
JavaFX 9
by Example

Rich-client applications for any platform
—
Third Edition
—
Carl Dea
Gerrit Grunwald
José Pereda, Ph.D
Sean Phillips
Mark Heckler

www.allitebooks.com

http://www.allitebooks.org

JavaFX 9 by Example
Third Edition

Carl Dea

Gerrit Grunwald

José Pereda, Ph.D

Sean Phillips

Mark Heckler

www.allitebooks.com

http://www.allitebooks.org

JavaFX 9 by Example

Carl Dea Gerrit Grunwald
Pasadena, Maryland, USA Münster, Nordrhein-Westfalen, Germany

José Pereda, Ph.D Sean Phillips
Arroyo de la Encomienda, Spain Bowie, Maryland, USA

Mark Heckler
Godfrey, Illinois, USA

ISBN-13 (pbk): 978-1-4842-1960-7 ISBN-13 (electronic): 978-1-4842-1961-4
DOI 10.1007/978-1-4842-1961-4

Library of Congress Control Number: 2017952397

Copyright © 2017 by Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Brian Molt
Coordinating Editor: Jill Balzano
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484219607. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484219607
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents at a Glance

About the Authors ���xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■Chapter 1: Getting Started ��� 1

 ■Chapter 2: JavaFX and Jigsaw �� 47

 ■Chapter 3: JavaFX Fundamentals �� 69

 ■Chapter 4: Lambdas and Properties �� 103

 ■Chapter 5: Layouts and Scene Builder ��� 135

 ■Chapter 6: User Interface Controls �� 171

 ■Chapter 7: Graphics ��� 227

 ■Chapter 8: JavaFX Printing �� 265

 ■Chapter 9: Media and JavaFX �� 283

 ■Chapter 10: JavaFX on the Web ��� 327

 ■Chapter 11: JavaFX 3D �� 367

 ■Chapter 12: JavaFX and Arduino ��� 391

 ■Chapter 13: JavaFX on Mobile ��� 431

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a GlanCe

iv

 ■Chapter 14: JavaFX and Gestures �� 467

 ■Chapter 15: Custom UIs ��� 491

 ■Chapter 16: Appendix A: References ��� 525

Index ��� 551

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Authors ���xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■Chapter 1: Getting Started ��� 1

Downloading Required Software �� 1

Installing the Java 9 Development Kit �� 3

Installing the JDK on Microsoft Windows ��� 3

Installing the JDK on MacOS X ��� 7

Installing the JDK on Linux ��� 11

Setting Environment Variables ��� 14

Setup Windows Environment Variables �� 16

Setting Up MacOS X/Linux Environment Variables ��� 19

Installing Gradle ��� 22

Installing the NetBeans IDE �� 23

Creating a JavaFX HelloWorld Application �� 29

Using the NetBeans IDE �� 30

Using an Editor and the Terminal (the Command-Line Prompt) ��� 34

Using Gradle on the Command-Line Prompt ��� 38

Walking Through the HelloWorld Source Code ��� 41

JavaFX Scene Graph ��� 42

JavaFX Node ��� 42

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Packaging a JavaFX Application ��� 43

Downloading the Book’s Source Code�� 44

Summary �� 45

 ■Chapter 2: JavaFX and Jigsaw �� 47

What Is Project Jigsaw? ��� 48

Benefits �� 48

Drawbacks �� 49

Java 9 Migration Path ��� 49

History �� 52

JAR Hell �� 52

OSGi �� 53

Maven/Gradle ��� 54

Getting Started ��� 55

What Is the Module Path? ��� 56

Module Definition ��� 57

Module Types �� 58

An Example HelloWorld JavaFX 9 Modular Application �� 63

Create Project Structure ��� 63

Create a Module Definition ��� 63

Create Main Application Code ��� 64

Compile Code (Module) ��� 65

Copy Resources �� 65

Run Application ��� 66

Package Application as JAR ��� 66

Run Application as JAR ��� 67

Display Module Description �� 67

Summary �� 68

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

 ■Chapter 3: JavaFX Fundamentals �� 69

JavaFX Lines �� 69

Drawing Lines �� 74

Drawing Shapes ��� 78

Drawing Complex Shapes �� 79

A Complex Shape Example ��� 79

The Cubic Curve ��� 83

The Ice Cream Cone �� 84

The Smile �� 86

The Donut ��� 86

Painting Colors ��� 88

An Example of Color ��� 88

Gradient Color ��� 92

Stop Color ��� 92

Linear Gradient ��� 92

Radial Gradient ��� 93

Semitransparent Gradients ��� 94

Reflective Cycle Gradients �� 94

Drawing Text ��� 95

Changing Text Fonts ��� 97

Applying Text Effects �� 100

Summary �� 101

 ■Chapter 4: Lambdas and Properties �� 103

Lambda �� 103

Lambda Expressions ��� 104

Functional Interfaces �� 107

Aggregate Operations ��� 108

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Default Methods ��� 111

An Example Case: Cats Large and Small �� 111

Code for the Example ��� 112

Explanation of the Code �� 116

Properties and Binding ��� 117

UI Patterns �� 117

Properties ��� 117

Types of JavaFX Properties ��� 118

JavaFX JavaBean �� 120

Property Change Support ��� 121

Binding ��� 122

Bidirectional Binding �� 123

High-Level Binding ��� 123

Low-Level Binding �� 124

A Logon Dialog Example ��� 124

Login Dialog Source Code ��� 126

Explanation of the Code �� 130

Summary �� 134

 ■Chapter 5: Layouts and Scene Builder ��� 135

Layouts ��� 135

HBox ��� 136

VBox �� 140

FlowPane �� 144

BorderPane ��� 144

GridPane ��� 145

Scene Builder ��� 150

Download and Installing Scene Builder �� 151

Launching Scene Builder �� 151

A Code Walkthrough ��� 169

Summary �� 170

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

 ■Chapter 6: User Interface Controls �� 171

Labels ��� 171

Custom Fonts �� 173

Fonts as Icons ��� 174

Example: Working with Third-Party Font Packs as Icons �� 174

How It Works ��� 181

Buttons ��� 185

Button ��� 185

Check Box ��� 186

Hyperlink �� 187

Radio Button ��� 187

Example: Button Fun ��� 189

Button Fun Instructions �� 189

Source Code of ButtonFun�java �� 190

How It Works ��� 196

Menus��� 198

Creating Menus and Menu Items �� 198

Invoking a Selected MenuItem ��� 199

Example: Working with Menus ��� 200

How It Works ��� 202

Additional Ways to Select Menus and Menu Items ��� 203

The ObservableList Collection Class �� 204

Working with ListViews �� 204

Example: Hero Picker �� 205

How It Works ��� 208

Working with TableViews ��� 209

What Is a Cell Factory? ��� 209

Making Table Cells Editable �� 210

Example: Bosses and Employees Working with Tables �� 212

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Generating a Background Process ��� 221

Creating a Background Task ��� 221

Example: File Copy Progress Dialog (BackgroundProcesses) ��� 222

How It Works ��� 225

Summary �� 226

 ■Chapter 7: Graphics ��� 227

Working with Images�� 227

Loading Images �� 228

Displaying Images �� 230

A Photo Viewer Example��� 231

Features/Instructions �� 231

UML: Class Diagram�� 233

File Descriptions ��� 234

Source Code ��� 235

Animation ��� 255

What Are Key Values? ��� 255

What Are Keyframes? ��� 255

What Is a Timeline? �� 256

JavaFX Transition Classes �� 256

Point-and-Click Game Example �� 257

Source Code ��� 257

How It Works ��� 261

Compound Transitions �� 261

PhotoViewer2 Example��� 262

Summary �� 264

 ■Chapter 8: JavaFX Printing �� 265

JavaFX Printing �� 265

JavaFX Print APIs �� 268

■ Contents

xi

Printer and PrinterJob �� 268

Query Printer Attributes �� 270

Configuring a Print Job ��� 272

Printing a Web Page ��� 274

Example WebDocPrinter Application �� 275

Source Code ��� 277

How Does It Work? ��� 281

Summary �� 282

 ■Chapter 9: Media and JavaFX �� 283

Media Events �� 283

Playing Audio �� 285

An MP3 Player Example �� 285

MP3 Audio Player Source Code �� 287

How It Works ��� 301

Playing Video �� 314

MPEG-4 ��� 314

VP6 �flv �� 314

A Video Player Example �� 315

Video Player Source Code ��� 316

How It Works ��� 320

Simulating Closed Captioning: Marking a Position in a Video Media ��������������������������� 323

Closed Captioning Video Example �� 323

How It Works ��� 325

Summary �� 325

 ■Chapter 10: JavaFX on the Web ��� 327

JavaFX Web and HTTP2 APIs �� 328

Web Engine �� 330

WebEngine’s load() Method �� 330

WebEngine’s loadContent() Method �� 331

■ Contents

xii

HTML DOM Content �� 331

Obtaining an org�w3c�dom�Document (DOM) Object �� 331

Using Raw XML Content as a String ��� 332

The JavaScript Bridge �� 332

Communicating from Java to JavaScript �� 333

Communicating from JavaScript to Java �� 333

Java 9 Module jdk�incubator�httpclient ��� 335

Making RESTful Requests��� 339

The HTTP GET Request ��� 340

HTTP POST Request �� 341

WebSockets �� 342

Viewing HTML5 Content (WebView) �� 345

Example: An HTML5 Analog Clock �� 345

Analog Clock Source Code �� 346

How It Works ��� 349

Inkscape and SVG ��� 349

WebEvents �� 350

Weather Widget Example �� 351

One-Liner: Reading an Input Stream into a String �� 353

Source Code ��� 354

How It Works ��� 363

Enhancements �� 364

Summary �� 365

 ■Chapter 11: JavaFX 3D �� 367

Basic 3D Scenes in JavaFX �� 367

A Very Basic 3D Scene Example ��� 367

Primitives ��� 369

Adding a Primitive Example ��� 369

Simple Translate and Rotate Example �� 371

Multiple Primitive Transformation Example �� 372

All Together Now: Grouped Primitives �� 373

■ Contents

xiii

Interacting with Your Scene ��� 374

Primitive Picking for Primitives �� 375

First Person Movement Using the Keyboard ��� 376

First Person Camera Movement Using the Mouse �� 377

Beyond the Basics �� 379

Custom 3D Objects Using the TriangleMesh Class ��� 380

“Winding” and Wuthering ��� 380

MeshViews and DrawMode �� 383

Roll Camera! ��� 388

Hit the Lights �� 389

Summary �� 390

 ■Chapter 12: JavaFX and Arduino ��� 391

The Arduino Board �� 391

Programming the Arduino �� 393

Arduino Web Editor ��� 394

Arduino IDE ��� 396

Windows ��� 396

MacOS X or Linux ��� 398

Running the IDE �� 398

The Blink Example �� 400

Orientation Visualizer Example ��� 401

How It Works ��� 406

Serial Reading �� 406

Java Simple Serial Connector ��� 406

JavaFX, the Charting API, and Orientation �� 406

Creating the Module Project ��� 407

Serial Communications ��� 409

How It Works ��� 412

Testing Serial Comms ��� 414

The JavaFX Charts API �� 414

Building and Running the Project ��� 420

■ Contents

xiv

How It Works ��� 421

Adding More Functionality �� 425

Building and Running the Project ��� 427

How It Works ��� 428

More Examples ��� 430

Summary �� 430

 ■Chapter 13: JavaFX on Mobile ��� 431

JavaFXPorts: The Port to Mobile ��� 431

JavaFXPorts Under the Hood �� 431

Getting Started with JavaFXPorts ��� 432

Hello Mobile World Example ��� 433

How Does It Work? ��� 435

Submitting the App to the Stores �� 437

Gluon Mobile �� 438

The Gluon IDE Plug-Ins ��� 438

Charm Glisten ��� 439

License ��� 441

Example: The BasketStats App ��� 441

Creating the Project �� 441

Adding the Model �� 447

Adding the Service ��� 450

Modifying the Main View �� 453

Modifying the Board View ��� 457

Deploy to Mobile ��� 464

More Examples ��� 465

Summary �� 465

 ■Chapter 14: JavaFX and Gestures �� 467

Recognizing Gestures in Your Application �� 467

Example: Animating Shapes Along a Path Using Touch Events ������������������������������������ 469

How Does It Work? ��� 472

■ Contents

xv

Touching, Rotating, and Zooming in 3D �� 473

The Leap Motion Controller �� 476

How It Works ��� 477

Getting Started with the Leap SDK ��� 478

Adding the Leap SDK to a JavaFX Project �� 479

The Hands Tracking Example �� 479

The LeapListener Class��� 480

The 3D Model Classes �� 483

The Application Class ��� 485

Building and Running the Project ��� 487

More Examples ��� 489

Summary �� 489

 ■Chapter 15: Custom UIs ��� 491

Theming ��� 491

Native Look and Feels �� 493

Web and Mobile Look and Feels ��� 495

Applying the JavaFX CSS Theme �� 497

An Example of Switching Themes �� 500

JavaFX CSS Styling �� 505

What Are Selectors? ��� 506

How to Define -fx- Based Styling Properties (Rules) �� 511

Obeying the JavaFX CSS Rules ��� 512

Custom Controls ��� 513

The LED Custom Control ��� 514

Structure of the LED Custom Control Example Code �� 515

The Properties of the LED Control ��� 516

The Initialization Code of the LED Control��� 519

Other Ways to Create a Custom Control�� 523

Summary �� 523

■ Contents

xvi

 ■Chapter 16: Appendix A: References ��� 525

Java 9 SDK ��� 525

Java 9 API Documentation �� 525

Java 9 Features �� 525

Java 9 Jigsaw �� 526

IDEs �� 526

Deploying Applications ��� 526

JavaFX 2D Shapes �� 527

JavaFX Color ��� 527

JavaFX 2�x Builder Classes �� 527

JavaFX Printing �� 527

Project Lambda �� 528

Nashorn �� 529

Properties and Bindings ��� 529

Layouts ��� 530

JavaFX Tools ��� 530

Enterprise GUI Frameworks �� 531

Domain-Specific Languages �� 532

Custom UIs ��� 532

Operating System Style Guidelines �� 535

JavaFX Media ��� 535

JavaFX on the Web ��� 536

JavaFX 3D �� 537

JavaFX Gaming ��� 538

Java IoT and JavaFX Embedded ��� 539

Software and Device Manufacturers �� 540

JavaFX Communities �� 540

■ Contents

xvii

Applications �� 541

Java/JavaFX Books and Magazines ��� 543

Author Blogs ��� 544

Tutorials, Courses, Consulting Firms, and Demos �� 544

Tools, Applications, and Libraries ��� 545

Videos and Presentations on JavaFX ��� 547

Index ��� 551

xix

About the Authors

Carl Dea is a principal software engineer. He has been developing
software for over 20 years, for many clients from Fortune 500 companies
to nonprofit organizations. He has written software ranging from mission-
critical applications to ecommerce-based Web applications. His passion
for software development started when his middle school science teacher
showed him a TRS-80 computer. Carl has been using Java since the very
beginning, and he has been a huge JavaFX enthusiast since the early
days, when it was its own language called JavaFX script. His current
software development interests are UI/UX, game programming, data
visualizations, embedded systems, smartphones, AI, and robotics. When
Carl is not working, he and his wife enjoy canoeing and day trips to the
beach. Carl and his wife are proud parents of their younger daughter who
attends Salisbury University. Carl and his wife are also proud of their

older daughter, who is a high school teacher in Anne Arundel County Maryland. Carl loves to code socially
at http://github.com/carldea. He blogs at http://carlfx.wordpress.com/. Carl is also connected
to LinkedIn at http://www.linkedin.com/in/carldea, and his Twitter handle is @carldea. Carl lives in
Pasadena, Maryland, USA.

Gerrit Grunwald is a software engineer with more than 10 years
of experience in software development. He has been involved in
development of Java desktop applications and controls. His current
interests include JavaFX, HTML5, and Swing, especially development
of custom controls in these technologies. Gerrit is also interested in
Java-driven embedded technologies like JavaSE Embedded on Raspberry
Pi, i.MX6, BeagleBone Black, CubieBoard2, and similar devices. He is a
true believer in open source software and has participated in popular
projects like JFXtras.org as well as his own projects (Enzo, SteelSeries
Swing, and SteelSeries Canvas). Gerrit is an active member of the Java
community, where he founded and leads the Java User Group Münster
(Germany), co-leads the JavaFX and IoT community at Oracle, and is a
JavaOne RockStar and Java Champion. He is also a speaker at conferences
and user groups internationally.

http://github.com/carldea
http://carlfx.wordpress.com/
http://www.linkedin.com/in/carldea

■ about the authors

xx

José Pereda, Ph.D in Structural Engineering, works as a software engineer
at Gluon. Being on Java since 1999, he is a JavaFX advocate, developing
JavaFX applications for mobile platforms and embedded platforms. He
also works on open source projects (JFXtras, FXyz, https://github.com/
jperedadnr), co-authoring a JavaFX book (JavaFX 8 Introduction by
Example), blogging (http://jperedadnr.blogspot.com.es/), tweeting
(@JPeredaDnr), and speaking at conferences (such as JavaOne, JAX, Jfokus,
JavaLand, and Coding Serbia). José lives with his wife and four kids in
Valladolid, Spain.

Sean Phillips is a Java software architect currently working on ground
systems for Space Science missions at the NASA Goddard Space Flight
Center. He has developed embedded systems, along with modeling
simulation, and visualization software for projects from commercial
and military RADAR, heavy manufacturing, Battlespace Awareness,
and Orbital Flight Dynamics. Sean is the lead developer of F(X)yz
(http://birdasaur.github.io/FXyz/), a free third-party library for
JavaFX 3D components and data visualization tools. Sean enjoys sharing
his experiments through blog entries on various sites, including Java.net
(https://weblogs.java.net/blogs/sean.mi.phillips), The NetBeans
DZone (http://netbeans.dzone.com/users/seanmiphillips), and
personal media (Twitter @SeanMiPhillips).

Sean lives in Bowie, Maryland, USA, with his very supportive wife
Zulma and sons Sebastian and Sean Alexander.

Mark Heckler is a Principal Technologist & Developer Advocate at
Pivotal, a conference speaker, and published author focusing on software
development for the Internet of Things and the cloud. He has worked
with key players in the manufacturing, retail, medical, scientific, telecom,
and financial industries, and with various public sector organizations to
develop and deliver critical capabilities on time and on budget. Mark is an
open source contributor, author/curator of a developer-focused blog, and
on Twitter (@MkHeck). Mark lives with his very understanding wife, three
kids, and dog in St. Louis, Missouri, USA.

https://github.com/jperedadnr
https://github.com/jperedadnr
http://jperedadnr.blogspot.com.es/
http://birdasaur.github.io/FXyz/
https://weblogs.java.net/blogs/sean.mi.phillips
http://netbeans.dzone.com/users/seanmiphillips

xxi

About the Technical Reviewer

Brian Molt has been a software developer at a manufacturing company in
Nebraska for close to 14 years. During his time there, he has programmed
with multiple languages on a variety of platforms, including RPGLE on an
AS/400, web developing with ASP.NET, desktop application development
with JavaFX, and recently REST services with JAX-RS.

xxiii

Acknowledgments

I would like to thank my amazing wife, Tracey, and my daughters, Caitlin and Gillian, for their loving support
and sacrifices. A special thanks to my daughter Caitlin, who helped with illustrations and brainstorming fun
examples for the first edition. A big thanks to Jim Weaver for being a great mentor and friend. I would also
thank Josh Juneau for his advice and guidance throughout this journey. A big thank you to Brian Molt, for
providing excellent feedback and, most of all, for testing my code examples. Thanks also to David Coffin for
tech reviewing the second edition. Hats off to my co-authors Gerrit Grunwald, José Pereda, Sean Phillips,
and Mark Heckler, for their amazing talents. My co-authors are truly superheroes who came to my rescue to
make this book possible.

A huge shout-out to the wonderful people at Apress for their professionalism and support. A special
thanks to Jonathan Gennick for believing in me and whipping me into shape again and again. Thanks to Jill
Balzano for keeping us on track and getting us across the finish line.

Thanks to all who follow me on Twitter, especially the topics (hash tags) related to JavaFX, UI/UX, and
IoT. Also, thanks to the authors (Jim Weaver, Weiqi Gao, Stephen Chin, Dean Iverson, and Johan Vos) of the
Pro JavaFX book for allowing me to tech review chapters in the first edition. Thanks also to Stephen Chin
and Keith Combs for heading up the awesome JavaFX User Group. I want to also thank Rajmahendra Hegde
for helping me with the eWidgetFX open source framework effort. Thanks to Hendrik Ebbers for always
wanting to team up with me on talks and fun projects at past JavaOne conferences. Most importantly, thanks
to all the past JavaFX 1.x book authors that helped inspire me.

A massive thank you to the JavaFX community at large, which there are way too many individuals to
name. Lastly, I want to give a big kudos and acknowledgment to the people at Oracle and ex-employees who
helped me (directly or indirectly) as JavaFX 2.x, 8, and 9 were being released: Nandini Ramani, Jonathan
Giles, Jasper Potts, Richard Bair, Angela Caicedo, Stuart Marks, John Yoon, David Grieve, Michael Heinrichs,
David DeHaven, Nicolas Lorain, Kevin Rushforth, Sheila Cepero, Gail Chappell, Cindy Castillo, Scott
Hommel, Joni Gordon, Alexander Kouznetsov, Irina Fedortsova, Dmitry Kostovarov, Alla Redko, Nancy
Hildebrandt, and all the Java, JavaFX, and NetBeans teams involved.

Whether, then, you eat or drink or whatever you do, do all to the glory of God (1 Corinthians 10:31, NASB).

—Carl Dea

xxv

Introduction

Welcome to JavaFX 9 by Example.
What is JavaFX?
JavaFX is Java’s next-generation graphical user interface (GUI) toolkit that allows developers to rapidly

build rich cross-platform applications. Built from the ground up, JavaFX takes advantage of modern GPUs
through hardware-accelerated graphics while providing well-designed programming interfaces enabling
developers to combine graphics, animation, and UI controls. The new JavaFX 9 is a pure Java language
application programming interface (API). The goal of JavaFX is to be used across many types of devices, such
as embedded devices, smartphones, TVs, tablet computers, and desktops.

Nandini Ramani, former VP of Development at Oracle, plainly states the intended direction of JavaFX as
a platform in the following excerpt from the screencast Introducing JavaFX:

The industry is moving toward multi-core/multi-threading platforms with GPUs. JavaFX
leverages these attributes to improve execution efficiency and UI design flexibility. Our
initial goal is to give architects and developers of enterprise applications a set of tools and
APIs to help them build better data-driven business applications.

—Nandini Ramani, former Oracle Corp. VP of Development, Java Client Platform

Before the creation of JavaFX, the development of rich client-side applications involved the gathering of
many separate libraries and APIs to achieve highly functional applications. These separate libraries include
media, UI controls, Web, 3D, and 2D APIs. Because integrating these APIs together can be rather difficult, the
talented engineers at Oracle created a new set of JavaFX libraries that roll up all the same capabilities under
one roof. JavaFX is the “Swiss Army Knife” of GUI toolkits (Figure FM-1). JavaFX 9 is a pure Java (language)
API that allows developers to leverage existing Java libraries and tools.

Figure FM-1. JavaFX

■ IntroduCtIon

xxvi

Depending on who you talk to, you are likely to encounter different definitions of “user experience”
(or in the UI world, UX). But one fact remains—the users will always demand better content and increased
usability from GUI applications. In light of this fact, developers and designers often work together to craft
applications to fulfill this demand. JavaFX provides a toolkit that helps both the developer and designer
(in some cases, the same person) create functional, yet aesthetically pleasing, applications. Another thing
to acknowledge, when developing a game, media player, or the usual enterprise application, is that JavaFX
will not only assist in developing richer UIs, but you’ll also find that the APIs are extremely well-designed to
greatly improve developer productivity (we’re all about the user of the API’s perspective).

Although this book doesn’t go through an exhaustive study of all of JavaFX 8 and 9’s capabilities, you
will find common use cases that can help you build richer applications. Hopefully, this book will lead you in
the right direction by providing practical, real-world examples.

Some History
In 2005 Sun Microsystems acquired the company SeeBeyond, where a software engineer named Chris Oliver
created a graphics-rich scripting language known as F3 (Form Follows Function). F3 was later unveiled
by Sun Microsystems at the 2007 JavaOne conference as JavaFX. On April 20, 2009, Oracle Corporation
announced the acquisition of Sun Microsystems, making Oracle the new steward of JavaFX.

At JavaOne 2010, Oracle announced the JavaFX roadmap, which included its plans to phase out the
JavaFX scripting language and re-create the JavaFX platform for the Java platform as Java-based APIs.
As promised based on the 2010 roadmap, JavaFX 2.0 SDK was released at JavaOne, in October 2011. In
addition to the release of JavaFX 2.0, Oracle announced its commitment to take steps to open source JavaFX,
thus allowing the community to help move the platform forward. Open sourcing JavaFX will increase its
adoption, enable a quicker turnaround time on bug fixes, and generate new enhancements.

Between JavaFX 2.1 and 2.2, the number of new features grew rapidly. Table FM-1 shows the numerous
features included between versions 2.1 and 2.2. JavaFX 2.1 was the official release of the Java SDK on a
MacOS. JavaFX 2.2 was the official release of the Java SDK on the Linux operating system.

The Java 8 release was announced March 18, 2014. Java 8 has many new APIs and language
enhancements, which includes lambdas, Stream API, Nashorn JavaScript engine, and JavaFX APIs. Relating
to JavaFX 8, the following features include 3D graphics, rich text support, and printing APIs.

Java 9 is expected to be released some time in September of 2017. Java 9 has so many features, but the
most important feature is modularization, better known as Project Jigsaw.

What You Will Learn in This Book
In this book, you will be learning JavaFX 9 capabilities by following practical examples. These examples will,
in turn, provide you with the knowledge needed to create your own rich client applications. Following Java’s
mantra, “Write once, run anywhere,” JavaFX also preserves this same sentiment. Because JavaFX 9 is written
entirely in the language of Java, you will feel right at home.

Most of the examples can be compiled and run under Java 8. However, some of them are designed to
take advantage of Java 9’s language enhancements. While working through this book with JavaFX 8 and 9,
you will see that the JavaFX APIs and language enhancements will help you to become a more productive
developer. Having said this, we encourage you to explore all the new Java 8 capabilities.

This book covers JavaFX 8 and 9’s fundamentals, modules, lambdas, properties, layouts, UI controls,
printer, animation, custom UIs, charts, media, web, 3D, Arduino, touch events, and gestures.

■ IntroduCtIon

xxvii

Who This Book Is For
If you are a Java developer looking to take your client-side applications to the next level, you will find this
book your guide to help you begin creating usable and aesthetically pleasing user interfaces. Also, if you
are an experienced Java Swing, Flash/Flex, SWT, or web developer who wants to learn how to create
high-performance rich client-side applications, then this is the book for you.

How This Book Is Structured
This book is arranged in a natural progression from beginner to intermediate and advanced level concepts.
For the Java developer, none of the concepts mentioned in this book should be extremely difficult to figure
out. This book is purely example-based and discusses major concepts before demonstrating applications.
For each project, after showing the output from executing the code, we’ll provide a detailed explanation
walking through the code. Each example can be easily adapted to meet your own needs when developing
a game, media player, or your usual enterprise application. The more experienced a Java UI developer you
are, the more freedom you’ll have to jump around to different chapters and examples throughout the book.
However, any Java developer can progress through the book and learn the skills needed to enhance their
everyday GUI applications.

1© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_1

CHAPTER 1

Getting Started

To get started using this book to learn JavaFX 9, you will want to set up your development environment to
compile and run many of its examples. In this chapter you will learn how to install the required software,
such as the Java development kit (JDK) and the NetBeans integrated development environment (IDE). After
installing the required software, you will begin by creating a traditional JavaFX HelloWorld example. Once
you are comfortable with the development environment, I will walk through the JavaFX HelloWorld source
code. Finally, you will get a glimpse of how to package your application as a standalone application to be
launched and distributed.

I realize many developers are partial to their IDEs and editors, so I’ve also provided three ways to
compile and run the HelloWorld example. In the first way to compile and run code you will be using the
NetBeans IDE, in the second way you will learn how to use the command line (terminal window), and
thirdly you will be using a build tool called Gradle to compile and launch JavaFX applications. The second
and third strategies are for those who are not fond of fancy IDEs. If you are more comfortable with the
Eclipse and IntelliJ IDE, you will be happy to know that Gradle can generate the respective project files that
will allow your projects to be easily loaded into them.

If you are already familiar with the installation of the Java Development Kit (JDK), Gradle, and the
NetBeans IDE, you can skip to Chapter 2, which covers Java 9 Jigsaw. Let’s get started!

Downloading Required Software
When using this book, you’ll find that many examples may still be written using the Java 8 JDK; however
Chapter 2 and a few other chapters will get into Java 9-specific concepts, making the Java 9 JDK a
requirement. One of the primary changes to the Java platform is modularity (Jigsaw). Modularity will truly
transform your client-side applications. You are probably wondering exactly, “how is it transformed?” Well,
imagine building a Java application that occupies a smaller footprint in memory and on disk space. This
means users will experience faster load times and a better user experience!

Having said this, go ahead and download Java 9 Java Development Kit (JDK) or later. In this chapter, you
will see the steps on installing the JDK on Windows, MacOS X, and Linux. You can download the Java 9 JDK
from the following URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Another tool that we have not mentioned in prior editions is Gradle. Gradle has become an industry
standard in building projects and artifacts in the real world. Later, I will walk you through how to install
Gradle, but for now head over to gradle.org and look for the download link. At the download link you
will be presented with two binary distributions. One is just a binary distribution and the other is a full
distribution that includes the source code and documentation. The binary distribution is required to build
applications, so you’ll want to download it. Go to the following URL to download Gradle’s Build tool:

https://gradle.org/gradle-download

http://dx.doi.org/10.1007/978-1-4842-1961-4_2
http://dx.doi.org/10.1007/978-1-4842-1961-4_2
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://gradle.org/gradle-download

Chapter 1 ■ GettinG Started

2

Installing an integrated development environment (IDE) is optional for the book; however if you
choose to use an IDE you will be able get all the benefits of code highlighting, code completion, incremental
debugging, refactoring, and many modern developer conveniences. The top three IDEs used in the wild are
NetBeans, IntelliJ, and Eclipse. Although this book walks you through installing the NetBeans IDE, it doesn’t
mean we are partial to NetBeans or any other IDEs. I’ve chosen NetBeans because release schedules are
usually on par with the major JDK releases and it’s quite mature, especially when it comes to tooling and
JavaFX application development. NetBeans has numerous JavaFX demo projects (example templates)
built-in and the Scene Builder tool. Scene Builder is a graphical tool used to build JavaFX UIs visually.

Another pro tip is learning about Gradle tasks, which are capable of generating Java projects for either
IntelliJ or Eclipse IDE with a single command. To learn more about Gradle tasks that can automatically set
up IntelliJ and Eclipse projects, visit the following links:

•	 IntelliJ: https://docs.gradle.org/current/userguide/idea_plugin.html

•	 Eclipse: https://docs.gradle.org/current/userguide/eclipse_plugin.html

The following are URLs to download your favorite IDE:

•	 NetBeans: https://netbeans.org/downloads

•	 IntelliJ: https://www.jetbrains.com/idea/download

•	 Eclipse: https://eclipse.org/downloads

Currently, JavaFX 9 from Oracle corp. runs on the following operating systems:

•	 Windows OS (Vista, 7, 8, 10) 32- and 64-bit

•	 MacOS X (64-bit)

•	 Ubuntu Linux 12.x - 13.x (32- and- 64-bit)

To see a detailed listing of all the supported operating systems, visit the following link:

http://jdk.java.net/9/supported

While you may not see your supported operating system or hardware, you will be happy to know about
the OpenJDK and OpenJFX projects, which allow you to build Java and JavaFX yourself! To learn more about
OpenJDK or OpenJFX, visit the following URLs:

•	 OpenJDK: http://openjdk.java.net

•	 OpenJFX: https://wiki.openjdk.java.net/display/OpenJFX/Main

After downloading the appropriate software versions for your operating system, you will install the
Java 9 JDK, Gradle, and/or your chosen IDE.

https://docs.gradle.org/current/userguide/idea_plugin.html
https://docs.gradle.org/current/userguide/eclipse_plugin.html
https://netbeans.org/downloads/
https://www.jetbrains.com/idea/download
https://eclipse.org/downloads
http://jdk.java.net/9/supported
http://openjdk.java.net/
https://wiki.openjdk.java.net/display/OpenJFX/Main

Chapter 1 ■ GettinG Started

3

Installing the Java 9 Development Kit
Once you have downloaded the correct version of Java for your particular operating system, follow the steps
outlined in this section to install the Java 9 JDK. I assume you’ve downloaded Oracle’s Java 9 JDK, but if not,
go to following location:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

In the following sections, you will follow steps to install Java 9 on the three popular operating systems:
Microsoft Windows, MacOS X, and Linux.

Installing the JDK on Microsoft Windows
The following steps use the Java 9 JDK 64-bit version for the Windows 10 operating system. If your Windows
operating system is different, refer to the following link for further details.

http://www.oracle.com/technetwork/java/javase/overview/index.html

The following are steps to install the Java 9 JDK on the Windows OS:

 1. Install the Java 9 JDK by right-clicking the installer’s executable
(jdk-9-windows-x64.exe) to run as an administrator. Typically, other operating
systems will pop up a similar warning dialog box to alert you of the risks of
installing or running binary files. Click the Run button to proceed.

 2. Begin the installation process by clicking on the Next button, as shown in
Figure 1-1.

Figure 1-1. Java SE Development Kit 9 installation process

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html

Chapter 1 ■ GettinG Started

4

 3. Next, you’ll be presented with the Custom Setup window allowing you to
select optional features shown in Figure 1-2. Here, you’ll just accept the default
selections and click the Next button to continue.

Figure 1-2. Java SE Development Kit 9 optional features

Chapter 1 ■ GettinG Started

5

 4. Afterward, the installation process will display a progress bar, as shown in
Figure 1-3.

Figure 1-3. Java SE Development Kit 9 installation in progress

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ GettinG Started

6

 5. Next, a popup dialog window will ask if you want to change the installation
directory of the Java runtime. Just click the Next button and accept the default
directory, as shown in Figure 1-4.

Figure 1-4. The Java 9 runtime destination directory

Chapter 1 ■ GettinG Started

7

Installing the JDK on MacOS X
The following steps use the Java 9 JDK 64-bit version for the MacOS X (El Capitan) operating system.
It assumes you’ve already downloaded the JDK and it’s called something similar to the following:

jdk-9-ea-bin-b88-macosx-x86_64-21_oct_2015.dmg

Use the following steps to install the Java 9 JDK on the MacOS X operating system:

 1. After launching the dmg file, you’ll be presented the following dialog box as
shown in Figure 1-6. Next, double-click on the icon to begin the install process.

Figure 1-5. The last part of the installation prompting that the Java SE Development Kit 9 was successfully
installed

 6. To complete the installation of the Java 9 SE Development Kit, click the Close
button to exit, as shown in Figure 1-5.

Chapter 1 ■ GettinG Started

8

 2. Next, to begin the install process shown in Figure 1-7, click on Continue. For the
rest of the installation process, accept the defaults.

Figure 1-7. The Java 9 JDK installer introduction for the MacOS X operating system

Figure 1-6. The Java 9 JDK installer on the MacOS X operating system

Chapter 1 ■ GettinG Started

9

 3. After clicking on the Continue button, the dialog will mention the amount of disk
space the JDK will take up on your computer, as shown in Figure 1-8. Click on the
Install button to proceed.

 4. For security purposes, your MacOS X will prompt you with a password to allow
the installer to continue, as shown in Figure 1-9. This assumes you have admin
privileges to install software. After entering your password, click the Install
Software button to kick off the process.

Figure 1-8. The prompt showing how much space the JDK will use

Figure 1-9. The permission window prompting for the username and password that will allow the JDK
software to be install on the local machine

Chapter 1 ■ GettinG Started

10

 5. The installation process will take a few seconds, as shown in Figure 1-10.

 6. Lastly, you will click on the Close button, as shown in Figure 1-11. This completes
the JDK installation on the MacOS operating system.

Figure 1-11. The installation of the JDK is complete

Figure 1-10. The installation of the JDK in progress

Chapter 1 ■ GettinG Started

11

After finishing the installation of the JDK, you’ll learn later in this chapter how to set up your
environment variables. Next are instructions for installing JDK 9 on Linux-based operating systems.

Installing the JDK on Linux
To begin, you should determine if your Linux system is a 32-bit or 64-bit architecture by typing in the
following in a terminal:

$ uname -m

The output on a 64 bit Linux machine is as follows:

x86_64

The output on a 32 bit Linux machine is as follows:

i686

Assuming you’ve downloaded the Java JDK at the following:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

For users in the Linux world, you will need to download a file named something like:

•	 jdk-9-bin-b88-linux-i586-21_oct_2015.tar.gz

•	 jdk-9-bin-b88-linux-i586-21_oct_2015.rpm.

Locate the downloaded file (*.gz or *.rpm) and then go to your terminal window to begin the
installation process. The instructions for the installation process are in the next section.

 ■ Note as of the writing of this book, the Java 9 JdK used was an ea (early edition) release and therefore,
the JAVA_HOME directory name is subject to change. Visit Java 9 JdK’s installation instructions for further details
here: https://docs.oracle.com/javase/9/install/installation-jdk-and-jre-linux-platforms.htm.

Fedora, CentOS, Oracle Linux, or Red Hat Enterprise Linux OSes
After downloading the gz file, you will need to decompress it. On Fedora, CentOS, Oracle Linux, or Red Hat
Enterprise Linux OSes, type the following commands to install the JDK.

If a user isn’t registered in the sudoers file, you will need to su as root to perform the following
commands.

$ mv ~/Downloads/jdk-9-linux-x64.tar.gz /tmp
$ cd /tmp
$ tar zxvf /tmp/jdk-9-linux-x64.tar.gz
$ sudo mkdir /opt/jdk/
$ sudo mv jdk-9 /opt/jdk

Use the following command if you downloaded the rpm version of the Java 9 JDK:

$ sudo rpm -ivh jdk-9-linux-x64.rpm

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://docs.oracle.com/javase/9/install/installation-jdk-and-jre-linux-platforms.htm

Chapter 1 ■ GettinG Started

12

Red Hat Alternatives
After installing JDK 9 your system, you will likely encounter other versions of Java previously installed. Red
Hat/CentOS-based operating systems have a way to switch between JDKs and JREs. Since you have installed
the JDK 9 in the /opt/jdk directory, you will want alternatives to register the new JDK 9 as the default Java.

To begin let’s register the newly installed Java executable in alternatives. You will want to enter the
following commands. These commands will update any indexes, register Java with a priority 100, and display
all registered Java runtimes that are installed.

$ sudo update
$ sudo alternatives --install /usr/bin/java java /opt/jdk/jdk-9/bin/java 100

Next, you need to set the default Java version that you just added.

$ sudo alternatives --config java

There are 3 programs which provide 'java'.

 Selection Command

 * 1 /opt/jdk/jdk1.8.0_51/bin/java
 + 2 /opt/jdk/jdk1.8.0_66/bin/java
 3 /opt/jdk/jdk-9/bin/java

Enter to keep the current selection[+], or type selection number: 3

To test if alternatives is pointing to the correct version, just type the following in your terminal window:

$ java -version

The following is the output:

java version "1.9.0-ea"
Java(TM) SE Runtime Environment (build 1.9.0-ea-b90)
Java HotSpot(TM) 64-Bit Server VM (build 1.9.0-ea-b90, mixed mode)

You’ll also want to configure alternatives for your javac compiler by performing similar steps as before.

$ sudo alternatives --install /usr/bin/javac javac /opt/jdk/jdk-9/bin/javac 100
$ sudo alternatives --config javac

There are 3 programs which provide 'javac'.

 Selection Command

 * 1 /opt/jdk/jdk1.8.0_51/bin/javac
 + 2 /opt/jdk/jdk1.8.0_66/bin/javac
 3 /opt/jdk/jdk-9/bin/javac

To test if alternatives is pointing to the correct Java compiler version, just type the following:

$ javac -version

javac 1.9.0-ea

Chapter 1 ■ GettinG Started

13

Ubuntu/Debian
When using you’re Ubuntu or Debian Linux, you can obtain Oracle’s Java JDK in two ways. The first way is to use
the apt-get command and the second way is to download the JDK from the official site mentioned earlier.

With Ubuntu or Debian, you can use the apt-get command to download and install Oracle’s
official JDK 9:

$ sudo apt-get update
$ sudo apt-get install oracle-java9-installer

After, downloading Linux from Oracle’s download site, you can manually decompress the gz file. For
Ubuntu/Debian Linux distributions, pull up your terminal and type the following commands:

$ mv ~/Downloads/jdk-9-linux-x64.tar.gz /tmp
$ cd /tmp
$ tar zxvf jdk-9-linux-x64.tar.gz
$ sudo mv jdk-9 /usr/lib/jvm/

After installing JDK 9 on your Ubuntu/Debian system, you will likely encounter other versions of Java
previously installed. Ubuntu/Debian-based operating systems have a way to switch between JDKs and JREs
by using a tool called update-alternatives. Assuming you have installed the JDK 9 using apt-get, it usually
puts the JDK in the /usr/lib/jvm directory. Now, you will want alternatives to register the new JDK 9
(java and javac).

Default Java

Type the following to register the new JDK in alternatives:

$ sudo update
$ sudo update-alternatives --install /usr/bin/java java /usr/lib/jvm/jdk-9-linux-x64/bin/
java 100

Next, you’ll want to set the newly registered java as the default version to use. Type in the following
commands:

$ sudo update-alternatives --config java

There are 2 choices for the alternative java (providing /usr/bin/java).

 Selection Path Priority Status

* 0 /usr/lib/jvm/java-8-openjdk/jre/bin/java 1061 auto mode
 1 /usr/lib/jvm/java-9-oracle/bin/java 100 manual mode

Press enter to keep the current choice[*], or type selection number: 1

$ sudo update-alternatives --display java

 Selection Path Priority Status

 0 /usr/lib/jvm/java-8-openjdk/jre/bin/java 1061 auto mode
* 1 /usr/lib/jvm/java-9-oracle/bin/java 100 manual mode

Chapter 1 ■ GettinG Started

14

Default Javac

You’ll also want to switch the javac compiler too. To set the Java compiler, type the following commands to
register the new javac:

$ sudo update-alternatives --install /usr/bin/javac javac /usr/lib/jvm/jdk-9-linux-x64/bin/
javac 100
$ sudo update-alternatives --config javac

There are 2 choices for the alternative javac (providing /usr/bin/javac).

 Selection Path Priority Status

* 0 /usr/lib/jvm/java-8-openjdk/bin/javac 1061 auto mode
 1 /usr/lib/jvm/java-9-oracle/bin/javac 100 manual mode

Press enter to keep the current choice[*], or type selection number: 1

$ sudo update-alternatives --config javac

There are 2 choices for the alternative javac (providing /usr/bin/javac).

 Selection Path Priority Status

 0 /usr/lib/jvm/java-8-openjdk/bin/javac 1061 auto mode
* 1 /usr/lib/jvm/java-9-oracle/bin/javac 100 manual mode

Setting Environment Variables
If you aren’t using the conveniences of aternatives to point to your default Java binaries, you can do it the
old fashioned way, by setting up Java environment variables. There are other strategies to easily switch Java
versions that I’ve not mentioned in this chapter, but understanding Java’s environmental variables will allow
you to install and develop Java applications on any operating system.

To get started you need to set and update a couple of important environment variables. How you set
them and the values they should be set to vary depending on your choice of operating system. The two
variables to set are the following:

•	 JAVA_HOME: Tells your operating system where the Java installation directory lives.

•	 PATH: Specifies where the Java executable directory resides. This environment
variable lets the system search paths or directories containing executable files. Java
executables reside in the bin directory under the JAVA_HOME home directory.

Chapter 1 ■ GettinG Started

15

The following are the environment variables to set in the 32-bit Windows operating system:

set JAVA_HOME="C:\Program Files (x86)\Java\jdk-9"
set PATH=%JAVA_HOME%\bin;%PATH%

Set the same variables in 64-bit Windows, but the values are slightly different:

set JAVA_HOME="C:\Program Files\Java\jdk-9"
set PATH=%JAVA_HOME%\bin;%PATH%

 ■ Note depending on the version of the JdK the JAVA_HOME path, the name will change according to the
version that was installed. For example, if the next version is named JdK 9.0.1, the path would likely appear as
JAVA_HOME="C:\Program Files\Java\jdk-9.0.1". to see Java 9’s JdK and Jre version naming scheme, go
to the following links:

http://openjdk.java.net/jeps/223 and
https://blogs.oracle.com/java-platform-group/a-new-jdk-9-version-string-scheme.

On Unix-like platforms such as MacOS X and Linux, your settings and how you make them depend
on which shell you are using. The following examples show you how to set the needed variables for Bash,
Bourne, and CSH shells, respectively.

Mac OS X /bin/bash
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home
export PATH=$PATH:$JAVA_HOME/bin

Linux bash, bourne shell environments /bin/bash
export JAVA_HOME=/usr/java/jdk-9 export PATH=$PATH:$JAVA_HOME/bin

#csh environments /bin/csh
setenv JAVA_HOME /usr/java/jdk-9
setenv PATH ${JAVA_HOME}/bin:${PATH}

These statements will set environment variables temporarily for the current terminal window session.
To make JAVA_HOME and PATH more permanent, you will want to add them to your system upon logon such
that they are always made available whenever you boot or log in. Depending on your operating system, you
will need to be able to edit environment variable names and values.

http://openjdk.java.net/jeps/223
https://blogs.oracle.com/java-platform-group/a-new-jdk-9-version-string-scheme

Chapter 1 ■ GettinG Started

16

Setup Windows Environment Variables
In the Windows environment you can use the keyboard shortcut Windows logo key+Pause/Break key, and
then click the Advanced system settings (link on the left side) to display the Systems Properties window, as
shown in Figure 1-12.

Figure 1-12. The System Properties window

Chapter 1 ■ GettinG Started

17

Next, click the Environment Variables button. At this point you can add, edit, and delete
environment variables. You will add or edit the JAVA_HOME environment variable by using the installed
home directory as the value. The Environment Variables window on the Windows operating system is
shown in Figure 1-13.

Figure 1-13. Windows Environment Variables window

Chapter 1 ■ GettinG Started

18

To add the JAVA_HOME environment variable, click on the New button shown in Figure 1-13.
After you click the New button, the window in Figure 1-14 appears and allows you to enter the

environment variable name and value. When you’re done, click on the OK button.

After, you’ve clicked on OK to add JAVA_HOME, you will need update the Path environment variable, as
shown in Figure 1-15. Select the Path environment variable in the System Variables area. Next, click on the
Edit button.

Figure 1-15. Editing the Path environment variable

Figure 1-14. The Add/Edit window to enter the JAVA_HOME environment variable

Chapter 1 ■ GettinG Started

19

In Windows 10, you need to edit the Path environment variable by adding an new entry, as shown in
Figure 1-16. Here you will add an entry such as %JAVA_HOME%\bin. To add the entry, click on the New button.
If the entry already exists, click on the Edit button. This allows the system to see all binary executables in the
bin directory of the JAVA_HOME. In other words, when you are on the terminal or command-line prompt, the
system will recognize files such as javac.exe for the Java compiler.

In Figure 1-16, the %JAVA_HOME%\bin entry was at the bottom of the list, but I moved it to the top by
clicking on the Move Up button.

Setting Up MacOS X/Linux Environment Variables
To make the environment variables permanent on MacOS X or Linux, you can use common text editors such
as nano or vim. But before you go editing your user shell profile files, you will want to make a backup copy
just in case you make a mistake. Because many Unix and Linux systems have different shells, I’ve detailed
the typical files to copy and edit.

Figure 1-16. Adding %JAVA_HOME%\bin to the Path environment variable

Chapter 1 ■ GettinG Started

20

On a Mac, type the following:

$ cp ~/.bash_profile ~/.bash_profile.orig

On a Linux OS, you’ll type the following to determine the kind of shell you have, then you’ll know which
file to copy and edit. Different shells use different files to export environment variables when creating a
console session.

$ echo $0
-bash

If the output displays -bash, you’ll want to back up and edit the .bashrc file from your home directory.
If the output displays -csh, you’ll want to back up and edit the .cshrc from your home directory. Next, you
copy the .bashrc file as a backup before editing it.

$ cp ~/.bashrc ~/.bashrc.orig

If you’re on a Linux OS using the C shell, type the following:

$ cp ~/.cshrc ~/.cshrc.orig

Now, you’ll want to edit the file that you just backed up by using nano or vi text editor. To load a file, you
type the following:

$ nano ~/.bash_profile

Or

$ vi ~/.bash_profile

Notice that I used the ~/.bash_profile file located in the home directory on the MacOS X operating
system. I trust you will replace the file with the particular file depending on your Linux OS and shell.
After loading the file from the previous command you will want to perform edits, saves, and exits from
those editors. Tables 1-1 and 1-2 are quick run-downs of the common commands for nano and vim,
respectively.

Table 1-1. The Nano Editor’s Keyboard Commands After Editing a File

Action Command Notes

Navigate Use arrow keys up, down, right, and left Arrow keys, Page Up/Down, and Home and
End can also be used to navigate the cursor.

Save File Ctrl/Control+O Editor prompts the name of the file. Just press
Enter to accept the same name.

Exit Editor Ctrl/Control+X Brings you back to the command-line prompt.

Chapter 1 ■ GettinG Started

21

•	 To set your JAVA_HOME for the MacOS X platform, you need to launch a terminal
window to edit your home directory’s .bash_profile file (for example, nano
~/.bash_profile) by adding the export commands at the bottom of the file:

Mac OS X /bin/bash
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk-9.jdk/
Contents/Home
export PATH=$PATH:$JAVA_HOME/bin

•	 On Linux and other Unix operating systems that use Bash shell environments,
launch a terminal window and edit either the ~/.bashrc or ~/.profile file to
contain the export commands. Add the export commands.

Linux bash, bourne shell environments /bin/bash
export JAVA_HOME=/usr/java/jdk-9
export PATH=$PATH:$JAVA_HOME/bin

•	 On Linux and other Unix operating systems that use C shell (csh) environments,
launch a terminal window and edit either the ~/.cshrc or ~/.login file to contain
the setenv commands. Add the export commands.

#csh environments
setenv JAVA_HOME /usr/java/jdk-9
setenv PATH ${JAVA_HOME}/bin:${PATH}

Table 1-2. The vi Editor’s Keyboard Commands After Editing a File

Action Command Notes

Navigate Use arrow keys up,
down, right, and left

Arrow keys, Page Up/Down, and Home and End can
also be used to navigate cursor.

Insert text i After a text file is loaded you can modify the file, but
before you can, you have to press ‘i’ for insert. To get
back to command mode, press the ESC key.

Add text a After a text file is loaded you can modify the file, but
before you can you have to press ‘a’ for add. To get back
to command mode, press the ESC key.

Command mode ESC Exits editor mode, bringing you to command mode.

Save file :w <Enter key> Assuming you are in command mode (press ESC)
before typing :w (colon ‘w’). The file is saved. To save
and exit, type :wq.

Exit editor :q Brings you back to the command-line prompt.

Exit with no changes :q! Modifications are ignored and exits editor.

Save and Exit :wq File is saved and exits immediately.

Chapter 1 ■ GettinG Started

22

Once you’ve set up your path and JAVA_HOME environment variables, you will want to verify them by
launching a terminal window and executing the following two commands from the command prompt:

$ java -version
$ javac -version

The output in each case should display a message indicating the Java 9 version of the language and
runtime. Here is the display output of the version.

Java -version

java version "1.9.0-ea"
Java(TM) SE Runtime Environment (build 1.9.0-ea-b90)
Java HotSpot(TM) 64-Bit Server VM (build 1.9.0-ea-b90, mixed mode)

javac -version

javac 1.9.0

Installing Gradle
If you have not downloaded Gradle yet, visit http://gradle.org/gradle-download. After downloading the
binary distribution, you’ll want to install Gradle. To install Gradle, follow these steps:

 1. Unzip the Gradle software into a directory.

 2. Update the environment variable GRADLE_HOME to point to the directory located
where the gradle folder was created after the unzipped file.

 3. Update the environment variable PATH to include the $GRADLE_HOME/bin. In
Windows, it would be %GRADLE_HOME%/bin. To make these variables permanent,
follow the instructions mentioned earlier regarding JAVA_HOME.

 4. To verify that Gradle was installed properly at the command line (the terminal),
type the following command:

gradle -version

The version information is shown here:

--
Gradle 2.7
--

Build time: 2015-09-14 07:26:16 UTC
Build number: none
Revision: c41505168da69fb0650f4e31c9e01b50ffc97893

Groovy: 2.3.10
Ant: Apache Ant(TM) version 1.9.3 compiled on December 23 2013
JVM: 1.9.0-ea (Oracle Corporation 1.9.0-ea-b90)
OS: Mac OS X 10.11.1 x86_64

http://gradle.org/gradle-download

Chapter 1 ■ GettinG Started

23

Now that you have the JDK installed, you can install the NetBeans IDE. Installing the NetBeans IDE is
optional, so you may skip the next section.

Installing the NetBeans IDE
When developing JavaFX applications, you might want to use the NetBeans IDE. Be sure to download the
correct NetBeans version containing JavaFX. If you haven’t already downloaded the NetBeans IDE, go to
following location:

https://netbeans.org/downloads/index.html

To install the NetBeans IDE, follow these steps:

 1. Install NetBeans 8.2 or later. Launch the binary executable. On the Windows
platform, you will receive a security warning to inform the user about installing
software.

 2. Begin the NetBeans IDE installation process by clicking the Next button.
Figure 1-17 prompts the user to begin the installation process.

Figure 1-17. NetBeans IDE installer

https://netbeans.org/downloads/index.html

Chapter 1 ■ GettinG Started

24

 3. Read and accept the NetBeans license agreement. After reading and agreeing to
the terms, click the “I accept the terms in the license agreement” check box and
then click Next to proceed as shown in Figure 1-18.

Figure 1-18. NetBeans license agreement

Chapter 1 ■ GettinG Started

25

 4. Next, you can choose the destination directory to install NetBeans and select the
Java 9 SE Development Kit previously installed. As usual, keep the defaults for the
destination to install the NetBeans IDE and the JDK 9, as shown in Figure 1-19.

Figure 1-19. NetBeans IDE installation

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ GettinG Started

26

 5. On the Summary screen, the Check for Updates option allows the installer to
retrieve any updates or patches to the current NetBeans version and any other
plug-in dependencies. Accept the defaults and click the Install button, as shown
in Figure 1-20.

Figure 1-20. Check for updates

Chapter 1 ■ GettinG Started

27

Figure 1-21 shows the installation progress bar.

Figure 1-21. Installation progress

Chapter 1 ■ GettinG Started

28

 6. To complete the setup, in Figure 1-22 you will be prompted for an optional check
box to Contribute to the NetBeans team to provide anonymous data usage to
help diagnose issues and enhance the product. Once you have decided whether
to contribute, click the Finish button to complete the installation.

Figure 1-22. Setup complete

Chapter 1 ■ GettinG Started

29

 7. Launch the NetBeans IDE to see the opening page, as shown in Figure 1-23.

Now you are ready to go forward and create awesome JavaFX applications!

Creating a JavaFX HelloWorld Application
When creating JavaFX applications, you’ll be learning three ways to develop, compile, and run applications.

•	 NetBeans IDE

•	 Editor and terminal (the command-line prompt)

•	 Editor and the Gradle Build tool

Figure 1-23. NetBeans start page

Chapter 1 ■ GettinG Started

30

Using the NetBeans IDE
To quickly get started with creating, coding, compiling, and running a simple JavaFX HelloWorld application
using the NetBeans IDE, follow the steps outlined in this section. You’ll want to go deeper in the next section
to get an understanding of what the IDE is doing behind the scenes on your behalf. For now, though, let’s
just get some code written and running.

 1. Launch NetBeans IDE.

 2. On the File menu, select File ➤ New Project.

 3. Under Choose Project and Categories, select the JavaFX folder.

 4. Under Projects, select Java FX Application, and click Next.

 5. Specify HelloWorld for your project name.

 6. Change or accept the defaults for the Project Location and Project Folder fields.
Figure 1-24 shows the New JavaFX Application wizard used to create a simple
HelloWorld application.

Figure 1-24. New JavaFX Application wizard

Chapter 1 ■ GettinG Started

31

 7. On this screen (Figure 1-24), click the Manage Platforms button to make sure the
Platform Name field contains JDK 1.9 or greater as the default. Click Finish to
auto-create the JavaFX HelloWorld application.

 8. In a few seconds, NetBeans will generate all the necessary files for the
HelloWorld project. After NetBeans finishes, the project will show up on the left
Projects tab. Figure 1-25 shows a newly created HelloWorld project.

Figure 1-25. A newly created HelloWorld project

Chapter 1 ■ GettinG Started

32

 9. In the NetBeans IDE on the Projects tab (left), select the newly created project.
Open the Project Properties dialog box from the File menu option Project
Properties. Here you will verify that the Source/Binary format setting is using
JDK 9, as shown in Figure 1-26. Click Sources under Categories.

Figure 1-26. Project properties

Chapter 1 ■ GettinG Started

33

 10. To run and test your JavaFX HelloWorld application, ensure the project folder is
selected (the left Projects tab), then click on the green Run button or press the F6
key to execute the HelloWorld project. Figure 1-27 shows the Run Project option
used to launch the JavaFX application.

Figure 1-27. Running the HelloWorld project

Chapter 1 ■ GettinG Started

34

 11. After you choose the Run option, the output should look like Figure 1-28.

You shouldn’t encounter any difficulty when following Steps 1 through 8. However, steps 9 ensures that
your project’s source/binary format is using JDK 9. Because of the new additions to the Java language in Java
9, such as modules, some of the source code in this book will rely on the new syntax and therefore will not be
backward-compatible with prior versions of Java 9. Typically, developers have prior versions of the
Java development kit such as JDK 8. NetBeans allows you to switch between different JDKs when projects
require older versions. An important thing to note is that in early releases of JavaFX 2.0, the software was
packaged separately from the Java SDK, which caused some software versioning confusion. Thank goodness
it is now just one download (JDK 9)! If you are still using Java 7 SDK, the latest download will also contain
JavaFX in one bundle since JavaFX 2.1.

 ■ Note did you know that Java 7 is at the end of its life? this means that Oracle will no longer post any
updates or releases for the public. Unless you still have a commercial license and a support contract with
Oracle, it is advised you migrate applications to Java 8 or later. having no updates to Java 7’s runtime may be a
security concern. So, you’ve been warned. the official Java 7 end of life and FaQ site is here:
https://www.java.com/en/download/faq/java_7.xml.

Using an Editor and the Terminal (the Command-Line Prompt)
The second way of developing JavaFX 9 applications is to use a common text editor and the command-line
prompt (terminal). By learning how to compile and execute applications on the command-line prompt, you
will learn about the classpath and where the executable files reside. Being exposed to this will sharpen your
skills when you are in environments where fancy IDEs and/or editors aren’t easily available.

Figure 1-28. JavaFX HelloWorld launched from the NetBeans IDE

https://www.java.com/en/download/faq/java_7.xml

Chapter 1 ■ GettinG Started

35

Working from the command line, you will basically use a text editor such as nano, vi, Emacs, or
Notepad to code your JavaFX HelloWorld source. The example shown in Listing 1-1 is of a HelloWorld Java
application.

Listing 1-1. A JavaFX HelloWorld Application from HelloWorld.java

package org.acme.helloworld;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;

/**
 * A JavaFX Hello World Application
 */
public class HelloWorld extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 stage.setTitle("Hello World");
 Group root = new Group();
 Scene scene = new Scene(root, 300, 250);
 Button btn = new Button();
 btn.setLayoutX(100);
 btn.setLayoutY(80);
 btn.setText("Hello World");
 btn.setOnAction(new EventHandler<ActionEvent>() {

 public void handle(ActionEvent event) {
 System.out.println("Hello World");
 }
 });
 root.getChildren().add(btn);
 stage.setScene(scene);
 stage.show();
 }
}

Once the Java file is created you will use the command-line prompt or terminal window to compile
and run your JavaFX application. The following are steps to create a JavaFX HelloWorld application to be
compiled and run on the command-line prompt (terminal).

Chapter 1 ■ GettinG Started

36

 1. In your user home directory, make a projects directory and underneath it you
will create a helloworld directory.

On a MacOS or Linux operating system, use the following command to make a
projects directory:

$ mkdir -p ~/projects/helloworld/src
$ mkdir ~/projects/helloworld/classes
$ cd ~/projects/helloworld/
$ nano src/HelloWorld.java

On a Windows operating system, use the following command to change
directories:

C:\Users\myusername>mkdir projects
C:\Users\myusername>mkdir projects\helloworld
C:\Users\myusername>mkdir projects\helloworld\src
C:\Users\myusername>mkdir projects\helloworld\classes
C:\Users\myusername>cd projects\helloworld
C:\Users\myusername\projects\helloworld>notepad src\HelloWorld.java

 2. Copy and paste the code from Listing 1-1 into a text editor and save the file as
HelloWorld.java. The file should reside inside the src directory.

 ■ Note When entering the code for the HelloWorld.java file from Listing 1-1, be sure to include the
package org.acme.helloworld; statement at the top. By doing so, the package namespace directories
are created when the code is compiled. For example, the compiled HelloWorld.class file will reside in the
classes/org/acme/helloworld directory.

 3. Compile the source code file called HelloWorld.java using the Java compiler
javac with the -d switch and the classes directory. The classes directory is
where the compiled code goes. Also, you need to specify the source code files to
compile, which is src/*.java. The commands you need to enter depend on your
operating system.

On a MacOS X or Linux operating system, type the following on the command-
line prompt:

$ javac -d classes src/*.java

On a Windows command line, type the following:

C:\Users\myusername\projects\helloworld> javac -d classes src*.java

Chapter 1 ■ GettinG Started

37

Notice the -d classes before the filename. The -d option (destination directory)
lets the Java compiler know where to put the compiled class files based on
their package namespace. In this scenario, the HelloWorld package statement
(namespace) is org.acme.helloworld, which will create subdirectories under
the classes directory, assuming you are in the ~/projects/helloworld project
directory.

When you’re finished compiling, your directory structure should resemble
Figure 1-29.

 4. Run and test your JavaFX HelloWorld application. Assuming you are in the
~/projects/helloworld directory, type the following command to run your
JavaFX HelloWorld application from the command-line prompt:

$ java -cp classes org.acme.helloworld.HelloWorld

On Windows OS:

C:\Users\myusername\projects\helloworld> java -cp classes org.acme.helloworld.HelloWorld

By using the -cp, classes will let Java know where the classpath directory is located. Figure 1-30 shows
the output of a simple JavaFX HelloWorld application launched from the command-line prompt.

Figure 1-29. The compiled HelloWorld example creates directories based on the package namespace under
the classes directory. You will notice the subdirectories are created as org/acme/helloworld under the classes
directory you created earlier.

Chapter 1 ■ GettinG Started

38

Using Gradle on the Command-Line Prompt
A third way of developing JavaFX applications is using the Gradle Build tool. Here you will be also using
a common text editor like before, but instead of manual steps in creating and compiling code, you will be
relying on the Gradle Build tool. If you have not set up Gradle, refer to the early part of this chapter in the
section entitled “Installing Gradle.” Follow these steps to create a Gradle-based project.

 1. Create another project and directory named helloworld_gradle. Assuming you
are in the ~/projects directory, you will create a Gradle-based project.

On a Unix-like OS, enter the following:

$ mkdir -p projects\helloworld_gradle

On Windows, enter the following:

C:\Users\myusername>mkdir projects\helloworld_gradle

 2. Change your directory to the helloworld_gradle.

On a Unix-like OS, enter the following:

$ cd helloworld_gradle

On Windows, enter the following:

C:\Users\myusername>cd projects\helloworld_gradle

 3. Build a Java skeleton project having the conventional directory structure (Maven and
Gradle convention). You will notice directories created that will look like src/main/
java and src/test/java. Since this creates the project files and directories initially, it
should only be done once. The following command creates a Java library project:

$ gradle init --type java-library

Figure 1-30. JavaFX HelloWorld launched from the MacOS X command-line prompt

Chapter 1 ■ GettinG Started

39

The following is the output when executing the Gradle init task:

:wrapper
:init

BUILD SUCCESSFUL

Total time: 1.897 secs

 4. Since you are creating a JavaFX application and not a Java library, you will
remove the Library.java and LibraryTest.java files under the src/main/java
and src/test/java directories, respectively. These files are just stubbed out
to get you started if you decide to create a Java library. In this scenario, you are
creating a JavaFX application.

 5. Next, you’ll create a directory called org/acme/helloworld under the src/main/
java directory and copy the HelloWorld.java file from Listing 1-1 into the src/
main/java/org/acme/helloworld directory. This will look like Figure 1-31.

 6. Since you are creating a JavaFX application, you will need to edit the
build.gradle file by adding a plug-in that will build the Java project as a
launchable application. You’ll also add one more entry to let Gradle know which
class the main application should be run as. Using your text editor, add the
following entries to the build.gradle file:

apply plugin: 'application'

mainClassName = "org.acme.helloworld.HelloWorld"

Figure 1-31. Gradle Java application project structure. Notice the standard convention of source code directory
structure laid out as src/main/java and src/test/java. Build tools such as Maven and Gradle follow this convention.

Chapter 1 ■ GettinG Started

40

 7. After you’ve saved and exited the file, you’ll want to build the project using the
gradle assemble command. This will create an executable jar file that can be
run. Type the following to compile and build a HelloWorld jar executable.

$ gradle assemble

The following is the output after executing the Gradle assemble task.

:compileJava
Download https://jcenter.bintray.com/org/slf4j/slf4j-api/1.7.12/
slf4j-api-1.7.12.pom
Download https://jcenter.bintray.com/org/slf4j/slf4j-parent/1.7.12/
slf4j-parent-1.7.12.pom
Download https://jcenter.bintray.com/org/slf4j/slf4j-api/1.7.12/
slf4j-api-1.7.12.jar
:processResources UP-TO-DATE
:classes
:jar
:assemble

BUILD SUCCESSFUL

Total time: 4.458 secs

 8. Now run the HelloWorld application by using the following command (run task).

$ gradle run

 9. The Gradle run task was added when you added the plug-in entry apply
plugin: 'application'. Gradle plug-ins provide convenient ways to build
different kinds of Java projects and artifacts. You should see the Java HelloWorld
application launch just like in Figure 1-30.

There are many more powerful things you can do with Gradle that are beyond the scope of this book;
however, I will list some common commands you might be interested in using.

•	 gradle tasks: Lists all the available tasks

•	 gradle clean: Removes directories and files from the build directory

•	 gradle eclipseProject: Creates project files for the Eclipse IDE. This task will be
available when you add the following statement to the build.gradle file:

apply plugin: 'eclipse'

•	 gradle intellijProject: Creates project files for the IntelliJ IDE. This task will be
available when you add the following statement to the build.gradle file:

apply plugin: 'idea'

•	 gradle -help: Shows the available options and descriptions of commands

Chapter 1 ■ GettinG Started

41

Walking Through the HelloWorld Source Code
You’ll notice in the source code that JavaFX-based applications extend (inherit) from the javafx.
application.Application class. The Application class provides application lifecycle functions such
as initializing, launching, starting, and stopping during runtime. This provides a mechanism for Java
applications to launch JavaFX GUI components separate from the main thread. The code in Listing 1-2 is a
skeleton of the JavaFX HelloWorld application, having a main() method and an overridden start() method.

Listing 1-2. A Skeleton Version of the HelloWorld.java File

public class HelloWorld extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 // On the main thread
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // On the JavaFX application thread

 // JavaFX code goes here...
 }
}

Here, in the main() method’s entry point, you launch the JavaFX application by simply passing in the
command-line arguments to the Application.launch() method. To access any arguments passed into the
launch() method, you can invoke the getParameters() method of the Application class. See the Javadoc
documentation for details on various ways to access named and raw arguments. The following link is the
Javadoc documentation for the getParameters() method:

https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.
html#getParameters--

After the Application.launch() method has executed, the application will enter a ready state, and
the framework internals will invoke the start() method to begin. At this point, the program execution
occurs on the JavaFX application thread and not on the main thread. When the start() method is invoked,
a JavaFX javafx.stage.Stage object is available for the developer to use and manipulate. Following is the
overridden Application start() method:

@Override
public void start(Stage stage) {...}

When the program begins in the start() method, a separate thread of execution occurs, called the
JavaFX application thread. Keep in mind that running on the JavaFX application thread is synonymous in
concept with running on Java Swing’s event dispatch thread. Just be advised the difference between the Java
main thread and the UI thread when it relates to UI applications. Later in this book, you will learn how to

https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html#getParameters--
https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html#getParameters--

Chapter 1 ■ GettinG Started

42

create background processes to avoid blocking the JavaFX application thread. When you know how to build
applications to avoid blocking the GUI, the user will notice that your application is much more responsive
(snappy) under heavy usage. Mastering responsiveness in GUI applications is an important concept in
enhancing usability and the overall user experience. To see the Java Application API, visit the Javadoc here:

https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html
https://docs.oracle.com/javase/9/

JavaFX Scene Graph
You’ll notice that some classes and objects are oddly named, such as Stage and Scene. There isn’t a
coincidence—the designers of the API have modeled things after the idea of a theater or a play in which
actors perform in front of an audience. In this analogy, a play consists of one-to-many scenes in which actors
perform. And, of course, all scenes are performed on a stage one at a time. In JavaFX, the Stage is equivalent
to an application window similar to Java Swing API JFrame or JDialog on the desktop. Depending on the
device, such as a Raspberry Pi (Raspbian), there may be only one stage. You can think of a Scene object as a
content pane, similar to Java Swing’s JPanel, capable of holding zero-to-many Node objects (children).

Proceeding with the example, in the start() method, you see that for a JavaFX desktop window (stage)
you can set the title bar using the setTitle() method. Next, you create a root node (Group), which is added
to the Scene object as the top-level surface for the application window. The following code snippet shows
you how to set the title and create the scene:

stage.setTitle("Hello World");
Group root = new Group();
Scene scene = new Scene(root, 300, 250);

JavaFX Node
A JavaFX node is a fundamental base class for all scene graph nodes to be rendered. The following graphics
capabilities can be applied to nodes: scaling, transforms, translations, and effects.

Some of the most commonly used nodes are UI controls and Shape objects. Similar to a tree data
structure, a scene graph will contain children nodes by using a container class such as the Group or Pane
class. You’ll learn more about the Group class later when you look at the ObservableList class, but for now
you can think of them as Java List or Collection classes that are capable of holding child node objects. In
the following code, a button (Button) node is created to be positioned on the scene and set with an event
handler (EventHandler<ActionEvent>), which responds when the user presses the button. The handler
code will output the text "Hello World" on the console. For now the code shown here uses an anonymous
inner class; however you will learn later in Chapter 3 to use lambda expressions introduced in Java 8.

Button btn = new Button();
btn.setLayoutX(100);
btn.setLayoutY(80);
btn.setText("Hello World");
btn.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent event) {
 System.out.println("Hello World");
 }
});
root.getChildren().add(btn);

https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html
https://docs.oracle.com/javase/9/
http://dx.doi.org/10.1007/978-1-4842-1961-4_3

Chapter 1 ■ GettinG Started

43

Once the child nodes have been added to the root Group via the getChildren().add() method,
you set the stage’s scene and call the show() method on the Stage object to display a JavaFX application
window. By default, the window will allow users to minimize, maximize, and close (exit) the application.
The following code sets the scene and displays the JavaFX application window (the Stage):

stage.setScene(scene);
stage.show();

Packaging a JavaFX Application
At some point you will want to distribute or deploy your JavaFX application. To handle the numerous
application packaging and deployment strategies, Oracle’s Java team has created a Java Packager tool to
assist developers in building, packaging, and deploying their applications. To learn more about how to use
Java Packager tool, see Oracle’s “Deploying JavaFX Applications” at the following URL:

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javapackager.html

To give you a taste of the Java Packager tool's capabilities, I will show you how to package the
HelloWorld classes into a single executable file for the many supported platforms. This will allow users to
double-click to launch or install the application on the native operating system. The following commands
will automatically compile and generate executables, launchers, and installers located in ~/projects/
helloworld/dist/bundles directory. Type the following to create deployable Java applications.

$ cd ~/projects/helloworld
$ javapackager -makeall -appclass org.acme.helloworld.HelloWorld -name hellothere

Table 1-3 describes the common options and switches that are used in building distributable JavaFX
executable application bundles.

Table 1-3. Common JavaPackager Options to Build an Executable jar

Option/Switch Example Description

-createjar -- Creates a JavaFX jar executable application.

-appclass org.acme.helloworld.HelloWorld Specifies the fully qualified name of the class
containing the main() method.

-srcdir . The top-level location of the parent directory holding
the compiled classes (current directory).

-outdir out The destination where the packaged jar file will be
created.

-outfile helloworld.jar Specifies the name of the executable jar file.

-v -- Allows verbose displays logging information when
executing javapackager.

-native dmg JavaPackager can create installer, image, exe, msi, dmg,
rpm, and deb file extensions as deployable executables
on the native OS platform.

-makeall Based on the OS the packager tool will build installers and
executables. For example, for the MacOS X platform, the
dist/bundle directory will contain executables with file
extensions of the following: jnlp, dmg, app, pkg, and jar.

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javapackager.html#JavaPackager from Oracle

Chapter 1 ■ GettinG Started

44

To run the jar executable on the command line, you simply type the following and press Enter:

$ java -jar dist/bundles/dist.jar

To launch HelloWorld as a standalone application on the MacOS X operating system, just double-click
on the hellothere-1.0.dmg or hellothere-1.0.pkg application file in the bundles directory, as shown in
Figure 1-32.

There are many ways to package and deploy JavaFX applications. To learn more, see Oracle’s
“Java Packager Guide” at the following URL:

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javapackager.html

Also see the following, related articles:

•	 “Lesson: Deploying Self-Contained Applications” http://docs.oracle.com/
javase/tutorial/deployment/selfContainedApps/index.html

•	 “Self-Contained Application Packaging” https://docs.oracle.com/javase/8/
docs/technotes/guides/deploy/self-contained-packaging.html

•	 “Java Web Start Application” https://docs.oracle.com/javase/tutorial/
deployment/webstart/index.html

Downloading the Book’s Source Code
To get the source code for the book’s examples, you can go to two places:

•	 Apress book’s site at http://www.apress.com/us/services/source-code

•	 GitHub at https://github.com/carldea/jfx9be

Figure 1-32. Java Packager creates executables and installers of the HelloWorld application named hellothere.
Other application bundles exist, such as hellothere-1.0.dmg, to install the application correctly on the MacOS X
desktop.

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javapackager.html#JavaPackager from Oracle
http://docs.oracle.com/javase/tutorial/deployment/selfContainedApps/index.html
http://docs.oracle.com/javase/tutorial/deployment/selfContainedApps/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/deploy/self-contained-packaging.html
https://docs.oracle.com/javase/8/docs/technotes/guides/deploy/self-contained-packaging.html
https://docs.oracle.com/javase/tutorial/deployment/webstart/index.html
https://docs.oracle.com/javase/tutorial/deployment/webstart/index.html
http://www.apress.com/us/services/source-code
https://github.com/carldea/jfx9be

Chapter 1 ■ GettinG Started

45

Summary
So far you have managed to download and install Java 9 JDK, Gradle, and NetBeans IDE. After successfully
installing the prerequisite software, you created a JavaFX HelloWorld GUI application through the NetBeans
IDE. Then you were able to use a text editor to enter your source code and eventually compile and run the
binary class via a command-line prompt (the terminal window). Another method you learned was the use of
the Gradle Build tool to compile and launch the JavaFX application using tasks.

After learning three methods for compiling, building, and running a JavaFX application, you went
through a quick code walkthrough of the HelloWorld.java source file. You also learned to package a JavaFX
application as a standalone jar, dmg, pkg, and jnlp executable using the JavaFX Packager tool. Lastly, you
learned that you have two places to obtain the source code for the book.

Next, in Chapter 2, you learn what’s new in JDK 9 regarding project Jigsaw. If you understand
JDK 9’s modularity and are impatient, you can go to Chapter 3 to learn the fundamentals of JavaFX 9, such as
drawing and coloring shapes as well as drawing text and changing text fonts.

http://dx.doi.org/10.1007/978-1-4842-1961-4_2
http://dx.doi.org/10.1007/978-1-4842-1961-4_3

47© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_2

CHAPTER 2

JavaFX and Jigsaw

In the early days of software architectures, many designers and practitioners often stressed the idea
of modular code. Clearly, it makes sense to break up software services or APIs into modules; however,
depending on who you talk to, the word module has different meanings to different people.
For example, developers using Apache Maven build tools will often view jar artifacts as modules,
while some would argue that packages within artifacts are also modules. So what does the word
“module” mean in the Java world?

In this chapter, you’ll get to explore what modularity means for the new Java 9 platform. You’ll also
learn the Java platform module system (JPMS) in the context of JavaFX applications. This chapter is a gentle
introduction to Java 9’s module system with common use case scenarios such as using a module as a library
dependency.

Having said this, I will not be going into great detail covering every modularity use case (believe me,
there are quite a few of them). Even as of this writing, there are ongoing discussions regarding other use
cases, possibly out of the intended scope. For example, there are still ongoing discussions on the concept
of automatic modules and how modules should be named. Despite the back and forth from expert groups
and industry leaders relating to missing features versus scoped requirements, I trust the Java community
will come to a (well-intended) consensus on a robust modular system that will satisfy most use cases
out in the wild. To find out more on the topic of Java 9 Jigsaw, I have listed JSRs, books, and links in the
appendix of this book.

As a general disclaimer, especially relating to the new Java 9’s platform module system, I will caution
you with the following.

 ■ Disclaimer By the time you read this book, Java 9’s module system will be released. Since Java 9’s
module system is new, the language specifications, APIs, terminologies, and concepts are subject to change.
This chapter was written using Java 9’s early access edition.

Here is a list of sections to follow when reading this chapter on Java 9’s module system. If you already
know the background about Java 9’s module system and its history, you can skip right to the section called
“Getting Started.”

•	 What is Project Jigsaw?

•	 History (pre-Java 9)

•	 Getting Started

•	 Conclusion

http://download.java.net/java/jigsaw/docs/api/java/lang/module/ModuleFinder.html#of-java.nio.file.Path…-

ChAPTer 2 ■ JAvAFX And JIgSAw

48

What Is Project Jigsaw?
Java modularity, aka “Project Jigsaw,” was an effort to enable developers to partition and encapsulate code
in a more manageable manner on the Java platform. By way of partitioning code into modules, application
code will be more loosely coupled instead one monolithic application. With good encapsulation, modules
can be defined to expose (export) APIs to other modules safely. Java’s new module system will also be
backward compatible to code and libraries prior to Java 9 (non-modular code). Not only are partitioning and
encapsulating code very good principles, there are other additional benefits, as you will see later.

According to Mark Reinhold, he summarizes JSR 376 (Project Jigsaw):

The overall goal of this JSR is to define an approachable yet scalable module system for the
Java Platform. It will be approachable, i.e., easy to learn and easy to use, so that developers
can use it to construct and maintain libraries and large applications for both the Java SE
and Java EE Platforms. It will be scalable so that it can be used to modularize the Java SE
Platform itself, and its implementations.

Mark Reinhold Chief Architect of the Java Platform Group at Oracle, April 1, 2015

Benefits
According to the official web site of project Jigsaw (http://openjdk.java.net/projects/jigsaw) the
following are the primary goals and benefits of a modular system on the Java platform:

•	 Make the Java SE platform, and the JDK, more easily scalable down to small
computing devices

•	 Improve the security and maintainability of Java SE platform implementations in
general, and the JDK in particular

•	 Enable improved application performance

•	 Make it easier for developers to construct and maintain libraries and large
applications, for both the Java SE and EE platforms

To achieve these goals, we propose to design and implement a standard module system for
the Java SE platform and to apply that system to the platform itself, and to the JDK. The
module system should be powerful enough to modularize the JDK and other large legacy
code bases, yet still be approachable by all developers.

Project Jigsaw site December 21, 2016

As mentioned relating to partitioning applications these benefits can also lead to scaling down
applications to fit into smaller computing devices such as ARM based computers. Having modular code will
also help the maintenance and security on the Java SE and Java EE platforms as microservices becomes the
norm when developing on cloud and container-based application environments.

Since modules make way for reliable configuration building, applications would occupy smaller
footprints, thus increasing the performance in areas relating to memory and load times. An example of this
is a modular JavaFX application’s start-up speed boost due to a smaller set of modules loaded. Prior to
Java 9, applications were developed and packaged with the entire Java runtime. These apps had to load
many unused libraries such as corba or sql packages.

http://openjdk.java.net/projects/jigsaw)

ChAPTer 2 ■ JAvAFX And JIgSAw

49

Additional benefits when modularizing Java code (Java 9) are listed as Java Enhancement Proposals:

•	 Modular runtime Images (JEP 220 at http://openjdk.java.net/jeps/220)

•	 A Java linker for modules (JEP 282 http://openjdk.java.net/jeps/282)

•	 Ahead of time compilation (JEP 295 at http://openjdk.java.net/jeps/295)

The JEP 220 is the enhancement proposal for modular runtime images for the Java SE platform. The
architects had restructured the entire Java runtime platform such as its directories and core libraries.
Restructuring the runtime platform will help improve security, performance, and manageability. For
example, libraries such as rt.jar, tools.jar, and jfxrt.jar will no longer be accessible, but are all broken
out in modules.

New in Java 9 is jlink, the Java linker (JEP 282). jlink is a tool to assemble and build applications by
linking modules and their dependencies into a custom runtime image. To create custom runtime images,
the Java linker is used in conjunction with how the runtime is structured (JEP 220). In other words, the two
JEPs are essentially in lock step with each other.

Last of the 3 JEPs mentioned is JEP 295, ahead of time compilation. It’s better known as AOT
compilation. Although it is considered experimental, the AOT compiler is able to convert Java code into
native code on the Linux operating system. This has a nice advantage when environments don’t have a
Java runtime installed. Another advantage is speed. Since code is statically compiled, there is no need
to have JIT (just in time) compilation or warmups. This capability will be used in small devices or highly
efficient servers (network devices). By the time you read this, AOT compilation will be supported on
popular operating systems.

With these three important Java enhancement proposals working together, you’ll begin to see Java-based
applications built to be simpler, thinner, faster, and native.

Drawbacks
Although there are many benefits to designing modular code, there are some drawbacks. Some drawbacks
are the following:

•	 Additional complexity when defining modules and dependencies.

•	 No standard project structure for multiple modules, as it relates to various build tools
and IDEs.

•	 When mixing legacy non-modular code with modular code, the classpath and
module path are in play. Debugging code and resolving dependencies may be more
difficult.

•	 Legacy dependencies may never undergo a rewrite to become a Java 9 module,
which could risk backward or forward compatibility.

Java 9 Migration Path
Now that you’ve read about the benefits and drawbacks of the new Java platform module system, you might
still be on the fence, because of unknown risks. Perhaps you believe it’s still too new. To ease any potential
anxiety, Oracle has created an excellent guide to help you migrate legacy Java applications to Java 9. Go for it!

The migration guide is located here: https://docs.oracle.com/javase/9/migrate. Also, you should
look at important changes in JDK 9 here: https://docs.oracle.com/javase/9/whatsnew/toc.htm.

The guide is a very detailed explanation of what changed in Java 9 and how to use platform modules
and third-party libraries. The migration guide also talks about an analysis tool called jdeps.

http://openjdk.java.net/jeps/220
http://openjdk.java.net/jeps/282
http://openjdk.java.net/jeps/295
https://docs.oracle.com/javase/9/migrate
https://docs.oracle.com/javase/9/whatsnew/toc.htm

ChAPTer 2 ■ JAvAFX And JIgSAw

50

The jdeps Analysis Tool
When running jdeps against your application code, the tool will inspect code to determine if it relies on
deprecated dependencies or JDK internal APIs. For instance, the analysis tool will suggest APIs that should
be replaced. Some suggestions offer a replacement for code using packages starting with com.sun.*,
sun.misc.*, etc. For example, if you created a Java application unmodularized while referencing a
non-public package such as com.sun.*, the jdeps tool can offer an alternative module to use.

Here is the output after invoking the jdeps tool against a Java 8 compiled class file.

$ jdeps -cp . com/jfxbe/helloworld/HelloWorld.class
HelloWorld.class -> java.base
HelloWorld.class -> javafx.base
HelloWorld.class -> javafx.controls
HelloWorld.class -> javafx.graphics
HelloWorld.class -> jdk.httpserver
 com.jfxbe.helloworld -> com.sun.net.httpserver jdk.httpserver
 com.jfxbe.helloworld -> java.lang java.base
 com.jfxbe.helloworld -> javafx.application javafx.graphics
 com.jfxbe.helloworld -> javafx.collections javafx.base
 com.jfxbe.helloworld -> javafx.event javafx.base
 com.jfxbe.helloworld -> javafx.scene javafx.graphics
 com.jfxbe.helloworld -> javafx.scene.control javafx.controls
 com.jfxbe.helloworld -> javafx.stage javafx.graphics

The output of the analysis shows the summary and details of platform modules used by the HelloWorld.
class file. There you will notice the com.sun.net.httpserver can be found in the jdk.httpserver module.
Assuming your application depends on the class com.sun.net.httpserver.HttpServer, the suggestion to
migrate toward Java modules means you would need to create a module-info.java file to require the
jdk.httpserver module as a dependency.

Let’s take a look at another example of using the jdeps tool against a Java 9 modularized application
JAR file.

The following is an example of analyzing a modularized JAR application by displaying its dependency
information.

$ jdeps -v helloworld.jar

•	 -summary or -s Prints the dependency summary.

•	 -verbose or -v Prints all classes-level dependencies.

Here’s the output after running jdeps:

$ jdeps -v mlib/com.jfxbe.helloworld.jar
com.jfxbe.helloworld
 [file:///Users/cpdea/JavaFX9byExample/Code/jfx9be/chap02/helloworld/mlib/com.jfxbe.
helloworld.jar]
 requires mandated java.base (@9-ea)
 requires javafx.base (@9-ea)
 requires javafx.controls (@9-ea)
 requires javafx.graphics (@9-ea)
 requires jdk.httpserver (@9-ea)

ChAPTer 2 ■ JAvAFX And JIgSAw

51

com.jfxbe.helloworld -> java.base
com.jfxbe.helloworld -> javafx.base
com.jfxbe.helloworld -> javafx.controls
com.jfxbe.helloworld -> javafx.graphics
com.jfxbe.helloworld -> jdk.httpserver
 com.jfxbe.helloworld.HelloWorld -> com.jfxbe.helloworld.HelloWorld$1 com.jfxbe.

helloworld
 com.jfxbe.helloworld.HelloWorld -> com.sun.net.httpserver.HttpServer jdk.httpserver
 com.jfxbe.helloworld.HelloWorld -> java.lang.Object java.base
 com.jfxbe.helloworld.HelloWorld -> java.lang.String java.base
 com.jfxbe.helloworld.HelloWorld -> java.lang.Throwable java.base
 com.jfxbe.helloworld.HelloWorld -> javafx.application.Application javafx.graphics
 com.jfxbe.helloworld.HelloWorld -> javafx.collections.ObservableList javafx.base
 com.jfxbe.helloworld.HelloWorld -> javafx.event.EventHandler javafx.base
 com.jfxbe.helloworld.HelloWorld -> javafx.scene.Group javafx.graphics
 com.jfxbe.helloworld.HelloWorld -> javafx.scene.Parent javafx.graphics
 com.jfxbe.helloworld.HelloWorld -> javafx.scene.Scene javafx.graphics
 com.jfxbe.helloworld.HelloWorld -> javafx.scene.control.Button javafx.controls
 com.jfxbe.helloworld.HelloWorld -> javafx.stage.Stage javafx.graphics
 com.jfxbe.helloworld.HelloWorld$1 -> com.jfxbe.helloworld.HelloWorld com.jfxbe.

helloworld
 com.jfxbe.helloworld.HelloWorld$1 -> java.io.PrintStream java.base
 com.jfxbe.helloworld.HelloWorld$1 -> java.lang.Object java.base
 com.jfxbe.helloworld.HelloWorld$1 -> java.lang.String java.base
 com.jfxbe.helloworld.HelloWorld$1 -> java.lang.System java.base
 com.jfxbe.helloworld.HelloWorld$1 -> javafx.event.ActionEvent javafx.base
 com.jfxbe.helloworld.HelloWorld$1 -> javafx.event.Event javafx.base
 com.jfxbe.helloworld.HelloWorld$1 -> javafx.event.EventHandler javafx.base
 com.jfxbe.helloworld.HelloWorld$1 -> javafx.stage.Stage javafx.graphics

After running jdeps against your code, the tool will inform you of internal APIs if any. As you can see in
the output, the class HelloWorld depends on the following internal API:

com.sun.net.httpserver.HttpServer.

Another thing to note regarding the source code in this book is that you’ll find some of the source
code is in Java 8 or Java 9. Having said this, you will be happy to know that the new Java 9 compiler is able
to compile Java 8 source code as is (unmodularized). The module path classes loaded on the classpath are
placed into an unnamed module with all public packages exported (read accessible).

 ■ Note Some chapters use Java 8 source code from the prior edition of the book, while some chapters
use Java 9 source code (modules). There is no need to panic, as source code prior to Java 9 JdK will simply
compile and run. In other words, if you encounter Java 8 source code, just treat it as a regular (legacy) Java
code or unmodularized code.

ChAPTer 2 ■ JAvAFX And JIgSAw

52

Kill Switch
There are cases where legacy code that has been migrated to Java 9 (modularized code) could get a runtime
exception raised of type IllegalAccessException. This is due to the fact that the code is using reflection
APIs and Jigsaw’s strong encapsulation.

The engineers at Oracle have decided to provide a kill switch to allow things to bypass the illegal access
check when using reflection. The intent is to give developers more time to migrate code to Java 9 modules;
however, the kill switch will be removed in Java 10. The following is an example of using the kill switch to by
pass the runtime exception being raised.

$ java --permit-illegal-access -jar xyz.jar

You can see the tech note that fully explains this at:

http://mail.openjdk.java.net/pipermail/jigsaw-dev/2017-March/011763.html

Assuming you are convinced and are ready to jump on the Java Jigsaw train, let’s continue the
discussion on modules from past to present. Next, I will elaborate on the history of Java JAR files used as
modules. If you find the history of Java modules (prior to Java 9) a little boring, just skip past to the “Getting
Started” section.

History
So, modular application and dependency management isn’t new? Right?!

In the beginning, Java developers created libraries that consisted of class and resource files zipped into a
single Java archive file called a JAR. Each JAR file was considered a module within a Java application. As each
JAR file was loaded from the classpath, any public APIs within packages could be accessed from the library.
Although it was convenient to have accesses to various APIs, things began to get out of hand, which coined the
infamous term JAR hell. (Actually, it was originally derived from the term DLL hell, which developers from the
Microsoft operating system developing with C/C++ coined because there existed dynamically linked library
files (*.dll) that had a similar issue when resolving dependencies with shared libraries.)

JAR Hell
This term JAR hell is often referred to the JVM’s classpath type resolution or dependency resolution (on a
single classloader). For example, if you had two JAR files both containing a Person class, but both having
slightly different methods or attributes (two different versions), you may be wondering which one would be
used when instantiating a new Person() class?

Of course, this depends on the class loading order, but by default the JVM will load classes in the order it
which they were specified on the classpath, such as the -cp switch on the command line. Typically, the first
one loaded will be the one used (shadowing the second). Some web application environments can enforce
load orders, such as parent first or child first. You can see how confusing this can be when you are trying to
debug your application and you have no idea which Person class it’s using.

Because of these known issues, many Java experts formed the OSGi Alliance to create a standard
specification as a first step toward developing modular applications on the Java platform. The next section
briefly introduces the Java OSGi module system.

ChAPTer 2 ■ JAvAFX And JIgSAw

53

OSGi
As Java applications became larger with apps having numerous dependencies, things quickly became a
nightmare to manage. To solve Java modularity since 2000 the OSGi Alliance was formed to create an open
standards specification for a Java-based modular and services oriented system. OSGi’s goal was to provide
a specification for vendor’s to create implementations of an application container. An application container
contains JAR files, called bundles, that can be dynamically loaded without restarting the JVM.

In a nutshell, each JAR bundle contains metadata in a META-INF/manifest.mf file describing other
bundle dependencies. Based on the specification, there are many other ways to export packages and
encapsulate bundles. Since each bundle (module) is loaded in a separate class loader, different versions of
the same Java class can co-exist on the same JVM. For example, module A depends on the module com.foo.
bar-1.0.jar while module B depends on the module com.foo.bar-2.0.jar, as shown in Figure 2-1. Both
JAR files are bundles with each containing their own module definitions (manifest.mf).

Assuming the container already contains the two versions of com.foo.bar’s JAR bundles, a developer
would define module A’s manifest, as shown in Listing 2-1, and module B’s manifest, as shown in Listing 2-2.

Listing 2-1. Module A’s manifest.mf File Containing an OSGi Bundle Definition. Module A Depends on a
Package com.foo.bar from the JAR File com.foo.bar-1.0.jar.

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: module-a
Bundle-SymbolicName: com.carlfx.myservice1
Bundle-Version: 1.0.0
Bundle-Activator: com.carlfx.myservice1.Activator
Import-Package: com.foo.bar;version="1.0"
Export-Package: com.carlfx.myservice1.api;version="1.0.0"

Figure 2-1. An OSGi container with four distinct bundles. Here, module A depends on module com.foo.bar
version 1.0 and module B depends on module com.foo.bar version 2.0.

ChAPTer 2 ■ JAvAFX And JIgSAw

54

Assuming the application is running on an OSGi container, each bundle will undergo a bundle loading
lifecycle. Similar to operating systems, where each application has a process ID (PID), an OSGi container
will assign each bundle a unique bundle ID. This unique ID allows developers to monitor, stop, and start
bundles dynamically.

Listing 2-2. Module B’s manifest.mf File Containing an OSGi Bundle Definition. Module B Depends on a
Package com.foo.bar from the JAR File com.foo.bar-2.0.jar.

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: module-b
Bundle-SymbolicName: com.carlfx.myservice2
Bundle-Version: 1.0.0
Bundle-Activator: com.carlfx.myservice2.Activator
Import-Package: com.foo.bar;version="2.0"
Export-Package: com.carlfx.myservice2.api;version="1.0.0"

The OSGi specification spells out all the attributes and naming conventions on how to define manifest
files; however, this can be extremely tedious to do by hand. To easily build bundles, check out Bnd tools at
http://bndtools.org. Also, there are Maven plugins and Gradle plugins for using Bnd tools to assemble
bundles.

To be honest, in my experiences with OSGi, I know and believe it is a sound architecture; however, I
sense the rate of adoption is low due to its steep learning curve when developing, debugging, and deploying
Java-based applications that run on top of it. For example, building HelloWorld on an OSGi container
is just overkill. But if you were interested in building an application launcher that managed dynamic
services or child apps similar to the Android OS on a mobile device, you may choose to use OSGi. In short,
OSGi containers allow you to install services and apps (bundles) without having to reboot the main Java
application and JVM.

The following are the top four OSGi implementations available:

•	 Apache Felix: http://felix.apache.org

•	 Eclipse Equinox: http://www.eclipse.org/equinox

•	 Eclipse Concierge: http://www.eclipse.org/concierge

•	 ProSys: https://www.bosch-si.com/iot-platform/iot-platform/gateway/
software.html

Maven/Gradle
Another important thing I’ve not yet mentioned is dependency management when building applications.
In other words, when you build a Java application, you will need to obtain the correctly versioned JAR
library dependencies in order to compile, deploy, and run your application. Whenever you have one JAR
depending on another JAR and so on, thus creating a dependency graph (tree), this is called transitive
dependencies. Having extremely large transitive dependencies often frustrates developers when it comes
time to trace and debug code. As you will learn later with Java 9’s Jigsaw regarding module definitions,
you will be able to specify how how to map dependencies quite easily. This section briefly mentions the
popular build tool Maven.

http://bndtools.org/
http://felix.apache.org/
http://www.eclipse.org/equinox
http://www.eclipse.org/concierge
https://www.bosch-si.com/iot-platform/iot-platform/gateway/software.html
https://www.bosch-si.com/iot-platform/iot-platform/gateway/software.html

ChAPTer 2 ■ JAvAFX And JIgSAw

55

Repositories
To avoid more JAR hell and manage dependencies properly, the Apache group released Maven, a build
automation tool, in 2004. The build tool established conventions for Java projects. One core convention
is how a Java project is structured. These project structures also led to a more standard ways to build Java
artifacts (modules). While Maven is more than just a build tool, they have also became somewhat of a de
facto standard for hosting JARs in repositories. These repositories hold all of the popular open source JAR
libraries used today. Although you can have a private repository, the Maven Central is the official public repo
on the Internet. I also want to give a shout out to the folks from JFrog (https://www.jfrog.com/). JFrog is a
company who specializes in build and repository infrastructure services. JFrog’s Bintray service allows you
to host binaries and executables at their repositories at https://www.jfrog.com/bintray.

Maven Coordinates
The folks who created Apache Maven also created the concept called Maven coordinates, where modules
(artifacts) are uniquely named using a group ID, an artifact ID, and a version. For example, Listing 2-3
includes a Maven coordinate to the popular Netty library for network programming. A Maven pom.xml file
usually will contain a list of dependencies for compilation.

Listing 2-3. An Excerpt of a pom.xml Containing a Maven Coordinate to a JAR Dependency

<dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-all</artifactId>
 <version>4.0.46.Final</version>
</dependency>

To search and locate library dependencies, head over to https://search.maven.org. There you will
find popular open source libraries. One last mention regarding dependencies and build tools is the Gradle
build tool at https://gradle.org. Listing 2-4 shows Gradle’s way of using Maven coordinates to use
dependencies.

Listing 2-4. A Gradle Script with a Dependency Using Maven Coordinates. The Group ID, Artifact ID, and
Version Are Separated by Colons.

dependencies {
 compile 'io.netty:netty-all:4.0.46.Final'
 testCompile 'junit:junit:4.12'
}

Again, I want to remind you that by the time you read this chapter, the build tools such as Maven and
Gradle will be able to build (work) against Java 9 module code projects.

Now that you’ve had a glimpse of the past and current history of Java modules, let’s get started using
Java 9 modules!

Getting Started
Before you get started implementing modules, this section talks about Java 9’s module path. Assuming you
already know about the Java classpath, what is new to Java 9 is the module path (--module-path). Knowing
the module path and classpath will help you learn how JAR files and classes get loaded. For example,
whenever you are compiling and running code prior to Java 9 with the Java 9 compiler, you’ll want to know
how Java 9 modules and legacy JAR files co-exist.

https://www.jfrog.com/
https://www.jfrog.com/bintray
https://search.maven.org/
https://gradle.org/

ChAPTer 2 ■ JAvAFX And JIgSAw

56

What Is the Module Path?
The new Java 9 module path is capable of exposing modules and packages to application code or other
modules while hiding packages you don’t want exposed. In contrast, the classpath has no ability to
encapsulate JARs as modules and their class types. The main issue with the classpath is when you have a
public class type from two different JAR files. To see more on the issue, look at the earlier section on history
(JAR hell). So, this begs the question, how do you specify the module path?

You’ll be shown how to create modules later, but for now you’ll learn things a little bit backward. What I
mean by this is you’ll be shown how to run (execute) a module first and then learn how to create a module.

The module path is a list of elements where each element is either a module JAR file or a module
directory. Similar to the classpath, each element is separated by a path separator such as a : or ; for Unix-like
OSes and Windows OS, respectively. Here is the usage of the module path when running a module application:

$ java --module-path <module path> --module <module name>/<Main class>

•	 --module-path or -p: A list of modules as JAR files or directories containing modules.

•	 --module or -m: The name of the module you want to execute and the main class
separated by a forward slash.

Since you will learn how to create and build a modular JAR file later, you’ll assume a module already exists
on the filesystem. For example, this is how you would specify the module path in order to run an application:

$ java --module-path com.jfxbe.physicsengine.jar:mods -m com.jfxbe.game/com.carlfx.game.Main

In the example, the first element specified on the --module-path is a modularized JAR file named com.
jfxbe.physicsengine.jar. Here, the JAR file is located local to the current path. The second element specified on
the module path is some directory named mods. The directory mods can be named anything, but as a convention
it’s short for “modules”. The mods directory is where the compiled module code goes. The mods directory can
contain one-to-many module directories. These module directories contain compiled code similar to the
classpath. Listing 2-5 is a directory structure of the compiled code in the com.jfxbe.game module.

Listing 2-5. A Directory Structure of the Compiled Code in the com.jfxbe.game Module

mods/
|---- com.jfxbe.game/
 |---- module-info.class
 |---- com/
 | |---- jfxbe/
 | | |---- game/
 | | |---- Main.class
 |---- images/
 | |---- player1.png
 | |---- player2.png
 | |---- enemy.png
 |---- soundfx/
 |---- snore.au

The mods directory contains a module or directory named com.jfxbe.game that contains the compiled
code and resources. You’ll also notice the module-info.class file is shown in bold in the com.jfxbe.game
directory. A class file is created after compiling a module-info.java source file. The module-info.java
source file is called a module definition. Let’s take a look at Java 9’s module definition syntax.

ChAPTer 2 ■ JAvAFX And JIgSAw

57

Module Definition
In short, a module definition is a configuration file listing module dependencies and package exports.
New keywords introduced to Java 9 modules are requires and exports. The requires keyword is
used to define which modules you’ll be needing (dependent on). The exports keyword allows other
modules to read its packages. Listing 2-6 shows the code for defining a basic module contained in a
module-info.java file.

Listing 2-6. A Basic Module Definition Having One Dependency and One Package Exported

module <module name> {
 requires [public] <module dependency>;
 exports <package name>;
}

As a heads-up regarding the syntax in Listing 2-6, the angle brackets and square brackets are not part
of the syntax, but a way to let the reader know what is required and what is optional. In Listing 2-6, the angle
brackets <> denote that it’s required and the square brackets mean it’s optional. For example, the module
name is required and the public keyword to the right of requires is optional. Let’s break things down and
explain each item in order to define a module.

Module Naming
Beginning with Listing 2-6 is the <module name>. You’re probably wondering how to name a module.
I know, in particular, I struggled with what to name a module. Actually, it’s pretty simple, according to the
Jigsaw project specification document on naming module names. It states the following:

Module names, like package names, must not conflict. The recommended way to name a
module is to use the reverse-domain-name pattern that has long been recommended for
naming packages. The name of a module will, therefore, often be a prefix of the names of
its exported packages, but this relationship is not mandatory.

The State of the Module System, Mark Reinhold March 3, 2016

http://openjdk.java.net/projects/jigsaw/spec/sotms/

An example of a module using the reverse-domain-name pattern would be the following:

A hypothetical domain name of your company: http://www.mycompany.com

The module name should read: com.mycompany.mymodule

Requires
Continuing with the basic module definition shown in Listing 2-6, the keyword “requires” references
module dependencies. The keyword “requires” indicates that the current module depends on the other
named module. One important point to acknowledge is that all modules implicitly depend on (requires)
the base platform module java.base. Also, if you are using JavaFX in your modules, you will implicitly get
the module javafx.base loaded.

http://www.mycompany.com/

ChAPTer 2 ■ JAvAFX And JIgSAw

58

Requires Public (Implied Readability)
In Listing 2-6, the optional [public] modifier for a requires module dependency allows derived modules
to have read access implicitly, better known as implied readability. An example would be module-A depends
on the module java.logging having the public modifier, so another module, let’s say module-B, depends on
module-A.

Knowing that the logging module is declared public in module-A, module-B will automatically be able to have
readability from the module java.logging. This is nice because module-B’s module definition wouldn’t have to
add a statement like requires java.logging. module-B will implicitly get java.logging module for free.

Exports
When using the exports in your module definition, you are exposing package namespaces with public
classes.

Although there are other keywords that define other readability relationship options, I won’t go into
those because they are beyond the scope of this book. Suffice it to say, most of the time you will be using the
basic module definition shown in Listing 2-6. Now that you know how to run and define modules, you will
want to understand module types. Understanding module types will help you know how legacy code and
Java 9 modules are loaded.

Module Types
There are four types of modules that the Java runtime will load classes into. Module types are based on
whether classes or JARs are used on the classpath or the module path. As modules and classes get loaded
into the JVM (class loader), they become one of the four module types. Each module type will have
readability access to certain packages and classes. For example, when defining an application module,
the implementer will want to expose APIs by using the keyword export to allow packages to be read by
other modules and classes. Figure 2-2 shows a typical dependency graph. This dependency graph shows
an application module that depends on two platform modules—the unnamed module and two automatic
modules, respectively.

Figure 2-2. A dependency graph of an application module (com.mycompany.modulea) that depends on two
platform modules—the unnamed module and two automatic modules

ChAPTer 2 ■ JAvAFX And JIgSAw

59

Let’s look at the four module types in more detail in order to understand the readability relationships
between them.

The following are the descriptions of four module types with their readability access:

•	 Application module: Created named modules that can read the following module
types:

•	 Platform

•	 Application

•	 Automatic

•	 Platform module: Core modules from the Java runtime cannot read other module
types. The core modules can have public access to read other core modules as long
as they are defined as public, such as java.logging or java.base.

•	 Automatic module: JAR libraries that get automatically converted to application
module types can read the following module types:

•	 Platform

•	 Application

•	 Automatic

•	 Unnamed

•	 Unnamed module: Any classes or JAR libraries loaded on the classpath will be loaded
into the unnamed module. The unnamed module type can read from the following
module types:

•	 Platform

•	 Application

•	 Automatic

The unnamed module can’t read another unnamed module because there is only one (per classloader).
JARs and classes loaded from the classpath get loaded into the unnamed module. All the public class types
and packages are exported to allow classes with the unnamed module to access other classes.

Application Module (Explicit Modules)
Application modules are the modules you create as libraries or applications. As a reminder on a naming
convention for modules, you’ll want to use the reverse-domain-name pattern such as the following:

module com.mycompany.modulea {
 // rest of the declaration
}

When running your module application, you will need to specify it on the module path, as shown here.

$ java --module-path mods/com.mycompany.modulea ...

You’ll see the mods directory, which is created to hold the compiled modules.

ChAPTer 2 ■ JAvAFX And JIgSAw

60

Platform Modules (Implicit)
Platform modules are considered implicit modules that are core Java and JavaFX platform modules used in
application modules. Later you will be creating a HelloWorld application using platform modules.

Here is a list of common Java and JavaFX platform modules:

java.base
java.logging

javafx.base
javafx.controls
javafx.fxml
javafx.graphics
javafx.media
javafx.swing
javafx.web

JavaFX Platform Module Graph
Not much has changed between JavaFX 8 and JavaFX 9; however, JavaFX 9 is newly modularized. In other
words, JavaFX classes has been broken out into platform modules as opposed to all JavaFX classes put into
the jfxrt.jar file. When creating modules, you will want to know which JavaFX modules you’ll want to
depend on (requires).

To show JavaFX 9’s dependency graph, I recall slides describing the readability relationship from
Jonathan Giles’ talk on JavaFX 9 – New & Noteworthy at JavaOne 2015. Jonathan is a JavaOne Rockstar
speaker and JavaFX technical lead at Oracle Corp. To depict the entire JavaFX module graph, Figure 2-3
shows all modules that depend on the javafx.base module.

Figure 2-3. The entire JavaFX module graph. All derived modules depend on javafx.base

ChAPTer 2 ■ JAvAFX And JIgSAw

61

As described, JavaFX platform modules depend on javafx.base. Actually, they all do not depend on
javafx.base, but depend on javafx.graphics. The javafx.graphics module’s definition will have the
public modifier next to the javafx.base, thus making the module javafx.base read accessible to derived
modules of the javafx.graphics module, as shown here:

module javafx.graphics {
 requires public javafx.base;
}

Also, shown in Figure 2-4 are the other JavaFX platform modules that require the module javafx.graphics
while having read access implicitly to the javafx.base module.

Figure 2-5 is the module javafx.controls depending on the module javafx.graphics, which
ultimately depends on the javafx.base module. Assuming you know about implicit readability, creating a
module that depends on the javafx.controls means you won’t need to add a requires javafx.graphics or
javafx.base to your module definition.

Figure 2-4. javafx.graphics depends on javafx.base

ChAPTer 2 ■ JAvAFX And JIgSAw

62

Now that you know about platform modules, let’s look at the rest of the module types, such as the
unnamed module.

Unnamed Module (Classes and Non-Jigsaw Modules on the Classpath)
Any classes or JAR libraries loaded on the classpath will go into an unnamed module. Since it is a single
module with no module name other application modules cannot reference it using the requires in their
module definitions, hence the name unnamed or no name module. This unnamed module’s main purpose
is to export any public classes to JVM. For example, if a JAR library was loaded into the unnamed module, all
public classes can be used.

Automatic Modules (JAR Files Loaded as Named Modules)
Any legacy JAR file (non-modularized) can be converted to a named module. Instead of legacy JAR files used
on the classpath, JARs can be put on the module path to be automatically converted to a named module.
The current naming algorithm is in the Javadoc documentation on the ModuleFinder class of the java.base
module.

http://download.java.net/java/jigsaw/docs/api/java/lang/module/ModuleFinder.html#of-
java.nio.file.Path...-

Now that you know about all the different types of modules and how they are loaded, I will show you
how to create a JavaFX HelloWorld example application using Java 9 modules.

Figure 2-5. All JavaFX modules depend on the javafx.graphic module

ChAPTer 2 ■ JAvAFX And JIgSAw

63

An Example HelloWorld JavaFX 9 Modular Application
In this example, you will be creating a HelloWorld JavaFX 9 modular application. To build a Java 9 project,
use the following steps.

Create Project Structure
Create a project directory with the following command-line statements:

Windows
C:\>md \helloworld\src\

Mac/Linux
$ mkdir -p helloworld/src

Create the main module’s source directory:

Windows
C:\> cd helloworld
C:\helloworld> md \src\com.jfxbe.helloworld

Mac/Linux
$ cd helloworld
$ mkdir src/com.jfxbe.helloworld

Create the Java package directory structure to hold your source code files.

Windows
C:\helloworld> md \src\com.jfxbe.helloworld\com\jfxbe\helloworld

Mac/Linux
$ mkdir -p src/com.jfxbe.helloworld/com/jfxbe/helloworld

The following directory structure is created for the module application helloworld:

|---- helloworld/
 |---- src/
 |---- com.jfxbe.helloworld/
 |---- com/
 |---- jfxbe/
 |---- helloworld/

Create a Module Definition
Create a file named module-info.java in the helloworld/src/com.jfxbe.helloworld directory.
Define a module-info.java file for the HelloWorld module.

module com.jfxbe.helloworld {
 requires javafx.controls;
 exports com.jfxbe.helloworld;
}

ChAPTer 2 ■ JAvAFX And JIgSAw

64

The following is how the directory structure should look:

|---- helloworld/
 |---- src/
 |---- com.jfxbe.helloworld/
 |----module-info.java
 |---- com/
 |---- jfxbe/
 |---- helloworld/

Next, you will create the JavaFX HelloWorld example code in the helloworld directory.

Create Main Application Code
Create the HelloWorld.java file to be placed in the src/com.jfxbe.helloworld/com/jfxbe/helloworld
directory. Just enter the source code from Listing 2-7 into a text edit and save it. As a reminder, the package
name is com.jfxbe.helloworld.

Listing 2-7. The Main HelloWorld Application

package com.jfxbe.helloworld;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;

/**
 * A JavaFX Hello World
 * @author carldea
 */
public class HelloWorld extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 stage.setTitle("Hello World");
 Group root = new Group();
 Scene scene = new Scene(root, 300, 250);
 Button btn = new Button();
 btn.setLayoutX(100);

ChAPTer 2 ■ JAvAFX And JIgSAw

65

 btn.setLayoutY(80);
 btn.setText("Hello World");
 btn.setOnAction(new EventHandler<ActionEvent>() {

 public void handle(ActionEvent event) {
 System.out.println("Hello World");
 }
 });
 root.getChildren().add(btn);
 stage.setScene(scene);
 stage.show();
 }
}

Compile Code (Module)
Assume you are at the directory above the src directory (helloworld) before compiling the source code.
Next, you must compile the application as a module.

On the Linux/MacOS X platform, do the following:

 $ javac -d mods/com.jfxbe.helloworld src/com.jfxbe.helloworld/module-info.java \
src/com.jfxbe.helloworld/com/jfxbe/helloworld/HelloWorld.java

On the Windows platform, do the following:

 C:\helloworld>javac -d mods\com.jfxbe.helloworld src\com.jfxbe.helloworld\module-info.java
src\com.jfxbe.helloworld\com\jfxbe\helloworld\HelloWorld.java

If you are going to use third-party modules, you will have to compile your code with the --modules-path
switch to let the compiler know what additional modules need to be put on the module path. For example,
if your HelloWorld module needed to use the class com.xyzcompany.ServiceA from a third-party Java 9
module named com.xyzcompany.coolmodule, you will need to add the entry into the module-info.java file
and then compile the code like so:

On the Linux/MacOS X platform, do the following:

$ javac --modules-path mlibs -d mods/com.jfxbe.helloworld $(find src -name "*.java")

On the Windows platform, do the following:

C:\helloworld> javac --modules-path mlibs -d mods\com.jfxbe.helloworld src\com.jfxbe.
helloworld\module-info.java src\com.jfxbe.helloworld\com\jfxbe\helloworld\HelloWorld.java

The third-party module used in this example resides in the mlibs directory as a JAR file.

Copy Resources
Since this HelloWorld application does not have any resources such as fxml files, images, or sound files,
you can skip this step. But if you have resources to be copied over to the module directory, use the following
commands. Change the following command to your satisfaction. Here are the commands to recursively copy
files containing the suffix *.fxml to the mods/com.jfxbe.helloworld/com/jfxbe/helloworld directory.

ChAPTer 2 ■ JAvAFX And JIgSAw

66

On the Linux/MacOS X platform, do the following:

$ cp -r src/*.fxml mods/com.jfxbe.helloworld/com/jfxbe/helloworld

On the Windows platform, do the following:

C:\helloworld> xcopy C:\helloworld\src*.fxml C:\helloworld\mods\com.jfxbe.helloworld /S /Y

These commands copy files that end in .fxml recursively and place them in the module directory. This
is important when your code tries to invoke the getResource() method.

Run Application
Here is how you run the application by specifying the module and class with a main application:

$ java --module-path mods -m com.jfxbe.helloworld/com.jfxbe.helloworld.HelloWorld

Figure 2-6 shows the output of running the HelloWorld JavaFX module application.

Package Application as JAR
The previous module was compiled as classes that were put into the mods/com.jfxbe.helloworld directory.
Wouldn’t it be nice to create a JAR file executable? Well, let’s begin by creating a mlib directory. This can be
named anything, but, as a convention, the mlib stands for module libraries. The mlib directory will contain
the JAR module application. The following explains how to package a Java 9 modular application.

On the Linux/MacOS X platform, do the following:

$ mkdir mlib
$ jar --create --file=mlib/com.jfxbe.helloworld.jar \
--main-class=com.jfxbe.helloworld.HelloWorld -C mods/com.jfxbe.helloworld/.

Figure 2-6. Output of the HelloWorld JavaFX modularized application

ChAPTer 2 ■ JAvAFX And JIgSAw

67

On the Windows platform, do the following:

C:\helloworld> md mlib
C:\helloworld> jar --create --file=C:\helloworld\mlib\com.jfxbe.helloworld.jar --main-
class=com.jfxbe.helloworld.HelloWorld -C C:\helloworld\mods\com.jfxbe.helloworld.

The switches are described as follows:

•	 --create: Creates a JAR file

•	 --file: The JAR file to be created

•	 --main-class: The main class as a JavaFX application

•	 -C: This switch helps change directories and code to turn into

Run Application as JAR
Another way to run the JavaFX application is to run it as a JAR file. Since the JAR was created with a main
class specified, the following commands don’t include the class name to run the application. This will cut
down on the typing.

java --module-path mlib -m com.jfxbe.helloworld

Since the JAR module definition points to the Java’s main class, you will notice that -m does not need to
specify the package name/class type. This is just a shortcut instead of the more robust way of Java.

Display Module Description
Now that you know how to package your application as a JAR file, you may want to peek into or display
the module info with its dependencies. The following command will read and display a module’s
module-info file.

jar --describe-module --file=mlib/com.jfxbe.helloworld.jar

The following output shows the use of the --describe-module switch.

module com.jfxbe.helloworld (module-info.class)
 requires mandated java.base
 requires javafx.base
 requires javafx.controls
 requires javafx.graphics
 exports com.jfxbe.helloworld
 main-class com.jfxbe.helloworld.HelloWorld

ChAPTer 2 ■ JAvAFX And JIgSAw

68

Summary
In this chapter, you learned about Java 9’s project Jigsaw to modularize Java code. You got a chance to look
at the benefits and drawbacks of modularizing. You ran the jdeps tool to assist you in your migration path
from JDK 8 to JDK 9. After that, you heard about the term of JAR hell, which basically means Java classes
will conflict when different versions are loaded from the classpath. You also learned a little about OSGi
containers and how to easily create module bundles. OSGi contains a plethora of attributes as bundle
definitions.

Along with modules, you got a glimpse of Maven/Gradle build tools on managing dependencies.
These build tools also have repositories that enable developers to store and retrieve artifacts.

Next, you learned how to define a module definition in a module-info.java file. After defining a
module, you learned about four module types. The following module types are: Platform, Unnamed,
Automatic, and Application. You learned about more details regarding the JavaFX platform modules by
seeing the entire module graph.

Last but not least, you got a chance to create a JavaFX HelloWorld application as a Java 9 module.
You were able to learn how to compile and create a Java 9 JAR module.

Well, there you have it—Java 9 modules.

69© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_3

CHAPTER 3

JavaFX Fundamentals

There is nothing more frustrating than receiving complicated advice as a solution to a problem. Because
of this, I have always made it a point to focus on the fundamentals. In the case of JavaFX, you will learn
about fundamental drawing primitives that will be used on the drawing surface (JavaFX scene). In order to
render graphics on the JavaFX scene, you need basic shapes and colors. Expanding on your knowledge of
the JavaFX scene graph, which you visited toward the end of Chapter 1, you will learn in this chapter how to
draw and manipulate 2D shapes on the JavaFX scene graph.

Even more fundamental than a shape object is JavaFX’s javafx.scene.Node class. The Node class is a
fundamental base class for all JavaFX scene graph nodes. The Node class provides the ability to transform,
translate, and apply effects to any node. Many examples in this chapter involve the javafx.scene.shape.
Shape class, which is a descendant of the Node class. Therefore, the Shape class will inherit all of the Node
class’s capabilities. In this chapter, you will explore many derived classes that inherit from Shape. You will
begin this chapter by examining JavaFX’s most basic shape, the Line node.

JavaFX Lines
Rendering lines in JavaFX is conceptually similar to Euclidean geometry in that two (x, y) coordinate points
connect to draw a segment into space. When drawn on the JavaFX scene graph, lines are rendered using
the screen coordinate space (system). In geometry, a line is defined as a segment connected by two points
in space, although it lacks a width (thickness) and color value. You may be asking the question, “Does this
mean that lines are invisible?”. In the computer world, physical devices plot pixels and shapes that occupy
real surfaces. So, lines drawn on these surfaces will have what is known as a pixel or stroke width. Monitors
and printers are examples of such surfaces. Because of this method of production, modern graphics
programming has adopted the standard screen coordinate system. In this system, lines that are drawn are
visible and have attributes of width and color.

If you remember in grade school in Algebra class, a Cartesian graph is drawn with an X and Y axis
where the origin point (0, 0) is where both axes converge at the center. On a computer screen, the coordinate
system has the origin (0, 0) at the upper-left corner; this differs from the Cartesian coordinate system, where
(0, 0) is placed at the center of the graphing area. In Figure 3-1, it depicts the two coordinate systems as a
comparison. The Cartesian coordinate system shown on the left has all four quadrants as visible plotting
areas. Shown on the right side in Figure 3-1 is the Screen coordinate system that has the bottom-right
quadrant (gray region) as the screen’s visible plotting area.

http://dx.doi.org/10.1007/978-1-4842-1961-4_1
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Shape.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Shape.html

Chapter 3 ■ JavaFX Fundamentals

70

Taking a closer look at Figure 3-1, you’ll see both coordinate systems. The x coordinate has the same
effect when moving a point along the x axis. However, when using the screen coordinate system to move
along the y axis, the effect is opposite that of the Cartesian system. In other words, the y coordinate’s value
increases when moving a point in a downward direction (top to bottom). Figure 3-2 illustrates shapes drawn
using the screen coordinate system. Also note that using negative values will plot objects off the screen, such
as the star shape partially shown in the viewable area.

Figure 3-1. Cartesian versus screen coordinate system. In a Cartesian coordinate system, the origin point (0, 0) is
in the center, while a screen coordinate system’s origin point (0, 0) is at the upper-left of a screen or monitor.

Figure 3-2. The screen coordinate system

Chapter 3 ■ JavaFX Fundamentals

71

As you learn more about JavaFX, you will discover many scene graph objects, such as lines, circles, and
rectangles. These objects are derived classes of the Shape class. All shape objects can perform geometric
operations between two shaped areas, such as subtract, intersect, and union. By mastering the Shape API,
you will begin to see endless possibilities. Now let’s discuss how to create lines.

To draw lines in JavaFX, you will use the javafx.scene.shape.Line class. When creating a Line
instance, you need to specify a start (x, y) coordinate and an end (x, y) coordinate to draw a line. There
are two ways to specify the start and end points when creating Line nodes. The first way is to use a Line’s
constructor with the parameters startX, startY, endX, and endY. The second way is to instantiate the Line
class with the empty constructor and subsequently use its setter methods. Although these two methods
of creating a Line node sound pretty basic, I want to point out that there used to be a third method of
constructing lines using deprecated builder classes. You will see later in this chapter why the JavaFX team
decided to deprecate those classes. The data types of all the parameters of a Line class are double type
values, which provide floating-point decimal precision. The following code snippet shows the two methods
of creating a Line shape node.

Line method1 = new Line(startX, startY, endX, endY);

Line method2 = Line();
method.setStartX(startX);
method.setStartY(startY);
method.setEndX(endX);
method.setEndY(endY);

Relating to decimal precision values used as screen coordinates, keep in mind that container classes
that extend the Region class have a snapToPixelProperty() method property with a default value of true.
Being true, the children nodes will use integer precision as values for screen coordinates. The Javadoc
documentation of the Node class describes how pixels are rendered by stating: “At the device pixel level,
integer coordinates map onto the corners and cracks between the pixels and the centers of the pixels appear
at the midpoints between integer pixel locations.”

Using integer values (whole numbers) by drawing a line or shape with a stroke width of 1 will tend to
look fuzzy. Based on the Javadoc documentation, the coordinate maps to the upper-left corner (crack) to
draw the pixel occupying two pixels. For example, if you’re drawing a horizontal line having a starting point
at (1, 1) and an ending point at (8, 1), the JavaFX coordinates will draw pixels on both sides of the crack, as
shown in Figure 3-3. The cracks are shown as grid lines. Each grid block (square) is denoted as a pixel.
The algorithm also uses varied color intensities.

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Shape.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Line.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/Region.html#snapToPixelProperty--

Chapter 3 ■ JavaFX Fundamentals

72

To explore JavaFX’s further, I created a simple example of various lines drawn on the scene graph, as
shown in Figure 3-4. These lines are mostly identical; however, when using integer values for coordinates,
lines will tend to look thick or fuzzy. When coordinates have floating point values that have a remainder of
less than or equal to .5, the line will appear thin (occupying one pixel). Notice the Thin 2 line as a light gray,
making it appear even thinner, yet still occupying one pixel.

Assuming your lines appear fuzzy (using integer coordinate values), you will likely want your lines sharp
and thin. To have a line stroke be thin, just add .5 to your coordinate value, which maps to the inner part of
the stroke pixel of the screen coordinate point. When using a fractional coordinate value, JavaFX will render
the line as one pixel, thus making it look thin. Looking at a line a pixel wide is rather difficult, so Figure 3-5
shows the five lines zoomed in.

Figure 3-4. Drawn are five lines—Default, Fat, Fuzzy, Thin 1, and Thin 2

Figure 3-3. A line drawn using integer values will appear thick and fuzzy (blurry). In JavaFX lines using
integer values will occupy two pixels. Also, the color of the pixel could change based on the fractional values of
the coordinate or the width of the stroke.

Chapter 3 ■ JavaFX Fundamentals

73

Continuing the discussion of creating lines, the following line has a start point (100.0, 10.0) and an end
point (10.0, 110.0) and will be created using a constructor.

Line line = new Line(100.0, 10.0, 10.0, 110.0);

The second way to create a line node is to instantiate a Line class by using the empty default constructor
and subsequently setting each attribute using associated setter methods. The following code snippet shows
how to specify a line’s start and end points using setter methods.

Line line = new Line();
line.setStartX(100);
line.setStartY(10);
line.setEndX(10);
line.setEndY(110);

Line nodes drawn on the scene graph default to a stroke width of 1.0 (double) and a stroke color of
black (Color.BLACK). According to the Javadoc, all shapes (such as Text, Rectangle, etc.) have a stroke color
of null (no color) except for Line, Polyline, and Path nodes.

Now that you know how to draw lines on the scene graph, you are probably wondering how to be more
creative with lines. Creating different kinds of lines is simple; you basically set properties inherited from the
parent class (javafx.scene.shape.Shape). Table 3-1 shows the properties you can set on a line (Shape). To
retrieve or modify each property, you will use its appropriate getter and setter methods. The table lists each
property name and its data type, with a description. Refer to the Javadoc documentation for more details.

JavaFX provides two ways to style nodes in the scene graph, either programmatically or using CSS
styling. For now, you will be learning how to use the JavaFX APIs to style nodes programmatically. Later on
in Chapter 15, you will learn how to use JavaFX CSS to create custom controls and how to theme (skin) user
interfaces. Next, you will continue learning about JavaFX Lines through an example.

Figure 3-5. A zoomed in picture of Figure 3-4 to examine the pixels drawn for each line. Notice Thin 2 line is
occupying one pixel like Thin 1 line, but with a light gray color.

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Shape.html
http://dx.doi.org/10.1007/978-1-4842-1961-4_15

Chapter 3 ■ JavaFX Fundamentals

74

Drawing Lines
To get a better idea of how you would use a shape’s properties based on Table 3-1, let’s look at an example.
Figure 3-6 is the output of Listing 3-1, the DrawingLines.java source code, demonstrating the drawing
of JavaFX lines. The JavaFX application in the listing draws three lines with various properties modified.
Some common properties used in this example are stroke dash offset, stroke line cap, stroke width, and
stroke color.

Table 3-1. The javafx.scene.shape.Shape Class Properties

Property Data Type Description

Fill javafx.scene.paint.Paint A color to fill inside a shape.

Smooth Boolean True turns on anti-aliasing, otherwise it’s false.

strokeDashOffset Double The offset (distance) into the dashed pattern.

strokeLineCap javafx.scene.shape.Stroke
LineCap

The cap style on the end of a line or path.
There are three styles: StrokeLineCap.BUTT,
StrokeLineCap.ROUND, and StrokeLine
Cap.SQUARE.

strokeLineJoin javafx.scene.shape.
StrokeLineJoin

Decoration when lines meet. There are three
types: StrokeLineJoin.MITER, StrokeLine
Join.BEVEL, and StrokeLineJoin.ROUND.

strokeMiterLimit Double The limit of a miter joint. Used along with the
miter join decoration (StrokeLineJoin.MITER).

stroke javafx.scene.paint.Paint A color for the shape’s line stroke.

strokeType javafx.scene.shape.
StrokeType

Where to draw the stroke around the boundary
of a Shape node. There are three types: Stroke
Type.CENTERED, StrokeType.INSIDE, and
StrokeType.OUTSIDE.

strokeWidth Double A stroke line’s width.

Figure 3-6. Drawing lines

Chapter 3 ■ JavaFX Fundamentals

75

In Figure 3-6, you can see that the first line (top) is a thick red line with a dashed stroke pattern. The
second line is a thick white line having rounded end caps (line cap). Last is an ordinary blue line having the
same thickness as the others. You will also notice in Figure 3-6 underneath the blue line are two controls—a
label and a slider control. These controls allow the user to change the red (top) line’s stroke dash offset
property dynamically. The label control displays the dash offset value as the slider control moves. Listing 3-1
shows the source code for DrawingLines.java.

Listing 3-1. DrawingLines.java

package jfxbe;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.*;
import javafx.scene.control.Slider;
import javafx.scene.paint.Color;
import javafx.scene.shape.*;
import javafx.scene.text.Text;
import javafx.stage.Stage;

/**
 * Drawing Lines
 * @author carldea
 */
public class DrawingLines extends Application {

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Drawing Lines");

 Group root = new Group();
 Scene scene = new Scene(root, 300, 150, Color.GRAY);

 // Red line
 Line redLine = new Line(10, 10, 200, 10);

 // setting common properties
 redLine.setStroke(Color.RED);
 redLine.setStrokeWidth(10);
 redLine.setStrokeLineCap(StrokeLineCap.BUTT);

 // creating a dashed pattern
 redLine.getStrokeDashArray().addAll(10d, 5d, 15d, 5d, 20d);
 redLine.setStrokeDashOffset(0);

 root.getChildren().add(redLine);

 // White line
 Line whiteLine = new Line(10, 30, 200, 30);
 whiteLine.setStroke(Color.WHITE);
 whiteLine.setStrokeWidth(10);
 whiteLine.setStrokeLineCap(StrokeLineCap.ROUND);

Chapter 3 ■ JavaFX Fundamentals

76

 root.getChildren().add(whiteLine);

 // Blue line
 Line blueLine = new Line(10, 50, 200, 50);
 blueLine.setStroke(Color.BLUE);
 blueLine.setStrokeWidth(10);

 root.getChildren().add(blueLine);

 // slider min, max, and current value
 Slider slider = new Slider(0, 100, 0);
 slider.setLayoutX(10);
 slider.setLayoutY(95);

 // bind the stroke dash offset property
 redLine.strokeDashOffsetProperty()
 .bind(slider.valueProperty());
 root.getChildren()
 .add(slider);

 Text offsetText = new Text("Stroke Dash Offset: " + slider.getValue());
 offsetText.setX(10);
 offsetText.setY(80);
 offsetText.setStroke(Color.WHITE);

 // display stroke dash offset value
 slider.valueProperty()
 .addListener((ov, curVal, newVal) ->
 offsetText.setText("Stroke Dash Offset: " + newVal));
 root.getChildren().add(offsetText);

 primaryStage.setScene(scene);
 primaryStage.show();
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }
}

DrawingLines.java begins by setting the title of the Stage window using the setTitle() method.
Then it creates a root node (javafx.scene.Group) for the Scene object. If you remember back in Chapter 1,
which discussed the HelloWorld example, the first node added to the JavaFX Scene graph is called the root
node. The root node is always a JavaFX container type node such as a Group or BorderPane. All container
type nodes (those extending javafx.scene.Parent) have a method called getChildren().add() that allows
any JavaFX node to be added to the scene graph. By default, the Scene object will be filled with a white
background; however, because one of our lines is white, the code will set the scene to have a color of gray
(Color.GRAY). This will allow some contrast in order to see the white line. In the paperback edition of the
book images are in grayscale color, but if you use the PDF version of the book, the code creates three lines in
red, white, and blue, respectively.

www.allitebooks.com

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Group.html
http://dx.doi.org/10.1007/978-1-4842-1961-4_1
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Parent.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Parent.html#getChildren--
http://www.allitebooks.org

Chapter 3 ■ JavaFX Fundamentals

77

In the first line, the code sets the common properties of a Line node. The common properties are stroke
color, stroke width, and stroke line cap. As noted earlier, lines do not have a shape internally, so a line’s fill
color property is set to null (no color) and the stroke color defaults to black. To set the stroke color, you
can use built-in JavaFX colors by using the javafx.scene.paint.Color class. For instance, for the color red
you use Color.RED. There are many ways to specify color, such as using the RGB, HSB, or Web hex values.
All three methods also have the ability to specify alpha value (transparency). Later, you will see additional
methods for coloring shapes. Refer to the Javadoc to learn more about color (javafx.scene.paint.Color).
After setting the stroke’s outline color, you can set the line’s stroke width (thickness) by using the
setStrokeWidth() method. Shapes also have a stroke line cap property. This property specifies the style of
the ends of the line. For instance, specifying the stroke line cap as butt (StrokeLineCap.BUTT) will make a
flat square end, while a round (StrokeLineCap.ROUND) style will appear with a rounded end. The following
code snippet sets a line node’s common shape properties:

// setting common properties
redLine.setStroke(Color.RED);
redLine.setStrokeWidth(10);
redLine.setStrokeLineCap(StrokeLineCap.BUTT);

After setting the common properties on the red Line node, the example code creates a dashed pattern.
To form a dashed pattern, you would simply add double values to the getStrokeDashArray().add()
method. Each value represents the number of pixels for a dash segment. To set the dash segment array,
the first value (10d) is a visible dash segment that’s 10 pixels wide. Next is a five-pixel empty segment
(not visible). Following that is a visible dash segment 15 pixels wide, and so on. Because the array has an
odd number of values, you can see that as the pattern repeats itself. The first value (10d) becomes a 10-pixel
empty segment (it’s not visible). Following is the code to create a dashed pattern for a Line node:

// creating a dashed pattern
redLine.getStrokeDashArray().addAll(10d, 5d, 15d, 5d, 20d);
redLine.setStrokeDashOffset(0);

By default, the dash offset property value is 0. To see what happens when the offset property changes,
the user can drag the slider thumb to the right to increase the offset. The stroke dash offset is the distance
into the current pattern to begin the line drawing.

Because the other two lines are pretty much the same in the way they modify common properties, I will
not explain them any further. I trust you now understand the fundamentals of creating lines. One last thing
to mention about this example is the Slider control and the way it is wired up using binding.

Notice in Listing 3-1 that after the three lines just discussed, the slider control has handler code
that updates a Text node dynamically to display the dash offset value. Also notice the invocation to the
addListener() method, which contains concise code added as a change listener. This may look odd to
you; however, it reflects a new Java 8 feature called lambda expressions, which you will learn more about in
Chapter 4. The following code snippet creates a change listener using lambdas instead of an anonymous
inner class (ChangeListener).

// display stroke dash offset value
slider.valueProperty()
 .addListener((ov, oldVal, newVal) ->
 offsetText.setText("Stroke Dash Offset: " + newVal));

Learning how to draw lines will help you apply the same knowledge to any Shape node in JavaFX. These
important concepts will allow you to create any kind of shape styled the way you see fit. Speaking of shapes,
they are discussed next.

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/Color.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/Color.html#RED
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Shape.html#setStrokeWidth-double-
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/StrokeLineCap.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/StrokeLineCap.html#BUTT
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/StrokeLineCap.html#ROUND
http://dx.doi.org/10.1007/978-1-4842-1961-4_4

Chapter 3 ■ JavaFX Fundamentals

78

Drawing Shapes
If you are familiar with drawing programs that allow users to draw shapes on the canvas, you’ll notice a lot
of similarities when using the JavaFX’s Shape API. The JavaFX Shape API allows you to create many common
shapes such as lines, rectangles, and circles. Some of the more complex shapes are Arc, CubicCurve,
Ellipse, and QuadCurve. JavaFX also lets you create custom shapes for situations where the predefined stock
shapes don’t fit the bill. In this section, you will be exploring basic shapes, complex shapes, and custom
shapes. I will not demonstrate all of the shapes available in JavaFX, because of space limitations. To see all
the available shapes, refer to the Javadoc for details.

As stated earlier, JavaFX has common shapes such as lines, rectangles, and circles. In the section
“Drawing Lines,” you learned the basic method of changing any shape’s stroke color, stroke width, and many
other attributes. Knowing these skills will be useful throughout this chapter. Let’s begin by getting familiar
with the rectangle shape.

Drawing rectangles on the scene graph is quite easy. Just as in geometry class, you specify a width,
height, and an (x, y) location (upper-left corner) to position the rectangle on the scene graph. To draw a
rectangle in JavaFX, you use the javafx.scene.shape.Rectangle class. In addition to common attributes,
the Rectangle class also implements an arc width and arc height. This feature will draw rounded corners on
a rectangle. Figure 3-7 shows a rounded rectangle, which has both an arc width and an arc height.

The following is a code snippet that draws a rectangle positioned at (50, 50) with a width of 100, a height
of 130, an arc width of 10, and an arc height of 40.

Rectangle roundRect = new Rectangle();
roundRect.setX(50);
roundRect.setY(50);
roundRect.setWidth(100);
roundRect.setHeight(130);
roundRect.setArcWidth(10);
roundRect.setArcHeight(40);

Figure 3-7. A rounded rectangle’s arc width and arc height

Chapter 3 ■ JavaFX Fundamentals

79

Having the basic knowledge of simple shapes such as lines and rectangles will enable you to manipulate
other simple shapes having equivalent properties. Armed with this knowledge of simple shapes, let’s look at
creating more complex shapes.

Drawing Complex Shapes
Learning about simple shapes is great, but to create more complex shapes you need to see what other
built-in shapes the JavaFX API has to offer. Exploring the Java documentation (javafx.scene.shape.*),
you will discover many derived shape classes to choose from. The following are the currently supported
shapes:

•	 Arc

•	 Circle

•	 CubicCurve

•	 Ellipse

•	 Line

•	 Path

•	 Polygon

•	 Polyline

•	 QuadCurve

•	 Rectangle

•	 SVGPath

•	 Text (which is considered to be a type of shape)

A Complex Shape Example
To demonstrate drawing complex shapes, the next code example draws four fun cartoon-like shapes.
Normally cartoon drawings have a thick stroke width, similar to a penciled-in outline. The first shape in the
example is a sine wave, the second an ice cream cone, the third a smile, and the last a donut. Before studying
the code, you may want to see the shapes drawn onto the scene, so you can visualize each shape as you look
at the code listing. Figure 3-8 is the output of Listing 3-2, depicting four complex shapes.

Chapter 3 ■ JavaFX Fundamentals

80

The DrawingShape.java code shown in Listing 3-2 demonstrates the drawing of the shapes you see
in Figure 3-8. The first complex shape involves a cubic curve (CubicCurve) that is drawn in the shape of
a sine wave. The next shape is an ice cream cone; it uses the Path class, which contains path elements
(javafx.scene.shape.PathElement). The third shape is a quadratic Bézier curve (QuadCurve), forming
a smile. The final shape is a delectable donut; to create this donut shape you will create two (Ellipse)
shapes (one smaller and one larger) then subtracting the smaller shape from the larger shape. For brevity,
Listing 3-2 shows just the start() method containing the main JavaFX elements. To get the full code
listing, download the example code from the book’s web site.

Listing 3-2. The Java File DrawingShape.java Consists of an Application Capable of Drawing
Advanced Shapes

 @Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Drawing Shapes");
 Group root = new Group();
 Scene scene = new Scene(root, 306, 550, Color.WHITE);

Figure 3-8. Drawing complex shapes

Chapter 3 ■ JavaFX Fundamentals

81

 // Sine wave
 CubicCurve cubicCurve = new CubicCurve(
 50, // start x point
 75, // start y point
 80, // control x1 point
 -25, // control y1 point
 110, // control x2 point
 175, // control y2 point
 140, // end x point
 75); // end y point
 cubicCurve.setStrokeType(StrokeType.CENTERED);
 cubicCurve.setStroke(Color.BLACK);
 cubicCurve.setStrokeWidth(3);
 cubicCurve.setFill(Color.WHITE);

 root.getChildren().add(cubicCurve);

 // Ice cream cone
 Path path = new Path();
 path.setStrokeWidth(3);

 // create top part beginning on the left
 MoveTo moveTo = new MoveTo();
 moveTo.setX(50);
 moveTo.setY(150);

 // curve ice cream (dome)
 QuadCurveTo quadCurveTo = new QuadCurveTo();
 quadCurveTo.setX(150);
 quadCurveTo.setY(150);
 quadCurveTo.setControlX(100);
 quadCurveTo.setControlY(50);

 // cone rim
 LineTo lineTo1 = new LineTo();
 lineTo1.setX(50);
 lineTo1.setY(150);

 // left side of cone
 LineTo lineTo2 = new LineTo();
 lineTo2.setX(100);
 lineTo2.setY(275);

 // right side of cone
 LineTo lineTo3 = new LineTo();
 lineTo3.setX(150);
 lineTo3.setY(150);

Chapter 3 ■ JavaFX Fundamentals

82

 path.getElements().addAll(moveTo, quadCurveTo, lineTo1, lineTo2, lineTo3);

 path.setTranslateY(30);

 root.getChildren().add(path);

 // A smile
 QuadCurve quad = new QuadCurve(
 50, // start x point
 50, // start y point
 125,// control x point
 150,// control y point
 150,// end x point
 50);// end y point
 quad.setTranslateY(path.getBoundsInParent().getMaxY());
 quad.setStrokeWidth(3);
 quad.setStroke(Color.BLACK);
 quad.setFill(Color.WHITE);

 root.getChildren().add(quad);

 // outer donut
 Ellipse bigCircle = new Ellipse(
 100, // center x
 100, // center y
 50, // radius x
 75/2); // radius y
 bigCircle.setStrokeWidth(3);
 bigCircle.setStroke(Color.BLACK);
 bigCircle.setFill(Color.WHITE);

 // donut hole
 Ellipse smallCircle = new Ellipse(
 100, // center x
 100, // center y
 35/2, // radius x
 25/2); // radius y

 // make a donut
 Shape donut = Path.subtract(bigCircle, smallCircle);
 donut.setStrokeWidth(1.8);
 donut.setStroke(Color.BLACK);

 // orange glaze
 donut.setFill(Color.rgb(255, 200, 0));

 // add drop shadow
 DropShadow dropShadow = new DropShadow(
 5, // radius
 2.0f, // offset X
 2.0f, // offset Y
 Color.rgb(50, 50, 50, .588));

Chapter 3 ■ JavaFX Fundamentals

83

 donut.setEffect(dropShadow);

 // move slightly down
 donut.setTranslateY(quad.getBoundsInParent().getMinY() + 30);

 root.getChildren().add(donut);

 primaryStage.setScene(scene);
 primaryStage.show();
}

Four shapes are drawn in Figure 3-8. Each shape will be detailed further in the following sections, which
describe the code and the reasoning behind the creation of each of the four shapes.

The Cubic Curve
In Listing 3-2, the first shape, drawn as a sine wave, is really a javafx.scene.shape.CubicCurve class.
To create a cubic curve, you simply look for the appropriate constructor to be instantiated. A cubic curve’s
main parameters to set are startX, startY, controlX1 (control point1 X), controlY1 (control point1 Y),
controlX2 (control point2 X), controlY2 (control point2 Y), endX, and endY. Figure 3-9 shows a cubic curve
with control points influencing the curve.

The startX, startY, endX, and endY parameters are the starting and ending points of a curved line,
and controlX1, controlY1, controlX2, and controlY2 are control points. The control point (controlX1,
controlY1) is a point in screen space that will influence the line segment between the start point (startX,
startY) and the midpoint of the line. The point (controlX2, controlY2) is another control point that will
influence the line segment between the midpoint of the line and its end point (endX, endY). A control
point is a point that pulls the curve toward the direction of itself. A definition of a control point is a line
perpendicular to a tangent line on the curve. This example simply has a control point 1 above the line
to pull the curve upward to form a hill and control point 2 below the line to pull the curve downward to
form a valley.

Figure 3-9. Cubic curve

Chapter 3 ■ JavaFX Fundamentals

84

 ■ Note all older JavaFX 2.x Builder classes are deprecated in JavaFX 8. Be advised that the previous edition
of this book used Builder classes. shape classes using deprecated builder classes should be converted in favor
of constructors and setter methods when specifying properties.

At this point, I want to mention that beginning with JavaFX 8, Oracle’s JavaFX team has decided to
deprecate the many Builder classes in JavaFX. The decision to deprecate builder classes was mainly due to
two bugs found in Java 6 and 7 that were fixed in Java 8. The bug fixes would later cause binary compatibility
issues that would break the builder classes. To get the full story, see Appendix A under JavaFX 8’s features,
which references links to the discussions about the issue of builder classes. Knowing this will allow you to
recognize older JavaFX 2.x code so that refactoring is painless. The first edition of this book used Builder
classes quite frequently, and they are an elegant way to create JavaFX objects. Although the Builder classes
are deprecated, it doesn’t prevent you from creating APIs with the builder pattern in mind. To create objects
without an associated builder class, just find the appropriate constructor to be instantiated or use setter
methods to set the object’s properties.

The Ice Cream Cone
The ice cream cone shape is created using the javafx.scene.shape.Path class. Each path element is created
and added to the Path object. Also, each element is not considered a graph node (javafx.scene.Node). This
means that path elements do not extend from the javafx.scene.shape.Shape class and they cannot be
child nodes in a scene graph. Figure 3-10 shows an ice cream cone shape.

Path elements actually extend from the javafx.scene.shape.PathElement class, which is used only
in the context of a Path object. So you won’t be able to instantiate a LineTo class to be placed in the scene
graph. Just remember that the classes with To as a suffix are path elements, not Shape nodes.

Figure 3-10. The ice cream cone is drawn using JavaFX’s Path node

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Path.html

Chapter 3 ■ JavaFX Fundamentals

85

For example, the MoveTo and LineTo object instances are Path elements added to a Path object, not
shapes that can be added to the scene. The order in which path elements are added is the order in which things
are drawn. The following code snippet are Path elements added to a Path object to draw an ice cream cone:

// Ice cream
Path path = new Path();

MoveTo moveTo = new MoveTo();
moveTo.setX(50);
moveTo.setY(150);

...// Additional Path Elements created.
LineTo lineTo1 = new LineTo();
lineTo1.setX(50);
lineTo1.setY(150);

...// Additional Path Elements created.

path.getElements().addAll(moveTo, quadCurveTo, lineTo1, lineTo2, lineTo3);

This snippet of code is repeated from Listing 3-2, although some of the code is omitted for brevity.
Figure 3-11 depicts the ice cream cone having the ordered steps in which path elements are drawn.

Step 1: moveTo

Step 2: quadCurveTo

Step 3: lineTo1

Step 4: lineTo2

Step 5: lineTo3

Figure 3-11. The ice cream cone’s draw order using Steps 1-5

Chapter 3 ■ JavaFX Fundamentals

86

The Smile
To render the smile shape, the code uses the javafx.scene.shape.QuadCurve class. This is similar to the
cubic curve example described earlier in the first shape. Instead of two control points, you only have one
control point. Again, a control point influences a line by pulling the midpoint toward it. Figure 3-12 shows a
QuadCurve shape with a control point below its starting and ending points to form a smile.

The following code draws a quadratic curve with a stroke thickness of three pixels filled with the
color white:

// A smile
QuadCurve quad = new QuadCurve(
 50, // start x point
 50, // start y point
 125,// control x point
 150,// control y point
 150,// end x point
 50);// end y point

quad.setStrokeWidth(3);
quad.setStroke(Color.BLACK);
quad.setFill(Color.WHITE);

The Donut
Last is the tasty donut shape with an interesting drop shadow effect shown in Figure 3-13. This custom shape
was created using geometric operations, such as subtract, union, intersection, and so on. With any two
shapes, you can perform geometric operations to form an entirely new shape object. All of the operations
can be found in the javafx.scene.shape.Path class.

Figure 3-12. Quadratic curve

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Path.html

Chapter 3 ■ JavaFX Fundamentals

87

To create the donut shape, you begin by creating two circular ellipse (javafx.scene.shape.Ellipse)
instances. Subtracting the smaller ellipse (donut hole) from the larger ellipse area creates a newly derived
Shape object, which is returned using the static Path.subtract() method. The following code snippet
creates the donut shape using the Path.subtract() method:

// outer donut
Ellipse bigCircle = ...//Outer shape area

// donut hole
Ellipse smallCircle = ...// Inner shape area

// make a donut
Shape donut = Path.subtract(bigCircle, smallCircle);

Next is applying a drop shadow effect to the donut shape. A common technique is to draw the shape
filled black while the original shape is laid on top slightly offset to appear as a shadow. However, in JavaFX,
the code will draw the donut shape once and use the setEffect() method to apply a DropShadow object
instance. To cast the shadow offset, call the setOffsetX() and setOffsetY() methods. Typically, if the light
source is from the upper-left, the shadow is shown from the lower-right of the shape.

One last thing to point out is that all shapes in the example are initially drawn to be positioned
underneath one another. Looking back at Listing 3-2, you’ll notice that as each shape was created, its
translateY property was set to reposition or shift each shape from its original position. For example, if a
shape’s upper-left bounding box point is created at (100, 100) and you want it to be moved to (101, 101), the
translateX and translateY properties would be set to 1.

As each shape is rendered beneath another in this example, you may invoke the getBoundsInParent()
method to return the information about the bounding region of a node, such as its width and height.
The getBoundsInParent() calculation for the height and width includes the node’s actual dimensions
(width and height) plus any effects, translations, and transformations. For example, a shape that has a drop
shadow effect increases its width by including the shadow.

Figure 3-14 is a dashed red rectangle surrounding a Rectangle node inside a parent node, better
known as the bounding rectangle in parent (Bounds in Parent). You will notice that the width and height
calculations include transforms, translates, and effects applied to the shape. In Figure 3-14, the transform
operation is a rotation and the effect is a drop shadow.

Figure 3-13. A donut shape created by using shape subtraction

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Ellipse.html

Chapter 3 ■ JavaFX Fundamentals

88

Painting Colors
I’ve mentioned that various drawing programs have their own tools to draw shapes. Drawing programs also
provide the ability to paint shapes, using a color palette. Typically, paint programs have a paint bucket tool
to fill areas on the canvas. Often, photo editing software packages have the ability to fill using a gradient
color or change the lighting of colors. In JavaFX, you can also apply colors (Paint) to objects using similar
techniques. In this section, you will see an example of a JavaFX application that showcases three shapes
filled with colors (Paint).

An Example of Color
To demonstrate common color fills, Figure 3-15 illustrates an application that displays three shapes with
different color fills. It depicts the following three shapes—ellipse, rectangle, and rounded rectangle.
Each shape has a gradient fill. The first shape, the ellipse, is filled with a red radial gradient. The second
is a rectangle filled with a yellow linear gradient. Finally, the rounded rectangle has a green cycle reflect
gradient fill. You’ll also notice a thick black line behind the yellow rectangle to illustrate the alpha level
(transparency) of colors.

Figure 3-14. Bounding rectangle in parent

Chapter 3 ■ JavaFX Fundamentals

89

 ■ Note the example to follow touches on basic techniques for creating solid colors, gradient colors, and
translucent colors. there are also advanced strategies, such as the ImagePattern apI and Blend apI. You can
read about those, if you are interested, in the apI documentation viewable through Javadoc.

In JavaFX, all shapes can be filled with simple colors and gradient colors. As a reminder, according to
the Javadoc, all shape nodes are filled with the color black by default, except for the Line, Polyline, and
Path classes (descendants of java.scene.shape.Shape). Listing 3-3 uses the following main classes that will
be used to fill the shape nodes shown in Figure 3-15:

•	 javafx.scene.paint.Color

•	 javafx.scene.paint.Stop

•	 javafx.scene.paint.RadialGradient

•	 javafx.scene.paint.LinearGradient

 ■ Note In Figure 3-15, the blackLine, rectangle, and roundRectangle shapes are all positioned by the
setTranslateY() method relative to the ellipse shape and relative to one another.

Listing 3-3. PaintingColors.java

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Painting Colors");
 Group root = new Group();
 Scene scene = new Scene(root, 350, 300, Color.WHITE);

 // Red ellipse with radial gradient color
 Ellipse ellipse = new Ellipse(100, // center X
 50 + 70/2, /* center Y */
 50, /* radius X */
 70/2); /* radius Y */

Figure 3-15. Colored shapes

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/ImagePattern.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/effect/Blend.html

Chapter 3 ■ JavaFX Fundamentals

90

 RadialGradient gradient1 = new RadialGradient(
 0, /* focusAngle */
 .1, /* focusDistance */
 80, /* centerX */
 45, /* centerY */
 120, /* radius */
 false, /* proportional */
 CycleMethod.NO_CYCLE, /* cycleMethod */
 new Stop(0, Color.RED), /* stops */
 new Stop(1, Color.BLACK)
);

 ellipse.setFill(gradient1);
 root.getChildren().add(ellipse);
 double ellipseHeight = ellipse.getBoundsInParent()
 .getHeight();

 // thick black line behind second shape
 Line blackLine = new Line();
 blackLine.setStartX(170);
 blackLine.setStartY(30);
 blackLine.setEndX(20);
 blackLine.setEndY(140);
 blackLine.setFill(Color.BLACK);
 blackLine.setStrokeWidth(10.0f);
 blackLine.setTranslateY(ellipseHeight + 10);

 root.getChildren().add(blackLine);

 // A rectangle filled with a linear gradient with a translucent color.
 Rectangle rectangle = new Rectangle();
 rectangle.setX(50);
 rectangle.setY(50);
 rectangle.setWidth(100);
 rectangle.setHeight(70);
 rectangle.setTranslateY(ellipseHeight + 10);

 LinearGradient linearGrad = new LinearGradient(
 0, /* start X */
 0, /* start Y */
 0, /* end X */
 1, /* end Y */
 true, /* proportional */
 CycleMethod.NO_CYCLE, /* cycle colors stops */
 new Stop(0.1f, Color.rgb(255, 200, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784)));

Chapter 3 ■ JavaFX Fundamentals

91

 rectangle.setFill(linearGrad);
 root.getChildren().add(rectangle);

 // A rectangle filled with a linear gradient with a reflective cycle.
 Rectangle roundRect = new Rectangle();
 roundRect.setX(50);
 roundRect.setY(50);
 roundRect.setWidth(100);
 roundRect.setHeight(70);
 roundRect.setArcWidth(20);
 roundRect.setArcHeight(20);
 roundRect.setTranslateY(ellipseHeight + 10 +
 rectangle.getHeight() + 10);

 LinearGradient cycleGrad = new LinearGradient(
 50, /* start X */
 50, /* start Y */
 70, /* end X */
 70, /* end Y */
 false, /* proportional */
 CycleMethod.REFLECT, /* cycleMethod */
 new Stop(0f, Color.rgb(0, 255, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784))
);

 roundRect.setFill(cycleGrad);
 root.getChildren().add(roundRect);

 primaryStage.setScene(scene);
 primaryStage.show();
}

When specifying color values, the PaintingColors.java code uses the colors in the default RGB color
space. To create a color, the code uses the Color.rgb() method. This method takes three integer values,
representing red, green, and blue components. Another overloaded method takes three integer values and
a fourth parameter with a data type of double. This fourth parameter is the alpha channel, which sets the
opacity of the color. This value is between zero (0) and one (1). Zero is no opacity (transparent) and one is
fully opaque. Keep in mind that there are other ways to create color such as HSB and Web. HSB stands for
hue, saturation, and brightness. To create a color using HSB (color space), you would invoke the Color.
hsb() method. Another way to specify color values that is common to web development in HTML and CSS is
the use of RGB hexadecimal string values. For those developers who are familiar with this convention, they
would use the Color.web() method.

After drawing the ellipse shape, the code invokes the setFill() method using a radial gradient to give
the appearance of a 3D spherical object. Next, it creates a rectangle filled with a yellow semitransparent
linear gradient. Added behind the yellow rectangle is a thick black line to demonstrate the semitransparent
color. Finally, the code implements a rounded rectangle filled with a green-and-black reflective linear
gradient resembling 3D tubes in a diagonal direction. Each shape and its associated color fill will be
discussed in more detail in the following sections.

Chapter 3 ■ JavaFX Fundamentals

92

Gradient Color
Creating a gradient color in JavaFX involves five things:

 1. A starting point to begin the first stop color (javafx.scene.paint.Stop).

 2. The end point representing the end stop color.

 3. The proportional property to specify whether to use standard screen coordinates
or unit square coordinates.

 4. The Cycle method to specify one of the three enums: NO_CYCLE, REFLECT, or
REPEAT.

 5. An array of stop (Stop) colors. Each stop containing a color will begin by painting
the first stop color, then interpolating to the second stop color, and so on.

Stop Color
When working with gradient colors, you must have a list of at least two colors to interpolate over. Also, when
dealing with gradients, the amount of gradient that can be specified between colors is called a range offset.
To specify a range offset to distribute the colors, you need instances of the Stop class. The following code
snippet shows seven stop colors having ranges of 0%, 15%, 30%, 45%, 60%, 75%, and 100%.

Stop rStop = new Stop(0.0, Color.RED);
Stop oStop = new Stop(0.15, Color.ORANGE);
Stop yStop new Stop(0.30, Color.YELLOW);
Stop gStop new Stop(0.45, Color.GREEN);
Stop bStop new Stop(0.60, Color.BLUE);
Stop iStop new Stop(0.75, Color.INDIGO);
Stop vStop new Stop(1, Color.VIOLET);

The example code is a gradient that represents the colors of a rainbow (ROYGBIV), starting with the
color red, which interpolates a range between 0% and 15%, then the color orange is a gradient between
15% to 30%. Next is a range from 30% to 45% using the color yellow and so on. Now that you know
how to specify the range offset between stop colors, you will learn about the gradient axis, which helps
linear gradients. The gradient axis is based on a line represented as start and end points, which assist in
distributing the color across a shape.

Linear Gradient
When dealing with either linear or radial gradient color, pay special attention to the proportional
attribute. By setting this attribute to false, you can draw a line (the gradient axis) having a beginning
point (start X, start Y) and an end point (end X, end Y) based on standard screen (x, y) coordinates.
An example is a linear gradient using a starting point of (0,0) and an ending point of (100,0), which creates
a horizontal gradient (from left to right). If a rectangle is 100 pixels wide and has a stop color of black with
a 0.0 offset and a stop color of white with a 1.0 offset, there would be an even distribution of the amount
of color from black to white using screen coordinates between 0 and 100 pixels. But if for some reason you
wanted to change the width of the rectangle, the gradient wouldn’t scale properly. The gradient would not
stretch the width of rectangle.

Chapter 3 ■ JavaFX Fundamentals

93

To allow the gradient to stretch based on the size of the shape, the proportional attribute is set to a
value of true and the gradient axis line beginning and ending points will be represented as unit square
coordinates. This means that x, y coordinates for the beginning and end points must be between 0.0 and 1.0
(double). This strategy is more compact and easier to define than screen coordinates on the scene graph.
So, for instance, if a rectangle is 200 pixels wide and has the same two stop colors as mentioned, you would
specify the gradient axis line with (0,0) and (1,0) for the gradient to stretch from left to right (the width of the
shape).

Radial Gradient
The amazing thing about colors with gradients is that they can often make shapes appear three-dimensional.
Gradient paint allows you to interpolate between two or more colors, which gives depth to the shape. JavaFX
provides two types of gradients: a radial (RadialGradient) and a linear (LinearGradient) gradient. For this
ellipse shape, you will be using a radial gradient (RadialGradient). This will give the ellipse the appearance
of a spherical looking object.

Table 3-2 presents the JavaFX 8 Javadoc definitions found for the RadialGradient class. You can find
this documentation at the following URL:

http://download.java.net/jdk8/jfxdocs/javafx/scene/paint/RadialGradient.html

In this example, the focus angle is set to zero, the distance is set to .1, the center X and Y are set to
(80,45), the radius is set to 120 pixels, proportional is set to false, the cycle method is set to the no cycle
(CycleMethod.NO_CYCLE), and the two color stop values are set to red (Color.RED) and black (Color.BLACK).
These settings give a radial gradient to the ellipse by starting with the color red with a center position of
(80, 45) (upper-left of the ellipse) that interpolates to the color black with a distance of 120 pixels (radius).
As the radial gradient’s center position is set to the color red, the gradient will interpolate to the color black,
which appears as if the center position is an overhead light source with black mimicking a shadow (opposite
of the light source).

Table 3-2. RadialGradient Properties

Property Data Type Description

focusAngle Double Angle in degrees from the center of the gradient to the focus point
to which the first color is mapped.

focusDistance Double Distance from the center of the gradient to the focus point to
which the first color is mapped.

centerX Double X coordinate of the center point of the gradient’s circle.

centerY Double Y coordinate of the center point of the gradient’s circle.

radius Double Radius of the circle defining the extent of the color gradient.

proportional boolean Coordinates and sizes are proportional to the shape this gradient fills.

cycleMethod CycleMethod Cycle method applied to the gradient.

Stops List<Stop> Gradient’s color specification.

http://download.java.net/jdk8/jfxdocs/javafx/scene/paint/RadialGradient.html

Chapter 3 ■ JavaFX Fundamentals

94

Semitransparent Gradients
Next, you will see how to create the rectangle, which has a yellow semitransparent linear gradient. For the
yellow rectangle you will use a linear gradient (LinearGradient) paint.

Table 3-3 presents the JavaFX 8 Javadoc definitions found for the LinearGradient class. You can find the
definitions also at the following URL:

http://download.java.net/jdk8/jfxdocs/index.html?javafx/scene/paint/LinearGradient.html

To create a linear gradient paint, you specify startX, startY, endX, and endY for the start and end points.
The start and end point coordinates denote where the gradient pattern begins and stops.

To create the second shape in Figure 3-15, the yellow rectangle, you set the start X and Y to (0.0, 0.0), end
X and Y to (0.0, 1.0), proportional to true, the cycle method to no cycle (CycleMethod.NO_CYCLE), and two color
stop values to yellow (Color.YELLOW) and black (Color.BLACK), with an alpha transparency of .784. These settings
give a linear gradient to the rectangle from top to bottom with a starting point of (0.0, 0.0) (the top-left of a unit
square) that interpolates to the color black to an end point of (0.0, 1.0) (the bottom-left of a unit square).

Reflective Cycle Gradients
Finally, at the bottom of Figure 3-15, you’ll notice a rounded rectangle with a repeating pattern of a gradient
using green and black in a diagonal direction. This is a simple linear gradient paint that is the same as the linear
gradient paint (LinearGradient), except that the start X, Y and end X, Y values are set in a diagonal position,
and the cycle method is set to reflect (CycleMethod.REFLECT). When you specify the cycle method to reflect
(CycleMethod.REFLECT), the gradient pattern will repeat or cycle between the stop colors. The following code
snippet implements the rounded rectangle having a cycle method of reflect (CycleMethod.REFLECT):

LinearGradient cycleGrad = new LinearGradient(
 50, // start X
 50, // start Y
 70, // end X
 70, // end Y
 false, // proportional
 CycleMethod.REFLECT, // cycleMethod
 new Stop(0f, Color.rgb(0, 255, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784))
);

Table 3-3. LinearGradient Properties

Property Data Type Description

startX Double X coordinate of the gradient axis start point.

startY Double Y coordinate of the gradient axis start point.

endX Double X coordinate of the gradient axis end point.

endY Double Y coordinate of the gradient axis end point.

proportional Boolean Whether the coordinates are proportional to the shape that this
gradient fills. When set to true, use unit square coordinates;
otherwise, use scene/screen coordinate system.

cycleMethod CycleMethod Cycle method applied to the gradient.

stops List<Stop> Gradient’s color specification.

http://download.java.net/jdk8/jfxdocs/index.html?javafx/scene/paint/LinearGradient.html

Chapter 3 ■ JavaFX Fundamentals

95

Drawing Text
Another basic JavaFX node is the Text node, which enables you to display a string of characters on the scene
graph. To create Text nodes on the JavaFX scene graph, you use the javafx.scene.text.Text class. Because
all JavaFX scene nodes extend from javafx.scene.Node, they will inherit many capabilities such as the
ability to be scaled, translated, or rotated.

Based on the Java inheritance hierarchy, the Text node’s direct parent is a javafx.scene.shape.Shape
class that provides even more capabilities than the Node class. Because a Text node is both a Node and a
Shape object, it can perform geometric operations between two shape areas such as subtract, intersect, or
union. You can also clip viewport areas with a shape similar to stenciled letters.

To demonstrate drawing text, in this section you will look at a basic example of how to draw text nodes
on the scene graph. This example touches on the following three capabilities:

•	 Positioning Text nodes using (x, y) coordinates

•	 Setting a Text node’s stroke color

•	 Rotating a Text node about its pivot point

To make things a little interesting, you will create 100 Text nodes and produce random values for the
three capabilities just mentioned. Figure 3-16 shows the drawing text example in action.

The DrawingText.java code shown in Listing 3-4 creates 100 Text nodes with randomly generated
values for the following attributes:

•	 x, y coordinates

•	 RGB fill color

•	 Angle of rotation (degrees)

The code first creates a loop to generate random (x, y) coordinates to position Text nodes. In the loop,
it creates random RGB color components between 0 and 255 to be applied to the Text nodes. Setting all
components to 0 produces black. Setting all three RGB values to 255 produces the color white.

Figure 3-16. Drawing text

Chapter 3 ■ JavaFX Fundamentals

96

Listing 3-4. DrawingText.java

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Drawing Text");
 Group root = new Group();
 Scene scene = new Scene(root, 300, 250, Color.WHITE);
 Random rand = new Random(System.currentTimeMillis());
 for (int i = 0; i < 100; i++) {
 int x = rand.nextInt((int) scene.getWidth());
 int y = rand.nextInt((int) scene.getHeight());
 int red = rand.nextInt(255);
 int green = rand.nextInt(255);
 int blue = rand.nextInt(255);

 Text text = new Text(x, y, "JavaFX 9");

 int rot = rand.nextInt(360);
 text.setFill(Color.rgb(red, green, blue, .99));
 text.setRotate(rot);
 root.getChildren().add(text);
 }

 primaryStage.setScene(scene);
 primaryStage.show();
}

The rotation angle (in degrees) is a randomly generated value from 0–360 degrees, which causes the
baseline of the text to be tilted. According to the API documentation, the setRotate() method will rotate
about the pivot point, which is the center of the untransformed layout bounds (layoutBounds) property.
Basically, the pivot point is the center of a node that has no transforms (scaling, translating, shearing,
rotating, and so on) applied.

 ■ Note If you need to use a combination of transforms, such as rotate, scale, and translate, take a look at
the getTransforms().add(...) method. For more details on the difference between bounds in local, bounds
in parent, and layout bounds, see the Javadoc documentation. also, check out Chapter 5 on layouts and the
scene Builder.

The following code is used in DrawingText.java to create random values for a Text node’s x and y
position (baseline), color, and rotation:

int x = rand.nextInt((int) scene.getWidth());
int y = rand.nextInt((int) scene.getHeight());
int red = rand.nextInt(255);
int green = rand.nextInt(255);
int blue = rand.nextInt(255);
int rot = rand.nextInt(360);

http://docs.oracle.com/javafx/2/api/javafx/scene/Node.html#layoutBoundsProperty()
http://dx.doi.org/10.1007/978-1-4842-1961-4_5

Chapter 3 ■ JavaFX Fundamentals

97

Once the random values are generated, they are applied to the Text nodes, which will be drawn onto
the scene graph. Each Text node maintains a text origin property that contains the starting point of its
baseline. In Latin-based alphabets, the baseline is an imaginary line underneath letters, similar to books on
a bookshelf. However, some letters, such as the lowercase j, extend below the baseline. When specifying the
x and y coordinate of the Text node you will be positioning the start of the baseline. In Figure 3-17, the x and y
coordinates are located left of the lowercase j on the baseline in the text node javafx 9.

Figure 3-17. Text node’s baseline (x, y) coordinate position

Figure 3-18. Changing text fonts

The following code snippet applies (x, y) coordinates, color (RGB) with an opacity .99, and a rotation
(angle in degrees) to the Text node:

Text text = new Text(x, y, "JavaFX 9");
text.setFill(Color.rgb(red, green, blue, .99));
text.setRotate(rot);

root.getChildren().add(text);

You should be starting to see the power of the scene graph API in its ease of use, especially when
working with Text nodes. Here, you were able to position, colorize, and rotate text. To spruce things up a bit,
you will next see how to change a text’s font and apply effects.

Changing Text Fonts
JavaFX’s Font API enables you to change font styles and font sizes in the same way as word processing
applications. To demonstrate this, I created a JavaFX application that displays four text nodes with the string
value of "JavaFX 9 by Example", each having a different font style. In addition to the font styles, I also
added effects such as a drop shadow (DropShadow) and reflection (Reflection).

Figure 3-18 shows the example’s output, and Listing 3-5 shows the ChangingTextFonts.java source code.

Chapter 3 ■ JavaFX Fundamentals

98

Listing 3-5. ChangingTextFonts.java

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Changing Text Fonts");

 System.out.println("Font families: ");
 Font.getFamilies()
 .stream()
 .forEach(i -> System.out.println(i));
 System.out.println("Font names: ");
 Font.getFontNames()
 .stream()
 .forEach(i -> System.out.println(i));

 Group root = new Group();
 Scene scene = new Scene(root, 580, 250, Color.WHITE);

 // Serif with drop shadow
 Text text2 = new Text(50, 50, "JavaFX 9 by Example");
 Font serif = Font.font("Serif", 30);
 text2.setFont(serif);
 text2.setFill(Color.RED);
 DropShadow dropShadow = new DropShadow();
 dropShadow.setOffsetX(2.0f);
 dropShadow.setOffsetY(2.0f);
 dropShadow.setColor(Color.rgb(50, 50, 50, .588));
 text2.setEffect(dropShadow);
 root.getChildren().add(text2);

 // SanSerif
 Text text3 = new Text(50, 100, "JavaFX 9 by Example");
 Font sanSerif = Font.font("SanSerif", 30);
 text3.setFont(sanSerif);
 text3.setFill(Color.BLUE);
 root.getChildren().add(text3);

 // Dialog
 Text text4 = new Text(50, 150, "JavaFX 9 by Example");
 Font dialogFont = Font.font("Dialog", 30);
 text4.setFont(dialogFont);
 text4.setFill(Color.rgb(0, 255, 0));
 root.getChildren().add(text4);

 // Monospaced
 Text text5 = new Text(50, 200, "JavaFX 9 by Example");
 Font monoFont = Font.font("Monospaced", 30);
 text5.setFont(monoFont);
 text5.setFill(Color.BLACK);
 root.getChildren().add(text5);

Chapter 3 ■ JavaFX Fundamentals

99

 // Reflection
 Reflection refl = new Reflection();
 refl.setFraction(0.8f);
 refl.setTopOffset(5);
 text5.setEffect(refl);

 primaryStage.setScene(scene);
 primaryStage.show();
}

 ■ Note listing 3-5, ChangingTextFonts.java, presents only the start() method, which is the heart of the
example application. to see the full code listing, download the book’s full example code from Apress.com.

With Text nodes, JavaFX takes a retained-mode approach, in which nodes are using vector-based
graphics rendering instead of an immediate mode rendering. The immediate mode uses bitmap graphic
rendering strategies. By using vector-based graphics you will have nifty advantages over bitmap graphics.
The major advantage is that they allow you to scale shapes and apply different effects without pixilation
(the jaggies). For example, in an immediate mode rendering the image becomes grainy when scaled larger.
However, in retained mode, you will have smooth (anti-aliased) shapes. It’s nice to be able to see beautiful
type fonts (typography) that are smooth at all different sizes.

ChangingTextFonts.java focuses on the following JavaFX classes to be applied to the Text node.
The code uses the Serif, SanSerif, Dialog, and Monospaced fonts along with the drop shadow and
reflection effects.

•	 javafx.scene.text.Font

•	 javafx.scene.effect.DropShadow

•	 javafx.scene.effect.Reflection

The code begins by setting the title on the stage. Next, you will notice the new Java 8 language lambdas
feature at work, where the code lists the current system’s available font families and font names. If you are
new to lambdas, in Chapter 4 you will take a closer look at the concept, but for right now you can think of it
as an elegant way to iterate over collections. The font family and font name list will be printed on the console
output. This is very convenient for you to later experiment with different font styles. The following lines list
the available fonts on the current system using Java 8’s lambda syntax:

System.out.println("Font families: ");
Font.getFamilies()
 .stream()
 .forEach(i -> System.out.println(i));

System.out.println("Font names: ");
Font.getFontNames()
 .stream()
 .forEach(i -> System.out.println(i));

http://dx.doi.org/10.1007/978-1-4842-1961-4_4

Chapter 3 ■ JavaFX Fundamentals

100

 ■ Note In case the selected font is not installed on your system, Text nodes will use a default system font.
there are many sites that offer fonts that you can download and install. Check out Google Fonts at
https://www.google.com/fonts.

After listing the available fonts, the code creates a root node with a background color for its scene.
Before drawing the first Text node, let’s quickly discuss how to obtain a font. To obtain a font, the code
invokes the static method font() from the Font class. When calling the font() method, you can specify
the font name and the point size to return a suitable font to the caller. A font name is a string value that
represents a system’s supported font types. Refer to the Javadoc documentation to see the other ways to
obtain system fonts. The following lines show the creation of a Text node instance and obtaining a 30 point
Serif font. Once the font is obtained, the Text node setFont() method is used to apply the font.

Text text = new Text(50, 50, "JavaFX 9 by Example");
Font serif = Font.font("Serif", 30);
text.setFont(serif);

 ■ Note although listing 2-5 uses absolute positioning of text nodes, at some point you may want to display
text nodes with the ability to wrap several text nodes while keeping their own font formatting in the same
layout. to achieve this behavior, refer to JavaFX 8’s new TextFlow apI. refer to the Javadoc documentation at:
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/TextFlow.html

Applying Text Effects
In the first Text node in the ChangingTextFonts.java example, the code adds a drop shadow effect.
A common graphics trick for adding a drop shadow is to create at least two layers of the image, with the
bottom image colored dark with a slight offset. The dark image, slightly offset, will mimic a shadow. In
JavaFX, a drop shadow is an actual effect (DropShadow) object and is applied to a single Text node instance
without the need of multiple images layered. The DropShadow object is set to be positioned based on an
x, y offset in relation to the Text node. You can also set the color of the shadow; here, the code will set the
shadow color to gray with 0.588 opacity. Opacity is a range between 0 and 1 (double), where 0 is transparent
and 1 is fully opaque. The following is an example of setting a Text node’s effect property with a drop
shadow effect (DropShadow):

DropShadow dropShadow = new DropShadow();
dropShadow.setOffsetX(2.0f);
dropShadow.setOffsetY(2.0f);
dropShadow.setColor(Color.rgb(50, 50, 50, .588));
text2.setEffect(dropShadow);

https://www.google.com/fonts
http://dx.doi.org/10.1007/978-1-4842-1961-4_2#Par97
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/TextFlow.html

Chapter 3 ■ JavaFX Fundamentals

101

Although this example is about setting text fonts, it also demonstrates applying a drop shadow effect
to Text nodes. The ChangingTextFonts.java example includes yet another effect (just kicking it up a
notch). While creating the last Text node using the monospaced font, I’ve applied the popular reflection
effect. Calling the setFraction() method with 0.8f is essentially specifying that you want 80 percent of the
reflection to be shown. The reflection values range from zero (0%) to one (100%). In addition to the fraction
to be shown, the reflection’s gap or top offset can be set. In other words, the space between the opaque node
portion and the reflection portion is adjusted by the setTopOffset() method. The top offset defaults to zero.
The following code snippet implements a reflection of 80% with a float value of 0.8f and a top offset of five
pixels:

Reflection refl = new Reflection();
refl.setFraction(0.8f);
refl.setTopOffset(5);
text5.setEffect(refl);

Summary
In this chapter, you learned the fundamentals of drawing 2D shapes on the JavaFX scene graph. You
gained insight into the differences between the Cartesian and screen coordinate systems. This furthered
your knowledge of how to draw shape nodes onto the JavaFX scene graph. The first example was the basic
shape of a line using the JavaFX Line class. Here, you delved deeper into the common properties of the
parent class (Shape). Some of the common properties discussed were setting the shape’s stroke width,
stroke color, and dashed pattern. Next, you explored simple, complex, and custom shapes by drawing fun
cartoon-like images. After creating shapes, you learned how to paint them using colors. You not only used
standard RGB colors, you also used various built-in techniques such as a linear (LinearGradient) and
radial (RadialGradient) gradient paint. Finally, you worked with JavaFX’s Text node. Using the Text node,
you were able to obtain the available system fonts and apply effects such as drop shadow (DropShadow) and
reflection (Reflection).

In the last example, which detailed changing text fonts, you learned how to iterate over a list of system
fonts using Java 8’s new stream API and lambda expressions. In Chapter 4, you will be introduced to Java 8’s
lambdas, streams, and properties.

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/effect/DropShadow.html
http://dx.doi.org/10.1007/978-1-4842-1961-4_4

103© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_4

CHAPTER 4

Lambdas and Properties

In this chapter, you learn about the new language feature introduced in Java 8 called lambda expressions,
or lambdas. The chapter also covers JavaFX properties and binding APIs. The goal of this chapter is to
demonstrate how lambdas and properties are used in the context of JavaFX GUI applications. Having said
this, I mainly concentrate on the common features that are used in most of the examples in this book and do
not detail every lambda and properties feature.

To get a better idea of Java’s lambda roadmap, visit the following article by Brian Goetz, who is Oracle’s
Java Language Architect:

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html

The term lambda derives from what is known in mathematics as lambda calculus. The general concepts
from that field are used to derive the specific behaviors that have been added to Java, which are described in
this chapter. Figure 4-1 shows the Greek letter lambda, which you sometimes see in connection with the topic.

Figure 4-1. The Greek symbol for lambda

Lambda
Java Lambda is based on JSR (Java Specification Request) 335, “Lambda Expressions for the Java™
Programming Language.” The feature was appropriately named after lambda calculus, the formal system
in mathematical logic and computer science to express computations. JSR 335, better known as Project
Lambda, comprised many features, such as expressing parallel calculations on streams (the Stream API).

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html

Chapter 4 ■ Lambdas and properties

104

A primary goal of lambdas is to help address the lack in the Java language of a good way to express
functional programming concepts. Languages that support functional programming concepts have the
ability to create anonymous (unnamed) functions, similar to creating objects instead of methods in Java.
These function objects are commonly known as closures. Some common languages that support closures or
lambdas are Common Lisp, Clojure, Erlang, Haskell, Scheme, Scala, Groovy, Python, Ruby, and JavaScript.

The main idea is that languages that support functional programming will use a closure-like syntax. In
Java 8, you can create anonymous functions as first-class citizens. In other words, functions or closures can
be treated like objects, so that they can be assigned to variables and passed into other functions. In order
to mimic closures in the previous Java world (Java 1.1 to Java 7), you would typically use anonymous inner
classes to encapsulate functions (behavior) as objects. Listing 4-1 shows an example of an anonymous inner
class that defines handler code for a JavaFX button when pressed (prior to Java 8).

Listing 4-1. A Button’s OnAction Set with an Anonymous Inner Class

Button btn = new Button();
btn.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent event) {
 System.out.println("Hello World");
} });

You will notice that this code looks very verbose just to wire up a button. Buried deep in an anonymous
inner class is a single line to output text. Wouldn’t it be nice to be able to express a block of code containing
the behavior you want without the need of so much boilerplate code? Look no further. Java 8 solves this
issue with the use of lambda expressions (closures). To see how it looks with Java 8 lambda expressions, let’s
rewrite the button handler code. Listing 4-2 is the button’s EventHandler code rewritten as a Java 8 lambda
expression.

Listing 4-2. A Button’s OnAction Set with a Lambda Expression

btn.setOnAction(event -> System.out.println("Hello World"));

Using lambda expressions not only makes code concise and easy to read, but the code is also likely to
perform better. Actually, under the hood, the compiler is capable of optimizing code and likely to be able to
reduce its footprint.

Lambda Expressions
As discussed, lambda expressions are Java 8’s version of closures. In the same way other languages create
closures syntactically, you will also be able to reference them and pass them into other methods. In order to
achieve this ability, you will later learn about functional interfaces. But for now, let’s look at the basic syntax
for lambda expressions.

Syntax
There are two ways to specify lambda expressions. The following simple examples illustrate the general
forms:

(param1, param2, ...) -> expression;
(param1, param2, ...) -> { /* code statements */ };

Chapter 4 ■ Lambdas and properties

105

Lambda expressions begin with a list of parameters surrounded by parentheses, followed by the
arrow symbol -> (a hyphen and a greater-than sign) and an expression body. Similar to Java methods,
the parentheses are for parameters that are passed into an expression. The surrounding parentheses are
optional only if there is one parameter defined. When the expression doesn’t accept parameters (and is said
to be empty), the parentheses are still required.

Separating the parameter list and the expression body is the arrow symbol. The expression body
or code block may or may not be surrounded by curly braces. When the expression body doesn’t have
surrounding curly braces, it must consist of only one statement. When an expression is a one-line statement,
it is evaluated and returned to the caller implicitly. Just remember that if the method requires a return type
and your code block has curly braces, you must have a return statement. Listing 4-3 shows two equivalent
lambda expressions, with and without curly braces.

Listing 4-3. One Statement with an Explicit Return, and the Other with an Implicit Return

// explicit return of result
Function<Double, Double> func = x -> { return x * x; }

// evaluates & implicitly returns result
Function<Double, Double> func = x -> x * x;

double y = func(2.0); // x = 4.0

Another thing to note is that parameters can be optionally typed. The compiler will infer the type of the
parameters depending on the context. In Listing 4-3, a functional interface of type java.util.function.
Function<T, U> where a T type is transformed into a type U. There you will notice the parameter x doesn’t
have a type Double specified. That’s because the Java 8 compiler will infer the type based on the functional
interface definition.

Let’s look at an example of passing a lambda expression to a method. A simple example would be
setting a JavaFX button by using the setOnAction() method. As mentioned, the compiler can figure out
the lambda parameters by matching the method’s argument types (its signature) and its return type.
Sometimes for readability, you can optionally specify the type of each parameter. If you specify the type,
you will be required to surround the list of parameters in parentheses. The following line specifies the type
(ActionEvent) of the parameter for the lambda expression for a JavaFX button’s setOnAction() method.

btn.setOnAction((ActionEvent event) -> System.out.println("Hello World"));

You will also notice that it is okay to leave off the semicolon for a one line statement that is inside
methods, such as the setOnAction() method. One last piece of syntactic sugar to note is that if you have
one parameter to be passed into your lambda, the parentheses can be omitted. The following is a lambda
expression that has one parameter (event) without parentheses.

btn.setOnAction(event -> System.out.println("Hello World"));

As a recap of the syntax variations just discussed, the statements in Listing 4-4 are all equivalent lambda
expressions.

Listing 4-4. Three Syntactically Equivalent Lambda Expressions to Set Action Code on a JavaFX Button

btn.setOnAction((ActionEvent event) -> {System.out.println(event); });
btn.setOnAction((event) -> System.out.println(event));
btn.setOnAction(event -> System.out.println(event));

Chapter 4 ■ Lambdas and properties

106

Method Reference
Listing 4-4 shows three ways to express a lambda expression for an ActionEvent for a JavaFX button, but did
you know there is a fourth way?

Often when using lambdas, there are methods that take a single parameter as input or a single value as
a return type. This is very redundant so, new in Java 8 is the concept of method references. Method references
are basically syntactic sugar that allow you to make method calls with even less verbosity, subsequently
making things easier to read. For example, the following is a lambda expression that uses a method reference:

btn.setOnAction(System.out::println);

This code sets the action on the button, and you’ll notice it’s a concise version that behaves the same
way as Listing 4-4. The difference is that there isn’t a input parameter for the ActionEvent for the lambda
and an unusual double colon between the System.out and the println method. The double colon is
called the scope operator, and it references the method by name. You’ll also notice the println method’s
parentheses are absent. If you remember, whenever a lambda expression takes a single parameter as input,
the parameter is implicitly passed to the method println that takes a single input. Of course, both types
must be the same. The event object in the example will implicitly call toString() to pass a String to the
println method.

There are other method reference types beyond the scope of this book. See the Javadoc documentation
for other use-case scenarios. Check out the following tutorials on method references:

https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

Variable Capture
Typically, in functional programming languages, the use of closures (lambda expressions) allows you to use
variables outside the closure’s scope. These variables are often described as nonlocal or capture variables
because they aren’t locally scoped to the lambda expression or method. When these nonlocal variables
are used in lambda expressions, they need to be immutable. This is a key principle in the functional
programming world. New to the Java 8 compiler is the ability to reference variables outside the scope of an
anonymous inner class or lambda expression.

When using lambda expressions, you can optionally reference variables scoped outside the closure
function. Typically, prior to Java 8, these nonlocal variables needed to be final (immutable). This
immutable state enables the compiler to better predict program behavior and thus be able to optimize
code. In Java Swing development, this occurred often when variables of the enclosing scope needed to be
used inside the scope of an anonymous inner class method (local variable scope). In order to abide by the
compiler rules, you had to declare a variable as final.

The Java 8 compiler has a new capability that will infer the intent of nonlocal variables passed into
anonymous inner class methods and lambda expressions to then be converted to final (immutable). To
see how the old-school Java Swing developers (prior to Java 8) used to receive compile-time errors, look at
Listing 4-5. The scenario is a button that will modify the text of a Swing JLabel component after the button
is pressed. Prior to Java 8, the code would not compile correctly, because the label variable needed to be
declared final.

https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

Chapter 4 ■ Lambdas and properties

107

Listing 4-5. Code That Would Receive a Compiler Error Prior to JDK 8

// Prior to Java 8
// label variable is a nonlocal variable to actionPerformed()
JLabel label = new JLabel("Press Me");
btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 label.setText("Pressed"); /* !Compile Error! Variable label must be final. */
} });

New to Java 8 is the ability to convert nonlocal variables to be final. In Listing 4-6, you’ll notice that
the code is identical except for the comments. Starting with Java 8, you can now use the variable capture
capability with anonymous inner classes and lambda expressions.

Listing 4-6. Code That Compiles Successfully in JDK 8

// New in Java 8
// label variable is a nonlocal variable to actionPerformed()
JLabel label = new JLabel("Press Me");
// compiler implicitly converts label as a final (immutable) variable
btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 label.setText("Pressed"); /* Legal. Variable label is converted to be final */
} });

Both of the code examples shown in Listing 4-6 are identical. The difference comes when using a
JDK 8 or later compiler. When using the Java 8 compiler, the capture variable will implicitly become final
(immutable reference), and that will occur without triggering any compilation error.

Functional Interfaces
The advent of cloud computing has helped to reinvigorate many functional programming languages.
It became apparent there was a paradigm shift in problem-solving that involves extremely large datasets.
A typical use case when applying functional programming techniques is the ability to iterate over datasets
while performing computations in a distributed fashion so that load can be shared among nodes or CPU
cores. In contrast, imperative programming languages gather data to then be passed into a tight for loop to
be processed. Because of how data and code are coupled, this puts a lot of the burden on one thread (core)
to process so much data. The problem needs to be decomposed to allow other threads (cores) to participate
in the computation, which then becomes distributed.

One of the advantages of functional programming is the ability to express functionality in a syntactically
concise manner, but more important is the ability to pass functionality (lambda expressions) to methods.
Being able to pass lambda expressions to methods often fosters the concept of lazy evaluation. This behavior
is the same as function callback behavior (asynchronous message passing), where invocations are deferred
(and thus “lazy”) until a later time. The opposite of lazy evaluation is eager evaluation. Using lazy evaluations
will often increase performance by avoiding unnecessary calculations.

Another important topic to discuss is how functional interfaces are used as closures in the Java
language. Instead of implementing functions as first-class types in Java, the designers/architects of the Java
Language cleverly defined the notion of functional interfaces as closures. Simply put, a functional interface
is basically a single abstract method (SAM). The idea of functional interfaces has been around for a very
long time. For instance, those who have worked with Java threads will recall using the Runnable interface,

Chapter 4 ■ Lambdas and properties

108

where there is a single run() method with a void return type. The single abstract method pattern is an
integral part of Java 8’s lambda expressions. As an example of a functional interface, I created an interface
called MyEquation with a single abstract compute() method. Once it is created, you can declare and assign
variables with a lambda expression. Listing 4-7 is a functional interface that has a single abstract compute()
method.

Listing 4-7. A Declared Functional Interface with a Single Abstract Method, compute()

// functional interface
interface MyEquation {
 double compute(double val1, double val2);
}

After creating a functional interface, you can declare a variable to be assigned with a lambda expression.
Listing 4-8 demonstrates the assignment of lambda expressions to functional interface variables.

Listing 4-8. Two Variables of a Functional Interface, Assigned with Lambda Expressions

MyEquation area = (height, width) -> height * width;
MyEquation perimeter = (height, width) -> 2*height + 2*width;

System.out.println("Area = " + area.compute(3, 4));
System.out.println("Perimeter = " + perimeter.compute(3, 4));

The following is the output of Listing 4-8:

Area = 12.0
Perimeter = 14.0

Aggregate Operations
Another powerful use of Java 8’s lambda expressions is working with collections. Java 8 introduces the new
Stream API (java.util.stream.*), which allows you to process elements from a given source. A source can be
a reference to data structures such as collections or IO channels. According to Oracle’s Java 8 documentation
(Javadoc) on the Stream API, “a stream is not a data structure that stores elements; instead, they carry
values from a source (which could be a data structure, a generator, an IO channel, etc.) through a pipeline of
computational operations.”

A pipeline is a sequence of operations (lambda expressions/functional interfaces) that can process
or interrogate each element in a stream. Such operations allow you to perform aggregate tasks. Aggregate
operations are similar to the way spreadsheets can execute some computation over a series of cells, such as
formatting, averaging, or summing up values. To begin using aggregate operations on collections, you will
first invoke the default stream() method on the java.util.Collection interface. You’ll learn more about
default methods shortly, but for now all collections (Collection) have a method stream() that returns a
java.util.stream.Stream instance. Listing 4-9 is a snippet of code that obtains a stream of elements from a
source collection (List<Integer>).

Listing 4-9. A Stream Obtained by Invoking the stream() Method from a Collection

List<Integer> values = Arrays.asList(23, 84, 74, 85, 54, 60);
Stream<Integer> stream = values.stream();

Chapter 4 ■ Lambdas and properties

109

The common built-in aggregate operations are filter, map, and forEach. A filter allows you to pass in
an expression to filter elements and returns a new Stream containing the selected items. The map operation
converts (or maps) each element to another type and returns a new Stream containing items of the mapped
type. For instance, you may want to map Integer values to String values of a stream. A forEach operation
allows you to pass in a lambda expression to process each element in the stream.

A typical use case that exercises these three common aggregate operations is this: given a collection of
integers, filter on values greater than a threshold value (a nonlocal variable), convert filtered items to hex values,
and print each hex value. Listing 4-10 implements the use case, which exercises various aggregate operations.

Listing 4-10. The Use of Aggregate Operations Over a Collection of Integers

// create a list of values
List<Integer> values = Arrays.asList(23, 84, 74, 85, 54, 60);
System.out.println("values: " + values.toString());

// nonlocal variable to be used in lambda expression.
int threshold = 54;
System.out.println("Values greater than " + threshold + " converted to hex:");

Stream<Integer> stream = values.stream();

// using aggregate functions filter() and forEach()
stream
 .filter(val -> val > threshold) /* Predicate functional interface */
 .sorted()
 .map(dec -> Integer.toHexString(dec).toUpperCase()) /* Consumer functional interface*/
 .forEach(val -> System.out.println(val)); /* each output values. */

Following is the output from Listing 4-10:

values: [23, 84, 74, 85, 54, 60]
Values greater than 54 converted to hex:
3C
4A
54
55

 ■ Note this output is a sorted list of integers ascending displaying the hexadecimal value. the decimal value
equivalence are as follows: 3C=60, 4a=74, 54=84, and 55=85.

In Listing 4-10, the code begins by creating a list of integers as a collection. Next, it outputs the original
list of elements (unmodified). Then the code declares a nonlocal variable to the lambda expression called
threshold, to be used in a filter expression. Next, you obtain a stream from the values collection
(via stream() method) to perform aggregate operations.

The first operation is a filter that receives a lambda expression to filter elements (integers) greater than
54 (val > threshold). The next operation is the sorted() method, which sorts elements that were returned
from the filter method stream. Continuing the method chaining, notice the map operation. The map()
method operation can map each element in the stream from one data type to another.

Chapter 4 ■ Lambdas and properties

110

In this scenario, the stream elements are Integer objects, which are mapped to String objects. The map()
method returns another stream, containing elements of type Stream<String>. In this example, the string
elements are hexadecimal values. Finally, the forEach() operation iterates over each element in the stream
of string (hex) elements to be printed. Keep in mind that the forEach() method is used for non-parallel
processing of streams.

You’ll notice that as each aggregate function is called, the return type is a Stream object, which allows
you to method-chain operations in a way very similar to the builder pattern. To clarify, the idea of method
chaining actually comes from the fluent interface pattern for API design.

Although I’ve only touched on the main features of the Stream API, I didn’t mention the important
topic of parallelism. Parallelism is the ability to distribute work to CPU cores concurrently, thus reducing
the overall computational time. Modern desktops, smartphones, tablets, and computers typically have
multi-cores. To take advantage of true parallel processing, the Java 8 platform now supports parallel streams.
To perform operations in parallel, you can simply invoke the method parallelStream() method on a
collections. Since the items can be manipulated concurrently, it is advised to use a thread-safe collection.
In Listing 4-11, the list of integers will be wrapped using the Collections.synchronizedList() method.

Listing 4-11. Aggregate Operations Example Written to Support Parallel Streams

/**
 * Aggregate Operations.
 * @author cdea
 */
public class AggregateOperations {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 // create a list of values
 List<Integer> values = Collections.synchronizedList(
Arrays.asList(23, 84, 74, 85, 54, 60));
 System.out.println("values: " + values.toString());

 // non-local variable to be used in lambda expression.
 int threshold = 54;
 System.out.println("Values greater than " + threshold + " converted to hex:");
 java.util.stream.Stream<Integer> stream = values.parallelStream();

 // using aggregate functions filter() and forEach()
 stream
 .filter(val -> val > threshold) /* Predicate functional interface */
 .sorted()
 .map(dec -> Integer.toHexString(dec).toUpperCase()) /* Consumer functional interface */
 .forEachOrdered(System.out::println);

 }
}

Chapter 4 ■ Lambdas and properties

111

After making a collection synchronized, the code obtains the Stream reference as a parallel stream by
invoking the parallelStream() method. After performing immediate or aggregate functions against the
parallel stream, the last terminal function invoked is the forEachOrdered() method. You’ll notice instead of
the forEach() method the forEachOrdered() method will iterate over each item when parallel processing is
complete (ordering). If you use the forEach() method, the items will be out of order.

 ■ Note When using parallel streams to be sorted, use the terminal function forEachOrdered() instead of
forEach(). according to the Javadoc, it states “performs an action for each element of this stream, in the
encounter order of the stream if the stream has a defined encounter order.”

Did you know the parallel code example is likely to be slower than using non-parallel stream? That’s
because the example uses so few items in its collection. The parallel code will create new threads per CPU
core to handle each computation. Having so few items to process the overhead of each thread’s context
switching and scheduling is likely to be slower than if you had a single thread looping through the elements.

Now, if you had tons of data, parallel streams will outperform the single thread using one core. As a rule
of thumb, you’ll want to use parallel streams whenever you have extremely large datasets, but when you have
a very small amount of data use the non-parallel stream. Typically, if you have four cores and you have more
than 100,000 items, use parallel streams.

Default Methods
Default methods are a new way to add default implementation methods to Java interfaces. You’re probably
scratching your head and thinking out loud, “Java interfaces can have implementations?!” Yes, Java 8 now
has support for the concept, called virtual extension methods, better known as defender methods. Default
methods have the effect of adding (extending) new behavior to interfaces without breaking compatibility.
Default methods are not abstract methods but methods having implementation (code).

For example, adding new abstract methods to Java interfaces can affect all implementation classes.
Because of the strict contract of Java interfaces, the compiler forces the implementer to implement abstract
methods, but classes that implement interfaces with default methods do not force the developer to
implement those default methods. Rather, derived classes will acquire the behavior of the default method
implementation.

An Example Case: Cats Large and Small
It might not be obvious, but the method stream() on the Collection interface used earlier for aggregate
operations isn’t an abstract method, but actually a Java 8 default method. Listing 4-12 is the default method
stream() in the java.util.Collection interface from the Java 8 source code.

Listing 4-12. The Default Method stream() of Java 8’s Collection Interface

default Stream<E> stream() {
 return StreamSupport.stream(spliterator, false);
}

Chapter 4 ■ Lambdas and properties

112

For this example, I created a domain model (consisting of classes and interfaces) about cats (grrr, meow).
The cat kind or species can easily demonstrate default behavior that is found in some cat kinds and not
others. For instance, the great cats such as lions, tigers, and jaguars are able to roar; whereas smaller cats
can purr. Also, a house (domestic) cat is able to meow. To further describe these behavioral traits, look at
Figure 4-2, a class diagram depicting default behavior between cat kinds.

Figure 4-2. Cat domain model represented in a UML class diagram

Looking at the Tiger and Lion classes, you’ll notice they each implement both Roarable and Cat
interfaces. Both tigers and lions have the same behavior (can roar) via the default roar() method from the
Roarable interface. Keep in mind that the Roarable interface doesn’t have any abstract methods, but rather
a default method roar(), which both Lion and Tiger acquire without implementing it.

In contrast, if the Roarable interface had roar() as an abstract method (a pure virtual function), you
would have to implement roar() in both Tiger and Lion’s concrete classes. With both having the same
functionality in two places, down the road things could become a major maintenance nightmare. That’s why
default methods allow you to add behavior without having to modify derived classes.

Code for the Example
To see the class diagram in Figure 4-2 implemented as code, refer to Listings 4-13 through 4-20. To
implement the class diagram, I briefly outline the three parts of the code example. First you will see the set of
cat interfaces with default method behaviors. The concrete cat classes such as Lion, Cheetah, and HouseCat
are shown second. Last is the main example application, which demonstrates default methods in action.

Listings 4-13 through 4-16 contain the UML interfaces Roarable, Purrable, Meowler, and Cat, each
containing a default method.

Chapter 4 ■ Lambdas and properties

113

Listing 4-13. The Roarable Interface with a Default Method roar()

public interface Roarable {
 default void roar() {
 System.out.println("Roar!!");
 }
}

Listing 4-14. The Purrable Interface with a Default Method purr()

public interface Purrable {
 default void purr() {
 System.out.println("Purrrrrrr...");
 }
}

Listing 4-15. The Meowler Interface with a Default Method meow()

public interface Meowler {
 default void meow() {
 System.out.println("MeeeeOww!");
 }
}

Listing 4-16. The Main Cat Interface with Abstract and Default Methods

/**
 * This represents an abstract Cat containing default methods common to all cats.
 * @author carldea
 */
public interface Cat {
 String getCatKind();
 String getFurDescription();
 default void growl() {
 System.out.println("Grrrrowl!!");
 }
 default void walk() {
 System.out.println(getCatKind() + " is walking.");
 }
 default void eat() {
 System.out.println(getCatKind() + " is eating.");
 }
 default void sleep() {
 System.out.println(getCatKind() + " is sleeping.");
 }
}

Listings 4-17 through 4-20 show the concrete implementation classes Tiger, Lion, Cheetah, and
HouseCat, which utilize the interfaces just shown.

Chapter 4 ■ Lambdas and properties

114

Listing 4-17. The Tiger Class Implementing the Cat and Roarable Interfaces

public class Tiger implements Cat, Roarable {

 @Override
 public String getCatKind() {
 return getClass().getSimpleName();
 }

 @Override
 public String getFurDescription() {
 return "striped";
 }
}

Listing 4-18. The Lion Class Implementing the Cat and Roarable Interfaces

public class Lion implements Cat, Roarable {
 @Override
 public String getCatKind() {
 return getClass().getSimpleName();
 }
 @Override
 public String getFurDescription() {
 return "gold-brown";
 }
}

Listing 4-19. The Cheetah Class Implementing the Cat and Purrable Interfaces

public class Cheetah implements Cat, Purrable {
 @Override
 public String getCatKind() {
 return getClass().getSimpleName();
 }
 @Override
 public String getFurDescription() {
 return "spotted";
 }
}

Listing 4-20. The HouseCat Class Implementing the Cat, Purrable, and Meowler Interfaces

public class HouseCat implements Cat, Purrable, Meowler {
 @Override
 public String getCatKind() {
 return "Domestic Cat";
 }
 @Override
 public String getFurDescription() {
 return "mixed brown and white";
 }
}

Chapter 4 ■ Lambdas and properties

115

Listing 4-21 is the main application, which invokes all of the methods of cat instances, demonstrating
their behaviors.

Listing 4-21. The Main Application File (Mixins.java) That Executes the Code Example

/**Demonstrates default methods in Java 8.
 * Mixins.java
 *
 * @author cdea
 */
public class Mixins {
 public static void main(String[] args) {
 Tiger bigCat = new Tiger();
 Cheetah mediumCat = new Cheetah();
 HouseCat smallCat = new HouseCat();
 System.out.printf("%s with %s fur.\n", bigCat.getCatKind(),
 bigCat.getFurDescription());
 bigCat.eat();
 bigCat.sleep();
 bigCat.walk();
 bigCat.roar();
 bigCat.growl();
 System.out.println("------------------");
 System.out.printf("%s with %s fur.\n", mediumCat.getCatKind(),
 mediumCat.getFurDescription());
 mediumCat.eat();
 mediumCat.sleep();
 mediumCat.walk();
 mediumCat.growl();
 mediumCat.purr();
 System.out.println("------------------");
 System.out.printf("%s with %s fur.\n", smallCat.getCatKind(),
 smallCat.getFurDescription());
 smallCat.eat();
 smallCat.sleep();
 smallCat.walk();
 smallCat.growl();
 smallCat.purr();
 smallCat.meow();
 System.out.println("------------------");
 }
}

Following is the output from Listing 4-20, which demonstrates default method invocations:

run:
Tiger with striped fur.
Tiger is eating.
Tiger is sleeping.
Tiger is walking.
Roar!!

Chapter 4 ■ Lambdas and properties

116

Grrrrowl!!

Cheetah with spotted fur.
Cheetah is eating.
Cheetah is sleeping.
Cheetah is walking.
Grrrrowl!!
Purrrrrrr...

Domestic Cat with mixed brown and white fur.
Domestic Cat is eating.
Domestic Cat is sleeping.
Domestic Cat is walking.
Grrrrowl!!
Purrrrrrr...
MeeeeOww!

BUILD SUCCESSFUL (total time: 0 seconds)

Explanation of the Code
Figure 4-2, shown earlier, depicts a UML class diagram of a cat domain model. In the top layer, you’ll notice
the interfaces Roarable, Cat, Purrable, and Meowler. These interfaces provide behavior for any derived class
that wants to pick and choose (mixin) common behaviors.

The concrete implementation classes are Lion, Tiger, Cheetah, and HouseCat. You will notice that
the main interface Cat contains abstract methods getCatKind() and getFurDescription(), and default
methods walk(), eat(), and sleep(). As usual, the Java compiler will enforce classes implementing the Cat
interface to implement the abstract methods getCatKind() and getFurDescription().

The default methods on the Cat interface have implementation code that serves as functionality for all
cats. These default methods will provide behavior to the Cat interface while also centralizing functionality
(implementation) for all derived classes. I created the empty (marker) interfaces Roarable, Purrable,
and Meowler, which contain respective default methods roar(), purr(), and meow(). These interfaces are
similar to the idea of a mixin, which in object-oriented languages allows developers to extend or add default
behavior to any derived class or interface. Listing 4-22 is a repeat of the beginning of the main class from
Listing 4-21, which starts off by creating three cat objects: Tiger, Cheetah, and HouseCat.

Listing 4-22. Creating Three Types of Cat Instances

Tiger bigCat = new Tiger();
Cheetah mediumCat = new Cheetah();
HouseCat smallCat = new HouseCat();

After creating the cat objects, the code begins by exercising the default and abstract methods. It invokes
all of the methods on each cat object. Listing 4-23 shows a cat of type Tiger with all of its methods being
invoked.

Listing 4-23. All Methods Invoked on a Tiger Instance

System.out.printf("%s with %s fur.\n", bigCat.getCatKind(), bigCat.getFurDescription());
bigCat.eat();
bigCat.sleep();

Chapter 4 ■ Lambdas and properties

117

bigCat.walk();
bigCat.roar();
bigCat.growl();
System.out.println("------------------");

Since the rest of the cat kinds have similar tasks, I won’t discuss them any further as I believe you have
a handle on things. If you’ve gotten this far, you’re a real trooper. Whenever I learn a new skill or concept,
I’m always reminded of the programming proverb, “If all you have is a hammer, everything looks like a nail”.
Getting to learn new language features can often be difficult, especially when you’ve solved problems for so
long without using these new and powerful concepts in Java.

I’ve only scratched the surface, so I encourage you to dig deeper into the features of Java 8. Now that
you’ve been able to equip yourself with new-found powers of lambdas, let’s get back on track with JavaFX.

Properties and Binding
Properties are basically wrapper objects for JavaFX-based object attributes such as String or Integer.
Properties allow developers to add listener code to respond when the wrapped value of an object has
changed or is flagged as invalid. Also, property objects can be bound to one another. Binding behavior allows
properties to update or synchronize their values based on a changed value from another property.

UI Patterns
Before discussing JavaFX’s properties and bindings APIs, I would like to share with you a little bit about
UI patterns. When developing GUI applications, you will inevitably encounter UI architectural framework
concepts such as model view controller (MVC), presentation model (PM), model view presenter (MVP), or
model view view-model (MVVM).

Depending on who you talk to, you might get different explanations; however, these concepts all
address the issue of how best to handle synchronization between the model and view. What this means
is that when a user interacts (input) with the UI (view) the underlying backend data store (the model) is
automatically updated, and vice versa.

Without trying to oversimplify the concepts, I refer you to the actual UI patterns that are involved.
The main UI patterns involved are the Supervising Controller, Presentation Model, and Mediator. If you
are interested in understanding more about UI patterns, read “GUI Architectures” by Martin Fowler at
http://martinfowler.com/eaaDev/uiArchs.html.

Because these patterns have been heavily discussed over the years, the JavaFX team has designed and
implemented APIs to overcome problems that arose with these UI scenarios. In this section, you will be
learning how to use JavaFX properties and bindings to synchronize between your GUI and your data objects.
Of course, I can’t possibly cover all of the use-case scenarios involving the UI patterns just mentioned, but
hopefully I can give you the basics to get you on the right path.

Properties
Before the JavaFX properties API, Java Swing developers adhered to the JavaBean convention (specification),
which specifies that objects will contain privately scoped instance variables that have associated getter
(accessor) and setter (mutator) methods. For instance, a User class might have a private instance variable
password of type String. The associated getter and setter would be the getPassword() and setPassword()
methods, respectively. Listing 4-24 shows a User class that follows the older JavaBean convention.

http://martinfowler.com/eaaCatalog/modelViewController.html
http://martinfowler.com/eaaDev/PresentationModel.html
http://martinfowler.com/eaaDev/ModelViewPresenter.html
https://msdn.microsoft.com/en-us/library/hh848246.aspx
http://martinfowler.com/eaaDev/uiArchs.html

Chapter 4 ■ Lambdas and properties

118

Listing 4-24. A Simple JavaBean Class with Getter and Setter Methods

public class User {
 private String password;
 public String getPassword() {
 return password;
 }
 public void setPassword(String password) {
 this.password = password;
 }
}

As a developer who follows the JavaBean convention, you will quickly see the naming convention for
the property, which is based on the getter and setter method names and not on the private variable name.
In other words, if the getter method were named getPwd(), the property would be named pwd and would
have nothing to do with the attribute named password.

The JavaBeans specification also provided an API that has the concept of property change support
(java.beans.PropertyChangeSupport), which allowed the developer to add handler (listener) code
when the property changed. At the time, this solved only part of the issue of property change support. The
JavaBeans API started showing its age when it came to binding variables and working with the Collections
API. Although the JavaBeans API became a standard way to build domain objects, it still lacked robust ways
to synchronize the domain models and views within a GUI application, as described earlier.

Through the years, the JavaBean specification and API gave rise to many third-party tools and
frameworks to ease the developer experience. However, wiring up GUI components to JavaBeans using
unidirectional or bidirectional binding still got pretty complicated. At times, developers would have
resources that were not properly released, which led to object leaks. Developers quickly realized they
needed a better way to bind and unbind GUI controls to be wired up to properties.

Types of JavaFX Properties
Let’s fast forward to JavaFX’s Properties API to see how it handles the common issues. I’ll first discuss the
different types of JavaFX-based properties. There are two types to be concerned about:

•	 Read/writable

•	 Read-only

In short, JavaFX’s properties are wrapper objects that hold actual values while providing change
support, invalidation support, and binding capabilities. I will address binding later, but for now let’s examine
commonly used property classes.

Properties are wrapper objects that have the ability to make values accessible as read/writable or read-
only. All wrapper property classes are located in the javafx.beans.property.* package namespace. Listed
here are commonly used property classes. To see all of the property classes, refer to the documentation in
Javadoc.

•	 javafx.beans.property.SimpleBooleanProperty

•	 javafx.beans.property.ReadOnlyBooleanWrapper

•	 javafx.beans.property.SimpleIntegerProperty

•	 javafx.beans.property.ReadOnlyIntegerWrapper

•	 javafx.beans.property.SimpleDoubleProperty

•	 javafx.beans.property.ReadOnlyDoubleWrapper

Chapter 4 ■ Lambdas and properties

119

•	 javafx.beans.property.SimpleStringProperty

•	 javafx.beans.property.ReadOnlyStringWrapper

The properties that have a prefix of Simple and a suffix of Property are the read/writable property
classes, and the classes with a prefix of ReadOnly and a suffix of Wrapper are the read-only properties. Later,
you will see how to create a JavaFX bean using these commonly used properties, but for now let’s examine
read/writable properties.

Read/Writable Properties
Read/writable properties are, as the name suggests, property values that can be both read and modified.
As an example, let’s look at JavaFX string properties. To create a string property that is capable of
both readable and writable access to the wrapped value, you will use the javafx.beans. property.
SimpleStringProperty class. Listing 4-25 is a code snippet that demonstrates an instance of a
SimpleStringProperty class and modifies the property via the set() method.

Listing 4-25. Creating a StringProperty Instance

StringProperty password = new SimpleStringProperty("password1");
password.set("1234");
System.out.println("Modified StringProperty " + password.get()); // 1234

Here, a declared variable password of type StringProperty is assigned to an instance of a
SimpleStringProperty class. It’s always a good idea when declaring variables to be more abstract in
object-oriented languages. Thus, referencing a StringProperty exposes fewer methods of the
implementation class (SimpleStringProperty). Also notice that the actual value is the string “password1”,
which is passed into the constructor of the SimpleStringProperty class. You will later discover other
convenient constructor methods when working with JavaBeans and property objects.

In the case of reading the value back, you would invoke the get() method (or getValue()), which
returns the actual wrapped value(String) to the caller. To modify the value, you simply call the set()
method (or setValue()) by passing in a string.

Read-Only Properties
To make a property read-only you use the wrapper classes that are prefixed with ReadOnly from the
javafx.beans.property.* package. To create a property to be read-only, you need to take two steps. First,
you instantiate a read-only wrapper class and invoke the method getReadOnlyProperty() to return a true
read-only property object. Listing 4-26 creates a read-only string property.

Listing 4-26. Creating a Read-Only String Property

ReadOnlyStringWrapper userName = new ReadOnlyStringWrapper("jamestkirk");
ReadOnlyStringProperty readOnlyUserName = userName.getReadOnlyProperty();

This code snippet actually takes two steps to obtain a read-only string property. You will notice the call
to getReadOnlyProperty(), which returns a read-only copy (synchronized) of the property. According to the
Javadoc API, the ReadOnlyStringWrapper class “creates two properties that are synchronized. One property
is read-only and can be passed to external users. The other property is readable and writable and should
be used internally only.” Knowing that the other property can be read and written could allow a malicious
developer to cast the object to type StringProperty, which then could be modified at will. From a security
perspective, you should be aware of the proper steps to create a true read-only property.

Chapter 4 ■ Lambdas and properties

120

JavaFX JavaBean
Now that you’ve seen the JavaBean specification’s approach to creating domain objects, I will rewrite the
earlier JavaBean User class to use JavaFX properties instead. In the process of rewriting the bean, I also
wanted to add a read-only property called userName to demonstrate the read-only property behavior.
Listing 4-27 shows the User class rewritten to use JavaFX properties.

Listing 4-27. The File User.java Rewritten as a JavaFX Bean

import javafx.beans.property.*;
public class User {
 private final static String USERNAME_PROP_NAME = "userName";
 private final ReadOnlyStringWrapper userName;

 private final static String PASSWORD_PROP_NAME = "password";
 private final StringProperty password;

 public User() {
 userName = new ReadOnlyStringWrapper(this,
 USERNAME_PROP_NAME, System.getProperty("user.name"));

 password = new SimpleStringProperty(this, PASSWORD_PROP_NAME, "");
 }

 public final String getUserName() {
 return userName.get();
 }
 public ReadOnlyStringProperty userNameProperty() {
 return userName.getReadOnlyProperty();
 }
 public final String getPassword() {
 return password.get();
 }
 public final void setPassword(String password) {
 this.password.set(password);
 }
 public StringProperty passwordProperty() {
 return password;
 }
}

You may notice some obvious differences in the way I instantiated the ReadOnlyStringWrapper and
SimpleStringProperty classes. Similar to the JavaBean property change support, JavaFX properties have
constructors that will allow you to specify the bean itself, its property name, and its value. As a simple
example, Listing 4-28 shows the instantiations of a read-only and a read-writable property using the JavaFX
property change support-based constructors. The userName variable is assigned a read-only property, and
the password variable is assigned a read/writable property.

Chapter 4 ■ Lambdas and properties

121

Listing 4-28. Instantiating a Read-Only and a Read-Writable Property

userName = new ReadOnlyStringWrapper(this, USERNAME_PROP_NAME, System.getProperty("user.name"));
password = new SimpleStringProperty(this, PASSWORD_PROP_NAME, "");

It is good practice to use the property change support-based constructors for many reasons, such as
third-party tooling and testing. But most of all, when dealing with property change support, you need access
to the bean and its other properties.

One last thing to mention is that, in Listing 4-26, notice that the getter and setter methods are final.
Making the getter and setter final prevents any derived classes from overriding and possibly changing the
underlying property.

Property Change Support
Property change support is the ability to add handler code that will respond when a property changes.
JavaFX property objects contain an addListener() method. This method will accept two types of functional
interfaces, ChangeListener and InvalidationListener. Recall that functional interfaces are single abstract
methods that are expressed using the Java lambda syntax. All JavaFX properties are descendants of the
ObservableValue and Observable interfaces (method overloading), which provide the addListener()
methods for ChangeListener and InvalidationListener, respectively. Finally, remember that it is
important to clean up listeners by removing them. The purpose of cleaning up listeners is to reclaim
memory. To remove them, you will invoke the removeListener() method by passing into it a referenced
(named) listener as opposed to an anonymous inner class or anonymous lambda expression.

Listing 4-29 shows how to create a ChangeListener to be registered with a property. As the property’s
value changes, the change() method will be invoked. I provided the implementations for both the
anonymous inner class and lambda expression-style syntax for you to compare.

Listing 4-29. Adding a ChangeListener Instance to Respond When the Property Value Changes

SimpleIntegerProperty xProperty = new SimpleIntegerProperty(0);

// Adding a change listener (anonymous inner class)
xProperty.addListener(new ChangeListener<Number>(){
 @Override
 public void changed(ObservableValue<? extends Number> ov,
 Number oldVal, Number newVal) {
 // code goes here
 }
});

// Adding a change listener (lambda expression)
xProperty.addListener((ObservableValue<? extends Number> ov,
 Number oldVal, Number newVal) -> {
 // code goes here
});

Listing 4-30 shows how to create an InvalidationListener to be registered with a property. As the
property’s value changes, the invalidated () method will be invoked. I’ve provided the implementations
for both the anonymous inner class and lambda expression-style syntax for you to compare.

Chapter 4 ■ Lambdas and properties

122

Listing 4-30. Adding an InvalidationListener Instance to Respond When the Property Value Changes

// Adding a invalidation listener (anonymous inner class)
xProperty.addListener(new InvalidationListener() {
 @Override
 public void invalidated(Observable o) {
 // code goes here
 }
});

// Adding a invalidation listener (lambda expression)
xProperty.addListener((Observable o) -> {
 // code goes here
});

Often developers become confused about the difference between a ChangeListener and an
InvalidationListener. In Listing 4-30, you’ll notice that using a ChangeListener you will get the
Observable (ObservableValue), the old value, and the new value, while using the InvalidationListener
only gets the Observable object (property).

In the Javadoc documentation, the difference between a ChangeListener and InvalidationListener is
described as follows:

“A change event indicates that the value has changed. An invalidation event is
generated, if the current value is not valid anymore. This distinction becomes
important, if the ObservableValue supports lazy evaluation, because for a
lazily evaluated value one does not know if an invalid value really has changed
until it is recomputed. For this reason, generating change events requires
eager evaluation while invalidation events can be generated for eager and lazy
implementations.”

The InvalidationListener provides a way to mark values as invalid but does not recompute the value
until it is needed. This is often used in UI layouts or custom controls, where you can avoid unnecessary
computations when nodes don’t need to be redrawn/repositioned during a layout request or draw cycle.
When using the ChangeListener, you normally want eager evaluation such as the validation of properties
on a form-type application. That doesn’t mean you can’t use InvalidationListeners for validation of
properties; it just depends on your performance requirements and exactly when you need the new value to
be recomputed (evaluated). When you access the observable value, it causes the InvalidationListener to
be eager.

Binding
Simply put, binding has the idea of at least two values (properties) being synchronized. This means that
when a dependent variable changes, the other variable changes. JavaFX provides many binding options that
enable the developer to synchronize between properties in domain objects and GUI controls. In this section,
you learn about three binding strategies when binding property objects.

This section focuses on the following JavaFX API packages:

•	 javafx.beans.binding.*

•	 javafx.beans.property.*

Chapter 4 ■ Lambdas and properties

123

Binding properties is quite easy to do. The only requirement is that the property invoking the bind must
be a read/writeable property. To bind a property to another property, you will invoke the bind() method.
This method will bind in one direction (unidirectional). For instance, when property A binds to property B,
the change in property B will update property A, but not the other way. If A is bound to B you can’t update A,
as you’ll get RuntimeException: A bound value cannot be set.

The following are three additional binding strategies to consider using in JavaFX’s Properties API:

•	 Bidirectional binding on a Java Bean

•	 High-level binding using the Fluent API

•	 Low-level binding using javafx.beans.binding.* binding objects

Bidirectional Binding
Bidirectional binding allows you to bind properties with the same type allowing changes on either end
while keeping a value synchronized. When binding bi-directionally, it’s required that both properties
must be read/writable. It’s pretty easy to bind two properties bidirectionally through the use of the
bindBidirectional() method. To demonstrate, I’ve created a simple example.

Listing 4-31 is a Contact bean having a property firstName that is bound bidirectionally to a local
variable fname of type StringProperty.

Listing 4-31. Bidirectional Binding Between the firstName Property and a Regular String Property Variable

Contact contact = new Contact("John", "Doe");
StringProperty fname = new SimpleStringProperty();

fname.bindBidirectional(contact.firstNameProperty());

contact.firstNameProperty().set("Play");
fname.set("Jane");

System.out.println("contact.firstNameProperty = " + contact.firstNameProperty().get());
System.out.println("fname = " + fname.get());

The output of this code snippet is as follows:

contact.firstNameProperty = Jane
fname = Jane

High-Level Binding
Introduced in JavaFX 2.0 is a fluent interface API to bind properties. The fluent APIs are methods that
allow you to perform operations on properties using English-like method names. For example, if you
have a numeric property, there are methods like multiply(), divide(),subtract(),and so on. Another
example would be a string property having methods like isEqualTo(), isNotEqualTo(), concat(), and
similar. As an example, Listing 4-32 shows how to create a property that represents the formula for the
area of a rectangle.

Chapter 4 ■ Lambdas and properties

124

Listing 4-32. Creating a Property (area) Using the High-Level Binding Strategy for Calculating the Area of a
Rectangle

// Area = width * height
IntegerProperty width = new SimpleIntegerProperty(10);
IntegerProperty height = new SimpleIntegerProperty(10);
NumberBinding area = width.multiply(height);

This code demonstrates high-level binding by using the fluent API from the javafx.beans.binding.
IntegerExpression parent interface. This example binds by using the multiply() method, which returns
a NumberBinding containing the computed value. What’s nice is that the binding is lazy-evaluated, which
means the computation (multiplying) doesn’t occur unless you invoke the property’s (area) value via
the get() (or getValue()) method. For all available fluent interfaces, see the Javadoc for javafx.beans.
binding.* packages.

Low-Level Binding
When using low-level binding, you would use a derived NumberBinding class, such as a DoubleBinding class
for values of type Double. With a DoubleBinding class, you will override its computeValue() method so that
you can use the familiar operators such as * and - to formulate complex math equations. The difference
between high-and low-level binding is that high-level uses methods such as multiply() and subtract()
instead of the operators * and -. Listing 4-33 shows how to create a low-level binding for the formula for the
volume of a sphere.

Listing 4-33. A Property Binding (volumnOfSphere) Using the Low-Level Binding Strategy

DoubleProperty radius = new SimpleDoubleProperty(2);

DoubleBinding volumeOfSphere = new DoubleBinding() {
 {
 super.bind(radius); // initial bind
 }

 @Override
 protected double computeValue() {
 // Math.pow() (power) cubes the radius
 return (4 / 3 * Math.PI * Math.pow(radius.get(), 3));
 }
};

If you’ve gotten this far, you are definitely ready to begin building GUIs. So far you’ve had a chance
to learn about lambda expressions, properties, and bindings. Next, I want to close out this chapter with
an example showing how to build a snazzy-looking logon dialog that uses shapes, lambda expressions,
properties, and bindings (with a hint of UI controls).

A Logon Dialog Example
Logon dialogs are typical of any application when authenticating users. In this example, I created a simple
form application that will involve all of the skills you’ve learned from Chapter 3 and in this chapter thus far.
Before getting deep into the code, which you’ll see in Listing 4-34, let’s look at the logon dialog window.
Figure 4-3 shows the initial display of the logon dialog window that the code will create.

http://dx.doi.org/10.1007/978-1-4842-1961-4_3

Chapter 4 ■ Lambdas and properties

125

The following are the instructions for interacting with the application.

 1. The user will have three attempts to enter the correct password. Figure 4-4 shows
the user making the first attempt to log on. (Note: The password is password1.)

Figure 4-4. The user is entering the password into the logon dialog window

Figure 4-5. The user has pressed Enter with an invalid password

Figure 4-3. Initial display of the logon dialog window

 2. As users enter the password, they have an opportunity to press the Enter key.
If the password is incorrect, a red X appears to the right of the password text field.
Figure 4-5 shows an invalid logon.

 3. If the user types the correct password in real-time, a green check appears. After
the green check appears, the user may press the Enter key to be granted access.
Figure 4-6 shows the user entering a valid password.

Chapter 4 ■ Lambdas and properties

126

Login Dialog Source Code
Listing 4-34 shows the source code for the JavaFX example logon dialog application. Listing 4-35 lists the
style.css file to style this JavaFX example logon dialog application.

Listing 4-34. The Java Source Code for a JavaFX Example Logon Dialog Application

/**
 * A login form to demonstrate lambdas, properties and bindings.
 * @author cdea
 */
public class FormValidation extends Application {

 private final static String MY_PASS = "password1";
 private final static BooleanProperty GRANTED_ACCESS = new SimpleBooleanProperty();
 private final static int MAX_ATTEMPTS = 3;
 private final IntegerProperty ATTEMPTS = new SimpleIntegerProperty();

 @Override
 public void start(Stage primaryStage) {
 // create a domain model representing a user
 User user = new User();

 // create a transparent stage
 primaryStage.initStyle(StageStyle.TRANSPARENT);
 primaryStage.setAlwaysOnTop(true);

 Group root = new Group();
 Scene scene = new Scene(root, 320, 112, null);

 // load style.css to style JavaFX nodes
 scene.getStylesheets()
 .add(getClass()
 .getResource("/style.css")
 .toExternalForm());

 primaryStage.setScene(scene);

Figure 4-6. The user has entered a valid password

Chapter 4 ■ Lambdas and properties

127

 // rounded rectangular background
 Rectangle background = new Rectangle();
 background.setId("background-rect");

 background.widthProperty()
 .bind(scene.widthProperty()
 .subtract(5));
 background.heightProperty()
 .bind(scene.heightProperty()
 .subtract(5));

 // a read only field holding the user name.
 Label userName = new Label();
 userName.setId("username");
 userName.textProperty()
 .bind(user.userNameProperty());

 HBox userNameCell = new HBox();
 userNameCell.getChildren()
 .add(userName);

 // When Label's text is wider than the background minus the padlock icon.
 userNameCell.maxWidthProperty()
 .bind(primaryStage.widthProperty()
 .subtract(45));
 userNameCell.prefWidthProperty()
 .bind(primaryStage.widthProperty()
 .subtract(45));

 // padlock
 Region padlock = new Region();
 padlock.setId("padlock");

 HBox padLockCell = new HBox();
 padLockCell.setId("padLockCell");
 HBox.setHgrow(padLockCell, Priority.ALWAYS);
 padLockCell.getChildren().add(padlock);

 // first row
 HBox row1 = new HBox();
 row1.getChildren()
 .addAll(userNameCell, padLockCell);

 // password text field
 PasswordField passwordField = new PasswordField();
 passwordField.setId("password-field");
 passwordField.setPromptText("Password");
 passwordField.prefWidthProperty()
 .bind(primaryStage.widthProperty()
 .subtract(55));

Chapter 4 ■ Lambdas and properties

128

 // populate user object's password from password field
 user.passwordProperty()
 .bind(passwordField.textProperty());

 // error icon
 Region deniedIcon = new Region();
 deniedIcon.setId("denied-icon");
 deniedIcon.setVisible(false);

 // granted icon
 Region grantedIcon = new Region();
 grantedIcon.setId("granted-icon");
 grantedIcon.visibleProperty()
 .bind(GRANTED_ACCESS);

 // hide and show denied icon and granted icon
 StackPane accessIndicator = new StackPane();
 accessIndicator.getChildren().addAll(deniedIcon, grantedIcon);

 // second row
 HBox row2 = new HBox(3);
 row2.getChildren().addAll(passwordField, accessIndicator);
 HBox.setHgrow(accessIndicator, Priority.ALWAYS);

 // user hits the enter key on the password field
 passwordField.setOnAction(actionEvent -> {
 if (GRANTED_ACCESS.get()) {
 System.out.printf("User %s is granted access.\n",
 user.getUserName());
 System.out.printf("User %s entered the password: %s\n",
 user.getUserName(), user.getPassword());
 Platform.exit();
 } else {
 deniedIcon.setVisible(true);
 ATTEMPTS.set(ATTEMPTS.add(1).get());
 }
 });

 // listener when the user types into the password field
 passwordField.textProperty().addListener((obs, ov, nv) -> {
 GRANTED_ACCESS.set(passwordField.getText().equals(MY_PASS));
 if (GRANTED_ACCESS.get()) {
 deniedIcon.setVisible(false);
 }
 });

 // listener on number of attempts
 ATTEMPTS.addListener((obs, ov, nv) -> {
 // failed attempts
 System.out.println("Attempts: " + ATTEMPTS.get());

Chapter 4 ■ Lambdas and properties

129

 if (MAX_ATTEMPTS == nv.intValue()) {
 System.out.printf("User %s is denied access.\n", user.getUserName());
 Platform.exit();
 }
 });

 VBox formLayout = new VBox(4);
 formLayout.getChildren().addAll(row1, row2);
 formLayout.setLayoutX(12);
 formLayout.setLayoutY(12);

 root.getChildren().addAll(background, formLayout);

 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

Listing 4-35. The style.css file to Style the JavaFX Example Logon Dialog Application

.root {
 common-foreground-color: rgb(255, 255, 255, 0.90);
}

#background-rect {
 -fx-translate-x: 5px;
 -fx-translate-y: 5px;
 -fx-arc-height: 15;
 -fx-arc-width: 15;
 -fx-fill: rgba(0, 0, 0, .55);
 -fx-stroke: common-foreground-color;
 -fx-stroke-width: 1.5;
}

#username {
 -fx-font-family: "Helvetica";
 -fx-font-weight: bold;
 -fx-font-size: 30;
 -fx-text-fill: common-foreground-color;
 -fx-smooth: true;
}

#padLockCell {
 -fx-alignment: center-right;
}

Chapter 4 ■ Lambdas and properties

130

#padlock {
 -fx-position-shape: true;
 -fx-padding: 0 0 0 20;
 -fx-scale-shape: false;
 -fx-background-color: common-foreground-color;
 -fx-shape: "M24.875,15.334v-4.876c0-4.894-3.981-8.875-8.875-8.875s-8.875,3.981-8.875,

8.875v4.876H5.042v15.083h21.916V15.334H24.875zM10.625,10.458c0-2.964,
2.411-5.375,5.375-5.375s5.375,2.411,5.375,5.375v4.876h-10.75V10.458zM18.272,
26.956h-4.545l1.222-3.667c-0.782-0.389-1.324-1.188-1.324-2.119c0-1.312,
1.063-2.375,2.375-2.375s2.375,1.062,2.375,2.375c0,0.932-0.542,1.73-1.324,
2.119L18.272,26.956z";

}

#denied-icon {
 -fx-position-shape: true;
 -fx-padding: 0 0 0 20;
 -fx-scale-shape: false;
 -fx-border-color: white;
 -fx-background-color: rgba(255, 0, 0, .9);
 -fx-shape: "M24.778,21.419 19.276,15.917 24.777,10.415 21.949,7.585 16.447,13.087 10.945,

7.585 8.117,10.415 13.618,15.917 8.116,21.419 10.946,24.248 16.447,
18.746 21.948,24.248z";

}

#granted-icon {
 -fx-position-shape: true;
 -fx-padding: 0 0 0 20;
 -fx-scale-shape: false;
 -fx-border-color: white;
 -fx-background-color: rgba(0, 255, 0, .9);
 -fx-shape: "M2.379,14.729 5.208,11.899 12.958,19.648 25.877,6.733 28.707,

9.561 12.958,25.308z";
}

#password-field {
 -fx-font-family: "Helvetica";
 -fx-font-size: 20;
 -fx-text-fill:black;
 -fx-prompt-text-fill:gray;
 -fx-highlight-text-fill:black;
 -fx-highlight-fill: gray;
 -fx-background-color: rgba(255, 255, 255, .80);
}

Explanation of the Code
The JavaFX application in Listing 4-34 simulates a logon dialog window allowing a user to enter a valid
password. The code mainly demonstrates binding JavaFX JavaBeans properties with UI controls by reusing
the User class that was shown earlier, in Listing 4-27.

Chapter 4 ■ Lambdas and properties

131

Before you begin the code walkthrough, I want to mention the difference between Listing 4-34 and
the prior book’s second edition in Chapter 3. The main difference from the older code example was that it
was entirely in Java code as opposed to Java code and JavaFX CSS styling. In this chapter, you will see this
example separated in two files—one in Listing 4-34 (Java code) and the other in Listing 4-35 (JavaFX CSS
file). I did this on purpose to allow you to focus on the code related to topics in this chapter such as lambdas,
properties, etc. If you don’t understand the JavaFX CSS styling applied to UI controls, don’t worry, as I will
explain this in detail in Chapter 15 Custom User Interfaces.

So, let’s begin walking through this login dialog example by describing the class member variables and
then look at the body of the code.

Class Member Variables
I’ll begin by describing the class variables. The variable MY_PASS contains a hardcoded string of the password
of “password1”. Next, the GRANTED_ACCESS variable is declared of type SimpleBooleanProperty class, which
by default has a value of false. This variable will be later bound to the green checkmark (grantedIcon) icon
node’s visible property. Basically, as the user enters the correct keystrokes for the password, the GRANTED_
ACCESS will become true, which will trigger the setting of the green checkmark icon node’s visible property
to true, thus displaying the icon in the scene graph. When the password is incorrect, the visible property
becomes false, which hides the green checkmark node (Region). The constant variable MAX_ATTEMPTS is the
maximum number of login attempts the users can try. Lastly, the ATTEMPTS variable of type IntegerProperty
holds the current number of login attempts the user has made.

The start() Method
The start() method is where the JavaFX application thread’s lifecycle begins setting up the stage, scene,
and children nodes to be displayed. In the start() method, a User object is created to be used as the domain
object to be synchronized with the GUI form. To see the code for the User class, refer to Listing 4-26.
Next, the stage is set to be transparent by invoking the Stage.initStyle(StageStyle.TRANSPARENT)
method. This will allow you to create translucent and irregularly shaped windows without the decoration
of the native OS title bar and borders surrounding the main content. You’ll also notice the statement
setAlwaysOnTop(true), which will cause the Stage (dialog window) to be on top of all other application
windows on the desktop. For convenience, the following code is repeated, showing you how to enable your
Stage window to be transparent and to appear on top of all other application windows.

primaryStage.initStyle(StageStyle.TRANSPARENT);
primaryStage.setAlwaysOnTop(true);

After the code initializes the stage, a Scene object is created with a root node of type Group that will
allow children nodes to be added. A JavaFX Group node is a simple fixed size parent container. Later in the
book, you will learn about other layout parent containers that are capable of resizing dynamically. For now,
the Group node is used for this simple example that has very few children nodes.

Back to the root node, even though the root node is transparent, a rectangular background will need to
be created to act as the surface to put the controls on top of. The rectangular background will need to be the
same size as the defined Scene (logon screen) object. The following code snippet is the creation of a Scene
object having a Group node as its root node with a background fill color of null, thus making the window
transparent.

Scene scene = new Scene(root, 320, 112, null);

http://dx.doi.org/10.1007/978-1-4842-1961-4_3
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
http://dx.doi.org/10.1007/978-1-4842-1961-4_15
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Scene.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Group.html

Chapter 4 ■ Lambdas and properties

132

The rectangular background of the logon screen is actually a rounded rectangle (Rectangle) having an
arc height and width of 15 pixels with a fill color of black with an opacity level of 55%. All styling information
is located in the file style.css shown in Listing 4-35. To apply JavaFX CSS, the code will load a CSS file
located in your application’s resources directory. The following code snippet demonstrates loading and
applying the stylesheet definitions to the scene.

// load style.css to style JavaFX nodes
scene.getStylesheets()
 .add(getClass()
 .getResource("/style.css")
 .toExternalForm());

To give things a consistent look, the code declares a common-foreground-color CSS variable, containing
a color of white with an opacity of 90% percent. To see the full style.css file’s CSS styling definitions, check
out the earlier mentioned source code from Listing 4-35.

Continuing with Listing 4-34, inside the start() method after setting up the initial rectangular
background surface, the code creates a Label node that will represent the user’s username as a
read-only field (per the User class). To obtain the user’s real username, the code calls Java’s System.
getProperty("user.name") method. The label node is set up with a 30 point Helvetica font having a fill
color of the common-foreground-color (white) attribute. The label node’s text property is bound to the User
object’s read-only userName property using the bind() method. A JavaFX Label node was used to represent
the user’s username field. The field can tend to be wider than the width of the parent container’s maximum
width due to a long text string. Because of this, when a JavaFX Label’s text length exceeds the allowed width,
the text on the label will be shortened and end with an ellipsis.

Next, the code creates an HBox layout pane node that will hold the Label node (username). The HBox
(userNameCell) will be binding its max and preferred width property by using the JavaFX properties fluent
API to ensure that it doesn’t hog up all the horizontal space and allow the padlock icon to have room to be
placed beside it. Figure 4-3 shows the padlock icon in the upper-right corner of the logon dialog window.
The following code snippet shows an HBox containing the TextNode (username) from Listing 4-34.

// wrap text node
HBox userNameCell = new HBox();
userNameCell.getChildren().add(userName);

userNameCell.prefWidthProperty()
 .bind(primaryStage.widthProperty()
 .subtract(45));

I’ve mentioned very little about the HBox layout control here, because it will be discussed further in
Chapter 5, which covers layouts and the Scene Builder tool. In the prior edition of this book, I created the
padlock icon using a JavaFX SVGPath node; however, to separate nodes from their styling definitions, you
have to use a Region node instead of the SVGPath node. When using an SVGPath node and specifying its
SVG path notation text, you will find out that it can only be done programmatically (Java code) by using the
setContent() method. In order to mimic an SVGPath node, but have the SVG path notation code reside in
the CSS styling file, you will have to employ the Region node.

A Region node is a very versatile node that is typically used as a base class for many resizable parent
container nodes used in JavaFX layout nodes. The Region node has a plethora of CSS styling attributes that
enable you to not only style borders and backgrounds, but interestingly enough also specify an SVG path
notation to create custom shapes. Looking at Listing 4-34 you will see the SVG path notation specified to
draw the various shaped icons. When specifying the SVG path notation as a value, you will notice the
-fx-shape attribute being used.

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Rectangle.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/Label.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/HBox.html
http://dx.doi.org/10.1007/978-1-4842-1961-4_5
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/Region.html

Chapter 4 ■ Lambdas and properties

133

Recall that Chapter 3 covered generating complex shapes using path elements to create an ice cream
cone, as depicted in Figure 3-10. Having said this, the Region class is very similar to the Path node, except
that the child path elements are expressed in W3C SVG path notation as a string. To render a path, the string
representing the path notation is defined in the style.css file. To see how to use SVG paths, visit
http://www.w3.org/Graphics/SVG. To create the padlock icon, I originally had gone to the web site of the
JavaScript library called Raphaël by Dmitry Baranovskiy; however, the site is no longer available. At the
time, I was able to obtain very nice SVG icons to be used in this example. Next, the code creates an HBox as a
container for the first row (row1) to hold the userNameCell and padLock nodes.

After creating the first row, the code proceeds by creating the PasswordField UI control. Like the Label
node, the PasswordField UI control’s font can be set programmatically or by using JavaFX CSS. The prompt
text is shown in Figure 4-3 of the initial logon dialog with the prompt text as “Password.”

For some final styling on the password field, the code continues to use JavaFX CSS styling, which you
will get a chance to see in later chapters. The CSS style applied to the password field is a white background
with an opacity of 80 percent. Still working with the password field, the code uses the fluent interface
subtract() method to bind the preferred width that subtracts 55px (pixels). This allows room for the
StackPane that contains the granted and denied icons. Last, the user object’s passwordProperty is bound to
the PasswordField’s textProperty. This is a unidirectional bind, which means that as the user enters text
into the UI password field, the User object’s password property changes and not the other way around.

Next, the code creates two more icons using the Region node that represents an ‘X’ and a checkmark,
denoting denied (deniedIcon) and granted (grantedIcon) access icons, respectively. These icons will
be placed in a StackPane layout node. The StackPane layout allows child nodes to be stacked, hence the
name. In this scenario the deniedIcon and grantedIcon nodes are stacked on top of each other. This trick
allows you to toggle between icons using the setVisible() method. As a whole (stack pane) node, it will
be positioned to the right of the password field. As the user types into the password field, the Boolean
property GRANTED_ACCESS is updated, which updates the grantedIcon’s visible property. The following code
statement shows the visible property bound to the GRANTED_ACCESS property.

grantedIcon.visibleProperty().bind(GRANTED_ACCESS);

Completing the second row, the code creates another HBox similar to the first row, this time holding
the password field and the StackPane node containing the icons (denied and granted icons). Next, the code
continues by wiring up the UI controls and adding property change listeners (ChangeListeners) to various
properties. The code proceeds with the passwordField by adding an action as a functional interface for the
method setOnAction() in response to the user pressing the Enter key. The following handler code is set on
the password field when the user presses the Enter key.

passwordField.setOnAction(actionEvent -> {
 if (GRANTED_ACCESS.get()) {
 System.out.printf("User %s is granted access.\n",
 user.getUserName());
 System.out.printf("User %s entered the password: %s\n",
 user.getUserName(), user.getPassword());
 Platform.exit();
 } else {
 deniedIcon.setVisible(true);
 ATTEMPTS.set(ATTEMPTS.add(1).get());
 }
});

http://dx.doi.org/10.1007/978-1-4842-1961-4_3
http://dx.doi.org/10.1007/978-1-4842-1961-4_3#Fig10
http://www.w3.org/Graphics/SVG

Chapter 4 ■ Lambdas and properties

134

Essentially, if the password matches and the user presses Enter, the program exits and outputs the
following:

Attempts: 1
User cdea is granted access.
User cdea entered the password: password1

You’ll also notice that the code increments the ATTEMPTS property by invoking the fluent interface
method add().

Still working with the password field, the codes adds a change listener to listen for keystrokes from the
user. As the user types into the password field, the password is compared against the stored (hardcoded)
password. If the password is valid, the code sets the GRANTED_ACCESS property to true and hides the
deniedIcon icon via the setVisible(false) method.

Finally, I added the last bit of wiring for when a user has too many failed attempts. I basically added
a change listener onto the ATTEMPTS property. The change listener will compare MAX_ATTEMPTS against
ATTEMPTS to see if they are equal. If so, it will invoke the JavaFX’s Platform.exit() method to gracefully
exit the application. The rest is assembling the rows into a VBox layout and adding it to the root node for
the scene to be shown.

Summary
This chapter covered a lot of ground with properties and bindings, especially relating to new Java 8
language features. You were introduced to the new features in Java 8, such as lambda expressions, stream
APIs, and default methods. Starting with Java lambdas, you were able to learn the syntax and use functional
interfaces. Next, you were able to use the stream API and common aggregate functions. After an example
of using the stream APIs to manipulate elements in a collection, you then learned how to extend behavior
on Java interfaces with default methods. Then you explored UI patterns, the Properties API, and the idea
of change support. With a solid understanding of working with properties, you then learned about various
binding strategies. To wrap up the chapter, you saw an example of how to create a logon dialog window,
which employed all the concepts you’ve learned so far. Next, in Chapter 5, you’ll explore JavaFX UI layout
and UI controls.

http://dx.doi.org/10.1007/978-1-4842-1961-4_5

135© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_5

CHAPTER 5

Layouts and Scene Builder

As more and more graphically rich applications such as desktops, smartphones, and tablets devices find
their way into our lives, it is very important to design GUI applications that provide better usability across
the different form factors. With the increase of the number different screen sizes, a UI developer will need to
learn how to create applications with UI layout management in mind. UI layout management is the ability to
position or resize child nodes on the JavaFX scene graph. This chapter discusses the most common JavaFX
layouts used in many GUI applications.

This chapter also introduces the Scene Builder tool, a graphical (WYSIWYG) editor that allows you to
develop UIs graphically without having to manually code (programmatically) UI elements. In this section,
you will learn about how to download and install the UI editor tool. Once Scene Builder is installed, you
will learn how to build a typical UI form consisting of common UI nodes such as text fields and buttons.
Later, you will create an application utilizing the UI form’s serialized file format (FXML). Using FXML, you
will have an opportunity to learn aspects of the popular MVC (Model/View/Controller) UI pattern through
JavaFX’s mechanism to wire up UI elements to controller code.

Layouts
One of the greatest challenges in building user interfaces is laying out UI controls onto the display area. In
GUI applications, it is ideal to allow the user to resize a viewable area (Window) while UI controls also resize
in order to provide a pleasant user experience. Similar to Java’s Swing API, the JavaFX API has stock layouts
that provide the most common ways to display UI controls onto the scene graph. The following are the
JavaFX layouts discussed in this section:

•	 javafx.scene.layout.HBox

•	 javafx.scene.layout.VBox

•	 javafx.scene.layout.FlowPane

•	 javafx.scene.layout.BorderPane

•	 javafx.scene.layout.GridPane

 ■ Note To see other stock layouts not discussed in this chapter, refer to the Javadoc documentation at
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/Pane.html.

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/HBox.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/VBox.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/FlowPane.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/BorderPane.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/GridPane.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/Pane.html

ChapTer 5 ■ LayouTs and sCene BuiLder

136

HBox
The HBox layout’s job is to place JavaFX child nodes in a horizontal row. As child nodes are added
consecutively, each is appended to the end (right side). By default, the HBox layout honors the child’s
preferred width and height. When the parent node is not resizable (a Group node, for example), the row
height of the HBox takes on the height of the child node with the greatest preferred height. Also, by default,
each child node aligns to the top-left (Pos.TOP_LEFT) position.

The HBox can be configured to have resizing ranges to allow the parent to manage and calculate space
available upon layout requests. There are many ways you can programmatically alter the HBox’s layout
constraints, such as border, padding, margin, spacing, and alignment. Although in this chapter you will learn
how to set constraints using a programmatic approach, there are also alternative strategies. One well known
and preferred strategy is to style or set constraints using JavaFX CSS attributes; you will catch a glimpse of
that approach later in this chapter, and more details in Chapter 15, on custom UIs.

When dealing with nonresizable child nodes such as Shape nodes, the parent takes into account the
Shape’s rectangular bounds (ParentInBounds), its width and height. In contrast, when using resizable nodes
such as a TextField control, the parent (HBox) has the ability to manage and compute the available space
for the TextField to grow horizontally. To grow UI controls horizontally within an HBox, use the static
HBox.setHgrow() method. Also, assume the HBox’s parent is resizable and takes up the available space such
as a BorderPane’s center region. The following code snippet sets a TextField control to grow horizontally
when the parent HBox’s width is resized:

TextField myTextField = new TextField()
HBox.setHgrow(myTextField, Priority.ALWAYS);

An HBox Example
Before you look at the code example, let’s look at a picture of child nodes inside an HBox node and see how each
are spaced appropriately. Figure 5-1 shows an HBox containing four rectangles—r1 through r4. The picture
shows the widths of the border, padding, margin, and spacing for the child nodes.

Figure 5-1. An example of an HBox layout containing four rectangles

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Group.html
https://docs.oracle.com/javase/8/javafx/api/javafx/geometry/Pos.html
http://dx.doi.org/10.1007/978-1-4842-1961-4_15

ChapTer 5 ■ LayouTs and sCene BuiLder

137

An example of an HBox layout in action, the code shown in Listing 5-1 uses four rectangles as child
nodes with varying HBox constraints. Nonresizable nodes such as rectangle shapes are used in the example
to demonstrate the many spacing attributes for the HBox layout control. For brevity, only the relevant code is
listed here. To see the full listing, visit the Source Code/Download tab of the book’s page at www.apress.com
to download the source code.

Listing 5-1. The HBoxExample.java file demonstrates using an HBox layout with shapes as child nodes

Group root = new Group();
Scene scene = new Scene(root, 300, 250);

// pixels space between child nodes
HBox hbox = new HBox(5);

// The border is blue, dashed,
// 0% radius for all corners,
// a width of 1 pixel
BorderStroke[] borderStrokes = new BorderStroke[] {
 new BorderStroke(Color.BLUE,
 BorderStrokeStyle.DASHED,
 new CornerRadii(0.0, true),
 new BorderWidths(1.0))
};
hbox.setBorder(new Border(borderStrokes));

// padding between child nodes only
hbox.setPadding(new Insets(1));

// rectangles r1 to r4
Rectangle r1 = new Rectangle(10, 10);
Rectangle r2 = new Rectangle(20, 20);
Rectangle r3 = new Rectangle(5, 20);
Rectangle r4 = new Rectangle(20, 5);

// margin of 2 pixels
HBox.setMargin(r1, new Insets(2,2,2,2));

hbox.getChildren().addAll(r1, r2, r3, r4);

root.getChildren().add(hbox);

// once shown display the dimensions all added up.
primaryStage.setOnShown((WindowEvent we) -> {
 System.out.println("hbox width " + hbox.getBoundsInParent().getWidth());
 System.out.println("hbox height " + hbox.getBoundsInParent().getHeight());
});
primaryStage.setTitle("HBox Example");
primaryStage.setScene(scene);
primaryStage.show();

http://www.apress.com/

ChapTer 5 ■ LayouTs and sCene BuiLder

138

After running the code from Listing 5-1, the following output is shown in Figure 5-2. In Figure 5-2, an
HBox is shown surrounded with a blue dashed border. The HBox instance has four varying sized rectangles.

Code Walkthrough
Listing 5-1 begins by instantiating an HBox using the single-argument constructor. This constructor takes a
value of type double, which specifies the horizontal space (in pixels) between child nodes. This is also the
equivalent of invoking the setSpacing() method on the HBox instance. After creating an instance of an HBox
with five-pixel spacing, the code creates a blue colored dashed border with a zero radius for all four corners
with a one-pixel stroke width. The following code snippet creates an array of one BorderStroke instance to
be drawn around the HBox layout pane node.

// The border is blue, dashed, 0% radius for all corners,
// a width of 1 pixel
BorderStroke[] borderStrokes = new BorderStroke[] {
 new BorderStroke(Color.BLUE,
 BorderStrokeStyle.DASHED,
 new CornerRadii(0.0, true),
 new BorderWidths(1.0))
};
hbox.setBorder(new Border(borderStrokes));

When creating borders, you will remember from Chapter 3 that you used the same concepts to create
shapes as when creating strokes. A border’s stroke can be created with various styles and colors. All JavaFX
layout panes will have a setBorder() method allowing you to create borders. To create a border, you have to
create an array of BorderStroke objects having at least one. This code creates a BorderStroke instance with
the color blue with a BorderStrokeStyle.DASHED value. Other stroke styles are DOTTED, SOLID, and NONE. Next,
the corner radii parameter is set with the constructor CornerRadii(percent, isPercentage). When using
a 0.0 value, the corners have a zero radius, which creates squared shaped corners. By varying the radius, the
rectangle can have rounded corners appearing like a pill shape. Lastly, the stroke width parameter takes an
instance of a BorderWidths class (double precision).

Figure 5-2. The output of the file HBoxExample.java, demonstrating the HBox layout

http://dx.doi.org/10.1007/978-1-4842-1961-4_3

ChapTer 5 ■ LayouTs and sCene BuiLder

139

After the border has been set, the HBox (hbox) instance’s setPadding() method is invoked with an
Insets(1), which will set all four sides to use a one-pixel space between the border and child nodes. As you’ve
seen earlier in Figure 5-1, the border and inset spacing show the surrounding perimeter.

Because spacing, padding, margin, and the border pixel widths can often be confusing, I’ve illustrated
an HBox in Figure 5-1. The figure displays three gray rectangular areas, each five pixels wide, that represent
the spacing between the child nodes (r1 through r4). Setting the spacing uses an Insets object that allows
you to create space between the HBox’s child nodes. Spacing is created from the HBox’s constructor or the
setSpacing() method. The spacing shown in Figure 5-1 is the space between the four rectangles (pictured
as gray between the rectangle shapes). To not be confused with padding, you’ll notice that the inner part of
the HBox between the border and the child nodes is the padding (colored in yellow) taking up a one-pixel
width surrounding the row.

After creating all four rectangles, the code sets the margin on rectangle r1. To set the margin, you’ll
notice the static method HBox.setMargin(Node, Insets) instead of a method on the HBox instance. The
code creates an Insets object with a margin of two pixels for the top, right, bottom, and left. As shown
in Figure 5-1, this is the surrounding space around rectangle r1 (blue). To calculate the size of the HBox’s
dimensions, you basically add the border width, padding, spacing, margin, and the child nodes’ bounds
(ParentInBounds). When the parent of the HBox is a Group node (not resizable) and the child nodes aren’t
resizable, the HBox’s dimension will total 78 pixels wide by 24 pixels high. Tables 5-1 and 5-2 show the
breakdown of the width and height of the HBox instance.

Table 5-1. The HBox’s Total Width in Pixels. All Border, Spacing,
Padding, and Preferred Child Widths Are Added

Notes Pixels

Left side HBox’s border stroke width 1

Left side padding inset 1

Left side of rectangle1’s margin width 2

Width of rectangle 1 10

Right side of rectangle 1’s margin width 2

Spacing between Rectangle 1 and 2 5

Width of rectangle 2 20

Spacing between Rectangle 2 and 3 5

Width of rectangle 3 5

Spacing between rectangle 3 and 4 5

Width of rectangle 4 20

Right side of HBox’s padding inset 1

Right side of HBox’s border stroke width 1

Total width in pixels: 78

ChapTer 5 ■ LayouTs and sCene BuiLder

140

The total height in pixels of the HBox instance consists of the following in Table 5-2.

 ■ Note When using a parent that is resizable, such as a Border pane with the HBox instance in the center,
the HBox node’s width and height will stretch. in this scenario, with non-resizable children, the only parts that
get stretched are the border and padding around the HBox, which is the inset of the BorderPane parent. The
dashed border essentially looks like it is surrounding the border pane center region taking up the available
width and height.

VBox
The VBox layout is similar to an HBox, except that it places child nodes stacked in a vertical column. As
children are added, each is placed beneath the previous child node. By default, the VBox honors the
children’s preferred width and height. When the parent node is not resizable (for example, a Group node),
the maximum column’s width is based on the child node with the greatest preferred width. The same goes
for the VBox’s overall height, which is based on the border, padding, spacing, margins, and child node’s
height all added up.

Also, by default, each child node aligns to the top-left (Pos.TOP_LEFT) position. To change the default
alignment, use the setAlignment(Pos value) method. Refer to the Javadoc documentation at https://
docs.oracle.com/javase/8/javafx/api/javafx/geometry/Pos.html to see all possible positions to align
child nodes within a cell. VBox layouts can be configured to have resizing ranges to allow the parent node to
manage and calculate space available upon layout requests. Remember, to resize the VBox and its children,
the VBox’s parent must also be resizable such as the BorderPane instance’s center region.

A VBox Example
To demonstrate the use of a VBox, the example in Listing 5-2 contains the same four rectangles from the
previous example, with the same layout constraints. In the same manner as the HBox example, the code will
use a one-pixel stroke width to draw a dashed border (colored in blue) with an inset padding of one pixel.

Table 5-2. The HBox’s Total Height in Pixels Is Represented by Adding the Border,
Spacing, Padding, and Preferred Child Widths

Notes Pixels

Top side HBox’s border stroke width 1

Top padding inset HBox between border and rectangle 1

Preferred Height of the largest rectangle (r2) 20

Padding inset of the HBox (bottom) 1

Border stroke width (bottom) 1

Total height of HBox in pixels: 24

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/VBox.html
https://docs.oracle.com/javase/8/javafx/api/javafx/geometry/Pos.html
https://docs.oracle.com/javase/8/javafx/api/javafx/geometry/Pos.html

ChapTer 5 ■ LayouTs and sCene BuiLder

141

Listing 5-2. The VBoxExample.java File Demonstrating VBox Layout

VBox vbox = new VBox(5); // spacing between child nodes only.
vbox.setPadding(new Insets(1)); // space between vbox border and child nodes column

// The border is blue, dashed, 0% radius for all corners,
// a width of 1 pixel
BorderStroke [] borderStrokes = new BorderStroke[] {
 new BorderStroke(Color.BLUE,
 BorderStrokeStyle.DASHED,
 new CornerRadii(0.0, true),
 new BorderWidths(1.0))
};
vbox.setBorder(new Border(borderStrokes));

Rectangle r1 = new Rectangle(10, 10); // little square
Rectangle r2 = new Rectangle(20, 20); // big square
Rectangle r3 = new Rectangle(5, 20); // vertical rectangle
Rectangle r4 = new Rectangle(20, 5); // horizontal rectangle

VBox.setMargin(r1, new Insets(2,2,2,2)); // margin around r1

vbox.getChildren().addAll(r1, r2, r3, r4);

root.getChildren().add(vbox);
primaryStage.setOnShown((WindowEvent we) -> {
 System.out.println("vbox width " + vbox.getBoundsInParent().getWidth());
 System.out.println("vbox height " + vbox.getBoundsInParent().getHeight());
});

Figure 5-3 shows the output of the VBoxExample.java application from Listing 5-2, demonstrating the VBox
layout with rectangle shapes as child nodes. The VBox has a one-pixel width dashed border and a one-pixel
padding inset. The one-pixel padding inset is between the border and the rectangles. The VBox, like a vertical
bookshelf each shelf represents the spacing between the rectangles (horizontal white area). The spacing between
the rectangles is defined by the VBox’s constructor or by using the setSpacing() method.

Figure 5-3. The output of VBoxExample.java depicting four rectangles added to a VBox

ChapTer 5 ■ LayouTs and sCene BuiLder

142

Code Walkthrough
In Listing 5-2, the code begins by instantiating a VBox with a five-pixel wide space between child nodes.
Figure 5-4 depicts horizontal gray bars that represent the spacing between child nodes (r1 to r4). After
constructing the VBox, the code sets the padding via the setPadding() method. Setting the padding by using
an Insets object allows you to create padding between the border and the row. In Figure 5-4, the VBox has a
one-pixel wide dashed border with a padding of one pixel surrounding the child nodes.

Figure 5-4. VBox having a one-pixel dashed border, a one-pixel padding, and four rectangle shaped nodes
separated by five-pixel spacing

ChapTer 5 ■ LayouTs and sCene BuiLder

143

Once the four rectangles are created, the code sets the margin on the rectangle r1. To set the margin,
we use the static method VBox.setMargin(Node, Insets). The code then creates an Insets object with a
margin of two pixels for the top, right, bottom, and left of rectangle 1 (r1). Rectangle 1 (r1) has a two-pixel
margin shown in blue in Figure 5-4. To find the total size of a VBox instance, you simply add the spacing,
margin, padding, and child nodes’ dimensions (local bounds). Having a Group as a parent, the VBox node’s
calculated width would total to 24 pixels, and the height would total to 78 pixels.

Table 5-4. The VBox’s Total Height in Pixels. All Border, Spacing, Padding,
and Preferred Child Widths Are Added

Notes Pixels

Top of VBox’s border stroke width 1

Padding inset (top) between border and child node 1

Rectangle1’s margin (top) width 2

Width of rectangle 1 10

Rectangle 1’s margin (bottom) width 2

Spacing between Rectangle 1 and 2 5

Height of rectangle 2 20

Spacing between Rectangle 2 and 3 5

Height of rectangle 3 5

Spacing between rectangle 3 and 4 5

Height of rectangle 4 20

VBox’s padding inset between child node and border 1

VBox’s border stroke (bottom) width 1

Total width in pixels: 78

Table 5-3. The VBox’s Total Width in Pixels. All Border, Spacing, Padding,
and Largest Preferred Child Widths Are Added

Notes Pixels

Left side VBox’s border stroke width 1

Left side padding inset 1

The width of the widest child node (Rectangle 2) 20

Right side padding inset between rectangle and border 1

Right side VBox’s border stroke width 1

Total width in pixels: 24

The total height in pixels of the VBox instance is shown in Table 5-4.

ChapTer 5 ■ LayouTs and sCene BuiLder

144

FlowPane
The FlowPane layout node allows child nodes in a row to flow based on the available horizontal spacing and
wraps nodes to the next line when horizontal space is less than the total of all the nodes’ widths. Figure 5-5
shows four child nodes flowing from left to right and then wrapping.

By default, a FlowPane layout flows child nodes from left to right (Pos.TOP_LEFT). To change the flow
alignment, you can simply invoke the setAlignment() method by passing in an enumerated value of
type Pos. Listing 5-3 creates a FlowPane layout to flow child nodes from right to left (Pos.TOP_RIGHT).

Listing 5-3. The Creation of a FlowPane Layout to Flow from Right to Left

FlowPane flowPane = new FlowPane();
flowPane.setAlignment(Pos.TOP_RIGHT);
flowPane.getChildren().addAll(...); // child nodes to add.

BorderPane
The BorderPane layout node allows child nodes to be placed in a top, bottom, left, right, or center regions.
Because each region can only have one node, developers typically nest layouts. An example would be to
create an HBox with children to then be set as the top region via the setTop() method. Figure 5-6 shows the
BorderPane’s regions.

Figure 5-5. A FlowPane layout with nodes flowing left to right with the ability to wrap nodes based on
horizontal space. The Hello text node is wrapped to the next line because the available horizontal space,
denoted by the dashed line, is too small.

ChapTer 5 ■ LayouTs and sCene BuiLder

145

This layout is similar to many web sites you see every day, where navigational links are placed in the top,
bottom, left, or right regions of a page, while the main content is in the center area. A BorderPane’s region of
top and bottom borders allows a resizable node to take up all of the available width. The left and right border
regions take up the available vertical space between the top and bottom borders. All of the bordering regions
honor the children’s sizes (preferred width and height) by default. According to the Javadocs, the default
alignment of nodes, when placed in the top, bottom, left, right, and center regions, is as follows:

•	 Top: Pos.TOP_LEFT

•	 Bottom: Pos.BOTTOM_LEFT

•	 Left: Pos.TOP_LEFT

•	 Right: Pos.TOP_RIGHT

•	 Center: Pos.CENTER

Next, you will be learning about the GridPane layout in combination with the BorderPane to create a
simple UI similar to a Contacts form-like application. By using the BorderPane and its center region as the
root node, the available horizontal and vertical space will be given to the child nodes. This will allow text
fields to stretch when the window is being resized.

GridPane
So far you have learned about simple layouts; now let’s take a look at a more advanced layout, GridPane. It’s
commonly used in business applications. For instance, business applications typically have data entry form
screens. Forms usually have read-only labels on the first column and input fields on the second column,
resembling a grid pattern.

When using the GridPane class, you can specify constraints at the row, column, or cell level. For example,
if the second column contains input text fields, you may want them to resize as the window is being resized
(width-wise). To lay out components in a grid-like manner, I created an example form-type application in
Listing 5-4 that uses JavaFX’s GridPane layout. The most interesting part of the example is the use of column
constraints on the GridPane layout node. This is convient because any nodes placed in a column would take
on the column constraint instead of having to configure each node individualy. Column constraints apply a
minimum and maximum horizontal width for the child nodes to grow or shrink as the window is resized.

Figure 5-6. The BorderPane layout

ChapTer 5 ■ LayouTs and sCene BuiLder

146

A Form-Type Application Example
To demonstrate a GridPane layout, Listing 5-4 is a simple form type UI that resembles a contacts
application allowing users to enter a first and last name followed by a Save button. To make things a little
more professional, the code creates a banner header containing a logo (SVG icon).

Listing 5-4. The GridPaneForm.java File Demonstrates the GridPane Layout

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("GridPaneForm ");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 380, 150, Color.WHITE);

 GridPane gridpane = new GridPane();
 //gridpane.setGridLinesVisible(true);
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(5);
 gridpane.setVgap(5);
 ColumnConstraints column1 = new ColumnConstraints(100);
 ColumnConstraints column2 = new ColumnConstraints(50, 150, 300);
 column2.setHgrow(Priority.ALWAYS);
 gridpane.getColumnConstraints().addAll(column1, column2);

 Label fNameLbl = new Label("First Name");
 TextField fNameFld = new TextField();
 Label lNameLbl = new Label("Last Name");
 TextField lNameFld = new TextField();

 Button saveButt = new Button("Save");

 // First name label
 GridPane.setHalignment(fNameLbl, HPos.RIGHT);
 gridpane.add(fNameLbl, 0, 0);

 // Last name label
 GridPane.setHalignment(lNameLbl, HPos.RIGHT);
 gridpane.add(lNameLbl, 0, 1);

 // First name field
 GridPane.setHalignment(fNameFld, HPos.LEFT);
 gridpane.add(fNameFld, 1, 0);

 // Last name field
 GridPane.setHalignment(lNameFld, HPos.LEFT);
 gridpane.add(lNameFld, 1, 1);

 // Save button
 GridPane.setHalignment(saveButt, HPos.RIGHT);
 gridpane.add(saveButt, 1, 2);

ChapTer 5 ■ LayouTs and sCene BuiLder

147

 // Build top banner area
 FlowPane topBanner = new FlowPane();
 topBanner.setAlignment(Pos.TOP_LEFT);
 topBanner.setPrefHeight(40);
 String backgroundStyle =
 "-fx-background-color: lightblue;"
 + "-fx-background-radius: 3px;"
 + "-fx-background-inset: 5px;";
 topBanner.setStyle(backgroundStyle);
 SVGPath svgIcon = new SVGPath();
 // icon from http://raphaeljs.com/icons/
 svgIcon.setContent("M21.066,20.667c1.227-0.682,1.068-3.311-0.354-5.874c-0.611-

1.104-1.359-1.998-2.109-2.623c-0.875,0.641-1.941,1.031-3.102,1.031c-1.164,
0-2.231-0.391-3.104-1.031c-0.75,0.625-1.498,1.519-2.111,2.623c-1.422,2.563-1.578,
5.192-0.35,5.874c0.549,0.312,1.127,0.078,1.723-0.496c-0.105,
0.582-0.166,1.213-0.166,1.873c0,2.938,1.139,5.312,2.543,5.312c0.846,0,1.265-0.865,
1.466-2.188c0.2,1.314,0.62,2.188,1.461,2.188c1.396,0,2.545-2.375,2.545-5.312c0-0.66-
0.062-1.291-0.168-1.873C19.939,20.745,20.516,20.983,21.066,20.667zM15.5,
12.201c2.361,0,4.277-1.916,4.277-4.279S17.861,3.644,15.5,3.644c-2.363,
0-4.28,1.916-4.28,4.279S13.137,12.201,15.5,12.201zM24.094,14.914c1.938,0,3.512-
1.573,3.512-3.513c0-1.939-1.573-3.513-3.512-3.513c-1.94,0-3.513,1.573-3.513,3.513C20.
581,13.341,22.153,14.914,24.094,14.914zM28.374,17.043c-0.502-0.907-1.116-1.641-1.732-
2.154c-0.718,0.526-1.594,0.846-2.546,0.846c-0.756,0-1.459-0.207-2.076-0.55c0.496,1.09
3,0.803,2.2,0.861,3.19c0.093,1.516-0.381,2.641-1.329,3.165c-0.204,0.117-0.426,0.183-
0.653,0.224c-0.056,0.392-0.095,0.801-0.095,1.231c0,2.412,0.935,4.361,2.088,4.36
1c0.694,0,1.039-0.71,1.204-1.796c0.163,1.079,0.508,1.796,1.199,1.796c1.146,0,
2.09-1.95,2.09-4.361c0-0.542-0.052-1.06-0.139-1.538c0.492,0.472,0.966,0.667,
1.418,0.407C29.671,21.305,29.541,19.146,28.374,17.043zM6.906,14.914c1.939,0,
3.512-1.573,3.512-3.513c0-1.939-1.573-3.513-3.512-3.513c-1.94,
0-3.514,1.573-3.514,3.513C3.392,13.341,4.966,14.914,6.906,14.914zM9.441,21.536c-1.593-
0.885-1.739-3.524-0.457-6.354c-0.619,0.346-1.322,0.553-2.078,0.553c-0.956,
0-1.832-0.321-2.549-0.846c-0.616,0.513-1.229,1.247-1.733,2.154c-1.167,2.104-
1.295,4.262-0.287,4.821c0.451,0.257,0.925,0.064,1.414-0.407c-0.086,0.479-
0.136,0.996-0.136,1.538c0,2.412,0.935,4.361,2.088,4.361c0.694,0,1.039-0.71,1.204-
1.796c0.165,1.079,0.509,1.796,1.201,1.796c1.146,0,2.089-1.95,2.089-4.361c0-0.432-0.04-
0.841-0.097-1.233C9.874,21.721,9.651,21.656,9.441,21.536z");

 svgIcon.setStroke(Color.LIGHTGRAY);
 svgIcon.setFill(Color.WHITE);

 Text contactText = new Text("Contacts");
 contactText.setFill(Color.WHITE);

 Font serif = Font.font("Dialog", 30);
 contactText.setFont(serif);
 topBanner.getChildren().addAll(svgIcon, contactText);

 root.setTop(topBanner);
 root.setCenter(gridpane);

 primaryStage.setScene(scene);

 primaryStage.show();
}

ChapTer 5 ■ LayouTs and sCene BuiLder

148

Code Walkthrough
After executing Listing 5-4, you will see the output in Figure 5-7, which displays a simple form application
allowing the users to enter a first and last name as contact information. When resizing the window, notice
that the input text field controls grow or shrink based on the column constraints. Also, you’ll notice that the
Save button is horizontally aligned to the right (HPos.RIGHT), just beneath the Last Name text field.

Listing 5-4 begins by creating an instance of a BorderPane object as the root node for the scene. By using
a BorderPane as the root node and then placing the GridPane node object into the center region, you enable
the parent (BorderPane) to resize the GridPane by giving it all the available horizontal and vertical space.
After creating a BorderPane instance as the root node, the code instantiates a GridPane layout with padding
along with horizontal and vertical gaps. Listing 5-5 then creates a GridPane layout with padding, horizontal,
and vertical gaps set to 5 (pixels).

Listing 5-5. Setting Padding, Horizontal, and Vertical Gap Spacing Between UI Controls for Each Cell

GridPane gridpane = new GridPane();
gridpane.setPadding(new Insets(5));
gridpane.setHgap(5); gridpane.setVgap(5);

Before going further, I want to point out a handy method on the GridPane object called
setGridLinesVisible(). This allows you to debug your grid layout’s cell constraints. After invoking the
setGridLinesVisible(true) method, gridlines will appear surrounding its cells and gaps.

 ■ Tip in Figure 5-8, the grid pane’s gridlines visible property set to true can help you debug cell
constraints. To turn on the gridlines, invoke the method setGridLinesVisible() on your grid pane instance.

Figure 5-7. Output of the GridPaneForm.java file

ChapTer 5 ■ LayouTs and sCene BuiLder

149

Figure 5-8 shows the grid pane with gridlines visible.

Continuing on with the code walkthrough in Listing 5-4, the code implements column constraints for
the first and second columns. To set a column’s constraint, use the ColumnConstraints constructor, which
allows the developer to specify minimum, preferred, and maximum widths for a column on the GridPane
node. This is very nice; it means that when the parent container node (BorderPane) is being resized, the
GridPane will cause its child nodes to grow or shrink horizontally based on its row or column constraints.
Listing 5-6 demonstrates the ability to constrain the first column to 100 pixels wide for the read-only labels
and the second column with a minimum width of 50, a preferred width of 150 and a maximum width of 300.

Listing 5-6. Setting Up Column Constraints for a JavaFX Application

ColumnConstraints column1 = new ColumnConstraints(100); // fixed for labels
ColumnConstraints column2 = new ColumnConstraints(50, 150, 300); // min,pref,max
column2.setHgrow(Priority.ALWAYS);
gridpane.getColumnConstraints().addAll(column1, column2);

After creating the column constraint for column 2, the code invokes the setHgrow() method by passing
in the enum value Priority.ALWAYS, which lets the UI controls take up the available horizontal space within
cells when the window is widened. I set the maximum width to 300 for the second column so you can see
that the child TextField does not grow beyond the maximum width (300). In other words, when the window
is resized wider than 300 pixels, the text fields within the grid pane column stop stretching.

The next step is simply putting each UI control into its respective cell location. All cells are relative to zero;
to place a node in the cell in the first column and first row, you would specify the cell as (0, 0). Thus, the following
code snippet adds the Save button into the second column, third row of the GridPane layout at cell (1, 2):

gridpane.add(saveButton, 1, 2);

The layout also allows you to align controls horizontally or vertically within the cell. The following
statement right-aligns the Save button:

GridPane.setHalignment(saveButton, HPos.RIGHT);

Figure 5-8. The grid pane’s gridlines visible property set to true. The visible property is often used for
debugging purposes. To turn on the gridlines, invoke the method setGridLinesVisible(true).

ChapTer 5 ■ LayouTs and sCene BuiLder

150

After completing the GridPane setup, the code implements the top banner area of the input form shown
in Figure 5-7 earlier. To create a title banner, I used a flow layout with a background color of light blue, an
SVG node icon (shown as people), and a text node with the text “Contacts”. I obtained the SVG based icon
from Dmitry Baranovskiy, founder and author of the JavaScript library RaphaelJS. The web site that hosted
the original SVG icons is no longer active. The icon is in the form of a string in SVG notion (vector drawing
commands). I simply pass the SVG string to an javafx.scene.shape. SVGPath instance by invoking the
setContent() method. The following snippet shows how to create an SVGPath node instance.

SVGPath svgIcon = new SVGPath();
svgIcon.setContent("M21.066,...");

The important code that relates to the FlowPane layout displaying the banner contains the settings for
the preferred height and JavaFX CSS styles. Because the banner (FlowPane) is placed in the top region of the
BorderPane layout, the preferred height of 40 pixels will be honored and the width will take up the available
horizontal space as the window is being resized (stretched wider).

With this knowledge that the FlowPane takes up the available horizontal space, you’ll notice the area being
filled with the light blue background color. By using JavaFX CSS styling, the code sets a color of light blue along
with corner radii and insets specified using a string (backgroundStyle). Listing 5-7 is the code section that styles
the banner (FlowPane) that is placed in the top region of the BorderPane layout. Don’t worry if JavaFX CSS
styling doesn’t make sense yet; a more detailed discussion of it will follow in Chapter 15 on Custom UIs.

Listing 5-7. The styling code for a FlowPane layout occupying the top banner area having a light blue color
as the background

FlowPane topBanner = new FlowPane();
topBanner.setPrefHeight(40);
String backgroundStyle = "-fx-background-color: lightblue;"
 + "-fx-background-radius: 30%;"
 + "-fx-background-inset: 5px;";
topBanner.setStyle(backgroundStyle);

We’ve only scratched the surface of the GridPane layout. There are other ways to provide constraints
and alignment of child nodes, so I trust you will delve deeper into the GridPane layout’s APIs. See the
Javadocs documentation for more details. Next, you are going to learn about creating UIs using a graphical
editor called Scene Builder.

Scene Builder
Up to this point, you’ve learned how to code and style UI elements programmatically. You are probably
wondering if there is a better way to build UIs. Well, I am happy to inform you that the JavaFX team at Oracle
built a free tool called Scene Builder, which allows you to build UIs graphically, often called WYSIWYG
editors. (WYSIWYG stands for What You See Is What You Get.) After some time, Oracle announced that they
would no longer provide downloadable binaries of the Scene Builder tool.

Since the Scene Builder tool has been open sourced, the task of building and hosting downloadable binaries
has since been immediately picked up by the company GluonHQ (see http://gluonhq.com/). In this and many
other bold moves, GluonHQ forged ahead with other products and services that would empower Java developers.
GluonHQ’s main offering is to provide a UI and cloud development platform for companies to develop apps
with a single codebase (Java) and the capability to deploy onto many platforms such as mobile, desktop, and
embedded devices. Typical platforms are iOS, Android, Windows, MacOS X, and Raspbian (Raspberry Pi).

In this section, you will learn how to build a simple UI and use the serialized UI formatted file (FXML)
in a JavaFX application. To get started, head over to GluonHQ (http://gluonhq.com) to download the Scene
Builder tool at the following location:

http://gluonhq.com/open-source/scene-builder/

http://dx.doi.org/10.1007/978-1-4842-1961-4_15
http://gluonhq.com/
http://gluonhq.com/
http://gluonhq.com/open-source/scene-builder/

ChapTer 5 ■ LayouTs and sCene BuiLder

151

Download and Installing Scene Builder
As of the writing of this book, a version of the Scene Builder tool for JDK 9 didn’t exist. However, you can
simply point your JAVA_HOME environment variable to the latest Java 8 SDK to run a downloaded Scene
Builder version 8. Probably by the time you read this there will already be a version available for Java 9.
Assuming you’ve already downloaded the Scene Builder tool for your appropriate OS, to launch the tool,
I recommend downloading the JAR version and launching it using the command prompt. In my opinion,
using the command prompt is better because it will assist you by dumping out any errors and exceptions to
the console. The following command will launch the Scene Builder tool from the command line.

$ java -jar SceneBuilder-8.0.0.jar

Launching Scene Builder
After downloading and installing Scene Builder, you can launch it. Figure 5-9 shows the Scene Builder tool.

Figure 5-9. Launching the Scene Builder tool for the first time

I begin by describing the various tabs and their subsections starting with the left side. Under the
main tab titled Library, note the search bar. There are also subsections called Containers, Controls, Menu,
Miscellaneous, Shapes, Charts, and 3D. These subsections are various kinds of JavaFX nodes that can be
dragged onto the center canvas area (Drag Library items here…). Of course, the first type of JavaFX node
must be a layout container type node, which will allow children type nodes such as controls to be dragged
onto container type nodes.

ChapTer 5 ■ LayouTs and sCene BuiLder

152

On the left beneath the UI elements is the Document section. The Document section has two
subsections, called Hierarchy and Controller. The Hierarchy panel allows you to view the DOM (document
object model) of the UI elements in a tree-like hierarchy. Lastly, below the Hierarchy is the Controller tab.
The Controller section lets you reference control logic (Controller Java class) to this UI view (FXML). The
Controller class that is referenced will allow handler code to interact with UI elements that were previously
dragged onto the canvas area. An example would be a Save button that is clicked would invoke a method on
an associated Controller class. Later, you will be creating a Controller class to be referenced in the FXML file.

On the right side of the Scene Builder is the Inspector search bar, as shown in Figure 5-9. The search
bar allows you to find properties on UI elements quite easily. Underneath the Inspector search bar, you’ll
see three subsections—Properties, Layout, and Code. The Properties panel section allows you to style UI
elements using JavaFX CSS properties. In Chapter 15 you will learn more about CSS styling, but for now
you will not be using JavaFX CSS styling on UI elements in the tool. The Layout panel allows you to specify
dimensions, transforms, and padding of a node’s properties. Lastly is the Code panel, which allows you to
map event methods to UI elements such as the OnMousePressed property.

Now that you know what Scene Builder can do, let’s build a user interface (UI). But, before building a UI,
you will want to know what kind of UI you are wanting to build. To keep things simple, you will build the familiar
Contacts form you created earlier in the section on GridLayout. Instead of programmatically coding the UI, you
are going to develop it using the Scene Builder tool. Follow the steps below to graphically build your form.

 1. Drag a BorderPane container onto the canvas to the right. Figure 5-10 shows
dragging the BorderPane container onto the canvas area.

Figure 5-10. Dragging a BorderPane onto the canvas area that reads “Drag Library items here…”

http://dx.doi.org/10.1007/978-1-4842-1961-4_15

ChapTer 5 ■ LayouTs and sCene BuiLder

153

After dragging the BorderPane container onto the canvas surface, you should see in the lower-left the
Document tab under the Hierarchy section displaying the BorderPane’s regions—TOP, LEFT, CENTER, RIGHT,
and BOTTOM. Figure 5-11 shows the document hierarchy (DOM) of the current UI elements on the canvas
area. You can also drag UI elements into the document hierarchy window. Sometimes it’s easier to drag
UI elements into the hierarchy and sometimes it’s easier to drag UI elements onto the canvas area. It all
depends on how small the regions are on the canvas when there are nested containers.

Figure 5-11. Document’s hierarchy displaying the BorderPane’s regions

ChapTer 5 ■ LayouTs and sCene BuiLder

154

 2. Drag a GridPane container into the BorderPane’s center region, as shown in
Figure 5-12. Figure 5-13 shows the GridPane node after the drag-and-drop
operation onto the BorderPane node’s center region. Notice the numbered
columns and rows as zero relative cells allowing you to drag elements into them.
Since the BorderPane’s center area takes up all the available width and height,
when placing a GridPane onto the center region, the width and height of the
GridPane will stretch.

Figure 5-12. Dragging a GridPane node on to the center region of the BorderPane node

Figure 5-13. A GridPane positioned on the center region of a BorderPane

ChapTer 5 ■ LayouTs and sCene BuiLder

155

 3. Before configuring the GridPane, you will want to reconfigure the BorderPane’s
Preferred and maximum width to allow the GridPane to take up the available
horizontal space. Select the BorderPane node by selecting it within the Hierarchy
tab on the lower-left side beside the canvas area. Next, on the right side of the
canvas area is the Layout tab (under Properties), you will be changing the Pref
and Max Width properties of the BorderPane. Shown in Figure 5-14 are the
preferred and maximum widths settings for the BorderPane node. Make sure
the preferred width is USE_COMPUTED_SIZE and the maximum width is set to
MAX_VALUE. This allows the GridPane node and its child nodes the opportunity to
grow horizontally (stretch) when the JavaFX Stage window is being resized.

Figure 5-14. The BorderPane’s Pref Width and Max Width properties settings allow the GridPane to stretch
horizontally

ChapTer 5 ■ LayouTs and sCene BuiLder

156

 4. Set the GridPane layout’s horizontal and vertical gap to five pixels and set the
padding to five pixels. The padding and gap settings are on the right side of
the canvas area, under the Layout tab section (see Figure 5-15). Next, you will
configure the constraints for the first and second columns of the GridPane node.
If you remember the first column will contain labels and the second column will
contain text fields for our form.

Figure 5-15. A GridPane layout’s properties configured with five pixels for padding, Hgap, and Vgap

ChapTer 5 ■ LayouTs and sCene BuiLder

157

Figure 5-16. Setting the GridPane’s first column (zero relative) constraint to a preferred width of 100

 5. Configure the GridPane’s column constraints. To configure a column constraint,
you will first select the column header zero (0) shown in Figure 5-16. You then
configure the width under the Layout: ColumnConstraints property sheet.
For the min and max widths, use the USE_PREF_SIZE option in the dropdown.
In the pref width, enter 100. This means the column will not stretch because its
minimum and maximum width will be set to the preferred width.

ChapTer 5 ■ LayouTs and sCene BuiLder

158

 6. Configure the second GridPane’s column constraints. To configure a column
constraint, you select the column header one (1) shown in Figure 5-17. After
selection, you configure the width under the Layout: ColumnConstraints
property sheet.

Set the min, pref, and max width to 50, 150, and 300, respectively. You should
also set the Hgrow property to always.

Figure 5-17. The GridPane’s second column’s constraint being configured

ChapTer 5 ■ LayouTs and sCene BuiLder

159

Figure 5-18. Setting the three rows of the GridPane’s row height constraints. The min and max height
properties are set to USE_PREF_SIZE. The pref height property is set to 30.

 7. Configure the row constraints of the GridPane. Similar to selecting a column
header, you will select a row header zero (left), as shown in Figure 5-18. Instead
of selecting one row, hold down the Shift key and mouse click the row headers 0,
1, and 2, as shown in Figure 5-18. The objective is to set all three row constraints
in one shot. You will be setting the three rows with a preferred height that will
honor the UI element placed into it. For instance, when a label is placed into
the row cell, the height of the label will be used as the height of the cell row.
Select USE_PREF_SIZE for both min and max height properties. Enter 30 for the
preferred height property.

ChapTer 5 ■ LayouTs and sCene BuiLder

160

 8. Create the first name label in the cell occupying the first column and first row.
Drag a label from the Controls section under Library into the first column and
the first row cell of the grid pane. This label will be the First Name. Figure 5-19
shows the text property set to First Name in the Properties tab subsection.

Figure 5-19. The first name label being added to the first column and first row cell. You’ll notice under the
Properties tab you will enter the text for the label.

ChapTer 5 ■ LayouTs and sCene BuiLder

161

Figure 5-20. Setting a label in a GridPane cell’s horizontal alignment to be right-aligned. Under the Layout:
Label (Grid Pane Constraints), the Halignment is set to RIGHT.

 9. Set the label’s horizontal alignment (Halignment) to be right-aligned. In
Figure 5-20, the label’s horizontal alignment is set by going to the Property
sheet under the Layout tab subsection.

ChapTer 5 ■ LayouTs and sCene BuiLder

162

 10. Repeat Steps 8-9 to set up the Last Name label for the second row, first column.
In the menu options, select Preview ➤ Show Preview in Window. Figure 5-21
shows the current UI elements previewed in a window.

Figure 5-21. A preview window showing the progress thus far—two labels, right horizontally aligned on the
first column

 11. Drag and drop the text field UI elements into the cell 1,0 and cell 1,1, which
represent the first name and last name text fields, respectively. You’ll also be
dragging a JavaFX Button node to the second column, third row cell. When you
preview your work, the UI should look like Figure 5-22.

Figure 5-22. The preview window of the UI elements laid out onto the GridPane

 12. Save the UI into an FXML file. In the File menu, select Save As and save it into a
Java project’s resource directory or into the src directory. Scene Builder allows
you to save the UI into a file format called FXML having the file extension of
.fxml. Save the file as ContactForm.fxml. Later, you will create code that will
load the FXML file to be displayed and perform actions on UI elements. This
file should be placed in a Java projects resources directory—such as src/main/
resources/ContactForm.xml. (You can create one folder to hold all three files for
the project if you aren’t using build tools such as Gradle or Maven. If you compile
on the command line, make sure the FXML file is copied to the root classpath.)
At this point, the current file (ContactForm.fxml) does not reference a Controller
class or UI elements with the fx:id attributes. In a later step when you’ve created
a Controller class, you will update the UI through Scene Builder and save the
FXML file again.

ChapTer 5 ■ LayouTs and sCene BuiLder

163

Listing 5-8. The ContactForm.fxml File Representing the Contact Form UI View Created Using Scene Builder

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.geometry.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<BorderPane maxHeight="-Infinity" minHeight="-Infinity" minWidth="-Infinity"
prefHeight="400.0" xmlns="http://javafx.com/javafx/8.0.66" xmlns:fx="http://javafx.com/
fxml/1" fx:controller="com.jfxbe.ContactFormController">
 <center>
 <GridPane gridLinesVisible="true" hgap="5.0" vgap="5.0" BorderPane.alignment="CENTER">
 <columnConstraints>
 <ColumnConstraints hgrow="SOMETIMES" maxWidth="-Infinity" minWidth="-Infinity"

prefWidth="100.0" />
 <ColumnConstraints hgrow="ALWAYS" maxWidth="300.0" minWidth="50.0"

prefWidth="150.0" />
 </columnConstraints>
 <rowConstraints>
 <RowConstraints maxHeight="-Infinity" minHeight="-Infinity" prefHeight="30.0"

vgrow="SOMETIMES" />
 <RowConstraints maxHeight="-Infinity" minHeight="10.0" prefHeight="30.0"

vgrow="SOMETIMES" />

Figure 5-23. The Save As window to save FXML file

ChapTer 5 ■ LayouTs and sCene BuiLder

164

 <RowConstraints maxHeight="-Infinity" minHeight="10.0" prefHeight="30.0"
vgrow="SOMETIMES" />

 </rowConstraints>
 <BorderPane.margin>
 <Insets />
 </BorderPane.margin>
 <padding>
 <Insets bottom="5.0" left="5.0" right="5.0" top="5.0" />
 </padding>
 <children>
 <Label text="First Name" GridPane.halignment="RIGHT" />
 <Label text="Last Name" GridPane.halignment="RIGHT" GridPane.rowIndex="1" />
 <TextField fx:id="firstNameField" maxWidth="300.0" minWidth="50.0"

prefWidth="150.0" GridPane.columnIndex="1" />
 <TextField fx:id="lastNameField" maxWidth="300.0" minWidth="50.0"

prefWidth="150.0" GridPane.columnIndex="1" GridPane.rowIndex="1" />
 <Button fx:id="saveButton" mnemonicParsing="false" onAction="#saveContactAction"

text="Save" GridPane.columnIndex="1" GridPane.halignment="RIGHT" GridPane.
rowIndex="2" />

 </children>
 </GridPane>
 </center>
</BorderPane>

 13. Create a Controller class that provides handler code for UI elements. Create a
class called ContactFormController.java in the same directory as your main
application code FXMLContactForm.java (see step 19). Enter the code from
Listing 5-9 into a file called ContactFormController.java. In the code you’ll
notice @FXML annotations used in the code that are prefixed on properties
and methods. These annotations allow the JavaFX platform to bind FXML UI
elements to controller properties such as TextFields and Buttons. Methods in
controllers can also be prefixed with a FXML annotation to indicate handler code
capable of being bound to an action (event) such as a mouse press.

This binding facility is a mechanism called dependency injection. The FXML
loader will resolve the references during runtime, essentially wiring up UI
elements to the handler code in the Controller class. Later on, you will use Scene
Builder to associate the Save button with the controller. There you will notice
that the Save button’s OnAction property will invoke the saveContactAction()
method shown in listing 5-9.

Listing 5-9. The ContactFormController Class Uses the Annotation to Reference UI Elements Within the
FXML File

package com.jfxbe;

import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.scene.control.TextField;

ChapTer 5 ■ LayouTs and sCene BuiLder

165

/**
 *
 */
public class ContactFormController {
 @FXML private TextField firstNameField;
 @FXML private TextField lastNameField;

 @FXML
 protected void saveContactAction(ActionEvent event) {
 System.out.println("Saving the following information: ");
 System.out.println("First Name: " + firstNameField.getText());
 System.out.println(" Last Name: " + lastNameField.getText());
 }
}

 14. Assign a Controller class to the ContactForm.fxml through the Scene Builder
tool. Assuming you’ve loaded the previously created UI, navigate to the
Controller class field located under the Controller tab, which is under the
Document tab on the left side. Enter the fully qualified class name as com.jfxbe.
ContactFormController (assuming you have a package namespace). Figure 5-24
shows the field to reference the Controller class. Notice just below the Controller
class field there is a table called Assigned fx:id that consists of assigned fx:id
entries. The table is currently blank, but in the next step you will be assigning
a fx:id name for components, such as the first name and last name text field
controls (UI elements).

Figure 5-24. Setting the Controller class that references the Contact Form UI (ContactForm.fxml)

ChapTer 5 ■ LayouTs and sCene BuiLder

166

 15. Add fx:id name to each UI element in Scene Builder. Assuming you’ve
already referenced the recently created Controller class as com.jfxbe.
ContactFormController, update the UI element’s fx:id by selecting the UI
control on the canvas or the Hierarchy section. After selecting the control, go
to the right side of the Scene Builder tool under the subsection code and enter
firstNameField into the fx:id field property, as shown in Figure 5-25.

Figure 5-25. Setting the fx:id name referencing the first name text field. This will allow the Controller class to
access the text field.

 16. Repeat Step 15 for the last name field. The last name field’s fx:id is called
lastNameField.

 17. Bind the action code to the Save button, as seen in Figure 5-26. Similar to
Steps 15 and 16, select the Save button’s UI element and navigate to its Code
subsection to enter an fx:id name as saveButton. Next, you will set the
OnAction property to saveContactAction. Don’t forget to save the UI (FXML).
If you recall from Listing 5-9 in Step 13, the ContactFormController.java file
contains the saveContactAction() method.

ChapTer 5 ■ LayouTs and sCene BuiLder

167

 18. Preview the contact form one last time. Figure 5-27 shows a display of the
preview window of the ContactForm.fxml file.

Figure 5-26. Setting the OnAction property to invoke the saveContactAction function for the Save button

Figure 5-27. Previewing the contact form from the Scene Builder tool

ChapTer 5 ■ LayouTs and sCene BuiLder

168

 19. Create a main JavaFX application class that will load the FXML to be displayed
onto the scene. Listing 5-10 shows the FXMLContactForm.java file. If you are
coding from scratch, co-locate all three files in the same directory (FMXL file,
Controller class, and application class).

Listing 5-10. The Main JavaFX FXMLContactForm Application

package com.jfxbe;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

import java.io.IOException;

/**
 * The FXMLContactForm application that loads an FXML view
 * to be displayed.
 */
public class FXMLContactForm extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 stage.setTitle("FXMLContactForm ");

 Parent root = null;
 try {
 root = FXMLLoader.load(getClass().getResource("/ContactForm.fxml"));
 } catch (IOException e) {
 e.printStackTrace();
 }

 Scene scene = new Scene(root, 380, 150, Color.WHITE);
 stage.setScene(scene);
 stage.show();
 }
}

ChapTer 5 ■ LayouTs and sCene BuiLder

169

 20. Build and run the application. Assuming all three files are in the same directory
location, navigate or change directory to the files’ directory location and then
compile and run the code using these commands:

$ javac -d . *.java
$ java -cp . com.jfxbe.FXMLContactForm

 21. The UI should look like similar to Figure 5-28. To test the application, enter a first
and last name into the text fields and click on the Save button, then observe the
console output.

The following is output to the console when the Save button is pressed.

Saving the following information:
First Name: Donald
 Last Name: Knuth

A Code Walkthrough
By using the Scene Builder tool to create the contact form, you saved the UI into an FXML formatted file.
FXML is an XML markup language that represents JavaFX UIs. As the FXML is loaded to be displayed, the
XML element tag associated with a JavaFX node is instantiated into Java code dynamically. The main idea
of building UIs using FXML is to separate your UI code from your control logic (actions). After graphically
laying out your UI elements and saving the file as ContactForm.fxml, you created a Controller class file
named ContactFormController.java. The ContactFormController class contains @FXML annotations that
reference UI elements inside the ContactForm.fxml file. The following code snippets are instance variables
having the the @FXML annotation.

@FXML private TextField firstNameField;
@FXML private TextField lastNameField;

Figure 5-28. The JavaFX FXMLContactForm application

ChapTer 5 ■ LayouTs and sCene BuiLder

170

The @FXML annotation is a Java runtime type annotation that tells the FXMLLoader utility class which UI
elements to inject into the Controller class dynamically. This is JavaFX’s dependency injection mechanism
that allows controller code to gain access to UI elements. Also, you’ll notice @FXML annotation can be applied
to methods based on UI events such as the OnAction property. Listing 5-11 shows the saveContactAction()
method you saw earlier within the Controller class. Also, recall from Figure 5-27 (Step 17) that the method
name is entered into the OnAction property field in the Scene Builder tool. This method is invoked when the
Save button is pressed.

Listing 5-11. The Handler Code Bound to the Save Button in the UI

@FXML
protected void saveContactAction(ActionEvent event) {
 System.out.println("Saving the following information: ");
 System.out.println("First Name: " + firstNameField.getText());
 System.out.println(" Last Name: " + lastNameField.getText());
}

Lastly, the JavaFX application code loads the FXML file to be displayed. This example treats the FXML
file as a resource that will be loaded. Basically, a standard Java application or Java project will typically have a
resources directory containing things like property files or images. In this example, we want to put FXML files at
the root level. You’ll notice the / prefix on the file to denote the file must be located at the root classpath.

The FXMLLoader.load() method is given the resource at the root classpath. If you compile your classes
into a directory and begin to run the application, you must make sure the FXML file is copied to the root
classes directory. See Step 20 to compile and run the application from the command prompt. You set the
classpath using -cp . and the . (dot) denotes the current directory is the root path, thus the getResource()
method can see the ContactForm.fxml file to be loaded.

root = FXMLLoader.load(getClass().getResource("/ContactForm.fxml"));

Summary
In this chapter you learned about common layouts for creating user interfaces. The first part of the chapter,
you briefly examined common layouts such as HBox, VBox, FlowPane, BorderPane, and GridPane. Using
some of the common layout panes such as HBox and Vbox, you saw detailed code examples and a zoomed-
in diagram that described often confusing properties layout nodes have. These properties are spacing,
padding, margin, and border widths. The goal was to determine how much space (area) the layout pane
along with its children actually occupies. Next, you learned how to create a form-like UI application using
the BorderPane and GridPane nodes. The GridPane provided column-, row-, and cell-level constraints. In
the form-like UI, you also learned how to control the position and width of child UI elements. An example
is that one of the UI elements being controlled was a text field that would squeeze or stretch depending on
the user resizing the window.

After learning how to use common layout panes, you learned how to use the powerful Scene
Builder tool downloaded from GluonHQ. The chapter also discussed the various features and how to
navigate around the tool. After familiarizing with the tool, you got a chance to design a similar form-
like UI as the GridPane example. The idea of this exercise was to create UI screens graphically instead of
programmatically. Once the UI screen was created, you saved the work as a JavaFX FXML file. Learning
about separating the UI from control logic, you learned how to use JavaFX’s dependency injection
mechanism to allow controller code to interact with UI elements. In order to wrap up your understanding of
the Scene Builder tool, you learned how to create an application that would load the UI (FXML file) and wire
the controller code automatically through the use of the FXMLLoader utility class.

171© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_6

CHAPTER 6

User Interface Controls

In the previous chapter, you learned about laying out controls using the Scene Builder tool. In this chapter,
you learn how to interact with UI controls. Due to space limitations, there aren’t code examples for every UI
control in the Java 8 and 9 platforms. However, I did create examples with the most common UI controls that
you’ll typically see in business-type applications.

In Chapter 3’s discussion on the JavaFX Scene graph’s ability to render basic shape nodes, you learned
that shapes extend from the base class Node (javafx.scene.Node). This chapter explores user interface (UI)
controls that also extend from the base class Node, but are much more advanced. The main difference is that UI
controls are nodes that provide user interactions such as buttons, menus, text fields, sliders, and table views.

Unlike web development using HTML5, JavaFX allows UI control nodes, shape nodes, and canvas
nodes to coexist on the Scene graph (draw surface). In contrast, HTML5, text input fields, SVG elements,
and canvas elements don’t inherit common behaviors like nodes on the JavaFX Scene graph. For example,
when using HTML and JavaScript, you cannot easily rotate an HTML button and an SVG rectangle using a
common API. When using JavaFX APIs, you can treat UI controls like any other JavaFX node; for example,
you can apply animations, transformations, styling, and effects.

JavaFX UI controls are derived classes of the base class javafx.scene.control.Control and implement
two other interfaces—javafx.scene.control.Skinnable and javafx.event.EventTarget. To get an
in-depth look at how to create custom controls, look at Chapter 15 on custom user interfaces. For now, this
chapter explores examples on how to use UI controls.

Labels
Labels are read-only controls capable of displaying text and graphics having a background. Labels, unlike
the Text node, extend from Control, as opposed to extending from Shape. Labels have a background for text
and can append an ellipsis (...) whenever the width of the label (bounding rectangle) is being resized smaller
than the text string being displayed to the user. This lets the user know there is more text content to show.
Figure 6-1 shows a label that has a very long text string fully displayed (without the ellipses); however, when
minimizing the window, the label’s width will get reduced, thus showing the truncated text with the ellipses
appended on the end, as shown in Figure 6-2.

Figure 6-1. A label with a long text string having the full available width

http://dx.doi.org/10.1007/978-1-4842-1961-4_3
http://dx.doi.org/10.1007/978-1-4842-1961-4_15

Chapter 6 ■ User InterfaCe Controls

172

Labels can also contain a graphic node to be positioned relative to the text. This means that you can
add any type of JavaFX node as an image icon. Listing 6-1 shows three possible ways to create JavaFX labels.
The first way is to create a label using the empty constructor and subsequently using the setText() method.
The second way to create a label is using the constructor that accepts a string parameter for the text to be
displayed on the label. The last way to create a label is using a constructor that takes two parameters that
accept text (String) and a node (Node) for a graphic (icon).

Listing 6-1. Three Ways to Create Labels

// Empty text label
Label label1 = new Label();
label1.setText("JavaFX 9 by Example");

// String text label
Label label2 = new Label("JavaFX Rocks!!!!");

// String and Icon label
Node duke = new ImageView(new Image(getClass().getResourceAsStream("/duke.png")));
Label label3 = new Label("JavaFX Rocks!!!", duke);
label3.setContentDisplay(ContentDisplay.TOP);

As you can see, the first two methods of creating labels are pretty straightforward; however, the third
example gets a little more involved. The third example creates an image node to be used as a graphic (Duke
mascot) that is placed above (ContentDisplay.TOP) the label’s text. Figure 6-3 shows that the label has text
and an image that is positioned above the text content of the label.

Figure 6-2. A label with a long text string having a reduced width that appends the ellipses denoting there is
more text

Figure 6-3. A label containing a graphic (image) positioned above (using ContentDisplay.TOP) the text.
The image of the 3D Duke mascot was created by Joe Palrang (creative commons license).

Chapter 6 ■ User InterfaCe Controls

173

You will notice from Listing 6-1 the label3 variable uses the setContentDisplay() method that accepts
one of the ContentDisplay enum values. This method is responsible for how content in the label will be
displayed, such as where the graphic is to be positioned, or to show the text content only, etc. Table 6-1 lists
all the different ways to display a label’s content using the ContentDisplay enum constants.

Table 6-1. ContentDisplay Enum Constants to Specify How Content Can Be Displayed on a Label

BOTTOM Content will be placed at the bottom of the label.

CENTER Content will be placed in the center of the label.

GRAPHIC_ONLY Only the content will be displayed.

LEFT Content will be placed to the left of the label.

RIGHT Content will be placed to the right of the label.

TEXT_ONLY Only the label's text will be displayed.

TOP Content will be placed at the top of the label.

 ■ Tip ContentDisplay constants used to position content on labels can also be used on JavafX buttons,
check boxes, and menus.

Custom Fonts
Fonts basically style and size text in labels, menus, buttons, and many other controls containing text.
Chapter 3 discussed how to apply existing font styles onto Text nodes, but how do you use custom fonts? In
JavaFX, you can load standard font file formats such as TrueType fonts (ttf) or OpenType fonts (otf).

Loading a custom font is super easy. First, find the path to the font file you want to load. Second,
you will want to initially load the font from the JavaFX application thread. As shown in Listing 6-2, the
code loads a TrueType font as a resource from the classpath. You will also notice the overridden JavaFX
Application’s init() method being used to load the custom font. The init() method will work off of the
JavaFX Application thread before the start() method is invoked. The code in Listing 6-2 uses a custom font
downloaded from the Google fonts web site at https://fonts.google.com. There you can find many free
type fonts designed and created by many people from all around the world. The following link is where you
can download the Kanit font by Cadson Demak.

https://fonts.google.com/specimen/Kanit?query=kanit&selection.family=Kanit

Listing 6-2. Overriding the init() Method from the JavaFX Application Class to Load a TrueType Font as a
Resource from the Classpath

@Override
public void init() throws Exception {
 // load custom font
 Font.loadFont(CustomFonts.class.getResource("/Kanit-MediumItalic.ttf")
 .openStream(), 12.0);
}

http://dx.doi.org/10.1007/978-1-4842-1961-4_3
https://fonts.google.com/
https://fonts.google.com/specimen/Kanit?query=kanit&selection.family=Kanit

Chapter 6 ■ User InterfaCe Controls

174

Inside the Application’s start() method (on the JavaFX application thread), the code can use the
previously loaded custom font from the init() method. Listing 6-3 shows a label’s text that uses the custom
font called Kanit with a MEDIUM weight having a 60-point font.

Listing 6-3. Assuming the Font Was Previously Loaded, the Code Sets the Custom Font Kanit to Style Text
on a Label

// Use the custom font
Label labelText = new Label("JavaFX 9 by Example ");
labelText.setFont(Font.font("Kanit", FontWeight.MEDIUM, 60));

The output of Listing 6-3 is shown in Figure 6-4.

Figure 6-4. The output of a label using the custom font Kanit

Fonts as Icons
In the next section, you learn how to load custom fonts that are designed to be used as icon images instead
of characters. These custom fonts with an image as icons have become common practice for many web sites
today. These font packs are scalable vector images used for labels, buttons, and menus or anything needing
an image icon. A single Unicode character is basically mapped to an icon image instead of a letter from a
Latin alphabet.

Example: Working with Third-Party Font Packs as Icons
In web development you probably have noticed many professional icons used as a graphic applied to
labels, buttons, etc., but did you also notice how nicely they are able to be scaled (no pixelation)? This new
technique actually takes custom fonts to be represented as vector images. This ingenious idea allows code to
retrieve a vector image as if it were an ordinary lettered font to be colorized and resized. If you aren’t familiar
with the concept, visit the following links:

•	 FontAwesome: http://fontawesome.io

•	 Weather Icons: https://erikflowers.github.io/weather-icons

•	 Material Design Icons: http://zavoloklom.github.io/material-design-iconic-font

•	 Glyph Icons: http://getbootstrap.com/components/#glyphicons

Next, you will see a code example of an application that allows you to search or view icons from
these various icon packs. When creating this example, I came across a JavaFX based library called
FontAwesomeFX, written by Jens Deter, where he takes many of these popular icons to be used in JavaFX
applications. By the time you read this chapter, Jens Deter will have likely created things to be modularized
for Java 9 (Java 9 modules).

http://fontawesome.io/
https://erikflowers.github.io/weather-icons
http://zavoloklom.github.io/material-design-iconic-font
http://getbootstrap.com/components/#glyphicons

Chapter 6 ■ User InterfaCe Controls

175

For example, the current implementation of Jens’ library has the various icon packs together in one JAR.
Here the use of Java 9 modules would allow the library to be broken into different modules, thus allowing
applications to only include modules it needs making application packaging much smaller. To get the latest
news and updates, visit the FontAwesomeFX project, found at the following link:

https://bitbucket.org/Jerady/fontawesomefx

An Example: LabelAwesome a Font Pack Icon Browser App
The LabelAwesome example application allows users to search and browse various font packs from
FontAwesome, WeatherIcons, Material Design Icons, and Glyph Icons. The application allows users to
type text contained in the name of the icon to be searched. The user can also choose four ways to position
the font icon when displaying the labels. The positions to choose from are Top, Bottom, Left, and Right. In
Figure 6-5, the LabelAwesome application allows users to search and browse icons from various font packs.

Figure 6-5. The LabelAwesome application allows users to search and browse icons from various font packs.
The application also allows the users to choose where to position the font icon in relation to the text on labels.

Getting Started
The LabelAwesome application code resides in the Java file called LabelAwesome.java, which is shown in
Listing 6-6. But, before we talk about Listing 6-6, let’s make sure we include the correct library dependencies.
The fontawesomefx.jar library must be included on the classpath in order to be successfully compiled and
executed.

https://bitbucket.org/Jerady/fontawesomefx

Chapter 6 ■ User InterfaCe Controls

176

If you downloaded the book’s source code from Apress publishing, then the FontAwesomeFX library is
already included. If you have access to Maven or Gradle, you can download it from Maven Central or the
Bintray. Maven Central and the Bintray are repositories that host build artifacts such as JAR libraries. For
those familiar with Maven, use the dependency’s coordinates in Listing 6-4.

Listing 6-4. The Maven Coordinates for Building the Example LabelAwesome.java

<groupId>de.jensd</groupId>
<artifactId>fontawesomefx</artifactId>
<version>8.9</version>

For those who are familiar with Gradle, use Listing 6-5 as a compile-time dependency in project’s
build.gradle file.

Listing 6-5. The Gradle Dependency for Building the Example LabelAwesome.java

compile group: 'de.jensd', name: 'fontawesomefx', version: '8.9'

The following are locations to get the latest versions of FontAwesomeFX. As of this writing, version 8.9 of
the FontAwesomeFX library was used.

•	 Maven: http://search.maven.org (Search for fontawesomefx)

•	 Bintray: https://bintray.com/jerady/maven/FontAwesomeFX

Now you should be ready to enter Listing 6-6 into a file called LabelAwesome.java to be compiled and
executed. The FontAwesomeFX application can help you find the right icon within the various packs such as
FontAwesome, Weather Icons, Material Design Icons, and Glyph Icons.

Listing 6-6. Application That Allows User to Search Available Font Icon Images from the FontAwesomeFX
Library

package com.jfxbe;

import de.jensd.fx.glyphs.GlyphIcons;
import de.jensd.fx.glyphs.GlyphsDude;
import de.jensd.fx.glyphs.fontawesome.FontAwesomeIcon;
import de.jensd.fx.glyphs.fontawesome.FontAwesomeIconView;
import de.jensd.fx.glyphs.materialdesignicons.MaterialDesignIcon;
import de.jensd.fx.glyphs.materialdesignicons.MaterialDesignIconView;
import de.jensd.fx.glyphs.materialicons.MaterialIcon;
import de.jensd.fx.glyphs.materialicons.MaterialIconView;
import de.jensd.fx.glyphs.octicons.OctIcon;
import de.jensd.fx.glyphs.octicons.OctIconView;
import de.jensd.fx.glyphs.weathericons.WeatherIcon;
import de.jensd.fx.glyphs.weathericons.WeatherIconView;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.effect.InnerShadow;

http://search.maven.org/
https://bintray.com/jerady/maven/FontAwesomeFX

Chapter 6 ■ User InterfaCe Controls

177

import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextFlow;
import javafx.stage.Stage;

import java.util.*;

/**
 * LabelAwesome is an example using Jens Deters' FontAwesomeFX library.
 * @author carldea
 */
public class LabelAwesome extends Application {
 // lookup icon packs
 private static Map<String, List<GlyphIcons>> ICON_PACKS_MAP = new HashMap<>();
 @Override
 public void init() throws Exception {
 // load all icons
 Font.loadFont(GlyphsDude.class
 .getResource(FontAwesomeIconView.TTF_PATH).openStream(), 10.0);
 Font.loadFont(GlyphsDude.class
 .getResource(MaterialDesignIconView.TTF_PATH).openStream(), 10.0);
 Font.loadFont(GlyphsDude.class
 .getResource(MaterialIconView.TTF_PATH).openStream(), 10.0);
 Font.loadFont(GlyphsDude.class
 .getResource(OctIconView.TTF_PATH).openStream(), 10.0);
 Font.loadFont(GlyphsDude.class
 .getResource(WeatherIconView.TTF_PATH).openStream(), 10.0);
 // Prepare all icons
 ICON_PACKS_MAP.put("FontAwesomeIcon", Arrays.asList(FontAwesomeIcon.values()));
 ICON_PACKS_MAP.put("MaterialDesignIcon",
Arrays.asList(MaterialDesignIcon.values()));
 ICON_PACKS_MAP.put("MaterialIcon", Arrays.asList(MaterialIcon.values()));
 ICON_PACKS_MAP.put("OctIcon", Arrays.asList(OctIcon.values()));
 ICON_PACKS_MAP.put("WeatherIcon", Arrays.asList(WeatherIcon.values()));
 }
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }
 @Override
 public void start(Stage stage) {
 stage.setTitle("LabelAwesome ");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 600, 450);

Chapter 6 ■ User InterfaCe Controls

178

 // Create Title
 Text labelText = new Text("Label ");
 labelText.setFont(Font.font("Helvetica", FontWeight.EXTRA_LIGHT, 60));
 Text awesomeText = new Text("Awesome");
 InnerShadow innerShadow = new InnerShadow();
 innerShadow.setOffsetX(3.0f);
 innerShadow.setOffsetY(3.0f);
 awesomeText.setEffect(innerShadow);
 awesomeText.setFill(Color.WHITE);
 awesomeText.setFont(Font.font("Helvetica", FontWeight.BOLD, 60));
 TextFlow title = new TextFlow(labelText, awesomeText);
 HBox banner = new HBox(title);
 banner.setPadding(new Insets(10, 0, 10, 10));
 banner.setPrefHeight(70);
 root.setTop(banner);

 // Display Icon area
 VBox labelDisplayPanel = new VBox(5);
 labelDisplayPanel.setAlignment(Pos.CENTER);
 ScrollPane scrollPane = new ScrollPane(labelDisplayPanel);
 root.setCenter(scrollPane);
 scrollPane.setPadding(new Insets(10, 10, 10, 10));

 // Select Icons packs (ComboBox)
 VBox controlsPanel = new VBox(10);
 controlsPanel.setPadding(new Insets(10, 10, 10, 10));
 List<String> iconPackList = new ArrayList<>();
 iconPackList.add("FontAwesomeIcon");
 iconPackList.add("MaterialDesignIcon");
 iconPackList.add("MaterialIcon");
 iconPackList.add("OctIcon");
 iconPackList.add("WeatherIcon");

 ObservableList<String> obsIconPackList = FXCollections.observableList(iconPackList);
 ComboBox<String> iconPacks = new ComboBox<>(obsIconPackList);
 iconPacks.setValue(iconPackList.get(0));
 controlsPanel.getChildren().add(iconPacks);

 // Input Field (TextField)
 TextField inputField = new TextField();
 inputField.setPrefWidth(200);
 inputField.setPromptText("Search Icon Name");
 controlsPanel.getChildren().add(inputField);

 // Selecting the Icon Position (RadioBox)
 VBox imagePositionPanel = new VBox(5);
 ToggleGroup position = new ToggleGroup();
 RadioButton topPosition = new RadioButton("Top");
 topPosition.setSelected(true);
 topPosition.setUserData(ContentDisplay.TOP);
 topPosition.requestFocus();
 topPosition.setToggleGroup(position);

Chapter 6 ■ User InterfaCe Controls

179

 RadioButton bottomPosition = new RadioButton("Bottom");
 bottomPosition.setUserData(ContentDisplay.BOTTOM);
 bottomPosition.setToggleGroup(position);

 RadioButton leftPosition = new RadioButton("Left");
 leftPosition.setUserData(ContentDisplay.LEFT);
 leftPosition.setToggleGroup(position);

 RadioButton rightPosition = new RadioButton("Right");
 rightPosition.setUserData(ContentDisplay.RIGHT);
 rightPosition.setToggleGroup(position);

 imagePositionPanel.getChildren()
 .addAll(topPosition,
 bottomPosition,
 leftPosition,
 rightPosition);
 controlsPanel.getChildren()
 .add(imagePositionPanel);

 root.setLeft(controlsPanel);

 // As the user types the text is searched.
 inputField.textProperty().addListener((o, oldVal, newVal) ->
 showIconList(newVal,labelDisplayPanel,
 iconPacks.getValue(),
 position.getSelectedToggle()
 .getUserData())
);

 // When the radio button select Position to place the Icon
 position.selectedToggleProperty().addListener((o, oldVal, newVal) ->
 showIconList(inputField.getText(),
 labelDisplayPanel,
 iconPacks.getValue(),
 position.getSelectedToggle()
 .getUserData()));

 // When Combo box chooses an Icon pack.
 iconPacks.setOnAction(actionEvent ->
 showIconList(inputField.getText(),
 labelDisplayPanel,
 iconPacks.getValue(),
 position.getSelectedToggle()
 .getUserData()));

 stage.setScene(scene);
 stage.show();

Chapter 6 ■ User InterfaCe Controls

180

 // Initial display of the current list of Icons
 showIconList(inputField.getText(),
 labelDisplayPanel,
 iconPacks.getValue(),
 position.getSelectedToggle()
 .getUserData());
 }

 private void showIconList(String textInput,
 VBox labelDisplayPanel,
 String iconPack,
 Object position) {

 // Clear the right display
 labelDisplayPanel.getChildren().clear();
 // Obtain the icon pack's list of names.
 List<GlyphIcons> iconPackIcons = ICON_PACKS_MAP.get(iconPack);

 iconPackIcons.stream()
 .filter(iconEnum -> iconEnum.toString().toUpperCase()
 .indexOf(textInput.toUpperCase()) > -1)
 .forEach(iconEnum -> {
 // create a text node using the vector font.
 Text iconShape = new Text(iconEnum.characterToString());
 iconShape.getStyleClass().add("glyph-icon");
 iconShape.setStyle(
 String.format("-fx-font-family: %s; -fx-font-size: %s;",
 iconEnum.getFontFamily(), 20));
 Label label = new Label(iconEnum.toString(), iconShape);
 label.setContentDisplay((ContentDisplay)position);
 labelDisplayPanel.getChildren().add(label);
 });
 }
}

Compiling the Example
After entering Listing 6-6, you will need to compile it to be later executed. The following shows the
commands needed to compile the LabelAwesome.java code.

$ mkdir classpath

$ javac -cp lib/fontawesomefx-8.9.jar -d classpath src/com/jfxbe/LabelAwesome.java

Assuming the current project directory contains a lib directory consisting of the FontAwesomeFX JAR
library, when compiling Java code, the -cp denotes the classpath while the -d denotes the directory the
compiled code will be written to. The directory in this case is called classpath. In Java 9 modules, refer to
Chapter 2 to set the module path, which assumes your source code follows the new conventions for Jigsaw.

http://dx.doi.org/10.1007/978-1-4842-1961-4_2

Chapter 6 ■ User InterfaCe Controls

181

Run Example Application
After compiling Listing 6-6, you will want to run the example application from the command line. To run
the example, you need to include the FontAwesomeFX library on the classpath, including the compiled code
in the classpath directory. You’ll notice that on UNIX/MacOS/Linux systems, the : was used as a separator
to append multiple paths for the classpath. On a Windows system, you need to use the ; as a separator. The
following command will run the example application.

java -cp classpath:lib/fontawesomefx-8.9.jar com.jfxbe.LabelAwesome

After running the example, Figure 6-6 shows the output of the LabelAwesome application. The
FontAwesomeFX library supports the following font icon packs: FontAwesome, Material Design, Material Icon
set, Oct Icon set, and Weather Icon set. To see the latest updates, visit Jens Deter’s site at http://www.jensd.
de/wordpress/?tag=fontawesome.

Figure 6-6. The output of Listing 6-2 depicts a sampler application to showcase Jens Deter’s FontAwesomeFX
library

How It Works
In Listing 6-6, the code begins by declaring a static Map to hold entries of a String name of the icon pack
and a list of de.jensd.fx.glyphs.GlyphIcons objects. The following code snippet is the icon packs map
declaration.

Map<String, List<GlyphIcons>> ICON_PACKS_MAP = new HashMap<>();

http://www.jensd.de/wordpress/?tag=fontawesome
http://www.jensd.de/wordpress/?tag=fontawesome

Chapter 6 ■ User InterfaCe Controls

182

GlyphIcons is an interface for implementation classes that map to individual Unicode characters to a
vector icon. For instance, the FontAwesomeIcon class is an implementation of the GlyphIcons interface, which
contains all of the FontAwesome’s icon mappings from the TrueType font file fontawesome-webfont.ttf. To
see the full source code, visit Jens Deter’s FontAwesomeFX projects source code at:

https://bitbucket.org/Jerady/fontawesomefx

The init() Method
Next, the overridden init() method (from the Application class) implements the loading process of all the
supported icon font files based on the path of the font file. The JavaFX javafx.scene.text.Font class can
load font files from an input stream as a resource on the classpath using the openStream() method. In this
example, the fonts are loaded using the loadFont() method with a given input stream. The font file that is
loaded is a TrueType font (TTF) type file that is inside of the FontAwesomeFX’s JAR file. The following code
loads a font file from the variable (FontAwesomeIconView.TTF_PATH), which is a string containing the path of
the font at /de/jensd/fx/glyphs/fontawesome/fontawesome-webfont.ttf:

Font.loadFont(GlyphsDude.class.getResource(FontAwesomeIconView.TTF_PATH).openStream(), 10.0);

ICON_PACKS_MAP.put("FontAwesomeIcon", Arrays.asList(FontAwesomeIcon.values()));

The start() Method
After the initial setup of the fonts, the start() method sets up the application’s interface. It begins by
creating the title of the application titled LabelAwesome.

Using a TextFlow Control

In Figure 6-5, you’ll notice the title’s text. Label and Awesome have different styles but are displayed together.
Here the code uses a javafx.scene.text.TextFlow node to contain mixed Text objects. In this example, the
beginning word Label is just solid black and the word Awesome has an inner shadow effect. The following
code snippet adds Label and Awesome Text nodes into the TextFlow object.

TextFlow title = new TextFlow(labelText, awesomeText);

After setting up the title banner, the main display area (border pane’s center) is created to contain the
display icon area. Here, each label is created with a text description and an icon font (image) to be added to a
VBox pane to form a row. If you are not familiar to layouts such as BorderPane or VBox, read Chapter 5, which
covers layouts and Scene Builder.

Using a ComboBox Control

Next, you create a combo box selection control containing a string representing the name of a particular font
pack. Listing 6-7 is a reshowing of the code section in the start() method that creates a combo box control to
allow the users to select the supported font packs from the FontAwesomeFX library. In Listing 6-7, you’ll notice
the code setting the onAction property using the setOnAction() method. This method is where the attached
handler (EventHandler) gets invoked whenever an icon pack is chosen from the user in a drop-down list.
Once the onAction event is triggered, the showIconList() method is invoked. The showIconList() method
will be explained in more detail later.

https://bitbucket.org/Jerady/fontawesomefx
http://dx.doi.org/10.1007/978-1-4842-1961-4_5

Chapter 6 ■ User InterfaCe Controls

183

Listing 6-7. Setting Up a Combo Box Control to Allow the User to Select the Font Pack

List<String> iconPackList = new ArrayList<>();
iconPackList.add("FontAwesomeIcon");
iconPackList.add("MaterialDesignIcon");
iconPackList.add("MaterialIcon");
iconPackList.add("OctIcon");
iconPackList.add("WeatherIcon");

ObservableList<String> obsIconPackList = FXCollections.observableList(iconPackList);
ComboBox<String> iconPacks = new ComboBox<>(obsIconPackList);
iconPacks.setValue(iconPackList.get(0));
.
// code ommitted (Other controls declared and created)
.
.
// Attaching an action to the combo box control to redisplay the labels.
// When Combo box chooses an Icon pack.
iconPacks.setOnAction(actionEvent ->
 showIconList(inputField.getText(),
 labelDisplayPanel,
 iconPacks.getValue(),
 position.getSelectedToggle()
 .getUserData()));

After creating the combo box control for selecting a font pack, the code creates an auto search text field
that allows the users to search through icons within font packs.

Using a TextField Control

Listing 6-8 creates a TextField node with a preferred width of 200 pixels and a prompt text property as
Search Icon Name. When the text field is blank, the prompt text appears in the input text field.

Listing 6-8. Creating an Auto Search Text Field for Searching Icon Names Within a Font Pack

// Input Field (TextField)
TextField inputField = new TextField();
inputField.setPrefWidth(200);
inputField.setPromptText("Search Icon Name");
.
.
.
// As the user types the text is searched.
inputField.textProperty().addListener((o, oldVal, newVal) ->
 showIconList(newVal,
 labelDisplayPanel,
 iconPacks.getValue(),
 position.getSelectedToggle()
 .getUserData()));

Chapter 6 ■ User InterfaCe Controls

184

In Listing 6-8, the textProperty() of the inputField will contain a ChangeListener lambda to invoke
the private method called showIconList() whenever the text changes. The text property changes when the
user types text into the text field. The method parameters for the showIconList() methods are textInput,
labelDisplayPanel, iconPack, and position. The following is the showIconList() method’s signature.

private void showIconList(String textInput,
 VBox labelDisplayPanel,
 String iconPack,
 Object position)

The showIconList() method’s first parameter is textInput, which is what is entered into the TextField
control. The labelDisplayPanel parameter is a VBox container to hold rows of Label objects. The next
parameter is the iconPack parameter of type String of the icon pack’s name, which is also the key into
the ICON_PACKS_MAP map object. Lastly, the parameter position of type Object will be casted into a
ContentDisplay enum constant to position the icon in relation to the label text.

Continuing with the start() method, the code creates radio buttons that allow the users to select
where to position the icon relative to the text inside the label. Reshown in Listing 6-9 is the creation of the
radio buttons for positioning icons. A ChangeListener is attached to the ToggleGroup variable position.
Again, the ChangeListener lambda code will invoke the showIconList() method given the position.

Listing 6-9. Radio Buttons to Choose the Positioning of the Font Icon When Displaying Labels

ToggleGroup position = new ToggleGroup();
.
.

// When the radio button select Position to place the Icon
position.selectedToggleProperty().addListener((o, oldVal, newVal) ->
 showIconList(inputField.getText(),
 labelDisplayPanel,
 iconPacks.getValue(),
 position.getSelectedToggle()
 .getUserData())
);

You’ll notice a common theme with all the event handlers and listeners that ultimately make calls to
the private method showIconList(). This method simply updates the row of labels on the right side of the
display.

The Private showIconDisplay() Method
Listing 6-10 is a reshowing of the method showIconDisplay() from the full listing from Listing 6-6.
This method is responsible for refreshing the list of labels displayed on the right side of the screen.

Listing 6-10. The showIconDisplay() Method Iterates Over the List of Icons to Be Positioned and Displayed

// Clear the right display
labelDisplayPanel.getChildren().clear();

// Obtain the icon pack's list of names.
List<GlyphIcons> iconPackIcons = ICON_PACKS_MAP.get(iconPack);

Chapter 6 ■ User InterfaCe Controls

185

iconPackIcons.stream()
 .filter(iconEnum -> iconEnum.toString().toUpperCase()
 .indexOf(textInput.toUpperCase()) > -1)
 .forEach(iconEnum -> {
 // create a text node using the vector font.
 Text iconShape = new Text(iconEnum.characterToString());
 iconShape.getStyleClass().add("glyph-icon");
 iconShape.setStyle(
 String.format("-fx-font-family: %s; -fx-font-size: %s;",
 iconEnum.getFontFamily(), 20));
 Label label = new Label(iconEnum.toString(), iconShape);
 label.setContentDisplay((ContentDisplay) position);
 labelDisplayPanel.getChildren().add(label);
 });

The code begins by clearing the label display area (VBox) container. The code then obtains the list of
GlyphIcons based on the selected icon pack. Next, the code will filter the iconPackIcons list by finding any
parts of the search text string contained within any of the icon names. Once filtered, the list of icons will be
applied to labels displayed in the VBox container as rows.

Labels and custom fonts are fun, but because of their read-only nature, let’s look at buttons.

Buttons
If the JavaFX label is the most basic UI control, the next most basic UI control is the button control. Buttons
respond to a mouse press or pressing the spacebar when a button has focus. In JavaFX there are other
controls that act like buttons. In fact, all concrete button-like controls extend from the parent javafx.scene.
control.ButtonBase class. The following is a list of JavaFX button controls:

•	 Button

•	 CheckBox

•	 Hyperlink

•	 Radio button

•	 Toggle button

•	 Menu/MenuItem

Button
The standard button control can contain text or a graphic (node) similar to the label control explained
earlier. Buttons can take on default behaviors such as when a user presses the Enter or Escape key. In
scenarios when creating form applications, an OK button can be the default button and can enable users
to press the Enter key or click a Cancel button to accept the Escape key. Dialog windows often follow this
pattern. The following code snippet creates three buttons—OK, Cancel, and Easy. The OK and Cancel
buttons will be configured to accept the Enter and Escape key presses, respectively. The Easy button is set up
to invoke the method called doSomethingCool() when pressed.

Chapter 6 ■ User InterfaCe Controls

186

Button okButton = new Button("OK");
okButton.setDefaultButton(true);

Button cancelButton = new Button("Cancel");
cancelButton.setCancelButton(true);

Button easyButton = new Button("Easy");
easyButton.setOnAction(actionEvent -> doSomethingCool());

Check Box
A check box button control is a toggle type button that contains three states—checked, unchecked, and
undefined. When a check box indicates a checked state, the control will visibly show a checkmark inside of
a box; otherwise, it’s unchecked and shows an empty box. The check and unchecked states are controlled by
the selected property.

When the state is undefined, the control will display a hyphen mark inside the box. The undefined state
is set using the method called setIndeterminate(true). When the indeterminate property is set to true, the
selected property is ignored. If you want the check box to allow the users to cycle through the three states, set
the allowIndeterminate property to true using the setAllowIndeterminate(true) method. In Figure 6-7,
the three check box states are shown.

Figure 6-7. The three states a check box control can have

Some use cases involve a tree table view control with a parent node having a check box with an
indeterminate box (hyphen mark) with two or more child nodes with at least one of its child nodes being
unchecked (selected equaling false) and at least one child node checked.

 ■ Note the check box can allow the users to cycle through the three states by setting the
allowIndeterminate property to true, using the setAllowIndeterminate(true) method. In other words,
when a user sees an empty check box(selected=false), he/she can mouse click to check the check box
(selected=true), and then click it again to be undefined displayed as a hyphen mark (indeterminate=true).

Chapter 6 ■ User InterfaCe Controls

187

When using check boxes, the most common scenarios usually involve two states: checked and
unchecked. For example, when turning the lights on or off. Listing 6-11 sows the code simulating controls to
a hypothetical lights control API that turns kitchen lights on or off.

CheckBox kitchenLights = new CheckBox("Kitchen Lights");
lightControlManager.kitchenLights()
 .switchProperty()
 .bind(kitchenLights.selectedProperty());

Hyperlink
The Hyperlink control is synonymous to the way web pages have text links used for navigating URLs or
showing popups. Hyperlinks usually display an underlined text as your mouse pointer hovers over the
control. Also, foreground colors can change based on whether the link has already been clicked on. This has
the idea of a link that has already been visited (the visited property). Listing 6-11 sets up a hyperlink with
action code to respond when clicked. The action code will display the link’s text or URL as a web page that
will be rendered inside a JavaFX WebView node.

Listing 6-11. A Hyperlink with Action Code that Loads a Web Page into a WebView Control

Hyperlink searchLink = new Hyperlink("www.google.com");
WebView browser = new WebView();
searchLink.setOnAction(actionEvent ->
 browser.getEngine()
 .load("https://" + searchLink.getText()));

Radio Button
Radio buttons are typically used in applications asking the users for one choice among available (two or
more) choices. Figure 6-8 shows radio buttons used to allow the users to select a payment type.

Figure 6-8. A hypothetical payment selection screen. Radio buttons are used to allow the users to select a
method of payment.

Chapter 6 ■ User InterfaCe Controls

188

To create radio buttons as shown in Figure 6-8, look at the code found in Listing 6-12. It begins by
creating a ToggleGroup that will hold the chosen value. The toggle group allows only one radio button to
be selected at a time. The ToggleGroup has a listener responsible for displaying the payment method to the
console when a check box is selected.

Listing 6-12. Code That Asks Users to Select One Payment Method

Label questionLabel = new Label("What is your method of payment?");
ToggleGroup group = new ToggleGroup();
RadioButton visaButton = new RadioButton("Visa");
visaButton.setUserData("Visa");
visaButton.setSelected(true);

RadioButton payPalButton = new RadioButton("PayPal");
payPalButton.setUserData("PayPal");

RadioButton masterCardButton = new RadioButton("Master Card");
masterCardButton.setUserData("Master Card");

RadioButton bitCoinButton = new RadioButton("BitCoin");
bitCoinButton.setUserData("BitCoin");

RadioButton cashButton = new RadioButton("Cash");
cashButton.setUserData("Cash");

visaButton.setToggleGroup(group);
payPalButton.setToggleGroup(group);
masterCardButton.setToggleGroup(group);
bitCoinButton.setToggleGroup(group);
cashButton.setToggleGroup(group);

group.selectedToggleProperty().addListener(listener -> {
 System.out.println("Payment type: " + group.getSelectedToggle().getUserData());
});

 ■ Tip You can use a JavafX node’s set/getUserData() method to put any object into it. In this scenario, the
RadioButton controls are set with a String value to uniquely identify each selected item.

Now that you know how to set up labels and buttons, let’s have more fun with JavaFX buttons, using an
example called Button Fun.

Chapter 6 ■ User InterfaCe Controls

189

Example: Button Fun
Before you look at the example code, I want to thank the indie game developers at Chasers Gaming for
supplying me game sprites to be used in this example. To support visit, them at the following:

•	 https://www.patreon.com/chasersgaming

•	 https://www.facebook.com/Chasersgamingpage

•	 Twitter: @denchaser

Button Fun, shown in Figure 6-9, is an application that demonstrates common JavaFX button controls.
The application allows users to view and control three kinds of vehicles.

Figure 6-9. Button Fun is an application that allows users to view and control aspects of three vehicle types: a
work car, a weekend car, and a travel van.

This example demonstrates the following UI controls:

•	 Hyperlink

•	 CheckBox

•	 RadioButton

•	 Button

•	 Popup

Button Fun Instructions
The following are instructions for the Button Fun application:

•	 Car Information: Click on the hyperlink to pop up information about the vehicle
you chose.

•	 Turn headlights On or Off: Click on the check box control.

•	 Select Vehicle type: Click to select one of three radio controls of vehicle types—Work
Car, Weekend Car, and Travel Van.

•	 Drive car forward: Click the button with the < arrow.

•	 Drive car backward: Click the button with the > arrow.

https://www.patreon.com/chasersgaming
https://www.facebook.com/Chasersgamingpage

Chapter 6 ■ User InterfaCe Controls

190

Source Code of ButtonFun.java
Before beginning the example, you will need resources such as image files to be properly loaded during
runtime. In order to obtain these resources, visit Apress to download the code example or visit https://
github.com/carldea/jfx9be/tree/master/chap06. The source code will also contain scripts such as clean,
compile, and build. The build script will properly copy the resources directory into the compiled directory
(classes).

Listing 6-13 will invoke the init() method to load the image sprites to be used in the application. The
rest of the code is basically laying out all the controls and wiring up logic or action code to respond to the
various button clicks. The CSS styling of the UI is in Listing 6-14, and it will colorize buttons and change
properties based on pseudo-classes (states).

Listing 6-13. ButtonFun.java Source Code

/**
 * Button Fun is an app showing typical buttons used in application development.
 * Car sprites are from http://opengameart.org/users/chasersgaming
 * @author carldea
 */
public class ButtonFun extends Application {
 private Car[] myCars;
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void init() throws Exception {
 super.init();
 myCars = new Car[3];

 Car workCar = buildCar("/spr_bluecar_0_0.png", "/spr_bluecar_0_0-backwards.png",
 "Select this car to drive to work.");
 Car sportsCar = buildCar("/sportscar.png", "/sportscar-backwards.png",
 "Select this car to drive to the theater.");
 Car travelVan = buildCar("/travel_vehicle.png", "/travel_vehicle.png",
 "Select this vehicle to go on vacation.");

 myCars[0] = workCar;
 myCars[1] = sportsCar;
 myCars[2] = travelVan;
 }

 private Car buildCar(String carForwardFile, String carBackwardFile, String description) {
 Image carGoingForward = new Image(carForwardFile);
 Image carBackward = new Image(carBackwardFile);
 return new Car(carGoingForward, carBackward, description);
 }

https://github.com/carldea/jfx9be/tree/master/chap06
https://github.com/carldea/jfx9be/tree/master/chap06

Chapter 6 ■ User InterfaCe Controls

191

 @Override
 public void start(Stage stage) {

 stage.setTitle("Button Fun");

 BorderPane root = new BorderPane();
 root.setId("background");

 Scene scene = new Scene(root, 900, 250);

 // load JavaFX CSS style
 scene.getStylesheets()
 .add(getClass().getResource("/button-fun.css")
 .toExternalForm());
 VBox leftControlPane = new VBox(10);

 leftControlPane.setPadding(new Insets(0, 10, 20, 15));

 // Create radio buttons for linear,
 // ease in and ease out
 ToggleGroup group = new ToggleGroup();

 RadioButton easeLinearBtn = new RadioButton("Work Car");
 easeLinearBtn.setUserData(myCars[0]);
 easeLinearBtn.getStyleClass().add("option-button");
 easeLinearBtn.setSelected(true);
 easeLinearBtn.setToggleGroup(group);

 RadioButton easeInBtn = new RadioButton("Weekend Car");
 easeInBtn.setUserData(myCars[1]);
 easeInBtn.getStyleClass().add("option-button");
 easeInBtn.setToggleGroup(group);

 RadioButton easeOutBtn = new RadioButton("Travel Van");
 easeOutBtn.setUserData(myCars[2]);
 easeOutBtn.getStyleClass().add("option-button");
 easeOutBtn.setToggleGroup(group);

 // hyperlink
 Hyperlink carInfoLink = createHyperLink(group);

 leftControlPane.getChildren().add(carInfoLink);

 // Create check boxes to turn lights on or off.
 CheckBox headLightsCheckBox = new CheckBox("Headlights on");

 leftControlPane.getChildren().add(headLightsCheckBox);

 leftControlPane.setAlignment(Pos.BOTTOM_LEFT);
 leftControlPane.getChildren().addAll(easeLinearBtn, easeInBtn, easeOutBtn);

Chapter 6 ■ User InterfaCe Controls

192

 // Create button controls to move car forward or backward.
 HBox hbox = new HBox(10);
 Button leftBtn = new Button("<");
 leftBtn.getStyleClass().add("nav-button");
 Button rightBtn = new Button(">");
 rightBtn.getStyleClass().add("nav-button");
 FlowPane controlPane = new FlowPane();
 FlowPane.setMargin(hbox, new Insets(0, 5, 10, 10));
 hbox.getChildren().addAll(leftBtn, rightBtn);
 controlPane.getChildren().add(hbox);
 root.setBottom(controlPane);

 // Draw the ground surface
 AnchorPane surface = new AnchorPane();
 root.setCenter(surface);

 root.setLeft(leftControlPane);
 int x1 = 20, x2 = 500;
 int y1 = 100, y2 = 100;

 ImageView carView = new ImageView(myCars[0].carForwards);
 carView.setPreserveRatio(true);
 carView.setFitWidth(150);
 carView.setX(x1);

 Arc carHeadlights = new Arc();
 carHeadlights.setId("car-headlights-1");
 carHeadlights.setCenterX(50.0f);
 carHeadlights.setCenterY(90.0f);
 carHeadlights.setRadiusX(300.0f);
 carHeadlights.setRadiusY(300.0f);
 carHeadlights.setStartAngle(170.0f);
 carHeadlights.setLength(15f);
 carHeadlights.setType(ArcType.ROUND);
 carHeadlights.visibleProperty().bind(headLightsCheckBox.selectedProperty());

 // Easing car (sports car)
 AnchorPane.setBottomAnchor(carView, 20.0);
 AnchorPane.setBottomAnchor(carHeadlights, 20.0);
 AnchorPane carPane = new AnchorPane(carHeadlights, carView);

 AnchorPane.setBottomAnchor(carPane, 20.0);
 surface.getChildren().add(carPane);

 // The animation based on the currently selected radio buttons.
 TranslateTransition animateCar = new TranslateTransition(Duration.millis(400),

carPane);
 animateCar.setInterpolator(Interpolator.LINEAR);
 animateCar.toXProperty().set(x2);
 //animateCar.setInterpolator((Interpolator) group.getSelectedToggle().

getUserData());
 animateCar.setDelay(Duration.millis(100));

Chapter 6 ■ User InterfaCe Controls

193

 // Go forward (Left)
 leftBtn.setTooltip(new Tooltip("Drive forward"));
 leftBtn.setOnAction(ae -> {
 animateCar.stop();
 Car selectedCar = (Car) group.getSelectedToggle().getUserData();
 carView.setImage(selectedCar.carForwards);
 animateCar.toXProperty().set(x1);
 animateCar.playFromStart();

 });

 // Go backward (Right)
 rightBtn.setTooltip(new Tooltip("Drive backward"));
 rightBtn.setOnAction(ae -> {
 animateCar.stop();
 Car selectedCar = (Car) group.getSelectedToggle().getUserData();
 carView.setImage(selectedCar.carBackwards);
 animateCar.toXProperty().set(x2);
 animateCar.playFromStart();
 });
 group.selectedToggleProperty().addListener((ob, oldVal, newVal) -> {
 Car selectedCar = (Car) newVal.getUserData();
 System.out.println("selected car: " + selectedCar.carDescription);
 carView.setImage(selectedCar.carForwards);
 });

 stage.setScene(scene);
 stage.show();
 }

 private Hyperlink createHyperLink(ToggleGroup chosenCarToggle) {
 Hyperlink carInfoLink = new Hyperlink("Car Information");
 Popup carInfoPopup = new Popup();
 carInfoPopup.getScene().getStylesheets()
 .add(getClass().getResource("/button-fun.css")
 .toExternalForm());

 carInfoPopup.setAutoHide(true);
 carInfoPopup.setHideOnEscape(true);
 Arc pointer = new Arc(0, 0, 20, 20, -20, 40);
 pointer.setType(ArcType.ROUND);
 Rectangle msgRect = new Rectangle(18, -20, 200.5, 150);

 Shape msgBubble = Shape.union(pointer, msgRect);
 msgBubble.getStyleClass().add("message-bubble");

 TextFlow textMsg = new TextFlow();
 textMsg.setPrefWidth(msgRect.getWidth() -5);
 textMsg.setPrefHeight(msgRect.getHeight() -5);
 textMsg.setLayoutX(pointer.getBoundsInLocal().getWidth()+5);
 textMsg.setLayoutY(msgRect.getLayoutY() + 5);

Chapter 6 ■ User InterfaCe Controls

194

 Text descr = new Text();
 descr.setFill(Color.ORANGE);
 textMsg.getChildren().add(descr);

 // whenever a selected car set the text.
 chosenCarToggle.selectedToggleProperty().addListener((obs, oldVal, newVal) -> {
 Car selectedCar = (Car) newVal.getUserData();
 descr.setText(selectedCar.carDescription);
 });

 carInfoPopup.getContent().addAll(msgBubble, textMsg);

 carInfoLink.setOnAction(actionEvent -> {
 Bounds linkBounds = carInfoLink.localToScreen(carInfoLink.getBoundsInLocal());
 carInfoPopup.show(carInfoLink, linkBounds.getMaxX(), linkBounds.getMinY() -10);
 });
 return carInfoLink;
 }
}

class Car {

 String carDescription;
 Image carBackwards;
 Image carForwards;

 public Car(){};

 public Car(Image carForwards, Image carBackwards, String desc) {
 this.carForwards = carForwards;
 this.carBackwards = carBackwards;
 this.carDescription = desc;
 }
}

Listing 6-14. The button-fun.css File Contains JavaFX CSS Styling Attribute to Style the Button Fun
Application Screen

#background {
 /* button gradient from top to bottom*/
 -light-white: #fbfbfb;
 -light-gray: #c8c8c8;
 -dark-gray: #9090a1;
 -light-green: #aecf64;
 -mid-green: #85ab32;
 -dark-green: #609010;
 -fx-background-color: #3b3b43;
}

Chapter 6 ■ User InterfaCe Controls

195

#car-headlights-1 {
 -fx-fill: rgba(255,255,153, 0.8);
}

.nav-button {
 -fx-background-color:
 #000000,
 rgba(255,255,255, 0.8),
 linear-gradient(-light-white, -light-gray, -dark-gray);

 -fx-background-insets: 0,1,2;
 -fx-background-radius: 50%;
 -fx-font-family: 'Arial Black';
 -fx-font-weight: bold;
 -fx-font-size: 20px;
}

.nav-button:hover {
 -fx-background-color:
 #000000,
 rgba(255,255,255, 0.8),
 linear-gradient(-light-green, -mid-green, -dark-green);
 -fx-effect: dropshadow(gaussian , -light-green , 10, 0.0 , 0 , 0);
}

.nav-button:pressed {
 -fx-background-color:
 #000000,
 rgba(255,255,255, 0.8),
 linear-gradient(-dark-green, -mid-green, -light-green);
}

.option-button .dot {
 -fx-background-radius: 0%;
}

.radio-button .text {
 -fx-text-fill: -fx-text-background-color;
}

.radio-button .radio {
 -fx-background-color: rgba(0,0,0, 0.0), #000000, #000000, #090909;
 -fx-background-insets: 0 0 -1 0, 0, 1, 2;
 -fx-background-radius: 3; /* large value to make sure this remains circular */
 -fx-padding: 0.333333em; /* 4 -- padding from outside edge to the inner black dot */
}

.radio-button:selected .dot {
 -fx-background-color: linear-gradient(-light-green, -mid-green, -dark-green);
 -fx-background-insets: 0 0 -1 0;
}

Chapter 6 ■ User InterfaCe Controls

196

.option-button {
 -fx-background-radius: 0%;
 -fx-font-family: 'Arial Black';
 -fx-text-fill: #ffffff;
 -fx-font-weight: bold;
 -fx-font-size: 15px;
}
.check-box {
 -fx-background-radius: 0%;
 -fx-font-family: 'Arial Black';
 -fx-text-fill: #ffffff;
 -fx-font-weight: bold;
 -fx-font-size: 15px;
}

.check-box .box {
 -fx-background-color: rgba(0,0,0, 0.0), #000000, #000000, #090909;
 -fx-background-insets: 0 0 -1 0, 0, 1, 2;
 -fx-background-radius: 3; /* large value to make sure this remains circular */
 -fx-padding: 0.333333em; /* 4 -- padding from outside edge to the inner black dot */
}

.check-box:selected .mark {
 -fx-background-color: linear-gradient(-light-green, -mid-green, -dark-green);;
 -fx-background-insets: 0 0 -1 0;
}

.hyperlink {
 -fx-background-radius: 0%;
 -fx-font-family: 'Arial Black';
 -fx-text-fill: #ffffff;
 -fx-font-weight: bold;
 -fx-font-size: 15px;
 -fx-border-color: -mid-green;
}

.message-bubble {
 -fx-fill: rgba(0,0,0, .8);
 -fx-stroke: #85ab32;
}

How It Works
•	 Overriding the init() method from the JavaFX Application class to load an array of

Car objects. Each Car instance has an image for the car going forward, an image of
the car going backward, and a string description of the vehicle.

•	 In the start() method, the code begins setting up the scene by loading the button-
fun.css file from Listing 6-14.

•	 Next, the code creates a toggle group and radio buttons to support the selection of a
vehicle.

Chapter 6 ■ User InterfaCe Controls

197

•	 After creating radio buttons, the code creates a hyperlink to allow the users to display
a popup displaying the selected car’s description. The code makes a call to a private
method that I created with the following signature:

private Hyperlink createHyperLink(ToggleGroup chosenCarToggle)

•	 By passing in the chosenCarToggle parameter, a popup can determine which vehicle
type was selected to display the correct description.

•	 Inside of the createHyperLink() method, when creating a popup, the code will
create a custom shape created by a union of two shapes (an arc and a rectangle).
Figures 6-10 depicts both shapes prior to the union. In Figure 6-11, two shapes form
the message popup box.

Arc pointer = new Arc(0, 0, 20, 20, -20, 40);
pointer.setType(ArcType.ROUND);
Rectangle msgRect = new Rectangle(18, -20, 200.5, 150);
Shape msgBubble = Shape.union(pointer, msgRect);

Figure 6-10. An arc and a rectangle shape positioned before the union operation

Figure 6-11. An arc and a rectangle shape positioned after the union operation

•	 The popup displayed will be positioned just to the right of the hyperlink itself.
The following code snippet obtains the bounding box location and converts them to
screen coordinates. A popup is displayed in another window (Stage).

carInfoLink.setOnAction(actionEvent -> {
 Bounds linkBounds = carInfoLink.localToScreen

(carInfoLink.getBoundsInLocal());
 carInfoPopup.show(carInfoLink, linkBounds.getMaxX(),

linkBounds.getMinY() -10);
 });

Chapter 6 ■ User InterfaCe Controls

198

•	 After creating the hyperlink to display the car information, we return to the start()
method. The code creates a check box control to toggle the headlights of the car. This
code creates an arc with a color fill of a translucent yellow.

•	 Lastly, the start() method code creates two buttons that animate the selected car
to drive forward or backward. A TranslateTransition animation is used to animate
the car image. You will learn about animation in Chapter 7, which covers JavaFX
graphics.

Menus
Menus are a standard way for windowed desktop applications to allow users to select options. For example,
applications typically have a File menu offering options (menu items) to save or open a file. In a windowed
environment the users use their mouse to navigate and select menu items. Menus and menu items typically
also have the functionality of key combinations to select options, also known as keyboard shortcuts. In other
words, key combinations allow quick menu selections without the need of a mouse.

Creating Menus and Menu Items
Before exploring how to invoke code triggered by selecting menu options, let’s look at how to create menus.
For starters, you must create a menu bar (javafx.scene.control.MenuBar) object to hold one-to-many
javafx.scene.control.Menu objects. Each Menu object is similar to a tree hierarchal structure, where Menu
objects can contain Menu and MenuItem (javafx.scene.control.MenuItem) objects. Thus, a menu may
contain other menus as submenus or menus within menus. Figure 6-12 depicts a File menu having a Save
menu item.

Figure 6-12. A menu bar with a simple File menu that contains a Save menu item

Menu items are child options within a Menu object. You can think of Menu items as leaf nodes
(containing no children) in a tree structure. Listing 6-15 is the code to create a menu bar with a File menu
that has a Save option as a menu item, as shown in Figure 6-12.

Listing 6-15. Creating a MenuBar Having a File Menu with a Save Menu Item

MenuBar menuBar = new MenuBar();
Menu fileMenu = new Menu("File");
fileMenu.getItems().add(new MenuItem("Save"));
menuBar.getMenus().add(fileMenu);

http://dx.doi.org/10.1007/978-1-4842-1961-4_7

Chapter 6 ■ User InterfaCe Controls

199

Although you can create simple menu items like the ones in Figure 6-12, you may want more advanced
options such as checked options or radio buttons. Based on the inheritance hierarchy, the following are
subclasses of the MenuItem class. The following listing shows the available MenuItem subclasses to use as
menu options. A brief description of each subclass will follow.

•	 CheckMenuItem

•	 RadioMenuItem

•	 CustomMenuItem

•	 SeparatorMenuItem

•	 Menu

A CheckMenuItem menu item is similar to a check box UI control, allowing the user to select items
optionally. The RadioMenuItem menu item is similar to the radio button UI control, allowing the user to
select only one item from an item group. In the same manner that you learned about in the prior section on
buttons, creating check and radio menus is similar.

Next, the custom menu item, which is a CustomMenuItem class, allows developers to create their own
specialized menu items. For instance, you may want to have a menu option that behaves like a toggle button.

After that you will see a SeparatorMenuItem, which is really a derived class of type CustomMenuItem.
A SeparatorMenuItem is a menu item that displays a visual line to separate menu items.

The last in the bulleted list is the Menu class. Since a Menu class is a subclass of MenuItem, it has a
getItems().add() method that’s capable of adding children, such as other Menu and MenuItem object
instances.

Invoking a Selected MenuItem
Now that you know how to construct menus and menu items, let’s see how to invoke code that is attached
to each menu item. You’ll be happy to know that wiring up handler code to a menu item is done exactly the
same way as you wire up JavaFX buttons, which means that menu items also have a setOnAction() method.
The setOnAction() method receives a functional interface of type EventHandler<ActionEvent>, which is
the handler code that is invoked when the menu item is selected.

Listing 6-16 shows two equivalent implementations of action code to be invoked when the Exit menu
item is triggered. The first implementation uses an anonymous inner class, and the second uses Java 8’s
lambda expressions. A more succinct way to attach an event handler code is to use a lambda functional
interface.

Listing 6-16. Implementing Event Handler Code When an Action is Invoked

// Implementation that uses an anonymous inner class
exitMenuItem.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent t) {
 Platform.exit();
 }
});

// Implementation that uses lambda / functional interface.
exitMenuItem.setOnAction(ae -> Platform.exit());

Chapter 6 ■ User InterfaCe Controls

200

Example: Working with Menus
To demonstrate various menu selection scenarios, the next code example mimics a security alarm
application. As illustrated in Figure 6-13, the menu bar displays three main menus—File, Cameras, and
Alarm. When the File menu is selected, it displays three options—New, Save, and Exit—as child menu items.

Figure 6-13. Menu example application simulating a security alarm system

Listing 6-17 is from the file MenuExample.java and shows the relevant code that demonstrates menu
selections. Before executing the code, you may want to know how to use this fictional security alarm
application.

Selecting the Cameras menu displays two CheckMenuItem menu items, which you can use for the
optional selection of Show Camera 1 or Show Camera 2. Lastly, the Alarm menu displays two RadioMenuItem
options and a submenu Contingent Plans. The submenu displays three child CheckMenuItem options.

Listing 6-17. The MenuExample.java File Is a Hypothetical Alarm System Application Demonstrating
Various Menu Items

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Menus Example");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 300, 250, Color.WHITE);

 MenuBar menuBar = new MenuBar();
 root.setTop(menuBar);

Chapter 6 ■ User InterfaCe Controls

201

 // File menu - new, save, exit
 Menu fileMenu = new Menu("File");

 MenuItem newMenuItem = new MenuItem("New");
 MenuItem saveMenuItem = new MenuItem("Save");
 MenuItem exitMenuItem = new MenuItem("Exit");
 exitMenuItem.setOnAction(actionEvent -> Platform.exit());

 fileMenu.getItems().addAll(newMenuItem,
 saveMenuItem,
 new SeparatorMenuItem(),
 exitMenuItem
);

 // Cameras menu - camera 1, camera 2
 Menu cameraMenu = new Menu("Cameras");

 CheckMenuItem cam1MenuItem = new CheckMenuItem("Show Camera 1");
 cam1MenuItem.setSelected(true);
 cameraMenu.getItems().add(cam1MenuItem);

 CheckMenuItem cam2MenuItem = new CheckMenuItem("Show Camera 2");
 cam2MenuItem.setSelected(true);
 cameraMenu.getItems().add(cam2MenuItem);

 // Alarm Menu
 Menu alarmMenu = new Menu("Alarm");

 // sound or turn alarm off
 ToggleGroup tGroup = new ToggleGroup();
 RadioMenuItem soundAlarmItem = new RadioMenuItem("Sound Alarm");
 soundAlarmItem.setToggleGroup(tGroup);

 RadioMenuItem stopAlarmItem = new RadioMenuItem("Alarm Off");
 stopAlarmItem.setToggleGroup(tGroup);
 stopAlarmItem.setSelected(true);
 alarmMenu.getItems().addAll(soundAlarmItem,
 stopAlarmItem,
 new SeparatorMenuItem());

 // Contingencey Menu options
 Menu contingencyPlans = new Menu("Contingent Plans");
 contingencyPlans.getItems().addAll(
 new CheckMenuItem("Self Destruct in T minus 50"),
 new CheckMenuItem("Turn off the coffee machine "),
 new CheckMenuItem("Run for your lives! "));
 alarmMenu.getItems().add(contingencyPlans);
 menuBar.getMenus().addAll(fileMenu, cameraMenu, alarmMenu);
 primaryStage.setScene(scene);
 primaryStage.show();
}

Chapter 6 ■ User InterfaCe Controls

202

How It Works
The code begins by creating a MenuBar control, which may contain one to many menu (MenuItem) objects.
After the MenuBar is created, it is set as the top region on the BorderPane layout. Since the top region allows
a resizable node to take up the available horizontal space, the MenuBar control will stretch to the width of the
BorderPane (the root scene). Listing 6-18 sets the top region of the BorderPane to a hold a menu bar.

Listing 6-18. A Menu Bar Is Set as the Top Region Node of the Root BorderPane

MenuBar menuBar = new MenuBar();
BorderPane root = new BorderPane();
root.setTop(menuBar);

Next, the code instantiates Menu objects that contain one or more menu item (MenuItem) objects and
other Menu objects, making submenus.

After creating the File menu, the code creates the Cameras menu. This menu will contain
CheckMenuItem objects. These menu items allow users to optionally select or unselect Show Camera 1 and
Show Camera 2 as menu items.

Last is the implementation of the Alarm menu, which contains two radio menu items (RadioMenuItem),
a separator (SeparatorMenuItem), and a submenu (Menu). To create the radio menu items for the Alarm
menu, the code itself creates an instance of a ToggleGroup class. The ToggleGroup class is also used on
regular radio buttons (RadioButtons) to allow one selected option only. Listing 6-19 creates radio menu
items (RadioMenuItems) to be added to the alarmMenu Menu object.

Listing 6-19. Creating Menu Items That Contain Radio and Separator Menu Items

// Alarm menu
Menu alarmMenu = new Menu("Alarm");

// Sound or turn alarm off
ToggleGroup tGroup = new ToggleGroup();
RadioMenuItem soundAlarmItem = new RadioMenuItem("Sound Alarm");
soundAlarmItem.setToggleGroup(tGroup);

RadioMenuItem stopAlarmItem = new RadioMenuItem("Alarm Off");
stopAlarmItem.setToggleGroup(tGroup);
stopAlarmItem.setSelected(true);

alarmMenu.getItems().addAll(soundAlarmItem, stopAlarmItem, new SeparatorMenuItem());

The code also adds a visual separator, by instantiating a SeparatorMenuItem class that is added to a
menu via the getItems().addAll() method. The method getItems() returns an observable list of MenuItem
objects (ObservableList<MenuItem>). You’ll learn about ObservableList collections later, but briefly, they
are collections that have the ability to notify and update UI controls as items are added or removed. For a full
description, see the section “The ObservableList Collection Class” later in this chapter.

The last child menu item added to the Alarm menu is a submenu, called Contingent Plans. To add some
levity, I’ve created some humorous menu options for contingency plans when an emergency occurs.

Chapter 6 ■ User InterfaCe Controls

203

Additional Ways to Select Menus and Menu Items
In the previous example, you learned how to create and invoke menu items using your mouse, but did you
know that there are other ways to invoke menu items? In this section, you will learn three additional ways to
invoke menu items: by constructing key mnemonics, key combinations, and context menus.

Key Mnemonics
Standard menus generally have keyboard mnemonics to select menu items without using a mouse.
Typically, applications that use a menu allow the user to press the Alt key, which puts an underscore (_)
beneath a letter of the menu text label. After the user presses the letter, the menu will drop down to display
its child menu items and the user will be allowed to navigate with arrow keys. Keep in mind that this
behavior is only on the Windows platform.

To perform this behavior in code, you instantiate a menu by invoking the constructor that receives a
String value as before, but this time you place an underscore character preceding the chosen letter in the
menu or menu item’s text. Also, to let the system recognize the mnemonic, you simply pass true to the
setMnemonicParsing(true) method. Listing 6-20 creates a File menu that uses the letter “F” as the mnemonic.

Listing 6-20. Creating a File Menu with a Mnemonic for the Letter “F”

Menu fileMenu = new Menu("_File");
fileMenu.setMnemonicParsing(true);

Key Combinations
A key combination is a combination of keystrokes that select a menu option. For instance, most applications
on the Windows platform use the key combination Ctrl+S to save a file. On the MacOS platform, the key
combination is Command (⌘)+S. Keys such as Ctrl, Command, Alt, Shift, and Meta are called modifier keys.
Usually these modifiers are pressed in combination with a single letter. Sometimes key combinations are
referred to as keyboard shortcuts (mapped to menu items).

To create a key combination, you need an instance of the KeyCodeCombination object that will contain
the keystroke and the modifiers. Listing 6-21 provides a key code combination of (Ctrl or Meta)+S. You will
notice that the code uses the KeyCombination.SHORTCUT_DOWN value as the key modifier instead of
CONTROL_DOWN or META_DOWN. The reason is simple; the value of SHORTCUT_DOWN will enable the application
to be cross-platform. The values CONTROL_DOWN and META_DOWN are system dependent on the Windows and
MacOS platforms, respectively, but SHORTCUT_DOWN works on all platforms.

Listing 6-21. A Menu Item Mapped to a Keyboard Shortcut of Ctrl+S (Windows) or Command+S (Mac)

MenuItem saveItem = new MenuItem("_Save");
saveItem.setMnemonicParsing(true);
saveItem.setAccelerator(new KeyCodeCombination(KeyCode.S, KeyCombination.SHORTCUT_DOWN));

Context Menus
Context menus are popup menus displayed when a user right-clicks the mouse button on a JavaFX UI
control or a stage surface. To create a context menu, you need to instantiate a ContextMenu class. Exactly like
a regular menu, the ContextMenu menu has a getItems().add() method to add menu items. The following
code snippet shows a context menu instantiated with a menu item (exitItem):

ContextMenu contextFileMenu = new ContextMenu(exitItem);

Chapter 6 ■ User InterfaCe Controls

204

To respond to a right-click of the mouse on the scene in an application, you can basically add an event
handler to listen for a right-click event. Once that is detected, the context menu’s show() method is invoked.
The code in Listing 6-22 sets up an event handler to show and hide a context menu based on a right or left
mouse click, respectively. Notice the hide() method invoked by the primary mouse click (left-click) to
remove the context menu.

Listing 6-22. Attaching an Event Handler That Displays a Popup Menu Upon Encountering a Right-Click
Mouse Event on a JavaFX Stage

primaryStage.addEventHandler(MouseEvent.MOUSE_CLICKED,
(MouseEvent me) -> {
 if (me.getButton() == MouseButton.SECONDARY || me.isControlDown()) {
 contextFileMenu.show(root, me.getScreenX(), me.getScreenY());
 } else {
 contextFileMenu.hide();
 }
});

To see the full code listing showing the use of these additional strategies to invoke menus, visit the
book’s website to download the project called KeyCombinationsAndContextMenus.java.

The ObservableList Collection Class
When using the Java Collections API, you’ll notice the many useful container classes that represent data
structures such as sets, maps, and lists. One of the commonly used concrete list classes is java.util.
ArrayList, which implements the List interface. For a long time, Java Swing developers built applications
using ListModels and ArrayList to represent a list of objects that will be displayed in a list-like UI control.
The issues that caused a lot of grief were the ability to synchronize list models and view components. To
solve this problem, you can use JavaFX’s ObservableList class. The ObservableList class is a collection that
is capable of notifying UI controls when objects are added, updated, and removed.

Here is how to take an existing collection to be wrapped by an observable list using the FXCollections.
observableArrayList() function:

List<String> doctors = ...// query database
ObservableList<String> obsDoctors = FXCollections.observableArrayList(doctors);

JavaFX ObservableLists are typically used in list UI controls such as ListView and TableView. Let’s
look at two examples that will use the ObservableList collection class. To see other observable collections
such as maps, sets, and arrays, refer to the Javadoc documentation on the API javafx.collections.
FXCollections.

Working with ListViews
The JavaFX ListView control is similar to the Java Swing JList component. A ListView is backed with an
observable list (ObservableList). Similar to Java Swing’s ListModel, when altering items in an observable
list, the ListView control will update its UI display automatically. The following code creates an observable
list to be used in a ListView control.

Chapter 6 ■ User InterfaCe Controls

205

ObservableList<String> javafxers = FXCollections.observableArrayList(
 "Carl Dea",
 "Gerrit Grunwald",
 "Mark Heckler",
 "José Pereda",
 "Sean Phillips");
ListView<String> myListView = new ListView<>(javafxers);

This code shows how to create a ListView backed by an observable list of String objects. By default,
the ListView will simply display items if they are strings. But what if they contain domain objects that you’ve
created? The answer is by using cell factories. You will learn about them in the next section on TableViews;
for now let’s see how to manipulate items in an observable list and a ListView control.

Example: Hero Picker
The Hero Picker example application will demonstrate the ObservableList’s capabilities; it displays two
JavaFX ListView UI controls and allows the user to transfer items between the two ListView controls. One
list contains candidates for hero status and the other contains those who have already achieved it. As shown
in Figure 6-14, this application allows you to choose a candidate to be transferred to the other ListView
control, which contains the chosen heroes.

Figure 6-14. Hero Picker application to choose candidates as heroes to demonstrate the ListView control

Chapter 6 ■ User InterfaCe Controls

206

Listing 6-23. The Hero Picker Application Demonstrates the ObservableList and ListView Classes

/**
 * Hero Picker application demonstrates observable lists and list views.
 * @author cdea
 */
public class HeroPicker extends Application {

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("HeroPicker: Creating and Working with ObservableLists");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 500, 350, Color.WHITE);

 // create a grid pane
 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(10));
 gridpane.setHgap(10);
 gridpane.setVgap(10);
 gridpane.setPrefHeight(Double.MAX_VALUE);
 ColumnConstraints column1 = new ColumnConstraints(150, 150, Double.MAX_VALUE);
 ColumnConstraints column2 = new ColumnConstraints(50);
 ColumnConstraints column3 = new ColumnConstraints(150, 150, Double.MAX_VALUE);
 column1.setHgrow(Priority.ALWAYS);
 column3.setHgrow(Priority.ALWAYS);
 gridpane.getColumnConstraints().addAll(column1, column2, column3);

 // Candidates label
 Label candidatesLbl = new Label("Candidates");
 GridPane.setHalignment(candidatesLbl, HPos.CENTER);
 gridpane.add(candidatesLbl, 0, 0);

 // Heroes label
 Label heroesLbl = new Label("Heroes");
 gridpane.add(heroesLbl, 2, 0);
 GridPane.setHalignment(heroesLbl, HPos.CENTER);

 // Candidates
 ObservableList<String> candidates = FXCollections.observableArrayList("Superman",
 "Spiderman",
 "Wolverine",
 "Police",
 "Fire Rescue",
 "Soldiers",
 "Dad & Mom",
 "Doctor",
 "Politician",
 "Pastor",
 "Teacher");
 ListView<String> candidatesListView = new ListView<>(candidates);
 gridpane.add(candidatesListView, 0, 1);

Chapter 6 ■ User InterfaCe Controls

207

 // heroes
 ObservableList<String> heroes = FXCollections.observableArrayList();
 ListView<String> heroListView = new ListView<>(heroes);
 gridpane.add(heroListView, 2, 1);

 // select heroes
 Button sendRightButton = new Button(" > ");
 sendRightButton.setOnAction((ActionEvent event) -> {
 String potential = candidatesListView.getSelectionModel().getSelectedItem();
 if (potential != null) {
 candidatesListView.getSelectionModel().clearSelection();
 candidates.remove(potential);
 heroes.add(potential);
 }
 });

 // deselect heroes
 Button sendLeftButton = new Button(" < ");
 sendLeftButton.setOnAction((ActionEvent event) -> {
 String notHero = heroListView.getSelectionModel().getSelectedItem();
 if (notHero != null) {
 heroListView.getSelectionModel().clearSelection();
 heroes.remove(notHero);
 candidates.add(notHero);
 }
 });

 VBox vbox = new VBox(5);
 vbox.getChildren().addAll(sendRightButton,sendLeftButton);
 vbox.setAlignment(Pos.CENTER);
 gridpane.add(vbox, 1, 1);
 root.setCenter(gridpane);

 GridPane.setVgrow(root, Priority.ALWAYS);
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

Chapter 6 ■ User InterfaCe Controls

208

Figure 6-15 shows the output from Listing 6-23, the Hero Picker application.

Figure 6-15. The output of the Hero Picker application, demonstrating the use of the ObservableList and
ListView classes

How It Works
Created in this example is a GUI application that allows users to choose their favorite heroes. This is quite
similar to system administration applications that manage user roles by adding or removing items from list
box components. In JavaFX the code example uses two ListView controls to hold String objects. For the
sake of brevity, we will not discuss the use of the layouts, but jump right into the relevant code relating to the
button actions and ListView controls.

Based on Listing 6-23, right before creating an instance of a ListView, the code creates an
ObservableList containing the candidates. Here you’ll notice the use of a factory class called
FXCollections, into which you can pass common collection types to be wrapped and returned to the
caller as an ObservableList. In the example, an array of strings is passed into the FXCollections.
observableArrayList() method instead of an ArrayList. Using the ObservableList allows you to update
the list of items in the array and in the display on the screen concurrently with a single method call.

Hopefully you get the idea about how to use the FXCollections class. The following code line calls the
FXCollections.observableArrayList() method class to return an observable list (ObservableList):

ObservableList<String> candidates = FXCollections.observableArrayList(...);

After the code creates an ObservableList, a ListView class is instantiated using a constructor that
receives the observable list. The following code creates and populates a ListView object:

ListView<String> candidatesListView = new ListView<>(candidates);

Chapter 6 ■ User InterfaCe Controls

209

The last item of business is where the code manipulates ObservableLists as if they were java.util
.ArrayLists. As they are manipulated, the ListView is notified and automatically updated to reflect the
changes of the ObservableList. Listing 6-24 implements the action event code when the user presses the
Send right (>) button.

Listing 6-24. Action Code to Process Selected Items

// select heroes
Button sendRightButton = new Button(">");
sendRightButton.setOnAction(actionEvent -> {
 String potential = candidatesListView.getSelectionModel().getSelectedItem();
 if (potential != null) {
 candidatesListView.getSelectionModel().clearSelection();
 candidates.remove(potential);
 heroes.add(potential);
 }
});

To set action code for the button, the code uses a lambda expression with an actionEvent
(ActionEvent) as a parameter, which is invoked when the button is clicked. When a button-press event
arrives, the code determines which item in the ListView was selected via the getSelectionModel() method
on the ListView. Once the item is determined, the code clears the selection, removes the item, and adds the
item to the Heroes ObserverableList. If you do not clear the selection, the item after the removed item will
be selected.

When working with ObserverableList, having items removed or added will notify the control. What’s
great about this is that there is no need to refresh the ListView UI control when the ObserverableList
changes, because the ListView will automatically be updated.

Working with TableViews
You can also use ObservableLists in another list-like UI controls, like the TableView. JavaFX’s
javafx.scene.control.TableView control is analogous to Swing’s JTable component, which contains rows,
columns, and cells very similar to spreadsheet applications. The following code snippet creates a TableView
control with one column targeting the firstName property of a domain object.

TableView<Person> employeeTableView = new TableView<>();
TableColumn<Person, String> firstNameCol = new TableColumn<>("First Name");
firstNameCol.setCellValueFactory(new PropertyValueFactory<Person,String>("firstName"));

What Is a Cell Factory?
Cell factories provide a way to customize how to display content in cells such as row of a ListView or a cell
in a column of a TableView control. Listing 6-25 shows how to create a cell factory to display the first and last
name of Person object within a ListView’s cell row.

Chapter 6 ■ User InterfaCe Controls

210

Listing 6-25. Setting a Cell Factory (Callback) for a List View Control

// display first and last name
personListView.setCellFactory(new Callback<ListView<Person>, ListCell<Person>>() {
 @Override
 public ListCell<Person> call(ListView<Person> param) {
 Label leadLbl = new Label();
 ListCell<Person> cell = new ListCell<Person>() {
 @Override
 public void updateItem(Person item, boolean empty) {
 super.updateItem(item, empty);
 if (item != null) {
 leadLbl.setText(item.getAliasName());
 setText(item.getFirstName() + " " + item.getLastName());
 }
 }
 }; // ListCell
 return cell;
 }
}); // setCellFactory

Of course, this code looks some what verbose, so Listing 6-26 shows converted the code that uses the
more concise lambda based syntax.

Listing 6-26. A Cell Factory Set Using the Lambda-Based Syntax to Cut Down on the Boilerplate Code

// display first and last name with tooltip using alias
personListView.setCellFactory(listView -> {
 Label leadLbl = new Label();
 ListCell<Person> cell = new ListCell<Person>() {
 @Override
 public void updateItem(Person item, boolean empty) {
 super.updateItem(item, empty);
 if (item != null) {
 leadLbl.setText(item.getAliasName());
 setText(item.getFirstName() + " " + item.getLastName());
 }
 }
 }; // ListCell
 return cell;
}); // setCellFactory

Making Table Cells Editable
Did you ever want to be able to modify a cell? JavaFX TableView controls and their cells can be edited. When
designing TableViews, the JavaFX engineers had already thought of this and made convenient functions that
provide editable cells.

Chapter 6 ■ User InterfaCe Controls

211

Edit a Table Cell as a ComboBox
Another control common to editing cells is the combo box. A combo box allows users to select enumerations
as a drop-down list selection. The following code snippet sets up a cell column to be a combo box. Figure 6-17
shows the combo box within a cell of the Mood column.

Edit a Table Cell as a TextField
An obvious editable cell would allow the users to edit the information tied to that cell with a textfield
control. The following code snippet sets up a column to be an editable text field.

 TableColumn<Person, String> aliasNameCol = new TableColumn<>("Alias");
 aliasNameCol.setCellValueFactory(new PropertyValueFactory<>("aliasName"));
 aliasNameCol.setCellFactory(TextFieldTableCell.forTableColumn());

Figure 6-16 shows an editable cell in the Alias column on a TableView control containing employees.

Figure 6-16. An editable cell using a text field to modify employee information. The alias column is set up
with a cell factory using the TextFieldTableCell.forTableColumn() convenience function.

Chapter 6 ■ User InterfaCe Controls

212

import static com.jfxbe.Person.MOOD_TYPES;

ObservableList<MOOD_TYPES> moods = FXCollections.observableArrayList(MOOD_TYPES.values());

TableColumn<Person, MOOD_TYPES> moodCol = new TableColumn<>("Mood");
moodCol.setCellValueFactory(new PropertyValueFactory<>("mood"));
moodColumn.setCellFactory(ComboBoxTableCell.forTableColumn(moods));

Example: Bosses and Employees Working with Tables
The previous example used a list of String objects for the items inside a ListView, and in this section we use
a domain object often called POJOs (plain old Java objects). Keep in mind when using your own domain
objects in ListView and TableView controls that you will want to customize the display of object’s fields for
each row or cell.

As an example of the TableView control, I’ve created an application called Bosses and Employees
shown in Figure 6-18. The example application demonstrates how to populate a TableView containing an
observable list of employees (Person class) that is based on a selection of a boss from a ListView control
(left side). In Figure 6-18, you’ll also notice the tooltip when hovering over the list view cell (row).

Figure 6-17. An editable cell using a combo box to modify an employee’s mood property. The mood column is
set up with a cell factory with the convenience function ComboBoxTableCell.forTableColumn() method.

Chapter 6 ■ User InterfaCe Controls

213

Figure 6-18. The output of the Bosses and Employees application, which demonstrates a JavaFX ListView and
TableView control. Observable lists will contain domain objects of the Person class.

Domain Objects
Before delving into the main GUI code, we examine the use of a domain object that represents a person
(Person) in this case a boss or an employee. Listing 6-27 shows an implementation of a JavaFX bean
(Person class) that represents a boss or an employee that will be displayed in a ListView and TableView
control. A Person instance will contain the following properties: aliasName, firstName, lastName, and
mood. A person also has an employees list to hold subordinate employees (minions). The GUI code to handle
a list view selection and the capability to populate the table view appears in Listing 6-28.

Listing 6-27. The Person Class as a JavaFX Bean Used in ObservableLists

public class Person {
 public enum MOOD_TYPES {
 Happy,
 Sad,
 Angry,
 Positive
 }
 private StringProperty aliasName;
 private StringProperty firstName;
 private StringProperty lastName;
 private ObjectProperty<MOOD_TYPES> mood;

 private ObservableList<Person> employees = FXCollections.observableArrayList();

Chapter 6 ■ User InterfaCe Controls

214

 public Person(String alias, String firstName, String lastName, MOOD_TYPES mood) {
 setAliasName(alias);
 setFirstName(firstName);
 setLastName(lastName);
 setMood(mood);
 }

 public final void setAliasName(String value) {
 aliasNameProperty().set(value);
 }

 public final String getAliasName() {
 return aliasNameProperty().get();
 }

 public StringProperty aliasNameProperty() {
 if (aliasName == null) {
 aliasName = new SimpleStringProperty();
 }
 return aliasName;
 }

 public final void setFirstName(String value) {
 firstNameProperty().set(value);
 }

 public final String getFirstName() {
 return firstNameProperty().get();
 }

 public StringProperty firstNameProperty() {
 if (firstName == null) {
 firstName = new SimpleStringProperty();
 }
 return firstName;
 }

 public final void setLastName(String value) {
 lastNameProperty().set(value);
 }

 public final String getLastName() {
 return lastNameProperty().get();
 }

 public StringProperty lastNameProperty() {
 if (lastName == null) {
 lastName = new SimpleStringProperty();
 }
 return lastName;
 }

Chapter 6 ■ User InterfaCe Controls

215

 public final void setMood(MOOD_TYPES value) {
 moodProperty().set(value);
 }

 public final MOOD_TYPES getMood() {
 return moodProperty().get();
 }

 public ObjectProperty<MOOD_TYPES> moodProperty() {
 if (mood == null) {
 mood = new SimpleObjectProperty<>(MOOD_TYPES.Happy);
 }
 return mood;
 }

 public ObservableList<Person> employeesProperty() {
 return employees;
 }
}

GUI Code
Now that you learned that domain objects (Person) are involved, let’s look at the GUI code that will populate
and display the data. Listing 6-28 shows the BossesAndEmployees.java file containing the main GUI code
that will populate a ListView control representing the bosses. The rest of the code also populates the
TableView control on the right side when the user selects a boss.

In Listing 6-28, the GUI code lays out controls programmatically as opposed to FXML via Scene Builder
tool. This chapter’s code examples primarily take on a programmatic approach, which is often considered bad
practice due to the coupling of GUI code and controller code. However, I believe relying on tools to build GUI
code will often hide internal mechanics that prevent you from learning how things actually work under the
covers. To see how to use FXML views and controller classes, refer to Chapter 5 on layouts and Scene Builder.

Listing 6-28. The Main GUI Code That Creates a Grid Pane Containing a ListView and a TableView Control
for Bosses and Employees

package com.jfxbe;

import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.geometry.HPos;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.control.cell.ComboBoxTableCell;
import javafx.scene.control.cell.PropertyValueFactory;
import javafx.scene.control.cell.TextFieldTableCell;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.paint.Color;

http://dx.doi.org/10.1007/978-1-4842-1961-4_5

Chapter 6 ■ User InterfaCe Controls

216

import javafx.stage.Stage;
import static com.jfxbe.Person.MOOD_TYPES;
import static com.jfxbe.Person.MOOD_TYPES.*;

/**
 * A JavaFX example application to demonstrate
 * observable lists used in ListViews, and TableViews.
 * Also this demos the use of domain objects with
 * properties as attributes.
 *
 * Bosses and Employees
 * @author cdea
 */
public class BossesAndEmployees extends Application {
 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Bosses and Employees: Working with Tables");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 630, 250, Color.WHITE);

 // create a grid pane
 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(20));
 gridpane.setHgap(10);
 gridpane.setVgap(10);
 root.setCenter(gridpane);

 // candidates label
 Label candidatesLbl = new Label("Boss");
 GridPane.setHalignment(candidatesLbl, HPos.CENTER);
 gridpane.add(candidatesLbl, 0, 0);

 // List of bosses
 ObservableList<Person> bosses = getPeople();
 final ListView<Person> leaderListView = new ListView<>(bosses);
 leaderListView.setPrefWidth(150);
 leaderListView.setMinWidth(200);
 leaderListView.setMaxWidth(200);
 leaderListView.setPrefHeight(Integer.MAX_VALUE);

 // display first and last name with tooltip using alias
 leaderListView.setCellFactory(listView -> {
 Tooltip tooltip = new Tooltip();
 ListCell<Person> cell = new ListCell<Person>() {
 @Override
 public void updateItem(Person item, boolean empty) {
 super.updateItem(item, empty);
 if (item != null) {
 setText(item.getFirstName() + " " + item.getLastName());
 tooltip.setText(item.getAliasName());

Chapter 6 ■ User InterfaCe Controls

217

 setTooltip(tooltip);
 }
 }
 }; // ListCell
 return cell;
 }); // setCellFactory

 gridpane.add(leaderListView, 0, 1);

 Label emplLbl = new Label("Employees");
 gridpane.add(emplLbl, 2, 0);
 GridPane.setHalignment(emplLbl, HPos.CENTER);

 TableView<Person> employeeTableView = new TableView<>();
 employeeTableView.setEditable(true);
 employeeTableView.setPrefWidth(Integer.MAX_VALUE);

 ObservableList<Person> teamMembers = FXCollections.observableArrayList();
 employeeTableView.setItems(teamMembers);

 TableColumn<Person, String> aliasNameCol = new TableColumn<>("Alias");
 aliasNameCol.setCellValueFactory(new PropertyValueFactory<>("aliasName"));
 aliasNameCol.setCellFactory(TextFieldTableCell.forTableColumn());

 TableColumn<Person, String> firstNameCol = new TableColumn<>("First Name");
 firstNameCol.setCellValueFactory(new PropertyValueFactory<>("firstName"));
 firstNameCol.setCellFactory(TextFieldTableCell.forTableColumn());

 TableColumn<Person, String> lastNameCol = new TableColumn<>("Last Name");
 lastNameCol.setCellValueFactory(new PropertyValueFactory<>("lastName"));
 lastNameCol.setCellFactory(TextFieldTableCell.forTableColumn());

 TableColumn<Person, MOOD_TYPES> moodCol = new TableColumn<>("Mood");
 moodCol.setCellValueFactory(new PropertyValueFactory<>("mood"));
 ObservableList<MOOD_TYPES> moods = FXCollections.observableArrayList

(MOOD_TYPES.values());
 moodCol.setCellFactory(ComboBoxTableCell.forTableColumn(moods));
 moodCol.setPrefWidth(100);
 employeeTableView.getColumns().add(aliasNameCol);
 employeeTableView.getColumns().add(firstNameCol);
 employeeTableView.getColumns().add(lastNameCol);
 employeeTableView.getColumns().add(moodCol);
 gridpane.add(employeeTableView, 2, 1);

 // selection listening
 leaderListView.getSelectionModel()
 .selectedItemProperty()
 .addListener((observable, oldValue, newValue) -> {
 if (observable != null && observable.getValue() != null) {
 teamMembers.clear();

Chapter 6 ■ User InterfaCe Controls

218

 teamMembers.addAll(observable.getValue().employeesProperty());
 }
 });

 primaryStage.setScene(scene);
 primaryStage.show();
 }

 private ObservableList<Person> getPeople() {
 ObservableList<Person> people = FXCollections.<Person>observableArrayList();

 Person docX = new Person("Professor X", "Charles", "Xavier", Positive);
 docX.employeesProperty().add(new Person("Wolverine", "James", "Howlett", Angry));
 docX.employeesProperty().add(new Person("Cyclops", "Scott", "Summers", Happy));
 docX.employeesProperty().add(new Person("Storm", "Ororo", "Munroe", Positive));

 Person magneto = new Person("Magneto", "Max", "Eisenhardt", Sad);
 magneto.employeesProperty().add(new Person("Juggernaut", "Cain", "Marko", Angry));
 magneto.employeesProperty().add(new Person("Mystique", "Raven", "Darkhölme", Sad));
 magneto.employeesProperty().add(new Person("Sabretooth", "Victor", "Creed", Angry));

 Person biker = new Person("Mountain Biker", "Jonathan", "Gennick", Positive);
 biker.employeesProperty().add(new Person("MkHeck", "Mark", "Heckler", Happy));
 biker.employeesProperty().add(new Person("Hansolo", "Gerrit", "Grunwald", Positive));
 biker.employeesProperty().add(new Person("Doc", "José", "Pereda", Happy));
 biker.employeesProperty().add(new Person("Cosmonaut", "Sean", "Phillips", Positive));
 biker.employeesProperty().add(new Person("CarlFX", "Carl", "Dea", Happy));

 people.add(docX);
 people.add(magneto);
 people.add(biker);

 return people;
 }

 public static void main(String[] args) {
 launch(args);
 }
}

How It Works
For the fun of it, I’ve created a simple GUI application that displays bosses and their employees. Notice on
the left side of Figure 6-19 a list of important people (bosses) and on the right are employees. When you click
to select a boss, their employees will be shown in the TableView control. You’ll also notice the tooltip popup
when the mouse cursor is hovered over the selected boss.

Chapter 6 ■ User InterfaCe Controls

219

Listing 6-28 begins by setting up the scene with a primary node as a GridPane that will lay out and
position the ListView and TableView controls.

Before discussing the TableView control, you need to understand the ListView control’s responsibility
of updating the TableView. As discussed earlier about the observable list shown in Listing 6-28, the code
populates an ObservableList containing all the bosses via the private getPeople() method to be passed
to the ListView control’s constructor. The following code is reshown from Listing 6-28. It shows the
construction of a ListView with an observable list containing domain objects.

// List of leaders
ObservableList<Person> leaders = getPeople();
ListView<Person> leaderListView = new ListView<>(leaders);

Next, the code instantiates a cell factory via the setCellFactory() method to properly display the
person’s name in the ListView control’s cell. Because each item isn’t a string but a Person object, the
ListView does not know how to render each row (cell) in the ListView control. To inform the ListView
which properties to use from the Person object, the code simply creates a javafx.util.Callback generic
object by specifying the ListView<Person> and a ListCell<Person> data type.

// display first and last name with tooltip using alias
leaderListView.setCellFactory(new Callback<ListView<Person>, ListCell<Person>>() {
 @Override
 public ListCell<Person> call(ListView<Person> param) {
 Label leadLbl = new Label();
 Tooltip tooltip = new Tooltip();
 ListCell<Person> cell = new ListCell<Person>() {
 @Override
 public void updateItem(Person item, boolean empty) {
 super.updateItem(item, empty);
 if (item != null) {
 leadLbl.setText(item.getAliasName());
 setText(item.getFirstName() + " " + item.getLastName());
 tooltip.setText(item.getAliasName());
 setTooltip(tooltip);
 }
 }

Figure 6-19. The application Bosses and Employees demonstrates the ListView and TableView controls. Note
the tooltip displayed when hovering over a boss in the list view.

Chapter 6 ■ User InterfaCe Controls

220

 }; // ListCell
 return cell;
 }
}); // setCellFactory

You are probably pretty intimidated by the complex anonymous inner class creation of a Callback
interface. Well, thank goodness there are lambdas in Java 8, because the boilerplate code can be reduced
and rewritten as shown in Listing 6-29.

Listing 6-29. The Call Method Displays the Boss's Name in a ListView Control Along with a Tooltip Popup
Showing the Alias Name

leaderListView.setCellFactory(listView -> {
 Label leadLbl = new Label();
 Tooltip tooltip = new Tooltip();
 ListCell<Person> cell = new ListCell<Person>() {
 @Override
 public void updateItem(Person item, boolean empty) {
 super.updateItem(item, empty);
 if (item != null) {
 leadLbl.setText(item.getAliasName());
 setText(item.getFirstName() + " " + item.getLastName());
 tooltip.setText(item.getAliasName());
 setTooltip(tooltip);
 }
 }
 }; // ListCell
 return cell;
}); // setCellFactory

Within the call() method shown in Listing 6-28 is the variable cell of type ListCell<Person>, in which
the code creates an anonymous inner class. The inner class must implement the updateItem() method. The
job of the updateItem() method is to obtain each person’s information, which then updates a Label control
(leadLbl). The label is displayed for each cell row in the ListView control. The last thing the updateItem()
method does is add a tooltip popup (Tooltip) to each cell row. The tooltip will pop up when the cursor
hovers over the cell (boss) within the ListView. After updating the cell, the cell variable is returned.

Finally, the code creates a TableView control to display the employees based on the selected boss from
the ListView control. When creating a TableView control, the code first creates the column headers shown
in Listing 6-28.

The creates the FirstName table column by setting the property with the JavaFX bean property name of
the domain object.

TableColumn<Person, String> firstNameCol = new TableColumn<>("First Name");
firstNameCol.setCellValueFactory(new PropertyValueFactory<>("firstName"));

Once you have created a column, you’ll notice the setCellValueFactory() method, which is
responsible for calling the Person bean’s property. When the list of employees is placed into the TableView,
it will know how to pull the properties to be placed in each cell column in the table. Based on the JavaBean
convention, a new PropertyValueFactory instance is created with the name of the bean attribute
(firstName).

Chapter 6 ■ User InterfaCe Controls

221

After the columns are set up, the code will set up the cell factories for the TableView columns to allow
the users to edit cells, which also will update the employee’s (Person) field. The code will make the Alias
column into an editable text field and the Mood column into an editable combo box.

Last is the implementation of the selection listener on the ListView. In the code, you’ll notice the
getSelectionModel().selectedItemProperty() method (shown at the end of Listing 6-28), which allows a
listener to be added. The code simply creates and adds a ChangeListener for selection events. When a user
selects a boss, the TableView is cleared and populated with the employees of the selected boss. Actually, it is
the magic of the ObservableList that notifies the TableView of changes. The code that clears and populates
the TableView is reshown from Listing 6-28 here:

teamMembers.clear();
teamMembers.addAll(observable.getValue().employeesProperty());

Generating a Background Process
Typically, in desktop applications that have long running processes, visual feedback should indicate that
something is happening or suggest that the user be patient. One of the main pitfalls of GUI development is
the difficulty of knowing when and how to delegate work to worker threads. Trying to avoid these pitfalls,
GUI developers are constantly reminded of thread safety, especially when it comes to blocking the UI thread
during heavy loads. JavaFX provides UI controls that help solve this issue by off-loading work to a different
thread (Task) while providing feedback or progress indicators of the work that is being done.

Creating a Background Task
The JavaFX API can execute work on threads in the background, called tasks (javafx.concurrent.Task).
These tasks are one-time use that are executed on a thread. The Task class is a subclass of Java concurrency’s
Runnable and Future interfaces.

What’s nice about Java futures is the ability to provide asynchronous behavior when executing code. In
other words, when you execute the task, it doesn’t block. When using an ExecutorService’s submit() method,
a future object is returned to the caller. The future object can be checked periodically to determine if the task is
finished or if an error has occurred. Listing 6-30 shows a simple thread pool created to execute a task.

Listing 6-30. A Thread Pool Created to Execute a Worker Task

Task worker = new Task<Boolean>() {
 @Override
 protected Boolean call() throws Exception {
 for (int i=0; i<100; i++) {
 // some heavy work (not on the UI thread)
 updateMessage("progress text");
 updateProgress(i, 100);
 }
 return true;
 }
};

ExecutorService threadPool = threadPool = Executors.newFixedThreadPool(2);
Future future = threadPool.submit(worker);

Chapter 6 ■ User InterfaCe Controls

222

The following are the main classes used in this example:

•	 javafx.scene.control.ProgressBar

•	 javafx.scene.control.ProgressIndicator

•	 javafx.concurrent.Task

Listing 6-31 shows a code example that uses JavaFX’s progress bar and indicator UI controls to provide
feedback to the user as files are being copied.

Listing 6-31. An Example Application That Demonstrates Background Processes

public class BackgroundProcesses extends Application {

 static Task<Boolean> copyWorker;
 final int numFiles = 30;
 private ExecutorService threadPool;
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

Did you notice the call() method in Listing 6-30 containing two methods—updateMessage() and
updateProgress()? These methods assist by updating the status or progress information for the currently
running task. Next, you will see an example application that will simulate a dialog window showing progress
of files being copied.

Example: File Copy Progress Dialog (BackgroundProcesses)
To demonstrate a GUI application generating a background process while also providing feedback to
the user, I’ve created an example application that simulates a dialog window visualizing the progress of
many files being copied. Figure 6-20 depicts, from left to right, a progress bar and a progress indicator (pie
chart). The progress indicator shows a percentage below the indicator icon. While the process is still being
performed, the user can click on the Cancel button to cancel or terminate the task.

Figure 6-20. A window simulating files being copied using a progress bar and a progress indicator providing
user feedback

Chapter 6 ■ User InterfaCe Controls

223

 @Override
 public void init() throws Exception {
 super.init();
 threadPool = Executors.newFixedThreadPool(1);
 }

 @Override
 public void stop() throws Exception {
 super.stop();
 threadPool.shutdown();
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("BackgroundProcesses: Background Processes");
 Group root = new Group();
 Scene scene = new Scene(root, 330, 120, Color.WHITE);

 BorderPane mainPane = new BorderPane();
 mainPane.layoutXProperty()
 .bind(scene.widthProperty()
 .subtract(mainPane.widthProperty())
 .divide(2));
 root.getChildren().add(mainPane);

 Label label = new Label("Files Transfer:");
 ProgressBar progressBar = new ProgressBar(0);
 ProgressIndicator progressIndicator = new ProgressIndicator(0);

 HBox hb = new HBox();
 hb.setSpacing(5);
 hb.setAlignment(Pos.CENTER);
 hb.getChildren().addAll(label, progressBar, progressIndicator);
 mainPane.setTop(hb);

 Button startButton = new Button("Start");
 Button cancelButton = new Button("Cancel");
 TextArea textArea = new TextArea();
 textArea.setEditable(false);
 textArea.setPrefSize(200, 70);

 HBox hb2 = new HBox();
 hb2.setSpacing(5);
 hb2.setAlignment(Pos.CENTER);
 hb2.getChildren().addAll(startButton, cancelButton, textArea);
 mainPane.setBottom(hb2);

 // wire up start button
 startButton.setOnAction((ActionEvent event) -> {
 startButton.setDisable(true);
 progressBar.setProgress(0);

Chapter 6 ■ User InterfaCe Controls

224

 progressIndicator.setProgress(0);
 textArea.setText("");
 cancelButton.setDisable(false);
 copyWorker = createWorker(numFiles);

 // wire up progress bar
 progressBar.progressProperty().unbind();
 progressBar.progressProperty().bind(copyWorker.progressProperty());
 progressIndicator.progressProperty().unbind();
 progressIndicator.progressProperty().bind(copyWorker.progressProperty());

 // append to text area box
 copyWorker.messageProperty()
 .addListener((observable, oldValue, newValue) ->
 textArea.appendText(newValue + "\n")
);

 threadPool.submit(copyWorker);
 });

 // cancel button will kill worker and reset.
 cancelButton.setOnAction((ActionEvent event) -> {
 startButton.setDisable(false);
 cancelButton.setDisable(true);
 copyWorker.cancel(true);

 // reset
 progressBar.progressProperty().unbind();
 progressBar.setProgress(0);
 progressIndicator.progressProperty().unbind();
 progressIndicator.setProgress(0);
 textArea.appendText("File transfer was cancelled.");
 });
 cancelButton.setDisable(true);

 primaryStage.setScene(scene);
 primaryStage.show();
 }

 private Task<Boolean> createWorker(final int numFiles) {
 return new Task<Boolean>() {

 @Override
 protected Boolean call() throws Exception {
 for (int i = 0; i < numFiles; i++) {
 long elapsedTime = System.currentTimeMillis();
 copyFile("some file", "some dest file");
 elapsedTime = System.currentTimeMillis() - elapsedTime;
 String status = elapsedTime + " milliseconds";

Chapter 6 ■ User InterfaCe Controls

225

 // queue up status
 updateMessage(status);
 updateProgress(i + 1, numFiles); // (progress, max)
 }
 return true;
 }
 };
 }

 private void copyFile(String src, String dest) throws InterruptedException {
 // simulate a long time
 Random rnd = new Random(System.currentTimeMillis());
 long millis = rnd.nextInt(1000);
 Thread.sleep(millis);
 }

}

How It Works
The code in Listing 6-31 begins by creating not one but two progress controls to show the user the
work being done. Next, the code creates a worker thread via the private createWorker() method. The
createWorker() convenience method instantiates and returns a javafx.concurrent.Task object, which
is similar to the Java Swing’s SwingWorker class. Unlike the SwingWorker class, the Task object is greatly
simplified and easier to use, thanks to its event-driven design. An example is a Task object’s ability to update
progress asynchronously.

When creating an instance of a Task object, the code implements the call() method to do work in the
background. As the work is being done, you will often want to queue up intermediate results such as progress
or text information to provide feedback to the user. To queue information, the API allows you to call the
updateProgress() or updateMessage() methods. These methods update information in a thread-safe way
so that the observer of the progress properties can update the GUI safely without blocking the GUI thread.
Listing 6-32 queues up messages and shows the progress.

Listing 6-32. The Text Messages and Progress Updated Without Blocking the Progress UI Controls

// queue up status
updateMessage(status);
updateProgress(i + 1, numFiles); // (progress, max progress)

After creating a worker task, the code unbinds any old tasks bound to the progress controls. Once the
progress controls are unbound, the code then binds the progress controls to a newly created Task object
named copyWorker. Listing 6-33 rebinds a new Task object to the progress UI controls.

Listing 6-33. After a Task Is Used, the Progress Controls Will Need to Rebind to a New Task

// wire up progress bar
progressBar.progressProperty().unbind();
progressBar.progressProperty().bind(copyWorker.progressProperty());

progressIndicator.progressProperty().unbind();
progressIndicator.progressProperty().bind(copyWorker.progressProperty());

Chapter 6 ■ User InterfaCe Controls

226

Moving on, notice that the code implementing a ChangeListener to append the queued results into the
TextArea control. Another remarkable thing about JavaFX properties is that you can attach many listeners
similar to Java Swing components. Finally, the worker and controls are all wired up to spawn a thread to go
off in the background. The following code line shows the launching of a Task worker.

new Thread(copyWorker).start();

This code finishes by wiring up the Cancel button. This button simply calls the Task object’s cancel()
method to kill the process. Once the task is cancelled, the progress controls are reset. Once a worker task is
cancelled, it cannot be reused. That is why the Start button re-creates a new task. If you want a more robust
reusable solution, look at the javafx.concurrent.Service class.

Summary
You began this chapter with learning about labels and custom fonts, such as the use of the third-party library
FontAwesomeFX. After learning about labels, you got a chance to delve deep into various button controls with
a fun example that animates game sprites.

After learning common button controls, you learned how to create standard menus and menu bars. By
creating menus, you were able to learn to create handler code to respond to the selection of menu items. You
were then able to map key combinations or keyboard shortcuts to menu options. You learned how to create
context menus invoked by right-clicking on the Scene graph. With the many ways to create menus and menu
items, you got a chance to run an example program that simulated a security alarm application.

Finally, you were exposed to ObservableList collections, which support the display of UI controls such
as the ListView and TableView nodes. By learning about the UI controls ListView and TableView, you got a
chance to use domain objects to populate list cells and table column cells. You also learned how to make a
table view cell column editable using a text field and a combo box.

Lastly, you learned about JavaFX’s Task API, which enables you to execute code asynchronously while
updating the status of the task. You also learned to bind a task to progress type controls ProgressBar and
ProgressIndicator. With ProgressBars and ProgressIndicators, you were able to run an example that
simulates background worker threads copying files and updating the progress.

227© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_7

CHAPTER 7

Graphics

Have you ever heard someone say, “When two worlds collide”? This expression is used when a person
from a different background or culture is put in a situation where they are at odds and must face very hard
decisions. When building GUI applications needing graphics or animations, we are often on a collision
course between business and gaming worlds. In other words, when developing applications, it’s nice to
strike a good balance of having UI aspects from business applications and video game-like effects.

In the ever-changing world of rich Internet applications (RIA), you probably have noticed an increased
use of animations such as pulsing buttons, transitions, moving backgrounds, and so on. GUI applications
can use animations to provide visual cues to let the user know what to do next. With JavaFX, you will be able
to have the best of both worlds, creating appealing graphics as well as form-based applications handling
business transactions.

In this chapter, you will learn about the basics of JavaFX graphics such as displaying and manipulating
images. Also, in this chapter you will learn high-level animation APIs. Fasten your seatbelts; you’ll discover
solutions to integrate cool game-like interfaces into everyday applications.

In this chapter, you’ll learn about the following:

•	 Loading and displaying images

•	 Background tasks

•	 Progress indicators

•	 Altering color settings on images

•	 Writing bitmapped images to disk

•	 Dragging and dropping image files

•	 Animation using key values, keyframes, and timelines

•	 Animation transition classes

•	 Sequential and parallel transitions

Working with Images
Yet another powerful capability in JavaFX is the ability to display standard image file formats on the scene
graph. In this section, you learn how to load, display, scale, and rotate images. As a bonus, you’ll also learn
how to easily alter an image’s color attributes such as its hue, saturation, brightness, and contrast.

After learning about the basics of the JavaFX Image and ImageView APIs, you will get to explore an
example of a Photo Viewer application. This fun application allows you to scale, rotate, and manipulate
images.

Chapter 7 ■ GraphiCs

228

Loading Images
You are probably aware of the many standard image file formats on the Internet, such as .jpg, .png, .gif,
and .bmp. To load standard image file formats, JavaFX provides the javafx.scene.image.Image API. The
Image class has many convenient constructors that facilitate different loading strategies, as shown in the
following list:

•	 Image(java.io.InputStream inputStream)

•	 Image(java.io.InputStream is, double requestedWidth, double
requestedHeight, boolean preserveRatio, boolean smooth)

•	 Image(java.lang.String url)

•	 Image(java.lang.String url, boolean backgroundLoading)

•	 Image(java.lang.String url, double requestedWidth, double
requestedHeight, boolean preserveRatio, boolean smooth)

•	 Image(java.lang.String url, double requestedWidth, double
requestedHeight, boolean preserveRatio, boolean smooth, boolean
backgroundLoading)

As you can see, there are only a handful of parameters common to all of the constructors that are used
in various combinations for different loading scenarios. Table 7-1 briefly describes each parameter.

To demonstrate loading an image, Listing 7-1 shows three ways of loading images. The code listing
demonstrates loading an image from the local filesystem, classpath, and a remote host system
such as a web server.

Listing 7-1. Loading Images from the Filesystem, the Classpath, and a Remote Web Server

try {
 // The current thread context should not be on the GUI thread.
 // loading an image from a Windows file system
 File file = new File("C:\\Users\\jdoe\\Pictures\\myphoto.jpg");
 String localUrl = file.toURI().toURL().toString();

Table 7-1. Common Parameters When Loading Images of the Class javafx.scene.image.Image

Parameter Data Type Description

inputStream java.io.InputStream An input stream such as a file or network.

url String An image’s URL location such as a file on the local
filesystem or a web server hosting an image file.

backgroundLoading boolean Loads the image in the background (off the JavaFX
application thread).

requestedWidth double Specifies an image’s bounding box width.

requestedHeight double Specifies an image’s bounding box height.

preserveRatio boolean To keep an image’s aspect ratio within the bounding box.

smooth boolean A true indicates the use of a better algorithm to smooth
the image, which can be slower; otherwise it will use the
lower quality, which will render pixels faster.

Chapter 7 ■ GraphiCs

229

 // don't load in the background (block)
 Image localImage = new Image(localUrl, false);

 // loading an image from the classpath in a jar file
 String urlStr = this.getClass()
 .getClassLoader()
 .getResource("images/myphoto.jpg")
 .toExternalForm();

 // load in the background (non-blocking)
 Image cpUrl = new Image(urlStr, true);

 // loading an image from a webserver
 String remoteUrl = "http://mycompany.com/myphoto.jpg";

 // load in the background (non-blocking)
 Image remoteImage = new Image(remoteUrl, true);

 System.out.println(localUrl); // file:/C:/Users/jdoe/Pictures/myphoto.jpg
 System.out.println(cpUrl); // jar:file:/myApp.jar!/images/myphoto.jpg
 System.out.println(remoteUrl); // http://mycompany.com/myphoto.jpg

 // ... rest of the code
} catch (MalformedURLException ex) {
 ex.printStackTrace();
}

This listing demonstrates the use of the constructors receiving a URL path to an image and a boolean
parameter to perform the loading of the image in a background thread or not. Since the constructor must
accept a URL object, the file’s path must be converted to the URL object (URL specification).

Listing 7-1 begins by loading an image from the local filesystem using a File object based on a string
with the path location to the image. In this scenario I’ve specified a Microsoft Windows–based absolute file
path for an image. Here you will notice the double backslash in the string representing the file path on the
Windows OS. The first backslash is to escape the backslash character in Java Strings. The toURL() method
will convert a filesystem path into a standard URL formatted string. What’s nice is that the method call
converts absolute file paths into the standard Uniform Resource Locator specification’s format. The string
will contain the prefix file: representing the protocol and the path information.

Similar to the local filesystem is loading an image file on the Java classpath or resources directory.
Assuming an application was built as an executable JAR, the example in Listing 7-1 shows the protocol
as jar:file: denoting a file inside a JAR archive file. Pay special attention to the code that uses the
getClassLoader() method. Some environments such as OSGi platforms will employ separate class loaders
in their own contexts (aka bundle). By using the getClassLoader() method, the code can safely obtain
resources from the correct class loader context. For example, if a project has a resources directory containing
an image file, you can load a resource based on the classpath as shown:

src/
+--main/
+----java/
+-------com/
+---------mycompany/
+-----------MyClass.java
+----resources/

Chapter 7 ■ GraphiCs

230

+-------com/
+---------mycompany/
+-----------my_image.jpg

String urlStr = MyClass.class
 .getClassLoader()
 .getResource("com/mycompany/my_image.jpg")
 .toExternalForm();

In this example, you’ll notice the resource string com/mycompany/my_image.jpg having the path
information at the beginning. Sometimes projects will place all image icons inside a directory called images
or collocated in the package namespace.

Back to the code in Listing 7-1, the last strategy is an example showing the ability to load an image
hosted on a remote web server. You can see that the code also uses http: as a protocol prefixed to the URL
path to demonstrate loading images on a remote host web server.

It’s important to keep in mind that the code for Listing 7-1 regarding the statement that makes the
blocking call with the boolean value false should not be used on the JavaFX application thread. This is due to
the possibility of blocking the UI thread, thus making the application appear to freeze up. Depending on size
of the image files or network latency, the objective of the UI developer (that’s you!) is to not block the UI thread
(JavaFX application thread) by loading images on a background thread. After loading an image, the image can
now be rendered on the JavaFX application thread (ImageView node). If you pass in the Boolean value of true,
the ImageView node will appear blank until the background thread has completed loading the Image object.

Now that you know how to load images, you will learn how to display them using the JavaFX ImageView
node.

Displaying Images
After an image object is loaded, it needs to be passed to an ImageView object to be displayed on the JavaFX
scene graph. A javafx.scene.image.ImageView node is simply a wrapper object that references an Image
object, which was discussed earlier. Because the ImageView object is a JavaFX Node object, you will be able to
apply effects and perform transforms.

When an ImageView node is used to apply special effects such as blurring, the image’s pixel data is
not actually manipulated, but copied, to be calculated and displayed onto the ImageView node for display.
This is quite a powerful technique when there are many ImageView objects that all point to a single Image
object. Listing 7-2 loads an image asynchronously (background loading) to be passed into an ImageView
constructor.

Listing 7-2. Loading an Image in the Background and Displaying It in an ImageView Node

Image remoteImage = new Image(remoteUrl, true);
ImageView imageView = new ImageView(remoteImage);
root.getChildren().add(imageView);

By default, the width and height will be the actual dimensions in pixels of the image.
Now that you know how to load and display images programmatically onto the JavaFX Scene graph, let’s

look at a Photo Viewer example application. In the next section, you see how to implement a Photo Viewer
application, which allows images to be loaded, viewed, scaled, and rotated.

Chapter 7 ■ GraphiCs

231

A Photo Viewer Example
A practical way to display images in JavaFX is an example of a Photo Viewer application. This application
will allow you to drag and drop image files or load from the menu to then be viewed onto the scene graph.
Figure 7-1 illustrates the JavaFX Photo Viewer application displaying an image. Figure 7-1 also shows the
feature to allow users to modify the current image’s color settings.

In this section, you will get exposed to the Photo Viewer’s features along with instructions on how to
use the application. Once you have learned the features and instructions, the section discusses a UML class
diagram and a brief description of the source code files. Lastly, you’ll get a detailed walkthrough of the
Photo Viewer application’s source code. The code walkthrough will consist of the application’s GUI code,
application logic, and CSS styling.

Before looking at the source code of the JavaFX Photo Viewer application, the following section briefly
explains the features along with the instructions on how to use it.

Features/Instructions
A Photo Viewer application’s features are the following:

•	 Loads images: Loads images having the following file formats: .jpg, .gif, .png, and
.bmp. A user can load images by using the Open menu option or by dragging and
dropping images from the filesystem into the application area. Figure 7-2 shows the
Open menu item to bring up a file chooser.

Figure 7-1. The Photo Viewer application displaying the current image. The image on the left is the original
photo and the image on the right has color adjustments.

Chapter 7 ■ GraphiCs

232

•	 Progress Indicator: Displays a progress indicator when loading of an image. Figure 7-3
shows a progress indicator when the application is loading images.

•	 Rotate image: Rotate the image by 90 degrees clockwise or counter-clockwise.
Figure 7-4 depicts the menu options to rotate the image by 90 degrees. There are also
keyboard shortcuts to rotate the image (the ➤ left/right arrow keys on MacOS and
Ctrl left/right arrow keys on Windows and Linux OS).

•	 Resize image: Resizes the image while preserving the aspect ratio. To resize the current
image, use the mouse pointer to expand the application window’s height or width.

Figure 7-2. Open file menu to present a file chooser to load an image from the filesystem

Figure 7-3. Progress indicator is displayed to show the application is currently loading a file

Figure 7-4. Menu options to rotate the image by 90 degrees in clockwise or counter-clockwise direction

Chapter 7 ■ GraphiCs

233

•	 Previous/Next Image buttons: Ability to page through images using custom button
controls. This allows you to see the previous and next image in the list, as shown in
Figure 7-5. Also, there are keyboard equivalents by using the arrow keys (left and
right) to see the previous and next image, respectively.

•	 Adjust color attributes: The ability to adjust colors of the currently viewed image by
changing the hue, saturation, brightness, and contrast. You use the menu options
under Color Adjust, as shown in Figure 7-6. Also, you can restore the image to the
original color settings.

•	 Save As: The Save As image menu option allows you to save the currently displayed
image with a different filename or overwrite the image it was loaded. The Save As
option is on the File menu. The image will be written as bitmap graphics file with the
PNG format.

UML: Class Diagram
As a design and class structure, the Photo Viewer application consists of three classes shown in the UML class
diagram in Figure 7-7. The three UML classes are PhotoViewer, ImageViewButtons, and ImageInfo. The main
JavaFX application class PhotoViewer has a one-to-one relationship to an ImageViewButtons instance. The
ImageViewButtons class is a simple custom control that manages zero-to-many ImageInfo objects. Basically,
the ImageViewButtons instance is a UI control that has buttons to view the previous and next image. Each
image loaded with effects applied to the current image view will have an associated ImageInfo object.

Figure 7-5. The custom UI control ImageViewButtons is responsible for viewing the previous and next image
in the Photo Viewer application. The custom control source code is the ImageViewButtons.java file.

Figure 7-6. The Color Adjust menu options allow you to change the currently displayed image’s color
attributes. The last option that enables you to restore the image to the original color settings.

Chapter 7 ■ GraphiCs

234

File Descriptions
Before going though a detailed walkthrough of the source code, the next section briefly describes the four
source code files that comprise the Photo Viewer example application. The source code of the Photo Viewer
example application consists of the following three Java class files and one JavaFX CSS styling file:

•	 PhotoViewer.java

•	 ImageViewButtons.java

Figure 7-7. Class diagram of the Photo Viewer application. A PhotoViewerImage has an ImageViewButtons
instance. An ImageViewButtons instance has zero-to-many ImageInfo objects.

https://creativecommons.org/licenses/by-sa/3.0/deed.en

Chapter 7 ■ GraphiCs

235

•	 ImageInfo.java

•	 photo-viewer.css

PhotoViewer.java is the main JavaFX application that gets launched. Like all examples in this
book, you will see a start() method that receives a stage (java.stage.Stage) instance from the JavaFX
application’s lifecycle. This is where the code begins to create UI elements that are placed into the JavaFX
scene graph.

ImageViewButtons.java is a simple custom control that manages a list of string URLs mapped to image
files. An instance of ImageViewButtons is a custom UI control, as shown earlier in Figure 7-5, depicting the
left and right arrow buttons that allows the users to see the previous image and next image.

ImageInfo.java is a plain old Java object (POJO) containing an image’s URL location, color
adjustments, and rotation information. As each image is loaded it will have an associated ImageInfo
instance. Since the application has only one ImageView node that is responsible for displaying a single image
at a time, each image has a referenced instance of an ImageInfo that stores settings such as the current color
adjustments and rotation information. As each image is loaded with the appropriate ImageInfo object, that
then gets applied to the ImageView node.

The photo-viewer.css file is a JavaFX CSS styling that is applied to the various UI elements in the Photo
Viewer application. Primarily, the CSS file has CSS selectors to colorize buttons and shapes. This file resides
in the project’s resources directory.

Source Code
In previous editions of this book, the source code example of the Photo Viewer application consisted of only
one Java class file. As a single file the only advantage is the code is in one place. However, being one Java
class file, there are many disadvantages. One disadvantage that comes to mind is readability, so now the one
large file is broken out in three separate Java files and one JavaFX CSS file.

Another notable disadvantage of having things in one Java file is how inflexible the code actually is,
especially when adding new features to the application. In fact, at the end of this chapter, you will learn
about a new feature of the Photo Viewer application by simply extending the existing application and
overriding a method. This chapter consists of multiple code listings that are broken out in code sections.
Each Java class file shows multiple code listings to help describe things in more detail.

PhotoViewer.java
Let’s begin with source code by looking at Listing 7-3 of the Photo Viewer application. It contains the state
variables and constants. Essentially, this is the top portion of the class and file called PhotoViewer.java.

These variables being used globally will help cut down on the number of parameters being passed into
private methods. Since the PhotoViewer class is the focus of the example, it’ll be easier to follow by knowing
what are global variables versus what are local ones when looking at the code sections.

Listing 7-3. The PhotoViewer Class’ State Variables and Constants Declared

 /** Standard Logger. */
 private final static Logger LOGGER = Logger
 .getLogger(PhotoViewer.class.getName());

 /** Current image view display */
 protected ImageView currentViewImage;

Chapter 7 ■ GraphiCs

236

 /** Rotation of the image view */
 protected Rotate rotate = new Rotate();

 /** Color adjustment */
 protected ColorAdjust colorAdjust = new ColorAdjust();

 /** A mapping of color adjustment type to a bound slider */
 protected Map<String, Slider> sliderLookupMap = new HashMap<>();

 /** Custom Button panel to view previous and next images */
 protected ImageViewButtons buttonPanel;

 /** Single threaded service for loading an image */
 protected ExecutorService executorService =
 Executors.newSingleThreadScheduledExecutor();

... // The rest of PhotoViewer.java

Listing 7-2 begins by creating a variable named LOGGER. It’s a standard logger to assist in outputting
debug statements into the console. Similar to popular loggers such as Apache log4j, the standard Java logger
has various log levels also. To provide an equivalent debug log level like that of log4j, you use the Level.FINE
as a log level. To see the other log levels, see the Javadoc documentation for details.

Next is a variable named currentImageView (javafx.scene.image.ImageView) that will represent the main
display area of the application to view images. As images are loaded, they will be displayed in the ImageView
node. The currentImageView variable will be created in the start() method. Later, you will see how action logic
will get attached to the UI elements—but for now we continue discussing the other instance variables.

After declaring the currentImageView variable, the rotate (javafx.scene.transform.Rotate) variable
is declared and created. It will be used as a rotate transform for the ImageView node. In other words, the rotate
variable is responsible for rotating the current image in view. As mentioned earlier, each image loaded will
have an associated ImageInfo object containing its rotation angle and that is applied to the rotate variable.
Once the current image’s degrees are applied, the current image view node will get rotated automatically.

Next, the colorAdjust variable is created as a javafx.scene.effect.ColorAdjust instance to allow
the users to change the image’s color attributes of the currently displayed image. Whenever a an image is
loaded, an ImageInfo instance is created with an instance of a ColorAdjust object (via getColorAdjust()
method). Later, you will see the code for the method updateSliders(), which is responsible for updating the
menu items that contain sliders and their values. These values bound to each slider will represent the hue,
saturation, brightness, and contrast levels from the ImageInfo object’s color adjust property.

As mentioned about the Color Adjust menu items that contain sliders for adjusting colors of the image,
each slider will need to get bound to a color adjustment type. The color adjustment types are hue, saturation,
brightness, and contrast. A global variable named sliderLookupMap of type Map<String, Slider> is a key/value
pair that maps a color adjustment type (String) to a JavaFX Slider UI control. The lookup map is used later in the
code to unbind and bind color adjust properties between the current colorAdjust values to each slider control.

One of the last state variables declared is buttonPanel of type ImageViewButtons. A single instance of a
ImageViewButtons object is a custom UI control that I created in a class file called ImageViewButtons.java.
This custom UI control is simply left and right arrow buttons that allow the users to view the previous and
next image. Later, you will see the code listing that will dynamically position (layout) the custom control to
the bottom right of the application screen when resizing the window.

Lastly, is the executorService variable of type java.util.concurrent.ExecutorService, which is
responsible for running tasks in a background thread. The application’s tasks (javafx.concurrent.Task)
are callbacks that are responsible for loading an image (background thread) and displaying the image once
it’s been loaded successfully. When displaying the image and applying ImageInfo properties, the code that
modifies the ImageView is executed on the JavaFX Application thread.

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/image/ImageView.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/transform/Rotate.html
http://www.w3.org/Addressing/URL/url-spec.txt
https://commons.wikimedia.org/
https://docs.oracle.com/javase/8/javafx/api/javafx/application/Platform.html
https://docs.oracle.com/javase/8/javafx/api/javafx/concurrent/Task.html

Chapter 7 ■ GraphiCs

237

After declaring the PhotoViewer class’ state variables and constants, the code shown in Listing 7-4
shows the main application lifecycle methods implemented. The three methods implemented in
Listing 7-4 are start(), stop(), and main(). When the application is launched, the main() method runs
on the main application thread, which invokes the launch() method to begin the JavaFX application
lifecycle (the launch() method will block).

Listing 7-4. The PhotoViewer Class’ start(), stop(), and main() Method Implementations

@Override
public void start(Stage primaryStage) {

 primaryStage.setTitle("Photo Viewer");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 551, 400, Color.BLACK);
 scene.getStylesheets()
 .add(getClass()
 .getClassLoader()
 .getResource("photo-viewer.css")
 .toExternalForm());
 primaryStage.setScene(scene);

 // Anchor Pane
 AnchorPane mainContentPane = new AnchorPane();

 // Group is a container to hold the image view
 Group imageGroup = new Group();
 AnchorPane.setTopAnchor(imageGroup, 0.0);
 AnchorPane.setLeftAnchor(imageGroup, 0.0);

 // Current image view
 currentViewImage = createImageView(rotate);
 imageGroup.getChildren().add(currentViewImage);

 // Custom ButtonPanel (Next, Previous)
 List<ImageInfo> IMAGE_FILES = new ArrayList<>();
 buttonPanel = new ImageViewButtons(IMAGE_FILES);

 // Create a progress indicator
 ProgressIndicator progressIndicator = createProgressIndicator();

 // layer items. Items that are last are on top
 mainContentPane.getChildren().addAll(imageGroup,
 buttonPanel, progressIndicator);

 // Create menus File, Rotate, Color adjust menus
 Menu fileMenu = createFileMenu(primaryStage, progressIndicator);
 Menu rotateMenu = createRotateMenu();
 Menu colorAdjustMenu = createColorAdjustMenu();
 MenuBar menuBar = new MenuBar(
 fileMenu, rotateMenu, colorAdjustMenu);
 root.setTop(menuBar);

Chapter 7 ■ GraphiCs

238

 // Create the center content of the root pane (Border)
 // Make sure the center content is under the menu bar
 BorderPane.setAlignment(mainContentPane, Pos.TOP_CENTER);
 root.setCenter(mainContentPane);

 // When nodes are visible they can be repositioned.
 primaryStage.setOnShown(event ->
 wireupUIBehavior(primaryStage, progressIndicator));

 primaryStage.show();

}

@Override
public void stop() throws Exception {
 super.stop();
 // Shutdown thread service
 executorService.shutdown();
}

public static void main(String[] args) {
 launch(args);
}

When the JavaFX application thread is ready, the init() method is called before the start() method is
called. The init() method is invoked after the Application is created. The init() method can be overridden to
initialize any resources (not run on the JavaFX Application thread). In Listing 7-4, I do not implement the init()
method, but I wanted to point out the order of methods being called during the application lifecycle. When a
JavaFX application exits by using the Platform.exit() method, the application’s stop() method is called last.
The stop() method gives the application the opportunity to clean up any resources. In Listing 7-4, the stop()
method calls the executorService (java.util.concurrent.ExecutorService) variable’s shutdown() method
to gracefully shut down the thread executor service. If the executor service isn’t called to shut down, your
application will not close properly. After stop() executes, the code execution returns to the main thread in the
main() method after the code line statement invoking the launch() shown in Listing 7-4 (last code line).

The main bit of code is located in the start() method. The start() method begins by creating the root
pane as a BorderPane to hold menu options at the top (Pos.TOP) of the scene and the main UI elements are
placed in the center region (Pos.CENTER). The code goes on to create the center area with an AnchorPane
layout to position UI elements relative to the the view area. By using a Javafx Group, any transforms (Rotate)
applied to the image view outside of the center area of the BorderPane will be pushed down (beneath the
menu bar) automatically. The code statements that follow basically call private factory type methods that
create and initialize UI elements to be added to the scene graph.

The code goes on to create the center area with an ImageView object created using the private
method createImageView(). The code then creates a single instance of a custom control to manage
images with the class ImageViewButtons. Next, the code creates the progress indicator via the method
createProgressIndicator() to let the user know an image is being loaded (busy). Lastly, the code makes
calls to create the various menus and menu items such as Open, Save As, etc.

Later, you will see code that will dynamically position the progress indicator and the custom button
control (ImageViewButtons). But for now, let’s take a detailed walkthrough of each of the factory methods
that create UI elements.

In Listing 7-5 is a factory function createImageView()that is called from the start() method
responsible for creating an ImageView node to be assigned to the global variable currentImageView.
The created image view node is set to preserve the aspect ratio when the image is being resized via the
setPreserveRatio(true) method. You’ll also notice the rotate parameter is passed in as a transform,
allowing other code in the application to rotate the image view object.

https://docs.oracle.com/javase/8/javafx/api/javafx/animation/PathTransition.html?javafx/scene/layout/BorderPane.html
https://docs.oracle.com/javase/8/javafx/api/javafx/geometry/Pos.html

Chapter 7 ■ GraphiCs

239

Listing 7-5. A Factory Type Function Creating an ImageView Having a Rotate Transform

private ImageView createImageView(Rotate rotate) {
 ImageView imageView = new ImageView();
 imageView.setPreserveRatio(true);
 imageView.setSmooth(true);
 imageView.getTransforms().addAll(rotate);
 return imageView;
}

In Listing 7-6 is a factory function createProgressIndicator() that is called from the start() method
responsible for creating a JavaFX ProgressIndicator node to be assigned to the progressIndicator instance
variable. The created ProgressIndicator node using the default constructor will be set to be indeterminate.
By default, the code hides the progress indicator UI control via the setVisible(false) method. Lastly, the
progress indicator’s max size is set to 100 by 100 pixels. Later, you’ll see the code that dynamically positions
the progress indicator in the center of the application window whenever the scene area is resized.

Listing 7-6. A Factory Function Creating a Progress Indicator

private ProgressIndicator createProgressIndicator() {
 ProgressIndicator progress = new ProgressIndicator();
 progress.setVisible(false);
 progress.setMaxSize(100d, 100d);
 return progress;
}

In Listing 7-7, the createFileMenu() method gets called from the start() method to create the File
menu and other menu items. The code first creates a Menu object to contain child menu items such as Open,
Save As, and Quit. When creating the Open menu option, you’ll notice the string “_Open” having a prefix of
an underscore. In order for the menu system to recognize strings with letters prepended with an underscore,
you must call the setMnemonicParse(true) method.

Listing 7-7. A Factory Function That Creates and Returns a File Menu

private Menu createFileMenu(Stage stage,
 ProgressIndicator progressIndicator) {
 Menu fileMenu = new Menu("File");

 MenuItem loadImagesMenuItem = new MenuItem("_Open");
 loadImagesMenuItem.setMnemonicParsing(true);
 loadImagesMenuItem.setAccelerator(new KeyCodeCombination(KeyCode.O,
 KeyCombination.SHORTCUT_DOWN));

 // file chooser to open a file
 wireupLoadMenuItem(loadImagesMenuItem, stage, progressIndicator);

 MenuItem saveAsMenuItem = new MenuItem("Save _As");
 saveAsMenuItem.setMnemonicParsing(true);

 // file chooser to save image as file
 wireupSaveMenuItem(saveAsMenuItem, stage);

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/effect/ColorAdjust.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/Slider.html

Chapter 7 ■ GraphiCs

240

 // Quit application
 MenuItem exitMenuItem = new MenuItem("_Quit");
 exitMenuItem.setMnemonicParsing(true);
 exitMenuItem.setAccelerator(new KeyCodeCombination(KeyCode.Q,
 KeyCombination.SHORTCUT_DOWN));

 // exiting
 exitMenuItem.setOnAction(actionEvent -> Platform.exit());

 fileMenu.getItems().addAll(loadImagesMenuItem,
 saveAsMenuItem, exitMenuItem);

 return fileMenu;
}

Continuing the discussion of Listing 7-7 regarding underscores prepended to menu text, the underscore
before the letter O will allow the JavaFX menu system to provide windowed operating systems that use
key modifiers such as the Alt key in combination with a letter to invoke actions. Typically, in a Windows
environment when a user presses the Alt key the menus will place an underline beneath a letter of the menu
text. In addition to using the modifier combination, the menu item can also be assigned a key accelerator
such as ⌘ + O combination based on the Apple keyboard. On Windows- or Linux-based OS, the key
accelerator (shortcut) is the Ctrl+O key combination.

The rest of the code is the same in terms of the creation of menu items and wiring up handler code, so I
won’t go on any further.

Next up is code dealing with menu options to load images. During the creation of the file menu from
Listing 7-7 the child menu item loadImagesMenuItem is created. At the creation of the loadImagesMenuItem
menu item, it will get the handler code attached via the wireupLoadMenuItem() method, as shown in Listing 7-8.

Listing 7-8. Attach Action Code to Open the Image File Menu Option

protected void wireupLoadMenuItem(MenuItem menuItem,
 Stage primaryStage,
 ProgressIndicator progressIndicator) {
 // A file chooser is launched with a filter based
 // on image file formats
 FileChooser fileChooser = new FileChooser();
 fileChooser.setTitle("View Pictures");
 fileChooser.setInitialDirectory(
 new File(System.getProperty("user.home"))
);
 fileChooser.getExtensionFilters().addAll(
 new FileChooser.ExtensionFilter("All Images",
 "*.jpg", "*.jpeg", "*.png", "*.bmp", "*.gif"),
 new FileChooser.ExtensionFilter("JPG", "*.jpg"),
 new FileChooser.ExtensionFilter("JPEG", "*.jpeg"),
 new FileChooser.ExtensionFilter("PNG", "*.png"),
 new FileChooser.ExtensionFilter("BMP", "*.bmp"),
 new FileChooser.ExtensionFilter("GIF", "*.gif")
);
 menuItem.setOnAction(actionEvt -> {
 List<File> list = fileChooser.showOpenMultipleDialog(primaryStage);
 if (list != null) {

Chapter 7 ■ GraphiCs

241

 for (File file : list) {
 //openFile(file);
 try {
 String url = file.toURI().toURL().toString();
 if (isValidImageFile(url)) {
 buttonPanel.addImage(url);
 loadAndDisplayImage(progressIndicator);
 }
 } catch (MalformedURLException e) {
 e.printStackTrace();
 }
 }
 }
 });
}

Listing 7-8 begins by creating a JavaFX file chooser that defaults to the user’s home directory. To
initialize the file chooser to the user’s home directory, the code uses the system property user.home. To see
other system properties, visit the Java documentation at the following link:

https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

Next, you’ll see the various file extension filters added to the file chooser’s extension filters property.
The code will list (filter) the image files with the proper file extensions. Lastly, the code will invoke the loadA
ndDisplayImage(progressIndicator) method to load and display the image.

During the creation of the File menu from the earlier code in Listing 7-7 the child menu item
saveAsMenuItem is created. After the creation of the saveAsMenuItem menu item, it will get action code
attached via wireupSaveMenuItem(), as shown in Listing 7-9. The code begins by creating a JavaFX file
chooser that defaults to the user’s home directory. After the file chooser invokes the showSaveDialog()
method, the application will block until the user has entered a filename to save the image.

Listing 7-9. Attach Action Code to Save Image Menu Option

protected void wireupSaveMenuItem(MenuItem menuItem,
 Stage primaryStage) {
 menuItem.setOnAction(actionEvent -> {
 FileChooser fileChooser = new FileChooser();
 File fileSave = fileChooser.showSaveDialog(primaryStage);
 if (fileSave != null) {

 WritableImage image = currentViewImage.snapshot(
 new SnapshotParameters(), null);

 try {
 ImageIO.write(SwingFXUtils.fromFXImage(image, null),
 "png", fileSave);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 });
}

https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

Chapter 7 ■ GraphiCs

242

Once the filename is chosen, the variable fileSave will not be null, which subsequently takes a
snapshot of the ImageView node. Invoking the snapshot() method essentially returns a WritableImage
instance containing the bitmap graphics in memory. Lastly, the ImageIO.write() method is a convenience
method that can write bitmapped graphics to a file.

Next is the creation of the Rotate menu and its menu options. Listing 7-10 shows the
createRotateMenu() method that is called from the start() method. The code first creates a Menu object to
contain child menu items Rotate 90° Left and Rotate 90° Right.

Listing 7-10. Create and Return the Rotate Menu

private Menu createRotateMenu() {
 Menu rotateMenu = new Menu("Rotate");
 // Menu item with a keyboard combo to rotate the image
 // left 90 degrees
 MenuItem rotateLeft = new MenuItem("Rotate 90° Left");
 rotateLeft.setAccelerator(new KeyCodeCombination(KeyCode.LEFT,
 KeyCombination.SHORTCUT_DOWN));

 wireupRotateAngleBy(rotateLeft, -90);

 // Menu item with a keyboard combo to rotate the image
 // right 90 degrees
 MenuItem rotateRight = new MenuItem("Rotate 90° Right");
 rotateRight.setAccelerator(new KeyCodeCombination(KeyCode.RIGHT,
 KeyCombination.SHORTCUT_DOWN));

 wireupRotateAngleBy(rotateRight, 90);

 rotateMenu.getItems().addAll(rotateLeft, rotateRight);
 return rotateMenu;
}

Listing 7-10 goes on to attach handler code by invoking the wireupRotateAngleBy() method. In
Listing 7-11, the wireupRotateAngleBy() method’s parameters takes the target menu item and an angle in
degrees. There you’ll notice the call to the wireupRotateAngleBy() method with a -90 or 90. The negative
or positive 90 degrees will assist in rotating the image in the counter-clockwise or clockwise direction.

In Listing 7-11, the method wireupRotateAngleBy() creates action code to be attached to a target menu
item with a angle in degrees. The handler code is responsible for obtaining the current image to increase or
decrease the angle in degrees based on its image info. It then subsequently invokes the rotateImageView()
method shown in Listing 7-12.

Listing 7-11. Attach Action Code to Rotate and Rotate Menu Items Right or Left

protected void wireupRotateAngleBy(MenuItem menuItem, double angleDegrees) {
 // rotate options
 menuItem.setOnAction(actionEvent -> {
 ImageInfo imageInfo = buttonPanel.getCurrentImageInfo();
 imageInfo.addDegrees(angleDegrees);
 rotateImageView(imageInfo.getDegrees());
 });
}

Chapter 7 ■ GraphiCs

243

This method eventually calls the rotateImageView() method shown in Listing 7-12. The
rotateImageView() method is the actual code that rotates the ImageView node (rotate variable). There you’ll
notice the pivot point is determined based on the center point of the image.

Listing 7-12. The rotateImageView() Method Rotates the Image View by an Angle in Degrees. It Sets the
Pivot Point in the Center of the Image View Node

private void rotateImageView(double degrees) {
 rotate.setPivotX(currentViewImage.getFitWidth()/2);
 rotate.setPivotY(currentViewImage.getFitHeight()/2);
 rotate.setAngle(degrees);
}

The last menu option to be created is that of the Color Adjust menu. Again, following the same
pattern as the other factory methods that create and attach handler code, the createColorAdjustMenu()
method shown in Listing 7-13 builds up the child menu items to contain JavaFX slider controls to adjust
the ImageView’s color adjust settings. Each of the child menu items is subsequently created by the
createSliderMenuItem() method, as shown later in Listing 7-14.

Listing 7-13. Factory Method to Create and Return a Menu with Menu Items that Allow Sliders to Adjust
Color Attributes to the Current Image View Node

private Menu createColorAdjustMenu() {
 Menu colorAdjustMenu = new Menu("Color Adjust");
 Consumer<Double> hueConsumer = (value) ->
 colorAdjust.hueProperty().set(value);
 MenuItem hueMenuItem = createSliderMenuItem("Hue", hueConsumer);

 Consumer<Double> saturationConsumer = (value) ->
 colorAdjust.setSaturation(value);

 MenuItem saturateMenuItem = createSliderMenuItem("Saturation",
 saturationConsumer);

 Consumer<Double> brightnessConsumer = (value) ->
 colorAdjust.setBrightness(value);

 MenuItem brightnessMenuItem = createSliderMenuItem("Brightness",
 brightnessConsumer);

 Consumer<Double> contrastConsumer = (value) ->
 colorAdjust.setContrast(value);

 MenuItem contrastMenuItem = createSliderMenuItem("Contrast",
 contrastConsumer);

 MenuItem resetMenuItem = new MenuItem("Restore to Original");

 resetMenuItem.setOnAction(actionEvent -> {
 colorAdjust.setHue(0);
 colorAdjust.setContrast(0);
 colorAdjust.setBrightness(0);

Chapter 7 ■ GraphiCs

244

 colorAdjust.setSaturation(0);
 updateSliders();
 });

 colorAdjustMenu.getItems()
 .addAll(hueMenuItem, saturateMenuItem,
 brightnessMenuItem, contrastMenuItem,
 resetMenuItem);

 return colorAdjustMenu;
}

Continuing the discussion of Listing 7-13, each child menu item is created by calling the
createSliderMenuItem() method, as shown in Listing 7-14 below. The method signature has the following
parameters passed in: name and c (Consumer). Each of the color adjustment types will have a JavaFX Slider
control associated with it. The string name is used in the sliderLookupMap as the key representing the color
adjustment types when looking up a Slider. The string keys are the following: Hue, Saturation, Brightness,
and Contrast.

Listing 7-14. The createSliderMenuItem() Method Creates a Menu Item with a Slider Control to Change a
Particular Color Adjustment Such as Hue, Saturation, Brightness, and Contrast

private MenuItem createSliderMenuItem(String name,
 Consumer<Double> c) {

 Slider slider = new Slider(-1, 1, 0);
 sliderLookupMap.put(name, slider);
 slider.valueProperty().addListener(ob ->
 c.accept(slider.getValue()));

 Label label = new Label(name, slider);
 label.setContentDisplay(ContentDisplay.LEFT);
 MenuItem menuItem = new CustomMenuItem(label);
 return menuItem;
}

Listing 7-14 shows an InvalidationListener added to the value property of the slider using the
addListener() method. The listener will execute the functional interface c (Consumer<Double>). Whenever
you see this programming pattern where the caller is passing in a functional interface as a parameter, it
usually means the caller wants a callback type behavior or deferred code to be executed. Often developers will
define a block of execution code (a closure) outside of the current function scope. To see many convenient
functional interfaces used in Java 8, see the package java.util.function.* in the Javadoc documentation.

In Listing 7-14, the method parameter begins with the String name. The name parameter is used as
the text label that displays the color adjust type, such as hue, saturation, brightness, or contrast. The name
parameter is also the string of the color adjust type that’s used as a key to retrieve the Slider control from the
sliderLookupMap. Lastly, the c parameter represents the handler code for each slider that is associated with
a color adjust property. The parameter c is a java.util.function.Consumer functional interface that is used
as handler code that gets invoked when the slider’s value changes. For example, when the caller creates a
slider for the hue property, the caller will pass in a Consumer functional interface like the following:

Consumer<Double> hueConsumer = (value) -> colorAdjust.hueProperty().set(value);
MenuItem hueMenuItem = createSliderMenuItem("Hue", hueConsumer);

Chapter 7 ■ GraphiCs

245

The createSliderMenuItem() function is generic and it allows the caller to define the behavior when
the slider’s value property is changing.

Additionally, Listing 7-15 updates the color adjust sliders and their values. Whenever the user views a
previous or next image, the code will invoke the updateSliders() method, which takes the current image’s
associated image info (ImageInfo) object and repositions the knobs of the color adjust menu item sliders to
the new values.

Listing 7-15. The updateSlider() Method Is Responsible for Updating the Menu Items Containing Slider
Controls to Update Their Values Based on the Currently Viewed Image (ImageInfo)

protected void updateSliders() {
 sliderLookupMap.forEach((id, slider) -> {
 switch (id) {
 case "Hue":
 slider.setValue(colorAdjust.getHue());
 break;
 case "Brightness":
 slider.setValue(colorAdjust.getBrightness());
 break;
 case "Saturation":
 slider.setValue(colorAdjust.getSaturation());
 break;
 case "Contrast":
 slider.setValue(colorAdjust.getContrast());
 break;
 default:
 slider.setValue(0);
 }
 });
}

Listing 7-16 then takes further steps to attach the handler code to the buttons and includes presentation
logic to various UI elements. The additional presentation logic begins with the handler code to recalculate
and reposition the custom button panel (buttonPanel) and the progress indicator, respectively. The intent is
to have the custom button control appear to float at the bottom-right corner whenever the window is resized.

Listing 7-16. The wireupUIBehavior() Method Attaches Handler Code to UI Elements

private void wireupUIBehavior(Stage primaryStage,
 ProgressIndicator progressIndicator) {
 Scene scene = primaryStage.getScene();

 // make the custom button panel float bottom right
 Runnable repositionButtonPanel = () -> {
 // update buttonPanel's x
 buttonPanel.setTranslateX(scene.getWidth() - 75);
 // update buttonPanel's y
 buttonPanel.setTranslateY(scene.getHeight() - 75);
 };

 // make the progress indicator float in the center
 Runnable repositionProgressIndicator = () -> {

Chapter 7 ■ GraphiCs

246

 // update progress x
 progressIndicator.setTranslateX(
 scene.getWidth()/2 - (progressIndicator.getWidth()/2));
 progressIndicator.setTranslateY(
 scene.getHeight()/2 - (progressIndicator.getHeight()/2));
 };

 // invoking both to repositioning closures.
 Runnable repositionCode = () -> {
 repositionButtonPanel.run();
 repositionProgressIndicator.run();
 };

 // Anytime the window is resized reposition the button panel
 scene.widthProperty().addListener(observable ->
 repositionCode.run());
 scene.heightProperty().addListener(observable ->
 repositionCode.run());

 // Go ahead and reposition now
 repositionCode.run();

 // resize image view when scene is resized.
 currentViewImage.fitWidthProperty()
 .bind(scene.widthProperty());

 // view previous image action
 Runnable viewPreviousAction = () -> {
 // if no previous image or currently loading.
 if (buttonPanel.isAtBeginning()) return;
 else buttonPanel.goPrevious();
 loadAndDisplayImage(progressIndicator);
 };

 // attach left button action
 buttonPanel.setLeftButtonAction(mouseEvent ->
 viewPreviousAction.run());

 // Left arrow key stroke pressed action
 scene.addEventHandler(KeyEvent.KEY_PRESSED, keyEvent -> {
 if (keyEvent.getCode() == KeyCode.LEFT
 && !keyEvent.isShortcutDown()) {
 viewPreviousAction.run();
 }
 });

 // view next image action
 Runnable viewNextAction = () -> {
 // if no next image or currently loading.
 if (buttonPanel.isAtEnd()) return;
 else buttonPanel.goNext();
 loadAndDisplayImage(progressIndicator);
 };

Chapter 7 ■ GraphiCs

247

 // attach right button action
 buttonPanel.setRightButtonAction(mouseEvent ->
 viewNextAction.run());

 // Right arrow key stroke pressed action
 scene.addEventHandler(KeyEvent.KEY_PRESSED, keyEvent -> {
 if (keyEvent.getCode() == KeyCode.RIGHT
 && !keyEvent.isShortcutDown()) {
 viewNextAction.run();
 }
 });

 // Setup drag and drop file capabilities
 setupDragNDrop(primaryStage, progressIndicator);
}

The wireupUIBehavior() method from Listing 7-16 finishes things off by adding handler code to
buttons and keystrokes to view the previous and next image. The very last bit of setup in Listing 7-16 is a call
to the setupDragNDrop() method, which will be discussed later, during the walkthrough in Listing 7-19.

When the user goes to view the previous or next image, the code to load and display an image is the method
loadAndDisplayImage() shown in Listing 7-17. Notice that the progress indicator is passed in as a parameter.
The progressIndicator is hidden by default (its visible property id false). As the images are in the process of
loading, the progress indicator becomes visible. It’s then hidden when the loading process is complete.

Listing 7-17. The loadDisplayImage() Method Is Responsible for Loading an Image from a URL and
Displaying the Image

protected void loadAndDisplayImage(ProgressIndicator progressIndicator) {
 if (buttonPanel.getCurrentIndex() < 0) return;

 final ImageInfo imageInfo = buttonPanel.getCurrentImageInfo();

 // show spinner while image is loading
 progressIndicator.setVisible(true);

 Task<Image> loadImage = createWorker(imageInfo.getUrl());

 // after loading has succeeded apply image info
 loadImage.setOnSucceeded(workerStateEvent -> {

 try {

 currentViewImage.setImage(loadImage.get());

 // Rotate image view
 rotateImageView(imageInfo.getDegrees());

 // Apply color adjust
 colorAdjust = imageInfo.getColorAdjust();
 currentViewImage.setEffect(colorAdjust);

Chapter 7 ■ GraphiCs

248

 // update the menu items containing slider controls
 updateSliders();

 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } finally {
 // hide progress indicator
 progressIndicator.setVisible(false);
 }

 });

 // any failure turn off spinner
 loadImage.setOnFailed(workerStateEvent ->
 progressIndicator.setVisible(false));

 executorService.submit(loadImage);
}

Listing 7-17 calls the createWorker() method that returns a Task worker the code then adds handler
code that responds when the success event is raised via the setOnSucceeded() method. Here, the code will
set the image, apply the rotation angle, apply color adjustments to the image view, and update the color
adjust sliders in the menu options.

Every time a call is made to the loadAndDisplayImage() method, it will create a new Task<Image> callback
to be run on the executor service (executorService). Listing 7-18 shows the creation of a new Task responsible
for loading images on a background thread and displaying the image on the JavaFX application thread.

Listing 7-18. Creating a Task Based on a URL to Load and Render an Image

protected Task<Image> createWorker(String imageUrl) {
 return new Task<Image>() {
 @Override
 protected Image call() throws Exception {
 // On the worker thread...
 Image image = new Image(imageUrl, false);
 return image;
 }
 };
}

As you are almost finished with this detailed walkthrough of the PhotoViewer.java source code,
the only code functions left are Listings 7-19 and 7-20. Listing 7-19 shows the setupDragNDrop() method
mentioned earlier that’s related to handling files that are dragged and dropped over the application. The
setupDragNDrop() method begins by adding handler code whenever a DragOver event is raised.

When files are dragged and dropped over the surface of the scene, the handler code obtains the
DragBoard object to determine if there were valid image files before proceeding. Once the list of files is valid,
the event is updated with a TransferMode.LINK. It shows an icon at the tip of your mouse pointer providing
visual feedback on the drag process over the surface. The setupDragNDrop() code continues with the
handler code that is invoked when a DragDropped event is raised.

Chapter 7 ■ GraphiCs

249

Listing 7-19. The setupDragNDrop() Method Is Responsible for the Drag and Drop Image File Handling
Behavior

private void setupDragNDrop(Stage primaryStage,
 ProgressIndicator progressIndicator) {
 Scene scene = primaryStage.getScene();

 // Dragging over surface
 scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasFiles()
 || (db.hasUrl()
 && isValidImageFile(db.getUrl()))) {

 LOGGER.log(Level.INFO, "url " + db.getUrl());
 event.acceptTransferModes(TransferMode.LINK);
 } else {
 event.consume();
 }
 });

 // Dropping over surface
 scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 // image from the local file system.
 if (db.hasFiles() && !db.hasUrl()) {
 db.getFiles().forEach(file -> {
 try {
 String url = file.toURI().toURL().toString();
 if (isValidImageFile(url)) {
 buttonPanel.addImage(url);
 }

 } catch (MalformedURLException ex) {
 ex.printStackTrace();
 }
 });
 } else {
 String url = db.getUrl();
 LOGGER.log(Level. FINE, "dropped url: "+ db.getUrl());
 if (isValidImageFile(url)) {
 buttonPanel.addImage(url);
 }
 }

 loadAndDisplayImage(progressIndicator);

 event.setDropCompleted(true);
 event.consume();
 });
}

Chapter 7 ■ GraphiCs

250

During the load image process, the files are validated by checking if files have valid image file
extensions. To validate the file extension, Listing 7-20 shows the isValidImageFile() method. Here, you’ll
see the use of the stream API and the anyMatch() method. It converts the URL string to lowercase and
checks the end of the string against the list of image type extensions.

Listing 7-20. The isValidImageFile() Returns True if the URL String Has a File Extension of JPG, JPEG, PNG,
GIF, or BMP

private boolean isValidImageFile(String url) {
 List<String> imgTypes = Arrays.asList(".jpg", ".jpeg",
 ".png", ".gif", ".bmp");
 return imgTypes.stream()
 .anyMatch(t -> url.toLowerCase().endsWith(t));
}

ImageViewButtons.java
Listing 7-21 shows a simple custom UI control displaying the previous and next buttons. The custom control
also manages the list of images. The state variables that help to do bookkeeping of the image files are
currentIndex, imageFiles, leftButton, and rightButton. The currentIndex variable keeps track of the
current index into the imageFiles list of a displayed image. The current index is defaulted as -1 to denote
that there are no images loaded. An enumeration ButtonMove was created to help internally to determine
whether either the previous or next button was pressed.

Listing 7-21. The Custom ImageViewButtons Class Is the UI Code Providing Left and Right Buttons to View
the Previous and Next Images

/**
 * Created by cpdea on 11/12/16.
 */
public class ImageViewButtons extends Pane {
 /** The current index into the IMAGE_FILES list. */
 private int currentIndex = -1;

 /** Enumeration of next and previous button directions */
 public enum ButtonMove {NEXT, PREV}

 /** List of ImageInfo instances. */
 private List<ImageInfo> imageFiles;

 private Pane leftButton;
 private Pane rightButton;

 public ImageViewButtons(List<ImageInfo> imageFiles) {
 imageFiles = imageFiles;

 // create button panel
 Pane buttonStackPane = new StackPane();
 buttonStackPane.getStyleClass().add("button-pane");

 // left arrow button
 leftButton = new Pane();

Chapter 7 ■ GraphiCs

251

 Arc leftButtonArc = new Arc(0,12, 15, 15, -30, 60);
 leftButton.getChildren().add(leftButtonArc);

 leftButtonArc.setType(ArcType.ROUND);
 leftButtonArc.getStyleClass().add("left-arrow");

 // Right arrow button
 rightButton = new Pane();
 Arc rightButtonArc = new Arc(15, 12, 15, 15, 180-30, 60);
 rightButton.getChildren().add(rightButtonArc);
 rightButtonArc.setType(ArcType.ROUND);
 rightButtonArc.getStyleClass().add("right-arrow");

 HBox buttonHbox = new HBox();
 buttonHbox.getStyleClass().add("button-panel");
 HBox.setHgrow(leftButton, Priority.ALWAYS);
 HBox.setHgrow(rightButton, Priority.ALWAYS);
 HBox.setMargin(leftButton, new Insets(0,5,0,5));
 HBox.setMargin(rightButton, new Insets(0,5,0,5));
 buttonHbox.getChildren().addAll(leftButton, rightButton);

 buttonStackPane.getChildren().addAll(buttonHbox);

 getChildren().add(buttonStackPane);
 }
 public boolean isAtBeginning() {
 return currentIndex == 0;
 }
 public boolean isAtEnd() {
 return currentIndex == imageFiles.size()-1;
 }

 public void goPrevious() {
 currentIndex = gotoImageIndex(ButtonMove.PREV);
 }
 public void goNext() {
 currentIndex = gotoImageIndex(ButtonMove.NEXT);
 }
 private int gotoImageIndex(ButtonMove direction) {
 int size = imageFiles.size();
 if (size == 0) {
 currentIndex = -1;
 } else if (direction == ButtonMove.NEXT
 && size > 1
 && currentIndex < size - 1) {
 currentIndex += 1;
 } else if (direction == ButtonMove.PREV
 && size > 1
 && currentIndex > 0) {
 currentIndex -= 1;
 }

Chapter 7 ■ GraphiCs

252

 return currentIndex;
 }
 public int getCurrentIndex() {
 return currentIndex;
 }
 public ImageInfo getCurrentImageInfo() {
 return imageFiles.get(getCurrentIndex());
 }

 /**
 * Adds the URL string representation of the path to the image file.
 * Based on a URL the method will check if it matches supported
 * image format.
 * @param url string representation of the path to the image file.
 */
 public void addImage(String url) {
 currentIndex +=1;
 imageFiles.add(currentIndex, new ImageInfo(url));
 }
 public void setLeftButtonAction(EventHandler<MouseEvent> eventHandler) {
 leftButton.addEventHandler(MouseEvent.MOUSE_PRESSED, eventHandler);
 }
 public void setRightButtonAction(EventHandler<MouseEvent> eventHandler) {
 rightButton.addEventHandler(MouseEvent.MOUSE_PRESSED, eventHandler);
 }

}

The custom button panel control code has callback methods to allow users of the API to be able to
attach handler code to the previous and next buttons. The methods to attach the handler code are called
setLeftButtonAction() and setRightButtonAction(). For example, the following code snippet allows the
user of the API to attach handler code when the button is clicked:

setLeftButtonAction((mouseEvent) -> System.out.println("JavaFX 9"));

ImageInfo.java
The ImageInfo class contains various image display properties such as the URL location of the image file. The
ImageInfo class, as shown in Listing 7-22, is also responsible for holding the rotation angle (degrees) and the
color adjust (ColorAdjust) settings made by the user. As each image is viewed using the previous and next
buttons, the associated ImageInfo instance is applied to the ImageView object.

Listing 7-22. The ImageInfo Class Is a POJO to Hold the Image’s URL, Rotation Angle, and Color Adjust
Settings

public class ImageInfo {
 private String url;
 private double degrees;
 private ColorAdjust colorAdjust;

Chapter 7 ■ GraphiCs

253

 public ImageInfo(String url) {
 this.url = url;
 }
 public String getUrl() {
 return url;
 }

 public void setUrl(String url) {
 this.url = url;
 }

 public double getDegrees() {
 return degrees;
 }

 public void setDegrees(double degrees) {
 this.degrees = degrees;
 }

 public void addDegrees(double degrees) {
 setDegrees(this.degrees + degrees);
 }

 public ColorAdjust getColorAdjust() {
 if (colorAdjust == null) {
 colorAdjust = new ColorAdjust();
 }
 return colorAdjust;
 }

 public void setColorAdjust(ColorAdjust colorAdjust) {
 this.colorAdjust = colorAdjust;
 }
}

photo-viewer.css
The JavaFX CSS styling for the Photo Viewer application is the photo-viewer.css file, shown in Listing 7-23.
If you aren’t familiar with JavaFX CSS styling, you can fast-forward to Chapter 15 on custom user interfaces.
In short, in Listing 7-23 contains JavaFX CSS styling for the custom control (ImageViewButtons) from
Listing 7-21. Typically, you can add class selectors to any JavaFX node by invoking the node’s
getStyleClass().add(...) method.

For example, here I’ve set the custom button’s area node to use the class selector "button-pane":

buttonStackPane.getStyleClass().add("button-pane")

http://dx.doi.org/10.1007/978-1-4842-1961-4_15

Chapter 7 ■ GraphiCs

254

Listing 7-23. The photo-viewer.css File Contains the JavaFX CSS Selectors and Styling Definitions for the
Various UI Elements

/*
File : photo-viewer.css
Author : Carl Dea
*/
.root {
 -fx-background-color: rgba(0, 0, 0, .75);
 -arrow-fill: rgba(255, 255, 255, .90);
 -arrow-fill-hover: rgba(71, 241, 255, .90);
 -blur-effect-hover: dropshadow(gaussian, rgba(255, 255, 255, .90), 10, .3, 0, 0);
}
.button-pane {
 -fx-min-width: 60;
 -fx-max-width: 60;
 -fx-pref-width: 60;
 -fx-min-height: 30;
 -fx-max-height: 30;
 -fx-pref-height: 30;
 -fx-border-radius: 7.5;
 -fx-background-radius: 9.0;
 -fx-background-color: rgba(0,0,0, .55);
 -fx-border-width: 1.5;
 -fx-border-color: white;
}

.left-arrow {
 -fx-fill: -arrow-fill;
}
.left-arrow:hover {
 -fx-fill: -arrow-fill-hover;
 -fx-effect: -blur-effect-hover;
}

.right-arrow {
 -fx-fill: -arrow-fill;
}
.right-arrow:hover {
 -fx-fill: -arrow-fill-hover;
 -fx-effect: -blur-effect-hover;
}

The remainder of Listing 7-23 shows CSS selectors employing pseudo-classes that handle mouse hover
(:hover) states when the mouse cursor enters or exits a node. When the mouse hovers over the previous and
next arrow buttons, a blue glow effect is applied to the button. In Chapter 15, you will get a chance to hear
more about class selectors and pseudo-class states.

Well, there you have it, a nice Photo Viewer application capable of scaling, rotating, and changing
color settings in an image. Now for even more fun on the topic of graphics, the next section looks at JavaFX
animation APIs.

http://dx.doi.org/10.1007/978-1-4842-1961-4_15

Chapter 7 ■ GraphiCs

255

Animation
An animation is an illusion of motion when images change over time. Quite similar to a cartoon flipbook,
each page represents a frame or picture that will be displayed on a timeline for a period of time (duration).
In JavaFX, you will be working with the animation API (javafx.animation.*). In this section, you learn
about key values, keyframes, timelines, and transitions. Finally, to demonstrate the animation APIs, you will
explore a slightly modified Photo Viewer application with additional enhancements.

What Are Key Values?
The JavaFX animation API allows you to assemble timed events that can interpolate over property-based
values in order to produce animated effects. For example, to produce a fade-out effect, you target a node’s
opacity property to interpolate its value starting from 1 (fully opaque) to 0 (transparent) over a period of
time. Listing 7-24 defines a KeyValue instance that targets a rectangle node’s opacity property starting at 1
and ending with the value 0. By default, a KeyValue object will have a linear interpolator.

Listing 7-24. A KeyValue Object to Fade Out by Interpolating the Opacity Property From 1 to 0

Rectangle Rectangle rectangle = new Rectangle(0, 0, 50, 50);
KeyValue keyValue = new KeyValue(rectangle.opacityProperty(), 0);

The KeyValue object doesn’t actually interpolate the value, but simply defines the start and end values
of a property to interpolate between. Also, the KeyValue can be defined with different types of interpolators,
such as linear, ease in, or ease out. For example, Listing 7-25 defines a key value that will animate a rectangle
by moving it from left to right by 100 pixels having an Interpolator.EASE_OUT interpolator. Easing out will
slow down the movement before the end key value.

Listing 7-25. A KeyValue Object to Move a Rectangle from Left to Right 100 Pixels with an Interpolator that
Starts to Slow Down When it Reaches the End Value

Rectangle rectangle = new Rectangle(0, 0, 50, 50);
KeyValue keyValue = new KeyValue(rectangle.xProperty(), 100, Interpolator.EASE_OUT);

Visit the Javadocs documentation for available interpolators (javafx.animation.Interpolator).
By default, KeyValue constructors that don’t specify an interpolator will use a linear interpolation
(Interpolator.LINEAR), which evenly distributes the values over a period of time.

What Are Keyframes?
When an animation (javafx.animation.Timeline) occurs, each timed event, called a keyframe (a KeyFrame
object), is responsible for interpolating key values (KeyValue objects) over a period of time (javafx.util.
Duration). When creating a KeyFrame object, the constructor requires a timed duration to interpolate over key
values. KeyFrame constructors all accept one or more key values by using a variable containing an argument
list or a collection of KeyValue objects.

To demonstrate moving a rectangle in a diagonal direction from upper left to lower right, Listing 7-26
defines a keyframe that has a duration of 1000 milliseconds and two key values that represent the rectangle’s
x and y properties.

https://docs.oracle.com/javase/8/javafx/api/javafx/animation/Animation.html
https://docs.oracle.com/javase/8/javafx/api/javafx/animation/Interpolator.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javase/8/javafx/api/javafx/util/Duration.html
https://docs.oracle.com/javase/8/javafx/api/javafx/util/Duration.html

Chapter 7 ■ GraphiCs

256

Listing 7-26. Keyframe Defined for a Rectangle to Move Diagonally from Upper Left to Lower Right
Spanning a One-Second Duration

Rectangle rectangle = new Rectangle(0, 0, 50, 50);
KeyValue xValue = new KeyValue(rectangle.xProperty(), 100);
KeyValue yValue = new KeyValue(rectangle.yProperty(), 100);
KeyFrame keyFrame = new KeyFrame(Duration.millis(1000), xValue, yValue);

This example defines a keyframe to move a rectangle’s upper-left corner (0, 0) to point (100, 100) in
one second or 1000 milliseconds. Now that you know how to define keyframes, you need to execute the
animation by using a Timeline instance.

What Is a Timeline?
A timeline is one animation sequence consisting of many KeyFrame objects. Each KeyFrame object is run
sequentially. Because a timeline is a subclass of the abstract javafx.animation.Animation class, it has
standard attributes, such as its cycle count and auto-reverse, that you can set. The cycle count is the number
of times you want the timeline to play the animation. If you want the cycle count to play the animation
indefinitely, use the value Timeline.INDEFINITE. The auto-reverse property is a Boolean flag to indicate that
the animation can play the timeline backward (the keyframes in reverse order). By default, the cycle count is
set to 1 and auto-reverse is set to false.

To add keyframes to a Timeline object, use the getKeyFrames().addAll() method. Listing 7-27
demonstrates a timeline playing indefinitely (looping) with auto-reverse set to true to enable the animation
sequence to go backward. A Timeline instance is created with a cycle count set to run indefinitely and
auto-reverse set to true to allow the animation sequence to go backward.

Listing 7-27. A Timeline Instance Repeating an Animation Indefinitely

Timeline timeline = new Timeline();
timeline.setCycleCount(Timeline.INDEFINITE);
timeline.setAutoReverse(true);
timeline.getKeyFrames().addAll(keyFrame1, keyFrame2);
timeline.play();

With this knowledge of timelines, you can now animate any scene graph node in JavaFX. Although
you have the ability to create timelines in a low-level way, this technique can become very cumbersome for
simple animations. You are probably wondering whether there are easier ways to express common animation
effects such as fading, scaling, and translating. Good news! JavaFX has stock (built-in) transition animations
(extending the Transition class), which are convenience classes to perform common animated effects.

JavaFX Transition Classes
The JavaFX API supports common animations called transition classes. Transition classes inherit the
javafx.animation.Animation class similar to a Timeline discussed earlier. Transition classes are simpler
ways to create common animations that get applied to JavaFX Node objects.

Here are some of the most common transition animation classes, followed by a brief description of each:

•	 javafx.animation.FadeTransition

•	 javafx.animation.PathTransition

•	 javafx.animation.ScaleTransition

•	 javafx.animation.TranslateTransition

Chapter 7 ■ GraphiCs

257

The fade transition (FadeTransition) targets the node’s opacity property for a fading animation
effect. The path transition (PathTransition) enables a node to follow a generated path (javafx.scene.
shape.Path). A ScaleTransition transition targets a node’s scaleX, scaleY, and scaleZ properties to
resize a node. Translate transition (TranslateTransition) targets a node’s translateX, translateY, and
translateZ properties to move a node across the screen. I’ve only listed a few common transitions—there
are many more transitions I haven’t discussed, so I encourage you to look at the Javadocs documentation for
subclasses of the javafx.animation.Transition class.

Point-and-Click Game Example
To demonstrate the most common JavaFX animation transitions you learned about in this chapter, I created
a simple point-and-click game. To give you some background about point-and-click games, in the 90s there
were many popular puzzle type games that allowed players to explore and embark on quests by simply using
the mouse to point-and-click. One of these famous point-and-click games was called Myst (see http://
cyan.com/games/myst). The game Myst begins by throwing the player into a mystical island world to explore
and solve various puzzles by examining objects and finding trap doors.

In the point-and-click game shown in Figure 7-8, the player will see animations that demonstrate most
of the common JavaFX animation transitions. In the point-and-click example game, the player will be able to
click on items to unlock additional animations.

Source Code
The ClickAndPointGame.java file is the source code to the point-and-click game shown in Listing 7-28. The
game begins by loading SVG paths as JavaFX nodes (SVGPath). These SVG nodes are created using drawings
downloaded from the web site Wikimedia Commons at https://commons.wikimedia.org. There, I found an
nice looking airplane from the author named Kaboldly. The cloud was from an author by the name of Thorpe
and the windmill was by an author named Spedona. All of these images are under the creative commons
license at (https://creativecommons.org/licenses/by-sa/3.0/deed.en).

Figure 7-8. A simple point-and-click type game using JavaFX Transition APIs. Depicted in the game are
SVGPath shapes representing an airplane, a cloud, and a windmill. The rotor blades of the windmill are on a
separate SVGPath that will demonstrate a RotationTranslate animation.

http://cyan.com/games/myst
http://cyan.com/games/myst
https://commons.wikimedia.org/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Chapter 7 ■ GraphiCs

258

Listing 7-28. Source Code of the ClickAndPointGame.java File Demonstrates Common Animation
Transition Classes

public class ClickAndPointGame extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 primaryStage.setTitle("Click And Point Game");
 AnchorPane root = new AnchorPane();
 Scene scene = new Scene(root, 551, 400, Color.WHITE);

 SVGPath plane = createSVGPath("game-assets/plane-svg-path.txt");

 SVGPath windmill = createSVGPath("game-assets/windmill-svg-path.txt");
 AnchorPane.setBottomAnchor(windmill, 50.0);
 AnchorPane.setRightAnchor(windmill, 100.0);

 SVGPath rotorBlades = createSVGPath("game-assets/rotor-blades-svg-path.txt");
 AnchorPane.setBottomAnchor(rotorBlades, 58.0);
 AnchorPane.setRightAnchor(rotorBlades, 86.0);

 // create clouds
 SVGPath cloud1 = createSVGPath("game-assets/cloud-svg-path.txt");

 // Path Transition
 Path flightPath = new Path();
 PathElement startPath = new MoveTo(-200, 100);
 QuadCurveTo quadCurveTo = new QuadCurveTo(100, -50, 500, 100);
 flightPath.getElements()
 .addAll(startPath, quadCurveTo);
 flightPath.setVisible(false);

 PathTransition flyPlane = new PathTransition(Duration.millis(8000),
 flightPath, plane);
 flyPlane.setCycleCount(Animation.INDEFINITE);
 flyPlane.setOrientation(
 PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);

 // Rotation Transition
 RotateTransition rotateBlade = new RotateTransition(Duration.millis(8000),
 rotorBlades);
 rotateBlade.setCycleCount(Animation.INDEFINITE);
 rotateBlade.setFromAngle(0);
 rotateBlade.setToAngle(360);

 // Scale Transition
 ScaleTransition scaleTransition = new ScaleTransition(Duration.millis(500),
 plane);
 scaleTransition.setCycleCount(4);
 scaleTransition.setAutoReverse(true);
 scaleTransition.setFromX(1);
 scaleTransition.setFromY(1);

Chapter 7 ■ GraphiCs

259

 scaleTransition.setByX(1.5);
 scaleTransition.setByY(1.5);

 // Translate Transition
 TranslateTransition moveCloud = new TranslateTransition(Duration.seconds(15),
 cloud1);
 moveCloud.setFromX(-200);
 moveCloud.setFromY(100);
 moveCloud.setCycleCount(Animation.INDEFINITE);
 moveCloud.setAutoReverse(true);
 moveCloud.setToX(scene.getWidth() + 200);

 // Fade Transition
 FadeTransition fadeCloud = new FadeTransition(Duration.millis(1000),
 cloud1);
 fadeCloud.setCycleCount(4);
 fadeCloud.setFromValue(1);
 fadeCloud.setToValue(0);
 fadeCloud.setOnFinished(actionEvent -> cloud1.setOpacity(1));

 // readjust the end points when the width of the screen changes.
 scene.widthProperty().addListener(observable -> {
 quadCurveTo.setControlX(scene.getWidth()/2);
 quadCurveTo.setX(scene.getWidth() + 200);
 flyPlane.playFromStart();

 moveCloud.setToX(scene.getWidth() + 200);
 moveCloud.playFromStart();
 });

 scene.setOnMouseClicked(mouseEvent -> {
 boolean isCloudClicked = cloud1.getBoundsInParent()
 .contains(mouseEvent.getX(),
 mouseEvent.getY());
 if (isCloudClicked) {
 if (fadeCloud.getStatus() == Animation.Status.STOPPED) {
 fadeCloud.playFromStart();
 }
 }

 boolean isPlaneClicked = plane.getBoundsInParent()
 .contains(mouseEvent.getX(),
 mouseEvent.getY());
 if (isPlaneClicked) {
 if (scaleTransition.getStatus() == Animation.Status.STOPPED) {
 scaleTransition.playFromStart();
 }
 }

 });

Chapter 7 ■ GraphiCs

260

 root.getChildren()
 .addAll(flightPath,
 plane,
 cloud1,
 windmill,
 rotorBlades);

 primaryStage.setScene(scene);
 primaryStage.setOnShowing(windowEvent -> {
 quadCurveTo.setControlX(scene.getWidth()/2);
 quadCurveTo.setX(scene.getWidth() + 200);
 flyPlane.playFromStart();
 rotateBlade.playFromStart();
 moveCloud.playFromStart();
 });

 primaryStage.show();

 }

 private SVGPath createSVGPath(String url) {
 SVGPath svgPath = new SVGPath();
 Task<String> svgLoadWorker = createSVGLoadWorker(url);
 svgLoadWorker.setOnSucceeded(stateEvent -> {
 // apply path info
 svgPath.setContent(svgLoadWorker.getValue());
 });
 new Thread(svgLoadWorker).start();
 return svgPath;
 }

 protected Task<String> createSVGLoadWorker(String pathDataUrl) {
 return new Task<String>() {
 @Override
 protected String call() throws Exception {
 // On the worker thread...
 String pathData = null;

 InputStream in = this.getClass()
 .getClassLoader()
 .getResourceAsStream(pathDataUrl);

 pathData = new Scanner(in, "UTF-8")
 .useDelimiter("\\A").next();

 return pathData;
 }
 };
 }

Chapter 7 ■ GraphiCs

261

 public static void main(String[] args) {
 launch(args);
 }
}

How It Works
The code in Listing 7-28 begins by loading various SVG shaped paths from file resources in a directory on the
classpath. When loading SVG files, I created a private method called createSVGPath(). The createSVGPath()
method will call the createSVGLoadWorker() method to read a text file into a Java string, which will later
be returned as content for a JavaFX SVGPath node. If you are wondering how I was able to obtain the SVG’s
shaped path, I simply viewed the SVG file in an editor and extracted the path information of the shapes.
I highly recommend using the tool called Inkscape (https://inkscape.org/en/), which allows you to
manipulate SVG files. Any browser will do to view SVG files by selecting the menu option to view source.

After the code creates the individual SVGPath nodes that represent the shapes, the code creates various
transition animations. Listing 7-28 shows the code’s first transition. It’s a PathTransition animation with
the variable flightPath. To simulate the airplane flying from the left side of the scene to the right, the path
transition will create JavaFX path elements. The path elements consist of a MoveTo and a QuadCurveTo
instance. The path element QuadCurveTo will make the airplane appear to climb altitude, showing the nose
up and later lowering its nose as it decreases altitude. When using the PathTransition, there are different
path orientations. This example uses OrientationType.ORTHOGONAL_TO_TANGENT to keep the node (SVGPath)
object perpendicular to the path's tangent point on the curve.

Next, the code creates a RotateTransition targeting the windmill’s rotor blades to create a rotate
animation. The rotation translation is set up to run indefinitely.

Another animation applied to the airplane is a ScaleTransition animation. The scale transition occurs
when the player clicks on the airplane. When the user clicks on the airplane, it will appear to enlarge and
decrease four times, as set by the cycle count property.

To demonstrate the TranslateTransition animation, the cloud shape’s x translate property will be
targeted. The cloud will appear to move from left to right indefinitely via the setCycleCount(Animation.
INDEFINITE) method.

The last and final transition is the FadeTransition animation, which will be applied to the cloud shape’s
opacity property. This fading in and out animation effect will occur when the player uses the mouse click onto
the cloud shape.

In closing, the code creates a mouse click listener to determine if the player has clicked inside an SVG
shape. The mouse click code uses the bounds to determine if the mouse pointer coordinates lie inside of the
shape to then take the appropriate action. In the case of the airplane, the scale transition effect is applied
when the user clicks on the plane. When the cloud is clicked, the fade transition animation is triggered.

Now that you know how to use these simple transitions, you could probably create the next cool
point-and-click game! However, you may need more complex animations by chaining together the simple
ones you’ve learned about thus far. Next, you will learn about compound transitions that will allow you to
execute many animations in sequence or in parallel.

Compound Transitions
What if you wanted to have multiple animations run in sequence or in parallel? The JavaFX Animation API
provides the SequentialTransition and ParallelTransition classes. A SequentialTransition, as its
name suggests, allows you to run many animations of type (javafx.animation.Transition) in sequence
while the ParallelTransition class can run many animations in parallel. The following code snippet takes
two FadeTransition objects to be run in sequence.

https://inkscape.org/en/

Chapter 7 ■ GraphiCs

262

SequentialTransition seqTransition = new SequentialTransition(fadeOut, fadeIn);
seqTransition.playFromStart();

To create a parallel transitions, the following code snippet will perform a translate and rotate on a shape
concurrently.

ParallelTransition parallelTransition = new ParallelTransition(translateRight, rotateRight);
parallelTransition.playFromStart();

This chapter ends with an example of enhancing the Photo Viewer application slightly by using a
sequential transition comprised of two FadeTransition animations.

PhotoViewer2 Example
To demonstrate a compound transition, I’ve enhanced the Photo Viewer example mentioned earlier in the
chapter to create a fade-out and fade-in effect when the user views the previous or next image. To view the
full source code, take a look at the PhotoViewer2.java file at the book’s website.

The code is quite simple because the PhotoViewer2 class simply extends from the PhotoViewer
class and overrides the loadAndDisplayImage() method. The overridden method changes the old
behavior by adding the fading effect when the image is finished loading, as shown in Listing 7-29. Once
the image is successfully loaded, there is a call to a private transitionByFading() method to return a
SequentialTransition animation. After the return of a SequentialTransition, the animation is invoked.

Listing 7-29. The Method loadAndDisplayImage() Will Create a Worker Task to Load the Next Image to be
Displayed

protected void loadAndDisplayImage(ProgressIndicator progressIndicator) {
 if (buttonPanel.getCurrentIndex() < 0) return;

 final ImageInfo imageInfo = buttonPanel.getCurrentImageInfo();

 // show spinner while image is loading
 progressIndicator.setVisible(true);

 Task<Image> loadImage = createWorker(imageInfo.getUrl());

 // after loading has succeeded apply image info
 loadImage.setOnSucceeded(workerStateEvent -> {

 try {
 Image nextImage = loadImage.get();
 SequentialTransition fadeIntoNext = transitionByFading(nextImage, imageInfo);
 fadeIntoNext.playFromStart();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } finally {
 // hide progress indicator

Chapter 7 ■ GraphiCs

263

 progressIndicator.setVisible(false);
 }

 });

 // any failure turn off spinner
 loadImage.setOnFailed(workerStateEvent ->
 progressIndicator.setVisible(false));

 executorService.submit(loadImage);
}

This code creates a worker task to load the image on a background thread. Once the image is loaded
successfully, a call to the private method transitionByFading() will create a sequential transition that
will contains two transitions. As shown in Listing 7-30, the method transitionByFading() will return a
SequentialTransition instance to be executed.

Listing 7-30. The transitionByFading() is a private Factory Method That Creates a SequentialTransition
Consisting of Two FadeTransition Animations Responsible for Fading Out the Currently Displayed Image
and Fading In the Next Image to be Displayed

private SequentialTransition transitionByFading(Image nextImage,
 ImageInfo imageInfo) {
 // fade out image view node
 FadeTransition fadeOut =
 new FadeTransition(Duration.millis(500), currentViewImage);
 fadeOut.setFromValue(1.0);
 fadeOut.setToValue(0.0);
 fadeOut.setOnFinished(actionEvent -> {
 currentViewImage.setImage(nextImage);
 // Rotate image view
 rotateImageView(imageInfo.getDegrees());

 // Apply color adjust
 colorAdjust = imageInfo.getColorAdjust();
 currentViewImage.setEffect(colorAdjust);

 // update the menu items containing slider controls
 updateSliders();
 });
 // fade in image view node
 FadeTransition fadeIn =
 new FadeTransition(Duration.millis(500), currentViewImage);
 fadeIn.setFromValue(0.0);
 fadeIn.setToValue(1.0);

Chapter 7 ■ GraphiCs

264

 // fade out image view, swap image and fade in image view
 SequentialTransition seqTransition =
 new SequentialTransition(fadeOut, fadeIn);
 return seqTransition;
}

Listing 7-30 implements the steps into the sequential transition. When the sequential transition is
executed, the first transition (fadeOut) will fade out the currentViewImage (ImageView) node containing the
current image. The fadeOut transition will get handler code to respond when an OnFinished event is raised.
In other words, when the fade out transition is finished, the code block will set the next image, rotate the
image view, adjust the colors, and update the slider controls respectively. After the first transition is run, the
second transition gets run to perform the fade-in effect to display the new (next) image.

Assuming you’ve got this far, you should now have a basic understanding of JavaFX graphics programming.

Summary
In this chapter, you learned how to load images using the javafx.scene.image.Image class’ constructor,
which accepts the standard URL specification format of files located locally, on the classpath, or on a remote
web server. Then you got a chance to implement a Photo Viewer application with drag-and-drop capability
to load and display images. You also learned about rotation and color adjustments you can make to an image
view node.

Next, you looked at the fundamentals of JavaFX’s animation API to create key values, keyframes, and
timelines. After learning about the fundamental concepts of animating any node using timelines, you looked
at convenient animation classes called transitions. Using common transitions, you saw a simple point-and-
click game example that demonstrated the following transitions: path, rotate, scale, translate, and fade.
Finally, you ended the chapter by enhancing the Photo Viewer with a SequentialTransition animation to
create a compound fade effect as the user views the next or previous image.

265© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_8

CHAPTER 8

JavaFX Printing

Many desktop applications such as word processors and spreadsheets allow users to print documents
via a printer or copier. In this chapter, you’ll learn how to send HTML documents and JavaFX nodes to a
printer. JavaFX printing APIs (javafx.print) have been around since JavaFX 8, and they allow application
developers to query available printers, set up printers, and generate print jobs. In this chapter, you explore
JavaFX’s printing APIs and end the chapter with a Web browser-like application to scale and print web
content.

In this chapter, you learn about the following:

•	 Query available printers

•	 Discover a printer’s attributes and features

•	 Programmatically print (with a printer dialog)

•	 Show the Printer dialog to configure a print job

•	 Scale and print a JavaFX node

•	 Print an HTML web page spanning multiple pages

JavaFX Printing
Before we get started with the JavaFX print APIs, I want to whet your appetite by showing you how easy it is
to print something with very few lines of code. JavaFX printing at its simplest form allows you to print any
visible JavaFX node, as shown in Listing 8-1.

Listing 8-1. Printing a JavaFX Node Using the PrinterJob Class

PrinterJob job = PrinterJob.createPrinterJob();
job.showPrintDialog(primaryStage);
boolean success = job.printPage(circle);
if (success) {
 job.endJob();
}

The goal in Listing 8-1 is to print a JavaFX Circle node to the printer. Listing 8-1 shows the creation
of a print job (PrinterJob) followed by a call to the showPrintDialog() method, which launches a dialog
window allowing you to configure the current print job, as shown in Figure 8-1.

Chapter 8 ■ JavaFX printing

266

After configuring the printer settings, you click on the Print button to begin the printing process.
The code will invoke the print job’s printPage() method to send the job to the printer. After the call to the
printPage() method a Boolean value is returned to signify whether the print job was successful or not. If the
printing is successful (true), the code finishes the print job by calling the endJob() method on the printer
job object.

The output from Listing 8-1 should print out a JavaFX circle node onto a printer. Assuming the circle
is positioned within the printer’s printable width, you should see a single printed page with a circle shape.
Later, you learn to use the APIs to query the printer for its printable width and height.

The output of Listing 8-1 looks quite simple to implement; however, there is more than meets the eye.
You are probably wondering, “How do you print a node with content that spans multiple pages?”

Since the code simply prints onto a single page, you’ll also find out that if a node is larger (outside) than
the printable width and height of the printer’s layout, those areas won’t be printed onto the physical page
(Paper). Having said this, you will need to implement a strategy to either resize the node’s content or cut up
the node’s content into multiple nodes to be printed onto each page.

In this chapter, you will primarily learn how to configure a print job and print a single node such as an
image or a shape node. However, if you are ambitious enough and willing to create an actual word processor
or a greeting card application, you will inevitably want to print content that spans over multiple pages.
Because of this, you will likely have to do the math yourself. Basically, this math would involve calculating
lines of text or determining the width and height of content regions.

Figure 8-1. A Print dialog window to configure the current print job

Chapter 8 ■ JavaFX printing

267

Although creating a word processor capable of printing multiple pages is rather ambitious for a chapter,
I will at least provide skeleton code to get you started. As shown in Listing 8-2, the skeleton code is stubbed
out so that you can provide helper code (the MyPrinterHelper.createPages() method), which will do the
math, so to speak, and return a list of nodes that will eventually get queued up for printing.

Listing 8-2. Skeleton Code Stubbed Out to Print a Node That Spans Multiple Pages

Printer printer = Printer.getDefaultPrinter();
PageLayout layout = printer.getDefaultPageLayout();

double printWidth = layout.getPrintableWidth();
double printHeight = layout.getPrintableHeight();

PrinterJob job = PrinterJob.createPrinterJob(printer);

// Assuming you have a Node that is larger than your printable area.
TableView myLargeJFXNode = ... // large node spanning multiple pages.

// Create a helper function to return a list of
// nodes representing a page to be printed.
List<Node> pages = MyPrinterHelper.createPages(myLargeJFXNode, printWidth, printHeight);

pages.forEach(job::printPage);
job.endJob();

In Listing 8-2, the code begins by obtaining layout information to determine the printable width
and height. After obtaining the printable width and height, the code will call the MyPrinterHelper.
createPages() method to return a list of nodes to print. The createPages() method is responsible for
calculating how to divide the target node into a list of nodes that will fit the printable print layout. The
code statement calling the method MyPrinterHelper.createPages() receives the following parameters:
targetNode, printWidth, and printHeight.

Once each page is prepared as a node, you can queue them up for printing. Depending on the kind of
content to be printed, you will have to decide how you want to break sections into nodes to be queued up for
printing. Since it depends on the kind of content to be printed, it is really up to you to decide how you want
to design individual nodes. One example is to print a sheet of mailing labels based on a ListView node’s
items (getItems()).

If you feel that creating your own function to break apart content into printable nodes is too difficult,
have no fear, JavaFX web engine is here. Later, you will see an example application that will load an HTML
web page to be printed as multiple pages. Without jumping ahead, the javafx.scene.web.WebEngine
node has a convenience method print() that will send a web page to the printer. What’s nice about the
WebEngine’s print ability is that it can print without displaying the WebView node on the JavaFX Scene graph.
This allows you to create a JavaFX application window (Stage) that can send HTML documents to the
printer in the background. It is important to note that the JavaFX print APIs do not support a true headless
print service as a background process without having to launch a JavaFX application window. In order to
print using JavaFX print APIs, a JavaFX application thread must be running.

Now that you have a taste for how simple JavaFX printing can be, next up you will take a look at JavaFX’s
print APIs in more detail to programmatically configure printer attributes and print jobs.

Chapter 8 ■ JavaFX printing

268

JavaFX Print APIs
Let’s take a look at the main classes that comprise the JavaFX print APIs. Table 8-1 lists the main print classes
and includes a brief description according to the Java 8 Javadoc documentation (javafx.print).

Table 8-1. The JavaFX Printing API Classes and Their Descriptions

Class/Enum Description

JobSettings The JobSettings class encapsulates most of the configuration of a print job.

PageLayout A PageLayout encapsulates the information needed to lay out content.

PageRange A PageRange is used to select or constrain the job print stream pages to print.

Paper A class that encapsulates the size of paper media as used by printers.

PaperSource A PaperSource is the input tray to be used for the Paper.

Printer A Printer instance represents the destination for a print job.

PrinterAttributes This class encapsulates the attributes of a printer that relate to its job printing
capabilities and other attributes.

PrinterJob PrinterJob is the starting place for JavaFX scenegraph printing.

PrintResolution Class to represent a supported device resolution of a printer in the feed and
crossfeed directions in dots-per-inch (DPI).

Collation The enum class Collation specifies whether or not media sheets of each copy of
a printed document in a job are to be in sequence.

PageOrientation An enum class that specifies the orientation of the media sheet for printed pages.

PrintColor An enum class that describes whether printing should be monochrome or color.

Printer.MarginType The MarginType (enum class) is used to determine the printable area of a
PageLayout.

PrinterJob.JobStatus An enum class used in reporting status of a print job.

PrintQuality An enum class to describe printing quality setting.

PrintSides An enum class to enumerate the possible duplex (two-sided) printing modes.

Printer and PrinterJob
You might feel overwhelmed by the numerous classes shown in Table 8-1; however, all you have to do
is remember the Printer and PrinterJob classes. Figure 8-2 depicts a high-level diagram showing the
relationships between the important JavaFX print API classes.

https://docs.oracle.com/javase/8/javafx/api/javafx/print/package-summary.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/JobSettings.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PageLayout.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PageRange.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/Paper.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PaperSource.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/Printer.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PrinterAttributes.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PrinterJob.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PrintResolution.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/Collation.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PageOrientation.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PrintColor.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/Printer.MarginType.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PrinterJob.JobStatus.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PrintQuality.html
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PrintSides.html

Chapter 8 ■ JavaFX printing

269

For sake of space, the UML diagram shown in Figure 8-2 is showing just a few of the printer attributes
of the PrinterAttributes object, instead of all of them. You’ll notice the diagram displays just a few printer
attributes having one-to-many Paper, PaperSource, and PrintResolution objects. However, later you will
see example code that outputs all of your printer’s supported attribute. For now, let’s look at methods to
query printers.

To easily get started on querying information, you can focus your attention on the Printer and
PrinterJob classes. Both Printer and PrinterJob classes contain static methods to query printer
information and create print jobs, respectively.

To list the available printers, you can invoke the static method Printer.getAllPrinter(), as shown
in Listing 8-3.

Listing 8-3. Listing the Available Printers from the Printer Class

Printer.getAllPrinters()
 .forEach(System.out::println);

The following is the output from Listing 8-3. It shows a list of printers that are available on my Apple
Macbook Pro. Depending on your OS environment and connected printers, you will likely see different
results.

Printer EPSON XP-430 Series
Printer S300-S400 Series

Another convenient static method on the Printer class is getDefaultPrinter() to obtain your system’s
default printer. Depending on your desktop operating system, the user can go to Printer/Scanner settings
to set up the default printer if one has not been already set. On the Windows operating system, you would
navigate to your control panel’s Settings ➤ Devices ➤ <Printer>. On a MacOS system, navigate to System
Preferences ➤ Printers and Scanners. On both OSes, you will right-click the selected <Printer> to set it as the
default printer.

Figure 8-2. A UML diagram of the main JavaFX print classes

Chapter 8 ■ JavaFX printing

270

After obtaining a Printer object, you can invoke the getPrinterAttributes() method that returns
a PrinterAttributes object to retrieve a printer’s supported features. The PrinterAttributes object will
contain various methods to determine supported orientations, paper types, paper sources, or print resolutions.

Query Printer Attributes
Recall that the UML diagram in Figure 8-2 shows only a few of the attributes from the PrinterAttributes
object. On the other hand, Listing 8-4 shows the code that lists all of a default printer’s attributes. By invoking
the getPrinterAttributes() method on the printer object (defaultPrinter), the default printer’s page
layout along with all of its supported printer attributes can be queried and dumped to the console.

Listing 8-4. Code to Output a Printer’s Default Page Layout and All of Its Supported Attributes.

Printer.getAllPrinters().forEach(System.out::println);
Printer defaultPrinter = Printer.getDefaultPrinter();
PrinterAttributes attributes = defaultPrinter.getPrinterAttributes();
System.out.println("--------------------------");
System.out.println("Default Print Layout : ");
System.out.printf(" %s%n", defaultPrinter.getDefaultPageLayout());
System.out.printf(" printable width: %f%n", defaultPrinter.getDefaultPageLayout().
getPrintableWidth());
System.out.printf(" printable height: %f%n", defaultPrinter.getDefaultPageLayout().
getPrintableHeight());
System.out.println("--------------------------");
System.out.println("Supported Orientations : ");
attributes.getSupportedPageOrientations()
 .forEach(System.out::println);

System.out.println("--------------------------");
System.out.println("Supported Collations : ");
attributes.getSupportedCollations()
 .forEach(collation -> System.out.printf(" %s%n", collation));

System.out.println("--------------------------");
System.out.println("Supported Paper types : ");
attributes.getSupportedPapers()
 .forEach(paper -> System.out.printf(" %s%n", paper));

System.out.println("--------------------------");
System.out.println("Supported Paper Sources : ");
attributes.getSupportedPaperSources()
 .forEach(paperSource -> System.out.printf(" %s%n", paperSource));

System.out.println("--------------------------");
System.out.println("Supported Print Colors : ");
attributes.getSupportedPrintColors()
 .forEach(paperColor -> System.out.printf(" %s%n", paperColor));

System.out.println("--------------------------");
System.out.println("Supported Print Quality types : ");
attributes.getSupportedPrintQuality()
 .forEach(printQuality -> System.out.printf(" %s%n", printQuality));

Chapter 8 ■ JavaFX printing

271

System.out.println("--------------------------");
System.out.println("Supported Print Resolutions : ");
attributes.getSupportedPrintResolutions()
 .forEach(printRez -> System.out.printf(" %s%n", printRez));

System.out.println("--------------------------");
System.out.println("Supported Print Sides: ");
attributes.getSupportedPrintSides()
 .forEach(printSize -> System.out.printf(" %s%n", printSize));

The following is the output from running Listing 8-4.

Printer EPSON XP-430 Series
Printer S300-S400 Series

Default Print Layout :
 Paper=Paper: Letter size=8.5x11.0 INCH Orient=PORTRAIT leftMargin=54.0 rightMargin=54.0
topMargin=54.0 bottomMargin=54.0
 printable width: 504.000000
 printable height: 684.000000

Supported Orientations :
PORTRAIT
LANDSCAPE
REVERSE_PORTRAIT
REVERSE_LANDSCAPE

Supported Collations :

Supported Paper types :
 Paper: 4x6 size=101.6x152.4 MM
 Paper: 8x10 size=8.0x10.0 INCH
 Paper: A4 size=210.0x297.0 MM
 Paper: A6 size=105.0x148.0 MM
 Paper: Legal size=8.4x14.0 INCH
 Paper: Letter size=8.5x11.0 INCH
 Paper: Number 10 Envelope size=4.125x9.5 INCH
 Paper: custom_z_101.6x180.6mm size=101.6x180.6 MM
 Paper: invoice size=139.7x215.9 MM
 Paper: iso-b7 size=88.0x125.0 MM
 Paper: na-5x7 size=127.0x177.8 MM

Supported Paper Sources :

Supported Print Colors :
 COLOR

Supported Print Quality types :
 NORMAL

Chapter 8 ■ JavaFX printing

272

Supported Print Resolutions :
 Feed res=300dpi. Cross Feed res=300dpi.

Supported Print Sides:
 ONE_SIDED

You’ve seen the default printer’s attributes and supported features, so you can now configure a print job.
In the next section, you will learn how to configure and print documents programmatically. The beginning
of the chapter explained how to show the printer configuration dialog prior to printing. Next, you learn how
to manually configure the printer without a configuration dialog window.

Configuring a Print Job
Now that you know how to query a printer for attributes, you will want to configure the printer slightly
differently than the default printer settings. Let’s say you have a hypothetical use case where you are trying
to conserve on colored ink and paper. In other words, you want to use less black ink, print on both sides, and
print using landscape page orientation.

Based on the JavaFX print APIs, a print job will be configured with the following:

•	 Use one color (PrintColor.MONOCHROME)

•	 Print on both sides of the paper (PrintSides.DUPLEX)

•	 Use a lower print quality (PrintQuality.LOW)

•	 Print using a landscape page orientation (PageOrientation.LANDSCAPE)

To achieve this use-case scenario, you will start by calling the method createPrinterJob() from the
PrinterJob class. This method returns a PrinterJob object enabling you to obtain and change print job
settings via the getJobSettings() method. Listing 8-5 shows the code that creates a PrinterJob object, then
obtains the JobSettings object to set up various attributes. To see the full source code for Listing 8-5, refer to
the book’s source code and Java file named SaveInkAndTrees.java.

Listing 8-5. Configuring a Print job’s Color, Sides, Quality, and Page Layout

PrinterJob job = PrinterJob.createPrinterJob();
JobSettings jobSettings = job.getJobSettings();

jobSettings.setPrintColor(PrintColor.MONOCHROME);
jobSettings.setPrintSides(PrintSides.DUPLEX);
jobSettings.setPrintQuality(PrintQuality.LOW);

PageLayout pageLayout = printer.createPageLayout(Paper.NA_LETTER, PageOrientation.LANDSCAPE,
Printer.MarginType.DEFAULT);

jobSettings.setPageLayout(pageLayout);
System.out.println(">>> jobSettings :\n" + jobSettings);

Chapter 8 ■ JavaFX printing

273

 ■ Warning a JobSettings object may not be modified the way you intended due to the fact of the
underlying printer’s lack of supported attributes that get mapped to JavaFX related print enum values such
as PrinterColor.MONOCHROME. You should query the printer’s supported attributes before programmatically
modifying JobSettings.

In Listing 8-5, after obtaining the job settings object, the code begins to call setters for the color, sides,
and quality methods. Job settings attributes’ can only be modified if they are in the list of support attributes.
Refer to the Javadoc documentation for all the available enumerated values of the PrinterColor, PrintSides,
and PrintQuality classes. Also, it’s important to query supported attributes before setting them because, if
you try to set an attribute that isn’t supported, the system will take the attribute’s default values.

Next, the code creates a page layout via the createPageLayout() method. The method receives the
following parameters:

•	 Paper.NA_LETTER

•	 PageOrientation.LANDSCAPE

•	 Printer.MarginType.DEFAULT

According to the Javadoc documentation, the Printer.MarginType.DEFAULT is a default of 0.75 inch
margin on all sides. This default is considered to be a common margin by all known printers. However, this
may be adjusted if the paper is too small, to ensure that the margins are not more than 50% of the smaller
dimension. Applications that do expect to deal with such small media should specify the required margins
explicitly. In the unlikely event that the hardware margin is larger than 0.75", it will be adjusted to that same
hardware minimum on all sides.

The output of Listing 8-5 is shown here. Since this is my printer at home, I noticed some print attributes
did not get modified appropriately such as the sides, print color, and print quality. My printer should have
been set with double sided, monochrome, and low quality. You are probably wondering what is going on.

>>> JobSettings:
Collation = UNCOLLATED
 Copies = 1
 Sides = ONE_SIDED
 JobName = JavaFX Print Job
 Page ranges = null
 Print color = COLOR
 Print quality = NORMAL
 Print resolution = Feed res=300dpi. Cross Feed res=300dpi.
 Paper source = Paper source : Automatic
 Page layout = Paper=Paper: Letter size=8.5x11.0 INCH Orient=LANDSCAPE leftMargin=54.0
rightMargin=54.0 topMargin=54.0 bottomMargin=54.0

Not to be alarmed, but in Listing 8-5 while making job settings changes, I noticed some of the settings
didn’t get modified. Basically this is due to the underlying printer’s lack of supported attributes that get
mapped to JavaFX printer enums and print attribute classes. By printing the job settings object, you can
compare your attributes against the supported attributes. I provided code in Listing 8-6 to check for
supported attributes based on the earlier print scenario. If the print attributes you are looking for are not
supported, the code in Listing 8-6 will launch the printer dialog. This will allow the native print dialog
window to let the user modify attributes before printing.

Chapter 8 ■ JavaFX printing

274

Listing 8-6. Determining if a Printer’s Print Attributes Are Supported Before Sending Job for Printing

Printer printer = job.getPrinter();
PrinterAttributes attr = printer.getPrinterAttributes();
boolean supported = attr.getSupportedPrintColors()
 .contains(PrintColor.MONOCHROME) &&
 attr.getSupportedPrintSides()
 .contains(PrintSides.DUPLEX) &&
 attr.getSupportedPrintQuality()
 .contains(PrintQuality.LOW) &&
 attr.getSupportedPapers()
 .contains(Paper.NA_LETTER) &&
 attr.getSupportedPageOrientations()
 .contains(PageOrientation.LANDSCAPE);
if (!supported) {
 job.showPrintDialog(primaryStage);
}
// Rest of the print code.

Now that you know how to configure job settings and create documents to be sent to the printer,
let’s look at how to print HTML5-based content.

Printing a Web Page
As mentioned earlier, it’s not exactly easy to print content spanning multiple pages. However, the JavaFX
APIs do provide a convenient method called print() on the WebEngine object. It allows you to print HTML5
content. The WebEngine object is a non-visual JavaFX object capable of loading HTML documents from remote
web servers. Listing 8-7 shows a minimum amount of code that will load and print a web page to the default
printer. If the document spans multiple pages, the printer will continue to print all of the remaining pages.

Listing 8-7. Printing Web Content Using JavaFX’s WebEngine Object

WebEngine webEngine = new WebEngine();

webEngine.getLoadWorker()
 .stateProperty()
 .addListener((ov, oldState, newState) -> {
 if (newState == State.SUCCEEDED) {
 PrinterJob job = PrinterJob.createPrinterJob();
 if (job != null) {
 webEngine.print(job);
 job.endJob();
 }
 }
 });

webEngine.load("https://en.wikipedia.org/wiki/Tachyon");

This code will provide a callback to listen to state changes of the load process of the web engine. Upon
success (State.SUCCEEDED), a print job is created and is passed into the WebEngine object’s print() method.

Hopefully, you can see how amazingly simple it is to send HTML content to the printer. Now let’s look at
an example application.

Chapter 8 ■ JavaFX printing

275

Example WebDocPrinter Application
Have you ever needed to quickly print an airline ticket or an invoice after an online purchase? Well, here is
an example application that I’ve created resembling a browser by allowing users to load and display a web
site based on a valid URL. This browser-like application is called WebDocPrinter, as shown in Figure 8-3. It
supports two print modes: Node Only and Whole Web Document. By default, the Node Only is set to allow
the user to print the WebView node only. Node Only will only print content within the red bounding box.
The Whole Web Document print mode will print the entire HTML document, even if it spans multiple pages.
The Whole Web Document print mode scales the content to fit the printable area.

Figure 8-3. The WebDocPrinter application supports two print modes: Node Only and Whole Web Document

The application has the following UI elements:

•	 Menus: Two print modes called Node Only and Whole Web Document

•	 TextField: An address bar to enter a valid URL

•	 Button: A print button

•	 Slider: A slider control that adjusts the zoom level when displaying the
WebView node

Chapter 8 ■ JavaFX printing

276

•	 Label: Display label to display the zoom level as a percentage

•	 WebView: The displaying of the HTML document

•	 Path: A rectangle path with a red stroke outlining the printable region

The WebDocPrinter application supports two print modes: Node Only and Whole Web Document. The
WebDocPrinter application demonstrates the printing of a single node or the printing of an entire web page
having multiple pages. Using the Whole Web Document print automatically scales the content to fit the
printable area.

After entering the URL on the address line (TextField), the user will press the Enter key, thereby
triggering the application to fetch the web page to be displayed onto the WebView node. By default, the menu
bar’s print mode, as shown in Figure 8-4, is set to Node Only print mode, which means the application will
only print the WebView node on one page.

Figure 8-4. The two print modes are Node Only and Whole Web Document

Figure 8-5. The URL address line allows the user to fetch a web page. The print button sends the displayed
page to the printer. The slider control zooms in or out to scale the web page to fit into the print width.

When printing a JavaFX WebView node, the printer will only print to one page by default. By using the
Node Only mode, a red box outline will appear over the display area to denote the printer’s printable layout
region onto the physical paper, as shown in Figure 8-3. Using the Node Only print mode, anything outside
the red bounding box will not be printed, as discussed earlier.

The second print mode is Whole Web Document, which will print the entire HTML web page using the
convenient method print() from the WebEngine object. Again, if the document spans multiple pages, they’ll
be sent to the printer.

Finally, the last feature of the WebDocPrinter application is a slider control that allows users to scale or
zoom in/out to resize the web page’s content, as shown in Figure 8-5.

The zoom feature used during the Node Only print mode will assist the user to make the content fit
within the printable region (red bounding box) before being sent to the printer, as shown in Figure 8-3.
The zoom’s minimum value is 5% and the maximum is 300%. Again, I want to point out that any content
displayed outside of the red bounding box region will not get printed when using the Node Only print mode.

Chapter 8 ■ JavaFX printing

277

Source Code
Now that you know what WebDocPrinter application is capable of, let’s see the source code. Because the actual
print code is quite small, I kept all the code in one file, called WebDocPrinter.java, as shown in Listing 8-8.

Listing 8-8. The WebDocPrinter Application Source Code

/**
 * Allows the user to enter a URL to display an HTML page to be
 * sent to a default printer. Also the application allows the
 * display node to be resize to fit onto the printed page.
 */
public class WebDocPrinter extends Application{
 private static String PRINT_MODE_MENU = "Print Mode";
 private static String NODE_ONLY = "Node Only";
 private static String WHOLE_WEB_DOC = "Whole Web Document";
 public static void main(String[] args) {
 //System.setProperty("jsse.enableSNIExtension", "false");
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) throws Exception {
 // Create the root pane and scene
 primaryStage.setTitle("WebDocPrinter");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 551, 400, Color.WHITE);
 primaryStage.setScene(scene);

 // Create a menu
 MenuBar menuBar = new MenuBar();
 Menu printModeMenu = new Menu("Print Mode");
 ToggleGroup printModeGroup = new ToggleGroup();

 // Node only print mode
 RadioMenuItem printOnePage = new RadioMenuItem(NODE_ONLY);
 printOnePage.setUserData(NODE_ONLY);
 printOnePage.setToggleGroup(printModeGroup);
 printModeGroup.selectToggle(printOnePage);
 printModeMenu.setText(PRINT_MODE_MENU + " (" + NODE_ONLY + ")");

 // Whole web document print mode
 RadioMenuItem multiPages = new RadioMenuItem("Whole Web Document");
 multiPages.setUserData(WHOLE_WEB_DOC);
 multiPages.setToggleGroup(printModeGroup);

 printModeMenu.getItems().addAll(printOnePage, multiPages);
 menuBar.getMenus().add(printModeMenu);
 root.setTop(menuBar);

 BorderPane contentPane = new BorderPane();
 root.setCenter(contentPane);

Chapter 8 ■ JavaFX printing

278

 // Create display area
 WebView browserDisplay = new WebView();

 // Create a slider to control zoom
 Slider zoomSlider = new Slider(.05, 3.0,1.0);
 zoomSlider.setBlockIncrement(0.05);
 zoomSlider.valueProperty().addListener(listener -> {
 System.out.println("zoom " + browserDisplay.getZoom());
 browserDisplay.setZoom(zoomSlider.getValue());
 });

 // Label representing the zoom size percentage
 Label zoomValueLabel = new Label();
 StringConverter sc = new StringConverter<Double>(){
 @Override public Double fromString(String value) {
 // If the value is null or empty string return null
 if (value == null) {
 return null;
 }

 value = value.trim();
 value.replace("%", "");
 if (value.length() < 1) {
 return null;
 }

 return Double.valueOf(value)/100;
 }

 @Override public String toString(Double value) {
 //If the value is null, return empty string
 if (value == null) {
 return "";
 }
 double percent = value.doubleValue() * 100;
 return String.format("%.2f", percent) + "%";
 }
 };

 // Bind Label's text and the Slider's value property.
 Bindings.bindBidirectional(zoomValueLabel.textProperty(),
 zoomSlider.valueProperty(), sc);

 // debug information
 browserDisplay.widthProperty().addListener(listener -> {
 Printer printer = Printer.getDefaultPrinter();
 System.out.println("printer width: " +
 printer.getDefaultPageLayout().getPrintableWidth());
 System.out.println("width: " +
 browserDisplay.widthProperty().get());
 });

Chapter 8 ■ JavaFX printing

279

 WebEngine webEngine = browserDisplay.getEngine();
 webEngine.getLoadWorker()
 .stateProperty()
 .addListener((obsValue, oldState, newState) -> {
 if (newState == Worker.State.SUCCEEDED) {
 System.out.println("finished loading webpage: " +
 webEngine.getLocation());
 }
 });

 // Create an address bar
 TextField urlAddressField = new TextField();
 urlAddressField.setPromptText("Enter URL of a page to print");
 urlAddressField.setOnAction(actionEvent ->
 webEngine.load(urlAddressField.getText()));

 // Create the print button
 Button printButton = new Button("Print");
 printButton.setOnAction(actionEvent -> {

 PrinterJob job = PrinterJob.createPrinterJob();
 if (job != null) {
 System.out.println("starting print job");
 Toggle selected = printModeGroup.getSelectedToggle();
 if (selected != null) {

 String mode = (String) selected.getUserData();
 if (NODE_ONLY.equals(mode)) {
 boolean success = job.printPage(browserDisplay);
 if (success) {
 job.endJob();
 }
 } else {
 // WHOLE_WEB_DOC
 boolean printIt = job.showPrintDialog(primaryStage);
 if (printIt) {
 webEngine.print(job);
 job.endJob();
 }
 }
 }
 }
 });

 // Assemble print button, zoom slider, zoom label
 VBox vBox = new VBox();
 HBox hBox = new HBox(10);
 hBox.setPadding(new Insets(5));

Chapter 8 ■ JavaFX printing

280

 hBox.setAlignment(Pos.CENTER_LEFT);
 hBox.getChildren().addAll(printButton, zoomSlider, zoomValueLabel);
 vBox.getChildren().addAll(urlAddressField, hBox);

 contentPane.setTop(vBox);

 // Center WebView area
 StackPane centerArea = new StackPane(browserDisplay);

 // Create the red box denoting print area.
 Path printPerimeter = new Path();
 Printer printer = Printer.getDefaultPrinter();
 double printWidth = printer.getDefaultPageLayout().getPrintableWidth();
 double printHeight = printer.getDefaultPageLayout().getPrintableHeight();
 PathElement[] corners = {
 new MoveTo(0,0),
 new LineTo(printWidth, 0),
 new LineTo(printWidth, printHeight),
 new LineTo(0, printHeight),
 new ClosePath()
 };
 printPerimeter.getElements().addAll(corners);
 printPerimeter.setStroke(Color.RED);
 StackPane.setAlignment(printPerimeter, Pos.TOP_LEFT);
 centerArea.getChildren().add(printPerimeter);
 contentPane.setCenter(centerArea);

 printModeGroup.selectedToggleProperty()
 .addListener((observableValue) -> {

 Toggle selected = printModeGroup.getSelectedToggle();
 if (selected != null) {
 String mode = String.valueOf(selected.getUserData());
 printModeMenu.setText(PRINT_MODE_MENU + " (" + mode + ")");
 if (NODE_ONLY.equals(mode)) {
 printPerimeter.setVisible(true);
 } else {
 printPerimeter.setVisible(false);
 }
 }
 });

 primaryStage.setOnShown(eventHandler -> {
 printButton.requestFocus();
 });

 primaryStage.show();
 }
}

Chapter 8 ■ JavaFX printing

281

How Does It Work?
In Listing 8-8, note that the start() method begins with creating a root pane and scene typical of all JavaFX
applications. Next, the code creates the two menu options to allow users to select a print mode. Later in the
code, the menu items will add handler code to items when they are selected. After the menus are created,
the code sets up the WebView node and the zoom slider control.

The WebView node is the main area to display an HTML document. The zoom slider control will add
handler code (InvalidationListener) to update the WebView node’s zoom property.

When displaying the zoom value as a percentage, a JavaFX Label is updated whenever the slider
value changes. Here, you will see how a string is converted to a double using a StringConverter class. The
StringConverter class converts a double value from the slider control to a text value of a label control having
a % percent symbol appended. Once the StringConverter object is created and assigned to the variable sc,
the code will bind properties based on the label’s text property (String), zoom slider’s value (Double), and
variable sc.

The following code snippet binds the properties and variables mentioned.

Bindings.bindBidirectional(zoomValueLabel.textProperty(),
 zoomSlider.valueProperty(), sc);

The code continues to create the rest of the application by adding a JavaFX TextField for a URL address
line similar to web browsers. The address line allows the user to enter a valid URL to request a specified web
page. The text field has an onAction property to set handler code that will then call the web engine’s load()
method. In other words, after the user enters the web address, she will then press the Enter key to trigger the
loading of the web page.

Next is the creation of the Print button (printButton variable) to print based on the selected print
mode. The Print button will determine the print mode before sending data to the printer. When the user
chooses Node Only, the code will pass the WebView node into the printPage() method of the PrintJob
object. If the user chooses to print the whole document, the code obtains the web engine (WebEngine) and
passes the print job to the print() method. The following snippet of code is from Listing 8-8 and it shows
the two print modes again—Node Only and Whole Web document.

// Node Only - print mode
job.printPage(browserDisplay);

// Whole Web Doc - print mode
webEngine.print(job);

Finishing up with Listing 8-8, the code creates a path outlined as a rectangle consisting of width
and height values from the default printer’s layout. Lastly, the printModeGroup (ToggleGroup) variable’s
selectedToggleProperty attaches handler code that toggles the red rectangle shape’s visible property.
Also, when the Print button is clicked, the print mode is determined by calling the printModeGroup objects’
getUserObject() method to obtaining a string. This string represents one of the two string constants:
NODE_ONLY or WHOLE_WEB_DOC.

Chapter 8 ■ JavaFX printing

282

Summary
In this chapter you began with a simple code snippet that launches a print dialog to configure your printer
before printing a JavaFX node. Next, you got acquainted with the JavaFX print APIs by querying and
displaying all of a printer’s supported features and attributes. After learning about print attributes, you were
able to programmatically configure a print job using the JobSettings object obtained from a PrinterJob
instance. While configuring a print job programmatically, you were warned about attributes not getting
modified unless the printer supports a particular attribute such as printing double sided or black and white.

After learning about how to query and configure printer attributes, you were able to learn about the
convenient print() method from the WebEngine object. Also, you learned that the print() method can print
web content that spans multiple pages, and you can automatically scale web content to fit each page. Lastly,
you got a chance to look at an example application called WebDocPrinter.java that is capable of printing
web content in two print modes: Node Only and Whole Web Document. The Node Only print mode prints
a portion of the web document by sending the WebView node to the printer, while the Whole Web Document
print mode prints the whole web page even if it spans multiple pages.

283© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_9

CHAPTER 9

Media and JavaFX

JavaFX provides a media-rich API capable of playing audio and video. The Media API allows developers to
incorporate audio and video into their Rich Internet Applications (RIAs). One of the main benefits of the Media
API is that it can distribute cross-platform media content via the Web. With a range of devices (tablet, music
player, TV, and so on) that need to play multimedia content, the need for a cross-platform API is essential.

Imagine a not-so-distant future where your TV or wall is capable of interacting with you in ways that
you’ve never dreamed possible. For instance, while viewing a movie, you could select items of clothing used
in the movie to be immediately purchased, all from the comfort of your home. With this future in mind,
developers seek to enhance the interactive qualities of their media-based applications.

In this chapter, you will learn how to play audio and video in an interactive way. Find your seats as
audio and video take center stage.

You will learn about the following JavaFX media APIs:

•	 javafx.scene.media.Media

•	 javafx.scene.media.MediaPlayer

•	 javafx.scene.media.MediaStatus

•	 javafx.scene.media.MediaView

Media Events
An event-driven architecture (EDA) is a prominent architectural pattern used to model loosely coupled
components and services that pass messages asynchronously. The JavaFX team designed the Media API to
be event-driven. In this section, you learn how to interact with media events.

With event-based programming in mind, you will discover nonblocking or callback behaviors when
invoking media functions. Instead of typing code directly to a button via an EventHandler, you will be
implementing code that will respond to the triggering of the media player’s OnXXXX events, where XXXX is the
event name.

When responding to media events, you will implement java.lang.Runnable functional interfaces
(lambda expressions). These functional interfaces are callbacks that are lazily evaluated or invoked at a
later time upon a triggered event. For instance, when playing media content, you would create a lambda
expression to be set on the OnReady event. For an example of playing media based on an event-driven
approach, see the following code block:

Media media = new Media(url);
MediaPlayer mediaPlayer = new MediaPlayer(media);
Runnable playMusic = () -> mediaPlayer.play();
mediaPlayer.setOnReady(playMusic);

Chapter 9 ■ Media and JavaFX

284

As you can see, the playMusic variable is assigned to a lambda expression (Runnable) to be passed into
the media player’s setOnReady() method. When the OnReady event has been encountered, the playMusic
Runnable closure code would be invoked. Although I have not yet discussed how to set up the Media and
MediaPlayer class instances, I wanted to first get you acquainted with these core concepts before moving
further, because these concepts are used throughout this chapter.

Table 9-1 shows all the possible media events that are raised to allow the developer to attach Runnables
(or EventHandlers). All the following are Runnable functional interfaces except for the OnMarker event.

Table 9-1. Media and MediaPlayer Events

Class On Event Method On Event Property Method Description

Media setOnError() onErrorProperty() When an error occurs

MediaPlayer setOnEndOfMedia() onEndOfMediaProperty() When the end of the media play
is reached

MediaPlayer setOnError() onErrorProperty() When an error occurs; status
becomes MediaPlayer.Status
HALTED

MediaPlayer setOnHalted() onHaltedProperty() When the media status changes
to HALTED

MediaPlayer setOnMarker() onMarkerProperty() When a Marker event is triggered

MediaPlayer setOnPaused() onPausedProperty() When the status is MediaPlayer.
Status.PAUSED

MediaPlayer setOnPlaying() onPlayingProperty() When the media is currently
playing. When the status is
MediaPlayer.Status PLAYING

MediaPlayer setOnReady() onReadyProperty() When the media player is in
Ready state. When the status is
MediaPlayer.Status READY

MediaPlayer setOnRepeat() onRepeatProperty() Event handler invoked when
the player currentTime reaches
stopTime and will be repeating.
This callback is made prior to
seeking back to startTime

MediaPlayer setOnStalled() onStalledProperty() When the media status changes
to STALLED

MediaPlayer setOnStopped() onStoppedProperty() When the status stopped is
raised. MediaPlayer.Status.
STOPPED

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/MediaPlayer.Status.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/MediaPlayer.Status.html#PAUSED
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/MediaPlayer.Status.html#PAUSED
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/MediaPlayer.Status.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/MediaPlayer.Status.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/MediaPlayer.Status.html#STOPPED
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/MediaPlayer.Status.html#STOPPED

Chapter 9 ■ Media and JavaFX

285

Playing Audio
JavaFX’s media API supports loading audio files with extensions such as .mp3, .wav, and .aiff. Also, new in
JavaFX 8 is the ability to play audio in HTTP live streaming format, also known as HLS (file extension .m3u8).
HLS is beyond the scope of this book and will not be covered in this chapter, but with some further research,
JavaFX could be used to build a live radio broadcast application.

Playing audio files is extremely straightforward in JavaFX. Given a valid URL location to a file, you would
instantiate a javafx.scene.media.Media class to load a resource. The Media object is then passed to a new
instance of a javafx.scene.media.MediaPlayer object’s constructor to create media player controls. The
last step is to invoke the media player object’s play() method when the OnReady event is triggered, at this
point the media file will begin playing. To automatically play the media file after loading the media player’s
auto play property can be set to true using the setAutoPlay() method. The following code loads and plays an
MP3 audio file located on a web server:

Media media = new Media("http://some_host/eye_on_it.mp3");
MediaPlayer mediaPlayer = new MediaPlayer(media);
mediaPlayer.setAutoPlay(true);

 ■ Note When loading media files, make sure the file location is a formatted string that follows the standard
UrL specification: https://www.w3.org/Addressing/URL/url-spec.txt and https://url.spec.whatwg.org.

The media file can reside on a web server, in a JAR file, or on a local filesystem as long as the filename
string is formatted to follow the standard URL specification.

 ■ Note For low-latency playback of audio files, use the javafx.scene.media.AudioClip class. a typical
scenario is to play a given sound multiple times consecutively, as with sound effects used in games.

An MP3 Player Example
Now that you know how to load and play audio media, let’s look at a fun example that involves playing music
and displaying a colorful visualization. In this section, you learn how to create an MP3 audio player. Before
exploring the example’s code in Listing 9-1, take a look at Figure 9-1 for a preview of the audio player’s UI.
When an audio file is being played, a spectrum display is shown as an area chart. The audio player’s controls
allows you to see the progress of the media being played and to stop, pause, and play. In Figure 9-1, the
background is white; however, the actual code will show things as a black background instead. On printed
paper, it is ideal to avoid large, dark regions.

https://www.w3.org/Addressing/URL/url-spec.txt
https://url.spec.whatwg.org/

Chapter 9 ■ Media and JavaFX

286

In this example, you will again use the file drag-and-drop metaphor, as you did in Chapter 7 with
images. In the same manner, the user navigates to the local filesystem or a browser URL address bar to
locate a media file to be dragged and dropped onto the application surface. In the case of the MP3 player,
you will locate an audio file with a file format and extension of .mp3, .wav, or .aif to be used in this
example.

As you can see in Figure 9-1, the MP3 player displays an area line chart based on the media’s audio
spectrum information. The audio player has a custom button panel control located in the bottom-right
corner. The button panel control lets the user pause, resume, and stop playing music. You’ll also notice
the seek position slider (aka, the progress and seek position slider) on the bottom-left side, which allows
users to watch the progress of the playing of the music, but also seek backward or forward in the media
(audio or video). When allowing users to seek backward or forward, the audio or video will need to be
paused first.

The Stop, Play, and Pause Buttons
The left image in Figure 9-2 shows the Stop (square) and Play (triangle wedge) buttons. When the Stop
button is clicked, the media start time is repositioned to the beginning of the file. When the Pause button is
clicked, the media will maintain its current position within the media playback. Also, as the media is paused,
the Play button will appear, so that the user can resume the music. The right image in Figure 9-2 shows
the button panel containing a Stop and a Pause button (circle with two vertical lines). While the music is
currently playing, the user can click the Pause button to pause the music.

Figure 9-2. Custom button panel control with Stop (rectangle), Play (triangle), and Pause (circle) buttons

Figure 9-1. A JavaFX audio player

http://dx.doi.org/10.1007/978-1-4842-1961-4_7

Chapter 9 ■ Media and JavaFX

287

The Progress and Seek Position Slider Control
Next, you’ll notice the progress and seek position slider control in the lower-left corner of the application
window, as shown in Figure 9-3. Assuming the media is paused, the seek position slider control allows you to
move backward or forward into the media’s current time. Also, the slider’s “thumb” (arrow) will move from
left to right as the media play is progressing.

Figure 9-3. The Seek Position slider control allows users to monitor the progress as an audio file is being played

The Close Button
Finally, notice the Close button, shown in Figure 9-4, which simply allows the user to quit the application.

Figure 9-4. The Close button, located in the upper-right corner, allows the user to stop the media player and
quit the application

MP3 Audio Player Source Code
Listing 9-1 shows the source code for a JavaFX-based MP3 audio player. The source code from a previous
editions of this book was further refactored to break things into methods instead of having one large start()
method. In addition to the refactoring, I pulled out the code that used a programmatic approach to style
JavaFX nodes. Instead of styling JavaFX nodes with setter() methods, I simply created a CSS style sheet
(declarative style). The style sheet shown in Listing 9-2 contains the CSS selector definitions.

Chapter 9 ■ Media and JavaFX

288

Listing 9-1. An MP3 Audio Player Application (PlayingAudio.java)

package com.jfxbe;

import java.net.MalformedURLException;
import javafx.application.*;
import javafx.beans.property.*;
import javafx.beans.value.ChangeListener;
import javafx.event.EventHandler;
import javafx.geometry.Point2D;
import javafx.scene.*;
import javafx.scene.control.Alert;
import javafx.scene.control.ButtonType;
import javafx.scene.control.Slider;
import javafx.scene.input.*;
import javafx.scene.layout.*;
import javafx.scene.media.*;
import javafx.scene.media.MediaPlayer.Status;
import javafx.scene.paint.Color;
import javafx.scene.shape.*;
import javafx.stage.*;
import javafx.util.Duration;

/**
 * Playing Audio using the JavaFX MediaPlayer API.
 *
 * @author carldea
 */
public class PlayingAudio extends Application {

 private MediaPlayer mediaPlayer;
 private Point2D anchorPt;
 private Point2D previousLocation;
 private ChangeListener<Duration> progressListener;
 private BooleanProperty playAndPauseToggle = new SimpleBooleanProperty(true);
 private EventHandler<MouseEvent> mouseEventConsumer = event -> event.consume();

 /**
 * @param args he command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 // Remove native window borders and title bar
 primaryStage.initStyle(StageStyle.TRANSPARENT);

 // Create the application surface or background
 Pane root = new AnchorPane();
 root.setId("app-surface");

Chapter 9 ■ Media and JavaFX

289

 Scene scene = new Scene(root, 551, 270, Color.rgb(0, 0, 0, 0));

 // load JavaFX CSS style
 scene.getStylesheets()
 .add(getClass().getResource("/playing-audio.css")
 .toExternalForm());
 primaryStage.setScene(scene);

 // Initialize stage to be movable via mouse
 initMovablePlayer(primaryStage);

 // Create a Path instance for the area chart
 Path chartArea = new Path();
 chartArea.setId("chart-area");

 // Create the button panel (stop, play and pause)
 Node buttonPanel = createButtonPanel(root);
 AnchorPane.setRightAnchor(buttonPanel, 3.0);
 AnchorPane.setBottomAnchor(buttonPanel, 3.0);

 // Create a slider for our progress and seek control
 Slider progressSlider = createSlider();
 AnchorPane.setLeftAnchor(progressSlider, 2.0);
 AnchorPane.setBottomAnchor(progressSlider, 2.0);

 // Updates slider as audio/video is progressing (play)
 progressListener = (observable, oldValue, newValue) ->
 progressSlider.setValue(newValue.toSeconds());

 // Initializing Scene to accept files
 // using drag and dropping over the surface to load media
 initFileDragNDrop(root);

 // Create the close button
 Node closeButton = createCloseButton();
 AnchorPane.setRightAnchor(closeButton, 2.0);
 AnchorPane.setTopAnchor(closeButton, 2.0);

 root.getChildren()
 .addAll(chartArea,
 buttonPanel,
 progressSlider,
 closeButton);

 primaryStage.centerOnScreen();
 primaryStage.show();
 }

Chapter 9 ■ Media and JavaFX

290

 /**
 * Initialize the stage to allow the mouse cursor to move the application
 * using dragging.
 * @param primaryStage - The applications primary Stage window.
 */
 private void initMovablePlayer(Stage primaryStage) {

 Scene scene = primaryStage.getScene();
 Pane root = (Pane) scene.getRoot();
 root.setPickOnBounds(true);
 // starting initial anchor point
 root.setOnMousePressed(mouseEvent ->
 anchorPt = new Point2D(mouseEvent.getScreenX(),
 mouseEvent.getScreenY())
);

 // Dragging the stage by moving its x,y
 // based on the previous location.
 root.setOnMouseDragged(mouseEvent -> {
 if (anchorPt != null && previousLocation != null) {
 primaryStage.setX(previousLocation.getX()
 + mouseEvent.getScreenX()
 - anchorPt.getX());
 primaryStage.setY(previousLocation.getY()
 + mouseEvent.getScreenY()
 - anchorPt.getY());
 }
 });

 // Set the new previous to the current mouse x,y coordinate
 root.setOnMouseReleased(mouseEvent ->
 previousLocation = new Point2D(primaryStage.getX(),
 primaryStage.getY())
);

 // Initialize previousLocation after Stage is shown
 primaryStage.addEventHandler(WindowEvent.WINDOW_SHOWN,
 (WindowEvent t) -> {
 previousLocation = new Point2D(primaryStage.getX(),
 primaryStage.getY());
 });
 }

 /**
 * Initialize the Drag and Drop ability for media files.
 * @param root - The Scene graph's root pane.
 */
 private void initFileDragNDrop(Pane root) {
 // Drag over surface
 root.setOnDragOver(dragEvent -> {
 Dragboard db = dragEvent.getDragboard();

Chapter 9 ■ Media and JavaFX

291

 if (db.hasFiles() || db.hasUrl()) {
 dragEvent.acceptTransferModes(TransferMode.LINK);
 } else {
 dragEvent.consume();
 }
 });

 // Dropping over surface
 root.setOnDragDropped(dragEvent -> {
 Dragboard db = dragEvent.getDragboard();
 boolean success = false;
 String filePath = null;
 if (db.hasFiles()) {
 success = true;
 if (db.getFiles().size() > 0) {
 try {
 // obtain file and play media
 filePath = db.getFiles()
 .get(0)
 .toURI().toURL().toString();
 playMedia(filePath, root);
 } catch (MalformedURLException ex) {
 ex.printStackTrace();
 }
 }
 } else {
 // audio file from some host or jar
 playMedia(db.getUrl(), root);
 success = true;
 }

 dragEvent.setDropCompleted(success);
 dragEvent.consume();
 });
 }

 /**
 * Creates a node containing the audio player's
 * stop, pause and play buttons.
 *
 * @param root The Scene graphs root pane.
 * @return Node A button panel having play,
 * pause and stop buttons.
 */
 private Node createButtonPanel(Pane root) {

 // create button control panel
 FlowPane buttonPanel = new FlowPane();
 buttonPanel.setId("button-panel");

Chapter 9 ■ Media and JavaFX

292

 // stop button control
 Node stopButton = new Rectangle(10, 10);
 stopButton.setId("stop-button");
 stopButton.setOnMouseClicked(mouseEvent -> {
 if (mediaPlayer != null) {
 updatePlayAndPauseButtons(true, root);
 if (mediaPlayer.getStatus() == Status.PLAYING ||
 mediaPlayer.getStatus() == Status.PAUSED) {

 mediaPlayer.stop();
 }
 playAndPauseToggle.set(false);
 }
 });

 // Toggle Button containing a Play and Pause button
 StackPane playPauseToggleButton = new StackPane();

 // Play button control
 Arc playButton = new Arc(12, // center x
 16, // center y
 15, // radius x
 15, // radius y
 150, // start angle
 60); // length
 playButton.setId("play-button");
 playButton.setType(ArcType.ROUND);
 playButton.setMouseTransparent(true);

 // Pause control
 Group pauseButton = new Group();
 pauseButton.setId("pause-button");
 Circle pauseBackground = new Circle(12, 16, 10);
 pauseBackground.getStyleClass()
 .add("pause-circle");

 Line firstLine = new Line(6, // start x
 6, // start y
 6, // end x
 14); // end y
 firstLine.getStyleClass()
 .addAll("pause-line", "first-line");

 Line secondLine = new Line(6, // start x
 6, // start y
 6, // end x
 14); // end y
 secondLine.getStyleClass()
 .addAll("pause-line", "second-line");

Chapter 9 ■ Media and JavaFX

293

 pauseButton.getChildren()
 .addAll(pauseBackground, firstLine, secondLine);
 pauseButton.setMouseTransparent(true);

 playPauseToggleButton.getChildren()
 .addAll(playButton, pauseButton);
 playPauseToggleButton.setOnMouseEntered(mouseEvent -> {
 Color red = Color.rgb(255, 0, 0, .90);
 pauseBackground.setStroke(red);
 firstLine.setStroke(red);
 secondLine.setStroke(red);
 playButton.setStroke(red);
 });
 playPauseToggleButton.setOnMouseExited(mouseEvent -> {
 Color white = Color.rgb(255, 255, 255, .90);
 pauseBackground.setStroke(white);
 firstLine.setStroke(white);
 secondLine.setStroke(white);
 playButton.setStroke(white);
 });
 // Boolean property toggling the playing and pausing
 // the media player
 playAndPauseToggle.addListener(
 (observable, oldValue, newValue) -> {

 if (newValue) {
 // Play
 if (mediaPlayer != null) {
 updatePlayAndPauseButtons(false, root);
 mediaPlayer.play();
 }
 } else {
 // Pause
 if (mediaPlayer!=null) {
 updatePlayAndPauseButtons(true, root);
 if (mediaPlayer.getStatus() == Status.PLAYING) {
 mediaPlayer.pause();
 }
 }
 }
 });

 // Press toggle button
 playPauseToggleButton.setOnMouseClicked(mouseEvent ->{
 if (mouseEvent.getClickCount() == 1) {
 playAndPauseToggle.set(!playAndPauseToggle.get());
 }
 });

Chapter 9 ■ Media and JavaFX

294

 buttonPanel.getChildren()
 .addAll(stopButton,
 playPauseToggleButton);
 buttonPanel.setPrefWidth(50);

 // Filter out to prevent the root node to
 // receive mouse events to drag the window around.
 buttonPanel.addEventHandler(MouseEvent.ANY, mouseEventConsumer);

 return buttonPanel;
 }

 /**
 * The close button to exit application
 *
 * @return Node representing a close button.
 */
 private Node createCloseButton() {

 StackPane closeButton = new StackPane();
 closeButton.setId("close-button");

 Node closeBackground = new Circle(0, 0, 7);
 closeBackground.setId("close-circle");
 SVGPath closeXmark = new SVGPath();
 closeXmark.setId("close-x-mark");
 closeXmark.setContent("M 0 0 L 6 6 M 6 0 L 0 6");

 closeButton.getChildren()
 .addAll(closeBackground,
 closeXmark);
 // exit app
 closeButton.setOnMouseClicked(mouseEvent -> {
 if (mediaPlayer != null){
 mediaPlayer.stop();
 }
 Platform.exit();
 });
 // Filter mouse events from propagating to the parent.
 closeButton.addEventHandler(MouseEvent.ANY, mouseEventConsumer);
 return closeButton;
 }

 /**
 * After a file is dragged onto the application a new MediaPlayer
 * instance is created with a media file.
 *
 * @param url - The URL pointing to an audio file.
 * @param root - The scene graph's root pane.
 */
 private void playMedia(String url, Pane root) {

Chapter 9 ■ Media and JavaFX

295

 if (mediaPlayer != null) {
 mediaPlayer.pause();
 mediaPlayer.setOnPaused(null);
 mediaPlayer.setOnPlaying(null);
 mediaPlayer.setOnReady(null);
 mediaPlayer.currentTimeProperty()
 .removeListener(progressListener);
 mediaPlayer.setAudioSpectrumListener(null);
 }

 // create a new media player
 Media validMedia = null;
 try {
 validMedia = new Media(url);
 } catch (Exception e) {
 new Alert(Alert.AlertType.ERROR, e.getMessage(), ButtonType.OK).showAndWait()
 .filter(response -> response == ButtonType.OK)
 .ifPresent(response -> e.printStackTrace());
 return;
 }
 final Media media = validMedia;

 mediaPlayer = new MediaPlayer(media);

 // as the media is playing move the slider for progress
 mediaPlayer.currentTimeProperty()
 .addListener(progressListener);

 mediaPlayer.setOnReady(() -> {
 // display media's metadata
 media.getMetadata().forEach((name, val) -> {
 System.out.println(name + ": " + val);
 });
 updatePlayAndPauseButtons(false, root);
 Slider progressSlider =
 (Slider) root.lookup("#seek-position-slider");
 progressSlider.setValue(0);
 progressSlider.setMax(mediaPlayer.getMedia()
 .getDuration()
 .toSeconds());
 mediaPlayer.play();
 });

 // Rewind back to the beginning
 mediaPlayer.setOnEndOfMedia(()-> {
 updatePlayAndPauseButtons(true, root);
 // change buttons to the play button
 mediaPlayer.stop();
 playAndPauseToggle.set(false);
 });

Chapter 9 ■ Media and JavaFX

296

 // Obtain chart path area
 Path chartArea = (Path) root.lookup("#chart-area");

 int chartPadding = 5;

 // The frequency domain is the X Axis.
 // The freqAxisY is the Y coordinate of the freq axis.
 double freqAxisY = root.getHeight() - 45;

 // The chart's height
 double chartHeight = freqAxisY - chartPadding;

 // In the CSS file the padding is set with the following:
 // -fx-border-insets: 6 6 6 6; (top, right, bottom, left)
 // -fx-border-width: 1.5;
 // Below the padding will equal 7.5 which is the union of
 // the inset 6 (left) and border width of 1.5)
 double padding = root.getBorder().getInsets().getLeft();
 double chartWidth = root.getWidth() - ((2 * padding) + (2 * chartPadding));

 // Audio sound is in decibels and the magnitude is from 0 to -60
 // Squaring the magnitudes stretches the plot. Also dividing into
 // the chart height will normalize or keep the y coordinate within the
 // chart bounds.
 double scaleY = chartHeight / (60 * 60);
 double space = 5; // between each data point. Helps stretch the chart width-wise.

 mediaPlayer.setAudioSpectrumListener(
 (double timestamp,
 double duration,
 float[] magnitudes,
 float[] phases) -> {
 if (mediaPlayer.getStatus() == Status.PAUSED || mediaPlayer.getStatus() ==

Status.STOPPED) {
 return;
 }
 // The freqBarX is the x coordinate to plot
 double freqBarX = padding + chartPadding;

 // The scaleX is one unit. This keeps the plotting within the chart width area

 double scaleX = chartWidth / (magnitudes.length * space);

 // Checks if the data array is created.
 // If not create the number of path components to be
 // added to the chartArea path. The check of the size minus 3 is excluding
 // the first MoveTo element, and the last two elements LineTo, and ClosePath
 // respectively.
 if ((chartArea.getElements().size() - 3) != magnitudes.length) {

Chapter 9 ■ Media and JavaFX

297

 // Move to bottom left of chart.
 chartArea.getElements().clear();
 chartArea.getElements().add(new MoveTo(freqBarX, freqAxisY));

 // Update all LineTo elements to draw the line chart
 for(float magnitude:magnitudes) {
 double dB = magnitude * magnitude;
 dB = chartHeight - dB * scaleY;
 chartArea.getElements().add(new LineTo(freqBarX, freqAxisY - dB));
 freqBarX+=(scaleX * space);
 }

 // Close the path by adding LineTo to the bottom right
 // of the chart and close path to form an shape.
 chartArea.getElements().add(new LineTo(freqBarX, freqAxisY));
 chartArea.getElements().add(new ClosePath());
 } else {
 // If elements already created
 // go through and update path elements
 int idx = 0;
 for(float magnitude:magnitudes) {
 double dB = magnitude * magnitude;
 dB = chartHeight - dB * scaleY;

 // skip first MoveTo element in path.
 idx++;

 // update elements with a x and y
 LineTo dataPoint = (LineTo) chartArea.getElements().get(idx);
 dataPoint.setX(freqBarX);
 dataPoint.setY(freqAxisY - dB);
 freqBarX += (scaleX * space);
 }
 }
 });

 }

 /**
 * Sets play button visible and pause button not visible when
 * playVisible is true otherwise the opposite.
 *
 * @param playVisible - value of true the play becomes visible
 * and pause non visible, otherwise the opposite.
 * @param root - The root node (AnchorPane)
 */
 private void updatePlayAndPauseButtons(boolean playVisible, Parent root) {
 Node playButton = root.lookup("#play-button");
 Node pauseButton = root.lookup("#pause-button");

Chapter 9 ■ Media and JavaFX

298

 if (playVisible) {
 // show play button
 playButton.toFront();
 playButton.setVisible(true);
 pauseButton.setVisible(false);
 pauseButton.toBack();

 } else {
 // show pause button
 pauseButton.toFront();
 pauseButton.setVisible(true);
 playButton.setVisible(false);
 playButton.toBack();
 }

 }
 /**
 * A position slider to seek backward and forward
 * that is bound to a media player control.
 *
 * @return Slider control bound to media player.
 */
 private Slider createSlider() {
 Slider slider = new Slider(0, 100, 1);
 slider.setId("seek-position-slider");
 slider.valueProperty()
 .addListener((observable) -> {
 if (slider.isValueChanging()) {
 // must check if media is paused before seeking
 if (mediaPlayer != null &&
 mediaPlayer.getStatus() == MediaPlayer.Status.PAUSED) {

 // convert seconds to millis
 double dur = slider.getValue() * 1000;
 mediaPlayer.seek(Duration.millis(dur));
 }
 }
 });
 return slider;
 }
}

The application’s JavaFX CSS styling file named playing-audio.css, as shown in Listing 9-2, contains
IDs and classes for various elements in the audio player.

Listing 9-2. The JavaFX CSS Styling for the Audio Player Application

.root {
 -white-ish: rgba(255, 255, 255, .90);
 -black-ish: rgba(0, 0, 0, .80);
}

Chapter 9 ■ Media and JavaFX

299

#app-surface {
 /* Application surface */
 -fx-snap-to-pixel: false;

 /* Background */
 -fx-background-color: -black-ish;
 -fx-background-radius: 7;
 -fx-background-insets: 2 2 2 2;

 /* Border */
 -fx-border-color: -white-ish;
 -fx-border-style: solid;
 -fx-border-insets: 6 6 6 6;
 -fx-border-width: 1.5;
 -fx-border-radius: 5;
}

#chart-area {
 -fx-stroke: white;
 -fx-stroke-width: 1.5;
 -fx-stroke-type: outside;
 -fx-smooth: true;
 -fx-stroke-line-cap: round;
 -fx-stroke-line-join: round;
 /*
 chartPadding = 5
 freqAxisY = 225
 */
 -fx-fill: linear-gradient(from 5 5 to 5 225,
 rgba(255, 0, 0, .70) 0%, /* Red */
 rgba(255, 165, 0, .70) 40%, /* Orange */
 rgba(255, 255, 0, .70) 70%, /* Yellow */
 rgba(0, 255, 0, .70) 80%, /* Green */
 rgba(0, 0, 255, .70) 90%, /* Blue */
 rgba(75,0,128,.70) 95%, /* Indigo */
 rgba(238,130,238,.70) 100%) /* Violet */
}

#button-panel {
 /* Background */
 -fx-background-color: -black-ish;
 -fx-background-radius: 7;

 /* Border */
 -fx-border-radius: 5;
 -fx-border-color: -white-ish;
 -fx-border-style: solid;
 -fx-border-width: 1.5;
 -fx-stroke: -white-ish;
 -fx-alignment: center-right;
 -fx-hgap: 5;
}

Chapter 9 ■ Media and JavaFX

300

#stop-button {
 -fx-arc-width: 5;
 -fx-arc-height: 5;
 -fx-fill: -white-ish;
 -fx-stroke: -white-ish;
}
#stop-button:hover {
 -fx-stroke: red;
}

#play-button {
 -fx-fill: -white-ish;
}
#play-button:hover {
 -fx-stroke: derive(red, 90%);
}

.pause-circle {
 -fx-stroke: -white-ish;
 -fx-stroke-width: 1.5;
}

.pause-line {
 -fx-stroke-width: 3;
 -fx-stroke: -white-ish;
 -fx-translate-y: 6;
}

.pause-line.first-line {
 -fx-translate-x: 4;
}

.pause-line.second-line {
 -fx-translate-x: 8;
}

/* Close button */
#close-x-mark {
 -fx-stroke-width: 1.5;
 -fx-stroke: -black-ish;
}

#close-circle {
 -fx-stroke: rgba(235, 90, 78, .90);
 -fx-fill: rgba(186, 90, 78, .90);
 -fx-snap-to-pixel: false;
}
#close-circle:hover {
 -fx-stroke: derive(red, 90%);
}

Chapter 9 ■ Media and JavaFX

301

/* Play progress and seek slider */
.slider {
 -fx-show-tick-labels: false;
 -fx-show-tick-marks: true;
}

/* A triangle shaped thumb */
.slider .thumb {
 -fx-shape: "M 2 2 L 6 6 L 2 10 L 3 6 Z";
}
.slider .thumb:hover {
 -fx-border-color:derive(red, 90%);
}
.slider .track {
 -fx-pref-height: 6;
 -fx-background-radius: 2;
 -fx-background-color: derive(black, 40%);
 -fx-border-color:derive(gray, 80%);
}
.slider .axis .axis-label {
 -fx-text-fill: white;
}

How It Works
Before beginning, I want to describe some changes that I made in this version of the book from the earlier
edition. I basically refactored (yet again) the source code from the prior book’s edition relating to media.
Because of this refactoring, I mention privately scoped methods quite often. These private methods are used
to break up the code into more manageable pieces, so that you can better focus on each feature of the media
player application.

Assuming you’ve built and ran Listing 9-1, you will begin by dragging and dropping an audio file onto
the example MP3 player, as you did in Chapter 7’s Photo Viewer application, where you learned how to use
the drag-and-drop desktop metaphor to load files into a JavaFX application. Instead of image files, however,
you load audio files. To load audio files, JavaFX currently supports the following file formats: .mp3, .wav,
.aiff, and .m3u8. To see the supported encoding types, refer to the Javadocs documentation of the package
summary of javafx.scene.media.

Looking back at Figure 9-2, you might notice that the button panel control has a look and feel like the
Photo Viewer application in Figure 7-1 of Chapter 7. In this example, I’ve modified the button controls to
resemble buttons, similar to many media player applications.

As an bonus, the MP3 player will appear as an irregularly shaped, semitransparent window without a
title bar or borders. The application window can also be dragged around the desktop using the mouse. Now
that you know how to operate the music player, let’s walk through the code.

http://dx.doi.org/10.1007/978-1-4842-1961-4_7
http://dx.doi.org/10.1007/978-1-4842-1961-4_7#Fig1
http://dx.doi.org/10.1007/978-1-4842-1961-4_7

Chapter 9 ■ Media and JavaFX

302

In Table 9-2, the first variable is a reference to a media player (MediaPlayer) object that will be created
in conjunction with a Media object containing an audio file. Next, you can see two variables named anchorPt
and previousLocation. These variables are used to maintain the stage window’s positions on the desktop
when the user drags the application window across the screen.

The anchorPt variable is used to save the starting coordinates of a mouse press when the user begins to
drag the window. When calculating the upper-left bounds of the application window during a mouse-drag
operation, the previousLocation variable will contain the previous window’s screen x- and y-coordinates.

After describing the variables that keep track of the window’s position, you will see the
progressListener variable. Here the progressListener is responsible for adjusting the slider’s indicator
(thumb) as the audio file is being played.

The variable playAndPauseToggle is responsible for determining when the user has clicked on the
Pause and Play button controls. As you will see later, the property will have an attached change listener to
show and hide the Play and Pause buttons inside of a StackPane (see updatePlayAndPauseButtons()).

Lastly, the variable mouseEventConsumer is an event filter to be applied to the button panel and Close
button. Event filters will prevent mouse events from propagating to the parent node (AnchorPane). In this
scenario, the parent node is the root node of the Scene graph. This prevents dragging the window when the
mouse cursor is clicking on the button panel and Close button.

While the application could’ve had more state variables to reference objects such as nodes on the Scene
graph, you can actually look them up by ID. This of course assumes that a JavaFX node’s unique ID was
set using the setId() method. For example, if the Scene graph contains a node with an ID of stop-button
(node.setId("stop-button")), you could later invoke the scene.lookup("#stop-button") method to
retrieve the Stop button node from the Scene graph. Remember to prefix the id with an # symbol.

Table 9-2. MP3 Player Application Instance Variables

Variable Data Type Example Description

mediaPlayer MediaPlayer - A media player reference that plays
audio and video.

anchorPt Point2D (100,100) Screen coordinates where the user
begins to drag the stage window.

previousLocation Point2D (0, 0) The upper-left corner of the stage’s
previous coordinate; assists in
dragging the stage window.

progressListener ChangeListener<Duration> 5 (sec.) Bound to the media player’s
currentTimeProperty() method.
Updates the UI slider control.

playAndPauseToggle BooleanProperty true A Boolean property having a
change listener to pause and play
an audio file. When the Pause
button is displayed, the property is
true; otherwise, it is false.

mouseEventConsumer EventHandler<MouseEvent> - Event filter to prevent mouse events
sent to the parent node.

The Audio Player Application’s Instance Variables
First, the code contains instance variables at the top of the class that will maintain state information for the
lifetime of the application. Table 9-2 describes all instance variables used in the MP3 audio player application.

Chapter 9 ■ Media and JavaFX

303

Setting Up the Stage Window
Now that you know about the instance (state) variables, let’s jump into the start() method code block.
In previous chapters relating to GUIs, you saw that GUI applications normally contain a title bar and
windowed borders surrounding the scene. Here, I want to demonstrate the ability to create irregularly
shaped semi-transparent windows. The code invokes the stage (primaryStage) object’s initStyle()
method with a StageStyle.TRANSPARENT value; as a result, the stage window has no title bar (is undecorated)
and is transparent.

After initializing the stage’s style, the code creates a root node as an AnchorPane. I use an AnchorPane
because it is easy to position the controls relative to the edges of the application window. You’ll notice the
setId() method called with app-surface as its unique ID. If you are not familiar with JavaFX CSS, spend
some time looking at Chapter 15 on topic of custom UIs. We will employ the styling definitions shown in
Listing 9-2. To reiterate the portion of CSS styling code, the root node from Listing 9-2 is shown here:

.root {
 -white-ish: rgba(255, 255, 255, .90);
 -black-ish: rgba(0, 0, 0, .80);
}

#app-surface {
 /* Application surface */
 -fx-snap-to-pixel: false;

 /* Background */
 -fx-background-color: -black-ish;
 -fx-background-radius: 7;
 -fx-background-insets: 2 2 2 2;

 /* Border */
 -fx-border-color: -white-ish;
 -fx-border-style: solid;
 -fx-border-insets: 6 6 6 6;
 -fx-border-width: 1.5;
 -fx-border-radius: 5;
}
//... Code omitted

After applying the CSS styling to the root node, as shown in Figure 9-5, you’ll notice a translucent
rounded background with a white border inset slightly from the outer edges.

http://dx.doi.org/10.1007/978-1-4842-1961-4_15

Chapter 9 ■ Media and JavaFX

304

Next, the code takes the usual step of setting up the scene by applying a JavaFX style sheet file playing-
audio.css. Listing 9-2 shows the contents of the playing-audio.css file. Notice that the root class selector
has two global color attributes, named -white-ish and -black-ish. I created these to be reused in other
styling definition blocks. If you are not familiar with JavaFX CSS styling, refer to Chapter 15 on custom UIs.

Back in the start() method from Listing 9-1, after applying the CSS style sheet, the code invokes the
private initMovablePlayer() method, which is responsible for making the stage window dragable. Because
you don’t have a native title bar, you will find it convenient to be able to drag any part of the application’s
surface. The initMovablePlayer() method uses the instance variables anchorPt and previousLocation
mentioned earlier to calculate points based on relative screen coordinates when mouse events (such as
press, drag, or release) are triggered.

The Spectrum Area Chart Visualization (the Scene.lookup() Method)
After creating a scene and stage capable of being dragged using the mouse, the code creates a Path instance
with an ID of chart-area. This path will contain Path elements that will draw a spectrum chart as a
visualization as the audio media is being played. As you will see later in the code, the MediaPlayer instance
will attach an audio spectrum listener to update path elements that will draw an area chart filled with a
linear gradient.

While a JavaFX node having a unique ID can be styled using CSS selectors, the ID can also be used to be
recalled or looked up within a parent node or a scene by using the lookup(id) method. Be aware that an ID
set on a node should be unique. According to the Javadocs documentation, “If more than one node matches
the specified selector, this function returns the first of them. If no nodes are found with this ID, then null is
returned.”

 ■ Note to look up a node in a Scene graph or a parent node, use the lookup() method by passing in the
child’s id. Be sure to prefix the string id with the symbol #. For example, Node myButton = scene.lookup
("#my-button");.

Using the scene’s lookup() method is a convenient way to retrieve nodes from the Scene graph in a
random-access way without having to create globally defined instance variables.

Figure 9-5. JavaFX CSS styling the root node of the Audio Player application. The CSS selector app-surface
will create a translucent rounded background with a white border inset slightly from the outer edges.

http://dx.doi.org/10.1007/978-1-4842-1961-4_15

Chapter 9 ■ Media and JavaFX

305

Creating a Custom Button Panel
Continuing with the start() method, the code creates a custom button panel by invoking the private
method createButtonPanel(). After invoking the createButtonPanel() method to create a custom button
panel, the code will position the control to the bottom-right corner. The following code snippet sets the
button panel to the bottom-right corner with a 3.0 pixel padding.

AnchorPane.setRightAnchor(buttonPanel, 3.0);
AnchorPane.setBottomAnchor(buttonPanel, 3.0);

Looking deeper into the createButtonPanel() method, it begins by using JavaFX shapes that will
represent the Stop, Play, and Pause buttons for the MP3 audio player. When creating shapes or custom
nodes, you can add event handlers to nodes in order to respond to mouse events. Although there are
advanced ways to build custom controls in JavaFX, I chose to build my own button icons from simple
rectangles, arcs, circles, and lines. To see more advanced ways to create custom controls, refer to Chapter 15
on custom UIs.

To attach event handlers to a mouse press, simply call the setOnMouseClick() method by passing in
an EventHandler<MouseEvent> instance. The following code block adds a lambda expression that responds
to a mouse click for the stopButton node. Listing 9-3 shows the code for the Stop button from the private
method createButtonPanel() from Listing 9-1. The Stop button will toggle the Pause button to a Play
button and position the player to the beginning of the file. The event handler for a mouse clicked event is
attached to the Stop button.

Listing 9-3. Code for the Stop Button from the Private Method createButtonPanel()

// stop button control
Node stopButton = new Rectangle(10, 10);
stopButton.setId("stop-button");
stopButton.setOnMouseClicked(mouseEvent -> {
 if (mediaPlayer != null) {
 updatePlayAndPauseButtons(true, root);
 if (mediaPlayer.getStatus() == Status.PLAYING ||
 mediaPlayer.getStatus() == Status.PAUSED) {

 mediaPlayer.stop();
 }
 playAndPauseToggle.set(false);
 }
});

In Listing 9-3, a square node (Rectangle) is defined as the Stop button, set with an ID of stop-button.
The ID will uniquely identify a node for the CSS styling in Listing 9-2. Next, the code sets an event handler
for the OnMouseClicked event to stop the media player from playing. You’ll notice the method call to updateP
layAndPauseButtons(true, root), which toggles the display of the Play button and hides the Pause button.
Otherwise, you pass in a Boolean value of false, so the Pause button will be displayed and the Play button
will be hidden. The last parameter is the root node to be used to look up the Play and Pause buttons.

Still within the createButtonPanel() method, the rest of the code creates a StackPane to contain
the Pause and Play button shapes. Next, you see that the Play button is created using an Arc shape. When
creating a toggle-like button for the Pause and Play controls, the code uses a StackPane as a container to
hold both Pause and Play shapes. Since I wanted to treat the StackPane as one button, I had to ignore the
mouse events on the Pause and Play shapes. Both Play and Pause nodes ignore mouse events by invoking the
setMouseTransparent(true) method. That way, the OnMouseClicked event’s handler code is attached to the
StackPane to toggle which button shape to display and to update the Boolean playAndPauseToggle property.

http://dx.doi.org/10.1007/978-1-4842-1961-4_15

Chapter 9 ■ Media and JavaFX

306

The Boolean property variable playAndPauseToggle is set to false. The playAndPauseToggle property
is responsible for actually pausing and playing the media player. Near the end of the createButtonPanel()
method, a change listener is attached to the playAndPauseToggle property, which responds when the
value changes. The code shown here is from Listing 9-2, but it’s reshown in Listing 9-4 to point out that the
property is used to actually control the pausing and playing the media player. When the Boolean property
is true the Pause button is shown and the media gets played. Otherwise, the Play button is shown and the
media is paused.

Listing 9-4. Change Listener Added to the Boolean Property playAndPauseToggle

// Boolean property toggling the playing and pausing
// the media player
playAndPauseToggle.addListener((observable, oldValue, newValue) -> {
 if (newValue) {
 // Play
 if (mediaPlayer != null) {
 updatePlayAndPauseButtons(false, root);
 mediaPlayer.play();
 }
 } else {
 // Pause
 if (mediaPlayer!=null) {
 updatePlayAndPauseButtons(true, root);
 if (mediaPlayer.getStatus() == Status.PLAYING) {
 mediaPlayer.pause();
 }
 }
 }
});

The media player object is a state machine that transitions between states internally. Some methods use
other threads that aren’t on the JavaFX application thread. So it is typically good practice to query the state
of the media player before invoking methods such as the pause() or stop() method. In the case of the Pause
button, you’ve seen that the code checks for the Status.PLAYING before invoking the pause() method on the
media player object.

Because all the buttons use code similar to Listing 9-3 and the preceding code snippet (EventHandler),
I will list only the method calls that each button will ultimately perform on the media player. The following
actions are responsible for stopping, pausing, playing, and exiting the MP3 player application:

Stop - mediaPlayer.stop();
Pause - mediaPlayer.pause();
Play - mediaPlayer.play();
Close - Platform.exit();

Lastly, before returning the button panel, the code adds an event filter to prevent any mouse events to
be received on its parent node. Because the parent node (root) has code that listens for mouse drag events,
you don’t want it to interfere when the user is trying to click on buttons inside the button panel. In other
words, you can’t drag the application around the screen when your mouse pointer is over the button panel
region. The following statement filters any mouse events that are propagated to the parent node.

// Filter out to prevent the root node to
// receive mouse events to drag the window around.
buttonPanel.addEventHandler(MouseEvent.ANY, mouseEventConsumer);

Chapter 9 ■ Media and JavaFX

307

Play Progress, Rewind, and Fast Forward
After creating the custom button panel in the start() method, the code invokes the private method
createSlider(), which returns a JavaFX Slider UI control. The slider control represents a progress position
slider that moves based on the position of the media as it is being played. When the media is paused, the
user may also drag the slider control’s “thumb” to go backward and forward in time through the audio or
video media.

Seeking Backward or Forward in the Media

In the private method createSlider(), the following code implements a slider control representing a
progress (seek) position slider control for the MP3 audio player application:

Slider slider = new Slider(0, 100, 1);
slider.setId("seek-position-slider");
slider.valueProperty()
 .addListener((observable) -> {
 if (slider.isValueChanging()) {
 // must check if media is paused before seeking
 if (mediaPlayer != null &&
 mediaPlayer.getStatus() == MediaPlayer.Status.PAUSED) {

 // convert seconds to millis
 double dur = slider.getValue() * 1000;
 mediaPlayer.seek(Duration.millis(dur));
 }
 }
 });

Notice the slider control’s valueProperty() method and the call to the addListener() method, which
has an InvalidationListener (lambda expression) that detects whether the user has moved the slider
control, thus changing the value property. The lambda parameter for an InvalidationListener (functional
interface) is an object of type javafx.beans.Observable that refers to the slider’s value property.

The code first checks whether the slider’s value has changed by using the method isValueChanging().
It’s important to perform this check before the seek() method because of performance efficiencies.
Using the InvalidationListener, the slider’s value changes only when it’s needed (an example of lazy
evaluation). If you used a ChangeListener (eager evaluation), the value would change too often and could
overwhelm the media player. As a reminder, the InvalidationListener is a lambda with a single parameter
of type Observable, while a ChangeListener is a lambda expression with three parameters consisting of an
ObservableValue, an old value, and a new value.

Using a Slider Control to Show Play Progress

Still in the start() method, the code assigns the variable progressListener to a ChangeListener (lambda)
instance, as shown in the following code snippet:

// Updates slider as audio/video is progressing (play)
progressListener = (observable, oldValue, newValue) ->
 progressSlider.setValue(newValue.toSeconds());

Chapter 9 ■ Media and JavaFX

308

The progressListener is responsible for updating the slider’s “thumb” as the media player is playing
audio or video media. The listener is added to the media player object’s currentTimeProperty() in
the playMedia() method. In the private method playMedia(), the code first cleans up by removing the
singleton progressListener instance, which was bound to an old media player object, and adds the
progressListener onto a newly created media player object. By removing old references to the progress
listener, you allow the Java runtime to perform its garbage collection process, thus preventing memory leaks.
Currently, a media object cannot be replaced in a MediaPlayer instance with a setter. In order to load new
media, a new MediaPlayer instance must be created. You’ll notice in the code showing the media loaded
using the constructor MediaPlayer(media) that it takes a Media instance.

Setting Up Drag-and-Drop Support for Audio Files
Continuing with the start() method, notice the call to a private method initFileDragNDrop(). I created
this method to support the drag-and-drop capability that is responsible for loading an audio file from the
local filesystem or browser URL address field. Because the implementation is nearly identical to Chapter 5’s
Photo Viewer example, I will not discuss the code details, except to mention the invocation of the private
method playMedia(). After the file is dragged and dropped, the URL string is passed into the method
playMedia(). This method will conveniently clean up and create a new media player and immediately play
the media file.

Audio File Drag and Drop

/**
 * Initialize the Drag and Drop ability for media files.
 * @param root - The Scene graph's root pane.
 */
 private void initFileDragNDrop(Pane root)

Inside the initFileDragNDrop() method is the OnDragDropped event handler code, which obtains
the file from the DragEvent’s drag board. Here, the URL path is extracted and passed in to the private
playMedia() method. The playMedia() method begins by checking for the existence of a previously created
mediaPlayer object. If there was a previous media player instance, the code would stop the media player
and clean up any old references to events, listeners, and properties.

Media Metadata
Next, the code creates a Media class instance with a valid URL string. After creating a Media instance, the
code loops through the media’s metadata via the getMetadata() method to display the keys as output to
the console. Sometimes MP3 music files will contain information about the artist, tracks, or song titles.
By interrogating the media object’s metadata, you can display the information to the user.

After listing the media’s metadata, the code instantiates a new MediaPlayer instance with a new
Media object and adds the progressListener onto the media player’s currentTimeProperty() method. As
mentioned earlier for the progress position slider control, the “thumb” will progress forward as the media is
being played.

http://dx.doi.org/10.1007/978-1-4842-1961-4_5

Chapter 9 ■ Media and JavaFX

309

Playing Media

private void playMedia(String url, Pane root)

After a file is dragged on the surface to be played, the code passes the URL and root Pane to the private
playMedia() method. The code does some cleanup if there was a prior media player by pausing and clearing
any event handlers or listeners attached.

Next, the code will load validate if the media is supported. When loading a media file using the Media
class constructor, you could get a MediaException that’s likely a media unsupported issue. The code will
show a JavaFX Alert window to the user. Listing 9-5 shows how to validate if the media file is supported or
not. If not, a JavaFX Alert dialog window appears to the users.

Listing 9-5. Code to Determine If the Media File Is Supported.

// create a new media player
Media validMedia = null;
try {
 validMedia = new Media(url);
} catch (Exception e) {
 new Alert(Alert.AlertType.ERROR,
 e.getMessage(),
 ButtonType.OK)
 .showAndWait()
 .filter(response -> response == ButtonType.OK)
 .ifPresent(response -> e.printStackTrace());
 return;
}
final Media media = validMedia;

Continuing with the playMedia() method, the code instantiates a new MediaPlayer with
the new media. Next, the mediaPlayer will attach the progressListener defined earlier to its
currentTimeProperty() method.

mediaPlayer.setOnReady()
After setting up the media player object, the code is ready to play the file. The code passes in a

created Runnable (lambda expression) instance to respond to the OnReady event on the media player
object. The code first resets the Play and Pause buttons of the custom button panel by invoking the
updatePlayAndPauseButtons() method. Passing in true displays the Play button and hides the Pause
button; otherwise, the Pause button is shown and the Play button is hidden.

Next, the code initializes the slider control based on the media’s total duration. Finally, the code invokes
the media player object’s play() method to begin playing the music media.

Rewinding (the OnEndOfMedia Event)
Continuing inside the playMedia() method, after setting up the media player’s OnReady event, the code sets
up the OnEndOfMedia event. This event is triggered when the media player play position has reached the end.
The code toggles the Play and Pause buttons’ appearance and rewinds the media to the start position of the
file, also placing it in a Ready state.

Chapter 9 ■ Media and JavaFX

310

Updating the Visualization Using the AudioSpectrumListener Interface
Do you remember the earlier discussion about the MP3 audio player’s visualization of a spectrum area chart
dancing about as the music plays? Still within the playMedia() method, let’s look at how to implement this
mesmerizing effect.

Continuing with the playMedia() method, the code will obtain the Path node having the ID chart-area
that was created earlier. The following line retrieves the Path node using the root node’s lookup() method:

// Obtain chart path area
Path chartArea = (Path) root.lookup("#chart-area");

Next, the code sets the media player’s audio spectrum listener with an AudioSpectrumListener
(lambda expression) instance. The listener is notified periodically with updates of the audio spectrum.
The following code is shown again from Listing 9-1. It shows the code that updates the Path node
(chart-area) with a linear gradient color based on the magnitude array. Listing 9-6 shows the area chart
plotted using the audio spectrum data. Every interval the audio spectrum data will plot an area chart.
Based on the root pane’s size and defined chart padding, the code will use the magnitude array data to
draw a closed path to be filled with a linear gradient.

Listing 9-6. Area Chart Plotted Using the Audio Spectrum Data

int chartPadding = 5;

// The frequency domain is the X Axis.
// The freqAxisY is the Y coordinate of the freq axis.
double freqAxisY = root.getHeight() - 45;

// The chart's height
double chartHeight = freqAxisY - chartPadding;

// In the CSS file the padding is set with the following:
// -fx-border-insets: 6 6 6 6; (top, right, bottom, left)
// -fx-border-width: 1.5;
// Below the padding will equal 7.5 which is the union of
// the inset 6 (left) and border width of 1.5)
double padding = root.getBorder().getInsets().getLeft();
double chartWidth = root.getWidth() - ((2 * padding) + (2 * chartPadding));

// Audio sound is in decibels and the magnitude is from 0 to -60
// Squaring the magnitudes stretches the plot. Also dividing into
// the chart height will normalize or keep the y coordinate within the
// chart bounds.
double scaleY = chartHeight / (60 * 60);
double space = 5; // between each data point. Helps stretch the chart width-wise.

mediaPlayer.setAudioSpectrumListener(
 (double timestamp,
 double duration,
 float[] magnitudes,
 float[] phases) -> {

Chapter 9 ■ Media and JavaFX

311

 if (mediaPlayer.getStatus() == Status.PAUSED || mediaPlayer.getStatus() == Status.STOPPED) {
 return;
 }
 // The freqBarX is the x coordinate to plot
 double freqBarX = padding + chartPadding;

 // The scaleX is one unit. This keeps the plotting within the chart width area.
 double scaleX = chartWidth / (magnitudes.length * space);

 // Checks if the data array is created.
 // If not create the number of path components to be
 // added to the chartArea path. The check of the size minus 3 is excluding
 // the first MoveTo element, and the last two elements LineTo, and ClosePath
 // respectively.
 if ((chartArea.getElements().size() - 3) != magnitudes.length) {

 // Move to bottom left of chart.
 chartArea.getElements().clear();
 chartArea.getElements().add(new MoveTo(freqBarX, freqAxisY));

 // Update all LineTo elements to draw the line chart
 for(float magnitude:magnitudes) {
 double dB = magnitude * magnitude;
 dB = chartHeight - dB * scaleY;
 chartArea.getElements().add(new LineTo(freqBarX, freqAxisY - dB));
 freqBarX+=(scaleX * space);
 }

 // Close the path by adding LineTo to the bottom right
 // of the chart and close path to form an shape.
 chartArea.getElements().add(new LineTo(freqBarX, freqAxisY));
 chartArea.getElements().add(new ClosePath());
 } else {
 // If elements already created
 // go through and update path elements
 int idx = 0;
 for(float magnitude:magnitudes) {
 double dB = magnitude * magnitude;
 dB = chartHeight - dB * scaleY;

 // skip first MoveTo element in path.
 idx++;

 // update elements with a x and y
 LineTo dataPoint = (LineTo) chartArea.getElements().get(idx);
 dataPoint.setX(freqBarX);
 dataPoint.setY(freqAxisY - dB);
 freqBarX += (scaleX * space);
 }
 }
});

Chapter 9 ■ Media and JavaFX

312

Listing 9-6 creates an area chart based on Path elements to denote the magnitude at a particular
frequency. Beginning with the setup of the chart, the code defines padding of five pixels after the left inset
of the root pane. Next, the freqAxisY variable is declared to contain the y-coordinate to draw the frequency
axis (x-axis). Next, the chartHeight and chartWidth variables are defined and calculated. Because known
insets and border widths are defined in CSS, the code will invoke the root pane’s getBorder().getInsets().
getLeft() to obtain the left padding calculation. Padding is the union of the inset and border widths.

In Figure 9-6, the freqAxisY variable is the y-screen coordinate (fixed value) of the bottom of the
area chart representing the frequency domain on the x-axis. The dB is a calculated value representing the
decibels at a particular frequency for plotting the y-coordinate of each magnitude (data point).

Figure 9-6. The area chart’s x-axis (freqAxisY) and y-axis (dB)

After the area chart’s position, the width and height are calculated as a scaleY variable is needed to
help normalize or to keep the plotting points in the application window bounds. The y-axis represents the
decibels where some magnitude values can be plotted off (the chart) of the display surface. The last variable
defined is the space variable, and it will be used to represent the number of pixels between each data point
to be plotted.

Now for the fun part—creating the spectrum area chart visualization. The media player can get
notifications of audio spectrum data on regular intervals. By default, the updates are emitted every 0.1
seconds (100ms). Of course you can change the interval by calling the media player’s setAudioSpectrumIn
terval(double) method. To respond to audio spectrum notification updates, the code invokes the media
player’s setAudioSpectrumListener(). The method signature is shown here:

mediaPlayer.setAudioSpectrumListener(
 (double timestamp,
 double duration,
 float[] magnitudes,
 float[] phases)

According to the Javadocs, the listener is an observer receiving periodic updates of the audio spectrum.
In layman’s terms, it is the audio media’s sound data such as volume, tempo, and so on. To create an instance
of an AudioSpectrumListener, you will create a lambda expression with parameters of the interface’s method
spectrumDataUpdate(). Table 9-3 lists all the inbound parameters for the audio spectrum listener’s method.
For more details, refer to the Javadocs documentation of javafx.scene.media.AudioSpectrumListener.

Chapter 9 ■ Media and JavaFX

313

The code for the listener begins by checking if the media player’s current state is Paused or Stopped.
If so, it returns immediately. If the state is neither Paused nor Stopped, it’s time to draw the spectrum area
chart. The code starts off declaring and pre-computing variables to contain the data points’ beginning
x-coordinate value. The scaleX variable is used to scale points to ensure that they are kept within the chart
bounds width-wise. Next is the initialization of the chart’s Path node object. The chart’s Path node will get
initialized with Path elements to form a closed path based on the array of magnitudes passed in.

When creating the shape of the area chart, the first Path element will be a MoveTo. The last two Path
elements will be a LineTo and a ClosePath element. The last two Path elements are drawn from the last data
point to the bottom-right of the chart (visible x-axis), then closing the path using the ClosePath element. The
Path elements that are between the first and last elements will be updated every update interval. Because all
magnitude values are negative numbers between 0 and -60, the squares of the values for the amplitude or
peak of a data point. Since the chart is really a shape, it can be filled with a color. In this example, the code
will fill the chart with a linear shape based on the color spectrum (ROYGBIV). The following code snippet is
a JavaFX fill attribute assigned a linear gradient for the area chart shape.

-fx-fill: linear-gradient(from 5 5 to 5 225,
 rgba(255, 0, 0, .70) 0%, /* Red */
 rgba(255, 165, 0, .70) 40%, /* Orange */
 rgba(255, 255, 0, .70) 70%, /* Yellow */
 rgba(0, 255, 0, .70) 80%, /* Green */
 rgba(0, 0, 255, .70) 90%, /* Blue */
 rgba(75,0,128,.70) 95%, /* Indigo */
 rgba(238,130,238,.70) 100%) /* Violet */

Quitting (the Close Button)
private Node createCloseButton()

Lastly is the ability to quit the application in the start() method by creating a Close button by invoking
the private method createCloseButton(), which returns a custom node that has handler code to exit the
application. When creating the Close button, I created a stack pane containing a circle and an SVGNode. The
circle and SVGNode is styled using CSS from Listing 9-2. There is nothing unusual about the styling except for
the pseudo-class called hover when the mouse cursor is on top of the Close button to highlight the button.
The following code snippet changes the opacity level of the stroke color when the mouse is hovering over the
Close button (circle shape).

#close-circle:hover {
 -fx-stroke: derive(red, 90%);
}

Table 9-3. The AudioSpectrumListener’s Method spectrumDataUpdate() Inbound Parameters

Parameters Data Type Example Description

timestamp Double 2.4261 When the event occurred, in seconds.

duration Double 0.1 The duration of time (in seconds) the spectrum was computed.

magnitudes float[] -50.474 An array of float values representing each band’s spectrum
magnitude in decibels (non-positive float value).

phases float[] 1.22 An array of float values representing each band’s phase.
Each value range is between -Math.PI and +Math.PI.

Chapter 9 ■ Media and JavaFX

314

The create close button method’s main job is to stop the media player and exit the application by
calling stop() and Platform.exit().

Playing Video
Playing videos in JavaFX is quite simple. You use the same APIs as with audio to load media into a JavaFX
media player object. The only difference is that you need a MediaView node to display the video on the
scene. Because MediaView is a JavaFX node, you can transform, scale, translate, and apply effects. In this
section, you learn about cross-platform video media file formats, and later you see an example of a JavaFX
video player.

As of the writing of this book, the JavaFX media player API supports the video formats MPEG-4 H.264/
AVC (.mp4) and VP6 using an .flv container format.

MPEG-4
MPEG-4 is a multimedia container format containing H.264/AVC video. Currently MPEG-4 is a compressed
video format that is widely used to view video on the Internet. You’ll find that some high-definition video
recorders can automatically convert raw video to MPEG-4 to produce files with the extension .mp4. For
the devices that do not produce mp4 files, you currently need to purchase movie or video editing software
capable of converting raw videos into MP4-formatted files.

The following software programs, among others, can convert raw video into the portable MPEG4
format:

•	 Adobe Premiere

•	 Apple Final Cut Pro

•	 Apples iMovie

•	 Apple Quick Time Pro

•	 Sony Vegas Movie Studio

•	 Sony Vegas Pro

•	 FFmpeg

VP6 .flv
JavaFX 2.x and later support a cross-platform video format called VP6 with a file extension of .flv (which
stands for the popular Adobe Flash Video format). The actual encoder and decoder (codec) to create VP6
and .flv files are licensed through a company called On2. In 2010, On2 was acquired by Google to build VP7
and VP8 to be open and free to advance HTML5.

Refer to the Javadocs for more details on the formats to be used. A word to the wise: beware of web sites
claiming to be able to convert videos for free. As of this writing, the only encoders capable of encoding video
to VP6 legally are the commercial converters from Adobe.

You are probably wondering how to obtain a .flv file when you don’t have encoding software. If you
don’t have an .flv file lying around, you can obtain one from one of my favorite sites, called Media College
(http://www.mediacollege.com). From photography to movies, Media College provides forums, tutorials,
and resources that help guide you into the world of media.

http://www.mediacollege.com/

Chapter 9 ■ Media and JavaFX

315

There you can obtain a particular media file to be used in one of the examples in this chapter relating to
closed captioning. To obtain the .flv file, navigate to the following URL:

http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html.

Next, locate the link entitled Windy 50s Mobility Scooter Race, which points to the .flv media file
(20051210-w50s.flv). In order to download a link to the desired file, right-click to select Save Target As or
Save. Once you have saved the file locally on your filesystem, you can use it for the examples in this chapter.

It is not required that you have .flv files for this chapter. You may use MPEG-4 (mp4) formatted files for
the examples.

A Video Player Example
Figure 9-7 shows a MPEG-4 (.mp4) home video shot from my FlipCam. I simply dragged the MP4 file right
onto the surface of the application, and the video began playing. In this section, you learn how to implement
a basic JavaFX video player application.

Figure 9-7. A basic JavaFX video player

To create a video player, all you need to do is reuse the previous MP3 audio player example and make
very minor adjustments. The code is mostly identical to the MP3 audio player example, except that the
visualization (Path) is replaced with a javafx.scene.media.MediaView node, as shown in Figure 9-7.

Because the core functionality hasn’t changed, you will experience the same features such as seeking,
stopping, pausing, and playing media. Another bonus feature added to the video player is the ability to
put the video into full-screen mode by double-clicking the application window area. To restore the stage
window, repeat the double-click or press the Esc key.

 ■ Note Because all video player examples in this chapter were built from the Mp3 audio player project, you
will notice that features such as seeking, stopping, pausing, and playing media are identical. For the sake of
brevity in the remaining examples, i list only the code parts that demonstrate new features and omit sections
that existed in the core code from the Mp3 audio player example.

http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html

Chapter 9 ■ Media and JavaFX

316

Video Player Source Code
Listing 9-7 shows the implementation of a JavaFX video player application. After you have examined the
code, I will discuss how it works.

Listing 9-7. Source Code for a JavaFX Video Player Application

public class PlayingVideo extends Application {

 private MediaPlayer mediaPlayer;
 private Point2D anchorPt;
 private Point2D previousLocation;
 private ChangeListener<Duration> progressListener;
 private BooleanProperty playAndPauseToggle = new SimpleBooleanProperty(true);
 private EventHandler<MouseEvent> mouseEventConsumer = event -> event.consume();

 /**
 * @param args he command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 // Bug: JDK-8087498 [Mac] Full screen mode fails for certain StageStyles
 // Remove native window borders and title bar
 primaryStage.initStyle(StageStyle.TRANSPARENT);

 // Create the application surface or background
 Pane root = new AnchorPane();
 root.setId("app-surface");

 Scene scene = new Scene(root, 551, 270, Color.rgb(0, 0, 0, 0));

 // load JavaFX CSS style
 scene.getStylesheets()
 .add(getClass().getResource("/playing-video.css")
 .toExternalForm());
 primaryStage.setScene(scene);

 // Initialize stage to be fullscreen
 initFullScreenMode(primaryStage);

 // ...Code Omitted

 // Create a media view to display video
 MediaView mediaView = createMediaView(root);

Chapter 9 ■ Media and JavaFX

317

 // ...Code Omitted
 }
 /**
 * Bug: JDK-8087498 [Mac] Full screen mode fails for certain StageStyles
 * Attaches event handler code (mouse event) to
 * toggle to Full screen mode. Double click the scene.
 */
 private void initFullScreenMode(Stage primaryStage) {
 Scene scene = primaryStage.getScene();

 // Full screen toggle
 scene.setOnMouseClicked((MouseEvent event) -> {
 if (event.getClickCount() == 2) {
 Platform.runLater(() ->
 primaryStage.setFullScreen(!primaryStage.isFullScreen()));
 }
 });
 }

 /**
 * Initialize the stage to allow the mouse cursor to move the application
 * using dragging.
 * @param primaryStage - The applications primary Stage window.
 */
 private void initMovablePlayer(Stage primaryStage) {
 // ...Code Omitted
 }

 /**
 * Initialize the Drag and Drop ability for media files.
 * @param root - The Scene graph's root pane.
 */
 private void initFileDragNDrop(Pane root) {
 // ...Code Omitted
 }

 /**
 * Create a MediaView node.
 *
 * @return Pane
 */
 private MediaView createMediaView(Pane root) {
 MediaView mediaView = new MediaView();
 mediaView.setId("media-view");
 mediaView.setPreserveRatio(true);
 mediaView.setSmooth(true);

 // Calculate width of the MediaView (in AnchorPane)
 DoubleBinding widthProperty = new DoubleBinding(){
 @Override
 protected double computeValue() {

Chapter 9 ■ Media and JavaFX

318

 return root.getWidth() - (root.getInsets()
 .getLeft() +
 root.getInsets()
 .getRight());
 }
 };

 // Calculate height of the clipping region.
 // This prevents video to display beyond bottom border area.
 DoubleBinding heightClipProperty = new DoubleBinding(){
 @Override
 protected double computeValue() {
 return root.getHeight() - (root.getInsets()
 .getTop() +
 root.getInsets()
 .getBottom());
 }
 };

 // Bindings for the media view's fitWidth
 mediaView.fitWidthProperty().bind(widthProperty);

 // Recalculate when the width changes
 root.widthProperty().addListener(observable1 ->
 widthProperty.invalidate());

 // Recalculate when the height changes
 root.heightProperty().addListener(observable1 ->
 heightClipProperty.invalidate());

 // Create a clip region to be a rounded rectangle
 // matching the root pane's rounded border.
 // Bindings use the calculated size properties:
 // widthProperty and heightClipProperty
 Rectangle clipRegion = new Rectangle();
 clipRegion.setArcWidth(10);
 clipRegion.setArcHeight(10);
 clipRegion.widthProperty().bind(widthProperty);
 clipRegion.heightProperty().bind(heightClipProperty);
 mediaView.setClip(clipRegion);

 // Update calculations on invalidation listener
 // to reposition media view and clip region
 root.insetsProperty().addListener(observable -> {
 widthProperty.invalidate();
 heightClipProperty.invalidate();
 Insets insets = root.getInsets();
 clipRegion.setX(insets.getRight());
 clipRegion.setY(insets.getTop());
 mediaView.setX(insets.getRight());
 mediaView.setY(insets.getTop());
 });

Chapter 9 ■ Media and JavaFX

319

 // when errors occur
 mediaView.setOnError(mediaErrorEvent -> {
 mediaErrorEvent.getMediaError()
 .printStackTrace();
 });

 return mediaView;
 }

 /**
 * Creates a node containing the audio player's
 * stop, pause and play buttons.
 *
 * @param root The Scene graphs root pane.
 * @return Node A button panel having play,
 * pause and stop buttons.
 */
 private Node createButtonPanel(Pane root) {
 // ...Code Omitted
 }

 /**
 * The close button to exit application
 *
 * @return Node representing a close button.
 */
 private Node createCloseButton() {
 // ...Code Omitted
 }

 /**
 * After a file is dragged onto the application a new MediaPlayer
 * instance is created with a media file.
 *
 * @param url - The URL pointing to an audio file.
 * @param root - The scene graph's root pane.
 */
 private void playMedia(String url, Pane root) {
 // ...Code Omitted

 // PLEASE ADD THE CODE BELOW
 // Set the media player to display video (MediaView)
 MediaView mediaView
 = (MediaView) root.getScene().lookup("#media-view");
 mediaView.setMediaPlayer(mediaPlayer);

 }

Chapter 9 ■ Media and JavaFX

320

 /**
 * Sets play button visible and pause button not visible when
 * playVisible is true otherwise the opposite.
 *
 * @param playVisible - value of true the play becomes visible
 * and pause non visible, otherwise the opposite.
 * @param root - The root node (AnchorPane)
 */
 private void updatePlayAndPauseButtons(boolean playVisible, Parent root) {
 // ...Code Omitted
 }

 /**
 * A position slider to seek backward and forward
 * that is bound to a media player control.
 *
 * @return Slider control bound to media player.
 */
 private Slider createSlider() {
 // ...Code Omitted
 }
}

How It Works
I already mentioned that the PlayingVideo.java source code is mostly the same code from the Audio Player
project, but with small changes. Let’s begin by jumping into those changes. In the start() method, the
root pane (AnchorPane) is created and styled using the play-video.css file. The JavaFX CSS will style the
application and controls. To ensure the application is styled correctly be sure to download the source code
from the book’s web site. After downloading the source code, make sure the resources are in the compiled
code, such as play-video.css. That way during runtime the resources can be loaded via the classpath.

Setting Up the Stage Window for Full-Screen Mode
private void initFullScreenMode(Stage primaryStage)

Next, the code invokes the initFullScreenMode() method, which attaches handler code to listen for a
mouse double-click event. When a user double-clicks the background surface (scene), the application
and media view will become full screen. The following code snippet is the handler code set on the
OnMouseClicked event.

private void initFullScreenMode(Stage primaryStage) {
 Scene scene = primaryStage.getScene();
 // Full screen toggle
 scene.setOnMouseClicked((MouseEvent event) -> {
 if (event.getClickCount() == 2) {
 Platform.runLater(() ->
 primaryStage.setFullScreen(!primaryStage.isFullScreen()));
 }
 });
}

Chapter 9 ■ Media and JavaFX

321

The MediaView Node

private MediaView createMediaView(Pane root)

In the start() method after adding the full-screen capability, the code invokes the private method
createMediaView(), which returns a MediaView node that is responsible for displaying the video.

To see what the createMediaView() method actually returns, let’s look at how it was implemented.
Inside the createMediaView() method, it begins by instantiating a MediaView node with an ID of media-
view. The code then sets the preserve ratio property to true, which preserves the aspect ratio of the video
image dimension when it’s being resized. In other words, resizing the window won’t stretch the video
picture. Listing 9-8 creates a new MediaView node that preserves the aspect ratio.

Listing 9-8. Creating a MediaView Node that Preserves the Aspect Ratio

MediaView mediaView = new MediaView();
mediaView.setId("media-view");
mediaView.setPreserveRatio(true);

Do you remember when creating the application window by using CSS styling? The reason I ask is
that you should notice the background has rounded corners with an inset padding and also has a rounded
lined border. Because of these details, I designed it so the video (MediaView) would fit inside the rounded
border region. As the dimensions of the viewing area could change, such as activating full-screen mode
or resizing a window, the code will need to recalculate the width and height values of the view port of the
MediaView node.

In order to be accurate, I chose to create two custom properties that will dynamically adjust the media
view display area. The first custom property is called widthProperty and it calculates the media view node’s
width based on the available space. The available space for the media view’s width is calculated based on the
root pane’s width, minus the left and the right inset values. Insets are the union of the padding and border
widths of a pane (root pane).

The second custom property is called heightClipProperty and it calculates the value of the
MediaView's clip region’s height. The height of the video that is being displayed could get larger than the
height of the border at the bottom of the application, so a clipping region will be imposed to prevent this
from happening. Listing 9-9 shows the two custom properties that compute the display’s width and height.
If you aren’t familiar with custom properties, refer to Chapter 4 on lambdas and properties.

Listing 9-9. Custom Properties to Compute the Width and Height When Displaying the MediaView Node

// Calculate width of the MediaView (in AnchorPane)
DoubleBinding widthProperty = new DoubleBinding(){
 @Override
 protected double computeValue() {
 return root.getWidth() - (root.getInsets()
 .getLeft() +
 root.getInsets()
 .getRight());
 }
};

// Calculate height of the clipping region.
// This prevents video to display beyond bottom border area.
DoubleBinding heightClipProperty = new DoubleBinding(){

http://dx.doi.org/10.1007/978-1-4842-1961-4_4

Chapter 9 ■ Media and JavaFX

322

 @Override
 protected double computeValue() {
 return root.getHeight() - (root.getInsets()
 .getTop() +
 root.getInsets()
 .getBottom());
 }
};

Continuing with the createMediaView() method, the code binds the MediaView node’s
fitWidthProperty with the custom property widthProperty. After binding the widthProperty, the code
adds invalidation listeners to the root node (AnchorPane). These listeners detect a change in the width and
height properties of the root node. Once a change is detected, the custom properties widthProperty and
heightClipProperty are marked invalid, which will cause the properties to be recalculated.

Listing 9-10. Bindings and Listeners to Recalculate Custom Properties When the Window Is Resized

// Bindings for the media view's fitWidth
mediaView.fitWidthProperty().bind(widthProperty);

// Recalculate when the width changes
root.widthProperty().addListener(observable1 ->
 widthProperty.invalidate());

// Recalculate when the height changes
root.heightProperty().addListener(observable1 ->
 heightClipProperty.invalidate());

Next, the code creates a clip region that will create a view port with dimensions that are bound to the
two custom properties—widthProperty and heightClipProperty. Listing 9-11 shows the creation of the
clip region that is shaped like the inset rounded border area of the root node’s background.

Listing 9-11. The Clip Region Applied to the MediaView Node

// Create a clip region to be a rounded rectangle
// matching the root pane's rounded border.
// Bindings use the calculated size properties:
// widthProperty and heightClipProperty
Rectangle clipRegion = new Rectangle();
clipRegion.setArcWidth(10);
clipRegion.setArcHeight(10);
clipRegion.widthProperty().bind(widthProperty);
clipRegion.heightProperty().bind(heightClipProperty);
mediaView.setClip(clipRegion);

One last listener will be attached to the root pane (AnchorPane) to respond whenever the insets
property changes. Because the application isn’t yet shown the inset values are zero. In other words, the CSS
styling hasn’t been applied and rendered yet at this point. Listing 9-12 shows an invalidation listener to
update the clip region and media view properties. Once the CSS is applied and rendered onto the JavaFX
scene, the insets property will change and call the listener code. If the insets or border widths change, the
clip region and media view’s position and dimensions will be recalculated.

Chapter 9 ■ Media and JavaFX

323

Listing 9-12. An Invalidation Listener that Responds When the insets Property Changes

// Update calculations on invalidation listener
// to reposition media view and clip region
root.insetsProperty().addListener(observable -> {
 widthProperty.invalidate();
 heightClipProperty.invalidate();
 Insets insets = root.getInsets();
 clipRegion.setX(insets.getRight());
 clipRegion.setY(insets.getTop());
 mediaView.setX(insets.getRight());
 mediaView.setY(insets.getTop());
});

Lastly, Listing 9-13 shows how the code simply adds handler code to the OnError property whenever an
error event is raised in the media view node. The code simply prints a stack trace of the media error.

Listing 9-13. Adding Handler Code When the Media View Node Encounters an Error

// when errors occur
mediaView.setOnError(mediaErrorEvent -> {
 mediaErrorEvent.getMediaError()
 .printStackTrace();
});

return mediaView;

Simulating Closed Captioning: Marking a Position in a
Video Media
Have you ever wanted to implement closed captioning video? In the past, there have been discussions about
JavaFX 8 possibly supporting the standard closed captioning specification for video media; however, the
state of this feature is unclear as of this writing. Fortunately, there is hope; JavaFX supports media event
markers to achieve the same behavior as closed captioning video.

Closed Captioning Video Example
To demonstrate a closed captioning video example, I created a project called ClosedCaptionVideo. For the
sake of space, I will show only the code parts that are relevant to media event markers (see Listing 9-14).
To see the full source code, visit the book’s web site and download the code for this chapter.

When you read about the video media file formats earlier, you learned that an .flv file could be found
at the following URL: http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html.

I use the file 20051210-w50s.flv for the closed captioning video example. Figure 9-8 depicts the closed
captioning (Label) being displayed at certain points in the video at the bottom of the screen. The node
to display the text is a JavaFX label positioned at the bottom. To change the text font and size, look at the
playing-video.css file.

http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html

Chapter 9 ■ Media and JavaFX

324

Listing 9-14 shows the code at end of the playMedia() method setting up the closed captioning code.
Notice that the media object was obtained after the user dragged and dropped a video file over the surface of
the application. Next, the code does a lookup to obtain the closed captioning label node to later be updated
based on the OnMarker event.

Listing 9-14. Media Marker Events

// obtain media object
Media media = ...

// lookup closed caption label
Label closedCaption =
 (Label) root.lookup("#closed-caption-text");

// Rewind back to the beginning
mediaPlayer.setOnEndOfMedia(()-> {
 updatePlayAndPauseButtons(true, root);
 // change buttons to the play button
 mediaPlayer.stop();
 playAndPauseToggle.set(false);

 // clear closed caption
 closedCaption.setText("");
});

media.getMarkers().put("Starting race",
 Duration.millis(1959));
media.getMarkers().put("He is beginning to get ahead of her.",
 Duration.millis(3395));
media.getMarkers().put("They are turning the corner",
 Duration.millis(6060));
media.getMarkers().put("The crowds are cheering !!!",
 Duration.millis(9064));
media.getMarkers().put("The gentleman makes it to the finish line.",
 Duration.millis(11546));

Figure 9-8. Closed captioning video

Chapter 9 ■ Media and JavaFX

325

// display closed caption
mediaPlayer.setOnMarker((MediaMarkerEvent event) ->
 closedCaption.setText(event.getMarker().getKey())
);

How It Works
Listing 9-14 shows a newly created Media object based on a valid URL string. The code begins by looking up
the closed captioning Label node.

Assuming the start() method has called the private method createClosedCaptionArea(), the root
node will contain a Label node with an ID close-caption-text. After obtaining the closed captioning node,
the code implements handler code when the OnEndOfMedia event is raised. The handler code updates the
display of the Play and Pause buttons, but also clears the closed captioning Label node.

Next, the code adds key/value pairs as markers in media. Each marker pair consists of a key of type
String and a value of type Duration (in milliseconds). The duration is the time at which an OnMarker event
is triggered.

You’ll immediately notice that the setOnMarker() method is set with a lambda expression with a
parameter of type MediaMarkerEvent. The MediaMarkerEvent closure code is invoked when the OnMarker
event is raised. The closure code simply sets the closedCaption (javafx.scene.control.Label) node with
the key’s value as the closed captioning text.

Summary
In this chapter, you discovered the world of JavaFX media. You began by learning about media events and
event-based programming when dealing with the JavaFX Media APIs. Next, you saw how easy it is to create
a media file as a URL string to be loaded and played. After learning about the MediaPlayer API, you got a
chance to look at an MP3 audio player example that demonstrated features such as Seek, Stop, Pause, and
Play. You also learned how to implement a cool visualization using the AudioSpectrumListener interface.

After you learned about audio media, you learned about video. You learned about currently supported
media formats such as MPEG-4 and FLV. Then you saw an example of a basic JavaFX video player
application. Here, you discovered that playing video is the same as playing audio, except for the use of the
MediaView node, which is capable of displaying the video. Finally, you were exposed to a short example of
media marker events (MediaMarkerEvent) to simulate a closed captioning video.

327© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_10

CHAPTER 10

JavaFX on the Web

JavaFX provides capabilities to interoperate with HTML5 content. The underlying web page rendering
engine in JavaFX is the popular open source C++ API called WebKit. This API is used in Apple’s Safari
browsers, Amazon’s Kindle devices, and was used in Google’s Chrome browser prior to version 27
(the WebKit fork is called Blink). HTML5 is the de facto standard markup language for rendering content
in web browsers. HTML5 content consists of JavaScript, CSS, Scalable Vector Graphics (SVG), Canvas API,
Media, XML, and new HTML element tags. In short, you can create JavaFX applications embedded with
web browser-like functionality.

The relationship between JavaFX and HTML5 is an important combination because they complement
one another by drawing from each of their individual strengths. For instance, JavaFX’s rich client APIs
coupled with HTML5’s rich web content create a user experience resembling a web application with
the characteristics of native desktop software. This new breed of application is called the Rich Internet
Application (RIA).

Before delving into the example applications, the chapter discusses the following core Java/JavaFX
web-based APIs:

•	 Java 9 Module javafx.web, Package namespace: javafx.scene.web

•	 WebEngine

•	 WebView

•	 WebEvent

•	 Java 9 Module: jdk.jsobject, Package namespace: netscape.javascript

•	 JSObject

•	 Java 9 Module: jdk.incubator.httpclient, Package namespace: jdk.incubator.http.

The module jdk.incubator.httpclient is currently experimental in Java 9.
According to some reports, the module will be finalized in Java 10 and named
java.httpclient.

•	 HttpClient

•	 HttpRequest

•	 HttpResponse

In this chapter, you examine example applications that do the following:

•	 Display HTML5 content into a WebView node (an SVG-based Analog Clock)

•	 Communication between Java and JavaScript (WeatherWidget)

Chapter 10 ■ JavaFX on the Web

328

JavaFX Web and HTTP2 APIs
Before learning about JavaFX Web and HTTP2 APIs, I want to mention that the code examples in this chapter
were developed as Java 9 modules (Jigsaw). Having said this, I thought it might be a good idea to show you a
module definition with the three modules discussed throughout this chapter:

•	 javafx.web - WebEngine and WebView

•	 jdk.jsobject - JSObject

•	 jdk.incubator.httpclient - HttpClient, HttpRequest, HttpResponse

Shown here is a typical application module that depends on these three modules:

module com.jfxbe.myapplicationmodule {
 requires javafx.web;
 requires jdk.jsobject;
 requires jdk.incubator.httpclient;
 exports com.jfxbe.myapplicationmodule;
}

As a quick reference for the impatient reader, Table 10-1 contains the modules and their class
descriptions. I also provide a short code snippet on how to use the various APIs relating to JavaFX Web and
HTTP2 APIs in the description column. To see a more detailed discussion related to each class, you can skip
Table 10-1.

Table 10-1. Description of Classes Contained Within the Java Modules

Module Name Class Name Description

javafx.web javafx.scene.web.WebEngine A non-visible UI component capable of loading
web content.

WebEngine webEngine = new WebEngine(url);

javafx.scene.web.WebView A JavaFX node backed with a WebEngine instance
capable of rendering HTML5 content to be
displayed.

WebView webView = new WebView();
webView.getEngine().load(www.oracle.com");

javafx.scene.web.WebEvent Callbacks for common HTML browser-based
web events. These web events are handled by the
WebEngine instance.
webView.getEngine()

 .setOnAlert((WebEvent<String> t) -> {
 showErrorDialog(t.getData());
 });

(continued)

http://www.oracle.com/

Chapter 10 ■ JavaFX on the Web

329

Table 10-1. (continued)

Module Name Class Name Description

jdk.jsobject netscape.javascript.JSObject The JavaScript bridge object allows Java to talk to
the JavaScript engine. When returned, you can set
Java objects with the setMember() method to allow
JavaScript code to invoke Java methods.

JSObject jsobj = (JSObject) webView.
getEngine()
 .executeScript("window");jsobj.set

Member("WeatherWidget", this);

jdk.incubator.
httpclient

jdk.incubator.http.Http
Client

A new way to make HTTP requests. Additional
features include WebSockets, Authenticators,
Proxies, and SSL.

String jsonText = HttpClient.
newHttpClient()
.send(HttpRequest.newBuilder(URI.
create(urlQueryString))
 .GET().build(),
 BodyHandler.asString()).body();

jdk.incubator.http.Http
Request

The new API to make HTTP requests such as GET,
POST, UPDATE, DELETE, and many other methods.

import static jdk.incubator.http.
HttpRequest.BodyProcessor.fromString;
import static jdk.incubator.http.
HttpClient.newHttpClient;

HttpRequest req = HttpRequest.newBuilder(
 URI.create("http://acme/create-account"))
 .POST(fromString("param1=abc,param2=123"))
 .build();

newHttpClient().sendAsync(req,
 BodyHandler.discard(null))
 .whenCompleteAsync((resp,

throwable) -> {
 System.out.println("Saving

complete.");
});

jdk.incubator.http.Http
Response

After an HTTP request has been made, an HTTP
response object is returned. Response objects are
populated with a status code, HTTP headers, and
the payload or content body. Refer to the Javadoc
documentation to see the many methods to
convert body content to different data formats.

HttpResponse.BodyProcessor

http://acme/create-account

Chapter 10 ■ JavaFX on the Web

330

Web Engine
JavaFX provides a non-GUI component capable of loading HTML5 content, called the WebEngine API
(javafx.scene.web.WebEngine). This API is basically an object instance of the WebEngine class to be used
to load a file containing HTML5 content. The HTML5 file to be loaded can be located on a local filesystem, a
web server, or inside a JAR file. When you load a file using a web engine object, a background thread is used
to load web content so that it does not block the JavaFX application thread. In this section, you learn about
the following two WebEngine methods for loading HTML5 content:

•	 load(String URL)

•	 loadContent(String HTML)

WebEngine’s load() Method
The WebEngine API, like many APIs that use background threads, adheres to an event-based programming
model. Being event-based usually means that method invocations are asynchronous (callbacks); for
example, a web engine can load web content asynchronously from a remote web server and notify handler
code when the content is finished loading.

After being notified, the handler code would then be run on the JavaFX application thread. Listing 10-1
loads HTML content from a remote web server in a background worker thread.

Listing 10-1. A WebEngine with a ChangeListener Lambda that Determines Whether the Background
Loading Is Finished (Succeeded)

WebEngine webEngine = new WebEngine();
webEngine.getLoadWorker()
 .stateProperty()
 .addListener((obs, oldValue, newValue) -> {
 if (newValue == SUCCEEDED) {
 // finished loading...
 // process content...
 // Use webEngine.getDocument();
 }
});
webEngine.load("https://java.com");

To monitor or determine whether the worker thread has finished, a javafx.beans.value.
ChangeListener (lambda expression) can be added to the state property. If you are unfamiliar with creating
a lambda expression, refer to Chapter 4 on Lambda expressions to be able to use functional interfaces such
as the ChangeListener or InvalidationListener objects.

In Listing 10-1, you’ll notice a ChangeListener as a lambda expression added to the state property
via the addListener() method. The state property contains the status or lifecycle of the web engine’s
background worker thread. The states are based on the State enum, which is owned by the javafx.
concurrent.Worker interface.

After setting up the listener, the code begins the loading process by using the web engine’s load()
method. Also notice that the string passed into the load() method is a valid URL string representing the
location of the web content file or web server.

http://dx.doi.org/10.1007/978-1-4842-1961-4_4

Chapter 10 ■ JavaFX on the Web

331

When a ChangeListener lambda expression is added to the state property, the parameters are as follows:

•	 obs is of type ObservableValue<? extends Worker.State>, which references the
state property on the web engine object.

•	 oldValue is of type Worker.State enum and contains the previous value before the
state property has changed.

•	 newValue is of type Worker.State enum and contains the new state property.

The type specifiers for each parameter of the lambda expression (ChangeListener) were left off to allow
the parameter signature to be more concise. After the state property changes, the newValue parameter can
be checked for various thread states. In Listing 10-1, the newValue variable is used to check the state of the
worker thread, which is an example of eager evaluation.

To be more thorough, I listed all the possible worker thread states:

READY, SCHEDULED, RUNNING, SUCCEEDED, CANCELLED, FAILED

As you saw in Listing 10-1, the code determines whether the worker thread is finished loading the web
content, by checking the worker thread’s state against the Worker.SUCCEEDED enum value.

WebEngine’s loadContent() Method
One additional way to load HTML5 content is by using the web engine’s loadContent(String htmlText)
method and accepting a string. What’s nice about the loadContent() method is that HTML content
represented as a string can be pre-generated without having to fetch web pages from a remote server. The
following code snippet loads a string representing HTML content:

webEngine.loadContent("<html><body>JavaFX Rocks!</body></html>");

Now that you know two strategies to load HTML content, you will see how to obtain and manipulate
the raw content, along with common types of data formats that may be obtained from the web engine object
after the web content is loaded.

HTML DOM Content
The web engine can load the current page’s document object model (DOM) as XML content following the
W3C standards-based APIs for Java. Typically, developers who are familiar with an XML Document Object
Model (DOM) can easily interrogate org.w3c.dom.Document objects. This section shows you how to obtain a
W3C XML Document object and the raw XML as a String object.

Obtaining an org.w3c.dom.Document (DOM) Object
After a web engine instance successfully loads HTML content, an XML DOM can be obtained by invoking
the WebEngine object’s getDocument() method.

The following code snippet obtains a document (org.w3c.dom.Document) instance, assuming the web
engine is finished loading the HTML or XML content.

webEngine.getLoadWorker()
 .stateProperty()
 .addListener((obs, oldValue, newValue) -> {

Chapter 10 ■ JavaFX on the Web

332

 if (newValue == SUCCEEDED) {
 org.w3c.dom.Document xmlDom = webEngine.getDocument();
 // Do something here with xmlDom
 }
});
webEngine.load("http://myserver.com/my_cool_xml:data.xml");

Using Raw XML Content as a String
Depending on the situation, sometimes it is necessary to obtain the raw XML data as a string of text.
Developers often use libraries such as JDOM or dom4j to convert easily between the two data format types.
Listing 10-2 shows how to convert from an org.w3c.dom.Document object to a String object without the
need of using the previous mentioned XML parsing libraries.

Listing 10-2. Converting an XML DOM into a String

TransformerFactory transformerFactory = TransformerFactory.newInstance();
Transformer transformer = transformerFactory.newTransformer();
StringWriter stringWriter = new StringWriter();
transformer.transform(new DOMSource(webEngine.getDocument()),
 new StreamResult(stringWriter));
String xml = stringWriter.getBuffer().toString();
System.out.println(xml);

The output of Listing 10-2 is shown here:

<?xml version="1.0"?>
<people>
 <person eyes="green" hair="blonde">
 <firstname>Tracey</firstname>
 <lastname>Dea</lastname>
 </person>
 <person eyes="brown" hair="black">
 <firstname>Carl</firstname>
 <lastname>Dea</lastname>
 </person>
</people>

The JavaScript Bridge
Early in this chapter, I discussed how the underlying web engine uses WebKit to load and interact with
HTML5 content. What does it mean to interact with HTML5 content? JavaFX’s WebEngine API has a
JavaScript bridge that allows Java code to invoke JavaScript functions or script code inside HTML5 content.
So, another question would be how then does one obtain the raw HTML5 content as a string?

Some common use cases out in the field are the following: obtaining raw HTML content for web
crawling (used in search engines), caching web pages, screen scraping, data mining, and data analysis.
To obtain the raw HTML5, you will need to interact with the JavaScript engine in WebKit to access the web

Chapter 10 ■ JavaFX on the Web

333

content’s DOM using the WebEngine’s executeScript() method. The following code statement accesses
the HTML document (DOM) to obtain the raw content from the documentElement.outerHTML (the top-most
element):

String html = (String) webEngine.executeScript("document.documentElement.outerHTML");

Communicating from Java to JavaScript
Another example of using the method executeScript() is shown in Listing 10-3, where the code calls into a
JavaScript function sayHello() to add text into an existing HTML DIV element with an id of my_message.
The HTML file containing the function sayHello() is shown in Listing 10-4.

Listing 10-3. Java Calling a JavaScript Function

// From Java Code
webEngine.executeScript("sayHello('Hi there');");

The Java code in Listing 10-3 calls the JavaScript function sayHello() to update the DIV element
with an id of my_message. Listing 10-4 shows the HTML file containing the sayHello() function and
the DIV element. Notice the code will retrieve the DIV element using the DOM’s function document.
getElementById(). To see more about JavaScript and how to manipulate the DOM, visit:

https://developer.mozilla.org/en-US/docs/Web/API/Document

Listing 10-4. An HTML File Containing the sayHello() Function

 <script>
 function sayHello(msg) {
 document.getElementById('my_message').innerHTML = msg;
 }
 </script>
.
.
<div id="my_message"></div>

Being able to call JavaScript is a powerful facility that allows Java code to use the WebEngine object’s
JavaScript engine to manipulate the DOM. But what about JavaScript code talking back to Java code?

Communicating from JavaScript to Java
Java 8 allows JavaScript code to make calls into Java code. Allowing JavaScript to call Java code means that
web developers can now take advantage of many Java APIs. In this section, we briefly discuss how to allow
JavaScript code to communicate with Java code.

Enabling JavaScript to talk to Java is easy. The first step is obtaining the WebEngine object’s JSObject
object via a call to the method executeScript("window"). The JSObject is a wrapper object to allow the
bridge between the two languages.

After obtaining the JSObject, any object can be passed into the JavaScript engine’s context simply by
invoking the setMember() method. To invoke the setMember() method, you pass in a string name and the
corresponding object. Assuming the member object has public instance methods, the JavaScript code can
access them. Listing 10-5 shows how to set up the JSObject for the JavaScript engine to talk to Java.

Chapter 10 ■ JavaFX on the Web

334

Listing 10-5. Allowing JavaScript Code to Make Upcalls to Java Code

// The web view's web engine
webView.getEngine()
 .getLoadWorker()
 .stateProperty()
 .addListener((obs, oldValue, newValue) -> {
 if (newValue == Worker.State.SUCCEEDED) {
 // Let JavaScript make upcalls to this (Java) class
 JSObject jsobj = (JSObject) webView.getEngine()
 .executeScript("window");
 jsobj.setMember("ABCD", new HelloWorld());
} });

You can see in Listing 10-5 that the HelloWorld class instance is set as a member in the (JSObject)
object. Listing 10-6 shows the simple HelloWorld class with a sayGoodbye() method.

Listing 10-6. Java Class with the Public Method sayGoodbye()

public class HelloWorld () {
 public String sayGoodbye(String name) {
 return "Hasta la vista " + name;
 }
}

After you’ve set a HelloWorld instance as a JSObject member named ABCD, the JavaScript function
sayGoodbye() shown in Listing 10-7 can now invoke the Java method ABCD.sayGoodbye().

Listing 10-7. JavaScript Code Calling Java Code

.

.
<script>
function sayGoodbye(name) {
 var message = ABCD.sayGoodbye(name);
 document.getElementById('my_message').innerHTML = message;
}
</script>
.
.
<div id="my_message"></div>

As a warning, be careful exposing methods that can allow client code to gain access and, thus,
potentially harm or view private data.

 ■ Caution because JavaScript code has the capability to make calls into Java, it is very important to make
sure you aren’t exposing apIs that could potentially harm systems or view private data.

Chapter 10 ■ JavaFX on the Web

335

As mentioned earlier in the chapter, the WebEngine object is a non-GUI component capable of loading
web content, so you might be wondering if it is possible to make web service calls capable of retrieving
serialized data that has different data formats such as the popular JSON format. To answer this question, you
will want to know the WebEngine API’s responsibilities and limitations.

When using JavaFX’s WebEngine API to request web content such as HTML, JSON, and XML data, you
will encounter some limitations; some of these involve the ability to fetch (GET) data from or submit (POST)
data to a web server asynchronously. These types of web requests are called RESTful services.

Of course, there are a handful of interesting ways (hacks) to get JSON data using the WebEngine object
by calling into the HTML DOM to obtain text content. Listing 10-8 is an example of how to obtain the JSON
text content inside of its HTML DOM.

Listing 10-8. Obtaining the JSON Text Inside the DOM

webEngine.load("http://myserver.org/current-weather?format=json");
.
.
.
// handler code to obtain JSON data.
String json = (String) webEngine.getDocument()
 .getElementsByTagName("body")
 .item(0)
 .getTextContent();

The handler code traverses the HTML’s DOM to obtain text content retrieved from the web engine
object. Even though it looks easy to implement to get JSON data as a string, I do not recommend using this
approach because it is rather fragile and nonstandard. From a code-maintenance standpoint, the code could
be taken out of context and a potential bug could surface in the future. I’m sure you’ve heard the phrase “Just
because you can do something doesn’t mean you should.”

You will quickly find that the WebEngine API’s responsibility is basically for loading HTML5 and
interacting with its content (HTML/JavaScript). The WebEngine API is not responsible for making web
service calls or serializing data with different transport protocols.

So, is there a better way to make web requests (RESTful)? Of course there is. While there are many
libraries you could choose from that simplify web service calls, the next section shows you how to do things
using Java 9’s new experimental module called jdk.incubator.httpclient.

Java 9 Module jdk.incubator.httpclient
In the prior edition of this book related to web requests, we used legacy APIs such as the HttpURLConnection
class; however, in this chapter we replace it in favor of the new experimental Java 9 module HTTP2
(JSR 110). For many years, Java developers relied heavily on third-party libraries to make web requests in
a convenient way. In the previous edition of this book, I provided a pure Java solution by using the legacy
HttpURLConnection API; however, it had limitations. Here is a brief rundown of the limitations of the
HttpURLConnection API:

•	 It supported older protocols that are now obsolete such as gopher, ftp, etc. It does not
support WebSockets.

•	 The APIs are very difficult to use. The APIs don’t use a fluent interface API pattern or
lambdas expressions for preparing requests and handling error conditions.

•	 Request calls are in a blocking mode only. The APIs don’t use Java 8 new
CompletableFuture APIs.

Chapter 10 ■ JavaFX on the Web

336

The experimental Java 9 module jdk.incubator.httpclient contains new APIs to allow users
to make HTTP web requests that use Java 8’s lambdas and concurrency API CompletableFuture. The
CompletableFuture APIs allow you to make an asynchronous call to later complete. Once the call is
complete, the handler code can then be triggered to process the HttpResponse. Later in this chapter, we will
use these new APIs with an example Weather Widget application capable of making RESTful calls returning
JSON data.

In the beginning, the Java architects were going to add the new HTTP2 modules to Java 9; however,
as deadlines got tighter for project Jigsaw, it was decided to be pushed out to Java 10. The good news about
the new HTTP2 module is that the engineers created an incubator project under the module name
jdk.incubator.httpclient within JDK 9. The incubator area is for experimentation and will eventually
end up as official core APIs. To see the HTTP2 JDK enhancement proposal, visit http://openjdk.java.net/
jeps/110.

Although the new HTTP2 module in Java 9 is experimental, it is fully functional, as far as I know. The
official HTTP2 module implementation in Java 10 will likely be named java.httpclient. In fact, once the
module moves to Java 10 your code that relies on Java 9’s HTTP client module (jdk.incubator.httpclient)
will likely break and need to point to the new module name. As a quick recap, if you remember from Chapter 2
on modularity, your module definition might look like the following:

module com.jfxbe.myclientmodule {
 requires jdk.incubator.httpclient;

 exports com.jfxbe.myclientmodule;
}

Assuming you have your JAVA_HOME and PATH environment variables set, you may not need to add the
jdk.incubator.httpclient module when executing your application module; however, the --add-modules
switch is available for adding third-party or platform modules to your module path. To be on the safe side, be
sure to add (--add-modules) the httpclient module when running code, as shown here:

$ java --add-modules jdk.incubator.httpclient --module-path mods com.jfxbe.myclientmodule

If you aren’t familiar with Java 9 modules, refer to Chapter 2 about JavaFX and Jigsaw for more details.
Assuming you know about the necessary items, let’s continue the discussion of the HTTP2 module.

The new HTTP2 module is mainly divided into two parts—the HttpClient and the HttpRequest APIs.
The HttpClient APIs are all about the connections and the HttpRequest APIs are about web requests. Both
use the builder pattern with a static method HttpClient.newBuilder() and HttpRequest.newBuilder(),
respectively. When following the builder pattern, most methods related to properties allow you to specify
values in an ad hoc way. Each method returns the initially created builder instance.

After an invocation of newBuilder() on HttpClient and HttpRequest an instance of a HttpClient.Builder
and HttpRequest.Builder is returned. Once you have finished specifying values on property methods, you will
invoke the build() method to return the actual instance of the object. In the case with an HttpClient.Builder
instance and a call to the build() method, an HttpClient instance is returned to the caller.

HttpClient API
The Java 9 HTTP2 module’s HttpClient API provides numerous connection settings. According to the
Javadoc documentation, an HttpClient.Builder supports the following connection settings shown in
Table 10-2.

http://openjdk.java.net/jeps/110
http://openjdk.java.net/jeps/110
http://dx.doi.org/10.1007/978-1-4842-1961-4_2
http://dx.doi.org/10.1007/978-1-4842-1961-4_2

Chapter 10 ■ JavaFX on the Web

337

A typical web site that uses basic authentication will specify an instance of a java.net.Authenticator.
Listing 10-9 shows an HttpClient created with a basic authentication.

Listing 10-9. Basic Authentication Specified on an HttpClient Instance

HttpClient client = HttpClient.newBuilder()
 .authenticator(new Authenticator() {
 @Override
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication("username", "pa$$w0rd1".toCharArray());
 }})
 .build();

HttpRequest API
After building your HTTP client, you need to create an HTTP request using the HttpRequest.newBuilder()
method to create an HttpRequest.Builder instance. This is where you specify properties to build up a web
request. Remember how I mentioned the older HttpURLConnection APIs limitations? One of the limitations was
that the API was difficult to use. To compare and contrast, let’s look at the legacy and improved ways to make a
synchronous HTTP GET web request. Listing 10-10 shows the legacy way to make an HTTP GET web request.

Listing 10-10. The Legacy Way to Make an HTTP GET Web Request

URL url = new URL(urlQueryString);
HttpURLConnection connection = (HttpURLConnection) url.openConnection(); connection.
setDoOutput(true);
connection.setInstanceFollowRedirects(false);
connection.setRequestMethod("GET");

Table 10-2. Connection Settings When Using the HttpClient.Builder Class

Connection Property Description

authenticator(Authenticator a) Sets an authenticator to use for HTTP authentication.

cookieManager(CookieManager cookieManager) Sets a cookie manager.

executor(Executor executor) Sets the ExecutorService to be used for sending and
receiving asynchronous requests.

followRedirects(HttpClient.Redirect
policy)

Specifies whether requests will automatically follow
redirects issued by the server.

pipelining(boolean enable) Enables pipelining mode for HTTP/1.1 requests sent
through this client.

priority(int priority) Sets the default priority for any HTTP/2 requests sent
from this client.

proxy(ProxySelector selector) Sets a ProxySelector for this client.

sslContext(SSLContext sslContext) Sets an SSLContext.

sslParameters(SSLParameters sslParameters) Sets an SSLParameters.

version(HttpClient.Version version) Requests a specific HTTP protocol version where
possible.

Chapter 10 ■ JavaFX on the Web

338

connection.setRequestProperty("Content-Type", "application/json"); connection.
setRequestProperty("charset", "utf-8");
connection.connect();
InputStream inStream = connection.getInputStream();
output(inStream);

As you can see, the legacy code in Listing 10-10 is verbose. Also, it appears that the http client and
request APIs are combined. To see the new and improved code using the new http2 module, look at
Listing 10-11 (HttpRequest).

Listing 10-11. The Improved Way to Make an HTTP GET Web Request

HttpRequest request = HttpRequest.newBuilder(URI.create(queryStr))
 .GET()
 .build();

HttpResponse<String> response = HttpClient.newHttpClient().send(request,
 BodyHandler.asString());

System.out.println(response.statusCode());
System.out.println(response.body());

The output of Listing 10-11 should look something like the following:

200
<html><body><div>hello world</div></body></html>

You will notice in Listing 10-11 that the HTTP GET is a method instead of a string specified on the legacy
method setRequestMethod("GET"). The new HttpRequest.Builder API also allows you to specify a string
method by using the method(String, BodyProcessor) method. The method() method is usually used on
the less common HTTP methods such as OPTION or HEAD. Since the HTTP protocol is a standard, the HTTP
request builder supports the other commonly used methods, such as PUT, POST, and DELETE.

In Listing 10-11 you’ll notice the method send() being used as an equivalent blocking behavior to
Listing 10-10. In the second scenario, the send() method is also making a blocking call to a remote web
server. Later, you will learn how to make non-blocking calls to the remote web server.

There are many ways to create HttpRequest instances by using an HttpRequest.Builder object.
To begin, you first must call the HttpRequest.newBuilder() method. All the available property methods
you can specify on an HttpRequest.Builder object are listed in Table 10-3. Remember when you are done
specifying property methods on your HttpRequest.Builder instance, you will call the build() method to
return an HttpRequest object.

Chapter 10 ■ JavaFX on the Web

339

Now that you’ve seen how easily you can make synchronous (blocking) web requests using send(), let’s
see how to make RESTful requests asynchronously (non-blocking). Next you will see more examples of how
to make RESTful requests using Java 9’s experimental module jdk.incubator.httpclient.

Making RESTful Requests
In the Enterprise Web development world, you will inevitably encounter the concept of RESTful web
services. Based on the concept of representational state transfer (REST), RESTful web services are
lightweight HTTP requests that typically involve XML or JSON-formatted data. To make RESTful calls, the
web request will contain a request method that tells the web server the type of HTTP data flow transaction.

Like database transactions, RESTful conventions follow the concept of CRUD (Create, Read, Update,
and Delete), where the create stage is a POST request, read is a GET, update is a PUT, and delete is a DELETE.
While the actions GET and DELETE only involve a query string to make a request, POST and PUT often involve a
payload of larger amounts of data as part of the request.

Table 10-3. The HttpRequest.Builder Request Property Methods When Using the HttpRequest.Builder Class

Request Property Description

body(HttpRequest.BodyProcessor reqproc) Sets a request body for this builder.

copy() Returns an exact duplicate copy of this builder based on
current state.

expectContinue(boolean enable) Requests server to acknowledge request before sending
request body.

followRedirects(HttpClient.Redirect
policy)

Specifies whether this request will automatically follow
redirects issued by the server.

GET() Builds and returns a GET HttpRequest from this builder.

header(String name, String value) Adds the given name/value pair to the set of headers for
this request.

headers(String... headers) Adds the given name/value pairs to the set of headers for
this request

method(String method) Builds and returns an HttpRequest from this builder
using the given method String.

POST() Builds and returns a POST HttpRequest from this
builder.

proxy(ProxySelector proxy) Overrides the ProxySelector set on the request's client
for this request.

PUT() Builds and returns a PUT HttpRequest from this builder.

setHeader(String name, String value) Sets the given name/value pair to the set of headers for
this request.

timeout(TimeUnit unit, long timeval) Sets a timeout for this request.

uri(URI uri) Sets this HttpRequest’s request URI.

version(HttpClient.Version version) Overrides the HttpClient.version() setting for this
request.

Chapter 10 ■ JavaFX on the Web

340

The HTTP GET Request
Because RESTful services are beyond the scope of this book, I will detail only the two common RESTful
call requests—GET and POST. Listing 10-12 shows the familiar HTTP GET request that developers typically
perform when retrieving JSON data. Keep in mind that in Listing 10-12, the method sendAsync() is used as
an asynchronous call to the remote web server. This involves a background worker thread fetching the data
and later being notified when it is complete.

Listing 10-12. A RESTful GET Request to Retrieve Weather Data

import static jdk.incubator.http.HttpClient.newHttpClient;
import static jdk.incubator.http.HttpRequest.newBuilder;
import static jdk.incubator.http.HttpResponse.BodyHandler;
.
.
// ==
// The sendAsync() and whenCompleteAsync() method returns a
// CompletableFuture<HttpResponse<String>> instance.
// ==

String queryStr = "http://myplace/current-weather?q=Pasadena%20MD,US&format=json";
HttpClient.newHttpClient()
 .sendAsync(newBuilder(URI.create(queryStr))
 .GET()
 .build(),
 BodyHandler.asString())
 .whenCompleteAsync((httpResp, throwable) -> {
 if (throwable != null){
 System.err.println(throwable.getMessage());
 return;
 }
 String json = httpResp.body();
 System.out.println(json);
 });

In Listing 10-12, the code begins by creating an HttpClient instance via the newHttpClient() method.
The newHttpClient() method is statically imported at the top. This makes the code more concise and more
readable by not having to type the owning class. You’ll also notice other statically imported methods and
classes, such as newBuilder and BodyHandler.

After creating a new HttpClient object, the sendAsync() method is invoked with a GET request using the
newBuilder() method. As a convenience, the newBuilder() method follows the builder pattern for a web request
to be created. The second (last) parameter to be passed into the sendAsync() method is a BodyHandler type.

Next, you learn about the body handler type and the HttpResponse<T> response objects when the web
request is completed.

Body Handlers
For typical web requests, the body handler is simply a String type, but there are other body types that can
be retrieved. When the body handler is passed in as the second parameter of the send() or sendAsync()
method, the body handler type with respect to the HttpResponse<T> returned the type T will be the same.
For instance, the method whenCompleteAsync() will receive an HTTP response having a body handler of
type String.

Chapter 10 ■ JavaFX on the Web

341

In Listing 10-12, the method whenCompleteAsync() is triggered upon completing the web request. After
being triggered, the handler code will receive an HttpResponse<String> and a Java Throwable. Again, you
will notice the handler code invoking the httpResp.body() returning a string. Because the data type from
the BodyHandler.asString() passed in earlier is a string, the method body() returns a value of type String.

Do you want to know what other types of body handlers are available?
According to the Java 9 Javadoc documentation, here are some other body handler types that can be

retrieved:

•	 asByteArray(): Returns a BodyHandler<byte[]> that returns a
BodyProcessor<byte[]> obtained from BodyProcessor.asByteArray().

•	 asByteArrayConsumer(Consumer): Returns a BodyHandler<Void> that returns a
BodyProcessor<Void> obtained from BodyProcessor.asByteArrayConsumer
(Consumer).

•	 asFileDownload(Path,OpenOption...): Returns a BodyHandler<Path> that
returns a BodyProcessor<Path> where the download directory is specified, but
the filename is obtained from the Content-Disposition response header.
The Content-Disposition header must specify the attachment type and must also
contain a filename parameter. If the filename specifies multiple path components,
only the final component is used as the filename (with the given directory name).
When the HttpResponse object is returned, the body has been completely written
to the file and HttpResponse.body() returns a Path object for the file. The returned
Path is the combination of the supplied directory name and the filename supplied by
the server. If the destination directory does not exist or cannot be written to, then the
response will fail with an IOException.

•	 discard(Object): Returns a response body handler, which discards the response
body and uses the given value as a replacement for it. Used during a POST request.

•	 asString(Charset): Returns a BodyHandler<String> that returns a
BodyProcessor<String> obtained from BodyProcessor.asString(Charset).
If a charset is provided, the body is decoded using it. If charset is null, then the
processor tries to determine the character set from the Content-encoding header.
If that charset is not supported, UTF_8 is used.

In this example, an asynchronous call sendAsync() method takes a valid URI consisting of a query
string. Once the URI is created, the newBuilder() method invokes the GET() method to specify the HTTP
method and finally invokes the build() method to return a populated object of type HttpRequest. Next, you
see the common POST request when the client is sending larger payloads, such as a form submission.

HTTP POST Request
The code to make a RESTful POST request looks like the GET request in the previous example, except that the
data submitted will not be specified as an appended query string such as “?param1=1¶m2=555”. Instead,
to send name/value pairs as a String payload, Listing 10-13 shows an example of a fictitious bank using an
HTTP RESTful POST service that creates a new customer bank account.

Chapter 10 ■ JavaFX on the Web

342

Listing 10-13. A RESTful POST Request

HttpRequest request = HttpRequest.newBuilder(
 URI.create("https://acmebank/create-account"))
 .POST(fromString("id=" + newSeqId + ",firstName=John,lastName=Doe"))
 .build();

HttpClient httpClient = newHttpClient();
httpClient.sendAsync(request, BodyHandler.discard(null))
 .whenCompleteAsync((httpResp, throwable) -> {
 if (throwable != null){
 System.err.println("Error Saving");
 return;
 }
 System.out.println("Saving complete.");
 });

In Listing 10-13 the code makes an asynchronous call to create a new customer bank account. In this
scenario, the id was passed in the POST method using the variable newSeqId instead of being returned in the
HTTP response. As a demonstration of the server not returning a created customer id or any string response,
the BodyHandler.discard(null) method was specified to ignore body content from the server.

Again, regarding the second parameter of the sendAsync() method as it relates to the data returned
from the server, if your server code returns an id generated after a record has been created, you’ll want
to replace the second parameter of the sendAsync() method with BodyHandler.asString(). Once the
asynchronous call is completed, you can call the httpResp.body() function to return the message sent from
the server.

The new HTTP2 module not only can provide request/response behavior, but it can also offer
full-duplex or WebSockets behavior. The next section covers WebSockets.

WebSockets
WebSockets is a protocol for a two-way (full-duplex) communication using a TCP connection. Java 9’s
http2 module supports the creation of client-side WebSockets. Like the previously mentioned APIs, the
WebSockets API also provides a WebSocket.Builder class for easy creation of WebSocket instances.

Server-Side Sockets
This section doesn’t show you example code for the server side relating to WebSockets. Since there are
literally tons of server-side solutions out in the wild, I suggest you search on the web and pick one. I will
basically present client-side code using Java 9’s http2 module to talk to a WebSocket that essentially is an
echo server.

For a WebSocket-based server-side solution, here are some solutions that I found on the Internet:

•	 Netty: https://netty.io

•	 Vert.x: http://vertx.io

•	 Spark: http://sparkjava.com

https://netty.io/
http://vertx.io/
http://sparkjava.com/

Chapter 10 ■ JavaFX on the Web

343

•	 JEE 7 vendors:

•	 Spring WebSocket: https://docs.spring.io/spring/docs/current/spring-
framework-reference/html/websocket.html

•	 Jetty: http://www.eclipse.org/jetty

To test my client-side code, I’ve used Spark Java the embedded web server at http://sparkjava.com.
They have great examples to create REST APIs and server-side WebSockets. Their documentation shows
you how to create a simple echo server that returns what the client sends. To see their implementation of an
echo server, visit Spark Java’s topic on WebSockets at http://sparkjava.com/documentation - embedded-
web-server.

To obtain the Spark library, here are the Maven and Gradle coordinates.
Maven coordinates for Spark Java:

<dependency>
 <groupId>com.sparkjava</groupId>
 <artifactId>spark-core</artifactId>
 <version>2.6.0</version>
</dependency>

Gradle coordinate notation for Spark Java:

compile "com.sparkjava:spark-core:2.6.0"

Client-Side Sockets
On the client side, you will be creating a WebSocket to connect to the server. To create a WebSocket from
an HttpClient class, you can invoke the static newWebSocketBuilder() method. The method takes two
parameters—a URI and a WebSocket.Listener object. Listing 10-14 creates a WebSocket connection to an
echo server with a URL of ws://localhost:4567/echo. By default, Spark uses port 4567.

Listing 10-14. Creating a Client WebSocket to Send Text Over TCP/IP. The Server Will Return the Sent
Message Back to the Client

HttpClient client = HttpClient.newHttpClient();

WebSocket clientWebSocket = client.newWebSocketBuilder(
 URI.create("ws://localhost:4567/echo"),
 new ClientSocketListener())
.buildAsync().join();

// Send the server two messages
clientWebSocket.sendText("Hello World 1" + new Date());
clientWebSocket.sendText(“Hello World 2" + new Date());

Listing 10-14 creates an HttpClient instance first and then calls the newWebSocketBuilder() to create a
WebSocket.Builder instance. After passing in the URI the second parameter is a new ClientSocketListener
instance. To finish the builder, a call to buildAsync() will return a CompletableFuture<WebSocket>. After
calling buildAsync() a call to the join() method will cause it to block and wait to return the WebSocket
instance. After creating the WebSocket, the sendText() method is invoked to send text to the server.

The ClientSocketListener class shown in Listing 10-15 is responsible for handler code when
communicating to the server. The only one that is really implemented is the onText() method.

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html
http://www.eclipse.org/jetty
http://sparkjava.com/
http://sparkjava.com/documentation

Chapter 10 ■ JavaFX on the Web

344

Listing 10-15. An Client Socket Listener Class to Respond to the Echo Server

class ClientSocketListener implements WebSocket.Listener {
 @Override
 public void onOpen(WebSocket webSocket) {
 System.out.println("onOpen");
 }

 @Override
 public CompletionStage<?> onBinary(WebSocket webSocket, ByteBuffer message, WebSocket.

MessagePart part) {
 System.out.println("onBinary");
 return null;
 }

 @Override
 public CompletionStage<?> onPing(WebSocket webSocket, ByteBuffer message) {
 System.out.println("onPing");
 return null;
 }

 @Override
 public CompletionStage<?> onPong(WebSocket webSocket, ByteBuffer message) {
 System.out.println("onPong");
 return null;
 }

 @Override
 public CompletionStage<?> onClose(WebSocket webSocket, int statusCode, String reason) {
 System.out.println("onClose");
 return null;
 }

 @Override
 public void onError(WebSocket webSocket, Throwable error) {
 System.out.println("onError");
 }

 @Override
 public CompletionStage<?> onText(WebSocket webSocket,
 CharSequence message,
 WebSocket.MessagePart part) {
 System.out.println("onText");

 // request for one message
 webSocket.request(1);

 // Receive message from server.
 return CompletableFuture.completedFuture(message)
 .thenAccept(System.out::println);
 }
}

Chapter 10 ■ JavaFX on the Web

345

In Listing 10-15, the methods are basically all the events and callbacks when messages are received
from the server. You will notice that the onText() method will return an instance of:

CompletableFuture<CharSequence>

Because the messages are asynchronous, the thenAccept() method is triggered when the message is
complete. Once complete, the message of type CharSequence will be printed to the console.

Well there you have it, a brief code example on WebSockets. I’m sure you are excited about fetching and
posting data; however, maintain that enthusiasm as you’ll now see how to display data using JavaFX!

Viewing HTML5 Content (WebView)
Now that you’ve seen various strategies for fetching web-based content, you will finally get a chance to
display HTML5 web content using the powerful JavaFX WebView node.

JavaFX provides a GUI WebView (javafx.scene.web.WebView) node that can render HTML5 content
onto the Scene graph. A WebView node is basically a mini-browser UI component that can respond to
web events and allows a developer to interact with the HTML5 content. Because of the close relationship
between loading web content and the ability to display web content, the WebView node object also contains a
WebEngine instance.

To whet your appetite in this section, I’ve created an example that uses the WebView API to render
HTML5 content. The example is a JavaFX application that displays an SVG-based analog clock. To obtain the
full source code, visit the book’s web site and download the DisplayingHtml5Content project.

Example: An HTML5 Analog Clock
As an example of using HTML5 content to be rendered onto a WebView node, let’s look at an analog clock
that was created using an SVG file, based on the W3C’s scalable vector graphics (SVG) markup language.
Figure 10-1 depicts an SVG-based analog clock that was rendered in a JavaFX WebView node.

Figure 10-1. SVG-based analog clock (WebView node)

Chapter 10 ■ JavaFX on the Web

346

You can see that the analog clock face has hour, minute, and second hands. The clock hands will
be initialized and positioned with the current time. Of course, as time goes by, the hands will move in a
clockwise rotation.

To download the code, go to the book’s web site or to https://github.com/carldea/jfx9be for
instructions on how to compile and run the code. Listing 10-16 shows statements on how to compile the
code, copy resources, and run the displaying HTML5 content application on the DOS command prompt
(terminal).

Listing 10-16. The Statements to Compile, Copy Resources, and Run the Displaying HTML5 Content
Application Example

// Compile
$ javac -d mods/com.jfxbe.html5content $(find src/com.jfxbe.html5content -name "*.java")

// Copy resource
$ cp src/com.jfxbe.html5content/com/jfxbe/html5content/clock.svg \
mods/com.jfxbe.html5content/com/jfxbe/html5content

// Run Application
$ java --module-path mods -m \
com.jfxbe.html5content/com.jfxbe.html5content.DisplayingHtml5Content

The compile statement will place the compiled classes into the mods/com.jfxbe.html5content
directory.

Once you have compiled the code, the next statement will copy the resources into the compiled area.
Copying the resources will make files such as the clock.svg available during runtime. Usually, your favorite
IDE will copy resources automatically. The last statement runs the application by using --module-path to
point to the newly compiled module (com.jfxbe.html5content). Also note the -m switch. It tells the Java
runtime which module to run and which class contains the application main() method.

After successfully running the application, Figure 10-1 shows the DisplayingHtml5Content application
containing an SVG clock rendered in a WebView node. Next, let’s look at the source code to see how it was
implemented (i.e., what makes it tick?).

Analog Clock Source Code
The source code begins with the module definition shown in Listing 10-17. If you aren’t familiar with Java
9’s module definitions, refer to Chapter 2 on JavaFX and Jigsaw. If you want to ignore modules and treat the
code as Java 8 code, just skip the module definition and look at the main source code shown in Listing 10-18.

Listing 10-17. The Contents of the module-info.java Definition for the com.jfxbe.html5content Module

module com.jfxbe.html5content {
 requires javafx.web;
 requires jdk.jsobject;
 exports com.jfxbe.html5content;
}

The module definition begins with a name such as com.jfxbe.html5content. This of course is just a
convention and doesn’t have to be a namespace and dot separated. As of the writing of this book during
compilation I received a warning because my module name has a numeral 5 in html5content. At this time, there
have been e-mails circulating in regards to naming conventions, overall reduction in the amount of typing when
specifyling what module names to include, and the simplification of running applications on the command line.

https://github.com/carldea/jfx9be
http://dx.doi.org/10.1007/978-1-4842-1961-4_2

Chapter 10 ■ JavaFX on the Web

347

The main analog clock source code is shown in Listing 10-18. The analog clock is based on an SVG file
loaded into a JavaFX application’s Scene graph. Listing 10-19 shows the SVG file containing the majority of
the functional code that displays the clock face and the JavaScript code that animates the hour, minute, and
second hands.

Listing 10-18. Analog Clock Source Code (DisplayingHtml5Content.java)

package com.jfxbe.html5content;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

import java.net.MalformedURLException;
import java.net.URL;

/**
 * An SVG analog clock rendered using the WebView node.
 * @author cdea
 */
public class DisplayingHtml5Content extends Application {

 @Override
 public void start(Stage primaryStage) throws MalformedURLException {
 primaryStage.setTitle("Displaying Html5 Content");
 WebView browser = new WebView();
 Scene scene = new Scene(browser,320,250, Color.rgb(0, 0, 0, .80));
 primaryStage.setScene(scene);

 URL url = getClass().getResource("clock.svg");
 browser.getEngine().load(url.toExternalForm());
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Listing 10-19 shows the clock.svg SVG file that was created using the Inkscape tool. SVG specification
is similar to HTML markup, where you can embed JavaScript code to interrogate element tags in the DOM.

Listing 10-19. The clock.svg File Containing an SVG Representation of an Analog Clock

<svg
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:cc="http://creativecommons.org/ns#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns="http://www.w3.org/2000/svg"

Chapter 10 ■ JavaFX on the Web

348

 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
 xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
 width="300"
 height="250"
 id="svg4171"
 version="1.1"
 inkscape:version="0.48.1 "
 sodipodi:docname="clock.svg" onload="updateTime()">
<script>
<![CDATA[
var xmlns="http://www.w3.org/2000/svg"
function updateTime()
{
 var date = new Date();
 var hr = parseInt(date.getHours());
 if (hr > 12) {
hr = hr - 12; }
 var min = parseInt(date.getMinutes());
 var sec = parseInt(date.getSeconds());
 var pi=180;
 var secondAngle = sec * 6 + pi;
 var minuteAngle = (min + sec / 60) * 6 + pi;
 var hourAngle = (hr + min / 60 + sec /3600) * 30 + pi;
 moveHands(secondAngle, minuteAngle, hourAngle);
}
function moveHands(secondAngle, minuteAngle, hourAngle) {
var secondHand = document.getElementById("secondHand"); var minuteHand = document.
getElementById("minuteHand"); var hourHand = document.getElementById("hourHand");
 secondHand.setAttribute("transform","rotate("+ secondAngle + ")");
 minuteHand.setAttribute("transform","rotate("+ minuteAngle +")");
 hourHand.setAttribute("transform","rotate("+ hourAngle + ")");
}]]>
</script>
<defs id="defs4173">
... // beginning of SVG code
... // Main clock code
<g id="hands" transform="translate(108,100)"> <g id="minuteHand"> <line stroke-
width="3.59497285" y2="50" stroke-linecap="round" stroke="#00fff6" opacity=".9" />
<animateTransform attributeName="transform" type="rotate" repeatCount="indefinite"
dur="60min" by="360" /> </g>
<g id="hourHand"> <line stroke-width="5" y2="30" stroke-linecap="round" stroke="#ffcb00"
opacity=".9" /> <animateTransform attributeName="transform" type="rotate"
repeatCount="indefinite" dur="12h"
by="360" /> </g> <g id="secondHand">
 <line stroke-width="2" y1="-20" y2="70" stroke-linecap="round" stroke="red"/>
 <animateTransform attributeName="transform" type="rotate" repeatCount="indefinite" dur="60s"
by="360" />
</g> </g>
 ... // The rest of the Clock code: shiney glare, black button cover (center)
</svg>

Chapter 10 ■ JavaFX on the Web

349

How It Works
HTML5 allows the use of scalable vector graphics (SVG) content to be shown in browsers. SVG is similar
to JavaFX’s Scene graph (retained mode), in which nodes can be scaled at different sizes while preserving
shape details without the effects of pixelation. In this example, the code in Listing 10-18 represents the Java
source code, and Listing 10-19 represents the SVG content code that is loaded into a WebView node.

Before running the example code, make sure the clock.svg file is in the build path. In NetBeans, you
may need to perform a clean and build before running the application, which will copy the resource clock.
svg to the build path.

Let’s jump right into the code from Listing 10-18, beginning with the start() method. This method
begins by setting the Stage window’s title bar. Then the code instantiates a WebView node as the root when
creating the Scene object. After creation, the scene is set as the Stage window’s current scene.

Before loading the file, the code obtains a valid URL string of the location of the file based on the
method getClass().getResources().

When loading a URL, you will notice the call to getEngine().load(), where the getEngine() method
will return an instance of a javafx.scene.web.WebEngine object. This basically means that all instantiated
WebView classes will implicitly create their own javafx.scene.web.WebEngine instances. The following code
snippet is an excerpt from Listing 10-18, showing the JavaFX’s WebEngine object loading the clock.svg file:

WebView browser = new WebView();
URL url = getClass().getResource("clock.svg");
browser.getEngine().load(url.toExternalForm());

You are probably wondering why the Java source code is so small. It’s small because the WebView
(javafx.scene.web.WebView) node is only responsible for rendering HTML5 content. The majority of the
code is shown in Listing 10-19, and it contains the clock.svg file. This file not only contains SVG markup
language, but also the JavaScript code. The SVG specification support animation is applied to elements.
Next, let’s look at how the SVG content was created.

Inkscape and SVG
The analog clock was created using the popular open source SVG drawing program Inkscape. Because
Inkscape is beyond the scope of this book, I will not be discussing the details of the tool. To learn more about
Inkscape, visit http://www.inkscape.org/ for tutorials and demos. To learn more about SVG, visit https://
www.w3schools.com/graphics/svg_intro.asp.

In brief, Inkscape allows designers to create shapes, text, and effects to generate illustrations. Because
SVG files are considered HTML5 content, these files can also be displayed in an HTML5-capable browser
such as the WebView node.

Running the example project called DisplayingHtml5Content, you have seen that the clock’s hands
move or animate by rotating clockwise. You are probably wondering how the clock’s hands are rotated or
positioned. Simply put, when manipulating SVG elements or any HTML5 elements, the JavaScript language
will be employed. In fact, in this example the clock’s hour, minute, and second hand node elements are
rotated by using JavaScript code that exists in Listing 10-19 between the <script> tag elements.

Between these <script> tags are the JavaScript code statements responsible for initializing and
updating the clock’s hands. The main code uses the updateTime() function to calculate the position of
each second, minute, and hour hand. Before the start of the animation of the clock hands, the code sets the
clock’s initial position by calling the JavaScript updateTime() function via the onload attribute on the entire

http://www.inkscape.org/
https://www.w3schools.com/graphics/svg_intro.asp
https://www.w3schools.com/graphics/svg_intro.asp

Chapter 10 ■ JavaFX on the Web

350

SVG document (located on the root svg element). Once the clock’s arms are set, the SVG code begins to
animate the clock arms by using the animateTransform element. The following is SVG code that animates
the second hand indefinitely:

<g id="secondHand">
 <line stroke-width="2" y1="-20" y2="70"
 stroke-linecap="round" stroke="red"/>
 <animateTransform attributeName="transform"
 type="rotate" repeatCount="indefinite" dur="60s" by="360" />
</g>

On a final note, if you want to create a clock like the one depicted in this example, visit http://
screencasters.heathenx.org/blog to learn about all things Inkscape. Another impressive and beautiful
display of custom controls that focuses on clocks, gauges, and dials is the Medusa, Steel Series, and the Enzo
library by Gerrit Grunwald. To be totally amazed, visit his blog at http://harmoniccode.blogspot.com.

WebEvents
If you’ve read Chapter 9’s discussion of JavaFX Media and how the APIs are designed to be event-driven,
you’ll be happy to know that the JavaFX Web APIs also adhere to an event-driven programming model. Web
events mirror the way browsers raise client-side events such as alerts, errors, and statuses. In this section,
you briefly learn about how to respond to web-based events.

If you are familiar with JavaScript client-side web development, you most likely know how to pop up an
alert dialog box with a message. If you don’t know how to display an alert box, the following JavaScript code
snippet will pop up an alert dialog box (assuming you are using a browser):

<script>
 alert('JavaFX is Awesome');
</script>

Typically, old-school web developers will use alert boxes to debug web pages. However, modern web
developers more likely use the JavaScript function console.log() to output information into a console
provided by Firebug or the Chrome browser’s developer tools. So, what do you think would happen if an
HTML web page that contained the alert() code just shown was loaded into a WebView node?

When the code is executed inside a JavaFX WebView node, a native dialog window will not pop up. But
the OnAlert event does get raised as a javafx.scene.web.WebEvent object. To set up the handler, use the
setOnAlert() method with an inbound parameter of type WebEvent.

The following code snippet will receive WebEvent<String> objects containing the string message to be
output onto the console:

webView.getEngine().setOnAlert((WebEvent<String> wEvent) -> {
 System.out.println("Alert Event - Message: " + wEvent.getData());
 // ... show a JavaFX Alert dialog window
});

Developers who want to create their own dialog windows upon an alert-triggered message can simply
respond to WebEvents and use JavaFX Dialog APIs such as an Alert instance. Table 10-4 shows all the
WebEngine’s web events.

http://screencasters.heathenx.org/blog
http://screencasters.heathenx.org/blog
http://harmoniccode.blogspot.com/
http://dx.doi.org/10.1007/978-1-4842-1961-4_9

Chapter 10 ■ JavaFX on the Web

351

Now that you know how to retrieve data, manipulate HTML, and respond to browser-based web
events, let’s look at an example that combines all the techniques that you’ve learned so far. This example is a
Weather Widget application that fetches JSON data from a RESTful endpoint. You will also see bidirectional
communication between Java and JavaScript using the JavaScript bridge object netscape.javascript.
JSObject.

Weather Widget Example
The example demonstrated in this section is a Weather Widget that combines all the web-based concepts
mentioned so far. The example is a JavaFX application that loads JSON weather information from the Open
Weather Map API at http://openweathermap.org. Figure 10-2 shows the Weather Widget example with the
current weather conditions in Columbus Ohio, USA.

Table 10-4. javafx.scene.web.WebEngine WebEvents and Properties

Set On Method On Method Property Description

setOnAlert() onAlertProperty() JavaScript alert handler

setOnError() onErrorProperty() WebEngine error handler

setOnResized() onResizedProperty() JavaScript resize handler

setOnStatusChanged() onStatusChanged() JavaScript status handler

setOnVisibilityChanged() onVisibilityChangedProperty() JavaScript window visibility handler

setConfirmHandler() confirmHandlerProperty() JavaScript Confirm window

Figure 10-2. A Weather Widget displaying the current weather condition. Once you’ve entered the city, state
code, and country code in the format of “CITY STATE,COUNTRY,” you click the Search button to fetch the
JSON data.

http://openweathermap.org/

Chapter 10 ■ JavaFX on the Web

352

To download the code, go to the book’s web site or to https://github.com/carldea/jfx9be for
instructions on how to compile and run the code. Because the http2 module is part of the incubator area,
I want to bring it to your attention when you include the module when compiling and running a warning.
Listing 10-20 shows the statements for how to compile the code, copy resources and run the Weather Widget
application on the DOS command prompt (terminal).

Listing 10-20. The Statements to Compile, Copy Resources, and Run the Weather Widget Application
Example

// MacOSX and Linux
// Compile
$ javac -d mods/com.jfxbe.weatherwidget $(find src/com.jfxbe.weatherwidget -name "*.java")

// Copy resource
$ cp src/com.jfxbe.weatherwidget/com/jfxbe/weatherwidget/weather_template.html \
mods/com.jfxbe.weatherwidget/com/jfxbe/weatherwidget

// Run Application
$ java --add-modules jdk.incubator.httpclient --module-path mods -m com.jfxbe.weatherwidget/
com.jfxbe.weatherwidget.WeatherWidget

// Windows OS
// Compile
c:\jfxbe\chap10> javac -d mods\com.jfxbe.weatherwidget src\com.jfxbe.weatherwidget\module-
info.java src\com.jfxbe.weatherwidget\com.jfxbe.weatherwidget\WeatherWidget.java

// Copy resource
c:\jfxbe\chap10> copy src\com.jfxbe.weatherwidget\com\jfxbe\weatherwidget\weather_template.html
mods\com.jfxbe.weatherwidget\com\jfxbe\weatherwidget

// Run Application
c:\jfxbe\chap10> java --add-modules jdk.incubator.httpclient --module-path mods -m com.
jfxbe.weatherwidget/com.jfxbe.weatherwidget.WeatherWidget

The compile statement will place the compiled classes into the mods/com.jfxbe.weatherwidget
directory. When compiling, you should see the following warning on the console:

warning: using incubating module(s): jdk.incubator.httpclient
1 warning

You can ignore the warning and proceed with the other steps. The warning basically indicates that it is
considered experimental and not part of the core.

Once you have compiled the code, you need to copy resources into the compiled area. Copying
the resources will make files available during runtime. Usually your favorite IDE will copy resources
automatically. The last statement runs the application by adding the jdk.incubator.httpclient module
via --add-modules and using the --module-path to point the newly compiled module to the mods directory.
Note the -m switch, which tells the Java runtime which module to run and which class contains the main
application. In this case, the module name and main class name are specified like so:

com.jfxbe.weatherwidget/com.jfxbe.weatherwidget.WeatherWidget.

https://github.com/carldea/jfx9be

Chapter 10 ■ JavaFX on the Web

353

After successfully running the application, Figure 10-2 shows the Weather Widget application window.
Before I get too far ahead relating to the source code, I want to point out that for the Weather Widget

application to successfully retrieve data, a valid API key must be obtained from the folks at Open Weather
Map. To register and get an API key, go to http://openweathermap.org. If this is the first time you’ve run
the application, you will be prompted with a dialog window asking you to enter in the API key, as shown in
Figure 10-3.

Figure 10-3. A dialog to enter the API key from the Open Weather Map

Once the API key is entered and accepted, it will be stored locally in a file named:

 {user.home}/.openweathermap-api-key

Where {user.home} is where you substitute your home directory. Once the file is saved, when you
launch the application again, the API key file will be loaded instead of prompting the user for the API key.

In Java’s system properties, user.home is the user’s home directory depending on the operating system.
See the Javadoc documentation and tutorial at the following:

https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

 ■ Note the web service in this example is powered by the people of open Weather Map (http://
openweathermap.org). I encourage you to support them as they continue to provide a valuable service with
maps and weather data around the world for application and mobile developers.

One-Liner: Reading an Input Stream into a String
As a really nice trick for how the Weather Widget example loads the API key file, I created a simple static
utility method streamToString(). This handy utility method allows you to read a file’s content or a
connection’s input stream and convert it into a string.

When you look at the Weather Widget example’s source code, the method will attempt to read a local
file as a string containing an API key issued from the web site http://openweathermap.org.

Listing 10-21 shows how to convert an input stream into a String object.

http://openweathermap.org/
http://openweathermap.org/
http://openweathermap.org/
http://openweathermap.org/

Chapter 10 ■ JavaFX on the Web

354

Listing 10-21. A Static Method that Reads a Text File Returned as a String Object to the Caller

private static String streamToString(InputStream inputStream) {
 String text = new Scanner(inputStream, "UTF-8")
 .useDelimiter("\\Z")
 .next();
 return text;
}

You will quickly notice the strange one-line statement that “magically” converts an input stream into
a String object. The streamToString() method uses the convenient Scanner API. This API is excellent for
reading text files that have delimited text lines, such as comma-separated values (CSV). Scanner objects
default their delimiter as an end-of-line character (\n).

By setting the end-of-file (EOF) marker (\\Z) as the delimiter, the next() method will return the
text stream before the end, creating the entire text as one field. Of course, there are other ways to retrieve
text data, and probably more efficient ways, too; however, you can see that using this strategy can handle
common situations with small- to medium-sized data requests (up to ~3MB). The size can be an issue
because the data is converted to a String object and, depending on the number of requests without garbage
collection, memory resources can be easily consumed—possibly overwhelming the application. Since it is
only an API key consisting of a hash, it should be perfectly fine.

The Weather Widget allows users to enter a city or region into the search field to determine the weather
condition. After fetching the JSON weather data, the screen will display the following information: City,
Country, Day of Week, Time (Last update), Weather Condition, Weather Description, Icon, Temperature,
Humidity, and Wind Speed. The code will execute the JavaScript code to populate the display.

Okay, enough with the pre-requisites and description of the application—let’s now look at the Weather
Widget’s source code.

Source Code
The Weather Widget project consists of three source files:

•	 module-info.java: Module definition requires jdk.incubator.httpclient etc.

•	 WeatherWidget.java: Main application code

•	 weather_template.html: The HTML template used as the main display of weather info

In Listing 10-22, the module-info.java file contains the module definition. The Weather Widget
module depends on the following modules: javafx.web, jdk.jsobject, and jdk.incubator.httpclient.
The last statement is the exports of the Weather Widget module itself. Exporting a module is how to make the
module and its APIs public to whoever uses it. For instance, if another module adds a requires com.jfxbe.
weatherwidget, their code can safely import packages owned by com.jfxbe.weatherwidget. Remember that
transitive dependencies don’t have to be included in the module definition if an existing module already
references it, such as the module java.base.

Listing 10-22. The module-info.java for the com.jfxbe.weatherwidget Module

module com.jfxbe.weatherwidget {
 requires javafx.web;
 requires jdk.jsobject;
 requires jdk.incubator.httpclient;

 exports com.jfxbe.weatherwidget;
}

Chapter 10 ■ JavaFX on the Web

355

Listing 10-23 is the main Weather Widget application code in the WeatherWidget.java file. In the
source code, I’ve omitted some imports to save some space in this chapter, but I’ve included the static
imports to help make code later more concise. It’s a good idea to read the main comments at the top of the
class to better understand the data flow when the code communicates back and forth between Java and
JavaScript.

Listing 10-23. Source Code of the Weather Widget (WeatherWidget.java)

package com.jfxbe.weatherwidget;

// Other imports omitted...

import static jdk.incubator.http.HttpClient.newHttpClient;
import static jdk.incubator.http.HttpRequest.newBuilder;
import static jdk.incubator.http.HttpResponse.BodyHandler;
/**
 * The WeatherWidget application demonstrates the
 * use of the following interactions:
 * <pre>
 * 1) Communications from Java to JavaScript
 * 2) Communications from JavaScript to Java
 * 3) RESTful GET Web service end point
 * 4) Manipulate JSON Objects
 * 5) Handle HTML/JavaScript WebEvents
 * 6) Debugging using Firebug lite
 * </pre>
 *
 * <pre>
 * The following are the steps to help
 * demonstrate the above interactions:
 *
 * Step 1: The user enters a city state and country into the
 * search text field. (See weather_template.html)
 * Step 2: After search button is pressed the JavaScript function
 * findWeatherByLocation() is called. (See weather_template.html)
 * Step 3: An up call from JavaScript to Java is made to the method
 * WeatherWidget.queryWeatherByLocationAndUnit(). (See this class)
 * Step 4: After querying the weather data the JSON data is passed to
 * the Java method populateWeatherData(). This method will call
 * the JavaScript function populateWeatherData(). (See this class)
 * Step 5: Populates the HTML page with the JavaScript function
 * populateWeatherDate() (See weather_template.html)
 *
 * </pre>
 *
 * It is required to obtain a valid API key to query weather data.
 * To obtain an API key head over to Open Weather Map at
 * http://openweathermap.org
 *
 * @author cdea
 */
public class WeatherWidget extends Application {

Chapter 10 ■ JavaFX on the Web

356

 /** The main URL of the current weather REST end point. */
 public static final String WEATHER_URL = "http://api.openweathermap.org/data/2.5/

weather";

 /** A local file containing a valid API key. */
 public static final String API_KEY_FILE = ".openweathermap-api-key";

 /** The API key to access weather and map data. */
 private static String API_KEY = null;

 /** The Weather display HTML page */
 public static final String WEATHER_DISPLAY_TEMPLATE_FILE = "weather_template.html";

 /** A WebView node to display HTML5 content */
 private WebView webView;

 /** A singleton http client to make http requests */
 private static HttpClient HTTP_CLIENT;

 @Override
 public void start(Stage stage) {
 stage.setTitle("Weather Widget");

 webView = new WebView();

 Scene scene = new Scene(webView, 300, 300);
 stage.setScene(scene);

 // obtain API key
 loadAPIKey();

 // Turns on Firebug lite for debugging
 // html,css, javascript
 // enableFirebug(webView);

 // The web view's web engine
 webView.getEngine()
 .getLoadWorker()
 .stateProperty()
 .addListener((obs, oldValue, newValue) -> {
 if (newValue == Worker.State.SUCCEEDED) {
 // Let JavaScript make up calls to this (Java) class
 JSObject jsobj = (JSObject)
 webView.getEngine()
 .executeScript("window");
 jsobj.setMember("WeatherWidget", this);
 // default city's weather (a sunny place)
 queryWeatherByLocationAndUnit("Miami,FL", "c");
 }
 });

Chapter 10 ■ JavaFX on the Web

357

 // Display a JavaFX dialog window explaining the error
 webView.getEngine().setOnAlert((WebEvent<String> t) -> {
 System.out.println("Alert Event - Message: " + t.getData());
 showErrorDialog(t.getData());
 });

 // Load HTML template to display weather
 webView.getEngine()
 .load(getClass()
 .getResource(WEATHER_DISPLAY_TEMPLATE_FILE)
 .toExternalForm());
 stage.show();
 }

 /**
 * If an API key file doesn't exist prompt the user to enter their key.
 * Once a valid key is saved into a file named .openweathermap-api-key
 * The application will use it to fetch weather data.
 */
 private void loadAPIKey() {
 // Load API key from local file
 File keyFile = new File(System.getProperty("user.home") + "/" + API_KEY_FILE);

 // Check for file's existence and read/write privileges.
 if (keyFile.exists() && keyFile.canRead() && keyFile.canWrite()) {
 try (FileInputStream fis = new FileInputStream(keyFile)){
 Optional<String> apiKey = Optional.ofNullable(streamToString(fis));
 apiKey.ifPresent(apiKeyStr -> API_KEY = apiKeyStr);
 } catch (Exception e) {
 Platform.exit();
 return;
 }
 } else {
 // If the API key does not exist display dialog box.
 TextInputDialog dialog = new TextInputDialog("");
 dialog.setTitle("Enter API Key");
 dialog.setHeaderText("Don't have a key? Go to: Open Weather Map http://

openweathermap.org");
 dialog.setContentText("Please enter API Key:");

 Optional<String> result = dialog.showAndWait();

 result.ifPresent(key -> {
 // write to disk
 try (FileOutputStream fos = new FileOutputStream(keyFile)) {
 String apiKey = result.get();
 fos.write(apiKey.getBytes());
 fos.flush();
 API_KEY = apiKey;
 } catch (Exception e) {
 e.printStackTrace();

Chapter 10 ■ JavaFX on the Web

358

 Platform.exit();
 return;
 }
 });
 }
 }

 /**
 * Display error dialog window.
 * @param errorMessage
 */
 private void showErrorDialog(String errorMessage) {
 Alert dialog = new Alert(Alert.AlertType.ERROR, errorMessage);
 dialog.setTitle("Error Retrieving Weather Data");
 dialog.show();
 }

 @Override
 public void stop() throws Exception {
 // clean up resources here...
 }

 /**
 * Quick one liner that delimits on the end of file character and
 * returning the whole input stream as a String.
 * @param inputStream byte input stream.
 * @return String A string from an input stream.
 */
 public String streamToString(InputStream inputStream) {
 String text = new Scanner(inputStream, "UTF-8")
 .useDelimiter("\\Z")
 .next();
 return text;
 }

 /**
 * Returns a string containing the URL with parameters.
 * @param cityRegion The city state and country. State and
 * country is separated by a comma.
 * @param unitType Specify c for celsius and f for fahrenheit.
 * @return String A query string representing the web request.
 */
 private String generateQueryString(String cityRegion, String unitType) {
 String units = "f".equalsIgnoreCase(unitType) ? "imperial": "metric";

 String queryString = WEATHER_URL +
 "?q=" + cityRegion +
 "&" + "units=" + units +
 "&" + "mode=json" +
 "&" + "appid=" + API_KEY;
 return queryString;
 }

Chapter 10 ■ JavaFX on the Web

359

 /**
 * This method is called from the JavaScript function
 * findWeatherByLocation(). Refer to the weather_template.html
 * file.
 * <pre>
 * -- Step 3 --
 * </pre>
 *
 * @param cityRegion The city, state and country.
 * @param unitType The temperature in celsius or fahrenheit.
 */
 public void queryWeatherByLocationAndUnit(String cityRegion,
 String unitType) {

 // build a weather request
 String queryStr = generateQueryString(cityRegion, unitType);
 System.out.println("Request (http2): " + queryStr);

 // Make a GET request to fetch weather data asynchronously
 // The sendAsync() method returns a CompletableFuture<HttpResponse<String>>
 HTTP_CLIENT.sendAsync(newBuilder(URI.create(queryStr))
 .GET()
 .build(),
 BodyHandler.asString())
 .whenCompleteAsync((httpResp, throwable) -> {
 if (throwable != null){
 showErrorDialog(throwable.getMessage());
 return;
 }
 String json = httpResp.body();
 populateWeatherData(json, unitType);
 System.out.println("Response (http2): " + json);
 });
 }

 /**
 * Invokes to the JavaScript function populateWeatherData() using the web engine.
 * <pre>
 * -- Step 4 --
 * From Java a call to invoke a JavaScript function is made by
 * calling populateWeatherData().
 * </pre>
 *
 * @param json The JSON string to be evaluated (converted to a real JavaScript object).
 * @param unitType The symbol and unit for the temperature.
 */
 private void populateWeatherData(String json, String unitType) {
 Platform.runLater(() -> {
 // On the JavaFX Application Thread....
 webView.getEngine()
 .executeScript("populateWeatherData(eval(" + json + "), " +
 "'" + unitType + "');");
 });
 }

Chapter 10 ■ JavaFX on the Web

360

 public static void main(String[] args){
 HTTP_CLIENT = newHttpClient();
 Application.launch(args);
 }
}

Lastly, Listing 10-24 consists of the HTML and JavaScript code in a file resource weather_template.
html. This file is loaded into the JavaFX WebView node.

Listing 10-24. An HTML Template File Populated with Weather Data

<!DOCTYPE html>
<html>
 <head>
 <title>Weather Widget</title>
 <style type="text/css">
 body { background-color:#ffffff; }

 .tileTextDisplay {
 font-family: arial,sans-serif;
 font-weight: lighter !important;
 color: #878787 !important;
 }
 .largerFont {
 font-size: x-large !important;
 }
 .mediumFont {
 font-size: medium !important;
 }
 #weather-temp {
 font-family: 'Arial', sans-serif;
 font-size: 64px;
 color: #212121 !important;
 }
 #unitType {
 font-family: 'Arial', sans-serif;
 font-size: 20px;
 color: #000000 !important;
 }
 </style>

 <script>
 var weekday=new Array(7);
 weekday[0]="Sunday";
 weekday[1]="Monday";
 weekday[2]="Tuesday";
 weekday[3]="Wednesday";
 weekday[4]="Thursday";
 weekday[5]="Friday";
 weekday[6]="Saturday";

Chapter 10 ■ JavaFX on the Web

361

 /* -- Step 2 --
 * Up call to Java invoking the
 * WeatherWidget.queryWeatherByLocationAndUnit() method.
 */
 function findWeatherByLocation() {
 var cityInfo = encodeURIComponent(document.getElementById('search-field').value);
 setInnerText("error-msg", "");
 WeatherWidget.queryWeatherByLocationAndUnit(cityInfo, "c");
 }

 /* -- Step 5 --
 * Populate UI with weather data.
 * This function is called from Java code.
 */
 function populateWeatherData(json, unitType) {
 var jsonWeather = json;
 if (jsonWeather.cod) {
 if (jsonWeather.cod != 200) {
 document.getElementById('error-msg').innerHTML = jsonWeather.message;
 alert(jsonWeather.message);
 return;
 }
 }

 setInnerText('city', jsonWeather.name);
 setInnerText('country', jsonWeather.sys.country);

 var weatherTime = new Date(jsonWeather.dt * 1000);
 var timeStr = timeFormat(jsonWeather.dt * 1000);

 setInnerText('weather-day-time', weekday[weatherTime.getDay()] + " " + timeStr) + "
(Last Update)";

 setInnerText('weather-current', jsonWeather.weather[0].main);
 setInnerText('weather-current-desc', jsonWeather.weather[0].description);
 document.getElementById('weather-icon').src = "http://openweathermap.org/img/w/" +

jsonWeather.weather[0].icon + ".png";
 setInnerText('weather-temp', jsonWeather.main.temp);
 setInnerText('weather-humidity', "Humidity: " + jsonWeather.main.humidity + "%");
 var windSpeed = (unitType === 'f') ? 'mph' : 'km/h';
 setInnerText('weather-wind-speed', "Wind: " + jsonWeather.wind.speed + " "

+windSpeed);

 }

 function setInnerText(id, text) {
 document.getElementById(id).innerText = text;
 }

 function timeFormat(millis) {
 var weatherTime = new Date(millis);
 var hours = weatherTime.getHours();
 var minutes = weatherTime.getMinutes();
 var meridian = hours >= 12 ? 'PM' : 'AM';

Chapter 10 ■ JavaFX on the Web

362

 hours = hours % 12;
 hours = hours ? hours : 12; // hour '0' means '12'
 minutes = minutes < 10 ? '0' + minutes : minutes;
 var timeStr = hours + ':' + minutes + ' ' + meridian;
 return timeStr;
 }

 function init() {
 // Apply listener to override enter key press.
 document.getElementById('search-field')
 .addEventListener("keypress", function(event){
 // Overide default enter key to fetch and
 // populate weather info.
 if(event.keyCode==13) {
 event.preventDefault();
 findWeatherByLocation();
 return;
 }
 });
 }
 </script>
 </head>
 <body id="weather_background" onload="init();">
 <form>
 <input id="search-field" placeholder="City State, Country Code" type="text"

name="searchField"/>
 <!-- Step 1 - The user enters a city state and country -->
 <input id="search-button" type="button" onclick="findWeatherByLocation()"

name="searchButton" value="Search"/>
 </form>
 <div id="error-msg"></div>
 <div id="city" class="tileTextDisplay largerFont"></div>
 <div id="country" class="tileTextDisplay mediumFont"></div>
 <div id="weather-day-time" class="tileTextDisplay mediumFont"></div>
 <div id="weather-current" class="tileTextDisplay mediumFont"></div>
 <div id="weather-current-desc" class="tileTextDisplay mediumFont"></div>
 <div>

 <div id="weather-temp" style="padding-left:10px; float:left;"></div>
 <div style="float:left; font-size:20px; margin-top:6px">
 °C
 </div>
 </div>
 <div style="clear:both;"></div>
 <div id="weather-humidity" class="tileTextDisplay mediumFont"></div>
 <div id="weather-wind-speed" class="tileTextDisplay mediumFont"></div>
 </body>
</html>

Chapter 10 ■ JavaFX on the Web

363

How It Works
The code is divided into two parts—the Java code shown in Listing 10-23 and HTML/JavaScript code shown
in Listing 10-24. The purpose of this example is to demonstrate the bidirectional communication between
Java and JavaScript while providing RESTful HTTP GET requests of JSON data. Because all of its aspects have
already been discussed, from retrieving data to manipulating HTML, I will basically discuss the high-level
steps of the start() method of the JavaFX WeatherWidget code from Listing 10-23.

The following code steps were taken within the start() method from the source code in Listing 20-23.

 1. Set up the scene and stage window with a WebView as the root.

 2. Read the API key file. If the API key doesn’t exist, show the prompt dialog
window.

 3. Create a WebView node to display HTML content.

a. Create handler code that responds when the WebView’s content is finished
loading. The page weather_template.html is only loaded once as a single
page application.

b. Once loaded, the code passes the application instance (this) into the web
engine to allow up calls from JavaScript code. To allow JavaScript code to
access Java objects, the code invokes the setMember() method by passing in
the name and object, as shown:

// Let JavaScript make upcalls to this (Java) class
JSObject jsobj = (JSObject) webView.getEngine().executeScript("window");
jsobj.setMember("WeatherWidget", this);

c. Default to the weather forecast of Miami, Florida, by fetching JSON weather
data to be populated into the HTML page. The lowercase “c” is for the unit
type, degrees Celsius. By calling the following Java method, it will fetch JSON
data and call into JavaScript code to populate the HTML DOM with the
weather data.

queryWeatherByLocationAndUnit("Miami%20FL,US", "c");

 4. Create handler code for the OnAlert property on the WebView’s web engine. The
handler code responds to HTML’s JavaScript alert() function for WebEvent. If
there are errors returned from the web server, the web event data will be passed
to my private showErrorDialog() method. This method will display a dialog
window with the error message.

webView.getEngine().setOnAlert((WebEvent<String> t) -> {
 System.out.println("Alert Event - Message: " + t.getData());
 showErrorDialog(t.getData());
});

 5. Load the HTML file weather_template.html from the classpath to be displayed
onto the WebView.

// Load HTML template to display weather
webView.getEngine()
 .load(getClass().getResource(WEATHER_DISPLAY_TEMPLATE_FILE)
 .toExternalForm());

Chapter 10 ■ JavaFX on the Web

364

In Listing 10-23, you’ll notice the comment section regarding Steps 1 through 5; these show the
application flow starting from the user searching for weather based on a city, state, and country, to
displaying the data in the HTML page. The following are the steps from 1 to 5:

Step 1: The button click invokes the JavaScript function
findWeatherByLocation():

<input id="search-button" type="button" onclick="findWeatherByLocation()"
 name="searchButton" value="Search"/>

Step 2: The upcall to the actual Java code method
queryWeatherByLocationAndUnit():

function findWeatherByLocation() {...}

Step 3: The Java method that uses the new http2 module to make an
asynchronous RESTful GET to fetch weather data:

public void queryWeatherByLocationAndUnit(String cityRegion, String unitType)

Step 4: After the JSON data is fetched (on the Java side), a call to the
executeScript() method passes the JSON object into the JavaScript function
populateWeatherData():

private void populateWeatherData(String json, String unitType) {
 Platform.runLater(() -> {
 // On the JavaFX Application Thread....
 webView.getEngine()
 .executeScript("populateWeatherData(eval(" + json + "), " +
 "'" + unitType + "');");
 });
}

Step 5: The HTML page is populated with the JSON data representing the
weather:

function populateWeatherData(json, unitType) {...}

Enhancements
As an exercise, you may want the Weather Widget application to fetch new weather data periodically.
According to the Open Weather Map, their weather forecast updates are typically every three hours.

As a hint on how might you might call the setInterval() function, check out this code snippet:

// Every period query and populate the forecast using cached URL
setInterval(function(){
 WeatherWidget.queryWeatherByLocationAndUnit(null, "c");
 },
 (1000 * 60 * 60 * 3) // every 3 hours
); // set interval

Chapter 10 ■ JavaFX on the Web

365

Summary
In this chapter, you learned about the WebEngine API for retrieving web HTML5 content. You began by
learning two ways to load web content—using the WebEngine’s load() and loadContent() methods. After
learning about how to load web content, you saw how to obtain raw content such as a DOM XML or XML.
Next, you learned about the powerful JavaScript bridge that allows bidirectional communication between
Java and JavaScript. Getting familiar with web development concepts, you also learned about some of the
limitations to JavaFX’s WebEngine API ability to make web requests.

Within these limitations on making RESTful web service calls, you got a chance to learn about Java 9’s
new experimental httpclient module. By using the httpclient module, you can make RESTful GET and
POST requests with builder classes, thus simplifying the creation of web requests.

You also learned about the popular WebSockets protocol. Here, you got a chance to create client-side
web sockets to talk to an echo server. After learning the many ways to retrieve data and manipulate HTML,
you saw an example on how to render HTML5 content by running an animated SVG-based analog clock
application.

Finally, you saw all the concepts combined into the last example of a Weather Widget application using
JavaFX’s WebView node. The Weather Widget makes calls to retrieve JSON data from openweathermap.org
to then be displayed on an HTML5 page in a WebView node. This example’s core focus was to learn how Java
code can communicate with the WebEngine’s JavaScript bridge.

Now that you have a taste of JavaFX and the web, let’s move on to some advanced topics. In the next
chapter, you explore the world of JavaFX 3D!

367© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_11

CHAPTER 11

JavaFX 3D

JavaFX 9 strongly supports a true 3D scene with adjustable lights, camera, and models as first class citizens
of the language. With JavaFX 9, it is possible to mix these capabilities directly with the more well known 2D
GUI components mentioned in this book, both visually and in the source code. The advent of dedicated GPU
hardware has lowered the barrier to specific language support for 3D rendering such that the performance
in JavaFX is on par with third-party implementations of previous versions of Java.

A small book could be dedicated to all the capabilities of the 3D graphics tools within JavaFX 9. For the
sake of introductory or intermediate learner, this chapter focuses on quickly establishing scenes with true
three-dimensional visualizations of simple objects. These concepts are then expanded upon by describing
typical customizations that would be found in more complex scenes.

In this chapter, you learn about the following:

•	 Geometry primitives

•	 Cameras and lights

•	 Custom TriangleMesh models

•	 Event handling and interacting with 3D scenes

Basic 3D Scenes in JavaFX
For this half of the 3D chapter, you will use a growing example model. It takes you through several steps,
from establishing a basic empty 3D scene to a scene with objects that can be viewed from different distances
and angles.

A Very Basic 3D Scene Example
The best part about the new JavaFX 3D support is that it is a first class member of the Java language. Care
was taken in designing the 3D packages so that very little changes in paradigm from their 2D counterparts.
The difference in establishing a basic 3D scene is merely in the camera. Listing 11-1 demonstrates this.

Chapter 11 ■ JavaFX 3D

368

Listing 11-1. Initializing a 3D Scene with Camera

/* From SimpleScene3D.java */

Group sceneRoot = new Group();
Scene scene = new Scene(sceneRoot, sceneWidth, sceneHeight);
scene.setFill(Color.WHITE);
 PerspectiveCamera camera = new PerspectiveCamera(true);
 camera.setNearClip(0.1);
 camera.setFarClip(10000.0);
 camera.setTranslateZ(-1000);
 scene.setCamera(camera);

 primaryStage.setTitle("SimpleScene3D");
 primaryStage.setScene(scene);
 primaryStage.show();

Adding this code snippet to an otherwise empty JavaFX application will give you a full 3D scene. Run
the application and you should see a view such as Figure 11-1.

Being an empty scene, it is not very exciting; however, you will be adding some objects soon.
The example shows that any 3D scene is only differentiated from a 2D layout by two lines:

PerspectiveCamera camera = new PerspectiveCamera(true);
scene.setCamera(camera);

Figure 11-1. A basic empty JavaFX 3D scene

Chapter 11 ■ JavaFX 3D

369

Creating a 3D camera node such as a PerspectiveCamera creates a separate scene graph node, much
in the same way you might create a BorderPane or Button. In that sense, it must be added to the scene like
any other node. However, the camera node is special in that it is added via the scene.setCamera() method.
The Boolean parameter for the PerspectiveCamera constructor determines where the 3D origin is. Setting
this to true will establish all 3D layout from the origin of (0,0,0) so that all axes cross in the center of the
screen. This is typical for most 3D scenes you would expect to build using JavaFX. Setting this parameter to
false establishes the 3D origin at the upper-left corner, similar to a 2D component layout. For most scenes,
PerspectiveCamera(true) is ideal. Some scenes, especially scientific data displays, are more natural with an
upper-left origin.

 ■ Note a good rule of thumb for selecting the camera type is, if you plan on translating and rotating the
camera around the scene much, you should use PerspectiveCamera(true).

Primitives
Like most 3D graphics libraries, JavaFX 9 comes with several out-of-the-box geometric shapes that can be
added to a scene. These shapes are commonly referred to as primitives and can be added to a scene in the
same way that any traditional node type could be added.

Adding a Primitive Example
This section extends the previous very simple scene example so that you can see something. To do this, you
need to create a Cylinder object, give it a colored material, and add it to the scene. Listing 11-2 shows the
code that demonstrates this.

Listing 11-2. Adding a Cylinder Primitive to a JavaFX 3D Scene

/* SimpleScene3D.java */

//Step 1b: Add a primitive
final Cylinder cylinder = new Cylinder(50, 100);

final PhongMaterial blueMaterial = new PhongMaterial();
blueMaterial.setDiffuseColor(Color.DEEPSKYBLUE);
blueMaterial.setSpecularColor(Color.BLUE);
cylinder.setMaterial(blueMaterial);

sceneRoot.getChildren().add(cylinder);

//End Step 1b

Chapter 11 ■ JavaFX 3D

370

Adding this code to the previous example will add the cylinder and colorize it. Recompile and run the
application and you should see a view like Figure 11-2.

This is better than an empty screen. The Cylinder constructor used here:

final Cylinder cylinder = new Cylinder(50, 100);

specifies the diameter and height of the shape. To achieve that deep color blue with that fancy specular
highlight, it uses:

final PhongMaterial blueMaterial = new PhongMaterial();

PhongMaterial is an extension of the javafx.paint hierarchy and allows for a rich smooth
interpolation over 3D surfaces. A PhongMaterial object can be reused between primitives and other 3D
nodes, as described later. If you do not want to use a PhongMaterial, the default rendering for a primitive
or any Shape3D object is a wireframe view. This will be demonstrated in later examples. Once your shape is
constructed and colored, you can add it to your scene with:

sceneRoot.getChildren().add(cylinder);

In this line of code, the Cylinder primitive is treated like any other graphic Node you might use or
create. The Cylinder primitive is added to the scene by default at the origin, or (0,0,0).

Figure 11-2. Cylinder with PhongMaterial and DrawMode.FILL

Chapter 11 ■ JavaFX 3D

371

Simple Translate and Rotate Example
Now that you have something to look at, you can utilize the third dimension by transforming it. JavaFX 3D
supports all the standard 3D transformations you would expect with easy-to-use classes. The following
transformations, subclassed from the Transform class, all support 3D nodes and groups:

•	 Affine

•	 Rotate

•	 Scale

•	 Shear

•	 Translate

Typically in any 3D scene you would be most interested in Rotate and Translate, which are most
concerned with moving and changing the orientation of objects, lights, and the camera. JavaFX Shape3D
objects such as the Cylinder class provide setter methods to easily apply a simple rotation or translation.
Listing 11-3 demonstrate how apply this to the Cylinder in this scene.

Listing 11-3. Translate and Rotate Primitive into Position

/* SimpleScene3D.java */

 //Step 1c: Translate and Rotate primitive into position
 cylinder.setRotationAxis(Rotate.X_AXIS);
 cylinder.setRotate(45);
 cylinder.setTranslateZ(-200);
 //End Step 1c

Adding the code snippet from Listing 11-3 to the current 3D scene application will generate a view
where the cylinder has been rotated and translated toward the camera. This should be similar to Figure 11-3.

Figure 11-3. A cylinder rotated 45 degrees on the x-axis

Chapter 11 ■ JavaFX 3D

372

For the first time in this running example, you can see the third dimension using a Rotation on the
X-axis and a Translation in the Z-axis. Rotations are set in degrees with a range of 0 to 360 degrees. It is
important to first set the current rotation axis using setRotationAxis(). If you need multiple rotations in
multiple axes, you need to call the setRotationAxis() method each time the axis changes. Each call to
setRotationAxis() affects only the current Shape3D object. Translations are set in pixels along the given
axis of the set command and are handled in the same way that traditional 2D components are translated.

 ■ Note the coordinate system for a JavaFX 3D scene uses a “Y pointing Down” which is the Y-axis is
positive down. as with most 3D systems, the Z-axis is positive toward the screen and the X-axis is positive
to the right.

Multiple Primitive Transformation Example
This example expands on the current setup by adding and transforming the Cube and Sphere primitives in
the same scene as Cylinder. The example code is provided in Listing 11-4.

Listing 11-4. Adding and Transforming Box and Sphere Primitives

/* SimpleScene3D.java */

//Step 1d: Add and Transform more primitives
final PhongMaterial greenMaterial = new PhongMaterial();
greenMaterial.setDiffuseColor(Color.DARKGREEN);
greenMaterial.setSpecularColor(Color.GREEN);
final Box cube = new Box(50, 50, 50);
cube.setMaterial(greenMaterial);
final PhongMaterial redMaterial = new PhongMaterial();
redMaterial.setDiffuseColor(Color.DARKRED);
redMaterial.setSpecularColor(Color.RED);
final Sphere sphere = new Sphere(50);
sphere.setMaterial(redMaterial);

cube.setRotationAxis(Rotate.Y_AXIS);
cube.setRotate(45);
cube.setTranslateX(-150);
cube.setTranslateY(-150);
cube.setTranslateZ(150);

sphere.setTranslateX(150);
sphere.setTranslateY(150);
sphere.setTranslateZ(-150);
sceneRoot.getChildren().addAll(cylinder,cube,sphere);
//End Step 1d

This code snippet shows multiple materials and colors being applied to multiple primitives.
Each primitive is translated and rotated to different depths and axes of the 3D scene.

Chapter 11 ■ JavaFX 3D

373

Having multiple Shape3D objects in the same scene demonstrates a great visual depth. However, as you
added multiple nodes or groups to your 3D scene, you must change your add() to an addAll(), as in the
following line from Listing 11-4:

sceneRoot.getChildren().addAll(cylinder,cube,sphere);

In that sense there is no difference between adding 2D GUI components as scene children and here in
3D. Adding the prior code snippet to the example and making the change to addAll() should provide a view
similar to Figure 11-4.

All Together Now: Grouped Primitives
As your scenes become more complicated, it will become cumbersome to add each 3D object to your
scene. Primitives and other Shape3D nodes are often used in conjunction to form more complex objects.
These composite objects are typically transformed as one, although each component is often visualized
independently. This is simply done using a group, as demonstrated in Listing 11-5.

Listing 11-5. Grouping and Transforming Primitives

/* SimpleScene3D.java */

//Step 1e: All Together Now: Grouped Primitives
Group primitiveGroup = new Group(cylinder,cube,sphere);
primitiveGroup.setRotationAxis(Rotate.Z_AXIS);
primitiveGroup.setRotate(180); //Rotate the Group as a whole
sceneRoot.getChildren().addAll(primitiveGroup);
//End Step 1e

Figure 11-4. A Cube, Cylinder, and Sphere primitive

Chapter 11 ■ JavaFX 3D

374

Each primitive is added to the Group object using the following line:

Group primitiveGroup = new Group(cylinder,cube,sphere)

Many bulk operations can then be simplified. Listing 11-5 demonstrates a rotation about the Z-axis of
180 degrees, which effectively rotates the entire scene as one homogenous unit. Adding the previous code
snippet to the running primitives example should provide a view like Figure 11-5.

Be sure to add the new Group object to your scene instead of your individual primitives, as noted in
Listing 11-5. Individual primitive objects can still be accessed, rotated, and translated independently via the
Group object’s getChildren() method or by direct reference.

 ■ Note remember when adding primitives, groups, and other Shape3D node objects to a 3D scene, the
default is the origin. Most primitives are centered on the origin by a calculated center of mass.

Interacting with Your Scene
Rendering objects into 3D scenes is typically only useful if you can interact with that scene. At a minimum
the user should have the ability to move through the scene and do a little sight seeing. This section of the
chapter will walk through an example of a simple first person perspective set of controls. The primitive
example from the previous section is used as a platform to build from.

Figure 11-5. Grouped primitives rotated uniformly

Chapter 11 ■ JavaFX 3D

375

Primitive Picking for Primitives
When interacting directly with the individual objects of a 3D scene, typically with a mouse, you need to detect
mouse type events and whether those events are related to something within your scene. The good news
is event handling within a 3D scene is established in the same pattern as a traditional 2D GUI. Listing 11-6
demonstrates the code to add a MouseClicked event handler.

Listing 11-6. Translate a Primitive by Mouse Event

/* SimpleScene3D.java */

 //Step 2a: Primitive Picking for Primitives
 scene.setOnMouseClicked(event-> {
 Node picked = event.getPickResult().getIntersectedNode();
 if(null != picked) {
 double scalar = 2;
 if(picked.getScaleX() > 1)
 scalar = 1;
 picked.setScaleX(scalar);
 picked.setScaleY(scalar);
 picked.setScaleZ(scalar);
 }
 });
 //End Step 2a

Adding this event handler to the scene in the running example creates an interaction where clicking
a given 3D object will either double its size or reduce it back to normal. Clicking once on each primitive
should provide a view similar to Figure 11-6.

Figure 11-6. 3D objects scaled up in all three axes

Chapter 11 ■ JavaFX 3D

376

The trick here is in determining whether the MouseEvent occurred in congruence with a 3D object in the
scene. The magic line of code is:

Node picked = event.getPickResult().getIntersectedNode();

where the MouseEvent returns a PickResult. A PickResult in 3D speak is a test of intersection of
X,Y screen coordinates onto X,Y,Z 3D Scene coordinates. While PickResults were available in JavaFX 2
for 2D GUI components, in JavaFX 9 they are functional not only in the 3D space but as simple accessible
objects from various events. As with all MouseEvent types, the event can be queried for a PickResult. If a
PickResult occurred then the getIntersectedNode() will return the Node object representation of the
scene object “picked”. If no object was “picked” then getIntersectedNode() returns null.

 ■ Note Do not forget to scale objects equally in all three axes, as shown in Listing 11-6. Otherwise, your
object will quickly become stretched in odd ways.

First Person Movement Using the Keyboard
A convenient way to navigate through a 3D scene is through a First-Person perspective where you
“fly through”. Often this is done through a combination of mouse and keyboard where the keyboard
navigates the X- and Z-axes and the mouse directs the camera to rotate. This is a typical arrangement for
games of this nature but also simulations and tactical displays.

To add keyboard navigation through a 3D scene you must simply add the standard JavaFX key event
handlers. The code in Listing 11-7 is a simple example of an OnKeyPressed event handler that provides the
X- and Z-axes navigation described previously. The movement produced by this handler translates the
Camera node itself through the 3D scene.

Listing 11-7. A Simple First Person Movement Keyboard Event Handler

/* SimpleScene3D.java */

//Step 2b: Add a Movement Keyboard Handler
scene.setOnKeyPressed(event -> {
 double change = cameraQuantity;

 //Add shift modifier to simulate "Running Speed"
 if(event.isShiftDown()) {
 change = cameraModifier;
 }

 //What key did the user press?
 KeyCode keycode = event.getCode();

 //Step 2c: Add Zoom controls
 if(keycode == KeyCode.W) {
 camera.setTranslateZ(camera.getTranslateZ() + change);
 }

Chapter 11 ■ JavaFX 3D

377

 if(keycode == KeyCode.S) {
 camera.setTranslateZ(camera.getTranslateZ() - change);
 }

 //Step 2d: Add Strafe controls
 if(keycode == KeyCode.A) {
 camera.setTranslateX(camera.getTranslateX() - change);
 }
 if(keycode == KeyCode.D) {
 camera.setTranslateX(camera.getTranslateX() + change);
 }
});
//End Step 2b-d

Breaking down the code snippet, you can see JavaFX makes this very simple and straightforward.
Adding the event handler to your scene is the same as adding an event handler to any traditional 2D GUI
component demonstrated with scene.setOnKeyPressed(event -> {.

Adding composite event handling, i.e. holding the Shift key while pressing another key, is simple via the
event object itself. In Listing 11-7 this is done by event.isShiftDown(), which returns a simple Boolean as
to the truth. These additional meta keys are either true or false regardless of what actual event occurred and
can be utilized whether the event is keyboard, mouse, or even touch.

When determining which way to move the camera, simply acquire the KeyCode from the event:

KeyCode keycode = event.getCode();

and branch your logic on a simple equality check:

if(keycode == KeyCode.W) {
 camera.setTranslateZ(camera.getTranslateZ() + change);
}

KeyCode.W is part of the KeyCode enum that provides every possible key with a Comparable interface.
Very convenient for building complex interfaces to any application.

First Person Camera Movement Using the Mouse
The previous keyboard handler example provided half of a first-person perspective where you “fly through” your
3D scene. The keyboard is used to slide along the X- and Z-axes. What is happening is the PerspecitveCamera
node is translating along those axes. However, the previous example limits these translations to a single plane.
To simulate looking around, the “head on a swivel” effect, you need to use the mouse.

To add mouse control of the camera swivel for a 3D scene, you must simply add a JavaFX MouseMoved
event handler. The code in Listing 11-8 is a rudimentary example of an OnMouseMoved event handler and
some basic trigonometry that swivels the camera node. The movement produced by this handler rotates the
Camera node itself on the Y- and X-axes.

Chapter 11 ■ JavaFX 3D

378

Listing 11-8. A Simple First-Person Camera Rotate Control MouseEvent Handler

/* SimpleScene3D.java */

 //Step 3: Add a Camera Control Mouse Event handler
 scene.setOnMouseMoved(event -> {
 //acquire the new Mouse coordinates from the recent event
 double mouseYnew = event.getSceneY();
 double mouseXnew = event.getSceneX();
 //Find the deltas for our Trig formula
 double atan2Y = mouseYnew - mouseYold;
 double atan2X = mouseXnew - mouseXold;
 //Build the new Rotate objects
 Rotate xRotate = new Rotate();
 Rotate yRotate = new Rotate();
 //Only compute when there is a change
 if(mouseYnew != mouseYold) {
 //When looking up or down we should rotate on the X-AXIS
 camera.setRotationAxis(Rotate.X_AXIS);
 //calculate the rotational change of the camera pitch
 double pitchRotate = camera.getRotate() + (Math.atan2(atan2Y,atan2X) /

rotateModifier);
 //set min/max camera pitch to prevent camera flipping
 pitchRotate = pitchRotate > cameraYlimit ? cameraYlimit : pitchRotate;
 pitchRotate = pitchRotate < -cameraYlimit ? -cameraYlimit : pitchRotate;
 //replace the old camera pitch rotation with the new one.
 //camera.setRotate(pitchRotate); //This doesn't work when a second rotation

call is made
 xRotate = new Rotate(pitchRotate,Rotate.X_AXIS);
 }
 if(mouseXnew != mouseXold) {
 //When looking left or right we should rotate on the Y-AXIS
 camera.setRotationAxis(Rotate.Y_AXIS);
 //calculate the rotational change of the camera yaw
 double yawRotate = camera.getRotate() + (Math.atan2(atan2X,atan2Y) /

rotateModifier);
 //camera.setRotate(yawRotate); //this would replace the previous X-AXIS

rotation
 yRotate = new Rotate(yawRotate, Rotate.Y_AXIS);
 }
 //Apply the combined rotations
 camera.getTransforms().addAll(xRotate,yRotate);
 mouseXold = mouseXnew;
 mouseYold = mouseYnew;
 });
 //End Step 3

This code snippet is by far the single largest addition made so far to the running example; however,
most of it is needed to facilitate a smooth swivel feel for the camera node. You will see that some
trigonometric functions are used to calculate rotations and this can get tricky quick.

Chapter 11 ■ JavaFX 3D

379

These rotations are applied in an alternative manner than previously in this running example. Before
covering the details of how to rotate the camera, let’s examine the mouse event handling itself:

scene.setOnMouseMoved(event -> {

JavaFX 3D makes adding a MouseEvent handler to the scene very simple and straightforward. Like all
input events, we can acquire the X and Y coordinates from the MouseEvent. The goal here is to convert the
change of mouse position to a rotation for the camera. You can accomplish this with a little trigonometry:

double atan2Y = mouseYnew - mouseYold;
double pitchRotate = camera.getRotate() + (Math.atan2(atan2Y,atan2X) / rotateModifier);

This is a very rudimentary method for doing this. Most high-performance first-person games and
interactive environments use more exotic calculations and include the many corner cases that tend to occur
from use. One of these corner cases is vertical rotation beyond 180 degrees. Left alone, the camera would
spin without limit vertically sometimes referred to as “somersaults” or “camera whip.” Found in Listing 11-8
are the following lines of code that will effectively limit camera rotation on the X-axis, which visually appears
to be the Y-axis:

pitchRotate = pitchRotate > cameraYlimit ? cameraYlimit : pitchRotate;
pitchRotate = pitchRotate < -cameraYlimit ? -cameraYlimit : pitchRotate;

 ■ Note remember dealing with what a camera “sees” is opposite from how the camera is positioned within
the scene. For example “looking up” along the Y-axis is actually a rotation on the X-axis.

Finally, when dealing with multiple repeated transformations, especially rotations, a better way to apply
these transformation to an object is using the object’s getTransforms().addAll() method like so:

camera.getTransforms().addAll(xRotate,yRotate);

This will guarantee that all your rotate, translate, and scale transformations are applied as a composite
transformation. If you were to call setRotate or setTranslate multiple times for each rotation, each
subsequent setRotate call would replace the previous one. The end result would be a rotation or translation
that is equal only to the last transformation called in sequence.

Beyond the Basics
This half of the 3D chapter shows you how to grow a new example focused on ways to provide custom
renderings and interactions. Some of the concepts discussed in the first half will be built upon. This section
will explain TriangleMesh objects, how to “wind” a 3D object using triangles, and to add a TriangleMesh
object to a 3D scene. You will then learn how to convert this to reusable code, which can allow for many
customizations that could be the start of your own library of 3D primitives. Finally, the section explores an
alternative camera arrangement that is suitable for examining centralized objects.

Chapter 11 ■ JavaFX 3D

380

Custom 3D Objects Using the TriangleMesh Class
Sometimes the prepackaged 3D primitives provided by JavaFX 9 aren’t enough to build the scene you want.
It is true that many real-world objects could be represented by a composite of these primitives using the
Group type and some clever transformation. However, using only the base primitives would be cartoonish
and very cumbersome to maintain within a codebase. Most practical applications require custom shapes
and models and rendering must be fast. The good news is JavaFX 9 provides a means to do this using the
TriangleMesh class. The TriangleMesh class is a Shape3D class just like Box, Cylinder, and Sphere, which
provides direct access to the points (vertices), faces, and texture coordinates collections that make up the
rendered geometry. Under the hood of the base three primitives is a TriangleMesh where all points and
faces are computed based on relevant parameters. To start this custom TriangleMesh example, you will need
a similar starting application like the previous example, as shown in Listing 11-9.

Listing 11-9. Initializing a 3D Scene with Camera

/* From TriangleMeshes.java */
public class TriangleMeshes extends Application {

 private PerspectiveCamera camera;
 private final double sceneWidth = 600;
 private final double sceneHeight = 600;
 private double scenex, sceney = 0;
 private double fixedXAngle, fixedYAngle = 0;
 private final DoubleProperty angleX = new SimpleDoubleProperty(0);
 private final DoubleProperty angleY = new SimpleDoubleProperty(0);

.......//Step 1: Build your Scene and Camera
 Group sceneRoot = new Group();
 Scene scene = new Scene(sceneRoot, sceneWidth, sceneHeight);
 scene.setFill(Color.BLACK);
 PerspectiveCamera camera = new PerspectiveCamera(true);
 camera.setNearClip(0.1);
 camera.setFarClip(10000.0);
 camera.setTranslateZ(-1000);
 scene.setCamera(camera);

 primaryStage.setTitle("TriangleMeshes");
 primaryStage.setScene(scene);
 primaryStage.show();
 //End Step 1

“Winding” and Wuthering
For this custom object, we will build and render something that is geometrically simple like a Square
Pyramid. A square pyramid has five faces: four equilateral vertical triangle faces and a square base. This will
allow you to focus on the TriangleMesh interface rather than the complex math. The goal of a TriangleMesh
is to define process by which a series of triangles are rendered to give the illusion of a continuous 3D surface.
Each triangle is connected and defined by a set of vertices in the 3D scene. The method is called “winding”
because when defining the vertices of each triangle, the order that the vertices are declared indicates to the
camera when and how to render the face of that triangle. To explain the process of constructing and viewing
a TriangleMesh object, we will break down a method that uses parameters to construct a square pyramid.
The complete method is shown in Listing 11-10.

Chapter 11 ■ JavaFX 3D

381

Listing 11-10. A Reusable Method for Building a Custom Pyramid TriangleMesh

/* From TriangleMeshes.java */

 //Step 2a: Create a general Pyramid TriangleMesh building method with height and
hypotenuse

 private Group buildPyramid(float height, float hypotenuse,
 Color color,
 boolean ambient,
 boolean fill) {
 final TriangleMesh mesh = new TriangleMesh();
 //End Step 2a
 //Step 2b: Add 5 points, later we will build our faces from these
 mesh.getPoints().addAll(
 0,0,0, //Point 0: Top of Pyramid
 0,height,-hypotenuse/2, //Point 1: closest base point to camera
 -hypotenuse/2,height,0, //Point 2: left most base point to camera
 hypotenuse/2,height,0, //Point 3: farthest base point to camera
 0,height,hypotenuse/2 //Point 4: right most base point to camera
);//End Step 2b
 //Step 2c:
 //for now we'll just make an empty texCoordinate group
 mesh.getTexCoords().addAll(0,0);
 //End Step 2c
 //Step 2d: Add the faces "winding" the points generally counter clock wise
 mesh.getFaces().addAll(//use dummy texCoords
 0,0,2,0,1,0, // Vertical Faces "wind" counter clockwise
 0,0,1,0,3,0, // Vertical Faces "wind" counter clockwise
 0,0,3,0,4,0, // Vertical Faces "wind" counter clockwise
 0,0,4,0,2,0, // Vertical Faces "wind" counter clockwise
 4,0,1,0,2,0, // Base Triangle 1 "wind" clockwise because camera has rotated
 4,0,3,0,1,0 // Base Triangle 2 "wind" clockwise because camera has rotated
); //End Step 2d
 //Step 2e: Create a viewable MeshView to be added to the scene
 //To add a TriangleMesh to a 3D scene you need a MeshView container object
 MeshView meshView = new MeshView(mesh);
 //The MeshView allows you to control how the TriangleMesh is rendered
 meshView.setDrawMode(DrawMode.LINE); //show lines only by default
 meshView.setCullFace(CullFace.BACK); //Removing culling to show back lines
 //End Step 2e
 //Step 2f: Add it to a group, this will be useful later
 Group pyramidGroup = new Group();
 pyramidGroup.getChildren().add(meshView);
 //End Step 2f
 //Step 2g: Customizing your Pyramid
 if(null != color) {
 PhongMaterial material = new PhongMaterial(color);
 meshView.setMaterial(material);
 }

Chapter 11 ■ JavaFX 3D

382

 if(ambient) {
 AmbientLight light = new AmbientLight(Color.WHITE);
 light.getScope().add(meshView);
 pyramidGroup.getChildren().add(light);
 }
 if(fill) {
 meshView.setDrawMode(DrawMode.FILL);
 }
 //End Step 2g
 return pyramidGroup;
 }

The new method called buildPyramid() converts a height, representing the distance from the base
to the pyramid apex, and hypotenuse, the distance of the diagonal of the base, to vertices. It also builds a
TriangleMesh object. The remaining parameters will allow for customizing how the pyramid is rendered and
will be explained later in the chapter. The first step is to declare a new TriangleMesh object. If you already
had your points, faces, and texture coordinates defined from another process (or model file), you could pass
this into an alternative TriangleMesh constructor. For this example, define the points using:

mesh.getPoints().addAll(float x, float y, float z)

The addAll() method adds float triplets, which represent a point in the scene coordinate system. The
order by which these points are added matters as their indices are used to “wind” the triangle faces later.
Before winding the triangles, you must first define the 2D texture coordinates that will be associated with
each triangle face. This can get complicated to explain and likely warrants a separate example. Fortunately,
the texture coordinates are only needed if you intend to wrap your 3D TriangleMesh with an image texture
file. This example creates a single placeholder coordinate, which will be used to fill out the faces using:

mesh.getTexCoords().addAll(float x, float y);

Finally, create your triangles by winding the points defined earlier. Taken from Listing 11-10:

mesh.getFaces().addAll(//use dummy texCoords
 0,0,2,0,1,0, // Vertical Faces "wind" counter clockwise
 0,0,1,0,3,0, // Vertical Faces "wind" counter clockwise
 0,0,3,0,4,0, // Vertical Faces "wind" counter clockwise
 0,0,4,0,2,0, // Vertical Faces "wind" counter clockwise
 4,0,1,0,2,0, // Base Triangle 1 "wind" clockwise because camera has rotated
 4,0,3,0,1,0 // Base Triangle 2 "wind" clockwise because camera has rotated
); //End Step 2d

The getFaces().addAll() accepts integers that represent a composite of predefined points and texture
coordinates. Figure 11-7 breaks down the first face from the example, demonstrating the winding of the
points in a counter-clockwise fashion.

Chapter 11 ■ JavaFX 3D

383

The counter-clockwise winding order tells the camera system that the “front” of the face is facing up,
or in this case, facing out from the pyramid object. To build the square base, you again use triangles, using
two, but the winding is done clockwise. This is because the upward faces of these triangles are actually facing
inward toward the pyramid. By winding clockwise, it tells the camera to effectively render the faces in a
flipped fashion. This will give the illusion of a solid geometric object.

MeshViews and DrawMode
TriangleMesh objects by themselves cannot be added and rendered by themselves, as their geometry must be
added to a viewable Scenegraph node object. JavaFX 8 provides this via the MeshView class. From Listing 11-10:

MeshView meshView = new MeshView(mesh);

The MeshView class not only displays the TriangleMesh added to it but allows you to customize lights,
fill, materials, and other features. This is demonstrated in Listing 11-10. Let’s use the new buildPyramid()
method to exercise the flexibility of the MeshView class. Listing 11-11 uses buildPyramid() to create a
pyramid with a GoldenRod colored PhongMaterial and a DrawMode set to LINE.

Listing 11-11. Creating a Single Pyramid

/* From TriangleMeshes.java */

 //Step 3a: Create a Pyramid with a color and add to the Scene
 //Lets assume our height is 100 and our width (hypotenuse) at the base is 50.
 Group pyramid1 = buildPyramid(100,200,Color.GOLDENROD,false,false);
 Group pyramidGroup = new Group(pyramid1);
 sceneRoot.getChildren().addAll(pyramidGroup);

Figure 11-7. Triangle winding using predefined pyramid points

Chapter 11 ■ JavaFX 3D

384

This will render a pyramid similar to Figure 11-8. Most of the pyramid1 object is not viewable because
the default scene lighting is positioned in a manner that doesn’t reflect much of the geometry.

To see the entire geometry regardless of light system, turn on ambient lighting:

Group pyramid1 = buildPyramid(100,200,Color.GOLDENROD,true,false);

Let’s also translate the entire geometry closer to the camera.

pyramid1.setTranslateZ(-100);

You will get a view similar to Figure 11-9. The geometry you defined in your TriangleMesh is now
clearly visible.

Figure 11-8. TriangleMesh with default light

Chapter 11 ■ JavaFX 3D

385

Placing TriangleMesh objects within MeshView objects and Group containers makes basic transforms
simple. A rotation used for a primitive:

pyramid1.setRotationAxis(Rotate.Y_AXIS);
pyramid1.setRotate(45);

After the 45-degree rotation around the Y-axis, it should be similar to Figure 11-10.

Figure 11-9. TriangleMesh with ambient light

Figure 11-10. TriangleMesh rotated

Chapter 11 ■ JavaFX 3D

386

To fill in the pyramid with colored sides, use the fill parameter in the buildPyramid() method:

Group pyramid1 = buildPyramid(100,200,Color.GOLDENROD, true, true);

This will provide a view similar to Figure 11-11.

Listing 11-12 exercises different combinations of transformations to show the utility of the new
buildPyramid() method.

Listing 11-12. Creating and Transforming a Pyramid Using DrawMode.FILL

/* From TriangleMeshes.java */

 //Step 3b: Create and transform a Pyramid using DrawMode FILL
 Group pyramid2 = buildPyramid(100,200,Color.GOLDENROD,true,true);
 //Since the pyramid is a group it can be translated and rotated like a primitive
 pyramid2.setTranslateX(-100);
 pyramid2.setTranslateY(-100);
 pyramid2.setRotationAxis(Rotate.Z_AXIS);
 pyramid2.setRotate(180);
 Group pyramidGroup = new Group(pyramid1,pyramid2);
 sceneRoot.getChildren().addAll(pyramidGroup);

Figure 11-11. TriangleMesh with DrawMode.FILL

Chapter 11 ■ JavaFX 3D

387

Listing 11-13 exercises the ability of the buildPyramid() method to alter the appearance of each
pyramid by adding pyramids of different material colors.

Listing 11-13. Creating and Transforming Pyramids of Different Colors.

/* From TriangleMeshes.java */

 //Step 3c: Add some more pyramids of a different color
 Group pyramid3 = buildPyramid(100,200,Color.LAWNGREEN,true,true);
 pyramid3.setTranslateX(100);
 Group pyramid4 = buildPyramid(100,200,Color.LAWNGREEN,true,false);
 pyramid4.setTranslateX(100);
 pyramid4.setTranslateY(-100);
 pyramid4.setRotationAxis(Rotate.Z_AXIS);
 pyramid4.setRotate(180);
 Group pyramidGroup = new Group(pyramid1,pyramid2,pyramid3,pyramid4);
 sceneRoot.getChildren().addAll(pyramidGroup);

Listings 11-12 and 11-13 clearly demonstrate the flexibility of the TriangleMesh and MeshView classes
within a 3D scene. Adding this code to the example will provide a view similar to Figure 11-12.

Figure 11-12. Multiple pyramids customized and transformed

Chapter 11 ■ JavaFX 3D

388

Roll Camera!
The new pyramids still look a little flat. You need a way to roll the camera around the pyramids as if it were
a satellite orbiting a point of origin. In fact, Listing 11-14 treats the pyramidGroup as an origin of sorts by
adding a simple mouse handler and converting motion to a rotational transform of the pyramidGroup itself.

Listing 11-14. Origin Fixed Camera Rotation Mouse Handler

/* From TriangleMeshes.java */

 //Step 4a: Add a Mouse Handler for Rotations
 Rotate xRotate = new Rotate(0, Rotate.X_AXIS);
 Rotate yRotate = new Rotate(0, Rotate.Y_AXIS);
 pyramidGroup.getTransforms().addAll(xRotate,yRotate);
 //Use Binding so your rotation doesn't have to be recreated
 xRotate.angleProperty().bind(angleX);
 yRotate.angleProperty().bind(angleY);
 //Start Tracking mouse movements only when a button is pressed
 scene.setOnMousePressed(event -> {
 scenex = event.getSceneX();
 sceney = event.getSceneY();
 anchorAngleX = angleX.get();
 anchorAngleY = angleY.get();
 });
 //Angle calculation will only change when the button has been pressed
 scene.setOnMouseDragged(event -> {
 angleX.set(anchorAngleX - (scenex - event.getSceneY()));
 angleY.set(anchorAngleY + sceney - event.getSceneX());
 });

This camera control is different from the earlier example in that it does not actually move or rotate
the camera node but the objects in the scene. This gives the illusion that the viewer and camera is rotating
around the scene. This is an effective means for viewing scenes that are intending to be facing in. The trick
is to use JavaFX binding to update an existing set of Rotate objects. This saves the event handler from having
to repeatedly create and replace various transformation objects. By adding the handler to the example and
giving it a spin, you can achieve viewing angles similar to Figure 11-13.

Chapter 11 ■ JavaFX 3D

389

The view showing in Figure 11-13 in particular is good because is shows the various pyramids in their
different forms. Of particular note is the bottom of the base of the pyramid, which is made up of two triangles
using clockwise winding so that their “down” faces are facing outward toward the camera.

Hit the Lights
We have come so far with this custom Pyramid example, yet the 3D geometries still look a little cartoonish.
This is because of the lighting, specifically the scene lighting. To truly show off the 3D surfaces, you must add
a point light to your scene. Listing 11-15 adds a simple point light to the example scene.

Listing 11-15. Adding a Point Light to a Scene

/* From TriangleMeshes.java */

 //Step 4b: Add a Point light to show specular highlights
 PointLight light = new PointLight(Color.WHITE);
 sceneRoot.getChildren().add(light);
 light.setTranslateZ(-sceneWidth/2);
 light.setTranslateY(-sceneHeight/2);

Figure 11-13. Rotating the camera around a fixed origin

Chapter 11 ■ JavaFX 3D

390

Figure 11-14. PointLight effects on various pyramid TriangleMesh objects

Listing 11-15 includes some basic translations to move the light to position other than the default
camera position, thereby creating some nice specular highlights on the PhongMaterials of each filled
Pyramid. Adding Listing 11-15 to the example and rotating the camera provides nice views such as the one
shown in Figure 11-14.

Summary
As mentioned at the beginning of this chapter, a separate book could be dedicated to discussing the JavaFX 9 3D
support. There are many features that were alluded to but not discussed, as they would warrant whole chapters.
Whole texts are dedicated to the math and abstract concepts of 3D software development and so these things
were not discussed in detail.

Hopefully, this chapter scratched the surface of what is possible and hopefully scratched your itch to
learn about the new 3D support provided by JavaFX 9. The chapter includes two separate running examples
to discuss the usage of primitives, camera nodes, lights, and custom geometries and triangle meshes. Both
examples featured event-driven interaction with different approaches to manipulating either the camera
or the scene objects with the keyboard and mouse. You were introduced to a list of classes, some dedicated
to 3D support, others versatile enough to be applied to either 3D or 2D scenes. Very useful and practical 3D
tools can be developed from the building blocks provided in this chapter.

391© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_12

CHAPTER 12

JavaFX and Arduino

Arduino, an open source electronics prototyping platform, started in 2003, so it has been here since the very
beginning of the “Internet of Things” (IoT) concept as we understand it now. In fact, the advent of low-cost
prototyping platforms like Arduino is one of the cornerstones that have allowed this emerging revolution to
happen, supporting both the do-it-yourself concept and the maker movement.

This chapter gives you a quick glance at how you can use JavaFX along with an Arduino board to
develop desktop applications for monitoring data coming from the real world or controlling real devices.

It starts by presenting briefly the available boards, followed by the software required to program
the microcontroller and the procedure to connect it to a computer (without any WiFi or Ethernet shield
solution); finally, you’ll examine the code to acquire the data stream and represent the data and control the
devices on the JavaFX thread.

The Arduino Board
Arduino is an open source board with one microcontroller. The best-known version, the Arduino Uno rev
3, is based on the ATmega328 8-bit Atmel AVR microcontroller, while the new Arduino Due, based on the
Atmel SAM3X8E ARM Cortex-M3 CPU, is the first Arduino board based on a 32-bit ARM core.

Thanks to a preprogrammed boot loader, programs can be easily uploaded into the microcontroller
memory, directly from a connected computer.

The Uno provides 14 digital I/O pins and 6 analog inputs, as female headers, so plug-in shields can be
mounted on top of them, or simple jumpers can be plugged to required pins. 32KB are available as flash
memory, and the clock operates at 16MHz. Further details can be checked here: http://arduino.cc/en/
Main/ArduinoBoardUno. Figure 12-1 shows front and back views of the Uno board.

Figure 12-1. Arduino Uno (front and back)

http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno

Chapter 12 ■ JavaFX and arduino

392

The Due, shown in Figure 12-2, increases the capacity to 54 digital I/O pins and 14 analog pins
(12 inputs, 2 outputs). Flash memory is now 512KB, while clock speed is 84MHz. Further details can be
checked at http://arduino.cc/en/Main/ArduinoBoardDue.

There are other boards with different specifications or components. For any concrete application, you
should acquire the one that suits your needs, carefully reading the specifications at http://arduino.cc/en/
Main/Products.

But it is worth mentioning that a new interesting board is available since 2016: the Arduino 101 (USA)/
Genuino 101 (outside the US). Shown in Figure 12-3, it was designed in collaboration with Intel, and
includes the Intel® Curie module, a low-power processor based on the Intel Quark SE system-on-a-chip
that includes motion sensor, Bluetooth, and battery-charging features. While it keeps the same form factor,
the same peripheral list of the Uno and the same entry level price, it comes with the significant addition of
onboard Bluetooth LE capabilities and a six-axis accelerometer and gyroscope.

Further details can be checked at https://www.arduino.cc/en/Main/ArduinoBoard101.

Figure 12-2. Arduino Due (front)

Figure 12-3. Arduino 101/Genuino 101 (front)

http://arduino.cc/en/Main/ArduinoBoardDue
http://arduino.cc/en/Main/Products
http://arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/ArduinoBoard101

Chapter 12 ■ JavaFX and arduino

393

For the example in this chapter, we’ll use a Genuino 101 board. If you don’t have one, there are plenty
of sources where you may buy one online, as you can see at this link: https://store.arduino.cc.

Once you have the Arduino board and it’s using a standard USB cable (type A plug to type B plug),
you can attach it to your computer, as shown in Figure 12-4. This connection will provide 5V to power the
board (check that the green power LED is illuminated) and a way to program the microcontroller from
your computer.

Later on, after you have programmed the microcontroller, you can use an external power supply, like a
9V battery or a 9-to-12V DC adapter, providing 250mA up to 1000mA, depending on the devices connected,
by plugging a 2.1mm plug center pin positive into the board’s power jack.

Programming the Arduino
Anyone who knows about Arduino should be familiar with its Arduino IDE, a desktop open source
application used to write code and upload it to the board, which runs on every platform. The IDE, written in
Java, is based on processing and other open source software.

Recently, there is an online alternative: the new Arduino Web Editor is accessible from any browser, and
you can code your sketches online, save them in the cloud, and always have the most up-to-date version of
the IDE, including all the contributed libraries and support for new Arduino boards.

Figure 12-4. Arduino connected to the computer

https://store.arduino.cc/

Chapter 12 ■ JavaFX and arduino

394

Arduino Web Editor
The Arduino Web Editor, which requires a one-time installation plug-in, allows you to upload sketches from
the browser onto your boards via an USB cable or the network. It requires a few simple steps to set up this
plug-in:

 1. Access the Arduino Create portal at https://create.arduino.cc/getting-
started and click the Setup the Arduino Editor Plugin link, as shown in
Figure 12-5.

Figure 12-5. Arduino Editor plug-in setup

https://create.arduino.cc/getting-started
https://create.arduino.cc/getting-started

Chapter 12 ■ JavaFX and arduino

395

 2. Click Next and download the plug-in on your computer, depending on your
platform: http://create.arduino.cc/getting-started/plugin?page=2.
See Figure 12-6.

 3. Once it’s downloaded, double-click on the installer to start the installation flow
and follow the steps in the installer flow.

 4. At the end of the process, you should see the Arduino plug-in icon on the tray
icon (Windows) or on the menu bar of your Mac. Click on the tray icon for a
link to the Arduino Web Editor, or if you want to pause the plug-in, as shown in
Figure 12-7.

Figure 12-6. Download the Arduino plug-in

Figure 12-7. Tray icon on the Mac

http://create.arduino.cc/getting-started/plugin?page=2

Chapter 12 ■ JavaFX and arduino

396

 5. The Arduino Web Editor will open in your default browser, as shown in Figure 12-8.
It is required that you sign up and create an account, so you can keep track of the
different sketches you create, as well as to access other online features.

Arduino IDE
You can program the micro using the classic desktop IDE as well. For that, you need to install the drivers and
the proper software first. Go to the Downloads section at http://arduino.cc/en/Main/Software, select
your OS, and download the latest release, which is 1.8.2 at the moment of this writing. Note that for the
Arduino/Genuino 101 board, you’ll need at least version 1.6.7.

Windows
Download the Windows installer, then double-click on it and proceed with the two steps shown in Figure 12-9.

Figure 12-8. Arduino Web Editor

http://arduino.cc/en/Main/Software

Chapter 12 ■ JavaFX and arduino

397

At the end of the process, you’ll be asked to install the driver. At this point, connect the Arduino to
your computer USB port, and a COM connection will be established. A driver should automatically be
installed for it. Check the Windows Device Manager to confirm that under Ports you see your Arduino
board connected—Expand Ports (COM & LPT)—and you should see a COM port, which will be your
Arduino, as shown in Figure 12-10 (in this case, COM3).

Figure 12-9. Installing Arduino IDE on Windows

Figure 12-10. Arduino serial port in Windows

Chapter 12 ■ JavaFX and arduino

398

If you find a yellow triangle over Arduino under Other Devices, you will need to install the driver
manually. Right-click under Arduino and select Update Driver Software. Select Browse My Computer for
Driver Software and find the folder called Drivers under the Arduino installation folder. Click Next.

You will be prompted with a security window; select Install. After a few seconds, a success window will
inform you the driver has been installed.

MacOS X or Linux
On MacOS X, download the file and copy it to your Applications folder. No drivers are required. When
you connect the Arduino board, you should see it listed under /dev/tty.usbmodemXXXX or /dev/tty.
usbserialXXXX.

On Debian distributions (for example, Raspberry Pi), you can simply install it on the terminal:

$ sudo apt-get install arduino

For others distributions, you can download the file for either 32 or 64 bits, unpack it, and install the
required dependencies.

When you connect the Arduino board, you should see it listed under /dev/ttyACMX or /dev/ttyUSBX.

Running the IDE
Assuming your installation ends successfully, launch the application; you’ll see a screen like Figure 12-11.

Figure 12-11. The Arduino IDE

Chapter 12 ■ JavaFX and arduino

399

The first thing to do is choose Tools ➤ Board and select the right board from the list. Arduino/Genuino
Uno is referred to as the classic Arduino Uno board. If you plug your Arduino/Genuino 101 in for the first time,
the Arduino IDE will ask you to install some package to be able to use the board, as shown in Figure 12-12.

Click on the link and the Boards Manager will show up. Under Intel Curie Boards by Intel, click on More
Info and press the Install button, as shown in Figure 12-13. After a few minutes, the package will be installed.
Then make sure you select the proper board from Tools ➤ Boards ➤ Arduino/Genuino 101.

Figure 12-12. Library required for 101 board

Figure 12-13. Installing the Intel Curie Boards package

Chapter 12 ■ JavaFX and arduino

400

Under Serial Port, select the port where the board is connected (i.e., COM3 (Arduino/Genuino 101)).
When there are several options, an easy way to find out which port is the right one is to unplug the board,
look for the missing port, plug it in again, and select that serial port.

The Blink Example
The quickest test you can do, even without sensors (instrumentation or analog/digital signaling devices),
is to open the Blink sample (choose File ➤ Examples ➤ 01.Basics ➤ Blink), as shown in Figure 12-14.
The Arduino code files, called sketches, are saved with the extension .ino, under the Arduino/examples
folders in several categories.

Click the Upload button (second from the left on the toolbar) and wait for the “Done uploading”
message on the status bar. Then you should see the LED labeled with an L blinking on the board.

If you are running the Web Editor version, select the Blink sample from the left menu (Examples ➤
01.Basics ➤ Blink), as shown in Figure 12-15. Make sure your board is listed on the top-right drop-down list
and click the Upload button (the right arrow).

Figure 12-14. The Blink sketch (IDE version)

Chapter 12 ■ JavaFX and arduino

401

A really good source for example code to start playing with your Arduino board is at the Arduino
Playground: http://playground.arduino.cc/. You can also visit the Project hub site at https://create.
arduino.cc/projecthub/ for a big collection of projects from the community.

To try most of the preliminary tutorials or your own experiments, you’ll need a basic set of sensors and a
small set of electronic components. It is a good idea to acquire your Arduino board bundled with electronic
components as a starter kit. In addition to the board, you will want a USB cable, a breadboard, jumper wires,
LEDs of several colors, resistors, a temperature sensor, a potentiometer, push buttons, and the like.

Orientation Visualizer Example
This example demonstrates how to use Genuino 101's on-board six-axis accelerometer/gyro to read the X, Y,
and Z values of both the accelerometer and the gyroscope. The accelerometer values are used to determine
the orientation of the board, while the gyroscope measures the angular velocity of the board. The example is
based on this link: https://www.arduino.cc/en/Tutorial/Genuino101CurieIMUOrientationVisualiser.

The only hardware required is the Arduino/Genuino 101 board.

Figure 12-15. The Blink sketch (Web Editor version)

http://playground.arduino.cc/
https://create.arduino.cc/projecthub/
https://create.arduino.cc/projecthub/
https://www.arduino.cc/en/Tutorial/Genuino101CurieIMUOrientationVisualiser

Chapter 12 ■ JavaFX and arduino

402

The software required for the example is the Madgwick library, available from the Library Manager.
Using the the Arduino IDE, go to Sketch ➤ Include Library ➤ Manage Libraries. There you can search for
“Madgwick” and install the latest version of the library directly from there, as shown in Figure 12-16.
The source code of the library can be found at https://github.com/arduino-libraries/MadgwickAHRS.

Now open the Visualize101.ino sample from the library folder that you will find under
<User>/Documents/Arduino/Libraries/Madgwick/examples/Visualize101. You need to modify it,
in order to add an initial calibration. Listing 12-1 includes the modified source code.

Listing 12-1. Visualize101 Source Code with Calibration

#include <CurieIMU.h>
#include <MadgwickAHRS.h>

Madgwick filter;
unsigned long microsPerReading, microsPrevious;
float accelScale, gyroScale;

void setup() {
 Serial.begin(9600);
 while (!Serial); // wait for the serial port to open

Figure 12-16. Installing the Madgwick library

https://github.com/arduino-libraries/MadgwickAHRS

Chapter 12 ■ JavaFX and arduino

403

 // start the IMU and filter
 CurieIMU.begin();
 CurieIMU.setGyroRate(25);
 CurieIMU.setAccelerometerRate(25);
 filter.begin(25);

 // Set the accelerometer range to 2G
 CurieIMU.setAccelerometerRange(2);
 // Set the gyroscope range to 250 degrees/second
 CurieIMU.setGyroRange(250);

 // Starting Gyroscope calibration
 CurieIMU.autoCalibrateGyroOffset();
 // Starting Acceleration calibration...");
 CurieIMU.autoCalibrateXAccelOffset(0);
 CurieIMU.autoCalibrateYAccelOffset(0);
 CurieIMU.autoCalibrateZAccelOffset(1);

 // Enabling Gyroscope/Acceleration offset compensation
 CurieIMU.setGyroOffsetEnabled(true);
 CurieIMU.setAccelOffsetEnabled(true);

 // initialize variables to pace updates to correct rate
 microsPerReading = 1000000 / 25;
 microsPrevious = micros();
}

void loop() {
 int aix, aiy, aiz;
 int gix, giy, giz;
 float ax, ay, az;
 float gx, gy, gz;
 float roll, pitch, heading;
 unsigned long microsNow;

 // check if it's time to read data and update the filter
 microsNow = micros();
 if (microsNow - microsPrevious >= microsPerReading) {

 // read raw data from CurieIMU
 CurieIMU.readMotionSensor(aix, aiy, aiz, gix, giy, giz);

 // convert from raw data to gravity and degrees/second units
 ax = convertRawAcceleration(aix);
 ay = convertRawAcceleration(aiy);
 az = convertRawAcceleration(aiz);
 gx = convertRawGyro(gix);
 gy = convertRawGyro(giy);
 gz = convertRawGyro(giz);

Chapter 12 ■ JavaFX and arduino

404

 // update the filter, which computes orientation
 filter.updateIMU(gx, gy, gz, ax, ay, az);

 // print the heading, pitch and roll
 roll = filter.getRoll();
 pitch = filter.getPitch();
 heading = filter.getYaw();
 // Serial.print("Orientation: ");
 Serial.print(heading);
 Serial.print(" ");
 Serial.print(pitch);
 Serial.print(" ");
 Serial.println(roll);

 // increment previous time, so we keep proper pace
 microsPrevious = microsPrevious + microsPerReading;
 }
}

float convertRawAcceleration(int aRaw) {
 // since we are using 2G range
 // -2g maps to a raw value of -32768
 // +2g maps to a raw value of 32767

 float a = (aRaw * 2.0) / 32768.0;
 return a;
}

float convertRawGyro(int gRaw) {
 // since we are using 250 degrees/seconds range
 // -250 maps to a raw value of -32768
 // +250 maps to a raw value of 32767

 float g = (gRaw * 250.0) / 32768.0;
 return g;
}

Running the Web Editor, open the Visualize101 project from Examples ➤ From Libraries ➤ Madgwick,
and include the calibration, as shown in Figure 12-17.

Chapter 12 ■ JavaFX and arduino

405

Make sure you have your board connected and select the right port. Click upload, and after a few
seconds the project is compiled and uploaded to the board.

You can open the Serial Monitor to visualize the values of heading (yaw), pitch, and roll (in degrees)
printed out, while you hold the board with your hand and wave it, as shown in Figure 12-18.

Figure 12-18. Running Visualize101

Figure 12-17. Visualize101 in the Web Editor

Chapter 12 ■ JavaFX and arduino

406

How It Works
The sketch uses functions inside the CurieIMU library to get the data from the accelerometer/gyroscope.
It has two primary methods: setup() and loop().

In the setup() method, you configure the serial port speed and the CurieIMU library, by setting the
sample rate of the accelerometer, gyro, and filter to 25Hz, and the accelerometer range to 2g and the gyro
range to 250 °/s. Both gyroscope and accelerometer are calibrated initially. For this, it is recommended you
keep the Arduino board steady and in a flat position.

In the loop() method, every 25ms you get accelerometer and gyroscope data using the functions
from the CurieIMU library and convert the raw data to acceleration (g) and angular velocity (°/s). Using the
Madgwick library, those values are converted to the roll, pitch, and yaw angles, which are finally sent to the
serial port. These angles are used in many areas, like navigation, to define the spatial orientation of a body.

If everything is working, it’s time to start thinking about how you are going to read the serial port to get
these measures and how you are going to display those readings in your JavaFX application.

Serial Reading
Although you can find third-party applications for serial reading—like the old HyperTerminal for Windows,
Minicom for Linux, and Terminal for Mac—you need to have these readings in your application, and for that,
you need a Java API that performs that task.

Note here that serial reading is a highly hardware-specific task, and it breaks the Java multiplatform
approach as you need native support for accessing the ports. Besides the old JavaComm API from Sun, there is
no official API for communications bundled with the Java SE distribution, so you’ll need a third-party library.

For several years, the preferred Java library for serial communication was RXTX. Originally from Trent
Jarvi, and distributed under LGPL v 2.1+Linking Over Controlled Interface license, the last version (2.2pre2
from 2010) was accessible at http://rxtx.qbang.org/.

But this library was discontinued, and even the Arduino IDE replaced it with a new one—the Java Simple
Serial Connector (jSSC)—since it was heavily used for communications between the IDE and the board.

Java Simple Serial Connector
Java Simple Serial Connector (jSSC), from Alexey Sokolov, is licensed under GNU Lesser GPL. The latest
version as of this writing (jSSC-2.8.0), released January 2014, was the library chosen to replace RXTX in the
Arduino IDE (starting from version 1.5.6).

jSSC is available for all platforms and operating systems. You’ll notice it is faster than RXTX, and several
bugs have been fixed. jSSC comes in a simple JAR file, with all the native required files included, so you don’t
need to deal with local installations, as it takes care of adding them to the classpath at runtime.

A JAR with latest available version can be downloaded from https://github.com/scream3r/java-
simple-serial-connector/releases. If you add it as a library in NetBeans or open it, you will see its classes
(the jssc package) and the native content (the libs package).

JavaFX, the Charting API, and Orientation
In the example that follows, you will learn how to design a simple JavaFX application that takes the
orientation readings from the Arduino board and displays them in a chart. For the sake of clarity, the
example uses two classes—one for the serial readings in Listing 12-2 and one for the chart and the JavaFX
stage in Listing 12-3.

You’ll bind these classes (Serial and OrientationFX) by using a StringProperty, containing the last
line read from the serial port. By listening to changes in this property in the JavaFX thread, you’ll know when
there’s a new reading to add to the chart.

http://rxtx.qbang.org/
https://github.com/scream3r/java-simple-serial-connector/releases
https://github.com/scream3r/java-simple-serial-connector/releases

Chapter 12 ■ JavaFX and arduino

407

Creating the Module Project
Let’s start by creating a module project in NetBeans, as shown in Figure 12-19. Make sure you select the JDK 9
platform, as in Figure 12-20, when setting the project name, OrientationFX.

Figure 12-20. Project name and location

Figure 12-19. Adding a module project in NetBeans

Chapter 12 ■ JavaFX and arduino

408

Click Finish, and the new empty project will be created. Right-click on it, select New ➤ Module, and
name it com.jfxbe.orientationfx, as shown in Figure 12-21. Click Finish. The empty class called
module-info.java will be created.

For convenience, place the jssc.jar under a libs folder in the project, and then add it as a library
(choose Libraries ➤ Add JAR/Folder).

Now you can add to the module descriptor the requires clause for javafx.controls, to include the
JavaFX controls and base modules, and the clause for jssc as well, as shown in Listing 12-2.

Listing 12-2. Module-info Class

module com.jfxbe.orientationfx {
 requires javafx.controls;
 requires jssc;
}

You can add now a new package to the com.jfxbe.orientationfx module and a new class to it, called
OrientationFX. The class will extend Application. Notice that the class will be available to be imported,
thanks to the requires clause in the module descriptor. You simply add a Scene and show the stage, as
shown in Listing 12-3.

Figure 12-21. Module name

Chapter 12 ■ JavaFX and arduino

409

Listing 12-3. Defining the OrientationFX Class

public class OrientationFX extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 Scene scene = new Scene(new StackPane(), 1000, 600);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

Finally, you can add this package to the module with the exports clause, as in Listing 12-4, and run the
application to make sure the initial settings are correct. An empty stage should appear.

Listing 12-4. Final Module-info Class

module com.jfxbe.orientationfx {
 requires javafx.controls;
 requires jssc;
 exports com.jfxbe.orientationfx;
}

Serial Communications
You can add Serial to the package as the class for serial communications. Listing 12-5 contains its source
code.

Listing 12-5. The Serial Class Source Code

package com.jfxbe.orientationfx;

import java.util.Arrays;
import java.util.List;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import jssc.SerialPort;
import jssc.SerialPortException;
import jssc.SerialPortList;

public class Serial {
 /* List of usual serial ports. Add more or remove those you don't need */
 private static final List<String> USUAL_PORTS = Arrays.asList(
 "/dev/cu.usbmodem1411", "/dev/tty.usbmodem1421", // Mac OS X
 "/dev/usbdev","/dev/ttyUSB","/dev/ttyACM", "/dev/serial", // Linux
 "COM3","COM4","COM5","COM6" // Windows
);
 private final String ardPort;
 private SerialPort serPort;

Chapter 12 ■ JavaFX and arduino

410

 public static final String SEPARATOR = " ";
 private static final String LINE_SEPARATOR = "\r\n";
 private StringBuilder sb = new StringBuilder();
 private final StringProperty line = new SimpleStringProperty("");

 public Serial() {
 this("");
 }

 public Serial(String port) {
 ardPort =port;
 }

 /* connect() looks for a valid serial port with an Arduino board connected.
 * If it is found, it's opened and a listener is added, so every time
 * a line is returned, the stringProperty is set with that line.
 * For that, a StringBuilder is used to store the chars and extract the line
 * content whenever '\r\n' is found.
 */
 public boolean connect(){
 Arrays.asList(SerialPortList.getPortNames())
 .stream()
 .filter(name ->
 ((!ardPort.isEmpty() && name.equals(ardPort)) ||
 (ardPort.isEmpty() &&
 USUAL_PORTS.stream()
 .anyMatch(p -> name.startsWith(p)))))
 .findFirst()
 .ifPresent(name -> {
 try {
 serPort = new SerialPort(name);
 System.out.println("Connecting to " + serPort.getPortName());
 if (serPort.openPort()) {
 serPort.setParams(SerialPort.BAUDRATE_9600,
 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);
 serPort.setEventsMask(SerialPort.MASK_RXCHAR);
 serPort.addEventListener(event -> {
 if (event.isRXCHAR()) {
 try {
 sb.append(serPort.readString(event.getEventValue()));
 String ch = sb.toString();
 if (ch.endsWith(LINE_SEPARATOR)) {
 // add timestamp
 line.set(Long.toString(System.currentTimeMillis())
 .concat(SEPARATOR)
 .concat(ch.substring(
 0, ch.indexOf(LINE_SEPARATOR))));
 sb = new StringBuilder();
 }

Chapter 12 ■ JavaFX and arduino

411

 } catch (SerialPortException e) {
 System.out.println("Serial error: " + e.toString());
 }
 }
 });
 }
 } catch (SerialPortException ex) {
 System.out.println("ERROR: Port '" + name + "': " + ex.toString());
 }
 });
 return serPort != null;
 }

 public void write(String text) {
 try {
 serPort.writeBytes(text.getBytes());
 } catch (SerialPortException ex) {
 System.out.println("ERROR: writing '" + text + "': " + ex.toString());
 }
 }

 public void disconnect() {
 if (serPort != null) {
 try {
 serPort.removeEventListener();
 if (serPort.isOpened()) {
 serPort.closePort();
 }
 } catch (SerialPortException ex) {
 System.out.println("ERROR closing port exception: " + ex.toString());
 }
 System.out.println("Disconnecting: comm port closed.");
 }
 }

 public StringProperty getLine() {
 return line;
 }

 public String getPortName() {
 return serPort != null ? serPort.getPortName() : "";
 }
}

Chapter 12 ■ JavaFX and arduino

412

How It Works
First of all, notice that the jSSC imports are available if you included the jssc.jar properly as mentioned.
Next, you set a list of suitable port names where the Arduino board may be connected. This list can be
extended to other ports in your system or you can delete the ones from other platforms. The ardPort
variable can be set with a port name through the constructor, and the list won’t be used.

private static final List<String> USUAL_PORTS = Arrays.asList(
 "/dev/cu.usbmodem1411", "/dev/tty.usbmodem1421", // Mac OS X
 "/dev/usbdev","/dev/ttyUSB","/dev/ttyACM", "/dev/serial", // Linux
 "COM3","COM4","COM5","COM6" // Windows
);
private final String ardPort;
public Serial() {
 this("");
}

public Serial(String port) {
 ardPort =port;
}

In the connect() method, go through the list of valid serial ports found in your system. Use lambdas to
filter this collection so you get an item matching the ardPort value, if it is set, or one of the USUAL_PORTS list,
otherwise:

public boolean connect(){
 Arrays.asList(SerialPortList.getPortNames())
 .stream()
 .filter(name ->
 ((!ardPort.isEmpty() && name.equals(ardPort)) ||
 (ardPort.isEmpty() &&
 USUAL_PORTS.stream()
 .anyMatch(p -> name.startsWith(p)))))
 .findFirst()

If you find a valid serial port, you can try to open it and set several common parameters for the serial
communication:

.ifPresent(name -> {
 try {
 serPort = new SerialPort(name);
 System.out.println("Connecting to " + serPort.getPortName());
 if (serPort.openPort()) {
 serPort.setParams(SerialPort.BAUDRATE_9600,
 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);
 serPort.setEventsMask(SerialPort.MASK_RXCHAR);

Chapter 12 ■ JavaFX and arduino

413

Because you’ll be listening to the serial port, you add a listener that reacts to every SerialPortEvent,
which it detects by the presence of bytes on the input buffer. The number of bytes is determined by
event.getEventValue(). The readString(int byteCount) method returns whenever there are bytes on
the buffer. You use a StringBuilder to store all the readings, and you evaluate the characters for a carriage
return and line feed ("\r\n") sequence. If they’re found, you extract the line of text and reset the builder.
A StringProperty is used to store the line, so the JavaFX thread can listen to changes in that observable
object (exposed with the getLine() method; see Listing 12-6 later in the chapter). You add a timestamp to
the string to keep track of the instant it was read. Tracking over time also helps when the measures are the
same, so they can be shown sequentially on the chart.

serPort.addEventListener(event -> {
 if (event.isRXCHAR()) {
 try {
 sb.append(serPort.readString(event.getEventValue()));
 String ch = sb.toString();
 if (ch.endsWith(LINE_SEPARATOR)) {
 // add timestamp
 line.set(Long.toString(System.currentTimeMillis())
 .concat(SEPARATOR)
 .concat(ch.substring(
 0, ch.indexOf(LINE_SEPARATOR))));
 sb = new StringBuilder();
 }
 } catch (SerialPortException e) {
 System.out.println("Serial error: " + e.toString());
 }
 }
});

Note that in cases where you have to read several measures at a time, you need to use the same
separator character in your Arduino sketch, to split them properly into individual readings.

Finally, the disconnect() method takes care of removing the listener and closing the port:

public void disconnect() {
 if (serPort != null) {
 try {
 serPort.removeEventListener();
 if (serPort.isOpened()) {
 serPort.closePort();
 }
 } catch (SerialPortException ex) {
 System.out.println("ERROR closing port exception: " + ex.toString());
 }
 System.out.println("Disconnecting: comm port closed.");
 }
}

Chapter 12 ■ JavaFX and arduino

414

Testing Serial Comms
Before getting into the Charts API, let’s add a quick test to the Application class, as shown in Listing 12-6.
Open the serial port upon starting the application and close it when the app is shut down.

Listing 12-6. Testing Serial Comms

public class OrientationFX extends Application {

 private Serial serial;

 @Override
 public void start(Stage primaryStage) throws Exception {
 Scene scene = new Scene(new StackPane(), 800, 600);
 primaryStage.setScene(scene);
 primaryStage.show();

 serial = new Serial();
 serial.getLine().addListener((obs, ov, nv) -> {
 String[] split = nv.split("\\s");
 System.out.println("Orientation " + split[1] + " " + split[2] + " " + split[3]);
 });
 serial.connect();
 }

 @Override
 public void stop() throws Exception {
 if (serial != null) {
 serial.disconnect();
 }
 }
}

Run the test to see if you find the orientation values in your console.

Connecting to /dev/tty.usbmodem1421
208.50 -1.67 -0.42
208.48 -2.14 -0.20
208.49 -1.75 -0.42
208.46 -2.11 -0.12
208.47 -1.79 -0.43
Disconnecting: comm port closed.

The JavaFX Charts API
Charts with two axes (bars, areas, lines, bubble, or scatter) or pie charts without an axis have been available
in JavaFX since version 2.0. Each chart is a node, so it can be added to a scene like any other node.

In this example, you’ll add a LineChart to plot the three orientation angles. This requires three series to
plot the readings, with XYChart.Data as pair of values for every point, one for each axis.

Chapter 12 ■ JavaFX and arduino

415

For convenience, whenever the size of the series is greater than 300 points, the first values will be
removed. Listing 12-7 shows the ArduinoChart class, which creates a container for the chart and processes
any possible serial event.

Listing 12-7. The ArduinoChart Class

/**
* @author Jose Pereda
*/
public class ArduinoChart {

 private static final int SIZE_MAX = 300;

 private LineChart<Number,Number> chart;
 private Series<Number, Number> rollSeries, pitchSeries, yawSeries;
 private NumberAxis xAxis, yAxis;

 private Label labelRoll, labelPitch, labelYaw;

 public VBox createArduinoChart() {
 xAxis = new NumberAxis();
 xAxis.setLabel("Time");
 xAxis.setAutoRanging(true);
 xAxis.setForceZeroInRange(false);
 xAxis.setTickLabelFormatter(new StringConverter<Number>() {
 @Override
 public String toString(Number t) {
 return new SimpleDateFormat("HH:mm:ss")
 .format(new Date(t.longValue()));
 }
 @Override
 public Number fromString(String string) {
 throw new UnsupportedOperationException("Not supported yet.");
 }
 });
 yAxis = new NumberAxis();
 yAxis.setLabel("Angle (º)");
 chart = new LineChart<>(xAxis, yAxis);
 chart.setCreateSymbols(true);
 chart.setAnimated(false);
 chart.setLegendVisible(true);
 chart.setTitle("Roll/Pitch/Yaw");
 rollSeries = new Series<>();
 rollSeries.setName("Roll (º)");
 pitchSeries = new Series<>();
 pitchSeries.setName("Pitch (º)");
 yawSeries = new Series<>();
 yawSeries.setName("Yaw (º)");

 chart.getData().addAll(rollSeries, pitchSeries, yawSeries);

Chapter 12 ■ JavaFX and arduino

416

 labelRoll = new Label();
 labelPitch = new Label();
 labelYaw = new Label();

 final HBox hBox = new HBox(new Label("Values: "), labelRoll, labelPitch, labelYaw);
 hBox.getStyleClass().add("box");

 final VBox vBox = new VBox(chart, hBox);
 vBox.getStyleClass().add("box");
 return vBox;
 }

 public void processEvent(long time, double roll, double pitch, double yaw) {
 rollSeries.getData().add(new Data(time, roll));
 labelRoll.setText("Roll: " + String.format("%3.2f º", roll));
 if (rollSeries.getData().size() > SIZE_MAX) {
 rollSeries.getData().remove(0);
 }

 pitchSeries.getData().add(new Data(time, pitch));
 labelPitch.setText("Pitch: " + String.format("%3.2f º", pitch));
 if (pitchSeries.getData().size() > SIZE_MAX) {
 pitchSeries.getData().remove(0);
 }

 yawSeries.getData().add(new Data(time, yaw));
 labelYaw.setText("Yaw: " + String.format("%3.2f º", yaw));
 if (yawSeries.getData().size() > SIZE_MAX) {
 yawSeries.getData().remove(0);
 }
 }

}

Listing 12-8 shows the code of OrientationFX, the Application class, where you’ll add a BorderPane to
include a pair of buttons on top, to start and stop the serial communication, and the ArduinoChart instance
on the center.

Listing 12-8. The OrientationFX Class

/**
* @author Jose Pereda
*/
public class OrientationFX extends Application {

 private static final double OFFSET_YAW = -180;
 private Serial serial;
 private ArduinoChart arduinoChart;

 private TextField textYaw;

 private final BooleanProperty connection = new SimpleBooleanProperty();

Chapter 12 ■ JavaFX and arduino

417

 private final ChangeListener<String> listener = (obs, ov, nv) -> {
 String[] split = nv.split("\\s");
 long time = Long.parseLong(split[0]);
 double offset = OFFSET_YAW;
 if (!textYaw.getText().isEmpty()) {
 try {
 offset = Double.parseDouble(textYaw.getText());
 } catch (NumberFormatException nfe) { }
 }
 double yaw = Double.parseDouble(split[1]) + offset;
 double pitch = - Double.parseDouble(split[2]);
 double roll = - Double.parseDouble(split[3]);
 Platform.runLater(() -> {
 arduinoChart.processEvent(time, roll, pitch, yaw);
 });
 };

 @Override
 public void start(Stage primaryStage) throws Exception {
 arduinoChart = new ArduinoChart();

 BorderPane root = new BorderPane();

 Button buttonStart = new Button();
 buttonStart.setText("Start");
 buttonStart.setOnAction(e -> startSerial());

 Button buttonStop = new Button();
 buttonStop.setText("Stop");
 buttonStop.setOnAction(e -> stopSerial());

 Label labelConnection = new Label("Not connected");
 connection.addListener((obs, ov, nv) -> labelConnection.setText(nv ?
 "Connected to: " + serial.getPortName() : "Not connected"));
 labelConnection.setPrefWidth(400);

 textYaw = new TextField("" + OFFSET_YAW);
 HBox top = new HBox(buttonStart, buttonStop, new Label("Yaw Offset (º): "), textYaw);
 top.getStyleClass().add("box");
 root.setTop(top);

 final VBox chartBox = arduinoChart.createArduinoChart();
 chartBox.setPrefWidth(500);
 HBox center = new HBox(chartBox);
 center.getStyleClass().add("box");
 center.setPrefHeight(500);
 root.setCenter(center);

Chapter 12 ■ JavaFX and arduino

418

 HBox bottom = new HBox(labelConnection);
 bottom.getStyleClass().add("box");
 root.setBottom(bottom);

 Scene scene = new Scene(root, 1000, 600);
 scene.getStylesheets().add(OrientationFX
 .class.getResource("arduino.css").toExternalForm());

 primaryStage.setTitle("OrientationFX");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 @Override
 public void stop(){
 stopSerial();
 }

 private void startSerial(){
 if (serial == null) {
 serial = new Serial();
 }
 serial.getLine().addListener(listener);
 serial.connect();
 connection.set(!serial.getPortName().isEmpty());
 }

 private void stopSerial(){
 if (serial != null) {
 serial.disconnect();
 serial.getLine().removeListener(listener);
 connection.set(false);
 serial = null;
 }
 }
}

Listing 12-9 shows the CSS file added as a style sheet for the application.

Listing 12-9. The arduino.css File

.root {
 -fx-background-color: derive(beige, 60%);
 -fx-font: 16px "Tahoma";
}

.box {
 -fx-padding: 10px;
 -fx-spacing: 20px;
 -fx-alignment: center-left;
}

Chapter 12 ■ JavaFX and arduino

419

.chart {
 -fx-padding: 0px;
}

.chart-plot-background {
 -fx-background-color: linear-gradient(to bottom, derive(beige, 40%), derive(beige, 20%));
}

.axis:bottom {
 -fx-border-color: derive(beige, -20%) transparent transparent transparent;
}

.axis:left {
 -fx-border-color: transparent derive(beige, -20%) transparent transparent;
}

.axis-tick-mark,

.axis-minor-tick-mark,

.chart-vertical-grid-lines,

.chart-horizontal-grid-lines,

.chart-vertical-zero-line,

.chart-horizontal-zero-line {
 -fx-stroke: derive(beige,-20%);
}

.chart-legend {
 -fx-background-color: linear-gradient(to bottom, derive(beige,40%), derive(beige,20%));
 -fx-padding: 10px;
}

.chart-series-line {
 -fx-stroke-width: 3px;
}

.default-color0.chart-series-line { -fx-stroke: blueviolet; }

.default-color1.chart-series-line { -fx-stroke: orangered; }

.default-color2.chart-series-line { -fx-stroke: firebrick; }

.default-color0.chart-line-symbol {
 -fx-background-color: transparent, blueviolet;
 -fx-background-radius: 3px;
}

.default-color1.chart-line-symbol {
 -fx-background-color: transparent, orangered;
 -fx-background-radius: 3px;
}
.default-color2.chart-line-symbol {
 -fx-background-color: transparent, firebrick;
 -fx-background-radius: 3px;
}

Chapter 12 ■ JavaFX and arduino

420

Building and Running the Project
To build and run the project from NetBeans, click on Run Project. Check that you have set com.jfxbe.
orientationfx.OrientationFX as mainClass (choose Properties ➤ Run).

To build the module and run the project from the command line with Java 9, run the steps from
Listing 12-10. Be aware that in order to build the module, you need to include the jssc.jar file with the
module-path option.

Listing 12-10. Running the OrientationFX Project

javac --module-path libs/jssc.jar -d mods/com.jfxbe.orientationfx
 $(find src/com.jfxbe.orientationfx -name "*.java")
cp src/com.jfxbe.orientationfx/classes/com/jfxbe/orientationfx/arduino.css
 mods/com.jfxbe.orientationfx/com/jfxbe/orientationfx
java --module-path mods:libs -m com.jfxbe.orientationfx/com.jfxbe.orientationfx.
OrientationFX

If everything is in place, and you have your Arduino 101 plugged in, you should be able to hold it and
wave it and get something like the Figure 12-22.

Figure 12-22. Running the OrientationFX example

Chapter 12 ■ JavaFX and arduino

421

How It Works
When the application starts, it creates an instance of ArduinoChart.

@Override
 public void start(Stage primaryStage) throws Exception {
 arduinoChart = new ArduinoChart();

Inside the arduinoChart class is a LineChart, with three series that take pairs of numbers to be plotted
against each axis, which are NumberAxis instances. Several limits are defined for these series: the maximum
number of points in each of them will be 300:

private static final int SIZE_MAX = 300;

private LineChart<Number,Number> chart;
private Series<Number, Number> rollSeries, pitchSeries, yawSeries;
private NumberAxis xAxis, yAxis;

Then you create the chart, starting by creating both axes. For the xAxis to show formatted data, this example
overrides the toString() method, so every long value in milliseconds will be written in HH:mm:ss format:

public VBox createArduinoChart() {
 xAxis = new NumberAxis();
 xAxis.setLabel("Time");
 xAxis.setAutoRanging(true);
 xAxis.setForceZeroInRange(false);
 xAxis.setTickLabelFormatter(new StringConverter<Number>() {
 @Override
 public String toString(Number t) {
 return new SimpleDateFormat("HH:mm:ss")
 .format(new Date(t.longValue()));
 }
 @Override
 public Number fromString(String string) {
 throw new UnsupportedOperationException("Not supported yet.");
 }
 });
 yAxis = new NumberAxis();
 yAxis.setLabel("Angle (º)");

Then it creates the chart by specifying its axes. It sets a few properties: setCreateSymbols(true)
will plot a big white circle on every point of the series. You can adjust the default size and color with CSS.
setAnimated(false) avoids the animation of the chart after adding any new point. Because you are plotting
points at a high frequency, it’s better this way. For lower frequencies, on the other hand, you will set it to
true to create a smooth transition effect. setLegendVisible(true) shows the legend with the series names:

chart = new LineChart<>(xAxis, yAxis);
chart.setCreateSymbols(true);
chart.setAnimated(false);
chart.setLegendVisible(true);
chart.setTitle("Roll/Pitch/Yaw");

Chapter 12 ■ JavaFX and arduino

422

You then create the three series, set the names for them (which will be displayed in the legend box), and
add them to the Data chart, which is an ObservableList of Series:

rollSeries = new Series<>();
rollSeries.setName("Roll (º)");
pitchSeries = new Series<>();
pitchSeries.setName("Pitch (º)");
yawSeries = new Series<>();
yawSeries.setName("Yaw (º)");
chart.getData().addAll(rollSeries, pitchSeries, yawSeries);

Finally, the chart is added to a VBox, along with an HBox with the labels for the instant values:

 labelRoll = new Label();
 labelPitch = new Label();
 labelYaw = new Label();

 final HBox hBox = new HBox(new Label("Values: "), labelRoll, labelPitch, labelYaw);
 hBox.getStyleClass().add("box");

 final VBox vBox = new VBox(chart, hBox);
 vBox.getStyleClass().add("box");
 return vBox;
}

Back to the application class, a listener will be created to bind the presence of any new line on the
serial port (corresponding to a reading of the orientation angles coming from the Arduino 101) with the
action of adding these values as new pairs to the series. For that, you set the x coordinate value as the
time when you add the reading in milliseconds (on the chart it will be formatted to HH:mm:ss) and the y
coordinate value is a double measurement of any of the angles reported by the Arduino in the String nv.
You parse the strings to double. For the yaw angle, you allow adding an offset value with a TextField, given
that, after calibration, this angle is not always reset to 0°. Also, notice the minus sign for pitch and roll: It is
due to the change of the coordinate system between Arduino and JavaFX.

private final ChangeListener<String> listener = (obs, ov, nv) -> {
 String[] split = nv.split("\\s");
 long time = Long.parseLong(split[0]);
 double offset = OFFSET_YAW;
 if (!textYaw.getText().isEmpty()) {
 try {
 offset = Double.parseDouble(textYaw.getText());
 } catch (NumberFormatException nfe) { }
 }
 double yaw = Double.parseDouble(split[1]) + offset;
 double pitch = - Double.parseDouble(split[2]);
 double roll = - Double.parseDouble(split[3]);

Chapter 12 ■ JavaFX and arduino

423

By using Platform.runlater(), you can pass the values to ArduinoChart, to render them in the chart.
This is mandatory, as the Serial task is running outside the JavaFX thread. With Platform.runlater(), not
only do you place the task of filling the series with the incoming data in the JavaFX thread, but also you give
to the Scene graph the required time to render the chart. Some of the angles might not be processed if the
rate is too high.

 Platform.runLater(() -> {
 arduinoChart.processEvent(time, roll, pitch, yaw);
 });
};

As the series data could grow indefinitely, to avoid memory issues, you set a SIZE_MAX value of 300
points and remove the first values of the series if you exceed that limit.

public void processEvent(long time, double roll, double pitch, double yaw) {
 rollSeries.getData().add(new Data(time, roll));
 labelRoll.setText("Roll: " + String.format("%3.2f º", roll));
 if (rollSeries.getData().size() > SIZE_MAX) {
 rollSeries.getData().remove(0);
 }

 pitchSeries.getData().add(new Data(time, pitch));
 labelPitch.setText("Pitch: " + String.format("%3.2f º", pitch));
 if (pitchSeries.getData().size() > SIZE_MAX) {
 pitchSeries.getData().remove(0);
 }

 yawSeries.getData().add(new Data(time, yaw));
 labelYaw.setText("Yaw: " + String.format("%3.2f º", yaw));
 if (yawSeries.getData().size() > SIZE_MAX) {
 yawSeries.getData().remove(0);
 }
}

Once you have the chart ready, you create the scene, add it to the stage, and finally display it. The
example creates a BorderPane, so in the center you add the chart, and on the bottom you add a Label to
show the connection status including the port name. Note the styling done to the root pane.

BorderPane root = new BorderPane();

final VBox chartBox = arduinoChart.createArduinoChart();
chartBox.setPrefWidth(500);
HBox center = new HBox(chartBox); //, arduino3D.createArduino3D());
center.getStyleClass().add("box");
center.setPrefHeight(500);
root.setCenter(center);

Chapter 12 ■ JavaFX and arduino

424

Scene scene = new Scene(root, 600, 600);
scene.getStylesheets().add(OrientationFX
 .class.getResource("arduino.css").toExternalForm());

primaryStage.setTitle("OrientationFX");
primaryStage.setScene(scene);
primaryStage.show();

Finally, you add two buttons to start and stop the serial task, and the textfield to modify the yaw offset:

Button buttonStart = new Button();
buttonStart.setText("Start");
buttonStart.setOnAction(e -> startSerial());

Button buttonStop = new Button();
buttonStop.setText("Stop");
buttonStop.setOnAction(e -> stopSerial());
textYaw = new TextField("" + OFFSET_YAW);
 HBox top = new HBox(buttonStart, buttonStop, new Label("Yaw Offset (º): "), textYaw);
top.getStyleClass().add("box");
root.setTop(top);

In the startSerial method, you can try to open the serial port and start reading from it. The listener
will be added to serial.getLine() and connection will be set to true in that case:

private void startSerial(){
 if (serial == null) {
 serial = new Serial();
 }
 serial.getLine().addListener(listener);
 serial.connect();
 connection.set(!serial.getPortName().isEmpty());
}

Whenever the application is closed, you must remove the listener and call the serial.disconnect()
method, to shut down the serial connection properly (see Listing 12-5).

private void stopSerial(){
 if (serial != null) {
 serial.disconnect();
 serial.getLine().removeListener(listener);
 connection.set(false);
 serial = null;
 }
}

Chapter 12 ■ JavaFX and arduino

425

Adding More Functionality
If you have come this far, and the example is working for you, you will want to continue upgrading the
application with a new extra feature. It would be nice if you could somehow render a JavaFX 3D Arduino
board and rotate it based on the orientation angles coming from the real Arduino.

Listing 12-11 contains the source code of the Arduino3D class, which simulates a very simple 3D board
with a few JavaFX 3D Box nodes.

Listing 12-11. The Arduino3D Class

public class Arduino3D {

 private static final int SIZE = 5;

 private Affine affine;

 private final List<Double> averageRoll = new ArrayList();
 private final List<Double> averagePitch = new ArrayList();
 private final List<Double> averageYaw = new ArrayList();

 public VBox createArduino3D() {
 Box board = new Box(300, 10, 200);
 board.setMaterial(new PhongMaterial(Color.web("#008282")));
 Box longHeader = new Box(210, 40, 10);
 longHeader.setMaterial(new PhongMaterial(Color.web("#505050")));
 longHeader.getTransforms().add(new Translate(40, -20, 90));
 Box shortHeader = new Box(170, 40, 10);
 shortHeader.setMaterial(new PhongMaterial(Color.web("#505050")));
 shortHeader.getTransforms().add(new Translate(60, -20, -90));

 Group arduino = new Group(board, longHeader, shortHeader);
 affine = new Affine();
 arduino.getTransforms().add(affine);

 SubScene subScene = new SubScene(new Group(arduino), 400, 400,
 true, SceneAntialiasing.BALANCED);
 PerspectiveCamera camera = new PerspectiveCamera();
 camera.setTranslateX(-200);
 camera.setTranslateY(-200);
 camera.setTranslateZ(-50);
 subScene.setCamera(camera);

 VBox vBox = new VBox(new Label("3D Rendering"), subScene);
 vBox.getStyleClass().add("box");
 return vBox;
 }

 public void processEvent(double roll, double pitch, double yaw) {
 double avYaw = average(averageYaw, Math.toRadians(yaw));
 double avPitch = average(averagePitch, Math.toRadians(pitch));
 double avRoll = average(averageRoll, Math.toRadians(roll));
 matrixRotateNode(avRoll, avPitch, avYaw);
 }

Chapter 12 ■ JavaFX and arduino

426

 private void matrixRotateNode(double roll, double pitch, double yaw) {
 double mxx = Math.cos(pitch) * Math.cos(yaw);
 double mxy = Math.cos(roll) * Math.sin(pitch) +
 Math.cos(pitch) * Math.sin(roll) * Math.sin(yaw);
 double mxz = Math.sin(pitch) * Math.sin(roll) -
 Math.cos(pitch) * Math.cos(roll) * Math.sin(yaw);
 double myx = -Math.cos(yaw) * Math.sin(pitch);
 double myy = Math.cos(pitch) * Math.cos(roll) -
 Math.sin(pitch) * Math.sin(roll) * Math.sin(yaw);
 double myz = Math.cos(pitch) * Math.sin(roll) +
 Math.cos(roll) * Math.sin(pitch) * Math.sin(yaw);
 double mzx = Math.sin(yaw);
 double mzy = -Math.cos(yaw) * Math.sin(roll);
 double mzz = Math.cos(roll) * Math.cos(yaw);

 affine.setToTransform(mxx, mxy, mxz, 0,
 myx, myy, myz, 0,
 mzx, mzy, mzz, 0);
 }

 private double average(List<Double> list, double value) {
 while (list.size() > SIZE) {
 list.remove(0);
 }
 list.add(value);

 return list.stream()
 .collect(Collectors.averagingDouble(d -> d));
 }
}

Listing 12-12 contains the modifications you need to do to the OrientationFX class to include an
instance of the Arduino3D class and render the sub-scene, and also to send the events from the serial task
and rotate the 3D board.

Listing 12-12. A Snippet of the OrientationFX Class

public class OrientationFX extends Application {

 private Arduino3D arduino3D;

 private final ChangeListener<String> listener = (obs, ov, nv) -> {

 Platform.runLater(() -> {
 arduinoChart.processEvent(time, roll, pitch, yaw);
 arduino3D.processEvent(roll, pitch, yaw);
 });
 };

Chapter 12 ■ JavaFX and arduino

427

 @Override
 public void start(Stage primaryStage) throws Exception {
 arduinoChart = new ArduinoChart();
 arduino3D = new Arduino3D();

 BorderPane root = new BorderPane();
 HBox center = new HBox(chartBox, arduino3D.createArduino3D());
 root.setCenter(center);

 Scene scene = new Scene(root, 600, 600);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

Building and Running the Project
To build and run the project from NetBeans, just click on Run Project. To build the module and run the
project from the command line with Java 9, run the steps mentioned in Listing 12-10.

Plug your Arduino 101 in, click the Start button, and hold and wave the Arduino. You should get
something like Figure 12-23, where the 3D board orientation mimics the real one with enough precision.

Figure 12-23. Running the advanced OrientationFX example

Chapter 12 ■ JavaFX and arduino

428

Note that the 0,0,0 position corresponds with the board in your hands in such a way that you can read
the Genuino 101 logo from left to right, and the power plug stays to the left. The yaw value can be adjusted
if required.

How It Works
The example creates an instance of Arduino3D by adding three boxes to a Group:

public VBox createArduino3D() {
 Box board = new Box(300, 10, 200);
 board.setMaterial(new PhongMaterial(Color.web("#008282")));
 Box longHeader = new Box(210, 40, 10);
 longHeader.setMaterial(new PhongMaterial(Color.web("#505050")));
 longHeader.getTransforms().add(new Translate(40, -20, 90));
 Box shortHeader = new Box(170, 40, 10);
 shortHeader.setMaterial(new PhongMaterial(Color.web("#505050")));
 shortHeader.getTransforms().add(new Translate(60, -20, -90));
 Group arduino = new Group(board, longHeader, shortHeader);

Then it adds this group to a SubScene inside another group. The sub-scene allows you to use a camera
without affecting the rest of the scene:

SubScene subScene = new SubScene(new Group(arduino), 400, 400,
 true, SceneAntialiasing.BALANCED);
PerspectiveCamera camera = new PerspectiveCamera();
camera.setTranslateX(-200);
camera.setTranslateY(-200);
camera.setTranslateZ(-50);
subScene.setCamera(camera);

VBox vBox = new VBox(new Label("Rendering 3D"), subScene);
vBox.getStyleClass().add("box");
return vBox;

The Arduino group adds an affine to its list of transforms. You add this group to a SubScene inside
another group. The sub-scene allows you to use a camera without affecting the rest of the scene:

affine = new Affine();
arduino.getTransforms().add(affine);

So now, whenever there is a serial event and a new set of orientation angles is provided, all you need to do
is update the affine coefficients. For that, you have to combine the three rotations into a single rotation matrix:

public void processEvent(double roll, double pitch, double yaw) {
 matrixRotateNode(roll, pitch, yaw);
}

Chapter 12 ■ JavaFX and arduino

429

private void matrixRotateNode(double roll, double pitch, double yaw) {
 double mxx = Math.cos(pitch) * Math.cos(yaw);
 double mxy = Math.cos(roll) * Math.sin(pitch) +
 Math.cos(pitch) * Math.sin(roll) * Math.sin(yaw);
 double mxz = Math.sin(pitch) * Math.sin(roll) -
 Math.cos(pitch) * Math.cos(roll) * Math.sin(yaw);
 double myx = -Math.cos(yaw) * Math.sin(pitch);
 double myy = Math.cos(pitch) * Math.cos(roll) -
 Math.sin(pitch) * Math.sin(roll) * Math.sin(yaw);
 double myz = Math.cos(pitch) * Math.sin(roll) +
 Math.cos(roll) * Math.sin(pitch) * Math.sin(yaw);
 double mzx = Math.sin(yaw);
 double mzy = -Math.cos(yaw) * Math.sin(roll);
 double mzz = Math.cos(roll) * Math.cos(yaw);

 affine.setToTransform(mxx, mxy, mxz, 0,
 myx, myy, myz, 0,
 mzx, mzy, mzz, 0);
}

The math involved in this process is out of scope for now, but a good reference can be found at
https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions.

The previous code will give an instant rotation for every set of angles, so in order to make it a little bit
steadier, the use of the average of the last five values for each angle is more convenient.

private static final int SIZE = 5;
private final List<Double> averageRoll = new ArrayList();
private final List<Double> averagePitch = new ArrayList();
private final List<Double> averageYaw = new ArrayList();

public void processEvent(double roll, double pitch, double yaw) {
 double avYaw = average(averageYaw, Math.toRadians(yaw));
 double avPitch = average(averagePitch, Math.toRadians(pitch));
 double avRoll = average(averageRoll, Math.toRadians(roll));
 matrixRotateNode(avRoll, avPitch, avYaw);
}

private double average(List<Double> list, double value) {
 while (list.size() > SIZE) {
 list.remove(0);
 }
 list.add(value);

 return list.stream()
 .collect(Collectors.averagingDouble(d -> d));
}

https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

Chapter 12 ■ JavaFX and arduino

430

More Examples
There are plenty of resources out there to demonstrate or utilize the Arduino, and you can experiment
whatever you have in mind! Arduino and the required equipment are inexpensive and safe (in most cases),
and they give you the chance to improve your do-it-yourself (DIY) skills.

Look for an affordable project buy what you need, build it, test it first on the Arduino IDE, and then
design a JavaFX application to monitor and control your devices.

Share your developments and look for help when you need it; there are great communities of people
willing to help, in both Arduino development and JavaFX.

Summary
In this chapter you’ve discovered what can be done by combining Arduino and JavaFX. You began by
learning about Arduino, its different boards, and main specifications. Next, you saw how to communicate
with it from the Arduino IDE. After learning about loading examples in the IDE, you got the chance to try it
for yourself an Arduino 101, uploading a sketch and reading the orientation angles in the Serial Monitor.

Then you learned about the different ways to read a serial port from your computer and found about
the Java Simple Serial Connector library. Installing this third-party component allowed you to perform serial
port operations such as locating, opening, reading, writing, and closing.

To monitor and display the Arduino readings, you learned how to use the JavaFX Charts API. Then you
saw an example in which a JavaFX chart is plotted with a series of data coming from the serial port, using an
Arduino board that comes with an six-axis accelerometer and gyroscope, to provide the three orientation
angles. Finally, you discovered how to enhance the application by adding a JavaFX 3D simulation of the real
board and rotate it based on the serial readings.

431© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_13

CHAPTER 13

JavaFX on Mobile

We all have heard many times the WORA slogan (“write once, run anywhere”), and while it is true that
Java runs anywhere you have a JVM, that’s not the case on modern mobile devices. While the latest trends
confirm that smartphones are taking over computers, why can’t we target that huge market yet? Luckily, the
open source project JavaFXPorts was born to allow all Java developers to deploy their projects on mobile
(Android and iOS).

In this chapter, you learn about the JavaFXPorts project, and how this led to Gluon Mobile, a library
created to enhance the mobile experience of the JavaFX desktop design.

As a full example, in this chapter, you will see how to create a simple JavaFX application with Gluon
Mobile: BasketStats. It is a simple app to track the annotation during a basketball game, and you will
deploy it to Android and iOS.

Before getting into the example, let’s get started with JavaFXPorts and Gluon Mobile.

JavaFXPorts: The Port to Mobile
JavaFXPorts is the open source project that brings Java and JavaFX to mobile and embedded hardware.
This includes iPhone, iPad, Android devices, and even the Raspberry Pi. The different projects that make
possible this miracle can be found here: https://bitbucket.org/javafxports.

This adventure started at the end of 2013, when Johan Vos and his team started the work on porting
JavaFX to Android, based on the OpenJFX project. In parallel, RoboVM started as a similar open source
project to port Java to iOS. In February 2015, LodgOn and Trillian Mobile, the companies behind those
projects, announced a joint effort to combine the best of both projects into a single plug-in, called
jfxmobile-plugin. The one and only Gradle JavaFX plug-in for mobile was created and freely available
through the JavaFXPorts repository.

A few weeks later, the Gluon company (see http://gluonhq.com) was created to gather all the efforts
around the JavaFXPorts project and to deliver Gluon Mobile, a lightweight application framework and a set
of mobile controls to enhance the mobile experience.

JavaFXPorts Under the Hood
When we create and compile a Java application, the result is Java bytecode. To run it, you need the JRE,
containing native libraries specific for each platform. Since there is no JRE for mobile devices, a different
approach is required.

On Android, the Google’s Android SDK contains tools for bundling applications, resources, and libraries
into an Android package (APK). The jfxmobile plug-in will use these tools to create and install the Java
mobile app, on top of the Android’s Dalvik/Art VMs, relatively similar to the Java VM.

https://bitbucket.org/javafxports
http://gluonhq.com/

Chapter 13 ■ JavaFX on Mobile

432

On iOS, the JRE needs to be packaged inside the app. The RoboVM ahead-of-time compiler is used to
translate the Java code into native iOS code, linking the required runtime libraries with the application.

Both the Android runtime and the iOS AOT compiler currently use the Apache Harmony
implementation of the Java class libraries, which is only a partial implementation of Java 7, and the project
is officially abandoned. Adding to this, the RoboVM project has been stopped after Microsoft acquired
Xamarin, which acquired RoboVM in the first place.

At this moment, this means that JavaFXPorts supports most of the Java 7 SE APIs, and a few Java 8 APIs
are supported as well (like lambda expressions, but not streams).

Because of these limitations, Gluon is working on GluonVM, a high-performance Java 8/9 VM that will
leverage the OpenJDK class libraries and provide full Java 9 functionality on mobile devices. It is expected to
be available at the time Java 9 is released.

 ■ Note Until GluonvM is released and given the mentioned limitations, to run JavaFX on Mobile we can’t
use Java 9 nor the modular system. that is why the examples in this chapter use the existing implementation
(Java 7 and some features of Java 8).

Getting Started with JavaFXPorts
The documentation to get started creating Java mobile applications with JavaFXPorts can be found here:
http://docs.gluonhq.com/javafxports/.

The Gradle plug-in jfxmobile-plugin does almost all the required work. By including this plug-in in
your regular JavaFX application, it will automatically create a number of tasks for you, and it will package
your application as a native iOS or a native Android package.

These are the prerequisites before starting a Java mobile project. On your machine:

–– Install the latest JDK 8 version for your development machine. Get it from here:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

–– Install Gradle 2.2 or higher from https://gradle.org/install. It is required to
build applications with the jfxmobile plug-in.

If you want to deploy on Android:

–– Install the Android SDK from https://developer.android.com/studio/index.html.
You can download Android Studio, which bundles the SDK and the required Android
tools, or you can just download and install the SDK tools at the end of the link.

–– Run the Android SDK Manager (Android Studio -> Tools -> Android -> SDK
Manager or the command line <android sdk>/tools/android) and then install at
least version 23.0.1 of Build-tools, the SDK Platform for APIs 21 up to 25, from Extras
the Android Support Repository.

–– Create a properties file in <Users>/<User>/.gradle/gradle.properties and add
the ANDROID_HOME=<path.to.Android.sdk> property.

Before deploying to an Android device, you need to follow these steps on the device:

–– Go to Settings -> About phone -> Build Number and tap seven times on it to
enable developer mode.

–– Go to Settings -> Development Options -> USB Debugging and select enable.

–– Go to Settings -> Security -> Unknown sources and enable installing apps from
unknown sources.

http://docs.gluonhq.com/javafxports/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://gradle.org/install
https://developer.android.com/studio/index.html

Chapter 13 ■ JavaFX on Mobile

433

If you want to deploy on iOS:

–– You need a Mac with MacOS X 10.11.5 or higher

–– You need Xcode 8.x or higher, available from the Mac App Store

Before deploying to an iOS device, you need to get a provisioning profile from the Apple Developer
portal. See this link on how to get a free one to deploy to your own device: http://docs.gluonhq.com/
javafxports/#_ios_3.

Hello Mobile World Example
With all the prerequisites in place, let’s create a Hello Mobile World example that you can run on desktop
and mobile platforms.

On your favorite IDE, you can create a new Gradle project. Give it a name (HelloMobile), a location,
and a main class, such as org.jfxbe.chap13.HelloMobile.

Edit the build.gradle file and add the content from Listing 13-1. It will apply the jfxmobile plug-in
to the project. Save and reload the project to update the project. The first time this is done, the plug-in will
download an install some internal dependencies, so it may take a while.

Listing 13-1. The build.gradle File

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'org.javafxports:jfxmobile-plugin:1.3.5'
 }
}

apply plugin: 'org.javafxports.jfxmobile'

repositories {
 jcenter()
}

mainClassName = 'org.jfxbe.chap13.HelloMobile'

jfxmobile {
 android {
 }
 ios {
 forceLinkClasses = ['org.jfxbe.chap13.**.*']
 }
}

http://docs.gluonhq.com/javafxports/#_ios_3
http://docs.gluonhq.com/javafxports/#_ios_3

Chapter 13 ■ JavaFX on Mobile

434

Note that the version of the plug-in at the time of this writing was 1.3.5. To keep it updated, check out
https://bitbucket.org/javafxports/javafxmobile-plugin.

Now in the main class, extend Application and create a JavaFX Scene with some content, as shown in
Listing 13-2.

Listing 13-2. Hello Mobile Main Class

package org.jfxbe.chap13;

import javafx.application.Application;
import javafx.geometry.Rectangle2D;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.stage.Screen;
import javafx.stage.Stage;

public class HelloMobile extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 Rectangle2D bounds = Screen.getPrimary().getVisualBounds();
 final Button button = new Button("Hello Mobile World!");
 button.setStyle("-fx-font-size: 20pt;");
 button.setOnAction(e -> button.setRotate(button.getRotate() - 30));

 final StackPane stackPane = new StackPane(button);

 Scene scene = new Scene(stackPane, bounds.getWidth(), bounds.getHeight());
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

Finally, you can build the application and run it on your platforms. To run a Gradle build, just type
gradle followed by the desired task name, e.g. gradle build will build the project. Run gradle run to
run it on your developer machine, gradle androidInstall to deploy it on an Android device, or gradle
launchIOSDevice to an iOS device. Figure 13-1 shows a screenshot of the app running on Android.

https://bitbucket.org/javafxports/javafxmobile-plugin

Chapter 13 ■ JavaFX on Mobile

435

How Does It Work?
The jfxmobile plug-in adds a number of tasks to your Java application that allow you to create packages that
can be uploaded to the Apple App Store and the Android Play Store.

The jfxmobile plug-in downloads and installs the required JavaFX SDKs:

–– Dalvik SDK for Android: The plug-in currently depends on org.
javafxports:dalvik-sdk:8.60.9 and org.javafxports:jfxdvk:8.60.9.

–– Retrolambda plug-in: Transforms the code to Java 6 compatible bytecode and
currently depends on net.orfjackal.retrolambda:retrolambda:2.5.1.

–– iOS SDK: The plug-in currently depends on org.javafxports:ios-sdk:8.60.9.

–– MobiDevelop: The fork of RoboVM 1.8.0 that’s used to compile the code to iOS
compatible bytecode. Currently depends on com.mobidevelop.robovm:robovm-
dist:tar.gz:nocompiler:2.3.0.

The source code for the mentioned SDKs is available here: http://bitbucket.org/javafxports/
8u-dev-rt.

On Android, the plug-in will then execute a number of commands that will lead to the creation of
an Android package (APK) in the directory build/javafxports/android. The package will be deployed
and installed in the device. Listing 13-3 shows the output of a successful deploy in Android, where all the
involved tasks are listed.

Figure 13-1. Hello Mobile World deployed on Android

http://bitbucket.org/javafxports/8u-dev-rt
http://bitbucket.org/javafxports/8u-dev-rt

Chapter 13 ■ JavaFX on Mobile

436

 ■ Note When running Gradle tasks, use --info, --debug, or --stracktrace to get a more verbose output
that may help you ping pointing errors and issues, such as gradle --info androidInstall.

Listing 13-3. Output When Running androidInstall

$ gradle androidInstall
:validateManifest
:collectMultiDexComponents
:compileJava
:processResources UP-TO-DATE
:classes
:compileAndroidJava UP-TO-DATE
:copyClassesForRetrolambda
:applyRetrolambda
Retrolambda 2.5.1
:mergeClassesIntoJar
:shrinkMultiDexComponents
:createMainDexList
:writeInputListFile
:dex
:mergeAndroidAssets
:mergeAndroidResources
:processAndroidResources UP-TO-DATE
:processAndroidResourcesDebug
:validateSigningDebug
:apkDebug
:zipalignDebug
:androidInstall
Installed on device.

BUILD SUCCESSFUL

Total time: 41.168 secs

On iOS, the situation is internally different, but the Gradle commands are similar. The plug-in will
download and install the RoboVM compiler, and it will use RoboVM compiler commands to create an iOS
application in build/javafxports/ios.

 ■ Note When running the app on your mobile device, the standard output can be accessed on android
devices by running <path.to.android skd>/platform-tools/adb logcat. on the Mac, open Xcode ➤
Windows ➤ Devices on ioS to access the output.

Finally, Gradle uses convention over configuration, and the default configuration applied to the plug-in
makes the build.gradle file extremely simple. You can modify this configuration when required. Check the
documentation at http://docs.gluonhq.com/javafxports/#anchor-3 for a full list of modifiable properties
for Android and iOS.

http://docs.gluonhq.com/javafxports/#anchor-3

Chapter 13 ■ JavaFX on Mobile

437

Submitting the App to the Stores
When you have finished testing the app on your mobile devices, you can proceed to upload it to the Apple
App Store and the Android Play Store. To do so, the plug-in already includes the required tasks.

On Android, you need to provide valid icon images (under /src/android/res) and you have
to disable the debugging options in the AndroidManifest file: Under the application tag, add
android:debuggable="false". And finally you have to sign the app, as explained at https://developer.
android.com/studio/publish/app-signing.html. You can add the signing configuration to your build.
gradle file, as shown in Listing 13-4.

Listing 13-4. Signing Configuration on Android

jfxmobile {
 android {
 signingConfig {
 storeFile file("path/to/my-release-key.keystore")
 storePassword 'STORE_PASSWORD'
 keyAlias 'KEY_ALIAS'
 keyPassword 'KEY_PASSWORD'
 }
 manifest = 'lib/android/AndroidManifest.xml'
 }
}

If everything is set, run gradle androidRelease to generate the APK under /build/javafxports/
android. To upload it to the store, you’ll have to enroll with Google Play Developers (https://play.google.
com/apps/publish/signup/) and fill in the required forms.

On iOS, provide the icons for the app, and once you have enrolled to the Apple Developer program,
you need to sign the app with a provisioning profile for production, as shown in Listing 13-5. Run gradle
createIpa and submit the app at /build/javafxports/ios through Xcode ➤ Open Developer Tool ➤
Application Loader. Fixing the initial requirements that the tool reveals as missing can be done by adding
the proper keys to the plist file under /src/ios/Default-Info.plist. When this is done, go to iTunes
Connect (https://itunesconnect.apple.com) to prepare the app for release. As with any other regular
iOS app, it usually takes a few iterations to get the app approved for submission, until you fulfill all the
requirements from the reviewers.

Listing 13-5. Signing Configuration on iOS

jfxmobile {
 ios {
 arch = "arm64"
 infoPList = file('src/ios/Default-Info.plist')
 forceLinkClasses = ['your.package.**.*',...]
 iosProvisioningProfile = 'MyApp'
 iosSignIdentity = 'iPhone Distribution: ******'
 }
}

https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/studio/publish/app-signing.html
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://itunesconnect.apple.com/

Chapter 13 ■ JavaFX on Mobile

438

Gluon Mobile
The Gluon Mobile library is designed to help developers create high performance, great looking, and cloud
connected mobile apps from a single Java codebase, for iOS and Android. It improves time-to-market for
applications, by providing APIs for modern material design user interfaces, accessing mobile device features,
connecting to web services, and synchronizing state across many devices.

Gluon Mobile is the client-side library and development tool that:

–– Provides UI controls for the client application, using Glisten, the UI component that
provides a native look and feel, with JavaFX controls and specific layouts.

–– Handles communication with the server-side Gluon CloudLink, using Connect, an
open source project that allows communications with the Gluon CloudLink itself
and other web services. Find out more at http://gluonhq.com/products/mobile/
connect/.

–– Abstracts (parts of) the platform-specific APIs by using Charm Down, an open
source project that offers a collection of services like filesystem, local or push
notifications, GPS, sensors, camera,… More details can be found at http://gluonhq.
com/products/mobile/charm-down/.

To get started using Gluon Mobile, you can create a Gradle project from the scratch, modify any an existing
samples (http://gluonhq.com/support/samples/), or install and use the Gluon plug-in for your IDE.

The Gluon IDE Plug-Ins
The Gluon plug-in for your IDE aids in creating a Gluon application project inside your IDE: there are
plug-ins for:

–– NetBeans. See instructions: http://docs.gluonhq.com/charm/latest/
#netbeans-plugin.

–– IntelliJ IDEA. Follow: http://docs.gluonhq.com/charm/latest/#intellij-plugin.

–– Eclipse. See: http://docs.gluonhq.com/charm/latest/#eclipse-plugin.

Once you have installed the plug-in, select New Project, go to the Gluon category, and pick one of the
different templates available (see Figure 13-2). You create a project that you can easily modify and adapt to
create your own app.

http://gluonhq.com/products/mobile/connect/
http://gluonhq.com/products/mobile/connect/
http://gluonhq.com/products/mobile/charm-down/
http://gluonhq.com/products/mobile/charm-down/
http://gluonhq.com/support/samples/
http://docs.gluonhq.com/charm/latest/#netbeans-plugin
http://docs.gluonhq.com/charm/latest/#netbeans-plugin
http://docs.gluonhq.com/charm/latest/#intellij-plugin
http://docs.gluonhq.com/charm/latest/#eclipse-plugin

Chapter 13 ■ JavaFX on Mobile

439

Figure 13-2. Gluon plug-in for IntelliJ and available templates

Charm Glisten
The base class is MobileApplication, and it extends from Application. It does not require any specific
methods to be implemented, but typically init can be overridden to register the different views, and
postInit can access the scene and apply an style sheet, for instance.

Glisten user interfaces are built using views. A view is a Glisten container that allows you to add nodes
to its top, center, and bottom.

Usually a View instance is created by providing a name for the view and the node for its content. This
instance is added to a factory of views so the Glisten UI can load and unload them on demand.

By default, the first view displayed when the stage is shown is called Home View. It has no
predefined content, so this view has to be designed by the developer, but its name is already assigned:
MobileApplication.HOME_VIEW. The short snippet in Listing 13-6 will create a very simple mobile
application with a single view, as shown in Figure 13-3.

By default, glisten.css is the style sheet added to a Gluon Mobile application. It is based on Material
Design from Google (https://material.io).

See the documentation at http://docs.gluonhq.com/charm/latest/#_charm_glisten to find out
more about the Glisten controls.

https://material.io/
http://docs.gluonhq.com/charm/latest/#_charm_glisten

Chapter 13 ■ JavaFX on Mobile

440

Listing 13-6. Creating a Home View

import com.gluonhq.charm.glisten.application.MobileApplication;
import com.gluonhq.charm.glisten.mvc.View;
import com.gluonhq.charm.glisten.visual.Swatch;
import javafx.scene.Scene;
import javafx.scene.control.Button;

public class MyApp extends MobileApplication {

 public static final String BASIC_VIEW = HOME_VIEW;

 @Override
 public void init() {
 addViewFactory(BASIC_VIEW, () -> new View(new Button("Hello Glisten!")));
 }

 @Override
 public void postInit(Scene scene) {
 Swatch.BLUE.assignTo(scene);
 }
}

Figure 13-3. MyApp running on the desktop

Chapter 13 ■ JavaFX on Mobile

441

License
While JavaFXPorts, Charm Down, or Charm Connect are fully open source projects, Gluon Mobile is a
commercial project and requires a license. As you can see at http://gluonhq.com/products/mobile/buy,
there is a free tier and the library can be used for testing with the 100% of its features, without a license.

Example: The BasketStats App
This example shows you how to create, step by step, a full Java mobile app that you can deploy to your
mobile devices. You can use it to keep track of the annotation during the basketball games of your kids, for
instance.

In this case, you’ll use NetBeans and the Gluon plug-in for NetBeans.

Creating the Project
Let’s create a new project using the Gluon plug-in. In NetBeans, choose File ➤ New Project and select Gluon
on the left. Select Gluon Mobile – Glisten -Afterburner Project from the list of available projects, as shown in
Figure 13-4.

Figure 13-4. New project: Choose project

http://gluonhq.com/products/mobile/buy

Chapter 13 ■ JavaFX on Mobile

442

Add a proper name to the application (BasketStats), find a proper location, add the package name,
and change the main class name if required, as shown in Figure 13-5.

Figure 13-5. New project: Set name and location

Chapter 13 ■ JavaFX on Mobile

443

Click Next and set these names—Main for the primary view and Board for the secondary view—as
shown in Figure 13-6. Click Finish and the project will be created.

Figure 13-6. New project: Set views names

Chapter 13 ■ JavaFX on Mobile

444

The full structure of the project can be seen in Figure 13-7. Listing 13-7 contains the build.gradle file,
showing the versions available at the time of this writing.

Listing 13-7. Default build.gradle File

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'org.javafxports:jfxmobile-plugin:1.3.5'
 }
}

apply plugin: 'org.javafxports.jfxmobile'

repositories {
 jcenter()
 maven {
 url 'http://nexus.gluonhq.com/nexus/content/repositories/releases'
 }
}

Figure 13-7. Project created: The MobileApplication class

Chapter 13 ■ JavaFX on Mobile

445

mainClassName = 'org.jfxbe.basketstats.BasketStats'

dependencies {
 compile 'com.gluonhq:glisten-afterburner:1.2.0'
 compile 'com.gluonhq:charm-glisten:4.3.5'
}

jfxmobile {
 downConfig {
 version = '3.3.0'
 plugins 'display', 'lifecycle', 'statusbar', 'storage'
 }
 android {
 manifest = 'src/android/AndroidManifest.xml'
 }
 ios {
 infoPList = file('src/ios/Default-Info.plist')
 forceLinkClasses = [
 'org.jfxbe.basketstats.**.*',
 'com.gluonhq.**.*',
 'javax.annotations.**.*',
 'javax.inject.**.*',
 'javax.json.**.*',
 'org.glassfish.json.**.*'
]
 }
}

In the application class, the init method is overridden to create and register the views. Listing 13-8
contains the AppViewManager class that takes care of adding the views to an AppViewRegistry instance. The
views are created with FXML with the AppView class, using the Afterburner framework (https://github.com/
AdamBien/afterburner.fx). A NavigationDrawer control is also created and registered. Figure 13-8 shows
this layer when you run the project.

Listing 13-8. The AppViewManager Class

package org.jfxbe.basketstats.views;

import com.gluonhq.charm.glisten.afterburner.AppView;
import static com.gluonhq.charm.glisten.afterburner.AppView.Flag.HOME_VIEW;
import static com.gluonhq.charm.glisten.afterburner.AppView.Flag.SHOW_IN_DRAWER;
import static com.gluonhq.charm.glisten.afterburner.AppView.Flag.SKIP_VIEW_STACK;
import com.gluonhq.charm.glisten.afterburner.AppViewRegistry;
import com.gluonhq.charm.glisten.afterburner.GluonPresenter;
import com.gluonhq.charm.glisten.afterburner.DefaultDrawerManager;

https://github.com/AdamBien/afterburner.fx
https://github.com/AdamBien/afterburner.fx

Chapter 13 ■ JavaFX on Mobile

446

import com.gluonhq.charm.glisten.application.MobileApplication;
import com.gluonhq.charm.glisten.control.Avatar;
import com.gluonhq.charm.glisten.control.NavigationDrawer;
import com.gluonhq.charm.glisten.visual.MaterialDesignIcon;
import javafx.scene.image.Image;
import java.util.Locale;
import org.jfxbe.basketstats.BasketStats;

public class AppViewManager {

 public static final AppViewRegistry REGISTRY = new AppViewRegistry();

 public static final AppView MAIN_VIEW = view("Game Manager", MainPresenter.class,
 MaterialDesignIcon.GAMES, SHOW_IN_DRAWER, HOME_VIEW, SKIP_VIEW_STACK);
 public static final AppView BOARD_VIEW = view("Board", BoardPresenter.class,
 MaterialDesignIcon.DASHBOARD, SHOW_IN_DRAWER);

 private static AppView view(String title,
 Class<? extends GluonPresenter<?>> presenterClass,
 MaterialDesignIcon menuIcon, AppView.Flag... flags) {
 return REGISTRY.createView(name(presenterClass), title, presenterClass,
 menuIcon, flags);
 }

 private static String name(Class<? extends GluonPresenter<?>> presenterClass) {
 return presenterClass.getSimpleName().toUpperCase(Locale.ROOT)
 .replace("PRESENTER", "");
 }

 public static void registerViewsAndDrawer(MobileApplication app) {
 for (AppView view : REGISTRY.getViews()) {
 view.registerView(app);
 }

 NavigationDrawer.Header header = new NavigationDrawer.Header("Gluon Mobile",
 "The BasketStats App",
 new Avatar(21,
 new Image(BasketStats.class.getResourceAsStream("/icon.png"))));

 DefaultDrawerManager drawerManager = new DefaultDrawerManager(app,
 header, REGISTRY.getViews());
 drawerManager.installDrawer();
 }
}

Chapter 13 ■ JavaFX on Mobile

447

Figure 13-8. Running the project on desktop

Adding the Model
Let’s add the model now. First, you define a GameEvent class with some primitives like the annotated score,
the date time of the event, the number of periods, and the number of the team. See Listing 13-9.

Listing 13-9. The GameEvent Class

package org.jfxbe.basketstats.model;

import java.time.LocalDateTime;
import java.time.ZoneOffset;

public class GameEvent {

 private int score;
 private long dateTime;
 private int period;
 private int team;
 private String partialScore;

Chapter 13 ■ JavaFX on Mobile

448

 /**
 * Game event when a team scores
 * @param score 0, 1, 2, 3. 0 means other game event
 * @param dateTime
 * @param period 1 to 4, 5 means game ended
 * @param team 1 for team A, 2 for team B, 0 for other game event
 */
 public GameEvent(int score, long dateTime, int period, int team) {
 this.score = score;
 this.dateTime = dateTime;
 this.period = period;
 this.team = team;
 }

 /**
 * Game event when the game starts a period or ends
 * @param dateTime
 * @param period
 */
 public GameEvent(LocalDateTime dateTime, int period) {
 this(0, dateTime.toInstant(ZoneOffset.UTC).getEpochSecond(), period, 0);
 }

 public GameEvent() {
 this(0, 0, 0, 0);
 }

 public int getScore() {
 return score;
 }

 public void setScore(int score) {
 this.score = score;
 }

 public long getDateTime() {
 return dateTime;
 }

 public LocalDateTime getLocalDateTime() {
 return LocalDateTime.ofEpochSecond(dateTime, 0, ZoneOffset.UTC);
 }

 public void setDateTime(long dateTime) {
 this.dateTime = dateTime;
 }

 public int getPeriod() {
 return period;
 }

Chapter 13 ■ JavaFX on Mobile

449

 public void setPeriod(int period) {
 this.period = period;
 }

 public int getTeam() {
 return team;
 }

 public void setTeam(int team) {
 this.team = team;
 }

 public String getPartialScore() {
 return partialScore;
 }

 public void setPartialScore(String partialScore) {
 this.partialScore = partialScore;
 }

}

Now you’ll have a Game class with some JavaFX properties like the name and score of the teams, the
local date and time of the game, and a list of game events. See Listing 13-10.

Listing 13-10. The Game Class

package org.jfxbe.basketstats.model;

import java.time.LocalDateTime;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.ListProperty;
import javafx.beans.property.ObjectProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.property.SimpleListProperty;
import javafx.beans.property.SimpleObjectProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;

public class Game {

 private final ListProperty<GameEvent> gameEvents;

 public Game() {
 gameEvents = new SimpleListProperty<>(FXCollections.observableArrayList());
 }

Chapter 13 ■ JavaFX on Mobile

450

 private final IntegerProperty scoreA = new SimpleIntegerProperty(this, "scoreA", 0);
 public final IntegerProperty scoreAProperty() { return scoreA; }
 public final int getScoreA() { return scoreA.get(); }
 public final void setScoreA(int value) { scoreA.set(value); }

 private final IntegerProperty scoreB = new SimpleIntegerProperty(this, "scoreB", 0);
 public final IntegerProperty scoreBProperty() { return scoreB; }
 public final int getScoreB() { return scoreB.get(); }
 public final void setScoreB(int value) { scoreB.set(value); }

 private final StringProperty teamA = new SimpleStringProperty(this, "teamA", "");
 public final StringProperty teamAProperty() { return teamA; }
 public final String getTeamA() { return teamA.get(); }
 public final void setTeamA(String teamA) { this.teamA.set(teamA); }

 private final StringProperty teamB = new SimpleStringProperty(this, "teamB", "");
 public final StringProperty teamBProperty() { return teamB; }
 public final String getTeamB() { return teamB.get(); }
 public final void setTeamB(String teamB) { this.teamB.set(teamB); }

 private final ObjectProperty<LocalDateTime> localDateTime =
 new SimpleObjectProperty<>(this, "localDate", LocalDateTime.now());
 public final ObjectProperty<LocalDateTime> localDateTimeProperty() {
 return localDateTime; }
 public final LocalDateTime getLocalDateTime() { return localDateTime.get(); }
 public final void setLocalDateTime(LocalDateTime localDateTime) {
 this.localDateTime.set(localDateTime); }

 public ListProperty<GameEvent> gameEventsProperty() { return gameEvents; }
 public ObservableList<GameEvent> getGameEvents() { return gameEvents.get(); }
 public void setGameEvents(ObservableList<GameEvent> gluonGame) {
 gameEvents.set(gluonGame); }

 public final String getGameName() {
 return "Game-" + teamA.get() + "-" + teamB.get() + "-" +
 localDateTime.get().toLocalDate().toEpochDay() + "-" +
 localDateTime.get().toLocalTime().toSecondOfDay() + ".gam";
 }
}

Adding the Service
This app will store the games locally, using a file for each game. Now you need to define a Service class
to manage this. While you could use any regular file read/file write approach, you’ll use Gluon CloudLink
Client to persist the games you create in the local storage of the device. While its main purpose is to allow
communications with the cloud, you can use it locally as well.

Chapter 13 ■ JavaFX on Mobile

451

For this, you need a dependency, as shown in Listing 13-11.

Listing 13-11. Required Dependencies

dependencies {
 compile 'com.gluonhq:glisten-afterburner:1.2.0'
 compile 'com.gluonhq:charm-glisten:4.3.5'
 compile 'com.gluonhq:charm-cloudlink-client:4.3.5'
}

As seen in Listing 13-12, the service will create Game and DataClient instances upon initialization.
The latter will use OperationMode.LOCAL_ONLY to indicate only local operations.

The DataClient instance calls the createListDataReader() method with the following
arguments—an identifier (the unique name of the game), the object class to be read (GameEvent.class),
and the synchronization flags:

–– SyncFlag.LIST_WRITE_THROUGH, so changes in the list of game events are
automatically stored locally.

–– SyncFlag.OBJECT_WRITE_THROUGH, so changes in the properties of any game event in
the list are also stored locally.

It returns a ListDataReader object. Use the static method DataProvider.retrieveList with that
data reader to obtain a GluonObservableList<GameEvents>, which is an observable list of game events
that can be used in the different views to get or add new gameEvents. These events are immediately added
to the local file.

Listing 13-12. The Game Service.

package org.jfxbe.basketstats.service;

import com.gluonhq.cloudlink.client.data.DataClient;
import com.gluonhq.cloudlink.client.data.DataClientBuilder;
import com.gluonhq.cloudlink.client.data.OperationMode;
import com.gluonhq.cloudlink.client.data.SyncFlag;
import com.gluonhq.connect.GluonObservableList;
import com.gluonhq.connect.provider.DataProvider;
import javafx.beans.property.ListProperty;
import javax.annotation.PostConstruct;
import org.jfxbe.basketstats.model.Game;
import org.jfxbe.basketstats.model.GameEvent;

public class Service {

 private DataClient dataClient;

 private Game game;

 @PostConstruct
 public void postConstruct() {
 dataClient = DataClientBuilder.create()

Chapter 13 ■ JavaFX on Mobile

452

 .operationMode(OperationMode.LOCAL_ONLY)
 .build();

 game = new Game();
 }

 public GluonObservableList<GameEvent> retrieveGame(String nameGame) {
 game.setGameEvents(null);

 return DataProvider.retrieveList(dataClient.createListDataReader(nameGame,
 GameEvent.class,
 SyncFlag.LIST_WRITE_THROUGH, SyncFlag.OBJECT_WRITE_THROUGH));
 }

 public void addGameEvent(GameEvent gameEvent) {
 updateScore(gameEvent);
 gameEvent.setPartialScore("" + game.getScoreA() + " :: " + game.getScoreB());
 game.getGameEvents().add(gameEvent);
 }

 public Game getGame() {
 return game;
 }

 public final ListProperty<GameEvent> gameEventsProperty() {
 return game.gameEventsProperty();
 }

 public void updateScore(GameEvent event) {
 switch (event.getTeam()) {
 case 0:
 if (event.getPeriod() == 1) {
 game.setScoreA(0);
 game.setScoreB(0);
 }
 break;
 case 1:
 game.setScoreA(game.getScoreA() + event.getScore());
 break;
 case 2:
 game.setScoreB(game.getScoreB() + event.getScore());
 break;
 }
 }
}

You can check the “Data Storage” section of the Gluon CloudLink documentation at http://docs.
gluonhq.com/cloudlink/#_data_storage to learn about the DataClient and GluonObservableList
concepts in more detail.

http://docs.gluonhq.com/cloudlink/#_data_storage
http://docs.gluonhq.com/cloudlink/#_data_storage

Chapter 13 ■ JavaFX on Mobile

453

Modifying the Main View
It’s now time to modify the default views. Their FXML files can be edited with Scene Builder. Since version
8.3.0, which can be downloaded and installed from http://gluonhq.com/products/scene-builder/, the
required dependencies are included, and you can easily design Gluon Mobile views. See Figure 13-9.

First, open the main view (main.fxml). To preview the Gluon style, select Preview ➤ JavaFX Theme ➤
Gluon Mobile. Remove the default content and add a BottomNavigation control to the bottom of the view
with two buttons: one to create a new game and one to retrieve an existing game.

Now you add a VBox container that will hold a GridPane with two TextField controls from Gluon
Mobile, so the user can set the name of the teams. It will be visible when the New Game button is selected.
And a second VBox that will hold a CharmListView control, an enhanced list with headers, to show the
different games available. It will be visible when the Restore button is selected. Note that for every control
added, you assign an fx:id tag, so those can be referenced from the controller class. Figure 13-9 shows the
main view once the changes have been added.

The edited FXML file, as the rest of the source code of this example, can be found in the repository of
this book.

Figure 13-9. Main view edited with Scene Builder

http://gluonhq.com/products/scene-builder/

Chapter 13 ■ JavaFX on Mobile

454

Now add all the tagged controls to the presenter, as shown in Listing 13-13.

Listing 13-13. The Main Presenter

package org.jfxbe.basketstats.views;

import static com.gluonhq.charm.glisten.afterburner.DefaultDrawerManager.DRAWER_LAYER;
import com.gluonhq.charm.glisten.afterburner.GluonPresenter;
import com.gluonhq.charm.glisten.control.*;
import com.gluonhq.charm.glisten.mvc.View;
import com.gluonhq.charm.glisten.visual.MaterialDesignIcon;
import java.time.*;
import java.util.ResourceBundle;
import javafx.collections.FXCollections;
import javafx.fxml.FXML;
import javafx.scene.control.*;
import javafx.scene.layout.*;
import javax.inject.Inject;
import org.jfxbe.basketstats.BasketStats;
import org.jfxbe.basketstats.service.Service;
import org.jfxbe.basketstats.utils.GameUtils;
import org.jfxbe.basketstats.views.cells.*;

public class MainPresenter extends GluonPresenter<BasketStats> {

 @Inject private Service service;

 @FXML private View main;
 @FXML private GridPane gridNew;
 @FXML private TextField textNameA, textNameB;
 @FXML private Button buttonNew;
 @FXML private VBox restoreBox;
 @FXML private CharmListView<String, LocalDate> gameList;
 @FXML private ToggleButton newToggle, restoreToggle;
 @FXML private ResourceBundle resources;

 public void initialize() {
 main.showingProperty().addListener((obs, oldValue, newValue) -> {
 if (newValue) {
 AppBar appBar = getApp().getAppBar();
 appBar.setNavIcon(MaterialDesignIcon.MENU.button(e ->
 getApp().showLayer(DRAWER_LAYER)));
 appBar.setTitleText(resources.getString("main.app.title"));
 }
 });

 buttonNew.disableProperty().bind(textNameA.textProperty().isEmpty()
 .or(textNameB.textProperty().isEmpty())
 .or(textNameA.textProperty().isEqualTo(textNameB.textProperty())));

Chapter 13 ■ JavaFX on Mobile

455

 buttonNew.setOnAction(e -> {
 service.getGame().setTeamA(textNameA.getText());
 service.getGame().setTeamB(textNameB.getText());
 service.getGame().setLocalDateTime(LocalDateTime.now());
 GameUtils.restoreGame(service.getGame().getGameName());
 });

 restoreBox.managedProperty().bind(restoreBox.visibleProperty());
 gridNew.managedProperty().bind(gridNew.visibleProperty());

 gameList.setPlaceholder(new Label(resources.getString("main.listview.noitems")));
 gameList.setHeadersFunction(GameUtils::getLocalDateFromGame);
 gameList.setHeaderCellFactory(p -> new HeaderGameListCell());
 gameList.setHeaderComparator((l1, l2) -> l2.compareTo(l1));

 gameList.setCellFactory(p -> new GameListCell(resources));

 restoreToggle.selectedProperty().addListener((obs, ov, nv) -> {
 if (nv) {
 gridNew.setVisible(false);
 restoreBox.setVisible(true);
 gameList.setItems(FXCollections.observableArrayList(
 GameUtils.retrieveGames()));
 }
 });

 newToggle.selectedProperty().addListener((obs, ov, nv) -> {
 if (nv) {
 restoreBox.setVisible(false);
 gridNew.setVisible(true);
 }
 });
 newToggle.setSelected(true);
 }

}

The presenter adds the required listeners to the controls and cell factories for the header and regular
cells of the CharmListView control upon initialization (both cell factory classes can be found in the
repository of this book). Using injection, the service instance is added to the presenter. To learn more about
the Gluon Mobile controls, check out the documentation at http://docs.gluonhq.com/charm/javadoc/
latest/.

When the New Game toggle is clicked, the grid is visible and the list view is hidden, as shown in Figure 13-10a.
When the Restore Game toggle is selected, the grid will be hidden, and the list view will present all the existing
games so far, as shown in Figure 13-10b. Note that the stored games have a name and extension like Game-Bears-
Tigers-17328-70904.gam, as defined in the Game class.

Note the use of the Storage service from Charm Down to retrieve the files available in the local folder.
In the case of iOS or Android, the returned directory is private and accessible only from the app, as shown in
Listing 13-14.

http://docs.gluonhq.com/charm/javadoc/latest/
http://docs.gluonhq.com/charm/javadoc/latest/

Chapter 13 ■ JavaFX on Mobile

456

Listing 13-14. Using the Storage Service

package org.jfxbe.basketstats.utils;

public class GameUtils {
 public static List<String> retrieveGames() {
 File root = Services.get(StorageService.class)
 .flatMap(storage -> storage.getPrivateStorage())
 .orElseThrow(() -> new RuntimeException("No storage found"));
 List<String> list = new ArrayList<>();
 for (File file : root.listFiles((dir, name) -> name.startsWith("Game")
 && name.endsWith(".gam"))) {
 list.add(file.getName());
 }
 return list;
 }
}

Figure 13-10. Main view: a) New Game view, b) Restore Game view

Chapter 13 ■ JavaFX on Mobile

457

Modifying the Board View
Now you’ll see how to modify the board view. Open board.fxml with Scene Builder, remove the default
content, and add to the center of the view a Gluon Mobile ExpansionPanelContainer control with three
ExpansionPanel controls:

–– In the first one, its ExpandedPanel will hold a GridPane with the current annotation
and period and the buttons to annotate one, two, or three points for each team.
CollapsedPanel will hold a label with the current period and score.

–– The second one will have in the expanded panel a CharmListView control with
the game events: a period started, one team score, and some points.
The CollapsedPanel will hold a label.

–– The third one will have in the expanded panel a LinearChart control with the game
evolution. The CollapsedPanel will hold a label.

Figure 13-11 shows the modified view in Scene Builder. Note that every control required in the
presenter has to define an fx:id tag. The edited FXML file can be found in the repository of this book.

Figure 13-11. Board view edited with Scene Builder

Chapter 13 ■ JavaFX on Mobile

458

Now you’ll add all the tagged controls to the presenter, as shown in Listing 13-15. The factory cells
classes can be found in the repository of this book. You’ll find a link to that repository from the book’s catalog
page on the apress.com web site.

Listing 13-15. The Board Presenter

package org.jfxbe.basketstats.views;

import static com.gluonhq.charm.glisten.afterburner.DefaultDrawerManager.DRAWER_LAYER;
import com.gluonhq.charm.glisten.afterburner.GluonPresenter;
import com.gluonhq.charm.glisten.control.*;
import com.gluonhq.charm.glisten.mvc.View;
import com.gluonhq.charm.glisten.visual.MaterialDesignIcon;
import com.gluonhq.connect.GluonObservableList;
import java.text.MessageFormat;
import java.time.*;
import java.time.format.*;
import java.util.Arrays;
import java.util.List;
import java.util.ResourceBundle;
import javafx.beans.binding.Bindings;
import javafx.beans.property.*;
import javafx.fxml.FXML;
import javafx.scene.chart.*;
import javafx.scene.chart.XYChart.Series;
import javafx.scene.control.*;
import javafx.util.StringConverter;
import javax.inject.Inject;
import org.jfxbe.basketstats.BasketStats;
import org.jfxbe.basketstats.model.GameEvent;
import org.jfxbe.basketstats.service.Service;
import org.jfxbe.basketstats.views.cells.*;

public class BoardPresenter extends GluonPresenter<BasketStats> {

 @Inject private Service service;

 @FXML private View board;
 @FXML private ExpansionPanelContainer expansion;
 @FXML private Label labelTeamA, labelTeamB;
 @FXML private Label scoreTeamA, scoreTeamB, globalScore;
 @FXML private Button plusOneTeamA, plusTwoTeamA, plusThreeTeamA;
 @FXML private Button plusOneTeamB, plusTwoTeamB, plusThreeTeamB;
 @FXML private DropdownButton dropdown;
 @FXML private MenuItem period1, period2, period3, period4;
 @FXML private CharmListView<GameEvent, Integer> listView;
 @FXML private LineChart<Number, Number> chart;
 @FXML private NumberAxis xAxis, yAxis;
 @FXML private ResourceBundle resources;

Chapter 13 ■ JavaFX on Mobile

459

 private Button buttonStart, buttonStop;
 private List<Button> buttons;
 private List<MenuItem> periods;
 private final IntegerProperty period = new SimpleIntegerProperty();
 private Series<Number, Number> teamASeries, teamBSeries;

 public void initialize() {
 buttons = Arrays.asList(plusOneTeamA, plusTwoTeamA, plusThreeTeamA,
 plusOneTeamB, plusTwoTeamB, plusThreeTeamB);
 periods = Arrays.asList(period1, period2, period3, period4);

 enableGame(false);

 buttonStart = MaterialDesignIcon.PLAY_CIRCLE_OUTLINE
 .button(e -> startGame());
 buttonStop = MaterialDesignIcon.STOP.button(e -> stopGame());
 buttonStart.setDisable(true);
 buttonStop.setDisable(true);

 board.showingProperty().addListener((obs, oldValue, newValue) -> {
 if (newValue) {
 AppBar appBar = getApp().getAppBar();
 appBar.setNavIcon(MaterialDesignIcon.MENU.button(e ->
 getApp().showLayer(DRAWER_LAYER)));
 appBar.setTitleText(resources.getString("board.app.title"));
 appBar.getActionItems().addAll(buttonStart, buttonStop);
 }
 });

 for (ExpansionPanel panel : expansion.getItems()) {
 panel.expandedProperty().addListener((obs, ov, nv) -> {
 if (nv) {
 for (ExpansionPanel otherPanel : expansion.getItems()) {
 if (!otherPanel.equals(panel)) {
 otherPanel.setExpanded(false);
 }
 }
 }
 });
 }

 period2.setOnAction(e -> addPeriodEvent(2));
 period3.setOnAction(e -> addPeriodEvent(3));
 period4.setOnAction(e -> addPeriodEvent(4));

 plusOneTeamA.setOnAction(e -> addScoreEvent(1, 1));
 plusTwoTeamA.setOnAction(e -> addScoreEvent(2, 1));
 plusThreeTeamA.setOnAction(e -> addScoreEvent(3, 1));
 plusOneTeamB.setOnAction(e -> addScoreEvent(1, 2));
 plusTwoTeamB.setOnAction(e -> addScoreEvent(2, 2));
 plusThreeTeamB.setOnAction(e -> addScoreEvent(3, 2));

Chapter 13 ■ JavaFX on Mobile

460

 labelTeamA.textProperty().bind(service.getGame().teamAProperty());
 labelTeamB.textProperty().bind(service.getGame().teamBProperty());
 scoreTeamA.textProperty().bind(service.getGame().scoreAProperty().asString());
 scoreTeamB.textProperty().bind(service.getGame().scoreBProperty().asString());
 globalScore.textProperty().bind(Bindings.createStringBinding(() -> {
 String p;
 if (period.get() < 5) {
 p = MessageFormat.format(resources.getString("board.expansion.score"),
 period.get());
 } else {
 p = resources.getString("board.listview.end");
 }
 return String.format("(%s) %s :: %s", p, scoreTeamA.getText(),
 scoreTeamB.getText());
 }, period, scoreTeamA.textProperty(), scoreTeamB.textProperty()));

 // CharmListView
 listView.setHeadersFunction(GameEvent::getPeriod);
 listView.setPlaceholder(new Label(resources.getString("board.listview.noitems")));

 listView.setComparator((GameEvent e1, GameEvent e2) ->
 Long.compare(e1.getDateTime(), e2.getDateTime()));
 listView.setHeaderCellFactory(p -> new HeaderGameEventListCell(resources));
 listView.setCellFactory(p -> new GameEventListCell(resources));
 listView.setItems(service.gameEventsProperty());

 // Chart
 xAxis.setAutoRanging(true);
 xAxis.setForceZeroInRange(false);
 xAxis.setTickLabelFormatter(new StringConverter<Number>() {
 @Override
 public String toString(Number t) {
 return DateTimeFormatter.ofLocalizedTime(FormatStyle.MEDIUM)
 .format(LocalDateTime.ofEpochSecond(t.longValue(), 0,
 ZoneOffset.UTC));
 }
 @Override
 public Number fromString(String string) {
 throw new UnsupportedOperationException("Not supported yet.");
 }
 });
 teamASeries = new Series<>();
 teamASeries.setName(service.getGame().getTeamA());
 teamBSeries = new Series<>();
 teamBSeries.setName(service.getGame().getTeamB());
 chart.getData().addAll(teamASeries, teamBSeries);
 }

 private void startGame() {
 buttonStart.setDisable(true);
 buttonStop.setDisable(false);

Chapter 13 ■ JavaFX on Mobile

461

 enableGame(true);
 addPeriodEvent(1);
 }

 private void stopGame() {
 buttonStop.setDisable(true);
 enableGame(false);
 addPeriodEvent(5);
 }

 private void addPeriodEvent(int period) {
 addPeriodEvent(period, LocalDateTime.now());
 }

 private void addPeriodEvent(int period, LocalDateTime time) {
 this.period.set(period);
 service.addGameEvent(new GameEvent(time, period));
 for (int i = 0; i < 4; i++) {
 periods.get(i).setDisable(i != period);
 }
 }

 private void addScoreEvent(int score, int team) {
 addScoreEvent(score, team, LocalDateTime.now());
 }

 private void addScoreEvent(int score, int team, LocalDateTime time) {
 final GameEvent gameEvent = new GameEvent(score,
 time.toInstant(ZoneOffset.UTC).getEpochSecond(), period.get(), team);
 service.addGameEvent(gameEvent);
 if (team == 1) {
 teamASeries.getData().add(
 new XYChart.Data<>(gameEvent.getDateTime(),
 service.getGame().getScoreA()));
 } else {
 teamBSeries.getData().add(
 new XYChart.Data<>(gameEvent.getDateTime(),
 service.getGame().getScoreB()));
 }
 }

 private void enableGame(boolean value) {
 dropdown.setDisable(!value);
 for (Button button : buttons) {
 button.setDisable(!value);
 }
 }

 public void restoreGame(String gameName) {
 teamASeries.getData().clear();
 teamBSeries.getData().clear();
 final String[] split = gameName.split("-");

Chapter 13 ■ JavaFX on Mobile

462

 service.getGame().setTeamA(split[1]);
 service.getGame().setTeamB(split[2]);
 service.getGame().setScoreA(0);
 service.getGame().setScoreB(0);
 period.set(1);
 dropdown.setSelectedItem(period1);
 final GluonObservableList<GameEvent> retrievedGame = service
 .retrieveGame(gameName);

 enableGame(false);
 buttonStart.setDisable(false);
 buttonStop.setDisable(true);

 retrievedGame.initializedProperty().addListener((obs, ov, nv) -> {
 if (nv) {
 teamASeries.setName(service.getGame().getTeamA());
 teamBSeries.setName(service.getGame().getTeamB());
 service.getGame().setGameEvents(retrievedGame);
 for (GameEvent event : retrievedGame) {
 service.updateScore(event);
 if (event.getScore() == 0) {
 final int gamePeriod = event.getPeriod();
 period.set(gamePeriod);
 if (gamePeriod == 5) {
 buttonStop.setDisable(true);
 enableGame(false);
 } else {
 buttonStart.setDisable(true);
 buttonStop.setDisable(false);
 enableGame(true);
 if (gamePeriod - 2 >= 0) {
 periods.get(gamePeriod - 2).setDisable(true);
 }
 dropdown.setSelectedItem(periods.get(gamePeriod - 1));
 }
 } else {
 if (event.getTeam() == 1) {
 teamASeries.getData().add(
 new XYChart.Data<>(event.getDateTime(),
 service.getGame().getScoreA()));
 } else {
 teamBSeries.getData().add(
 new XYChart.Data<>(event.getDateTime(),
 service.getGame().getScoreB()));
 }
 }
 }
 }
 });
 }
}

Chapter 13 ■ JavaFX on Mobile

463

The presenter adds the required listeners to the controls and cell factories for the header and regular
cells of the CharmListView control upon initialization (the cell factory classes are available in the book’s
repository).

When the Start button is clicked, the grid is enabled, period 1 is set, and the game starts. Now the user
can click on the 1, 2, 3 buttons from team A or B whenever there is a basket from any of the teams, or select
the next period. Finally, when the user clicks the Stop button, the game ends, as shown in Figure 13-12a.

At any moment, the user can expand any of the other two expansion panels to see a list of events
(see Figure 13-12b) or a chart with the evolution of the game (see Figure 13-12c).

Figure 13-12. Board view: a) Game annotation view, b) Game events view, c) Game evolution view

Chapter 13 ■ JavaFX on Mobile

464

Deploy to Mobile
Once you have accomplished all the previous steps, it is time to build the app and deploy it on your mobile
devices, to test it and check its performance.

Right-click on the root project, and from the context menu, select Tasks ➤ Android ➤ androidInstall to
deploy on Android or or Tasks ➤ Launch ➤ launchIOSDevice to deploy on iOS devices. Figure 13-13 shows
the app deployed on an iPad.

Figure 13-13. App deployed on an iPad

Chapter 13 ■ JavaFX on Mobile

465

More Examples
For more examples of using JavaFX on mobile with Gluon Mobile, go to:

•– http://gluonhq.com/support/samples/

•– https://github.com/gluonhq/gluon-samples

For any questions related to the development of mobile apps with JavaFXPorts or Gluon Mobile, go to
the StackOverflow forums:

–– https://stackoverflow.com/tags/gluon/

–– https://stackoverflow.com/tags/gluon-mobile/

–– https://stackoverflow.com/tags/javafxports/

Summary
In the first part of this chapter, you were introduced to JavaFXPorts, an open source project that allows
Java/JavaFX developers to port their applications to Android and iOS.

In the second part of this chapter, you discovered the Gluon Mobile library. Starting from a default
project created by the Gluon plug-in for your IDE, the BasketStats app was developed. With the same
codebase and running on desktop, Android, and iOS devices, it showed how to deal with FXML views using
Scene Builder, or how to create and inject a service that deals with local storage. Different JavaFX and Gluon
Mobile controls were used throughout the example, showing how easy it is to use the library, and how fast
the development of mobile apps can be. The use of other open source projects, such as Charm Down, make
it easy to use native services on the device (storage device in this example) with a platform-agnostic API.

http://gluonhq.com/support/samples/
https://github.com/gluonhq/gluon-samples
https://stackoverflow.com/tags/gluon/
https://stackoverflow.com/tags/gluon-mobile/
https://stackoverflow.com/tags/javafxports/

467© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_14

CHAPTER 14

JavaFX and Gestures

User interfaces are becoming increasingly less mouse-centric, in favor of multi-touch and even touchless
input. Gestures are one of the ways humans can communicate with machines naturally, as the latter begin to
understand human body language, thanks to complex mathematical algorithms for gesture recognition.

In this chapter, you learn about two new approaches to gesture recognition: In the first part of the
chapter, you learn about developing multi-touch JavaFX applications using a touch-enabled device such as
the Windows 8 Surface. In the second part of this chapter, you discover an awesome gadget, the Leap Motion
device, that provides a touchless approach to developing enhanced JavaFX applications.

In this chapter, the following examples demonstrate JavaFX’s touch events API and the Leap Motion
Gestures API.

•	 Animating a shape along a path using touch events (Windows 8)

•	 Touch, rotate, and zoom in JavaFX 3D (Windows 8)

•	 A 3D hand model with the skeletal tracking model from Leap Motion

Before getting into the examples, let’s look at JavaFX’s touch events.

Recognizing Gestures in Your Application
Touch-enabled devices are currently part of our culture. From smartphones to tablets, we find ourselves
immersed in software. In this section, you learn the JavaFX TouchEvent API for touch-enabled devices.
The examples in this section are executed on the Windows 8 surface.

If you are familiar with gestures and gesture programming in general, then you can skip to Table 14-1,
which lists all the gesture events currently supported by JavaFX 9. If you are new to gesture programming,
first let’s discuss the differences between a MouseEvent and GestureEvent.

Chapter 14 ■ JavaFX and Gestures

468

Table 14-1. Gesture Events

Gesture Event Description

ROTATION_STARTED Two touch points recognized, with one touch point initiating a circular movement.

ROTATE Two touch points recognized, with one or both touch points performing a circular
movement.

ROTATE_FINISHED Two touch points recognized, with both touch points halted after performing a
circular movement.

SCROLL_STARTED One or more touch points that have begun to move in a slow horizontal or vertical
sliding movement.

SCROLL One or more touch points that are moving in a slow horizontal or vertical sliding
movement.

SCROLL_FINISHED One or more touch points that have ceased moving in a slow horizontal or vertical
sliding movement.

SWIPE_LEFT One or more touch points that are moving in a quick sliding movement to the left
edge of the screen.

SWIPE_DOWN One or more touch points that are moving in a quick sliding movement to the
bottom edge of the screen.

SWIPE_RIGHT One or more touch points that are moving in a quick sliding movement to the right
edge of the screen.

SWIPE_UP One or more touch points that are moving in a quick sliding movement to the top
edge of the screen.

TOUCH_PRESSED A single touch point recognized.

TOUCH_STATIONARY A single touch point that has remained in the same relative screen location without
movement.

TOUCH_MOVED A single touch point that has moved from a previously recognized TOUCH_PRESSED
or TOUCH_STATIONARY location.

TOUCH_RELEASED A single touch point that has been lifted from the screen.

ZOOM_STARTED Two touch points recognized, initiating a pinch or stretch motion.

ZOOM Two touch points recognized, performing a pinch or stretch motion.

ZOOM_FINISHED Two touch points recognized, with both touch points halted after performing a
pinch or stretch motion.

Traditional MouseEvent programming is based on a simple 2D coordinate system aligned with the pixels
of the screen. Typically mouse event handling is oriented toward wherever the mouse is at the moment
of the event. Gestures are slightly different in that they are oriented toward touch points and their relative
motion. A touch point is the location on the screen or device that detects interaction through physical
contact. There can be multiple touch points simultaneously, and each touch point instance contains
information such as X and Y coordinates, GUI component picking, and grouping of related touch points.
Generally touch points are treated in a similar fashion as mouse clicks.

The code for the first example of this chapter provided by Listing 14-1 shows the mouse and touch point
event handling side by side. The example explains what the gesture TouchPoint equivalents are to various
mouse events such as MousePressed, MouseDragged, and MouseReleased.

Chapter 14 ■ JavaFX and Gestures

469

Touch points are the basis of the more useful gestures such as rotations, scrolls, swipes, and zooms.
These more complex gestures involve multiple touch points and movement or inertia associated with the
touch points. For instance, touching and dragging your finger across a touch screen will simply register
multiple touch point events in a similar fashion to MouseEvent.MOUSE_DRAGGED. However, a registered
TouchPoint followed by a quick swipe to the edge of the device translates to a swipe gesture. This expands
the toolset of the developer by providing a multitude of additional interface options that generally don’t exist
within a standard mouse and keyboard GUI.

Gesture events are enabled for your application in the same manner as all event processing: via event
handlers. Table 14-1 provides a listing of the available gesture events.

Example: Animating Shapes Along a Path Using Touch Events
Let’s say you want to allow the user of your application to trace a path within your visual application. Tracing
through a visual presentation is a very natural interaction for humans. A simple example might be to record
the movement of a mouse on the screen and then “play back” the movement through a smooth JavaFX
animation. Listing 14-1 shows a complete example of this. Listing 14-2 contains the Java 9 module definition.

Listing 14-1. Animating a Circle Using Touch Events

package com.jfxbe.touchevents;

import javafx.animation.PathTransition;
import javafx.application.Application;
import javafx.geometry.Point2D;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.paint.CycleMethod;
import javafx.scene.paint.RadialGradient;
import javafx.scene.paint.Stop;
import javafx.scene.shape.Circle;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.stage.Stage;
import javafx.util.Duration;

/**
 * @author cdea
 */
public class TouchEvents extends Application {

 private final Path onePath = new Path();
 private Point2D anchorPt;

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 17 Touch Events");

Chapter 14 ■ JavaFX and Gestures

470

 Group root = new Group(onePath);

 Scene scene = new Scene(root, 600, 800, Color.WHITE);

 RadialGradient gradient1 = new RadialGradient(0, 0.1,
 100, 100,
 20,
 false,
 CycleMethod.NO_CYCLE,
 new Stop(0, Color.RED),
 new Stop(1, Color.BLACK));

 // create a sphere
 Circle sphere = new Circle(100, 100, 20, gradient1);

 // add sphere
 root.getChildren().add(sphere);

 // animate sphere by following the path.
 PathTransition pathTransition =
 new PathTransition(Duration.millis(4000), onePath, sphere);
 pathTransition.setCycleCount(1);
 pathTransition.setOrientation(
 PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);

 // once finished clear path
 pathTransition.setOnFinished(actionEvent ->
 onePath.getElements().clear());

 // starting initial path
 scene.setOnMousePressed(mouseEvent ->
 startPath(mouseEvent.getX(), mouseEvent.getY())
);

 scene.setOnTouchPressed(touchEvent ->
 startPath(touchEvent.getTouchPoint().getX(),
 touchEvent.getTouchPoint().getY()));

 // dragging creates lineTos added to the path
 scene.setOnMouseDragged(mouseEvent ->
 drawPath(mouseEvent.getX(), mouseEvent.getY()));
 scene.setOnTouchMoved(touchEvent ->
 drawPath(touchEvent.getTouchPoint().getX(),
 touchEvent.getTouchPoint().getY()));

 // end the path when mouse released event
 scene.setOnMouseReleased(mouseEvent -> endPath(pathTransition));
 scene.setOnTouchReleased(touchEvent -> endPath(pathTransition));

 primaryStage.setScene(scene);
 primaryStage.show();
 }

Chapter 14 ■ JavaFX and Gestures

471

 private void startPath(double x, double y) {
 onePath.getElements().clear();
 // start point in path
 anchorPt = new Point2D(x, y);
 onePath.setStrokeWidth(3);
 onePath.setStroke(Color.BLACK);
 onePath.getElements()
 .add(new MoveTo(anchorPt.getX(), anchorPt.getY()));
 }

 private void drawPath(double x, double y) {
 onePath.getElements().add(new LineTo(x, y));
 }

 private void endPath(PathTransition pathTransition) {
 onePath.setStrokeWidth(0.2);
 if (onePath.getElements().size() > 1) {
 pathTransition.stop();
 pathTransition.playFromStart();
 }
 }
}

Listing 14-2. Touch Events Module

module com.jfxbe.touchevents {
 requires javafx.controls;
 exports com.jfxbe.touchevents;
}

To build the module and run the project from command line with Java 9, run the steps from
Listing 14-3.

Listing 14-3. Running the Touch Events Project

javac -d mods/com.jfxbe.touchevents $(find src/com.jfxbe.touchevents -name "*.java")

java --module-path build/modules -m com.jfxbe.touchevents/com.jfxbe.touchevents.TouchEvents

Chapter 14 ■ JavaFX and Gestures

472

How Does It Work?
This circle object is animated along the onePath path using a PathTransition with a 4000 millisecond
transition time. The onePath point element list is defined using LineTo objects, which are built from
the x and y coordinates captured from simple mouse event handlers. In this situation, the capture is
initiated with the OnMousePressed event, collected by the OnMouseDragged event, and completed using the
OnMouseReleased event.

However, as mentioned earlier, tracing is a very natural human interaction and is appropriately done
with the hands. If you are running this on a touch-compliant screen device, you can easily use the JavaFX
touch event support to enhance your tracing application. Touch events, like all gesture events, have
first-class event handling in JavaFX 9. If a GUI component supports Mouse events, then it will also support
gesture events. The best part is that Mouse and gesture events coexist nicely in a single application.
Rather than replace the current Mouse event handlers, you can match each Mouse event handler with its
equivalent Touch event handler. That is why the MousePressed, TouchPressed, MouseDragged, TouchMoved,
MouseReleased, and TouchReleased events have been added to Listing 14-1.

As you can see, great care was taken to ensure that gesture event handling would be as seamless and
natural as using traditional Mouse event handling.

Figure 14-1. Using mouse or touch gestures to animate a shape along a path

Chapter 14 ■ JavaFX and Gestures

473

Touching, Rotating, and Zooming in 3D
When you’re manipulating a 3D scene, the most important interactions are typically rotations and zooming,
which are most concerned with moving and changing the orientation of objects or the camera. Integrating
gesture support into your 3D application is a natural enhancement over the traditional mouse and keyboard.
JavaFX Shape3D objects, whether primitives or custom triangle meshes, support all gesture events, such as
Rotate and Zoom, by default.

To demonstrate using gesture events within a JavaFX 3D scene, we add touchStationary, Rotate, and
Zoom gesture events to a TriangleMesh example.

The base TriangleMesh example creates four pyramid TriangleMesh objects, each added to a MeshView
container to be visible. Each MeshView container is added to a Group node, which is then added to the 3D
scene graph.

We want to enhance the scene by adding a Rotate gesture event to each pyramid. A user should be
able to touch a pyramid and then rotate it about the z-axis using a rotation gesture. If you read the previous
example in this chapter, you know that we need to add an event handler for the Rotate gesture, in this case
OnRotate. However, you must first provide a means to notify your application as to which onscreen object
is intended to rotate, or else you should rotate the camera perspective. If you stay within the multi-touch
paradigm, you will first need to add an event handler for OnTouchStationary. The OnTouchStationary event
indicates to the application that a single touch has occurred and has remained in the same relative location.
This differentiates the event from OnTouchPressed and OnTouchMoved, which occur immediately when any
touch occurs on the device, whether it is part of a movement gesture or not.

The strategy is to select an onscreen object as the active node to be the focus of subsequent gestures.
The OnTouchStationary event will occur before any OnRotate or OnZoom events, so the activeNode will be
available to those following gesture events. You can use this event to select the active node by adding the
following event handler:

scene.setOnTouchStationary(event -> {
 Node picked = event.getTouchPoint().getPickResult().getIntersectedNode();
 if (null != picked) {
 activeNode = picked;
 } else {
 activeNode = camera;
 }
 event.consume();
});

You can access the location data via the TouchPoint object. The TouchPoint object has picking support
built-in, which automatically gives you access to the intersected node, which is to say the onscreen object
picked. If no object is picked, that is, the touch was not over an onscreen object, then the camera is set as the
activeNode. Now you can add the OnRotate event handler:

scene.setOnRotate(event -> {
 if (null == activeNode) {
 activeNode = camera;
 }
 activeNode.setRotationAxis(Rotate.Z_AXIS);
 activeNode.setRotate(activeNode.getRotate() + event.getAngle());
 event.consume();
});

Chapter 14 ■ JavaFX and Gestures

474

Access the rotation value provided by the Rotate gesture using event.getAngle() and add it to
whatever the previous rotation value was for the current node. This will spin the object onscreen. If the user
is touching nothing, then the camera itself is rotated, which will cause the entire scene to appear to rotate.
Figure 14-2 shows what your scene will look like when you apply a rotation gesture to several of the scene
objects—in this case the filled ones.

Figure 14-2. Rotating 3D pyramids using gestures

 ■ Note all objects in any scene are technically nodes. however, when picking objects, JavaFX returns a
reference to the MeshView object. any Group containers are ignored, as a Group container will present its
contained node objects to the Picking apI first, and the Grabbing apI will only deliver the TouchPoint event
to the topmost Node (in terms of z-order) onscreen.

Now let’s follow the same pattern and give the user the ability to scale the activeNode. This will provide
an effect of enlarging or shrinking the selected node. For this, you leverage the OnZoom event:

scene.setOnZoom(event -> {
 if(null == activeNode) {
 activeNode = camera;
 }

Chapter 14 ■ JavaFX and Gestures

475

 double zoomFactor = event.getZoomFactor();
 zoomFactor *= zoomFactor < 1.0 ? -1 : 1;
 activeNode.setScaleX(activeNode.getScaleX() + zoomFactor / 50);
 activeNode.setScaleY(activeNode.getScaleY() + zoomFactor / 50);
 activeNode.setScaleZ(activeNode.getScaleZ() + zoomFactor / 50);
 event.consume();
});

The Zoom event provides a double ZoomFactor, which is a positive value from 0.0 and up. Values
returned between 0.0 and 1.0 indicate a “pinch” zoom gesture. Values returned higher than 1.0 indicate a
“spread” zoom gesture. Here, you can use the “pinch” values to negatively scale the object while the “spread”
values can positively scale the object. Figure 14-3 is an example of the screen when you apply a zoom gesture
to several of the scene objects.

Figure 14-3. Zooming 3D pyramids using gestures

These three event handlers—OnTouchStationary, OnRotate, and OnZoom—have enabled multi-touch
gesture support in your 3D scene. The effects stack on each other, as users can rotate and zoom simultaneously
using a combination of “pinch” and “spin” movements with their fingers. Not only is this type of interaction
quite natural to humans but is typically easier than with a mouse and keyboard solution.

Chapter 14 ■ JavaFX and Gestures

476

 ■ Note here, we are “scaling” our zoom with a fixed integer of 50. this is needed to compensate for the
difference between onscreen coordinates and scaling coordinates. It is common practice when dealing with
3d scenes and can be thought of as a sensitivity variable.

The Leap Motion Controller
The Leap Motion controller (see Figure 14-4), also known as the Leap, is a small device, 80×30×12 mm, that
is connected to your computer through the USB port. It doesn’t require an external power source.

Figure 14-4. Leap Motion device and its box

The Leap software works in Windows, MacOS X, and Linux, and with an initial price of $79.99, was
launched in July 2013 with an initial batch of 600,000 units sold around the world.

The company has some introductory videos here: https://www.leapmotion.com/. After you watch a
few of them, you will be surprised by the apparently magic performance of the device.

Basically, the Leap will scan your hands at a very fast rate and translate your movements and gestures to
the computer in a very precise way, so any Leap-enabled application can be interfaced directly, without the
need of using a mouse, keyboard, or any other physical device.

As a new era of interaction with machines is beginning, many challenges are appearing at the same
time. As users, we’ll need to learn how to interact in 3D environments, performing a whole new repertoire
of gestures, while as developers, we will face the challenge of providing the software capable of translating
accurately those gestures, so new applications will respond as we expect. With the hand tracking provided,
Leap Motion is currently reaching into virtual and augmented reality to interact with new worlds, partnering
with major VR manufacturers to embed Leap Motion technology into mobile VR/AR headsets.

https://www.leapmotion.com/

Chapter 14 ■ JavaFX and Gestures

477

In this chapter, we focus on the desktop controller and start by describing the hardware and software
provided by Leap Motion. Then we will talk about the API for developing JavaFX programs with the device and
present a sample application to show what is possible to achieve once you have a Leap device in your hands.

How It Works
Basically, the main hardware of the device consists of three infrared LEDs combined with two
monochromatic infrared (IR) cameras. While the LEDs generate a 3D pattern of dots of IR light, the cameras
scan the reflected data at nearly 300fps. Everything within a radius of 50cm will be scanned and processed.
With a resolution of 0.01mm, data will be analyzed in the host computer by the Leap Motion software, using
a proprietary motion detection algorithm.

Depending on your CPU capabilities and the data analyzed, the range of processing latency goes from
2ms to 33ms.

The best way to find out about the Leap magic is just plugging it on the USB port and installing the software
from https://www.leapmotion.com/setup. A small Leap icon should appear on the taskbar notification area
(Windows) or menu bar (Mac), and it should be green, like the lateral LED on the device (which should be facing
you). Click on it and select the Visualizer for an incredible visualization of your fingers and hands.

When you see a grey grid, move your hands and click H to see the menu, N to visualize the hand, T the
fingers, O to draw the gestures, or L to see the latency. You’ll see something like Figure 14-5.

Figure 14-5. Leap Motion Diagnostic Visualizer application

https://www.leapmotion.com/setup

Chapter 14 ■ JavaFX and Gestures

478

As you can see, the device detects hands, fingers, and sharp tools within a 60cm range and a 120-150 view
angle. For these objects, 3D vectors provide position, direction, and velocity, all referred to a right-handed
Cartesian coordinate system, whose origin is at the center of the device, as shown in Figure 14-6. Every time
the device scans and processes the available data, a Frame object is generated, containing lists with the
tracked data in that instant (hands, fingers, and tools), as well as a set of basic motion gestures found in the
analysis of the last frames (swipe, tap, and circles).

Figure 14-6. Coordinate system centered in the device

As you may have noticed, the y-axis positive direction is the opposite of the downward orientation
in most computer graphics systems, including JavaFX. But the fact that the data is referred to the device
position, and not to the screen as you are accustomed to with mouse and touch events, changes dramatically
the way you need to think. Fortunately, the API provides several useful methods to find where your hands
and fingers are pointing at any time.

More complex tasks require an understanding of spatial geometry, including knowledge of terms like
vectors, vector-cross-products, and matrix operations.

Getting Started with the Leap SDK
In order to integrate the Leap device events and interact with software applications, Leap Motion provides
an SDK for many programming languages, including Java, in their developer section. Make sure you select
the V2 tracking version, intended for desktop only: https://developer.leapmotion.com/sdk/v2. Their new
Orion beta version is only for Windows and it’s mainly oriented to VR.

Download the SDK for your operating system, and you’ll get the necessary libraries to get started. These
consist of mainly the LeapJava.jar and a bunch of native libraries. The SDK also includes a HelloWorld.
java example.

One easy way to integrate these files on your system is by adding the JAR to <JAVA_HOME>/jre/lib/ext
on Linux or Windows (or /Library/Java/Extensions on Mac). Then copy the native libraries (LeapJava.dll,
Leap.dll and Leapd.dll for Windows, libLeapJava.dylib and libLeap.dylib for Mac, libLeapJava.so
and libLeap.so for Linux) to the <JAVA_HOME>/bin folder.

Or you can just add the JAR to every project as a dependency and load the native libraries as a VM
argument: -Djava.library.path=<native library path>. This is what we’ll do in the example, so you can
see how this works with the modular system in Java 9.

https://developer.leapmotion.com/sdk/v2

Chapter 14 ■ JavaFX and Gestures

479

Before going any further, look at the documentation at https://developer.leapmotion.com/
documentation/java/index.html and try the HelloWorld.java example. You’ll notice the following:

•	 You need a Controller object that allows the connection between the Leap device
and the application.

•	 You need a Listener subclass to handle events from the controller.

•	 Gesture tracking is enabled in the onConnect() method.

•	 The main method in this class is onFrame(), which is a callback method dispatched
when a new Frame with motion tracking data is available. Here, you can get lists of
hands, fingers, or tools, as well as several vectors with their position, orientation, and
velocity.

•	 If gestures are enabled, you’ll also get a list of the gestures found, based on the
analysis of the last frames. You will know as well the status of the gesture: whether it
has just begun, is progressing, or has ended.

Adding the Leap SDK to a JavaFX Project
One thing you may have discovered throughout this book is the care you must put in mixing the so-called
JavaFX thread with other non-JavaFX threads. At this point, it will be evident for you that the Leap Listener
subclass runs in a non-JavaFX thread, handling events at a very high rate.

In order to bring these events to a JavaFX thread, you will use a JavaFX ObjectProperty<T> in the
Listener subclass to store the desired values on every frame. Then in the JavaFX class, you’ll implement
a ChangeListener<T> to listen to any change and by using Platform.runLater(), you will put the task of
rendering these changes on the JavaFX scene graph on a JavaFX thread.

The Hands Tracking Example
The following example uses the features of the Leap Motion v2 version and its skeletal tracking model to
create a JavaFX 3D “live” version of the hand’s bones and arms.

Before getting started with the code, let’s set first the module-info class. Listing 14-4 shows the usual
requires clause for JavaFX and the new one you add to include LeapJava.

Listing 14-4. HandsTracking Module

module com.jfxbe.handstracking {
 requires javafx.controls;
 requires LeapJava
 exports com.jfxbe.handstracking;
}

You must copy LeapJava.jar from the Leap SDK installation subfolder LeapSDK/lib to a libs folder
within the project, and in the IDE, add this JAR to the libraries, in order to use its API, as shown in Figure 14-7.

https://developer.leapmotion.com/documentation/java/index.html
https://developer.leapmotion.com/documentation/java/index.html

Chapter 14 ■ JavaFX and Gestures

480

The LeapListener Class
The LeapListener subclass will take care of tracking your hands, using the Leap Motion API, and for every
frame it will return a list of valid bones, arms, and pair of joints. A BooleanProperty is used to mark the init
and end of the hands processing, instead of having observable lists.

In Listing 14-5, the main method onFrame is called every few milliseconds if a valid controller is
available (i.e., when you have the Leap Motion controller plugged in to your computer). On every frame, the
API provides a list of fingers, and for each Finger, a list of Bones of a certain type.

Check the Leap tracking documentation for a detailed explanation of their API here:
https://developer.leapmotion.com/documentation/java/devguide/Leap_Overview.html.

Pair is an utility class that you use to track the joints and create a fake union between the
metacarpophalangeal joints and the carpometacarpal joints, as show in Listing 14-6.

Listing 14-5. The LeapListener Class

/**
* @author Jose Pereda
*/
public class LeapListener extends Listener {

Figure 14-7. Adding the LeapJava.jar to the project libraries in NetBeans

https://developer.leapmotion.com/documentation/java/devguide/Leap_Overview.html

Chapter 14 ■ JavaFX and Gestures

481

 private final BooleanProperty doneList= new SimpleBooleanProperty(false);
 private final List<Bone> bones=new ArrayList<>();
 private final List<Arm> arms=new ArrayList<>();
 private final List<Pair> joints=new ArrayList<>();

 @Override
 public void onFrame(Controller controller) {
 Frame frame = controller.frame();
 doneList.set(false);
 bones.clear();
 arms.clear();
 joints.clear();

 if (!frame.hands().isEmpty()) {
 Screen screen = controller.locatedScreens().get(0);
 if (screen != null && screen.isValid()) {
 for (Finger finger : frame.fingers()) {
 if (finger.isValid()) {
 for (Type b : Type.values()) {
 if ((!finger.type().equals(Finger.Type.TYPE_RING) &&
 !finger.type().equals(Finger.Type.TYPE_MIDDLE)) ||
 !b.equals(Type.TYPE_METACARPAL)) {
 bones.add(finger.bone(b));
 }
 }
 }
 }
 for (Hand h : frame.hands()) {
 if (h.isValid()) {
 // arm
 arms.add(h.arm());

 FingerList fingers = h.fingers();
 Finger index = null, middle = null, ring = null, pinky = null;
 for (Finger f : fingers) {
 if (f.isFinger() && f.isValid()) {
 switch (f.type()) {
 case TYPE_INDEX: index = f; break;
 case TYPE_MIDDLE: middle = f; break;
 case TYPE_RING: ring = f; break;
 case TYPE_PINKY: pinky = f; break;
 }
 }
 }
 // joints
 if (index != null && middle != null) {
 Pair p = new Pair(index.bone(Type.TYPE_METACARPAL).nextJoint(),
 middle.bone(Type.TYPE_METACARPAL).nextJoint(),
 bones.get(0).width() / 2d);
 joints.add(p);
 }

Chapter 14 ■ JavaFX and Gestures

482

 if (middle != null && ring != null) {
 Pair p = new Pair(middle.bone(Type.TYPE_METACARPAL).nextJoint(),
 ring.bone(Type.TYPE_METACARPAL).nextJoint(),
 bones.get(0).width() / 2d);
 joints.add(p);
 }
 if (ring != null && pinky != null) {
 Pair p = new Pair(ring.bone(Type.TYPE_METACARPAL).nextJoint(),
 pinky.bone(Type.TYPE_METACARPAL).nextJoint(),
 bones.get(0).width() / 2d);
 joints.add(p);
 }
 if (index != null && pinky != null) {
 Pair p = new Pair(index.bone(Type.TYPE_METACARPAL).prevJoint(),
 pinky.bone(Type.TYPE_METACARPAL).prevJoint(),
 bones.get(0).width() / 2d);
 joints.add(p);
 }
 }
 }
 }
 }

 doneList.set(!bones.isEmpty() || !arms.isEmpty());
 }

 public List<Bone> getBones() {
 return bones.stream().collect(Collectors.toList());
 }
 public List<Arm> getArms() {
 return arms.stream().collect(Collectors.toList());
 }
 public List<Pair> getJoints() {
 return joints.stream().collect(Collectors.toList());
 }

 public BooleanProperty doneListProperty() {
 return doneList;
 }

}

Listing 14-6. The Pair Class

public class Pair {

 /*
 Creates a pair of joints (in terms of Vectors) to join the proximal end of two bones
 */
 private final Vector v0;
 private final Vector v1;
 private final double width;

Chapter 14 ■ JavaFX and Gestures

483

 public Pair(Vector v0, Vector v1, double width){
 this.v0 = v0;
 this.v1 = v1;
 this.width = width;
 }
 public Vector getCenter(){
 return new Vector((v1.getX() + v0.getX()) / 2f,
 (v1.getY() + v0.getY()) / 2f,
 (v1.getZ() + v0.getZ()) / 2f);
 }

 public Vector getDirection(){
 return new Vector(v1.getX() - v0.getX(),
 v1.getY() - v0.getY(),
 v1.getZ() - v0.getZ()).normalized();
 }
 // getters
}

The 3D Model Classes
The hand model will use JavaFX 3D Cylinder and Sphere controls to simulate its bones and joints. In order
to render them in the proper location and orientation, you’ll need to transform the directions you get from
the Leap vectors into the JavaFX coordinate system. For that, you use the Utils class, shown in Listing 14-7.

Listing 14-7. The Utils Class

public class Utils {

 public static List<Transform> getTransforms(Vector dir, Vector pos, double yOffset) {
 final double ang = Math.acos(dir.getY() / dir.magnitude());
 return Arrays.asList(
 new Translate(pos.getX(), -pos.getY() + yOffset, -pos.getZ()),
 new Rotate(- Math.toDegrees(ang), 0, -yOffset, 0,
 new Point3D(-dir.getZ(), 0, -dir.getX())));
 }
}

getTransforms returns a list of transforms based on a direction and a position. It takes as input the
vectors from the Leap Motion coordinate system and transforms them into a translation and a rotation over
the JavaFX coordinate system.

A vertical cylinder is taken as a reference for the transformations, located at the given position. The
translation is given by the item position in the JavaFX system (pos.getX(), -pos.getY(), -pos.getZ()).
The pivot point for the rotation is given by the cross product of the item direction in the JavaFX system (dir.
getX(), -dir.getY(),-dir.getZ()) and the cylinder direction (0, -1, 0) in the same system. The angle
of rotation is given by the angle between both referred vectors. An offset can be applied if required, from the
center of the cylinder.

Listings 14-8, 14-9, and 14-10 show the 3D model for phalanx, joints, and forearm.

Chapter 14 ■ JavaFX and Gestures

484

Listing 14-8. The Phalanx Class

public class Phalanx {

 private final Bone bone;
 private final Cylinder phalanx;
 private final Sphere joint;
 private final Sphere carpoMetaCarpalJoint;

 public Phalanx(Bone bone) {
 this.bone = bone;
 PhongMaterial materialPhalanx = new PhongMaterial();
 materialPhalanx.setSpecularColor(Color.rgb(50, 50, 50));
 PhongMaterial materialJoint = new PhongMaterial(Color.BLUE);
 materialJoint.setSpecularColor(Color.rgb(50, 50, 50));

 phalanx = new Cylinder(0.8 * bone.width() / 2d, bone.length());
 phalanx.setMaterial(materialPhalanx);
 phalanx.getTransforms().addAll(
 Utils.getTransforms(bone.direction(), bone.center(), 0));

 joint = new Sphere(bone.width() / 2d);
 joint.setMaterial(materialJoint);
 joint.getTransforms().addAll(
 Utils.getTransforms(bone.direction(), bone.center(), bone.length() / 2d));

 carpoMetaCarpalJoint = new Sphere(bone.width() / 2d);
 carpoMetaCarpalJoint.setMaterial(materialJoint);
 carpoMetaCarpalJoint.getTransforms().addAll(
 Utils.getTransforms(bone.direction(), bone.center(), - bone.length() / 2d));
 }

 public Group getPhalanx() {
 if (bone.type().equals(Type.TYPE_METACARPAL)) {
 return new Group(phalanx, carpoMetaCarpalJoint);
 } else if (bone.type().equals(Type.TYPE_PROXIMAL)) {
 return new Group(phalanx, joint, carpoMetaCarpalJoint);
 }
 return new Group(phalanx, joint);
 }
}

Listing 14-9. The Joint Class

public class Joint{
 private final Cylinder cylinder;

 public Joint(Pair pair) {
 PhongMaterial material = new PhongMaterial();
 material.setSpecularColor(Color.rgb(30, 30, 30));

Chapter 14 ■ JavaFX and Gestures

485

 cylinder = new Cylinder(pair.getWidth() / 2d, pair.getV0().distanceTo(pair.getV1()));
 cylinder.setMaterial(material);
 cylinder.getTransforms().addAll(
 Utils.getTransforms(pair.getDirection(), pair.getCenter(), 0));
 }

 public Shape3D getJoint() {
 return cylinder;
 }

}

Listing 14-10. The ForeArm Class

public class ForeArm{
 private final Cylinder cylinder;

 public Forearm(Arm arm) {
 PhongMaterial materialArm = new PhongMaterial();
 materialArm.setDiffuseColor(Color.CORNSILK);
 materialArm.setSpecularColor(Color.rgb(30, 30, 30));

 cylinder = new Cylinder(arm.width() / 2d,
 arm.elbowPosition().minus(arm.wristPosition()).magnitude());
 cylinder.setMaterial(materialArm);
 cylinder.getTransforms().addAll(
 Utils.getTransforms(arm.direction(), arm.center(), 0));
 }

 public Shape3D getForearm() {
 return cylinder;
 }

}

The Application Class
Finally, HandsTracking, which is shown in Listing 14-11, is the JavaFX Application that will create a new
Controller instance that will start listening to frames based on a LeapListener instance.

For every frame, listener.doneListProperty() will change to true when the frame is processed,
so at this point you’ll process the lists of (Leap) bones, pairs, and arms to create and render the (JavaFX 3D)
phalanges, joints, and forearms. Note that a Group holding the collection of these 3D shapes is filled using
Platform.runLater(). This means that if the frame rate is too high, not all the frames will be processed, but
there won’t be concurrent modification exceptions when the lists change from one frame to the other, as you
are getting copies of the list being modified.

Chapter 14 ■ JavaFX and Gestures

486

Listing 14-11. The Utils Class

public class HandsTracking extends Application {

 private LeapListener listener = null;
 private Controller controller = null;

 @Override
 public void start(Stage primaryStage) throws Exception {
 listener = new LeapListener();
 controller = new Controller();
 controller.addListener(listener);

 final PerspectiveCamera camera = new PerspectiveCamera();
 camera.setFieldOfView(60);
 camera.getTransforms().addAll(new Translate(-400, -500, 200));

 final PointLight pointLight = new PointLight(Color.ANTIQUEWHITE);
 pointLight.setTranslateX(0);
 pointLight.setTranslateY(-1000);
 pointLight.setTranslateZ(-800);

 final Group root = new Group(pointLight);

 final Group root3D = new Group(camera, root);
 final SubScene subScene = new SubScene(root3D, 800, 600, true, SceneAntialiasing.

BALANCED);
 subScene.setCamera(camera);

 Scene scene = new Scene(new AnchorPane(subScene), 800, 600, Color.WHITESMOKE);

 listener.doneListProperty().addListener((obs, ov, nv) -> {
 if (nv) {
 List<Bone> bones = listener.getBones();
 List<Arm> arms = listener.getArms();
 List<Pair> joints = listener.getJoints();

 Platform.runLater(() -> {
 root.getChildren().setAll(pointLight);

 root.getChildren().addAll(bones.stream()
 .filter(bone -> bone.isValid() && bone.length() > 0)
 .map(Phalanx::new)
 .map(Phalanx::getPhalanx)
 .collect(Collectors.toList()));

 root.getChildren().addAll(joints.stream()
 .map(Joint::new)
 .map(Joint::getJoint)
 .collect(Collectors.toList()));

Chapter 14 ■ JavaFX and Gestures

487

 root.getChildren().addAll(arms.stream()
 .filter(Arm::isValid)
 .map(Forearm::new)
 .map(Forearm::getForearm)
 .collect(Collectors.toList()));
 });
 }
 });

 primaryStage.setTitle("Hand Tracking with Leap Motion");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 @Override
 public void stop(){
 controller.removeListener(listener);
 }
}

Building and Running the Project
To build the module and run the project from the command line with Java 9, run the steps from Listing 14-12.
Be aware that in order to build the module, you need to include the LeapJava.jar with the module-path
option, and in order to run the project, you need to add the native libraries with -Djava.library.path.

Listing 14-12. Running the Hands Tracking Project

javac --module-path libs/LeapJava.jar -d mods/com.jfxbe.handstracking
 $(find src/com.jfxbe.handstracking -name "*.java")

java -Djava.library.path=/<path to>/LeapSDK/lib/ --module-path mods:libs -m com.jfxbe.
handstracking/com.jfxbe.handstracking.HandsTracking

Chapter 14 ■ JavaFX and Gestures

488

If everything is in place and you have your Leap Motion Controller plugged in, you should be able to
wave your hand on top of it and get something like Figure 14-8.

Figure 14-8. Running the hands tracking example

You can check with the Visualize application that the JavaFX 3D model you have built is almost the
same as the native one, as shown in Figure 14-9.

Chapter 14 ■ JavaFX and Gestures

489

Figure 14-9. Comparing the hands tracking model with visualize

More Examples
For more examples of using JavaFX with the Leap Motion device, refer to online resources such as:

•	 http://jperedadnr.blogspot.com.es/2013/06/leap-motion-controller-and-
javafx-new.html

•	 http://jperedadnr.blogspot.com.es/2015/01/creating-and-texturing-javafx-
3d-shapes.html#SkinningMeshes

For interaction with other programming languages, go to https://gallery.leapmotion.com.

Summary
In the first part of this chapter, you were introduced to various gesture events and the subtle differences
between them. The events you learned included TouchPressed, TouchReleased, TouchStationary, Rotate,
and Zoom. You learned how to add gesture event handling to your JavaFX application, whether it was a
traditional 2D or even a 3D scene.

In the second part of this chapter, you discovered the impressive Leap Motion device, and the really
nice combination effects that result from using it to enhance JavaFX applications. You began by learning
about the device and how it works; next, you saw briefly its SDK for Java, along with a sample application,
where you learned about listening and processing the data from the Leap device in one thread, while
rendering 3D shapes in the JavaFX thread that track your own hands.

In the next chapter, you will learn about theming and how to customize applications, about the
fundamentals of JavaFX CSS styling, and about creating custom controls.

http://jperedadnr.blogspot.com.es/2013/06/leap-motion-controller-and-javafx-new.html
http://jperedadnr.blogspot.com.es/2013/06/leap-motion-controller-and-javafx-new.html
http://jperedadnr.blogspot.com.es/2015/01/creating-and-texturing-javafx-3d-shapes.html#SkinningMeshes
http://jperedadnr.blogspot.com.es/2015/01/creating-and-texturing-javafx-3d-shapes.html#SkinningMeshes
https://gallery.leapmotion.com/

491© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_15

CHAPTER 15

Custom UIs

Wouldn’t it be nice if you could change the appearance of your application without altering its functionality?
Many companies spend lots of money and time designing user interfaces (UIs).

Often companies will mock up several designs before deciding how their UI should look and behave.
Depending on the scope, many companies also build UIs that support different screen dimensions.
Typically, tablets, smartphones, TVs, and desktops are among the main challenges UI designers face.

In this chapter, you learn about theming and how to customize applications by applying various themes
(look and feels). Next, you learn about the fundamentals of JavaFX CSS styling, which will enable you to
change attributes of any Scene graph node, such as colors, backgrounds, margins, and so on. After learning
about CSS styling, you learn about creating custom controls. Here, you learn how to build UI controls that
aren’t part of the JavaFX 8 built-in controls. Some custom controls that might come to mind are LEDs,
number pads, gauges, clocks, and futuristic context menus.

In this chapter, you learn about the following APIs and concepts:

•	 Theming

•	 JavaFX CSS styling

•	 Custom controls

Theming
You have probably heard the terms skinning and look and feel in the context of designing user interfaces.
These terms are often used interchangeably, and they both reflect the basic concept of theming or styling a
UI. Theming is the idea of transforming an entire application’s appearance without changing its underlying
functionality. An example of theming is when you change an application’s UI layout and controls from a stylized
business theme to a sports-like theme. Usually, companies try to skin an application to resemble their logo. They
also use beautiful typefaces (typography) selected to personify their corporate culture or target audience.

In JavaFX you have the ability to create, modify, or use existing themes to skin your applications. Later,
I discuss how to create themes, but for now I show you how to apply existing themes (skins) in JavaFX
applications. To demonstrate applying themes to an application’s UI, I created a JavaFX application depicted
in Figure 15-1, which allows users to apply various UI look-and-feel themes.

Chapter 15 ■ Custom uIs

492

As you can see, there are four UI skins applied to the same application. At the upper left is the familiar
Caspian theme from Java FX 2.X. Caspian has served well over the years and still has quite the professional
look. At the lower left you see an accordion UI control expanded to show progress controls using JavaFX 8’s
new default theme, Modena. The Modena theme seems brighter, cleaner, and more modern.

At the lower right, the next theme, called the Sky look and feel, was created by yours truly (Carl Dea). My
intent was to create a theme for touch displays so that the controls would be slightly enlarged for adult-sized
fingers. I wanted a friendly feel and so the cool blue sky came to mind.

Last, but not least, in the upper right is the Flat Red look and feel, created by Gerrit Grunwald.
The Flat Red uses a custom font (Roboto) to give text on controls a crisp and clean look. Another nice

feature of the Flat Red theme is that it uses CSS effects based on pseudo-class state changes of UI controls,
such as a mouse press on a slider control. Don’t worry if you don’t know yet what pseudo-classes are,
because later in this chapter, you will learn about pseudo-class selectors in detail. Mr. Grunwald’s look and
feel is also an excellent candidate for touch displays.

Figure 15-1. Setting an application’s look and feel using JavaFX CSS styling. Moving counterclockwise from
the upper-left are the Caspian, Modena, Sky, and Flat Red themes.

Chapter 15 ■ Custom uIs

493

Native Look and Feels
Before jumping into example code, I want to give a shout-out to individuals (pioneers) in the JavaFX
community who have crafted beautiful skins and themes that you will find most inspiring. For those
interested in the OS X (Mac desktop) native look and feel, Claudine Zillmann (@etteClaudette) created
AquaFX (with Elements). You can download AquaFX at http://aquafx-project.com. AquaFX, shown in
Figure 15-2, is a library that allows developers to style applications easily with the native OS X look, but also
to theme the UI with colors other than the usual aqua blue.

For those interested in Window’s Metro look and feel, Pedro Duque Vieira (@P_Duke) created a project
called JMetro. JMetro has a light theme, shown in Figure 15-3, and a dark theme shown in Figure 15-4.

Figure 15-2. AquaFX is a JavaFX library that styles controls resembling the OS X native look and feel

http://aquafx-project.com/

Chapter 15 ■ Custom uIs

494

Figure 15-3. The date picker control stylized using JMetro’s light theme

Figure 15-4. The date picker control stylized using JMetro’s dark theme

Chapter 15 ■ Custom uIs

495

To download the JMetro theme, go to JFXtras’ Style section at https://github.com/JFXtras/jfxtras-
styles/tree/master/src.

What about a look and feel that has a Roku-like or Apple TV-like interface; it’s called Flatter, by Java
Champion and book author Hendrik Ebbers (@hendrikEbbers). Flatter was designed for a proof of concept
project BoxFX. BoxFX is another project Mr. Ebbers created by using a Raspberry Pi device running JavaFX 8
with the Flatter look and feel, as shown in Figure 15-5.

The following are links to the UI styles mentioned in this section:

•	 AquaFX (with Elements): http://aquafx-project.com/project.html

•	 Jmetro

•	 http://pixelduke.wordpress.com/category/metro

•	 https://github.com/JFXtras/jfxtras-styles

•	 Flatter: http://www.guigarage.com/2013/09/flatter

•	 BoxFX: http://www.guigarage.com/2013/08/boxfx-javaone-preview-1

Now that you’ve seen native looking styles and media device styles, let’s look at web and mobile UI styles.

Web and Mobile Look and Feels
Depending on the application, the users might prefer a more web or mobile look and feel. Often the screen
dimensions of a device can force a designer’s decision to have a non-native UIs look. Non-native UIs make
up the majority of popular web sites and mobile apps. So what are the popular non-native UIs that I’m
referring to?

As a web developer, the most popular UI styles (look and feels) today are Google’s Material Design and
Twitter’s Bootstrap. For example, Figure 15-6 shows a JavaFX clock and TreeTableView controls skinned with
the Material Design style.

Figure 15-5. The Flatter style applied to a JavaFX application

https://github.com/JFXtras/jfxtras-styles/tree/master/src
https://github.com/JFXtras/jfxtras-styles/tree/master/src
http://aquafx-project.com/project.html
http://pixelduke.wordpress.com/category/metro
https://github.com/JFXtras/jfxtras-styles
http://www.guigarage.com/2013/09/flatter
http://www.guigarage.com/2013/08/boxfx-javaone-preview-1

Chapter 15 ■ Custom uIs

496

Figure 15-7 shows buttons styled with the Twitter’s Bootstrap look and feel.

As the JavaFX community continues to grow and adapt to these new UI styles, there are a growing
number of developers who have ported these popular UI styles as libraries to help you transform your
JavaFX application to these popular UI styles.

Figure 15-6. The Material Design style applied to a JavaFX application

Figure 15-7. Twitter’s Bootstrap style applied to a button controls

Chapter 15 ■ Custom uIs

497

New to the list of folks who have created popular web and mobile device themes are the following:

•	 (Google) Material Design

•	 GluonHQ

•	 Site: http://gluonhq.com/products/mobile/

•	 JFoenix

•	 Site: http://www.jfoenix.com

•	 Author(s): http://www.jfoenix.com/team.html

•	 MaterialFX

•	 Site: http://www.agix.pt/single-post/2015/09/02/MaterialFX-
Material-Design-CSS-for-JavaFX

•	 (Twitter) Bootstrap

•	 JBootx

•	 Site: https://github.com/dicolar/jbootx

•	 Author(s): https://github.com/dicolar/jbootx/graphs/contributors

•	 BootstrapFX

•	 Site: https://github.com/aalmiray/bootstrapfx

•	 Author: Andres Almiray

Applying the JavaFX CSS Theme
Now that you have seen a glimpse of some great-looking skins and UI styles, let’s see how to apply JavaFX
CSS-based styles. JavaFX has the capability to apply cascading style sheets to the Scene graph and its nodes
in very much the way web developers use CSS style sheets with HTML5 elements. These CSS style sheets
are external files containing attributes and values to style JavaFX nodes. An example JavaFX CSS file looks
something like Listing 15-1.

Listing 15-1. A JavaFX CSS File Containing Styling Attributes

/* sample.css */
.button {
 -fx-text-fill: brighter-sky-blue;
 -fx-border-color: rgba(255, 255, 255, .80);
 -fx-border-radius: 8;
 -fx-padding: 6 6 6 6;
 -fx-font: bold italic 20pt "LucidaBrightDemiBold";
}
/* ...more styling */

http://gluonhq.com/products/mobile/
http://www.jfoenix.com/
http://www.jfoenix.com/team.html
http://www.agix.pt/single-post/2015/09/02/MaterialFX-Material-Design-CSS-for-JavaFX
http://www.agix.pt/single-post/2015/09/02/MaterialFX-Material-Design-CSS-for-JavaFX
https://github.com/dicolar/jbootx
https://github.com/dicolar/jbootx/graphs/contributors
https://github.com/aalmiray/bootstrapfx

Chapter 15 ■ Custom uIs

498

This code contains a CSS class style definition for JavaFX button controls. Button UI controls by default
have a class style button, which maps to -fx- prefixed properties. You will learn about JavaFX CSS styling
later in this chapter, but for now let’s discuss how to swap between the CSS style sheets that will dynamically
skin an application.

In this section, you learn the two ways to apply CSS style sheets as look-and-feel themes onto JavaFX
applications. The following are the two ways to apply JavaFX CSS files to Scene graph nodes.

•	 javafx.application.Application: setUserAgentStylesheet()

•	 javafx.scene.Scene: getStylesheets().add()

Using the setUserAgentStylesheet(String URL) Method
The first way to apply CSS style sheets is by invoking the static setUserAgentStylesheet() method on the
JavaFX Application (javafx.application.Application) class. This static method styles every scene and all
child nodes in a JavaFX application as shown here.

Application.setUserAgentStylesheet(url);

The setUserAgentStylesheet(String URL) method accepts a valid URL string representing the JavaFX
CSS file. Typically, CSS files are bundled inside a JAR application; however they can reside on the local
filesystem or a remote web server. When the CSS file is in the classpath, the call to the following method will
find the CSS file and produce an URL string for accessing the file:

getClass().getResource("path/some_file.css").toExternalForm()

This assumes the resource is copied and collocated where the compiled classes are.
The following code snippet loads the sample.css file as the current look and feel for the JavaFX Application.

The sample.css file in the code snippet is co-located where the current class is located. In other words, your Java
class and your CSS file are in the same directory, so there is no need for a path in front of the filename.

Application.setUserAgentStylesheet(getClass().getResource("sample.css")
 .toExternalForm());

The setUserAgentStylesheet() method applies styling globally to all scenes owned by an application,
such as context menus and child popup windows. JavaFX 8 currently contains two style sheets—Caspian
and Modena—which serve as default cross-platform look and feel skins. Because the two style sheets
are predefined, you can easily switch between them using the setUserAgentStylesheet() method. The
following code shows how to switch between the Caspian and Modena look and feel style sheets.

// Switch to JavaFX 2.x's CASPIAN Look and Feel.
Application.setUserAgentStylesheet(STYLESHEET_CASPIAN);

// Switch to JavaFX 8's Modena Look and Feel.
Application.setUserAgentStylesheet(STYLESHEET_MODENA);

A great way to learn how the pros do it (creating skins) is to look at good examples. You can extract the
CSS files (caspian.css and modena.css) from the jfxrt.jar file or view the JavaFX source code, located at
http://openjdk.java.net. To obtain jfxrt.jar, you must be on the JDK prior to Java 9.

http://openjdk.java.net/

Chapter 15 ■ Custom uIs

499

Since Java 9 no longer makes the jfxrt.jar available on the runtime or JDKs, you need to look for the
jmods directory under JAVA_HOME. Part of project Jigsaw was also restructuring the runtime as modules.
In the jmods directory you should find the module called javafx.controls.jmod. In order to get into the
module file, you have to copy the module to some other temporary directory. Next, you should rename the
copied module and end it with a .jar extension to be extracted. Lastly, you invoke jar xvf on the renamed
module. Use your file explorer or Finder to locate the following file:

classes/com/sun/javafx/scene/control/skin/modena/modena.css

The modena.css file contains all the JavaFX CSS styling for the default look and feel. This file is where
you can learn from the experts as to how they style every control on the JavaFX platform.

 ■ Note When you invoke the setUserAgentStylesheet(null) method by passing in a null value, the
default style sheet (modena) will be automatically loaded and set as the current look and feel. however, if you
are using JavaFX 2.x, the default style sheet will be Caspian.

Using Scene’s getStylesheets().add(String URL) Method
The second way of applying a look and feel is by invoking a Scene object’s getStylesheets().add()
method. Unlike the first method of applying a look and feel, the getStylesheets().add() method is used to
style a single scene and its child nodes.

By calling the getStylesheets().add() method, you can style a single scene and its child nodes as shown:

Scene scene = ...
scene.getStylesheets().add(getClass().getResource("sample.css")
 .toExternalForm());

As in the previous call to setUserAgentStylesheet(), you pass in an URL string that represents a
JavaFX CSS file. Later, you will see an example application that switches between different styles by using
either the setUserAgentStylesheet() or the getStylesheets().add() method. If you decide to create an
entire CSS to style an entire app, you maybe hesitant to start from scratch.

Creating an entire look and feel requires hundreds if not thousands of lines of code in order to style
every UI control in JavaFX. So, it’s a good idea to start off with the default look and feel and then override
styles using the getStylesheets().add() method.

I basically created very small look-and-feel style sheet files to demonstrate the ability to swap themes.
The simple example CSS files have just a handful of CSS styles for a small amount of UI controls that would
be styled. In other words, the example’s small CSS files are loaded via the getStylesheets().add() method,
which styles only some of the nodes and not every node in the application.

Because the default style sheet (Modena.css) is loaded from the prior call via the
setUserAgentStylesheet(null) method, the smaller custom CSS styling file can then “piggyback” onto
the default style sheet. What’s nice is that you don’t have to start from scratch to create a new look and feel.
The following snippet of code initially invokes the setUserAgentStylesheet() method with a null value,
which loads Modena as the default look and feel. It then sets the scene’s additional styling by invoking the
getStylesheets().add() method.

Chapter 15 ■ Custom uIs

500

Application.setUserAgentStylesheet(null); // defaults to Modena

// apply custom look and feel to the scene.
scene.getStylesheets()
 .add(getClass().getResource("my_cool_skin.css")
 .toExternalForm());

An Example of Switching Themes
To show you how to switch between various CSS style sheets (aka skins or themes), I’ve created an example
application called the Look N Feel Chooser, which allows you to choose between different predefined
themes. Figure 15-8 shows the Look and Feel Chooser example application initially displaying an accordion
UI control pane with common UI controls, beginning with the Modena look and feel.

In Figure 15-8, you’ll notice the menu options to select a look and feel (skin). Once a look and feel has
been selected, the application’s appearance will change dynamically. Figure 15-9 shows the application
switched to the Flat Red look and feel.

Figure 15-8. Predefined look and feel themes to choose from the Look N Feel menu

Chapter 15 ■ Custom uIs

501

In Figure 15-9, notice that the accordion UI control’s title bar says Scroll Bars & Sliders. It’s expanded
with UI controls sporting the selected look and feel. This is a great way to show off different look and feel
themes to your customers or users while their application continues to function as usual.

The next section explains the main source code of the Look N Feel Chooser application in Listing 15-2.
For the sake of space, you see the start() method and not the entire source code. To see the entire source
code listing of the Look N Feel Chooser application, visit the book’s web site to download the project under
Chapter 15’s LookAndFeelChooser.

The Look N Feel Chooser Example Application Code
By loading the Look N Feel Chooser project into the NetBeans IDE, you can see that the source code consists
of six files: LookNFeelChooser.java, lnf_demo.fxml, controlStyle1.css, controlStyle2.css, flatred.
css, and sky.css. The .ttf files are TrueType fonts that are used in the Flat Red look and feel. Figure 15-10
shows the project structure in the NetBeans IDE.

Figure 15-9. The Look N Feel Chooser application using the Flat Red look and feel

http://dx.doi.org/10.1007/978-1-4842-1961-4_15

Chapter 15 ■ Custom uIs

502

Looking at the project structure, you’ll notice the LookNFeelChooser.java file as the main driver
application class. The lnf_demo.fxml file is an FXML-formatted file representing the center content, which
contains the accordion UI control with other UI control elements. The FXML file was created by the Scene
Builder tool. The rest of the files are JavaFX CSS style sheets that represent different look-and-feel themes:
controlStyle1.css, controlStyle2.css, flatred.css, and sky.css.

Listing 15-2 shows the init() and start() methods of the LookNFeelChooser.java Application class.
Remember that all JavaFX applications are first initialized via the init() method and then begin with the
start() method. After you have examined Listing 15-2, you can read about how it all works.

Listing 15-2. The Look N Feel Chooser Project Source Code to Switch Between Look and Feel (JavaFX CSS)
Style Sheets. (LookNFeelChooser.java)

 @Override public void init() {
 Font.loadFont(LookNFeelChooser.class
 .getResourceAsStream("Roboto-Thin.ttf"), 10)
 .getName();
 Font.loadFont(LookNFeelChooser.class
 .getResourceAsStream("Roboto-Light.ttf"), 10)
 .getName();
}
 @Override public void start(Stage primaryStage) throws IOException {
 BorderPane root = new BorderPane();
 Parent content = FXMLLoader.load(getClass().getResource("lnf_demo.fxml"));
 Scene scene = new Scene(root, 650, 550, Color.WHITE);
 root.setCenter(content);

 // Menu bar
 MenuBar menuBar = new MenuBar();

 // File menu
 Menu fileMenu = new Menu("_File");

Figure 15-10. The Look N Feel Chooser project structure in the NetBeans IDE

Chapter 15 ■ Custom uIs

503

 MenuItem exitItem = new MenuItem("Exit");
 exit Item.setAccelerator(new KeyCodeCombination(KeyCode.X, KeyCombination.SHORTCUT_

DOWN));
 exitItem.setOnAction(ae -> Platform.exit());

 fileMenu.getItems().add(exitItem);
 menuBar.getMenus().add(fileMenu);

 // Look and feel menu
 Menu lookNFeelMenu = new Menu("_Look 'N' Feel");
 lookNFeelMenu.setMnemonicParsing(true);
 menuBar.getMenus().add(lookNFeelMenu);
 root.setTop(menuBar);

 // Look and feel selection
 MenuItem caspianMenuItem = new MenuItem("Caspian");
 caspianMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 setUserAgentStylesheet(STYLESHEET_CASPIAN);
 });

 MenuItem modenaMenuItem = new MenuItem("Modena");
 modenaMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 setUserAgentStylesheet(STYLESHEET_MODENA);
 });

 MenuItem style1MenuItem = new MenuItem("Control Style 1");
 style1MenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 scene.getStylesheets()
 .add(getClass().getResource("controlStyle1.css")
 .toExternalForm());
 });

 MenuItem style2MenuItem = new MenuItem("Control Style 2");
 style2MenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 scene.getStylesheets()
 .add(getClass().getResource("controlStyle2.css")
 .toExternalForm());
 });

 MenuItem skyMenuItem = new MenuItem("Sky LnF");
 skyMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 scene.getStylesheets()

Chapter 15 ■ Custom uIs

504

 .add(getClass().getResource("sky.css")
 .toExternalForm());
 });

 MenuItem flatRedMenuItem = new MenuItem("FlatRed");
 flatRedMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 scene.getStylesheets()
 .add(getClass().getResource("flatred.css")
 .toExternalForm());
 });

 lookNFeelMenu.getItems()
 .addAll(caspianMenuItem,
 modenaMenuItem,
 style1MenuItem,
 style2MenuItem,
 skyMenuItem,
 flatRedMenuItem);

 primaryStage.setTitle("Look N Feel Chooser");
 primaryStage.setScene(scene);
 primaryStage.show();
}

 ■ Note to run this example, make sure the Css and ttF (true type font) files are in the compiled class’s
area. resource files can be loaded easily when placed in the same directory (package) as the compiled class
file that is loading them. the Css files are initially co-located with this source code example file. In NetBeans,
you can select Clean and Build project or you can copy your files to your class’s build area.

How It Works
The Look N Feel Chooser application is first initialized with the overloaded method init(), which loads the
required fonts used for the Flat Red look-and-feel theme. After the init() method is executed, the JavaFX
application lifecycle will invoke the start() method.

In the start() method, the code begins by creating a border pane layout, which then loads an FXML
file to be placed as the center content region. FXML is an XML-based language to express JavaFX UIs.
This provides a way to separate the presentation layer from the application logic layer. Typically, FXML is
generated by a GUI builder tool, which allows a designer to drag and drop controls and create UIs graphically.
The following line uses the FXMLLoader.load() method to unmarshall (deserialize) the center content. The
center content pane is an AnchorPane layout containing an Accordion control holding other UI controls.

Parent content = FXMLLoader.load(getClass().getResource("lnf_demo.fxml"));

To learn more about the Scene Builder tool, see Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-1961-4_5

Chapter 15 ■ Custom uIs

505

Continuing with the example code, you will notice the usual creation of a scene with a root node. Next,
the code builds a menu bar with menu items. The first menu is the File menu, which allows users to exit the
application. Notice that for a quick exit using a keyboard shortcut, the KeyCodeCombination instance allows
the users to press the Ctrl+X key combo. To learn about menus and keyboard shortcuts, refer to Chapter 4.

The second menu option on the Look N Feel allows the users to select predefined look and feel CSS
style sheet files. The menu items are set to invoke handler code (lambda expressions) that is triggered
based on an onAction event. The following code snippet is a menu item that is responsible for switching the
application’s look and feel with the Caspian CSS style:

MenuItem caspianMenuItem = new MenuItem("Caspian");
caspianMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(STYLESHEET_CASPIAN);
});

Above the JavaFX API, the STYLESHEET_ CASPIAN and STYLESHEET_MODENA values are strings that
represent the CSS files based on their location on the classpath.

Because the rest of the code is pretty similar, I’m going to fast-forward to the last look and feel menu
option, which switches to the Flat Red look and feel. The other menu items are essentially identical and
invoke the same methods to clear previously loaded CSS style sheet files. However, for the Flat Red look and
feel, I used the getStylesheets().add() method to style only the current scene-level nodes.

The Flat Red look and feel styles a subset of UI controls that includes sliders, scroll bars, buttons,
and progress controls. The code snippet shown next sets up a menu item to be selected that will skin the
application with the Flat Red look and feel. The onAction code clears the scene’s style sheets and then sets
the UserAgentStylesheet to null. Lastly, the flatred.css file is loaded to style the given scene.

MenuItem flatRedMenuItem = new MenuItem("FlatRed");
flatRedMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 scene.getStylesheets()
 .add(getClass().getResource("flatred.css")
 .toExternalForm());
});

JavaFX CSS Styling
Now that you know how to load CSS style sheet files, let’s discuss JavaFX CSS selectors and styling properties
(rules). Similar to the way HTML5 uses CSS style sheets, there are selectors or style classes associated with
Node objects on the Scene graph. All JavaFX Scene graph nodes have a setId(), a getStyleClass().add(),
and a setStyle() method to apply styling properties that could potentially change the node’s background
color, border, stroke, and so on.

Before you learn about selectors, I want to refer you to the JavaFX CSS Reference Guide at the following
location:

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

This invaluable reference guide will be very handy throughout this book and beyond.

http://dx.doi.org/10.1007/978-1-4842-1961-4_4
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

Chapter 15 ■ Custom uIs

506

What Are Selectors?
Similar to the W3C CSS (World Wide Web Consortium) standards for styling HTML elements, JavaFX CSS
has the concept of selectors. Selectors are basically tags to help locate JavaFX nodes on the Scene graph to be
styled using CSS style definitions. The two kinds of selector types are id and class. An id selector is a unique
string name that is set on a scene node.

A class selector is also a string name that can be added as a tag to any JavaFX node. I should also point
out that a class selector has no relation to the concepts of C++ or Java classes. Class selectors allow any number
of nodes to contain the same class string name for the ability to style nodes with one CSS style definition. In the
next sections, you learn more about how to define CSS selector types, and I follow up with an example.

CSS id Type Selectors
The id type selector is a unique string name assigned to a node. This means that no other node’s ID can
be the same. When using id type selectors, you invoke the setId(String ID) method on a JavaFX node
object. For example, to target a Button instance whose ID is my-button, you invoke the setId("my-button")
method. To style the button with an ID of my-button, you create a CSS style definition block declared with an
ID selector #my-button, as shown:

#my-button {
 -fx-text-fill: rgba(17, 145, 213, .90);
 -fx-border-color: rgba(255, 255, 255, .80);
 -fx-border-radius: 8;
 -fx-padding: 6 6 6 6;
 -fx-font: bold italic 20pt "LucidaBrightDemiBold";
}

This CSS styling block will be applied to a button with the unique ID of my-button. Thus no other node
will be allowed to contain an ID of my-button. You will also notice that when you use ID selectors in styling
blocks, the CSS selector name is prefixed with the # symbol, and when setting the id in Java code, the #
symbol is not used.

CSS class Type Selectors
When using class type selectors, you will be invoking the getStyleClass().add(String styleClass)
method to add a selector to a node. The method allows you to have multiple style classes for styling a node.
Since the getStyleClass() method returns an ObservableList, you can add and remove style classes in an
ad hoc fashion to update their appearance dynamically. For example, let’s target two buttons whose style
classes (ObservableList) contain a class called num-button via the getStyleClass().add("num-button")
method. The following is a CSS style definition block declared with a class selector .num-button:

.num-button {
 -fx-background-color: white, rgb(189,218,230), white;
 -fx-background-radius: 50%;
 -fx-background-insets: 0, 1, 2;
 -fx-font-family: "Helvetica";
 -fx-text-fill: black;
 -fx-font-size: 20px;
}

Chapter 15 ■ Custom uIs

507

This CSS styling block will be applied to buttons with a style class num-button. You will notice that when
using class selectors, the CSS selector name is prefixed with a dot (.), and when adding the selector in Java
code, the (.) symbol is not present.

Selector Patterns
Up until now, you’ve seen only simple selectors; however, selectors can have patterns that traverse the Scene
graph’s hierarchy of nodes from the root node to the child nodes. A full discussion of selector patterns is
beyond the scope of this book, but I briefly mention common selector patterns and introduce pseudo-classes.

Common Selector Patterns

Often you will want to style many nodes based on common selector patterns. A typical selector pattern you
might want to perform is to style child nodes whose parent is of a certain type. For example, you might want
to style all buttons whose parent is an HBox.

Another pattern would be to style two different kinds of nodes with a common property. The following
example shows selector patterns for both of these use cases:

/* style all buttons who's parent is an HBox */
.hbox > .button {
 -fx-text-fill: black;
}

/* style all labels and text nodes */
.label, .text {
 -fx-font-size: 20px;
}

As you can see, the selector pattern (.hbox > .button) styles Button nodes that are descendants of an
HBox. This is pretty straightforward. The greater-than symbol between the two selectors lets the system know
which nodes to style.

Also, as described in the JavaFX CSS Reference Guide, the selectors for UI controls have a naming
convention. They are all lowercase letters, and if a control has more than one word, they are separated by
hyphens. For instance, a GridPane’s class selector would be .grid-pane. Keep in mind that not all nodes
have named class selectors by default, so refer to the JavaFX CSS Reference Guide.

The second use case with the selector pattern (.label, .text) has to do with setting a common
property that is shared by different types of nodes. This example is a selector pattern that styles all Label
nodes and Text nodes to have the same text font size. The comma denotes a list of selectors to style. In other
words, in this scenario the font size will be styled to be 20 points.

Pseudo-Class Selectors

Pseudo-class selectors are used to style nodes that have different states. An example is a Button node’s hover
state. A button control has the following states: armed, disabled, focused, hover, pressed, and show-mnemonic.
To specify selectors with pseudo-classes you must append a colon and the state (type) to the main selector
name. The following code snippet shows two selector patterns for a button that has a class selector num-button:

.num-button {
 -fx-background-color: white, bluish-gray, white;
 -fx-background-radius: 50%;
 -fx-background-insets: 0, 1, 2;

Chapter 15 ■ Custom uIs

508

 -fx-font-family: "Helvetica";
 -fx-text-fill: black;
}
.num-button:hover {
 -fx-background-color: black, white, black;
 -fx-text-fill: white;
}

In this CSS code, the first (.num-button) selector merely styles a button in its normal state. However,
the second selector with the appended colon and state (hover) will change a subset of properties, altering
them slightly. In this scenario, when a mouse cursor moves over (hovers) a button with the style class
num-button:hover, the color of the button and the text’s fill color will be reversed. Figure 15-11 shows the
pseudo-selector in action when the mouse is hovering over the number pad on button 3.

A Selector Styling Example
To demonstrate selectors using id and class type selectors, I created an application resembling a
smartphone’s number pad, as shown in Figure 15-12.

Figure 15-11. A selector with a pseudo-class of hover is used when the mouse cursor is on top of any number
pad button

Chapter 15 ■ Custom uIs

509

In Figure 15-12, notice the 4 × 3 grid of round buttons for a number pad and a green rectangular button
beneath it to make a phone call. Listing 15-3 is the main start() method containing the source code.
Listing 15-4 then shows the contents of the CSS file mobile_buttons.css.

Listing 15-3. The JavaFX Source Code for the Number Pad Application

@Override
public void start(Stage primaryStage) {
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 180, 250);
 scene.getStylesheets()
 .add(getClass().getResource("mobile_buttons.css")
 .toExternalForm());
 String[] keys = {"1", "2", "3",
 "4", "5", "6",
 "7", "8", "9",
 "*", "0", "#"};
 GridPane numPad = new GridPane();
 numPad.getStyleClass().add("num-pad");
 for (int i=0; i < 12; i++) {
 Button button = new Button(keys[i]);
 button.getStyleClass().add("num-button");
 numPad.add(button, i % 3, (int) Math.ceil(i/3));
 }
 // Call button
 Button call = new Button("Call");
 call.setId("call-button");
 call.setMaxSize(Double.MAX_VALUE, Double.MAX_VALUE);
 numPad.add(call, 0, 4);
 GridPane.setColumnSpan(call, 3);
 GridPane.setHgrow(call, Priority.ALWAYS);
 root.setCenter(numPad);
 primaryStage.setScene(scene);
 primaryStage.show();
}

Figure 15-12. An application to mimic a number pad from a smartphone.

Chapter 15 ■ Custom uIs

510

The code in Listing 15-3 will load the mobile_button.css file that gets applied to the Scene graph. The
CSS file’s contents are shown in Listing 15-4.

Listing 15-4. The Contents of the mobile_buttons.css CSS File

.root {
 -fx-background-color: white;
 -fx-font-size: 20px;
 bright-green: rgb(59,223, 86);
 bluish-gray: rgb(189,218,230);
}
.num-pad {
 -fx-padding: 15px, 15px, 15px, 15px;
 -fx-hgap: 10px;
 -fx-vgap: 8px;
}
.num-button {
 -fx-background-color: white, bluish-gray, white;
 -fx-background-radius: 50%;
 -fx-background-insets: 0, 1, 2;
 -fx-font-family: "Helvetica";
 -fx-text-fill: black;
}
.num-button:hover {
 -fx-background-color: black, white, black;
 -fx-text-fill: white;
}
#call-button {
 -fx-background-color: white, bright-green;
 -fx-background-radius: 2;
 -fx-background-insets: 0, 1;
 -fx-font-family: "Helvetica";
 -fx-text-fill: white;
}

#call-button:hover {
 -fx-background-color: bright-green, white;
 -fx-background-radius: 2;
 -fx-background-insets: 0, 1;
 -fx-font-family: "Helvetica";
 -fx-text-fill: bright-green;
}

How It Works
The code starts by creating a scene that has a BorderPane as a root node. After the scene is created, the code
loads the CSS style sheet file mobile_buttons.css to style the current scene’s nodes. Next, the code simply
creates a grid using the GridPane class and generates 12 buttons to be placed in each cell. Notice in the for
loop that each button is set with the style class named num-button via the getStyleClass().add() method.

Last, the green call button will be added to the last row of the grid pane. Because the call button is
unique, its id selector is set with call-button, and it is styled using the id selector, which means the selector

Chapter 15 ■ Custom uIs

511

named inside the CSS file will be prefixed with the # symbol. To see some amazing button styling, head over
to the FXExperience.com’s blog entry on styling buttons at the following link:

http://fxexperience.com/2011/12/styling-fx-buttons-with-css

At FXExperience, the blog entry on styling FX buttons is by Jasper Potts (developer experience architect
on client java at Oracle).

How to Define -fx- Based Styling Properties (Rules)
I’m sure by now you have noticed the many name-value pairs (properties) inside styling definition blocks
having the prefix -fx-. These properties, often called rules, can be defined to have values that can set a
region’s border width, background fill colors, and so on. In this section, you learn how to style a JavaFX node
using selector styling blocks and the ability to override properties by using inline styling.

Styling a Node with a Selector Style Definition Block
A selector style definition block always begins with a selector name prefixed with a . or # symbol. The
symbol determines the selector type as mentioned earlier. A selector will start a block with an open curly
brace, followed by property or rule definitions. Each JavaFX theme property or rule will be prefixed with
-fx- and its appropriate property name. A property name and value are separated by a : symbol, and the
pair ends with a semicolon. To finish the styling block, you simply end the block with a closing curly brace.
The syntax for a selector style definition block looks like this:

. or #<selector-name> <pattern>{
 -fx-<some-property> : <some-value>;
}

One last thing to mention is the ability to add comments to CSS styling definitions. To add comments,
you use an opening slash asterisk /* and a closing asterisk slash */ (the same as adding comments in C/C++
and Java). Shown next is an example of using comments in a selector style block definition:

.num-button {
-fx-background-color: white, rgb(189,218,230), white;
 /* This is a comment.
 -fx-background-radius: 50%;
 */
 -fx-background-insets: 0, 1, 2;
 -fx-font-family: "Helvetica";
 -fx-text-fill: black;
 -fx-font-size: 20px;
}

Styling a Node by Inlining JavaFX CSS Styling Properties
While CSS selector blocks are the recommended way to style your JavaFX nodes, there might be situations
where you will want to override styling properties. For example, you may want to enlarge a button and
change its text color temporarily as a mouse cursor hovers (OnMouseEntered) over the specified button.
When the mouse cursor is not hovering (OnMouseExited) the button’s inline style is removed, which then
reverts the styling to the parent class or id selector styling blocks. To override a node’s styling property set
from its ancestor (parent) id or class selector, you can invoke the node’s method setStyle().

http://fxexperience.com/2011/12/styling-fx-buttons-with-css

Chapter 15 ■ Custom uIs

512

To implement the prior example just mentioned, the following code snippet implements a button with
handler code that responds to OnMouseEntered and OnMouseExited events and toggles the button’s text size
and color.

Button button = new Button("Press Me");
button.getStyleClass()
 .add("my-default-style");

button.setOnMouseEntered(actionEvent ->
 button.setStyle("-fx-font-size: 30px; -fx-text-fill: green;"));

button.setOnMouseExited(actionEvent -> button.setStyle(""));

Styling Properties (Rules) Limitations
Because all graph nodes extend from the Node class, derived classes will be able to inherit styling properties
from their ancestors. Knowing the inheritance hierarchy of node types is very important because the type
of node will help determine the types of styling properties you can control. For instance, a Rectangle class
extends from Shape, which extends from Node. Having said this, you will later see that some properties that
you assumed would be on a node don’t exist. So how do you know what properties exist? The solution is to
refer to the JavaFX CSS Reference Guide. Again, based on the type of node, there are limitations to the styles
you are able to set.

Obeying the JavaFX CSS Rules
Did you know that styling properties (rules) can be overridden? To override properties, you must learn
about the order of precedence when rules are defined. Figure 15-13 depicts a typical Scene graph with a root
(parent) node and child nodes. A root node such as a BorderPane layout node will contain a class selector of
root, which is meant for top-level properties.

Figure 15-13. A scene with a root node that has buttons as child nodes

Chapter 15 ■ Custom uIs

513

These are basically properties common to many nodes, such as font size for text or background color.
This is a great feature for theming, because many nodes that share a property will inherit that change.
As mentioned earlier, some nodes will contain default selectors; for example, JavaFX Button instances have
a .button class selector.

In Figure 15-13, the class selector root could have a property that is common across many nodes
related to text:

.root {
 -fx-font-size: 12px;
}
.button {
 -fx-font-size: 20px;
}

When you want to style a button’s text font size, you can override the root’s styling definition. In order
to override the -fx-font-size property, the button style class definition block will override the 12 point font
from the parent with a 20 point font.

Believe it or not, there is another way to override the style definition block of the class selector .button
in addition to the method just shown. Similar to HTML5 CSS, each element has a style attribute. JavaFX’s
graph nodes also have a style attribute (property). Following is an example of how to set the style property
programmatically in Java code:

Button button = new Button("press it!");
button.setStyle("-fx-font-size: 30px;");

This code will override any root-, id-, or class-level selector style definition block. Basically, the
invocation to the setStyle() method allows you to add any number of property-value pairs as long they are
separated by semicolons.

Custom Controls

“Use the force, Luke.”

—Obi-Wan Kenobi

With all of your newfound abilities, there is yet another powerful API you will want to harness. Imagine
a customer whose requirements call for specialized UI controls such as LEDs, gauges, knobs, and light
indicators. Surely you could attempt to use the existing UI controls to be styled, but it is rather difficult, if
not impossible. So, what is a young Padawan to do? (Now, say the quote). Welcome to the world of JavaFX
custom controls (the Controls API)!

As an example of creating a custom control, in this section you learn how to create a light-emitting
diode (LED) control. The section begins with a description of the LED control. Then you see how the code is
structured as you look at the classes involved in the creation of custom controls. After that, you get a chance
to look at the code before you walk through the code details.

Chapter 15 ■ Custom uIs

514

The LED Custom Control
The light-emitting diode (LED) is something that you will find in many electronic devices to indicate status
(such as on or off). So why not use an LED as a custom control in your code as a visual indicator? Typically,
an LED contains two wires and a body made from clear plastic, as shown in Figure 15-14.

Often the LED is mounted to a socket. To create a custom JavaFX control to emulate a physical object,
you first have to decide which materials and components you will portray.

In the case of the LED custom JavaFX control, we can approximate this appearance:

•	 Metal socket

•	 Plastic body

•	 Light effect on top of the plastic body due to the curved surface

One thing that Java developers often don’t like, but which is really helpful for designing a custom
control, is using a drawing program. To be precise, a vector drawing program. When the appearance of your
control is important, it makes sense to use a tool that is good for visualizing things—a drawing program,
such as the one used to create Figure 15-15. So the first thing you should do is create a vector drawing of the
control you plan to create.

Figure 15-14. A typical light-emitting diode (LED)

Figure 15-15. A vector drawing of the LED control

Chapter 15 ■ Custom uIs

515

You can see the metal socket around the red plastic body and the white highlight. The red body contains
an inner- and outer-shadow to create a more realistic look. If you look at the parts of the vector drawing, you
will find three circles filled with gradients, as shown in Figure 15-16.

You start coding in the drawing program because here you define the size, colors, gradients, and
positions of your control. The big advantage of using a drawing program is the direct visual feedback that
you get by changing parameters like color, size, and position.

In JavaFX there’s not only one way of creating a custom control, but many. Here is a list of valid approaches:

•	 Customize the CSS of an existing control

•	 Extend an existing control

•	 Extend the Region node

•	 Create a control, a skin, and a CSS file

•	 Use the Canvas node

This chapter focuses on the approach that extends a Region node and uses CSS. To get an idea of how to
create the same LED control by using the Canvas node or by using a separate Control class, Skin class, and a
CSS file, look at the GitHub repository at http://github.com/HanSolo/JFX8CustomControls. For this book,
you can get the source code from the book’s web site or from the following:

https://github.com/carldea/jfx9be/blob/master/chap15/JFX9CustomControls/src/jfx9controls/
ledregion

Structure of the LED Custom Control Example Code
Usually I structure the code in my controls in the following way:

•	 Constructor

•	 Initialization:

•	 An init() method defines the initial size.

•	 An initGraphics() method sets up the Scene graph of the control.

•	 A registerListeners() method hooks up listeners to properties.

Figure 15-16. The three parts of the vector LED

http://github.com/HanSolo/JFX8CustomControls
https://github.com/carldea/jfx9be/blob/master/chap15/JFX9CustomControls/src/jfx9controls/ledregion
https://github.com/carldea/jfx9be/blob/master/chap15/JFX9CustomControls/src/jfx9controls/ledregion

Chapter 15 ■ Custom uIs

516

•	 A Methods block contains the get, set, and property methods.

•	 A Resizing block contains methods to resize and redraw the control (if needed).

The Properties of the LED Control
The LED control will contain the logic of the control (its properties) and the visualization code. Because the
LED is a very simple control, you do not need many properties. This example uses five properties:

•	 On (Boolean property for current state)

•	 Blinking (Boolean property to switch on/off blinking)

•	 Interval (long property to define the blink interval)

•	 FrameVisible (Boolean property to switch on/off the metal socket)

•	 LedColor (object property of type Color to define the color of the LED)

Listing 15-5 shows the get, set, and property methods for these properties.

Listing 15-5. Property Manipulation Code (Led.java)

public class Led extends Region {
 private static final double PREFERRED_SIZE = 16;
 private static final double MINIMUM_SIZE = 8;
 private static final double MAXIMUM_SIZE = 1024;
 private static final PseudoClass ON_PSEUDO_CLASS = PseudoClass.getPseudoClass("on");
 private static final long SHORTEST_INTERVAL = 50_000_000l;
 private static final long LONGEST_INTERVAL = 5_000_000_000l;
 // Model/Controller related
 private ObjectProperty<Color> ledColor;
 private BooleanProperty on;
 private boolean _blinking = false;
 private BooleanProperty blinking;
 private boolean _frameVisible = true;
 private BooleanProperty frameVisible;
 private long lastTimerCall;
 private long _interval = 500_000_000l;
 private LongProperty interval;
 private AnimationTimer timer;
 // View related
 private double size;
 private Region frame;
 private Region led;
 private Region highlight;
 private InnerShadow innerShadow;
 private DropShadow glow;

 public final boolean isOn() {
 return null == on ? false : on.get();
 }
 public final void setOn(final boolean ON) {
 onProperty().set(ON);
 }

Chapter 15 ■ Custom uIs

517

 public final BooleanProperty onProperty() {
 if (null == on) {
 on = new BooleanPropertyBase(false) {
 @Override protected void invalidated() { pseudoClassStateChanged(ON_PSEUDO_

CLASS, get()); }
 @Override public Object getBean() { return this; }
 @Override public String getName() { return "on"; }
 };
 }
 return on;
 }

 public final boolean isBlinking() {
 return null == blinking ? _blinking : blinking.get();
 }
 public final void setBlinking(final boolean BLINKING) {
 if (null == blinking) {
 _blinking = BLINKING;
 if (BLINKING) {
 timer.start();
 } else {
 timer.stop();
 setOn(false);
 }
 } else {
 blinking.set(BLINKING);
 }
 }
 public final BooleanProperty blinkingProperty() {
 if (null == blinking) {
 blinking = new BooleanPropertyBase() {
 @Override public void set(final boolean BLINKING) {
 super.set(BLINKING);
 if (BLINKING) {
 timer.start();
 } else {
 timer.stop();
 setOn(false);
 }
 }
 @Override public Object getBean() {
 return Led.this;
 }
 @Override public String getName() {
 return "blinking";
 }
 };
 }
 return blinking;
 }

Chapter 15 ■ Custom uIs

518

 public final long getInterval() {
 return null == interval ? _interval : interval.get();
 }
 public final void setInterval(final long INTERVAL) {
 if (null == interval) {
 _interval = clamp(SHORTEST_INTERVAL, LONGEST_INTERVAL, INTERVAL);
 } else {
 interval.set(INTERVAL);
 }
 }
 public final LongProperty intervalProperty() {
 if (null == interval) {
 interval = new LongPropertyBase() {
 @Override public void set(final long INTERVAL) {
 super.set(clamp(SHORTEST_INTERVAL, LONGEST_INTERVAL, INTERVAL));
 }
 @Override public Object getBean() {
 return Led.this;
 }
 @Override public String getName() {
 return "interval";
 }
 };
 }
 return interval;
 }

 public final boolean isFrameVisible() {
 return null == frameVisible ? _frameVisible : frameVisible.get();
 }
 public final void setFrameVisible(final boolean FRAME_VISIBLE) {
 if (null == frameVisible) {
 _frameVisible = FRAME_VISIBLE;
 } else {
 frameVisible.set(FRAME_VISIBLE);
 }
 }
 public final BooleanProperty frameVisibleProperty() {
 if (null == frameVisible) {
 frameVisible = new SimpleBooleanProperty(this, "frameVisible", _frameVisible);
 }
 return frameVisible;
 }

 public final Color getLedColor() {
 return null == ledColor ? Color.RED : ledColor.get();
 }
 public final void setLedColor(final Color LED_COLOR) {
 ledColorProperty().set(LED_COLOR);
 }
 public final ObjectProperty<Color> ledColorProperty() {
 if (null == ledColor) {

Chapter 15 ■ Custom uIs

519

 ledColor = new SimpleObjectProperty<>(this, "ledColor", Color.RED);
 }
 return ledColor;
 }
 // ******************** Utility Methods ***********************************
 public static long clamp(final long MIN, final long MAX, final long VALUE) {
 if (VALUE < MIN) return MIN;
 if (VALUE > MAX) return MAX;
 return VALUE;
 }

The Initialization Code of the LED Control
The first thing you have to do in the constructor of the LED control is load the corresponding CSS file and add
the main style class as follows:

public Led() {
 getStylesheets().add(getClass().getResource("led.css").toExternalForm());
 getStyleClass().add("led");
Then we simply initialize the AnimationTimer that we will use to make the LED control blink:
lastTimerCall = System.nanoTime();
timer = new AnimationTimer() {
 @Override public void handle(final long NOW) {
 if (NOW > lastTimerCall + getInterval()) {
 setOn(!isOn());
 lastTimerCall = NOW;
 }
} };

The last thing you have to do in the constructor is call these methods to initialize the size of the control,
initialize the Scene graph, and register some listeners:

init();
initGraphics();
registerListeners();

To make sure that the LED control will be correctly sized during initialization, you must set the
minimum, preferred, and maximum sizes in the init() method, which looks as follows:

private void init() {
 if (Double.compare(getWidth(), 0) <= 0 || Double.compare(getHeight(), 0) <= 0 ||
 Double.compare(getPrefWidth(), 0) <= 0 || Double.compare(getPrefHeight(), 0) <= 0) {
 setPrefSize(PREFERRED_SIZE, PREFERRED_SIZE);
 }
 if (Double.compare(getMinWidth(), 0) <= 0 || Double.compare(getMinHeight(), 0) <= 0) {
 setMinSize(MINIMUM_SIZE, MINIMUM_SIZE);
 }
 if (Double.compare(getMaxWidth(), 0) <= 0 || Double.compare(getMaxHeight(), 0) <= 0) {
 setMaxSize(MAXIMUM_SIZE, MAXIMUM_SIZE);
 }
}

Chapter 15 ■ Custom uIs

520

Visualization Code
The javafx.scene.layout.Region node is a lightweight JavaFX container that can contain other nodes and
be styled by CSS. By extending the Region node, the custom control will contain the logic of the control and
also the visualization code. In the initGraphics() method shown in Listing 15-6, the code sets up the Scene
graph for the control by creating the nodes that are needed and applying the appropriate CSS styles to them.

Listing 15-6. Setting Up the LED Control Scene Graph

private void initGraphics() {
 // Create the node for the metal socket
 frame = new Region();
 frame.getStyleClass().setAll("frame");
 frame.setOpacity(isFrameVisible() ? 1 : 0);
 // Create the node for the main LED plastic body
 led = new Region();
 led.getStyleClass().setAll("main");
 led.setStyle("-led-color: " + (getLedColor()).toString().replace("0x", "#") + ";");
 // Create the inner shadow effect for the main LED body
 innerShadow = new InnerShadow(BlurType.TWO_PASS_BOX,
 Color.rgb(0, 0, 0, 0.65),
 8, 0d, 0d, 0d);
 // Create the drop shadow effect for the main LED body (the glow effect)
 glow = new DropShadow(BlurType.TWO_PASS_BOX,
 getLedColor(),
 20, 0d, 0d, 0d);
 glow.setInput(innerShadow);
 // Create the node for the highlight effect on the main LED body
 highlight = new Region();
 highlight.getStyleClass().setAll("highlight");
 // Add all nodes to the Scene graph of this control
 getChildren().addAll(frame, led, highlight);
}

So far, the example has created each node that you need for the LED control and applied the
appropriate style from the CSS file.

The LED Control CSS File
Each node that is created in the initGraphics() method gets its own CSS style class, which can be found in
the led.css file. It looks like this:

/* The main led style class where the -led-color variable is defined */
.led {
 -led-color : red;
 -frame-color: linear-gradient(from 14% 14% to 84% 84%,
 rgba(20, 20, 20, 0.64706) 0%,
 rgba(20, 20, 20, 0.64706) 15%,
 rgba(41, 41, 41, 0.64706) 26%,
 rgba(200, 200, 200, 0.40631) 85%,
 rgba(200, 200, 200, 0.3451) 100%);
}

Chapter 15 ■ Custom uIs

521

/* The .frame sub-class, which defines the fill for the metal socket */
.led .frame {
 -fx-background-color : -frame-color;
 -fx-background-radius: 1024;
}
/* The .main sub-class, which defines the fill for the LED plastic body when it's off */
.led .main {
 -fx-background-color : linear-gradient(from 15% 15% to 83% 83%,
 derive(-led-color, -80%) 0%,
 derive(-led-color, -87%) 49%,
 derive(-led-color, -80) 100%);
 -fx-background-radius: 1024;
}
/* The .main sub class with pseudo-class :on that defines the fill for the LED plastic
 body when it's on
 */
.led:on .main {
 -fx-background-color: linear-gradient(from 15% 15% to 83% 83%,
 derive(-led-color, -23%) 0%,
 derive(-led-color, -50%) 49%,
 -led-color 100%);
}
/* The .highlight sub-class that defines the fill of the highlight effect */
.led .highlight {
 -fx-background-color : radial-gradient(center 15% 15%, radius 50%,
 white 0%,
 -fx-background-radius: 1024;
}

Because in CSS, you can use percentage to define positions in gradients, you don’t have worry about the real
size of the control to calculate the start and stop positions of the gradients. That is a huge advantage compared
to Java Swing, where you had to calculate all these values every time the size of the control changed. So all these
calculations will be done automatically by JavaFX. That reduces the resizing code a lot, as you will see.

Resizing the LED Control
In JavaFX, the size of the layout container determines the size of its children, so you have to ensure that
your control is resized by its layout container. That means if you put your LED control in a StackPane
(which resizes its children relative to its own size), the LED will be sized the same as the StackPane.
Therefore, you must hook up listeners to the widthProperty() and heightProperty() of the control in the
registerListeners() method.

private void registerListeners() {
 widthProperty().addListener(observable -> resize());
 heightProperty().addListener(observable -> resize());
 frameVisibleProperty().addListener(observable ->
 frame.setOpacity(isFrameVisible() ? 1 : 0));
 onProperty().addListener(observable -> led.setEffect(isOn() ? glow : innerShadow));
 ledColorProperty().addListener(observable -> {
 led.setStyle("-led-color: " + (getLedColor()).toString().replace("0x", "#") + ";");
 resize();
 });
}

Chapter 15 ■ Custom uIs

522

This method hooks up listeners to all properties that might have an effect on either visualization or size
of the LED control. When the listeners for the width and height are triggered, they will call the resize()
method, and that will take care of sizing all nodes in the control.

 private void resize() {
 size = getWidth() < getHeight() ? getWidth() : getHeight();
 if (size > 0) {
 if (getWidth() > getHeight()) {
 setTranslateX(0.5 * (getWidth() - size));
 } else if (getHeight() > getWidth()) {
 setTranslateY(0.5 * (getHeight() - size));
 }

 innerShadow.setRadius(0.07 * size);
 glow.setRadius(0.36 * size);
 glow.setColor(getLedColor());

 frame.setPrefSize(size, size);

 led.setPrefSize(0.72 * size, 0.72 * size);
 led.relocate(0.14 * size, 0.14 * size);
 led.setEffect(isOn() ? glow : innerShadow);

 highlight.setPrefSize(0.58 * size, 0.58 * size);
 highlight.relocate(0.21 * size, 0.21 * size);
 }
 }
}

As you can see, in the resize() method, the only thing you have to do for each node is calculate its size
and relocate the node. So first you calculate the minimum dimension of the LED (because it’s square, you
take the width if it’s less than the height or vice versa). In addition, you must make sure that the resizing will
be done only if the current size is larger than 0.

How It Works
Now that you have all things in place, you can simply use the control like any other control, as shown here:

@Override public void start(Stage stage) {
 Led control = new Led();
 StackPane pane = new StackPane();
 pane.getChildren().add(control);
 Scene scene = new Scene(pane);
 stage.setTitle("JavaFX Led Control");
 stage.setScene(scene);
 stage.show();
 control.setBlinking(true);
}

Figure 15-17 shows the result.

Chapter 15 ■ Custom uIs

523

Other Ways to Create a Custom Control
As mentioned earlier, there are different ways to create a custom control in JavaFX. The “extend Region”
approach that was shown here is the most common one. The drawback that comes with this approach is that
you mixed up the model/controller with the view, which is acceptable for small controls like this LED, but might
be a bad solution for a bigger control that relies on a data model or controls that are part of a controls library.

For those more complex controls, you should use a custom Control.class class in combination with
a custom Skin.class and your CSS file. The main difference here is that the properties with their get, set,
and property methods will be placed in the Control.class and the visualization code will be placed in the
Skin.class. This approach provides proper separation between the controller logic and the view logic.

The last approach to creating a custom control that I want to mention is using the Canvas node.
The Canvas node represents a single node that in principle behaves like an image that you can draw on.
The API that is used to draw on the Canvas node is taken from the HTML5 Canvas, which means you won’t
have JavaFX nodes but you will simply draw on the Canvas node. (That is, you’ll be working in immediate
mode rather than retained mode.) You have to take care of clearing and redrawing the Canvas node surface.
This approach might be useful for controls that contain very complex drawings to calculate and draw, as you
would only need to do so once.

Summary
In this chapter, you learned how to style your application with custom CSS files by using the following methods:

•	 Application.setUserAgentStylesheet(String URL)

•	 Scene: getStylesheets().add(String URL)

Then you saw how CSS is used in JavaFX by using the default CSS selectors or creating your own. You
learned about the id type selectors, class type selectors, and CSS pseudo-classes. In addition, you learned
how to use the selectors in different selector patterns. By using selector patterns, you could apply styling to a
group of nodes and their siblings.

Finally, you learned how to create an LED custom control in JavaFX. In this section, you got a chance to
employ different strategies in creating custom controls. You learned how to use the Control and Skin classes
to adhere to the standard way to create custom controls. You also learned about other interesting strategies,
such as extending from Region or using the Canvas class to render primitives in immediate mode.

Figure 15-17. The region-based custom LED control

525© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4_16

CHAPTER 16

Appendix A: References

Does your JavaFX journey stop here? Of course not! In this appendix, you will find many useful links
and references that will help you gain further knowledge about all things JavaFX. Toward the end of this
appendix, be sure to check out the many frameworks, libraries, and projects that use JavaFX in production
today. In this edition I made an attempt to get feedback from the community based on useful resources
related to JavaFX. In doing so, I may have missed some people and I want to apologize in advance. Many
thanks to all of those who have contributed to the JavaFX community over the years!

Java 9 SDK
JavaFX 9 is built into Oracle’s Java 9 SDK, which means that you only need to download the Java 9 SDK. The
Java 9 software development kit and related information can be downloaded from the following locations.

•	 Java 9 at Oracle Technology Network:
https://docs.oracle.com/javase/9/

•	 Where to download the Java development kit:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Java 9 API Documentation
The Java 9 documentation and guides are at the following links:

•	 Java 9 Javadoc API documentation:
http://docs.oracle.com/javase/9/

•	 JavaFX 9 Javadoc API documentation (subject to change):
http://download.java.net/java/jdk9/jfxdocs/index.html?overview-summary.html
http://docs.oracle.com/en/java/

Java 9 Features
Check out the following links for more specific and evolving information about Java 9:

•	 What is new in Java 9?
https://docs.oracle.com/javase/9/whatsnew/toc.htm

•	 5 Features in Java 9 that Will Change How You Develop Software (and 2 That Won’t),
Alex Zhitnitsky, June 17, 2015 at Takipi Blog:
http://blog.takipi.com/5-features-in-java-9-that-will-change-how-you-
develop-software-and-2-that-wont/

https://docs.oracle.com/javase/9/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/9/
http://download.java.net/java/jdk9/jfxdocs/index.html?overview-summary.html
http://docs.oracle.com/
https://docs.oracle.com/javase/9/whatsnew/toc.htm
http://blog.takipi.com/5-features-in-java-9-that-will-change-how-you-develop-software-and-2-that-wont/
http://blog.takipi.com/5-features-in-java-9-that-will-change-how-you-develop-software-and-2-that-wont/

Chapter 16 ■ appendix a: referenCes

526

•	 Java 9 Features with Examples, Rambabu Posa, February 27, 2017:
http://www.journaldev.com/13121/java-9-features-with-examples

•	 Java 9 New Features, Eugen Baeldung:
http://www.baeldung.com/new-java-9

Java 9 Jigsaw
Check out the following links for more specific and evolving information about Java 9 Jigsaw:

•	 Project Jigsaw (OpenJDK):
http://openjdk.java.net/projects/jigsaw

•	 Quick Start Guide:
http://openjdk.java.net/projects/jigsaw/quick-start

•	 Migrating to Java 9:
https://docs.oracle.com/javase/9/migrate/toc.htm

•	 Java 9 modules big kill switch (--permit-illegal-access):
http://mail.openjdk.java.net/pipermail/jigsaw-dev/2017-March/011763.html

•	 The expert groups and industry leaders vote to move the Java 9 module system forward:
https://jcp.org/en/jsr/results?id=6016

IDEs
Integrated development environments are used to enter source code and compile Java code. The following
are popular IDEs used in the industry.

•	 NetBeans: https://netbeans.org/

•	 IDEA IntelliJ: http://www.jetbrains.com/idea

•	 Eclipse: https://www.eclipse.org/

•	 BlueJ: http://www.bluej.org/

Deploying Applications
When deploying JavaFX applications, you’ll want to use the following libraries and tools for packaging your
applications.

•	 Deploying JavaFX Applications:
https://docs.oracle.com/javase/9/deploy/toc.htm

•	 Packaging JavaFX Applications as Native Installers:
http://fxexperience.com/2012/03/packaging-javafx-applications-as-native

•	 Launch4J:
http://launch4j.sourceforge.net

•	 FXLauncher:
https://github.com/edvin/fxlauncher

http://www.journaldev.com/13121/java-9-features-with-examples
http://www.baeldung.com/new-java-9
http://openjdk.java.net/projects/jigsaw
http://openjdk.java.net/projects/jigsaw/quick-start
https://docs.oracle.com/javase/9/migrate/toc.htm
http://mail.openjdk.java.net/pipermail/jigsaw-dev/2017-March/011763.html
https://jcp.org/en/jsr/results?id=6016
https://netbeans.org/
http://www.jetbrains.com/idea
https://www.eclipse.org/
http://www.bluej.org/
https://docs.oracle.com/javase/9/deploy/toc.htm
http://fxexperience.com/2012/03/packaging-javafx-applications-as-native
http://launch4j.sourceforge.net/
https://github.com/edvin/fxlauncher

Chapter 16 ■ appendix a: referenCes

527

JavaFX 2D Shapes
The Javadoc API documentation includes abundant information about drawing shape nodes onto the
JavaFX scene graph:

•	 http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Shape.html

•	 http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Path.html

•	 http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/SVGPath.html

•	 http://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/Text.html

JavaFX Color
The Javadoc API documentation also includes the following information about gradient color fills:

•	 http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/
LinearGradient.html

•	 http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/
RadialGradient.html

•	 http://docs.oracle.com/javase/8/javafx/api/javafx/scene/effect/Blend.html

•	 http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/
ImagePattern.html

JavaFX 2.x Builder Classes
Prior to JavaFX 8, the use of builder classes was quite widespread for very good reasons. Certain bugs,
however, caused a conflict with the new Java 8, so the JavaFX teams decided to deprecate the builder classes.
The following links discuss the change:

•	 A discussion on the Oracle JavaFX forum about the reason for deprecating builder
classes: https://community.oracle.com/thread/2544323?tstart=0

•	 An e-mail thread from the Open JDK on the real reason why JavaFX Builder classes
were deprecated in Java 8: http://mail.openjdk.java.net/pipermail/openjfx-
dev/2013-March/006725.html

JavaFX Printing
New to Java 8 is the JavaFX printing API. This book does not discuss how to use the printing API, but the
following links will help you get started:

•	 Javadoc API documentation:
http://docs.oracle.com/javase/8/javafx/api/javafx/print/package-summary.html

•	 All the Nodes That Are Fit to Print (Part 1), Phil Race (Oracle):
https://www.youtube.com/watch?v=Ma506QBmj90

•	 All the Nodes That Are Fit to Print (Part 2), Phil Race (Oracle):
https://www.youtube.com/watch?v=-fEOt7L0v-8

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Shape.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Path.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/SVGPath.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/Text.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/LinearGradient.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/LinearGradient.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/RadialGradient.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/RadialGradient.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/effect/Blend.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/ImagePattern.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/ImagePattern.html
https://community.oracle.com/thread/2544323?tstart=0
http://mail.openjdk.java.net/pipermail/openjfx-dev/2013-March/006725.html
http://mail.openjdk.java.net/pipermail/openjfx-dev/2013-March/006725.html
http://docs.oracle.com/javase/8/javafx/api/javafx/print/package-summary.html
https://www.youtube.com/watch?v=Ma506QBmj90
https://www.youtube.com/watch?v=-fEOt7L0v-8

Chapter 16 ■ appendix a: referenCes

528

Project Lambda
The core Java 8 added language features are lambda expressions and the stream API. The following
references are roadmaps, blogs, and videos of topics surrounding project lambda.

•	 State of the Lambda, Brian Goetz (Oracle):
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html

•	 Q & A with Brian Goetz and Stuart Marks (NightHacking tour hosted by Stephen
Chin from Oracle):
https://www.youtube.com/watch?v=vaSv3FjUIVI

•	 Java 8: Lambdas, Part 2, Ted Neward:
http://www.oracle.com/technetwork/articles/java/architect-lambdas-
part2-2081439.html

•	 Java 8 Revealed: Lambdas, Default Methods, and Bulk Data Operations, Anton
Arhipov:
http://zeroturnaround.com/rebellabs/java-8-revealed-lambdas-default-
methods-and-bulk-data-operations

•	 10 Examples of Lambda Expressions and Streams in Java 8, Javin Paul:
http://javarevisited.blogspot.com/2014/02/10-example-of-lambda-
expressions-in-java8.html

•	 Java SE 8: Lambda Quick Start, Oracle:
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-
QuickStart/index.html

•	 Java 8: Lambda Expression Basics, Blue Sky Workshop:
http://blueskyworkshop.com/topics/Java-Pages/lambda-expression-basics

•	 Java 8: Closures, Lambda Expressions Demystified, Frank Hinkel:
http://frankhinkel.blogspot.com/2012/11/java-8-closures-lambda-
expressions.html

•	 Maurice Naftalin’s Lambda FAQ:
http://www.lambdafaq.org

•	 Tutorials on lambda expressions, Oracle:
http://docs.oracle.com/javase/tutorial/java/javaOO/
lambdaexpressions.html

•	 Functional Programming in Java: Harnessing the Power Of Java 8 Lambda Expressions,
Venkat Subramaniam. Pragmatic Bookshelf, 2014. ISBN-13: 978-1937785468.

•	 Java 8 Streams, Sven Ruppert (@SvenRuppert) (German version by EntWickler Press):
http://www.amazon.de/dp/B00HALCBMC
http://www.barnesandnoble.com/w/java-8-streams-sven-ruppert/1117767060

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html
https://www.youtube.com/watch?v=vaSv3FjUIVI
http://www.oracle.com/technetwork/articles/java/architect-lambdas-part2-2081439.html
http://www.oracle.com/technetwork/articles/java/architect-lambdas-part2-2081439.html
http://zeroturnaround.com/rebellabs/java-8-revealed-lambdas-default-methods-and-bulk-data-operations
http://zeroturnaround.com/rebellabs/java-8-revealed-lambdas-default-methods-and-bulk-data-operations
http://javarevisited.blogspot.com/2014/02/10-example-of-lambda-expressions-in-java8.html
http://javarevisited.blogspot.com/2014/02/10-example-of-lambda-expressions-in-java8.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://blueskyworkshop.com/topics/Java-Pages/lambda-expression-basics
http://frankhinkel.blogspot.com/2012/11/java-8-closures-lambda-expressions.html
http://frankhinkel.blogspot.com/2012/11/java-8-closures-lambda-expressions.html
http://www.lambdafaq.org/
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://www.amazon.de/dp/B00HALCBMC
http://www.barnesandnoble.com/w/java-8-streams-sven-ruppert/1117767060?

Chapter 16 ■ appendix a: referenCes

529

Nashorn
Java 8 includes a new scripting engine called Nashorn, which is a new and improved JavaScript engine for
the Java runtime. The engine enables developers to use JavaScript to program applications. The following
links and references are articles and blogs describing Nashorn.

•	 Nashorn and JavaFX:
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/
nashorn/javafx.html

•	 Oracle’s Nashorn: A next Generation JavaScript Engine for the JVM, Julien Ponge:
http://www.oracle.com/technetwork/articles/java/jf14-nashorn-2126515.html

•	 Open JDK’s Nashorn site:
http://openjdk.java.net/projects/nashorn/

•	 The Nashorn blog:
https://blogs.oracle.com/nashorn

Properties and Bindings
Properties and bindings are essential to JavaFX when synchronizing values between JavaFX nodes. The
following are great resources about read-only properties, listeners, and the role of JavaFX Beans.

•	 Creating Read-Only Properties in JavaFX, Michael Heinrichs:
http://blog.netopyr.com/2012/02/02/creating-read-only-properties-
in-javafx

•	 When to Use a ChangeListener or an InvalidationListener, Michael Heinrichs:
http://blog.netopyr.com/2012/02/08/when-to-use-a-changelistener-or-an-
invalidationlistener

•	 The Unknown JavaBean, Richard Bair:
https://community.oracle.com/blogs/rbair/2006/05/31/unknown-javabean

•	 Using JavaFX Properties and Binding, Scott Hommel:
http://docs.oracle.com/javafx/2/binding/jfxpub-binding.htm

•	 Creating JavaFX Properties, Michael Heinrichs:
http://blog.netopyr.com/2011/05/19/creating-javafx-properties

•	 Pro JavaFX 8, (Chapter 4, “Properties and Bindings”), Johan Vos, James Weaver,
Weiqi Gao, Stephen Chin, and Dean Iverson, Apress, 2014:
http://www.apress.com/9781430265740

•	 mvvm(fx): An application framework that provides the necessary components to
implement the MVVM pattern with JavaFX:
https://github.com/sialcasa/mvvmFX

•	 Open Dolphin: A JavaFX MVC Framework (founded by Dierk Koenig of Canoo
Engineering):
http://open-dolphin.org/dolphin_website/Home.html

•	 JavaFX MVP Framework Based on Convention over Configuration and Dependency
Injection (founded by Adam Bien):
http://afterburner.adam-bien.com

https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/javafx.html
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/javafx.html
http://www.oracle.com/technetwork/articles/java/jf14-nashorn-2126515.html
http://openjdk.java.net/projects/nashorn/
https://blogs.oracle.com/nashorn
http://blog.netopyr.com/2012/02/02/creating-read-only-properties-in-javafx
http://blog.netopyr.com/2012/02/02/creating-read-only-properties-in-javafx
http://blog.netopyr.com/2012/02/08/when-to-use-a-changelistener-or-an-invalidationlistener
http://blog.netopyr.com/2012/02/08/when-to-use-a-changelistener-or-an-invalidationlistener
https://community.oracle.com/blogs/rbair/2006/05/31/unknown-javabean
http://docs.oracle.com/javafx/2/binding/jfxpub-binding.htm
http://blog.netopyr.com/2011/05/19/creating-javafx-properties
http://dx.doi.org/10.1007/978-1-4842-1961-4_4
http://www.apress.com/9781430265740
https://github.com/sialcasa/mvvmFX
http://open-dolphin.org/dolphin_website/Home.html
http://afterburner.adam-bien.com/

Chapter 16 ■ appendix a: referenCes

530

Layouts
Building UIs can be a challenge when it comes to layout. The following references tutorials and libraries
discuss how to use JavaFX nodes.

•	 Laying Out a User Interface with JavaFX 2.0, Jim Weaver (Oracle):
http://www.oracle.com/technetwork/articles/java/layoutfx-1536156.html

•	 Working With Layouts in JavaFX, Joni Gordon:
http://docs.oracle.com/javafx/2/layout/jfxpub-layout.htm

•	 Pro JavaFX 2, Chapter 4, “Building Dynamic UI Layouts in JavaFX” (Apress, 2012):
http://www.apress.com/9781430268727

•	 In-Depth Layout and Styling with the JavaFX Scene Builder:
http://www.youtube.com/watch?v=7Nu3_5doZK4

•	 Miglayout, Mikael Grev: http://www.miglayout.com

•	 JavaFX 2.0 EA and MigLayout, Tom Eugelink:
http://tbeernot.wordpress.com/2011/03/11/javafx-2-0-ea-and-miglayout

•	 Flex Box FX: Responsive Design for JavaFX. JavaFX Port of CSS3 FlexBox Layout Manager:
http://flexboxfx.io

•	 JFoenix: A Material Design Framework for JavaFX:
http://www.jfoenix.com

•	 BootstrapFX: Bootstrap Port for JavaFX:
https://github.com/aalmiray/bootstrapfx

•	 Jbootx: Bootstrap Look for JavaFX:
https://github.com/dicolar/jbootx

JavaFX Tools
You’ll find helpful tools from building GUIs to debugging applications in the following links:

•	 Scene Builder: A tool to build JavaFX-based UIs using the FMXL markup language:
http://www.oracle.com/technetwork/java/javafx/tools/index.html

•	 Scenic View tool: A Tool to Visually Debug JavaFX UIs during Runtime:
http://fxexperience.com/scenic-view

•	 Caspian Styler, Animation Spline Editor and Derived Color Calculator:
http://fxexperience.com/2012/03/announcing-fx-experience-tools

•	 JavaFX Tooling and Runtime for Eclipse and OSGi (founder Tom Schindl):
http://www.eclipse.org/efxclipse/index.html
http://tomsondev.bestsolution.at

•	 Firebug Lite: A Browser-Based Debugger Tool for JavaFX WebView Node:
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-
firebuglite-or-some-other-debugger

•	 JavaFX 3D Viewer and Importer:
http://www.interactivemesh.org/models/jfx3dimporter.html

http://www.oracle.com/technetwork/articles/java/layoutfx-1536156.html
http://docs.oracle.com/javafx/2/layout/jfxpub-layout.htm
http://dx.doi.org/10.1007/978-1-4842-1961-4_4
http://www.apress.com/9781430268727
http://www.youtube.com/watch?v=7Nu3_5doZK4
http://www.miglayout.com/
http://tbeernot.wordpress.com/2011/03/11/javafx-2-0-ea-and-miglayout
http://flexboxfx.io/
http://www.jfoenix.com/
https://github.com/aalmiray/bootstrapfx
https://github.com/dicolar/jbootx
http://www.oracle.com/technetwork/java/javafx/tools/index.html
http://fxexperience.com/scenic-view
http://fxexperience.com/scenic-view
http://fxexperience.com/2012/03/announcing-fx-experience-tools
http://fxexperience.com/2012/03/announcing-fx-experience-tools
http://www.eclipse.org/efxclipse/index.html
http://www.eclipse.org/efxclipse/index.html
http://tomsondev.bestsolution.at/
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-firebuglite-or-some-other-debugger
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-firebuglite-or-some-other-debugger
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-firebuglite-or-some-other-debugger
http://www.interactivemesh.org/models/jfx3dimporter.html

Chapter 16 ■ appendix a: referenCes

531

•	 IDR Solutions Showcasing a PDF Viewer for JavaFX:
http://blog.idrsolutions.com/2014/03/sneak-preview-new-javafx-pdf-viewer

•	 TestFX: Easy-to-Use Library for Testing JavaFX:
https://github.com/TestFX/TestFX

•	 Introducing MarvinFx, Hendrik Ebbers: Easily Tests JavaFX Controls and Scenes with
a Special Attention to Properties:
http://www.guigarage.com/2013/03/introducing-marvinfx

•	 JemmyFX: Provides an API for Testing JavaFX User Interface in Your Application:
https://jemmy.java.net/JemmyFXGuide/jemmy-guide.html

•	 ReactiveX/RxJavaFX by Thomas Nield: JavaFX bindings for RxJava. RxJavaFX is a
lightweight library to convert JavaFX events into RxJava Observables/Flowables and vice
versa. It also has a Scheduler to safely move emissions to the JavaFX Event Dispatch Thread:
https://github.com/ReactiveX/RxJavaFX
Twitter: @thomasnield9727

Enterprise GUI Frameworks
GUI frameworks enable developers to develop enterprise applications rapidly. From binding to MVC
framework patterns, the following will help you become productive when developing JavaFX applications.

•	 Gluon Mobile: Gluon provides an end-to-end enterprise mobile solution for
developing cross-platform mobile apps that easily connect to enterprise backends
and cloud services, all while being centrally managed:
http://gluonhq.com

•	 Griffon (project lead Andres Almiray, @aalmiray): Griffon is an application
framework for developing desktop applications in the JVM:
http://griffon-framework.org

•	 jpro: A new technology that brings Java back into the browser without a Java plugin.
To achieve that, jpro runs JavaFX on the server and maps its scene graph directly
into the browser. The client-side rendering is highly optimized with browser side
approximations to get a smooth user experience free of lags:
https://www.jpro.io
Twitter: https://twitter.com/jpro_io
Co-founder Tobias Bley, @tobibley

•	 DukeScript: A new technology for creating cross-platform mobile, desktop, and web
applications. DukeScript applications are plain Java applications that internally use
HTML5 technologies and JavaScript for rendering. This way, developers only need
to write clean Java code and can still leverage the latest developments in modern UI
technology:
https://dukescript.com
Twitter: @DukeScript

•	 TornadoFX by Edvin Syse: Lightweight JavaFX Framework for the Kotlin language:
GitHub: https://github.com/edvin/tornadofx
Twitter: @edvinsyse

•	 Open Dolphin: A JavaFX MVC Framework (founded by Dierk Koenig (@mittie) of
Canoo Engineering):
http://open-dolphin.org/dolphin_website/Home.html

http://blog.idrsolutions.com/2014/03/sneak-preview-new-javafx-pdf-viewer
https://github.com/TestFX/TestFX
http://www.guigarage.com/2013/03/introducing-marvinfx
https://jemmy.java.net/JemmyFXGuide/jemmy-guide.html
https://github.com/ReactiveX/RxJavaFX
http://gluonhq.com/
http://griffon-framework.org
https://www.jpro.io/
https://twitter.com/jpro_io
https://dukescript.com
https://github.com/edvin/tornadofx
http://open-dolphin.org/dolphin_website/Home.html

Chapter 16 ■ appendix a: referenCes

532

•	 JavaFX MVP framework based on convention over configuration and dependency
injection. Founded by Adam Bien (@AdamBien):
http://afterburner.adam-bien.com

•	 ReduxFX 0.2 by Michael Heinrichs:
https://netopyr.com/2017/02/27/new-features-reduxfx-0-2/
https://netopyr.com
Twitter: @net0pyr

•	 NetBeansIDE-AfterburnerFX-Plugin by Peter Rogge: The NetBeansIDE-
AfterburnerFX-Plugin is a NetBeans IDE plugin that supports the file generation in
convention with the library afterburner.fx in a JavaFX project:
https://github.com/Naoghuman/NetBeansIDE-AfterburnerFX-Plugin
Twitter: @naoghuman

•	 FXForm2: A library providing automatic JavaFX 2.0 form generation:
http://dooapp.github.io/FXForm2

•	 Integrating Spring Boot with JavaFX by MVP Java:
https://youtu.be/hjeSOxi3uPg

•	 JavaFX Multiple Controllers by MVP Java:
https://www.youtube.com/watch?v=osIRfgHTfyg

Domain-Specific Languages
A domain-specific language for graphics can help eliminate a lot of boilerplate code, while keeping code
easier to read and manage. The following are DSLs for JavaFX in various computer languages that run on top
of the Java runtime environment.

•	 TornadoFX: A Kotlin-based domain-specific language to create JavaFX applications:
https://github.com/edvin/tornadofx

•	 GroovyFX: A Groovy-based domain-specific language to create JavaFX applications:
http://groovyfx.org

•	 ScalaFX: A Scala-based domain-specific language to create JavaFX applications:
https://code.google.com/p/scalafx

•	 RubyFX: A Ruby-based domain-specific language to create JavaFX applications:
https://github.com/jruby/jrubyfx

•	 Visage: A JavaFX-based domain-specific language to create JavaFX applications:
https://code.google.com/p/visage

Custom UIs
You can customize a user interface such as styling using CSS or using custom controls. The following links
are reference guides and blogs.

•	 JavaFX 8 CSS reference:
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/
cssref.html

•	 JavaFX FXML introduction:
http://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/
introduction_to_fxml.html

http://afterburner.adam-bien.com/
https://netopyr.com/2017/02/27/new-features-reduxfx-0-2/
https://netopyr.com
https://github.com/Naoghuman/NetBeansIDE-AfterburnerFX-Plugin
http://dooapp.github.io/FXForm2
http://dooapp.github.io/FXForm2
https://youtu.be/hjeSOxi3uPg
https://youtu.be/hjeSOxi3uPg
https://www.youtube.com/watch?v=osIRfgHTfyg
https://www.youtube.com/watch?v=osIRfgHTfyg
https://github.com/edvin/tornadofx
http://groovyfx.org/
https://code.google.com/p/scalafx
https://github.com/jruby/jrubyfx
https://code.google.com/p/visage
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
http://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/introduction_to_fxml.html
http://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/introduction_to_fxml.html

Chapter 16 ■ appendix a: referenCes

533

•	 Styling UI Controls with CSS:
http://docs.oracle.com/javase/8/javafx/user-interface-tutorial/
apply-css.htm

•	 Modena Theme for JavaFX 8, Jasper Potts:
http://fxexperience.com/2013/03/modena-theme-update

•	 Mastering JavaFX 8 Controls, Hendrik Ebbers. Oracle Press, 2014.
ISBN 9780071833776:
http://mhprofessional.com/product.php?isbn=0071833773
http://www.guigarage.com/javafx-book

•	 A MacOS X look and feel called AquaFX with Elements, Claudine Zillmann
(@etteClaudette):
http://aquafx-project.com/project.html

•	 A Windows 8 look and feel called JMetro, Pedro Duque Vieira (@P_Duke):
http://pixelduke.wordpress.com/category/metro
https://github.com/JFXtras/jfxtras-styles

•	 Orson Charts by David Gilbert: A 3D chart library for Java applications
(JavaFX, Swing, or server-side).
https://github.com/jfree/orson-charts

•	 Roku-like or Apple TV-like interface called the Flatter look and feel, Hendrik Ebbers
(@hendrikEbbers):
http://www.guigarage.com/2013/09/flatter
http://www.guigarage.com/2013/08/boxfx-javaone-preview-1

•	 GuiGarage’s collection of JavaFX talks at JavaOne (provided by Parleys):
http://www.guigarage.com/2013/12/javafx-at-javaone

•	 Why Use FXML by Irina Fedortsova of Oracle:
http://docs.oracle.com/javafx/2/fxml:get_started/why_use_fxml.htm

•	 Gerrit Grunwald’s JavaFX 8 examples using many different strategies for making
custom controls:
https://github.com/HanSolo/JFX8CustomControls

•	 Enzo: JavaFX gauges, clocks, and many custom controls, Gerrit Grunwald:
https://bitbucket.org/hansolo/enzo/wiki/Home

•	 Medusa by Gerrit Grunwald: JavaFX Custom Controls library to create Gauges and
Dials (non CSS).
https://bintray.com/hansolo/Medusa/Medusa
Twitter: @hansolo_

•	 JFXtras: A JavaFX custom controls community:
http://jfxtras.org

•	 ControlsFX: Another custom controls community started and lead, Jonathan Giles of
Oracle:
http://fxexperience.com/controlsfx

•	 JideFX Highlights of the JideFX Beta Release (1 of 3), David Qiao:
http://www.jidesoft.com/blog/2013/06/10/highlights-of-the-jidefx-beta-
release-1-of-3
http://www.jidesoft.com

http://docs.oracle.com/javase/8/javafx/user-interface-tutorial/apply-css.htm
http://docs.oracle.com/javase/8/javafx/user-interface-tutorial/apply-css.htm
http://fxexperience.com/2013/03/modena-theme-update
http://mhprofessional.com/product.php?isbn=0071833773
http://www.guigarage.com/javafx-book
http://aquafx-project.com/project.html
http://pixelduke.wordpress.com/category/metro
https://github.com/JFXtras/jfxtras-styles
https://github.com/jfree/orson-charts
http://www.guigarage.com/2013/09/flatter
http://www.guigarage.com/2013/08/boxfx-javaone-preview-1
http://www.guigarage.com/2013/12/javafx-at-javaone
http://docs.oracle.com/javafx/2/fxml:get_started/why_use_fxml.htm
https://github.com/HanSolo/JFX8CustomControls
https://bitbucket.org/hansolo/enzo/wiki/Home
https://bintray.com/hansolo/Medusa/Medusa
http://jfxtras.org/
http://fxexperience.com/controlsfx
http://www.jidesoft.com/blog/2013/06/10/highlights-of-the-jidefx-beta-release-1-of-3
http://www.jidesoft.com/blog/2013/06/10/highlights-of-the-jidefx-beta-release-1-of-3
http://www.jidesoft.com/

Chapter 16 ■ appendix a: referenCes

534

•	 Styling FX Buttons with CSS, Jasper Potts:
http://fxexperience.com/2011/12/styling-fx-buttons-with-css

•	 JavaFX Custom Control: Nest Thermostat Part 1-3, Laurent Nicolas:
http://www.javacodegeeks.com/2014/01/javafx-custom-control-nest-thermostat-
part-1.html
Twitter: @MrLoNee

•	 Do It Yourself: Custom JavaFX Controls, Gerrit Grunwald:
https://www.youtube.com/watch?v=ts_b2mBix3U

•	 Custom Controls by SIB Visions: FXSelectableLabel, FXMonthView,
FXDateTimePicker, and many more:
https://blog.sibvisions.com/2015/04/24/javafx-custom-controls/
Twitter: @sibvisions

•	 yFiles for JavaFX by yWorks GmbH: A library that brings the proven power and ease of
yFiles diagramming to your cutting-edge JavaFX applications. The library contains UI
controls for drawing, viewing, and editing diagrams and mature graph layout algorithms
for automatically arranging complex graphs and networks at the click of a button:
http://www.yworks.com/products/yfiles-for-javafx

•	 SyntheticaFX made by JylooSoftware: The Library for JavaFX Business/Enterprise
Solutions. Provides themes and components mainly made for professional business
applications on the desktop. The library is growing and new controls are under
construction and will be added in future releases. The target platform of the final
release is Java 9 or above:
http://www.jyloo.com/syntheticafx/
Founder: W.Zitzelsberger
Twitter: @wzberger

•	 JideFX by Jide Software, Inc.: A collection of various extensions and utilities for the
JavaFX platform. The JideFX Common Layer is the equivalent to the JIDE Common
Layer in the JIDE components for Swing:
https://github.com/jidesoft/jidefx-oss

•	 DateAxis supporting JSR-310 by Pedro Duque Vieira: JavaFX Charts using
XYBarChart can now take advantage of the new Date APIs in Java 8:
https://pixelduke.wordpress.com/2013/12/13/dateaxis-and-xybarchart-
update/

•	 FXValidation by Pedro Duque Vieira: A JavaFX validation library to work with FXML
GUI forms:
https://pixelduke.wordpress.com/2014/07/26/validation-in-java-javafx/
GitHub: https://github.com/dukke/FXValidation
Twitter: @P_Duke

•	 FXRibbon by Pedro Duque Vieira: A GUI control common in Microsoft Office
applications:
Blog: https://pixelduke.wordpress.com/2015/01/11/ribbon-for-java-
using-javafx/
GitHub: https://github.com/dukke/FXRibbon

•	 Custom JavaFX Styling by Narayan G. Maharjan:
http://blog.ngopal.com.np/2012/07/11/customize-scrollbar-via-css/
http://blog.ngopal.com.np
Twitter: @javadeveloping

http://fxexperience.com/2011/12/styling-fx-buttons-with-css
http://www.javacodegeeks.com/2014/01/javafx-custom-control-nest-thermostat-part-1.html
http://www.javacodegeeks.com/2014/01/javafx-custom-control-nest-thermostat-part-1.html
https://www.youtube.com/watch?v=ts_b2mBix3U
https://blog.sibvisions.com/2015/04/24/javafx-custom-controls/
http://www.yworks.com/products/yfiles-for-javafx
http://www.jyloo.com/syntheticafx/
https://github.com/jidesoft/jidefx-oss
https://pixelduke.wordpress.com/2013/12/13/dateaxis-and-xybarchart-update/
https://pixelduke.wordpress.com/2013/12/13/dateaxis-and-xybarchart-update/
https://pixelduke.wordpress.com/2014/07/26/validation-in-java-javafx/
https://github.com/dukke/FXValidation
https://pixelduke.wordpress.com/2015/01/11/ribbon-for-java-using-javafx/
https://pixelduke.wordpress.com/2015/01/11/ribbon-for-java-using-javafx/
https://github.com/dukke/FXRibbon
http://blog.ngopal.com.np/2012/07/11/customize-scrollbar-via-css/
http://blog.ngopal.com.np/

Chapter 16 ■ appendix a: referenCes

535

•	 Undecorator by Arnaud Nouard: A library to create irregular shaped semi-
transparent windows for your applications: https://github.com/in-sideFX/
UndecoratorBis
Twitter: @In_SideFX

•	 JavaFx JFoenix Tutorial #2 : Material Design Buttons:
https://youtu.be/22QlOj6JVe4

•	 Ten Ways to Make Your JavaFX App Shine by Martin Gunnarsson and Pär Sikö:
https://www.youtube.com/watch?v=98ZmnN215m0

Operating System Style Guidelines
In JavaFX there are many ways to develop esthetically pleasing applications; however, there are times you
will need style guidance on the host operating system. The following links are many of the mainstream
operating system style guidelines.

•	 iOS7 style guidelines:
https://developer.apple.com/library/ios/documentation/userexperience/
conceptual/MobileHIG/index.html

•	 Android style guidelines:
http://developer.android.com/design/style/index.html

•	 Windows style guidelines:
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

•	 Ubuntu design guidelines:
http://design.ubuntu.com/apps

•	 BlackBerry design guidelines:
http://developer.blackberry.com/native/documentation/cascades/
best_practices/uiguidelines

•	 HTML Styles: CSS by w3schools.com:
http://www.w3schools.com/html/html_css.asp

JavaFX Media
JavaFX contains a powerful media API capable to process audio and video. Here you will find many links that
assist you in taking advantage of the MediaView and MediaPlayer APIs. Also, you will be seeing many links
that help you create content.

•	 Oracle’s tutorial to incorporating media using JavaFX:
http://docs.oracle.com/javase/8/javafx/media-tutorial/overview.htm

•	 Audio and Video Processing in JavaFX by Brian Burkhalter and David DeHaven
(principal members of the technical staff at Oracle):
https://www.youtube.com/watch?v=jaPUbzfJx2A

•	 Pro JavaFX 2, Chapter 8, “Media Classes” (Apress, 2014):
https://www.apress.com/9781430268727

•	 Media College:
http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html

•	 VP6 encoder for FLV container formats:
http://www.wildform.com

https://github.com/in-sideFX/UndecoratorBis
https://github.com/in-sideFX/UndecoratorBis
https://youtu.be/22QlOj6JVe4
https://www.youtube.com/watch?v=98ZmnN215m0
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/index.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/index.html
http://developer.android.com/design/style/index.html
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://design.ubuntu.com/apps
http://developer.blackberry.com/native/documentation/cascades/best_practices/uiguidelines
http://developer.blackberry.com/native/documentation/cascades/best_practices/uiguidelines
http://www.w3schools.com/html/html_css.asp
http://docs.oracle.com/javase/8/javafx/media-tutorial/overview.htm
https://www.youtube.com/watch?v=jaPUbzfJx2A
http://dx.doi.org/10.1007/978-1-4842-1961-4_8
https://www.apress.com/9781430268727
http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html
http://www.wildform.com/

Chapter 16 ■ appendix a: referenCes

536

•	 Sony Vegas:
http://www.sonycreativesoftware.com/vegassoftware

•	 Adobe Premier:
http://www.adobe.com/products/premiere.html

•	 Apple’s Final Cut Pro: Movie making software:
http://www.apple.com/final-cut-pro

•	 Apple’s iMovie: Movie making software:
https://www.apple.com/mac/imovie

•	 Apple’s Quick Time Pro: A media player:
http://www.apple.com/quicktime

•	 FFmpeg: a complete, cross-platform solution to record, convert, and stream audio
and video:
http://www.ffmpeg.org

•	 On2 Technologies is acquired by Google:
http://en.wikipedia.org/wiki/On2_Technologies

JavaFX on the Web
Many of the following links relate to the powerful WebView node in JavaFX and how to interact with
web services. Also, you will see some new and interesting concepts such as JavaFX in the browsers using
JavaScript.

•	 Overview of the JavaFX WebView component:
http://docs.oracle.com/javase/8/javafx/embedded-browser-tutorial/
overview.htm

•	 A talk on HTML5 and JavaFX by Ryan Cuprak (at the Silicon Valley JavaFX User Group):
https://www.youtube.com/watch?v=xdgD7EBX4fw

•	 Other w3c document object model APIs: JDOM:
http://www.jdom.org

•	 DOM4J:
http://dom4j.sourceforge.net

•	 Bug RT-35757 relating to loading files containing HTML5 with a file extension other
than .html:
https://javafx-jira.kenai.com/browse/RT-35757

•	 Converting from w3c documents to a string:
http://stackoverflow.com/questions/2567416/document-to-string

•	 Loading a single text file as a string, by Pat Niemeyer:
https://weblogs.java.net/blog/pat/archive/2004/10/stupid_scanner.html

•	 Single-line read text file with Java by Fuad Saud:
https://coderwall.com/p/lyalwg

•	 How to read data from InputStream into String in Java by Lokesh Gupta:
http://howtodoinjava.com/2013/10/06/how-to-read-data-from-inputstream-
into-string-in-java

http://www.sonycreativesoftware.com/vegassoftware
http://www.adobe.com/products/premiere.html
http://www.apple.com/final-cut-pro
https://www.apple.com/mac/imovie
http://www.apple.com/quicktime
http://www.ffmpeg.org/
http://en.wikipedia.org/wiki/On2_Technologies
http://docs.oracle.com/javase/8/javafx/embedded-browser-tutorial/overview.htm
http://docs.oracle.com/javase/8/javafx/embedded-browser-tutorial/overview.htm
https://www.youtube.com/watch?v=xdgD7EBX4fw
http://www.jdom.org/
http://dom4j.sourceforge.net/
https://javafx-jira.kenai.com/browse/RT-35757
http://stackoverflow.com/questions/2567416/document-to-string
https://weblogs.java.net/blog/pat/archive/2004/10/stupid_scanner.html
https://coderwall.com/p/lyalwg
http://howtodoinjava.com/2013/10/06/how-to-read-data-from-inputstream-into-string-in-java
http://howtodoinjava.com/2013/10/06/how-to-read-data-from-inputstream-into-string-in-java
http://howtodoinjava.com/2013/10/06/how-to-read-data-from-inputstream-into-string-in-java

Chapter 16 ■ appendix a: referenCes

537

•	 Java 8 Streams API to read a file by Cay Horstmann:
https://weblogs.java.net/blog/cayhorstmann/archive/2013/12/06/java-8-
really-impatient

•	 Firebug Lite:
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-
firebuglite-or-some-other-debugger/18396900

•	 Reading JSON using URL Connection:
http://docs.oracle.com/javase/tutorial/networking/urls/
readingWriting.html

•	 Making a POST request instead of a GET using URL Connection:
http://stackoverflow.com/questions/4205980/java-sending-http-
parameters-via-post-method-easily

•	 JavaScript 12 hour AM and PM format dates:
http://stackoverflow.com/questions/8888491/how-do-you-display-
javascript-datetime-in-12-hour-am-pm-format

•	 OpenWeatherMap: free weather data and forecast API:
http://openweathermap.org

•	 Free Geo-location:
http://freegeoip.net/json

•	 JSObject Live connect:
https://developer.mozilla.org/en-US/docs/LiveConnect/LiveConnect_
Reference/JSObject

•	 DataFX, Johan Vos, Jonathan Giles, and Hendrik Ebbers:
http://www.javafxdata.org

•	 Building Rich Client Applications with JSR 356: Java API for WebSocket, Johan Vos:
http://www.oraclejavamagazine-digital.com/javamagazine_
twitter/20140102#pg67

•	 Bck2Brwsr: JavaFX in the browser:
http://wiki.apidesign.org/wiki/Bck2Brwsr

•	 Canvas for Bck2Brwsr:
http://jayskills.com/blog/2013/01/22/canvas-for-bck2brwsr

JavaFX 3D
The highly anticipated JavaFX 3D API has finally arrived, and it is part of the Java 8 release. The following
links are to videos and tutorials that will enrich your JavaFX 3D skills:

•	 JavaFX 3D Oracle tutorial:
http://docs.oracle.com/javafx/8/3d_graphics/jfxpub-3d_graphics.htm
http://docs.oracle.com/javase/8/javafx/graphics-tutorial/javafx-3d-
graphics.htm

•	 JavaFX for Business: Monitoring a Container Terminal at JavaOne 2012, Dierk Konig
and Andres Almiray:
https://www.youtube.com/watch?v=m5NcuWGKnDo

https://weblogs.java.net/blog/cayhorstmann/archive/2013/12/06/java-8-really-impatient
https://weblogs.java.net/blog/cayhorstmann/archive/2013/12/06/java-8-really-impatient
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-firebuglite-or-some-other-debugger/18396900
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-firebuglite-or-some-other-debugger/18396900
http://docs.oracle.com/javase/tutorial/networking/urls/readingWriting.html
http://docs.oracle.com/javase/tutorial/networking/urls/readingWriting.html
http://stackoverflow.com/questions/4205980/java-sending-http-parameters-via-post-method-easily
http://stackoverflow.com/questions/4205980/java-sending-http-parameters-via-post-method-easily
http://stackoverflow.com/questions/4205980/java-sending-http-parameters-via-post-method-easily
http://stackoverflow.com/questions/8888491/how-do-you-display-javascript-datetime-in-12-hour-am-pm-format
http://stackoverflow.com/questions/8888491/how-do-you-display-javascript-datetime-in-12-hour-am-pm-format
http://openweathermap.org/
http://freegeoip.net/json
https://developer.mozilla.org/en-US/docs/LiveConnect/LiveConnect_Reference/JSObject
https://developer.mozilla.org/en-US/docs/LiveConnect/LiveConnect_Reference/JSObject
http://www.javafxdata.org/
http://www.oraclejavamagazine-digital.com/javamagazine_twitter/20140102#pg67
http://www.oraclejavamagazine-digital.com/javamagazine_twitter/20140102#pg67
http://wiki.apidesign.org/wiki/Bck2Brwsr
http://jayskills.com/blog/2013/01/22/canvas-for-bck2brwsr
http://docs.oracle.com/javafx/8/3d_graphics/jfxpub-3d_graphics.htm
http://docs.oracle.com/javase/8/javafx/graphics-tutorial/javafx-3d-graphics.htm
http://docs.oracle.com/javase/8/javafx/graphics-tutorial/javafx-3d-graphics.htm
https://www.youtube.com/watch?v=m5NcuWGKnDo

Chapter 16 ■ appendix a: referenCes

538

•	 Modeling, Texturing, and Lighting Mesh Geometry in JavaFX 3D, John Yoon of
Oracle:
http://www.parleys.com/share.html#play/5252e81de4b0c4f11ec576b0

•	 JavaFX 3D: The Third Dimension [CON7810] at JavaOne 2013, Kevin Rushforth and
Chien Yang:
https://oracleus.activeevents.com/2013/connect/sessionDetail.ww?SESSION_
ID=7810

•	 Polaris, JavaFX, ControlsFX, and F(X)yz supporting NASA Missions, Sean Phillips:
https://www.youtube.com/watch?v=aA5GfWc8ho4

JavaFX Gaming
And you thought JavaFX was only for business. Well, take a look at the following links to see some fun and
interesting games.

•	 JavaFX Game Development Framework:
https://github.com/AlmasB/FXGL
Twitter: @AlmasB

•	 JavaFX Games and OpenCV App examples using Scala, Robert Ladstätter:
https://github.com/rladstaetter
Twitter: @rladstaetter

•	 GameComposer, Mirko Sertic: A game authoring tool and a game runtime
environment targeting desktop and mobile devices:
GitHub: https://github.com/mirkosertic/GameComposer
Twitter: @mirkosertic

•	 Writing a Tile Engine in JavaFX, Toni Epple:
http://www.javacodegeeks.com/2013/01/writing-a-tile-engine-in-
javafx.html

•	 SokubanFX, Peter Rogge: A JavaFX-based game that is a type of transport puzzle,
in which the player pushes boxes or crates around in a warehouse, trying to get
them to storage locations. The puzzle is usually implemented as a video game:
https://github.com/Naoghuman/SokubanFX
Twitter: @naoghuman

•	 Tower Defense type game by RolandC:
http://wecode4fun.blogspot.co.at/2015/05/simple-game-engine-tower-
defense.html

•	 Angry Duke: Physics-Based Games in JavaFX, Toni Epple:
https://www.youtube.com/watch?v=jcSp2E0MTyE

•	 JavaOne 2013 Chess Robot, Jasper Potts: In the JavaOne 2013 technical keynote, the
Java team demonstrated a robot controlled by Java playing chess:
http://vimeo.com/75368008

•	 A JavaFX based Game Authoring System, Mirko Sertic:
http://www.mirkosertic.de/doku.php/javastuff/javafxgameauthoring

•	 Rubik’s Cube with JavaFX 3D II, José Pereda:
https://www.youtube.com/watch?v=ZVPIBkDgZV4
https://github.com/jperedadnr/RubikFX

http://www.parleys.com/share.html#play/5252e81de4b0c4f11ec576b0
https://oracleus.activeevents.com/2013/connect/sessionDetail.ww?SESSION_ID=7810
https://oracleus.activeevents.com/2013/connect/sessionDetail.ww?SESSION_ID=7810
https://www.youtube.com/watch?v=aA5GfWc8ho4
https://github.com/AlmasB/FXGL
https://github.com/AlmasB/FXGL
https://github.com/rladstaetter
https://github.com/rladstaetter
https://github.com/mirkosertic/GameComposer
http://www.javacodegeeks.com/2013/01/writing-a-tile-engine-in-javafx.html
http://www.javacodegeeks.com/2013/01/writing-a-tile-engine-in-javafx.html
https://github.com/Naoghuman/SokubanFX
http://wecode4fun.blogspot.co.at/2015/05/simple-game-engine-tower-defense.html
http://wecode4fun.blogspot.co.at/2015/05/simple-game-engine-tower-defense.html
https://www.youtube.com/watch?v=jcSp2E0MTyE
http://vimeo.com/75368008
http://www.mirkosertic.de/doku.php/javastuff/javafxgameauthoring
https://www.youtube.com/watch?v=ZVPIBkDgZV4
https://github.com/jperedadnr/RubikFX

Chapter 16 ■ appendix a: referenCes

539

•	 A JavaFX game tutorial Parts 1-6, Carl Dea:
http://carlfx.wordpress.com/2012/03/29/javafx-2-gametutorial-part-1

Java IoT and JavaFX Embedded
The following links and references are very cool DIY projects using the combination of Java embedded and
JavaFX. Many of these links are videos that will help you see a glimpse into the future of the Internet of Things.

•	 Java 8 Embedded documentation:
http://docs.oracle.com/javase/8/javase-embedded.htm

•	 Robo4J by Miro Wengner and Marcus Hirt: A framework for quickly getting started
building and running robots and IoT devices:
http://www.robo4j.io/p/home.html
Video: http://www.robo4j.io/p/videos.html
Miro Wengner: @miragemiko
Marcus Hirt: @hirt

•	 PiDome: Home automation PiDome is an Open Source Home Automation platform
developed especially for the Raspberry Pi, leveraging it to a full home automation
solution:
https://pidome.org
Twitter: @Pi_Dome

•	 MQTT.fx by Jens Deter: The JavaFX based MQTT Client:
http://www.mqttfx.org
Twitter: @MQTT_fx
Twitter: @Jerady
http://www.jensd.de

•	 JavaFX-based tablet computer:
http://j.mp/DukePad
https://wiki.openjdk.java.net/display/OpenJFX/DukePad
http://vimeo.com/76486818

•	 Nao Robot NightHacking:
http://nighthacking.com/nao-robot-nighthacking-part-1
http://nighthacking.com/nao-robot-nighthacking-part-2

•	 Pre-interview with Mark Heckler (NightHacking tour hosted, Stephen Chin of Oracle):
https://www.youtube.com/watch?v=LXRp57B58e8

•	 NightHacking with Gerrit Grunwald on Pi, XBee, and Sensor Networks.
(NightHacking tour hosted, Stephen Chin of Oracle):
https://www.youtube.com/watch?v=GTr0CtrlNGY

•	 NightHacking with Gerrit Grunwald and Michael Hoffer. (NightHacking tour hosted
by Stephen Chin of Oracle):
https://www.youtube.com/watch?v=cWFW4VT8auw

•	 Beyond Beauty: JavaFX, Parallax, Touch, Gyroscopes and Much More, Angela Caicedo
(Java Evangelist at Oracle) (NightHacking tour hosted by Stephen Chin of Oracle):
https://www.youtube.com/watch?v=rYt45rs2Bjk

•	 Raspberry Pi Java forum:
http://www.raspberrypi.org/phpBB3/viewforum.php?f=81

http://carlfx.wordpress.com/2012/03/29/javafx-2-gametutorial-part-1
http://docs.oracle.com/javase/8/javase-embedded.htm
http://www.robo4j.io/p/home.html
http://www.robo4j.io/p/videos.html
https://pidome.org/
http://www.mqttfx.org/
http://www.jensd.de/
http://j.mp/DukePad
https://wiki.openjdk.java.net/display/OpenJFX/DukePad
http://vimeo.com/76486818
http://nighthacking.com/nao-robot-nighthacking-part-1
http://nighthacking.com/nao-robot-nighthacking-part-2
https://www.youtube.com/watch?v=LXRp57B58e8
https://www.youtube.com/watch?v=GTr0CtrlNGY
https://www.youtube.com/watch?v=cWFW4VT8auw
https://www.youtube.com/watch?v=rYt45rs2Bjk
http://www.raspberrypi.org/phpBB3/viewforum.php?f=81

Chapter 16 ■ appendix a: referenCes

540

•	 How to safely overclock your Raspberry Pi, Eben Upton (Raspberry Pi Founder, CEO
of Raspberry Pi’s engineering team):
http://www.raspberrypi.org/archives/2008

•	 End-to-End Raspberry Pi with NetBeans IDE 8, José Pereda:
http://netbeans.dzone.com/articles/nb-8-raspberry-pi-end2end
Twitter: @JPeredaDnr

Software and Device Manufacturers
In the last few chapters we discussed Java embedded devices and gesture-based input devices. The following
links reference various manufacturers.

•	 Raspberry Pi: http://www.raspberrypi.org

•	 Arduino: http://www.arduino.cc

•	 BeagleBoard: http://beagleboard.org/Products/BeagleBone

•	 Leap Motion: https://www.leapmotion.com

•	 Microsoft Windows 8 Surface: http://www.microsoft.com/surface/en-us

•	 Oculus Rift:
http://www.oculusvr.com

•	 Thalmic Labs:
https://www.thalmic.com/en/myo

JavaFX Communities
So you want to get involved with the JavaFX community? Please check out the following links.

•	 Java.net JavaFX community site:
https://www.java.net/community/javafx

•	 FXExperience: JavaFX News, Demos and Insight:
http://fxexperience.com
Twitter: @fxexperience

•	 Nighthacking: Hosted by Stephen Chin. A tour around the world to see everything
about Java, JavaFX, and IoT. Amazing live talks.
http://nighthacking.com
Twitter: @_nighthacking

•	 Oracle’s JavaFX Community portal to Real World Use Cases, Community Support,
Third Party tools and Open JFX:
http://www.oracle.com/technetwork/java/javase/community/index.html

•	 JFXtras: A JavaFX custom controls community:
http://jfxtras.org

•	 ControlsFX: Another custom controls community, started by Jonathan Giles of Oracle:
http://fxexperience.com/controlsfx

•	 Enzo by Gerrit Grunwald: JavaFX Custom Controls library to create Gauges and Dials
using JavaFX CSS styling:
https://bintray.com/hansolo/Enzo/Enzo_All_In_One

http://www.raspberrypi.org/archives/2008
http://netbeans.dzone.com/articles/nb-8-raspberry-pi-end2end
http://www.raspberrypi.org/
http://www.arduino.cc/
http://beagleboard.org/Products/BeagleBone
https://www.leapmotion.com/
http://www.microsoft.com/surface/en-us
http://www.oculusvr.com/
https://www.thalmic.com/en/myo
https://www.java.net/community/javafx
http://fxexperience.com/
http://nighthacking.com/
http://www.oracle.com/technetwork/java/javase/community/index.html
http://jfxtras.org/
http://fxexperience.com/controlsfx
https://bintray.com/hansolo/Enzo/Enzo_All_In_One

Chapter 16 ■ appendix a: referenCes

541

•	 Feed Cluster: Any and all JavaFX news:
http://javafx-blogs.feedcluster.com

•	 Silicon valley JavaFX user’s group:
http://www.meetup.com/svjugfx

•	 Silicon valley JavaFX user’s group Live stream:
http://www.ustream.tv/channel/silicon-valley-javafx-user-group

•	 Oracle Forums on JavaFX:
https://community.oracle.com/community/developer/english/java/javafx/
javafx_2.0_and_later

Applications
Many of the following links are rich GUI applications written using the JavaFX platform.

•	 20 JavaFX real-world applications, Dirk Lemmermann and Alexander Casall:
https://jaxenter.com/20-javafx-real-world-applications-123653.html
Dirk Lemmermann: @dlemmermann
Alexander Casall: @sialcasa

•	 FXDesktopSearch, Mirko Sertic: A Java and JavaFX based desktop search application.
It crawls a configured set of directories and allows you to do full-text searches with
different language support:
https://github.com/mirkosertic/FXDesktopSearch
Twitter: @mirkosertic

•	 Picmodo (founded by Jens Deter,): A JavaFX-based picture database application:
http://www.jensd.de/wordpress/?page_id=22
Twitter: @Jerady

•	 VWorkflows by Michael Hoffer: A Scientific Visualization Tool:
https://github.com/miho/VWorkflows:
http://mihosoft.eu
Twitter: @mihosoft

•	 eteoBoard: The interactive digital task board. A touch and gesture-based application
tool for team collaboration:
http://www.eteoboard.de
http://www.saxsys.de

•	 PiDome client, John Sirach: PiDome is an open source home automation platform
developed for the Raspberry Pi leveraging it to a full home automation solution.
https://pidome.org
Twitter: @Pi_Dome

•	 FlexGanttFX: Aircraft/Flight Scheduling Application, by Dirk Lemmermann,
@dlemmermann: http://www.dlsc.com
https://www.youtube.com/channel/UCFyRQ_euxxPDwlqyhff-x0Q

•	 BaufiFX, Thomas Bolz: A home finance calculator:
http://www.baufifx.de

http://javafx-blogs.feedcluster.com/
http://www.meetup.com/svjugfx
http://www.ustream.tv/channel/silicon-valley-javafx-user-group
https://community.oracle.com/community/developer/english/java/javafx/javafx_2.0_and_later
https://community.oracle.com/community/developer/english/java/javafx/javafx_2.0_and_later
https://jaxenter.com/20-javafx-real-world-applications-123653.html
https://github.com/mirkosertic/FXDesktopSearch
http://www.jensd.de/wordpress/?page_id=22
https://github.com/miho/VWorkflows
http://mihosoft.eu/
http://www.eteoboard.de/
http://www.saxsys.de/
https://pidome.org/
http://www.dlsc.com/
https://www.youtube.com/channel/UCFyRQ_euxxPDwlqyhff-x0Q
http://www.baufifx.de/
http://www.baufifx.de/

Chapter 16 ■ appendix a: referenCes

542

•	 SnapCode is an IDE and RAD tool for education, entertainment, and the enterprise.
Report Mill Software:
http://www.reportmill.com/snap

•	 Modellus is a freely available application that enables students and teachers (high
school and university) to use mathematics to create or explore models interactively.
Modellus was developed by Vitor Duarte Teodoro, João Paulo Duque Vieira, and
Pedro Duque Vieira:
http://modellus.co/index.php/en

•	 MIME Browser by Christoph Nahr is a compact JavaFX desktop application for
browsing MIME messages that are locally stored in standard EML files:
http://kynosarges.org/MimeBrowser.html

•	 Vocab Hunter by Adam Carroll: VocabHunter is a system to help learners of foreign
languages:
GitHub: https://vocabhunter.github.io
Twitter: @vocabhunterapp

•	 Bloom Uploader by Carl Antaki. Bloom is a desktop app that lets you upload your
photos and videos easily and efficiently to Facebook, download albums, view your
photos and some of your friends’ photos:
Video: http://bloomuploader.com
Twitter: @carcour

•	 AsciidocFX by Rahman USTA: Asciidoc FX is a book/document editor used to build
PDF, Epub, Mobi, and HTML books, documents, and slides. AsciidocFX is also a
winner of Duke’s Choice Award 2015:
https://github.com/asciidocfx/AsciidocFX
Twitter: @ustarahman

•	 JITWatch Code Cache Visualization by Chris Newland. Visualize how the HotSpot
JVM code cache fills up as the JIT compilers produce optimized native code from
your bytecode:
https://github.com/AdoptOpenJDK/jitwatch

•	 MuseuID, Angelica Leite. The software assists the Museum of Paleontology in
Santana do Cariri. It manages the collection of fossils and museum activities:
Video: http://t.co/3MuofK4eZF
GitHub: https://github.com/angelicalleite/museuid
Twitter: @angelicalleite

•	 AZoi Capital Atlas Trader Software JavaFX, Rob Terpilowski:
Video: https://youtu.be/tm05AIkvJAs
Twitter: @RobTerpilowski

•	 Power Scene Viewer 2.0, Marlon Trujillo: SCADA software:
https://www.youtube.com/watch?v=8DUAf9TrJuI
https://www.youtube.com/watch?v=FHph2jrS0EU
Twitter: @marlon__marlon

http://www.reportmill.com/snap
http://modellus.co/index.php/en
http://kynosarges.org/MimeBrowser.html
https://vocabhunter.github.io/
http://bloomuploader.com/
https://github.com/asciidocfx/AsciidocFX
https://github.com/AdoptOpenJDK/jitwatch
http://t.co/3MuofK4eZF
https://github.com/angelicalleite/museuid
https://youtu.be/tm05AIkvJAs
https://www.youtube.com/watch?v=8DUAf9TrJuI
https://www.youtube.com/watch?v=FHph2jrS0EU

Chapter 16 ■ appendix a: referenCes

543

•	 FXDesktopSearch: A Java and JavaFX-based desktop search application. It crawls
a configured set of directories and allows you to do full-text searches with different
language support:
https://github.com/mirkosertic/FXDesktopSearch

Java/JavaFX Books and Magazines
The following links are newer book titles that relate to the new Java 8 and JavaFX 8 platform.

•	 Pro JavaFX 8, Johan Vos, James Weaver, Weiqi Gao, Stephen Chin, Dean Iverson.
Apress, 2014. ISBN: 978-1-4302-6574-0:
http://www.apress.com/9781430265740

•	 Java 8 Recipes, Josh Juneau (Apress, 2014. ISBN: 978-1-4302-6827-7):
http://www.apress.com/9781430268277

•	 JavaFX Rich Client Programming on the NetBeans Platform, Paul Anderson and
Gail Anderson. Addison-Wesley Professional, 2014. ISBN: 978-0321927712:
https://blogs.oracle.com/geertjan/entry/new_book_javafx_rich_client
http://www.amazon.com/JavaFX-Client-Programming-NetBeans-Platform/
dp/0321927710

•	 Mastering JavaFX 8 Controls, Hendrik Ebbers. Oracle Press, 2014.
ISBN: 9780071833776:
http://mhprofessional.com/product.php?isbn=0071833773
http://www.guigarage.com/javafx-book

•	 Quick Start Guide to JavaFX, J.F. DiMarzio. Oracle Press, 2014. ISBN: 978-0071808965:
http://www.mhprofessional.com/product.php?isbn=0071808965

•	 Java SE 8 for the Really Impatient, Cay S. Horstmann. Addison-Wesley, 2014.
ISBN: 978-0321927767:
https://www.pearson.com/us/higher-education/program/Horstmann-Java-SE-8-
for-the-Really-Impatient-A-Short-Course-on-the-Basics/PGM214606.html

•	 Mastering Lambdas, Maurice Naftalin. Oracle Press, 2014. ISBN: 007-1829628:
https://www.amazon.com/Mastering-Lambdas-Programming-Multicore-Oracle/
dp/0071829628

•	 Java Magazine from Oracle:
http://www.oracle.com/technetwork/java/javamagazine/index.html

•	 JavaFX Ref Card, Hendrik Ebbers and Michael Heinrichs:
https://dzone.com/refcardz/javafx-8-1

•	 Java Everywhere, Anton Epple. A book on the DukeScript platform:
https://leanpub.com/dukescript
Twitter: @monacotoni

https://github.com/mirkosertic/FXDesktopSearch
http://www.apress.com/9781430265740
http://www.apress.com/9781430268277
https://blogs.oracle.com/geertjan/entry/new_book_javafx_rich_client
http://www.amazon.com/JavaFX-Client-Programming-NetBeans-Platform/dp/0321927710
http://www.amazon.com/JavaFX-Client-Programming-NetBeans-Platform/dp/0321927710
http://mhprofessional.com/product.php?isbn=0071833773
http://www.guigarage.com/javafx-book
http://www.mhprofessional.com/product.php?isbn=0071808965
https://www.pearson.com/us/higher-education/program/Horstmann-Java-SE-8-for-the-Really-Impatient-A-Short-Course-on-the-Basics/PGM214606.html
https://www.pearson.com/us/higher-education/program/Horstmann-Java-SE-8-for-the-Really-Impatient-A-Short-Course-on-the-Basics/PGM214606.html
https://www.amazon.com/Mastering-Lambdas-Programming-Multicore-Oracle/dp/0071829628
https://www.amazon.com/Mastering-Lambdas-Programming-Multicore-Oracle/dp/0071829628
http://www.oracle.com/technetwork/java/javamagazine/index.html
https://dzone.com/refcardz/javafx-8-1
https://leanpub.com/dukescript

Chapter 16 ■ appendix a: referenCes

544

Author Blogs
If you are having trouble with this book’s content or code examples, feel free to comment or mention issues
at the book’s catalog page at apress.com, in the errata tab. If you are totally stumped, feel free to contact the
book authors via Twitter or their blogs.

The following are the book’s authors with their Twitter accounts and blog URLs:

Carl Dea (@carldea): http://carlfx.wordpress.com

Gerrit Grunwald (@hansolo_): http://harmoniccode.blogspot.com

Mark Heckler (@MkHeck): http://www.thehecklers.org/

José Pereda (@JPeredaDnr): http://jperedadnr.blogspot.com

Sean Phillips (@SeanMiPhillips): http://birdasaur.tumblr.com

Tutorials, Courses, Consulting Firms, and Demos
The following links are where you will meet experts and enthusiasts alike who provide many free online
tutorials and offer courses. Some of the links are presentations from major consulting firms teaching and
demoing real-world applications.

•	 FXDocs by the JavaFX community: The JavaFX Documentation Project aims to
pull together useful information for JavaFX developers from all over the web. The
project is open source and encourages community participation to ensure that the
documentation is as highly polished and useful as possible:
https://fxdocs.github.io/docs/index.html

•	 AwesomeJavaFX, Hossein Rimaz: A curated list of awesome JavaFX libraries, books,
frameworks, etc.:
https://github.com/mhrimaz/AwesomeJavaFX
Twitter: @mhrimaz

•	 Various algorithms using JavaFX, Hossein Rimaz:
https://github.com/mhrimaz
Twitter: @mhrimaz

•	 JavaFX Training Courses with Paul and Gail Anderson, authors, teachers, and
speakers:
Twitter: @Paul_ASGTeach and @gail_asgteach
http://asgteach.com/courses/java-and-javafx/javafx-programming-course/

•	 Bekwam Courses, Carl Walker. Tutorials and examples of building real-world
JavaFX-based applications:
https://www.bekwam.com
https://courses.bekwam.net/public_tutorials/index.html
Twitter: @bekwaminc

•	 Excellent JavaFX Tutorials, Jörn Hameister:
http://www.hameister.org/JavaFX.html
Twitter:@Hameiste

•	 JavaFX Demos such as FXCubes and FXFrostedPanel, Alessio Vinerbi. Amazing
JavaFX demos that shows a mix of video and 3D effects:
https://github.com/alexbodogit
Twitter: @Alessio_Vinerbi

http://carlfx.wordpress.com/
http://harmoniccode.blogspot.com/
http://www.thehecklers.org/
http://jperedadnr.blogspot.com/
http://birdasaur.tumblr.com/
https://fxdocs.github.io/docs/index.html
https://github.com/mhrimaz/AwesomeJavaFX
https://github.com/mhrimaz
http://asgteach.com/courses/java-and-javafx/javafx-programming-course/
https://www.bekwam.com/
https://courses.bekwam.net/public_tutorials/index.html
http://www.hameister.org/JavaFX.html
https://github.com/alexbodogit

Chapter 16 ■ appendix a: referenCes

545

•	 JavaFX tutorials, Jakob Jenkov:
http://tutorials.jenkov.com/javafx/index.html
Twitter:@jjenkov

•	 JavaFX tutorials, Dirk Lemmermann Consulting. Excellent tutorials:
http://dlsc.com/blog/
Twitter: @dlemmermann

•	 JavaFX-based tutorials, William Antônio. Quick and easy tutorials from machine
learning to IoT:
https://fxapps.blogspot.com
https://github.com/jesuino
Twitter:@William_Antonio

•	 JavaFX examples using the Ceylon language, Gavin King:
https://github.com/ceylon/ceylon-examples-javafx
Twitter: @1ovthafew

•	 Building the MyDevoxx App with JavaFX and Gluon, Johan Vos and Eugene
Ryzhikov:
https://www.youtube.com/watch?v=1I38pmEnfVQ&list=PLy7t4z5SYNaRN2IDmjq_
SSCrb9Sph4zAC&index=12
Johan Vos: @johanvos
Eugene Ryzhikov: @eryzhikov

•	 The latest JavaFX Daily!, Michael Heinrichs. Newsfeed topics on none other than
JavaFX!: http://paper.li/net0pyr/1312275601#/
Twitter: @net0pyr

Tools, Applications, and Libraries
•	 TilesFX, Gerrit Grunwald. A JavaFX library containing tiles for dashboards:

https://bintray.com/hansolo/tilesfx/tilesfx/1.4.5
Twitter: @hansolo_

•	 AnchorFX, Alessio Vinerbi. Docking framework for JavaFX platform:
https://github.com/alexbodogit/AnchorFX
Twitter: @Alessio_Vinerbi

•	 JFXGL, Jeff Martin. JFXGL is a cross-platform solution for integrating modern-style
OpenGL rendering (v3.2+) with JavaFX UIs in JVM 8 applications. This project is
intended for desktop use, and all three major platforms are supported: Linux, OS X,
and Windows:
https://bitbucket.org/cuchaz/jfxgl
Twitter: @cuchaz

•	 OpenJFX 8 Nightly and Stable (8u60) builds, Chris Newland- Builds of OpenJFX 8
for Linux amd64 (Desktop), OS X, x86egl (Monocle), and armv6hf (Raspberry Pi):
https://chriswhocodes.com
Twitter: @chriswhocodes

http://tutorials.jenkov.com/javafx/index.html
http://dlsc.com/blog/
https://fxapps.blogspot.com/
https://github.com/jesuino
https://github.com/ceylon/ceylon-examples-javafx
https://www.youtube.com/watch?v=1I38pmEnfVQ&list=PLy7t4z5SYNaRN2IDmjq_SSCrb9Sph4zAC&index=12
https://www.youtube.com/watch?v=1I38pmEnfVQ&list=PLy7t4z5SYNaRN2IDmjq_SSCrb9Sph4zAC&index=12
http://paper.li/net0pyr/1312275601#/
https://bintray.com/hansolo/tilesfx/tilesfx/1.4.5
https://github.com/alexbodogit/AnchorFX
https://github.com/alexbodogit/AnchorFX
https://bitbucket.org/cuchaz/jfxgl
https://chriswhocodes.com/

Chapter 16 ■ appendix a: referenCes

546

•	 FontAwesomeFX, Jens Deter. A library with popular font packs used to apply to
JavaFX buttons and labels:
https://bitbucket.org/Jerady/fontawesomefx
Twitter: @FontAwesomeFX

•	 FlexGanttFX and CalendarFX, Dirk Lemmermann. Professional quality custom
controls for Gantt charts and planning calendars. Used in commercial applications:
http://dlsc.com
Twitter: @dlemmermann

•	 FXEventBus, Almas Baimagambetov: Simple event bus implementation based on
JavaFX event dispatching mechanism.
GitHub: https://github.com/AlmasB/FXEventBus
Twitter: @AlmasBaim

•	 FXGL, Almas Baimagambetov: JavaFX game development framework:
GitHub: https://github.com/AlmasB/FXGL
Video: https://www.youtube.com/almasb0/videos
Twitter: @AlmasBaim

•	 JStackFX, Thierry Wasylczenko: A tool for analyzing thread dumps:
https://github.com/twasyl/jstackfx
Twitter: @twasyl

•	 SlideshowFX, Thierry Wasylczenko: Create interactive slide decks for presentations:
http://slideshowfx.github.io
Twitter: @SlideshowFX, @twasyl

•	 Orson Charts, David Gilbert: A 3D chart library for Java applications (JavaFX, Swing,
or server-side):
https://github.com/jfree/orson-charts

•	 JavaFX Maven Docker Image, Jeff Miller:
http://www.mymiller.name/wordpress/app/devops/javafx-maven-docker-
image-openjfx/

•	 UL Viewer, Yasumasa Suenaga. UL Viewer is log parser for JEP 158: Unified JVM
Logging and JEP 271: Unified GC Logging:
GitHub: https://github.com/YaSuenag/ulviewer/releases/tag/v0.1.0
Twitter: @YaSuenag

•	 HeapStats, Yasumasa Suenaga. JVMTI agent and JavaFX analyzer to gather JVM
runtime information for after-the-fact analysis:
GitHub: https://github.com/HeapStats/heapstats
Twitter: @YaSuenag

•	 JVx, SIB Visions. An MDI (multiple document interface) Library:
https://blog.sibvisions.com/2015/06/22/jvx-javafxui-1-0/
Twitter: @sibvisions

•	 JCSG-PathExtensions, Michael Hoffer. A JCSG extension library for working with
simple paths (linearize SVG paths, extrude, and extend):
GitHub: https://github.com/miho/JCSG-PathExtensions
https://bintray.com/miho/JCSG/JCSG-PathExtensions/0.1
Twitter: @mihosoft

https://bitbucket.org/Jerady/fontawesomefx
http://dlsc.com/
https://github.com/AlmasB/FXEventBus
https://github.com/AlmasB/FXGL
https://www.youtube.com/almasb0/videos
https://github.com/twasyl/jstackfx
http://slideshowfx.github.io/
https://github.com/jfree/orson-charts
http://www.mymiller.name/wordpress/app/devops/javafx-maven-docker-image-openjfx/
http://www.mymiller.name/wordpress/app/devops/javafx-maven-docker-image-openjfx/
https://github.com/YaSuenag/ulviewer/releases/tag/v0.1.0
https://github.com/HeapStats/heapstats
https://blog.sibvisions.com/2015/06/22/jvx-javafxui-1-0/
https://github.com/miho/JCSG-PathExtensions
https://bintray.com/miho/JCSG/JCSG-PathExtensions/0.1

Chapter 16 ■ appendix a: referenCes

547

•	 VRL.Studio, Michael Hoffer. Innovative, intuitive, and powerful Visual IDE for rapid
prototyping, learning, teaching, and experimentation:
http://vrl-studio.mihosoft.eu
Twitter: @mihosoft

•	 VWorkflows, Michael Hoffer. Library for interactive flow/graph visualization for
building domain specific visual programming environments:
https://bintray.com/miho/VWorkflows
Twitter: @mihosoft

•	 Erlyberly, Andy Till. A debugger for erlang, elixir, and LFE using erlang
tracing. Probably the easiest and quickest way to start debugging your nodes:
https://github.com/andytill/erlyberly
Twitter: @andy_till

•	 mapjfx 1.13.1 using OpenLayers 4.2.0, Peter-Josef Meisch. JavaFX implementation of
a map using OpenLayers and JavaFX8:
https://www.sothawo.com/projects/mapjfx/
Twitter: @sothawo

Videos and Presentations on JavaFX
•	 TornadoFX, Edvin Syse. Lightweight JavaFX Framework for the Kotlin language:

GitHub: https://github.com/edvin/tornadofx
Twitter: @edvinsyse
Creating a LoginScreen in TornadoFX:
https://www.youtube.com/watch?v=Jyuf4xn0oy4

•	 DemoFX Part I, II, III, Chris Newland. Testbed for measuring JavaFX performance.
JavaFX inspired by the demoscene:
https://www.youtube.com/watch?v=N1rihYA8c2M
https://www.youtube.com/watch?v=WZf0j4GUFYM
https://www.youtube.com/watch?v=9jztG_l8qrk
GitHub: https://github.com/chriswhocodes/DemoFX
Twitter: @chriswhocodes

•	 eteoBoard. Scrum Board Features, Saxonia Systems AG:
https://www.youtube.com/watch?v=mX1SvXeUetQ
https://www.youtube.com/watch?v=4SEvfbudVwM

•	 JavaFX in action, Alexander Casall:
https://www.youtube.com/watch?v=WQPcuCEnipE

•	 3D Made Easy with JavaFX, Kevin Rushforth and Chien Yang:
https://www.youtube.com/watch?v=EBKHdV-_rIc

•	 Modeling, texturing, and lighting mesh geometry in JavaFX 3D, John Yoon:
https://www.youtube.com/watch?v=lJvHSCOdnCY

•	 JavaFX 3D, F(x)yz Sampler preview, Jason Pollastrini:
https://www.youtube.com/watch?v=3zOfsV_8lG0
https://www.youtube.com/watch?v=dEUZ0clj2y0

http://vrl-studio.mihosoft.eu/
https://bintray.com/miho/VWorkflows
https://github.com/andytill/erlyberly
https://www.sothawo.com/projects/mapjfx/
https://github.com/edvin/tornadofx
https://www.youtube.com/watch?v=Jyuf4xn0oy4
https://www.youtube.com/watch?v=N1rihYA8c2M
https://www.youtube.com/watch?v=WZf0j4GUFYM
https://www.youtube.com/watch?v=9jztG_l8qrk
https://github.com/chriswhocodes/DemoFX
https://www.youtube.com/watch?v=mX1SvXeUetQ
https://www.youtube.com/watch?v=4SEvfbudVwM
https://www.youtube.com/watch?v=WQPcuCEnipE
https://www.youtube.com/watch?v=EBKHdV-_rIc
https://www.youtube.com/watch?v=lJvHSCOdnCY
https://www.youtube.com/watch?v=lJvHSCOdnCY
https://www.youtube.com/watch?v=3zOfsV_8lG0
https://www.youtube.com/watch?v=dEUZ0clj2y0

Chapter 16 ■ appendix a: referenCes

548

•	 Rigged hand animation with JavaFX and Leap Motion, José Pereda:
https://www.youtube.com/watch?v=8_xiv1pV3tI

•	 JavaFX Everywhere:
https://www.youtube.com/watch?v=a3dAteWr40k

•	 Integrating Spring Boot with JavaFX, MVP Java:
https://www.youtube.com/watch?v=hjeSOxi3uPg
https://github.com/mvpjava

•	 JavaFX Multiple Controllers, MVP Java:
https://www.youtube.com/watch?v=osIRfgHTfyg

•	 JavaFX, Switching Scenes Like A Boss!, MVP Java:
https://www.youtube.com/watch?v=RifjriAxbw8

•	 Converting a JavaFX app to Kotlin/TornadoFX one class at a time, Edvin Syse:
https://www.youtube.com/watch?v=aSv5rwHxmrA

•	 3D floor visualization in the JavaFX PiDome client:
https://www.youtube.com/watch?v=ROlXtpefjqM
https://www.youtube.com/channel/UCcussRDCHBh0G7sIys9C7zg/feed

•	 JavaFX material design: Setting up and making a login application, Genuine Coder:
https://www.youtube.com/watch?v=1jiuM-gNyBc

•	 JavaFX JFoenix Tutorial #9: Material Design Navigation Drawer:
https://www.youtube.com/watch?v=tgV8dDP9DtM

•	 iOS-Like Smooth Transitions with JavaFX, Bekwam, Inc.:
https://www.youtube.com/watch?v=hpcpCGwPepM
https://www.youtube.com/channel/UCk2pGxJ397c5aC5-WhGPpog
Twitter: @bekwaminc

•	 Let’s Get Wet! AquaFX and Best Practices for Skinning JavaFX Controls, Claudine
Zillmann and Hendrik Ebbers:
https://www.youtube.com/watch?v=ucvdYGLWLT0
Twitter: @etteClaudette, @hendrikEbbers

•	 Test-Driven Development with JavaFX, Sven Ruppert, and Hendrik Ebbers:
https://www.youtube.com/watch?v=PaB0t8NP3Oc&t=1479s
Twitter: @SvenRuppert, @hendrikEbbers

•	 The Moon, Jupiter, and Beyond: JavaFX in the Final Frontier, Sean Phillips:
https://www.youtube.com/watch?v=WaybbwQNNOA

•	 Sean Phillips: JavaFX In Action:
https://www.youtube.com/watch?v=rfyHcsfFQyE

•	 JavaFX Deep Space Trajectory Explorer, Sean Phillips:
https://www.youtube.com/watch?v=MotQ1PC1xT8
https://www.youtube.com/channel/UCm8fN1bUnpIaz2-ycI5L45w

•	 NASA Mission Software Development on the Eights: Java 8, JavaFX 8, and NetBeans 8:
https://www.youtube.com/watch?v=6O9V5nc13h8

https://www.youtube.com/watch?v=8_xiv1pV3tI
https://www.youtube.com/watch?v=a3dAteWr40k
https://www.youtube.com/watch?v=hjeSOxi3uPg
https://github.com/mvpjava
https://www.youtube.com/watch?v=osIRfgHTfyg
https://www.youtube.com/watch?v=RifjriAxbw8
https://www.youtube.com/watch?v=aSv5rwHxmrA
https://www.youtube.com/watch?v=ROlXtpefjqM
https://www.youtube.com/channel/UCcussRDCHBh0G7sIys9C7zg/feed
https://www.youtube.com/watch?v=1jiuM-gNyBc
https://www.youtube.com/watch?v=tgV8dDP9DtM
https://www.youtube.com/watch?v=hpcpCGwPepM
https://www.youtube.com/channel/UCk2pGxJ397c5aC5-WhGPpog
https://www.youtube.com/watch?v=ucvdYGLWLT0
https://www.youtube.com/watch?v=PaB0t8NP3Oc&t=1479s
https://www.youtube.com/watch?v=WaybbwQNNOA
https://www.youtube.com/watch?v=rfyHcsfFQyE
https://www.youtube.com/watch?v=MotQ1PC1xT8
https://www.youtube.com/channel/UCm8fN1bUnpIaz2-ycI5L45w
https://www.youtube.com/watch?v=6O9V5nc13h8

Chapter 16 ■ appendix a: referenCes

549

•	 Dex, Patrick Martin: A data visualization tool written in Java/Groovy/JavaFX capable
of powerful ETL and publishing web visualizations:
https://dexvis.net
https://www.youtube.com/watch?v=r54dsc58c_s
https://github.com/PatMartin/Dex

•	 TUT2097 Are You Listening? JavaFX Binding Techniques for Rich Client UIs, Paul
and Gail Anderson:
https://www.youtube.com/watch?v=lnvAKjZaRpE
http://asgteach.com
Paul Anderson Twitter: @Paul_ASGTeach
Gail Anderson Twitter: @gail_asgteach

https://dexvis.net/
https://www.youtube.com/watch?v=r54dsc58c_s
https://github.com/PatMartin/Dex
https://www.youtube.com/watch?v=lnvAKjZaRpE
http://asgteach.com/

551© Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips and Mark Heckler 2017
C. Dea et al., JavaFX 9 by Example, DOI 10.1007/978-1-4842-1961-4

��������� A
Animation

JavaFX transition classes, 256
keyframes, 255
key values, 255
timeline, 256
transition (see Transition classes) (see also

Compound transitions)
Application. See JavaFX, application lifecycle
Arduino

board, 391–393
Due, 392
IDE

Blink sketch, 400–401
execution, 398–400
MacOS X/Linux, 398
Windows, 396, 398

Uno, 391
Web Editor, 394–396

Arduino 101/Genuino 101, 392
AsciidocFX, 542
Audio playing

anchorPt variable, 302
close button, 313
drag-and-drop support, setting up, 308
file drag and drop, 308
media metadata, 308
MP3 player

application instance variables, 302
close button, 287
custom button panel creation, 305–306
play progress, rewind, and fast

forward, 307
progress and seek position slider

control, 287
source code, 287–296, 298–300
spectrum area chart visualization, 304
stage window, setting up, 303–304
stop, play, and pause buttons, 286

playMedia() method, 309
rewinding, 309
visualization updation, AudioSpectrumListener

interface, 310–313
Audio spectrum data, 310–311

��������� B
BasketStats app

adding model, 447–450
board view modification

board presenter, 458–462
ExpansionPanel controls, 457
game annotation view, 463
game events view, 463
game evolution view, 463
scene builder, 457

creation
AppViewManager class, 445–447
default build.gradle file, 444–445
Gluon plug-in, 441
MobileApplication class, 444
set name and location, 442
set views names, 443

deploy to mobile, 464
main view modification

main presenter, 454–455
scene builder, 453
storage service, 456

service adding, 450–452
Bloom uploader, 542
Body handlers, 340–341
BorderPane layout, 144–145
Bounding rectangle in parent, 87
Builder classes, 71, 84, 527
Building and running, project

Arduino3D class, 425, 426
OrientationFX class, 420, 426
sub-scene, 428
working process, 421–424

Index

■ INDEX

552

��������� C
Capture variables, 106–107
Cartesian coordinate system, 69
Closed captioning video, 323–324
Complex shapes

cubic curve, 83
donut, 86–87
example, 79
ice cream cone shape, 84–85
smile, 86
start() method, 80–83
support, 79

Compound transitions, 261–262. See also Transition
classes

createClosedCaptionArea() method, 325
createMediaView() method, 322
Cubic curve, 83
Cycle method, 94

��������� D
Default methods

cats example, 111–112
code example, 112–115
code explanation, 116–117

Defender methods, 111
Dependency injection, 164, 170
disconnect() method, 413
Domain-specific language, 532
Donut shape, 86–87
Drag and Drop, 249

DragOver, 248
TransferMode.LINK, 248

DragBoard, 248
Drawing lines

common properties, 77
java, 75–76
lambda expressions, 77
offset property, 77
root node, 76
setStrokeWidth() method, 77

Drawing rectangles, 78
Drawing shapes

complex, 79–88
rectangles, 78

Drawing text
apply effects, 100
change text fonts, 97–100
create random values, 96
example, 95–96

3D scene
DrawMode, 383–387
first person movement

keyboard event handler, 376–377
mouse event handler, 377–379

initialize with camera, 367–369
MeshViews, 383–384, 386–387
mouse type events, 375–376
point light, 389–390
roll camera, 388
rotating, 473–475
touching, 473–475
TriangleMesh class, 380
winding and wuthering, 380, 382–383
zooming, 473–475

DukeScript, 531

��������� E
Event-driven architecture (EDA), 283

��������� F
First person movement

keyboard event handler, 376–377
mouse event handler, 377–379

FlowPane layout, 144
Form-type application, 146–147

column constraints, 149
gridlines visible, 149
output, 148
top banner area, 150

Fuzzy, 71–72
FXDesktopSearch, 541
FXForm2, 532

��������� G
Gestures

events, 468
touch events

animate circle, 469–471
run, 471

touch point, 468
Getter method, 118
GluonHQ company, 150
Gluon Mobile, 531

development tool, 438
Glisten user interfaces, 439–440
IDE plug-ins, 438
license, 441

Gradient color
create, 92
linear, 92
radial gradient, 93
reflective cycle, 94
semitransparent, 94
stop color, 92

Gradle, 1
-based project, 38
installing, 22

■ INDEX

553

GridPane layout
column constraints, 145, 149
form-type application, 146–147

gridlines visible, 149
output, 148
top banner area, 150

Griffon, 531
Grouped primitives, 373–374
GUI frameworks, 531

DukeScript, 531
FXForm2, 532
Gluon Mobile, 531
Griffon, 531
JavaFX MVP framework, 532
jpro, 531
NetBeansIDE-AfterburnerFX-Plugin, 532
Open Dolphin, 531
ReduxFX, 532
TornadoFX, 531

��������� H
Hands tracking project

application class, 485–487
3D model classes

forearm, 485
joint, 484–485
phalanx, 484
Utils, 483, 486–487

LeapListener class, 480–483
Pair class, 482–483
run, 487–488

HBox
create borders, 138
four rectangles example, 136, 138–140
set spacing, 139
shape nodes, 136
single-argument constructor, 137
total width in pixels, 139–140

Hello Mobile World
build.gradle file, 433
jfxmobile plug-in, 435
main class, 434
running androidInstall, 436
signing configuration, 437

HTML5 analog clock, 345–347, 349
HTML DOM content

body handlers, 340–341
getDocument(), 331
HttpClient.Builder class, 337
HTTP GET request, 340
HTTP POST request, 341–342
HttpRequest API, 337–338
HttpRequest.Builder request property

methods, 339

JavaScript
bridge, 332
function, 333
to java, 333–334

jdk.incubator.httpclient, 335–336
JSON text, 335
RESTful requests, 339
String object, 332

��������� I
Ice cream cone shape, 84–85
ImageInfo.java, 252
Images

common parameters, 228
display, 230
getClassLoader() method, 229
load, 228
loading from a web server, 228–230, 264
loading from the classpath, 228–229, 264
loading from the file system, 228–229,

231–232, 264
resources directory, 229–230
toURL() method, 229
web server, 228–229

ImageView. See Images
ImageViewButtons.java, 250–252
Inkscape and SVG, 349
Integrated development environments

(IDEs), 1–2, 526

��������� J
JAR hell, 52
Java 8

books and magazines, 543
JavaFX printing API, 527
lambda expressions, 528
Nashorn, 529

Java 9
API documentation, 525
features, 525
IDEs, 526
Jigsaw, 526

JavaBeans, 118, 119, 130
java.beans.PropertyChangeSupport,118. See also

Properties
Java development kit (JDK), 1
Javadoc API documentation, 525
JavaFX

application lifecycle, 237
applications, 541–542
audio player, 286
books and magazines, 543
Cartesian vs. screen coordinate system, 69

■ INDEX

554

Charts API, 414, 416, 418–419
color, 527
communities, 540
3D, 537–538
deploying applications, 526
2D shapes, 527
embedded, 539
fuzzy, 71–72
gaming, 538
JavaBean, 118–121
JavaFXPorts, 431–432
JFXGL, 545
layouts, 530
line, 69
media, 283, 535
objects, 71
operating system style guidelines, 535
printing, 527
properties and bindings, 529
read-only properties, 119
read/writable properties, 119
transition classes, 256
videos and presentations, 547–548
WebView node, 536–537
wrapper objects, 118
2.x builder classes, 527
yFiles, 534

javafx.animation.FadeTransition, 256
javafx.animation.PathTransition, 256
javafx.animation.ScaleTransition, 256
javafx.animation.Transition, 257, 261
javafx.animation.TranslateTransition, 256
javafx.beans.property.ReadOnlyBooleanWrapper, 118
javafx.beans.property.ReadOnlyDoubleWrapper, 118
javafx.beans.property.ReadOnlyIntegerWrapper, 118
javafx.beans.property.ReadOnlyStringWrapper, 119
javafx.beans.property.SimpleBooleanProperty, 118
javafx.beans.property.SimpleDoubleProperty, 118
javafx.beans.property.SimpleIntegerProperty, 118
javafx.beans.property.SimpleStringProperty, 109
JavaFX HelloWorld application, 30

command-line prompt, 34–40
Netbeans IDE

Java Platform Manager, 31
launch, 30
Main Project, 33
newly created HelloWorld project, 31
project and categories, 30
Project Location and Project Folder fields, 30
Project properties, 32

source code
JavaFX node, 42–43
main() method, 41
overridden start() method, 41
packaging, 43–44

javafx.scene.image.ImageView, 230, 236
Java IoT, 539
Java/JavaFX web-based APIs, 327
Java 8 JDK

downloading required software, 1–2
environment variables, 14–15

MacOS X or Linux, 19–22
Windows, setup, 16–19

installation
complete, 7
destination folder, 6
next button, 3
optional features, 4
progress bar, 5
security warning, 3

Java 9 JDK, 3
on Linux, 11

Fedora, CentOS, Oracle Linux, 11
Red Hat alternatives, 12
Ubuntu/Debian, 13–14

on MacOS X, 7, 9–11
on Microsoft Windows, 3, 5–6

Java modules and class, 328–329
Java Specification Request (JSR) 103, 335
JFrog, 55
JideFX, 534
Jigsaw, 526

automatic modules, 47
benefits, 48–49
definition, 48
drawbacks, 49
JAR hell, 52
Java 9, 49
jdeps tool, 50–51
kill switch, 52
Maven coordinates, 55
OSGi, 53–54
repositorsity, 55

jpro, 531
JylooSoftware, 534

��������� K
Keyboard event handler, 376–377
Keyframes, 255
Key values, 255

��������� L
Lambda expressions, 77, 107, 117

aggregate operations, 108–111
anonymous inner class, 104
binding

bidirectional, 123
high-level, 124
low-level, 124

JavaFX (cont.)

■ INDEX

555

closures, 104
Greek symbol, 103
JSR 103, 335
parallel streams, 110–111
pipeline operations, 108
project, 528
syntax, 104–105

Layouts
BorderPane, 144–145
FlowPane, 144
GridPane, 145, 147–150
HBox, 136–140
VBox, 140–143

Lazy evaluation, 107
Leap Motion controller

Cartesian coordinate system, 478
device and box, 476
diagnostic visualizer application, 477
hands tracking project (see Hands tracking

project)
LEDs, 477
SDK

download, 478
JAR, 478
JavaFX threads, 479
onConnect() method, 479

Lifecycle
init(), 238
start(), 235–239, 242
stop(), 237–238

Logon dialogs
class member variables, 131
code, 126–129, 131
display, 126
start() method, 131–134

��������� M
Madgwick library, 402
Maven, 47, 54, 55, 68
Media events, 283–284
Media marker events, 324
media player, 283, 285, 287, 293, 301, 302,

305–308, 310, 313, 314
Status.PLAYING, 292, 293, 305, 306

MediaPlayer events, 284
MediaView node, 321
Method reference, 106
Modellus application, 542
Modular application

application code, 64–65
compile code, 65
copy resources, 65
JAR

package application, 66–67
run application, 67

module definition, 63–64
project structure, 63
run application, 66

Module path, 56
Module project

location, 407
module-info class, 409
naming, 408
NetBeans, 407
OrientationFX class, 409

Modules
application, 59
automatic, 59, 62
definition, 57
exports, 58
platform, 59–61
requires, 57
unnamed, 59, 62

Mouse event, 375–376
Mouse event handler, 377–379
MPEG-4, 314
Myst game, 257

��������� N
Nano Editor’s keyboard commands, 20
Nashorn, 529
NetBeans IDE, 1, 45

installation
check for updates option, 26
destination directory, 25
license agreement, 24
NetBeansIDE-AfterburnerFX-Plugin, 532
next button, 23
progress bar, 27
setup complete, 28
start page, 29

Nonlocal variables. See Capture variables

��������� O
Operating system style guidelines, 535
Orientation visualizer, 401–402, 404–405
OSGi, 53–54

��������� P, Q
Painting colors, 88–91
Parallelism, 110
PhotoViewer2

loadAndDisplayImage() method, 262
transitionByFading() method, 263

Photo Viewer application
adjust colors, 233
ImageInfo.java, 235, 252
ImageViewButtons.java, 235, 250–252

■ INDEX

556

loads images, 231
photo-viewer.css, 235, 253–254
PhotoViewer.java, 235

Color Adjust menu, 243–244
constants, 235–236
createSliderMenuItem() method, 244
factory function, 238
file menu, 239
isValidImageFile() method, 250
loadAndDisplayImage()

method, 247–248
main(), 237–238
menu options, 240–241
progress indicator, 239
rotateImageView() method, 243
rotate menu, 242
save image, 241
setupDragNDrop() method, 248, 250
start(), 237–238
state variables, 235–236
stop(), 237–238
updateSliders() method, 245
URL to load and render image, 248
wireupRotateAngleBy(), 242
wireupUIBehavior() method, 247

previous/next image buttons, 233
progress indicator, 232
resize image, 232
rotate image, 232
Save As option, 233
UML class, 233–234

PiDome, 539, 541
Plain old Java object (POJO), 235
playMedia() method, 309–310
Point-and-click game

fade transition, 259, 261
JavaFX Transition APIs, 257
scale transition, 258, 261
SVG nodes, 257–258, 260–261

Point light, 389–390
Primitives

Cylinder object, 369–370
grouped, 373–374
transforming cube and sphere, 372–373
translate and rotate, 371–372

Printing
APIs, 268
MyPrinterHelper.createPages(), 267
Printer and PrinterJob

configuration, 272–273
PrinterAttributes, 269–271

web page, 274

Properties, 103–134
Property change support

change() method, 121–122
invalidated () method, 122

��������� R
Radial gradient, 93
Range offset, 92
Reflective cycle gradients, 94
RESTful requests, 339
Retained-mode approach, 99
Rich Internet Application (RIA), 227, 283, 327
Robo4J, 539
Roll camera, 388
Rotate gesture, 473–474

��������� S
Scene Builder

BorderPane, 153–155
Controller class, 152
dependency injection, 164
download, 151
first name label, 160
fx:id name, 165–166
@FXML annotation, 170
FXMLContactForm.java, 168–169
FXML file, 162, 164
FXMLLoader.load() method, 170
GridPane layout, 156, 158–159
Hierarchy panel, 152
install, 151
last name label, 162
launch, 151
subsections, 151
user interface, 152–153, 162
WYSIWYG editors, 150

Scene.lookup() method, 304
Screen coordinate system, 70
Semitransparent gradients, 94
SequentialTransition, 261–264. See also Transition

classes
Serial communications, 409, 411–413
Serial reading, 406
Setter methods, 73, 118
Single abstract method (SAM), 107
Smile shape, 86
Software installation

Java 8 JDK (see Java 8 JDK)
Java 9 JDK (see Java 9 JDK)
NetBeans IDE (see NetBeans IDE)
operating systems, 2

Photo Viewer application (cont.)

■ INDEX

557

start() method, 363–364
ATTEMPTS property, 134
CSS file, 132
password field, 133
rectangular background, 132
SVG path notation, 133
User class, 131

Stop color, 92
streamToString() method, 353
SyntheticaFX, 534

��������� T
Testing Serial Comms, 414
Text fonts, change, 97–100
Timeline, 256
TornadoFX, 531
Touch events

animate circle, 469–471
run, 471

Touch gesture, 473
Touch point, 468
Transition classes, 227, 256, 258–261
TriangleMesh class, 380

��������� U
Ubuntu/Debian system, 13–14
UML class, 233–234
User interface (UI)

customize, 532–534
patterns, 117

��������� V
VBox layout

child node, 140
five-pixel spacing, 142

four rectangles example, 140–142
total width in pixels, 143

Video player
closed captioning video, 323–324
MediaView node, 321–322
MPEG-4, 314
source code, 316–319
stage window, full-screen mode, 320
start() method, 320
VP6 .flv, 314

vi Editor’s keyboard commands, 21
Virtual extension methods, 111
VP6 .flv, 314

��������� W, X, Y
Weather Widget, 351–362
WebDocPrinter

application, 275, 277–280
print modes, 275
WebView, 281

WebEngine API, 330–331
WebEvents, 350, 351
WebSockets

client-side sockets, 343, 345
HTML5 content, 345
server-side sockets, 342–343

Winding
addAll() method, 382
buildPyramid(), 382
getFaces().addAll(), 382
square pyramid, 380
TriangleMesh object, 380–382

WYSIWYG editors, 150

��������� Z
Zoom gesture, 475

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	Downloading Required Software
	Installing the Java 9 Development Kit
	Installing the JDK on Microsoft Windows
	Installing the JDK on MacOS X
	Installing the JDK on Linux
	Fedora, CentOS, Oracle Linux, or Red Hat Enterprise Linux OSes
	Red Hat Alternatives
	Ubuntu/Debian
	Default Java
	Default Javac

	Setting Environment Variables
	Setup Windows Environment Variables
	Setting Up MacOS X/Linux Environment Variables

	Installing Gradle
	Installing the NetBeans IDE
	Creating a JavaFX HelloWorld Application
	Using the NetBeans IDE
	Using an Editor and the Terminal (the Command-Line Prompt)
	Using Gradle on the Command-Line Prompt

	Walking Through the HelloWorld Source Code
	JavaFX Scene Graph
	JavaFX Node

	Packaging a JavaFX Application
	Downloading the Book’s Source Code
	Summary

	Chapter 2: JavaFX and Jigsaw
	What Is Project Jigsaw?
	Benefits
	Drawbacks
	Java 9 Migration Path
	The jdeps Analysis Tool
	Kill Switch

	History
	JAR Hell
	OSGi
	Maven/Gradle
	Repositories
	Maven Coordinates

	Getting Started
	What Is the Module Path?
	Module Definition
	Module Naming
	Requires
	Requires Public (Implied Readability)
	Exports

	Module Types
	Application Module (Explicit Modules)
	Platform Modules (Implicit)
	JavaFX Platform Module Graph
	Unnamed Module (Classes and Non-Jigsaw Modules on the Classpath)
	Automatic Modules (JAR Files Loaded as Named Modules)

	An Example HelloWorld JavaFX 9 Modular Application
	Create Project Structure
	Create a Module Definition
	Create Main Application Code
	Compile Code (Module)
	Copy Resources
	Run Application
	Package Application as JAR
	Run Application as JAR
	Display Module Description

	Summary

	Chapter 3: JavaFX Fundamentals
	JavaFX Lines
	Drawing Lines
	Drawing Shapes
	Drawing Complex Shapes
	A Complex Shape Example
	The Cubic Curve
	The Ice Cream Cone
	The Smile
	The Donut

	Painting Colors
	An Example of Color
	Gradient Color
	Stop Color
	Linear Gradient
	Radial Gradient
	Semitransparent Gradients
	Reflective Cycle Gradients

	Drawing Text
	Changing Text Fonts
	Applying Text Effects

	Summary

	Chapter 4: Lambdas and Properties
	Lambda
	Lambda Expressions
	Syntax
	Method Reference
	Variable Capture

	Functional Interfaces
	Aggregate Operations
	Default Methods
	An Example Case: Cats Large and Small
	Code for the Example
	Explanation of the Code

	Properties and Binding
	UI Patterns
	Properties
	Types of JavaFX Properties
	Read/Writable Properties
	Read-Only Properties

	JavaFX JavaBean
	Property Change Support

	Binding
	Bidirectional Binding
	High-Level Binding
	Low-Level Binding

	A Logon Dialog Example
	Login Dialog Source Code
	Explanation of the Code
	Class Member Variables
	The start() Method

	Summary

	Chapter 5: Layouts and Scene Builder
	Layouts
	HBox
	An HBox Example
	Code Walkthrough

	VBox
	A VBox Example
	Code Walkthrough

	FlowPane
	BorderPane
	GridPane
	A Form-Type Application Example
	Code Walkthrough

	Scene Builder
	Download and Installing Scene Builder
	Launching Scene Builder
	A Code Walkthrough

	Summary

	Chapter 6: User Interface Controls
	Labels
	Custom Fonts
	Fonts as Icons
	Example: Working with Third-Party Font Packs as Icons
	An Example: LabelAwesome a Font Pack Icon Browser App
	Getting Started
	Compiling the Example
	Run Example Application

	How It Works
	The init() Method
	The start() Method
	Using a TextFlow Control
	Using a ComboBox Control
	Using a TextField Control

	The Private showIconDisplay() Method

	Buttons
	Button
	Check Box
	Hyperlink
	Radio Button
	Example: Button Fun
	Button Fun Instructions
	Source Code of ButtonFun.java
	How It Works

	Menus
	Creating Menus and Menu Items
	Invoking a Selected MenuItem
	Example: Working with Menus
	How It Works
	Additional Ways to Select Menus and Menu Items
	Key Mnemonics
	Key Combinations
	Context Menus

	The ObservableList Collection Class
	Working with ListViews
	Example: Hero Picker
	How It Works

	Working with TableViews
	What Is a Cell Factory?
	Making Table Cells Editable
	Edit a Table Cell as a TextField
	Edit a Table Cell as a ComboBox

	Example: Bosses and Employees Working with Tables
	Domain Objects
	GUI Code
	How It Works

	Generating a Background Process
	Creating a Background Task
	Example: File Copy Progress Dialog (BackgroundProcesses)
	How It Works

	Summary

	Chapter 7: Graphics
	Working with Images
	Loading Images
	Displaying Images

	A Photo Viewer Example
	Features/Instructions
	UML: Class Diagram
	File Descriptions
	Source Code
	PhotoViewer.java
	ImageViewButtons.java
	ImageInfo.java
	photo-viewer.css

	Animation
	What Are Key Values?
	What Are Keyframes?
	What Is a Timeline?
	JavaFX Transition Classes

	Point-and-Click Game Example
	Source Code
	How It Works

	Compound Transitions
	PhotoViewer2 Example
	Summary

	Chapter 8: JavaFX Printing
	JavaFX Printing
	JavaFX Print APIs
	Printer and PrinterJob
	Query Printer Attributes
	Configuring a Print Job

	Printing a Web Page
	Example WebDocPrinter Application
	Source Code
	How Does It Work?

	Summary

	Chapter 9: Media and JavaFX
	Media Events
	Playing Audio
	An MP3 Player Example
	The Stop, Play, and Pause Buttons
	The Progress and Seek Position Slider Control
	The Close Button

	MP3 Audio Player Source Code
	How It Works
	The Audio Player Application’s Instance Variables
	Setting Up the Stage Window
	The Spectrum Area Chart Visualization (the Scene.lookup() Method)
	Creating a Custom Button Panel
	Play Progress, Rewind, and Fast Forward
	Seeking Backward or Forward in the Media
	Using a Slider Control to Show Play Progress

	Setting Up Drag-and-Drop Support for Audio Files
	Audio File Drag and Drop
	Media Metadata
	Playing Media
	Rewinding (the OnEndOfMedia Event)
	Updating the Visualization Using the AudioSpectrumListener Interface
	Quitting (the Close Button)

	Playing Video
	MPEG-4
	VP6 .flv
	A Video Player Example
	Video Player Source Code
	How It Works
	Setting Up the Stage Window for Full-Screen Mode
	The MediaView Node

	Simulating Closed Captioning: Marking a Position in a Video Media
	Closed Captioning Video Example
	How It Works

	Summary

	Chapter 10: JavaFX on the Web
	JavaFX Web and HTTP2 APIs
	Web Engine
	WebEngine’s load() Method
	WebEngine’s loadContent() Method

	HTML DOM Content
	Obtaining an org.w3c.dom.Document (DOM) Object
	Using Raw XML Content as a String
	The JavaScript Bridge
	Communicating from Java to JavaScript
	Communicating from JavaScript to Java
	Java 9 Module jdk.incubator.httpclient
	HttpClient API
	HttpRequest API

	Making RESTful Requests
	The HTTP GET Request
	Body Handlers

	HTTP POST Request
	WebSockets
	Server-Side Sockets
	Client-Side Sockets

	Viewing HTML5 Content (WebView)
	Example: An HTML5 Analog Clock
	Analog Clock Source Code
	How It Works
	Inkscape and SVG
	WebEvents
	Weather Widget Example
	One-Liner: Reading an Input Stream into a String
	Source Code
	How It Works
	Enhancements

	Summary

	Chapter 11: JavaFX 3D
	Basic 3D Scenes in JavaFX
	A Very Basic 3D Scene Example

	Primitives
	Adding a Primitive Example
	Simple Translate and Rotate Example
	Multiple Primitive Transformation Example
	All Together Now: Grouped Primitives

	Interacting with Your Scene
	Primitive Picking for Primitives
	First Person Movement Using the Keyboard
	First Person Camera Movement Using the Mouse

	Beyond the Basics
	Custom 3D Objects Using the TriangleMesh Class
	“Winding” and Wuthering
	MeshViews and DrawMode
	Roll Camera!
	Hit the Lights

	Summary

	Chapter 12: JavaFX and Arduino
	The Arduino Board
	Programming the Arduino
	Arduino Web Editor
	Arduino IDE
	Windows
	MacOS X or Linux
	Running the IDE
	The Blink Example

	Orientation Visualizer Example
	How It Works

	Serial Reading
	Java Simple Serial Connector

	JavaFX, the Charting API, and Orientation
	Creating the Module Project
	Serial Communications
	How It Works
	Testing Serial Comms
	The JavaFX Charts API
	Building and Running the Project
	How It Works
	Adding More Functionality
	Building and Running the Project
	How It Works

	More Examples
	Summary

	Chapter 13: JavaFX on Mobile
	JavaFXPorts: The Port to Mobile
	JavaFXPorts Under the Hood
	Getting Started with JavaFXPorts

	Hello Mobile World Example
	How Does It Work?
	Submitting the App to the Stores

	Gluon Mobile
	The Gluon IDE Plug-Ins
	Charm Glisten
	License

	Example: The BasketStats App
	Creating the Project
	Adding the Model
	Adding the Service
	Modifying the Main View
	Modifying the Board View
	Deploy to Mobile

	More Examples
	Summary

	Chapter 14: JavaFX and Gestures
	Recognizing Gestures in Your Application
	Example: Animating Shapes Along a Path Using Touch Events
	How Does It Work?

	Touching, Rotating, and Zooming in 3D
	The Leap Motion Controller
	How It Works
	Getting Started with the Leap SDK
	Adding the Leap SDK to a JavaFX Project
	The Hands Tracking Example
	The LeapListener Class
	The 3D Model Classes
	The Application Class
	Building and Running the Project

	More Examples
	Summary

	Chapter 15: Custom UIs
	Theming
	Native Look and Feels
	Web and Mobile Look and Feels
	Applying the JavaFX CSS Theme
	Using the setUserAgentStylesheet(String URL) Method
	Using Scene’s getStylesheets().add(String URL) Method

	An Example of Switching Themes
	The Look N Feel Chooser Example Application Code
	How It Works

	JavaFX CSS Styling
	What Are Selectors?
	CSS id Type Selectors
	CSS class Type Selectors
	Selector Patterns
	Common Selector Patterns
	Pseudo-Class Selectors

	A Selector Styling Example
	How It Works

	How to Define -fx- Based Styling Properties (Rules)
	Styling a Node with a Selector Style Definition Block
	Styling a Node by Inlining JavaFX CSS Styling Properties
	Styling Properties (Rules) Limitations

	Obeying the JavaFX CSS Rules

	Custom Controls
	The LED Custom Control
	Structure of the LED Custom Control Example Code
	The Properties of the LED Control
	The Initialization Code of the LED Control
	Visualization Code
	The LED Control CSS File
	Resizing the LED Control
	How It Works

	Other Ways to Create a Custom Control

	Summary

	Chapter 16: Appendix A: References
	Java 9 SDK
	Java 9 API Documentation
	Java 9 Features
	Java 9 Jigsaw
	IDEs
	Deploying Applications
	JavaFX 2D Shapes
	JavaFX Color
	JavaFX 2.x Builder Classes
	JavaFX Printing
	Project Lambda
	Nashorn
	Properties and Bindings
	Layouts
	JavaFX Tools
	Enterprise GUI Frameworks
	Domain-Specific Languages
	Custom UIs
	Operating System Style Guidelines
	JavaFX Media
	JavaFX on the Web
	JavaFX 3D
	JavaFX Gaming
	Java IoT and JavaFX Embedded
	Software and Device Manufacturers
	JavaFX Communities
	Applications
	Java/JavaFX Books and Magazines
	Author Blogs
	Tutorials, Courses, Consulting Firms, and Demos
	Tools, Applications, and Libraries
	Videos and Presentations on JavaFX

	Index

