
JavaScript
Essentials for SAP
ABAP Developers

A Guide to Mobile and Desktop
Application Development
—
Rehan Zaidi

JavaScript Essentials for
SAP ABAP Developers

A Guide to Mobile and Desktop Application
Development

Rehan Zaidi

JavaScript Essentials for SAP ABAP Developers: A Guide to Mobile and Desktop Application
Development

Rehan Zaidi					
Karachi, Pakistan				

ISBN-13 (pbk): 978-1-4842-2219-5			 ISBN-13 (electronic): 978-1-4842-2220-1
DOI 10.1007/978-1-4842-2220-1

Library of Congress Control Number: 2017945747

Copyright © 2017 by Rehan Zaidi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Technical Reviewer: Diego Dora
Coordinating Editor: Rita Fernando
Copy Editor: Bill McManus

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/9781484222195. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484222195
http://www.apress.com/source-code

I dedicate this book to my Mother

v

Contents at a Glance

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

■■Chapter 1: Introduction to JavaScript�� 1

■■Chapter 2: A Step Ahead in JavaScript��� 15

■■Chapter 3: Operators in JavaScript�� 31

■■Chapter 4: Control Structures in JavaScript��� 49

■■Chapter 5: Regular Expressions and String Methods��� 65

■■Chapter 6: Functions�� 83

■■Chapter 7: Doing More with Functions��� 97

■■Chapter 8: Object-Oriented Programming in JavaScript������������������������������������ 111

■■Chapter 9: Objects�� 127

■■Chapter 10: JavaScript Object Notation (JSON)��� 145

■■Chapter 11: Miscellaneous Topics�� 153

Index�� 167

vii

Contents

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

Chapter 1: Introduction to JavaScript��� 1

Brief JavaScript Background��� 1

Inside a JavaScript Program��� 2

Creating a Simple JS Program�� 2

A Quick Look at HTML��� 3

Putting JavaScript in HTML Code�� 5

Writing JS Code Within the <HEAD> and </HEAD> Tags�� 5

Writing JS Code Within the <BODY> and </BODY> Tags�� 6

Creating JS Code in a Separate File�� 6

Variable Declaration in JavaScript�� 7

Using Eclipse��� 8

Summary��� 13

■■Chapter 2: A Step Ahead in JavaScript��� 15

Window Object�� 15

Data Types in JavaScript��� 17

String��� 17

Number�� 19

Undefined�� 20

Null�� 20

■ Contents

viii

Object�� 21

Boolean�� 23

The typeof Operator��� 24

Method console.log��� 25

Taking Input from the User�� 28

Commonly Used Keywords in JavaScript�� 29

Summary��� 29

■■Chapter 3: Operators in JavaScript�� 31

Arithmetic Operators��� 31

Addition Operator��� 31

Subtraction Operator��� 32

Multiplication Operator�� 32

Division Operator��� 32

Remainder Operator�� 33

Exponentiation Operator�� 33

Increment Operator��� 33

Decrement Operator�� 34

Unary Negation Operator��� 34

Comparison Operators��� 34

Greater Than Operator��� 35

Less Than Operator�� 35

Greater Than or Equal To Operator��� 35

Less Than or Equal To Operator��� 35

Equality and Inequality Operators�� 36

Logical Operators�� 38

Bitwise Operators�� 40

Bitwise AND��� 41

Bitwise OR��� 41

Bitwise XOR��� 42

Bitwise NOT��� 42

■ Contents

ix

Bitwise Left Shift��� 43

Bitwise Unsigned Right Shift��� 44

Bitwise Signed Right Shift��� 44

Coding Example��� 44

Assignment Operators��� 45

String Operator�� 46

Summary��� 47

■■Chapter 4: Control Structures in JavaScript��� 49

Block Statement�� 49

Conditional Statements��� 50

if...else Statement��� 50

switch Statement�� 53

Loops in JavaScript��� 56

while Loop��� 56

do...while Loop�� 57

for Loop��� 59

for...in Loop�� 62

Label Statement�� 63

Summary��� 64

■■Chapter 5: Regular Expressions and String Methods��� 65

Regular Expressions: An Overview�� 65

String Methods�� 67

search Method��� 67

replace Method�� 68

match Method��� 69

split Method��� 71

Regular Expression Object�� 72

Regular Expression Object Properties��� 73

Regular Expression Object Methods�� 78

Summary��� 81

■ Contents

x

■■Chapter 6: Functions�� 83

Functions: An Overview��� 83

Declaring Functions�� 85

Using a Function Expression��� 85

Using a Function Declaration��� 87

Summary Comparison of the Function Declaration and Function Expression��������������������������������������� 88

Function Parameters and Arguments�� 89

Missing Parameters and the undefined Value��� 90

arguments Array�� 90

Simulating Optional Parameter Passing�� 91

return Statement��� 92

Function Call��� 92

Parameter Pass by Value or Pass by Reference?�� 93

Function Naming��� 95

Summary��� 95

■■Chapter 7: Doing More with Functions��� 97

Hoisting in the Context of Functions��� 97

First-Class Citizens��� 100

Nested Functions�� 101

Lexical Scoping��� 104

Closures�� 106

Recursive Functions�� 108

Summary��� 110

■■Chapter 8: Object-Oriented Programming in JavaScript������������������������������������ 111

Object-Oriented Programming in General��� 111

Object Instances and Constructors��� 113

Approach 1: Using an Object Literal�� 114

Approach 2: Using a Constructor Function�� 114

Approach 3: Using the Object() Constructor��� 116

Approach 4: Using the create() Method��� 117

■ Contents

xi

JavaScript: A Prototype-Based Language��� 117

Prototypal Inheritance��� 121

Summary��� 125

■■Chapter 9: Objects�� 127

Objects Revisited��� 127

Array�� 128

Properties of Array Object�� 129

Array Methods��� 131

Boolean��� 133

Boolean Properties�� 134

Boolean Methods��� 134

String��� 135

String Properties�� 135

String Methods�� 136

Date��� 139

Date Properties�� 139

Date Methods�� 140

Summary��� 143

■■Chapter 10: JavaScript Object Notation (JSON)��� 145

JSON: An Overview�� 145

JSON Data Types��� 146

JSON Objects��� 147

JSON Arrays��� 148

JSON parse Method�� 149

JSON stringify Method�� 150

Summary��� 151

■■Chapter 11: Miscellaneous Topics�� 153

Strict Mode�� 153

Debugging JavaScript��� 155

■ Contents

xii

Code Formatting Tips�� 158

Use a Semicolon at the End of Each Statement�� 158

Usage of Blanks��� 158

Usage of Comparison Operators�� 159

Function Curly Brackets�� 159

Correctly Formatted Code Example��� 159

Naming Convention for Variables�� 159

Runtime Error and Exception Handling��� 160

Best Practices in JavaScript�� 162

Avoid Use of Global Variables�� 162

Never Declare Objects for Numbers, Strings, or Booleans�� 163

Use of default Clause in switch Statements�� 163

Assigning Default Values in Parameter�� 164

Use === Comparison�� 164

Avoid Usage of Closures�� 165

Summary��� 165

Index�� 167

xiii

About the Author

Rehan Zaidi is a consultant for several international SAP clients (both onsite and remotely) on a wide
range of SAP technical and functional requirements, and also provides writing and documentation services
for their SAP- and ABAP-related products. He started working with SAP in 1999 and writing about his
experiences in 2001. Rehan has written several articles for both SAP Professional Journal and HR Expert, and
also has a number of popular SAP- and ABAP-related books to his credit.

Rehan is co-founder of IMZ Technologies, which provides SAP consulting to companies and helps
clients (both onsite and remotely) with their SAP technical requirements (ABAP, Workflow, Quick
development of Fiori apps, and S/4 HANA-related requirements). Rehan also creates documentation and
training manuals for a number of companies based in the United States.

Rehan has clients located in a number of countries and continents, including the Middle East
(GCC region), North America, and Europe. He also is currently working on a new ERP programmer magazine.

Rehan may be contacted via email at rehan@imztechno.com and erpdomain@gmail.com.

xv

About the Technical Reviewer

Diego Dora is the Managing Director of sovanta AG’s labs in Buenos Aires,
Argentina. He has over 15 years’ experience in the IT industry wearing
different hats, including Developer, Software Architect, Development
Manager, and Project Manager. Throughout his career, Diego has
focused on developing enterprise business applications for international
companies. He has extensive experience in JavaScript, SAPUI5, SAP
Systems, SAP ABAP, SAP Cloud Platform, SAP HANA, and SAP Fiori,
among other SAP technologies. Currently he is researching the subject of
machine learning in the modern enterprise.

xvii

Acknowledgments

I am very thankful to both of my parents, in particular my mother (my main source of motivation and
strength in life), and all my friends and well-wishers for their best wishes and prayers.

I am grateful to Susan McDermott for providing me the opportunity to write another SAP-related book
that will be published from the United States. Many thanks to Rita Fernando for all the help and guidance
during the writing and editing process.

I am very grateful to Diego Dora for his technical edits. Despite his personal problems and difficulties,
he helped us make this book ready for publishing.

And I am very indebted to all the people of Apress who have worked on the development of this book.

xix

Introduction

Mobile and desktop application development for SAP Fiori is a very important and popular topic for SAP
developers. It requires SAP development tools based in JavaScript (JS). A major problem faced by many
members of the SAP ABAP community is that they have little to no knowledge of JS. This book addresses that
problem. Written as a quick guide for SAP ABAP developers to easily master JavaScript, this book will equip
you with the necessary skills to develop mobile and desktop applications.

The primary emphasis of this book is on the parts of the JS language that are useful from the perspective
of an ABAP developer. The book starts with a brief introduction to HTML, the basics of JS, and how to create
and run a simple JS program. It then dives into the details of the language, showing you how to make simple
programs. Next, it covers in detail loops, mathematical operations, and string and regular expression in JS. The
book then gives you a taste of functions, followed by objects and object-oriented programming in JavaScript.
Code examples and screenshots are provided throughout the book to help you fully understand JS. Finally, this
book includes a chapter on miscellaneous topics, including JS best practices and recommendations.

This book is intended for SAP professionals, ABAP users, and university students. A brief overview of the
chapters follows:

Chapter 1: Introduction to JavaScript for ABAP. This chapter is an introduction
to JavaScript for ABAP developers. It starts with the prerequisite knowledge for
ABAP developers learning JavaScript. It next covers the basics of JavaScript,
followed by the typical differences between the ABAP and JavaScript languages.
Finally, it presents a very simple running JS program and shows you the
necessary steps to create it yourself.

Chapter 2: Getting Your Feet Wet with JavaScript Language. This chapter first
gives you an overview of the Window object. Next, it describes in detail the data
types that JavaScript provides. Then, demo programs will show you how to
display data to the user in a dialog box, debug your web page in a web browser
console, and receive input from the user via a dialog box. The final section
provides a list of reserved words in the JS language. This chapter provides the
foundation of the JS language.

Chapter 3: Operators in JavaScript. As with all languages, the operators are very
important for JS programmers and developers. This chapter starts with coverage
of the arithmetic operators. Next, it introduces the comparison operators and
logical operators that are used for formulating conditional checks in JS programs.
Finally, the bitwise, assignment, and string operators are discussed.

Chapter 4: Control Structures in JavaScript. Once you have a good grasp of
the operators in JS, you will be ready to see the control structures provided by
JavaScript in action. This chapter first looks at compound statements and coding
examples. It then discusses the if...else statements and switch statements
that are used for formulating conditions in programs. The chapter next covers
in detail the loops applicable in JavaScript, such as the for loop, for...in loop,
while loop, and do...while loop. Plenty of demo examples are provided to
enable you to strengthen your understanding of the control structures.

http://dx.doi.org/10.1007/978-1-4842-2220-1_1
http://dx.doi.org/10.1007/978-1-4842-2220-1_2
http://dx.doi.org/10.1007/978-1-4842-2220-1_3
http://dx.doi.org/10.1007/978-1-4842-2220-1_4

■ Introduction

xx

Chapter 5: Regular Expressions. JavaScript provides the option of solving
problems using regular expressions, which help fulfill requirements in a small
number of code lines. This chapter discusses the RegExp object needed for
working with regular expressions in JavaScript. It also covers the method of
searching for and replacing patterns within a text stream. Finally, it provides
actual problems and coding in JS using regular expressions.

Chapter 6: Functions in JavaScript. Functions play an important role in JS. This
chapter begins with an overview of functions in JavaScript and the advantages
they provide. You will see the syntax required to create functions, along with a
simple program containing a function definition. Separate sections will show
you how to create a program that calls a function and how to create a function
that calls another function. In addition, you will see typical coding examples and
requirements met via functional programming.

Chapter 7: More on Functions. Because functions are a major topic, two chapters
are devoted to their coverage. Building on the coverage of the basics in Chapter 6,
this chapter focuses on the advanced topics within the functions landscape. First,
you will see how to use functions as variables. Then, you will be introduced to the
concept of self-executing functions. Next, you will learn about nested functions—
functions within functions. The chapter closes, appropriately, with a discussion
of the very useful “closure” concept.

Chapter 8: Objects in JavaScript and Programming. As with ABAP, JavaScript
allows you to create objects. However, the concepts pertaining to object creation
in the two languages are not the same. This chapter is dedicated to object
creation, instantiation, and inheritance. It starts with a general overview of
object-oriented programming before drilling down to objects in JS and their
syntax. It introduces the this operator in detail, then covers the various ways
of creating objects, followed by the instantiation steps using the new keyword.
Once you have a basic understanding of objects, the chapter moves on to
inheritance as implemented in JS using prototypes. The chapter contains real-life
examples of objects and subobjects throughout, along with ample code listings
demonstrating how to implement them in JavaScript.

Chapter 9: Other Useful Objects in JavaScript. By this point in the book, you will
be familiar with quite a few built-in objects in JavaScript. This chapter introduces
a number of other useful objects, such as Array, Boolean, Date, and String,
and the methods they provide. You will see several programming examples that
implement these methods.

Chapter 10: Working with JSON. This chapter covers the important topic of
JavaScript Object Notation. To begin, you will be introduced to JSON and see
some typical examples. You will then see how the JSON arrays and objects work
in JS programs. The chapter then covers two important functions, stringify and
parse, used for programming with JS. As in all chapters, ample programming
examples will be provided.

Chapter 11: Miscellaneous Topics. Chapter 11 contains several JS topics that
are very useful but do not fit well in any of the other chapters. It starts with
an overview of strict mode and how it affects the syntax check. Next, it covers
error handling in JavaScript. A separate section covers the typical errors that
you should avoid while working with JS. The chapter then explains debugging
and troubleshooting JS programs. Last but not least, best practices for JS
programming and tips for performance improvement are provided.

http://dx.doi.org/10.1007/978-1-4842-2220-1_5
http://dx.doi.org/10.1007/978-1-4842-2220-1_6
http://dx.doi.org/10.1007/978-1-4842-2220-1_7
http://dx.doi.org/10.1007/978-1-4842-2220-1_6
http://dx.doi.org/10.1007/978-1-4842-2220-1_8
http://dx.doi.org/10.1007/978-1-4842-2220-1_9
http://dx.doi.org/10.1007/978-1-4842-2220-1_10
http://dx.doi.org/10.1007/978-1-4842-2220-1_11
http://dx.doi.org/10.1007/978-1-4842-2220-1_11

1© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_1

CHAPTER 1

Introduction to JavaScript

This chapter serves an introduction to JavaScript for ABAP developers. We will start with the prerequisite
knowledge for learning JavaScript. Then, we will cover the basics of JavaScript, followed by some of the
differences between ABAP and JavaScript. Next, we will look at a very simple program and the necessary
steps for you to create it yourself.

Brief JavaScript Background
JavaScript is a high-level, dynamic, untyped language standardized in the ECMAScript language
specification. Together with Hypertext Markup Language (HTML) and Cascading Style Sheets (CSS),
JavaScript is another important technology that originally powered the Web Applications Architecture.
JavaScript (JS) is supported by all modern web browsers, and is used by the majority of websites and web
applications today. In the beginning, typical examples for the use of JavaScript included creating interactive
effects on web pages and conducting form data validations on websites. Since then, a number of libraries
have been written in JS, such as jQuery.

■■ Note  There is a common misconception that JavaScript and Java are similar. They are unrelated and have
different semantics. The syntax of JavaScript is derived from the C programming language.

Also, the JS language is used in server-side programming as a runtime engine for several different
browser engines such as V8 (Google Chrome) and SpiderMonkey (Firefox). One of the most widely known
and used JS runtime environments is called NodeJS.

JavaScript has some syntactical similarities with the C language such as the switch and if statements
and the while and do while loops. In JavaScript, types are linked with values, rather than with variables. For
example, a variable named myvar could be assigned a string first and subsequently rebound to a number.

JavaScript is a case-sensitive language, meaning any language keywords, variable names, and function
names must be written with consistent capitalization. The keyword case, for example, must be written
“case” and not “Case” or “CASE.”

JavaScript is a multiparadigm language that allows imperative programming, object-oriented
programming, and functional programming. It allows you to work with text, numbers, dates, and arrays.
Regular expression processing capability is also provided in JavaScript. However, JS does not offer any
networking or graphics features. JavaScript supports prototypes (in contrast to many other object-oriented
languages, such as ABAP) that use classes for inheritance. Many class-based features may be programmed
using prototypes in JavaScript.

Chapter 1 ■ Introduction to JavaScript

2

Inside a JavaScript Program
This section introduces the various different code elements of a JavaScript program in detail.

A JavaScript program is composed of a number of statements. Each statement ends with a semicolon (;).
JavaScript differentiates between an expression and a statement. A statement may be composed of literals,
variables, and expressions. A given JS statement might span multiple lines. Also, it is possible for more than
one statement to be written in a single line.

Comments form an important part of any code. They are disregarded by JavaScript, but they are an
essential tool for programmers to document the purpose of their code for later review. There are two types of
comments you can add to a JavaScript program. First, you can add a single-line comment as shown here:

var num = 1; // from here comments start

As you can see, single-line comments begin with a double slash (//). All subsequent code/text written
on that line is treated as comment text. No ending punctuation is necessary to mark the end of a single-line
comment; the end of the line serves that purpose.

JavaScript also allows you to specify multiline comments. These may be enclosed between /* and */,
and may comprise one or more lines. Within multiline comments, nesting is not possible. Attempting to nest
multiline comments will produce a syntax error. Listing 1-1 shows an example that is not acceptable in JS.

Listing 1-1.  Incorrectly Nested Comments

/* this is comment 1
/* this is comment 2 */
*/

As you can see, this example attempts to nest comment 2 within comment 1, which is not allowed and
will give a syntax error.

Within a JavaScript program, statements are executed line by line (i.e., sequentially). A set of statements
may be grouped together to form a block. The start and end of a block are denoted by curly brackets ({ }).
These blocks may include code within a function (functions are similar to subroutines in ABAP) or code
within if statements or switch statements.

A JS program may include a number of literals. You use literals in JS to denote fixed values (in contrast
to variables) to be used within your programs. Some examples of these literals are integers and string literals.

In JavaScript, string literals are enclosed within a set of double quotes (“”) or a set of single quotes (‘’),
whereas ABAP strings are enclosed within single quotes only. Some other types of literals are array literals,
Boolean literals, and object literals.

Creating a Simple JS Program
Now that you have some basic knowledge of JavaScript, this section shows you how to make a simple
program, and then explains the various parts of it.

You will create a small program that displays a message saying “My first JS Program” in a pop-up dialog
box. There is a built-in function alert in JS that lets you display a message to the user. This function may
take as input as either a number or string in the form of a literal or variable.

Chapter 1 ■ Introduction to JavaScript

3

The code for this program is shown in Listing 1-2.

Listing 1-2.  Program for Displaying Text in Pop-up Dialog Box

<html>
 <body>
 <script>
 alert("First JS program by an ABAP Developer");
 </script>
 </body>
</html>

As you can see, the program uses a string literal (within double quotes) to display the message to the
user. Running this example displays a message in a pop-up dialog box, as shown in Figure 1-1.

Figure 1-1.  Program output

A Quick Look at HTML
JavaScript code cannot be executed on its own. It relies on the runtime environment to include/import
scripts (e.g., HTML <script> elements). So, in order to program JavaScript, you need to know some HTML.
A full discussion of HTML is beyond the scope of this book. This section introduces the basics of the HTML
language and shows you the usage of an HTML tag and its corresponding browser output.

HTML is the language used to create web pages. Within the web page source code text, you have a
number of tags. Simply defined, tags are codes in an HTML document that begin with the symbol < and end
with >. Tags mostly appear in pairs, and a pair of tags instructs the browser how to treat the text appearing
within the tag pair.

Each tag has a special meaning and has its own effect. The tags are read by the browser and interpreted
accordingly. The tags are not displayed by the browser. The browser then renders and displays the web page
to the viewer.

■■ Note H TML is not a case-sensitive language: <html>, <HTML>, and <Html> all have the same effect.
However, you must make sure that the end tag, such as </HTML>, contains a forward slash, not a backward
slash. Writing <\HTML> will cause problems.

Chapter 1 ■ Introduction to JavaScript

4

At this stage, you only need to know the details of HTML that will help you to run the JS code that you
will write. A number of elements exist in an HTML document that are represented as tags:

•	 The HTML tags, <HTML> and </HTML>, mark the beginning and end of the HTML
document. The browser renders the page based on the information contained within
the HTML tags. Make sure that no code is written after the </HTML> tag, which
marks the end of the HTML document. Within the HTML page, you have a <HEAD>
and a <BODY> tag.

•	 The HEAD tags encompass the general information pertaining to the document,
such as the usage of the page and linkage with other documents and resources.
For example, a pair of tags may contain information about the JS file and CSS code
relevant to the web page. Within the HEAD are the TITLE tags that are used to specify
the title of the document. The title is displayed at the top of window of the browser.
The TITLE tags also contain metadata about the document.

•	 <BODY> and </BODY> encompass information about the page body—the actual
content rendered when the page is loaded by the browser. Some of the elements
contained within this pair of tags are the header and footer. Within the body, you
may display a number of text lines, tables, forms, and graphics. You may have a
number of headings such as <heading1>, <heading2>, and so on. Using the <P> tag,
you can also specify where a new paragraph starts. The browser reads the various
elements within the body and renders the page accordingly.

Now you are prepared to look at how to write your first HTML code. A simple HTML program without
any JavaScript in it is shown in Figure 1-2.

Figure 1-2.  HTML code sans JavaScript

Chapter 1 ■ Introduction to JavaScript

5

If there is a syntax error in your HTML code, the browser still produces an output. However, you may
not get the desired result. Consider, for example, the same code shown in Figure 1-2 with the </H1> tag in
the body wrongly written as <\H1> (i.e., with a backslash). In this case, the entire set of text lines is displayed
in the Heading style, as shown in Figure 1-4.

Figure 1-3.  HTML code output

Figure 1-4.  Wrong output of HTML page

The output of the code from Figure 1-2 is shown in Figure 1-3.

Putting JavaScript in HTML Code
This section shows you how to add your JavaScript code from earlier in the chapter to the simple HTML page
from the previous section. You can choose any of several approaches to do this. The simplest approaches are
to write the entire JS code either in the head or the body of the HTML page. It is also possible to write the JS
code as a separate file and include the name of the file in your HTML code. Let’s consider these approaches
one by one. Note that they all produce the same output in the browser display.

Writing JS Code Within the <HEAD> and </HEAD> Tags
The first approach is to include the entire JavaScript code within the HEAD element. For example, you can
embed the JS code that you wrote in Listing 1-2 in the HTML code created in the previous section (shown in
Figure 1-2). The HTML code containing the JavaScript is shown in Listing 1-3.

Chapter 1 ■ Introduction to JavaScript

6

Listing 1-3.  HTML Code with JS Code in HEAD

<!DOCTYPE html>
<html>
 <head>
 <title>My first Web Page</title>
 <script>
 alert("First JS program by an ABAP Developer");
 </script>
 </head>
<body>
</body>
</html>

As you can see, the single-line JS script is written within the HEAD tags. When the browser reaches the
<script> tag, it executes the JS script. Once the script execution is complete, the browser returns to the HTML
and executes the remaining HTML code after the </script> tag.

Writing JS Code Within the <BODY> and </BODY> Tags
Another approach is to include the JavaScript code within the BODY element, before the </BODY> tag
(i.e., the end of the body), as shown in Listing 1-4. From the standpoint of the user, the effect will be the same.

Listing 1-4.  Adding JavaScript in the HTML Body

<!DOCTYPE html>
<html>
 <head>
 <title>My first Web Page</title>
 </head>
<body>
<script>
 alert("First JS program by an ABAP Developer");
</script>
</body>
</html>

As with the previous approach, when the browser reaches the <script> tag, it executes the JS script, after
the completion of which it returns to the HTML and executes the remaining HTML code after the </script> tag.

Creating JS Code in a Separate File
Another approach commonly used is to include the JS code in a file separate from the HTML code and
include a link to the JS file within the HTML code. This approach offers a few advantages: it makes the HTML
code and JavaScript code both easier to understand and maintain. Listing 1-5 shows how to link to a JS file
within the HTML code.

■■ Note  When linking an external JS file to HTML code, make sure that the name of the JS file is written in
the correct case. For example, do not write Code.js as code.js or CODE.JS.

Chapter 1 ■ Introduction to JavaScript

7

Listing 1-5.  Addressing a JS File in HTML Code

<!DOCTYPE html>
<html>
 <head>
 <title>My first Web Page</title>
 <script src="Code.js"> // JS file name
 </script>
 </head>
<body>
</body>
</html>

This example assumes that the JavaScript code is contained in a separate file, in the same directory where
the HTML code resides. As you can see, the name of the file that contains the JS code (in this case, Code.js) is
specified within the HEAD element. You must make sure that you write the name of the file in the correct case.

Again, once the <script> tag is reached, the browser executes the JS script. After the script execution is
complete, the browser returns to the HTML and executes the remaining HTML code after the </script> tag.

Variable Declaration in JavaScript
Variable declaration is an important part of any programming language. Declaring variables enables you to
assign symbolic names to values that you use in your programs. A JavaScript variable name must start with
one of the following:

•	 A letter (including uppercase characters A through Z and lowercase characters a
through z)

•	 An underscore (_)

•	 A dollar sign ($)

The name cannot start with a digit (0-9), but subsequent characters may be digits. Some examples of
allowed variable names are Nu_hits, Mytemp13, and _myname.

Variables defined in JavaScript are either global, with a global execution context, or local, specific to a
particular function (we will discuss this in the later part of the book). A local variable is visible/accessible
only within the function in which it is defined and not outside that function. Global variables are visible/
accessible to the entire JS program.

Variables in JavaScript are declared using the var keyword. Here is the syntax:

var num;

It is also possible to declare a variable and initialize it in the same line of code:

var num = 1;

You may also link two variable declarations in a single line (chaining them together using a comma):

var num1, num2;

It is also possible to initialize either or both of the variables in a single line of code:

var num1, num2 = 1;

Chapter 1 ■ Introduction to JavaScript

8

You do not need to specify the type of the variable. The declaration takes the type from the value that is
assigned to it.

■■ Note  In contrast to ABAP, JavaScript lets you declare variables and then change their type.

You may also use the same var statement to declare a variable and initialize it with a value, and then
assign the variable with its value to another variable:

var num1 = 10;
var num2 = num1;

As you can see, variable num1 is declared and initialized with a value of 10. After the second statement,
the num2 variable is declared as a number and is assigned the value 10. After the statements, both variables
have the value 10.

It is also possible to change the type of the variable later. For example, if you have variable num1 as a
number, you can later change it to a string, as shown in this example:

var num1 = 10;
num1 = "my string";

In JavaScript, you may also declare a variable after it has been used. In other words, you may use a
variable even before its declaration. Consider the following short piece of code:

num1 = 10;
var num1;

In this case, we have a variable named num1 to which the value 10 is assigned. Later in the code is the
definition of the variable using the var keyword. This feature of JS is known as variable hoisting. When a JS
program is loaded and executed, all the var statements that declare variables are processed first (i.e., before
the rest of the program code).

As mentioned earlier, JavaScript is a case-sensitive language. That means you can create variables with
the same letters but in different cases. For example, consider the following example:

var message = "Second JS Program - Message 1";
var MESSAGE = "Second JS Program - Message 2";

This code defines two separate variables, message and MESSAGE, each of which is assigned a different
string value. This practice is discouraged to avoid mix-ups.

Using Eclipse
There is no single editor for creating JavaScript programs. You have a number of options, such as

•	 Notepad

•	 SAP Web IDE

•	 Scratchpad

•	 Notepad++

Chapter 1 ■ Introduction to JavaScript

9

In this section and throughout the book, I will demonstrate creating JavaScript programs using my
editor of choice, Eclipse IDE. Showing you the entire Eclipse installation process is beyond the scope of this
chapter. You should be able to install it fairly easily via the instructions available online at www.eclipse.org,
where you can also download Eclipse.

Once you have successfully installed Eclipse, double-click the shortcut on your desktop, as shown in
Figure 1-5.

Figure 1-5.  Eclipse shortcut

■■ Note  All the examples and screenshots were tested in Windows.

Alternately, if you are using Windows, you may use the Programs menu to open Eclipse. Both options
take you to the start screen of the Eclipse editor, as shown in Figure 1-6.

Figure 1-6.  Eclipse editor

http://www.eclipse.org/

Chapter 1 ■ Introduction to JavaScript

10

On the wizard screen that appears, enter the name of the project (for purposes of this example, enter
First). Do not change any other values on the screen and click the Finish button. The screen now appears as
shown in Figure 1-8.

Figure 1-7.  Creating a JavaScript project

You now need to create an Eclipse JavaScript project. Choose the menu path File ➤ New ➤ Project. The
New Project dialog box appears, as shown in Figure 1-7. Expand the JavaScript folder, select the JavaScript
Project node, and click the Next button.

Chapter 1 ■ Introduction to JavaScript

11

In the left panel, you can see that the project named First initially has no HTML or JavaScript files. You
will now add both JavaScript and HTML files to this project. To add JavaScript code, simply right-click the
First project node and choose New ➤ JavaScript Source File. In the dialog box that appears, enter the name
of the file; for purposes of this example, enter Code.js. Then, click the Finish button.

The left pane will appear as shown in Figure 1-9.

Figure 1-8.  Project “First”

Figure 1-9.  Code.js node added

As you can see, a new Code.js node has been added to the First project folder. To add code to the Code.
js file, simply double-click the node. The right pane changes as shown in Figure 1-10.

Chapter 1 ■ Introduction to JavaScript

12

Simply add the code in the program as shown in Figure 1-10, and save the code using the key
combination CTRL+S. As you can see, this example uses two variables that have similar names but different
case (MESSAGE and message). It also uses two alert statements to output the values to the user.

Next, you need to add an HTML file to your project. Right-click the folder First and choose New ➤ File.
In the dialog box that appears, enter a name for the file with an html extension (for this example, First.html).
Enter the code of the html in the HTML editor in the right panel (see Figure 1-11).

Figure 1-11.  HTML editor

Figure 1-10.  JavaScript editor

As you can see, this example uses the <script> tag to address the Code.js file that you have made.
Next, save your project. You may now test your code within Eclipse. For this, right-click the HTML file

node and choose Run ➤ Browser.
You will see the output in the right panel. Because you have written two alert statements in the

program, the output of the first alert statement is displayed in a dialog box, as shown in Figure 1-12.

Chapter 1 ■ Introduction to JavaScript

13

Clicking the OK button of the first dialog box will display the second dialog box.
You have successfully created a JavaScript program in Eclipse, giving you a foundation on which to

build in subsequent chapters.

Summary
This opening chapter of the book covered the basics of JavaScript. You saw how to define and use variables
in your programs, and how to make a simple JS program. In addition, you had a look at the Eclipse IDE for
creation of JavaScript programs and HTML code. In the next chapter, you will explore the language in further
detail, including the data types supported in the JavaScript language.

Figure 1-12.  JavaScript editor displaying an alert

15© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_2

CHAPTER 2

A Step Ahead in JavaScript

Having learned the basics of JavaScript and the prerequisites for running a JavaScript (JS) program in
Chapter 1, you are ready to move on to details of the JS language. This chapter first gives you an overview of
the Window object. Next, it describes in detail the data types that JavaScript provides. Then, demo programs
will show you how to display data to the user in a dialog box, debug your web page in the console of a web
browser, and take input from the user via a dialog box. The final section of the chapter presents a list of
reserved words of the JS language.

Window Object
One important concept within JavaScript is the Window object. The window object represents an open window
within a browser. This section describes this object and the properties and methods that it provides.

Within a JS program, all variables declared outside of any function are global in nature. They remain
alive during the entire execution of a web page. Global variables are properties of this object. The set of
global variables is accessible via the global Window object. Any component of the window object is accessible
by using dot notation (.).

To better understand the Window object, consider the following excerpt of a JS program:

var num1 = 10;
window.num1 = 20 ;
alert (num1);

This syntax declares a variable num1 and assigns to it the value 10. It then uses the window object to
access num1 and assigns it the value 20. The short JS program outputs the value as shown in Figure 2-1.

Figure 2-1.  Program output

http://dx.doi.org/10.1007/978-1-4842-2220-1_1

Chapter 2 ■ A Step Ahead in JavaScript

16

As you can see, the value of 20 is displayed rather than 10. This is because the variable num1 resides
within the global container accessed via the window object. When you assign the value 20, it refers to the
same variable num1.

The Window object contains a number of properties and methods and is supported by all major
browsers. Some of the important properties associated with it are listed and briefly described in Table 2-1.

Table 2-1.  Important Properties of the Window Object

Property Purpose

status Sets or returns status bar text at bottom of browser

name Sets or returns the name of the window

fullScreen Indicates full-screen display of the window

innerHeight Sets the height of the window content area, including
the horizontal scrollbar

innerWidth Sets the width of the window content area

length Sets the number of frames in the window

Table 2-2.  Important Methods of the Window Object

Method Purpose

alert() Shows an alert box to user with message text and OK button

prompt() Generates a dialog box for the user to enter input

print() Writes the content of the window in question

open() Creates a new window in the browser

close() Closes a window

confirm() Shows a dialog with OK and Cancel buttons with appropriate
message

createPopup() Creates a pop-up window (this method works in Internet Explorer)

In addition, the Window object has many useful methods. Some of the important methods are listed and
briefly described in Table 2-2.

These methods may be called in all parts of a JS program. While calling these methods, you may either
use the Window object or call these methods without it. Consider the following example:

Window.alert("Hello"); // incorrect, as Window must be written in lowercase i.e. window
window.alert(text); // correct
alert("Hello"); // correct

The preceding two statements have the same effect. It is not necessary to use the call along with the
Window object.

■■ Note  When calling the window object, always use lowercase letters.

Chapter 2 ■ A Step Ahead in JavaScript

17

Data Types in JavaScript
Chapter 1 briefly introduced the available data types in JS. This section explores the various data types
supported in JavaScript in greater depth. In JavaScript, the variable is given the type that is assigned at a
given instance.

Overall, there are six data types that exist in JavaScript, as summarized in Table 2-3. The following
subsections describe them in more detail and show how to declare them.

Table 2-3.  Data Types and Their Purpose

Name of Type Purpose

string A set of characters

number Whole numbers, negative or positive, or number with various decimals

undefined Variable having this type has been defined but without value

null Intentional or explicit specification for a variable having no value

object Set of properties and property values unordered

Boolean Contains true or false

String
A string is a sequence of characters of various lengths. Typical examples include "John123" and "John is a
nice person". Strings must be written within quotation marks. Usually, double quotes are used. However,
single quotes may also be used. Consider the following code excerpt:

var person = "John James"; // double quotes
var areaName = 'Burj Khalifa'; // Using single quotes

It is also possible to use single quotes within a string that is written within double quotes. Consider the
following example:

var text = "It's a rainy day"; // correct

Or you can use the following acceptable form:

var text = "My profession is 'Computer programmer'"; //correct

Likewise, you can use double quotes within a sting written within single quotes:

var text = 'My Profession is "Computer programmer" '; // correct

However the following examples are not acceptable and will generate a syntax error:

var text = 'My profession is 'Computer programmer''; // wrong
var text = "My profession is "Computer programmer'"'; // wrong

http://dx.doi.org/10.1007/978-1-4842-2220-1_1

Chapter 2 ■ A Step Ahead in JavaScript

18

To make things a little more complicated, these two inadmissible forms may be adjusted slightly to
avoid syntax errors. The single quote within the text must be preceded by a backslash. Now consider the
same example:

var text = 'My Profession is \'Computer programmer\' ' ; // correct

After execution of the statement, the variable text contains My Profession is 'Computer
programmer'.

Likewise, the following statement is also acceptable:

var text = "My Profession is \"Computer programmer\" " ; // correct

After execution, the variable text contains My Profession is "Computer programmer".
A string definition and assignment to a value may be in a single line or a set of lines. When using a string

definition on multiple lines, you may use the escaped newline character (\n) like this:

var text = "My Profession is \nComputer programmer" ;
alert(text);

After execution of the preceding lines of code, the content of the variable text is displayed in the window
as shown in Figure 2-2.

Figure 2-2.  String shown in two lines

As shown, the text is composed of two lines. This is achieved by using \n in the string specification.
Another operator that you may use in the context of strings is +. Consider the following line of code:

var string1 = 'ABAP' + 'er' ; // string1 contains ABAPer

Adding the + operator results in the concatenation of the two sets of characters. The variable string1
will then contain "ABAPer". Now consider the following example:

var string1 = 1 + '7'; //

In this case, after execution of the statement, the string1 variable has the value "17". It results in a
concatenation of the number 1 (also treated as a string) to the string ‘7’ and the result in string1 is also a
string.

Chapter 2 ■ A Step Ahead in JavaScript

19

Consider another example:

var string1 = 'A' + 1 + 7; // string1 will contain A17

In this case, when the statement is executed, the variable string1 will contain the value "A17" and not "A8".
On the contrary, consider the following example:

var string1 = 1 + 7 + 'A' ;

After execution of this statement, the resulting value in string1 is "8A" and not "17A". The reason is
that sequentially JavaScript treats 1 and 7 as numbers and performs addition until it encounters letter A.
After this point, the computed value so far (8) is concatenated with A and stored in the variable string1. The
type of the variable string1 is string.

Number
To represent number values, JavaScript has only one data type: number. The numbers may or may not have
decimal places. In addition, they may or may not include unary operators. To clarify the usage of numbers
within JS, let’s consider a few examples.

The following line of code represents a whole number containing the value 26:

var num1 = 26;

Now consider another example:

var num2 = -26;

The variable num2 is assigned the value minus 26.
When defining variables in JavaScript, you do not need to specify the number of decimal places. When

assigning variables, you must provide the corresponding value. Now let’s consider a few examples of decimal
numbers. The following are some examples of positive decimal values:

var num1 = 0.6888 ;
var num2 = 122.688;
var num3 = 10.0;

And you can also have a number with a minus sign and decimal places:

var num4 = -2.3;

You can also assign a number variable an exponential value. The following are some examples:

var num5 = 28.5e-3 ; //which is equal to .0285
var num6 = 28.5e3 ; //which is equal to 28500

This will store the value 2.78900 along with the necessary decimal places in the variable num1.
An addition operation may be performed:

var num1 = 2.78900 + 1 ;

When the addition is performed, the resulting value will be 3.789.

Chapter 2 ■ A Step Ahead in JavaScript

20

Within JS, there are two special numbers: positive infinity (infinity) and negative infinity (-infinity).
A positive infinity results due to an arithmetic overflow within a program. On the other hand, a negative
infinity occurs if you try to store (in a number variable) a value that is smaller than the allowed minimum
value.

■■ Note  There are two special values, infinity and -infinity, that a number variable may contain.

Consider the following examples demonstrating that the number type is also used for storing
hexadecimal and octal values. Hexadecimals values start with 0x:

var Hexval1 = -0xFFDD;
var Hexval2 = 0xFFDD;

Octal values start with a zero:

var Octval = 0628;

Undefined
If a variable has been declared but no value is assigned to it, that variable has the type undefined. Consider
the following example:

var mytype ;

As you can see, this example declares the variable mytype, but no value has been assigned to it. The
variable mytype has the type undefined.

var mytype ; // mytype has undefined type

It is also possible to set a variable to undefined explicitly:

var mytype = 10; // mytype has type number
mytype = undefined; // now mytype has type undefined

Null
The null data type is used in JavaScript to explicitly specify that a variable has no value. You may simply
assign null to a variable, as shown in this example:

var mytype = 1 ;
var mytype = null; // mytype has type null

■■ Note  When assigning null or undefined to a variable, do not include single or double quote marks around
null or undefined. Otherwise, they will be treated as strings.

Chapter 2 ■ A Step Ahead in JavaScript

21

Object
The object data type within JavaScript represents a set of unordered properties and values. The syntax for
defining an object within your program is as follows:

var myobj = { property1 : val1 , property2 :val2 ... property : valn };

Object definitions may be written on a single line or on multiple lines. The property and the respective
value must be separated by a colon, whereas the property-value pairs are separated by commas. Within
a program, an object is also a variable defined via the var keyword. However, an object is composed of a
number of properties and values.

Consider this example:

var employee1 = { pernr : '1', empName : "John Wright" , gender : 'M', country : "USA" } ;

This example defines an object named employee1 with properties empName, gender, and country, and
assigns values to the various properties.

The same definition and assignment may be done in multiple lines:

var employee1 = { pernr : '1',
 empName : "John Wright" ,
 gender : 'M',
 country : "USA" } ;

When defining an object, make sure that you use only curly brackets, { }, to enclose the properties and
value pairs. Using parentheses to enclose them will generate a syntax error and is not allowed.

To address the various properties, use the dot operator:

alert (employee1.pernr) ;

The preceding statement will display a dialog box with the value 1.
It is also possible to change the value of a particular property of a given object:

employee1.pernr = 2 ;

Once this is done, in the case of the employee1 object, the value of pernr will be 2.
You may assign a given object to another object as shown here:

var employee1 = { pernr : '1', empName : "John Wright" , gender : 'M', country : "USA" } ;
var employee2 = employee1;
employee2.pernr = '2';
employee2.empName = 'James Dolman' ;

alert (employee2.pernr + " " + employee2.empName + " " + employee2.gender + " " +
employee2.country) ;

As you can see, this example first creates an object named employee1 and assigns appropriate property
values for the employee John Wright having personnel number 1. Next, the object employee1 is assigned to
the newly declared object employee2. The properties pernr and empName of object employee2 are changed
and output in a dialog box using the alert function. The output of the program is shown in Figure 2-3.

Chapter 2 ■ A Step Ahead in JavaScript

22

When specifying properties of objects, you may specify undefined or null as the value for a property.
An example of specifying null is shown here:

var employee1 = { pernr : null, empName : null , gender : 'M', country : "USA" } ;
employee1.pernr = '2' ;
employee1.empName = 'John Reed' ;

In addition to the dot notation, there is another way of addressing the properties of the object in
question. This is shown in the following line of code:

employee1["pernr"] = '2' ; correct

This will assign the value '2' to the property pernr of the employee1 object. As you can see, the property
name is enclosed in double quotes and square brackets. It is also possible to enclose the property name in
single quotes. Consider the following statement, which has the same effect:

employee1['pernr'] = '2'; // correct

You must make sure, however, to use only square brackets with the single or double quotes, as shown in
the examples. Using parentheses or curly brackets will produce a syntax error:

employee1('pernr') = '2' ; // Wrong

In addition, omitting the quotes (either single or double), even when used in conjunction with the
square brackets, is also problematic, as shown here:

employee1[pernr] = '2' ; // Wrong

Objects Within Objects
Thus far you have seen examples of objects containing a set of properties only. Now you’ll see how you
can define objects that contain one or more other objects. You can achieve this by slightly modifying the
previous employee1 example. Instead of using a property name based on a string, the modified example
introduces a new property fullname that is based on an object having properties lastname and firstname.
The code for this is as follows:

Figure 2-3.  Program output

Chapter 2 ■ A Step Ahead in JavaScript

23

var employee1 = { pernr : '1',
 fullname : { lastname : "John" , firstname : "Wright" } ,
 gender : 'M',
 country : "USA" } ;

Here, as in the original example, an object employee1 is defined that has a number of properties. However,
employee1 now has a property named fullname, which itself is an object comprising properties lastname and
firstname. Note the usage of curly brackets for the employee1 and fullname objects. Within the subobject,
colons and commas are used in the same manner as they have been used in the main object specification.

Consider the examples described in the following sections.

■■ Note  A special object known as an array exists in JavaScript. An array is an ordered set of values and is
written within square brackets; e.g., [1,2,7,10] or [‘my’, ‘she’]. Arrays will be discussed in detail in Chapter 5
and subsequent chapters.

Boolean
As the name denotes, a variable based on the Boolean data type may have a value of either true or false.
Consider the following:

var bool1 = true; // correct
var bool2 = false ; // correct

These examples define two Boolean variables, bool1 and bool2, and assign true and false values to
them, respectively. Importantly, the assigned values cannot be written in single or double quotes, and must
be written in lowercase letters.

■■ Note  When you assign true and false to Boolean variables, make sure that you do not write them in
single or double quotes. Otherwise, they will be treated as strings. Also make sure to use all lowercase.

Consider these examples:

var bool1 = "true"; // wrongly defined as string - not boolean
var bool2 = "false" ; // wrongly defined as string - not boolean

Here, both bool1 and bool2 are strings and not Booleans.
Boolean variables are used in conditional evaluation, and may be used to store the result of a

conditional evaluation, such as with if and while statements. (The statements are discussed in further
detail in the latter part of the book). Consider the following line:

var boolean1 = (10 > 1) ;

After execution of the script, the variable boolean1 contains the value true. Next, consider this example:

var boolean2 = (0 > 1) ;

In this case, the boolean2 variable contains the value false.

http://dx.doi.org/10.1007/978-1-4842-2220-1_5

Chapter 2 ■ A Step Ahead in JavaScript

24

The typeof Operator
An important operator in JavaScript is typeof. The typeof operator returns a string that denotes the type of
the operand in question. The syntax of the typeof operator is shown here:

typeof (variable) ;
typeof variable ;

The variable or operand could belong to any of the types discussed in this chapter. If you use the
typeof operator to evaluate a single operand in a single statement, you can omit the brackets that enclose
the variable name. You may also use the typeof operator in the alert method or the console.log method
(discussed in the next section).

The following example shows how the typeof operator is used:

var text = 'My Profession is "Computer programming" '.
alert (typeof(text)); // string displayed in dialog box

In this example, the typeof operator returns a string, and this is displayed in the dialog box.
Consider this code, in which the operator correctly returns the object type:

var employee1 = { pernr : '1',
fullname : { lastname : "John" , firstname : "Wright" } ,
 gender : 'M',
 country : "USA" } ;
alert (typeof(employee1)) ; // object displayed in dialog box

In the following code, variable boolean1 belongs to the Boolean data type. Hence, the typeof operator
returns Boolean.

var boolean1 = (10 > 1) ;
alert (typeof(boolean1)) ; // boolean displayed in dialog box

As mentioned earlier, when a variable is declared but not assigned a value, the type of the variable is
undefined. The same undefined type is determined by the typeof operator:

var mytype ; // mytype has undefined type
alert (typeof(mytype)) ; // undefined displayed in dialog box

The typeof operator also works with numbers and gives the correct type (i.e., number):

mytype = 10; // mytype has type number
alert (typeof(mytype)) ; // number displayed in dialog box

Finally, this example shows how the typeof operator behaves when null is involved:

mytype = 1 ;
mytype = null; // mytype has type null
alert(typeof(mytype)) ; // but object displayed in dialog box ----wrongly displayed

In the case of a null value, the typeof operator incorrectly returns the type name as object. The
developer needs to be careful and write appropriate measures in order to deal with such situations.

Chapter 2 ■ A Step Ahead in JavaScript

25

■■ Caution  The typeof operator returns the correct JS type in all cases except type null. In this case, it
wrongly returns “object”.

Method console.log
Thus far in the chapter you have seen the various available data types in JS along with some examples,
including how to display information in a dialog box using the alert method. However, for testing and
debugging purposes, you may need to display values of certain variables at various points during program
execution.

■■ Note  The console.log method is not recommended for an actual live environment. However, it must be
used for testing while development of JS programs.

You can use the console.log method to display test values of variables while executing a program.
Although coloring and stylizing options may be possible, here we will only cover the basic working of the
method. Here’s the syntax of this method:

console.log(obj1, obj2objn);

The console.log method may take as input one or more numbers, strings, Boolean values, or objects.
You may also display one or more properties of an object using the console.log method. You can also use
console.log in conjunction with the typeof operator. For objects containing further objects, you can drill
down into further details of the object.

■■ Note  When the values passed to the console.log method involve an operation to be performed, such as
addition or concatenation, the result is first computed and then output.

The following example shows the console.log method in action:

<!DOCTYPE html>
<html>
<body>
<h1>Console Log Demo </h1>
<script>
 console.log(10 + 5);
</script>
</body>
</html>

Chapter 2 ■ A Step Ahead in JavaScript

26

The Console object allows you to access the debugging console of the browser. The output of the
console.log method is neither displayed with the rest of the web page content in the browser nor displayed
in a pop-up box upon loading of the web page. Rather, it is displayed in the Console tab of the browser
debugger. These are the steps to switch on the console display:

	 1.	 Open in a browser the web page containing the HTML and JavaScript code.
(For purposes of this example, I’m using Google Chrome.)

	 2.	 Press Ctrl+Shift+I. This opens the debugger in a separate pane to the right of the
web page output, as shown in Figure 2-4.

Figure 2-4.  Debugger Console tab

	 3.	 Click the Console tab. You will now see the value displayed using the console.
log method (in Figure 2-4, 15 is shown as a result of the addition).

■■ Note  Make sure that you write console.log in all lowercase letters in the JavaScript code. Writing it as
Console.log will not give the desired result.

Consider the example presented in Listing 2-1.

Listing 2-1.  Displaying Object employee1

<script>
var employee1 = { pernr : '1',
 empName : "John Wright" ,
 gender : 'M',
 country : "USA" } ;

console.log(employee1);
</script>

Chapter 2 ■ A Step Ahead in JavaScript

27

As you see, the object is displayed with the relevant properties and values in a single line.
Now consider an example where object employee1 includes a property fullname (which is another object):

var employee1 = { pernr : '1',
 fullname : { lastname : "John" , firstname : "Wright" } ,
 gender : 'M'',
 country : "USA" } ;
console.log (employee1) ;

For nested objects such as this, the console output appears as shown in Figure 2-6.

Figure 2-5.  Object employee1 displayed in console

Figure 2-6.  Object employee1 displayed in Console

In this case, no values are shown for the fullname property. Rather, only Object is displayed for it. You
can expand the Object node to see the full details of employee1, as shown in Figure 2-7.

Figure 2-7.  Expanded object employee1

Here, the employee1 object is passed as a parameter to the console.log method. The output in the
console is shown in Figure 2-5.

Chapter 2 ■ A Step Ahead in JavaScript

28

As you can see, in the detailed view within the Chrome console, the properties are listed in
alphabetical order.

Taking Input from the User
So far in this chapter, you have seen how to output data to the user in a dialog box and how to debug your
web pages in the web browser console. Now you will see how you can take input from the user viewing the
web page in which your JavaScript code is embedded.

The prompt method of the Window object is used for this purpose, as shown in the following syntax:

window.prompt (text , optional default text) ;
prompt (text , optional default text) ;

The call of the prompt method takes as input the text that is displayed to the user, as well as an optional
default value. A dialog box is displayed on the web page. This is a modal dialog box, meaning it will not
allow the user to perform any other activity in the browser until the dialog box is closed. The dialog box is
displayed with two buttons, OK and Cancel.

You may assign the text entered by the user to a variable declared in your program. Irrespective of the
type of the variable used, after the user enters a value in the dialog box input field and clicks the OK button,
the type of the returning variable becomes string.

To better understand, consider the following example:

var value = 0;
value = prompt("Enter a value", "10") ;
alert('You entered ' + value + ' which has type ' + typeof(value));

This example specifies a number variable value and then calls the prompt method of the window
object and assigns the inputted value to the variable. A default text of 10 is specified in the method call.
The example then uses an alert method to display the entered value and its type in another dialog box.
The input dialog box that this code generates is shown in Figure 2-8.

Figure 2-8.  Input dialog box

Figure 2-9.  Message displayed

When the user enters a value such as 10 and clicks OK, the message is displayed as shown in Figure 2-9.

Chapter 2 ■ A Step Ahead in JavaScript

29

As you can see, the variable value is assigned the value 10 and the type of the value entered is
interpreted as a string.

If, on the other hand, the user clicks the Cancel button, the variable value will be assigned null.

Commonly Used Keywords in JavaScript
To conclude the chapter, Table 2-4 presents a list of some keywords (reserved words) in the JavaScript
language. Please note that you are not allowed to define variables that have the same names as these
keywords, which is why they are called reserved.

Table 2-4.  Reserved Words

Boolean break case

catch class continue

default do else

false final for

function if in

instanceof int new

null private protected

public return short

static super switch

this throw true

try typeof var

while with

Summary
In this chapter, you were introduced to the Window object and the data types that JavaScript provides.
Next, you saw how to display data to the user in a dialog box, debug your web page in the console of the
browser, and take input from the user via a dialog box. The end of the chapter listed reserved words of the JS
language.

Chapter 3 presents more detailed aspects of JavaScript. You will see the various control structures in the
JS language and how to use them to sfulfill requirements.

http://dx.doi.org/10.1007/978-1-4842-2220-1_3

31© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_3

CHAPTER 3

Operators in JavaScript

This chapter explains JavaScript operators in detail. It starts with the arithmetic operators and then looks
at the comparison operators and logical operators that are used for formulating conditional checks in JS
programs. The final section of the chapter covers the assignment and bitwise operators.

Arithmetic Operators
Arithmetic operators take values in the form of literals or variables as operands and return a single value.
The standard arithmetic operators supported in JavaScript are listed in Table 3-1. Each is described in turn
in the subsections that follow.

Table 3-1.  Arithmetic Operators

Operator Description Operator

Addition +

Subtraction -

Multiplication *

Division /

Remainder (modulo or modulus) %

Exponentiation **

Increment ++

Decrement --

Unary negation -

Addition Operator
The addition operator (+) results in the addition (sum) of numeric operands. For strings, the addition
operation results in string concatenation. The syntax of this is shown as follows:

A + B

Chapter 3 ■ Operators in JavaScript

32

The following are a few examples of the addition operator in action:

2 + 4 // 6 addition performed
10 + "text" // 10text concatenation
"text" + "string" // "textstring"
2 + true // results in value 3
1 + false // 1

Subtraction Operator
The subtraction operator (-) performs arithmetic subtraction of the two operands. The syntax is

x - y

In case of numeric operands, the difference between x and y is returned. In case of strings, the value
NaN (not a number) is returned. The following are some examples of the subtraction operator in action:

10 - 6 // 4
6 - 10 // -4
"text" - 2 // NaN

Multiplication Operator
The multiplication operator (*) determines the product of the supplied operands. The syntax is

A * B

Examples of the multiplication operator include the following:

52 * 2 // results in 104
-22 * 2 // -44
Infinity * Infinity // Infinity
"abc" * 3 // NaN

Division Operator
The division operator (/) results in the quotient of the supplied operands. The syntax is

A / B

Here, the left operand (A) is the dividend and the right operand (B) is the divisor. Some examples of this
operator include

1 / 2 // returns 0.5 in JavaScript
3 / 0 // returns Infinity in JavaScript
3.0 / -0.0 // returns -Infinity in JavaScript

Chapter 3 ■ Operators in JavaScript

33

Remainder Operator
The remainder (or modulo) operator (%) is used for determining the leftover (remainder) when the first
operand is divided by the second. The remainder always has the sign of the dividend. The syntax is

 A % B

The math of the reminder operator is less straightforward, so several examples of its usage are provided
here:

 result = (13 % 4); // 1
 result = (-1 % 3); // -1
 result = (1 % -3); // 1
 result = (1 % 3); // 1
 result = (2 % 6); // 2
 result = (-6 % 2); // -0
 result = (6.5 % 2) ; // 0.5

Exponentiation Operator
The exponentiation operator (**) is used for raising the first operand to the power of the second. The syntax
is

A ** B

The following are some examples of the exponentiation operator:

2 ** 4 // 16
4 ** 4 // 256
10 ** -2 // 0.01

Increment Operator
The increment operator (++) adds one to the value of the operand in question. The increment operator can
have either of two forms, postfix or prefix.

The syntax of the postfix form is

A++

In this form, the variable A is first returned and then incremented.
The syntax of the prefix form is

++A

In the prefix form, the variable A is first incremented before being returned.
The following are examples of both forms of the increment operator:

// Postfix
var A = 6;
B = A++; // after this, B = 6, A = 7

Chapter 3 ■ Operators in JavaScript

34

// Prefix
var A = 6;
B = ++A; // after this, A = 6, B = 6

Decrement Operator
The decrement operator (--) decreases its operand value by one (i.e., deducts one from the value). Like the
increment operator, the decrement operator can have either of two forms, postfix or prefix.

The syntax of the postfix form is

A--

In the postfix form, the variable A is first returned and then decremented.
The syntax of the prefix form is

--A

In the prefix form, the variable A is first decremented before being returned.
The following are examples of both forms of the decrement operator:

// Postfix
var A = 6;
var B = A--; // B = 6, A = 5

// Prefix
var A = 6;
var B = --A; // A = 5, B = 5

Unary Negation Operator
The unary negation operator (-) precedes the operand in question, and when used within expressions,
negates its value. Consider the following example:

// unary negation
var A = 6;
B = -A; // B = -6 A = 6

In this example, after the execution of the statement, the variable B contains the value -6, whereas the
value of A still remains 6.

Comparison Operators
JavaScript supports a variety of comparison operators, all of which are explained in the following
subsections.

Chapter 3 ■ Operators in JavaScript

35

Greater Than Operator
The greater than (>) operator checks whether the value of the left operand is greater than that of the right
operand. If it is, the condition returns true. Otherwise, it returns false. The syntax is

A > B

Less Than Operator
As the name indicates, the less than operator (<) checks whether the value of the left operand is less than
that of the right operand. If it is, the condition returns true. Otherwise, it returns false. The syntax is

A < B

Greater Than or Equal To Operator
The condition using the greater than or equal to operator (>=) is true when the value of the left operand is
greater than or equal to the value of the operand on the right. Otherwise, it is false. The syntax is

A >= B

■■ Note  Strings are compared based on lexicographical ordering.

Less Than or Equal To Operator
The condition using the less than or equal to operator (<=) is true when the value of the left operand is
greater than or equal to the value of the operand on the right. Otherwise, it is false. The syntax is

A <= B

Listing 3-1 shows how to use the JS comparison operators discussed so far.

Listing 3-1.  Operator Usage Example 1

<html>
 <body>

 <script >

 var a = 20;
 var b = 30;
 var result;

 console.log("(a < b) returned ");
 result = (a < b);
 console.log(result);

Chapter 3 ■ Operators in JavaScript

36

 console.log("(a > b) returned ");
 result = (a > b);
 console.log(result);

 console.log ("(a >= b) returned ");
 result = (a >= b);
 console.log (result);

 console.log ("(a <= b) returned ");
 result = (a <= b);
 console.log (result);

 </script>
 </body>
</html>

When the preceding program is executed, the output in the browser console appears as shown in
Figure 3-1.

Figure 3-1.  Program output

The variables a and b are assigned values 20 and 30, respectively. The output of the condition is
returned in the variable result.

Equality and Inequality Operators
This section discusses four available comparison operators related to testing equality and inequality. It also
presents code examples to help you better understand their usage.

■■ Note  JavaScript supports both strict and type–converting comparisons.

Chapter 3 ■ Operators in JavaScript

37

Equality Operator
The equality operator (==) returns true if the two operands involved are equal. Before the comparison, the
operator applies operand conversion in case the two operands are not of the same type.

 6 == 6 // true
 "6" == 6 // true
 0 == false // true
 0 == null // false
 null == undefined // true
 true == 1 // true

Inequality Operator
The inequality operator (!=) returns true if the two operands involved are not equal. Before the comparison,
the operator applies operand conversion in case the two operands are not of the same type.

 6 != 6 // false
 6 != "6" // false
 0 != false // false

Strict Equality (Identity) Operator
The strict equality operator (===) returns true if the two operands in question are structural equal without
any type conversion. The syntax is

A === B

When two strings are compared using this operator, a value of true is only returned when they have the
same sequence of characters and same length.

For the comparison of two numbers, the === operator succeeds when they have the same numeric
value. Two Booleans are strictly equal if either both of them are true or both of them are false.

 8 === 8 // true
 8 === '8' // false
 'Abc' === 'Abc' // true

Non-identity/Strict Inequality Operator
The non-identity operator (!==) returns true in either of the following cases:

•	 The two operands are not equal.

•	 The two operands are not of the same type.

The syntax of non-identity operator is

A !== B

Chapter 3 ■ Operators in JavaScript

38

Consider the following example of the non-identity operator:

 6 !== '6' // true
 6 !== 3 // true

Logical Operators
Like many other programming languages, JavaScript supports several logical operators. Logical operators
are used in expressions to formulate conditions. They return a value of either true or false after evaluation.
However, when used with non-Boolean values, they may return a non-Boolean value. Table 3-2 shows the
three logical operators supported in JS.

Table 3-2.  Logical Operators

Operator Example Effect

AND(&&) ex1 && ex2 When used with Booleans, && returns true if both operands ex1 and ex2 are
true.

OR (||) ex1 || ex2 When used with Booleans, || returns true when at least one operand is
true. In case both ex1 and ex2 are false, || operator returns false.

NOT (!) !ex1 This results in false when the operand in question is convertible true;
otherwise, the expression returns true.

Now that you have an idea of the three logical operators available, let’s take a look at a few full-fledged
working examples. Consider the code in Listing 3-2 that uses the && operator.

Listing 3-2.  Example of Logical Operators

var result;

result = (true && true);
console.log("(true && true) returns ", result);

result = (false && true);
console.log("(false && true) returns ", result);

result = (false && false);
console.log ("(false && false) returns ", result);

result = ('a' && 'b');
console.log ("(a && b) returns ", result);

result = (false && 'a');
console.log ("(false && a) returns ", result);

result = 'a' && true;
console.log ("(a && true) returns ", result);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_Operators#Logical_AND
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_Operators#Logical_OR
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_Operators#Logical_NOT

Chapter 3 ■ Operators in JavaScript

39

This example uses the && operator on a number of operands, including Boolean and non-Boolean. The
output of Listing 3-2 in the web browser console is shown in Figure 3-2.

Figure 3-2.  Program output

As you can see, when Booleans are involved, the result is always a Boolean value. However,
non-Boolean operands give strange results. Listing 3-3 shows an example involving the logical OR and NOT
operators.

Listing 3-3.  Usage of Logical AND and NOT Operators

var result;

result = (true || true);
console.log("(true || true) returns ", result);
result = (false || true);
console.log("(false || true) returns ", result);
result = (false || (6 >= 4));
console.log("(false || (6 >= 4)) returns ", result);
result = ('a' || D);
console.log("(a || D) returns ", result);
result = (false || 'a');
console.log("(false || a) returns ", result);
result = (! false);
console.log("(! false) returns ", result);
result = (! true);
console.log("(! true) returns ", result);

The output of Listing 3-3 is shown in Figure 3-3.

Chapter 3 ■ Operators in JavaScript

40

This example uses both Boolean and non-Boolean values with the operators. In the case of
non-Boolean values, a non-Boolean value is the result of the operator usage.

Logical expressions are evaluated left to right. When an expression that is true is “ORed” with any other
expression(s), JS evaluates the entire thing as true without performing any subsequent evaluations:

true || any_expression evaluated as true

On the other hand, when a false expression is “ANDed” with any number of expressions, the logical
operation returns false:

false && any_expression evaluated as false

This is known as short-circuit evaluation (or McCarthy evaluation).

Bitwise Operators
JavaScript also supports a number of bitwise operators. Bitwise operators consider their operands as signed
32-bit sequences, in two’s complement, comprising ones and zeros (i.e., binary representation) rather than
decimals or hexadecimals. However, once the operator function has been performed, JS number values are
returned. The various bitwise operators are shown in Table 3-3.

Table 3-3.  Bitwise Operators

Operator Description Operator

AND &

OR |

XOR ^

NOT ~

Shift left <<

Signed shift right (sign-propagating right shift) >>

Unsigned shift right (zero-fill right shift) >>>

Figure 3-3.  Output showing AND and NOT operators

Chapter 3 ■ Operators in JavaScript

41

In order to use these operators, you have to understand how the operands are stored and interpreted.
For all the operators in Table 3-3, the operands are treated as 32-bit binary numbers, and then the respective
operation is applied on one or more operands. In this format, the leftmost bit is the sign bit. This bit is either
1 or 0. A 0 indicates a positive number, whereas a 1 indicates that the number is negative.

Let’s examine two examples, one positive and one negative, and how they are represented as 32-bit
binary number values. First, let’s see how a positive number is stored. For example, the number +10 is
represented as

00000000 00000000 00000000 00001010

On the other hand, the number +2 is shown as

00000000 00000000 00000000 00000010

Now let’s see how a negative number is stored. The number -11 is stored as follows:

11111111 11111111 11111111 11110101 = -11

Bitwise AND
The Bitwise AND operator (&) carries out an AND operation on each bit of the two operands (i.e., their
32-bit representation). If the corresponding bits of two operands are equal to 1, this results in a 1 in the
corresponding bit of the result. Otherwise, the resulting bit is set to 0.

The syntax is

A & B;

In the following case, the two numbers (2 and 10) are ANDed:

var num = 2 & 10 ; // result is number 2

Let’s look at how this works. The following shows the 32-bit binary representation of the numbers 2 and
10, and the resulting number after the bitwise AND operation:

00000000 00000000 00000000 00000010 = 2
00000000 00000000 00000000 00001010 = 10
--
00000000 00000000 00000000 00000010 = 2 = 2 & 10

As you can see, the rightmost bits of the two operands are equal to 0, so the result contains 0 as well
in the corresponding place. Because both the operands contain a 1 at the second-to-last bit position, the
resulting bit is set as 1 after the AND operation.

Bitwise OR
The bitwise OR operator (|) carries out an OR on each bit of the two 32-bit number equivalent operands.
If at least one of the bits is found to be 1, this results in a 1 in the corresponding bit of the result. Otherwise,
the resulting bit is set to 0. The syntax is

A | B;

Chapter 3 ■ Operators in JavaScript

42

An example of the bitwise OR operator is shown here:

var num = 2 | 10 ; // result is 10

The following shows the 32-bit binary representation of the numbers, and the resulting number after
the bitwise OR operation:

00000000 00000000 00000000 00000010 = 2
00000000 00000000 00000000 00001010 = 10
--
00000000 00000000 00000000 00001010 = 10 = 2 | 10

As you can see, the rightmost bits of the two operands are equal to 0, so the result contains 0 as well
in the corresponding place. Because both the operands contain a 1 at the second-to-last bit position, the
resulting bit is set as 1 after the OR operation. The position where at least one bit (in either the first or second
operand) is equal to 1, the resulting bit is also set as 1.

Bitwise XOR
The bitwise exclusive OR, or XOR, operator (^) is somewhat similar to the OR operator. The bit in the
resulting number is set to 1 only when one of the bits in the operand is 1 and the other one is 0. When only
one of the bits is found to be 1, this results in a 0 in the corresponding bit of the result. In all other cases, the
resulting bit is set to 0. The syntax is

A ^ B;

Here’s an example of the XOR operator:

var num = 2 ^ 10 ;

Let’s look at how this works. The following shows the 32-bit binary representation of the numbers 2 and
10, and the resulting number after the bitwise XOR operation:

00000000 00000000 00000000 00000010 = 2
00000000 00000000 00000000 00001010 = 10
--
00000000 00000000 00000000 00001000 = 8 = 2 ^ 10

As you can see, the rightmost bits of the two operands are equal to 0, so the result contains 0 as well
in the corresponding place. Because both the operands contain a 1 at the second-to-last bit position, the
resulting bit is set as a 0 after the exclusive OR operation.

Bitwise NOT
The bitwise NOT operator (~) is a unary operator, meaning it involves only one operand. It simply negates
the bits in the operand. Every 0 bit becomes 1 and vice versa. The syntax is

~ A

Chapter 3 ■ Operators in JavaScript

43

Here’s an example of the bitwise NOT operator:

var num = ~ 10;

The following shows the 32-bit binary representation of the number 3, and the resulting number after
the NOT operation:

00000000 00000000 00000000 00001010 = 10

--
11111111 11111111 11111111 11110101 = -11 = ~ 10

As you can see, the NOT operation reversed all the bits of the operand, including the sign bit. This
results in a value of -11.

To summarize what has been discussed thus far, Table 3-4 presents a truth table that shows the various
bitwise operators.

Table 3-4.  Truth Table for AND, OR, and XOR Operators

Bit in Operand A Bit in Operand B Resulting Bit after
AND

Resulting Bit after
OR

Resulting Bit after
XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Bitwise Left Shift
As the name indicates, the bitwise left shift operator (<<) shifts the bits of the given operand to the left. You
specify the number of bits to be shifted via the operand B. Bits comprising of zeros equal to the number of
shifted places are added to the right of operand A. The syntax of the left shift operator is

A << B

Consider the following example:

var result = (10 << 2); // left shift by two places

In this case, the number 10 before shifting is shown as

00000000 00000000 00000000 00001010

After shifting it two places to the left, the binary representation looks like this:

00000000 00000000 00000000 00101000

Two zeros have been added to the left. This result now is the decimal number 40.

Chapter 3 ■ Operators in JavaScript

44

Bitwise Unsigned Right Shift
The bitwise unsigned right shift operator (>>>) is also known as zero-fill right shift. No matter what is the
sign of the operand, it always results in a non-negative value. The syntax is

A >>> B ;

It shifts the bits of the operand A by the number of places specified by B. The bits that are shifted to the
right are lost these are equal to B). On the left side, zeros are added equal to the number of places shifted
(i.e., B). After the operation, the leftmost bit is always equal to zero (i.e., results in a non-negative value).
Consider the following example:

var result = (10 >>> 2); // right shift by two places

In this case, the number 10 before shifting is shown here:

00000000 00000000 00000000 00001010

After shifting it two places to the right, the binary representation looks like this:

00000000 00000000 00000000 00000010

To the left, two zeros have been added. This result now is the decimal number 2.

Bitwise Signed Right Shift
The bitwise signed shift right operator (>>), also known as sign-propagating right shift, shifts the bits to the
right. However, the sign of the number is also preserved. The number of places that are moved to the right
are filled by the sign bit whether zero or 1. The syntax is

A >> B ;

Consider the following example:

var result = (-10 >> 2); // signed right shift result = -3

In this code, after the execution of the statement, the result variable contains the value -3.

Coding Example
Now that you are familiar with the various bitwise operators, Listing 3-4 shows a full-fledged coding
example.

Listing 3-4.  Example for Bitwise Operators

var result;
result = (2 & 10); // AND
console.log("(2 AND 10) returns ", result);

Chapter 3 ■ Operators in JavaScript

45

result = (10 | 2); // OR
console.log("(10 OR 2) returns ", result);

result = (10 ^ 2); // XOR
console.log ("(10 XOR 2) returns ", result);

result = (~ 10); // NOT
console.log ("(NOT 10) returns ", result);

result = (10 << 2); // left shift by two
console.log("(10 << 2) returns ", result);

result = (-10 >> 2); // signed right shift
console.log ("(-10 >> 2) returns ", result);

result = (10 >>> 2); // unsigned right shift
console.log ("(10 >>> 2) returns ", result);

The output of this program is shown in Figure 3-4.

Figure 3-4.  Program output

Assignment Operators
JavaScript also supports a number of assignment operators. An assignment operator may be simply defined
as an operator that “assigns” value to the left operand considering the value of the right operand.

The various assignment operators are shown in Table 3-5.

Chapter 3 ■ Operators in JavaScript

46

As you are aware, the basic assignment operator (=) assigns the value of the right operand to the one on
the left. The rest of the operators are shorthand for the various operators discussed so far in this chapter. For
example, consider the following:

x &= y

This code is simply a shorthand equivalent to the following:

x = x & y

Consider the following block of code:

var result = 2;
result &= 10;

This code is the same as

var result = 2 & 10;

Make sure, however, that there are no spaces within the assignment operator used, in this case &=.
Writing it as & = will produce a syntax error.

String Operator
So far in this chapter, you have seen the operator + used as an arithmetic operator. However, when used with
strings, the + operator behaves as a string operator that provides the concatenation functionality. In Chapter
2, you saw numerous examples of this when used with numbers and/or strings.

Table 3-5.  Assignment Operators

Operator Operator Usage/Shorthand Actual Effect

Assignment (basic assignment) x = y x = y

Addition assignment x += y x = x + y

Subtraction assignment x -= y x = x - y

Multiplication assignment x *= y x = x * y

Division assignment x /= y x = x / y

Remainder assignment x %= y x = x % y

Exponentiation assignment x **= y x = x ** y

Left shift assignment x <<= y x = x << y

Right shift assignment x >>= y x = x >> y

Unsigned right shift assignment x >>>= y x = x >>> y

Bitwise AND assignment x &= y x = x & y

Bitwise XOR assignment x ^= y x = x ^ y

Bitwise OR assignment x |= y x = x | y

http://dx.doi.org/10.1007/978-1-4842-2220-1_2
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Assignment_Operators#Assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Assignment_Operators#Addition_assignment

Chapter 3 ■ Operators in JavaScript

47

Summary
This chapter first explained the arithmetic operators provided by JavaScript in detail. It then covered the
usage of the comparison and logical operators, followed by a detailed explanation of the bitwise operators.
Finally, you saw the various assignment operators that are used as shorthand for the various bitwise, logical,
and arithmetic operators supported by JavaScript. The journey of the JavaScript learning goes on, and in the
next chapter you will see in detail the control structures that are mainly used within the JS arena.

49© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_4

CHAPTER 4

Control Structures in JavaScript

This chapter describes the various control structures in the JS language and demonstrates how to use them
to fulfill requirements. The chapter begins with an overview of the block statements supported in JavaScript.
Next, the if...else and the switch statements are covered in detail. You will then be introduced to the
various types of loops supported in JavaScript, including the for and while loops, and given demo programs
showing how to execute them. The chapter wraps up with brief coverage of the LABEL statement.

Block Statement
A block is used for grouping a set of statements. A block is enclosed within a pair of curly brackets, {}. The
basic syntax is

{
 st_1;
 st_2;
}

Block statements are used within the various control structures. These include the if statement and the
while and for loops (covered in the latter part of this chapter). Consider the following example:

var abc = 0;
while (abc < 122) {
 abc = abc + 2;
}

Within this block of code, {abc = abc + 2;} is the block statement.
Consider another example of a block:

var abc = 150;
{
 var abc = 100 + 2;
}
alert(abc); // outputs 102

This code outputs 102 because the second var statement (inside the curly brackets) lies in the same
scope as the var statement prior to the block.

Chapter 4 ■ Control Structures in JavaScript

50

Listing 4-1 shows an example of using compound statements within a block.

Listing 4-1.  Block Example

<html>
 <body>
 <script>
 {
 var x = 5;
 x++;
 }
 console.log(x);
 </script>
 </body>
</html>

The output of the program is shown in Figure 4-1.

Figure 4-1.  Block output

Conditional Statements
JavaScript provides two conditional statements:

•	 if...else

•	 switch

These statements let you execute a block of code when a given condition is found to be true. Or, in the
case of an if statement, it may be possible to execute a statement block when a condition is found to be
false.

if...else Statement
An if statement executes a set of statements when a logical condition is found to be true. An optional else
clause is used to execute statements when the condition is determined to be false. The flowchart pertaining
to a simple if statement is shown in Figure 4-2.

Chapter 4 ■ Control Structures in JavaScript

51

The syntax of an if statement is

if (eval_of_condition) {
 first_block;
} else {
 second_block;
}

Any expression that results in true or false may be used to formulate the condition. If the condition is
found to be true, first_block is executed; otherwise, second_block is executed. The block may contain any
number of statements, including further if statements.

It is also possible to specify multiple conditions to be checked one by one using if and else if to have
multiple conditions tested in sequence, as follows:

if (eval_cond1) {
 block_1;
} else if (eval_cond2) {
 block_2;
} else if (eval_cond3) {
 block_3;
} else {
 last_block;
}

When multiple conditions are specified, the code pertaining to the first condition that evaluates to true
will be executed. If the first condition is found to be false, the next condition specified by else if is checked,
and then the next else if, and so on. If all three conditions are false, the last_block code is executed.

■■ Note  The values false, null, undefined, and 0 when evaluated always result in a “false” value.

Figure 4-2.  Flowchart of if statement

Chapter 4 ■ Control Structures in JavaScript

52

Listing 4-2 shows how to create a short program using an if statement.

Listing 4-2.  Driving License Program Using if Statement

<html>
 <body>
 <script>
 var age = 20;
 if(age > 18)
 {
 console.log("Eligible for Driving license");
 }
 </script>
 </body>
</html>

The example shows a simple if statement. The variable age with value 20 is declared. The condition in
the if statement states that if age is greater than 18, then the code block should be executed. The output of
this program is shown in Figure 4-3.

Figure 4-3.  Program output

Listing 4-3 complicates things a bit by changing the example to add an else clause.

Listing 4-3.  Driving License Program with else Clause

<html>
 <body>
 <script>
 var age = 18;
 if(age > 18){
 console.log("Eligible for Driving license");
 }
 else if(age == 18){
 console.log("Eligible for learning license");
 }
 else{
 console.log("Not eligible for Driving license");
 }
 </script>
 </body>
<html>

In this case, the block of code pertaining to the satisfied condition is executed, and the corresponding
output is printed via the console.log statement. In this example, the else if condition (i.e., age == 18) is
satisfied, hence the output will be Eligible for learning license, as shown in Figure 4-4.

Chapter 4 ■ Control Structures in JavaScript

53

Figure 4-4.  Program output

Figure 4-5.  Flowchart of switch control structure

switch Statement
The switch statement enables you to evaluate an expression and then match its value using a number of
case labels. When a match is found, the relevant code block is executed.

A break statement is used within the switch control structure. The break statement ensures that the
program breaks out of switch once the expression is matched.

The flowchart of a switch control structure is shown in Figure 4-5.

Chapter 4 ■ Control Structures in JavaScript

54

The syntax of a switch control structure is

switch (expression) {
 case value1:
 //Statements executed when the result of expression matches value1
 [break;]
 case value2:
 //Statements executed when the result of expression matches value2
 [break;]
 ...
 default:
 //Statements executed when none of the values match the value of the expression
 [break;]
}

The expression’s resulting value is matched against each case value. If none of the case values match
with that of the expression, then the default block code is executed.

Listing 4-4 provides an example of a switch statement in the driving license program.

Listing 4-4.  switch Statement Example

<html>
<body>
<script>
var age = "16";
switch (age) {
 case "18":
 console.log("Eligible for learning license")
 break;
 case "20":
 console.log("Eligible for two wheeler license")
 break;
 case "23":
 console.log("Eligible for four wheeler license")
 break;
 default:
 console.log("Not eligible for license");
}
</script>
</body>
</html>

Variable age is declared with a value of 16 years. Different case clauses are included with respective
coding. Listing 4-4 also includes a default clause to specify what the program should do if none of the
values (specified via case clauses) are matched. Because the age is 16, the default code is executed. The
output of the program is shown in Figure 4-6.

Chapter 4 ■ Control Structures in JavaScript

55

As mentioned earlier, correct execution of the switch control structure requires the break statement.
Listing 4-5 shows an example of a switch control structure without a break statement.

Listing 4-5.  Example of Incorrect switch Control Structure

<!DOCTYPE html>
<html>
<body>
<script>
var color = "Green";
switch (color) {
 case "Red":
 console.log("Sign for Danger");
 case "Green":
 console.log("Sign for Growth");
 case "White":
 console.log("Sign for Peace");
 default:
 console.log("No sign");
}
</script>
</body>
</html>

Because the break statement has been omitted in Listing 4-5, the output is incorrectly displayed, as
shown in Figure 4-7.

Figure 4-6.  Switch statement output

Figure 4-7.  Wrong output

Chapter 4 ■ Control Structures in JavaScript

56

The value supplied to the switch expression is Green. This matches the second case clause, so only
Sign for Growth should be displayed in the console log. However, because no break statement is included,
after the execution of the matched statement, the two subsequent case clauses are also executed.

Loops in JavaScript
A loop helps to execute a block of code a number of times or repeatedly until a given condition is true. There
are various types of loops supported in JS:

•	 while loop

•	 do...while loop

•	 for loop

•	 for...in loop

while Loop
This is a conditional loop. The while loop executes a block of code until the specified condition evaluates to
true. As soon as the condition fails, the loop is stopped. The flowchart of the while loop is shown in Figure 4-8.

Figure 4-8.  Flowchart of while loop

Chapter 4 ■ Control Structures in JavaScript

57

The generic syntax of the while loop is

while (condition)
{
 Statements to be executed if condition is true
}

Listing 4-6 provides a fully working example of a while loop.

Listing 4-6.  while Loop Example

<html>
 <body>
 <script>
 var n = 0;
 console.log("Starting Loop ");
 while (n < 3)
 {
 console.log("Current Count : " + n + " ");
 n++;
 }
 console.log("Loop stopped!");
 </script>
 </body>
</html>

Listing 4-6 declares the variable n and assigns it a value of 0. The while loop condition states that the
variable n should be less than 3. Within the loop, n is incremented by 1. Hence, the loop continues three
times; that is, for n equals to 0, 1, and 2. As soon as the value of n equals 3 (i.e., the condition is satisfied), the
loop stops.

The output of the program is shown in Figure 4-9.

Figure 4-9.  Output of while loop

do...while Loop
The do...while loop repeats until the specified condition is evaluated to false. The block of code is specified
first and then the relevant condition is executed. This means that the loop will always be executed at least
once, even if the condition is false. The flowchart is shown in Figure 4-10.

Chapter 4 ■ Control Structures in JavaScript

58

The syntax of the do...while loop is

do
{
 //Statements;
}
while (condition);

An example of the do...while loop is shown in Listing 4-7.

Listing 4-7.  do...while Example

<html>
 <body>
 <script>
 var n = 0;
 console.log("Starting Loop ");
 do
 {
 console.log("Current Count : " + n + "");
 n++;
 }

Figure 4-10.  Flowchart of do...while loop

Chapter 4 ■ Control Structures in JavaScript

59

 while (n < 4)
 console.log("Loop stopped!");
 </script>
 </body>
</html>

In this example, the value of the variable n is set to 0. On each loop iteration, the value of n is
incremented by 1. The while loop reiterates until the value of n is no longer less than 4 (i.e., n equals 4).

The output of Listing 4-7 is shown in Figure 4-11.

Figure 4-11.  Output of do...while loop

for Loop
The for loop is a conditional loop that continues until the specified condition evaluates to false. The generic
syntax is

for ([initialization]; [test condition]; [expression])
{
 Statement
}

Within the initialization portion, you initialize the loop counter to a starting value. For the test
condition you specify the condition that must be checked to determine whether or not the loop should
continue. The expression is the part where you increase or decrease the counter or value.

Listing 4-8 shows an example of the for loop being used in a program.

Listing 4-8.  for Loop Example

<html>
 <body>
 <script>
 var count;
 console.log("Starting Loop" + "");
 for(count = 0; count < 10; count++){
 console.log("Current Count : " + count);
 }
 console.log("Loop stopped!");
 </script>
 </body>
</html>

Chapter 4 ■ Control Structures in JavaScript

60

This example declares the variable count and then initializes the value of count to 0 in the for loop.
Then, the loop condition checks whether the count value is less than 10. If so, the counter is incremented by 1.

Within the loop iteration, the current value of count is displayed. After each loop iteration, the count
value is incremented by one and its value is checked based on the condition specified.

This loop runs ten times (for count equal to 0 to 9). When the value of count is equal to 10, the condition
evaluates to false and the loop is stopped.

The output of the program is shown in Figure 4-12.

Figure 4-12.  Program output

The previous example showed you how to use a for loop to increment the counter value. Listing 4-9
presents another for loop example that shows you how to decrement the counter value.

Listing 4-9.  Reverse for Loop

<html>
 <body>
 <script>
 var count;
 console.log("Starting Loop" + "");
 for(count = 10 ; count > 0; count--){
 console.log("Current Count : " + count);
 }
 console.log("Loop stopped!");
 </script>
 </body>
</html>

This example displays the reverse loop count. It first initializes the count value as 10. The condition
checks that the value of count is greater than 0. At every loop pass, the value of count is decremented by 1.
The output of this program is shown in Figure 4-13.

Chapter 4 ■ Control Structures in JavaScript

61

As you can see, the first value printed is 10 because the initial value of count is 10. The code within the
loop is run as long as the value of count is greater than 0 (so the last value printed is 1).

Within the for loop code block, you can also include an if structure. Suppose you have the
requirement to print all the even numbers from 0 to 19. You can achieve that by using a combination of a for
loop and an if statement, as shown in Listing 4-10.

Listing 4-10.  for Loop with if Statement

<html>
 <body>
 <script>
 var i;
 for(i = 0; i < 20; i++)
 {
 if((i % 2) == 0)
 {
 console.log("Number is divisible by 2 : " + i);
 continue;
 }
 }
 </script>
 </body>
</html>

This example uses the if statement in the for loop to check whether variable i is divisible by 2. In
each case in which the value of i is divisible by 2, the program prints the value. The output of the program is
shown in Figure 4-14.

Figure 4-13.  Program output

Chapter 4 ■ Control Structures in JavaScript

62

You may also nest a for loop, meaning you may have a for loop within a for loop. You will see an
example of this in conjunction with the label keyword after the discussion of the for...in loop.

■■ Note  The break statement may be used inside for loops as well, to exit the loop.

for...in Loop
The for...in loop is a special type of a loop that is run on the properties of an object. The for...in loop
iterates a specified variable on all the properties of an object in question.

The for...in syntax is

for (variable in object) {
 statements
}

Listing 4-11 provides an example of the for...in loop being used in a program.

Listing 4-11.  for...in Example

<html>
 <body>
 <script>
 var obj = {a:"alto", b:"scorpio", c:"zen"};
 for(var string=" " in obj) {
 console.log(obj[string]);
 }
 </script>
 </body>
</html>

Figure 4-14.  Program output

Chapter 4 ■ Control Structures in JavaScript

63

Listing 4-11 introduces an object obj with three properties a, b, and c that are assigned values alto,
scorpio, and zen, respectively. The for...in obj loop is then used to process each property of the object.
In each iteration, one property from object is assigned to variable name and the loop continues until all the
properties of object have been read. The console.log method is used to display the property content on the
web browser console.

The output of the program is shown in Figure 4-15.

Figure 4-15.  Properties of object printed

Label Statement
The label statement enables you to define a unique identifier for a statement block. The syntax is

label:
 statements

The name of the label is followed by a colon, and below the label is the block of statements linked with
the label name (or defined by the given label). To clarify, consider the example in Listing 4-12.

Listing 4-12.  Label Example

<html>
 <body>
 <script>
 var i, j;
 Outerloop:
 for (i = 0; i < 5; i++) {
 for (j = 0; j < 5; j++) {
 if (i === 1 && j === 1) {
 break Outerloop;
 }
 console.log("i = " + i + ", j = " + j);
 }
}
 </script>

 </body>
</html>

Chapter 4 ■ Control Structures in JavaScript

64

Listing 4-12 defines a label Outerloop for the outer for loop. There is also an inner loop run for each
iteration of the outer loop. To exit the outer loop when the values of counters i and j are both equal to 1, the
break statement is used with the previously defined label Outerloop to denote the outer for loop.
The output of Listing 4-12 is shown in Figure 4-16.

Figure 4-16.  Program output

Summary
This chapter covered the various control structures in the JS language and described how to use them to
fulfill requirements. It started with the block statements supported in JavaScript. Next, it covered the
if...else and switch statements. Finally, demo programs showed you how to execute the various types of
loops supported in JavaScript, including the for and while loops, along with the LABEL statement.

Chapter 5 discusses another important topic in JavaScript: regular expressions and string methods.

http://dx.doi.org/10.1007/978-1-4842-2220-1_5

65© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_5

CHAPTER 5

Regular Expressions and String
Methods

This chapter introduces you to an important feature of JS: regular expression processing. You use this feature
to find and replace text matching a given pattern within a given text stream. The chapter first explains
regular expressions as defined in JavaScript. It then shows you how to use RegExp in conjunction with string
methods. The latter half of the chapter introduces you to the properties and methods of the RegExp object.

Regular Expressions: An Overview
Regular expressions consist of patterns (along with optional modifiers) used to match character
combinations in a text string. Regular expressions provide a way to perform all types of string search and
replacements. There are two ways to define regular expression objects in JavaScript. The first is shown here:

var pattern = new RegExp(pattern, attributes);

The other way is shown here:

var pattern = /pattern/attributes or modifiers;

It consists of a pattern and one or more optional flags (i.e., modifiers or attributes). The pattern
indicates the regular expression pattern to be matched, whereas the attributes or modifiers specify any
additional information. As the name indicates, modifiers are used to modify the search of the pattern within
the text in question. The values that may be specified as attributes are

•	 g: Global modifier. Searches for all occurrences of a given pattern within a string.

•	 i: Ignores the case-sensitive behavior within a pattern search.

•	 m: Multiline modifier. Any ^ or $ specified in the regular expression applies to every
line of the string. Without this modifier, it is applicable only once to the entire string.

Within the regular expression patterns, there are metacharacters and quantifiers. Metacharacters are
special-meaning characters used for defining search patterns. Some of the commonly used metacharacters
are shown in Table 5-1. There can be several occurrences of substrings identified by the metacharacters in
the text string to be processed.

Chapter 5 ■ Regular Expressions and String Methods

66

Quantifiers are used to specify the number of occurrences of a particular character or set of characters.
Some of the commonly used quantifiers are shown in Table 5-2.

Table 5-1.  Metacharacters

Metacharacter Purpose

. Searches for a character

\s Searches for a blank character

\S Searches for a non-whitespace character

\w Searches for an alphanumeric character such as 1, 2, a, A, h, d, etc. (i.e., a word
character, meaning a character from a-z, A-Z, or 0-9, and includes the underscore
character, _)

\W Searches for a nonalphanumeric character such as %, #, % (i.e., a non-word character)

\d Searches for a digit such as 1, 2, or 3.

\D Searches for a nondigit character such as *, #, a, b.

Table 5-2.  Quantifiers

Quantifier Purpose

p+ Matches occurrences of at least one p.

p* Matches zero or more occurrences of p.

p? Checks if a string contains zero or one occurrences of p.

p{A} Matches a sequence of A number of p. For example, ab{2} will match abab.

p{A,B} Checks if a string has a sequence of A to B number of p.

p{A,} Checks if a string has a sequence of at least A number of p. For example, ab{1,} will match
ab, abab, and so on.

p$ Matches a string that ends with p. For example, b$ will match ab, b, and cab.

^p Matches a string that starts with p. For example, ^a will match ab, ah, and aj.

Table 5-3.  Usage of Square Brackets in Expressions

Expression Purpose

[xyz] Searches for any character shown in the square brackets

[^xyz] Searches for any character other than the ones in the brackets

[A-B] Searches for a digit falling in the range A to B

[^A-B] Finds any digit other than those falling in range A to B

(a|b) Serves like an OR, searching for character a or b

You can use square brackets in the regex pattern to specify which characters to search for. The typical
uses of square brackets in expressions are shown in Table 5-3.

Chapter 5 ■ Regular Expressions and String Methods

67

■■ Note  A detailed explanation of how to write regular expressions is beyond the scope of this chapter.
However, we will focus on the JS methods that allow you to program regular expressions in order to solve
typical user requirements.

There are two ways to use regular expressions:

•	 Use the String object methods

•	 Use the properties and methods of the regular expression objects (RegExp object)

Each is covered in turn in the following sections. Here are some examples of regular expressions:

var regex = /High/i ;
var regex = /[C-G]/gi ;
var re = /\s*;\s*/;
var text = new RegExp("Good morning", "g");

String Methods
In JavaScript, the following are the string methods pertaining to regular expression processing:

•	 search

•	 replace

•	 match

•	 split

Each of these string methods is covered in turn next, along with examples.

search Method
The search method uses an expression to search for a match, and returns the position of the match. The
syntax for the search() method is

str.search(regexp)

The return value will be the index of the first match. A simple example of this is shown in Listing 5-1.

Listing 5-1.  search() Method Example

<html>
 <body>
 <script>
 var text = "Visit the Google";
 console.log(text.search("Google"));
 </script>
 </body>
</html>

Chapter 5 ■ Regular Expressions and String Methods

68

Listing 5-1 declares the variable text with some text ("Visit the Google"). The text.search()
method searches for “Google” in variable text and returns its given position. The console.log() method is
used to display the output.

The output for Listing 5-1 is shown in Figure 5-1.

Figure 5-1.  Program output

Figure 5-2.  Output

replace Method
As the name indicates, the replace method replaces a substring matching a given regular expression
pattern within a text with another (new) substring. The modified string is then returned. The syntax for the
replace() method is

str.replace(regexp, newsubstr)

The return value will be the new string with one or more matches of the given pattern replaced
accordingly. Consider the example in Listing 5-2.

Listing 5-2.  replace() Method Example

<html>
 <body>
 <script>
 var text = "High level language";
 console.log(text.replace(/High/i, "Low"));
 </script>
 </body>
</html>

In Listing 5-2, the text.replace() method is used to replace the string “High” with “Low”. Modifier i is
used to ignore the case.

The output of Listing 5-2 is shown in Figure 5-2.

Chapter 5 ■ Regular Expressions and String Methods

69

■■ Note  It is also possible to specify subgroups within the pattern to be matched. With the replace method,
these subgroups may be addressed using placeholders $1 and $2. For example:

var regex = /(\d+)\s(\d+)/;

var string1 = "123 321"; var newstring = string1.replace(regex, "$2, $1");

match Method
The match method is used to get all the substrings (regex matches) within a given text string in the form of an
array. The usage of this method returns null if no match is found. The syntax for the match() method is

str.match(regexp)

Listing 5-3 shows an example of how the match method works.

Listing 5-3.  match() Method Example

<html>
 <body>
 <script>
 var text = "Advance varsion of JavaScript 7.1.4";
 var result = text.match(/va/g)
 console.log(result);
 </script>
 </body>
</html>

This example declares the variable text with a string value. The text.match() method is then used to
match the characters ‘va’ against the string value. The output for Listing 5-3 is shown in Figure 5-3.

Figure 5-3.  Output

Chapter 5 ■ Regular Expressions and String Methods

70

Another example of the match method is shown in Listing 5-4.

Listing 5-4.  Another match() Method Example

<html>
 <body>
 <script>
 var text = "ABCDEFG12345abcdefghijklm";
 var result = text.match(/[C-G]/gi)
 console.log(result);
 </script>
 </body>
</html>

The example demonstrates the use of global (g) and ignore (i) case modifiers/flags with the match()
method. It declares the variable text and assigns a text value to it. The text.match() method is used to find
all the letters from C to G and/or c to g. the results are then returned in the array result.

The output of Listing 5-4 is shown in Figure 5-4.

Figure 5-4.  Output

Chapter 5 ■ Regular Expressions and String Methods

71

split Method
In the context of regular expressions, the split method is used to split a string into an array of substrings
that match a given regex pattern. The syntax of the split method is

str.split(regex, Limit)

If used without regular expressions, you may specify the separator in place of the regex. The syntax will
then look like

str.split(separator, limit)

As mentioned earlier, the return value will be in the form of an array. The limit is a number (for
example, 2, 10, etc.) that specifies the maximum number of elements contained in the result array. Both the
separator and limit (integers) are optional.

An example of using the split method to remove spaces from a string is shown in Listing 5-5.

Listing 5-5.  split Method Example

<html>
<body>
 <script>
 var countries = "UK ; US; Europe; India";
 console.log(countries);
 var re = /\s*;\s*/;
 var countriesList = countries.split(re);
 console.log(countriesList);
 </script>
 </body>
</html>

This example declares the variable countries and assigns it a number of country names separated by
a semicolon (;) contained within spaces. As you can see, the regular expression pattern used in the split
method looks for zero or more spaces followed by a semicolon, then again followed by zero or more spaces.
When such a pattern is found within the variable countries, a split is performed and the spaces and the
semicolon are removed from the resulting substring. For each match, the array element is populated. The
countriesList is the array returned as a result of split.

The output of Listing 5-5 is shown in Figure 5-5, displaying the original string and also the resulting
array.

Chapter 5 ■ Regular Expressions and String Methods

72

Another usage of the split method using the optional limited number of splits is shown in Listing 5-6.

Listing 5-6.  Another split() Method Example

<html>
 <body>
 <script>
 var myString = 'Hello, this is JavaScript coding';
 var splits = myString.split(' ', 1);
 console.log(splits);
 </script>
 </body>
</html>

In this example, split will look for space in the string myString and stop when the first match is found.
The output of Listing 5-6 is shown in Figure 5-6.

Figure 5-6.  Program output

Figure 5-5.  Output

Regular Expression Object
Now that you are familiar with the basics of the regular expression object, this section dives into the details
of its various properties and methods.

Chapter 5 ■ Regular Expressions and String Methods

73

Regular Expression Object Properties
Table 5-4 shows the properties of the regular expression object.

Table 5-4.  Regular Expression Object Properties

Property Description

constructor Contains the function that creates the object’s prototype.

global Specifies whether the g modifier is set for the given regular expression.

ignoreCase Specifies whether the i modifier is set for the given regular expression.

lastIndex Specifies the index at which to start the next match.

multiline Specifies whether the m modifier is set for the given regular expression.

source Represents the text of the pattern that is to be searched.

constructor Property
The constructor property contains the reference to the function that created the object instance. The syntax
of constructor usage is

RegExp.constructor

For regular expressions, the constructor property returns function RegExp() { [native code] }.

■■ Note  The constructor property is applicable for other objects such as numbers and strings. For numbers,
the constructor property returns function Number() { [native code] }. For strings, it returns function
String() { [native code] }.

Listing 5-7 provides an example of how the constructor property works.

Listing 5-7.  constructor Property Example

<html>
 <body>
 <script>
 var text = new RegExp("Good morning", "g");
 console.log("text.constructor is:" + text.constructor);
 </script>
 </body>
</html>

The output of Listing 5-7 is shown in Figure 5-7.

Chapter 5 ■ Regular Expressions and String Methods

74

Listing 5-8 shows another constructor property example.

Listing 5-8.  constructor Property Example

<html>
 <body>
 <script>
 var num = new Number(6);
 console.log("num.constructor is:" + num.constructor);
 </script>
 </body>
</html>

The output for Listing 5-8 is shown in Figure 5-8.

Figure 5-8.  Program output

Figure 5-7.  Program output

global Property
The global property specifies whether the regular expression uses the global modifier (i.e., whether the g
modifier is set or not). The syntax for accessing the global property is

RegExp.global

This property returns true if the g modifier is set, and returns false otherwise. See Listing 5-9 for an
example.

Listing 5-9.  global Property Example

<html>
 <body>
 <script>
 var text = "Learn JavaScript";

Chapter 5 ■ Regular Expressions and String Methods

75

 var pattern1 = /Java/g;
 var result = pattern1.global;
 console.log("Text is matched with Java:" + pattern1.global);
 var pattern2 = /Java/
 console.log("Text is matched with Java:" + pattern2.global);
 </script>
 </body>
</html>

The output for Listing 5-9 is shown in Figure 5-9.

Figure 5-9.  Output

ignoreCase Property
The ignoreCase property specifies whether the regular expression performs case-insensitive matching (in
other words, whether the i modifier is set or not). The syntax to access this property is

RegExp.ignoreCase

The ignoreCase property returns true if the i modifier is set, and false otherwise.
Listing 5-10 presents a simple example of the usage of the ignoreCase property.

Listing 5-10.  ignoreCase Property Example

<html>
 <body>
 <script>

 var pattern1 = /Java/i;
 console.log("IgnoreCase property is set:" + pattern1.ignoreCase);
 var pattern2 = /Java/;
 console.log("IgnoreCase property is set:" + pattern2.ignoreCase);
 </script>
 </body>
</html>

This example first declares regular expression pattern pattern1. In this case, the i modifier is specified,
making it ignore the case. Next, the example declares pattern2 /Java/ without the ignoreCase modifier. In
both cases, the output using the console.log method is generated for the ignoreCase property, as shown in
Figure 5-10.

Chapter 5 ■ Regular Expressions and String Methods

76

lastIndex Property
The lastIndex property specifies the character position within the given text string after the last match
found by the RegExp.exec() and RegExp.test() methods. For example, if the match found is “Java” where
the second “a” is at the 14th position in the text string, the lastIndex value will be set as 15. This property
is only applicable when the g modifier is set. The exec() and test() methods reset this property to 0 if no
match (or another match) is found.

The syntax of lastIndex is

RegExp.ignoreCase

An example of the lastIndex property is shown in Listing 5-11.

Listing 5-11.  lastIndex Property Example

<html>
 <body>
 <script>
 var text = "We can use JavaScript in Java coding";

 var pattern = /Java/g;

 var result = pattern.test(text);
 console.log("Current index:" + pattern.lastIndex);

 var result = pattern.test(text);
 console.log("Current index:" + pattern.lastIndex);
 </script>
 </body>
</html>

This example has a text string and a regular expression using the global modifier. It uses the test
method twice, each time followed by the display of the lastIndex property. The output for Listing 5-11 is
shown in Figure 5-11.

Figure 5-10.  Output

Chapter 5 ■ Regular Expressions and String Methods

77

multiline Property
The multiline property specifies whether the regular expression performs multiline matching. It checks
whether the m modifier is set or not. The syntax of multiline is

RegExp.multiline

The property returns true if the m modifier is set, and returns false otherwise. Listing 5-12 presents an
example of the multiline property.

Listing 5-12.  multiline Property Example

<html>
 <body>
 <script>
 var text = "Learn JavaScript";
 var pattern1 = /Java/m;
 var result = pattern1.multiline;
 console.log("Text is matched with Java:" + pattern1.multiline);
 var pattern2 = /Java/;
 console.log("Text is matched with Java:" + pattern2.multiline);
 </script>
 </body>
</html>

The output of Listing 15-12 is shown in Figure 5-12.

Figure 5-11.  Output

Figure 5-12.  Output

Chapter 5 ■ Regular Expressions and String Methods

78

source Property
The source property contains the text of the RegExp pattern. The syntax of the source property is

RegExp.source

As the name indicates, the source property returns the text used for pattern matching. It does not return
the modifier, if any, used in the regular expression. Listing 5-13 shows an example of the source property.

Listing 5-13.  source Property Example

<html>
 <body>
 <script>

 var pattern1 = /Java/g;
 console.log("Any text you have can be matched with the pattern:" + pattern1.source);
 </script>
 </body>
</html>

First a regex pattern1 is specified. The output of Listing 5-13 is shown in Figure 5-13.

Figure 5-13.  Output

Table 5-5.  Regular Expression Object Methods

Method Description

exec() Performs a search for a given regex pattern match within the parameter string

test() Similar to exec but returns true when a match is found and false otherwise

toSource() Returns an object literal representing the specified object

toString() Returns a string representing the specified object

Regular Expression Object Methods
There are four methods provided by the RegExp object, as listed and described in Table 5-5.

Chapter 5 ■ Regular Expressions and String Methods

79

exec Method
The exec method searches a string for text that matches RegExp. The generic syntax of exec method is

RegExp.exec(string)

The string parameter denotes the string that is to be searched. The method returns the matched text
(substring corresponding to the given Regex) if a match is found. Otherwise, null is returned. See Listing 5-14
for an example.

Listing 5-14.  exec() Method Example

<html>
 <body>
 <script>
 var text = "Learn JavaScript its very interesting script";

 var pattern = new RegExp("Java", "g");
 var result = pattern.exec(text);
 console.log("Text is matched with Java:" + result);

 var pattern1 = new RegExp("language", "g");
 result = pattern1.exec(text);
 console.log("Text is matched with language:" + result);
 </script>
 </body>
</html>

This example first declares a text variable and assigns a string that is to be searched. Two patterns,
pattern1 and pattern2, are declared using the new keyword and built-in RegExp object. For both the
variables pattern1 and pattern2, the method exec is called using the same "text" string. The result is then
returned in variable result.

The output of Listing 15-14 is shown in Figure 5-14.

Figure 5-14.  Output

Chapter 5 ■ Regular Expressions and String Methods

80

test Method
The test method also searches the given string for text that matches the regular expression pattern. If a
match is found, it returns true. Otherwise, it returns false. The syntax of test() is

RegExp.test(string)

The test method takes as input a string parameter, as shown in Listing 5-15.

Listing 5-15.  test Method Example

<html>
 <body>
 <script>
 var text = "Learn JavaScript its very interesting script";

 var pattern = new RegExp("Java", "g");
 var result = pattern.test(text);
 console.log("Text is matched with Java:" + result);

 var pattern = new RegExp("language", "g");
 var result = pattern.test(text);
 console.log("Text is matched with language:" + result);
 </script>
 </body>
</html>

The output of Listing 15-5 is shown in Figure 5-15.

Figure 5-15.  Output

toString Method
The toString method returns the corresponding string representation of a regular expression in the form
of a regex literal. The returned string is contained within backslashes and also includes the modifiers, if
applicable. The syntax of toString() is

RegExp.toString(string)

Listing 15-16 presents an example of the toString method in action.

Chapter 5 ■ Regular Expressions and String Methods

81

Listing 5-16.  toString() Method Example

<html>
 <body>
 <script>
 var text ;
 var pattern = new RegExp("Java", "g");
 var result = pattern.toString(text);
 console.log("Return value:" + result);

 var pattern = new RegExp("/", "g");
 var result = pattern.toString(text);
 console.log("Return value:" + result);
 </script>
 </body>
</html>

This example specifies two patterns via the RegExp object and then calls the toString method for both
of the patterns. The output of Listing 5-16 is shown in Figure 5-16.

Figure 5-16.  Output

■■ Note  The exec and test methods are similar to the extent that both take as input the string that is to be
searched. The difference is that exec returns the matched substring or null value, whereas the test method
returns true or false.

Summary
This chapter introduced you to regular expressions, including how to use RegExp in conjunction with string
methods. You were also exposed to the properties and methods of the RegExp object, along with code
examples.

Chapter 6 discusses another important topic in JavaScript: functions.

http://dx.doi.org/10.1007/978-1-4842-2220-1_6

83© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_6

CHAPTER 6

Functions

This chapter introduces you to the basics of functions and the advantages that they provide. First, you will
be shown the different types of methods used for creating functions in JavaScript. Then, you will see how to
define functions that return values to the calling program as well as how to specify parameters (arguments)
for the defined function.

Functions: An Overview
A function may be simply defined as a set of statements or a subprogram that can be used or called anywhere
within the JS program. A function typically has a name, but does not have to have a name, in which case it is
called an anonymous function. A function can have zero or more parameters.

A function has a body that is enclosed within curly brackets, and the body of the function may include
several statements. A function may also include a return statement, which is optional and may be used
to return to the caller code a computed value. (You’ll learn more about the return statement later in this
chapter.) The processing of the function stops at the return statement.

Using function provides the following advantages to developers:

•	 It saves a lot of time and effort because the developer doesn’t need to rewrite the
code for a particular requirement.

•	 The code of the program is more compact, more organized, and more
understandable than it would be without functions.

•	 After functions are defined once, they may be used throughout the program or in
other functions.

To define functions in JavaScript, you use the function keyword, followed by a unique function name, a
parameters list, and a block of code in curly brackets. The syntax of a function is

function name(parameter-list)
 {
 statements
 }

Here, name is the function name, parameter-list represents the list of arguments to be passed to
the function, and statements include the body of the function and may or may not include calls to other
functions.

Chapter 6 ■ Functions

84

If the function has no parameters, you still need to include the parentheses after the function name:

function name()
 {
 statements
 }

For simplicity sake, this chapter only shows functions that have a name.
The example in Listing 6-1 shows the named function and how the value is returned from a function.

Listing 6-1.  Function Example

function triple(num){
 return (3 * num);
}

This simple example triples the number num. The name of the function is triple and num is the
parameter whose tripled value is to be calculated. The computed value is then returned.

This function may be used in a console.log method, or in an alert function as follows:

alert('Tripled figure is '+ triple(2));

The output of this code is shown in Figure 6-1.

Figure 6-1.  Output

As previously mentioned, to invoke the function correctly, you need to use the function () operator.
Omitting the operator () leads to the code of the function (definition) being returned. Consider the example
shown in Figure 6-2.

Listing 6-2.  Omitted Function Operator Example

alert('Tripled figure is '+ triple);

The output of Listing 6-2 is shown in Figure 6-2.

Chapter 6 ■ Functions

85

Declaring Functions
Now that you are familiar with the basics of functions in JS, this section describes some of the ways that you
can create functions in programs. Functions can be created mainly in two ways:

•	 Using a function expression

•	 Using a function declaration

The following subsections cover each and their further classification in detail.

Using a Function Expression
This option involves defining a function within a larger expression. A function defined via a function
expression can be any of three types:

•	 Self-invoking functions

•	 Named function expression

•	 Anonymous function expression

Self-Invoking Functions
A self-invoking function is a function that may be defined with a name or without a name but is invoked
automatically. There is no declaration and invocation involved. The expression executes the function
automatically.

The syntax for a self-invoking function is shown here:

(function(){
// code
})();

Again, it is absolutely essential that the function name is followed by parentheses, ().
Listing 6-3 shows a working example of a self-invoking function.

Listing 6-3.  Self-Invoking Function Example

(function () {
 console.log("See you all!");
})();

Figure 6-2.  Output

Chapter 6 ■ Functions

86

This example declares the function without a name. The function is self-invoked and displays the
output in the browser console, as shown in Figure 6-3.

Figure 6-4.  Output

Figure 6-3.  Output

Named Function Expression
As the name suggests, the named function is declared with a name in a function expression.

The syntax of a named function is

var myFunction = function namedFunction(){
 statements
}

Here, a variable myFunction is defined, to which the function object is assigned. You may then use the
variable myFunction and supply any values pertaining to the function, if applicable, in order to execute the
code of the function.

Consider the example in Listing 6-4, which declares the function name as myFunction and assigns it to
the declared variable myValue.

Listing 6-4.  Named Functions Example

var myValue = function myFunction() {
 return 'Hello';
 }
console.log("Text displayed as : " +myValue());

The output of Listing 6-4 is shown in Figure 6-4.

Chapter 6 ■ Functions

87

Anonymous Function
A function (expression) that does not have a name is called an anonymous function. The syntax of an
anonymous function is

var myFunction = function() {
 statements
}

Listing 6-5 shows an example of an anonymous function.

Listing 6-5.  Anonymous Function Example

var myFunction = function()
 {
 return 'Hello';
 }
console.log("Text displayed as : " +myFunction());

This example assigns the result of the function expression in question to a variable myFunction and calls
it using myFunction.

The output of Listing 6-5 is shown in Figure 6-5.

Figure 6-5.  Output

Using a Function Declaration
A function declaration defines a function with a name and does not involve any variable assignment.
Declared functions are only executed when called and are not executed immediately.

The syntax of a function declaration is

function funct_name(parameters) {
 Statements
}

Listing 6-6 shows an example of a function declaration.

Listing 6-6.  Function Declaration Example

function myFunction()
 {
 return 'Hello';
 }
console.log("Text displayed as : " +myFunction());

Chapter 6 ■ Functions

88

In the example, myFunction() is the declared function and is called within the console.log function. It
returns the value "Hello" whenever it is called in the program.

■■ Note  A function declaration is not an executable statement. It is not necessary to have a semicolon at the
end of a function declaration.

The output of Listing 6-6 is shown in Figure 6-6.

Figure 6-6.  Output

■■ Note  In addition to the function expression and function declaration, there is also a function constructor
way of creating functions. In this approach, the new keyword is used. The constructor Function() treats the
code as stored in strings. One example of this is shown:

var average = new Function('a', 'b', 'return ((a + b) / 2)');

Here, the parameters are supplied within quotes and separated by commas (in this case, a and b). The third
string is the code. This method is slow and difficult to debug and therefore not recommended.

It is better to use a function expression or a function declaration.

Summary Comparison of the Function Declaration and Function
Expression
This is a declaration:

function product(a, b) {
 return a * b;
}

This is an expression:

var product = function (a, b) {
 return a * b;
};

Chapter 6 ■ Functions

89

Function Parameters and Arguments
As mentioned earlier in this chapter, a function may or may not include parameters. There may be one or
more parameters for a given function.

Based on the parameter values supplied to the function, the behavior of the function changes and
results compute accordingly. Parameters such as a and b may be addressed like any local variables within
the code of the function. These parameters are specified within parentheses, separated by commas.

In the following example, p1 and p2 are parameters:

function anexample(p1, p2) {
 ...
}

At the time of the function invocation, the corresponding values supplied for the parameters are known
as arguments. In the following example, 10 and 11 are arguments:

anexample(10,11);

An example of in Listing 6-7.

Listing 6-7.  Function Parameter Example

<!DOCTYPE html>
<html>
 <body>
 <script>
 function mymessage(user) {
 console.log("Good to see you " + user);
 }
 mymessage("Diego Dora")
 </script>
 </body>
</html>

In this code, function mymessage uses one parameter, user, at the time of declaration. It takes a string of
text as a parameter. Next, function mymessage is called and passed the text "Diego Dora".

The output of Listing 6-7 is shown in Figure 6-7.

Figure 6-7.  Output

Chapter 6 ■ Functions

90

Missing Parameters and the undefined Value
It is possible to invoke a multiparameter function and omit a few of the parameters. Within the function, any
missing parameters have the value set as undefined. Any extra arguments supplied are ignored.

Consider the code in Listing 6-8.

Listing 6-8.  Missing Parameter Example

function myFunction(firstparam, secondparam) {
 if (secondparam === undefined) {
 console.log(secondparam)
 }
}
myFunction(1);

Listing 6-8 is an example involving missing parameters. The function myFunction has two parameters,
firstparam and secondparam. Within the code, the if statement checks whether the value of secondparam is
supplied, checking it against value undefined. The function is then called and only one argument is passed.
In this case, because the value of secondparam has not been set, the function checks the if condition and
displays undefined.

The output of Listing 6-8 is shown in Figure 6-8.

Figure 6-8.  Output

arguments Array
A function may include a special array named arguments that contains all of the arguments supplied via the
function call. This array contains a value even when no parameters are defined in the function definition.
An example demonstrating the arguments array is shown in Listing 6-9.

Listing 6-9.  arguments Array Example

function myFunction() {
 console.log(arguments[0]);
 console.log(arguments[1]);
 console.log('Total Parameters passed are ' + arguments.length) }
myFunction('Diego Dora' , 'Jon Reed');

This example has a function myFunction that has no parameters specified in the declaration. Within
the function, the first and second elements of the array arguments are displayed, and also the total length of
the array. The example then calls the function and supplies two arguments. The code does not produce any
errors.

The output of Listing 6-9 is shown in Figure 6-9.

Chapter 6 ■ Functions

91

Simulating Optional Parameter Passing
It is also possible to make parameters optional in functions. Listing 6-10 shows how it works.

Listing 6-10.  Optional Argument Example

function myDivision(number, divisor) {
 if (divisor === undefined)
 {
 return('Division by zero not possible');
 }
 else

 return number / divisor;
 }
console.log(myDivision(8));
console.log(myDivision(100, 10));

The example shows division of numbers. The function myDivision can be called either with two
arguments or with a single argument. Since no divisor is supplied in the first function call, in order to avoid
division by zero, the value of divisor is checked, and the appropriate message is displayed. When the
same function myDivision is called a second time, both the number and divisor are passes as 100 and 10,
respectively. This time the division is performed and the value outputted.

The output of Listing 6-10 is shown in Figure 6-10.

Figure 6-9.  Output

Figure 6-10.  Output

Chapter 6 ■ Functions

92

return Statement
The return statement is required when/if you want to return a value from a function—that is, it returns a
computed value to the function caller. A return statement should be the last one in a function, because the
execution is stopped once the return statement is encountered.

Listing 6-11 shows an example of how the return statement works in a division operation.

Listing 6-11.  return Statement Example

<html>
<body>
<script>
 var result = function(number, divisor)
 {
 return number / divisor;
 };
 console.log(result(150, 10))
</script>
</body>
</html>

The function shown has two parameters, number and divisor. The return statement is used to return
the value to the caller. At the time of execution, when the return statement is reached, the control is
immediately given, along with the computed value, to the caller.

The output of Listing 6-11 is shown in Figure 6-11.

Figure 6-11.  Output

Function Call
As mentioned earlier, it is also possible for a function to call another function. To better understand,
consider the example in Listing 6-12.

Listing 6-12.  Function Calling Other Function Example

<!DOCTYPE html>
<html>
 <body>
 <script>
 function total1(a, b) {
 return a + b;
 }
 function average(a, b) {

Chapter 6 ■ Functions

93

 var av = total1(a, b) / 2;

 console.log("Average = " + av);
 }
 average(8, 8);
 </script>
 </body>
</html>

This example calculates the average of two numbers. It declares two functions, total1 and average,
both of which have two parameters, a and b. The total1 function returns the sum or total of the two
numbers. Within the average function, the total1 function is called first to compute the total of the two
numbers, and then this total is divided by 2 to calculate the average. The console.log function is used to
display the average. The average function is called with values 8 and 8.

The output of Listing 6-12 is shown in Figure 6-12.

Figure 6-12.  Output

Parameter Pass by Value or Pass by Reference?
In JavaScript, you cannot pass parameters by reference. When you pass a variable to a function, JS makes a
copy of the parameter and works on it. Hence, within the function, the value of the parameter passed cannot
be altered.

To better understand why you cannot pass parameters by reference, consider the example presented in
Listing 6-13.

Listing 6-13.  Pass by Reference Attempt Example

function decNumber(countVal) {
 countVal--;
}
var i = 10;
decNumber(i);
console.log("Value after attempt is : " + i);

The example shows an attempt to change the value of variable i using function decNumber. It declares
the function decNumber and passes countVal. The value of variable i is not changed even after the call to
function decNumber.

Chapter 6 ■ Functions

94

An indirect way for JS to carry out a change of a value passed to the function is via the usage of arrays.
The same example with the change is shown in Listing 6-14.

Listing 6-14.  Pass by Value Function Example

function decNumber(countVal) {
 countVal[0]--;
}
var i = [10];
decNumber(i);
console.log("Value decremented to : " + i[0]);

The example shows how the value of the array element is decremented using function decNumber().
It declares an array i whose element 0 is assigned the value that is to be changed. This array is passed as an
argument to the function. Within the function code, the zeroth element of the array is decremented by 1.
Upon function execution, the value is changed and displayed.

The output of Listing 6-14 is shown in Figure 6-14.

Figure 6-14.  Output

Figure 6-13.  Output

The output Listing 6-13 is shown in Figure 6-13.

Chapter 6 ■ Functions

95

Function Naming
To wrap up this chapter on JavaScript functions, a word of caution is in order: Never name your function by
the name function. This is strictly not allowed. Consider the following code:

function function(countVal) {
 countVal--;
}

In this case, the error shown in Figure 6-15 occurs.

Figure 6-15.  Error

Summary
In this chapter, you first explored the basics of functions and saw their advantages. You then saw how
the functions are declared. With that important foundational knowledge in place, Chapter 7 will discuss
advanced functions in JavaScript.

http://dx.doi.org/10.1007/978-1-4842-2220-1_7

97© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_7

CHAPTER 7

Doing More with Functions

Chapter 6 introduced you to the basics of functions and how they make it easy to execute complex
mathematical code. You learned how functions are created and how they perform a task every time you call
and invoke them. You also saw different ways of using functions, parameters, and arguments. This chapter
covers more advanced topics pertaining to functions. You will see how hoisting applies to functions, and
learn why functions are called “first-class citizens.” You will also learn how to declare nested functions, how
to apply closures to functions, and how to declare recursive functions.

Hoisting in the Context of Functions
As mentioned in Chapter 1, variable hoisting means using a variable before it is actually declared. Hoisting
is fully supported in the context of functions as well. This means that you can call a function even before it is
declared.

Consider the example of function hoisting in Listing 7-1.

Listing 7-1.  Function Hoisting

<html>
 <body>
 <script>
 say_hello_to_user();

 function say_hello_to_user(){
 alert('Hello how are you, today?');
 }
 </script>
</body>
</html>

This code works perfectly and does not produce any syntax errors. The first line in the script is the call to
the say_hello_to_user function. The declaration of this function actually comes later. JavaScript moves the
declaration of the function to the start of the scope. This is equivalent to the example shown in Listing 7-2.

http://dx.doi.org/10.1007/978-1-4842-2220-1_6
http://dx.doi.org/10.1007/978-1-4842-2220-1_1

Chapter 7 ■ Doing More with Functions

98

Listing 7-2.  Equivalent JS Code

<script>

 function say_hello_to_user(){
 alert('Hello how are you, today?');
 }
 say_hello_to_user();
</script>

The output of both listings is shown in Figure 7-1.

Figure 7-1.  Program output

Figure 7-2.  Syntax error in function code

■■ Note  Variable declarations are not completely hoisted.

It is worth noting that if there is any syntax error in the function body or the code prior to the function
code, the syntax of the function body is checked first and any syntax error is highlighted. This is shown in
Figure 7-2.

Chapter 7 ■ Doing More with Functions

99

Attempting to use a variable declaration along with a function expression results in a syntax error.
Consider the example shown in Listing 7-3.

Listing 7-3.  Example of Incorrect Code

<script>

hello();
var hello = function say_hello_to_user(){
 alert('Hello how are you, today?');
 }

</script>

This code produces a syntax error, as shown in Figure 7-3.

Figure 7-3.  Syntax error

Figure 7-4.  Syntax error

Consider another example of incorrect code in Listing 7-4.

Listing 7-4.  Second Incorrect Code Example

<script>

var hello;
hello();
hello = function say_hello_to_user(){
 alert('Hello how are you, today?');
 }

</script>

This program also produces a syntax error. Here we try to a variable hello. The attempt to use the variable
hello as a function is not acceptable to JS, and the syntax error results in program shown in Figure 7-4.

Chapter 7 ■ Doing More with Functions

100

First-Class Citizens
Within JavaScript, functions are treated as first-class citizens. They may be

•	 Assigned to a variable

•	 Passed as a parameter to a function

•	 The returned value of a function

For purposes of comparison, Listing 7-5 shows a simple function example.

Listing 7-5.  Simple Function Example

<!DOCTYPE html>
<html>
 <body>
 <script>
 var myMessage = function()
 {
 console.log("Good To See You....!");
 };
 myMessage();
 </script>
 </body>
</html>

In this simple function example, myMessage does not list any parameter names (i.e., the function is
empty). To invoke the function later in the script, you simply write the name of that function, as shown in the
code. This calls the message and displays the message.

The output of Listing 7-5 is shown in Figure 7-5.

Figure 7-5.  Output

Listing 7-6 shows an example of how you can pass as input a function to another function and return it
from the function itself.

Listing 7-6.  First-Class Citizen Example

<html>
<body>
<script>

var function1 = function() {
 console.log("Function 1 Called");
};

Chapter 7 ■ Doing More with Functions

101

var function2 = function(input) {
 return input;
};

function2(function1)();

</script>
</body>
</html>

Here, the function outputs Function 1 Called in the console of the browser. This function is assigned
to the variable function1 via assignment. Next, another anonymous function takes as input a parameter
by the name input and returns it. This function is assigned to the variable function2. Finally, function2
is called and passed function1 as a parameter. Because function2 returns any value passed to it as the
returning value, the following two expressions are equal:

•	 function2(function1)

•	 function1

To call function1, you must include the parentheses, (), a shown. Otherwise, a syntax error results. The
output of the program is shown in Figure 7-6.

Figure 7-6.  Program output

Nested Functions
A nested function, also known as an inner function, is a function that is defined within another function. The
function within which the inner function is enclosed is known as the outer function. The inner function may
or may not have a return statement. Upon each call of the outer function, an instance of the nested function
gets created.

Consider the example of nested functions presented in Listing 7-7.

Listing 7-7.  Nested Functions Example

<html>
 <body>
 <script>

 function myfunction(d1, d2) {
 function doDivision(d1, d2) {
 return d1 / d2;
 }

Chapter 7 ■ Doing More with Functions

102

 return doDivision(d1, d2);
 }

 var div = myfunction(4, 2);
 console.log(div);
 </script>
</body>
</html>

This example shows the division of two numbers. The main, outer function is named myfunction,
inside of which is defined the doDivision function. This inner function is called by supplying values 4 and 2,
and the value of this is stored in variable div, which is later displayed in the browser console. At the time of
the call to the outer function myfunction, an instance of the inner function doDivision is created.

Also note that parameters d1 and d2 are specified for both functions. This is allowed in JavaScript and
does not lead to any issues. The output of the program is shown in Figure 7-7.

Figure 7-7.  Program output

When dealing with nested functions, it is important to note that the inner function has access to the
main outer function’s scope. In other words, the function doDivision may use the parameters and the
variables of the outer function myfunction. In Listing 7-7, the d1 and d2 arguments of myfunction are
supplied to the inner function doDivision as arguments d1 and d2, respectively. This is not necessary
because doDivision may access d1 and d2 of the outer function myfunction. Listing 7-8 shows how the code
in Listing 7-7 may be simplified by relying on the fact that doDivision can access d1 and d2 of myfunction.

Listing 7-8.  Second Nested Functions Example

<html>
 <body>
 <script>
 function myfunction(d1, d2) {
 function doDivision() {
 return d1 / d2;
 }
 return doDivision();
 }
 var div = myfunction(4, 2);
 console.log(div);
 </script>
</body>
</html>

Chapter 7 ■ Doing More with Functions

103

This is a better form of the nested division example because it removes the redundant parameters
from the doDivision function. Inside the doDivision body, Listing 7-8 returns the division value of d1 / d2
(parameters d1 and d2 supplied to myfunction).

The output of this program is shown in Figure 7-8 and is the same as the output shown previously.

Figure 7-8.  Program output

It is also possible to declare the nested function anonymously. The example shown in Listing 7-9
attempts to solve the same division problem from the previous two listings, but in a bit different, and more
complicated, manner.

Listing 7-9.  Anonymous Nested Function Example

<html>
<body>
<script>
 function doDivision(d2) {
 return function(d1) {
 return d1/d2;
 };
 }

 var div = doDivision(2);
 console.log(div(6));
</script>
</body>
</html>

In this form of nested functions, the return statement is used twice. The inner function uses the
parameter d2 of the outer function. In addition, the inner function returns a reference to a function that
takes as input the number to be divided. The first return statement is used to call other function for d1 and
the second return statement returns the result of the division d1/d2.

The output of Listing 7-9 is shown in Figure 7-9.

Chapter 7 ■ Doing More with Functions

104

Let’s take a look at yet another form of a nested function. It is also possible to call the inner function
(declared within the outer function) within the body of the code of the outer function itself. Consider the
example in Listing 7-10.

Listing 7-10.  Calling the Inner Function

function myFunction() {
 var mytext = "Mytext";

 function showtext() {
 console.log(mytext);
 }
 showtext();
}
myFunction();

Here, the outer and inner functions are myFunction and showtext, respectively. A variable mytext is
defined in myFunction. The inner function showtext is declared within myFunction. The showtext function
is then called. When the function myFunction is called, the output in the console is as shown in Figure 7-10.

Figure 7-10.  Program output

Figure 7-9.  Program output

Lexical Scoping
In the context of functions, lexical scoping means that the scope of a variable is determined via the location
of the variable within the JavaScript source code. Any variables that are declared outside of functions are
accessible and visible to the entire JS program (i.e., global variables). On the other hand, variables declared
within a given function are only visible and accessible to the code block of the function in question. This is
called function scope. In the case of nested functions, the inner function has access to variables declared in
the outer function. Any variable declared in the inner function may not be accessed outside of it.

Chapter 7 ■ Doing More with Functions

105

Consider the example of lexical scoping in Listing 7-11.

Listing 7-11.  Lexical Scoping Example

function myFunction() {
 var mytext = "Mytext";

 function showtext() {
 console.log(mytext);
 }
 showtext();
}

Function myFunction declares a local variable mytext and a function showtext—the inner function
defined inside myFunction() that is available only in the body of myFunction. Here, showtext has no local
variables, but it has access to those of its outer functions, in this case myFunction. Within the myFunction
body, the showtext function is called in order to display the text contained in variable mytext.

Let’s consider another example of lexical scoping in Listing 7-12.

Listing 7-12.  Second Lexical Scoping Example

<html>
<body>
<script>
 var function1 = function(){
 var text1 = "Text1";
 function f2() {
 if(true){
 var text2 = "Text 2";
 console.log(text2);
 }

 if(true){
 console.log(text2);
 }
 }
 f2();
 console.log(text2) ; // gives error – ERROR
}
function1();

</script>
</body>
</html>

In this example, variable function1 is assigned to a function. Within this (outer) function is a variable
text1 and an inner function f2. Within the inner function there are two if statements and two blocks
(shown in curly brackets).

The variable text2 is accessible anywhere within the function f2, irrespective of the code block in
which it is declared. However, text2 is not accessible outside the function f2. Hence, the error results with
the last console.log statement. The text1 variable is accessible throughout the outer function.

Chapter 7 ■ Doing More with Functions

106

Closures
Under normal circumstances, the local variables within a function only exist for the duration of that
function’s execution. After the function has executed, the local variables normally can’t be accessed.
However, it is possible to have local variables persist after the function’s execution by using closure.

In JavaScript, you can create special functions known as closures that remember the environment (state)
in which they were created. These include independent local variables within the function. So, in other
words, a closure is composed of

•	 A function

•	 The environment of the function

Environment in this context means the local variables at the time of closure creation. Consider the non-
closure example in Listing 7-13 that produces a syntax error.

Listing 7-13.  Syntax Error

function myFunction() {
 var num = 10;
 }
 console.log(num);

This generates a syntax error because num is not accessible to the outside world. However, by using
closure, num can be accessed. Consider the example in Listing 7-14.

Listing 7-14.  Closure Example

function Func() {
 var num = 10;
 function returnnumber() {
 return num;
 }
 return returnnumber;
}

var closure1 = Func();
console.log(closure1());

When this code is executed, the output is as shown in Figure 7-11.

Figure 7-11.  Program output

The number will be displayed in the console of the browser. The inner returnnumber function was
returned from the outer function Func before execution. Func has become a closure. In this case, Func is a
closure that contains both the function and the num value 10 that existed at the time of closure creation.

Chapter 7 ■ Doing More with Functions

107

Listing 7-15 shows an example with a more useful purpose.

Listing 7-15.  Division Using Closure

<html>
<body>
<script>

function divisionfactory(divisor) {
 return function performdivision(number) {
 return number / divisor ;
 }
}

var divideby10 = divisionfactory(10);
var divideby20 = divisionfactory(20);

console.log(divideby10(100));
console.log(divideby20(200));

</script>
</body>
</html>

This example defines a function divisionfactory that takes as input a parameter divisor and returns
a reference to another function. The inner function is called performdivision (though you could have
this as anonymous as well). The inner function has a single parameter, number, and returns the result of
the division number / divisor. As the name suggests, the outer function divisionfactory is used to create
functions that can be used to divide the inputted number with a specific value.

For the sake of the example, Listing 7-15 creates two functions, divideby10 and divideby20, that divide
their argument by 10 and 20, respectively. These two new functions are closures that have a similar body but
separate environments. For divideby20, the value of divisor is 10, whereas in the case of divideby10, the
value of division is 20.

The output of Listing 7-15 is shown in Figure 7-12.

Figure 7-12.  Division output

Chapter 7 ■ Doing More with Functions

108

Consider another interesting example of closure in Listing 7-16.

Listing 7-16.  Another Closure Example

var add_element = (function() {
 var total_elements = 0;
 var array = [];
 return function addition(element) {
 array[total_elements] = element;
 console.log(array);
 total_elements = total_elements + 1;

 }
})();

add_element(10);
add_element(11);
add_element(12);

This example defines a function and assigns it to the variable add_element. Within the code, the
variables total_elements and array are declared with initial values of 0 and [], respectively. The property
element is assigned to the end of the array array. In addition, the total_elements counter is incremented
by 1 upon each insertion of element to array. This function returns a function addition that adds a new
element passed to it to the array and increments the count of elements in the array.

The example in Listing 7-16 calls add_element three times, supplying values 10, 11, and 12, respectively.
The output of Listing 7-16 is shown in Figure 7-13.

Figure 7-13.  Program output showing array elements

The add_element is a closure that contains the function addition. However, because Listing 7-16 uses
a self-invoking function, the initialization statements (setting array to [] and setting total_elements to 0)
are executed only once. As you will see, each function closure remembers the state in which it was created.
These include the variables array and total_elements.

Recursive Functions
As already mentioned in Chapter 6, it is possible for a function to call itself—that is, a function defined in
terms of itself. Such functions are called recursive functions. Typical problems that may be solved using
recursion include Fibonacci series problems and the famous Tower of Hanoi problem. Recursion provides
some advantages to developers, such as the capability to develop neat and short code, and also helps
developers to avoid loops.

http://dx.doi.org/10.1007/978-1-4842-2220-1_6

Chapter 7 ■ Doing More with Functions

109

When defining recursive functions, it is essential to specify a termination condition. If such a condition
is not specified, an infinite “function” call may occur. In usual cases, a recursive function is declared as a
named function. However, it is also possible to define an anonymous function as a recursive function.

Let’s now take a look at a fully working example of a recursive function in JavaScript. Suppose we have
the requirement to input a number and then spell each digit separately. For example, if the number 647 is
passed as input, then the digits 6, 4, and 7 must be displayed separately, in the correct order.

The code pertaining to this example is shown in Listing 7-17.

Listing 7-17.  Recursion Example

<html>
<body>
<script>
 function spell_number(num) {
 if (num < 10) {
 console.log(num);
 }
 else {
 spell_number(Math.floor(num / 10)) ;
 console.log(num % 10);
 }
 }
 spell_number(647);
</script>
</body>
</html>

The basic solution to the given problem is that a number to be spelled digit-wise is

•	 The number itself, if the number is less than 10

•	 The spelled digits of the quotient (obtained by division by 10), followed by the
remainder of division by 10 of the number

Listing 7-17 declares a function by the name spell_number that takes as input a parameter num. Within
the code, the function checks if the number supplied is less than 10. The terminating condition is when
the number passed as input is less than 10. In this case, the function should return the number itself rather
than calling the recursive function. The number is directly outputted to the console, and no recursive call to
spell_number is made.

If the number is greater than or equal to 10, Listing 7-17 calls the function recursively and supplies it the
quotient of num divided by 10. Next, the remainder of num divided by 10 is outputted in the console. Since we
need to print the numbers in the correct order from left to right, we call the recursive function first and then
print the remainder.

For the inputted number 647, the sequence of the call of function spell_number is as shown here:

•	 function spell_number(647) function called with input 647

•	 function spell_number(64) // function called with input 64

•	 function spell_number(6) function called with input 6

Chapter 7 ■ Doing More with Functions

110

It is also possible to rewrite the same problem using an anonymous function in conjunction with a
variable expression. Listing 7-18 shows how this may be done.

Listing 7-18.  Anonymous Recursive Function

<html>
<body>
<script>
 var spell_number = function(num) {
 if (num < 10) {
 console.log(num);
 }
 else {
 spell_number(Math.floor(num / 10)) ;
 console.log(num % 10);
 }
 }
 spell_number(647);

</script>
</body>
</html>

As you can see, most of the code is the same as in Listing 7-17. The only difference is that Listing 7-18
defines the function without a name and specifies a variable spell_number to which the function declaration
is assigned. The call to the recursive function is done via the variable spell_number. The output of the
program is the same.

Summary
In this chapter, you first saw how hoisting is applied to functions, and then you discovered why functions
are called first-class citizens. You also saw how to declare nested functions, and what is meant by closures.
Finally, you learned how to declare recursive functions.

Chapter 8 will show you how to carry out object orientation in JS.

Figure 7-14.  Program output

The output of the program is shown in Figure 7-14.

http://dx.doi.org/10.1007/978-1-4842-2220-1_8

111© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_8

CHAPTER 8

Object-Oriented Programming in
JavaScript

As with ABAP, JavaScript allows you to create objects. However, the concepts pertaining to object creation
in the two languages are not the same. This chapter covers object creation, instantiation, and inheritance in
JS. After starting with an overview of object-oriented programming (OOP) in general, the rest of the chapter
shows how OOP is implemented in JS, along with relevant syntax. It introduces the this operator in detail,
then covers the various ways of creating objects, followed by the instantiation steps using the new keyword.
Once you have a basic understanding of objects, the chapter moves on to inheritance as implemented in JS
using prototypes. This chapter presents real-life examples of objects and subobjects throughout, along with
sample code listings used for implementing them in JavaScript.

For brevity’s sake, only the JS code is shown in this chapter. By now, you are fully aware that this code
needs HTML tags in order to execute in a browser.

Object-Oriented Programming in General
To understand object-oriented programming in JavaScript, you need to understand object-oriented
programming in general.

In OOP, you use the concept of objects to model real-life objects inside programs. The conceptual
object may contain data and code that relate to the real-life object that you have modeled, or the features
(behavior) that developers want the object to exhibit. For example, you can have a Player class that contains
a number of properties (attributes) and a function sayhello() method, as shown in Figure 8-1.

Figure 8-1.  Class Player

Chapter 8 ■ Object-Oriented Programming in JavaScript

112

This object representation is called a class. (In JS, however, a different mechanism is used, as described
a bit later.) A class may be considered a template that specifies the properties that an object originating from
it must have.

You can create a number of instances of a class. These objects comprise the data and features specified
in the class definition. For example, for the Player class, you can create any number of players, as shown in
Figure 8-2. While creating an object, the constructor function of the class is executed in order to create the
new object instance. This is called instantiation.

Figure 8-2.  Instances of Player

The Player class shown in Figure 8-2 has two instances, player1 and player2, each having its own
player_name, weight, and height properties, as well as a different text string in the sayhello() method.

Taking this example one step further, suppose you don’t want to allow creation of general players,
meaning no one can be just a “player.” Each person must choose to be a specific type of player, such as a
cricket player or a football player. Within the OOP arena, it is possible to create new classes from existing
classes. The new classes, called child classes, may then inherit the data and code residing in their parent
class (i.e., the class from which they are inherited). This allows reuse of existing functionality in a parent
class (which comprises data and code common among its child classes), rather than duplicating that
functionality in a number of separate classes. You may also add additional functionality to the derived child
classes, if needed.

To better understand the concept of inheritance, consider the example shown in Figure 8-3.

Chapter 8 ■ Object-Oriented Programming in JavaScript

113

The Cricket Player and Football Player classes have many properties in common, such as player_
name, weight, and age, so it is easier to define all those properties in the parent class Player and create
Cricket Player and Football Player as child classes that inherit those properties.

It is also possible to specify a given feature differently in these classes. For example, the sayhello() text
of the Cricket Player child class might be “I am a cricket Player”, whereas the sayhello() text of the Football
Player child class might be “I am a football Player”. The capability to implement the same feature differently
in different object types is known as polymorphism.

It is now possible to create instances from these child classes, such as CricketPlayer1,
CricketPlayer2, FootballPlayer1, and so on.

Object Instances and Constructors
JavaScript is not a typical object-oriented programming language. Other OOP languages have a class
statement (definition) for defining classes. Using these classes, objects may be created that contain the
properties and methods contained in the class. By contrast, JS uses special functions known as constructors
to define object properties and methods. One constructor may be used to create any number of objects, with
an option to add additional functions and data to them.

If you create a new instance using a constructor, the features available within the constructor are linked
through a prototype chain. (This is unlike other OOP languages, where all functionalities are copied from the
class to the new instantiated object.)

This section shows you four different approaches to simulate object creation in JS (using the Player
object as a real-life example):

•	 Using an object literal

•	 Using a constructor function

•	 Using the Object() constructor

•	 Using the create() method

Figure 8-3.  Cricket Player and Football Player child classes

Chapter 8 ■ Object-Oriented Programming in JavaScript

114

Approach 1: Using an Object Literal
The first approach is to use a function that uses an object literal. A function that deals with the player
example is shown in Listing 8-1.

Listing 8-1.  Using an Object Literal

function defineaPlayer(pname,weight, height) {
 var myobj = {};
 myobj.name = pname;
 myobj.weight = weight;
 myobj.height = height;
 myobj.sayhello = function() {
 alert('Hi, my name is ' + this.pname + '.');
 };
 return myobj;
}

Here, the function myPlayer takes as input pname, weight, and height. An object myobj is defined within
the myPlayer function, and then properties such as name, weight, and height are added. Listing 8-1 also
defines a sayhello method. Finally, the function returns the myobj object.

You can then create a new player using a call to this function:

var player = defineaPlayer('James Watson', 100,50);
console.log(player.pname);
console.log(player.sayhello());

Although this arrangement works, it is lengthy and unnecessarily declares an empty object and returns it.

Approach 2: Using a Constructor Function
JavaScript provides another short way to object creation using constructor functions. You can define a
constructor function for the player example as shown in Listing 8-2.

Listing 8-2.  Player Constructor Function

function Player(pname,weight, height) {
 this.name = pname;
 this.weight = weight;
 this.height = height;
 this.sayhello = function() {
 alert('Hi, my name is ' + this.pname + '.');
 };

■■ Note  A constructor function in JavaScript is similar to a class (reserved word class) in other OOP
languages.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Basics#Object_basics

Chapter 8 ■ Object-Oriented Programming in JavaScript

115

A constructor function defines the methods and properties pertaining to the object. The this keyword
is used to assign values to the property of the object being created. A major difference between approach 1
(using an object literal) and approach 2 is that the latter uses the this keyword. This means that whenever
an object is created using a constructor function, the various properties identified will be equal to the
corresponding parameters passed via the constructor call.

Consider the following example:

var player1 = new Player('James', 100, 20);
var player2 = new Player('John', 120, 60);

The following statements will then work:

player1.pname
player2.pname

This example creates two objects, player 1 and player2. They have property pname and method
sayhello, but these are stored separately and do not collide with one another. In each case, the new keyword
is used to create a new object instance, followed by various parameters in brackets. Each object instance is
created using Player, as shown in Listing 8-3.

Listing 8-3.  Player Example

function Player(pname,weight, height) {
 this.name = pname;
 this.weight = weight;
 this.height = height;
 this.sayhello = function() {
 alert('Hi, my name is ' + this.pname + '.');
 };
}

Once the new objects are created, player1 and player2 (in actual effect) contain the following:

{
 name : James;
 weight : 100;
 height : 20;
 sayhello : function() {
 alert('Hi, my name is ' + this.pname + '.');
 };
}

{
 name : John;
 weight : 120;
 height : 60;
 sayhello : function() {
 alert('Hi, my name is ' + this.pname + '.');
 };
}

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Basics#Object_basics

Chapter 8 ■ Object-Oriented Programming in JavaScript

116

Approach 3: Using the Object() Constructor
A third way to create objects is to use the Object() constructor. Consider the following code:

var player1 = new Object();

This has an empty object created under the player1 variable. Once this is done, you can then add
methods and properties to the object. For this, you can use either brackets or a dot, as shown here:

player1.pname = 'John';
player1.weight = 100;
player1['height'] = 30;
player1.sayhello = function() {
 alert('My name is ' + this.pname) ;
};

It is also possible to pass a literal while calling the Object() constructor and specify the properties and
methods. This is more compact and understandable, as shown in Listing 8-4.

Listing 8-4.  Using the Object() Constructor

var player1 = new Object({
 pname: 'John',
 height: 100,
 weight: 20,
 sayhello: function() {
 alert('My name is' + this.pname + '.');
 }
});

player1.sayhello();

As you can see, one statement in Listing 8-4 calls the Object() constructor and specifies the values of
the properties and method, all together. The statement has the same effect as the previous code block. The
output of the code is shown in Figure 8-4.

Figure 8-4.  Output of program using the Object() constructor

Chapter 8 ■ Object-Oriented Programming in JavaScript

117

Approach 4: Using the create() Method
The JS language has a method known as create() that lets you create an object instance from an existing
object. A code example is shown here:

var player2 = Object.create(player1);

Here, the existing object is player1. The create method of Object is used to create an exactly identical
object, player2 (i.e., it has the same properties and methods available in player1). Once the preceding
statement has been executed, the following statements will work and provide the same output if used for
player1:

console.log(player2.pname);
player2.sayhello();

This approach is very useful and enables developers to create new instances based on another instance.

JavaScript: A Prototype-Based Language
As mentioned earlier in this chapter, in traditional OOP, classes are defined. When objects are instantiated
from a class, the properties and methods residing in the class are copied to the newly created instance.
However, in JavaScript this is not the case. JS uses the mechanism of prototypes to implement object
orientation.

JavaScript objects inherit features differently as compared to other OOP languages. This section
demonstrates this difference, describes how prototype chains function, and shows how the prototype
property may be used to add methods to existing constructor functions.

JavaScript is a prototype-based language. That means each object, let’s say A, has an object named
prototype that is an object from which the object derives properties and methods. Likewise, object A’s
prototype object may also have a prototype object, and so on. This is known as a chain of prototypes. In
JavaScript, the methods and properties reside on the object’s constructor. A connection is created between
the instance and the constructor of the object.

To better understand the prototype concept, consider the following example, which has a simple Player
function:

function Player(pname,weight,height)
{
}

Next, an object instance, player1, is created:

var player1 = new Player('James', 100 , 20);

Chapter 8 ■ Object-Oriented Programming in JavaScript

118

As you can see, the members residing in the player1 prototype objects are pname, weight, and height.
These reside on the Player constructor’s prototype object, which is Object. See Figure 8-6.

Figure 8-6.  Player1, Player, and Object

Figure 8-5.  Console output of player1

Suppose you call a method using player1 that resides in Object, such as valueOf. In this case , JS first
checks whether the Player1 object has the method valueOf. Because this is not true, JS next searches the
Player object for the valueOf method. The method does not exist in the Player object either. Therefore,
JS then searches the prototype object of Player’s constructor. (This is Object.) Object contains the given
method you are searching for.

To better understand the inheritance of properties, take a look at Object in console.log.
A large number of properties exist in Object. However, all of them are not available in the player1 object.

The properties that are inherited reside on the prototype property of Object. (i.e., they do not simply start
with Object but with Object.prototype). The “value” of the property of “prototype” is actually an object that
contains a set of properties and methods that may be inherited down the inheritance (prototype) chain. For
example, the method Object.prototype.valueOf() is present in any objects that are inherited from Object.
On the other hand, the method Object.key is not inherited by objects that are inherited from Object.

Returning to the example shown earlier, the prototype of Player is shown in Figure 8-7.

Displaying the contents of player1 in the web browser console results in the output shown in Figure 8-5.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object

Chapter 8 ■ Object-Oriented Programming in JavaScript

119

Not too many things exist in Figure 8-7 because no methods have been defined on the Player
constructor.

Next, take a look at Object.prototype displayed using the Chrome console, shown in Figure 8-8.

Figure 8-7.  Prototype of Player

Figure 8-8.  Object.prototype

Suppose you add the following statement:

var another_player = Object.create(player1);

The create method of Object creates a new object from a prototype object.
As you can see, player2 has been created using player1. Suppose you enter the following:

console.log(another_player.__proto__);

Chapter 8 ■ Object-Oriented Programming in JavaScript

120

Each object has a property named constructor that links to the constructor function (used for creating
the instance). The output of player1.constructor and player2.constructor is shown in Figure 8-10.

Figure 8-10.  Player1 and Player2 Constructor

Figure 8-9.  __proto__ of

As you can see, both of these return the Player constructor.
It is also possible to create a new instance using the constructor property (along with necessary

parameters). Consider this example:

var player3 = new player1.constructor('John Mann', 100, 11);

This example uses the constructor property as a function including parentheses in conjunction with
the new keyword.

When you output the contents of the new object, player3, as shown next, it works correctly:

player3.pname
player3.weight
person3.height

The output of the statement is shown in Figure 8-9.

Chapter 8 ■ Object-Oriented Programming in JavaScript

121

The constructor property can be used in yet another way. You can modify the prototype property of
constructor to add a new method to the prototype of the constructor:

Player.prototype.hello = function(){
 alert('I am Player');
}
Player1.hello();

Running the hello method will display an alert message saying I am Player. It is worth noting that the
entire chain of inheritance may be changed at runtime, thus making the hello() method available on all
instances derived from constructor Player.

To better understand, consider the following code:

function Player(pname, weight, height) {
 this.pname = pname; this.height = height; this.weight = weight;
};
var player1 = new Player('James', 32,100);
Player.prototype.hello = function() {
 alert('I am' + this.pname);
}
player1.hello();

This example begins with a constructor Player and then defines a new method hello using the
prototype property of Player. The method is available on the player1 object instance. The functionality has
been updated automatically. As mentioned earlier, this confirms the prototype chain. JS first looks for the
method in the object instance, then moves upward on the prototype chain.

Another way to define properties is to use the prototype property. For example, you can add a city
property to the Player object:

Player.prototype.city = 'New York';

However, this is not very common. A more common approach is to specify properties inside the
constructor whereas the various methods using the prototype. In this case, the code is easy to understand, as
all properties reside within the constructor and the methods are defined in different blocks later:

function Player(a, b, c, d) {
 // property definitions
};

Player.prototype.func1 = function() { ... }
Player.prototype.func2 = function() { ... }

Prototypal Inheritance
Now that you have some idea of inheritance and the working prototype, you are ready to see these concepts
in action. As already mentioned earlier, JavaScript uses prototype-based inheritance. This involves linking
the inherited object using a prototype chain. This section shows you a technique for implementing the
concept of inheritance in JavaScript.

Chapter 8 ■ Object-Oriented Programming in JavaScript

122

Starting with the Player constructor created earlier, keep in mind that only the properties pname,
weight, and height are specified within Player:

function Player(pname, weight, height) {
 this.pname = pname;
 this.weight = weight;
 this.height = height;
};

Now, define a method tellname on the constructor’s prototype property:

Player.prototype.tellname = function() {
 alert('My name is ' + this.pname + ' and I am a Player');
};

The function tellname will show the name of the player in an alert box.
Next, suppose you want to create a constructor named CricketPlayer that inherits all the members

of Player defined earlier. In addition, you want it to contain a new property named cricketcounty and an
updated method named tellme.

First, create a CricketPlayer constructor as shown:

function CricketPlayer(pname, weight, height, cricketcounty) {
 Player.call(this, pname, weight, height);
 this.cricketcounty = cricketcounty;
}

■■ Note  Having a lot of levels of inheritance is not recommended. Too many levels may cause a lot of
confusion as well as lot of hard work when debugging. As you will see, the call() method enables you to call a
function residing outside the constructor but within the same context.

The call method is used for chaining constructors. In this case, it calls the constructor of Player. The
first parameter, this, points to the current function, and the rest of the parameters are used to supply values
for the called function (i.e., Player constructor) parameters.

At the end is the cricketcounty property that is not in Player but only specific to the CricketPlayer
function. In effect, you are executing the Player constructor function within the CricketPlayer constructor
function.

This is the same as the following block of code:

function CricketPlayer(pname, weight, height, cricketcounty) {
 this.pname = pname ;
 this.weight = weight ;
 this.height = height;
 this.cricketcounty = cricketcounty;
}

However, this does not include the reusability feature, so you shouldn’t use it.
Now that you have a constructor that has a prototype property that points to the constructor function,

add the following line so that the CricketPlayer() function inherits the methods defined in the Player’s
prototype property:

Chapter 8 ■ Object-Oriented Programming in JavaScript

123

CricketPlayer.prototype = Object.create(Player.prototype);

Here, the create method is used to create a new object based on the value pointed to by Player.
prototype. The new object is assigned to CricketPlayer.prototype so that CricketPlayer.prototype
inherits the method in Player.prototype. Until this point, CricketPlayer.prototype is equal to Player()
(because CricketPlayer.prototype is assigned to an object that is a Player.prototype object). This may
be problematic, so you need to add the following statement at the end:

CricketPlayer.prototype.constructor = CricketPlayer;
CricketPlayer.prototype.tellname = function() {
 alert('My name is ' + this.pname + 'and I am a cricket Player of' + this.cricketcounty +
'.');
};

At the end, you may add the following statements:

var cper = new CricketPlayer('Jon Reed', 100, 190, ' Surrey County');
cper.tellname();

The complete inheritance code is shown in Listing 8-5.

Listing 8-5.  Complete Inheritance Code

<html>
 <body>
 <script>

function Player(pname, weight, height) {
 this.pname = pname;
 this.weight = weight;
 this.height = height;
};

function CricketPlayer(pname, weight, height, cricketcounty) {
 Player.call(this, pname, weight, height);
 this.cricketcounty = cricketcounty;
}

Player.prototype.tellname = function() {
 alert('My name is ' + this.pname + ' and I am a Player');
};

CricketPlayer.prototype = Object.create(Player.prototype);
CricketPlayer.prototype.constructor = CricketPlayer;

CricketPlayer.prototype.tellname = function() {
 alert('My name is ' + this.pname + ' and I am a cricket Player of' + this.cricketcounty +
'.');
};

Chapter 8 ■ Object-Oriented Programming in JavaScript

124

var per = new Player('James Wood', 120,20);
var cper = new CricketPlayer('Jon Reed', 100, 190, ' Surrey County');
per.tellname();
cper.tellname();

 </script>
 </body>
</html>

At this point, the per and cper contents are as shown in Figure 8-11.

Figure 8-11.  Content of per and cper in console.log

Figure 8-13.  Method tellname output of class Cricket Player

Figure 8-12.  Method tellname output of class Player

The first three members, pname, height, and weight, were inherited from Player, whereas
cricketcounty was defined at the CricketPlayer level. The method tellname was redefined at the
CricketPlayer level.

At the end of Listing 8-5, two objects, per and cper, are defined using the new keyword, and then the
tellname method is called for the objects per and cper. This invokes different methods each time. As a
result, two different alert boxes are presented, as shown in Figures 8-12 and 8-13.

Chapter 8 ■ Object-Oriented Programming in JavaScript

125

As you can see, the outputs of the two methods are entirely in different formats. This is a demonstration
of polymorphism.

Summary
This chapter first provided a general overview of object-oriented programming, and then showed you how
OOP is implemented in JS, along with relevant syntax. It covered the this operator, then covered the various
ways of creating objects, followed by the instantiation steps using the new keyword. The chapter wrapped up
with an introduction to inheritance as implemented in JS using prototypes.

In Chapter 9, you will see a number of built-in objects of JS in detail, and the properties and methods
they provide that can be used by JS developers to reduce their programming time and efforts.

http://dx.doi.org/10.1007/978-1-4842-2220-1_9

127© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_9

CHAPTER 9

Objects

In JavaScript, an object is an unordered list of properties. A property is composed of a name and a value
and can also be a function. In this case, the function is called a method. This chapter covers some of the
standard objects you need to be familiar with when coding with JavaScript. It also presents examples of their
properties and the methods you are most likely to use with them. The chapter also covers arrays, Boolean
objects, string objects, and date objects.

Objects Revisited
Listing 9-1 presents a simple example of an object.

Listing 9-1.  Object Example

<html>
 <body>
 <script>
 var book = {novel: "Secret", author: "Rhonda Byrne", publicationDate: "Nov 2006"};
 console.log(book.novel + " this book is of author " + book.author);
 </script>
 </body>
</html>

As this example shows, an object contains a list of items, and each item in the list has a name-value
pair. The properties’ names are novel, author, and publicationDate, each of which is assigned a value.
The output of this code is shown in Figure 9-1.

Figure 9-1.  Output

Chapter 9 ■ Objects

128

Array
As you saw earlier in the book, an array object lets you store multiple values under a single variable name. The
index number starts with 0, and the first element of an array is represented as [0], the second as [1], and so on.

The syntax of an array creation is

var arrayName = [value1, value2, Valuen]

Consider the simple example of an array literal in Listing 9-2.

Listing 9-2.  Array Literal Example

<html>
 <body>
 <script>
 var countries = ["India", "Germany", "Scotland"];
 console.log(countries);
 </script>
 </body>
</html>

This example declares the variable countries as an array, and it contains the elements India, Germany,
and Scotland. Next, the console.log method is used to print the countries array. As you can see, this
example does not specify any index or element to be printed. This code gives you the maximum length
of an array.

The output of Listing 9-2 is shown in Figure 9-2.

Figure 9-2.  Output

If no element index of an array is specified in a console.log statement, the total number of elements is
displayed rather than the contents of each element.

Now consider a related example of an array with an index in Listing 9-3.

Listing 9-3.  Array with Index Example

<html>
 <body>
 <script>
 var countries = ["India", "Germany", "Scotland"];
 console.log(countries[0], countries[1], countries[2]);
 </script>
 </body>
</html>

Chapter 9 ■ Objects

129

Using the same starting base code as in Listing 9-2, this example shows how you can gain access to
the various elements of the array by specifying the array index number. The output of this code is shown in
Figure 9-3.

Figure 9-3.  Output

Figure 9-4.  Output

Arrays may also be defined using a new keyword, as shown in the example in Listing 9-4.

Listing 9-4.  New Array with Index Example

<html>
 <body>
 <script>
 var countries = new Array("India", "Germany", "Scotland");
 console.log(countries[0], countries[1], countries[2]);
 </script>
 </body>
</html>

This takes the same initial example and adds the keyword new. Both examples work exactly the same
way; the only the difference is that Listing 9-4 creates a new array. The output of this code is shown in
Figure 9-4.

■■ Note  When possible, create arrays without a new keyword—it’s faster.

Properties of Array Object
The three most commonly used properties of the array object are listed and described in Table 9-1.

Chapter 9 ■ Objects

130

Table 9-1.  Properties of the Array Object

Property Description

constructor Returns array function

index Returns the zero-based index of the match in the string

length Gives the length of an array

Figure 9-5.  Output

The constructor and length properties are described in more detail next.

Property constructor
The syntax of the constructor property is

array.constructor

This returns the function Array() { [native code] }. A simple example of this is shown in Listing 9-5.

Listing 9-5.  Array constructor Property Example

<html>
 <body>
 <script>
 var countries = new Array("Germany", "India", "Scotland");
 console.log("countries.constructor is:" + countries.constructor);
 </script>
 </body>
</html>

This example declares the array countries with the new keyword and then uses console.log to display
countries.constructor. The output of this code is shown in Figure 9-5.

Property length
As the name indicates, the length property contains the length of the array. The number of elements is
specified in integer form. The syntax of a length property is

array.length

Chapter 9 ■ Objects

131

This returns the array length—the total number of elements. Listing 9-6 provides a working example of
this property in action.

Listing 9-6.  Array length Property Example

<html>
 <body>
 <script>
 var countries = new Array("Germany", "India", "Scotland", "Austria");
 console.log("Length of array is:" + countries.length);
 </script>
 </body>
</html>

The output of Listing 9-6 is shown in Figure 9-6.

Figure 9-6.  Output

Array Methods
The array object contains a number of methods, several of which are listed and described in Table 9-2.

Table 9-2.  Methods of the Array Object

Method Description

concat() Combines two or more arrays and returns the new one.

forEach() Executes the specified function for each element in an array.

join() Combines the elements of an array into a string.

lastIndexOf() Returns the last index at which the given element is found within the array. If the
element is not in the array, -1 is returned.

pop() Removes and returns the last element of the array.

push() Adds one or more elements to the end of the array and returns the new array length.

reverse() Reverses the order of the array.

toString() Returns the components of the array in string form.

sort() Sorts the array elements.

shift() Removes the first element and returns the updated array.

slice() Cuts out a portion of the array as specified by the positions, and returns the array in a
form of a string.

Chapter 9 ■ Objects

132

More detailed descriptions of the concat and pop methods follow.

Method concat
The syntax of the concat() method is

array.concat(arr1, arr2, ..., arrN);

Here, arr1 and arr2 are the elements of array. This returns another array with concatenated values.
Listing 9-7 show an example of this method is used.

Listing 9-7.  Array concat() Method Example

<html>
 <body>
 <script>
 var countries = ["Germany", "Scotland", "Austria"];
 var continents = ["Europe", "Australia", "Africa"];
 var world = countries.concat(continents);
 console.log(" The world map has countries & continents:" + world);
 </script>
 </body>
</html>

This example declares two arrays, one with variable countries and the other with variable continents.
The concat() method is then used to combine these two array elements and form a new array.

The output of Listing 9-7 is shown in Figure 9-7.

Figure 9-7.  Output

Method pop
The pop method removes the last element from an array and returns its value. The syntax of the pop()
method is

array.pop();

This returns the element or value that is removed from the array. Listing 9-8 provides an example of the
pop() method.

Chapter 9 ■ Objects

133

Listing 9-8.  Array pop() Method Example

<html>
 <body>
 <script>
 var countries = ["Germany", "Scotland", "Austria"];
 var value = countries.pop();
 console.log(" Removed value from array is:" + value);
 var value = countries.pop();
 console.log(" Removed value from array is:" + value);
 </script>
 </body>
</html>

This example declares the variable countries with some array elements and then uses the pop()
method. This value is stored in the variable value and then displayed. The output of this code is shown in
Figure 9-8.

Figure 9-8.  Output

Boolean
A Boolean object represents two values: true or false. The syntax of a Boolean is

Boolean (value)

Listing 9-9 shows an example of the Boolean object.

Listing 9-9.  Boolean Object Example

<html>
 <body>
 <script>

 function myBoolean() {
 console.log(10 < 15);
 }
 myBoolean();
 </script>
 </body>
</html>

Chapter 9 ■ Objects

134

This example compares the Boolean values. If 10 is less than 15, the code returns true; if not, it returns
false. The output of Listing 9-9 is shown in Figure 9-9.

Figure 9-9.  Output

Table 9-3.  Boolean Properties

Property Description

constructor Constructor of the object

prototype Lets developers add properties and methods

Boolean Properties
The properties of a Boolean object are listed and described in Table 9-3.

Boolean Methods
Let us now discuss some of the useful methods of Boolean objects.

Method valueOf
The syntax of the valueOf() method is

boolean.valueOf()

This returns the primitive value of the specified Boolean object. Listing 9-10 shows an example of this.

Listing 9-10.  Boolean valueOf() Method Example

<html>
 <body>
 <script>
 var value = Boolean(10 < 15);
 var num = value.valueOf();
 console.log("Value of Boolean is:" + num.valueOf());
 </script>
 </body>
</html>

This example assigns the variable value and then uses the method valueOf() to check whether the
Boolean expression is true or false. The output is shown in Figure 9-10.

Chapter 9 ■ Objects

135

String
In a string object, you can store a series of characters, like this example:

var textString = "JavaScript language" or 'JavaScript language'

As shown, you can write this series either in single quotation marks or double quotation marks.

String Properties
Some of the properties of a string object are listed and described in Table 9-4.

Figure 9-10.  Output

Table 9-4.  Properties of a String Object

Property Description

length The length of the string

constructor Returns a reference to the string function

prototype Lets developers add properties and methods to the object

A more detailed description of the length property follows.

Property length
The syntax of property length is

string.length

This gives you the number of characters in the string, including spaces and blanks. Consider the simple
example in Listing 9-11.

Listing 9-11.  String length Property Example

<html>
 <body>
 <script>
 var text = "JavaScript Object";
 var strLength = text.length;
 console.log("The string length is:" + strLength);
 </script>
 </body>
</html>

Chapter 9 ■ Objects

136

This example shows the length of the string. It declares the variable text and assigns a string to it. Then,
using the property length, it identifies the number of characters in the given string. The output of this code
is shown in Figure 9-11.

Figure 9-11.  Output

Table 9-5.  String Methods

Method Description

concat() Combines two or more strings.

indexOf() Searches the string for the given text and starting position within the main string. It
returns -1 if the search is not successful.

match() Returns “match string” when matching a string against a regular expression.

replace() Replaces a string with a new string after checking regular expressions.

charAt() Returns the character at a given position.

slice() Removes characters and extracts a portion of the string based on the specified start and
end positions (the end character is not included).

split() Separates the string into a number of substrings based on a given separator such as ‘,’
and returns them in an array.

search() Searches through the string for a value or regular expression. If found, the matched
position is then returned.

toUpperCase() Converts to uppercase.

toLowerCase() Converts to lowercase.

substr() Also used for extraction. However, the starting position and the number of characters to
be extracted are specified.

Includes() Checks if a string contains a certain character or set of characters.

endsWith() Checks if the string ends with a certain character or set of characters.

String Methods
String methods are listed and described in Table 9-5.

The chartAt, repeat, and slice methods are described in more detail next.

Chapter 9 ■ Objects

137

Method charAt
The syntax for method charAt() is

String.charAt(ind)

This returns the character at the given position. Consider the chartAt() example in Listing 9-12.

Listing 9-12.  String charAt() Method Example

<html>
 <body>
 <script>
 var text = "JavaScript Object";
 var char = text.charAt(2);
 console.log("The character at position 2 is:" + char);
 </script>
 </body>
</html>

We’ve now used the same example to show the method charAt(), which identifies the character at
the given index number. (Note that arrays have base 0, so if you put 2 as an index, you will get the third
character.)

The output of Listing 9-12 is shown in Figure 9-12.

Figure 9-12.  Output

Method repeat
The syntax of method repeat is

String.repeat(n)

Here, the number of times the string content is to be repeated is specified via the number n. This
returns the string containing the repeated text. To better understand how this works, consider the example
in Listing 9-13.

Chapter 9 ■ Objects

138

Listing 9-13.  String repeat() Method Example

<html>
 <body>
 <script>
 var text = "JavaScript Object";
 var string = text.repeat(2);
 console.log("The string repeats twice:" + string);
 </script>
 </body>
</html>

In this case, the declared string "JavaScript Object" is written twice through the method repeat().
The output of this code is shown in Figure 9-13.

Figure 9-13.  Output

Method slice
The syntax of method slice is

string.slice(startslice [, endSlice]);

Here, startslice is the starting position number of the portion to be extracted before it is removed,
and endslice is optional and is used to remove part of the string from the right side. The index (position) is
specified from the right side of the string (i.e., counts from the end of the string and to the left). Everything
after this is removed and not sent as part of the returned string. This number is passed as a negative sign.
So, -4 denotes last four characters.

Consider the example of the slice method in Listing 9-14.

Listing 9-14.  String slice() Method Example

<html>
 <body>
 <script>
 var text = "JavaScript is also Object oriented";
 var string = text.slice(4, -4);
 console.log("The new string is:" + string);
 </script>
 </body>
</html>

Chapter 9 ■ Objects

139

This example declares the variable text and assigns it with the string. The starting and ending index
numbers are specified in the slice method, and the code will extract the characters between them from the
string. The output is shown in Figure 9-14.

Figure 9-14.  Output

Table 9-6.  Date Properties

Property Description

constructor Constructor

prototype Lets developers add properties and methods

Date
Date objects help us work with dates and times. There are four ways to create this object:

new Date()
new Date(milliseconds)
new Date(datestring)
new Date(year,month,date[,hour,minute,second,millisecond])

Date Properties
Date properties are listed and described in Table 9-6.

Property constructor
The constructor property returns the function that creates the date object prototype. The syntax of the
constructor is

date.constructor

Consider the example of the constructor property in Listing 9-15.

Chapter 9 ■ Objects

140

Listing 9-15.  Date constructor Property Example

<html>
 <body>
 <script>
 var tdyDate = new Date();
 console.log(tdyDate.constructor);
 </script>
 </body>
</html>

This example declares the variable tdyDate with a new date. The constructor property returns the
function date. The output is shown in Figure 9-15.

Figure 9-15.  Code output

Table 9-7.  Methods for Date Objects

Method Description

getDate() Gives the day of the month in the date (e.g., 1 , 2 , 3, … 31)

getDay() Gives the weekday in the form of number (e.g., from 0, 1, 2, … 6)

getFullYear() Returns the year in the date (e.g., 1978)

getHours() Gives the hour of the date (e.g., 0 , 1, … 23)

getMinutes() Returns the minutes of the date (e.g., 0, 1, 2, … 59)

getMonth() Gives the month of the date object (e.g., 0, 1, 2, 11)

getSeconds() Returns the seconds (e.g., 0, 1, 2, 3, … 59)

Date Methods
Some of the commonly used methods for date objects are listed and described in Table 9-7.

For all the methods in Table 9-7 except getDay(), there is a corresponding set method, such as setDate,
setFullYear, and so on.

Let’s now look at a few examples.

Chapter 9 ■ Objects

141

Using Property prototype with Method getDay()
As already mentioned, the prototype property allows you to add properties and methods to an object,
whether it is a Boolean, string, date, or another. The syntax to use the prototype property is

Object.prototype.name = value

Listing 9-16 shows how you can add a new method to a date object.

Listing 9-16.  Date prototype Property Example

<html>
 <body>
 <script>
 function myDay() {
 var tdyDay = new Date();
 tdyDay.today();
 console.log(tdyDay.Day);
 }
 Date.prototype.today = function() {
 switch (this.getDay()) {
 case 0:
 this.Day = "Sunday";
 break;
 case 1:
 this.Day = "Monday";
 break;
 case 2:
 this.Day = "Tuesday";
 break;
 case 3:
 this.Day = "Wednesday";
 break;
 case 4:
 this.Day = "Thursday";
 break;
 case 5:
 this.Day = "Friday";
 break;
 case 6:
 this.Day = "Saturday";
 break;
 }
 };
 myDay();
 </script>
 </body>
</html>

This example adds a new function today to the date object. Within this function, first the getDay function
finds out the number representing the day using. Based on this, the name of the day—such as 0 for Monday, 1 for
Tuesday, and so on—is displayed. Within the function myDay, a new date is defined and the today method is called.

Chapter 9 ■ Objects

142

The output of Listing 9-16 is shown in Figure 9-16.

Figure 9-17.  Program output

Figure 9-16.  Output

Method setMonth
The syntax of the setMonth() method is

Date.setMonth(monthValue[, dayValue])

Here, monthValue represents months from January to December, but the integer value passed for it must
be from 0 to 11, where 0 represents January and so on. The dayValue parameter is optional and represents
the date of the month, for example 1, 2, 3 … 31.

Listing 9-17 shows how you can use this method in a program.

Listing 9-17.  Date setMonth() Method Example

<html>
 <body>
 <script>
 var d1 = new Date("March 23, 2017 11:35:00");
 d1.setMonth(1);
 console.log("The date is set to: " + d1);
 </script>
 </body>
</html>

This example declares a date d1 and assigns a value to it using the new keyword. It then calls the method
setMonth() and passes the value 1. This denotes the new month value of the date. This example sets the new
value of the month of February as 1.

The output of this code is shown in Figure 9-17.

Chapter 9 ■ Objects

143

Summary
This chapter presented several of the basic objects you will encounter when working in JavaScript, including
arrays, Booleans, strings, and dates. It described some of the properties and methods associated with them
and showed you how to use them to write JS code.

In Chapter 10, you will explore the JSON format.

http://dx.doi.org/10.1007/978-1-4842-2220-1_10

145© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_10

CHAPTER 10

JavaScript Object Notation (JSON)

This chapter introduces the various ways you can use JavaScript Object Notation. It starts with an overview
of JSON and then dives into the details of the data types used in JSON. You will then see how the JSON
arrays and objects work in JS programs. Finally, you will see two useful methods, parse and stringify,
of the JSON object.

JSON: An Overview
JSON is a form of data representation that lets you arrange interchangeable information in an organized
manner. JSON is in text form (human-readable) and resides in a file. The usual file extension associated to
JSON files is .json.

■■ Note  Apart from JavaScript, JSON may be used for Java, Python, Perl, etc. JSON may be used to exchange
data between a browser and a server.

The syntax of JSON is a subset of JavaScript syntax consisting of data having name and value pairs.
The objects are contained in curly brackets, {}, separated by commas, whereas Objects and each name

followed by colon (:). Arrays are contained within square brackets, [], and values are separated by commas.

var Employee = { "name":"Twinkle", "empid":1234, "position":"Trainer", "city":"London" }
var Company = { "Employee": [
 { "name":"Twinkle", "empid":1234, "position":"Trainer", "city":"London" },
 { "name":"John", "empid":4536, "position":"Associate", "city":"Denver" }
] }

Consider the example presented in Listing 10-1.

Chapter 10 ■ JavaScript Object Notation (JSON)

146

Listing 10-1.  JSON Example

<html>
 <body>
 <script>
 var empObj;
 �empObj = { "name":"Kelvin Desouza", "empId":17924, "designation":"Trainer",

"city":"London" };
 console.log(empObj.name + " " + empObj.empId);
 </script>
 </body>
</html>

In this code, you can see the creation of an object with JavaScript using JSON-like syntax. This example
declares the variable named empObj, assigns to it some name/value pairs, and then accesses the objects’
values using dot notation. Only the employee name and ID are specified in the console.log method, so only
those two values will be displayed in the web browser console.

The output of Listing 10-1 is shown in Figure 10-1.

Figure 10-1.  Output

JSON Data Types
JSON has the following data types:

•	 Number: Numbers in JSON cannot appear within quotes, and are usually integer or
floating point. For example:

{ "empid": 123 }

•	 String: JSON strings are written in double quotes. For example:

{ "empname": "Twinkle" }

•	 Boolean: The value may be true or false. For example:

{ "Pass":true }

•	 Object: A JSON object can be any set of pairs of values. For example:

{
"Employee": { "name":"Twinkle", "empid":1234, "position":"Trainer",
"city":"London" }
}

Chapter 10 ■ JavaScript Object Notation (JSON)

147

•	 Array: - the values can be grouped in an array. For example:

{
"Employee": ["name":"Twinkle", "empid":1234, "position":"Trainer",
"city":"London"]
}

•	 Null: These are empty or no values. For example:

{ "value":null }

JSON Objects
The syntax of JSON objects is

var Employee = { "name":"Twinkle", "empid":1234, "position":"Trainer", "city":"London" }

As previously mentioned, the JSON objects are within curly brackets, {}, and contain key-value pairs that
are separated by a colon (:). The key in the case of objects is also always a string that is within double quotes.
The values pertaining to these keys may be of any data types (such as number, string, array, and so on).

There are two ways to access the object values: using dot (.) notation, like Employee.name, or by placing
the value in brackets, like Employee["name"].

There are three ways to create JSON objects via JS coding:

•	 Create an empty object:

var myEm = {};

•	 Create a new object:

var myEm = new Object();

•	 Create a JSON object with key/value pairs:

var myEm = { "name":"Twinkle", "empid":1234, "position":"Trainer",
"city":"London" }

Listing 10-2 shows a fully working example.

Listing 10-2.  JSON Object Example

<html>
 <body>
 <script>
 var product, val;
 �product = { "prname":"Smart Phone", "price":20000, "company":"Sony",

"camera":null };
 �console.log("Product name is: " + product["prname"] + " company: " +

product["company"]);
 </script>
 </body>
</html>

Chapter 10 ■ JavaScript Object Notation (JSON)

148

This code is the same as code shown in Listing 10-1. This example accesses the values by using square
brackets. In this case, the product name and company are accessed, so the required output will be the
product name and company. The output of Listing 10-2 is shown in Figure 10-2.

Figure 10-2.  Output

JSON Arrays
The values are in the form of array as in JavaScript. The values are held in square brackets, [], and array
values can be of any data types (number, string, array, object, Boolean, or null).

{
"soldin" : ["US", "UK"]
}

To access array values, use an index number like this:

soldin[1];

To better understand this concept, consider Listing 10-3.

Listing 10-3.  JSON Array Example

<html>
 <body>
 <script>
 var sellingitem;
 sellingitem = {
 "itemname":"Smart Phone",
 "itemprice":20000,
 "soldin":["US","UK"]
 };
 console.log("Product " + sellingitem.itemname +
 " is sold in " + sellingitem.soldin[0] + ' and ' +
 sellingitem.soldin[1]);
 </script>
 </body>
</html>

This example has a variable sellingitem that represents an object, with suitable values assigned to it.
Within this object is an array soldin that contains the countries in which the item is sold. The console.log
method is used to print the product name and the countries in the console. The output of Listing 10-3 is shown
in Figure 10-3.

Chapter 10 ■ JavaScript Object Notation (JSON)

149

In this case, we’ve defined a JSON array for a key value company with different attributes like Sony,
Apple, Lenovo, and Samsung. Now, to access this array value, we use an index number with an object. So in
this way we can identify a product brand name from a JSON array.

JSON parse Method
The parse method allows you to convert a data stream received in the form of a string (i.e., information in
JSON form) into a JS object. To better understand the usage of the method, consider a scenario where you
have a string containing name , ID , position, and trainer data pertaining to an employee. The parse method
will use this as follows:

var Employee = JSON.parse('{ "name":"Twinkle", "empid":1234, "position":"Trainer",
"city":"London" }');

The parse method will take as input the entire JSON represented in string form. The result of this
method execution will be returned in the form of an employee object.

The complete code for this example is shown in Listing 10-4.

Listing 10-4.  JSON parse Method Example

<html>
 <body>
 <script>
 var Employee;
 �Employee = JSON.parse('{ "name":"Twinkle", "empid":1234, "position":"Trainer",

"city":"London" }');
 console.log("Employee name:" + Employee.name + " Position:" + Employee.position);
 </script>
 </body>
</html>

This example declares the variable Employee and defines the text using JavaScript function JSON.
parse(). The given text is converted to a JavaScript object. The output of Listing 10-4 is shown in Figure 10-4.

Figure 10-3.  Output

Chapter 10 ■ JavaScript Object Notation (JSON)

150

JSON stringify Method
In contrast to the parse method, the stringify method does the reverse process. The method takes as input
a JS object (as in the previous example, an Employee object) defined within a program.

var Employee = { "name":"Twinkle", "empid":1234, "position":"Trainer", "city":"London" };

This employee object will then be converted to a JSON string form.
Consider the example of the stringify method shown in Listing 10-5.

Listing 10-5.  JSON stringify Method Example

<html>
 <body>
 <script>
 var Employee, EmpStrg;
 �Employee = { "name":"Twinkle", "empid":1234, "position":"Trainer",

"city":"London" };
 EmpStrg = JSON.stringify(Employee);
 console.log(EmpStrg);
 </script>
 </body>
</html>

This example declares two variables, Employee and EmpStrg, and then defines the JavaScript object and
assigns it to variable Employee. Next, using the JavaScript function JSON.stringify(), the given object is
converted to string format. The output of Listing 10-5 is shown in Figure 10-5.

Figure 10-5.  Output

Figure 10-4.  Output

Chapter 10 ■ JavaScript Object Notation (JSON)

151

Summary
This chapter introduced the basics of JSON and the data types that are used in JSON. It covered how the
JSON arrays and objects work, and discussed the useful methods parse and stringify of the JSON object,
along with code examples.

The next and final chapter presents best practices used in writing better JS coding, as well as some of
the typical errors to avoid.

153© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1_11

CHAPTER 11

Miscellaneous Topics

This chapter covers topics that are very useful but do not fit well in any of the earlier chapters. It starts
with an overview of strict mode and how it affects the syntax check, as well as error handling in JavaScript.
Next, you are provided tips related to code formatting and suggestions for using a naming convention for
variables. A separate section explains debugging and troubleshooting JS programs. Last but not least, this
chapter provides best practices for JS programming and offers some performance-improvement tips.

Strict Mode
Using strict mode enables developers to add stringent syntax checking to JavaScript code. For example,
when strict mode is used, you cannot have a variable that is not declared explicitly, and you cannot use the
with keyword. Most new versions of browsers implement strict mode.

The simplest way of activating strict mode is to add "use strict" at the start of a program or a function.
The area within the program to which strict mode is applicable depends on where "use strict" is inserted.
If you insert "use strict" outside a function (i.e., globally), the entire code of the program is checked for
strict mode. On the other hand, if you insert it within a function’s code, only the code within the function is
checked using strict mode rules.

An example of code that uses strict mode is shown in Figure 11-1.

Figure 11-1.  Use of strict mode

As you can see, the code attempts to define the variable num without using var declaration. Because
strict mode is activated, the code gives an error as shown.

Chapter 11 ■ Miscellaneous Topics

154

Now, consider the example of using strict mode in a function shown in Figure 11-2.

Figure 11-2.  Use of strict mode in a function

Here, strict mode is applied only to the function my(). Although both objects myObj and myObj1 contain
duplication of the property att1, only one error is displayed, for the object within the function. No error
results in the first object defined outside the function.

Usage of strict mode has the following advantages:

•	 It does not allow programming that might make code difficult to understand. Thus, it
makes programs easier to understand and maintain.

•	 It helps to identify at an early stage of development errors that are not very safe to
use or may give exceptions at the time of code execution.

Some of the constructs that are not allowed in strict mode are:

•	 Repetition of a property: Having multiple definitions of a property within an object
literal is not permitted. Consider the following, which includes the property att1
twice:

 var myObj = { att1: 10, att2: 15, att1: 20 };
 alert(myObj.att1);

•	 This code without strict mode compiles and displays 20 in the browser alert box. If
"use strict" is used, this code generates an error.

•	 Duplicate function parameter: Within strict mode, using a parameter name (formal)
multiple times for a function is not allowed. Consider the following example:

function myFunc(p1, p1){
 return p1;
};

alert(myFunc(10, 10));

Chapter 11 ■ Miscellaneous Topics

155

Without strict mode, this code displays 10. However, when strict mode is used,
the error shown in Figure 11-3 results.

Figure 11-3.  Syntax error caused by duplicate parameter name

•	 Function declaration in code block: When using strict mode, declaration of functions
with a block of code is not allowed. Within strict mode, functions may only be
defined at the topmost level of a program or within a function body. The following
example is not allowed:

"use strict"
 for (var i = 0; i < 10; i++) {
 function myfunc() {
 }
 }

•	 Use of the with statement: Within strict mode, use of the with statement is not allowed.

Debugging JavaScript
As with all languages, JavaScript requires debugging. This section demonstrates how to debug a program in
the Google Chrome browser in case you run the program and there are no errors directly displayed within
the browser.

Consider the code:

<html>
 <body>
 <script>

 var num1 = 10;
 alert(num1) ;
 num = 1;
 </script>
 </body>
</html>

As you can see, num is not declared. However, when the code is executed within a browser, the alert box
is still displayed (i.e., until the point at which the code is no longer correct).

Chapter 11 ■ Miscellaneous Topics

156

To switch on and explore the debugger in the Chrome browser, follow these steps:

	 1.	 Press Ctrl+Shift+I. This opens the Console tab on the right side of the browser.

	 2.	 Click the Sources tab. This shows the program code in the console with a white
× in a red circle identifying the line that is erroneous (see Figure 11-4). The
offending code also has a red squiggly line under it.

Figure 11-4.  Source code error

Figure 11-5.  Syntax error

	 3.	 Click the Console tab to see the text of the error, as shown in Figure 11-5.

Suppose your program has no syntax errors but has certain logical errors, and you are not sure what
exactly the cause is. In this case, you first need to find a suitable place to put a break point and then need to
see the various statement executions as well as the content of the variables that are used.

To start the debugger, press Ctrl+Shift+I and then select the Sources tab. Click the line number where
you want to put the breakpoint. Make sure that you click the line number, not the code itself. The breakpoint
is displayed as a blue-highlighted arrow over the line number, as shown in Figure 11-6 on line 6.

Chapter 11 ■ Miscellaneous Topics

157

Next, rerun the HTML page. This will rerun the JS code and the debugger will stop at the breakpoint; the
left side of the screen will say “Debugger paused,” as shown in the bottom-left pane of Figure 11-6.

To view the contents of a variable, in the lower-right pane of the screen, click the Watch tab. Click the
+ button. In the small pop-up text box, enter the name of the variable whose content you need to see—for
purposes of this example, a1. This displays the value of a1 in the Watch area, as shown in Figure 11-6.

Figure 11-6.  Breakpoint in browser console

You may use the following functions to proceed:

•	 To step over the next function call, press F10.

•	 To step into the next function call, press F11.

•	 To step out of the current function, press Shift+F11.

In order to exist the variable debugger, press F8. In order to deactivate all breakpoints, press CTRL+F8.
As you will see, once you proceed within the code, the line currently being executed will be highlighted

in blue.

Chapter 11 ■ Miscellaneous Topics

158

Code Formatting Tips
This section offers recommendations pertaining to your JS code formatting. These tips will make your code
easier to understand and will not affect the syntactic check result.

Use a Semicolon at the End of Each Statement
Consider for example the following statement:

int = int + 1

This statement compiles nicely and gives the following. However, the semicolon is missing at the end of
the statement. The recommended form of the statement is

int = int + 1;

Usage of Blanks
Do not use any blank spaces prior to and after parentheses within your code. These include any function
parameters as well as function parameters. Consider the following example:

<html>
 <body>
 <script>

 function mult(a, b) {
 return a * b;
 }

 var a1 = mult(10,10);
 alert (a1);
 </script>
 </body>
</html>

Unnecessary blank spaces appear within the function mult before and after parameters a and b.
Likewise, extra spaces appear while calling the function mult. Even the alert function call contains
extraneous blank spaces. Such coding must be avoided. Here is the correct form of the previous example:

function mult(a,b) {
 return a * b;
}
var a1 = mult(10,10);
alert (a1);

Always use blank spaces after switch, while, for, if, else, try, catch, and finally. In addition, always
use blank spaces after curly brackets, next to operators, and even after wiring commas such as function
parameters.

Chapter 11 ■ Miscellaneous Topics

159

Usage of Comparison Operators
You should always use !== and === in place of == and !=, respectively.

Function Curly Brackets
Make sure that the opening curly bracket ({) for if, else, for, and switch statements and for function calls is on
the same line as the statement keyword or function (whichever is applicable).

For example, consider the following:

function mult(a,b)
 {
 return a * b;
 }

The correct form is

function mult(a,b) {
 return a * b;
 }

Correctly Formatted Code Example
An example of correctly formatted code that incorporates all the preceding tips looks like this:

function myfunction(a1, a2) {
 var b2 = a1 / a2;
 if (b2 === 1) {
 b2--;
 }
 for (var a = 0; a < b2; a++) {
 alert(b2);
 }
 function func2(a1, b2) {
 return (b2 * a1) + b2;
 }

 return func2(2, 4);
 }

Naming Convention for Variables
I strongly recommend that you use a consistent naming convention for your JavaScript variables. The
prefix of a variable must denote the type of the variable. I also recommend using the camelCase naming
convention, with the prefix in lowercase and then continue with uppercase. I recommend using the example
naming convention shown in Table 11-1.

Chapter 11 ■ Miscellaneous Topics

160

■■ Note  You may be required to follow a naming convention based on company/project code standards that
is different from what I have proposed here. The important thing is that you use a consistent set of naming
conventions throughout your project.

Runtime Error and Exception Handling
Exceptions (also sometimes referred to as runtime errors) may happen during the execution of a program;
that is, after compilation. For example, the following line results in an exception:

<html>
 <body>
 <script>

 abc("message");

 </script>
 </body>
</html>

In this case, the syntax is correct. However, at the time of execution, the code is trying to call a function
that does not exist.

Exceptions may be caught via the try...catch...finally block. Using the block, you may catch both
developer-generated exceptions and runtime exceptions. However, JS syntax errors may not be caught using
this approach.

The syntax of a typical try...catch...finally block is shown here:

<script>

 try {
 // code to be executed
 }

Table 11-1.  Naming Convention Examples

Type Example

String Name

Boolean bFilled

Date dYesterday

Object oDomObj

Float fWeight

RegExp rSearchPattern

Function fnDivide

Function parameters mParameters

Array aEntries

Chapter 11 ■ Miscellaneous Topics

161

 catch (e) {
 // Code to be executed when exception happens
 }

 [finally {
 // this part of code is run irrespective of whether an exception happens or not

 }]

</script>

When coding, the first block is the try block. After this, you may have one catch block or a finally
block (or both). The finally block is optional. If an exception occurs within the try block, it is placed in
error object e and the code within the catch block is run.

The catch block is supplied with the error object that contains relevant information about the error that
has occurred. The error object has three properties:

•	 name: Error name

•	 message: Error message

•	 description: Description of the error

In addition, the error name may be one of several types; a few important ones are shown here:

•	 ReferenceError: Illegal reference

•	 TypeError: Type error

•	 RangeError: Number is not in range

•	 SyntaxError: Syntax error

After try/catch, any code within the finally block is run irrespective of whether an exception occurs
or not.

Now that you have some knowledge of how exception handling occurs within the JS arena, you are
ready to see some exception-handling code in action. Suppose you have the following block of code:

<html>
 <body>
 <script>
 abcd("This message");
 </script>
 </body>
</html>

As you can see, the program calls a nonexistent function by the name of abcd.
This block of code results in a runtime error. To change this program to catch the exception and display

the description of the error in an alert box, you would use the following code:

<html>
 <body>
 <script>
 try {
 abcd("This message");
 }

Chapter 11 ■ Miscellaneous Topics

162

 catch (exception) {
 �alert("An exception occurred, the description of which is: " + exception.

description);
 }

 </script>
 </body>
</html>

The code of the attempted abcd function call is placed within the try block. The alert box code is placed
in the catch block. The exception object will contain necessary information about the error that occurred.
This information will be displayed in an alert box.

The output of the program is shown in Figure 11-7.

Figure 11-7.  Exception handled

Best Practices in JavaScript
This section provides an overview of some of the best practices to implement in your use of the JavaScript
language. These include tips and tricks such as avoiding the use of global variables and the use of closures,
assigning default values to parameters, and always using a default clause in switch statements.

Avoid Use of Global Variables
It is recommended to avoid the use of global variables in JS. When you have a choice, use local variables.
Never define data and objects as well as functions globally. As a default behavior, JS brings all declarations to
the top. However, make sure to write data declarations at the top of the program at the time of coding.

Always keep data declarations at the top of the code. This includes keeping data at the top of the main
program or any functions used. By following this practice, the code not only looks neat and clean, but also is
easy to change because all the data declared is at the top. The following example shows this practice.

var myPlayerName, myWeight, myHeight;
myPlayerName = "James";
myWeight = 201.1;
myHeight = 85;

Chapter 11 ■ Miscellaneous Topics

163

Even for loops, make sure that any variables used are declared at the top:

var a;
for (a = 0; a < 10; a++) {
}

Never Declare Objects for Numbers, Strings, or Booleans
Declaring objects for numbers, strings, or Booleans may have an adverse effect on the performance, and
may not produce correct results.

Consider the following, in which the comparison returns false:

var myString1 = "James";
var myString2 = new String("James");
console.log((myString1===myString2)); // false

Now consider the following example:

var myString1 = new String("James");
var myString2 = new String("James");
console.log((myString1==myString2)); // false
console.log((myString1===myString2)); // false

Both the statements of comparison return false, because you cannot compare objects (in this case,
string objects).

Use of default Clause in switch Statements
When using a switch control statement, always use a default clause. Consider the following example:

switch (num) {
 case 0:
 value = "Off";
 break;
 case 1:
 value = "On";
 break;
}

In this case, only two outcomes are possible; no default clause is included. Thus, when the value of num
is neither 0 nor 1, you won’t know what happened. I recommend using a default clause even if you think it
will not be necessary.

The correct form of this example is

switch (num) {
 case 0:
 value = "Off";
 break;

Chapter 11 ■ Miscellaneous Topics

164

 case 1:
 value = "On";
 break;
 default:
 value = "Unknown";
}

The default clause passes the value as Unknown when the value of num is neither 0 nor 1.

Assigning Default Values in Parameter
It is a good practice to assign default (initial) values to parameters within a function, corresponding to
arguments that you anticipate may have undefined values.

Consider the following example:

function function1(a,b) {
..
}

In this case, if no value is passed for parameter b when calling function 1, the output is as follows:

 function1(10);

Because no value is passed for b, function1 may crash and/or result in an exception.
It is therefore recommended that you assign default/initial values to such arguments at the beginning of

the function code:

function function1(a,b) {
 if (b === undefined) {
 b = 1;
 }
.....
}

Use === Comparison
It is recommended to use === instead of == when doing comparisons. The === operator performs both value
and type comparison, whereas the == operator only performs value comparison (content check).

To better understand the difference, consider the following:

<html>
 <body>
 <script>
 console.log(8=="8"); // true
 console.log(8==="8"); // false
 console.log(0==false); // true
 console.log(1==true); // true
 console.log(0===false); // false
 console.log(1===true); // false
 </script>
 </body>
</html>

Chapter 11 ■ Miscellaneous Topics

165

Here, the == and === operators are used to compare numbers with Boolean true and false. The output
of the program is shown in Figure 11-8.

Figure 11-8.  Program output

Avoid Usage of Closures
It is also recommended not to use closure, for performance reasons.

Consider the following:

Player.obj = function() {

 this.method1 = function() {

 };
}

Each time an instance of Player.obj is created, a function and corresponding closure get created for method1.
Alternately, a better approach is

Player.obj = function() {

};

Player.obj.prototype.method1 = function() {

};

Using this approach, a single function is created for method1 without any closures, regardless of how
many instances of Player.obj are created.

Summary
This final chapter pulled together the miscellaneous JS topics that will help you improve your programs.
It started with an overview of strict mode and how it affects the syntax check. Next, you saw how error and
exception handling is implemented in JavaScript. This was followed by an introduction to debugging and
troubleshooting JS programs. The chapter wrapped up with best practices for JS programming as well as
performance-improvement tips.

167© Rehan Zaidi 2017
R. Zaidi, JavaScript Essentials for SAP ABAP Developers, DOI 10.1007/978-1-4842-2220-1

�       � A
Addition operator (+), 31
Anonymous function, 87
Arithmetic operators

addition (+), 31
decrement (--), 34
division (/), 32
exponentiation (**), 33
increment (++), 33
literals/variables, 31
multiplication (*), 32
remainder/modulo (%), 33
subtraction (-), 32
unary negation (-), 34

Assignment operators, 45

�       � B
Bitwise operators

AND (&), 41
full-fledged coding, 44–45
lists, 40
left shift (<<), 43
NOT (~), 42
OR (|), 41
signed shift right (>>), 44
unsigned right shift (>>>), 44

�       � C
Closures, 106
Code formatting

blanks, 158
comparison operators, 159
curly brackets, 159
semicolon, 158
source code, 159

Comparison operators, 34
equality (==), 37
greater than (>), 35
greater than or equal to (>=), 35

inequality (!=), 37
less than or equal to (<=), 35
less than (<), 35
non-identity (!==), 37
strict equality (===), 37

console.log method, 25
Constructor function, 114
Control structures

block statement {}, 49
conditional statements, 50

if…else, 50
switch, 53

label keyword, 63
loops (see Loops)

create() method, 117

�       � D
Data types

boolean, 23
null, 20
number values, 19
object, 21
string, 17
undefined, 20
use of, 17
within objects, 22

Debugger console tab, 26
Declaring functions

creation, 85
expression, 85

anonymous function, 87
named function, 86
self-invoking, 85

Decrement operator (--), 34
Division operator (/), 32

�       � E
Eclipse

Code.js node, 11
creation, JavaScript project, 10

Index

■ INDEX

168

editor, 9
HTML editor, 12
JavaScript editor, 12–13

Exception handling. See Runtime error
exec method, 79
Exponentiation operator (**), 33
Equality operator (==), 37

�       � F
First-class citizens, 100
Functions

function() operator, 84
advantages, 83
closures, 106
comparison (declaration and expression), 88
declaration (see Declaring functions)
first-class citizens, 100
function call, 92
function naming, 95
hoisting

declarations, 97
equivalent JS code, 98
incorrect code, 99
program output, 98
syntax error, 98–99

lexical scoping, 104
nested functions, 101
output, 84
overview, 83
parameters and arguments

arguments array, 90
passing parameters, 91
undefined value, 90
values, 89

parentheses, 84
pass by value/pass by reference parameter, 93
recursive, 108
return statement, 92
syntax of, 83

�       � G
Greater than (>) operator, 35
Greater than/equal to operator (>=), 35

�       � H
Hypertext Markup Language (HTML)

JS code, 5–6
tags, 4

�       � I
Increment operator (++), 33
Inequality operator (!=), 37
Input data, 28
Instances and constructors, 113

�       � J
JavaScript, 162

closures, 165
=== comparison, 164
global variables, 162
HTML code (see Hypertext Markup Language

(HTML))
nested comments, 2
numbers, strings and booleans, 163
parameter, 164
switch statements, 163

JavaScript (JS)
creation, 2–3
single-line comment, 2

�       � K
Keywords, 29

�       � L
Label keyword, 63
Less than or equal to operator (<=), 35
Less than operator (<), 35
Lexical scoping, 104
Logical operators

AND(&&) operator, 38–39
lists, 38
NOT(!) and AND(&&) operators, 39–40
OR(||) and NOT(!) operators, 38–39
program output, 39
short-circuit evaluation, 40

Loops
do…while loop, 57
for…in loop, 62
for loop, 59
types of, 56
while loop, 56

�       � M
match() method, 69
McCarthy evaluation, 40
Multiplication operator (*), 32

Eclipse (cont.)

■ INDEX

169

�       � N
Named function expression, 86
Naming convention, 159
Nested functions, 101
Non-identity operator (!==), 37

�       � O
Object-oriented programming (OOP), 111

classes, 113
class player, 111
general option, 111
instances and constructors, 113

create() method, 117
constructor

functions, 114–115
Object() constructor, 116
object literal, 114

instances of, 112
instantiation, 112

�       � P, Q
prompt method, 28
Prototypal inheritance, 121
Prototypes

console output, 118
constructor, 120
hello() method, 121
JavaScript, 117
object, 118
Object.prototype, 119
Object.prototype.valueOf()

method, 118
objects, 117
__proto__, 120

�       � R
Recursive functions, 108
Regular expression, 65

attributes, 65
metacharacters, 65
methods, 78

exec method, 79
test(), 80
toString(), 80

object properties, 73
constructor, 73
global property, 74
ignoreCase property, 75
lastIndex property, 76
multiline property, 77
source property, 78

overview, 65
quantifiers, 66
square brackets, 66
use of, 67

replace() method, 68
return() statement, 92
Runtime error, 160

�       � S
search() method, 67
Self-invoking functions, 85
Sign-propagating right shift, 44
split() method, 71
Strict mode, 153
Strict equality operator (===), 37
String methods, 67

match(), 69
operator, 46
replace(), 68
search(), 67
split(), 71

Subtraction operator (-), 32

�       � T
test() method, 80
toString() method, 80
typeof operator, 24

�       � U
Unary negation operator (-), 34

�       � V
Variable declaration, 7–8

�       � W, X, Y, Z
Window object, 15

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to JavaScript
	Brief JavaScript Background
	Inside a JavaScript Program
	Creating a Simple JS Program
	A Quick Look at HTML
	Putting JavaScript in HTML Code
	Writing JS Code Within the <HEAD> and </HEAD> Tags
	Writing JS Code Within the <BODY> and </BODY> Tags
	Creating JS Code in a Separate File

	Variable Declaration in JavaScript
	Using Eclipse
	Summary

	Chapter 2: A Step Ahead in JavaScript
	Window Object
	Data Types in JavaScript
	String
	Number
	Undefined
	Null
	Object
	Objects Within Objects

	Boolean

	The typeof Operator
	Method console.log
	Taking Input from the User
	Commonly Used Keywords in JavaScript
	Summary

	Chapter 3: Operators in JavaScript
	Arithmetic Operators
	Addition Operator
	Subtraction Operator
	Multiplication Operator
	Division Operator
	Remainder Operator
	Exponentiation Operator
	Increment Operator
	Decrement Operator
	Unary Negation Operator

	Comparison Operators
	Greater Than Operator
	Less Than Operator
	Greater Than or Equal To Operator
	Less Than or Equal To Operator
	Equality and Inequality Operators
	Equality Operator
	Inequality Operator
	Strict Equality (Identity) Operator
	Non-identity/Strict Inequality Operator

	Logical Operators
	Bitwise Operators
	Bitwise AND
	Bitwise OR
	Bitwise XOR
	Bitwise NOT
	Bitwise Left Shift
	Bitwise Unsigned Right Shift
	Bitwise Signed Right Shift
	Coding Example

	Assignment Operators
	String Operator
	Summary

	Chapter 4: Control Structures in JavaScript
	Block Statement
	Conditional Statements
	if...else Statement
	switch Statement

	Loops in JavaScript
	while Loop
	do...while Loop
	for Loop
	for...in Loop

	Label Statement
	Summary

	Chapter 5: Regular Expressions and String Methods
	Regular Expressions: An Overview
	String Methods
	search Method
	replace Method
	match Method
	split Method

	Regular Expression Object
	Regular Expression Object Properties
	constructor Property
	global Property
	ignoreCase Property
	lastIndex Property
	multiline Property
	source Property

	Regular Expression Object Methods
	exec Method
	test Method
	toString Method

	Summary

	Chapter 6: Functions
	Functions: An Overview
	Declaring Functions
	Using a Function Expression
	Self-Invoking Functions
	Named Function Expression
	Anonymous Function

	Using a Function Declaration
	Summary Comparison of the Function Declaration and Function Expression

	Function Parameters and Arguments
	Missing Parameters and the undefined Value
	arguments Array
	Simulating Optional Parameter Passing

	return Statement
	Function Call
	Parameter Pass by Value or Pass by Reference?
	Function Naming
	Summary

	Chapter 7: Doing More with Functions
	Hoisting in the Context of Functions
	First-Class Citizens
	Nested Functions
	Lexical Scoping
	Closures
	Recursive Functions
	Summary

	Chapter 8: Object-Oriented Programming in JavaScript
	Object-Oriented Programming in General
	Object Instances and Constructors
	Approach 1: Using an Object Literal
	Approach 2: Using a Constructor Function
	Approach 3: Using the Object() Constructor
	Approach 4: Using the create() Method

	JavaScript: A Prototype-Based Language
	Prototypal Inheritance
	Summary

	Chapter 9: Objects
	Array
	Properties of Array Object
	Property constructor
	Property length

	Array Methods
	Method concat
	Method pop

	Boolean
	Boolean Properties
	Boolean Methods
	Method valueOf

	String
	String Properties
	Property length

	String Methods
	Method charAt
	Method repeat
	Method slice

	Date
	Date Properties
	Property constructor

	Date Methods
	Using Property prototype with Method getDay()
	Method setMonth

	Summary

	Chapter 10: JavaScript Object Notation (JSON)
	JSON: An Overview
	JSON Data Types
	JSON Objects
	JSON Arrays

	JSON parse Method
	JSON stringify Method
	Summary

	Chapter 11: Miscellaneous Topics
	Strict Mode
	Debugging JavaScript
	Code Formatting Tips
	Use a Semicolon at the End of Each Statement
	Usage of Blanks
	Usage of Comparison Operators
	Function Curly Brackets
	Correctly Formatted Code Example

	Naming Convention for Variables
	Runtime Error and Exception Handling
	Best Practices in JavaScript
	Avoid Use of Global Variables
	Never Declare Objects for Numbers, Strings, or Booleans
	Use of default Clause in switch Statements
	Assigning Default Values in Parameter
	Use === Comparison
	Avoid Usage of Closures

	Summary

	Index

