
www.ebook3000.com

http://www.ebook3000.org

KnockoutJS by Example

Develop rich, interactive, and real-world web
applications using knockout.js

Adnan Jaswal

BIRMINGHAM - MUMBAI

[FM-2]

KnockoutJS by Example

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1280915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-854-8

www.packtpub.com

www.ebook3000.com

www.packtpub.com
http://www.ebook3000.org

[FM-3]

Credits

Author
Adnan Jaswal

Reviewers
Taswar Bhatti

Scott Durow

Magesh Kuppan

Commissioning Editor
Sarah Crofton

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Divij Kotian

Technical Editor
Shivani Kiran Mistry

Copy Editor
Swati Priya

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

[FM-4]

About the Author

Adnan Jaswal is technologist with vast knowledge and experience in technology
consultancy, solution architecture, and software development. He has designed and
developed software for government, education, financial, cyber security, logistics, and
aviation industries. He believes in the digital revolution and the power it possesses
to change the way people and businesses interact with technology. He is passionate
about JavaScript technologies and views them as an enabler of digital change.

He has worked for companies such as CA Technologies and Object Consulting.
He currently works, as a manager, for one of the big four professional services
networks. His role involves technology consulting, architecting, leading teams,
developing software, and helping clients respond to digital disruption.

He lives in Melbourne, Australia, with his wife and two children. He can be found
on LinkedIn at https://www.linkedin.com/in/adnanjaswal.

www.ebook3000.com

http://www.ebook3000.org

[FM-5]

Acknowledgment

I would like to thank the team of editors, proof readers, and designers who
contributed to the quality of this book. My special thanks goes to the technical
reviewers of this book for identifying mistakes and suggesting improvements.

To my teachers and mentors, thank you for contributing to my knowledge and
experience. I would also like to extent my appreciation to all my colleagues and
peers. I enjoy our discussions and collaborations, and they have helped me with
the content of this book.

Special thanks also goes to all my family and friends for sharing my happiness
and supporting me when I started this project.

To my beautiful children, Heba and Zaki, thank you for the understanding on those
days when I was away writing this book. You both bring me so much joy and make
me smile every single day. You missed out on daddy time while I was writing this
book and I will try my best to make it up.

Finally, to my lovely wife Sadia, thank you for your love and support as I fit the
writing schedule into our already overly busy life. You took on additional duties
every weekend I had to go write this book. The hard work you put in and the
motivation you have is my inspiration. This book has been a long journey for
all of us and I could not have done it without you.

[FM-6]

About the Reviewers

Taswar Bhatti is a system architect at Gemalto, an international digital
security company in Ottawa, Canada. He has been working in the software
industry for more than 15 years. He focuses on building secure, highly-distributed,
and scalable solutions.

He is also the author of Instant Automapper, Packt Publishing. He regularly speaks at
meetups and code camps, and blogs on http://taswar.zeytinsoft.com. You can
follow him on Twitter @taswarbhatti.

I would like to thank my wife, Nilay Ertemur Bhatti, and my
children, Onur and Sevin Bhatti, for all the love and support.

Scott Durow is an experienced software architect and technologist with a
passion for enabling business transformation through the Microsoft technologies.
By combining his detailed technical knowledge with a clear grasp of wider
commercial issues, he is able to identify and implement practical solutions to
complex business challenges.

His software engineering background has moved him through assembly language
device driver programming and industrial control systems into enterprise business
software, with work experiences in Europe, North America, and Japan. He is a
Microsoft Dynamics CRM MVP and the principle author of the open source project,
www.SparkleXRM.com.

He lives near the University of Oxford in the UK with his wife, Kerrie, and
three children. To read more about his latest projects, you can visit his blog at
scottdurow.develop1.net. You can also follow him on Twitter at @ScottDurow.

www.ebook3000.com

http://taswar.zeytinsoft.com
www.SparkleXRM.com
scottdurow.develop1.net
http://www.ebook3000.org

[FM-7]

Magesh Kuppan is a freelance trainer and consultant with 18 years of experience.
In his previous incarnation as an architect, he built desktop applications, web
applications, data services, and rich internet applications/single page applications
for one of the largest financial organizations in the U.S. Currently, he is conducting
training programs on most of the JavaScript frameworks/libraries and server-side
application development using Node.js for major organizations.

He was also a technical reviewer for Knockout Essentials, Packt Publishing.

This is dedicated to my son, Guru Raghav, who makes everyday a
beautiful experience.

[FM-8]

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.ebook3000.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.ebook3000.org

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started	 1

Understanding the MVVM design pattern	 2
The model	 2
The view model	 3
The view	 4

The key features of Knockout	 5
Declarative bindings	 5
Automatic UI refresh	 7
Dependency tracking	 8
Templating	 9

Understanding the module pattern and its use with Knockout	 11
The concept	 11
Public and private members	 12
Initializing the module	 13
Using the module with view model	 14

Building the address book application	 15
A word on the development environment	 16
Downloading the libraries	 16
Creating the skeleton	 17
Adding the application features	 19

Capturing and storing contacts	 19
Displaying contacts	 23

Adding style to your application with Bootstrap	 25
Resources	 27
Summary	 28

Table of Contents

[ii]

Chapter 2: Creating a To-do List Application	 29
Creating the skeleton	 30
Adding and viewing tasks	 32
Deleting a task	 35
Completing a task	 37
Setting priority for a task	 40
Sorting tasks by priority and name	 43
Viewing the number of total and completed tasks	 46
Summary	 49

Chapter 3: Creating an Online Customer Registration Form	 51
Getting started	 52
Capturing personal information	 55
Capturing contact details	 61
Capturing residential and postal addresses	 65
Capturing credit card details	 71
Capturing interests	 76
Clearing the registration form	 77
Summary	 79

Chapter 4: Adding Validation to the Customer Registration Form	 81
Validating the model using Knockout extenders	 82
Validating model using the Knockout validation plugin	 84

Getting started	 84
The basics	 86
Validating personal information	 87
Validating contact details	 91
Validating address details 	 94
Validating credit cards	 98

Summary	 101
Chapter 5: Creating a Customer Banking Portal	 103

Creating the skeleton	 104
Navigating between application features	 106
Viewing contact details and information about the bank	 113
Viewing accounts	 117
Viewing transactions for an account	 125
Viewing personal information	 132
Summary	 136

Chapter 6: Enhancing the Customer Banking Portal	 137
Updating personal information	 138
Cancel updating the personal information	 143

www.ebook3000.com

http://www.ebook3000.org

Table of Contents

[iii]

Validating personal information	 150
Transferring funds between accounts	 154

Creating the Transfers tab	 155
Creating the wizard component	 156
Adding functionality to the wizard	 161

Summary	 171
Chapter 7: Securing the Customer Banking Portal	 173

Authentication mechanisms	 174
Basics of the token-based authentication	 175

Token versus session in cookies	 175
JSON Web Token	 177

Logging in to the application	 178
Creating the authentication module	 179
Creating the login screen	 182
Refactoring the BankPortal module	 183
Testing the application using different user accounts	 185

Validating the login form	 186
Handling the authentication error	 188
Displaying the logged in user	 190
Logging out of the application	 191
Summary	 194

Chapter 8: Building an Editable Products Grid with
CRUD Operations	 195

A word on REST	 196
Installing and running the sever	 197
Creating the skeleton	 199
Displaying the list of products	 202
Deleting a product	 206
Adding a product	 208
Updating a product	 213
Summary	 217

Chapter 9: Using Google Maps APIs with Knockout	 219
Creating the skeleton	 220
Capturing address using autocomplete	 222
Displaying address details	 227
Rendering the map	 231
Placing markers on the map	 235
Displaying route between markers	 238
Summary	 241

Index	 243

www.ebook3000.com

http://www.ebook3000.org

[v]

Preface
JavaScript technologies are playing a much larger role in modern web applications.
These application are expected to be rich, interactive, responsive, modular, and
maintainable. The applications are often required to redraw parts of the user
interface. The data and business logic must be kept separate from the presentation in
order to develop modular and maintainable web applications that are interactive and
provide a richer user experience. The data and the presentation could then be bound
in a way that updates to one would update the other. Similarly, the business logic
could be bound to events triggered by the presentation. Developing applications
on this design in pure JavaScript can be complex and time-consuming. It becomes
evident, to most developers, that a library is required that allows the development
of modern web applications without getting into the complexities of binding data,
business logic, and presentation. Knockout is one such library.

Knockout is an open source JavaScript library. It reduces the complexities of
JavaScript and HTML development by following the stated design principle
and implementing the Model-View-View Model (MVVM) design pattern.

One of the best ways to learn a software development technology is by example.
Keeping this in mind, my intent has been to provide a practical and hands on
learning experience featuring real-world projects. I have drawn on my experience
as a software designer and developer to provide you with a practical guide. The
inspiration for the content and examples in this book come from my years of
experience in developing web applications using JavaScript and, in particular,
developing applications using Knockout for a leading financial institution.

Preface

[vi]

If you are new to Knockout, this book is a hands-on guide for you to start creating
web applications. With its iterative approach, sample code, and screenshots, this
book will take you on a journey of discovering the power of Knockout.

If you are an experienced Knockout developer, this book will give you practical
solutions to real-world problems. With advanced topics such as building complex
navigations, securing web applications, building services for CRUD operations,
and using third party APIs, this book will be your go-to reference.

What this book covers
Chapter 1, Getting Started, covers the basic concepts and patterns that help us
understand how Knockout works. It explores the key features of Knockout,
including declarative binding, automatic UI refresh, dependency tracking, and
templating. The second half of the chapter takes you through building your first
Knockout application—an address book.

Chapter 2, Creating a To-do List Application, takes you through building a to-do list
application. The application's features include adding, viewing, deleting, sorting,
and completing tasks. It also includes features to set the priority on tasks and view
the number of total and completed tasks.

Chapter 3, Creating an Online Customer Registration Form, walks you through
building a customer registration form. The information captured by the form
includes personal information, contact details, residential and postal addresses,
and credit card information. The application demonstrates Knockout's ability to
create dynamic forms.

Chapter 4, Adding Validation to the Customer Registration Form, describes how to add
validation to the form that we built in the previous chapter. It explores two ways of
applying validation: using custom extenders and the Knockout validation plugin.

Chapter 5, Creating a Customer Banking Portal, is the first chapter in a series of three
that walks you through building a customer banking portal for MyBank. It lets you
set up the navigation for the application, display users' contact details, their accounts
and associated transactions, and their personal information as well.

Chapter 6, Enhancing the Customer Banking Portal, adds new features to the customer
banking portal that we built in the previous chapter. This chapter helps you add
features to allow the users to update their personal information and transfer funds
between their accounts using a wizard component.

www.ebook3000.com

http://www.ebook3000.org

Preface

[vii]

Chapter 7, Securing the Customer Banking Portal, explores the common token-based
authentication mechanisms used in modern web applications. It walks you through
securing the customer banking portal using token-based authentication.

Chapter 8, Building an Editable Products Grid with CRUD Operations, walks you through
building an editable products grid application. The application integrates with
a server through RESTful web services. Its features include displaying, deleting,
adding, and updating products.

Chapter 9, Using Google Maps APIs with Knockout, walks you through building a
map application using the Google Maps APIs. The application gives the users the
ability to enter address information with autocomplete predictions, based on partial
address input, and displays detailed address information. It also renders a map,
places markers based on the addresses selected, and displays the route between the
two markers.

What you need for this book
In order to start coding along the examples and running the sample applications
that come with this book, you need a device with internet connectivity so that you
can download the libraries used in the examples as well as the sample code. You can
use your preferred editor or development environment to write the code and start
developing web applications. You also require one of the major browsers to run
the applications.

Who this book is for
This book is intended for designers and developers who want to learn how to use the
Knockout library to develop rich, interactive, and modular web applications. This
book will help you master both the basic and the advanced features of Knockout.
The book assumes no prior knowledge of the Knockout library, but basic familiarity
with HTML, CSS, and JavaScript would be helpful. The book is targeted towards
readers who are inspired by the idea of hands-on learning. The sample real-world
applications in this book will take you on a journey of building applications that
range from basic level all the way to advance.

Preface

[viii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The retrieveContact function, which is used to retrieve a contact from the
server-side."

A block of code is set as follows:

var contact = {
 id: 1,
 name: 'John',
 phoneNumber: '00 11 000000'
};

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

/* the model */
var member = {
 accounts: ko.observableArray(),
 selectedAccount: ko.observable(),
 selectedAccountTransactions: ko.observableArray([])
};

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Open the
application in the browser and try hitting Submit without entering any information
in the form fields."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.ebook3000.com

http://www.ebook3000.org

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

License
All code examples, whether in the book or downloaded from your account
at http://www.packtpub.com are released under the terms of MIT license
as stated here:

Copyright (c) Adnan Jaswal, 2015

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

www.packtpub.com/authors

Preface

[x]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.ebook3000.com

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.ebook3000.org

[1]

Getting Started
Knockout is an open source JavaScript library that lets you develop rich, interactive,
and modular web applications. It does this in a manner that reduces complexities
of JavaScript and HTML development and allows us to develop highly scalable,
testable, and maintainable web applications.

Knockout provides the ability to bind HTML elements to a data model. The binding
is two-way, which means that any change to the data is reflected in the HTML
elements and any change to the HTML elements is reflected in the data. Knockout
implements two-way binding using the Model-View-View Model (MVVM) design
pattern. You will learn more about this pattern in the next section.

Knockout is a pure JavaScript library and is not dependent on other low-level
JavaScript libraries such as jQuery or Prototype. Libraries such as jQuery can be
used in conjunction with Knockout to provide richer features to your application
such as making AJAX calls, providing animation to HTML elements, or providing
event handling for custom user interface components.

Knockout supports all major browsers. A list of supported browsers can be found on
the Knockout's website at http://knockoutjs.com/.

This chapter covers the following topics:

•	 Understanding the MVVM design pattern: We will explore the MVVM
pattern and how it is implemented using knockout.js

•	 Key features of Knockout: We will look at the key features of knockout.js

http://knockoutjs.com/

Getting Started

[2]

•	 Understanding the module pattern: We will explore the module pattern and
see how it can be used to give structure to your Knockout application

°° Building your first application: We will build the first application
and learn where to download knockout.js from and how to set up
the development environment

°° Defining data model and applying data bindings: We will also learn
the basics of defining the data model and applying data bindings

°° Applying styles to our application using Bootstrap

•	 Taking a look at some useful resources

Understanding the MVVM design pattern
Knockout implements the MVVM design pattern. It is imperative to understand the
basic concept behind MVVM before we dive into Knockout. This will help us grasp
how two-way binding is implemented in Knockout and what are its benefits.

MVVM is a design pattern that lets you decouple your UI elements from your
application logic and data. It lets you define data binding to link the UI elements to
the data. The data bindings provides loose coupling and keeps the data in sync with
the UI elements. The MVVM pattern provides clear separation of concerns between
UI elements, application logic, and the data.

The three main components of this pattern are:

The model
The model is a domain object, which holds the data and domain-specific logic.
An example of a model could be of a contact in an address book, containing
contact ID, name, and phone number. The following is an example of a contact
model in JavaScript:

var contact = {
 id: 1,
 name: 'John',
 phoneNumber: '00 11 000000'
};

The model should not contain any application logic such as service calls. The model
can contain business-specific logic that is independent of the UI. Separating business
logic from UI makes the code more maintainable and testable.

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[3]

The contact object in the given example is declared as an object
literal, which uses Java Script Object Notation (JSON). It is
important to familiarize yourself with this notation if you are not.
You can find more on this topic at http://json.org/.

The view model
The view model holds the model and any application logic such as adding or
removing data or making service calls to retrieve or storing data from server-side
data repositories. The following is an example of a view model that holds a contact
and provides method to retrieve the contact from a server-side data repository:

var contactViewModel = {
 var contact = {
 id: 1,
 name: 'John',
 phoneNumber: '00001111'
 };

 Var retrieveContact = function (){
 /* logic to retrieve contact form server side data repository
 */
 };

 Var updateContact = function (newPhoneNumber){
 /* logic to update the contact with new phone number */
 };
};

The view model itself does not have any concept of the HTML elements, button-click
event, or how the data in the model should be displayed. It simply holds the data
model and a set of actions in the form of functions that manipulate the data.

In the preceding example, contactViewModel holds the contact model.
It also has two functions that are used to manipulate the contact model. The
retrieveContact function, which is used to retrieve a contact from the server-side,
and the updateContact function, which is used to update the contact with a new
phone number.

http://json.org/

Getting Started

[4]

The view
The view is what the end user sees and interacts with on the screen. The view
is a representation of the data contained in the model. The view also provides a
mechanism to interact with the model. In our example, the model contains a contact.
The view can display the contact and provide HTML elements such as buttons to
retrieve and update the contact.

In Knockout, the view is the HTML with data bindings that link the view to the view
model. The following HTML displays the contact name and phone number:

The phone number for is

<button data-bind="click: retrieveContact">Load Contact</button>

In the preceding example, the contact name and phone number are being displayed
using the text binding. Click binding is used to link the Load Contact button to
retrieveContact function in our view model. We will explore bindings in much
more detail later on.

The following figure depicts the relationship between view, model, and view model:

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[5]

In the preceding figure, the view model holds the state of the model and provides
behavior to the view. The view binds with the model and this keeps the view and the
model in sync. The view also binds with the view model for operations, for example,
the behavior to load contacts. The view model uses the model to manipulate the
data. For example, the retrieveContact function retrieves a contact and sets it in
the model.

The key features of Knockout
In this section, we will explore some of the key features of Knockout. It is
important to understand these features and their basic syntax before we dive
into working examples.

Declarative bindings
Knockout provides a way to link the model and view model with the view using a
declarative binding mechanism. The bindings are declared in HTML. The following
is an example of a simple text binding:

The phone number for is
0000111

Let's explore the data binding syntax. The bindings are declared using the data-bind
attribute on an HTML element. The value of this attribute has two elements, which
are separated by a colon. The two elements are name and a value.

The name specifies the type of binding. This should match a registered binding
handler. A binding handler is an object that contains the code to bind the HTML
element to our model. Knockout provides a number of useful binding handlers.
A custom binding handler can be created and registered with Knockout if none
of the out-of-the-box handlers meet your specific requirements. In most cases,
the out-of-the-box handlers will do the job.

Knockout will ignore the binding without any error if the name
does not match any of the registered binding handlers. Check the
name if the binding does not appear to be working!

The value can be an attribute from the model or any valid JavaScript expression.
In the preceding example for contact, we used a text binding with the value, and
the name. The value in this case comes from the model.

Getting Started

[6]

Here is an example of a binding using a JavaScript expression:

The phone number for <span data-bind="text:
retrieveContactName()> is 0000111

In this example, the text value is evaluated by calling the retrieveContactName
JavaScript function.

Knockout will throw an error and stop processing the
bindings if the value is an invalid expression or if it
references an undefined variable.

You can include multiple bindings in the data-bind attribute, with each binding
separated by a comma. Adding a visible binding to our weather forecast example
will make it look similar to this:

The phone number for <span data-bind="text: name, css:
favourite"> is 0000111

In the preceding example, the text for the span element will come from the name
attribute in our model. The css binding will determine the CSS class to be applied,
based on the favourite attribute in our model for the span element.

You can include any number of spaces, tabs, or newlines in
your binding syntax. Use this to arrange your bindings to
make them more readable!

In more advance usage, the binding can also be a parameter for another binding.
Here is an example in which the template binding takes the foreach binding
as a parameter:

<tbody data-bind="template: {name: 'contact-template', foreach:
contacts}">

As mentioned earlier, Knockout provides a number of very useful binding handlers
that come out of the box. Knockout documentation divides these binding handlers in
to three categories:

•	 Controlling text and appearance: As the name suggests, these binding
handlers control the text and the styling of the UI elements. Examples of
binding handlers in this category include text and css. We used these
bindings as examples earlier in this section.

•	 Flow control: These binding handlers provide control structures such as loops
and conditions. The foreach and if binding handlers fall under this category.
We will explore these bindings in more detail in the coming sections.

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[7]

•	 Working with form fields: Capturing data with forms is one of the most basic
requirements in web applications. Binding handlers in this category provide
the functionality to work with form fields. Some of the examples include
click, value, and submit binding handlers. We will learn more about
bindings in this category in Chapter 3, Creating an Online Customer Registration
Form and Chapter 4, Adding Validation to the Customer Registration Form.

Automatic UI refresh
Automatic UI refresh is a very useful feature of Knockout. This feature is based on
the concept of two-way binding between the view and view model. Whenever the
data in the model changes, it is reflected in the UI. When the input fields in the UI
change, it updates the underlying data.

This feature reduces the amount of code and complexity by many folds. Those who
are accustomed to writing event handlers in JavaScript to connect data with UI fields
and vice versa would surely appreciate this feature. Implementing this in jQuery
is definitely easier than developing this in pure JavaScript, but it does not compare
with Knockout.

The examples in the previous section for data binding and view produces a one-way
binding between the UI and model. Updating the value in the UI field will update
the data in the model. To make this binding work both ways, you have to declare the
attributes in your model as observables.

Observables are objects that notify their subscribers of any change. Let's apply
observables to our contact model:

var contact = {
 id: ko.observable(1),
 name: ko.observable('John'),
 phoneNumber: ko.observable('00001111')
};

By declaring the attributes in your model as observable object, you have activated
the two-way binding. You do not have to make any change to the data bindings
or view.

Since observables are functions, you can no longer access the attribute in the
standard way. To read the value of our name observable, we execute it as a
function like this:

contact.name();

Getting Started

[8]

To change the value of our name observable to Mary, simply pass the new value as
an argument to the name function as follows:

contact.name('Mary');

We mentioned that observables notify their subscribers of any change. When we use
observables with data binding, the binding registers itself to be notified when the
observable changes value. When the value of the observable changes, the binding
automatically updates the UI element.

You can also explicitly subscribe to observables, have observables with values that
are computed, or even delay change notification. We will learn more about these
later on in the book.

Dependency tracking
Dependency tracking is one of the most exciting features of Knockout. Dependency
tracking is based on observables and their subscribers. When Knockout runs
for the first time, it evaluates the initial value of each observable and sets up the
subscriptions. The subscribers get notified when the observable gets updated with a
new value.

Dependency tracking also works for computed observables. Computed observables
are the observables that are dependent on one or more other observables. The
value of the computed observable is updated every time the value of one of its
dependencies changes.

Let's extend our contact model to add first and last name:

var contact = {
 id: ko.observable(1),
 firstName: ko.observable('John'),
 lastName: ko.observable('Jones'),
 phoneNumber: ko.observable('00001111')
};

Now that we have added observables for first and last name, let's add a computed
observable for full name:

var contact = {
id: ko.observable(1),
 firstName: ko.observable('John'),
 lastName: ko.observable('Jones'),

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[9]

 fullName: ko.computed(function() {
 return this.firstName() + " " + this.lastName();
 }, this),
 phoneNumber: ko.observable('00001111')
};

The fullName attribute will return the concatenated first name and last name.
Knockout will compute the value of fullName every time the values of either
first or last name change.

Dependency tracking allows us to build complex yet sophisticated models that have
a set of key attributes and the effects of changing the attributes rippled across the
view. Dependency tracking in Knockout is also dynamic. This means that we can
have the full name initially dependent on first and last name and then at runtime,
add another dependency, say, middle name.

Templating
Templating is another very useful feature of Knockout. Templates are the UI
structure that renders a UI, based on the provided elements in the template.
Templates are useful when you have a requirement of using the same UI structure
multiple times in your application. You should not be expected to cut and paste the
same structure every time you plan to use it.

The most basic example of a template is when it is used to repeatedly render a row in
a table:

<table>
 <thead>
 <tr>
 <th>Contact</th>
 <th>Phone Number</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: contacts">
 <tr>
 <td data-bind="text: name"></td>
 <td data-bind="text: phoneNumber"></td>
 </tr>
 </tbody>
</table>

Getting Started

[10]

In the preceding example, we are using the foreach binding to repeatedly render
a table row. The HTML markup within the tbody element is used as the template
to render each contact. Using templates in this way is only useful with control
structures, such as loops and conditions. It is not very useful if you plan to use the
template in multiple different locations in your application. This is where named
templates are handy.

The foreach binding is the Knockout construct for looping
over an array. We will explore foreach binding in more
details later on.

Let's rewrite our previous example to use a named template:

<table>
 <thead>
 <tr>
 <th>Contact</th>
 <th>Phone Number</th>
 </tr>
 </thead>
 <tbody data-bind="template: {name: 'contact-template', foreach:
 contacts}">
 </tbody>
</table>

<script type="text/html" id="contact-template">
 <tr>
 <td data-bind="text: name"></td>
 <td data-bind="text: phoneNumber"></td>
 </tr>
</script>

In this example, we extracted the template into a script block and gave it an ID,
contact-template. We then modified the data binding to add a binding for the
template. The template binding takes a name of the template, which is the ID of the
script block containing our template. The foreach binding is a parameter for the
template binding.

Templates in Knockout are both flexible and powerful. You can dynamically choose
a template by pointing the name attribute of the template to an observable in your
model. You can also add a post processing logic to the template by adding the
afterRender attribute. This attribute can point to a function in your view model
that takes the HTML element as a parameter.

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[11]

Knockout also supports third party templating engines such as jQuery.tmpl and
Underscore. The examples in this book use native Knockout templates. Native
templates are more than adequate for most use case.

Understanding the module pattern and
its use with Knockout
In the previous section, we explored the key features of Knockout. We learned the
basics of declarative data binding, automated UI refresh, dependency tracking,
and templating. Knockout does a really good job of simplifying web application
development by providing these features. However, it does not solve the problem
of bringing structure to your JavaScript code.

Unlike an object-oriented programming language such as Java or C#, JavaScript does
not enforce any particular structure. This is both a blessing and a curse. Blessing in
the sense that you can bring your own rules on how to structure your code. This
gives you power and flexibility. It can be a curse if you do not follow any structure as
in that case, your code base becomes too large and complex. Giving structure to your
JavaScript code becomes more and more important as you write complex JavaScript
applications. Structuring your JavaScript will make the code more maintainable and
readable. It also helps to make the code more testable.

The concept
An elegant yet simple way of giving structure to your JavaScript code is by using the
module pattern. It is important to understand the basic concepts behind the module
pattern as we will be using this pattern throughout this book. Let's get started with
the basic concept.

Central to the module pattern is the concept of a module. A module is a component
that encapsulates everything that is required to accomplish a set of related tasks. This
includes data as well as behavior. Here is an example of creating a module using the
module pattern in JavaScript:

(function () {
 /* module code */
}) ();

Getting Started

[12]

Let's deconstruct and explore what the preceding code does. Since JavaScript does
not provide a construct for creating modules or classes, we use the next best thing—
the anonymous function construct. The preceding code constructs and executes
an anonymous function. The module code inside this function maintains privacy
from the outside world. This is because creating a function creates a new scope.
The module code also maintains its state throughout the life cycle of the module.
Notice the parenthesis () at the end of our function. These parenthesis execute our
anonymous function straight after creation and creates our module.

By convention, the modules are named with uppercase first letter.

We need a way to namespace our newly created module. This will allow us to access
any public attributes that the module might expose:

var Module = (function () {
 /* module code */
})();

In the module we defined here, the scope of any attributes or function is confined to
the module. You cannot access an attribute that is declared within the module. This
is exactly what we want to do—encapsulate everything related to a set of tasks.

Public and private members
If everything is now encapsulated, how does the outside world interact with our
module? The answer is a return object with references to attributes and functions
that we want to expose to the outside world. With the public and private members
defined, the module will look similar to this:

var Module = (function () {
 /* private attribute */
 var privateAttribute;

 /* private function */
 var privateFunction = function () {};

 /* public attribute */
 var publicAttribute;

 /* public function */

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[13]

 var publicFunction = function () {};

 /* return object with reference to public attributes and
 functions */
 return {
 publicAttribute: publicAttribute,
 publicFunction: publicFunction
 };
})();

The scope of the private members, prefixed with the word private, is confined to
the module. The public members, prefixed with the word public, are exposed to
the outside world through the return object. The return object simply references
the public members. We can now access the public members as follows:

Module.publicAttribute = 'foo';
Module.publicFunction();

Initializing the module
One final element I want to add to my module is a function that initializes the
module. Some people like to call it a constructor. Strictly speaking, a constructor is a
function that creates an object. It can, however, contain initialization logic. This is not
what our function will do. Our function will only initialize the module, hence I won't
be calling it a constructor. You can choose any name for your initialization function. I
like to call it init. Let's add the init function to our module:

var Module = (function () {
 /* private attribute */
 var privateAttribute;
 /* private function */
 var privateFunction = function () {};

 /* public attribute */
 var publicAttribute;

 /* public function */
 var publicFunction = function () {};

 var init = function() {
 /* Module initialization logic*/
 };

 /* fire the init function */

Getting Started

[14]

 init();

 /* return object with reference to public attributes and
 functions */
 return {
 publicAttribute: publicAttribute,
 publicFunction: publicFunction
 };
})();

In the preceding example, we can see the init function being declared. The scope
of this function is private as it is not exposed by the return object. Declaring the
function does not mean that our function will execute when the module is created.
We execute the function by calling it after declaration:

/* execute the init function */
init();

On most occasions, we want to execute our init function after the HTML is fully
loaded by the browser and the DOM is ready. This is where jQuery comes handy.
We can use a feature provided by jQuery to execute the init function once the
HTML is fully loaded and the DOM is ready. This is done by replacing the call
init(); with:

/* execute the init function once the DOM is ready */
jQuery(init);

Passing any function as an argument to the jQuery function executes it once the
DOM is ready. In the preceding code, we pass the init function as an argument
to the jQuery function.

The dollar sign, $, is a short hand for jQuery. jQuery() is
the same as $().

Using the module with view model
Now that we have learned the basic concepts behind the module pattern, let's declare
the contact view model we used earlier as a module:

var ContactViewModel = (function () {
 var contact = {
 id: ko.observable(1),

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[15]

 name: ko.observable('John'),
 phoneNumber: ko.observable(00001111)
 };

 Var retrieveContact = function (){
 /* logic to retrieve contact form server side data repository
 */
 };

 Var updateContact = function (newPhoneNumber){
 /* logic to update the contact with new phone number */
 };

 var init = function() {
 /* Module initialization logic*/
 };

 /* execute the init function once the DOM is ready */
 $(init);

 return {
 contact: contact,
 updateContact: updateContact
 };
})();

Our preceding module is referenced by ContactViewModel. It has a contact model
and functions to retrieve and update the contact. It also has an initialization function,
which will be executed once the DOM is ready. The module exposes the contact
model and the updateContact function as public members to the outside world.
The retrieve contact function remains private to the module.

Building the address book application
Now that we have a basic understanding of the design patterns we will be using and
the key features of Knockout, let's dive into building our first application. Our first
application is an address book, which is used to store and display contact details of
your family and friends. The application lets you add a contact's name and phone
number. The contacts are displayed in a table. This is a simple application that
highlights some of the basic features that Knockout has to offer.

Getting Started

[16]

We will take an iterative approach in building this and all the other example
applications in this book. The idea behind an iterative approach is to build the
application in small portions. Each portion will deliver a subset of the features.
We will continue to evolve the application until the full application is implemented.

A word on the development environment
You can use any Integrated Development Environment (IDE) of your choice or simply
use a text editor like notepad or vi to develop the application. I recommend using an
IDE as it increases developer productivity by many folds. I use an open source IDE
called eclipse. You can find out more about eclipse at http://eclipse.org/.

Web applications are typically hosted on a web server. You can choose a web server
that you are familiar with to host the example applications in this book. The two web
server that I recommend are:

•	 Apache HTTP Server: This is the most popular web server on the internet.
You can find out more about Apache at http://httpd.apache.org/.

•	 Node.js HTTP Server: Node.js has gained popularity in recent times.
Find out more about Node.js at http://nodejs.org/.

You do not require a web server for developing a pure client-side web application
using only HTML, JavaScript, and CSS. You can simply view the HTML files by
opening them in a browser from your file system. Most examples in this book
do not require a web server for development unless you are planning to host the
applications or the application requires a server-side component such as a RESTful
API endpoint.

Downloading the libraries
First, we need to download the libraries that we require. The two libraries we require
are Knockout and jQuery.

Download Knockout from the Knockout's website at http://knockoutjs.com/.
This should be a single JavaScript file.

Next, download jQuery from the jQuery's website at http://jquery.com/. This
should also be a single JavaScript file.

www.ebook3000.com

http://eclipse.org/
http://httpd.apache.org/
http://nodejs.org/
http://knockoutjs.com/
http://jquery.com/
http://www.ebook3000.org

Chapter 1

[17]

Creating the skeleton
First, we will create the skeleton for our address book application. We will use this
skeleton for all the example applications in this book.

A skeleton is a high-level structure that compiles but does not provide
any application features. The skeleton is iteratively evolved into a
working application. The skeleton forms a template that provides the
basic structure, which can be then used in other applications.

Let's create the folder structure for development by following these steps:

1.	 Create the AddressBook folder. This is the main folder that houses our
address book application.

2.	 Add a WebContent folder under the AddressBook folder. This folder holds
the content that gets published to the web.

3.	 Add a javascript folder under the WebContent folder. As the folder name
suggests, this folder will contain all our JavaScript files.

Now that we have the folder structure in place, let's add some files to our folders by
following these steps:

1.	 Add the Knockout library that you downloaded to the javascript folder.
2.	 Add the JQuery library that you downloaded to the javascript folder.
3.	 Create the addressbook.js file under the javascript folder.
4.	 Create the addressbook.html file under the WebContent folder.

Following these steps should result a folder structure that looks similar to this:

Getting Started

[18]

Now that we have created the folder structure, we can add code to our HTML and
JavaScript files. Open the addressbook.html file and add the following HTML code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title><!-- add title --></title>
 <!-- the jquery library -->
 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <!-- the knockout library -->
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <!-- module for our application -->
 <script type="text/javascript"
 src="javascript/addressbook.js"></script>
 </head>
 <body>
 <!-- add body content -->
 </body>
</html>

The file in its current state does not do much. It references Knockout and jQuery
libraries from our javascript folder. It also references our addressbook.js
application module.

Any application modules, such as addressbook.js, should always
be referenced after the Knockout and jQuery libraries. This is because
the application module will use the ko and $ objects defined by these
libraries. Make sure that the application module is referenced after these
libraries if you get an error, stating that either ko or $ is undefined.

Open the addressbook.js file and add the following code; this code defines our
empty AddressBook module:

/* Module for Address Book application */
var AddressBook = function () {

 /* add members here */

 var init = function () {

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[19]

 /* add code to initialize this module */
 };

 /* execute the init function when the DOM is ready */
 $(init);

 return {
 /* add members that will be exposed publicly */
 };
}();

View the addressbook.html file in your browser. The browser should give you a
black page, which is not very exciting, but what we have done is created the skeleton
for our application. Next, we will start building the application features.

Adding the application features
Our address book application captures, stores, and displays contacts details of our
family and friends.

Capturing and storing contacts
Let's develop the functionality to capture and store the contacts. The two pieces of
information we want to capture and store is the contact name and phone number.
This is defined as a model in our AddressBook module. To do this, open the
addressbook.js file and add the following code:

/* add members here */
 var contact = {
 name: ko.observable(),
 phoneNumber: ko.observable()
};

The code defines a contact object with two attributes—name and phoneNumber. The
attributes are Knockout observables. We will bind the contact object to our HTML
input fields to capture user input. Before we add the HTML fields and the binding
construct, we need to expose the contact object publicly so that it can be accessed
outside our module, for example, by our HTML binding construct. This is done
by adding the contact object to the return statement of our module. Let's add the
contact object to the return statement. Here is what the code should be:

return {
 /* add members that will be exposed publicly */
 contact: contact
};

Getting Started

[20]

Let's now add the HTML input fields to our view and bind them to our view model.
Open addressbook.html and the following code in the body of the HTML; take
this opportunity to also change the title of the HTML page to something more
appropriate like Knockout: Address Book Example:

<p>Name <input type="text" data-bind="value: AddressBook.contact.name"
/></p>

<p>Phone Number <input type="text" data-bind="value: AddressBook.
contact.phoneNumber" /></p>

In the preceding code, we have declared two HTML input fields, one for the contact
name and the other for the contact phone number. We also added the binding
construct by using data-bind. Notice the way we accessed the model. For example,
to access the name attribute of the contact, we used the name of our module,
AddressBook; followed by the name of our model object, contact; followed by the
name of the attribute, name.

The capturing of user input is not complete without a button to indicate that the user
has entered a new contact. Add a button to your HTML by inserting the following
line after the input text fields:

<p><button data-bind="click:
AddressBook.addContact">Add</button></p>

The preceding code will add a button to your view with the Add label. It also adds
a click binding. As a result of the click binding, an addContact function will
get executed when the user clicks on the Add button. We have not yet defined the
addContact method. Let's do this by adding the following code to our view model:

var addContact = function () {
console.log("Adding new contact with name: " + contact.name() +"
and phone number: " + contact.phoneNumber());
};

The code displays the values of contact name and phone number from the contact
object in the browser console. Notice how we access the value of the name and
phoneNumber observables. The addContact method needs to be publicly accessible
as it is referenced in our view. Let's do this by adding it to the return statement of
our module. Our return statement should now look similar to this:

return {
 /* add members that will be exposed publicly */
 contact: contact,
 addContact: addContact
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[21]

We are missing one very important step before we can run what we have developed
so far. That step is to activate Knockout. Add the following line of code to the init
function in our module:

var init = function () {
 /* add code to initialize this module */
 ko.applyBindings(AddressBook);
};

Here, the applyBindings function takes view model as the parameter and applies
the bindings declared in our view to the model and behavior, defined in our view
model. We pass the view model to the applyBindings function by passing our
AddressBook module.

Now that our application is capturing the contact details, let's develop the
functionality to store the contacts. The contacts will be stored using an array. We
cannot use the normal JavaScript array as we will need to bind the array to our
view in order to display the contacts. Knockout provides a way to construct an
array of observables. To make an array of contacts, add the following code to our
AddressModule below the contact:

var contacts = ko.observableArray();

The observableArray function returns an object, which can track the objects it
holds. This means that any subscriber will be notified when an object is added
or removed from it.

The members of the objects that observableArray hold,
do not become observables. This, however, can be achieved
through additional code.

Now that we have declared our contacts array, let's add the contact to our contacts
array. Modify the addContact function and add the following line of code to push
a contact to the contacts array. Your addContact function should look similar to this:

var addContact = function () {
console.log("Adding new contact with name: " + contact.name() +" and
phone number: " + contact.phoneNumber());

//add the contact to the contacts array
contacts.push({name: contact.name(), phoneNumber: contact.
phoneNumber()});
};

Getting Started

[22]

Knockout observableArray provides useful methods to interact with the array.
We have used a method push, which insets a new item at the end of the array. We
pass a new contact object to the push method by creating an object with name and
phone number as attributes. The value of the attributes come from our name and
phoneNumber observables in the contact object.

You may have noticed that the input fields for name and phone numbers retain
their values after the add button is clicked and the object is added to the contacts
array. This is not for user experience as the user has to clear the inputs before a new
contact can be added. To clear the input fields, add the following method to your
AddressBook module:

var clearContact = function () {
 contact.name(null);
 contact.phoneNumber(null);
};

Call this method from your addContact method after pushing the new contact to
the contacts array. The clearContact method clears the values of the name and
phoneNumber observable by setting them to null. The two-way data binding takes
care of updating the HTML input fields. You do not have to add the clearContact
method to the return statement of the module as this a private member, which is not
required by any other external module or view.

So far, we have:

•	 Developed our application skeleton
•	 Created our view with two HTML input text fields for capturing contact

name and phone number, and a button to allow user to add a contact
•	 Created our module with a model for capturing the user input and storing

contacts in an array
•	 Added functionality to add the contact to the contacts array and clear the

input fields
•	 Added declarative binding to our view to bind the HTML input fields

to the contact object and the Add button to the addContact function in
our view model

•	 Activated Knockout by calling the applyBindings function in our
init function

Let's run our application and see what happens. Open addressbook.html in
a browser. Don't forget to open the console window of the browser. Try adding
a contact.

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[23]

You can open the console window in Chrome by hitting the
F12 key and selecting Console in the menu bar.

The application should look similar to this:

Displaying contacts
The next application feature we will add to our address book application is
displaying the list of contacts in a table. We will use the HTML table element
with foreach binding. Let's get straight into it.

Open the addressbook.html file and add the following code under the input
HTML fields:

<table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Phone Number</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: AddressBook.contacts">
 <tr>
 <td data-bind="text: name"></td>
 <td data-bind="text: phoneNumber"></td>
 </tr>
 </tbody>
</table>

Getting Started

[24]

In the preceding code, we are using the foreach binding to repeatedly render a table
row of contacts. The foreach binding provides a loop construct to display HTML
elements based on a template. The HTML markup within the tbody element is used
as the template to render each contact.

The data binding declaration in the preceding code refers to the contacts array in
our module. We have not yet declared the contacts array to be publicly accessible.
Make the contacts array publicly accessible by adding it to the return statement of
your module. The return statement of AddressBook module should look similar
to this:

return {
 /* add members that will be exposed publicly */
 contact: contact,
 contacts: contacts,
 addContact: addContact
};

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

Run the application by opening addressbook.html in a browser. Try adding some
contacts. You should now be able to see the newly added contacts displayed in the
table. The application should look similar to this:

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[25]

Adding style to your application with
Bootstrap
We have added the application features to our address book application, but the
application does not look very visually appealing. Let's make it a bit more attractive
by adding Bootstrap to our address book application.

Bootstrap is a popular HTML, CSS, and JavaScript framework for
developing web applications. It provides out-of-the-box styles for
HTML elements such as labels, buttons, and tables. Find out more
about Bootstrap at http://getbootstrap.com/.

Follow these steps to download and set up Bootstrap:

1.	 Download Bootstrap from the Bootstrap website.
2.	 Create a bootstrap folder under WebContent.
3.	 Extract the contents of the download package in the bootstrap folder

created in the previous step.

Your folder structure should look similar to this:

http://getbootstrap.com/

Getting Started

[26]

You are now ready to use Bootstrap. Include the Bootstrap theme in your application
by adding the following line to your HTML inside the head element. Your head
element should look similar to this:

<head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title>Knockout : Address Book Example</title>
 <link rel="stylesheet" href="bootstrap/css/bootstrap.min.css">
 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <script type="text/javascript"
 src="javascript/addressbook.js"></script>
</head>

You are free to make your own layout and style choices if you are familiar with
Bootstrap. If not, you can follow these steps and make the changes to add the
Bootstrap styling to your application:

1.	 Wrap the contents of the HTML body in a div element and give it a class,
container.

2.	 Add a heading using the h1 element just after the body and wrap it in a div
element. Give the div element a page-header class like this:
<div class="page-header"> <h1>My Address Book</h1></div>

3.	 Wrap the HTML input fields and the button in a p element. Remove any p
elements that the input fields were previously wrapped in.

4.	 Add btn and btn-primary classes to the Add button, like this:
<button class="btn btn-primary" data-bind="click:
AddressBook.addContact">Add</button>

5.	 Add the table class to the contacts table, like this:
<table class="table">

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[27]

After making these modifications, your address book application should look,
like this:

You have successfully completed your first Knockout application! Let's look at some
useful resources and summarize what we learned.

Resources
Knockout is a popular open source JavaScript library supported by a vibrant
community. The following is a list of some key resources to help you with
your journey:

•	 Knockout Home: Download the Knockout library and access document from
Knockout home at http://knockoutjs.com/

•	 Learn Knockout: Access a set of interactive tutorials to help you quickly get
you up and running at http://learn.knockoutjs.com/

•	 Stack Overflow: Access Stack Overflow questions and answer site for
Knockout at http://stackoverflow.com/tags/knockout.js/

•	 Knockout GitHub: Access to source code on GitHub at https://github.
com/knockout/knockout

•	 Google Group: Access Google group for Knockout at https://groups.
google.com/forum/#!forum/knockoutjs

http://knockoutjs.com/
http://learn.knockoutjs.com/
http://stackoverflow.com/tags/knockout.js/
https://github.com/knockout/knockout
https://github.com/knockout/knockout
https://groups.google.com/forum/#!forum/knockoutjs
https://groups.google.com/forum/#!forum/knockoutjs

Getting Started

[28]

Summary
In the first half of this chapter, we covered some basic concepts and patterns that
helped us understand how Knockout works. After a brief overview of Knockout,
we dived into the MVVM pattern. We explored the concept behind this pattern and
saw how it helps in reducing complexities of web application development. We then
explored the key features of Knockout that included declarative bindings, automatic
UI refresh, dependency tracking, and templating. We looked at the module pattern
and learned how we can use it to give structure to our Knockout application.

In the second half of this chapter, we built our first Knockout application. The
application was an address book, which was used to store and display contact details
of your family and friends. The application let you add a contact name and phone
number. The contacts were displayed in a table.

This chapter provided the necessary concepts, pattern, and skeleton code to start
developing more complex applications, which follow in the next chapters.

www.ebook3000.com

http://www.ebook3000.org

[29]

Creating a To-do List
Application

In the previous chapter, we built a simple address book application and introduced
the skeleton we will be using in this book to develop more complex applications.
This chapter will walk you through building a more complex application, a to-do list.
This application will build and enhance the concepts learned in the previous chapter.

In this chapter, you will learn how to:

•	 Work with lists using observable arrays
•	 Bind input elements such as text fields and dropdown to our model
•	 Use the foreach flow control with templating to render a table
•	 Control text using the text data binding
•	 Control appearance using the css data binding
•	 Use visible binding to show or hide components
•	 Sort the list using the sort method of the observable arrays
•	 Filter the list using the arrayFilter method of the ko.utils package
•	 Use computed observables to display dynamically changing data

Creating a To-do List Application

[30]

The to-do list application allows the user to create and manage tasks. The application
has the following features:

•	 Add and view tasks
•	 Delete a task
•	 Complete a task
•	 Set a priority for my tasks
•	 View the tasks sorted by priority and name
•	 View the number of total and completed tasks

As mentioned in the previous chapter, we will be taking an iterative approach to
building the applications in this book. We will iteratively develop each feature listed
earlier until the application evolves into a fully featured one. Each feature will have
a corresponding checkpoint folder in the accompanying code. The folders are named
as chapter2\checkpoint1, chapter2\checkpoint2, and so on.

Creating the skeleton
We need to create the skeleton before we can start building the application features.
Follow the steps given to create the skeleton. You should be familiar with these steps
from the previous chapter.

Create the folder structure for development by following these steps.

1.	 Create the ToDoList folder. This is the main folder that houses our to-do
list application.

2.	 Add a WebContent folder under the ToDoList folder. This folder holds the
content that gets published to the web.

3.	 Add a javascript folder under the WebContent folder. As the folder name
suggests, this folder will contain all our JavaScript files.

4.	 Add bootstrap folder under the WebContent folder. This folder will contain
the Bootstrap files.

Now that we have the folder structure in place, let's add the files to our folders by
following these steps:

1.	 Add the Knockout library to the javascript folder.
2.	 Add the JQuery library to the javascript folder.

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[31]

3.	 Add Bootstrap to the bootstrap folder.
4.	 Create the file todolist.js under the javascript folder.
5.	 Create the todolist.html file under the WebContent folder.

Following these preceding steps should result in a folder structure that looks similar
to this:

Now that we have created the folder structure, we can add code to our HTML and
JavaScript files. Open the todolist.html file and add the following HTML code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title>Knockout : ToDo List Example</title>

 <link rel="stylesheet" href="bootstrap/css/bootstrap.min.css">

 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <script type="text/javascript"
 src="javascript/todolist.js"></script>

 </head>
 <body>
 <div class="container">
 <div class="page-header">

Creating a To-do List Application

[32]

 <h1>My ToDo List</h1>
 </div>
 </div>
 </body>
</html>

The preceding code references the required libraries and displays a page header with
the name of our application—My ToDo List. Open the todolist.js file and add the
following code. This code defines our empty ToDoList module:

/* Module for ToDo List application */
var ToDoList = function () {

 /* add members here */

 var init = function () {
 /* add code to initialize this module */
 };

 /* execute the init function when the DOM is ready */
 $(init);

 return {
 /* add members that will be exposed publicly */
 };
}();

View the application in the browser. It should give you a page with the page header.
We are now ready to create the functionality to add and view tasks.

Let's get started and build the first feature of our to-do list application.

Adding and viewing tasks
The first feature of our to-do application is to give the users the ability to create
and view tasks. The information we need to capture about a task is the name and
description. We need to add this as a model to our ToDoList module. Add the task
model. It should look similar to this:

/* the task */
var task = {
 name: ko.observable(),
 description: ko.observable()
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[33]

We need to capture the tasks in an array. Add the tasks array to the module. It
should look similar to this:

/* array of tasks */
var tasks = ko.observableArray();

Observable array is an observable, which holds a JavaScript
array object as the underlying data structure. You can retrieve
the JavaScript array object by invoking the observable array as
a function, similar to normal observables.

Now that we have defined our model, let's create an add task method in our module.
This method should create a new task, based on the name and description from the
task object, and add it to our tasks array. We will call our addTask method. Create
the addTask method and add the following line of code:

tasks.push({name: task.name(), description: task.description()});

The preceding line of code will create a new task and add it to the end of our tasks
array. Don't forget to also add code to display the new task on the console. This will
help us debug if our code is not working.

You can use the unshift method of the observable array to
insert an item to the beginning of the array.

With the model and behavior method defined, we need to expose them publicly so
that they can be used from our view. To do this, add these lines of code to the return
statement of the module. Your return statement should look similar to this:

return {
 /* add members that will be exposed publicly */
 tasks: tasks,
 task: task,
 addTask: addTask
};

One last thing before we start on the view is to activate Knockout. Call the
applyBindings method of Knockout in the init method of our module:

var init = function () {
 /* add code to initialize this module */
 ko.applyBindings(ToDoList);
};

Creating a To-do List Application

[34]

The init method gets executed when the DOM is ready. This is because we pass the
init method to jQuery with the $(init); call.

Now that our module is now ready, let's start on our view. The first step is to capture
the user input. We do this by using two HTML inputs: one for the name of the task
and another for the description. The HTML inputs are bound to our model by the
data-bind construct. We also add a button with the add label. The click of the
button is bound to our addTask method. The HTML should look similar to this:

<div class="row">
 <div class="col-md-12">
 Name <input type="text" data-bind="value:
 ToDoList.task.name" />
 Description <input type="text" data-bind="value:
 ToDoList.task.description" />
 <button class="btn btn-primary" data-bind="click:
 ToDoList.addTask">Add</button>
 </div>
</div>

Try running the application in your browser. You should be able to add a task and
see the newly created task in the console. Add code to clear the inputs once the
new task is added to the tasks array. This is done by clearing the values of name
and description observables from the task object. Do this by creating a clearTask
method and calling it from the addTask method after the new task is pushed to the
tasks array. Your clearTask method should look similar to this:

/* method to clear the task */
var clearTask = function () {
 task.name(null);
 task.description(null);
};

Let's now start on the second part of this feature, that is, to view the list of task. We
will use the HTML table and foreach binding. Add the following code to the view
after the code to capture the inputs and the add button:

<table class="table">
 <thead>
 <tr>
 <th>Name</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: ToDoList.tasks">
 <tr>

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[35]

 <td data-bind="text: name"></td>
 <td data-bind="text: description"></td>
 </tr>
 </tbody>
</table>

We have implemented the first feature of our to-do list application. Open the
application in the browser and try adding some tasks. It should look similar to this:

We have reached our first checkpoint. The code for this checkpoint can be found at
chapter2\checkpoint1.

Deleting a task
The second feature of our to-do application is to give the users the ability to delete a
task. We will do this by adding an Actions column to our tasks table and providing
a Delete button for each task in the Actions column. The task will be removed from
the tasks array when the Delete button for that task is clicked upon.

Creating a To-do List Application

[36]

Add the Actions column to the tasks table by adding the column header to the
thead element:

<th>Actions</th>

Add this code after <th>Description</th>. Now add the column body with a
button for deleting the task. The new column goes after the Description column.
It should look similar to the following code:

<td><button class="btn btn-danger" data-bind="click:
ToDoList.deleteTask">Delete</button></td>

The preceding code renders a button with the label, Delete, for each of the tasks in
our tasks table. The click of the buttons are bound to the deleteTask method in our
ToDoList module.

Let's now add the deleteTask method to our module. This method takes a task as
a parameter and removes it from the tasks list. We will use the remove method of
the tasks observable array to remove the specified task. An important point to note
is that Knockout automatically passes the current task as the first parameter to our
deleteTask method. Your deleteTask method should look similar to this:

/* method to delete task to tasks array */
var deleteTask = function (task) {
 console.log("Deleting task with name: " + task.name);
 //remove the task from the tasks array
 tasks.remove(task);
};

Note how we accessed the name attribute of the task when we displayed the name of
the task in the console. Our tasks in the tasks observable array are not observables,
so we cannot access the name attribute like task.name().

Don't forget to add the deleteTask method to the return statement of the
ToDoList module. At this stage, your return statement of the module should
look similar to this:

return {
 /* add members that will be exposed publicly */
 tasks: tasks,
 task: task,
 addTask: addTask,
 deleteTask: deleteTask
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[37]

We have implemented the second feature of our to-do list application that gives our
users the ability to delete a task. Open the application in the browser and try adding
some tasks and then deleting them. It should look similar to this:

We have reached our second checkpoint. The code for this checkpoint can be found
at chapter2\checkpoint2.

Completing a task
The third feature of our to-do application is to give the users the ability to complete
a task. We will do this by adding a Complete button for each task in the Actions
column we created while implementing the delete task feature. The task will be
marked as complete by highlighting the row of the tasks that are complete. The
Complete button will not appear for the tasks that have been completed.

Let's start by adding a new attribute to the task in our tasks array that tracks
whether the task is complete or not. We will call this attribute, status. The status
will be set to new for the newly created tasks and complete for the completed tasks.
Add the status attribute to the task we create and push to the tasks array. The code
should look similar to this:

//add the task to the tasks array
tasks.push({
 name: task.name(),
 description: task.description(),
 status: 'new'
});

Creating a To-do List Application

[38]

Now let's add a button to our Actions column to change the status of a task to
complete. This button goes above our Delete button. This click of the button
binds to completeTask method in our module:

<button class="btn btn-success" data-bind="click:
ToDoList.completeTask">Complete</button>

Add the completeTask method to the module. Don't forget to add the method to
the return statement of the module. Knockout will automatically pass the task as
the first parameter to our completeTask method for which the Complete button is
clicked upon. The code should look similar to this:

/* method to complete a task */
var completeTask = function (task) {
 console.log("Completing task with name: " + task.name);
 //set status of task to complete
 task.status = 'complete';
};

Try running the application. You should now see the button with label Complete in
the Actions column alongside the Delete button. Try adding and completing some
tasks. You should be able to see the status of the tasks changing in the console logs.

The feature in its current state is not very useful to the user as they have no way of
knowing the status of the tasks unless, of course, if they open the console window.
Let's solve this by highlighting the row of completed task. To achieve this, we
will use the css data binding on the tasks table row. We will also need to convert
our status attribute to an observable. We need to do this as we want our view to
automatically update when we change the status of a task. To do this, modify the
definition of status attribute to make it an observable like this:

//add the task to the tasks array
tasks.push({
 name: task.name(),
 description: task.description(),
 status: ko.observable('new')
});

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[39]

Modify the completeTask method to use the status observable. The code that sets
the status of the task in the completeTask method should now look similar to this:

//set status of task to complete
task.status('complete');

We are now ready to use the css data binding to highlight the row of completed
tasks. Add the css data bind to the table row like this:

<tr data-bind="css: { success: status() == 'complete' }">

In the preceding code, success is the name of the css class to apply to the table
row, followed by the condition that specifies when the css class should be applied.
Knockout will apply the css class success if the status of the task is Complete. Try
running the application after making the preceding changes. Add some tasks and try
completing them. You should now see the completed tasks highlighted.

One last requirement before we consider this feature complete is to hide the
Complete button for the tasks that are complete. It does not make sense to complete
a task that is already complete. To achieve this, we will use the visible data binding
on the Complete button. The syntax is similar to the css data binding we used on the
table row. Modify the Complete button to add the visible binding. Your code for the
Complete button should look similar to this:

<button class="btn btn-success" data-bind="visible: status() !=
'complete', click: ToDoList.completeTask">Complete</button>

Note that we have multiple bindings on the complete button—the visible binding,
which is used to only show the button if the status of the task is not complete, and a
click binding, which binds the click of the button to our completeTask method.

You can restrict the options for task status by using an object instead
of using strings, for example:

var states = {
 NEW: 'new',
 COMPLETE: 'complete'
};

This will make the code more readable and maintainable.

Creating a To-do List Application

[40]

We have implemented the third feature of our to-do list application that gives our
users the ability to complete a task. Open the application in the browser, and try
adding some tasks and then completing them. It should look similar to the following:

We have reached our third checkpoint. The code for this checkpoint can be found at
chapter2\checkpoint3.

Setting priority for a task
The fourth feature of our to-do application is to give the users the ability to set
priority for tasks. We will do this by adding a dropdown with options for priority.
The user will be able to select the appropriate priority when creating a task. The
priority of the task will be displayed in a new column in our tasks table. The options
for the priority will be 1, 2, and 3.

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[41]

Let's start by adding the priority attribute to our task model. Open the ToDoList
module in the todolist.js file and add the attribute to capture the priority of the
task. This attribute must be an observable for two-way data binding to work. Your
task model should look similar to this:

/* the task */
var task = {
 name: ko.observable(),
 description: ko.observable(),
 priority: ko.observable()
 };

We also need to add this attribute to the task object we create and push to the tasks
array in our addTask method. The priority attribute in the task object we create for
the tasks array does not need to be an observable unless we have a requirement of
dynamically updating the view if the priority of the task changes:

//add the task to the tasks array
tasks.push({
 name: task.name(),
 description: task.description(),
 priority: task.priority(),
 status: ko.observable('new')
 });

We also update our clearTask method to include the newly created attribute to
capture priority. Give the priority a value of "1" as the default priority:

/* method to clear the task */
var clearTask = function () {
 task.name(null);
 task.description(null);
 task.priority("1");
};

Now that we have modified our module, let's modify the view to capture the task
priority. We will use the HTML select element to add the dropdown for our priority
options. The code for the priority dropdown looks similar to this:

Priority <select data-bind="value: ToDoList.task.priority">
 <option value="1">1</option>
 <option value="2">2</option>
 <option value="3">3</option>
 </select>

Creating a To-do List Application

[42]

We bind the value of this select element to the priority attribute in our task
model by using the value data binding, similar to the other input elements.

The next step is to modify the tasks table to add a column for task priority. Add a
header column to the tasks table and give it a label. The table header element should
look similar to this:

<th>Priority</th>

Add a column to the tasks table to display the task priority. This column should use
the text data binding to display the task priority. It should look similar to this:

<td data-bind="text: priority"></td>

We have implemented the fourth feature of our to-do list application that gives our
users the ability to set the priority for tasks. Open the application in the browser and
try adding some tasks with different priorities. It should look similar to the following:

We have reached our fourth checkpoint. The code for this checkpoint can be found at
chapter2\checkpoint4.

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[43]

Sorting tasks by priority and name
The fifth feature of our to-do application is to give users the ability to sort our list of
tasks by priority and name. We will do this by adding the buttons, which will sort
the tasks when clicked upon. This feature will demonstrate the built-in sort function
of Knockout.

We will use the sort function of the observable array to sort our tasks. The following
is the simplest example of using the sort function:

observableArray.sort();

This will sort observableArray alphabetically. This simple sort function is ideal
for arrays of strings or numbers, but for an array of objects, such as our tasks array,
we need to tell the sort function how it should compare objects. To do this, we pass
a function to the sort function that accepts two objects and returns either a 0, 1, or
-1. It should return a 0 if the two objects are equal, 1 if the second object is smaller,
and -1 if the first object is smaller. Here is an example which sorts an array of person
object by their firstName:

persons.sort(
 function(left, right) {
 return left.firstName == right.firstName ?
 0
 :
 (left.firstName < right.firstName ? -1 : 1)
 }
);

Let's add the sort feature to our to-do list application by first adding methods to
our ToDoList module that will sort our tasks array by priority and name. We will
need two methods—a method to sort by priority and another to sort by name. To do
this, open the ToDoList module in the todolist.js file and add a method called
sortByPriority. In the body of this method, try sorting the tasks array by priority.
This should be similar to the preceding example, which sorts an array of persons by
their firstName. Your sortByPriority method should look similar to this:

/* method to sort the tasks by priority */
var sortByPriority = function () {
console.log("Sorting tasks by priority");
 tasks.sort(
 function(left, right) {
 return left.priority == right.priority ?
 0

Creating a To-do List Application

[44]

 :
 (left.priority < right.priority ? -1 : 1)
 });
};

The preceding code uses the sort method of the tasks observable array to sort tasks
by priority. It does this by passing a function to the sort method, which compares
two tasks. Add the sortByPriority method to the return statement of the
ToDoList module so that we can use this method from our view.

Now that we have created the method to sort our tasks by priority in our module,
let's work on our view. Add a button in a new row under the row for tasks input
elements. Bind the click of the button to the sortByPriority method of the
ToDoList module. Also add a label Sort by. The code should look similar to this:

<div class="row">
 <div class="col-md-12">
 Sort by
 <div class="btn-group" role="group">
 <button type="button" class="btn btn-default"
 data-bind="click: ToDoList.sortByPriority">priority</button>
 </div>
 </div>
</div>

We used a button group as we will add another button later on to sort the tasks
by name. Open the application in the browser and add some tasks with different
priorities. Try sorting the tasks.

Now that we have implemented sorting our tasks by priority, we can add the feature
to sort the tasks by name using the same approach. Implement a method sortByName
in the ToDoList module to sort the tasks by name. Add this method to the return
statement of the module. The method should look similar to this:

/* method to sort the tasks by name */
var sortByName = function () {
console.log("Sorting tasks by name");
 tasks.sort(
 function(left, right) {
 return left.name == right.name ? 0 : (left.name < right.name
 ? -1 : 1)
 });
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[45]

Add a button to the view that will allow the users to sort the tasks by name. You
can add this button to the button group we created earlier. The button should look
similar to this:

<button type="button" class="btn btn-default" data-bind="click:
ToDoList.sortByName">name</button>

We have implemented the fifth feature of our to-do list application, which gives our
users the ability to sort tasks by task priority and name. Open the application in the
browser and add some tasks with different priorities and names. Try sorting the
tasks. It should look similar to this:

We have reached our fifth checkpoint. The code for this checkpoint can be found at
chapter2\checkpoint5.

Creating a To-do List Application

[46]

Viewing the number of total and
completed tasks
The sixth feature of our to-do application is to give the users the ability to view the
number of total and completed tasks. We will do this by displaying this information
after the tasks table. We will let the user know if no tasks exist in the task list,
otherwise, we will display the number of total and competed tasks. This feature will
demonstrate the built-in array methods, utility methods provided by Knockout, and
computed observables.

Let's get started by displaying the total number of tasks in our tasks list. We can use
the length property of the observable array to get the number of items it holds. We
can access the length property of our tasks array like this:

ToDoList.tasks().length;

We can display the total number of tasks in our view by using the preceding code. To
do this, add a row below the tasks table. Then, use the text data binding with a span
element to display the total number of tasks. Your code should look similar to this:

<div class="row">
 <div class="col-md-12">

 Total:

 </div>
</div>

We want to display the number of tasks only if the tasks exist in our tasks list,
otherwise, we want to display a message letting the users know that no tasks
currently exist in the list. Let's do this by using the visible binding. Modify the
preceding code to add a span element with a visible binding. The visible binding
should only display the element if the length of the tasks array is greater than zero.

Add another span with a visible binding to display the element only if the tasks
array is empty. Add a message to this element to let the user know that no tasks exist
in the tasks array. Your code should look similar to this:

<div class="row">
 <div class="col-md-12">
 0">
 Total: <span data-bind="text: ToDoList.tasks().
 length">

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[47]

 No tasks in my list

 </div>
</div>

Open the application in a browser. You should see the message, No tasks in my list.
Try adding some tasks. The message should now say what the total number of tasks
in your list is.

The first part of this feature was not that hard to implement. It did not require any
changes to our ToDoList module. In the second part of this feature, we will display
the number of completed tasks. For this we will use computed observable and a
method from the Knockout utilities to filter our tasks array.

Knockout provides a number of useful methods in ko.utils
package. These methods range from manipulating arrays to
handling JSON data.

Let's first create a skeleton for our computed observable that will return the number
of completed tasks. Call the computed observable, numOfCompletedTasks. This
computed observable will depend on the tasks observable array and its value will
be updated by Knockout every time the tasks observable array is updated. The
skeleton of numOfCompletedTasks should look similar to this:

/* observable to compute number of completed tasks */
var numOfCompletedTasks = ko.computed(function() {
 //add code to return number of completed tasks
});

You can loop through the tasks array and count the number of completed tasks or
use the arrayFilter method of the ko.utils package. The arrayFilter method
returns an array, which contains items specified by a matching criteria. The criteria
is passing as a function to arrayFilter. The criteria in our case is that the status of
the task should be 'complete'. Let's write code to get an array of completed tasks by
using the arrayFilter method of ko.utils. Once you have the array of completed
tasks, its length property can be returned by the numOfCompletedTasks computed
observable. Your numOfCompletedTasks computed observable should look similar
to this:

/* observable to compute number of completed tasks */
var numOfCompletedTasks = ko.computed(function() {
 var completedTasks = ko.utils.arrayFilter(tasks(),
 function(task) {

Creating a To-do List Application

[48]

 return task.status() == 'complete';
 });
 return completedTasks.length;
});

Add the numOfCompletedTasks computed observable to the return statement of
the module so that it can be used by our view. Next, we need to update our view to
use the newly created computed observable. Update the view to use the computed
observable with a text binding, similar to the binding to display the total number of
tasks. To do this, add this line inside the span element, which gets displayed when
the tasks array has tasks. The code should look similar to this:

 0">
Total: <span data-bind="text:
ToDoList.tasks().length">

Completed: <span data-bind="text: ToDoList.
numOfCompletedTasks()">

We have implemented the sixth feature of our to-do list application that gives our
users the ability to view the number of total and completed tasks. Open the application
in the browser and add some tasks. Try completing some tasks and view the number
of total and completed tasks change. In the browser, it should look similar to this:

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[49]

We have reached our fifth checkpoint. The code for this checkpoint can be found at
chapter2\checkpoint6.

Try using ko.pureComputed instead of ko.computed for
numOfCompletedTasks. It is better to use ko.pureComputed
if the computed observable simply returns a value and does not
change the state of any object. The ko.pureComputed function
prevents memory leaks and reduces computation overheads.

Summary
In this chapter, we built a to-do list application. The application allowed the user to
create and manage tasks. The features included adding, viewing, deleting, sorting,
and completing tasks. It also included features to set the priority on tasks and
viewing the number of total and completed tasks.

We started with building a feature for adding and viewing tasks. This feature built
on the concepts learned in the previous chapter. The features demonstrated the use
of value and click binding to bind input components such as text fields and buttons.
It also demonstrated the use of foreach binding to render the tasks in a table.

The second feature we built was to delete a task from the tasks list. This feature
enhanced the concepts of working with observable arrays and demonstrated
how to remove an item from an array. The third feature was to complete a task. In
building this feature, we learned how to modify an item in the observable array.
We also learned the use of css binding to control the appearance of components and
visible binding to show or hide components. The fourth feature was to set a priority
of a task. This feature reinforced the concepts of value and text bindings. The fifth
feature was to sort our tasks list by priority and name. In building this feature, we
learned the use of the sort method provided by the observable array.

The last feature we built was to display the number of total and completed tasks. The
two most important concepts we learned were the use of computed observable and
ko.utils package.

In the next chapter, we will learn how to develop a rich and dynamic form to capture
user information.

www.ebook3000.com

http://www.ebook3000.org

[51]

Creating an Online Customer
Registration Form

Forms are used to capture and submit user input in most web-based applications. One
common example is a customer registration form. This chapter will walk you through
building a dynamic customer registration form application. You will learn the controls
Knockout provides to help build a dynamic and rich form easily and efficiently.

In this chapter, you will learn how to:

•	 Work with form fields
•	 Bind different form elements with the Knockout model
•	 Show or hide form elements based on business logic
•	 Dynamically create form elements and bind them to a list
•	 Submit the form using the submit data binding

The online customer registration form allows the user to provide the information
required for user registration. The application has the following features:

•	 Capture personal information that includes customer's title and name
•	 Capture customer's contact details that includes e-mail address and

phone numbers
•	 Capture customer's residential and postal address
•	 Capture credit card details for payments
•	 Capture customer's interests
•	 Clear the registration form

Creating an Online Customer Registration Form

[52]

Getting started
The first thing to do is to create the skeleton for our customer registration form
application. You should be familiar with these steps from the previous chapter.

Create the folder structure for development by following these steps:

1.	 Create the folder RegistrationForm. This is the main folder that houses our
customer registration form application.

2.	 Add a WebContent folder under the RegistrationForm folder. This folder
holds the content that gets published to the web.

3.	 Add a javascript folder under the WebContent folder. As the folder name
suggests, this folder will contain all our JavaScript files.

4.	 Add a bootstrap folder under the WebContent folder. This folder will
contain the Bootstrap files.

Now that we have the folder structure in place, let's add the files to our folders by
following these steps:

1.	 Add the Knockout library to the javascript folder.
2.	 Add the jQuery library to the javascript folder.
3.	 Add Bootstrap to the bootstrap folder.
4.	 Create the registrationform.js file under the javascript folder.
5.	 Create the registrationform.html file under the WebContent folder.

Following the preceding steps should result in a folder structure similar to this:

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[53]

Now that we have created the folder structure, we can add code to our HTML
and JavaScript files. Open the registrationform.html file and add the following
HTML code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title>Knockout : Registration Form Example</title>

 <link rel="stylesheet" href="bootstrap/css/bootstrap.min.css">

 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <script type="text/javascript"
 src="bootstrap/js/bootstrap.min.js"></script>
 <script type="text/javascript"
 src="javascript/registrationform.js"></script>
 </head>
 <body>
 <div class="container">
 <div class="page-header">
 <h1>Registration Form</h1>
 </div>
 <!-- Registration form goes here -->
 </div>
 </body>
</html>

The preceding code references the required libraries and displays a page header
with the name of our application. Open the registrationform.js file and add the
following code; the code defines our empty RegistrationForm module:

/* Module for Registration form application */
var RegistrationForm = function () {
 /* add members here */

 var init = function () {
 /* add code to initialize this module */
 ko.applyBindings(RegistrationForm);
 };

 /* execute the init function when the DOM is ready */

Creating an Online Customer Registration Form

[54]

 $(init);

 return {
 /* add members that will be exposed publicly */
 };
}();

View the application in the browser. It should give you a page with the page header.
We are now ready to add a form to our skeleton.

We will use the HTML form element with the Knockout submit data binding to build
our customer registration form. The submit binding is typically only used with the
HTML form element. Using the submit binding, you specify the method that should
be called when the form is submitted.

The submit binding will prevent the default submit action of
the form and instead, it will call the method you specify. You can
return a true from your specified method if you want the default
submit action to be executed.

Let's add a form element to our HTML with the submit data binding by adding the
following code under the page header:

<form data-bind="submit: RegistrationForm.submit">
 <button type="Submit" class="btn btn-primary">Submit</button>
</form>

The preceding code has our HTML form with a submit data binding. The submit
binding specifies that a method called submit in our RegistrationForm module
should be called when the form is submitted. The form also has a Submit button.
Clicking on the Submit button submits the form causing our submit method to be
called. Let's add the submit method to our RegistrationForm module. Update
the RegistrationForm module and add the submit method. The submit method
also needs to be added to the module's return statement. The method should look
similar to this:

/* form submission */
var submit = function () {
 console.log("The form is submitted");
};

Open the application in your browser. You should see a page with the application
header and a submit button. Try clicking the submit button and view the output in
the console window.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[55]

Now that we have the basic skeleton with form in place, let's get started and build
the first feature of our customer registration form application.

Capturing personal information
The first feature of our customer registration form application is to capture the title
and first, middle, and last name of the customer. We will use a drop-down input
component to capture the title. The name fields will be captured using the input text
fields. The information will be captured in a model.

Let's start with the names fields as they are simple to implement. Add a model to the
RegistrationForm module to capture the customer's first, middle, and last names.
The attributes of the model must be Knockout observables for a two-way binding
between the model and the view. We will call our model customer and add an
attribute to group personal information. The model should look similar to this:

/* the model */
var customer = {
 personalInfo: {
 firstName: ko.observable(),
 middleName: ko.observable(),
 lastName: ko.observable()
 }
};

Add the model to the return statement of the module to make it accessible from
the view. Now we can add the name input fields to the view and bind them to the
model. Open the view in registrationform.html. Add a fieldset element as a
child of the form element before the Submit button. We use the fieldset element
to group a set of related form elements, in our case, the personal information fields.
Add a heading to the fieldset element for personal information.

Use the grid system provided by Bootstrap to layout your form.
This will give you a responsive layout, which appropriately scales
up as the device size increases. You can find more on Bootstrap grid
system at http://getbootstrap.com/css/#grid.

http://getbootstrap.com/css/#grid

Creating an Online Customer Registration Form

[56]

Now add input elements and their corresponding labels to capture the name fields.
Bind the input elements to their corresponding attributes in the model by using the
value data binding, similar to the examples in the previous chapters, using the input
elements and value data binding. Use the Bootstrap grid system to give your form
an appropriate layout. My fieldset looks similar to this:

<fieldset>
 <div class="row">
 <div class="col-md-12">
 <h4>Personal Information</h4>
 </div>
 </div>
 <div class="row">
 <div class="col-md-4">
 <div class="form-group">
 <label for="firstNameInput">First Name</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.personalInfo.firstName"
 id="firstNameInput" placeholder="Enter first name">
 </div>
 </div>
 <div class="col-md-4">
 <div class="form-group">
 <label for="middleNameInput">Middle Name</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.personalInfo.middleName"
 id="middleNameInput" placeholder="Enter middle name">
 </div>
 </div>
 <div class="col-md-4">
 <div class="form-group">
 <label for="lastNameInput">Last Name</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.personalInfo.lastName"
 id="lastNameInput" placeholder="Enter last name">
 </div>
 </div>
 </div>
</fieldset>

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[57]

The preceding code displays a header using the h4 element, which describes the set
of input fields; in this case, it is Personal Information. This is followed by a set
of label and input elements grouped by a div element with the form-group class.
The input fields are bound to the corresponding attributes in the model by using the
value data binding. The header and the form fields are laid out using the BootStrap
grid system.

Knockout provides a helper method, ko.toJSON, which returns
a JSON string representation of the model.

Update the submit method in the RegistrationForm module to display the contents
of the model in the console. This can be done by adding the following code to the
submit method:

console.log(ko.toJSON(customer));

View registrationform.html in the browser. Make sure that you have the console
window of the browser open. You should see the name fields with their labels. Try
entering information in the input fields and hit the Submit button. You should see
the data appear in the console window.

The next step is to add a drop-down field to capture the customer's title. In the
previous chapter, we used the HTML select element as a drop-down field to capture
task priority. We could use the select element to capture a customer's title, however,
Bootstrap advises against using the select element as it cannot be fully styled in
some browser. Instead, it recommends and provides a drop-down component.
This component is a div element with a class "dropdown". The div element has
two subcomponents, a button and an unordered list. The button represents the
unexpanded dropdown and the selected value as its text. The unordered list
represents the options for the dropdown.

Avoid using HTML select element with Bootstrap as it cannot be
fully styled in some browsers. Use the dropdown component provided
by Bootstrap. You can find out more about Bootstrap dropdown at
http://getbootstrap.com/components/#dropdowns.

http://getbootstrap.com/components/#dropdowns

Creating an Online Customer Registration Form

[58]

We will use the Bootstrap dropdown component to capture the customer's title. To
use this component, we need the Bootstrap JavaScript plugin, which is provided
by Bootstrap. Add the following line of code in the HTML header before the
registrationform.js to include this plugin. The HTML header should look
similar to this:

<head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title>Knockout : Registration Form Example</title>
 <link rel="stylesheet" href="bootstrap/css/bootstrap.min.css">
 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <script type="text/javascript"
 src="bootstrap/js/bootstrap.min.js"></script>
 <script type="text/javascript"
 src="javascript/registrationform.js"></script>
</head>

The Bootstrap dropdown component contains multiple elements and hence, we
cannot use a single binding to bind this component to our model. We will bind
individual components in the dropdown and also develop a custom two-way
binding. Let's start by adding the title attribute to our model. The model should
now look similar to this:

/* the model */
var customer = {
 personalInfo: {
 title: ko.observable(),
 firstName: ko.observable(),
 middleName: ko.observable(),
 lastName: ko.observable()
 }
};

Now, let's add the dropdown component to our view with its label:

<div class="form-group">
 <label for="titleInput">Title</label>
 <div class="dropdown">
 <button class="btn btn-default dropdown-toggle" type="button"
 id="titleInput" data-toggle="dropdown" aria-expanded="true" >
 select

 </button>

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[59]

 <ul class="dropdown-menu" role="menu"
 aria-labelledby="titleInput">
 <li role="presentation"><a role="menuitem"
 tabindex="-1">Mr
 <li role="presentation"><a role="menuitem"
 tabindex="-1">Mrs
 <li role="presentation"><a role="menuitem"
 tabindex="-1">Miss
 <li role="presentation"><a role="menuitem"
 tabindex="-1">Dr

 </div>
</div>

The preceding code will add a dropdown with a value of select and options for the
different titles. The options in the dropdown use the anchor element. We need to
capture the click of the anchor element and update our model accordingly. To do
this, we will use the click data binding. We can also make the options list dynamic
by using the foreach data binding on the ul element. To do this, modify the
RegistrationForm module to add an array for title options. The items in the array
should also include a method to update the model with the value of the option when
the anchor is clicked upon. The array should look similar to this:

/* options for the title drop down*/
var titleOptions = [
 {
 value: 'Mr',
 setTitle: function () {
 RegistrationForm.customer.personalInfo.title("Mr"); }
 },
 {
 value: 'Mrs',
 setTitle: function () {
 RegistrationForm.customer.personalInfo.title("Mrs");}
 },
 {
 value: 'Miss',
 setTitle: function () {
 RegistrationForm.customer.personalInfo.title("Miss");}
 },
 {
 value: 'Dr',
 setTitle: function () {
 RegistrationForm.customer.personalInfo.title("Dr");}
 }
];

Creating an Online Customer Registration Form

[60]

The array contains objects with two attributes: a value attribute that specifies the
value of the option and a setTitle attribute, which is a method to update the
customer model with the value of the option. Add this array to the return statement
of the module.

Let's now modify the view to use this new array. Modify the ul element to use the
options array from our model. It should look similar to this:

<ul class="dropdown-menu" role="menu" aria-labelledby="titleInput"
data-bind="foreach: RegistrationForm.titleOptions">
 <li role="presentation"><a role="menuitem" tabindex="-1"
 data-bind="text: value, click: setTitle">

The preceding code uses the foreach binding on the ul element to render the
options list. Each list element uses a text binding for the text to be displayed and a
click binding to specify the method to be called when the element is clicked upon.

Try running the application with the preceding modification. You should be able to
see the value of the title attribute change in the model when the form is submitted.
You will notice that although the model gets updated with the value of the title
selected, the drop-down label still says select. This can be fixed by using computed
observable to update the text of the button in the dropdown to the selected value of
the title. We will use the pure computed observable as the computed observable is
not changing any attribute in our model. Write a pure computed observable to return
the value of title from our model. This computed observable should return "select"
if the title is not set. Add the code to the RegistrationForm module and update the
return statement to return this method:

/* computed observable for title drop down text change */
var titleSelect = ko.pureComputed(function () {
 if(customer.personalInfo.title() == null) {
 return "select"
 } else {
 return customer.personalInfo.title();
 }
});

Modify the drop-down button in the view to use this computed observable. The
button should look similar to this:

<button class="btn btn-default dropdown-toggle" type="button"
id="titleInput" data-toggle="dropdown" aria-expanded="true" >

</button>

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[61]

The button uses a span element with a text binding to display the title in the dropdown.

We have implemented the first feature of our customer registration form application.
Open the application in the browser. Try selecting the customer's title from the
dropdown and entering the name fields. Click on Submit to see the data entered
appear in the console window. It should look similar to this:

We have reached our first checkpoint. The code for this checkpoint can be found at
chapter3\checkpoint1.

Capturing contact details
The second feature of our customer registration form application is to capture the
customers contact details. We will capture the phone number and e-mail address
of the customer. We will also ask for the customer's preferred contact. The phone
number and the e-mail will be captured using input text fields and the preferred
contact will be captured using radio buttons.

Creating an Online Customer Registration Form

[62]

Let's start by adding attributes for the phone number and e-mail fields to
our customer model. Add an attribute to group the fields; we will call it
contactDetails. Now add the attributes for phone number and e-mail
under contactDetails. Our model should now look similar to this:

/* the model */
var customer = {
 personalInfo: {
 title: ko.observable(),
 firstName: ko.observable(),
 middleName: ko.observable(),
 lastName: ko.observable()
 },
 contactDetails: {
 phoneNumber: ko.observable(),
 emailAddress: ko.observable(),
 preferredContact: ko.observable()
 }
};

The next step is to update the view to add the new fields. We start by adding a
fieldset for the contact details. The fieldset should contain the section header
and a div row that will contain the div element for our input fields. Now add the
input fields for the phone number and e-mail address. Bind the input fields to the
model in our RegistrationForm, similar to the fields for personal information.
The fieldset for contact details should look similar to this:

<fieldset>
 <div class="row">
 <div class="col-md-12">
 <h4>Contact Details</h4>
 </div>
 </div>
 <div class="row">
 <div class="col-md-4">
 <div class="form-group">
 <label for="phoneNumberInput">Phone Number</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.contactDetails.phoneNumber"
 id="phoneNumberInput" placeholder="Enter phone number">
 </div>
 </div>
 <div class="col-md-4">
 <div class="form-group">
 <label for="emailAddressInput">Email</label>

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[63]

 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.contactDetails.emailAddress"
 id="emailAddressInput" placeholder="Enter email address">
 </div>
 </div>
 </div>
</fieldset>

Try running the application in your browser. You should be able to see the phone
number and e-mail address fields. Enter information in the fields and hit Submit.
Data entered in the fields should appear in the console logs.

Let's start with the second part of this feature that is to capture the preferred contact
of our customer. The preferred contacts will be captured using radio buttons. We will
have one radio button for each contact type—one for email address and another for
phone number. We already created the attribute in our model for preferred contact.
We now have to update our view to add the radio buttons. We will use the checked
binding to bind the radio buttons value to our model.

The checked binding binds form controls that are checkable, such as
radio buttons and checkboxes, with attributes in the model.

Add the radio buttons to the view inside the fieldset tag after the inputs for the
phone number and e-mail in the contact details. Bind the radio buttons to the model
using the checked binding and the Bootstrap grid system for layout, similar to the
previous inputs. My code with the radio buttons looks similar to this:

<div class="row">
 <div class="col-md-4">
 <label>Preferred Contact</label>
 <div class="form-group">
 <label class="radio-inline">
 <input type="radio" value="phone"
 name="preferredContactInput" data-bind="checked:
 RegistrationForm.customer.contactDetails.
 preferredContact">Phone
 </label>
 <label class="radio-inline">
 <input type="radio" value="email"
 name="preferredContactInput" data-bind="checked:
 RegistrationForm.customer.contactDetails.
 preferredContact">Email
 </label>
 </div>
 </div>
</div>

Creating an Online Customer Registration Form

[64]

The checked binding in the preceding code will set the value of the attribute in the
model to the value specified by the value attribute of the input. In other words,
the preferredContact attribute in our model will be set to phone when the radio
button with the label Phone is checked. Another important thing to note is the
use of the name attribute on the radio button input fields. The value of the name
attribute is the same for both the input fields to specify that they both belong to the
preferedContactInput group.

We have implemented the second feature of our customer registration form
application. Open the application in the browser. Try selecting the customer's title
from the dropdown and entering the name fields. Enter the contact details and select
the preferred contact. Click on Submit to see the data entered appear in the console
window. It should look similar to this:

We have reached our second checkpoint. The code for this checkpoint can be found
at chapter3\checkpoint2.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[65]

Capturing residential and postal
addresses
The third feature of our customer registration form application is to capture the
customer's residential and postal address. For residential address, we will capture
the street address, city, post code, and country. For postal address, we will give users
a choice between a PO Box and street address. The choice between a PO Box and
street address will be captured using radio buttons, and the appropriate fields
will be displayed. For PO Box address, we will capture the PO Box, city, post code,
and country.

Let's start by creating the address attribute in our customer model. The address
attribute will hold attributes for residential and postal addresses. Create the address
and residential attributes. In our customer model, the attributes should look similar
to this:

address: {
 residential: {
 street: ko.observable(),
 city: ko.observable(),
 postCode: ko.observable(),
 country: ko.observable()
 }
}

The next step is to update the view to add the new fields. We start by adding a
fieldset element for the addresses. This should go after the contact details and
before the Submit button. The fieldset element should contain the section headers
and a div row that will contain the div element for our input fields, similar to the
previous examples. Create the fieldset and the section headers. It should look
similar to this:

<fieldset>
 <div class="row">
 <div class="col-md-12">
 <h4>Address Details</h4>
 </div>
 </div>
 <div class="row">
 <div class="col-md-12">
 <h5>Residential Address</h5>
 </div>
 </div>
 <!-- Add input fields here -->
</fieldset>

Creating an Online Customer Registration Form

[66]

Now add the input fields to capture the residential address. Bind the input fields
to their corresponding attributes in the model. Feel free to layout the input fields
as appropriate. With the layout, the fields should look similar to this:

<div class="form-group">
 <label for="streetInput">Street Address</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.address.residential.street"
 id="streetInput" placeholder="Enter street address">
</div>
<div class="form-group">
 <label for="cityInput">City</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.address.residential.city"
 id="cityInput" placeholder="Enter city">
</div>
<div class="form-group">
 <label for="postCodeInput">Postcode</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.address.residential.postCode"
 id="postCodeInput" placeholder="Enter postcode">
</div>
<div class="form-group">
 <label for="countryInput">Country</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.address.residential.country"
 id="countryInput" placeholder="Enter country">
</div>

Try running the application in your browser. You should be able to see the fields for
the residential address. Enter information in the fields and hit Submit. Data entered
in the fields should appear in the console logs.

Now, we will move to the second part of this feature that is to capture the postal
address of the customer. As mentioned earlier, the postal address can be either a
street address or a PO Box address. To develop this, we will need to capture the type
of postal address in our model. This will be done using radio buttons. We will also
need attributes for street and PO Box address. We will create two separate views
for postal address—one for street address and another for PO Box address. The
appropriate view will be displayed based on the user selection. Update the customer
model to add the postal address. The postal address goes in the address attribute as
it is a part of the address:

address: {
 residential: {
 street: ko.observable(),

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[67]

 city: ko.observable(),
 postCode: ko.observable(),
 country: ko.observable()
 },
 postal: {
 type: ko.observable(),
 streetAddress: {
 street: ko.observable(),
 city: ko.observable(),
 postCode: ko.observable(),
 country: ko.observable()
 },
 poBoxAddress: {
 poBox: ko.observable(),
 city: ko.observable(),
 postCode: ko.observable(),
 country: ko.observable()
 }
 }
}

Note that we have added a type attribute for the postal address. This attribute will
be used to specify whether the postal address is a PO Box or street address. We have
also added attributes for street and PO Box addresses.

Now that our model is ready, let's work on the view. The first step is to add a section
header and the radio buttons for postal address type. Add the section header for
postal address. The section header goes under the section for residential address.
Now add the radio buttons—one for street address type and another for PO Box
address type. Make sure that both the radio buttons belong to the same group by
specifying the same name attribute. Bind the radio buttons to the type attribute of
the postal address. Give the radio buttons an appropriate value. We will use the
value of the radio button later with the visible binding to show or hide address
fields. So far, your code for the postal address should look similar to this:

<div class="row">
 <div class="col-md-12">
 <h5>Postal Address</h5>
 </div>
</div>
<div class="row">
 <div class="col-md-4">
 <label>Select postal address type</label>
 <div class="form-group">
 <label class="radio-inline">

Creating an Online Customer Registration Form

[68]

 <input type="radio" value="street"
 name="postalAddressTypeInput" data-bind="checked:
 RegistrationForm.customer.address.postal.type">Street
 address
 </label>
 <label class="radio-inline">
 <input type="radio" value="pobox"
 name="postalAddressTypeInput" data-bind="checked:
 RegistrationForm.customer.address.postal.type">PO Box
 </label>
 </div>
 </div>
</div>

The next step is to add sections for street and PO Box addresses. Add two sections
to the div elements below the radio buttons—one for street address and another for
PO Box address. Add a visible binding to the div elements that shows or hides the
sections based on the type attribute of the postal address form the model. Add a
temporary text in the div elements, which will later be replaced by the appropriate
address fields. Your two div elements should look similar to this:

<div data-bind="visible:
RegistrationForm.customer.address.postal.type() == 'street'">
 street address
 <!-- add postal street address fields here -->
</div>
<div data-bind="visible:
RegistrationForm.customer.address.postal.type() == 'pobox'">
 PO Box address
 <!-- add postal street address fields here -->
</div>

View the application in the browser. You should see the section for postal address
and radio button group to select the type of postal address. Try selecting either street
or PO Box address. You should see the section for the selected type appear.

It's now time to add the address fields for the street and PO Box address to the view.
The fields for street address are similar to the street address for residential. You can
copy the fields from residential address. Don't forget to change the IDs and bindings.
Add the fields to the section for street address. This section will look similar to this:

<div data-bind="visible:
RegistrationForm.customer.address.postal.type() == 'street'">
 <div class="row">

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[69]

 <div class="col-md-12">
 <div class="form-group">
 <label for="postalStreetInput">Street Address</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.address.postal.streetAddress.street"
 id="postalStreetInput"
 placeholder="Enter street address">
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-5">
 <div class="form-group">
 <label for="postalCityInput">City</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.address.postal.streetAddress.city"
 id="postalCityInput" placeholder="Enter city">
 </div>
 </div>
 <div class="col-md-2">
 <div class="form-group">
 <label for="postalPostCodeInput">Postcode</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.address.postal.streetAddress.
 postCode" id="postalPostCodeInput"
 placeholder="Enter postcode">
 </div>
 </div>
 <div class="col-md-5">
 <div class="form-group">
 <label for="postalCountryInput">Country</label>
 <input type="text" class="form-control"
 data-bind="value:
 RegistrationForm.customer.address.postal.streetAddress.
 country"
 id="postalCountryInput" placeholder="Enter country">
 </div>
 </div>
 </div>
</div>

Creating an Online Customer Registration Form

[70]

Add the fields for the PO Box address in the PO Box address section and bind them
to the corresponding attributes in the model. The fields of the PO Box address are
PO Box, city, postcode, and country. The PO Box address section should look similar
to this:

<div data-bind="visible:
RegistrationForm.customer.address.postal.type() == 'pobox'">
 <div class="row">
 <div class="col-md-12">
 <div class="form-group">
 <label for="poBoxInput">PO Box</label>
 <input type="text" class="form-control"
 data-bind="value:
 RegistrationForm.customer.address.postal.poBoxAddress.poBox"
 id="poBoxInput" placeholder="Enter PO Box">
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-5">
 <div class="form-group">
 <label for="poBoxCityInput">City</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.address.postal.poBoxAddress.city"
 id="poBoxCityInput" placeholder="Enter city">
 </div>
 </div>
 <div class="col-md-2">
 <div class="form-group">
 <label for="poBoxPostCodeInput">Postcode</label>
 <input type="text" class="form-control"
 data-bind="value:
 data-bind="value:
 RegistrationForm.customer.address.postal.poBoxAddress.
 postCode" id="poBoxPostCodeInput"
 placeholder="Enter postcode">
 </div>
 </div>
 <div class="col-md-5">
 <div class="form-group">
 <label for="poBoxCountryInput">Country</label>
 <input type="text" class="form-control"
 data-bind="value:
 RegistrationForm.customer.address.postal.poBoxAddress.country"
 id="poBoxCountryInput" placeholder="Enter country">
 </div>
 </div>
 </div>
</div>

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[71]

We have implemented the third feature of our customer registration form
application. Open the application in the browser. Try selecting the customer's title
from the dropdown and entering the name fields. Enter the contact details and select
the preferred contact. Enter details of the customer's address, including residential
and postal addresses. Click on Submit to see the data entered appear in the console
window. The application should look similar to this; the screenshot only shows the
address details section:

We have reached our third checkpoint. The code for this checkpoint can be found at
chapter3\checkpoint3.

Capturing credit card details
The forth feature of our customer registration form application is to capture the
customer's credit card details. For the credit card, we will capture the name on the
card, card number, and card expiry date. We will let our customer register more than
one credit cards and limit it to a maximum of three.

Creating an Online Customer Registration Form

[72]

Let's start by creating the credit card attribute in our customer model. This attribute
will hold the details of the credit cards. This attribute will be an observable array as
we need to allow our customers to register multiple credit cards. Add the following
code to the customer model:

creditCards: ko.observableArray()

We need to add one credit card to our array initially so that it appears on the view.
To do this, we will add a method to our module that will add a credit card and then
call it from our init method. The add credit card method should look similar to this:

/* method to add credit card to the credit cards array */
var addCreditCard = function () {
 customer.creditCards.push({name: ko.observable(), number:
 ko.observable(), expiryDate: ko.observable()});
};

This method simply pushes a credit card to the array. The attributes of the credit
card are name, number, and expiryDate. The attributes are observables for two-way
binding to work. Call this method from the init method of the module. This gives
us our first credit card when we run the application:

var init = function () {
 /* add code to initialize this module */
 //add the first credit card
 addCreditCard();
 //apply ko bindings
 ko.applyBindings(RegistrationForm);
};

We can now update our view to add the credit card fields. Add a fieldset element
and credit card section header, similar to the previous sections. Add a div element,
which will hold our credit card fields. The section should look similar to this:

<fieldset>
 <div class="row">
 <div class="col-md-12">
 <h4>Credit Cards</h4>
 </div>
 </div>
 <div>
 <!-- Add credit card fields here -->
 </div>
</fieldset>

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[73]

We need to traverse the creditCards array from our model to render the cards. We
will use the foreach binding to achieve this. Add the foreach binding to the div
element and then add the input fields to capture the credit card details. Bind the
input fields to the corresponding attributes in the model. With the foreach binding
and the input fields, the div element should look similar to this:

<div data-bind="foreach: RegistrationForm.customer.creditCards">
 <div class="row">
 <div class="col-md-4">
 <div class="form-group">
 <label for="ccNameInput">Name on card</label>
 <input type="text" class="form-control" data-bind="value:
 name" id="ccNameInput" placeholder="Enter name on card">
 </div>
 </div>
 <div class="col-md-4">
 <div class="form-group">
 <label for="ccNumberInput">Card Number</label>
 <input type="text" class="form-control" data-bind="value:
 number" id="ccNumberInput"
 placeholder="Enter card number">
 </div>
 </div>
 <div class="col-md-2">
 <div class="form-group">
 <label for="ccExpiryDateInput">Card Number</label>
 <input type="text" class="form-control"
 data-bind="value: expiryDate" id="ccExpiryDateInput"
 placeholder="mm/yy">
 </div>
 </div>
 </div>
</div>

Try running the application in the browser. You should see the section for credit
cards. The section should have a row, containing input fields for one credit card. Try
entering the information and click on Submit. You should see the credit card details
entered appear in the logs.

Creating an Online Customer Registration Form

[74]

The next step is to allow the customers to add additional cards. To do this, we will
add a link at the bottom of the credit card section and bind its click event to our add
credit card method. The link should look similar to this:

<a href data-bind="click: RegistrationForm.addCreditCard">+ credit
card

Add the addCreditCard method to the return statement of the module as it is now
accessed from the view. Try running the application in the browser and add some
credit cards.

We need to limit the credit card to a maximum of three. We will only show the link
if the number of credit cards in the list are less than three. To do this, we will use the
visible binding on the div element surrounding the link. The visible binding will
check for the number of items in the observable array. After applying the visible
binding to its surrounding div, the link looks similar to this:

<div class="row" data-bind="visible:
RegistrationForm.customer.creditCards().length < 3">
 <div class="col-md-4">
 <a href data-bind="click: RegistrationForm.addCreditCard">+
 credit card
 </div>
</div>

The preceding code checks for the length of our creditCards observable array and
only displays the div element if the length of the array is less than three.

As a final step, we will give our customers the ability to delete a credit card. To do
this, we will add a delete link to the row, containing the credit card. Clicking on this
link will delete the credit card item from the array. The deleted link will only appear
if there is more than one item in our array.

Let's update our view to add the delete link. Bind the delete link to the
deleteCreditCard method in our module. We will create this method after
updating the view. Add visible binding to the div surrounding the delete link. Make
the link only appear if there are more than one items in the creditCards array. The
code for the delete link should look similar to this:

<div class="col-md-1" data-bind="visible:
RegistrationForm.customer.creditCards().length > 1">
 <div class="form-group">
 <label for="ccActionInput">Action</label>
 <a href id="ccActionInput" data-bind="click:
 RegistrationForm.deleteCreditCard">delete
 </div>
</div>

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[75]

The final step is to add the deleteCreditCard method to our module. The method
will take the credit card item as its input parameter and remove it from the
creditCards observable array. Create this method in the module and add it to the
return statement. The method should look similar to this:

/* method to delete a credit card from the credit cards array */
var deleteCreditCard = function (card) {
 console.log("Deleting credit card with number: " +
 card.number());
 //remove the credit card from the array
 customer.creditCards.remove(card);
}

We have implemented the fourth feature of our customer registration form
application. Open the application in the browser. Try entering credit card
information and adding or deleting credit cards. The application should
look similar to this; the following screenshot only shows the credit card section:

We have reached our fourth checkpoint. The code for this checkpoint can be found at
chapter3\checkpoint4.

Creating an Online Customer Registration Form

[76]

Capturing interests
The fifth feature of our customer registration form application is to capture the
customer's interests. The interest categories are sports, news, movies, and comedy.
We will capture the interests using checkboxes.

Let's start by creating the interests attribute in our customer model. This attribute
will hold the values of the interests selected by the customer. This attribute will be
an observable array as we need to allow the customer to select multiple interest
categories. Add the following code to the customer model:

interests: ko.observableArray()

We will now update the view to add the checkboxes and bind them to the interests
attribute. Add a fieldset element and interests section header, similar to the
previous sections. Add a div element, which will hold our interest checkboxes. Add
the interest checkboxes and give them values of the interest categories. Bind the
checkboxes to the interests attribute of the model. The interests fieldset should
look similar to this:

<fieldset>
 <div class="row">
 <div class="col-md-12">
 <h4>Interests</h4>
 </div>
 </div>
 <div class="row">
 <div class="col-md-12">
 <div class="checkbox">
 <label class="checkbox-inline">
 <input type="checkbox" value="sports"
 data-bind="checked:
 RegistrationForm.customer.interests"> Sports
 </label>
 <label class="checkbox-inline">
 <input type="checkbox" value="news"
 data-bind="checked:
 RegistrationForm.customer.interests"> News
 </label>
 <label class="checkbox-inline">
 <input type="checkbox" value="movies"
 data-bind="checked:
 RegistrationForm.customer.interests"> Movies
 </label>
 <label class="checkbox-inline">

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[77]

 <input type="checkbox" value="comedy"
 data-bind="checked:
 RegistrationForm.customer.interests"> Comedy
 </label>
 </div>
 </div>
 </div>
</fieldset>

We have implemented the fifth feature of our customer registration form application.
Open the application in the browser; you should now see the interests section with the
checkboxes. Try selecting some interests and click on Submit. The selected interests
should appear in the console log. The application should look similar to this:

We have reached our fifth checkpoint. The code for this checkpoint can be found at
chapter3\checkpoint5.

Clearing the registration form
The final feature of our application is to clear the customer registration form. We will
add a button, which the customers can click on to clear any input in the form fields.
We will add a corresponding method in the module that will clear all observables in
the model.

Creating an Online Customer Registration Form

[78]

Let's start by updating the view. Next to the Submit button, add a button to view.
Label the button Clear. Bind the click event of the button to a method in the module.
We will call this method "clear". Your code for button should look similar to this:

<button type="button" class="btn btn-default"
data-bind="click: RegistrationForm.clear">Clear</button>

Now that we have updated the view, we can add the clear method to our module.
Open the model and add the method skeleton. Also, add the method to the return
statement of the module. There are a few different ways of clearing the module.
You can set the value of each observable in the module by manually calling its setter
method. We will use a more generic method, which will traverse the module and
check whether the object is an observable. If the object happens to be an observable,
we will set its value to null or remove its items if it is an observable array.

Knockout provides a method, ko.isObservable(obj), which
is used to check whether an object is observable or not. It returns
true for observables and observable arrays.

We will use a jQuery method called each to traverse the model. This method
takes the JSON model to traverse and a function to apply to each node. Inside
this function, we can check whether the node is observable and clear its
value. The following is the method which uses the jQuery each and Knockout
ko.isObservable methods to traverse and clear the model; notice how it handles
observable arrays as we cannot set the value of observable arrays to null:

/* method to traverse the model and clear observables */
var traverseAndClearModel = function(jsonObj) {
 $.each(jsonObj, function(key,val){
 if(ko.isObservable(val)) {
 if(val.removeAll != undefined) {
 val.removeAll();
 } else {
 val(null);
 }
 } else {
 traverseAndClearModel(val);
 }
 });
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[79]

The method checks for the removeAll method of observable arrays to distinguish
between observables and observable arrays. The method recursively calls itself to
visit all the nodes in the model. We will call this method from our clear method.
The clear method will clear the model and add one credit card item to the credit
cards array. This method should look similar to this:

/* clear the model */
var clear = function () {
 console.log("Clear customer model");
 traverseAndClearModel(customer);
 //add the first credit card
 addCreditCard();
};

We have implemented the final feature of our customer registration form application.
Open the application in the browser; you should now see the Clear button next to
the Submit button. Try entering information in the form and then click on the Clear
button to clear the form. We have reached our final checkpoint for this chapter. The
code for this checkpoint can be found at chapter3\checkpoint6.

Summary
In this chapter, we walked through building a customer registration form. The
information captured by the form included personal information, contact details,
residential and postal addresses, and credit card information. The application
demonstrated Knockout's ability to create a dynamic form. In this chapter, we
learned how to use Knockout binding with different form elements.

In the next chapter, we will continue with our customer registration application and
apply validation to the different form elements.

www.ebook3000.com

http://www.ebook3000.org

[81]

Adding Validation to the
Customer Registration Form

We developed a customer registration form in the previous chapter. While the
registration form application demonstrated how to work with form fields, it is
missing out on a basic requirement that is expected from most web forms—validation!

In this chapter, we will add validation to our customer registration form application.
We will explore two different methods of validating the form data in our model:
by using the Knockout extenders and Knockout validation plugin. The chapter will
walk you through applying validation to the registration form using the Knockout
validation plugin.

It is important to note that the validation we are talking about in this chapter
happens at the client side or more specifically, in the browser. The data should also
be validated at the server side, but there are some benefits of validating the data at
the client side. The benefits are mostly to do with user experience and performance.
By validating the data at the client side, we give the users an instant response if they
enter invalid inputs. This saves the user from waiting for the HTTP response. It also
saves the server from handling requests with invalid data.

Another important concept to note is that the validation is applied to the data in the
model and not the HTML form fields that constitute the view.

In this chapter, you will learn how to:

•	 Validate the model using Knockout extenders
•	 Validate the model using Knockout validation plugin
•	 Validate fields based on requirements, such as required minimum and

maximum lengths, input types, and input patterns

Adding Validation to the Customer Registration Form

[82]

•	 Display error styles and messages
•	 Apply conditional validation
•	 Apply validation to the dynamically created fields

Validating the model using Knockout
extenders
Knockout provides a way to add additional reusable functionality to the observables
through the use of extenders. Knockout extenders could be used to add additional
properties to the observable or to intercept and rewrite its value. Extenders could
also be used to validate the model. This section will explore and demonstrate the
use of extenders for validating the model. The example in this section will apply this
method of validation only to the first name field.

An extender is created by adding a method to the ko.extenders object. The method
takes two parameters: the observable and an option value. The option value is
specified when the observable is extended. The method should return an observable.
This can either be the observable itself or a computed observable that manipulates
the value of the original observable.

Let's create an extender that will extend the firstName observable in our registration
form application and mark it as required. The view will display an error style and
message if the first name is not set. Apply the following changes to the customer
registration form application developed in the previous chapter.

The first step is to add the method to the ko.extenders object. We will call this
method required. Our required method looks similar to this:

/* extender for required fields */
ko.extenders.required = function(target, option) {
 //observables to indicate an error
 target.hasError = ko.observable(false);

 //set the error flag whenever the value changes
 target.subscribe(function (newValue) {
 target.hasError(newValue ? false : true);
 });

 //return the original observable
 return target;
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[83]

Knockout provides a way to add manual subscription to observables
through the use of subscribe method. This method takes a
method as parameter, which is called with the changed value of the
observable, every time the value of the observable changes.

The method takes the original observable and option as parameters. The method
declares an hasError observable as child observable of the original observable.
The hasError observable is a flag that indicates the error state of the observable.
The method adds a subscription to the original observable, which sets the error
state based on the value of the observable. An important thing to note is that the
subscription will only fire when the value of the observable changes.

By default, the new value will only be set in the observable when
the input field loses focus. This behavior can be changed by using
the valueUpdate parameter. Options include updating the value
of the observable on key press and after key down.

Add the code for ko.extenders.required above the declaration for the customer
model. Now, we can update the firstName observable to mark it as required. This
is done by the use of the extend method on the observable and specifying the name
of the extender. You also pass any parameters to the extender. After applying the
required extender, the declaration of the firstName observable looks similar to this:

firstName: ko.observable().extend({ required: null})

The next step is to update the view to display the error style and a message if the
firstName observable is not set. We will use the Bootstrap has-error class with the
Knockout visible and css binding to achieve this. Add the css binding to the div
element surrounding the first name input field. Specify the has-error class to the
css binding if the hasError flag is set on the firstName observable. Add a p element
below the first name input field with an appropriate error message. Using the visible
binding, make it only appear if the hasError flag is set on the firstName observable.
The div element containing the first name field should look similar to this:

<div class="form-group" data-bind="css: {'has-error':
RegistrationForm.customer.personalInfo.firstName.hasError}">
 <label for="firstNameInput">First Name</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.personalInfo.firstName"
 id="firstNameInput" placeholder="Enter first name">
 <p class="help-block" data-bind="visible:
 RegistrationForm.customer.personalInfo.firstName.hasError">
 Please enter first name</p>
</div>

Adding Validation to the Customer Registration Form

[84]

We have implemented the required field validation on first name. Open the
application in the browser. Enter a value in the first name input field. Take the focus
away from the field to let the value entered to take effect. Now delete the input in
the first name field and move the focus away. You should see the error style and
message appear. This is how it appears in our browser:

The code for this section can be found at chapter4\ValidationUsingExtenders.

Validating model using the Knockout
validation plugin
Knockout validation is a plugin for validating the model. It uses the Knockout
extenders to provide validation, similar to the concept described in the previous
section. The advantage of using this plugin is that the most common extenders are
already defined for you. All you have to do is configure and apply the extenders.
This section will explore and demonstrate the use of the validation plugin for
validating the model. The examples in this section will apply this method of
validation to all the fields in the customer registration form application. You can
make a copy of the customer registration form application developed in the previous
chapter and apply the validation by performing the steps in the following sections.

Getting started
The first step is to download the validation plugin. The validation plugin can
be downloaded from https://github.com/Knockout-Contrib/Knockout-
Validation. Place the downloaded files, knockout.validation.min.js and
knockout.validation.min.js.map, in the javascript folder. The javascript
folder should look similar to this:

www.ebook3000.com

https://github.com/Knockout-Contrib/Knockout-Validation
https://github.com/Knockout-Contrib/Knockout-Validation
http://www.ebook3000.org

Chapter 4

[85]

We have used the minified versions of most JavaScript libraries.
Minified JavaScript files increase performance by decreasing time to
load. The downside of using minified files is that the code contained
in these files is not readable. Most libraries come with normal and
minified versions of JavaScript files. Use the normal version if you
want to explore the inner workings of the libraries.
We have also used a source map file for the validation plugin. The
source map file maps code in the minified JavaScript file to the
original unminified version. This helps with debugging the code if
an error occurs.

The second step is to include the validation plugin file in your HTML file. Open
registrationform.html and include the downloaded validation plugin JavaScript
file in the head element. The head should now look similar to this:

<head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title>Knockout : Registration Form Example</title>

 <link rel="stylesheet" href="bootstrap/css/bootstrap.min.css">

 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <script type="text/javascript"
 src="javascript/knockout.validation.min.js"></script>
 <script type="text/javascript"
 src="bootstrap/js/bootstrap.min.js"></script>
 <script type="text/javascript"
 src="javascript/registrationform.js"></script>
</head>

We are now ready to use the validation plugin in our application.

Adding Validation to the Customer Registration Form

[86]

The basics
We need to enable the validation plugin in order to start using it. We call the init
method of the plugin to enable it:

// enable validation
ko.validation.init();

You can pass parameters to the init method to configure the plugin. We will
explore this more in the coming section. We will use extenders to apply validation to
our observables, similar to the concept described in the previous chapter. To mark an
observable as required, simply extend it with the required extender:

//myObservable marked as required
var myObservable = ko.observable().extend({ required: true });

The following are some other useful extenders; the function of the extenders is pretty
self-explanatory from the name:

//extender for minimum value
var myObservable = ko.observable().extend({ min: 1 });

//extender for maximum value
var myObservable = ko.observable().extend({ max: 10 });

//extender for minimum length
var myObservable = ko.observable().extend({ minLength: 4 });

//extender for maximum length
var myObservable = ko.observable().extend({ maxLength: 8 });

//extender for number
var myObservable = ko.observable().extend({ number: true });

//extender for email
var myObservable = ko.observable().extend({ email: true });

//extender for date
var myObservable = ko.observable().extend({ date: true });

//extender for pattern matching.
var myObservable = ko.observable().extend({ pattern: '^[0-9]*$'
});

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[87]

You can apply multiple extenders like this:

//required with a minimum length of 5
var myObservable = ko.observable().extend({ required: true,
minLength: 5});

You can also chain multiple extenders together. The following example chains the
required and minimum length together:

//required with a minimum length of 5 by chaining
var myObservable = ko.observable().extend({ required:
true}).extend({minLength: 5});

The plugin comes with default error messages. You can specify a custom error
message by using the message property of the extenders, for example:

//custom error message for required field
var myObservable = ko.observable().extend({ required: { params:
true, message: "Please enter a value for this field."}});

You can use the group method provided by the plugin to capture the validation
results in the object returned. This will give us the ability to check whether our
model is valid or not in the submit method. The returned object also gives us some
useful methods, for example, a method called showAllMessages to highlight all
the errors. The group method takes the model optional configuration object as
parameters. In the following example, we indicate to the group method that our
model has observables that are nested by setting the deep attribute to true. This will
cause the group method to traverse each node of our model in search of observables
with extenders:

//group error by deep scanning
myModel.errors = ko.validation.group(myModel, { deep: true });

Now that we have learned the basics of the validation plugin, let's apply validation
to our customer registration form.

Validating personal information
The requirement for validating personal information is that the title, first name,
and last name fields are mandatory. Middle name is optional, so we will not apply
any validation to it. We will use the Bootstrap error styles and Knockout validation
plugins default messages to highlight the errors. You should have downloaded and
included the Knockout validation plugin if you followed the Getting started section
of this chapter. Remember that we are picking up the customer registration form
application from where we left it at the end of the previous chapter.

Adding Validation to the Customer Registration Form

[88]

The first step is to initialize and configure the validation plugin. We will add the
initialization and configuration in a method. This method will be called from our
init method of the module. Open the registrationform.js file and add the
following method to the module:

/* method to configure the validation plugin */
var configureValidation = function () {
 //initialize and configure the validation plugin
 ko.validation.init({
 errorElementClass: 'has-error',
 errorMessageClass: 'help-block'
 });
 //group errors
 customer.errors = ko.validation.group(customer, {deep:true});
};

The preceding method initializes the validation plugin so that we can start using the
plugin and also configures it to use the Bootstrap error classes for styling the fields.

To style elements to indicate an error, Bootstrap provides
the 'has-error' and 'help-block' CSS classes.

The method, in its second line, groups the errors to customer.errors. Notice that
we specify that our model has nested observables by passing in the deep attribute as
true. We can now call the configureValidation method from the init method of
the module. Your init method should now look similar to this:

var init = function () {
 /* add code to initialize this module */
 //configure validation
 configureValidation();
 //add the first credit card
 addCreditCard();
 //apply ko bindings
 ko.applyBindings(RegistrationForm);
};

The next step is to modify our submit method to check whether our model is valid
or not. This can be achieved by checking for the number of errors. We want to
highlight all the error fields if errors exist, otherwise, we proceed as normal.
Here is the updated submit method to achieve this:

/* form submission */
var submit = function () {

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[89]

 if (customer.errors().length === 0) {
 console.log("Customer model is valid.");
 console.log(ko.toJSON(customer));
 } else {
 console.log("Customer model has errors.");
 //highlight all errors
 customer.errors.showAllMessages();
 }
};

Now we can apply the required validation to the first and last name fields. We will
tackle the title fields after that as it is slightly more complicated. Add the required
extender to the first and last name observables in our model. The following is an
example of how to apply the required extender to the firstName observable:

firstName: ko.observable().extend({ required: true})

We are now ready to modify the view. Open the registrationform.html
file and locate the first and last name input fields. All we need to do is specify
the validationElement data binding to the surrounding div element. The
Following is an example of first name field; the last name field must be modified
in the same manner:

<div class="form-group" data-bind="validationElement:
RegistrationForm.customer.personalInfo.firstName">
 <label for="firstNameInput">First Name</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.personalInfo.firstName"
 id="firstNameInput" placeholder="Enter first name">
</div>

Open the application in the browser. Try submitting a form without entering
anything in the first and last name input fields. You should see the error message
and styles appear. You should also see the error message appear in the console logs.

Let's apply the validation to the title field. This is slightly more complicated as
the title input field is a Bootstrap dropdown and consists of multiple components.
Start by adding the required extender to the title observable in the model, similar
to the first and last name. It should look similar to this:

title: ko.observable().extend({ required: true})

Adding Validation to the Customer Registration Form

[90]

Now, we will update the view to apply the error styles to the title dropdown. First,
we bind the surrounding div element with the validationElement data binding,
similar to the first and last name surrounding div elements. We then have to add
the form-control class to the button. This will tell Bootstrap that it has to apply
the error styles to this element. We also modify the row columns and the alignment
of the button text. We then make the most important change, which is to add the
error message. We did not have to do this for the first and last name as Knockout
validation plugin automatically adds it after the input element. We have to manually
add this since the title field does not use an input element. To add the error message,
we use a span element with the validationMessage data binding. After making the
modifications, the title div should look similar to this:

<div class="form-group" data-bind="validationElement:
RegistrationForm.customer.personalInfo.title">
 <label for="titleInput">Title</label>
 <div class="dropdown">
 <button class="btn btn-default dropdown-toggle form-control"
 type="button" id="titleInput" data-toggle="dropdown"
 aria-expanded="true">
 <div class="pull-left">

 </div>
 </button>
 <ul class="dropdown-menu" role="menu"
 aria-labelledby="titleInput" data-bind="foreach:
 RegistrationForm.titleOptions">
 <li role="presentation"><a role="menuitem" tabindex="-1"
 data-bind="text: value, click: setTitle">

 </div>
 <span class="help-block" data-bind="validationMessage:
 RegistrationForm.customer.personalInfo.title">
</div>

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[91]

Open the application in the browser and try hitting Submit without entering any
information in the form fields. You should see the error messages and error styles
appear for the title, first name, and last name fields. Try entering the missing
information and see what happens. In my browser, it looks similar to the
following screenshot:

We have reached our first checkpoint for validating the model using
Knockout validation plugin. The code for this checkpoint can be found
at chapter4\ValidationUsingPlugin\checkpoint1.

Validating contact details
The contact details for our customer registration form consists of a phone number,
an e-mail address, and a preferred contact. The requirements are to make these three
fields as required information. In addition to this, the phone number should only
consist of numbers, with minimum length of four and maximum length of nine.
The e-mail should be syntactically valid.

Adding Validation to the Customer Registration Form

[92]

Let's start with modifying the module by adding the extenders to the contact details
observables. Open the module and add an extender to the phoneNumber observable
and mark it as required, with a minimum length of four, maximum length of nine, and
a number type. Add an extender to the email observable and mark it as required and
of type, e-mail. Similarly, add an extender to the preferredContact observable and
mark it as required. The contact details part of your model should look similar to this:

contactDetails: {
 phoneNumber: ko.observable().extend({ required: true, minLength:
 4, maxLength: 9, number: true}),
 emailAddress: ko.observable().extend({ required: true, email:
 true}),
 preferredContact: ko.observable().extend({ required: true})
}

Now we can modify our view to add the validation to these fields. Modifications to
the phone number and e-mail is pretty straightforward. All you need to do is add the
validationElement data binding to the surrounding div elements of these fields.
Go ahead and add the data binding to the phone number and e-mail fields. The
phone number div should look similar to this; the e-mail div would be similar:

<div class="form-group" data-bind="validationElement:
RegistrationForm.customer.contactDetails.phoneNumber">
 <label for="phoneNumberInput">Phone Number</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.contactDetails.phoneNumber"
 id="phoneNumberInput" placeholder="Enter phone number">
</div>

The preferred contact is slightly more complicated. If you apply the
validationElement data binding to the surrounding div of the preferred contact,
you end up with the error messages for both the radio button, as shown in the
following screenshot (this is because the validation plugin will automatically insert
error messages after every input element):

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[93]

The behavior we want to achieve is that the error message only appears once at the
bottom of the radio buttons. To do this, we need to tell the validation plugin not to
insert the messages for this field by using the validationOptions data binding with
insertMessages set to false. We then specify the location of the message by using
the validationMessage data binding. Go ahead and apply the changes described in
the preceding section. You should end up with the preferred contact section of the
view looking similar to this:

<div class="col-md-6">
 <label>Preferred Contact</label>
 <div class="form-group" data-bind="validationElement:
 RegistrationForm.customer.contactDetails.preferredContact,
 validationOptions: {insertMessages: false}">
 <label class="radio-inline">
 <input type="radio" value="phone"
 name="preferredContactInput" data-bind="checked:
 RegistrationForm.customer.contactDetails.preferredContact">
 Phone
 </label>
 <label class="radio-inline">
 <input type="radio" value="email"
 name="preferredContactInput" data-bind="checked:
 RegistrationForm.customer.contactDetails.preferredContact">
 Email
 </label>
 <span class="help-block" data-bind="validationMessage:
 RegistrationForm.customer.contactDetails.preferredContact">

 </div>
</div>

Open the application in the browser and try hitting Submit without entering any
information in the form fields. You should see the error messages and error styles
appear for the phone number, e-mail, and preferred contact fields. Try entering
invalid e-mail address and non-number characters for phone number. In my
browser, it should look similar to this:

Adding Validation to the Customer Registration Form

[94]

We have reached our second checkpoint for validating the model using the
Knockout validation plugin. The code for this checkpoint can be found at
chapter4\ValidationUsingPlugin\checkpoint1.

Validating address details
The address details section of the customer registration form has two parts:
residential address and postal address. Postal address can be either street address
or PO Box address. The requirements for validating residential address is pretty
straightforward. All the fields for residential address are required. The post code
is a number with a maximum length of four. Similar requirements apply to the
postal street and PO Box addresses, the difference being that the validation for
postal address fields is conditional, based on the type of postal address. If the postal
address is of the type street, the street address fields should be validated. If the postal
address is of the type PO Box, the PO Box address fields should be validated.

Let's start with validating the residential address fields. This is similar to what
we have done for the personal information and contact details fields. Modify the
observables in the model for residential address to add the validation extenders.
Make all the fields required. Mark the postCode as a number and give it a maximum
length of four. The residential address in the model should look similar to this:

residential: {
 street: ko.observable().extend({ required: true}),
 city: ko.observable().extend({ required: true}),
 postCode: ko.observable().extend({ required: true, maxLength: 4,
 number: true}),
 country: ko.observable().extend({ required: true})
},

Now modify the corresponding fields in the view and add the validationElement
data bindings to the surrounding div elements of the fields. The following is an
example of the street field; the other fields for residential address should be similar:

<div class="form-group" data-bind="validationElement:
RegistrationForm.customer.address.residential.street">
 <label for="streetInput">Street Address</label>
 <input type="text" class="form-control" data-bind="value:
 RegistrationForm.customer.address.residential.street"
 id="streetInput" placeholder="Enter street address">
</div>

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[95]

Open the application in the browser and make sure that the validation for
the residential address works as expected after making the changes described.
In our browser, it looks similar to this:

Now let's move on to validating the postal address and a slightly more complicated
scenario of conditional validation. We want to validate the street address fields if the
postal address is of the type street. Similarly, we want to validate the PO Box fields
if the postal address is of the type PO Box. Let's start by applying validation to both
the street address and PO Box address fields and see what behavior we get in the
application. This will make us appreciate why conditional validation is important.

Apply validation to both the street address and PO Box address fields by adding the
extenders to the observables in our module and modifying the corresponding fields
in the view and adding the validationElement data bindings. You should be able
to do this by following the example of validating the residential address. Open the
application in the browser after you have applied the validation to the street address
and PO Box address fields. Select postal address type by clicking either the Street
Address or the PO Box radio button. Try submitting the form without entering any
information for the postal address. You should see that the form has errors. Try
populating the postal address fields and submit the form. You should still see errors
in the console log. This is because the errors are on the fields of postal address, which
are not in current view. Switch the postal address type to see the fields with the errors.
We will use conditional validation to solve this problem. This is done by specifying
when the validation should take place by using the onlyIf parameter of the required
extender. The onlyIf parameter takes a method, which should return a true if the
validation is required and false if the validation is not. The following example shows
the street observable with conditional validation if address type is street:

var streetObservable = ko.observable().extend({ required: { onlyIf
: function () {
 return addressType == "street";
}}});

Adding Validation to the Customer Registration Form

[96]

Let's apply conditional validation to our postal address types by using the onlyIf
parameter. As our conditional validation depends on the type attribute in our
model, we have to apply the conditional validation after the model is declared, and
not during declaration as we did in the previous example. We will write a method
that will apply the conditional validation. This method can then be called when the
validation plugin is being configured. First, we write helper methods that return
either a true or a false, depending on the type of postal address. Here is a simple
implementation of these methods:

/* returns true if postal address is of type street */
var isStreetAddress = function () {
 return customer.address.postal.type() == "street";
};

/* returns true if postal address is of type pobox */
var isPoBoxAddress = function () {
 return customer.address.postal.type() == "pobox";
};

Now we will write a method to apply the conditional validation to the postal address
fields using the onlyIf property and the helper methods we described in the
preceding section. The method should look similar to this:

/* method applies conditional validation to the model */
var applyConditionalValidation = function () {
 //postal street address fields
 customer.address.postal.streetAddress.street.extend({ required:
 {onlyIf: isStreetAddress}});
 customer.address.postal.streetAddress.city.extend({ required:
 {onlyIf: isStreetAddress}});
 customer.address.postal.streetAddress.postCode.extend({
 required: {onlyIf: isStreetAddress}});
 customer.address.postal.streetAddress.country.extend({ required:
 {onlyIf: isStreetAddress}});

 //postal PO Box address fields
 customer.address.postal.poBoxAddress.poBox.extend({ required:
 {onlyIf: isPoBoxAddress}});
 customer.address.postal.poBoxAddress.city.extend({ required:
 {onlyIf: isPoBoxAddress}});
 customer.address.postal.poBoxAddress.postCode.extend({ required:
 {onlyIf: isPoBoxAddress}});
 customer.address.postal.poBoxAddress.country.extend({ required:
 {onlyIf: isPoBoxAddress}});
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[97]

The method applies the required extender with the onlyIf parameter to the postal
address fields. An important point to note is that we do not apply the required
extender during our model declaration when applying conditional validation that
depends on another field in the same model. The model should look similar to this:

postal: {
 type: ko.observable(),
 streetAddress: {
 street: ko.observable(),
 city: ko.observable(),
 postCode: ko.observable().extend({ maxLength: 4, number:
 true}),
 country: ko.observable()
 },
 poBoxAddress: {
 poBox: ko.observable().extend({ maxLength: 6, number: true}),
 city: ko.observable(),
 postCode: ko.observable().extend({ maxLength: 4, number:
 true}),
 country: ko.observable()
 }
}

Now, we can call the applyConditionalValidation method from our
configureValidation method below the validation plugin initialization.

One last step is to validate the postal address type field. This is similar to the preferred
contact field validation. Modify the type field of the postal address to mark it as
required and then modify the corresponding section in the view by applying the
validationElement, validationOptions, and the validationMessage data binding.

Try running the application after applying the preceding steps described. Try
different combinations of street and PO Box addresses, and see how it affects the
validation. You should see the conditional validation on the street and PO Box postal
address. With PO Box selected as the postal address type, it looks similar to this in
our browser:

Adding Validation to the Customer Registration Form

[98]

We have reached our third checkpoint for validating the model using the
Knockout validation plugin. The code for this checkpoint can be found at
chapter4\ValidationUsingPlugin\checkpoint1.

Validating credit cards
The requirement for validating credit card is that all the three fields—name, number,
and expiry date—are required. In addition to that, the credit card number should
be of the type number and the expiry date should be of the format "mm/yy". This
would have been simple to implement if we were dealing with statically defined
fields as was the case with our previous examples. In the case of credit cards, we
have to tackle the fields that are dynamically defined.

We will use most of the same concepts of the extenders, validation groups, and
validation data bindings as before. The only difference is that the extenders and
validation groups will have to be dynamically created. Let's start by modifying the
credit card model in the module to dynamically add the extenders. We will also
create a validation group for the new credit card object. Locate the addCreditCard
method in the module. Refactor the method to pull the credit card object, pushed
to the creditCards observable array. Now add the appropriate extenders to
the observables. Create a validation group by using the ko.validation.group
method and store the group returned on the credit card object. The refactored
addCreditCard method should look similar to this:

/* method to add credit card to the credit cards array */
var addCreditCard = function () {
 //create the card object
 var card = { name: ko.observable().extend({ required: true}),
 number: ko.observable().extend({ required: true, number:
 true}),
 expiryDate: ko.observable().extend({ required: true,
 pattern: '^(0[1-9]|1[012])/\\d\\d$'})};
 //create the validation group for the card
 card.errors = ko.validation.group(card);
 //add the newly created card to the array
 customer.creditCards.push(card);
};

The preceding code creates the card object with the required extender for all the
fields. It uses the number extender to mark the number field as a number type. It also
uses the pattern extender to validate the date format.

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[99]

Now, we can update the view to add the validationElement data binding to the
corresponding fields. Locate the section in the view that renders the credit cards.
Add the validationElement data binding to the credit card fields. Here is an
example of the name field; the number and expiry date fields should look similar:

<div class="form-group" data-bind="validationElement: name">
 <label for="ccNameInput">Name on card</label>
 <input type="text" class="form-control" data-bind="value: name"
 id="ccNameInput" placeholder="Enter name on card">
</div>

The last step is to refactor the submit method in the module to display any errors
that exist for credit cards. To do this, you will have to loop through the credit card
array and check the individual card. Call the showAllMessages method on the error
group of the card object if errors exist. Let's make these changes by creating a new
method. The method will return false if any of the credit card fields have an error.
It will also show the errors on the view. If you have a go at writing the method, you
can use the ko.utils.arrayForEach method to loop through the credit card array.
Your method should look similar to this:

/* method returns false if any of the credit cards have
 * errors, true otherwise
 * method also calls show all message on the card object
 */
var checkCeditCardsForErrors = function () {
 var valid = true;
 ko.utils.arrayForEach(customer.creditCards(), function(card) {
 if(card.errors().length > 0) {
 valid = false;
 card.errors.showAllMessages();
 }
 });
 return valid;
};

We will also pull the logic to check for errors in the static fields out of the submit
method to make the code more simple and maintainable. This new method also
returns either a true or a false based on the error state of the static fields. It looks
similar to this:

/* method return false if any of the static fields
 * have errors, true otherwise
 * method also calls show all messages on the static fields
 */
var checkStaticFIeldsForErrors = function () {

Adding Validation to the Customer Registration Form

[100]

 if (customer.errors().length > 0) {
 customer.errors.showAllMessages();
 return false;
 }
 return true;
};

Finally, modify the submit method to use the two new methods we created to check
for errors in the credit card and static fields. The modified submit method should
look similar to this:

/* form submission */
var submit = function () {
 var creditCardError = checkCeditCardsForErrors();
 var staticFieldError = checkStaticFIeldsForErrors();

 if(creditCardError && staticFieldError) {
 console.log("Customer model is valid.");
 console.log(ko.toJSON(customer));
 } else {
 console.log("Customer model has errors.");
 }
};

Try running the application after applying the preceding steps. Submit the form
without entering any information for credit cards. Now add additional cards and
see what happens. In our browser, it looks similar to this:

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[101]

We have reached the final checkpoint for validating the model using the
Knockout validation plugin. The code for this checkpoint can be found
at chapter4\ValidationUsingPlugin\checkpoint1.

Summary
In this chapter, we walked through adding validation to the customer registration
form we built in the previous chapter. The chapter looked at two different techniques
of applying validation. We first explored validating the model using custom
extenders. We defined the required extender and learned how to apply error styles
using the visible and css bindings. We applied validation to the first name field
using our custom extender.

The second part of the chapter looked at applying validation to the model using the
Knockout validation plugin. This part of the chapter walked you through the customer
registration form and applied validation to the personal information, contact details,
address, and credit card fields. We learned how to apply validation to static and
dynamically created fields. We also learned how to apply conditional validation.

The next chapter is a first in a series of three on building a customer banking portal.
In this chapter, we will learn how to build some of the user interface components
required in a complex real-world application.

www.ebook3000.com

http://www.ebook3000.org

[103]

Creating a Customer
Banking Portal

Let us assume a fictional bank, referred to as MyBank, for the purpose of developing
the customer banking portal in this and the next two chapter. The governance board
of MyBank has decided that its time the bank goes digital. The board wants the bank
to maintain market relevance by offering online services to its members. It wants to
provide its members with an easy to use, responsive, rich, and secure online portal.
The CIO of MyBank has contacted you to develop the online portal. The CIO wants
to take an iterative approach to developing this application, and has given you the
following user stories to implement for the first release:

•	 As a member, I want to easily navigate between different features of
the portal

•	 As a member, I want to view the contact details and information about
the bank

•	 As a member, I want to view my accounts
•	 As a member, I want to view the transactions I have made for an account
•	 As a member, I want to view my personal information

This chapter will walk you through designing and developing the customer banking
portal application for MyBank. The customer banking portal application will build
upon the concepts we have learned so far in the previous chapters such as working
with observables, observable arrays, and forms. In addition, we will learn how to use
some of the navigation constructs such as navigation bars and tab containers.

Creating a Customer Banking Portal

[104]

In this chapter, we will learn how to:

•	 Build navigation into your application using a navigation bar
•	 Use a tab container to structure content and application features
•	 Construct master details view using tables

As mandated by the CIO of MyBank, we will be taking an iterative approach to
building the application. Each user story or feature will have a corresponding
checkpoint folder in the accompanying code. The folders are named chapter5\
checkpoint1, chapter5\checkpoint2, and so on.

Mike Cohn describes user story as a short and simple description
of a feature told from the perspective of the person who desires
the new capability, usually a user or customer of the system. You
can find out more about user stories and other agile topics on his
website at http://www.mountaingoatsoftware.com/agile.

Creating the skeleton
We will create the skeleton for the application before we can start developing the
first feature of the customer banking portal. You should be familiar with how to
create a skeleton from the previous chapters.

Create the folder structure and copy the relevant Knockout and Bootstrap files.
Create bankportal.html file under the WebContent folder. This file will hold
our view. The contents of this file should look similar to this:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title>Knockout : Customer banking portal</title>

 <link rel="stylesheet" href="bootstrap/css/bootstrap.min.css">

 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <script type="text/javascript"
 src="javascript/knockout.validation.min.js"></script>
 <script type="text/javascript"
 src="bootstrap/js/bootstrap.min.js"></script>

www.ebook3000.com

http://www.mountaingoatsoftware.com/agile
http://www.ebook3000.org

Chapter 5

[105]

 <script type="text/javascript"
 src="javascript/bankportal.js"></script>
 </head>
 <body>
 <div class="container">
 <!-- content -->
 </div>
 </body>
</html>

Now create the JavaScript file to hold our application module. We will call
it bankportal.js. Add a skeleton module to the file. The skeleton module
should look similar to this:

/* Module for Customer banking portal application */
var BankPortal = function () {

/* add members here */

/* the model */
 var member = {
};

 /* method to initialize the module */
 var init = function () {
 /* add code to initialize this module */
 //apply ko bindings
 ko.applyBindings(BankPortal);
 };

 /* execute the init function when the DOM is ready */
 $(init);

 return {
 /* add members that will be exposed publicly */
 member: member
 };
}();

Creating a Customer Banking Portal

[106]

The resulting folder structure should look similar to this:

View the application in the browser. It should give you a page with the page header.
We are now ready to start developing the user stories.

Let's get started and build the first user story of the customer banking portal.

Navigating between application features
The first user story states that the application should make it easier for the members
to navigate between different application features of the portal. We get an idea of the
application features from the rest of the user stories. The main application features
are the ability to view information about the bank, the contact details, account and
transactions, and personal information. We will divide the screen based on these
features using a navigation bar and a tab container. The navigation bar will be used
to navigate between information about the bank, contact details, and a home page.
The home page will further divide features such as the ability to view accounts and
details and personal information.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[107]

The description of the navigation is depicted in the following wireframe:

A wireframe is a page schematic or a visual design that depicts
the user interface components and the page layout. Wireframes
help in communicating the visual design and site functionality
to the developers.

Let's get started by developing the navigation bar. We will use the HTML nav
element for the top navigation bar. The styling for the navigation bar is provided
by Bootstrap. Open the view in the bankportal.html file and use the nav element
to create the navigation bar. The navigation bar should have a header and the three
navigation options specified in the wireframe. The nav element should be the first
element in the div container. With the Bootstrap styling applied, our nav element
looks similar to this:

<nav class="navbar navbar-default">
 <div class="container-fluid">
 <div class="navbar-header">
 <p class="navbar-text">My Bank Customer Portal</p>
 </div>
 <div id="navbar" class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <li class="active">
 Home

 About

 Contact

 </div>
 </div>
</nav>

Creating a Customer Banking Portal

[108]

View the application in the browser. You should see a page with a navigation bar
at the top with the three navigation options. Try clicking on the navigation options
and see what happens. If you want the navigation bar to be responsive, resize and
adjust it to the screen size. Next, add the following code to the div element with the
navbar-header class before the p element containing the header text:

<button type="button" class="navbar-toggle collapsed"
data-toggle="collapse" data-target="#navbar" aria-expanded="false"
aria-controls="navbar">
Toggle navigation

</button>

View the application in the browser again. Try reducing the size of the browser
window or view the application from a mobile device. You should see the navigation
options disappear and a button appear. Click the button to see the navigation options.

So far, we have implemented the navigation bar, but it really doesn't do much. Let's
give it dynamic behavior by adding a click binding to each navigation option,
which will show or hide the related view. The views for home, about, and contact
can be the div elements for now with place holder text. To add this dynamic
behavior, we first create an observable in our module that will hold the active page.
The active page is the page selected by the user by clicking on the navigation option.
We then add a method to the module to set the active page when the navigation is
clicked upon by using the click binding. To achieve this, add the following code in
the module:

/* attribute to hold the active page */
var activePage = ko.observable("Home");

/* method to set the active page */
var setActivePage = function (page) {
 console.log("Setting active page to: " + page);
 activePage(page);
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[109]

Now, add the click bindings to the anchor elements for home, about, and contact.
Pass the name of the active page to the setActivePage method. The click binding
should look similar to this:

<div id="navbar" class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <li class="active">
 <a href="#" data-bind="click:
 BankPortal.setActivePage.bind($data, 'Home')">Home

 <a href="#" data-bind="click:
 BankPortal.setActivePage.bind($data, 'About')">About

 <a href="#" data-bind="click:
 BankPortal.setActivePage.bind($data, 'Contact')">Contact

</div>

Notice the way we are passing the name of the page to the setActivePage method
in the click binding. The bind method attaches the parameter value to the function
reference. In our case, it will create a new function with a fixed argument, the name
of the page, and attach it to our module referenced by $data. Try running the
application in the browser and click on the navigation options. You should be
able to see the active page observable change by viewing the console logs.

The next step is to write a method in our module that we can use to check whether
a page is active or not. The method will take the name of the page as parameter and
return true if it matches to the active page, otherwise, it will return true. The method
could look similar to the following code; add setActivePage and isActivePage
methods to the return statement of the module so that they are accessible form
the view:

/* returns true if parameter matches
 active page, false otherwise */
var isActivePage = function (page) {
 return activePage() === page;
}

Creating a Customer Banking Portal

[110]

Now, we can add the views for the navigation pages. For now, these can be just
div elements with place holder text. The active page is made visible by using the
visible binding. The navigation pages should look similar to this:

<div id="home" data-bind="visible: BankPortal.isActivePage('Home')">
 <p>--- Content for Home goes here ---</p>
</div>
<div id="about" data-bind="visible: BankPortal.isActivePage('About')">
 <p>--- Content for About goes here ---</p>
</div>
<div id="contact" data-bind="visible: BankPortal.
isActivePage('Contact')">
 <p>--- Content for Contact goes here ---</p>
</div>

Notice that we are not using the bind function to pass the name of the page to the
isActivePage method. The bind function is only required to pass arguments to
methods when using the click binding. Try running the application in the browser
and click on the navigation options. You should see the views change based on the
navigation option clicked. You might also notice that the navigation option selected
is not highlighted to tell the user that it is active. Let's fix this by adding a css
binding to the active navigation. We will make use of our isActivePage method
again. The following is an example of the home navigation option. Update the
navigation options based on this example:

<li data-bind="css: {active: BankPortal.isActivePage('Home')}">
 <a href="#" data-bind="click:
 BankPortal.setActivePage.bind($data, 'Home')">Home

Try running the application after applying the step described earlier. You should
be able to navigate using the options in the navigation bar. So far, in our browser,
it looks similar to the following screenshot:

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[111]

The second part of the navigation feature is to develop tabs for accounts and
personal information. We will develop two tabs, which are specified by the
wireframe—accounts and personal. Developing the tabs container is similar to the
navigation bar we created in the earlier section. Similar to page navigation using the
navigation bar, we will need an observable in our module that will track the active
tab. We also need methods to set the active tab and to check whether the tab is active
or not. To achieve this, add the following code to the module; add the setActiveTab
and isActiveTab methods to the return statement of the module:

/* attribute to hold the active tab */
var activeTab = ko.observable("Accounts");

/* method to set the active tab */
var setActiveTab = function (tab) {
 console.log("Setting active tab to: " + tab);
 activeTab(tab);
};

/* returns true if parameter matches
 active tab, false otherwise */
var isActiveTab = function (tab) {
 return activeTab() === tab;
}

Now that we have the methods in our module to support the tabs container, let's
update our view. The tabs container should go in the div element for the home page.
We use the Bootstrap nav and nav-tabs classes on HTML list to create the tabs,
similar to the navigation bar. Each list item will have an anchor with a click binding
to set the active tab by using the setActiveTab method and passing the name of the
tab as a parameter. Remember to use the bind function when passing a parameter
using the click binding. The list item will also have a css binding to set the active
tab. The css binding should use the isActiveTab method and pass the name of the
tab as a parameter.

Create the views for accounts and personal using div elements. These views can
have place holder text for now. Use the visible binding on the div elements to show
hide the contents for the active tab. These views should go below the tabs container.
The div element for the home page should look similar to this:

<div id="home" data-bind="visible: BankPortal.isActivePage('Home')">
 <ul class="nav nav-tabs">
 <li data-bind="css: {active:
 BankPortal.isActiveTab('Accounts')}">

Creating a Customer Banking Portal

[112]

 <a href="#" data-bind="click:
 BankPortal.setActiveTab.bind($data,
 'Accounts')">Accounts

 <li data-bind="css: {active:
 BankPortal.isActiveTab('Personal')}">
 <a href="#" data-bind="click:
 BankPortal.setActiveTab.bind($data,
 'Personal')">Personal

 <div id="accounts" data-bind="visible:
 BankPortal.isActiveTab('Accounts')">
 <p>--- Content for Accounts goes here ---</p>
 </div>
 <div id="personal" data-bind="visible:
 BankPortal.isActiveTab('Personal')">
 <p>--- Content for Personal goes here ---</p>
 </div>
</div>

Open the application in the browser. Try switching through the different navigation
options. You should now see the tabs container under the home page. Try switching
through the two tab options of accounts and personal. In our browser, it should look
similar to this:

We have reached our first checkpoint. The code for this checkpoint can be found at
chapter5\checkpoint1.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[113]

Viewing contact details and information
about the bank
The second user story states that the application should provide the ability to the
user to view contact details and information about the bank. We have already
developed the about and contact details pages as part of the first story. All
we have to do now is to add content to the relevant sections.

The requirements for the contact details, specified by the client, are relatively
straightforward. We need to display contact details for general enquires and lost or
damaged card. We will use the Bootstrap panel to display this information. Open the
view and create a div element for the panel to display the contact details for general
enquiry. This div element goes in the section we created for the contact page earlier
that contained the place holder text. Add the panel heading and body by using the
panel-heading and panel-body CSS styles. Add contact details; you can make up
the phone numbers and operating hours. Surround the panel with a div element and
grid CSS to make it responsive. After adding panels for both general enquiries and
lost or damaged cards, our code looks similar to this:

<div id="contact" data-bind="visible:
BankPortal.isActivePage('Contact')">
 <div class="row">
 <div class="col-md-6">
 <div class="panel panel-default">
 <div class="panel-heading">General enquiries</div>
 <div class="panel-body">
 <p>Call us: 111 1111 </br> 24 hours a day</p>
 <p>Calling from overseas? </br>
 Call us: +000111 111111 </br> 24 hours a day</p>
 </div>
 </div>
 </div>
 <div class="col-md-6">
 <div class="panel panel-default">
 <div class="panel-heading">Lost or damaged card</div>
 <div class="panel-body">
 <p>Call us: 111 2222 </br> 24 hours a day</p>
 <p>Calling from overseas? </br>
 Call us: +000111 222222 </br> 24 hours a day</p>
 </div>
 </div>
 </div>
 </div>
</div>

Creating a Customer Banking Portal

[114]

Open the application in the browser and navigate to the contact page. It should look
similar to this:

The requirements for displaying information about the bank, as specified by the
client, is slightly more complicated. The client wants to display three pieces of
information; open an account, lost cards, and make a donation. The clients wants to
display this information in a carousel. To satisfy the requirement, we will use the
carousel component from Bootstrap. Add the following code to the about section of
the view—the div element with the about ID:

<div id="myBankCarousel" class="carousel slide"
data-ride="carousel">
 <!-- Indicators -->
 <ol class="carousel-indicators">
 <li data-target="#myBankCarousel" data-slide-to="0"
 class="active">
 <li data-target="#myBankCarousel" data-slide-to="1"
 class="">
 <li data-target="#myBankCarousel" data-slide-to="2"
 class="">

 <div class="carousel-inner" role="listbox">
 <div class="item active">
 <div class="container">
 <div class="carousel-caption">
 <h1>Open an account online in minutes</h1>
 <p>No need to visit a branch! No more waiting in
 queues!</p>
 <p>
 Sign
 up today
 </p>
 </div>

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[115]

 </div>
 </div>
 <div class="item">
 <div class="container">
 <div class="carousel-caption">
 <h1>Lost your card?</h1>
 <p>Report your lost card online and we will send you a
 new one!</p>
 <p>
 <a class="btn btn-default" href="#"
 role="button">Learn more
 </p>
 </div>
 </div>
 </div>
 <div class="item">
 <div class="container">
 <div class="carousel-caption">
 <h1>Make a donation</h1>
 <p>Make a donation online through us to your favourite
 charity.</p>
 <p>
 <a class="btn btn-default" href="#"
 role="button">Donate
 </p>
 </div>
 </div>
 </div>
 </div>
 <a class="left carousel-control" href="#myBankCarousel"
 role="button" data-slide="prev">
 <span class="glyphicon glyphicon-chevron-left"
 aria-hidden="true">
 Previous

 <a class="right carousel-control" href="#myBankCarousel"
 role="button" data-slide="next">
 <span class="glyphicon glyphicon-chevron-right"
 aria-hidden="true">
 Next

</div>

Creating a Customer Banking Portal

[116]

The next step is to create a CSS file called carousel.css and include it in the view.
This file will hold styles to customize the carousel. If the CSS file is created in the css
folder, the inclusion should look similar to this:

<link rel="stylesheet" href="css/carousel.css">

This file should be included after the CSS for Bootstrap as it overrides some styles.
Open the newly created carousel.css file and add the following content:

/* ------ CUSTOMIZE THE CAROUSEL ------ */
.carousel {
 height: 300px;
 margin-bottom: 60px;
}
.carousel-caption {
 color: #a8a8a8;
}
.carousel .item {
 height: 300px;
 background-color: #f7f7f7;
}
.carousel-indicators li {
 background-color: #a8a8a8;
 border: 1px solid #979797;
}
.carousel-indicators .active {
 border: 1px solid #979797;
}

Let's take a minute to go through what we have done. We created a carousel
component using Bootstrap. This component is div with the myBankCarousel
ID. The ID is mandatory for this component for the controls to function properly.
The carousel class on the div element specifies that this is a carousel. The slide
class specifies the CSS transition and animation effects. The list element with the
carousel-indicators class are responsible for displaying the little dots at the
bottom of the carousel to indicate the active item. The slide items are created in the
div element with the carousel-inner class. Each item is a div element with the
item class. The controls to move the carousel left or right are specified by the anchor
elements with the left or right classes and the carousel-control class.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[117]

Try running the application in your browser and go to the about page. You should
see the carousel component. Try navigating by using the left and the right buttons.
It looks similar to the following screenshot in our browser:

We have reached our second checkpoint. The code for this checkpoint can be found
at chapter5\checkpoint2.

Viewing accounts
We will implement the third user story in this section, which is about displaying
account information to the members of MyBank. The requirements for this story,
as mandated by the client, are that the account information be displayed in a table
under the accounts tab that we created earlier. The account information must include
the name of the branch the account is held at, the account number, type of account,
and the current account balance. The accounts in the table should also be numbered.
The client has also stated that any amount figure displayed in the application should
be in the currency format.

Creating a Customer Banking Portal

[118]

This story requires us to retrieve account information from the server side. To keep
the implementation simple and to focus on the client-side development, a server stub
is provided, which simulates the server interaction. Let's get started by including the
stub in our application. Download the serverstub.js file from chapter5\server.
Copy the file to the javascript folder of your project. Edit bankportal.html and
include serverstub.js before the JavaScript file for our bank portal module. The
JavaScript inclusion should now look similar to this:

<script type="text/javascript"
src="javascript/jquery-2.1.3.min.js"></script>
<script type="text/javascript"
src="javascript/knockout-3.2.0.js"></script>
<script type="text/javascript"
src="javascript/knockout.validation.min.js"></script>
<script type="text/javascript"
src="bootstrap/js/bootstrap.min.js"></script>
<script type="text/javascript"
src="javascript/serverstub.js"></script>
<script type="text/javascript"
src="javascript/bankportal.js"></script>

The server stub gives us a method called getMemberData, which retrieves and
returns member data object containing members personal and account information.
To use this module, declare an attribute in your bank portal module and execute the
server module:

/* module to retrieve data from the server */
var server = ServerStub();

We can now retrieve the member data by calling the getMemberData method. Here is
an example:

console.log("Retrieving data from server......")
var data = server.getMemberData();

The next step is to declare the model and populate it with the data retrieved from the
server side. Our model at this stage will only contain an array to hold the accounts.
Declare the model like this:

/* the model */
var member = {
 accounts: ko.observableArray()
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[119]

The data returned by our server is an object, which is an array of accounts. Each
account has an object called summary, which contains the name of the branch the
account is held at, account number, type, and account balance. We will populate
our accounts array in the model with the summary objects in the data retrieved
from the server. Let's do this in a method and call it retrieveData. Here is our
implementation of this method:

/* method retrieves data from the server side and sets it in the
model */
var retrieveData = function() {
 console.log("Retrieving data from server......")
 var data = server.getMemberData();
 console.log("Data retrieved from server: " + ko.toJSON(data));

//add accounts to the model
 data.accounts.forEach(function(account) {
 member.accounts.push({summary: account.summary});
 });
};

The method retrieves the member data by calling the getMemberData method on
the server stub module. It logs the data to the console in the form of JSON string. The
Ko.toJSON method is used to convert the object to its JSON string representation.
The second part of the method iterates over the accounts array in the data and adds
the summary objects to our accounts' observable array. You can now call this method
from the init method of the bank portal module:

var init = function () {
 /* add code to initialize this module */
 retrieveData();
 //apply ko bindings
 ko.applyBindings(BankPortal);
};

Creating a Customer Banking Portal

[120]

Try running the application in the browser and view the console window.
You should see the data retrieved printed in the logs. Our Console window
looks similar to this:

One last step we must perform on the module, before we can start on the view, is to
create a strategy to display the amount in currency format. We have a few options
on how to achieve this. We can iterate over the accounts and convert each amount
attribute into a formatted currency string. Another option is to add a computed
observable that returns the formatted amount. Using extenders is also an option.
However, a more generic solution is to construct a custom binding that returns a
given number to a formatted currency string.

A custom binding is created by adding a binding handler to Knockout binding
handler object. Here is the basic construct:

ko.bindingHandlers.customBindingName = {
 init: function(element, valueAccessor) {
 // called when binding is first applied to the element
 },
 update: function(element, valueAccessor) {
 // called when binding is first applied and every time the
 observable changes value
 }
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[121]

The init method is called when the binding is first applied to the DOM element.
The update method is called when the binding is first applied and every time the
observable changes its value. The element parameter in the two method is the
underlying DOM element. The valueAccessor is a function that returns the
current value of the property in the model. We apply the custom binding just
like any other binding:

<div data-bind="customBindingName: attributeValue"> </div>

Let's use the custom bind construct described here to create a custom binding
that formats our account balance from a number to a formatted currency text. I
recommend creating a separate module for defining all the Knockout customizations.
Create a module in its own JavaScript file. We will call the file, configureknockout.
js, and the module, ConfigureKnockout. Include the newly created JavaScript file in
bankportal.html. The include statement for configureknockout.js must be after
the core Knockout JavaScript file and before bankportal.js. The module does not
need to return anything in its return statement as it does not contain any attributes
or function that need to accessed publically. Now, add a custom binding handler that
accesses the value of the observable, formats the value as a currency string, and sets
the formatted string in the DOM element. Our implementation of the module looks
similar to this:

/* Module for configuring Knockout */
var ConfigureKnockout = function () {

 /* method to add custom currency binding */
 var applyCurrencyBinding = function () {
 /* custom binding for currency */
 ko.bindingHandlers.currency = {
 update: function(element, valueAccessor){
 // retrieve observable value
 var value = ko.utils.unwrapObservable(valueAccessor()) ||
 0;
 //format currency
 var formattedText = "$" +
 value.toFixed(2).replace(/(\d)(?=(\d{3})+\.)/g, "$1,");
 //apply formatted text to the underlying DOM element
 $(element).text(formattedText);
 }
 };
 };

 /* add code to initialize this module */
 var init = function () {

Creating a Customer Banking Portal

[122]

 applyCurrencyBinding();
 }();

 return {
 /* nothing to return */
 };
}();

The module has an applyCurrencyBinding method, which is called from the
init method. Notice that the init method is fired when the module is loaded.
It does not have to wait for the HTML document to be ready. It does have a
dependency on Knockout and must be loaded after the core Knockout library.
The applyCurrencyBinding method creates the custom currency handler,
ko.bindingHandlers.currency. The currency handler has a method called
update. The update method retrieves the value of our observable by calling the
valueAccessor method. It unwraps the observable to its plain value by using
ko.utils.unwrapObservable. The value is set to 0 if no value is returned by
the observable. The value is then formatted to a currency text by using a regex
expression. The last step is to set the value in the underlying DOM element.
We use jQuery to set the text value in the DOM element.

Now that we have retrieved data from the server side, populated our model, and
created a custom binding to display currency, we can work on the view. Open the
view in bankportal.html and locate the div element for accounts. The div element
should have id="accounts" and its contents should be <p>--- Content for
Accounts goes here ---</p>. Delete the current contents and replace it with a
table. Use the foreach binding to render the accounts from the model. The table
should have columns for row number, branch name, account number, account type,
and account balance. Use currency custom binding for the account balance. We can
use $index() to display the row number by adding one to it. The rest of the columns
map to the attributes in the account object of our model. Wrap the table in a panel and
give it a heading. Make the component responsive by wrapping it in div and giving
it the row and col-md-12 style classes. Use table-hover style class on the table
element to give its rows a hover effect. Our implementation looks similar to this:

<div id="accounts" data-bind="visible:
BankPortal.isActiveTab('Accounts')">
 <div class="row">
 <div class="col-md-12">
 <div class="panel panel-default">
 <div class="panel-heading">Summary</div>

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[123]

 <div class="panel-body">
 <table class="table table-hover">
 <thead>
 <tr>
 <th>#</th>
 <th>Branch</th>
 <th>Number</th>
 <th>Type</th>
 <th>Balance</th>
 </tr>
 </thead>
 <tbody data-bind="foreach:
 BankPortal.member.accounts">
 <tr>
 <td data-bind="text: ($index() + 1)"></td>
 <td data-bind="text: summary.branch"></td>
 <td data-bind="text: summary.number"></td>
 <td data-bind="text: summary.type"></td>
 <td data-bind="currency: summary.balance"></td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 </div>
</div>

As you may have noticed, we have used the Bootstrap panel to give our table
a header. The header is in the div element with the panel-heading style class.
The table is wrapped in the div with the panel-body style class.

Creating a Customer Banking Portal

[124]

Try running the application in your browser. You should see the table with the
account information retrieved from the server. Move the mouse over the rows to
see the hover effect. In our browser, it looks similar to the following screenshot:

We have reached our third checkpoint. The code for this checkpoint can be found at
chapter5\checkpoint3.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[125]

Viewing transactions for an account
The next user story is about displaying transactions made for an account. The client
wants to see the transactions listed in a table below the accounts table we developed
in the previous section. The user must be able to select the account by clicking on
the row to view the account's transactions. A transaction must include the date the
transaction took place, a short description of the transaction, transaction category,
and the amount. The transactions in the table should also be numbered. The user
should be informed to select an account to see transaction and if no transactions exist
for an account.

The transactions data for each account is retrieved from the sever side as part of the
server.getMemberData call. Each account object in the returned data contains a
summary and a transactions object. The transactions object is an array of transactions
with transaction date, description, category, and amount.

The first step is to allow the user to be able to select an account by clicking on a row
in the accounts table. To do this, we will add a click binding on the accounts table
row. Add a click binding to the accounts table tr element and bind it to the method
called setSelectedAccount in the BankPortal module. The accounts table tr
element should now look similar to this:

<tr data-bind="click: BankPortal.setSelectedAccount">
 ………………
</tr>

Let's now add the setSelectedAccount method to our module. This method should
take one argument—the account that the user clicked on.

The click bind passes the current array object as the first
parameter in the bounded method when used within a
foreach construct.

Creating a Customer Banking Portal

[126]

Update the model to add an attribute to hold our selected account. Set the selected
account in the setSelectedAccount method. Add the setSelectedAccount method
to the return statement of the module as it is used in the view by the click binding.
Our implementation of the setSelectedAccount method looks similar to this:

/* sets the selected account */
var setSelectedAccount = function (account) {
 console.log("Setting selected account: " +
 account.summary.number);
 member.selectedAccount(account);
};

Notice how the selected account is set in the member model. This is because the
selected account is an observable and is declared in the model like this:

selectedAccount: ko.observable()

Now that we know which account the user has selected, it's time to highlight the
view. We do this by adding a style called active on the selected account. To do this,
add a css binding to the account table tr element and bind it to isSelectedAccount
method in our module. Pass the current account by passing the $data parameter to
the method. Unlike the click binding, the css binding does not pass the current row
object by default. Our tr element now looks similar to this:

<tr data-bind="click: BankPortal.setSelectedAccount, css: {active:
BankPortal.isSelectedAccount($data)}">

Update the module to add the isSelectedAccount method. This method simply
returns either a true or a false by comparing the account passed as the parameter
with our selected account from the model. Add the isSelectedAccount method to
the return statement of the module. The implementation should look similar to this:

/* returns true if the account matches selected account, false
otherwise */
var isSelectedAccount = function (account) {
 return account === member.selectedAccount();
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[127]

Open the application in the browser and try selecting an account by clicking on a
row in the accounts table. You should be able to see the selected account highlighted.
You should also see the selected account in the console logs. In our browser, it looks
similar to the following screenshot; notice how the selected account is highlighted:

The next step is to display the transaction for the selected account. To achieve
this, we will add an observable array to the model to hold the selected account's
transactions. We will set this observable array with the transactions of the selected
account in the setSelectedAccount method. We will also update the retrieveData
method to add an observable array for the account's transactions.

Creating a Customer Banking Portal

[128]

Let's update the retrieveData method. We need to add an observable array to the
accounts object to hold the account's transactions. The construct to push the accounts
to our accounts array in the retrieveData method should now look similar to this:

//add accounts to the model
data.accounts.forEach(function(account) {
 member.accounts.push({summary: account.summary, transactions:
ko.observableArray(account.transactions)});
});

Add a transactions observable array to the model that will be used to hold the
transaction for the selected account. Your model should now look similar to this:

/* the model */
var member = {
 accounts: ko.observableArray(),
 selectedAccount: ko.observable(),
 selectedAccountTransactions: ko.observableArray([])
};

Now we can update our setSelectedAccount method to set the transactions
for the selected account. Add the transactions from the selected account to
the selectedAccountTransactions attribute in the model. Our updated
setSelectedAccount method looks similar to this:

/* sets the selected account */
var setSelectedAccount = function (account) {
 console.log("Setting selected account: " +
 account.summary.number);
 member.selectedAccount(account);
 member.selectedAccountTransactions(account.transactions());
};

Now that we have populated our model with the transactions and set the selected
account, we can now work on the view. Open the view in bankportal.html and
locate the div element for accounts. The div should have id="accounts". Add
another div below the accounts table to display the transactions. Use foreach
binding to render the selectedAccountTransactions function from the model. The
table should have columns for row number, date, description, category, and amount.
Use currency custom binding for the transaction amount. Use $index() to display
the row number by adding one to it. Wrap the table in a panel and give it a heading.
Make the component responsive by wrapping it in DIV and giving it the row and
col-md-12 style classes. Our implementation looks similar to this:

<div class="col-md-12">
 <div class="panel panel-default">

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[129]

 <div class="panel-heading">Transactions</div>
 <div class="panel-body">
 <table class="table">
 <thead>
 <tr>
 <th>#</th>
 <th>Date</th>
 <th>Description</th>
 <th>Category</th>
 <th>Amount</th>
 </tr>
 </thead>
 <tbody data-bind="foreach:
 BankPortal.member.selectedAccountTransactions">
 <tr>
 <td data-bind="text: ($index() + 1)"></td>
 <td data-bind="text: date"></td>
 <td data-bind="text: description"></td>
 <td data-bind="text: category"></td>
 <td data-bind="currency: amount"></td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
</div>

Try running the application in the browser. You should see a panel with a heading,
Transactions, under the accounts panel with a table. The table will not have any rows
to start with. Try clicking on an account to see the transactions appear. Try switching
to another account.

One last step before we can consider this user story done is to inform the user to select
an account to see the transactions. The use should also be informed if no transactions
exist for an account. We will use the if and ifnot bindings to achieve this.

The if binding adds the contents to the DOM of the HTML
element it is applied to if the condition specified evaluates to
true. The ifnot binding just inverts the specified condition.

Creating a Customer Banking Portal

[130]

Add a p HTML element before the transactions table with text that informs the
user to select an account to view its transactions. Apply the ifnot binding with a
condition checking for the selectedAccount method in our model. It should look
similar to this:

<p data-bind="ifnot: BankPortal.member.selectedAccount">Select an
account to view transactions</p>

Add another p HTML with text, informing the user that the account selected
does not have any transactions. Apply the if binding with the condition that
selectedAccount exists and that the selectedAccount has transactions.
It should look similar to this:

<p data-bind="if: (BankPortal.member.selectedAccount() &&
BankPortal.member.selectedAccountTransactions().length == 0)">No
transaction exist for this account</p>

Notice the use of the && logical operator to construct a more complex expression.
Finally, apply the if binding to the transactions table and specify the condition that
an account is selected and it has one or more transactions. The table start element
with the if condition should look similar to this:

<table class="table" data-bind="if:
(BankPortal.member.selectedAccount() &&
BankPortal.member.selectedAccountTransactions().length > 0)">

The if and visible bindings play a similar role. The if binding
adds or removes the contents of the element it is applied to,
whereas the visible binding shows or hides the content using
CSS. Use the visible binding if you want the contents in the
DOM added but just hidden form the user.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[131]

Try running the application in your browser. You should see the table with the
account information retrieved from the server with a panel below for transactions.
The panel should inform the user to select an account. Try selecting an account to
see its transactions. Try looking for an account with no transactions. In our browser,
it looks similar to the following screenshot:

We have reached our fourth checkpoint. The code for this checkpoint can be found at
chapter5\checkpoint4.

Creating a Customer Banking Portal

[132]

Viewing personal information
The last user story for this chapter is about displaying the personal information to the
user. The personal information includes user's first name, last name, phone number,
e-mail address, and postal address. We are instructed to display this information in a
form. The user should not be able to edit the information in the form. The user story
to be able to edit the personal information will come at a later stage.

Let's start by retrieving the personal information form the server data and
constructing our model. The data for personal information is retrieved from the sever
side as part of the server.getMemberData call. We need to extract this data and set
it in our model. Update the model and add attributes for first name, last name, phone
number, e-mail address, and postal address. The postal address should include
attributes for street, city, post code, and country. We will make this attributes as
observables keeping in mind that we will need to implement the edit functionality in
the future. Go ahead and update the model. With the added fields, the model should
look similar to this:

/* the model */
var member = {
 personal: {
 firstName: ko.observable(),
 lastName: ko.observable(),
 address: {
 street: ko.observable(),
 city: ko.observable(),
 postCode: ko.observable(),
 country: ko.observable()
 },
 contactDetails: {
 phoneNumber: ko.observable(),
 emailAddress: ko.observable()
 }
 },
 accounts: ko.observableArray(),
 selectedAccount: ko.observable(),
 selectedAccountTransactions: ko.observableArray([]),
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[133]

Now that we have updated the model, let's populate it with the data from the server
side. Update the retrieveData method to add code for populating the model. Our
retrieveData method should now look similar to this:

/* method retrieves data from the server side and sets it in the
model */
var retrieveData = function() {
 console.log("Retrieving data from server......")
 var data = server.getMemberData();
 console.log("Data retrieved from server: " + ko.toJSON(data));

 //add accounts to the model
 data.accounts.forEach(function(account) {
 member.accounts.push({summary: account.summary, transactions:
 ko.observableArray(account.transactions)});
 });

 //add personal information to the model
 member.personal.firstName(data.personal.firstName);
 member.personal.lastName(data.personal.lastName);
 member.personal.contactDetails.phoneNumber(data.personal.
 phoneNumber);
 member.personal.contactDetails.emailAddress(data.personal.
 emailAddress);

 member.personal.address.street(data.personal.address.street);
 member.personal.address.city(data.personal.address.city);
 member.personal.address.postCode(data.personal.address.postCode);
 member.personal.address.country(data.personal.address.country);
};

Now that our model is ready, we can work on the view. Open the view in
bankportal.html and locate the div element for personal. The div element should
have id="personal" and its contents should be <p>--- Content for Personal
goes here ---</p>. Delete the place holder p element and use a panel for personal
information with a panel header and a body, similar to the panel we used for the
accounts. Use a form to display the personal information. Bind the form input
elements to the observables in the model. Mark the input fields as read only by using
the enable binding. Let's start with first name, last name, phone number, and e-mail
address. So far, our form looks similar to this:

<form>
 <fieldset>
 <div class="row">
 <div class="col-md-6">

Creating a Customer Banking Portal

[134]

 <div class="form-group">
 <label for="firstNameInput">First Name</label>
 <input type="text" class="form-control"
 data-bind="enable: false, value:
 BankPortal.member.personal.firstName"
 id="firstNameInput">
 </div>
 </div>
 <div class="col-md-6">
 <div class="form-group">
 <label for="lastNameInput">Last Name</label>
 <input type="text" class="form-control"
 data-bind="enable: false, value:
 BankPortal.member.personal.lastName" id="lastNameInput">
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-6">
 <div class="form-group">
 <label for="phoneNumberInput">Phone number</label>
 <input type="text" class="form-control"
 data-bind="enable: false, value:
 BankPortal.member.personal.contactDetails.phoneNumber"
 id="phoneNumberInput">
 </div>
 </div>
 <div class="col-md-6">
 <div class="form-group">
 <label for="emailInput">Email</label>
 <input type="text" class="form-control"
 data-bind="enable: false, value:
 BankPortal.member.personal.contactDetails.emailAddress"
 id="emailInput">
 </div>
 </div>
 </div>
 </fieldset>
</form>

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[135]

Try running the application in the browser and view the personal tab. You should
see the form with the fields we created using the preceding code. Notice that the
fields are read only. This is because we used the enable binding on the input fields
and specified it as false.

Complete the form by adding the fields for postal address details. Run the
application again once you have added the fields for the address. You should now
see all the fields under the personal tab. In our browser, it should look similar to the
following screenshot:

We have reached our last checkpoint for this chapter. The code for this checkpoint
can be found at chapter5\checkpoint5.

Creating a Customer Banking Portal

[136]

Summary
In this chapter, we walked through building a customer banking portal for MyBank.
We took an iterative approach to develop the application as instructed by the CIO
of MyBank.

In the first section, we implemented a user story that was about setting up the
navigation so that the users could easily navigate through the application and find
the information they require. We developed a navigation bar and a tab container
to display different sections of the view. The second section was about displaying
static information on different view sections. We developed a carousel component to
display useful information and also learned how to use the panels. We implemented
the displaying of accounts information in the third section of the chapter. We
retrieved user data from the server and mapped it to our model. The fourth section
was about giving our users the ability to select an account and view its transactions.
We achieved this by developing a master details component using tables. In the last
section, we implemented displaying user information in a form.

In the next chapter, we will enhance the customer banking portal by adding new
features. We will give our users the ability to edit their personal information and
transfer funds between their accounts.

www.ebook3000.com

http://www.ebook3000.org

[137]

Enhancing the Customer
Banking Portal

The customer banking portal we developed in the previous chapter was well
received by the stockholders at MyBank and the client has decided to enhance the
portal by adding more features. The CIO of MyBank wants us to continue with the
iterative approach and has given us the following user stories to implement for the
second release:

•	 As a member, I want to be able to update my personal information
•	 As a member, I want to be able to cancel updating personal information and

revert my changes
•	 As a member, I want to only update validated personal information
•	 As a member, I want to transfer funds between my accounts

This chapter is the second in the series on building a customer banking portal.
It picks up the development from where we left it in the previous chapter and adds
new features to it. In this chapter, we will build on the concepts we have learned
so far and apply them in constructing more complex components such as wizards,
dialog boxes, and sliders.

In this chapter, we will learn how to:

•	 Enable and disable form fields
•	 Submit information from a web form to the server side
•	 Revert changes to observables using the memento pattern
•	 Validate form fields

Enhancing the Customer Banking Portal

[138]

•	 Construct a generic and reusable wizard component
•	 Communicate events between modules using call backs
•	 Use the wizard component to develop business features

As mandated by the CIO of MyBank, we will continue taking the iterative approach
to building the application. Each user story or feature has a corresponding
checkpoint folder in the accompanying code.

Updating personal information
The last story of the previous chapter was about displaying the personal information
to the user. The personal information included user's first name, last name, phone
number, e-mail address, and postal address. This story builds on where we left the
application in the previous chapter and gives the users the ability to update their
personal information.

We implemented a form with its input fields disabled for displaying the personal
information. The requirements for this user story are to allow the user to enable
the form fields so that the information can be updated. The fields should go back
to disabled state once the personal information is updated. The user should also be
informed when the personal information fields are updated on the server.

You should start on this story by checking out code from chapter5\checkpoint5.
This story requires an updated server stub. Download the serverstub.js file from
chapter6\server. Copy the serverstub.js file to the javascript folder of your
project, overriding the existing serverstub.js file. Run the application by opening
the bankportal.html file in the browser. Do a quick sanity check of the application by
making sure that the features we implemented in the previous chapter are functional.
We are now ready to develop the user story for updating personal information.

We will use an attribute to specify whether the form fields are editable or not.
Let's call this attribute personalInformationEditMode. This attribute must be an
observable as we will use it to enable or disable form fields. Open the module in the
bankportal.js file and add this attribute:

/* edit mode for personal information */
var personalInformationEditMode = ko.observable(false);

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[139]

Add the preceding attribute to the return statement of the module so that it
becomes accessible from the view. We need a method to enable edit mode for
personal information form fields by setting personalInformationEditMode to
true and a method to disable the edit mode by setting the attribute to false. Add
these two methods to the module. Our implementation of these methods could look
similar to this:

/* method to enable personal information edit mode */
var enablePersonalnformationEdit = function () {
 personalInformationEditMode(true);
};
/* method to cancel personal information edit mode */
var cancelPersonalInformationEdit = function () {
 personalInformationEditMode(false);
};

The next step is to add a method to submit the personal information to the server
side. The server stub exposes a method called updatePersonalInformation, which
we will use to send the personal information to the server side. This method takes
an object as the parameter that holds the personal information. We will need to
convert our model, holding the personal information, from an observable to a plain
JavaScript object to pass it to the updatePersonalInformation method. To do
this, we use the ko.toJS method. Given an observable, this method returns a plain
JavaScript object. Our implementation of the method looks similar to this:

/* method to submit personal information to the server */
var submitPersonalInformation = function () {
 console.log("Updating personal information on the server: " +
 ko.toJSON(member.personal));
 server.updatePersonalInformation(ko.toJS(member.personal));
 console.log("Personal information updated on the server.....")

 personalInformationEditMode(false);
};

The ko.toJS method returns a plain copy of the view model that only
contains the data without any Knockout-related artifacts. It returns a
JSON string representation of the view model.

Notice the use of ko.toJS method. Also note that we are setting the edit
mode of the personal information form fields to false once we have updated the
personal information. Don't forget to add this and the two methods we created
earlier in this session to the return statement of the module so that they become
publically accessible.

Enhancing the Customer Banking Portal

[140]

We are now ready to start on the view. We will add a button after the form fields
to enable edit mode. Add this button before the closing form HTML element of the
personal information form and give it a label. Add a click binding to the button and
bind it to the enablePersonalnformationEdit method of the module. The button
should only appear if the edit mode for personal information in not enabled. Add
a visible binding to the button and check for personalInformationEditMode. The
button should look similar to this:

<button type="button" class="btn btn-default" data-bind="visible:
BankPortal.personalInformationEditMode() == false, click:
BankPortal.enablePersonalnformationEdit">Edit</button>

Knockout bindings automatically unwrap observables and
use their value. If there were an invisible binding, we would
not need to unwrap the personalInformatioEditMode
observable used in the preceding code.

The next step is to make the form fields enable or disable based on the edit mode. Do
this by updating the enable data binding to check for personalInformationEditMode.
The following is an example for the first name field with the change highlighted:

<div class="form-group">
 <label for="firstNameInput">First Name</label>
 <input type="text" class="form-control" data-bind="enable:
 BankPortal.personalInformationEditMode, value:
 BankPortal.member.personal.firstName" id="firstNameInput">
</div>

Update the rest of the form fields and apply the enable binding with
personalInformationEditMode. We can add the Submit button now so that we can
enable the form fields for editing. Add a button of type submit under the previously
added Edit button. Add a visible binding to this button and make it appear only if
the edit mode is enabled. It should look similar to this:

<button type="submit" class="btn btn-primary" data-bind="visible:
BankPortal.personalInformationEditMode">Submit</button>

We now add a submit binding to the form and specify the method to be called in our
module when the Submit button is clicked. Add the submit binding to the form and
specify the submitPersonalInformation method in our module. The form should
look similar to the following example; note that the form body is not shown:

<div class="panel panel-default">
 <div class="panel-heading">Personal Information</div>
 <div class="panel-body">

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[141]

 <form data-bind="submit:
 BankPortal.submitPersonalInformation">
 <fieldset>

 </fieldset>
 </form>
 </div>
</div>

Open the application in your browser. Go to the personal information tab under the
home navigation page. You should now see a button, under the form, labeled Edit.
Clicking this button should enable the edit mode. You should now see a button
labeled Submit. The form fields should also become editable. Try updating the
personal information and hit the Submit button. The updated data should get
sent to the server side and the form should exit the edit mode.

The last step in this story is to inform the user once the personal information
has been updated on the server side. We will use a Bootstrap alert construct to
display a message to the user. The message will get displayed based on a flag in
the module. A flag is just an attribute that is used to indicate a state. We will call
this flag showPersonalInformationEditDone. Open the view and add the alert
as the first element after the form element. Make the alert appear based on the
showPersonalInformationEditDone flag in the module by using the visible
binding. It should look similar to this:

<div class="panel panel-default">
 <div class="panel-heading">Personal Information</div>
 <div class="panel-body">
 <form data-bind="submit:
 BankPortal.submitPersonalInformation">
 <div class="alert alert-success" role="alert"
 data-bind="visible:
 BankPortal.showPersonalInformationEditDone">
 Done! Personal information updated </div>
 <fieldset>

 </fieldset>
 </form>
 </div>
</div>

Enhancing the Customer Banking Portal

[142]

Update the module to add the showPersonalInformationEditDone flag. Add the
flag to the return statement of the module. It should look similar to this:

/* flag to show personal information update message */
var showPersonalInformationEditDone = ko.observable(false);

Note that the flag is initially set to false. Set the flag to true in the
submitPersonalInformation method. Set the flag to false in the
enablePersonalnformationEdit method.

Open the application in the browser. Navigate to the Personal Information tab
and try enabling the edit mode. Update the information in the form fields and hit
Submit. You should see the updated information sent to the server. The form should
come out of the edit mode and you should see a message informing you that the
personal information has been updated. In our browser, this feature looks similar
to this:

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[143]

We have reached our first checkpoint for this chapter. The code for this checkpoint
can be found at chapter6\checkpoint1.

Cancel updating the personal information
We gave our users the ability to edit their personal information in the previous user
story. Once the users start editing, they do not have a way to cancel if they don't
want to go ahead with the changes. In this user story, we will give our users the
ability to cancel editing the personal information form. The requirement of the user
story is to provide a button, with a label Cancel, in the edit mode. Clicking the
Cancel button should revert any changes made to the form fields and take the form
out of the edit mode. The user would also like to be informed that the edit was
cancelled and any change to personal information was not saved.

Let's start by adding the Cancel button to the view. Add a button under the
Submit button of the personal form. Give the button a label of Cancel. The button
should only be displayed if the personal information form is in the edit mode.
Add a visible binding to the button to make it appear only in the edit mode,
similar to the edit button. Add a click binding to the button and bind it to the
cancelPersonalInformationEdit method. The code should look similar to this:

<button type="button" class="btn btn-default" data-bind="visible:
BankPortal.personalInformationEditMode, click:
BankPortal.cancelPersonalInformationEdit">Cancel</button>

The next step is to add the cancelPersonalInformationEdit method
to the module. Open the module in the bankportal.js file. Define the
cancelPersonalInformationEdit method and add it to the return statement
of the module. The cancelPersonalInformationEdit method should make the
personal information form exit the edit mode by setting the mode to false. Our
implementation looks similar to this:

/* method to cancel personal information edit mode */
var cancelPersonalInformationEdit = function () {
 personalInformationEditMode(false);
};

Enhancing the Customer Banking Portal

[144]

Run the application in the browser. Go to the Personal Information form and click
on the Edit button. The Cancel button should appear next to the Submit button.
Edit the information in the form fields and click on Cancel to exit the edit mode.
Notice that the edited information in the form fields is retained after the Cancel
button is clicked upon. The edited information is not submitted to the server, but due
to the two-way binding, the values of observables are updated as soon as the data
is modified in the form fields. In our scenario, we would like to give the users the
ability to accept or cancel their edits. We have a few different options to achieve this.

One option is to reload the data from the server side if users cancel their edits. The
downside of this approach is the overhead of retrieving the data from the server.
The edits made by the user might be in a subset of the data (this is the case in our
scenario). We do not want to pull a fresh set of account and transaction information
every time the user clicks on Cancel on the personal information form.

Another option is to save a copy of the data retrieved as part of the initial call to the
server. On cancel, we can simply reinitialize the observables for personal information
with the data we saved. This is simple and works as well, but it requires holding a
copy of the server-side data, which will need to be updated or kept in sync every
time any data is submitted to the server.

We could have temporary observables for the fields we want to make editable. The
value in these temporary observables could be reinitialized if the user decides to
cancel. On submit, the data from these temporary observables could be copied to the
real observables. This approach works well, but it requires copying values between
the temporary and real observables.

The option, which I recommend and will use to solve this issue, is the use of custom
observables that implement the memento design pattern.

The memento design pattern captures the internal state of an object
and provides the ability to restore the object to its previous state when
required. You can read more about the memento design pattern in the
book, Design Patterns: Elements of Reusable Object-Oriented Software.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[145]

Let's create the custom observable. We will call it mementoObservable. Open the
module in the configureknockout.js file. Add a method to create the observable.
We will call this method createMementoObservable. The method should declare
the observable called mementoObservable. The observable is a function that
encapsulates a normal observable to hold the current state of the object. The function
also encapsulates the memento or the previous state of the object. The observable,
mementoObservable, should also expose two methods—one to reset the object to
its memento state and another to commit the current state to the memento state. Our
implementation of mementoObservable looks similar to this:

/* method to add memento observable */
var createMementoObservable = function () {
 /* memento custom observable */
 ko.mementoObservable = function(initialValue) {
 //the current state
 var state = ko.observable(initialValue);
 //the remembered state
 var mementoState = initialValue;
 //commit the state
 state.commit = function() {
 mementoState = state();
 };
 //reset state from memory
 state.reset = function() {
 state(mementoState);
 };
 //return the current state
 return state;
 };
};

Note that, on initialization, the value for state and memento is the same. We use the
state observable to bind with the input fields. The value of the state observable
will change as the user edits the form. We will call the reset method to revert the
user changes to the previously committed value by reinitializing the value of the
state observable with memento state. We will call the commit method when the user
wants to submit their changes.

Enhancing the Customer Banking Portal

[146]

We are now ready to modify our application to use the mementoObservable. Open
the bank portal module and change the observables for personal information in the
model to use the memento observable. The model should now look similar to this:

/* the model */
var member = {
 personal: {
 firstName: ko.mementoObservable(),
 lastName: ko.mementoObservable(),
 address: {
 street: ko.mementoObservable(),
 city: ko.mementoObservable(),
 postCode: ko.mementoObservable(),
 country: ko.mementoObservable()
 },
 contactDetails: {
 phoneNumber: ko.mementoObservable(),
 emailAddress: ko.mementoObservable()
 }
 },
 accounts: ko.observableArray(),
 selectedAccount: ko.observable(),
 selectedAccountTransactions: ko.observableArray([]),
};

The next step is to add the methods to commit the state and reset the state of all
the memento observables. We will call these methods when the user submits
or cancels the edit. Our implementation of a method to commit the state of
all the memento observables looks similar to this;. I have called this method
commitPersonalInformation:

/* method to commit state of personal information memento
observables */
var commitPersonalInformation = function () {
 member.personal.firstName.commit();
 member.personal.lastName.commit();
 member.personal.contactDetails.phoneNumber.commit();
 member.personal.contactDetails.emailAddress.commit();
 member.personal.address.street.commit();
 member.personal.address.city.commit();
 member.personal.address.postCode.commit();
 member.personal.address.country.commit();
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[147]

Add a method to reset the state of all the memento observables, similar to the commit
method here. Call this method resetPersonalInformation. Our implementation
looks similar to this:

/* method to reset state of personal information memento
observables */
var resetPersonalInformation = function () {
 member.personal.firstName.reset();
 member.personal.lastName.reset();
 member.personal.contactDetails.phoneNumber.reset();
 member.personal.contactDetails.emailAddress.reset();
 member.personal.address.street.reset();
 member.personal.address.city.reset();
 member.personal.address.postCode.reset();
 member.personal.address.country.reset();
};

Modify the cancelPersonalInformationEdit method and add a call to reset the
value of personal information observables:

/* method to cancel personal information edit mode */
var cancelPersonalInformationEdit = function () {
 console.log("Cancelled edit personal information, values
 reverted.....");
personalInformationEditMode(false);
 resetPersonalInformation();
};

Modify the submitPersonalInformation method to commit the state of personal
information observables before the model is submitted to the server. Here is the
updated submitPersonalInformation method:

/* method to submit personal information to the server */
var submitPersonalInformation = function () {
 //commit the state of personal information observables
 commitPersonalInformation();

 console.log("Updating personal information on the server: " +
 ko.toJSON(member.personal));
 server.updatePersonalInformation(ko.toJS(member.personal));
 console.log("Personal information updated on the server.....")

 //switch off the edit mode
 personalInformationEditMode(false);
 //show message that the submit was successful
 showPersonalInformationEditDone(true);
};

Enhancing the Customer Banking Portal

[148]

The last requirement before we can consider this user story done is to inform the
user that the edit was cancelled and that any change to the personal information
was reverted. We will use a similar approach to the success message we display on
successful submit of the personal information to the server. Add a Bootstrap alert
construct to display the cancel edit message below the alert construct for the success
message. Make the message visible of a showPersonalInformationEditCancel flag.
It should look similar to this:

<div class="panel panel-default">
 <div class="panel-heading">Personal Information</div>
 <div class="panel-body">
 <form data-bind="submit:
 BankPortal.submitPersonalInformation">
 <div class="alert alert-success" role="alert"
 data-bind="visible:
 BankPortal.showPersonalInformationEditDone">
 Done! Personal information updated </div>
 <div class="alert alert-warning" role="alert"
 data-bind="visible:
 BankPortal.showPersonalInformationEditCancel">
 Cancelled! Edit cancelled and values reverted
 </div>
 <fieldset>

 </fieldset>
 </form>
 </div>
</div>

Add the flag to the module with an initial value of false. Don't forget to also
add the flag to the return statement of the module. Set the flag to true in
the cancelPersonalInformationEdit method. Set the flag to false in the
enablePersonalnformationEdit method.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[149]

Open the application in the browser after applying the steps described here.
Navigate to the personal information form and click on Edit. Change the value
of some of the form fields and click on Cancel. You should now see the message
informing you that the edit has been cancelled and the changes have been reverted.
In our browser, it looks similar to the following screenshot:

We have reached our second checkpoint of this chapter. The code for this checkpoint
can be found at chapter6\checkpoint2.

Enhancing the Customer Banking Portal

[150]

Validating personal information
This user story is about validating that inputs for personal information in the form.
The requirements are that all the fields for personal information are valid. In addition,
the phone number should be a numeric with a minimum length of four and maximum
length of nine. The e-mail should be of a valid e-mail syntax. The post code field for the
postal address should be a numeric with a maximum length of four.

We will use the Knockout validation plugin to implement these requirements. You
should be familiar with the Knockout validation plugin from Chapter 4, Adding
Validation to the Customer Registration Form.

Let's start by making sure that we have included the Knockout validation plugin
in our application. Open the view in bankportal.html and check whether the
Knockout validation plugin is included in the HTML head. Download and include
the plugin if it is not included already. The HTML head element should look similar
to this:

<head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title>Knockout : Customer banking portal</title>

 <link rel="stylesheet" href="bootstrap/css/bootstrap.min.css">
 <link rel="stylesheet" href="css/carousel.css">

 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <script type="text/javascript"
 src="javascript/knockout.validation.min.js"></script>
 <script type="text/javascript"
 src="javascript/configureknockout.js"></script>
 <script type="text/javascript"
 src="bootstrap/js/bootstrap.min.js"></script>
 <script type="text/javascript"
 src="javascript/serverstub.js"></script>
 <script type="text/javascript"
 src="javascript/bankportal.js"></script>
</head>

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[151]

The next step is to configure the Knockout validation plugin to work with Bootstrap.
Open the module in the configureknockout.js file. Add a method called
configureValidationPlugin and call it from the init method of the module. The
init method should now look similar to this:

/* add code to initialize this module */
var init = function () {
 applyCurrencyBinding();
 createMementoObservable();
 configureValidationPlugin();
}();

In the body of the configureValidationPlugin method, configure the validation to
use the Bootstrap classes, has-error and help-block, for validating error messages.
The implementation should look similar to this:

var configureValidationPlugin = function () {
 //initialize and configure the validation plugin
 ko.validation.init({
 errorElementClass: 'has-error',
 errorMessageClass: 'help-block'
 });
};

We are now ready to start applying validation rules to the observables in the model.
Let's first tackle the first name field. Add the required extender to the first name
observable in our model. The following is an example of how to apply the required
extender to the firstName observable:

firstName: ko.mementoObservable().extend({ required: true}),

We are now ready to modify the view. Open the bankportal.html file and locate
the first name input field. All we need to do is specify the validationElement data
binding to the surrounding div element. The following is an example of the first
name field:

<div class="col-md-6" data-bind="validationElement:
BankPortal.member.personal.firstName">
 <div class="form-group">
 <label for="firstNameInput">First Name</label>
 <input type="text" class="form-control" data-bind="enable:
 BankPortal.personalInformationEditMode, value:
 BankPortal.member.personal.firstName" id="firstNameInput">
 </div>
</div>

Enhancing the Customer Banking Portal

[152]

The next step is to capture the errors in a variable so that we can check for the errors
when the form gets submitted. To do this, declare a variable in the module; we will
call this variable validationErrors:

/* model validation errors */
var validationErrors;

Initialize the validationErrors variable with the model in the init method:

var init = function () {
 /* add code to initialize this module */
 retrieveData();
 //model validation errors
 validationErrors = ko.validation.group(member, { deep: true });
 //apply ko bindings
 ko.applyBindings(BankPortal);
};

Now we can check whether any error occurred in the submitPersonalInformation
method of the module. Do not proceed with submitting the model to the server if
validation fails. The following is our implementation of the method; note that the
full method implementation is not shown:

var submitPersonalInformation = function () {
 //check if validation errors occurred
if (validationErrors().length > 0) {
 console.log("Member model is valid.....");
 return;
 }

};

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[153]

Open the application in the browser. Navigate to the personal information form
and enter edit mode by clicking on the Edit button. Try removing the first name
and click on the Submit button. You should see the validation error appear for first
name. Click on Cancel to revert the change and exit edit mode. In our browser, it
looks like the following screenshot:

Now that we have validation configured and working for the first name field, we
can apply validation to the rest of the fields. Modify the model to add validation
extenders to the other observables of the member model. Modify the fields in the
view to add the validationElement data binding, similar to how we did this for
the first name field. Try opening the application in the browser after applying these
changes and triggering validation for fields other than the first name. Then, try
clicking on the Cancel button to revert the changes and exit the edit mode.

We have reached our third checkpoint for this chapter. The code for this checkpoint
can be found at chapter6\checkpoint3.

Enhancing the Customer Banking Portal

[154]

Transferring funds between accounts
In this user story, we will give the customers of MyBank the ability to transfer
funds between their accounts. Our user experience consultant has been working
with the client and has come up with a design. The design dictates that the transfer
feature should be in its own tab container. The Transfers tab should display a
wizard component. The wizard component should have three steps, a Next and
a Back button for navigation, and a steps indicator. The first step should capture
the accounts the user wants to transfer the funds between. The second step should
capture the transfer amount and description. The last step should display the
summary of the transfer. The user experience consultant has provided the following
wireframe that depicts the user interface:

The requirements for this user story has a few different aspects. Let's break the
story down and tackle each aspect, one at a time. The first aspect is to create a new
tab container for transfer. Once we have our new tab container, we can work on
constructing a wizard component. The last aspect is to capture the user input for
transfer of funds and submit the request to the server for processing. Let's start with
the first aspect.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[155]

Creating the Transfers tab
Creating a new tab container is relatively straightforward as we already have
two existing tabs—one for accounts and another for personal. To create a new tab
container for transfers, open the view in bankportal.html and locate the div
element with the id="home" value. The first HTML element of the div should be
an unordered list with accounts and personal tabs as the list items. Add another list
item for transfers, similar to the list items for accounts and personal. The updated list
should look similar to this:

<ul class="nav nav-tabs">
 <li data-bind="css: {active:
 BankPortal.isActiveTab('Accounts')}">
 <a href="#" data-bind="click:
 BankPortal.setActiveTab.bind($data, 'Accounts')">Accounts

 <li data-bind="css: {active:
 BankPortal.isActiveTab('Personal')}">
 <a href="#" data-bind="click:
 BankPortal.setActiveTab.bind($data, 'Personal')">Personal

 <li data-bind="css: {active:
 BankPortal.isActiveTab('Transfers')}">
 <a href="#" data-bind="click:
 BankPortal.setActiveTab.bind($data,
 'Transfers')">Transfers

Add a new div inside div for home page and give it id="transfers". Add a
Bootstrap grid and a panel with a heading. Add a placeholder text in the body of the
panel for now. We will replace this placeholder text with the wizard component in
the next section. Add a visible binding to the div and make it appear when Transfers
is the active tab. Our implementation looks similar to this:

<div id="transfers" data-bind="visible:
BankPortal.isActiveTab('Transfers')">
 <div class="row">
 <div class="col-md-12">
 <div class="panel panel-default">
 <div class="panel-heading">Transfer funds</div>
 <div class="panel-body">
 <p> Transfer funds </p>
 </div>
 </div>
 </div>
 </div>
</div>

Enhancing the Customer Banking Portal

[156]

Open the application in the browser. You should see the newly created tab for
transfers. Try clicking on the Transfers tab to make sure it behaves as expected. It
looks similar to the following screenshot in our browser:

We have reached our fourth checkpoint for this chapter. The code for this checkpoint
can be found at chapter6\checkpoint4.

Creating the wizard component
The second aspect of this user story is to create a wizard component that will guide
the user to transfer funds between accounts. In this section, we will create a generic
reusable wizard component. This component will have a module to control the
behavior of the wizard component and associated HTML to render the view.

Let's start by creating a module for our wizard. Create a wizard.js file in the
javascript folder and add a blank module using the module pattern. Give the
module an appropriate name. I have called it Wizard. The module should take
number of steps as a parameter. The module should hold, as its state, the number of
steps in the wizard and the current step the user is on. We will hold the current step
as an observable as it will be used to alter the state of the view. So far, the module
should look similar to this:

/* Module for Wizard component */
var Wizard = function (steps) {
 /* add members here */
 /* number of steps in the wizard */

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[157]

 var numberOfSteps;
 /* current step the wizard is on */
 var currentStep = ko.observable();

/* method to initialize the module */
 var init = function () {
 numberOfSteps = steps;
 currentStep(1);
 };

/* execute the init function */
 init();

 return {
 /* add members that will be exposed publicly */
 currentStep: currentStep
 };
};

Notice how the steps parameter initializes the numberOfSteps attribute of the
module. The next step is to include the wizard.js file in the bankportal.html file. To
do this, add the following line to the head element of the HTML in the bankportal.
html file; this should go before the include statement of bankportal.js file:

<script type="text/javascript"
src="javascript/wizard.js"></script>

Now we can use the wizard module from the bank portal module. Open the bank
portal module in bankportal.js and declare a variable for the wizard module. Give
it the number of steps for the wizard in our case three. The declaration should look
similar to this:

/* wizard module for transfer of funds */
var transferWizard = Wizard(3);

Add transferWizard to the return statement of the bank portal module so that we
can use it from the view.

Download the bankportal.css file from the chapter6\Checkpoint5\WebContent\
css folder and add it to the css folder of your project. This file contains styles for the
wizard component. Include the file, as shown here in bankportal.html:

<link rel="stylesheet" href="css/bankportal.css">

Enhancing the Customer Banking Portal

[158]

We can now start constructing the view for our wizard. Locate the panel we created
earlier for transfers under the div element with id="transfers". In the panel
body, remove the place holder text and add a Bootstrap row with a row-centered
style class. Add a column with the column width for eight and a style class of col-
centered. Inside the div element for the column, add a div element for each of the
wizard steps. Apply the if binding to these div elements to make them appear for
the step of the wizard they represent. Add the place holder text in each of the div
elements. So far, the panel should look similar to this:

<div class="panel panel-default">
 <div class="panel-heading">Transfer funds</div>
 <div class="panel-body">
 <div class="row row-centered">
 <div class="col-md-8 col-centered">
 <div class="wizard-step" data-bind="if:
 BankPortal.transferWizard.currentStep() == 1">
 <p> First step</p>
 </div>
 <div class="wizard-step" data-bind="if:
 BankPortal.transferWizard.currentStep() == 2">
 <p> Second step</p>
 </div>
 <div class="wizard-step" data-bind="if:
 BankPortal.transferWizard.currentStep() == 3">
 <p> Third step</p>
 </div>
 </div>
 </div>
 </div>
</div>

Notice how the visible binding uses the current step of our wizard module. The
next step is to add the navigation button to the wizard. Add three buttons under the
div elements for the steps—two buttons for next and back navigation and one for
the last step of the wizard. Label the buttons Next, Back, and Done. Add the click
bindings to the buttons and bind them to the three corresponding method in the
wizard module. Add the visible bindings to the buttons to make them appear on
the appropriate wizard step, that is, the Next button should not appear on the last
step of the wizard. Similarly the Back button should not appear on the first step of
the wizard. The Done button should only appear on the last step of the wizard. Our
implementation of the buttons looks similar to this:

<button type="button" class="btn btn-default pull-left"
data-bind="click: BankPortal.transferWizard.back, visible:
BankPortal.transferWizard.isFirstStep() == false">Back</button>

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[159]

<button type="button" class="btn btn-primary pull-right"
data-bind="click: BankPortal.transferWizard.next, visible:
BankPortal.transferWizard.isLastStep() == false">Next</button>
<button type="button" class="btn btn-success pull-right"
data-bind="click: BankPortal.transferWizard.done, visible:
BankPortal.transferWizard.isLastStep() == true">Done</button>

I have used the pull-left and pull-right styles provided by Bootstrap to place
the buttons to the right and left in the wizard. Notice how I have used the visible
binding with the isFirstStep and isLastStep methods. Next, we will define
these methods for the click and visible binding. Let's tackle the methods for the
click bindings first. Define the methods—next, back, and done—in the wizard
module. The next method should increment the current wizard step. Similarly, the
back method should decrement the current wizard step. The done method, for now,
should log a message to the console that the user has clicked on the done button and
reset the wizard to the first step. The implementation to these methods should look
similar to this:

/* method to go back a step */
var back = function () {
 currentStep(currentStep() - 1);
};

/* method to go forward a step */
var next = function () {
 currentStep(currentStep() + 1);
};

/* method for wizard done */
var done = function () {
 //Done reset wizard and call transfer
 console.log("User clicked done.....");
 currentStep(1);
};

Enhancing the Customer Banking Portal

[160]

The next step is to define the isFirstStep and isLastStep methods, which are
used by the visible bindings on the buttons. These methods should be declared as
pure computed observables. They need to be computed observables as they rely
on the currentStep observable. They should be pure computed as they do not
alter the state of the currentStep observable. The isFirstStep pure computed
observable should return true if the current wizard step is the first step of the
wizard, otherwise, it should return false. Similarly, the isLastStep pure computed
observable should return a true if the current step is the last step of the wizard,
otherwise, it should return false. Create these observables and add them along with
the methods for click bindings to the return statement of the wizard module. Our
implementation of these observables should look similar to this:

/* returns true if the wizard is on the last step, false otherwise
*/
var isLastStep = ko.pureComputed(function() {
 return currentStep() == numberOfSteps;
});

/* returns true if the wizard is on the first step, false
otherwise */
var isFirstStep = ko.pureComputed(function() {
 return currentStep() == 1;
});

Next, we add the step indicators to our wizard component. The step indicators show
how many steps the wizard has and indicates the current wizard step. Open the view
and locate the buttons for the wizard component. Add an unordered list of HTML
element of ul with three items—one for each indicator. Give the ul element a style
class of wizard-indicators. Add a css binding to the li elements and specify the
active style class based on the current wizard step. Our implementation should
look similar to this:

<ul class="wizard-indicators">
 <li data-bind="css: { active:
 BankPortal.transferWizard.currentStep() == 1 }">
 <li data-bind="css: { active:
 BankPortal.transferWizard.currentStep() == 2 }">
 <li data-bind="css: { active:
 BankPortal.transferWizard.currentStep() == 3 }">

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[161]

Open the application in the browser. Navigate to the tabs for transfers. You should
now see the wizard component with a Next button and step indicator. Try moving
forward and backward in the wizard. Try clicking on the Done button. The wizard
should look similar to the following screenshot:

We have reached our fifth checkpoint for this chapter. The code for this checkpoint
can be found at chapter6\checkpoint5.

Adding functionality to the wizard
Now that we have the tab for transfers and the wizard component, it's time to add
functionality to capture user input and submit a request to the server to transfer
funds between two accounts. The requirements state that the first step should
capture the accounts the user wants to transfer the funds between. The second step
should capture the transfer amount and description. The last step should display the
summary of the transfer.

To implement this requirement, we will:

•	 Add a model to capture the user inputs for fund transfer
•	 Add input fields on the relevant wizard steps and bind them to the model
•	 Modify the wizard module to notify the bank portal module when the user

has clicked on done
•	 Submit the transfer of funds request to the sever
•	 Update the accounts and their transactions in the accounts tab
•	 Notify the user that the funds have been transferred

Enhancing the Customer Banking Portal

[162]

Let's get started by adding a model to the bank portal module in bankportal.js. This
model should capture the accounts for fund transfer, the transfer amount, and the
description that should appear in the transaction. Create the model called transfer in
the bank portal module. Add the model to the return statement of the module as we
will access it from the view using data binding. The model should look similar to this:

/* model for fund transfer */
var transfer = {
 toAccount: ko.observable(),
 fromAccount: ko.observable(),
 amount: ko.observable(),
 description: ko.observable()
};

Now, add two dropdowns on the first step of the wizard to capture the accounts the
user wants to transfer funds between. Open the view in bankportal.html and locate
the div element for the first wizard step. The div element should look similar to this:

<div class="wizard-step" data-bind="if:
BankPortal.transferWizard.currentStep() == 1">
...
</div>

Add a row and two columns using the Bootstrap grid. In the first column, add a label
for account form and an HTML select component. Bind the select component to get
the options from accounts observable array in the member model. Since the items of
the accounts observable array are complex objects, we cannot use them as they are to
display the options in the list. We will use the optionsText binding to return a string
for each item in the accounts observable array. This text is what gets displayed in the
list. Use the optionsText binding and give it a function that takes the current accounts
array item and returns an appropriate text to be displayed in the list. The value of the
selected account should be bound to the fromAccount attribute of the transfer model.
Add a caption to the select component using the optionsCaption binding.

Add a column for the account to transfer the funds to, similar to the column for the
account to transfer funds from described earlier.

The optionsCaption binding adds a dummy option at the
beginning of the list and makes it the default option. The value of this
dummy option is undefined. The dummy option is used to avoid
preselecting any option and usually reads "select an option…".

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[163]

Our implementation of the first wizard step looks similar to this:

<div class="wizard-step" data-bind="if:
BankPortal.transferWizard.currentStep() == 1">
 <div class="row row-centered">
 <div class="col-md-8 col-centered">
 <div class="form-group">
 <label class="pull-left" for="accountFrom">Account
 from</label>
 <select id="accountFrom" class="form-control"
 data-bind="options: BankPortal.member.accounts,
 optionsText: function(item) {return
 item.summary.type + ' ' + item.summary.number;},
 optionsCaption: 'Choose from account.....',
 value: BankPortal.transfer.fromAccount">
 </select>
 </div>
 </div>

 <div class="col-md-8 col-centered">
 <div class="form-group">
 <label class="pull-left" for="accountTo">Account
 to</label>
 <select id="accountTo" class="form-control"
 data-bind="options: BankPortal.member.accounts,
 optionsText: function(item) {return
 item.summary.type + ' ' + item.summary.number;},
 optionsCaption: 'Choose to account.....',
 value: BankPortal.transfer.toAccount">
 </select>
 </div>
 </div>
 </div>
</div>

Notice the optionsText binding. The binding takes a function with the current item
of the accounts array as a parameter. I am returning a concatenation of the account
type and account number. This string will appear as the option for the given account
in the dropdown.

Enhancing the Customer Banking Portal

[164]

Now, on to the second wizard step, locate the div with the second wizard. This
div should be directly below the div for the first wizard step. Add a row and two
columns using the Bootstrap grid. In the first column, add a label and an input
component to capture the transfer amount. Bind the input method to the amount
attribute in the transfer model. In the second column, add a label and an input
component to capture the transaction description. Bind the input to the description
attribute in the transfer model. The implementation should look similar to this:

<div class="wizard-step" data-bind="if:
BankPortal.transferWizard.currentStep() == 2">
 <div class="row row-centered">
 <div class="col-md-8 col-centered">
 <div class="form-group">
 <label class="pull-left"
 for="transferAmount">Amount</label>
 <input id="transferAmount" class="form-control"
 data-bind="value: BankPortal.transfer.amount"/>
 </div>
 </div>

 <div class="col-md-8 col-centered">
 <div class="form-group">
 <label class="pull-left"
 for="transferDescription">Description</label>
 <input id="transferDescription" class="form-control"
 data-bind="value: BankPortal.transfer.description"/>
 </div>
 </div>
 </div>
</div>

The last wizard step should display the summary of inputs captured in step one
and two. Locate the div with the third wizard. This div should be directly below
the div for the second wizard step. Add a row and four columns. In each of the
columns, use the data binding to display account from, account to, amount, and the
description. For amount, use the currency custom binding we created in the previous
chapter. The account attributes in the transfer model are observables; you will need
to get the relevant information out of the observables and construct a string. Our
implementation looks similar to this:

<div class="wizard-step" data-bind="if:
BankPortal.transferWizard.currentStep() == 3">
 <div class="row row-centered">
 <div class="col-md-8 col-centered">

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[165]

 From account: <span data-bind="text:
 BankPortal.transfer.fromAccount().summary.type + ' ' +
 BankPortal.transfer.fromAccount().summary.number">
 </div>
 <div class="col-md-8 col-centered">
 To account: <span data-bind="text:
 BankPortal.transfer.toAccount().summary.type + ' ' +
 BankPortal.transfer.toAccount().summary.number">
 </div>
 <div class="col-md-8 col-centered">
 Amount: <span data-bind="currency:
 BankPortal.transfer.amount">
 </div>
 <div class="col-md-8 col-centered">
 Description: <span data-bind="text:
 BankPortal.transfer.description">
 </div>
 </div>
</div>

Run the application in the browser. Navigate to the transfers tab. You should now be
able to see the input fields to capture the user input in the wizard steps. Try selecting
the account to and account from. Move to the second step in the wizard and enter
the amount to transfer and the transaction description. Move to the last step of the
wizard. You should see the summary of the inputs captured in steps one and two.
Try navigating back and forth in the wizard and change some inputs values. You
should see the updated value in the summary. In our browser, it looks similar to this:

Enhancing the Customer Banking Portal

[166]

The next step is to modify the wizard module, in wizard.js, to notify the bank
portal module that the user has clicked on Done. We will do this by adding a call
back to the wizard module. This call back is a function of the bank portal module
that gets executed by the wizard module when the user clicks on the Done button.
Open the wizard module and add a variable to hold the call back:

/* call back on wizard done */
var doneCallBack;

Add a method to set the call back. Expose this method form the wizard module by
adding it to the return statement of the module:

/* method sets the call back */
var setCallBack = function (callBack) {
doneCallBack = callBack;
};

Execute doneCallBack from the done method of the wizard module:

/* method for wizard done */
var done = function () {
 //Done reset wizard and call transfer
 console.log("User clicked done.....");
 currentStep(1);
 doneCallBack();
};

Open the bank portal module in bankportal.js. Add a method called
transferFunds, which will submit a request to the server to transfer the funds:

/* method to submit transfer funds request to the server */
var transferFunds = function () {
 console.log("transfer funds ...");
};

We will get back to this method shortly to add the desired functionality. In the init
method of the bank portal module, set the transferFunds method as the call back.
The init method should now look similar to this:

var init = function () {
 /* add code to initialize this module */
 retrieveData();
 //model validation errors
 validationErrors = ko.validation.group(member, { deep: true });

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[167]

 //set the call back for when the wizard is done
 transferWizard.setCallBack(transferFunds);
 //apply ko bindings
 ko.applyBindings(BankPortal);
};

In the body of the transferFunds method, make a call to the transferFunds
method of the server and pass an unwrapped transfer observable. You can use
ko.toJS to unwrap the transfer observable. The next step is to get the updated
accounts from the server and refresh the accounts in the member model. Make
a call to the getAccounts method of the server to retrieve the updated accounts
information. Empty the accounts observable array in the member model and
initialize it with the updated accounts. Lastly, clear the transfer model. Our
implementation looks similar to this:

/* method to submit transfer funds request to the server */
var transferFunds = function () {
 console.log("Transferring amount " + transfer.amount() + " from
 account " + transfer.fromAccount().summary.number + " to account
 " + transfer.toAccount().summary.number);

 //submit the transfer request
 server.transferFunds(ko.toJS(transfer));

 //retrieve updated accounts
 var accounts = server.getAccounts();

 //remove all stale accounts
 member.accounts.removeAll();

 //add updated accounts to the model
 accounts.forEach(function(account) {
 member.accounts.push({summary: account.summary, transactions:
 ko.observableArray(account.transactions)});
 });

 //clear the transfer model
 clearTransferModel();
};

Notice the use of the removeAll method on the accounts observable array to remove
all the accounts. The clearTransferModel method simply sets all the observables in
the transfer model to null.

Enhancing the Customer Banking Portal

[168]

The last step is to notify the user that the funds have been transferred. To satisfy
this requirement, we will display an alert component on the wizard. Add a flag
in the wizard module to show or hide this alert component. We will call this flag
showDoneMessage. Add this flag to the return statement of the module:

/* flag to show done message */
var showDoneMessage = ko.observable(false);

Add a doneMessage observable to hold the message to be displayed. As we want the
wizard component to be generic, we will let the parent module define the message.
In our case, the parent module is the bank portal. Modify the wizard module to take
an addition parameter for the notification message. Initialize the observable for the
message with the message passed to the wizard module:

/* Module for Wizard component */
var Wizard = function (steps, message) {
 /* add members here */

 /* message for when the wizard is done */
 var doneMessage = ko.observable(message);

 return {
 /* add members that will be exposed publicly */

 doneMessage: doneMessage,

 };
};

Set the showDoneMessage flag to true in the done method of the module. Set the flag
to false in the method called next.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[169]

Open the view and add an alert construct in the div, containing the wizard
component. Bind the text of the alert to the doneMessage observable of the
wizard module. Use the visible binding to make it show or hide, based on the
showDoneMessage flag. Our implementation looks similar to this:

<div class="panel panel-default">
 <div class="panel-heading">Transfer funds</div>
 <div class="panel-body">
 <div class="alert alert-success" role="alert"
 data-bind="visible:
 BankPortal.transferWizard.showDoneMessage">
 Done!
 <span data-bind="text:
 BankPortal.transferWizard.doneMessage">
 </div>

 </div>
</div>

The last step is to pass the message to be displayed to the wizard module from the
bank portal module. To do this, modify the declaration of the wizard module and
add the parameter for the notification message:

/* wizard module for transfer of funds */
var transferWizard = Wizard(3, "Funds transferred");

Enhancing the Customer Banking Portal

[170]

Open the application in the browser and navigate to the tabs for transfers. Select the
accounts to transfer the funds between and move to the next step. Enter the amount
you wish to transfer and the transaction description and move to the last step. The
last step should show you the summary of the information from steps one and
two. Click on the Done button if you are happy with your inputs. You should see
an alert message notifying you that the funds have been transferred and the input
fields should get cleared. Now navigate to the Accounts tab and view the balance
of the accounts you transferred the funds between. The balance for the accounts
should have been updated. View the transactions for the accounts. You should see
a transaction with a category of debit for the account you selected to transfer funds
from. Similarly, you should see a transaction with a category of credit for the account
you selected to transfer funds to. Note that the fields in the wizard currently do not
have any validation. Adding invalid user inputs will cause the application to fail. Try
adding validation to fields in the wizard as an exercise. In our browser, the wizard
looks similar to this:

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[171]

We have reached our final checkpoint for this chapter. The code for this checkpoint
can be found at chapter6\checkpoint6.

Summary
In this chapter, we walked through enhancing the customer banking portal for
MyBank with additional features that we started building in the previous chapter.
In the first section, we implemented a user story to allow the users to update their
personal information. We learned how to enable and disable the form fields and how
to submit data to the server.

In the second section, we gave our users the ability to cancel the edited form and
revert their changes. We discussed the different ways to achieve this and learned
how to implement this requirement using the Knockout observables and the
memento design pattern. In the third section, we implemented this user story about
validating that the inputs for personal information in the form fields are valid.

In the last section, we implemented the user story of transferring funds between
two accounts. We tackled this user story by dividing it into three aspects. The first
aspect was to create the tab component for the transfer feature. This reinforced our
understanding of how to use Knockout with a tab container. In the second aspect, we
created a generic and reusable wizard component. In the third and the final aspect, we
added the business feature of transferring funds between accounts using the wizard
component we created. We learned how to use call backs to communicate events
between modules and reinforced our learning of submitted requests to the server.

In the next chapter, we will enhance the customer banking portal further by securing
it with a login screen and authentication token.

www.ebook3000.com

http://www.ebook3000.org

[173]

Securing the Customer
Banking Portal

The customer banking portal, developed so far in the last two chapters, has the
features the stakeholders at MyBank were looking for. Before we can go live with the
portal, the CIO of MyBank wants the users of the portal to be authenticated using
their username and password as credentials. We will continue with our iterative
approach and implement the following user stories:

•	 As a member, I want to be able to login to customer banking portal using my
authentication credentials

•	 As a member, I want to be informed if validation errors occur
•	 As a member, I want to be informed if an authentication error occurs
•	 As a member, I want to know who the logged in user is
•	 As a member, I want to be able to log out of the customer banking portal

This chapter is the third in the series on building a customer banking portal. It picks
up the development from where we left it in the previous chapter and adds new
features listed here. In this chapter, we will secure the customer banking portal using
a login screen. The login screen will prompt the user for authentication credentials.

Securing the Customer Banking Portal

[174]

In this chapter, we will learn:

•	 The basics of securing a single page web application with token-based
authentication

•	 How to use JSON Web Token (JWT) with single page web application
•	 How to develop a login screen for the application
•	 How to validate the user credentials
•	 How to handle failed login attempts
•	 How to sign out of the application

As before, we will continue taking the iterative approach to build the application.
Each user story or feature has a corresponding checkpoint folder in the
accompanying code.

Authentication mechanisms
We developed the interaction with the server in the last two chapters. In this chapter,
we will explore different mechanisms by which we can provide authentication to
the end user and protect the RESTful API endpoints. We will also implement an
authentication approach based on JSON Web Token (JWT) for our customer banking
portal. The following is a brief introduction of top four authentication mechanisms:

•	 Basic authentication: As the name suggests, this is the simplest mechanisms
for protecting a RESTful endpoint or any web resource for that matter.
It sends Base64 encoded username and password in the HTTP header
and does not enforce any confidentiality protection. The username and
password must be sent with every request. You can find the specifications
for this mechanism on the Internet Engineering Task Force's website at
http://tools.ietf.org/html/rfc1945#section-11.

•	 OAuth 1.0a: This provides authentication without ever directly passing the
username and password to the application that provides the RESTful API
endpoint. Instead, it relies on access tokens that can be revoked at any time by
the application. It is the most widely used, tested, and secure protocol. You can
find the specifications for this mechanism on the Internet Engineering Task
Force's website at http://tools.ietf.org/html/rfc5849.

www.ebook3000.com

http://tools.ietf.org/html/rfc1945#section-11
http://tools.ietf.org/html/rfc5849
http://www.ebook3000.org

Chapter 7

[175]

•	 OAuth 2.0: This is a completely different mechanism from OAuth 1.0a and is
not backward-compatible. It greatly reduces the complexity of its predecessor
by removing signatures from the specification. The encryption must be
handled by Transport Layer Security (TLS) to make this mechanism secure.
You can find the specifications for this mechanism on the Internet Engineering
Task Force's website at https://tools.ietf.org/html/rfc6749.

•	 Custom: These authentication mechanisms should be avoided unless an
industry standard does not meet your specific requirements, and you have a
deep understanding of security concepts such as digital certificates, TLS, and
access controls.

The example provided in this chapter uses a custom implementation of passing
the access tokens between the client and server. The tokens are based on the JWT
standard. The example shows how the client in a single page web application can be
developed to use any of the authentication mechanisms mentioned here. In an ideal
scenario, for our customer banking portal, we will use OAuth 2.0 with JWT as the
token standard.

Basics of the token-based authentication
Before we get started with developing the user stories, it is important that we cover
the basics of the token-based authentication—why it is a good fit for the RESTful
API, and how it differs from traditional session cookies. In a single page application,
such as our customer banking portal, the application is abstracted from the API
that provides data. The authentication requirements thus shift from protecting the
application to protecting the Restful API that provides the data. Using authentication
tokens is one way of protecting Restful APIs.

Token versus session in cookies
Traditional websites use session cookies to secure web application. Once the user
is logged in, the server places an HTTPOnly cookie in the response. The cookie
contains an ID that identifies the user. It is passed to the server every time a request
is made, allowing the server to identify the user.

A cookie can be flagged as HttpOnly by the server to instruct the
browser that the cookie must only be accessed by the server that
placed it. A browser that implements HTTPOnly cookies properly
should not be able to access them via JavaScript.

https://tools.ietf.org/html/rfc6749

Securing the Customer Banking Portal

[176]

Session cookies have three main drawbacks:

•	 They are highly susceptible to Cross-Site Request Forgery (CSRF)
•	 They do not provide information about the logged in user to the single

page application
•	 The state is kept on the server that hinders the server-side scalability

Using tokens is another way to authenticate the user without the drawbacks of
session cookies described here. The general flow is that the web application sends
a login request based on an authentication scheme. The authentication scheme is
usually username and password-based. The server authenticates the request and
returns a token. The token contains all the information required to identify the user
and is usually signed to prevent any modifications to it and is sent over Secure
Sockets Layer (SSL) to prevent man-in-the middle attack. It must be stored on the
browser and sent to the server with every request.

The Open Web Application Security Project (OWASP) is a
good source of information if you want to learn more about
web application vulnerabilities such as CSRF and man in
the middle attack. Their article on CSRF can be found at
https://www.owasp.org/index.php/CSRF.

Modern browsers have a few different ways of storing information locally. You can
store the token in a JavaScript variable. The downside is that the token will be lost
on page refresh. However, it can be stored in a client-side cookie. This approach has
the overhead of cookie management. A better approach is to use the session storage
of the browser. The session storage stores data only for the current session and is
cleared when the user closes the browser window.

Storing the token in the browser using either of the approaches described here would
still leave the application susceptible to Cross-site Scripting (XSS). Good coding
standards can ensure that your application is less vulnerable to XSS.

Follow the prevention cheat sheet by OWASP to protect
your application against XSS. The cheat sheet can be found
at https://www.owasp.org/index.php/XSS_(Cross_
Site_Scripting)_Prevention_Cheat_Sheet.

www.ebook3000.com

https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.ebook3000.org

Chapter 7

[177]

JSON Web Token
JSON Web Token (JWT) is a standard for authentication tokens based on JSON. The
standard gives a structure to define the user. The token can be encrypted and signed
for verification. As JWTs are verifiable and contain all the information required
to identify the user, you do not need to hold the state of the logged in user on the
server. You can read more about the standard at https://tools.ietf.org/html/
draft-ietf-oauth-json-web-token-32.

JWT consists of three parts—header, payload, and signature. The token is
transmitted as base 64 encoded string for each part separated by a dot (.).
A token transmitted over the wire can look similar to this:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJteWJhbmsiLCJleHAiO
jE0MzQ4NzA0OTEyNTksInN1YiI6ImF1dGhlbnRpY2F0aW9uIHRva2VuIiwiZmlyc3
ROYW1lIjoiSm9obiIsImxhc3ROYW1lIjoiQ2l0aXplbiIsInVzZXJOYW1lIjoiam9
obi5jaXRpemVuIn0.U8c0TV8A_nj9JHZuoe5cHsjZo5MSK-5qTsM5Cbk1-wk

The header is a JSON string that states the token type and the algorithm used for
hashing, for example:

{
 typ: "JWT",
 alg: "HS256"
}

The payload contains the claims that identifies the user. Some claims are reserved
such as iss, exp, and sub. The iss claim identifies the issuer of the token, exp is the
expiration, and sub is the subject. The following is an example of the payload:

{
 iss: "mybank",
 exp: 1654684812165,
 sub: "authentication token",
 firstName: "John",
 lastName: "Citizen",
 userName: "john.citizen"
}

The last part of the token is a hash of the header, payload, and a secret. The secret is a
signature held by the server for verifying the token.

Now that we have learned some of the basics of token based authentication, it's time
to start developing the authentication for our customer banking portal. We will be
using JWTs for storing them in the browser's session storage.

https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-32
https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-32

Securing the Customer Banking Portal

[178]

Logging in to the application
The first user story of this chapter is about securing the application using a
login screen and token-based authentication using JWT. We will implement
the following flow:

1.	 The user accesses the customer banking portal via the browser.
2.	 The portal application looks for the authentication token to check whether

the user is already authenticated or not.
3.	 The portal application displays the login screen to prompt the user for their

username and password.
4.	 The user enters his/her username and password.
5.	 The portal application submits the username and password to the server.
6.	 The server validates the username and password and returns a token.
7.	 The portal application stores the token returned by the server.
8.	 The portal application makes a request to retrieve member data and passes

the authentication token with the request.
9.	 The server validates the incoming authentication token and returns the

requested member data.

You should start on this story by checking out code from chapter6\checkpoint6.
This story requires an updated server stub. Download the serverstub.js and
jwt.js files from chapter7\server and copy them to the javascript folder of
your project overriding the existing serverstub.js file. Open the bankportal.
html file and include jwt.js in the HTML header before serverstub.js. Run the
application by opening the bankportal.html file in the browser. You will see that
the application does not work anymore. This is because the new server stub expects
an authentication token with the request to retrieve member data. We are now ready
to develop this user story.

To implement and test this user story, we will:

•	 Create a new module to handle authentication. This module will be
responsible for holding the model to bind with the login form. The
module will also make the authentication call to the server and store the
authentication token.

•	 Update the view to add a login screen and render the application based on
whether the user is authenticated or not.

•	 Refactor the portal module to use the authentication module.
•	 Test the module using different user accounts.

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[179]

Creating the authentication module
The first step is to create a module that will be responsible for handling the
authentication with the server and storing the authentication token. We will call this
module Authenticator. Create the authenticator.js file in the javascript folder
and add a module skeleton to it. The module should accept the server module on
creation. It should look similar to this:

/* Module for authenitcation */
var Authenticator = function (serverModule) {
 /* add members here */

 /* the server module */
 var server = serverModule;

 return {
 /* add members that will be exposed publicly */
 };
};

Add a model to this module to hold the username and password. The fields must
be Knockout observables so that we can bind them to the login form. Call the
credentials model and add it to the return statement of the module. The model
should look similar to this:

/* model for user credentials */
var credentials = {
 userName: ko.observable(),
 password: ko.observable()
};

The next step is to add a method to the module that calls the server method for
authentication. The method exposed by the server is called login and takes
username and password as parameters. On successful authentication, the login
method of the server returns a JWT. The login method returns a false on an
unsuccessful login attempt.

Securing the Customer Banking Portal

[180]

Add an observable to the authenticator module to store the authentication result and
call it authenticationToken. Then, add a method to the authenticator module to
call the login method of the server and store the result in the authenticationToken
observable and also in the session storage of the browser. On successful login, we
would like to inform the portal module about it so that it could continue with the
application logic. We do this by adding a callback method to the authenticator
module. Add a variable to store the portal module callback method. Also, add a
method to set the callback and expose it in the return statement of the module.

Add a method to initialize this module; this method must get executed on module
creation. Check for the authentication token in the session storage of the browser. It
should initialize the authenticationToken observable with the token from session
storage, otherwise, it should set it to false.

The last step is to add a method to the authenticator module that returns a true
if the user has been authenticated, otherwise, false. Add this method as a pure
computed observable that checks for the authenticationToken observable. Call the
pure computed observable, isAuthenticated, and add it to the return statement
of the authenticator module. After following the steps described here, the
authenticator module should look similar to this:

/* Module for authenitcation */
var Authenticator = function (serverModule) {
 /* the server module */
 var server = serverModule;

/* authentication for the currently logged in user */
 var authenticationToken = ko.observable();

/* call back on successful login */
 var loginCallBack;

/* model for user credentials */
 var credentials = {
 userName: ko.observable(),
 password: ko.observable()
 };

 /* return the authentication token */
 var getAuthenticationToken = function () {
 return authenticationToken();
 };

 /* return true if user is authenticated, false otherwise */

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[181]

 var isAuthenticated = ko.pureComputed(function() {
 return authenticationToken() != false;
 });

 /* login to the server */
 var login = function() {
 var token = server.login(credentials.userName(),
 credentials.password());
 authenticationToken(token);
 console.log("login" + authenticationToken());
 loginCallBack();
 };

 /* method sets the call back */
 var setCallBack = function (callBack) {
 loginCallBack = callBack;
 };

/* initialize the module */
var init = function () {
 var token = sessionStorage.getItem("token");
 if(token == null)
 authenticationToken(false)
 else
 authenticationToken(token)
}();

 return {
 /* add members that will be exposed publicly */
 isAuthenticated: isAuthenticated,
 credentials: credentials,
 getAuthenticationToken: getAuthenticationToken,
 setCallBack: setCallBack,
 login: login
 };
};

Securing the Customer Banking Portal

[182]

Creating the login screen
The next step is to add a login screen to the view. The user must be prompted for a
username and password if an authentication token does not exist and if it does, the
user should be allowed to use the application features.

Let's start by including an authenticator module to our application. Open the view
in bankportal.html and include the authenticator.js file in the HTML header
before the include for bankportal.js. Download the bankportal.css file from
chapter7\css and replace it with the file in the css folder of the application. The
new bankportal.css file contains styles for the login form.

Locate the first div element in the view. It should have class="container". Add
an if binding to this div element and bind it to the isAuthenticated method of the
authenticator module. This div contains the main application and adding the if
binding will make it not to appear if the user has not yet been authenticated.

Add a new div before the div element for main application that we modified earlier.
We will call this new div, the login div. Add an ifnot binding to it and bind it to
the isAuthenticated method of the authenticator module. This div will contain
our login form and will only appear if the user is not authenticated. So far, it should
look like this:

<div class="container" data-bind="ifnot:
BankPortal.authenticator.isAuthenticated">
 <!-- add login form here -->
</div>
<div class="container" data-bind="if:
BankPortal.authenticator.isAuthenticated">
...
</div>

The next step is to add a login form. The login form must have two input elements—
one for capturing the username and the other for capturing the password. The
form must also have a submit button. Add the form to the login div. Bind the
username and the password input elements to the credentials model of the
authenticator module. Bind the submit action of the form to the login method of
the authenticator module. Use the form-login style class on the form element to
give it the appropriate styling. Our implementation looks similar to this:

<div class="container" data-bind="ifnot:
BankPortal.authenticator.isAuthenticated">
 <form class="form-login" data-bind="submit:
 BankPortal.authenticator.login">
 <h2 class="form-login-heading">Please sign in</h2>
 <label for="inputUserName" class="sr-only">User name</label>

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[183]

 <input type="text" id="inputEmail" class="form-control"
 placeholder="User name" data-bind="value:
 BankPortal.authenticator.credentials.userName">
 <label for="inputPassword" class="sr-only">Password</label>
 <input type="password" id="inputPassword" class="form-control"
 placeholder="Password" data-bind="value:
 BankPortal.authenticator.credentials.password">
 <button class="btn btn-lg btn-primary btn-block"
 type="submit">Sign in</button>
 </form>
</div>

Note that the authenticator module is exposed through the BankPortal module.

Refactoring the BankPortal module
Now that we have created the authenticator module and updated the view with
the login form, we can work on the last step of this user story. In this step, we will
refactor the BankPortal module to use the authenticator module. Open the
BankPortal module in bankportal.js. Add the authenticator module after
the declaration of the sever module. Pass the server module as a parameter to the
authenticator module and add the authenticator to the return statement of the
BankPortal module:

/* Module for Customer banking portal application */
var BankPortal = function () {
 /* add members here */
 /* module to retrieve data from the server */
 var server = ServerStub();
 /* module for authentication */
 var authenticator = Authenticator(server);

 return {
 /* add members that will be exposed publicly */

 authenticator: authenticator
 };
}();

Securing the Customer Banking Portal

[184]

Next, we will create a method that will be called on successful authentication. We
will set this method as the callback on the authenticator module. Create a method
called postAuthenticationInit. In this method, check whether the user has been
authenticated, and retrieve the data from the server by calling the retrieveData
method. Also, create the validation errors in this method. Refactor the original
init method of the Bankportal module to set the postAuthenticationInit
method as the callback for the authenticator module and remove the call to the
retrieveData method and creation of the validation errors. The init method
should also call the postAuthenticationInit method to initialize the module
with data in case the user is already authenticated. After the refactor, it should look
similar to this:

/* call back for when authentication is successful */
var postAuthenticationInit = function() {
 if(authenticator.isAuthenticated()) {
 retrieveData();
 //model validation errors
 validationErrors = ko.validation.group(member, { deep: true
 });
 }
};
var init = function () {
 /* add code to initialize this module */

 //set the call back for when the wizard is done
 transferWizard.setCallBack(transferFunds);
 //set the call back for successful login
 authenticator.setCallBack(postAuthenticationInit);

 //apply ko bindings
 ko.applyBindings(BankPortal);
//init with data if user already authenticated
postAuthenticationInit();
};

We need to pass the authentication token to the server on every call we make so that
the server knows who the logged in user is. The new server stub methods take the
token as an additional parameter. Modify all the calls made to the server and add the
token as a parameter. There should be four such calls. The following are the update
server calls:

...
var data =
server.getMemberData(authenticator.getAuthenticationToken());
...

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[185]

server.updatePersonalInformation(ko.toJS(member.personal),
authenticator.getAuthenticationToken());

...
server.transferFunds(ko.toJS(transfer),
authenticator.getAuthenticationToken());
...
var accounts = server.getAccounts(authenticator.
getAuthenticationToken());
...

Testing the application using different user
accounts
Now that we have made all the changes required to implement this user story, we
are ready to test the application. The two user accounts that are already setup on
the server are john.citizen with a password, john123, and mark.person with a
password, mark123.

The session storage used for storing the authentication token
will not work in Internet Explorer if the application is run from
the local filesystem. Deploy the application on a web server
and access it over HTTP for it to work with Internet Explorer.
Alternatively, use a different browser.

Open the application in the browser. You should be presented with a login screen.
Try logging in using the first account by entering john.citizen as the username
and john123 as the password. The application should let you in as the user John,
and displays John's accounts. Since the logout feature is not yet implemented, open
the application in another browser window to login as a different user. Try logging
in using the credentials for Mark. Try logging in using wrong credential and see
what happens.

In our browser, this feature looks similar to the following screenshot:

Securing the Customer Banking Portal

[186]

For production systems, always use Transport Layer Security (TLS)
with a strong certificate to prevent user data and authentication from
being compromised.

We have reached our first checkpoint for this chapter. The code for this checkpoint
can be found at chapter7\checkpoint1.

Validating the login form
This user story is about validating the login form for blank user inputs for username
or password. This is similar to, and will re-enforce the concepts of form validation
described in the previous chapters. To implement validation to the login form,
we will:

•	 Add validation extenders to the credentials model
•	 Create errors group for the credentials model
•	 Modify the login form submit method to check for errors
•	 Update the view to add validation to the login form

Let's get started by opening the authenticator module and adding validation
extenders to the credentials model:

/* model for user credentials */
var credentials = {
 userName: ko.observable().extend({ required: true}),
 password: ko.observable().extend({ required: true})
};

Now create the errors group for the credential model by adding the following line of
code to the init method of the authenticator module:

/* initialize errors */
credentials.errors = ko.validation.group(credentials);

Next, we modify the login method of the authenticator module to check for errors.
We show the errors if they exist and do not proceed with the login request to the
server. After making this modification, the login method should look similar to this:

/* login to the server */
var login = function() {
 //check if validation errors occurred

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[187]

 if (credentials.errors().length > 0) {
 console.log("Credentials model is invalid.....");
 credentials.errors.showAllMessages();
 return;
 }

};

Lastly, we will update the view to add the validation to the login form. Open the
view in bankportal.html and add a div element each, around the label, and input
elements for username and password. Add the validationElement data binding
to the div elements. Add a validationOption data binding to the div elements
and configure it to not show the error messages. We do this as we do not want to
show error messages; we only show error styles for the login form. After making the
updates described here, the login form should look similar to this:

<form class="form-login" data-bind="submit:
BankPortal.authenticator.login">
 <h2 class="form-login-heading">Please sign in</h2>
 <div data-bind="validationOptions: {insertMessages: false},
 validationElement:
 BankPortal.authenticator.credentials.userName">
 <label for="inputUserName" class="sr-only">User name</label>
 <input type="text" id="inputEmail" class="form-control"
 placeholder="User name" data-bind="value:
 BankPortal.authenticator.credentials.userName">
 </div>
 <div data-bind="validationOptions: {insertMessages: false},
 validationElement:
 BankPortal.authenticator.credentials.password">
 <label for="inputPassword" class="sr-only">Password</label>
 <input type="password" id="inputPassword" class="form-control"
 placeholder="Password" data-bind="value:
 BankPortal.authenticator.credentials.password">
 </div>
 <button class="btn btn-lg btn-primary btn-block"
 type="submit">Sign in</button>
</form>

Securing the Customer Banking Portal

[188]

Open the application in the browser. Try hitting the Sign in button without entering
anything for the username and password. You should now see the username
and password fields highlighted with the error style. It should look similar to the
following screenshot:

We have reached our second checkpoint for this chapter. The code for this
checkpoint can be found at chapter7\checkpoint2.

Handling the authentication error
This user story is about displaying a message to the user if the login fails based on
the username and password that the user has provided. To implement this user
story, we will take the following steps:

•	 Add a flag to the authenticator module to show or hide the
authentication error

•	 Modify the login method of the authenticator module to check for the
authentication error

•	 Update the view to add an alert box with the authentication error

Let's get started by opening the authenticator module and adding an observable that
will serve as a flag to show or hide the authentication error alert box:

/* flag to show authentication failed message */
var showAuthenticationFailed = ko.observable(false);

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[189]

Add the preceding flag to the return statement of the authenticator module. Now
modify the login method to check whether the server returns a false for the login
call. In case of authentication failure, set the showAuthenticationFailed flag to
false and do not proceed any further by returning out of the module. The login
method of the authenticator module should look similar to this:

/* login to the server */
var login = function() {

 var token = server.login(credentials.userName(),
 credentials.password());
 if(token == false) {
 showAuthenticationFailed(true);
 return;
 }

};

Lastly, update the view to add an alert box with the authentication error. To do this,
add the following code below the Submit button of the login form:

<div class="alert alert-danger" role="alert" data-bind="visible:
BankPortal.authenticator.showAuthenticationFailed">
Login failed! Invalid user name or
password</div>

The preceding code uses the visible binding to display the authentication alert box
based on the showAuthenticationFailed flag.

Open the application in the browser and try adding an invalid username and
password and hit the Sign in button. You should now see the authentication
error alert box appear:

We have reached our third checkpoint for this chapter. The code for this checkpoint
can be found at chapter7\checkpoint3.

Securing the Customer Banking Portal

[190]

Displaying the logged in user
In this user story, we will display the username of the logged in user on the screen.
To implement this user story, we will take the following steps:

•	 Add a method to the authenticator module to extract and return the
username from the JWT

•	 Update the view to display the logged in user in the navigation bar

Let's start by adding a method to the authenticator module. We will name this
method loggedInUser and make it a pure observable so that it can be used in the
view. We will extract the username form the JWT we received from the server.
Recall the JWT structure described earlier in this chapter. The JWT is base64 encoded
with dot (.) as the separator between head, body, and signature. To retrieve the
username, we will split the token and then base64 decode the body. The body of
the token contains the userName attribute, which the method should return. Our
implementation of the pure computed observable looks similar to this:

/* return the user name of the logged in user */
var loggedInUser = ko.pureComputed(function () {
 var token = authenticationToken();
 var split = token.split("\.");
 var userPayload = JSON.parse(jwt.base64urldecode(split[1]));
 return userPayload.userName;
});

Add loggedInUser to the return statement of the authenticator module. Now we
can update the view to display the username using the loggedInUser observable.
Open the view in bankportal.html and locate the navigation bar. The navigation
bar has the nav element. Within the navigation bar, locate the div with id="navbar".
Add another ul element to the div with an li element to display the username. You
can use the span element to bind the text with the loggedInUser observable. Our
implementation looks similar to this:

<nav class="navbar navbar-default">
 <div class="container-fluid">

 <div id="navbar" class="navbar-collapse collapse">
 <ul class="nav navbar-nav">

 <ul class="nav navbar-nav navbar-right">

 <span class="navbar-text" data-bind="text:
 BankPortal.authenticator.loggedInUser" >

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[191]

 </div>
 </div>
</nav>

Notice that I am using the navbar-right style class to pull the username to the right
of the navigation bar.

Open the application in the browser. Login with john.citizen as the user. You
should now see the username appear on the right-hand side of the navigation bar.
It should look similar to this:

We have reached our fourth checkpoint for this chapter. The code for this checkpoint
can be found at chapter7\checkpoint4.

Logging out of the application
In this user story, we will give the users the ability to be able to log out of the
application. To implement the logout feature, we will:

•	 Add a method to the authenticator module to send a logout request to the
server and reload the application

•	 Update the view to display the logout link

Securing the Customer Banking Portal

[192]

Let's start by adding a method to the authenticator module. We will name this
method logout. This method should send a logout request to the server, clear
the token stored in the session, and reload the application. The server invalidates
the token on the logout request. Reloading the application will clear it from
any data stored about the user. Add this method to the return statement of the
authenticator module. Our implementation looks similar to this:

/* logout out of the application */
var logout = function() {
 server.logout(authenticationToken());
 sessionStorage.clear();
 document.location.reload(true);
};

Now we can update the view and add the logout link. We will modify the username
in the navigation bar we developed in the previous user story to a dropdown and
add the logout as an item. Make the modifications and bind the click of logout to
the logout method in the authenticator module. The updated view should look
similar to this:

<ul class="nav navbar-nav navbar-right">
 <li class="dropdown">
 <a href="#" class="dropdown-toggle" data-toggle="dropdown"
 role="button" aria-haspopup="true" aria-expanded="false"><span
 data-bind="text:
 BankPortal.authenticator.loggedInUser">

 <ul class="dropdown-menu">
 <a href="#" data-bind="click:
 BankPortal.authenticator.logout">Logout

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[193]

Open the application in the browser. Login with john.citizen as the user. You
should now see the username appear on the right-hand side of the navigation bar
with a down arrow. Click on the username to see the Logout link. Try logging out
as john.citizen and login as mark.person. It should look similar to this:

We have reached our final checkpoint for this chapter. The code for this checkpoint
can be found at chapter7\checkpoint5.

Securing the Customer Banking Portal

[194]

Summary
In this chapter, we secured the customer banking portal based on username and
password authentication scheme and token-based authentication. The first section
of the chapter covered the commonly used authentication mechanisms, basics of
token-based authentication, and saw how it differs from the traditional session
cookie-based approach.

In the second section, we developed the login screen and applied the token-based
authentication using JWT. This second covered the user input validation.

In the third section, we implemented error handling for a failed login attempt. The
fourth section was about retrieving the logged in user from the authentication token
and displaying the username on the screen. In the last section, we implemented the
logout feature.

This was the last chapter in the series of developing the customer banking portal. In
the next chapter, we will look at developing an editable grid with CRUD operations.

www.ebook3000.com

http://www.ebook3000.org

[195]

Building an Editable Products
Grid with CRUD Operations

In this chapter we will walk through building an editable products grid application.
This application will allow the users to create, view, update, and delete products.
In the previous chapters, we used a server stub to mimic the server. However,
in this chapter, we will learn how to develop a client to communicate with a real
server, which exposes the RESTful services for CRUD operations. The products grid
application will build and enhance the concepts learned in the previous chapters.

We will implement the following application features in this chapter:

•	 View a list of all the products, including product ID, name, description,
and price

•	 Delete a product from the product list
•	 Add a new product to the product list
•	 Update an existing product

In this chapter, you will learn how to:

•	 Build a generic RESTful API client
•	 Perform create operation using HTTP POST
•	 Perform read operation using HTTP GET
•	 Perform update operation using HTTP PUT
•	 Perform delete operation using HTTP DELETE

Building an Editable Products Grid with CRUD Operations

[196]

•	 Work with observable arrays, foreach flow control and templating to render
a table.

•	 Use visible binding to show or hide components
•	 Use click binding to capture button clicks and map them to CRUD

operations

As we did in the previous chapters, we will be taking an iterative approach to
building the products grid application. We will iteratively develop each feature
listed here until the application evolves into a fully featured application. Each feature
will have a corresponding checkpoint folder in the accompanying code. The folders
are named chapter8\checkpoint1, chapter8\checkpoint2, and so on.

A word on REST
Representational State Transfer (REST) is an architecture style that exposes data
and functionality using Uniform Resource Identifiers (URIs). It is independent of
protocol or message format. Most web applications use RESTful web services over
HTTP using JSON as the message format. The RESTful web services over HTTP use
the following convention when mapping CRUD operations to HTTP methods:

CRUD operation HTTP method
Create POST

Read GET

Update PUT

Delete DELETE

The RESTful web services are used in modern single page applications because
they decouple the services from the user experience logic. They are also performant,
lightweight, scalable, stateless, and maintainable.

The products grid application uses the RESTful web services to perform CRUD
operations on the products. It exposes the following services:

Service description HTTP
method

URI Message
format

Add a product POST http://[host:port]/products JSON

Retrieve all products GET http://[host:port]/products JSON

Update a product PUT http://[host:port]/products JSON

Delete a product DELETE http://[host:port]/products/
{id}

JSON

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[197]

The following is an example of message returned by HTTP GET
http://[host:port]/products:

[
 {
 "id":"#1000",
 "name":"Chess Periodicals",
 "description":"A book on chess periodicals",
 "price":100
 },
 {
 "id":"#2000",
 "name":"Strategy and Tactics",
 "description":"A book on chess strategy and tactics",
 "price":120
 }
]

Installing and running the sever
The first step before we start developing the user stories is to install and run the
server. The server will expose the RESTful APIs for our products grid application.
We will use Node.js as the server.

Node.js is a server-side JavaScript-based platform for
building network applications. You can learn about
Node.js at https://nodejs.org/.

To install and run the server, perform the following steps:

1.	 Download and install node.js from https://nodejs.org/.
2.	 Create a folder for server module. Let's call it ProductsServer.

https://nodejs.org/
https://nodejs.org/

Building an Editable Products Grid with CRUD Operations

[198]

3.	 Navigate to the ProductsServer folder and install the Restify module
using npm.

4.	 Download products-server.js from chapter8\server to the
ProductsServer folder.

5.	 Run the application using node and products-server.js.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[199]

6.	 To test that the server is ready, open the browser and access
http://localhost:8080/products. You should see the list
of products in JSON format.

Creating the skeleton
The next step is to create the skeleton before we can start building the application
features. Follow these steps to create the skeleton; you should be familiar with these
steps from earlier chapters.

First, create the folder structure for development:

1.	 Create the ProductsGrid folder. This is the main folder that houses our
products grid application.

2.	 Add a WebContent folder under the ProductsGrid folder. This folder holds
the content that gets published on the Web.

3.	 Add a javascript folder under the WebContent folder. As the folder name
suggests, this folder will contain all our JavaScript files.

4.	 Add a bootstrap folder under the WebContent folder. This folder will
contain the Bootstrap files.

Now that we have the folder structure in place, let's add the files to our folders by
following these steps.

1.	 Add the Knockout library to the javascript folder.
2.	 Add the jQuery library to the javascript folder.
3.	 Add the Knockout validation plugin to the javascript folder.
4.	 Add Bootstrap to the bootstrap folder.
5.	 Create the productsgrid.js file under the javascript folder.

Building an Editable Products Grid with CRUD Operations

[200]

6.	 Download the configureknockout.js file from chapter8\config and copy
it to the javascript folder.

7.	 Create the productsgrid.html file under the WebContent folder.

Following the preceding steps should result a folder structure that looks similar
to this:

Now that we have created the folder structure, we can add code to our HTML
and JavaScript files. Open the productsgrid.html file and add the following
HTML code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title>Knockout : Products Grid</title>

 <link rel="stylesheet" href="bootstrap/css/bootstrap.min.css">

 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <script type="text/javascript"
 src="javascript/knockout.validation.min.js"></script>
 <script type="text/javascript"
 src="javascript/configureknockout.js"></script>

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[201]

 <script type="text/javascript"
 src="bootstrap/js/bootstrap.min.js"></script>
 <script type="text/javascript"
 src="javascript/productsgrid.js"></script>
 </head>
 <body>
 <div class="container">
 <div class="panel panel-default">
 <div class="panel-heading">Products</div>
 <div class="panel-body">
 <!-- Products grid -->
 </div>
 </div>
 </div>
 </body>
</html>

The preceding code references the required libraries and displays a panel header
with the name of our application, Products. Open the productsgrid.js file and
add the following code. The code defines our empty ProductsGrid module:

/* Module for products grid application */
var ProductsGrid = function () {
 /* add members here */

 var init = function () {
 /* add code to initialize this module */

 //apply ko bindings
 ko.applyBindings(ProductsGrid);
 };

 /* execute the init function when the DOM is ready */
 $(init);

 return {
 /* add members that will be exposed publicly */
 };
}();

View the application in the browser. It should give you a page with the panel header.
We are now ready to start building our first feature.

Building an Editable Products Grid with CRUD Operations

[202]

Displaying the list of products
The first feature of this chapter is to display the list of products to the user.
To implement this feature, we will:

•	 Create a new module that will serve as the client for our CRUD operations
•	 Update the products client module to add a method to retrieve products

from the server
•	 Add the product model to the products grid module
•	 Update the products grid module to retrieve the list of products from

the server
•	 Update the view to display the products

Let's get started by creating the client module for CRUD operations. Create a
new JavaScript file called productsclient.js and add a blank module to it. The
module should expect a base URL. This is the URL to the server. Add a method to
the module to send a GET request to the server to retrieve the list of products. The
method should expect a method that will be called on successful retrieval of data.
Our implementation looks similar to this:

/* Module for products grid client */
var ProductsClient= function (url) {

 /* the base url for the rest service */
 var baseUrl = url;

 /* method to retrieve products */
 var getProducts = function(callback) {
 $.ajax({
 url: baseUrl + "/products",
 type: "GET",
 success: function(result) {
 console.log("Products retrieved: " +
 JSON.stringify(result));
 callback(result);
 }
 });
 };

 return {
 /* add members that will be exposed publicly */
 getProducts: getProducts
 };
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[203]

Notice the use of the $.ajax() method. This method is provided by jQuery and is
used to send AJAX requests to the RESTful web services. The url parameter in the
object passed to the $.ajax() method specifies the URL of the service. The type
parameter specifies the HTTP method, in this case, GET. The success parameter is a
function that gets called on a successful response. We execute the callback method on
a successful response.

Now we can add the model to the ProductsGrid module. The model should have
observables for product ID, name, description, and price. To construct the model,
we will create a method that takes a product returned by the server, constructs the
model with the observables, and returns it. Our implementation looks similar to this:

/* model for products */
var productModel = function(item) {
 this.data = {};
 this.data.id = ko.observable(item.id);
 this.data.name = ko.observable(item.name);
 this.data.description = ko.observable(item.description);
 this.data.price = ko.observable(item.price);
};

Add an observable array to the ProductsGrid module that will hold the list of
products. Add the observable array to the return statement of the module as
we will access it from the view:

/* product observable array */
var products = ko.observableArray();

Next, we use the client module to retrieve and populate the products observable
array. Add the ProductsClient module to the ProductsGrid module and pass the
base URL of the server:

/* add members here */
var client = ProductsClient("http://localhost:8080");

Note that I am using localhost on port 8080. You should use the hostname and
port appropriate to your environment. The hostname and port should ideally be
externalized to a configuration file. Add two methods to the ProductsGrid module;
one to retrieve the list of products using the client:

/* method to retrieve products using the client */
var retrieveProducts = function () {
 console.log("Retrieving products from server ...");
 client.getProducts(retrieveProductsCallback);
};

Building an Editable Products Grid with CRUD Operations

[204]

Add another method to act as the callback for when the data arrives back form the
server. The call back method should construct products using the productModel
method we created earlier and populate the products observable array. Here is our
implementation of this method:

/* callback for when the products are retrieved from the server */
var retrieveProductsCallback = function (data) {
 data.forEach(function(item) {
 products.push(new productModel(item));
 });
};

The last step before we can move on to developing the view to call the
retrieveProducts method from the ProductsGrid, init:

var init = function () {
 /* add code to initialize this module */
 retrieveProducts();

 //apply ko bindings
 ko.applyBindings(ProductsGrid);
};

We are now ready to work on the view. Open the view in the productsgrid.html
file and locate the div element with class="panel-body". Add an HTML table
with columns for ID, name, description, and price. Use the foreach binding to bind
the table body to the products observable array in the ProductsGrid module. Use
the text binding for ID, name, and description. Use the currency binding for price.
Our implementation looks similar to this:

<div class="panel-body">
 <table class="table">
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Description</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: ProductsGrid.products">
 <tr>
 <td data-bind="text: data.id"></td>

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[205]

 <td data-bind="text: data.name"></td>
 <td data-bind="text: data.description"></td>
 <td data-bind="currency: data.price"></td>
 </tr>
 </tbody>
 </table>
</div>

Make sure that the server is running and open the application in browser. You
should be able to see the products grid. In our browser, it looks similar to the
following screenshot:

We have reached our first checkpoint for this chapter. The code for this checkpoint
can be found at chapter8\checkpoint1.

Building an Editable Products Grid with CRUD Operations

[206]

Deleting a product
The second feature of this application is about deleting a product from the products
grid. To implement this feature, we will:

•	 Update the products client module to add a method to send a request to the
server to delete a product

•	 Update the products grid module to add a method to delete a product
•	 Update the view to add a new column to the grid that will contain a button

for the delete action

Let's get started by updating the ProductsClient module. Open the
ProductsClient module in the productsclient.js file and add a method to send
an HTTP DELETE request to http://[host:port]/products/{id}. The method
should expect the product model and a callback method as parameters. The callback
method should get executed on successful response from the server. As used before
to send the HTTP GET request, use the $.ajax() method provided by jQuery to send
the HTTP DELETE request. Don't forget to add the method to the return statement of
the ProductsClient module. Our implementation looks similar to this:

/* method to delete a product */
var deleteProduct = function(product, callback) {
 console.log("Deleting product with id [" + product.data.id() +
 "]");
 $.ajax({
 url: baseUrl + "/products/" + product.data.id(),
 type: "DELETE",
 success: function(result) {
 callback(product);
 }
 });
};

We can now update the ProductsGrid module to use the deleteProduct method
from the ProductsClient module. Open the ProductGrid module and add a
method to call the deleteProduct method of the ProductsClient module. This
method should expect the product to be deleted and pass it to the deleteProduct
method of the ProductsClient module along with a callback method. We will create
the callback method in the next step. Add this newly created method to the return
statement of the ProductsGrid module. This method should look similar to this:

/* method to send delete request to the client */
var deleteProduct = function (product) {
 client.deleteProduct(product, deleteProductCallback);
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[207]

Now create a callback method, deleteProductCallback, which expects a product
model as its parameter and removes it from the products observable array. Here is
our implementation:

/* callback on successful delete request */
var deleteProductCallback = function (product) {
 products.remove(product);
 console.log("Product with id [" + product.data.id()+ "]
 deleted");
};

The final step is to update the view. Open the view in the productsgrid.html file
and add a new column to the products table; call it actions. Add an anchor element
to the column and bind it to the deleteProduct method to the ProductsGrid
module. The table should now look similar to this:

<table class="table">
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Description</th>
 <th>Price</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: ProductsGrid.products">
 <tr>
 <td data-bind="text: data.id"></td>
 <td data-bind="text: data.name"></td>
 <td data-bind="text: data.description"></td>
 <td data-bind="currency: data.price"></td>
 <td><a href data-bind="click:
 ProductsGrid.deleteProduct">Delete</td>
 </tr>
 </tbody>
</table>

Building an Editable Products Grid with CRUD Operations

[208]

Open the application in the browser. You should now see the actions column with a
link to delete a product. Click on the Delete link to delete a product. In our browser,
the application looks similar to the following screenshot:

We have reached the second checkpoint for this chapter. The code for this checkpoint
can be found at chapter8\checkpoint2.

Adding a product
The third feature of this application is about adding a product to the products grid.
To implement this feature, we will:

•	 Update the products client module to add a method to send a request to the
server to add a new product

•	 Update the product model to add a flag to switch the product between edit
and display mode

•	 Update the products grid module to create a method to add a product
•	 Update the products grid module to create a method to save the product
•	 Update the view to create a link to add a product and capture user input

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[209]

Let's get started by updating the ProductsClient module. Open the
ProductsClient module in the productsclient.js file and add a method to
send HTTP POST request to http://[host:port]/products. The method should
expect the product model and a callback method as parameters. The callback
method should get executed on successful response from the server. As used
before to send the HTTP DELETE request, use the $.ajax() method provided by
jQuery to send the HTTP POST request. Add a data parameter to the object passed
to $.ajax() and assign it the product model as a JSON string. You can use JSON.
stringify() method for this. Add another parameter, contentType, and assign
the application/json value. This parameter tells the sever that the message is the
request of type JSON. The server will create the product on the backend and return a
generated ID of the product. Don't forget to add the method to the return statement
of the ProductsClient module. Our implementation looks similar to this:

/* method to add a product */
var addProduct = function(product, callback) {
 var plainProduct = ko.toJS(product.data);
 console.log("Saving product [" + JSON.stringify(plainProduct) +
 "]");
 $.ajax({
 url: baseUrl + "/products",
 type: "POST",
 data: JSON.stringify(plainProduct),
 contentType: "application/json",
 success: function(id) {
 callback(product, id);
 }
 });
};

Update the product model to add a flag that indicates the display mode of the
product. The display mode can either be edit or view. We will use this flag in the
view to render the input component that capture the user input for the new product.
The updated product model should look similar to this:

/* model for products */
var productModel = function(item, itemMode) {
 this.data = {};
 this.data.id = ko.observable(item.id);
 this.data.name = ko.observable(item.name);
 this.data.description = ko.observable(item.description);
 this.data.price = ko.observable(item.price);
 this.diplayMode = ko.observable(itemMode);
};

Building an Editable Products Grid with CRUD Operations

[210]

Add an attribute to the module that represents the two display modes; add this
attribute to the return statement of the module as we will need to access it from
the view:

/* display modes for the grid */
var displayMode = {
 view: "VIEW",
 edit: "EDIT"
};

Modify the retrieveProductsCallback method to pass the display mode for the
new products being added to the products observable array.

The next step is to update the ProductsGrid module to add a method to add a new
blank product to the products grid. The display mode of this new product must be
edit to allow the user to enter the product details. Here is our implementation:

/* method to add a blank product to the products array */
var addProduct = function () {
 var item = { sku: null, name: null, description: null, price:
 null};
 products.push(new productModel(item, displayMode.edit));
};

We can now update the ProductsGrid module to use the addProduct method from
the ProductsClient module. Add a method to the ProductsGrid module that uses
the addProduct method of the ProductsClient module:

/* method to send add request to the client */
var saveProduct = function (product) {
 client.addProduct(product, saveProductCallback);
};

Now, create a call back method, saveProductCallback, which expects a product
model and the product ID returned by the server as its parameters. The method sets
the product ID and the display mode to view. Here is our implementation:

/* callback on successful add request */
var saveProductCallback = function (product) {
product.data.id(id);
 product.diplayMode(displayMode.view);
 console.log("Product saved with id [" + product.data.id() +
 "]");
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[211]

We are now ready to update the view. Open the view in the productsgrid.html file
and add a link at the bottom of the products table to add a new product:

<a href data-bind="click: ProductsGrid.addProduct">+ Add a
Product

Use the click binding and bind the link to the addProduct method of the
ProductsGrid module. Next, add an if binding to the table tr element and make it
render only if the display mode of the product is view. Add another tr element and
use the if binding to make it render only if the display mode of the product is edit.
In this new tr element, use input components and bind them to the product model.
Lastly, add a save link in the actions column to save the newly created product. Use
the click binding and bind it to the saveProduct method of the ProductsGrid
module. The modified products table should look similar to this:

<table class="table">
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Description</th>
 <th>Price</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: ProductsGrid.products">
 <tr data-bind="if: diplayMode() ===
 ProductsGrid.displayMode.view">
 <td data-bind="text: data.id"></td>
 <td data-bind="text: data.name"></td>
 <td data-bind="text: data.description"></td>
 <td data-bind="currency: data.price"></td>
 <td><a href data-bind="click:
 ProductsGrid.deleteProduct">Delete</td>
 </tr>
 <tr data-bind="if: diplayMode() ===
 ProductsGrid.displayMode.edit">
 <td data-bind="text: data.id">
 </td>
 <td>
 <input type="text" class="form-control"
 data-bind="value: data.name" />
 </td>
 <td>

Building an Editable Products Grid with CRUD Operations

[212]

 <input type="text" class="form-control" data-bind="value:
 data.description" />
 </td>
 <td>
 <input type="text" class="form-control" data-bind="value:
 data.price" />
 </td>
 <td>
 <a href data-bind="click:
 ProductsGrid.saveProduct">Save |
 <a href data-bind="click:
 ProductsGrid.deleteProduct">Delete
 </td>
 </tr>
 </tbody>
</table>

Open the application in the browser. You should now see a link at the bottom of the
grids table to add a product. Click on the add product link to add a product. A new
row should appear with input boxes to capture the user input. Enter the product
details and click on Save. You should see the new product added to the products
grid. In our browser, the application looks similar to this:

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[213]

We have reached the third checkpoint for this chapter. The code for this checkpoint
can be found at chapter8\checkpoint3.

Updating a product
The final feature of this chapter is about updating a product in the products grid. To
implement this feature, we will:

•	 Update the products client module to add a method to send a request to the
server to update a product

•	 Update the products grid module to create a method to edit a product
•	 Update the products grid module to create a method to update the product
•	 Update the view to create a link to update the product

Let's get started by updating the ProductsClient module. Open the
ProductsClient module in the productsclient.js file and add a method to send
HTTP PUT request to http://[host:port]/products. The method should expect
the product model and a callback method as parameters. The callback method
should get executed on successful response from the server. As used before to
send the HTTP PUT request, use the $.ajax() method provided by jQuery to send
the HTTP POST request. Add a data parameter to the object passed to $.ajax()
and assign it the product model as a JSON string. You can use JSON.stringify()
method from this. Add another parameter, contentType, and assign the value,
application/json. This parameter tells the server that the message is a request
is of type JSON. Don't forget to add the method to the return statement of the
ProductsClient module. Our implementation looks similar to this:

/* method to update a product */
var updateProduct = function(product, callback) {
 var plainProduct = ko.toJS(product.data);
 console.log("Updating product [" + JSON.stringify(plainProduct)
 + "]");
 $.ajax({
 url: baseUrl + "/products",
 type: "PUT",
 data: JSON.stringify(plainProduct),
 contentType: "application/json",
 success: function(result) {
 callback(product);
 }
 });
};

Building an Editable Products Grid with CRUD Operations

[214]

The next step is to update the ProductsGrid module to add a method to
switch a product to the edit mode. The method simply calls the displayMode
observable of the product model. Add this method to the return statement of
the ProductsGrid module:

/* method to edit a product */
var editProduct = function (product) {
 product.diplayMode(displayMode.edit);
};

We can now update the ProductsGrid module to use the udpateProduct method
from the ProductsClient module. Add a method to the ProductsGrid module that
uses the updateProduct method of the ProductsClient module:

/* method to send update request to the client */
var updateProduct = function (product) {
 client.updateProduct(product, updateProductCallback);
};

Now, create a callback method updateProductCallback which accepts a product
model as its parameter. The method should change the display mode to view. Here
is the implementation:

/* callback on successful update request */
var updateProductCallback = function (product) {
 console.log("Product updated with id [" + product.data.id() +
 "]");
 product.diplayMode(displayMode.view);
};

We are now ready to update the view. Open the view in the productsgrid.html
file and add a link to edit a product in the actions column of row for the view mode.
Bind the click of the link to the editProduct method we created in the earlier step:

<tr data-bind="if: diplayMode() === ProductsGrid.displayMode.view
">
 <td data-bind="text: data.id"></td>
 <td data-bind="text: data.name"></td>
 <td data-bind="text: data.description"></td>
 <td data-bind="currency: data.price"></td>
 <td>
 <a href data-bind="click: ProductsGrid.editProduct">Edit
 | <a href data-bind="click:
 ProductsGrid.deleteProduct">Delete
 </td>
</tr>

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[215]

In the products grid row for edit mode, add a link to update the product and bind
it to the updateProduct method of the ProductsGrid module. Make the link only
appear if the ID exists for the product; you can use the visible binding to achieve
this. Similarly, make the save link to only appear if the product does not have an ID.
Here is our implementation:

<tr data-bind="if: diplayMode() ===
ProductsGrid.displayMode.edit">
 <td data-bind="text: data.id">
 </td>
 <td>
 <input type="text" class="form-control" data-bind="value:
 data.name" />
 </td>
 <td>
 <input type="text" class="form-control" data-bind="value:
 data.description" />
 </td>
 <td>
 <input type="text" class="form-control" data-bind="value:
 data.price" />
 </td>
 <td>
 <a href data-bind="visible: data.id() != null, click:
 ProductsGrid.updateProduct">Update
 <a href data-bind="visible: data.id() == null, click:
 ProductsGrid.saveProduct">Save |
 <a href data-bind="click:
 ProductsGrid.deleteProduct">Delete
 </td>
</tr>

Building an Editable Products Grid with CRUD Operations

[216]

Open the application in the browser. For each row of the products grid, you should
now see a link to edit the product. Click on the Edit product link to edit the product.
The product row should switch to edit mode. Update the update details and click
on the Update link. You should see the product updated in the products grid and
return back to display mode. In our browser, the application looks similar to this:

We have reached the final checkpoint for this chapter. The code for this checkpoint
can be found at chapter8\checkpoint4.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[217]

Summary
In this chapter, we walked through building an editable products grid application.
The application integrated with a server through the RESTful web services. The
features of the application included displaying, deleting, adding, and updating
products. The main focus of the chapter was learning how to perform CRUD
operations using the RESTful web services.

We stared the chapter with a brief overview of the RESTful web services and the API
calls the products grid server exposed. We then moved on to installing and running
the server using Node.js before we started developing the application features.

The first feature of the products grid application was to retrieve the list of products
from the server using an HTTP GET request and displaying the products in a grid.
The second feature was about deleting a product. We used HTTP DELETE request to
achieve this. The third feature was the ability to add a product. HTTP POST request
was used to add a product. The last feature was the ability to update an existing
product. HTTP PUT request was used to update a product on the server.

In the next, the final chapter of the book, we will look at using Google Maps API
with Knockout.

www.ebook3000.com

http://www.ebook3000.org

[219]

Using Google Maps APIs
with Knockout

In this chapter, we will walk through building an application that uses Google Maps
APIs. The application will allow the users to enter address information using the
autocomplete feature of the API and retrieve address details. The application will
render a map and allow the users to place markers on it. The users will also be able
to get directions between two addresses both as description and route on the map.

We will implement the following application features in this chapter:

•	 Capture from and to addresses using address autocomplete
•	 View detailed address information
•	 View a map
•	 Place markers on the map for addresses
•	 View route on the map between two markers

In this chapter, you will learn how to:

•	 Build a generic component with custom binding handler to capture address
using the Google Maps APIs places library

•	 Retrieve and display detailed address information
•	 Build a generic component with custom binding handler to render a map
•	 Place markers on the map
•	 Use subscribers to interact with the map based on changes to the model
•	 Use the Google Maps APIs direction service to get directions from one

address to the other
•	 Display route between two markers on a map

Using Google Maps APIs with Knockout

[220]

We will follow our pattern of iteratively developing each feature listed here until
the application evolves into a fully featured application. Each feature will have a
corresponding checkpoint folder in the accompanying code. The folders are named
chapter9\checkpoint1, chapter9\checkpoint2, and so on.

Creating the skeleton
The first step is to create the skeleton before we can start building the application
features. Follow these steps to create the skeleton. You should be familiar with these
steps from earlier chapters.

Create the folder structure for development by following these steps:

1.	 Create the folder, MapsApplication. This is the main folder that houses our
products grid application.

2.	 Add a WebContent folder under the MapsApplication folder. This folder
holds content that gets published to the Web.

3.	 Add a javascript folder under the WebContent folder. As the folder name
suggests, this folder will contain all our JavaScript files.

4.	 Add bootstrap folder under the WebContent folder. This folder will contain
the Bootstrap files.

Now that we have the folder structure in place, let's add the files to our folders by
following these steps.

1.	 Add the Knockout library to the javascript folder.
2.	 Add the jQuery library to the javascript folder.
3.	 Add Bootstrap to the bootstrap folder.
4.	 Create the mapsapplication.js file under the javascript folder.
5.	 Create the mapsapplication.html file under the WebContent folder.

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[221]

Following these steps should result in a folder structure that looks similar to this:

Now that we have created the folder structure, we can add code to our HTML
and JavaScript files. Open the mapsapplication.html file and add the following
HTML code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title>Knockout : Maps Application</title>

 <link rel="stylesheet" href="bootstrap/css/bootstrap.min.css">

 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <script type="text/javascript"
 src="bootstrap/js/bootstrap.min.js"></script>
 <script type="text/javascript"
 src="javascript/mapsapplication.js"></script>
 </head>
 <body>
 <div class="container">
 <div class="row">
 <div class="col-md-12">
 <div class="panel panel-default">

 <div class="panel-heading">Address</div>
 <div class="panel-body">
 </div>

Using Google Maps APIs with Knockout

[222]

 </div>
 </div>
 </div>
 </div>
 </body>
</html>

The preceding code references the required libraries and displays a page with a
panel with the heading, Address. Open the mapsapplication.js file and add the
following code; the code defines our empty MapsApplication module:

/* Module for maps application */
var MapsApplication = function () {
 /* add members here */

 var init = function () {
 /* add code to initialize this module */
 ko.applyBindings(MapsApplication);
 };

 /* execute the init function when the DOM is ready */
 $(init);

 return {
 /* add members that will be exposed publicly */
 };
}();

View the application in the browser. It should give you a page with the panel header.
We are now ready to start developing our first application feature.

Capturing address using autocomplete
The first feature of this chapter is about capturing address using the autocomplete
feature of places library provided by the Google Maps APIs. To implement this
feature, we will:

•	 Add reference to the Google Maps APIs library in the view
•	 Create the model to hold the address information
•	 Create custom binding handler for the address autocomplete

input component
•	 Add the autocomplete input components to the view and bind them to use

the custom binding handler

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[223]

Let's get started by adding reference to the Google Maps APIs to the view. Open the
view in the mapsapplication.html file and add the highlighted line of code in the
HTML header:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html" />
 <title>Knockout : Maps Application</title>

 <link rel="stylesheet" href="bootstrap/css/bootstrap.min.css">

 <script type="text/javascript"
 src="javascript/jquery-2.1.3.min.js"></script>
 <script type="text/javascript"
 src="javascript/knockout-3.2.0.js"></script>
 <script type="text/javascript"
 src="bootstrap/js/bootstrap.min.js"></script>
 <script
 src="https://maps.googleapis.com/maps/api/
 js?v=3.exp&signed_in=true&libraries=places"></script>

 <script type="text/javascript"
 src="javascript/mapsapplication.js"></script>
 </head>

</html>

The code pulls the required libraries from Google. Notice the libraries=places
query parameter at the end of the URL. This query parameter instructs the Google
Maps APIs that we require the places library, which we will use to retrieve the
address details. The query parameter, v=3.exp, specifies that we require the
experimental release of the Google Maps API version 3. The signed_in=true query
parameter specifies that the map will be tailored to the signed in Google account user.

We are using the experimental release of Google JavaScript
Maps API version 3 for developing maps application in this
chapter. Use stable release versions of the API and obtain an
API key to develop commercial applications.

Using Google Maps APIs with Knockout

[224]

Next, we will add a model to the MapsApplication module in the
mapsapplication.js file to hold the addresses returned by the maps API.
To do this, open the MapsApplication module and add the following code:

/* model to hold addresses */
var mapsModel = {
 fromAddress: ko.observable(),
 toAddress: ko.observable()
};

Note that we have two attributes in our model: one to capture address from and
another to capture address to. Add the mapsModel attribute to the return statement
of the module as we will access this attribute from the view.

The next step is to create a custom Knockout binding handler, which will apply
autocomplete feature to an HTML input element. We will use the Autocomplete
class provided by the Google Maps APIs for this. The following is the basic construct:

var autocomplete = new google.maps.places.Autocomplete(
element,{ types: ['geocode'] });

The first parameter to the Autocomplete class is the HTML element the feature will
get applied to. The second parameter is AutocompleteOptions. You can find out
about the options that can be set using the AutocompleteOptions class from the API
reference on the Google Maps APIs website. The option we are using in our preceding
example is types. This specifies the type of predictions to return. In our example,
types: ['geocode'] instructs the API to return only the geocoding results.

To create the custom binding handler for the autocomplete component, open the
MapsApplication module in the mapsapplication.js file and create a method
called configureBindingHandlers. Call this method from the init method of the
module so that the custom binding handlers get created on module initialization.
Add a custom binding called addressAutoComplete. This binding handler should
apply the Autocomplete class to the HTML element passed in as the parameter.
The binding handler should also add an event listener that retrieves the address and
updates our model. Our implementation looks similar to this:

/* method to add custom binding handlers to knockout */
var configureBindingHandlers = function() {
 /* custom binding for address auto complete */
 ko.bindingHandlers.addressAutoComplete = {
 init: function(element, valueAccessor){
 // create the autocomplete object
 var autocomplete = new google.maps.places.Autocomplete(
 element,{ types: ['geocode'] });

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[225]

 // when the user selects an address from the dropdown,
 populate the address in the model.
 var value = valueAccessor();
 google.maps.event.addListener(autocomplete, 'place_changed',
 function() {
 var place = autocomplete.getPlace();
 console.log(place);
 value(place);
 });
 }
 };
};

We are now ready to work on the view. Open the view in the mapsapplication.
html file and locate the div element with class="panel-body". Add two HTML
input components with labels—one to capture address from and another to capture
address to. Use the addressAutoComplete binding on the input components to
apply the autocomplete feature to the input components and store the result in our
model. It should look similar to this:

<div class="panel panel-default">
 <div class="panel-heading">Address</div>
 <div class="panel-body">
 <div id="addressFromFields" class="form-group">
 <label for="autocompleteFromAddress">From address</label>
 <input id="autocompleteFromAddress" class="form-control"
 data-bind="addressAutoComplete:
 MapsApplication.mapsModel.fromAddress" placeholder="Enter
 your from address" type="text"></input>
 </div>
 <div id="addressToFields" class="form-group">
 <label for="autocompleteToAddress">To address</label>
 <input id="autocompleteToAddress" class="form-control"
 data-bind="addressAutoComplete:
 MapsApplication.mapsModel.toAddress" placeholder="Enter your
 to address" type="text"></input>
 </div>
 </div>
</div>

Using Google Maps APIs with Knockout

[226]

Open the application in your browser and try typing an address in one of the
address fields. You should see the autocomplete dropdown with predictions
of valid addresses as you type. The address details object returned by the Google
Maps APIs should get logged in the console on selection. In our browser, it looks
similar to this:

We have reached our first checkpoint for this chapter. The code for this checkpoint
can be found at chapter9\checkpoint1.

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[227]

Displaying address details
The second feature is about retrieving and displaying the address details. To
implement this feature, we will:

•	 Modify the model to capture address details
•	 Extract the address details from Google Maps APIs place object and populate

the model
•	 Update the view to display the address details

Let's get started by modifying the model we created previously to capture address
details. First, create a generic function to construct the address model. The address
model should have attributes that you want to capture and display, such as street
number and name. Here is our implementation:

/* generic model for address */
var AddressModel = function() {
 this.location = ko.observable();
 this.streetNumber = ko.observable();
 this.streetName = ko.observable();
 this.city = ko.observable();
 this.state = ko.observable();
 this.postCode = ko.observable();
 this.country = ko.observable();
};

Note the use of observables in AddressModel. This will allow you to do two-
way binding between the view and model. The next step is to extract the address
information from object of the google.maps.places.PlaceResult class returned
by the google.maps.places.Autocomplete getPlace() method. Create a method
called populateAddress that takes two parameters. The first parameter is the place
object which is retrieved using getPlace() method and the second parameter is the
value of addressAutoComplete binding. This method should extract the address
information from place object and populate the model using the AddressModel
observable. Consult the Google Maps APIs reference to get familiar with how the
address information is structured in the google.maps.places.PlaceResult class.

At the time of writing, the Google Maps APIs reference for experimental
version 3 could be found at https://developers.google.com/
maps/documentation/javascript/3.exp/reference.

https://developers.google.com/maps/documentation/javascript/3.exp/reference
https://developers.google.com/maps/documentation/javascript/3.exp/reference

Using Google Maps APIs with Knockout

[228]

The implementation of extracting the address information from the place object
retrieved using the getPlace() method consists of an addressComponents object
and a populateAddress method. The addressComponents object defines the address
component that you want to extract and also the type. Refer to the API reference for
the google.maps.places.PlaceResult class for information on address component
and type. Our addressComponents object looks similar to this:

/* address components to retrieve */
var addressComponents = {
 street_number: 'short_name',
 route: 'long_name',
 locality: 'long_name',
 administrative_area_level_1: 'long_name',
 country: 'long_name',
 postal_code: 'short_name'
};

Next, we define the populateAddress method. As described earlier, this method
takes the place object and the value of the addressAutoComplete binding as
parameters. The method then extracts the address from place object and populates
the model. Here is our implementation:

/* method to retrieve address information in the model */
var populateAddress = function (place, value) {

 var address = new AddressModel();
 //set location
 address.location(place.geometry.location);
 //loop through the components and extract required address
 fields
 for (var i = 0; i < place.address_components.length; i++) {
 var addressType = place.address_components[i].types[0];
 if (addressComponents[addressType]) {
 var val =
 place.address_components[i][addressComponents[addressType]];
 if (addressType == "street_number") {
 address.streetNumber(val);
 } else if (addressType == "route") {
 address.streetName(val);
 } else if (addressType == "locality") {
 address.city(val);
 } else if (addressType == "administrative_area_level_1") {
 address.state(val);
 } else if (addressType == "country") {
 address.country(val);

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[229]

 } else if (addressType == "postal_code") {
 address.postCode(val);
 }
 }
 };
 //set the address model in the binding value
 value(address);
};

Modify the event listener in addressAutoComplete custom binding to call the
populateAddress method, like this:

/* custom binding for address auto complete */
ko.bindingHandlers.addressAutoComplete = {
 init: function(element, valueAccessor){
 // create the autocomplete object
 var autocomplete = new google.maps.places.Autocomplete(
 element,{ types: ['geocode'] });
 // when the user selects an address from the dropdown,
 populate the address in the model.
 var value = valueAccessor();
 google.maps.event.addListener(autocomplete, 'place_changed',
 function() {
 var place = autocomplete.getPlace();
 console.log(place);
 populateAddress(place, value);
 });
 }
};

Now that we have extracted the address information and populated our model, we
can now work on the view. Open the view in the mapsapplication.html file and
two panels side by side using the Bootstrap grid. The first panel is for displaying
From address and the second for To address. Display the address components
using the text binding from the model. Here is our implementation for displaying
from address:

<div class="panel panel-default">
 <div class="panel-heading">From address</div>
 <div class="panel-body" data-bind="with:
 MapsApplication.mapsModel.fromAddress">
 <div class="col-md-12" data-bind="visible: streetNumber">
 Street number:

 </div>
 <div class="col-md-12" data-bind="visible: streetName">

Using Google Maps APIs with Knockout

[230]

 Street Name:

 </div>
 <div class="col-md-12" data-bind="visible: city">
 City:

 </div>
 <div class="col-md-12" data-bind="visible: postCode">
 Post code:

 </div>
 <div class="col-md-12" data-bind="visible: country">
 Country:

 </div>
 <div class="col-md-12" data-bind="visible: location()">
 Latitude:

 </div>
 <div class="col-md-12" data-bind="visible: location()">
 Longitude:

 </div>
 </div>
</div>

We have used the with binding to bind fromAddress. You can use the same code to
display to address by simply changing the value of the with binding to toAddress.

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[231]

Open the application in your browser and try selecting the from and to addresses.
You should see the details of the address selected in the corresponding panels.
In our browser, it looks similar to this:

We have reached our second checkpoint for this chapter. The code for this
checkpoint can be found at chapter9\checkpoint2.

Rendering the map
The third feature is to about rendering the map in the view. To implement this
feature, we will:

•	 Retrieve user location from the browser
•	 Create a custom binding handler for maps panel
•	 Update the view to display the map

Let's start by creating a method to retrieve the user location form the browser. The
current user location information will be used to initialize the map. We will use the
getCurrentPosition method of the Geolocation class provided by the browser to
get the user's current location.

Using Google Maps APIs with Knockout

[232]

The Geolocation class provides methods to obtain the location
of the device. The location information can be used to provide
a customized experience to the user. The API reference for
Geolocation class can be found at https://developer.
mozilla.org/en-US/docs/Web/API/Geolocation.

Define an attribute to hold the user's current location, call it localLocation.
Initialize this attribute with your local longitude and latitude:

var localLocation = {lat: -37.810432, lng: 144.96616};

The initial value is set in case the browser does not return the user's current location.
Add a method to retrieve the user's location using the Geolocation class and update
the locaclLocation attribute. Name this method setLocalLocation. Here is our
implementation:

/* method to retrieve and set local location */
var setLocalLocation = function () {
 if ("geolocation" in navigator) {
 navigator.geolocation.getCurrentPosition(function(position) {
 localLocation.lat = position.coords.latitude;
 localLocation.lng = position.coords.longitude;
 console.log("successfully retrieved local location. Lat [" +
 localLocation.lat + "] Lng [" + localLocation.lng + "]");
 },
 function (error) {
 console.log("Could not get current coords: " +
 error.message);
 });
 };
};

Call this method from the init method of the module.

Next, we will create the custom binding to render a map in a panel. Create a custom
binding called mapPanel. The init method of the binding should use the google.
maps.Map class to render a map in the element provided:

/* custom binding handler for maps panel */
ko.bindingHandlers.mapPanel = {
 init: function(element, valueAccessor){
 map = new google.maps.Map(element, {
 zoom: 10
 });
 centerMap(localLocation);
 }
};

www.ebook3000.com

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
http://www.ebook3000.org

Chapter 9

[233]

Add this custom binding in the configureBindingHandlers method after the
custom binding for addressAutoComplete. The Map class takes the HTML element
and options as parameters. The only option we are setting is zoom. Refer to the API
reference for more options. Note the call to the centerMap method. This method
takes a location object as parameter and centers the map accordingly. It also
triggers a resize:

/* method to center map based on the location*/
var centerMap = function (location) {
 map.setCenter(location);
 google.maps.event.trigger(map, 'resize');
}

Now that the custom binding for map panel has been defined, let's modify the view.
Open the view in the mapsapplication.html file and add a panel at the end of the
page. Give the panel an appropriate heading. Add a div element to the panel body
and bind it to the custom binding we created to render a map. It should look similar
to this:

<div class="row">
 <div class="col-md-12">
 <div class="panel panel-default">
 <div class="panel-heading">Map</div>
 <div class="panel-body">
 <div data-bind="mapPanel" class="map-canvas"></div>
 </div>
 </div>
 </div>
</div>
Define the style class map-canvas in the header of the page:
<head>

 <style>
 .map-canvas {
 width:100%;
 height:400px;
 }
 </style>

</head>

Using Google Maps APIs with Knockout

[234]

Open the application in your browser. You should now see a map displayed in the
maps panel. In our browser, it should look similar to this:

We have reached our third checkpoint for this chapter. The code for this checkpoint
can be found at chapter9\checkpoint3.

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[235]

Placing markers on the map
The fourth feature is about placing markers on the map for the selected addresses.
To implement this feature, we will:

•	 Update the address model to hold the marker
•	 Create a method to place a marker on the map
•	 Create a method to remove an existing marker
•	 Register subscribers to trigger removal of the existing markers when an

address changes
•	 Update the module to add a marker to the map

Let's get started by updating the address model. Open the MapsApplication
module and locate the AddressModel variable. Add an observable to this model
to hold the marker:

/* generic model for address */
var AddressModel = function() {
 this.marker = ko.observable();
 this.location = ko.observable();
 this.streetNumber = ko.observable();
 this.streetName = ko.observable();
 this.city = ko.observable();
 this.state = ko.observable();
 this.postCode = ko.observable();
 this.country = ko.observable();
};

Next, we will create a method that will create and place the marker on the map. This
method should take location and address model as parameters. The method will
also store the marker in the address model. Use the google.maps.Marker class to
create and place the marker. Our implementation of this method looks similar to this:

/* method to place a marker on the map */
var placeMarker = function (location, value) {
 // create and place marker on the map
 var marker = new google.maps.Marker({
 position: location,
 map: map
 });
 //store the newly created marker in the address model
 value().marker(marker);
};

Using Google Maps APIs with Knockout

[236]

Now create a method that checks for an existing marker in the address model
and removes it from the map. Name this method removeMarker. It should look
similar to this:

/* method to remove old marker from the map */
var removeMarker = function(address) {
 if(address != null) {
 address.marker().setMap(null);
 }
};

Next step is to register subscribers that will trigger when an address changes. We will
use these subscribers to trigger the removal of the existing markers. We will use the
beforeChange event of the subscribers so that we have access to the existing markers
in the model. Add subscribers to the fromAddress and toAddress observables to
trigger the beforeChange event. Remove the existing markers on the trigger. To
achieve this, I created a method called registerSubscribers. This method is called
from the init method of the module. The method registers the two subscribers that
triggers calls to removeMarker. Our implementation looks similar to this:

/* method to register subscriber */
var registerSubscribers = function () {
 //fire before from address is changed
 mapsModel.fromAddress.subscribe(function(oldValue) {
 removeMarker(oldValue);
 }, null, "beforeChange");

 //fire before to address is changed
 mapsModel.toAddress.subscribe(function(oldValue) {
 removeMarker(oldValue);
 }, null, "beforeChange");
};

We are now ready to bring the methods we created together and place a marker
on the map. Create a map called updateAddress. This method should take
two parameters: the place object and value binding. The method should call
populateAddress to extract and populate the address model, and placeMarker
to place a new marker on the map. Our implementation looks similar to this:

/* method to update the address model */
var updateAddress = function(place, value) {
 populateAddress(place, value);
 placeMarker(place.geometry.location, value);
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[237]

Call the updateAddress method from the event listener in the
addressAutoComplete custom binding:

google.maps.event.addListener(autocomplete, 'place_changed',
function() {
 var place = autocomplete.getPlace();
 console.log(place);
 updateAddress(place, value);
});

Open the application in your browser. Select From address and To address. You
should now see markers appear for the two selected addresses. In our browser, the
application looks similar to this:

We have reached our fourth checkpoint for this chapter. The code for this checkpoint
can be found at chapter9\checkpoint4.

Using Google Maps APIs with Knockout

[238]

Displaying route between markers
The last feature of the application is to draw a route between the two address
markers. To implement this feature, we will:

•	 Create and initialize the direction service
•	 Request routing information from the direction service and draw the route
•	 Update the view to add a button to get directions

Let's get started by creating and initializing the direction service. We will use the
google.maps.DirectionsService class to get the routing information and the
google.maps.DirectionsRenderer class to draw the route on the map. Create two
attributes in the MapsApplication module—one for directions service and the other
for directions renderer:

/* the directions service */
var directionsService;
/* the directions renderer */
var directionsRenderer;

Next, create a method to create and initialize the preceding attributes:

/* initialize the direction service and display */
var initDirectionService = function () {
 directionsService = new google.maps.DirectionsService();
 directionsRenderer = new
 google.maps.DirectionsRenderer({suppressMarkers: true});
 directionsRenderer.setMap(map);
};

Call this method from the mapPanel custom binding handler after the map has
been created and cantered. The updated mapPanel custom binding should look
similar to this:

/* custom binding handler for maps panel */
ko.bindingHandlers.mapPanel = {
 init: function(element, valueAccessor){
 map = new google.maps.Map(element, {
 zoom: 10
 });
 centerMap(localLocation);
 initDirectionService();
 }
};

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[239]

The next step is to create a method that will build and fire a request to the directions
service to fetch the directions information. The direction information will then be
used by the directions renderer to draw the route on the map. Our implementation
of this method looks similar to this:

/* method to get directions and display route */
var getDirections = function () {
 //create request for directions
 var routeRequest = {
 origin: mapsModel.fromAddress().location(),
 destination: mapsModel.toAddress().location(),
 travelMode: google.maps.TravelMode.DRIVING
 };

 //fire request to route based on request
 directionsService.route(routeRequest, function(response, status)
{
 if (status == google.maps.DirectionsStatus.OK) {
 directionsRenderer.setDirections(response);
} else {
 console.log("No directions returned ...");
 }
 });
};

We created a routing request in the first part of the method. The request object
consists of origin, destination and travelMode. The origin and destination
is set to the locations for from and to addresses. The travelMode object is set to
google.maps.TravelMode.DRIVING, which, as the name suggests, specifies that we
require the driving route. Add the getDirections method to the return statement
of the module as we will bind it to a button in the view.

One last step before we can work on the view is to clear the route on the map when
the user selects a new address. This can be achieved by adding an instruction to clear
the route information in the subscribers we registered earlier. Update the subscribers
in the registerSubscribers method to clear the routes on the map:

/* method to register subscriber */
var registerSubscribers = function () {
 //fire before from address is changed
 mapsModel.fromAddress.subscribe(function(oldValue) {
 removeMarker(oldValue);
 directionsRenderer.set('directions', null);

Using Google Maps APIs with Knockout

[240]

 }, null, "beforeChange");

 //fire before to address is changed
 mapsModel.toAddress.subscribe(function(oldValue) {
 removeMarker(oldValue);
 directionsRenderer.set('directions', null);
 }, null, "beforeChange");
};

The last step is to update the view. Open the view and add a button under the
address input components. Add click binding to the button and bind it to the
getDirections method of the module. Add enable binding to make the button
clickable only after the user has selected the two addresses. The button should look
similar to this:

<button type="button" class="btn btn-default" data-bind="enable:
MapsApplication.mapsModel.fromAddress &&
MapsApplication.mapsModel.toAddress, click:
MapsApplication.getDirections">
 Get Directions
</button>

Open the application in your browser. Select From address and To address. The
address details and markers should appear for the two selected addresses. Click on
the Get Directions button. You should see the route drawn on the map between the
two markers. In our browser, the application looks similar to this:

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[241]

We have reached our last checkpoint for this chapter. The code for this checkpoint
can be found at chapter9\checkpoint5.

Summary
In this chapter, we walked through building a map application using the Google
Maps APIs. The application gave the users the ability to enter address information
with autocomplete predictions based on partial address input, and retrieved and
displayed detailed address information. It also rendered a map, placed markers
based on the addresses selected, and displayed the route between the two markers.

We started the chapter by creating a reusable custom binding handler for the address
autocomplete component. This custom binding was used to create from and to
address components. The second feature of the application was to retrieve and
display the detailed address information. We learned how to extract this information
using the Google Maps APIs and store it in the Knockout observables.

In the third feature of the application, we created a reusable custom binding handler
to render Google map in a panel. In the next two features, we learned how to place
markers on the map and use the direction service to draw route between two
markers. We learned how to use Knockout subscribers to interact with the map
based on changes to the model.

We have reached the end of our journey with the conclusion of this chapter. Along
the way, we explored the power of Knockout in developing rich, interactive, and
modular web applications with an iterative development approach, sample code,
and screenshots. We looked at the practical solutions to real-world problems
including web forms, conditional validation, UI navigation, token-based security,
CRUD operations, and integration with the Google Maps API. This brings our
journey to a close. There has been a great deal of information and concepts to master,
and we hope that the material in this book has made the journey easier for you.

www.ebook3000.com

http://www.ebook3000.org

[243]

Index
A
address book application

about 15, 16
application features, adding 19
contacts, capturing 19-22
contacts, displaying 23
contacts, storing 19-22
development environment 16
libraries, downloading 16
skeleton, creating 17-19
styling, Bootstrap used 25-27

address details, Google Maps APIs
displaying 227-231

Apache
URL 16

authentication mechanisms
basic authentication 174
custom 175
OAuth 1.0a 174
OAuth 2.0 175

authentication error
handling 188, 189

autocomplete feature
used, for completing address 222-226

B
binding handler 5

C
cookie 175
Cross-Site Request Forgery (CSRF) 176

Cross-site Scripting (XSS) 176
CRUD operations 195-197
customer banking portal

about 137, 138, 173, 174
accounts, viewing 117-124
account transactions, viewing 125-131
application features, navigating

between 106-112
application, logging in to 178
application, logging out 191-193
authentication error, handling 188, 189
authentication mechanisms 175
authentication module, creating 179, 180
bank information, viewing 113-117
BankPortal module, refactoring to 183, 184
contact details, viewing 113-117
functionality, adding to wizard 161-171
funds, transferring between accounts 154
logged in user, displaying 190, 191
login form, validating 186-188
login screen, creating 182
personal information, updating 138-143
personal information updation,

cancelling 143-149
personal information, validating 150-153
personal information, viewing 132-135
skeleton, creating 104-106
testing 185, 186
transfers tab, creating 155, 156
wizard component, creating 156-161

customer registration form
about 81
address details, validating 94-98
contact details, validating 91-94

[244]

credit cards, validating 98-101
model validating, Knockout

extenders used 82-84
model validating, Knockout validation

plugin used 84
personal information, validating 87-91

E
eclipse

URL 16
editable products grid application

list of products, displaying 202-205
products, adding 208-213
products, deleting 206-208
products, updating 213-216
skeleton, creating 199-201

F
funds, customer banking portal

functionality, adding to wizard 165-171
transferring, between accounts 154
transfers tab, creating 155, 156
wizard component, creating 156-161

G
Google Group

URL 27
Google Maps APIs

address capturing, autocomplete feature
used 222-226

address details, capturing 227-231
map, rendering 231-234
marker, placing on map 235-237
route between markers, displaying 238-241
skeleton, creating 220-222

I
Integrated Development

Environment (IDE) 16
Internet Engineering Task Force

URL 174

J
jQuery

URL 16
JSON 213
JSON Web Token (JWT) 174, 177

K
Knockout extenders

used, for validating model 82-84
Knockout, features

about 5
automatic UI refresh 7, 8
declarative bindings 5-7
dependency tracking 8, 9
templating 9-11

Knockout Home
URL 27

Knockout validation plugin
about 85
address details, validating 94-98
basics 86, 87
contact details, validating 91-94
credit cards, validating 98-101
personal information, validating 87-91
URL 84
used, for validating model 84

Knockout GitHub
URL 27

L
Learn Knockout

URL 27
logged in user

displaying 190, 191
login form

validating 186-188

M
man-in-the middle attack 176
map, Google Maps APIs

marker, placing 235-237
rendering 231-234

www.ebook3000.com

http://www.ebook3000.org

[245]

model
about 2
validating, Knockout validation plugin

used 84
validating, Knockout extenders used 82-84

Model-View-View Model (MVVM) design
pattern

about 1, 2
model 2, 3
view 4, 5
view model 3

module
concept 11, 12
initializing 13, 14
merging 14, 15
pattern 11
private members 12, 13
public members 12, 13

N
Node.js

URL 16

O
OAuth 1.0a

URL 174
OAuth 2.0

URL 175
observables 7
online customer registration form

about 51
contact details, capturing 61-64
credit card details, capturing 71-75
features 51
interests, capturing 76, 77
personal information, capturing 55-61
registration form, clearing 77-79
residential address, capturing 65-71
skeleton, creating 52-55

Open Web Application Security Project
(OWASP)

URL 176

R
Representational State Transfer (REST) 196

S
Secure Sockets Layer (SSL) 176
sever

installing 197, 198
running 197, 199

Stack Overflow
URL 27

T
templating 9-11
to-do list application

completed tasks, viewing 46-49
features 30
priority, setting for task 40-42
skeleton, creating 30-32
tasks, adding 32-35
tasks, deleting 36, 37
tasks, finishing 37-40
tasks, sorting by name 43-45
tasks, sorting by priority 43-45
tasks, viewing 32-35
total number of tasks, viewing 46-49

token-based authentication
about 175
JSON Web Token (JWT) 177
versus, session in cookies 175, 176

U
Uniform Resource Identifiers (URIs) 196

V
validation

adding, to customer registration
form 81, 82

view 4, 5
view model 3

W
web server

Apache HTTP Server 16
Node.js HTTP Server 16

wireframe 107

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Understanding the MVVM design pattern
	The model
	The view model
	The view

	The key features of Knockout
	Declarative bindings
	Automatic UI refresh
	Dependency tracking
	Templating

	Understanding the module pattern and its use with Knockout
	The concept
	Public and private members
	Initializing the module
	Using the module with view model

	Building the address book application
	A word on the development environment
	Downloading the libraries
	Creating the skeleton
	Adding the application features
	Capturing and storing contacts
	Displaying contacts

	Adding style to your application with Bootstrap

	Resources
	Summary

	Chapter 2: Creating a To-do List Application
	Creating the skeleton
	Adding and viewing tasks
	Deleting a task
	Completing a task
	Setting priority for a task
	Sorting tasks by priority and name
	Viewing the number of total and completed tasks
	Summary

	Chapter 3: Creating an Online Customer Registration Form
	Getting started
	Capturing personal information
	Capturing contact details
	Capturing residential and postal addresses
	Capturing credit card details
	Capturing interests
	Clearing the registration form
	Summary

	Chapter 4: Adding Validation to the Customer Registration Form
	Validating the model using Knockout extenders
	Validating model using the Knockout validation plugin
	Getting started
	The basics
	Validating personal information
	Validating contact details
	Validating address details
	Validating credit cards

	Summary

	Chapter 5: Creating a Customer
Banking Portal
	Creating the skeleton
	Navigating between application features
	Viewing contact details and information about the bank
	Viewing accounts
	Viewing transactions for an account
	Viewing personal information
	Summary

	Chapter 6: Enhancing the Customer Banking Portal
	Updating personal information
	Cancel updating the personal information
	Validating personal information
	Transferring funds between accounts
	Creating the Transfers tab
	Creating the wizard component
	Adding functionality to the wizard

	Summary

	Chapter 7: Securing the Customer Banking Portal
	Authentication mechanisms
	Basics of the token-based authentication
	Token versus session in cookies
	JSON Web Token

	Logging in to the application
	Creating the authentication module
	Creating the login screen
	Refactoring the BankPortal module
	Testing the application using different user accounts

	Validating the login form
	Handling the authentication error
	Displaying the logged in user
	Logging out of the application
	Summary

	Chapter 8: Building an Editable Products Grid with CRUD Operations
	A word on REST
	Installing and running the sever
	Creating the skeleton
	Displaying the list of products
	Deleting a product
	Adding a product
	Updating a product
	Summary

	Chapter 9: Using Google Maps APIs
with Knockout
	Creating the skeleton
	Capturing address using autocomplete
	Displaying address details
	Rendering the map
	Placing markers on the map
	Displaying route between markers
	Summary

	Index

