute methods, 456
reset() method, 460
rewind() method, 460
state, 454
views, 461
writing data, 454–455

byte order
big endian, 482
machine, 481
order() method, 482
setting, 483

channel
close() method, 471
FileInputStream and FileOutputStream 

classes, 472
GatheringByteChannel() method, 471



■ INDEX

890

getChannel() method, 472
InterruptibleChannel, 472
isOpen() method, 471
ReadableByteChannel() method, 471
ScatteringByteChannel() method, 471
WritableByteChannel() method, 471

channel-based, 450
character set

CharsetDecoder class, 462–463, 484
CharsetEncoder class, 462–463, 484
CoderResult class, 464
data source and sink, 465
decoding, 462, 484
encoding, 462, 484
getByteData () method, 465
input characters, 463
isUnderflow() method, 464
JVM list, 470
flush() method, 465
isOverflow() method, 464
storeByteData() method, 465

definition, 449
file channel

copying contents, 480
reading data, 473
writing data, 475

file locking, 478
lock() method, 478
release() method, 479
try-catch-finally, 479
tryLock() method, 478

memory-mapped file I/O, 477
stream-based I/O, 450

New Input/Output 2 (NIO.2)
asynchronous file I/O (see Asynchronous  

file I/O)
features, 487
file attributes (see File attributes)
file system, 488–490
file tree traversing

directory tree deletion, 514–515
enum constants, 512
FileVisitor, 511–512
getFileVisitor(), 514
postVisitDirectory(), 512
preVisitDirectory(), 512, 514
SimpleFileVisitor, 511
subdirectories and directory files, 512–513
traversing steps, 511
visitFile(), 512, 514
walkFileTree(), 514–516

java.nio.file, 487

matches(Path path), 516–517
path

absolute, 490
comparing, 493–495
components, 490–493
copy(), 501–502
delete(), 500–501
deleteIfExists(), 500
exists(), 501
file attributes, 503
file contents reading, 504–506
Files.probeContentType(Path path) 

method, 504
getFileName(), 492
getNameCount(), 491
getParent(), 491
getRoot(), 491
isAbsolute(), 492
java.nio.file package, 490
move(), 502–503
new files creation, 499–500
normalize(), 495
notExists(), 501
Path interface, 490
Path object, 490–491
relative, 490
relativize(Path p), 496
resolve(Path p), 496
SeekableByteChannel, 508, 510
separator/delimiter, 490
toAbsolutePath(), 498
toRealPath(), 498
toUri(), 498
windows-based path, 492
write(), 507–508

symbolic link, 497
watch service

close(), 534–536
context(), 532
count(), 532
creation, 533
implementation, 532
kind(), 532
pollEvents(), 534
register(), 533
reset(), 534
StandardWatchEventKinds  

class, 532–533
WatchEvent, 532, 534
WatchKey, 534

Non-blocking backpressure, 844
Non-denotable types, 159
Non-reifiable type, 162

New input/output (NIO) (cont.)



■ INDEX

891

��������� O
Object resurrection, 559–560
Object serialization

deflating/marshalling, 380
deserialization procedure, 383–385
Externalizable interface, 380–381, 385–388
ObjectOutputStream, 380
Serializable interface, 380
serialization procedure, 381–383
storing sequence of bytes, 380

onSubscribe() method, 847
Operations interface, 185
Ordered streams, 680
Ordinary deprecation, 29
Override annotation type, 39, 40

��������� P
Parallel streams, 740–742
Partitioning data, 734–735
Phantom reachable, 564
Phaser

action, 300–301
AdderTask, 301
features, 295–296
multiple AdderTask, 302–304
StartTogetherTask, 297–300

Piped I/O
creating and connecting ways, 376
logical arrangement, 375–376
producer-consumer pattern, 375
usage procedure, 377–378

Poly expression, 177
position() method, 452
PrimeChecker interface, 752, 756
PrimeChecker Service Interface, 758, 760
Prime service testing

jdojo.prime.client module, 767
declaration, 763
module graph, 764

jdojo.prime.faster module, 766
jdojo.prime module, 765
legacy mode, 767–769
Main class, PrimeChecker service, 764–765
module path, 766
--show-module-resolution command-line 

option, 767
Primitive data types

DataInputStream, 378
DataOutputStream, 378
ReadingPrimitives, 379
values and strings, 378
WritingPrimitives, 379

PrintStream class, 373–375
Priority queues, 618, 622
Probable prime checker provider, 758
Probable prime service provider, 761–763
Process control block, 224
Producer/consumer synchronization, 250, 252–253
Program counter, 223
PushbackInputStream class, 370
put() method, 454

��������� Q
QueryModule, 781–782

updating, 783–785
Queues

blocking (see Blocking queues)
blocking doubly ended, 619, 641
definition, 618
delay, 618, 634
double ended (see Double ended queues)
head and tail, 618
priority (see Priority queues)
simple (see Simple queues)
transfer, 619, 637

��������� R
Race condition, 234
Random access files, 402–404
Reactive Streams

Java API, 845–846
JDK9

Flow class, 846
NumberPrinter class, 849–851
processors, 856–859
publishers, creating, 847–848
publisher-subscriber interactions, 846–847
publishing elements, 848
SubmissionPublisher, 849
subscibers, creating, 851–856

processor, 845
publisher, 844
subscriber, 844
subscription, 844

Read-only buffers, 460
Read-only view, 659
Recursive function, 215
Recursive lambda expressions, 215–216
Referent, 567
Reflection

accessibility check
AccessibleObject class, 125
Djava.security.manager, 128
Java security manager, 127



■ INDEX

892

myjava.policy file, 128
setAccessible(true) method, 127

accessing fields, 122
arrays

arraycopy() static method, 138
array dimension, 138
ArrayList, 138
ExpandingArray, 139
getComponentType() method, 138
getLength() method, 136
isArray() method, 136
newInstance() static method, 136

behavioral intercession, 98
behavioral introspection, 98
class access modifiers, 108
class loaders

JDK8, 103–104
JDK9, 104–107

creating objects, 120
definition, 97
Executable class

constructors, 98, 118–119
getExceptionTypes() method, 115
getName() method, 115
getParameters() method, 114
getTypeParameters() method, 115
methods, 98, 116
utility class, 115

features, 99
getClassDescription() method, 111
getDeclaredField() method, 112
getFields() method, 112
getInterfaces() method, 111
getModifiers() method, 111, 115
getSimpleName() method, 111
getSuperclass() method, 111, 113
GUI tools, 140
intercession, 97–98
interface IConstants, 112
introspection, 97
invoke methods, 121
java.lang.Class class, 98

Bulb class, 101
byte code, 99
class literal, 99
class loader, 99
forName() static method, 100
getClass() method, 100
Testing class, 101–103

MyClass class, 111
person class, 107
reification, 98
structural intercession, 97
structural introspection, 97

Reifiable type, 162
Reification, 162
Removal warnings, 29
Repeatable annotation type, 25, 26
reset() method, 452
Retention annotation type, 23
Root directories, on machine, 347
Run Length Encoding (RLE), 420

��������� S
Sequence, See List
Serializing transient fields, 389
serialPersistentFields, 392
Serial version unique ID (SUID), 393
Service consumer, 748
Service interface, 752

com.jdojo.impl.PrimeCheckerFactory, 751
com.jdojo.prime.PrimeChecker, 767–768
load() method, 752
PrimeChecker, 760
provides statement, 750
service providers, 747
uses statement, 750

ServiceLoader class, 748, 750–751
Service provider, 748

default prime service provider, 758–760
FasterPrimeChecker class, 755
faster prime service provider, 760–761
filters, 753
get() method, 755
interface, 747
iterator() method, 753, 754
jdojo.prime module, 758
PrimeChecker, 752, 754, 758
probable prime checker provider, 758
probable prime service provider, 761–763
provider() method, 755
provides statement, 759
ServiceLoader class, 753–754
ServiceProvider.Provider<S> interface, 753
stream() method, 754
type() method, 755
uses statement, 749

Services
definition, 747, 756
discovered and loaded, 749–750
implementations, 751
jdojo.prime module, 757
PrimeChecker interface, 756
ServiceLoader class, 749
service provider, 747

setAccessible(true) method, 127
setName() method, 121
Shared file locking, 478

Reflection (cont.)



■ INDEX

893

Shorthand annotation syntax, 17
Simple queues

bounded queue, 619
definition, 618
FIFO queue, 619–622
head and tail, 619
LIFO queue, 622
operations, 619
unbounded queue, 619

Singleton collections, 662–663
sleep() method, 255–256
Softly reachable, 564
Soft reference, 570–572
Sorted map, 650–651
Sorted set

Comparator, 605, 607
custom sorting, 608
definition, 605
natural ordering, 606
null element, 610
Person class, 606
subsets, 609
TreeSet class, 606

Spin-wait hints, 277–278
Stack, 861
StackTraceElement class, 866–867
StackWalkerPermissionCheck class, 877
Stack walking

definition, 862
drawbacks, 865
JDK8

LegacyStackWalk, 863–865
StackTraceElement class, 863
Throwable and Thread classes, 863
toString() method, 865

JDK9
caller’s class, 874
forEach() method, 869–870
options, 866
StackWalker class, 866, 868
StackWalker.StackFrame interface, 867–868
stack-walking permissions, 877
traverse stack frames, current thread, 871
walk() method, 869–870

Standalone expression, 176
Standard annotation types

deprecating APIs
Box class, 31
BoxTest class, 31–34
@deprecated Javadoc tag, 27
dynamic analysis, 38
FileCopier utility class, 27, 28
import statements, 38
java.lang.Deprecated annotation type, 27
JDK9, 28–30

static analysis, 35–37
suppressing deprication warnings, 30
-Xlint, 34, 35

@FunctionalInterface, 40
@Override, 39, 40
@SuppressWarnings, 38

startsWith() method, 494
static context, 91
static member class, 68
static method references

Integer class, 197
Integer::sum, 198
Integer.valueOf(), 199
Person class, 199
toBinaryString() method, 197–198

static wrap() method, 451
Streams, 843–844

API architecture, 680–681
collect(), 721
Collection, 682
collectors, 675
creation

arrays, 694
chars(), 697
collection, 695
empty stream, 689
file I/O, 695–696
generate(), 693
iterate(), 689–693
from values, 686–688

definition, 675
filter(), 682
filter operation, 710–712
finding and matching, 739
flattening streams, 708–709
forEach operation, 705–706
IllegalStateException, 680
imperative vs. functional programming, 678
infinite streams, 676
interface, 592
intermediate/lazy operations, 678–680
internal vs. external iteration, 676–677
IntStream, 683
map(), 682
map operation, 706–707
operations, 703–704
optional value

isPresent(), 698
NullPointerException, 698
OptionalDouble, 699
OptionalInt, 699
OptionalLong, 699
program, 700–701

ordered streams, 680
parallel, 740–742



■ INDEX

894

Person class, 683–686
reduce operation

accumulator, 713–717
collect(), 713
compile-time error, 715
count(), 720
default value, 718
definition, 713
DoubleStream, 719–720
imperative programming  

style, 714
map-reduce operation, 715
mapToDouble(), 719
maximum integer value, 718
parallel stream, 717
pictorial view, 713
seed, 713
sum variable, 714

store elements, 676
stream pipeline debugging, 704
sum(), 683
terminal/eager operations, 678–680

StreamTokenizer, 412, 414–415
StringTokenizer, 412, 414
Strongly reachable, 564
Supertype instance method references

getPrice() method, 203
Item class, 203–204
test() method, 205

SuppressWarnings annotation  
type, 38

Synchronizers
barriers, 292–295
exchangers, 306–310
latches, 304–306
phaser (see Phaser)
semaphores, 289–291

Synthetic method, 89

��������� T
Tarball, 420
Target annotation type, 20
Target type, 177
Tape Archive, 420
Terminal deprecation, 29
testAdder() method, 180
testJoiner() method, 181
test() method, 205
thenComparing() method, 217
Thread

atomic variables, 280–283
concurrency packages, 280

daemon, 264–265
definition, 225
execution, 254–255
executor framework (see Executor)
explicit locks (see lock() methods)
fork/join (see Fork/join framework)
interrupt, 266–268, 270
Java, 226–228
JMM (see Java Memory Model (JMM))
join(), 256–258
method reference, 230
multiple (see Multiple threads)
notify() or notifyAll() method, 247
object’s monitor, 237–250
PrinterThread, 230
priority, 263
producer/consumer synchronization  

(see Producer/consumer 
synchronization)

program counter and stack, 225
Runnable interface, 229
sleep() (see sleep() method)
spin-wait hints, 277–278
stack size, 333
static yield(), 259
stop, suspend and resume, 273–277
synchronizers (see Synchronizers)
Thread class, 229
ThreadGroup, 270–271
ThreadLocal

CallTracker, 331–332
initialValue(), 332
methods, 330
withInitial(), 333

ThreadState class, 261–262
timed-waiting state, 260
uncaughtException(), 279
volatile variables, 271–273

Thread-local storage (TLS), 225
Thread synchronization

CriticalSection2 class, 239–240
monitorBalance(), 237, 249–250
MultiLocks class, 241
multiple threads, 243
objectRef, 246–248
synchronized instance  

method, 238
synchronized static method, 239
updateBalance(), 237, 249–250
wait(), 245–246

toBinaryString() method, 198
toMap() method, 727–729
toStackTraceElement() method, 868
Transfer queues, 619, 637

Streams (cont.)



■ INDEX

895

Traversing collections
for-each loop, 598
forEach() method, 599
iterator, 595

��������� U
Unbounded queue, 619
Unbounded wildcards,  

149–151
Unbound receiver, 201
uncaughtException() method, 279
Unmodifiable view, See Read-only view
Upper-bounded wildcards, 152

��������� V
Varargs methods, 163
VersionTest class, 6, 7
Volatile variables, 271–273

��������� W, X
walk() method, 870
WeakHashMap class, 576
Weakly reachable, 564
Wildcards

lower-bounded, 153
unbounded, 149–151
upper-bounded, 152

��������� Y
yield() method, 259

��������� Z
ZipEntry class, 427
ZipFile class, 433
ZIP file format, 420, 427
ZipInputStream class, 427


	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Annotations
	What Are Annotations?
	Declaring an Annotation Type
	Restrictions on Annotation Types
	Restriction #1
	Restriction #2
	Restriction #3
	Restriction #4
	Restriction #5
	Restriction #6

	Default Value of an Annotation Element
	Annotation Type and Its Instances
	Using Annotations
	Primitive Types
	String Types
	Class Types
	Enum Type
	Annotation Type
	Array Type Annotation Element

	No Null Value in an Annotation
	Shorthand Annotation Syntax
	Marker Annotation Types
	Meta-Annotation Types
	The Target Annotation Type
	The Retention Annotation Type
	The Inherited Annotation Type
	The Documented Annotation Type
	The Repeatable Annotation Type

	Commonly Used Standard Annotations
	Deprecating APIs
	How to Deprecate an API
	Enhancements to the Deprecated Annotation in JDK9
	Suppressing Deprecation Warnings
	An Example
	static Analysis of Deprecated APIs
	Dynamic Analysis of Deprecated APIs
	No Deprecation Warnings on Imports

	Suppressing Named Compile-Time Warnings
	Overriding Methods
	Declaring Functional Interfaces

	Annotating Packages
	Annotating Modules
	Accessing Annotations at Runtime
	Evolving Annotation Types
	Annotation Processing at Source Code Level
	Summary

	Chapter 2: Inner Classes
	What Is an Inner Class?
	Advantages of Using Inner Classes
	Types of Inner Classes
	Member Inner Class
	Local Inner Class
	Anonymous Inner Class

	A static Member Class Is Not an Inner Class
	Creating Objects of Inner Classes
	Accessing Enclosing Class Members
	Restrictions on Accessing Local Variables
	Inner Class and Inheritance
	No static Members in an Inner Class
	Generated Class Files for Inner Classes
	Inner Classes and the Compiler Magic
	Closures and Callbacks
	Defining Inner Classes in static Contexts
	Summary

	Chapter 3: Reflection
	What Is Reflection?
	Reflection in Java
	Loading a Class
	Using Class Literals
	Using the Object::getClass() Method
	Using the Class::forName() Method

	Class Loaders
	Class Loaders in JDK8
	Class Loaders in JDK9

	Reflecting on Classes
	Reflecting on Fields
	Reflecting on Executables
	Reflecting on Methods
	Reflecting on Constructors

	Creating Objects
	Invoking Methods
	Accessing Fields
	Deep Reflection
	Deep Reflection Within a Module
	Deep Reflection Across Modules
	Deep Reflection and Unnamed Modules
	Deep Reflection on JDK Modules

	Reflecting on Arrays
	Expanding an Array
	Who Should Use Reflection?
	Summary

	Chapter 4: Generics
	What Are Generics?
	Supertype-Subtype Relationship
	Raw Types
	Unbounded Wildcards
	Upper-Bounded Wildcards
	Lower-Bounded Wildcards
	Generic Methods and Constructors
	Type Inference in Generic Object Creation
	No Generic Exception Classes
	No Generic Anonymous Classes
	Generics and Arrays
	Runtime Class Type of Generic Objects
	Heap Pollution
	Varargs Methods and Heap Pollution Warnings
	Summary

	Chapter 5: Lambda Expressions
	What Is a Lambda Expression?
	Why Do We Need Lambda Expressions?
	Syntax for Lambda Expressions
	Omitting Parameter Types
	Declaring a Single Parameter
	Declaring No Parameters
	Parameters with Modifiers
	Declaring Body of Lambda Expressions

	Target Typing
	Functional Interfaces
	Using the @FunctionalInterface Annotation
	Generic Functional Interface
	Intersection Type and Lambda Expressions
	Commonly Used Functional Interfaces
	Using the Function<T,R> Interface
	Using the Predicate<T> Interface
	Using Functional Interfaces

	Method References
	static Method References
	Instance Method References
	Bound Receiver
	Unbound Receiver

	Supertype Instance Method References
	Constructor References
	Generic Method References

	Lexical Scoping
	Variable Capture
	Jumps and Exits
	Recursive Lambda Expressions
	Comparing Objects
	Summary

	Chapter 6: Threads
	What Is a Thread?
	Creating Threads in Java
	Specifying Your Code for a Thread
	Inheriting Your Class from the Thread Class
	Implementing the Runnable Interface
	Using a Method Reference
	A Quick Example

	Using Multiple Threads in a Program
	Issues in Using Multiple Threads
	Java Memory Model
	Atomicity
	Visibility
	Ordering

	Object’s Monitor and Threads Synchronization
	Rule #1
	Rule #2

	The Producer/Consumer Synchronization Problem
	Which Thread Is Executing?
	Letting a Thread Sleep
	I Will Join You in Heaven
	Be Considerate to Others and Yield
	Lifecycle of a Thread
	Priority of a Thread
	Is It a Demon or a Daemon?
	Am I Interrupted?
	Threads Work in a Group
	Volatile Variables
	Stopping, Suspending, and Resuming Threads 
	Spin-Wait Hints
	Handling an Uncaught Exception in a Thread
	Thread Concurrency Packages
	Atomic Variables
	Scalar Atomic Variable Classes
	Atomic Arrays Classes
	Atomic Field Updater Classes
	Atomic Compound Variable Classes

	Explicit Locks
	Synchronizers
	Semaphores
	Barriers
	Phasers
	Latches
	Exchangers

	The Executor Framework
	Result-Bearing Tasks
	Scheduling a Task
	Handling Uncaught Exceptions in a Task Execution
	Executor’s Completion Service

	The Fork/Join Framework
	Steps in Using the Fork/Join Framework
	Step 1: Declaring a Class to Represent a Task
	Step 2: Implementing the compute() Method
	Step 3: Creating a Fork/Join Thread Pool
	Step 4: Creating the Fork/Join Task
	Step 5: Submitting the Task to the Fork/Join Pool for Execution

	A Fork/Join Example

	Thread-Local Variables
	Setting Stack Size of a Thread
	Summary

	Chapter 7: Input/Output
	What Is Input/Output?
	Working with Files
	Creating a File Object
	Knowing the Current Working Directory
	Checking for a File’s Existence
	Which Path Do You Want to Go?
	Creating, Deleting, and Renaming Files
	Working with File Attributes
	Copying a File
	Knowing the Size of a File
	Listing Directories and Files

	The Decorator Pattern
	Input/Output Streams
	Reading from a File Using an Input Stream
	Identifying the Data Source
	Creating the Input Stream
	Reading the Data
	Closing the Input Stream
	A Utility Class
	Completing the Example

	Writing Data to a File Using an Output Stream
	Identifying the Data Sink
	Creating the Output Stream
	Writing the Data
	Flushing the Output Stream
	Closing the Output Stream
	Completing the Example


	Input Stream Meets the Decorator Pattern
	BufferedInputStream
	PushbackInputStream

	Output Stream Meets the Decorator Pattern
	PrintStream

	Using Pipes
	Reading and Writing Primitive Data Types
	Object Serialization
	Serializing Objects
	Deserializing Objects
	Externalizable Object Serialization

	Serializing transient Fields
	Advanced Object Serialization
	Writing an Object Multiple Times to a Stream
	Class Evolution and Object Serialization
	Stopping Serialization

	Readers and Writers
	Custom Input/Output Streams
	Random Access Files
	Copying the Contents of a File
	Standard Input/Output/Error Streams
	Console and Scanner Classes
	StringTokenizer and StreamTokenizer
	Summary

	Chapter 8: Working with Archive Files
	What Is an Archive File?
	Data Compression
	Checksum
	Compressing Byte Arrays
	Working with ZIP File Format
	Creating ZIP Files
	Reading the Contents of ZIP Files

	Working with the GZIP File Format
	Working with the JAR File Format
	Creating a JAR File
	Updating a JAR File
	Indexing a JAR File
	Extracting an Entry from a JAR File
	Listing the Contents of a JAR File
	The Manifest File
	Sealing a Package in a JAR File

	Using the JAR API
	Accessing Resources from a JAR File
	Summary

	Chapter 9: New Input/Output
	What Is NIO?
	Buffers
	Reading from and Writing to a Buffer
	Read-Only Buffers
	Different Views of a Buffer
	Character Set
	Channels
	Reading/Writing Files
	Memory-Mapped File I/O
	File Locking
	Copying the Contents of a File
	Knowing the Byte Order of a Machine
	Byte Buffer and Its Byte Order
	Summary

	Chapter 10: New Input/Output 2
	What Is New Input/Output 2?
	Working with a File System
	Working with Paths
	Creating a Path Object
	Accessing Components of a Path
	Comparing Paths
	Normalizing, Resolving, and Relativizing Paths
	Symbolic Links
	Different Forms of a Path

	Performing File Operations on a Path
	Creating New Files
	Deleting Files
	Checking for Existence of a File
	Copying and Moving Files
	Commonly Used File Attributes
	Probing the Content Type of a File
	Reading the Contents of a File
	Writing to a File
	Random Access to a File

	Traversing a File Tree
	Matching Paths
	Managing File Attributes
	Checking for a File Attribute View Support
	Reading and Updating File Attributes
	Managing the Owner of a File
	Managing ACL File Permissions
	Managing POSIX File Permissions

	Watching a Directory for Modifications
	Creating a Watch Service
	Registering the Directory with the Watch Service
	Retrieving a WatchKey from the Watch Service Queue
	Processing the Events
	Resetting the WatchKey after Processing Events
	Closing the Watch Service

	Asynchronous File I/O
	Summary

	Chapter 11: Garbage Collection
	What Is Garbage Collection?
	Memory Allocation in Java
	Garbage Collection in Java
	Invoking the Garbage Collector
	Object Finalization
	Finally or Finalize?
	Object Resurrection
	State of an Object
	Weak References
	Accessing and Clearing a Referent’s Reference
	Using the SoftReference Class
	Using the ReferenceQueue Class
	Using the WeakReference Class
	Using the PhantomReference Class
	Using the Cleaner Class
	Summary

	Chapter 12: Collections
	What Is a Collection?
	Need for a Collection Framework
	Architecture of the Collection Framework
	The Collection<E> Interface
	Methods for Basic Operations
	Methods for Bulk Operations
	Methods for Aggregate Operations
	Methods for Array Operations
	Methods for Comparison Operations

	A Quick Example
	Traversing Elements in Collections
	Using an Iterator
	Using a for-each Loop
	Using the forEach() Method

	Using Different Types of Collections
	Working with Sets
	Mathematical Set
	Sorted Set
	Navigable Set

	Working with Lists
	Working with Queues
	Simple Queues
	Priority Queues
	Double Ended Queues
	Blocking Queues
	Delay Queues
	Transfer Queues
	Blocking Doubly Ended Queues

	Working with Maps
	Sorted Maps
	Navigable Maps
	Concurrent Maps
	Concurrent and Navigable Maps


	Applying Algorithms to Collections
	Sorting a List
	Searching a List
	Shuffling, Reversing, Swapping, and Rotating a List

	Creating Different Views of a Collection
	Read-Only Views of Collections
	Synchronized View of a Collection
	Checked Collections 

	Creating Empty Collections
	Creating Singleton Collections
	Understanding Hash-Based Collections
	Summary

	Chapter 13: Streams
	What Are Streams?
	Streams Have No Storage
	Infinite Streams
	Internal Iteration vs. External Iteration
	Imperative vs. Functional
	Stream Operations
	Ordered Streams
	Streams Are Not Reusable
	Architecture of the Streams API

	A Quick Example
	Creating Streams
	Streams from Values
	Empty Streams
	Streams from Functions
	Using the Stream.iterate() Method
	Using the generate() Method

	Streams from Arrays
	Streams from Collections
	Streams from Files
	Streams from Other Sources

	Representing an Optional Value
	Applying Operations to Streams
	Debugging a Stream Pipeline
	Applying the ForEach Operation
	Applying the Map Operation
	Flattening Streams
	Applying the Filter Operation
	Applying the Reduce Operation

	Collecting Data Using Collectors
	Collecting Summary Statistics
	Collecting Data in Maps
	Joining Strings Using Collectors
	Grouping Data
	Partitioning Data
	Adapting the Collector Results
	Finding and Matching in Streams
	Parallel Streams
	Summary

	Chapter 14: Implementing Services
	What Is a Service?
	Discovering Services
	Providing Service Implementations
	Defining the Service Interface
	Obtaining Service Provider Instances
	Defining the Service
	Defining Service Providers
	Defining a Default Prime Service Provider
	Defining a Faster Prime Service Provider
	Defining a Probable Prime Service Provider

	Testing the Prime Service
	Testing Prime Service in Legacy Mode
	Summary

	Chapter 15: The Module API
	What Is the Module API?
	Representing Modules
	Describing Modules
	Representing Module Statements
	Representing the exports Statement
	Representing the opens Statement
	Representing the provides Statement
	Representing the requires Statement

	Representing a Module Version
	Other Properties of Modules
	Knowing Module Basic Info

	Querying Modules
	Updating Modules
	Accessing Module Resources
	Accessing Resources Before JDK9
	Accessing Resources in JDK9
	Resource Naming Syntax
	Rules to Find Resources
	Accessing Resources in the Runtime Image


	Annotation on Modules
	Working with Module Layers
	Finding Modules
	Reading Module Contents
	Creating Configurations
	Creating Module Layers

	Summary

	Chapter 16: Breaking Module Encapsulation
	What Is Breaking Module Encapsulation?
	Command-Line Options
	The --add-exports Option
	The --add-opens Option
	The --add-reads Option
	The --illegal-access Option

	An Example
	Using Manifest Attributes of a JAR
	Summary

	Chapter 17: Reactive Streams
	What Is a Stream?
	What Are Reactive Streams?
	The Reactive Streams API in JDK9
	Publisher-Subscriber Interactions
	Creating Publishers
	Publishing Items
	A Quick Example
	Creating Subscribers
	Using Processors

	Summary

	Chapter 18: Stack Walking
	What Is a Stack?
	What Is Stack Walking?
	Stack Walking in JDK8
	Drawbacks in Stack Walking
	Stack Walking in JDK9
	Specifying Stack-Walking Options
	Representing a Stack Frame
	Obtaining a StackWalker Class
	Walking the Stack
	Knowing the Caller’s Class
	Stack-Walking Permissions

	Summary

	Index



