
M A N N I N G

Dmitry Jemerov
Svetlana Isakova
FOREWORD BY Andrey Breslav

www.allitebooks.com

http://www.allitebooks.org

Kotlin in Action
www.allitebooks.com

http://www.allitebooks.org

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Kotlin in Action

DMITRY JEMEROV
AND SVETLANA ISAKOVA

M A N N I N G
SHELTER ISLAND
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Review editor: Aleksandar Dragosavljević
PO Box 761 Technical development editor: Brent Watson
Shelter Island, NY 11964 Project editor: Kevin Sullivan

Copyeditor: Tiffany Taylor
Proofreader: Elizabeth Martin

Technical proofreader: Igor Wojda
Typesetter: Marija Tudor

Cover designer: Marija Tudor

ISBN 9781617293290
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

brief contents
PART 1 INTRODUCING KOTLIN ... 1

1 ■ Kotlin: what and why 3
2 ■ Kotlin basics 17
3 ■ Defining and calling functions 44
4 ■ Classes, objects, and interfaces 67
5 ■ Programming with lambdas 103
6 ■ The Kotlin type system 133

PART 2 EMBRACING KOTLIN ... 171
7 ■ Operator overloading and other conventions 173
8 ■ Higher-order functions: lambdas as parameters

and return values 200
9 ■ Generics 223

10 ■ Annotations and reflection 254
11 ■ DSL construction 282
v

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSvi
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.allitebooks.org

vii

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the authors xxiv
about the cover illustration xxv

PART 1 INTRODUCING KOTLIN 1

1 Kotlin: what and why 3
1.1 A taste of Kotlin 3
1.2 Kotlin’s primary traits 4

Target platforms: server-side, Android, anywhere Java runs 4
Statically typed 5 ■ Functional and object-oriented 6
Free and open source 7

1.3 Kotlin applications 7
Kotlin on the server side 8 ■ Kotlin on Android 9

1.4 The philosophy of Kotlin 10
Pragmatic 10 ■ Concise 11 ■ Safe 12 ■ Interoperable 12

1.5 Using the Kotlin tools 13
Compiling Kotlin code 13 ■ Plug-in for IntelliJ IDEA and Android
Studio 14 ■ Interactive shell 15 ■ Eclipse plug-in 15
Online playground 15 ■ Java-to-Kotlin converter 15

1.6 Summary 15
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
2 Kotlin basics 17
2.1 Basic elements: functions and variables 18

Hello, world! 18 ■ Functions 18 ■ Variables 20
Easier string formatting: string templates 22

2.2 Classes and properties 23
Properties 23 ■ Custom accessors 25 ■ Kotlin source code
layout: directories and packages 26

2.3 Representing and handling choices: enums and “when” 28
Declaring enum classes 28 ■ Using “when” to deal with enum
classes 29 ■ Using “when” with arbitrary objects 30
Using “when” without an argument 31 ■ Smart casts: combining
type checks and casts 31 ■ Refactoring: replacing “if” with
“when” 33 ■ Blocks as branches of “if” and “when” 34

2.4 Iterating over things: “while” and “for” loops 35
The “while” loop 35 ■ Iterating over numbers: ranges and
progressions 36 ■ Iterating over maps 37 ■ Using “in” to check
collection and range membership 38

2.5 Exceptions in Kotlin 39
“try”, “catch”, and “finally” 40 ■ “try” as an expression 41

2.6 Summary 42

3 Defining and calling functions 44
3.1 Creating collections in Kotlin 45
3.2 Making functions easier to call 46

Named arguments 47 ■ Default parameter values 48
Getting rid of static utility classes: top-level functions and
properties 49

3.3 Adding methods to other people’s classes: extension
functions and properties 51
Imports and extension functions 53 ■ Calling extension
functions from Java 53 ■ Utility functions as extensions 54
No overriding for extension functions 55 ■ Extension
properties 56

3.4 Working with collections: varargs, infix calls,
and library support 57
Extending the Java Collections API 57 ■ Varargs: functions that
accept an arbitrary number of arguments 58 ■ Working with pairs:
infix calls and destructuring declarations 59
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
3.5 Working with strings and regular expressions 60
Splitting strings 60 ■ Regular expressions and triple-quoted
strings 61 ■ Multiline triple-quoted strings 62

3.6 Making your code tidy: local functions and
extensions 64

3.7 Summary 66

4 Classes, objects, and interfaces 67
4.1 Defining class hierarchies 68

Interfaces in Kotlin 68 ■ Open, final, and abstract modifiers:
final by default 70 ■ Visibility modifiers: public by default 73
Inner and nested classes: nested by default 75 ■ Sealed classes:
defining restricted class hierarchies 77

4.2 Declaring a class with nontrivial constructors
or properties 78
Initializing classes: primary constructor and initializer blocks 79
Secondary constructors: initializing the superclass in different
ways 81 ■ Implementing properties declared in interfaces 83
Accessing a backing field from a getter or setter 85
Changing accessor visibility 86

4.3 Compiler-generated methods: data classes and class
delegation 87
Universal object methods 87 ■ Data classes: autogenerated
implementations of universal methods 89 ■ Class delegation:
using the “by” keyword 91

4.4 The “object” keyword: declaring a class and creating an
instance, combined 93
Object declarations: singletons made easy 93 ■ Companion
objects: a place for factory methods and static members 96
Companion objects as regular objects 98 ■ Object expressions:
anonymous inner classes rephrased 100

4.5 Summary 101

5 Programming with lambdas 103
5.1 Lambda expressions and member references 104

Introduction to lambdas: blocks of code as function parameters 104
Lambdas and collections 105 ■ Syntax for lambda
expressions 106 ■ Accessing variables in scope 109
Member references 111
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
5.2 Functional APIs for collections 113
Essentials: filter and map 113 ■ “all”, “any”, “count”,
and “find”: applying a predicate to a collection 115
groupBy: converting a list to a map of groups 117
flatMap and flatten: processing elements in nested
collections 117

5.3 Lazy collection operations: sequences 118
Executing sequence operations: intermediate and terminal
operations 120 ■ Creating sequences 122

5.4 Using Java functional interfaces 123
Passing a lambda as a parameter to a Java method 124
SAM constructors: explicit conversion of lambdas to
functional interfaces 126

5.5 Lambdas with receivers: “with” and “apply” 128
The “with” function 128 ■ The “apply”
function 130

5.6 Summary 131

6 The Kotlin type system 133
6.1 Nullability 133

Nullable types 134 ■ The meaning of types 136 ■ Safe call
operator: “?.” 137 ■ Elvis operator: “?:” 139 ■ Safe casts:
“as?” 140 ■ Not-null assertions: “!!” 141 ■ The “let”
function 143 ■ Late-initialized properties 145 ■ Extensions
for nullable types 146 ■ Nullability of type parameters 148
Nullability and Java 149

6.2 Primitive and other basic types 153
Primitive types: Int, Boolean, and more 153 ■ Nullable primitive
types: Int?, Boolean?, and more 154 ■ Number conversions 155
“Any” and “Any?”: the root types 157 ■ The Unit type:
Kotlin’s “void” 157 ■ The Nothing type: “This function
never returns” 158

6.3 Collections and arrays 159
Nullability and collections 159 ■ Read-only and mutable
collections 161 ■ Kotlin collections and Java 163
Collections as platform types 165 ■ Arrays of objects
and primitive types 167

6.4 Summary 170
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

CONTENTS xi
 PART 2 EMBRACING KOTLIN 171

7 Operator overloading and other conventions 173
7.1 Overloading arithmetic operators 174

Overloading binary arithmetic operations 174 ■ Overloading
compound assignment operators 177 ■ Overloading unary
operators 178

7.2 Overloading comparison operators 180
Equality operators: “equals” 180 ■ Ordering operators:
compareTo 181

7.3 Conventions used for collections and ranges 182
Accessing elements by index: “get” and “set” 182 ■ The “in”
convention 184 ■ The rangeTo convention 185 ■ The
“iterator” convention for the “for” loop 186

7.4 Destructuring declarations and component
functions 187
Destructuring declarations and loops 188

7.5 Reusing property accessor logic: delegated properties 189
Delegated properties: the basics 189 ■ Using delegated properties:
lazy initialization and “by lazy()” 190 ■ Implementing delegated
properties 192 ■ Delegated-property translation rules 195
Storing property values in a map 196 ■ Delegated properties
in frameworks 197

7.6 Summary 199

8 Higher-order functions: lambdas as parameters
and return values 200
8.1 Declaring higher-order functions 201

Function types 201 ■ Calling functions passed as
arguments 202 ■ Using function types from Java 204
Default and null values for parameters with function types 205
Returning functions from functions 207 ■ Removing
duplication through lambdas 209

8.2 Inline functions: removing the overhead of lambdas 211
How inlining works 211 ■ Restrictions on inline functions 213
Inlining collection operations 214 ■ Deciding when to declare
functions as inline 215 ■ Using inlined lambdas for resource
management 216
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

CONTENTSxii
8.3 Control flow in higher-order functions 217
Return statements in lambdas: return from an enclosing
function 217 ■ Returning from lambdas: return with a
label 218 ■ Anonymous functions: local returns by default 220

8.4 Summary 221

9 Generics 223
9.1 Generic type parameters 224

Generic functions and properties 224 ■ Declaring generic
classes 226 ■ Type parameter constraints 227
Making type parameters non-null 229

9.2 Generics at runtime: erased and reified type parameters 230
Generics at runtime: type checks and casts 230 ■ Declaring
functions with reified type parameters 233 ■ Replacing class
references with reified type parameters 235 ■ Restrictions on reified
type parameters 236

9.3 Variance: generics and subtyping 237
Why variance exists: passing an argument to a function 237
Classes, types, and subtypes 238 ■ Covariance: preserved
subtyping relation 240 ■ Contravariance: reversed subtyping
relation 244 ■ Use-site variance: specifying variance for type
occurrences 246 ■ Star projection: using * instead of a type
argument 248

9.4 Summary 252

10 Annotations and reflection 254
10.1 Declaring and applying annotations 255

Applying annotations 255 ■ Annotation targets 256
Using annotations to customize JSON serialization 258
Declaring annotations 260 ■ Meta-annotations: controlling how
an annotation is processed 261 ■ Classes as annotation
parameters 262 ■ Generic classes as annotation parameters 263

10.2 Reflection: introspecting Kotlin objects at runtime 264
The Kotlin reflection API: KClass, KCallable, KFunction, and
KProperty 265 ■ Implementing object serialization using
reflection 268 ■ Customizing serialization with annotations 270
JSON parsing and object deserialization 273 ■ Final
deserialization step: callBy() and creating objects using
reflection 277

10.3 Summary 281
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

CONTENTS xiii
11 DSL construction 282
11.1 From APIs to DSLs 283

The concept of domain-specific languages 284 ■ Internal
DSLs 285 ■ Structure of DSLs 286 ■ Building HTML with an
internal DSL 287

11.2 Building structured APIs: lambdas with receivers in DSLs 288
Lambdas with receivers and extension function types 288
Using lambdas with receivers in HTML builders 292
Kotlin builders: enabling abstraction and reuse 296

11.3 More flexible block nesting with the “invoke” convention 299
The “invoke” convention: objects callable as functions 299
The “invoke” convention and functional types 300 ■ The “invoke”
convention in DSLs: declaring dependencies in Gradle 301

11.4 Kotlin DSLs in practice 303
Chaining infix calls: “should” in test frameworks 303 ■ Defining
extensions on primitive types: handling dates 305 ■ Member
extension functions: internal DSL for SQL 306 ■ Anko: creating
Android UIs dynamically 309

11.5 Summary 310

appendix A Building Kotlin projects 313
appendix B Documenting Kotlin code 317
appendix C The Kotlin ecosystem 320

index 323
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

CONTENTSxiv
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

foreword
When I visited JetBrains for the first time in Spring 2010, I came in fairly certain that
the world didn’t need another general-purpose programming language. I thought
that existing JVM languages were good enough, and who in their right mind creates a
new language anyway? After about an hour discussing production issues in large-scale
codebases I was convinced otherwise, and the first ideas that later became part of Kot-
lin were sketched on a whiteboard. I joined JetBrains shortly after to lead the design
of the language and work on the compiler.

 Today, more than six years later, we have our second release approaching. There
are over 30 people on the team and thousands of active users, and we still have more
exciting design ideas than I can handle easily. But don't worry, those ideas have to pass
a rather thorough examination before they get into the language. We want Kotlin of
the future to still fit into a single reasonably sized book.

 Learning a programming language is an exciting and often very rewarding
endeavor. If it’s your first one, you’re learning the whole new world of programming
through it. If it’s not, it makes you think about familiar things in new terms and thus
understand them more deeply and on a higher level of abstraction. This book is pri-
marily targeted for the latter kind of reader, those already familiar with Java.

 Designing a language from scratch may be a challenging task in its own right, but
making it play well with another is a different story—one with many angry ogres in it,
and some gloomy dungeons too. (Ask Bjarne Stroustrup, the creator of C++, if you
don’t trust me on that.) Java interoperability (that is, how Java and Kotlin can mix and
call each other) was one of the cornerstones of Kotlin, and this book pays a lot of atten-
tion to it. Interoperability is very important for introducing Kotlin gradually to an exist-
ing Java codebase. Even when writing a new project from scratch, one has to fit the
language into the bigger picture of the platform with all of its libraries written in Java.
xv

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

FOREWORDxvi
 As I’m writing this, two new target platforms are being developed: Kotlin is now
running on JavaScript VMs enabling full-stack web development, and it will soon be
able to compile directly to native code and run without any VM at all, if necessary. So,
while this book is JVM-oriented, much of what you learn from it can be applied to
other execution environments.

 The authors have been members of the Kotlin team from its early days, so they are
intimately familiar with the language and its internals. Their experience in confer-
ence presentations, workshops, and courses about Kotlin has enabled them to deliver
good explanations that anticipate common questions and possible pitfalls. The book
explains high-level concepts behind language features and provides all the necessary
details as well.

 I hope you’ll enjoy your time with our language and this book. As I often say in our
community postings: Have a nice Kotlin!

 ANDREY BRESLAV

 LEAD DESIGNER OF KOTLIN AT JETBRAINS
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

preface
The idea of Kotlin was conceived at JetBrains in 2010. By that time, JetBrains was an
established vendor of development tools for many languages, including Java, C#,
JavaScript, Python, Ruby, and PHP. IntelliJ IDEA, the Java IDE that is our flagship prod-
uct, also included plugins for Groovy and Scala.

 The experience of building the tooling for such a diverse set of languages gave us a
unique understanding of and perspective on the language design space as a whole.
And yet the IntelliJ Platform-based IDEs, including IntelliJ IDEA, were still being devel-
oped in Java. We were somewhat envious of our colleagues on the .NET team who were
developing in C#, a modern, powerful, rapidly evolving language. But we didn’t see
any language that we could use instead of Java.

 What were our requirements for such a language? The first and most obvious was
static typing. We don’t know any other way to develop a multimillion-line codebase
over many years without going crazy. Second, we needed full compatibility with the
existing Java code. That codebase is a hugely valuable asset for JetBrains, and we
couldn’t afford to lose it or devalue it through difficulties with interoperability. Third,
we didn’t want to accept any compromises in terms of tooling quality. Developer pro-
ductivity is the most important value for JetBrains as a company, and great tooling is
essential to achieving that. Finally we needed a language that was easy to learn and to
reason about.

 When we see an unmet need for our company, we know there are other companies
in similar situations, and we expect that our solution will find many users outside of Jet-
Brains. With this in mind, we decided to embark on the project of creating a new lan-
guage: Kotlin. As it happens, the project took longer than we expected, and Kotlin 1.0
xvii

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

PREFACExviii
came out more than five years after the first commit to the repository; but now we can
be certain that the language has found its audience and is here to stay.

 Kotlin is named after an island near St. Petersburg, Russia, where most of the Kot-
lin development team is located. In using an island name, we followed the precedent
established by Java and Ceylon, but we decided to go for something closer to our
homes. (In English, the name is usually pronounced “cot-lin,” not “coat-lin” or
“caught-lin.”)

 As the language was approaching release, we realized that it would be valuable to
have a book about Kotlin, written by people who were involved in making design deci-
sions for the language and who could confidently explain why things in Kotlin are the
way they are. This book is a result of that effort, and we hope it will help you learn and
understand the Kotlin language. Good luck, and may you always develop with pleasure!
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

acknowledgments
First of all, we’d like to thank Sergey Dmitriev and Max Shafirov for believing in the
idea of a new language and deciding to invest JetBrains’ resources. Without them, nei-
ther the language nor this book would exist.

 We would especially like to acknowledge Andrey Breslav, who is the main person to
blame for designing a language that’s a pleasure to write about (and to code in).
Andrey, despite having to lead the continuously growing Kotlin team, was able to give
us a lot of helpful feedback, which we greatly appreciate. In addition, you can be
assured that this book received a stamp of approval from the lead language designer,
in the form of the foreword that he kindly agreed to write.

 We’re grateful to the team at Manning who guided us through the process of writing
this book and helped make the text readable and well-structured—particularly our
development editor, Dan Maharry, who bravely strove to find time to talk despite our
busy schedules, as well as Michael Stephens, Helen Stergius, Kevin Sullivan, Tiffany Tay-
lor, Elizabeth Martin, and Marija Tudor. The feedback from our technical reviewers,
Brent Watson and Igor Wojda, was also invaluable, as were the comments of the review-
ers who read the manuscript during the development process: Alessandro Campeis,
Amit Lamba, Angelo Costa, Boris Vasile, Brendan Grainger, Calvin Fernandes, Christo-
pher Bailey, Christopher Bortz, Conor Redmond, Dylan Scott, Filip Pravica, Jason Lee,
Justin Lee, Kevin Orr, Nicolas Frankel, Paweł Gajda, Ronald Tischliar, and Tim Lavers.
Thanks go also to everyone who submitted feedback during the MEAP program and in
the book’s forum; we’ve improved the text based on your comments.

 We’re grateful to the entire Kotlin team, who had to listen to daily reports like
“One more section is finished!” throughout the time we spent writing this book. We
want to thank our colleagues who helped us plan the book and gave feedback on its
xix

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ACKNOWLEDGMENTSxx
drafts, especially Ilya Ryzhenkov, Hadi Hariri, Michael Glukhikh, and Ilya Gorbunov.
We’d also like to thank our friends who not only were supportive but also had to read
the text and provide feedback (sometimes in ski resorts during vacations): Lev Sere-
bryakov, Pavel Nikolaev, and Alisa Afonina.

 Finally, we’d like to thank our families and cats for making this world a better
place.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

about this book
Kotlin in Action teaches you the Kotlin programming language and how to use it to
build applications running on the Java virtual machine and Android. It starts with the
basic features of the language and proceeds to cover the more distinctive aspects of
Kotlin, such as its support for building high-level abstractions and domain-specific lan-
guages. The book pays a lot of attention to integrating Kotlin with existing Java proj-
ects and helping you introduce Kotlin into your current working environment.

 The book covers Kotlin 1.0. Kotlin 1.1 has been in development in parallel to the
writing of the book, and whenever possible, we’ve mentioned the changes made in
1.1. But because the new version is still a work in progress as of this writing, we haven’t
been able to provide complete coverage. For ongoing updates about the new features
and changes, please refer to the online documentation at https://kotlinlang.org.

Who should read this book

Kotlin in Action is primarily focused on developers with some level of Java experience.
Kotlin builds on many concepts and techniques from Java, and the book strives to get
you up to speed quickly by using your existing knowledge. If you’re only just learning
Java, or if you’re experienced with other programming languages such as C# or Java-
Script, you may need to refer to other sources of information to understand the more
intricate aspects of Kotlin’s interaction with the JVM, but you’ll still be able to learn
Kotlin using this book. We focus on the Kotlin language as a whole and not on a spe-
cific problem domain, so the book should be equally useful for server-side developers,
Android developers, and everyone else who builds projects targeting the JVM.
xxi

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://kotlinlang.org

ABOUT THIS BOOKxxii
How this book is organized

The book is divided into two parts. Part 1 explains how to get started using Kotlin
together with existing libraries and APIs:

 Chapter 1 talks about the key goals, values, and areas of application for Kotlin,
and it shows you the possible ways to run Kotlin code.

 Chapter 2 explains the essential elements of any Kotlin program, including con-
trol structures and variable and function declarations.

 Chapter 3 goes into detail about how functions are declared in Kotlin and intro-
duces the concept of extension functions and properties.

 Chapter 4 is focused on class declarations and introduces the concepts of data
classes and companion objects.

 Chapter 5 introduces the use of lambdas in Kotlin and showcases a number of
Kotlin standard library functions using lambdas.

 Chapter 6 describes the Kotlin type system, with a particular focus on the topics
of nullability and collections.

Part 2 teaches you how to build your own APIs and abstractions in Kotlin and covers
some of the language’s deeper features:

 Chapter 7 talks about the principle of conventions, which assigns special mean-
ing to methods and properties with specific names, and it introduces the con-
cept of delegated properties.

 Chapter 8 shows how to declare higher-order functions—functions that take
other functions and parameters or return them. It also introduces the concept
of inline functions.

 Chapter 9 is a deep dive into the topic of generics in Kotlin, starting with the
basic syntax and going into more-advanced areas such as reified type parame-
ters and variance.

 Chapter 10 covers the use of annotations and reflection and is centered around
JKid, a small, real-life JSON serialization library that makes heavy use of those
concepts.

 Chapter 11 introduces the concept of domain-specific languages, describes Kot-
lin’s tools for building them, and demonstrates many DSL examples.

There are also three appendices. Appendix A explains how to build Kotlin code with
Gradle, Maven, and Ant. Appendix B focuses on writing documentation comments
and generating API documentation for Kotlin modules. Appendix C is a guide for
exploring the Kotlin ecosystem and finding the latest online information.

 The book works best when you read it all the way through, but you’re also welcome
to refer to individual chapters covering specific subjects you’re interested in and to
follow the cross-references if you run into an unfamiliar concept.

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

ABOUT THIS BOOK xxiii
Code conventions and downloads

The following typographical conventions are used throughout this book:

 Italic font is used to introduce new terms.
 Fixed-width font is used to denote code samples, as well as function names,

classes, and other identifiers.
 Code annotations accompany many of the code listings and highlight impor-

tant concepts.

Many source listings in the book show code together with its output. In those cases,
we’ve prefixed the code lines that produce the output with >>>, and the output itself is
shown as is:

>>> println("Hello World")
Hello World

Some of the examples are intended to be complete runnable programs, whereas oth-
ers are snippets used to demonstrate certain concepts and may contain omissions
(indicated with ...) or syntax errors (described in the book text or in the examples
themselves). The runnable examples can be downloaded as a zip file from the pub-
lisher’s website at www.manning.com/books/kotlin-in-action. The examples from the
book are also preloaded into the online environment at http://try.kotlinlang.org, so
you can run any example with just a few clicks directly from your browser.

Author Online

Purchase of Kotlin in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/books/kotlin-in-
action. This page provides information on how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contributions to the AO forum remain voluntary (and unpaid). We
suggest you ask the authors challenging questions, lest their interest stray!

Other online resources

Kotlin has a lively online community, so if you have questions or want to chat with fel-
low Kotlin users, you can use the following resources:

 The official Kotlin forums—https://discuss.kotlinlang.org
 Slack chat—http://kotlinlang.slack.com (you can get an invitation at http://

kotlinslackin.herokuapp.com)
 Kotlin tag on Stack Overflow—http://stackoverflow.com/questions/tagged/kotlin
 Kotlin Reddit—www.reddit.com/r/Kotlin
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://try.kotlinlang.org
www.manning.com/books/kotlin-in-action
https://discuss.kotlinlang.org
http://kotlinlang.slack.com
http://kotlinslackin.herokuapp.com
http://kotlinslackin.herokuapp.com
http://stackoverflow.com/questions/tagged/kotlin
www.reddit.com/r/Kotlin
http://www.manning.com/books/kotlin-in-action
http://www.manning.com/books/kotlin-in-action

about the authors
DMITRY JEMEROV has been working with JetBrains since 2003 and has participated in
the development of many products, including IntelliJ IDEA, PyCharm, and WebStorm.
He was one of earliest contributors to Kotlin, having created the initial version of Kot-
lin’s JVM bytecode generator, and he has given many presentations about Kotlin at
events around the world. Right now he leads the team working on the Kotlin IntelliJ
IDEA plugin.

SVETLANA ISAKOVA has been part of the Kotlin team since 2011. She worked on the
type-inference and overload-resolution subsystems of the compiler. Now she’s a tech-
nical evangelist, speaking about Kotlin at conferences and working on the online
course for Kotlin.

xxiv

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

about the cover illustration
The figure on the cover of Kotlin in Action is captioned “Habit of a Russian Lady at Val-
day in 1764.” The town of Valday is located in the Novgorod Oblast region, on the
road between Moscow and St. Petersburg. The illustration is taken from Thomas Jef-
ferys’ A Collection of the Dresses of Different Nations, Ancient and Modern, London, pub-
lished between 1757 and 1772. The title page states that these are hand-colored
copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771)
was called “Geographer to King George III.” He was an English cartographer who was
the leading map supplier of his day. He engraved and printed maps for government
and other official bodies and produced a wide range of commercial maps and atlases,
especially of North America. His work as a map maker sparked an interest in local
dress customs of the lands he surveyed and mapped; they are brilliantly displayed in
this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the eighteenth century, and collections such as this one were popular, intro-
ducing both the tourist and the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations centuries ago. Dress codes have
changed, and the diversity by region and country, so rich at one time, has faded away.
It is now often hard to tell the inhabitant of one continent from another. Perhaps, try-
ing to view it optimistically, we have traded a cultural and visual diversity for a more
varied personal life—or a more varied and interesting intellectual and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of national costumes three centuries ago, brought back to
life by Jefferys’ pictures.
xxv

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

ABOUT THE COVER ILLUSTRATIONxxvi

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Part 1

Introducing Kotlin

The goal of this part of the book is to get you productive writing Kotlin code
that uses existing APIs. Chapter 1 will introduce you to the general traits of Kot-
lin. In chapters 2-4, you’ll learn how the most basic Java programming con-
cepts—statements, functions, classes, and types—map to Kotlin code, and how
Kotlin enriches them to make programming more pleasant. You’ll be able to rely
on your existing knowledge of Java, as well as tools such as IDE coding-assistance
features and the Java-to-Kotlin converter, to get up to speed quickly. In chapter
5, you’ll find out how lambdas help you effectively solve some of the most com-
mon programming tasks, such as working with collections. Finally, in chapter 6,
you’ll become familiar with one of the key Kotlin specialties: its support for deal-
ing with null values.

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

2 CHAPTER

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Kotlin: what and why
What is Kotlin all about? It’s a new programming language targeting the Java plat-
form. Kotlin is concise, safe, pragmatic, and focused on interoperability with Java
code. It can be used almost everywhere Java is used today: for server-side develop-
ment, Android apps, and much more. Kotlin works great with all existing Java
libraries and frameworks and runs with the same level of performance as Java. In
this chapter, we’ll explore Kotlin’s main traits in detail.

1.1 A taste of Kotlin
Let’s start with a small example to demonstrate what Kotlin looks like. This exam-
ple defines a Person class, creates a collection of people, finds the oldest one, and
prints the result. Even in this small piece of code, you can see many interesting fea-
tures of Kotlin; we’ve highlighted some of them so you can easily find them later in

This chapter covers
 A basic demonstration of Kotlin

 The main traits of the Kotlin language

 Possibilities for Android and server-side development

 What distinguishes Kotlin from other languages

 Writing and running code in Kotlin
3

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

4 CHAPTER 1 Kotlin: what and why

“da
cl

Top-le
funct

Str
templ
the book. The code is explained briefly, but please don’t worry if something isn’t clear
right away. We’ll discuss everything in detail later.

 If you’d like to try running this example, the easiest option is to use the online
playground at http://try.kotl.in. Type in the example and click the Run button, and
the code will be executed.

data class Person(val name: String,
 val age: Int? = null)

fun main(args: Array<String>) {
val persons = listOf(Person("Alice"),

Person("Bob", age = 29))

val oldest = persons.maxBy { it.age ?: 0 }
println("The oldest is: $oldest")

}

// The oldest is: Person(name=Bob, age=29)

You declare a simple data class with two properties: name and age. The age property
is null by default (if it isn’t specified). When creating the list of people, you omit
Alice’s age, so the default value null is used. Then you use the maxBy function to find
the oldest person in the list. The lambda expression passed to the function takes one
parameter, and you use it as the default name of that parameter. The Elvis operator
(?:) returns zero if age is null. Because Alice’s age isn’t specified, the Elvis operator
replaces it with zero, so Bob wins the prize for being the oldest person.

 Do you like what you’ve seen? Read on to learn more and become a Kotlin expert.
We hope that soon you’ll see such code in your own projects, not only in this book.

1.2 Kotlin’s primary traits
You probably already have an idea what kind of language Kotlin is. Let’s look at its
key attributes in more detail. First, let’s see what kinds of applications you can build
with Kotlin.

1.2.1 Target platforms: server-side, Android, anywhere Java runs

The primary goal of Kotlin is to provide a more concise, more productive, safer alter-
native to Java that’s suitable in all contexts where Java is used today. Java is an extremely
popular language, and it’s used in a broad variety of environments, from smart cards
(Java Card technology) to the largest data centers run by Google, Twitter, LinkedIn,
and other internet-scale companies. In most of these places, using Kotlin can help
developers achieve their goals with less code and fewer annoyances along the way.

 The most common areas to use Kotlin are:

 Building server-side code (typically, backends of web applications)
 Building mobile applications that run on Android devices

Listing 1.1 An early taste of Kotlin

ta”
ass Nullable type (Int?); the default

value for the argument
vel
ion

Named argument

Lambda expression;
Elvis operatoring

ate

Autogenerated toString
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://try.kotl.in

5Kotlin’s primary traits
But Kotlin works in other contexts as well. For example, you can use the Intel Multi-OS
Engine (https://software.intel.com/en-us/multi-os-engine) to run Kotlin code on iOS
devices. To build desktop applications, you can use Kotlin together with TornadoFX
(https://github.com/edvin/tornadofx) and JavaFX.1

 In addition to Java, Kotlin can be compiled to JavaScript, allowing you to run Kot-
lin code in the browser. But as of this writing, JavaScript support is still being explored
and prototyped at JetBrains, so it’s out of scope for this book. Other platforms are also
under consideration for future versions of the language.

 As you can see, Kotlin’s target is quite broad. Kotlin doesn’t focus on a single prob-
lem domain or address a single type of challenge faced by software developers today.
Instead, it provides across-the-board productivity improvements for all tasks that come
up during the development process. It gives you an excellent level of integration with
libraries that support specific domains or programming paradigms. Let’s look next at
the key qualities of Kotlin as a programming language.

1.2.2 Statically typed

Just like Java, Kotlin is a statically typed programming language. This means the type of
every expression in a program is known at compile time, and the compiler can validate
that the methods and fields you’re trying to access exist on the objects you’re using.

 This is in contrast to dynamically typed programming languages, which are repre-
sented on the JVM by, among others, Groovy and JRuby. Those languages let you
define variables and functions that can store or return data of any type and resolve the
method and field references at runtime. This allows for shorter code and greater flex-
ibility in creating data structures. But the downside is that problems like misspelled
names can’t be detected during compilation and can lead to runtime errors.

 On the other hand, in contrast to Java, Kotlin doesn’t require you to specify the
type of every variable explicitly in your source code. In many cases, the type of a vari-
able can automatically be determined from the context, allowing you to omit the type
declaration. Here’s the simplest possible example of this:

val x = 1

You’re declaring a variable, and because it’s initialized with an integer value, Kotlin
automatically determines that its type is Int. The ability of the compiler to determine
types from context is called type inference.

 Following are some of the benefits of static typing:

 Performance—Calling methods is faster because there’s no need to figure out at
runtime which method needs to be called.

 Reliability—The compiler verifies the correctness of the program, so there are
fewer chances for crashes at runtime.

 Maintainability—Working with unfamiliar code is easier because you can see
what kind of objects the code is working with.

1 “JavaFX: Getting Started with JavaFX,” Oracle, http://mng.bz/500y.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://mng.bz/500y
https://software.intel.com/en-us/multi-os-engine
https://github.com/edvin/tornadofx

6 CHAPTER 1 Kotlin: what and why

son.
 Tool support—Static typing enables reliable refactorings, precise code comple-
tion, and other IDE features.

Thanks to Kotlin’s support for type inference, most of the extra verbosity associated
with static typing disappears, because you don’t need to declare types explicitly.

 If you look at the specifics of Kotlin’s type system, you’ll find many familiar con-
cepts. Classes, interfaces, and generics work in a way very similar to Java, so most of
your Java knowledge should easily transfer to Kotlin. Some things are new, though.

 The most important of those is Kotlin’s support for nullable types, which lets you
write more reliable programs by detecting possible null pointer exceptions at com-
pile time. We’ll come back to nullable types later in this chapter and discuss them in
detail in chapter 6.

 Another new thing in Kotlin’s type system is its support for function types. To see
what this is about, let’s look at the main ideas of functional programming and see how
it’s supported in Kotlin.

1.2.3 Functional and object-oriented

As a Java developer, you’re no doubt familiar with the core concepts of object-oriented
programming, but functional programming may be new to you. The key concepts of
functional programming are as follows:

 First-class functions—You work with functions (pieces of behavior) as values. You
can store them in variables, pass them as parameters, or return them from
other functions.

 Immutability—You work with immutable objects, which guarantees that their
state can’t change after their creation.

 No side effects—You use pure functions that return the same result given the
same inputs and don’t modify the state of other objects or interact with the out-
side world.

What benefits can you gain from writing code in the functional style? First, conciseness.
Functional code can be more elegant and succinct compared to its imperative coun-
terpart, because working with functions as values gives you much more power of
abstraction, which lets you avoid duplication in your code.

 Imagine that you have two similar code fragments that implement a similar task
(for example, looking for a matching element in a collection) but differ in the details
(how the matching element is detected). You can easily extract the common part of
the logic into a function and pass the differing parts as arguments. Those arguments
are themselves functions, but you can express them using a concise syntax for anony-
mous functions called lambda expressions:

fun findAlice() = findPerson { it.name == "Alice" }
fun findBob() = findPerson { it.name == "Bob" }

findPerson() contains the
general logic of finding a per

The block in curly braces
identifies the specific
person you need to find.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

7Kotlin applications
The second benefit of functional code is safe multithreading. One of the biggest sources
of errors in multithreaded programs is modification of the same data from multiple
threads without proper synchronization. If you use immutable data structures and
pure functions, you can be sure that such unsafe modifications won’t happen, and you
don’t need to come up with complicated synchronization schemes.

 Finally, functional programming means easier testing. Functions without side effects
can be tested in isolation without requiring a lot of setup code to construct the entire
environment that they depend on.

 Generally speaking, the functional style can be used with any programming lan-
guage, including Java, and many parts of it are advocated as good programming style.
But not all languages provide the syntactic and library support required to use it
effortlessly; for example, this support was mostly missing from versions of Java before
Java 8. Kotlin has a rich set of features to support functional programming from the
get-go. These include the following:

 Function types, allowing functions to receive other functions as parameters or
return other functions

 Lambda expressions, letting you pass around blocks of code with minimum
boilerplate

 Data classes, providing a concise syntax for creating immutable value objects
 A rich set of APIs in the standard library for working with objects and collections

in the functional style

Kotlin lets you program in the functional style but doesn’t enforce it. When you need
it, you can work with mutable data and write functions that have side effects without
jumping through any extra hoops. And, of course, working with frameworks that are
based on interfaces and class hierarchies is just as easy as with Java. When writing code
in Kotlin, you can combine both the object-oriented and functional approaches and
use the tools that are most appropriate for the problem you’re solving.

1.2.4 Free and open source

The Kotlin language, including the compiler, libraries, and all related tooling, is
entirely open source and free to use for any purpose. It’s available under the Apache 2
license; development happens in the open on GitHub (http://github.com/ jetbrains/
kotlin), and community contributions are welcome. You also have a choice of three
open source IDEs for developing your Kotlin applications: IntelliJ IDEA Community
Edition, Android Studio, and Eclipse are fully supported. (Of course, IntelliJ IDEA
Ultimate works as well.)

 Now that you understand what kind of language Kotlin is, let’s see how the benefits
of Kotlin work in specific practical applications.

1.3 Kotlin applications
As we mentioned earlier, the two main areas where Kotlin can be used are server-side
and Android development. Let’s look at those areas in turn and see why Kotlin is a
good fit for them.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://github.com/jetbrains/kotlin
http://github.com/jetbrains/kotlin

8 CHAPTER 1 Kotlin: what and why

Kot
1.3.1 Kotlin on the server side

Server-side programming is a fairly broad concept. It encompasses all of the following
types of applications and much more:

 Web applications that return HTML pages to a browser
 Backends of mobile applications that expose a JSON API over HTTP

 Microservices that communicate with other microservices over an RPC protocol

Developers have been building these kinds of applications in Java for many years and
have accumulated a huge stack of frameworks and technologies to help build them.
Such applications usually aren’t developed in isolation or started from scratch.
There’s almost always an existing system that is being extended, improved, or
replaced, and new code has to integrate with existing parts of the system, which may
have been written many years ago.

 The big advantage of Kotlin in this environment is its seamless interoperability
with existing Java code. Regardless of whether you’re writing a new component or
migrating the code of an existing service into Kotlin, Kotlin will fit right in. You won’t
run into problems when you need to extend Java classes in Kotlin or annotate the
methods and fields of a class in a certain way. And the benefit is that the system’s code
will be more compact, more reliable, and easier to maintain.

 At the same time, Kotlin enables a number of new techniques for developing such
systems. For example, its support for the Builder pattern lets you create any object
graph with concise syntax, while keeping the full set of abstraction and code-reuse
tools in the language.

 One of the simplest use cases for that feature is an HTML generation library, which
can replace an external template language with a concise and fully type-safe solution.
Here’s an example:

fun renderPersonList(persons: Collection<Person>) =
createHTML().table {

for (person in persons) {
tr {

td { +person.name }
td { +person.age }

}
}

}
}

You can easily combine functions that map to HTML tags and regular Kotlin language
constructs. You no longer need to use a separate template language, with a separate
syntax to learn, just to use a loop when generating a page of HTML.

 Another case where you can use Kotlin’s clean, concise DSLs is persistence frame-
works. For example, the Exposed framework (https://github.com/jetbrains/exposed)
provides an easy-to-read DSL for describing the structure of an SQL database and per-
forming queries entirely from Kotlin code, with full type checking. Here’s a small exam-
ple to show you what’s possible:

Functions that map
to HTML tags

Regular
lin loop
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/jetbrains/exposed

9Kotlin applications

a
te
object CountryTable : IdTable() {
val name = varchar("name", 250).uniqueIndex()
val iso = varchar("iso", 2).uniqueIndex()

}

class Country(id: EntityID) : Entity(id) {
var name: String by CountryTable.name
var iso: String by CountryTable.iso

}

val russia = Country.find {
CountryTable.iso.eq("ru")

}.first()

println(russia.name)

We’ll look at these techniques in more detail later in the book, in section 7.5, and in
chapter 11.

1.3.2 Kotlin on Android

A typical mobile application is much different from a typical enterprise application.
It’s much smaller, it’s less dependent on integration with existing codebases, and it
usually needs to be delivered quickly while ensuring reliable operation on a large vari-
ety of devices. Kotlin works just as well for projects of that kind.

 Kotlin’s language features, combined with a special compiler plug-in supporting
the Android framework, turn Android development into a much more productive
and pleasurable experience. Common development tasks, such as adding listeners to
controls or binding layout elements to fields, can be accomplished with much less
code, or sometimes with no code at all (the compiler will generate it for you). The
Anko library (https://github.com/kotlin/anko), also built by the Kotlin team,
improves your experience even further by adding Kotlin-friendly adapters around
many standard Android APIs.

 Here’s a simple example of Anko, just to give you a taste of what Android develop-
ment with Kotlin feels like. You can put this code in an Activity, and a simple
Android application is ready!

verticalLayout {
val name = editText()
button("Say Hello") {

onClick { toast("Hello, ${name.text}!") }
}

}

Another big advantage of using Kotlin is better application reliability. If you have any
experience developing Android applications, you’re no doubt familiar with the
Unfortunately, Process Has Stopped dialog. This dialog is shown when your applica-
tion throws an unhandled exception—often, a NullPointerException. Kotlin’s

Describes a table
in the database

Creates a class corresponding
to a database entity

You can query this database
using pure Kotlin code.

Creates
 simple
xt field

When clicked, this button displays
the value of the text field.

Concise APIs for attaching a
listener and showing a toast
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/kotlin/anko

10 CHAPTER 1 Kotlin: what and why
type system, with its precise tracking of null values, makes the problem of null
pointer exceptions much less pressing. Most of the code that would lead to a
NullPointerException in Java fails to compile in Kotlin, ensuring that you fix the
error before the application gets to your users.

 At the same time, because Kotlin is fully compatible with Java 6, its use doesn’t
introduce any new compatibility concerns. You’ll benefit from all the cool new lan-
guage features of Kotlin, and your users will still be able to run your application on
their devices, even if they don’t run the latest version of Android.

 In terms of performance, using Kotlin doesn’t bring any disadvantages, either. The
code generated by the Kotlin compiler is executed as efficiently as regular Java code.
The runtime used by Kotlin is fairly small, so you won’t experience a large increase in
the size of the compiled application package. And when you use lambdas, many of the
Kotlin standard library functions will inline them. Inlining lambdas ensures that no
new objects will be created and the application won’t suffer from extra GC pauses.

 Having looked at the advantages of Kotlin compared to Java, let’s now look at Kot-
lin’s philosophy—the main characteristics that distinguish Kotlin from other modern
languages targeting the JVM.

1.4 The philosophy of Kotlin
When we talk about Kotlin, we like to say that it’s a pragmatic, concise, safe language
with a focus on interoperability. What exactly do we mean by each of those words?
Let’s look at them in turn.

1.4.1 Pragmatic

Being pragmatic means a simple thing to us: Kotlin is a practical language designed to
solve real-world problems. Its design is based on many years of industry experience
creating large-scale systems, and its features are chosen to address use cases encoun-
tered by many software developers. Moreover, developers both inside JetBrains and in
the community have been using early versions of Kotlin for several years, and their
feedback has shaped the released version of the language. This makes us confident in
saying that Kotlin can help solve problems in real projects.

 Kotlin also is not a research language. We aren’t trying to advance the state of the
art in programming language design and explore innovative ideas in computer sci-
ence. Instead, whenever possible, we’re relying on features and solutions that have
already appeared in other programming languages and have proven to be successful.
This reduces the complexity of the language and makes it easier to learn by letting
you rely on familiar concepts.

 In addition, Kotlin doesn’t enforce using any particular programming style or
paradigm. As you begin to study the language, you can use the style and techniques
that are familiar to you from your Java experience. Later, you’ll gradually discover the
more powerful features of Kotlin and learn to apply them in your own code, to make
it more concise and idiomatic.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

11The philosophy of Kotlin
 Another aspect of Kotlin’s pragmatism is its focus on tooling. A smart development
environment is just as essential for a developer’s productivity as a good language; and
because of that, treating IDE support as an afterthought isn’t an option. In the case of
Kotlin, the IntelliJ IDEA plug-in was developed in lockstep with the compiler, and lan-
guage features were always designed with tooling in mind.

 The IDE support also plays a major role in helping you discover the features of Kot-
lin. In many cases, the tools will automatically detect common code patterns that can
be replaced by more concise constructs, and offer to fix the code for you. By studying
the language features used by the automated fixes, you can learn to apply those fea-
tures in your own code as well.

1.4.2 Concise

It’s common knowledge that developers spend more time reading existing code than
writing new code. Imagine you’re a part of a team developing a big project, and you
need to add a new feature or fix a bug. What are your first steps? You look for the
exact section of code that you need to change, and only then do you implement a fix.
You read a lot of code to find out what you have to do. This code might have been
written recently by your colleagues, or by someone who no longer works on the proj-
ect, or by you, but long ago. Only after understanding the surrounding code can you
make the necessary modifications.

 The simpler and more concise the code is, the faster you’ll understand what’s
going on. Of course, good design and expressive names play a significant role here.
But the choice of the language and its conciseness are also important. The language is
concise if its syntax clearly expresses the intent of the code you read and doesn’t
obscure it with boilerplate required to specify how the intent is accomplished.

 In Kotlin, we’ve tried hard to ensure that all the code you write carries meaning
and isn’t just there to satisfy code structure requirements. A lot of the standard Java
boilerplate, such as getters, setters, and the logic for assigning constructor parameters
to fields, is implicit in Kotlin and doesn’t clutter your source code.

 Another reason code can be unnecessarily long is having to write explicit code to
perform common tasks, such as locating an element in a collection. Just like many
other modern languages, Kotlin has a rich standard library that lets you replace these
long, repetitive sections of code with library method calls. Kotlin’s support for lamb-
das makes it easy to pass small blocks of code to library functions. This lets you encap-
sulate all the common parts in the library and keep only the unique, task-specific
portion in the user code.

 At the same time, Kotlin doesn’t try to collapse the source code to the smallest
number of characters possible. For example, even though Kotlin supports operator
overloading, users can’t define their own operators. Therefore, library developers
can’t replace the method names with cryptic punctuation sequences. Words are typi-
cally easier to read than punctuation and easier to find documentation on.

 More concise code takes less time to write and, more important, less time to read.
This improves your productivity and lets you get things done faster.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

12 CHAPTER 1 Kotlin: what and why
1.4.3 Safe

In general, when we speak of a programming language as safe, we mean its design pre-
vents certain kinds of errors in a program. Of course, this isn’t an absolute quality; no
language prevents all possible errors. In addition, preventing errors usually comes at a
cost. You need to give the compiler more information about the intended operation of
the program, so the compiler can then verify that the information matches what the
program does. Because of that, there’s always a trade-off between the level of safety you
get and the loss of productivity required to put in more detailed annotations.

 With Kotlin, we’ve attempted to achieve a higher level of safety than in Java, with a
smaller overall cost. Running on the JVM already provides a lot of safety guarantees:
for example, memory safety, preventing buffer overflows, and other problems caused
by incorrect use of dynamically allocated memory. As a statically typed language on
the JVM, Kotlin also ensures the type safety of your applications. This comes at a
smaller cost than with Java: you don’t have to specify all the type declarations, because
in many cases the compiler infers the types automatically.

 Kotlin also goes beyond that, meaning more errors can be prevented by checks at
compile time instead of failing at runtime. Most important, Kotlin strives to remove
the NullPointerException from your program. Kotlin’s type system tracks values
that can and can’t be null and forbids operations that can lead to a NullPointer-
Exception at runtime. The additional cost required for this is minimal: marking a
type as nullable takes only a single character, a question mark at the end:

val s: String? = null
val s2: String = ""

In addition, Kotlin provides many convenient ways to handle nullable data. This helps
greatly in eliminating application crashes.

 Another type of exception that Kotlin helps avoid is the ClassCastException. It
happens when you cast an object to a type without first checking that it has the right
type. In Java, developers often leave out the check, because the type name must be
repeated in the check and in the following cast. In Kotlin, on the other hand, the
check and the cast are combined into a single operation: once you’ve checked the
type, you can refer to members of that type without any additional casts. Thus, there’s
no reason to skip the check and no chance to make an error. Here’s how this works:

if (value is String)
println(value.toUpperCase())

1.4.4 Interoperable

Regarding interoperability, your first concern probably is, “Can I use my existing
libraries?” With Kotlin, the answer is, “Yes, absolutely.” Regardless of the kind of APIs
the library requires you to use, you can work with them from Kotlin. You can call Java

May be null
May not be null

Checks the type
Uses the method
of the type
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

13Using the Kotlin tools
methods, extend Java classes and implement interfaces, apply Java annotations to your
Kotlin classes, and so on.

 Unlike some other JVM languages, Kotlin goes even further with interoperability,
making it effortless to call Kotlin code from Java as well. No tricks are required: Kotlin
classes and methods can be called exactly like regular Java classes and methods. This
gives you the ultimate flexibility in mixing Java and Kotlin code anywhere in your proj-
ect. When you start adopting Kotlin in your Java project, you can run the Java-to-
Kotlin converter on any single class in your codebase, and the rest of the code will
continue to compile and work without any modifications. This works regardless of the
role of the class you’ve converted.

 Another area where Kotlin focuses on interoperability is its use of existing Java
libraries to the largest degree possible. For example, Kotlin doesn’t have its own col-
lections library. It relies fully on Java standard library classes, extending them with
additional functions for more convenient use in Kotlin. (We’ll look at the mechanism
for this in more detail in section 3.3.) This means you never need to wrap or convert
objects when you call Java APIs from Kotlin, or vice versa. All the API richness provided
by Kotlin comes at no cost at runtime.

 The Kotlin tooling also provides full support for cross-language projects. It can
compile an arbitrary mix of Java and Kotlin source files, regardless of how they depend
on each other. The IDE features work across languages as well, allowing you to:

 Navigate freely between Java and Kotlin source files
 Debug mixed-language projects and step between code written in different

languages
 Refactor your Java methods and have their use in Kotlin code correctly

updated, and vice versa

Hopefully by now we’ve convinced you to give Kotlin a try. Now, how can you start
using it? In the next section, we’ll discuss the process of compiling and running Kotlin
code, both from the command line and using different tools.

1.5 Using the Kotlin tools
Just like Java, Kotlin is a compiled language. This means before you can run Kotlin
code, you need to compile it. Let’s discuss how the compilation process works and
then look at the different tools that take care of it for you. If you need more informa-
tion about getting your environment set up, please refer to the “Tutorials” section of
the Kotlin website (https://kotlinlang.org/docs/tutorials).

1.5.1 Compiling Kotlin code

Kotlin source code is normally stored in files with the extension .kt. The Kotlin com-
piler analyzes the source code and generates .class files, just like the Java compiler
does. The generated .class files are then packaged and executed using the standard
procedure for the type of application you’re working on. In the simplest case, you can
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://kotlinlang.org/docs/tutorials

14 CHAPTER 1 Kotlin: what and why
use the kotlinc command to compile your code from the command line and use the
java command to execute your code:

kotlinc <source file or directory> -include-runtime -d <jar name>
java -jar <jar name>

A simplified description of the Kotlin build process is shown in figure 1.1.

Figure 1.1 Kotlin build process

Code compiled with the Kotlin compiler depends on the Kotlin runtime library. It con-
tains the definitions of Kotlin’s own standard library classes and the extensions that
Kotlin adds to the standard Java APIs. The runtime library needs to be distributed with
your application.

 In most real-life cases, you’ll be using a build system such as Maven, Gradle, or Ant
to compile your code. Kotlin is compatible with all those build systems, and we’ll dis-
cuss the details in appendix A. All of those build systems also support mixed-language
projects that combine Kotlin and Java in the same codebase. In addition, Maven and
Gradle take care of including the Kotlin runtime library as a dependency of your
application.

1.5.2 Plug-in for IntelliJ IDEA and Android Studio

The IntelliJ IDEA plug-in for Kotlin has been developed in parallel with the language,
and it’s the most full-featured development environment available for Kotlin. It’s
mature and stable, and it provides a complete set of tools for Kotlin development.

 The Kotlin plug-in is included out of the box with IntelliJ IDEA 15 and later ver-
sions, so no additional setup is necessary. You can use either the free, open source
IntelliJ IDEA Community Edition or IntelliJ IDEA Ultimate. Select Kotlin in the New
Project dialog, and you’re good to go.

 If you’re using Android Studio, you can install the Kotlin plug-in from the plug-in
manager. In the Settings dialog, select Plugins, then click the Install JetBrains Plugin
button, and select Kotlin from the list.

Kotlin
runtime

.jar.class

Kotlin
compiler

Application

*.kt

Java
compiler*.java
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

15Summary
1.5.3 Interactive shell

If you want to quickly try out small fragments of Kotlin code, you can do that using the
interactive shell (the so-called REPL). In the REPL, you can type Kotlin code line by
line and immediately see the results of its execution. To start the REPL, you can either
run the kotlinc command with no arguments or use the corresponding menu item
in the IntelliJ IDEA plug-in.

1.5.4 Eclipse plug-in

If you’re an Eclipse user, you also have the option to use Kotlin in your IDE. The Kot-
lin Eclipse plug-in provides essential IDE functionality such as navigation and code
completion. The plug-in is available in the Eclipse Marketplace. To install it, choose
the Help > Eclipse Marketplace menu item, and search for Kotlin in the list.

1.5.5 Online playground

The easiest way to try Kotlin doesn’t require any installation or configuration. At
http://try.kotl.in, you can find an online playground where you can write, compile,
and run small Kotlin programs. The playground has code samples demonstrating the
features of Kotlin including all examples from this book, as well as a series of exercises
for learning Kotlin interactively.

1.5.6 Java-to-Kotlin converter

Getting up to speed with a new language is never effortless. Fortunately, we’ve built a
nice little shortcut that lets you speed up your learning and adoption by relying on
your existing knowledge of Java. This tool is the automated Java-to-Kotlin converter.

 As you start learning Kotlin, the converter can help you express something when
you don’t remember the exact syntax. You can write the corresponding snippet in Java
and then paste it into a Kotlin file, and the converter will automatically offer to trans-
late the code into Kotlin. The result won’t always be the most idiomatic, but it will be
working code, and you’ll be able to make progress with your task.

 The converter is also great for introducing Kotlin into an existing Java project.
When you need to write a new class, you can do it in Kotlin right from the beginning.
But if you need to make significant changes to an existing class, you may also want to
use Kotlin in the process. That’s where the converter comes into play. You convert the
class into Kotlin first, and then you add the changes using all the benefits of a mod-
ern language.

 Using the converter in IntelliJ IDEA is extremely easy. You can either copy a Java
code fragment and paste it into a Kotlin file, or invoke the Convert Java File to Kotlin
File action if you need to convert an entire file. The converter is accessible in Eclipse
and online as well.

1.6 Summary
 Kotlin is statically typed and supports type inference, allowing it to maintain

correctness and performance while keeping the source code concise.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://try.kotl.in

16 CHAPTER 1 Kotlin: what and why
 Kotlin supports both object-oriented and functional programming styles,
enabling higher-level abstractions through first-class functions and simplifying
testing and multithreaded development through the support of immutable
values.

 It works well for server-side applications, fully supporting all existing Java frame-
works and providing new tools for common tasks such as HTML generation and
persistence.

 It works for Android as well, thanks to a compact runtime, special compiler sup-
port for Android APIs, and a rich library providing Kotlin-friendly functions for
common Android development tasks.

 It’s free and open source, with full support for the major IDEs and build sys-
tems.

 Kotlin is pragmatic, safe, concise, and interoperable, meaning it focuses on
using proven solutions for common tasks, preventing common errors such as
NullPointerExceptions, supporting compact and easy-to-read code, and
providing unrestricted integration with Java.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Kotlin basics
In this chapter, you’ll learn how to declare in Kotlin the essential elements of any
program: variables, functions, and classes. Along the way, you’ll get acquainted with
the concept of properties in Kotlin.

 You’ll learn how to use different control structures in Kotlin. They’re mostly
similar to those that are familiar to you from Java, but enhanced in important ways.

 We’ll introduce the concept of smart casts, which combine a type check and a
cast into one operation. Finally, we’ll talk about exception handling. By the end of
this chapter, you’ll be able to use the basics of the language to write working Kotlin
code, even if it might not be the most idiomatic.

This chapter covers
 Declaring functions, variables, classes, enums,

and properties

 Control structures in Kotlin

 Smart casts

 Throwing and handling exceptions
17

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

18 CHAPTER 2 Kotlin basics
2.1 Basic elements: functions and variables
This section will introduce you to the basic elements that every Kotlin program consists
of: functions and variables. You’ll see how Kotlin lets you omit many type declarations
and how it encourages you to use immutable, rather than mutable, data.

2.1.1 Hello, world!

Let’s start with the classical example: a program that prints “Hello, world!”. In Kotlin,
it’s just one function:

fun main(args: Array<String>) {
println("Hello, world!")

}

What features and parts of the language syntax can you observe in this simple code
snippet? Check out this list:

 The fun keyword is used to declare a function. Programming in Kotlin is lots of
fun, indeed!

 The parameter type is written after its name. This applies to variable declara-
tions as well, as you’ll see later.

 The function can be declared at the top level of a file; you don’t need to put it
in a class.

 Arrays are just classes. Unlike Java, Kotlin doesn’t have a special syntax for
declaring array types.

 You write println instead of System.out.println. The Kotlin standard
library provides many wrappers around standard Java library functions, with
more concise syntax, and println is one of them.

 You can omit the semicolon from the end of a line, just as in many other mod-
ern languages.

So far, so good! We’ll discuss some of these topics in more detail later. Now, let’s
explore the function declaration syntax.

2.1.2 Functions

You saw how to declare a function that has nothing to return. But where should you
put a return type for a function that has a meaningful result? You can guess that it
should go somewhere after the parameter list:

fun max(a: Int, b: Int): Int {
return if (a > b) a else b

}

>>> println(max(1, 2))
2

Listing 2.1 “Hello World!” in Kotlin
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

19Basic elements: functions and variables
The function declaration starts with the fun keyword, followed by the function name:
max, in this case. It’s followed by the parameter list in parentheses. The return type
comes after the parameter list, separated from it by a colon.

 Figure 2.1 shows you the basic structure of a function. Note that in Kotlin, if is an
expression with a result value. It’s similar to a ternary operator in Java: (a > b) ? a : b.

EXPRESSION BODIES

You can simplify the previous function even further. Because its body consists of a sin-
gle expression, you can use that expression as the entire body of the function, remov-
ing the curly braces and the return statement:

fun max(a: Int, b: Int): Int = if (a > b) a else b

If a function is written with its body in curly braces, we say that this function has a block
body. If it returns an expression directly, it has an expression body.

INTELLIJ IDEA TIP IntelliJ IDEA provides intention actions to convert between
the two styles of functions: “Convert to expression body” and “Convert to
block body.”

Functions with an expression body can be found in Kotlin code quite often. This style
is used not only for trivial one-line functions, but also for functions that evaluate a

Statements and expressions
In Kotlin, if is an expression, not a statement. The difference between a statement
and an expression is that an expression has a value, which can be used as part of
another expression, whereas a statement is always a top-level element in its enclos-
ing block and doesn’t have its own value. In Java, all control structures are state-
ments. In Kotlin, most control structures, except for the loops (for, do, and do/
while) are expressions. The ability to combine control structures with other expres-
sions lets you express many common patterns concisely, as you’ll see later in the
book.

On the other hand, assignments are expressions in Java and become statements in
Kotlin. This helps avoid confusion between comparisons and assignments, which is
a common source of mistakes.

Parameters

Function body

fun max(a: Int, b: Int): Int {
 return if (a > b) a else b
}

Function name Return type

Figure 2.1 Kotlin function declaration
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

20 CHAPTER 2 Kotlin basics
single, more complex expression, such as if, when, or try. You’ll see such functions
later in this chapter, when we talk about the when construct.

 You can simplify the max function even more and omit the return type:

fun max(a: Int, b: Int) = if (a > b) a else b

Why are there functions without return-type declarations? Doesn’t Kotlin, as a stati-
cally typed language, require every expression to have a type at compile time? Indeed,
every variable and every expression has a type, and every function has a return type.
But for expression-body functions, the compiler can analyze the expression used as
the body of the function and use its type as the function return type, even when it’s
not spelled out explicitly. This type of analysis is usually called type inference.

 Note that omitting the return type is allowed only for functions with an expression
body. For functions with a block body that return a value, you have to specify the
return type and write the return statements explicitly. That’s a conscious choice. A
real-world function often is long and can contain several return statements; having
the return type and the return statements written explicitly helps you quickly grasp
what can be returned. Let’s look at the syntax for variable declarations next.

2.1.3 Variables

In Java, you start a variable declaration with a type. This wouldn’t work for Kotlin,
because it lets you omit the types from many variable declarations. Thus in Kotlin you
start with a keyword, and you may (or may not) put the type after the variable name.
Let’s declare two variables:

val question =
"The Ultimate Question of Life, the Universe, and Everything"

val answer = 42

This example omits the type declarations, but you can also specify the type explicitly if
you want to:

val answer: Int = 42

Just as with expression-body functions, if you don’t specify the type, the compiler ana-
lyzes the initializer expression and uses its type as the variable type. In this case, the
initializer, 42, has Int type, so the variable will have the same type.

 If you use a floating-point constant, the variable will have the type Double:

val yearsToCompute = 7.5e6

The number types are covered in more depth in section 6.2.
 If a variable doesn’t have an initializer, you need to specify its type explicitly:

val answer: Int
answer = 42

The compiler can’t infer the type if you give no information about the values that can
be assigned to this variable.

7.5 * 106 = 7500000.0
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

21Basic elements: functions and variables

Declar
immu

refe
MUTABLE AND IMMUTABLE VARIABLES

There are two keywords to declare a variable:

 val (from value)—Immutable reference. A variable declared with val can’t be
reassigned after it’s initialized. It corresponds to a final variable in Java.

 var (from variable)—Mutable reference. The value of such a variable can be
changed. This declaration corresponds to a regular (non-final) Java variable.

By default, you should strive to declare all variables in Kotlin with the val keyword.
Change it to var only if necessary. Using immutable references, immutable objects,
and functions without side effects makes your code closer to the functional style.
We touched briefly on its advantages in chapter 1, and we’ll return to this topic in
chapter 5.

 A val variable must be initialized exactly once during the execution of the block
where it’s defined. But you can initialize it with different values depending on some
condition, if the compiler can ensure that only one of the initialization statements will
be executed:

val message: String
if (canPerformOperation()) {

message = "Success"
// ... perform the operation

}
else {

message = "Failed"
}

Note that, even though a val reference is itself immutable and can’t be changed, the
object that it points to may be mutable. For example, this code is perfectly valid:

val languages = arrayListOf("Java")
languages.add("Kotlin")

In chapter 6, we’ll discuss mutable and immutable objects in more detail.
 Even though the var keyword allows a variable to change its value, its type is fixed.

For example, this code doesn’t compile:

var answer = 42
answer = "no answer"

There’s an error on the string literal because its type (String) isn’t as expected
(Int). The compiler infers the variable type only from the initializer and doesn’t take
subsequent assignments into account when determining the type.

 If you need to store a value of a mismatching type in a variable, you must manually
convert or coerce the value into the right type. We’ll discuss primitive type conver-
sions in section 6.2.3.

 Now that you know how to define variables, it’s time to see some new tricks for
referring to values of those variables.

es an
table
rence

Mutates the object pointed
to by the reference

Error: type
mismatch
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

22 CHAPTER 2 Kotlin basics
2.1.4 Easier string formatting: string templates

Let’s get back to the “Hello World” example that opened this section. Here’s how to
do the next step of the traditional exercise and greet people by name the Kotlin way:

fun main(args: Array<String>) {
val name = if (args.size > 0) args[0] else "Kotlin"
println("Hello, $name!")

}

This example introduces a feature called string templates. In the code, you declare a
variable name and then use it in the following string literal. Like many scripting lan-
guages, Kotlin allows you to refer to local variables in string literals by putting the $
character in front of the variable name. This is equivalent to Java’s string concatena-
tion ("Hello, " + name + "!") but is more compact and just as efficient.1 And of
course, the expressions are statically checked, and the code won’t compile if you try to
refer to a variable that doesn’t exist.

 If you need to include the $ character in a string, you escape it: println("\$x")
prints $x and doesn’t interpret x as a variable reference.

 You’re not restricted to simple variable names; you can use more complex expres-
sions as well. All it takes is putting curly braces around the expression:

fun main(args: Array<String>) {
if (args.size > 0) {

println("Hello, ${args[0]}!")
}

}

You can also nest double quotes within double quotes, as long as they’re within an
expression:

fun main(args: Array<String>) {
println("Hello, ${if (args.size > 0) args[0] else "someone"}!")

}

Later, in section 3.5, we’ll return to strings and talk more about what you can do with
them.

 Now you know how to declare functions and variables. Let’s go one step up in the
hierarchy and look at classes. This time, you’ll use the Java-to-Kotlin converter to help
you get started using the new language features.

Listing 2.2 Using string templates

1 The compiled code creates a StringBuilder and appends the constant parts and variable values to it.

Prints “Hello, Kotlin”, or
“Hello, Bob” if you pass
“Bob” as an argument

Uses the ${} syntax to insert the
first element of the args array
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

23Classes and properties
2.2 Classes and properties
You probably aren’t new to object-oriented programming and are familiar with the
abstraction of a class. Kotlin’s concepts in this area will be familiar to you, but you’ll
find that many common tasks can be accomplished with much less code. This section
will introduce you to the basic syntax for declaring classes. We’ll go into more detail in
chapter 4.

 To begin, let’s look at a simple JavaBean Person class that so far contains only one
property, name.

/* Java */
public class Person {

private final String name;

public Person(String name) {
this.name = name;

}

public String getName() {
return name;

}
}

In Java, the constructor body often contains code that’s entirely repetitive: it assigns
the parameters to the fields with corresponding names. In Kotlin, this logic can be
expressed without so much boilerplate.

 In section 1.5.6, we introduced the Java-to-Kotlin converter: a tool that automati-
cally replaces Java code with Kotlin code that does the same thing. Let’s look at the
converter in action and convert the Person class to Kotlin.

class Person(val name: String)

Looks good, doesn’t it? If you’ve tried another modern JVM language, you may have
seen something similar. Classes of this type (containing only data but no code) are
often called value objects, and many languages offer a concise syntax for declaring
them.

 Note that the modifier public disappeared during the conversion from Java to
Kotlin. In Kotlin, public is the default visibility, so you can omit it.

2.2.1 Properties

As you no doubt know, the idea of a class is to encapsulate data and code that works
on that data into a single entity. In Java, the data is stored in fields, which are usually

Listing 2.3 Simple Java class Person

Listing 2.4 Person class converted to Kotlin
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.allitebooks.org

24 CHAPTER 2 Kotlin basics
private. If you need to let clients of the class access that data, you provide accessor meth-
ods: a getter and possibly a setter. You saw an example of this in the Person class. The
setter can also contain additional logic for validating the passed value, sending notifi-
cations about the change and so on.

 In Java, the combination of the field and its accessors is often referred to as a prop-
erty, and many frameworks make heavy use of that concept. In Kotlin, properties are a
first-class language feature, which entirely replaces fields and accessor methods. You
declare a property in a class the same way you declare a variable: with val and var
keywords. A property declared as val is read-only, whereas a var property is mutable
and can be changed.

class Person(
val name: String,
var isMarried: Boolean

)

Basically, when you declare a property, you declare the corresponding accessors (a get-
ter for a read-only property, and both a getter and a setter for a writable one). By
default, the implementation of accessors is trivial: a field is created to store the value,
and the getter and setter return and update its value. But if you want to, you may declare
a custom accessor that uses different logic to compute or update the property value.

 The concise declaration of the Person class in listing 2.5 hides the same underly-
ing implementation as the original Java code: it’s a class with private fields that is ini-
tialized in the constructor and can be accessed through the corresponding getter.
That means you can use this class from Java and from Kotlin the same way, indepen-
dent of where it was declared. The use looks identical. Here’s how you can use
Person from Java code.

/* Java */
>>> Person person = new Person("Bob", true);
>>> System.out.println(person.getName());
Bob
>>> System.out.println(person.isMarried());
true

Note that this looks the same when Person is defined in Java and in Kotlin. Kotlin’s
name property is exposed to Java as a getter method called getName. The getter and set-
ter naming rule has an exception: if the property name starts with is, no additional pre-
fix for the getter is added and in the setter name, is is replaced with set. Thus, from
Java, you call isMarried().

 If you convert listing 2.6 to Kotlin, you get the following result.

Listing 2.5 Declaring a mutable property in a class

Listing 2.6 Using the Person class from Java

Read-only property: generates
a field and a trivial getter

Writable property: a field,
a getter, and a setter
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

25Classes and properties

>>> val person = Person("Bob", true)
>>> println(person.name)
Bob
>>> println(person.isMarried)
true

Now, instead of invoking the getter, you reference the property directly. The logic
stays the same, but the code is more concise. Setters of mutable properties work the
same way: while in Java, you use person.setMarried(false) to tell about a
divorce; in Kotlin, you can write person.isMarried = false.

TIP You can also use the Kotlin property syntax for classes defined in Java.
Getters in a Java class can be accessed as val properties from Kotlin, and get-
ter/setter pairs can be accessed as var properties. For example, if a Java class
defines methods called getName and setName, you can access it as a property
called name. If it defines isMarried and setMarried methods, the name of
the corresponding Kotlin property will be isMarried.

In most cases, the property has a corresponding backing field that stores the property
value. But if the value can be computed on the fly—for example, from other proper-
ties—you can express that using a custom getter.

2.2.2 Custom accessors

This section shows you how to write a custom implementation of a property accessor.
Suppose you declare a rectangle that can say whether it’s a square. You don’t need to
store that information as a separate field, because you can check whether the height is
equal to the width on the go:

class Rectangle(val height: Int, val width: Int) {
val isSquare: Boolean

get() {
return height == width

}
}

The property isSquare doesn’t need a field to store its value. It only has a custom
getter with the implementation provided. The value is computed every time the prop-
erty is accessed.

 Note that you don’t have to use the full syntax with curly braces; you could write
get() = height == width, as well. The invocation of such a property stays the same:

>>> val rectangle = Rectangle(41, 43)
>>> println(rectangle.isSquare)
false

Listing 2.7 Using the Person class from Kotlin

Call the constructor
without the “new” keyword.

You access the property directly,
but the getter is invoked.

Property getter
declaration
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

26 CHAPTER 2 Kotlin basics

Pac
declara
If you need to access this property from Java, you call the isSquare method as before.
 You might ask whether it’s better to declare a function without parameters or a prop-

erty with a custom getter. Both options are similar: There is no difference in implemen-
tation or performance; they only differ in readability. Generally, if you describe the
characteristic (the property) of a class, you should declare it as a property.

 In chapter 4, we’ll present more examples that use classes and properties, and we’ll
look at the syntax to explicitly declare constructors. If you’re impatient in the mean-
time, you can always use the Java-to-Kotlin converter. Now let’s examine briefly how Kot-
lin code is organized on disk before we move on to discuss other language features.

2.2.3 Kotlin source code layout: directories and packages

You know that Java organizes all classes into packages. Kotlin also has the concept of
packages, similar to that in Java. Every Kotlin file can have a package statement at the
beginning, and all declarations (classes, functions, and properties) defined in the file
will be placed in that package. Declarations defined in other files can be used directly
if they’re in the same package; they need to be imported if they’re in a different pack-
age. As in Java, import statements are placed at the beginning of the file and use the
import keyword. Here’s an example of a source file showing the syntax for the pack-
age declaration and import statement.

package geometry.shapes

import java.util.Random

class Rectangle(val height: Int, val width: Int) {
val isSquare: Boolean

get() = height == width
}

fun createRandomRectangle(): Rectangle {
val random = Random()
return Rectangle(random.nextInt(), random.nextInt())

}

Kotlin doesn’t make a distinction between importing classes and functions, and it
allows you to import any kind of declaration using the import keyword. You can
import the top-level function by name.

package geometry.example

import geometry.shapes.createRandomRectangle

fun main(args: Array<String>) {

Listing 2.8 Putting a class and a function declaration in a package

Listing 2.9 Importing the function from another package

kage
tion

Imports the standard
Java library class

Imports a function
by name
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

27Classes and properties
println(createRandomRectangle().isSquare)
}

You can also import all declarations defined in a particular package by putting .*
after the package name. Note that this star import will make visible not only classes
defined in the package, but also top-level functions and properties. In listing 2.9, writ-
ing import geometry.shapes.* instead of the explicit import makes the code
compile correctly as well.

 In Java, you put your classes into a structure of files and directories that matches
the package structure. For example, if you have a package named shapes with several
classes, you need to put every class into a separate file with a matching name and store
those files in a directory also called shapes. Figure 2.2 shows how the geometry pack-
age and its subpackages could be organized in Java. Assume that the createRandom-
Rectangle function is located in a separate class, RectangleUtil.

Figure 2.2 In Java, the directory hierarchy duplicates the package hierarchy.

In Kotlin, you can put multiple classes in the same file and choose any name for that
file. Kotlin also doesn’t impose any restrictions on the layout of source files on disk;
you can use any directory structure to organize your files. For instance, you can define
all the content of the package geometry.shapes in the file shapes.kt and place this
file in the geometry folder without creating a separate shapes folder (see figure 2.3).

Figure 2.3 Your package hierarchy doesn’t need to follow the directory hierarchy.

In most cases, however, it’s still a good practice to follow Java’s directory layout and to
organize source files into directories according to the package structure. Sticking to
that structure is especially important in projects where Kotlin is mixed with Java,

Prints “true”
incredibly rarely

geometry.example package

geometry.shapes package

Rectangle class

geometry.example package

geometry.shapes package
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

28 CHAPTER 2 Kotlin basics

p

wh
con
because doing so lets you migrate the code gradually without introducing any sur-
prises. But you shouldn’t hesitate to pull multiple classes into the same file, especially
if the classes are small (and in Kotlin, they often are).

 Now you know how programs are structured. Let’s move on with learning basic
concepts and look at control structures in Kotlin.

2.3 Representing and handling choices: enums and “when”
In this section, we’re going to talk about the when construct. It can be thought of as a
replacement for the switch construct in Java, but it’s more powerful and is used
more often. Along the way, we’ll give you an example of declaring enums in Kotlin
and discuss the concept of smart casts.

2.3.1 Declaring enum classes

Let’s start by adding some imaginary bright pictures to this serious book and looking
at an enum of colors.

enum class Color {
RED, ORANGE, YELLOW, GREEN, BLUE, INDIGO, VIOLET

}

This is a rare case when a Kotlin declaration uses more keywords than the correspond-
ing Java one: enum class versus just enum in Java. In Kotlin, enum is a so-called soft
keyword: it has a special meaning when it comes before class, but you can use it as a
regular name in other places. On the other hand, class is still a keyword, and you’ll
continue to declare variables named clazz or aClass.

 Just as in Java, enums aren’t lists of values: you can declare properties and methods
on enum classes. Here’s how it works.

enum class Color(
val r: Int, val g: Int, val b: Int

) {
RED(255, 0, 0), ORANGE(255, 165, 0),
YELLOW(255, 255, 0), GREEN(0, 255, 0), BLUE(0, 0, 255),
INDIGO(75, 0, 130), VIOLET(238, 130, 238);

fun rgb() = (r * 256 + g) * 256 + b
}
>>> println(Color.BLUE.rgb())
255

Enum constants use the same constructor and property declaration syntax as you saw
earlier for regular classes. When you declare each enum constant, you need to provide

Listing 2.10 Declaring a simple enum class

Listing 2.11 Declaring an enum class with properties

Declares properties
of enum constants

Specifies
roperty
values

en each
stant is
created

The semicolon
here is required.

Defines a method
on the enum class
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

29Representing and handling choices: enums and “when”
the property values for that constant. Note that this example shows the only place in the
Kotlin syntax where you’re required to use semicolons: if you define any methods in the
enum class, the semicolon separates the enum constant list from the method defini-
tions. Now let’s see some cool ways to deal with enum constants in your code.

2.3.2 Using “when” to deal with enum classes

Do you remember how children use mnemonic phrases to memorize the colors of the
rainbow? Here’s one: “Richard Of York Gave Battle In Vain!” Imagine you need a
function that gives you a mnemonic for each color (and you don’t want to store this
information in the enum itself). In Java, you can use a switch statement for this. The
corresponding Kotlin construct is when.

 Like if, when is an expression that returns a value, so you can write a function
with an expression body, returning the when expression directly. When we talked
about functions at the beginning of the chapter, we promised an example of a multi-
line function with an expression body. Here’s such an example.

fun getMnemonic(color: Color) =
when (color) {

Color.RED -> "Richard"
Color.ORANGE -> "Of"
Color.YELLOW -> "York"
Color.GREEN -> "Gave"
Color.BLUE -> "Battle"
Color.INDIGO -> "In"
Color.VIOLET -> "Vain"

}

>>> println(getMnemonic(Color.BLUE))
Battle

The code finds the branch corresponding to the passed color value. Unlike in Java,
you don’t need to write break statements in each branch (a missing break is often a
cause for bugs in Java code). If a match is successful, only the corresponding branch is
executed. You can also combine multiple values in the same branch if you separate
them with commas.

fun getWarmth(color: Color) = when(color) {
Color.RED, Color.ORANGE, Color.YELLOW -> "warm"
Color.GREEN -> "neutral"
Color.BLUE, Color.INDIGO, Color.VIOLET -> "cold"

}

>>> println(getWarmth(Color.ORANGE))
warm

Listing 2.12 Using when for choosing the right enum value

Listing 2.13 Combining options in one when branch

Returns a “when”
expression directly

Returns the corresponding
string if the color equals
the enum constant
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

30 CHAPTER 2 Kotlin basics

Uses im
co
b

Enum
These examples use enum constants by their full name, specifying the Color enum
class name. You can simplify the code by importing the constant values.

import ch02.colors.Color
import ch02.colors.Color.*

fun getWarmth(color: Color) = when(color) {
RED, ORANGE, YELLOW -> "warm"
GREEN -> "neutral"
BLUE, INDIGO, VIOLET -> "cold"

}

2.3.3 Using “when” with arbitrary objects

The when construct in Kotlin is more powerful than Java’s switch. Unlike switch,
which requires you to use constants (enum constants, strings, or number literals) as
branch conditions, when allows any objects. Let’s write a function that mixes two col-
ors if they can be mixed in this small palette. You don’t have lots of options, and you
can easily enumerate them all.

fun mix(c1: Color, c2: Color) =
when (setOf(c1, c2)) {

setOf(RED, YELLOW) -> ORANGE
setOf(YELLOW, BLUE) -> GREEN
setOf(BLUE, VIOLET) -> INDIGO
else -> throw Exception("Dirty color")

}

>>> println(mix(BLUE, YELLOW))
GREEN

If colors c1 and c2 are RED and YELLOW (or vice versa), the result of mixing them is
ORANGE, and so on. To implement this, you use set comparison. The Kotlin standard
library contains a function setOf that creates a Set containing the objects specified
as its arguments. A set is a collection for which the order of items doesn’t matter; two
sets are equal if they contain the same items. Thus, if the sets setOf(c1, c2) and
setOf(RED, YELLOW) are equal, it means either c1 is RED and c2 is YELLOW, or vice
versa. This is exactly what you want to check.

 The when expression matches its argument against all branches in order until
some branch condition is satisfied. Thus setOf(c1, c2) is checked for equality: first
with setOf(RED, YELLOW) and then with other sets of colors, one after another. If
none of the other branch conditions is satisfied, the else branch is evaluated.

 Being able to use any expression as a when branch condition lets you write concise
and beautiful code in many cases. In this example, the condition is an equality check;
next you’ll see how the condition may be any Boolean expression.

Listing 2.14 Importing enum constants to access without qualifier

Listing 2.15 Using different objects in when branches

Imports the Color
class declared
in another packageExplicitly imports

enum constants to
use them by namesported

nstants
y name

An argument of the “when” expression
can be any object. It’s checked for
equality with the branch conditions.

erates pairs
of colors that
can be mixed

Executed if none of
the other branches
were matched
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

31Representing and handling choices: enums and “when”
2.3.4 Using “when” without an argument

You may have noticed that listing 2.15 is somewhat inefficient. Every time you call this
function, it creates several Set instances that are used only to check whether two
given colors match the other two colors. Normally this isn’t an issue, but if the func-
tion is called often, it’s worth rewriting the code in a different way to avoid creating
garbage. You can do it by using the when expression without an argument. The code is
less readable, but that’s the price you often have to pay to achieve better performance.

fun mixOptimized(c1: Color, c2: Color) =
when {

(c1 == RED && c2 == YELLOW) ||
(c1 == YELLOW && c2 == RED) ->

ORANGE

(c1 == YELLOW && c2 == BLUE) ||
(c1 == BLUE && c2 == YELLOW) ->

GREEN

(c1 == BLUE && c2 == VIOLET) ||
(c1 == VIOLET && c2 == BLUE) ->

INDIGO

else -> throw Exception("Dirty color")
}

>>> println(mixOptimized(BLUE, YELLOW))
GREEN

If no argument is supplied for the when expression, the branch condition is any Bool-
ean expression. The mixOptimized function does the same thing as mix did earlier.
Its advantage is that it doesn’t create any extra objects, but the cost is that it’s harder
to read.

 Let’s move on and look at examples of the when construct in which smart casts
come into play.

2.3.5 Smart casts: combining type checks and casts

As the example for this section, you’ll write a function that evaluates simple arithmetic
expressions like (1 + 2) + 4. The expressions will contain only one type of operation:
the sum of two numbers. Other arithmetic operations (subtraction, multiplication,
division) can be implemented in a similar way, and you can do that as an exercise.

 First, how do you encode the expressions? You store them in a tree-like structure,
where each node is either a sum (Sum) or a number (Num). Num is always a leaf node,
whereas a Sum node has two children: the arguments of the sum operation. The fol-
lowing listing shows a simple structure of classes used to encode the expressions: an
interface called Expr and two classes, Num and Sum, that implement it. Note that the
Expr interface doesn’t declare any methods; it’s used as a marker interface to provide

Listing 2.16 when without an argument

No argument
for “when”
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

32 CHAPTER 2 Kotlin basics

h

face
a common type for different kinds of expressions. To mark that a class implements an
interface, you use a colon (:) followed by the interface name:

interface Expr
class Num(val value: Int) : Expr
class Sum(val left: Expr, val right: Expr) : Expr

Sum stores the references to left and right argu-
ments of type Expr; in this small example, they can be
either Num or Sum. To store the expression (1 + 2) + 4
mentioned earlier, you create an object
Sum(Sum(Num(1), Num(2)), Num(4)). Figure 2.4
shows its tree representation.

 Now let’s look at how to compute the value of an
expression. Evaluating the example expression should
return 7:

>>> println (eval(Sum(Sum(Num(1), Num(2)), Num (4))))
7

The Expr interface has two implementations, so you have to try two options in order
to evaluate a result value for an expression:

 If an expression is a number, you return the corresponding value.
 If it’s a sum, you have to evaluate the left and right expressions and return

their sum.

First we’ll look at this function written in the normal Java way, and then we’ll refactor
it to be written in a Kotlin style. In Java, you’d probably use a sequence of if state-
ments to check the options, so let’s use the same approach in Kotlin.

fun eval(e: Expr): Int {
if (e is Num) {

val n = e as Num
return n.value

}
if (e is Sum) {

return eval(e.right) + eval(e.left)
}
throw IllegalArgumentException("Unknown expression")

}

Listing 2.17 Expression class hierarchy

Listing 2.18 Evaluating expressions with an if-cascade

Simple value object class wit
one property, value,
implementing the Expr inter

The argument of a Sum
operation can be any Expr:
either Num or another Sum

Sum

Sum

Num(1)

Num(4)

Num(2)

Figure 2.4 A representation
of the expression Sum(Sum-
Num(1), Num(2)), Num(4))

This explicit cast to
Num is redundant.

The variable e
is smart-cast.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

33Representing and handling choices: enums and “when”
>>> println(eval(Sum(Sum(Num(1), Num(2)), Num(4))))
7

In Kotlin, you check whether a variable is of a certain type by using an is check. If
you’ve programmed in C#, this notation should be familiar. The is check is similar to
instanceof in Java. But in Java, if you’ve checked that a variable has a certain type
and needs to access members of that type, you need to add an explicit cast following
the instanceof check. When the initial variable is used more than once, you often
store the cast result in a separate variable. In Kotlin, the compiler does this job for
you. If you check the variable for a certain type, you don’t need to cast it afterward;
you can use it as having the type you checked for. In effect, the compiler performs the
cast for you, and we call it a smart cast.

 In the eval function, after you check
whether the variable e has Num type, the
compiler interprets it as a Num variable.
You can then access the value property of
Num without an explicit cast: e.value.
The same goes for the right and left
properties of Sum: you write only e.right and e.left in the corresponding context.
In the IDE, these smart-cast values are emphasized with a background color, so it’s easy
to grasp that this value was checked beforehand. See figure 2.5.

 The smart cast works only if a variable couldn’t have changed after the is check.
When you’re using a smart cast with a property of a class, as in this example, the prop-
erty has to be a val and it can’t have a custom accessor. Otherwise, it would not be
possible to verify that every access to the property would return the same value.

 An explicit cast to the specific type is expressed via the as keyword:

val n = e as Num

Now let’s look at how to refactor the eval function into a more idiomatic Kotlin style.

2.3.6 Refactoring: replacing “if” with “when”

How does if in Kotlin differ from if in Java? You have seen the difference already. At
the beginning of the chapter, you saw the if expression used in the context where Java
would have a ternary operator: if (a > b) a else b works like Java’s a > b ? a : b. In
Kotlin, there is no ternary operator, because, unlike in Java, the if expression returns
a value. That means you can rewrite the eval function to use the expression-body syn-
tax, removing the return statement and the curly braces and using the if expression
as the function body instead.

fun eval(e: Expr): Int =
if (e is Num) {

e.value
} else if (e is Sum) {

Listing 2.19 Using if-expressions that return values

if (e is Sum) {
 return eval(e.right) + eval(e.left)
}

Figure 2.5 The IDE highlights smart casts with
a background color.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

34 CHAPTER 2 Kotlin basics

Sm
eval(e.right) + eval(e.left)
} else {

throw IllegalArgumentException("Unknown expression")
}

>>> println(eval(Sum(Num(1), Num(2))))
3

The curly braces are optional if there’s only one expression in an if branch. If an if
branch is a block, the last expression is returned as a result.

 Let’s polish this code even more and rewrite it using when.

fun eval(e: Expr): Int =
when (e) {

is Num ->
e.value

is Sum ->
eval(e.right) + eval(e.left)

else ->
throw IllegalArgumentException("Unknown expression")

}

The when expression isn’t restricted to checking values for equality, which is what you
saw earlier. Here you use a different form of when branches, allowing you to check
the type of the when argument value. Just as in the if example in listing 2.19, the
type check applies a smart cast, so you can access members of Num and Sum without
extra casts.

 Compare the last two Kotlin versions of the eval function, and think about how
you can apply when as a replacement for sequences of if expressions in your own
code as well. When the branch logic is complicated, you can use a block expression as
a branch body. Let’s see how this works.

2.3.7 Blocks as branches of “if” and “when”

Both if and when can have blocks as branches. In this case, the last expression in the
block is the result. If you want to add logging to the example function, you can do so
in the block and return the last value as before.

fun evalWithLogging(e: Expr): Int =
when (e) {

is Num -> {
println("num: ${e.value}")
e.value

}
is Sum -> {

val left = evalWithLogging(e.left)

Listing 2.20 Using when instead of if-cascade

Listing 2.21 Using when with compound actions in branches

“when” branches that
check the argument typeart casts are

applied here.

This is the last expression
in the block and is returned
if e is of type Num.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

35Iterating over things: “while” and “for” loops
val right = evalWithLogging(e.right)
println("sum: $left + $right")
left + right

}
else -> throw IllegalArgumentException("Unknown expression")

}

Now you can look at the logs printed by the evalWithLogging function and follow
the order of computation:

>>> println(evalWithLogging(Sum(Sum(Num(1), Num(2)), Num(4))))
num: 1
num: 2
sum: 1 + 2
num: 4
sum: 3 + 4
7

The rule “the last expression in a block is the result” holds in all cases where a block
can be used and a result is expected. As you’ll see at the end of this chapter, the same
rule works for the try body and catch clauses, and chapter 5 discusses its application
to lambda expressions. But as we mentioned in section 2.2, this rule doesn’t hold for
regular functions. A function can have either an expression body that can’t be a block
or a block body with explicit return statements inside.

 You’ve become acquainted with Kotlin ways to choose the right things among
many. Now it’s a good time to see how you can iterate over things.

2.4 Iterating over things: “while” and “for” loops
Of all the features discussed in this chapter, iteration in Kotlin is probably the most
similar to Java. The while loop is identical to the one in Java, so it deserves only a
brief mention in the beginning of this section. The for loop exists in only one form,
which is equivalent to Java’s for-each loop. It’s written for <item> in <ele-
ments>, as in C#. The most common application of this loop is iterating over collec-
tions, just as in Java. We’ll explore how it can cover other looping scenarios as well.

2.4.1 The “while” loop

Kotlin has while and do-while loops, and their syntax doesn’t differ from the corre-
sponding loops in Java:

while (condition) {
/*...*/

}

do {
/*...*/

} while (condition)

Kotlin doesn’t bring anything new to these simple loops, so we won’t linger. Let’s
move on to discuss the various uses of the for loop.

This expression is returned
if e is of type Sum.

The body is executed while
the condition is true.

The body is executed for the first time
unconditionally. After that, it’s
executed while the condition is true.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

36 CHAPTER 2 Kotlin basics

If i is d

retur

Else re
num
2.4.2 Iterating over numbers: ranges and progressions

As we just mentioned, in Kotlin there’s no regular Java for loop, where you initialize a
variable, update its value on every step through the loop, and exit the loop when the
value reaches a certain bound. To replace the most common use cases of such loops,
Kotlin uses the concepts of ranges.

 A range is essentially just an interval between two values, usually numbers: a start
and an end. You write it using the .. operator:

val oneToTen = 1..10

Note that ranges in Kotlin are closed or inclusive, meaning the second value is always a
part of the range.

 The most basic thing you can do with integer ranges is loop over all the values. If
you can iterate over all the values in a range, such a range is called a progression.

 Let’s use integer ranges to play the Fizz-Buzz game. It’s a nice way to survive a long
trip in a car and remember your forgotten division skills. Players take turns counting
incrementally, replacing any number divisible by three with the word fizz and any
number divisible by five with the word buzz. If a number is a multiple of both three
and five, you say “FizzBuzz.”

 The following listing prints the right answers for the numbers from 1 to 100. Note
how you check the possible conditions with a when expression without an argument.

fun fizzBuzz(i: Int) = when {
i % 15 == 0 -> "FizzBuzz "
i % 3 == 0 -> "Fizz "
i % 5 == 0 -> "Buzz "
else -> "$i "

}
>>> for (i in 1..100) {
... print(fizzBuzz(i))
... }
}
1 2 Fizz 4 Buzz Fizz 7 ...

Suppose you get tired of these rules after an hour of driving and want to complicate
things a bit. Let’s start counting backward from 100 and include only even numbers.

>>> for (i in 100 downTo 1 step 2) {
... print(fizzBuzz(i))
... }
Buzz 98 Fizz 94 92 FizzBuzz 88 ...

Listing 2.22 Using when to implement the Fizz-Buzz game

Listing 2.23 Iterating over a range with a step

If i is divisible by 15,
returns FizzBuzz. As
in Java, % is the
modulus operator.

ivisible
by 3,

ns Fizz If i is divisible
by 5, returns Buzz

turns the
ber itself

Iterates over the
integer range 1..100
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

37Iterating over things: “while” and “for” loops

Co
ASCI

to
Now you’re iterating over a progression that has a step, which allows it to skip some
numbers. The step can also be negative, in which case the progression goes backward
rather than forward. In this example, 100 downTo 1 is a progression that goes back-
ward (with step -1). Then step changes the absolute value of the step to 2 while keep-
ing the direction (in effect, setting the step to -2).

 As we mentioned earlier, the .. syntax always creates a range that includes the end
point (the value to the right of ..). In many cases, it’s more convenient to iterate over
half-closed ranges, which don’t include the specified end point. To create such a
range, use the until function. For example, the loop for (x in 0 until size)
is equivalent to for (x in 0..size-1), but it expresses the idea somewhat more
clearly. Later, in section 3.4.3, you’ll learn more about the syntax for downTo, step,
and until in these examples.

 You can see how working with ranges and progressions helped you cope with the
advanced rules for the FizzBuzz game. Now let’s look at other examples that use the
for loop.

2.4.3 Iterating over maps

We’ve mentioned that the most common scenario of using a for ... in loop is iterat-
ing over a collection. This works exactly as it does in Java, so we won’t say much about
it. Let’s see how you can iterate over a map, instead.

 As an example, we’ll look at a small program that prints binary representations for
characters. You’ll store these binary representations in a map (just for illustrative pur-
poses). The following code creates a map, fills it with binary representations of some
letters, and then prints the map’s contents.

val binaryReps = TreeMap<Char, String>()

for (c in 'A'..'F') {
val binary = Integer.toBinaryString(c.toInt())
binaryReps[c] = binary

}

for ((letter, binary) in binaryReps) {
println("$letter = $binary")

}

The .. syntax to create a range works not only for numbers, but also for characters.
Here you use it to iterate over all characters from A up to and including F.

 Listing 2.24 shows that the for loop allows you to unpack an element of a collec-
tion you’re iterating over (in this case, a collection of key/value pairs in the map). You
store the result of the unpacking in two separate variables: letter receives the key,

Listing 2.24 Initializing and iterating over a map

Uses TreeMap so
the keys are sorted

Iterates over the
characters from A to F
using a range of characters

nverts
I code
binary

Stores the value in a
map by the c key

Iterates over a map,
assigning the map key and
value to two variables
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

38 CHAPTER 2 Kotlin basics
and binary receives the value. Later, in section 7.4.1, you’ll find out more about this
unpacking syntax.

 Another nice trick used in listing 2.24 is the shorthand syntax for getting and
updating the values of a map by key. Instead of calling get and put, you can use
map[key] to read values and map[key] = value to set them. The code

binaryReps[c] = binary

is equivalent to its Java version:

binaryReps.put(c, binary)

The output is similar to the following (we’ve arranged it in two columns instead of one):

A = 1000001 D = 1000100
B = 1000010 E = 1000101
C = 1000011 F = 1000110

You can use the same unpacking syntax to iterate over a collection while keeping track
of the index of the current item. You don’t need to create a separate variable to store
the index and increment it by hand:

val list = arrayListOf("10", "11", "1001")
for ((index, element) in list.withIndex()) {

println("$index: $element")
}

The code prints what you expect:

0: 10
1: 11
2: 1001

We’ll dig into the whereabouts of withIndex in the next chapter.
 You’ve seen how you can use the in keyword to iterate over a range or a collection.

You can also use in to check whether a value belongs to the range or collection.

2.4.4 Using “in” to check collection and range membership

You use the in operator to check whether a value is in a range, or its opposite, !in, to
check whether a value isn’t in a range. Here’s how you can use in to check whether a
character belongs to a range of characters.

fun isLetter(c: Char) = c in 'a'..'z' || c in 'A'..'Z'
fun isNotDigit(c: Char) = c !in '0'..'9'

>>> println(isLetter('q'))
true
>>> println(isNotDigit('x'))
true

Listing 2.25 Checking range membership using in

Iterates over a collection
with an index
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

39Exceptions in Kotlin

Y
co
m
r

This technique for checking whether a character is a letter looks simple. Under the
hood, nothing tricky happens: you still check that the character’s code is somewhere
between the code of the first letter and the code of the last one. But this logic is con-
cisely hidden in the implementation of the range classes in the standard library:

c in 'a'..'z'

The in and !in operators also work in when expressions.

fun recognize(c: Char) = when (c) {
in '0'..'9' -> "It's a digit!"
in 'a'..'z', in 'A'..'Z' -> "It's a letter!"
else -> "I don't know…"

}
>>> println(recognize('8'))
It's a digit!

Ranges aren’t restricted to characters, either. If you have any class that supports com-
paring instances (by implementing the java.lang.Comparable interface), you can
create ranges of objects of that type. If you have such a range, you can’t enumerate all
objects in the range. Think about it: can you, for example, enumerate all strings
between “Java” and “Kotlin”? No, you can’t. But you can still check whether another
object belongs to the range, using the in operator:

>>> println("Kotlin" in "Java".."Scala")
true

Note that the strings are compared alphabetically here, because that’s how the
String class implements the Comparable interface.

 The same in check works with collections as well:

>>> println("Kotlin" in setOf("Java", "Scala"))
false

Later, in section 7.3.2, you’ll see how to use ranges and progressions with your own
data types and what objects in general you can use in checks with.

 There’s one more group of Java statements we want to look at in this chapter: state-
ments for dealing with exceptions.

2.5 Exceptions in Kotlin
Exception handling in Kotlin is similar to the way it’s done in Java and many other lan-
guages. A function can complete in a normal way or throw an exception if an error
occurs. The function caller can catch this exception and process it; if it doesn’t, the
exception is rethrown further up the stack.

Listing 2.26 Using in checks as when branches

Transforms to
 a <= c && c <= z

Checks whether the value is
in the range from 0 to 9ou can

mbine
ultiple
anges.

The same as “Java” <= “Kotlin”
&& “Kotlin” <= “Scala”

This set doesn’t contain
the string “Kotlin”.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

40 CHAPTER 2 Kotlin basics
 The basic form for exception-handling statements in Kotlin is similar to Java’s. You
throw an exception in a non-surprising manner:

if (percentage !in 0..100) {
throw IllegalArgumentException(

"A percentage value must be between 0 and 100: $percentage")
}

As with all other classes, you don’t have to use the new keyword to create an instance
of the exception.

 Unlike in Java, in Kotlin the throw construct is an expression and can be used as a
part of other expressions:

val percentage =
if (number in 0..100)

number
else

throw IllegalArgumentException(
"A percentage value must be between 0 and 100: $number")

In this example, if the condition is satisfied, the program behaves correctly, and the
percentage variable is initialized with number. Otherwise, an exception is thrown,
and the variable isn’t initialized. We’ll discuss the technical details of throw as a part
of other expressions, in section 6.2.6.

2.5.1 “try”, “catch”, and “finally”

Just as in Java, you use the try construct with catch and finally clauses to handle
exceptions. You can see it in the following listing, which reads a line from the given
file, tries to parse it as a number, and returns either the number or null if the line
isn’t a valid number.

fun readNumber(reader: BufferedReader): Int? {
try {

val line = reader.readLine()
return Integer.parseInt(line)

}
catch (e: NumberFormatException) {

return null
}
finally {

reader.close()
}

}

>>> val reader = BufferedReader(StringReader("239"))
>>> println(readNumber(reader))
239

Listing 2.27 Using try as in Java

“throw” is an
expression.

You don’t have to explicitly
specify exceptions that can be
thrown from this function.

The exception type
is on the right.

“finally” works just
as it does in Java.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

41Exceptions in Kotlin
The biggest difference from Java is that the throws clause isn’t present in the code: if
you wrote this function in Java, you’d explicitly write throws IOException after the
function declaration. You’d need to do this because IOException is a checked excep-
tion. In Java, it’s an exception that needs to be handled explicitly. You have to declare
all checked exceptions that your function can throw, and if you call another function,
you need to handle its checked exceptions or declare that your function can throw
them, too.

 Just like many other modern JVM languages, Kotlin doesn’t differentiate between
checked and unchecked exceptions. You don’t specify the exceptions thrown by a
function, and you may or may not handle any exceptions. This design decision is
based on the practice of using checked exceptions in Java. Experience has shown that
the Java rules often require a lot of meaningless code to rethrow or ignore exceptions,
and the rules don’t consistently protect you from the errors that can happen.

 For example, in listing 2.27, NumberFormatException isn’t a checked exception.
Therefore, the Java compiler doesn’t force you to catch it, and you can easily see the
exception happen at runtime. This is unfortunate, because invalid input data is a com-
mon situation and should be handled gracefully. At the same time, the Buffered-
Reader.close method can throw an IOException, which is a checked exception
and needs to be handled. Most programs can’t take any meaningful action if closing a
stream fails, so the code required to catch the exception from the close method is
boilerplate.

 What about Java 7’s try-with-resources? Kotlin doesn’t have any special syntax
for this; it’s implemented as a library function. In section 8.2.5, you’ll see how this is
possible.

2.5.2 “try” as an expression

To see another significant difference between Java and Kotlin, let’s modify the exam-
ple a little. Let’s remove the finally section (because you’ve already seen how this
works) and add some code to print the number you read from the file.

fun readNumber(reader: BufferedReader) {
val number = try {

Integer.parseInt(reader.readLine())
} catch (e: NumberFormatException) {

return
}

println(number)
}

>>> val reader = BufferedReader(StringReader("not a number"))
>>> readNumber(reader)

Listing 2.28 Using try as an expression

Becomes the value of
the “try” expression

Nothing
is printed.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

42 CHAPTER 2 Kotlin basics
The try keyword in Kotlin, just like if and when, introduces an expression, and you
can assign its value to a variable. Unlike with if, you always need to enclose the state-
ment body in curly braces. Just as in other statements, if the body contains multiple
expressions, the value of the try expression as a whole is the value of the last expression.

 This example puts a return statement in the catch block, so the execution of the
function doesn’t continue after the catch block. If you want to continue execution,
the catch clause also needs to have a value, which will be the value of the last expres-
sion in it. Here’s how this works.

fun readNumber(reader: BufferedReader) {
val number = try {

Integer.parseInt(reader.readLine())
} catch (e: NumberFormatException) {

null
}

println(number)
}

>>> val reader = BufferedReader(StringReader("not a number"))
>>> readNumber(reader)
null

If the execution of a try code block behaves normally, the last expression in the block
is the result. If an exception is caught, the last expression in a corresponding catch
block is the result. In listing 2.29, the result value is null if a NumberFormat-
Exception is caught.

 At this point, if you’re impatient, you can start writing programs in Kotlin in a way
that’s similar to how you code in Java. As you read this book, you’ll continue to learn how
to change your habitual ways of thinking and use the full power of the new language.

2.6 Summary
 The fun keyword is used to declare a function. The val and var keywords

declare read-only and mutable variables, respectively.
 String templates help you avoid noisy string concatenation. Prefix a variable

name with $ or surround an expression with ${ } to have its value injected into
the string.

 Value-object classes are expressed in a concise way in Kotlin.
 The familiar if is now an expression with a return value.
 The when expression is analogous to switch in Java but is more powerful.
 You don’t have to cast a variable explicitly after checking that it has a certain

type: the compiler casts it for you automatically using a smart cast.

Listing 2.29 Returning a value in catch

This value is used when
no exception happens.

The null value is used
in case of an exception.

An exception is
thrown, so the function

prints “null”.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

43Summary
 The for, while, and do-while loops are similar to their counterparts in Java,
but the for loop is now more convenient, especially when you need to iterate
over a map or a collection with an index.

 The concise syntax 1..5 creates a range. Ranges and progressions allow Kotlin
to use a uniform syntax and set of abstractions in for loops and also work with
the in and !in operators that check whether a value belongs to a range.

 Exception handling in Kotlin is very similar to that in Java, except that Kotlin
doesn’t require you to declare the exceptions that can be thrown by a function.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Defining and
calling functions
By now, you should be fairly comfortable with using Kotlin the same way you use
Java. You’ve seen how the concepts familiar to you from Java translate to Kotlin,
and how Kotlin often makes them more concise and readable.

 In this chapter, you’ll see how Kotlin improves on one of the key elements of
every program: declaring and calling functions. We’ll also look into the possibilities
for adapting Java libraries to the Kotlin style through the use of extension func-
tions, allowing you to gain the full benefits of Kotlin in mixed-language projects.

 To make our discussion more useful and less abstract, we’ll focus on Kotlin col-
lections, strings, and regular expressions as our problem domain. As an introduc-
tion, let’s look at how to create collections in Kotlin.

This chapter covers
 Functions for working with collections, strings, and

regular expressions

 Using named arguments, default parameter values, and
the infix call syntax

 Adapting Java libraries to Kotlin through extension
functions and properties

 Structuring code with top-level and local functions and
properties
44

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

45Creating collections in Kotlin
3.1 Creating collections in Kotlin
Before you can do interesting things with collections, you need to learn how to create
them. In section 2.3.3, you bumped into the way to create a new set: the setOf func-
tion. You created a set of colors then, but for now, let’s keep it simple and work with
numbers:

val set = hashSetOf(1, 7, 53)

You create a list or a map in a similar way:

val list = arrayListOf(1, 7, 53)
val map = hashMapOf(1 to "one", 7 to "seven", 53 to "fifty-three")

Note that to isn’t a special construct, but a normal function. We’ll return to it later in
the chapter.

 Can you guess the classes of objects that are created here? Run the following exam-
ple to see this for yourself:

>>> println(set.javaClass)
class java.util.HashSet

>>> println(list.javaClass)
class java.util.ArrayList

>>> println(map.javaClass)
class java.util.HashMap

As you can see, Kotlin uses the standard Java collection classes. This is good news for
Java developers: Kotlin doesn’t have its own set of collection classes. All of your exist-
ing knowledge about Java collections still applies here.

 Why are there no Kotlin collections? Because using the standard Java collections
makes it much easier to interact with Java code. You don’t need to convert collections
one way or the other when you call Java functions from Kotlin or vice versa.

 Even though Kotlin’s collections are exactly the same classes as Java collections,
you can do much more with them in Kotlin. For example, you can get the last element
in a list or find a maximum in a collection of numbers:

>>> val strings = listOf("first", "second", "fourteenth")

>>> println(strings.last())
fourteenth

>>> val numbers = setOf(1, 14, 2)

>>> println(numbers.max())
14

In this chapter, we’ll explore in detail how this works and where all the new methods
on the Java classes come from.

javaClass is Kotlin’s
equivalent of Java’s
getClass().
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

46 CHAPTER 3 Defining and calling functions
 In future chapters, when we start talking about lambdas, you’ll see much more that
you can do with collections, but we’ll keep using the same standard Java collection
classes. And in section 6.3, you’ll learn how the Java collection classes are represented
in the Kotlin type system.

 Before discussing how the magic functions last and max work on Java collections,
let’s learn some new concepts for declaring a function.

3.2 Making functions easier to call
Now that you know how to create a collection of elements, let’s do something straight-
forward: print its contents. Don’t worry if this seems overly simple; along the way,
you’ll meet a bunch of important concepts.

 Java collections have a default toString implementation, but the formatting of
the output is fixed and not always what you need:

>>> val list = listOf(1, 2, 3)
>>> println(list)
[1, 2, 3]

Imagine that you need the elements to be separated by semicolons and surrounded by
parentheses, instead of the brackets used by the default implementation: (1; 2; 3).
To solve this, Java projects use third-party libraries such as Guava and Apache Com-
mons, or reimplement the logic inside the project. In Kotlin, a function to handle this
is part of the standard library.

 In this section, you’ll implement this function yourself. You’ll begin with a straight-
forward implementation that doesn’t use Kotlin’s facilities for simplifying function
declarations, and then you’ll rewrite it in a more idiomatic style.

 The joinToString function shown next appends the elements of the collection
to a StringBuilder, with a separator between them, a prefix at the beginning, and a
postfix at the end.

fun <T> joinToString(
collection: Collection<T>,
separator: String,
prefix: String,
postfix: String

): String {

val result = StringBuilder(prefix)

for ((index, element) in collection.withIndex()) {
if (index > 0) result.append(separator)
result.append(element)

}

result.append(postfix)
return result.toString()

}

Listing 3.1 Initial implementation of joinToString()

Invokes toString()

Don’t append a separator
before the first element.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

47Making functions easier to call
The function is generic: it works on collections that contain elements of any type. The
syntax for generics is similar to Java. (A more detailed discussion of generics will be
the subject of chapter 9.)

 Let’s verify that the function works as intended:

>>> val list = listOf(1, 2, 3)
>>> println(joinToString(list, "; ", "(", ")"))
(1; 2; 3)

The implementation is fine, and you’ll mostly leave it as is. What we’ll focus on is the
declaration: how can you change it to make calls of this function less verbose? Maybe
you could avoid having to pass four arguments every time you call the function. Let’s
see what you can do.

3.2.1 Named arguments

The first problem we’ll address concerns the readability of function calls. For exam-
ple, look at the following call of joinToString:

joinToString(collection, " ", " ", ".")

Can you tell what parameters all these Strings correspond to? Are the elements sepa-
rated by the whitespace or the dot? These questions are hard to answer without look-
ing at the signature of the function. Maybe you remember it, or maybe your IDE can
help you, but it’s not obvious from the calling code.

 This problem is especially common with Boolean flags. To solve it, some Java cod-
ing styles recommend creating enum types instead of using Booleans. Others even
require you to specify the parameter names explicitly in a comment, as in the follow-
ing example:

/* Java */
joinToString(collection, /* separator */ " ", /* prefix */ " ",

/* postfix */ ".");

With Kotlin, you can do better:

joinToString(collection, separator = " ", prefix = " ", postfix = ".")

When calling a function written in Kotlin, you can specify the names of some argu-
ments that you’re passing to the function. If you specify the name of an argument in a
call, you should also specify the names for all the arguments after that, to avoid confu-
sion.

TIP IntelliJ IDEA can keep explicitly written argument names up to date if
you rename the parameter of the function being called. Just ensure that you
use the Rename or Change Signature action instead of editing the parameter
names by hand.

WARNING Unfortunately, you can’t use named arguments when calling meth-
ods written in Java, including methods from the JDK and the Android
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

48 CHAPTER 3 Defining and calling functions
framework. Storing parameter names in .class files is supported as an optional
feature only starting with Java 8, and Kotlin maintains compatibility with Java
6. As a result, the compiler can’t recognize the parameter names used in your
call and match them against the method definition.

Named arguments work especially well with default parameter values, which we’ll look
at next.

3.2.2 Default parameter values

Another common Java problem is the overabundance of overloaded methods in some
classes. Just look at java.lang.Thread and its eight constructors (http://mng.bz/
4KZC)! The overloads can be provided for the sake of backward compatibility, for
convenience of API users, or for other reasons, but the end result is the same: duplica-
tion. The parameter names and types are repeated over and over, and if you’re being
a good citizen, you also have to repeat most of the documentation in every overload.
At the same time, if you call an overload that omits some parameters, it’s not always
clear which values are used for them.

 In Kotlin, you can often avoid creating overloads because you can specify default
values for parameters in a function declaration. Let’s use that to improve the joinTo-
String function. For most cases, the strings can be separated by commas without any
prefix or postfix. So, let’s make these values the defaults.

fun <T> joinToString(
collection: Collection<T>,
separator: String = ", ",
prefix: String = "",
postfix: String = ""

): String

Now you can either invoke the function with all the arguments or omit some of them:

>>> joinToString(list, ", ", "", "")
1, 2, 3
>>> joinToString(list)
1, 2, 3
>>> joinToString(list, "; ")
1; 2; 3

When using the regular call syntax, you have to specify the arguments in the same
order as in the function declaration, and you can omit only trailing arguments. If you
use named arguments, you can omit some arguments from the middle of the list and
specify only the ones you need, in any order you want:

>>> joinToString(list, suffix = ";", prefix = "# ")
1, 2, 3;

Listing 3.2 Declaring joinToString() with default parameter values

Parameters with
default values
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://mng.bz/4KZC
http://mng.bz/4KZC

49Making functions easier to call
Note that the default values of the parameters are encoded in the function being
called, not at the call site. If you change the default value and recompile the class con-
taining the function, the callers that haven’t specified a value for the parameter will
start using the new default value.

So far, you’ve been working on your utility function without paying much attention to
the surrounding context. Surely it must have been a method of some class that wasn’t
shown in the example listings, right? In fact, Kotlin makes this unnecessary.

3.2.3 Getting rid of static utility classes: top-level functions and properties

We all know that Java, as an object-oriented language, requires all code to be written
as methods of classes. Usually, this works out nicely; but in reality, almost every large
project ends up with a lot of code that doesn’t clearly belong to any single class. Some-
times an operation works with objects of two different classes that play an equally
important role for it. Sometimes there is one primary object, but you don’t want to
bloat its API by adding the operation as an instance method.

 As a result, you end up with classes that don’t contain any state or any instance
methods and that act as containers for a bunch of static methods. A perfect example is
the Collections class in the JDK. To find other examples in your own code, look for
classes that have Util as part of the name.

Default values and Java
Given that Java doesn’t have the concept of default parameter values, you have to
specify all the parameter values explicitly when you call a Kotlin function with default
parameter values from Java. If you frequently need to call a function from Java and
want to make it easier to use for Java callers, you can annotate it with @Jvm-
Overloads. This instructs the compiler to generate Java overloaded methods, omit-
ting each of the parameters one by one, starting from the last one.

For example, if you annotate joinToString with @JvmOverloads, the following
overloads are generated:

/* Java */
String joinToString(Collection<T> collection, String separator,

String prefix, String postfix);

String joinToString(Collection<T> collection, String separator,
String prefix);

String joinToString(Collection<T> collection, String separator);

String joinToString(Collection<T> collection);

Each overload uses the default values for the parameters that have been omitted
from the signature.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

50 CHAPTER 3 Defining and calling functions
 In Kotlin, you don’t need to create all those meaningless classes. Instead, you can
place functions directly at the top level of a source file, outside of any class. Such func-
tions are still members of the package declared at the top of the file, and you still need
to import them if you want to call them from other packages, but the unnecessary
extra level of nesting no longer exists.

 Let’s put the joinToString function into the strings package directly. Create a
file called join.kt with the following contents.

package strings

fun joinToString(...): String { ... }

How does this run? You know that, when you compile the file, some classes will be pro-
duced, because the JVM can only execute code in classes. When you work only with
Kotlin, that’s all you need to know. But if you need to call such a function from Java,
you have to understand how it will be compiled. To make this clear, let’s look at the
Java code that would compile to the same class:

/* Java */
package strings;

public class JoinKt {
public static String joinToString(...) { ... }

}

You can see that the name of the class generated by the Kotlin compiler corresponds
to the name of the file containing the function. All top-level functions in the file are
compiled to static methods of that class. Therefore, calling this function from Java is
as easy as calling any other static method:

/* Java */
import strings.JoinKt;

...

JoinKt.joinToString(list, ", ", "", "");

Listing 3.3 Declaring joinToString() as a top-level function

Changing the file class name
To change the name of the generated class that contains Kotlin top-level functions,
you add a @JvmName annotation to the file. Place it at the beginning of the file, before
the package name:

@file:JvmName("StringFunctions")

package strings

fun joinToString(...): String { ... }

Corresponds to join.kt,
the filename of listing 3.3

Annotation to specify
the class name

The package statement
follows the file annotations.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

51Adding methods to other people’s classes: extension functions and properties
TOP-LEVEL PROPERTIES

Just like functions, properties can be placed at the top level of a file. Storing individual
pieces of data outside of a class isn’t needed as often but is still useful.

 For example, you can use a var property to count the number of times some oper-
ation has been performed:

var opCount = 0

fun performOperation() {
opCount++
// ...

}

fun reportOperationCount() {
println("Operation performed $opCount times")

}

The value of such a property will be stored in a static field.
 Top-level properties also allow you to define constants in your code:

val UNIX_LINE_SEPARATOR = "\n"

By default, top-level properties, just like any other properties, are exposed to Java
code as accessor methods (a getter for a val property and a getter/setter pair for a
var property). If you want to expose a constant to Java code as a public static
final field, to make its use more natural, you can mark it with the const modifier
(this is allowed for properties of primitive types, as well as String):

const val UNIX_LINE_SEPARATOR = "\n"

This gets you the equivalent of the following Java code:

/* Java */
public static final String UNIX_LINE_SEPARATOR = "\n";

You’ve improved the initial joinToString utility function quite a lot. Now let’s look
at how to make it even handier.

3.3 Adding methods to other people’s classes:
extension functions and properties
One of the main themes of Kotlin is smooth integration with existing code. Even pure
Kotlin projects are built on top of Java libraries such as the JDK, the Android

Now the function can be called as follows:

/* Java */
import strings.StringFunctions;
StringFunctions.joinToString(list, ", ", "", "");

A detailed discussion of the annotation syntax comes later, in chapter 10.

Declares a
top-level property

Changes the value
of the property

Reads the value
of the property
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

52 CHAPTER 3 Defining and calling functions

framework, and other third-party frameworks. And when you integrate Kotlin into a
Java project, you’re also dealing with the existing code that hasn’t been or won’t be
converted to Kotlin. Wouldn’t it be nice to be able to use all the niceties of Kotlin
when working with those APIs, without having to rewrite them? That’s what extension
functions allow you to do.

 Conceptually, an extension function is a simple thing: it’s a function that can be
called as a member of a class but is defined outside of it. To demonstrate that, let’s add
a method for computing the last character of a string:

package strings

fun String.lastChar(): Char = this.get(this.length - 1)

All you need to do is put the name of the class or interface that you’re extending
before the name of the function you’re adding. This class name is called the receiver
type ; the value on which you’re calling the extension function is called the receiver
object. This is illustrated in figure 3.1.

Figure 3.1 The receiver type is the type on which the extension is
defined, and the receiver object is the instance of that type.

You can call the function using the same syntax you use for ordinary class members:

>>> println("Kotlin".lastChar())
n

In this example, String is the receiver type, and "Kotlin" is the receiver object.
 In a sense, you’ve added your own method to the String class. Even though

String isn’t part of your code, and you may not even have the source code to that
class, you can still extend it with the methods you need in your project. It doesn’t even
matter whether String is written in Java, Kotlin, or some other JVM language, such as
Groovy. As long as it’s compiled to a Java class, you can add your own extensions to
that class.

 In the body of an extension function, you use this as you’d use it in a method.
And, as in a regular method, you can omit it:

package strings

fun String.lastChar(): Char = get(length - 1)

In the extension function, you can directly access the methods and properties of the
class you’re extending, as in methods defined in the class itself. Note that extension

fun String.lastChar(): Char = this.get(this.length - 1)

Receiver type Receiver object

Receiver object members can
be accessed without “this”.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

53Adding methods to other people’s classes: extension functions and properties
functions don’t allow you to break encapsulation. Unlike methods defined in the class,
extension functions don’t have access to private or protected members of the class.

 Later we’ll use the term method for both members of the class and extensions func-
tions. For instance, we can say that in the body of the extension function you can call
any method on the receiver, meaning you can call both members and extension func-
tions. On the call site, extension functions are indistinguishable from members, and
often it doesn’t matter whether the particular method is a member or an extension.

3.3.1 Imports and extension functions

When you define an extension function, it doesn’t automatically become available
across your entire project. Instead, it needs to be imported, just like any other class or
function. This helps avoid accidental name conflicts. Kotlin allows you to import indi-
vidual functions using the same syntax you use for classes:

import strings.lastChar

val c = "Kotlin".lastChar()

Of course, * imports work as well:

import strings.*

val c = "Kotlin".lastChar()

You can change the name of the class or function you’re importing using the as
keyword:

import strings.lastChar as last

val c = "Kotlin".last()

Changing a name on import is useful when you have several functions with the same
name in different packages and you want to use them in the same file. For regular
classes or functions, you have another choice in this situation: You can use a fully qual-
ified name to refer to the class or function. For extension functions, the syntax
requires you to use the short name, so the as keyword in an import statement is the
only way to resolve the conflict.

3.3.2 Calling extension functions from Java

Under the hood, an extension function is a static method that accepts the receiver
object as its first argument. Calling it doesn’t involve creating adapter objects or any
other runtime overhead.

 That makes using extension functions from Java pretty easy: you call the static
method and pass the receiver object instance. Just as with other top-level functions,
the name of the Java class containing the method is determined from the name of the
file where the function is declared. Let’s say it was declared in a StringUtil.kt file:

/* Java */
char c = StringUtilKt.lastChar("Java");
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>www.allitebooks.com

http://www.allitebooks.org

54 CHAPTER 3 Defining and calling functions
This extension function is declared as a top-level function, so it’s compiled to a static
method. You can import the lastChar method statically from Java, simplifying the
use to just lastChar("Java"). This code is somewhat less readable than the Kotlin
version, but it’s idiomatic from the Java point of view.

3.3.3 Utility functions as extensions

Now you can write the final version of the joinToString function. This is almost
exactly what you’ll find in the Kotlin standard library.

fun <T> Collection<T>.joinToString(
separator: String = ", ",
prefix: String = "",
postfix: String = ""

): String {
val result = StringBuilder(prefix)

for ((index, element) in this.withIndex())
if (index > 0) result.append(separator)
result.append(element)

}

result.append(postfix)
return result.toString()

}

>>> val list = listOf(1, 2, 3)
>>> println(list.joinToString(separator = "; ",
... prefix = "(", postfix = ")"))
(1; 2; 3)

You make it an extension to a collection of elements, and you provide default values
for all the arguments. Now you can invoke joinToString like a member of a class:

>>> val list = arrayListOf(1, 2, 3)
>>> println(list.joinToString(" "))
1 2 3

Because extension functions are effectively syntactic sugar over static method calls,
you can use a more specific type as a receiver type, not only a class. Let’s say you want
to have a join function that can be invoked only on collections of strings.

fun Collection<String>.join(
separator: String = ", ",
prefix: String = "",
postfix: String = ""

) = joinToString(separator, prefix, postfix)

>>> println(listOf("one", "two", "eight").join(" "))
one two eight

Listing 3.4 Declaring joinToString() as an extension

Declares an extension
function on Collection<T>Assigns default values

for parameters

“this” refers to the receiver
object: a collection of T.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

55Adding methods to other people’s classes: extension functions and properties
Calling this function with a list of objects of another type won’t work:

>>> listOf(1, 2, 8).join()
Error: Type mismatch: inferred type is List<Int> but Collection<String>
was expected.

The static nature of extensions also means that extension functions can’t be overrid-
den in subclasses. Let’s look at an example.

3.3.4 No overriding for extension functions

Method overriding in Kotlin works as usual for member functions, but you can’t over-
ride an extension function. Let’s say you have two classes, View and its subclass
Button, and the Button class overrides the click function from the superclass.

open class View {
open fun click() = println("View clicked")

}

class Button: View() {
override fun click() = println("Button clicked")

}

If you declare a variable of type View, you can store a value of type Button in that
variable, because Button is a subtype of View. If you call a regular method, such as
click, on this variable, and that method is overridden in the Button class, the over-
ridden implementation from the Button class will be used:

>>> val view: View = Button()
>>> view.click()
Button clicked

But it doesn’t work that way for extensions, as shown in figure 3.2.
 Extension functions aren’t a part of the class; they’re declared externally to it.

Even though you can define extension functions with the same name and parameter
types for a base class and its subclass, the function that’s called depends on the
declared static type of the variable, not on the runtime type of the value stored in that
variable.

Listing 3.5 Overriding a member function

Button extends
View.

Determines the method to call based
on the actual value of “view”

View

click()

Button

click()

View.showOff()

Button.showOff()

Figure 3.2 Extension functions
are declared outside of the class.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

56 CHAPTER 3 Defining and calling functions
 The following example shows two showOff extension functions declared on the
View and Button classes.

fun View.showOff() = println("I'm a view!")
fun Button.showOff() = println("I'm a button!")

>>> val view: View = Button()
>>> view.showOff()
I'm a view!

When you call showOff on a variable of type View, the corresponding extension is
called, even though the actual type of the value is Button.

 If you recall that an extension function is compiled to a static function in Java with
the receiver as the first argument, this behavior should be clear to you, because Java
chooses the function the same way:

/* Java */
>>> View view = new Button();
>>> ExtensionsKt.showOff(view);
I'm a view!

As you can see, overriding doesn’t apply to extension functions: Kotlin resolves them
statically.

NOTE If the class has a member function with the same signature as an exten-
sion function, the member function always takes precedence. You should
keep this in mind when extending the API of classes: if you add a member
function with the same signature as an extension function that a client of
your class has defined, and they then recompile their code, it will change its
meaning and start referring to the new member function.

We’ve discussed how to provide additional methods for external classes. Now let’s see
how to do the same with properties.

3.3.5 Extension properties

Extension properties provide a way to extend classes with APIs that can be accessed
using the property syntax, rather than the function syntax. Even though they’re called
properties, they can’t have any state, because there’s no proper place to store it: it’s not
possible to add extra fields to existing instances of Java objects. But the shorter syntax
is still sometimes handy.

 In the previous section, you defined a function lastChar. Now let’s convert it into
a property.

val String.lastChar: Char
get() = get(length - 1)

Listing 3.6 No overriding for extension functions

Listing 3.7 Declaring an extension property

The extension function
is resolved statically.

showOff functions are declared
in the extensions.kt file.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

57Working with collections: varargs, infix calls, and library support
You can see that, just as with functions, an extension property looks like a regular
property with a receiver type added. The getter must always be defined, because
there’s no backing field and therefore no default getter implementation. Initializers
aren’t allowed for the same reason: there’s nowhere to store the value specified as the
initializer.

 If you define the same property on a StringBuilder, you can make it a var,
because the contents of a StringBuilder can be modified.

var StringBuilder.lastChar: Char
get() = get(length - 1)
set(value: Char) {

this.setCharAt(length - 1, value)
}

You access extension properties exactly like member properties:

>>> println("Kotlin".lastChar)
n
>>> val sb = StringBuilder("Kotlin?")
>>> sb.lastChar = '!'
>>> println(sb)
Kotlin!

Note that when you need to access an extension property from Java, you should
invoke its getter explicitly: StringUtilKt.getLastChar("Java").

 We’ve discussed the concept of extensions in general. Now let’s return to the topic
of collections and look at a few more library functions that help you handle them, as
well as language features that come up in those functions.

3.4 Working with collections: varargs, infix calls, and
library support
This section shows some of the functions from the Kotlin standard library for working
with collections. Along the way, it describes a few related language features:

 The vararg keyword, which allows you to declare a function taking an arbitrary
number of arguments

 An infix notation that lets you call some one-argument functions without cere-
mony

 Destructuring declarations that allow you to unpack a single composite value into
multiple variables

3.4.1 Extending the Java Collections API

We started this chapter with the idea that collections in Kotlin are the same classes as
in Java, but with an extended API. You saw examples of getting the last element in a list
and finding the maximum in a collection of numbers:

Listing 3.8 Declaring a mutable extension property

Property getter

Property setter
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

58 CHAPTER 3 Defining and calling functions
>>> val strings: List<String> = listOf("first", "second", "fourteenth")
>>> strings.last()
fourteenth

>>> val numbers: Collection<Int> = setOf(1, 14, 2)
>>> numbers.max()
14

We were interested in how it works: why it’s possible to do so many things with collec-
tions in Kotlin even though they’re instances of the Java library classes. Now the answer
should be clear: the last and max functions are declared as extension functions!

 The last function is no more complex than lastChar for String, discussed in
the previous section: it’s an extension on the List class. For max, we show a simplified
declaration (the real library function works not only for Int numbers, but for any
comparable elements):

fun <T> List<T>.last(): T { /* returns the last element */ }
fun Collection<Int>.max(): Int { /* finding a maximum in a collection */ }

Many extension functions are declared in the Kotlin standard library, and we won’t list
all of them here. You may wonder about the best way to learn everything in the Kotlin
standard library. You don’t have to—any time you need to do something with a collec-
tion or any other object, the code completion in the IDE will show you all the possible
functions available for that type of object. The list includes both regular methods and
extension functions; you can choose the function you need. In addition to that, the
standard library reference lists all the methods available for each library class—
members as well as extensions.

 At the beginning of the chapter, you also saw the functions for creating collections.
A common trait of those functions is that they can be called with an arbitrary number
of arguments. In the following section, you’ll see the syntax for declaring such functions.

3.4.2 Varargs: functions that accept an arbitrary number of arguments

When you call a function to create a list, you can pass any number of arguments to it:

val list = listOf(2, 3, 5, 7, 11)

If you look up how this function is declared in the library, you’ll find the following:

fun listOf<T>(vararg values: T): List<T> { ... }

You’re probably familiar with Java’s varargs: a feature that allows you to pass an arbi-
trary number of values to a method by packing them in an array. Kotlin’s varargs are
similar to those in Java, but the syntax is slightly different: instead of three dots after
the type, Kotlin uses the vararg modifier on the parameter.

 One other difference between Kotlin and Java is the syntax of calling the function
when the arguments you need to pass are already packed in an array. In Java, you pass
the array as is, whereas Kotlin requires you to explicitly unpack the array, so that every
array element becomes a separate argument to the function being called. Technically,
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

59Working with collections: varargs, infix calls, and library support
this feature is called using a spread operator, but in practice it’s as simple as putting the
* character before the corresponding argument:

fun main(args: Array<String>) {
val list = listOf("args: ", *args)
println(list)

}

This example shows that the spread operator lets you combine the values from an
array and some fixed values in a single call. This isn’t supported in Java.

 Now let’s move on to maps. We’ll briefly discuss another way to improve the read-
ability of Kotlin function invocations: the infix call.

3.4.3 Working with pairs: infix calls and destructuring declarations

To create maps, you use the mapOf function:

val map = mapOf(1 to "one", 7 to "seven", 53 to "fifty-three")

This is a good time to provide another explanation we promised you at the beginning
of the chapter. The word to in this line of code isn’t a built-in construct, but rather a
method invocation of a special kind, called an infix call.

 In an infix call, the method name is placed immediately between the target object
name and the parameter, with no extra separators. The following two calls are equivalent:

1.to("one")
1 to "one"

Infix calls can be used with regular methods and extension functions that have one
required parameter. To allow a function to be called using the infix notation, you
need to mark it with the infix modifier. Here’s a simplified version of the declara-
tion of the to function:

infix fun Any.to(other: Any) = Pair(this, other)

The to function returns an instance of Pair, which is a Kotlin standard library class
that, unsurprisingly, represents a pair of elements. The actual declarations of Pair
and to use generics, but we’re omitting them here to
keep things simple.

 Note that you can initialize two variables with the
contents of a Pair directly:

val (number, name) = 1 to "one"

This feature is called a destructuring declaration. Figure
3.3 illustrates how it works with pairs.

Figure 3.3 You create a pair using the to function
and unpack it with a destructuring declaration.

Spread operator unpacks
the array contents

Calls the “to” function the regular way

Calls the “to” function using an infix notation

1 "one"

to

val (number, name)

Pair(1, "one")

1 "one"
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

60 CHAPTER 3 Defining and calling functions
The destructuring declaration feature isn’t limited to pairs. For example, you can also
initialize two variables, key and value, with the contents of a map entry.

 This also works with loops, as you’ve seen in the implementation of joinTo-
String, which uses the withIndex function:

for ((index, element) in collection.withIndex()) {
println("$index: $element")

}

Section 7.4 will describe the general rules for destructuring an expression and using it
to initialize several variables.

 The to function is an extension function. You can create a pair of any elements,
which means it’s an extension to a generic receiver: you can write 1 to "one", "one"
to 1, list to list.size(), and so on. Let’s look at the declaration of the mapOf
function:

fun <K, V> mapOf(vararg values: Pair<K, V>): Map<K, V>

Like listOf, mapOf accepts a variable number of arguments, but this time they
should be pairs of keys and values.

 Even though the creation of a new map may look like a special construct in Kotlin,
it’s a regular function with a concise syntax. Next, let’s discuss how extensions simplify
dealing with strings and regular expressions.

3.5 Working with strings and regular expressions
Kotlin strings are exactly the same things as Java strings. You can pass a string created
in Kotlin code to any Java method, and you can use any Kotlin standard library meth-
ods on strings that you receive from Java code. No conversion is involved, and no addi-
tional wrapper objects are created.

 Kotlin makes working with standard Java strings more enjoyable by providing a
bunch of useful extension functions. Also, it hides some confusing methods, adding
extensions that are clearer. As our first example of the API differences, let’s look at
how Kotlin handles splitting strings.

3.5.1 Splitting strings

You’re probably familiar with the split method on String. Everyone uses it, but
sometimes people complain about it on Stack Overflow (http://stackoverflow.com):
“The split method in Java doesn’t work with a dot.” It’s a common trap to write
"12.345-6.A".split(".") and to expect an array [12, 345-6, A] as a result.
But Java’s split method returns an empty array! That happens because it takes a reg-
ular expression as a parameter, and it splits a string into several strings according to
the expression. Here, the dot (.) is a regular expression that denotes any character.

 Kotlin hides the confusing method and provides as replacements several over-
loaded extensions named split that have different arguments. The one that takes a
regular expression requires a value of Regex type, not String. This ensures that it’s
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://stackoverflow.com

61Working with strings and regular expressions
always clear whether a string passed to a method is interpreted as plain text or a regu-
lar expression.

 Here’s how you’d split the string with either a dot or a dash:

>>> println("12.345-6.A".split("\\.|-".toRegex()))
[12, 345, 6, A]

Kotlin uses exactly the same regular expression syntax as in Java. The pattern here
matches a dot (we escaped it to indicate that we mean a literal character, not a wild-
card) or a dash. The APIs for working with regular expressions are also similar to the
standard Java library APIs, but they’re more idiomatic. For instance, in Kotlin you use
an extension function toRegex to convert a string into a regular expression.

 But for such a simple case, you don’t need to use regular expressions. The other
overload of the split extension function in Kotlin takes an arbitrary number of
delimiters as plain-text strings:

>>> println("12.345-6.A".split(".", "-"))
[12, 345, 6, A]

Note that you can specify character arguments instead and write "12.345-6.A"
.split('.', '-'), which will lead to the same result. This method replaces the
similar Java method that can take only one character as a delimiter.

3.5.2 Regular expressions and triple-quoted strings

Let’s look at another example with
two different implementations: the
first one will use extensions on
String, and the second will work
with regular expressions. Your task
will be to parse a file’s full path
name into its components: a direc-
tory, a filename, and an extension.
The Kotlin standard library con-
tains functions to get the substring
before (or after) the first (or the last) occurrence of the given delimiter. Here’s how
you can use them to solve this task (also see figure 3.4).

fun parsePath(path: String) {
val directory = path.substringBeforeLast("/")
val fullName = path.substringAfterLast("/")

val fileName = fullName.substringBeforeLast(".")
val extension = fullName.substringAfterLast(".")

println("Dir: $directory, name: $fileName, ext: $extension")

Listing 3.9 Using String extensions for parsing paths

Creates a regular
expression explicitly

Specifies several delimiters

"/Users/yole/kotlin-book/chapter.adoc"

The last slash The last dot

Directory
(before the last slash)

Filename Extension
(after the last dot)

Figure 3.4 Splitting a path into a directory, a filename,
and a file extension by using the substring-
BeforeLast and substringAfterLast functions
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

62 CHAPTER 3 Defining and calling functions
}
>>> parsePath("/Users/yole/kotlin-book/chapter.adoc")
Dir: /Users/yole/kotlin-book, name: chapter, ext: adoc

The substring before the last slash symbol of the file path is the path to an enclosing
directory, the substring after the last dot is a file extension, and the filename goes
between them.

 Kotlin makes it easier to parse strings without resorting to regular expressions,
which are powerful but also sometimes hard to understand after they’ve been written.
If you do want to use regular expressions, the Kotlin standard library can help. Here’s
how the same task can be done using regular expressions:

fun parsePath(path: String) {
val regex = """(.+)/(.+)\.(.+)""".toRegex()
val matchResult = regex.matchEntire(path)
if (matchResult != null) {

val (directory, filename, extension) = matchResult.destructured
println("Dir: $directory, name: $filename, ext: $extension")

}
}

In this example, the regular expression is written in a
triple-quoted string. In such a string, you don’t need to
escape any characters, including the backslash, so you
can encode the dot symbol with \. rather than \\. as
you’d write in an ordinary string literal (see figure 3.5).
This regular expression divides a path into three
groups separated by a slash and a dot. The pattern
. matches any character from the beginning, so the
first group (.+) contains the substring before the last
slash. This substring includes all the previous slashes,
because they match the pattern “any character”. Similarly, the second group contains
the substring before the last dot, and the third group contains the remaining part.

 Now let’s discuss the implementation of the parsePath function from the previ-
ous example. You create a regular expression and match it against an input path. If
the match is successful (the result isn’t null), you assign the value of its destruc-
tured property to the corresponding variables. This is the same syntax used when you
initialized two variables with a Pair; section 7.4 will cover the details.

3.5.3 Multiline triple-quoted strings

The purpose of triple-quoted strings is not only to avoid escaping characters. Such a
string literal can contain any characters, including line breaks. That gives you an easy
way to embed in your programs text containing line breaks. As an example, let’s draw
some ASCII art:

Listing 3.10 Using regular expressions for parsing paths

"""(.+)/(.+)\.(.+)"""

The last slash The last dot

Directory Filename Extension

Figure 3.5 The regular
expression for splitting a path
into a directory, a filename, and a
file extension
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

63Working with strings and regular expressions
val kotlinLogo = """| //
.|//
.|/ \"""

>>> println(kotlinLogo.trimMargin("."))
| //
|//
|/ \

The multiline string contains all the characters between the triple quotes, including
indents used to format the code. If you want a better representation of such a string,
you can trim the indentation (in other words, the left margin). To do that, you add a
prefix to the string content, marking the end of the margin, and then call trim-
Margin to delete the prefix and the preceding whitespace in each line. This example
uses the dot as such a prefix.

 A triple-quoted string can contain line breaks, but you can’t use special characters
like \n. On the other hand, you don’t have to escape \, so the Windows-style path
"C:\\Users\\yole\\kotlin-book" can be written as """C:\Users\yole\

kotlin-book""".
 You can also use string templates in multiline strings. Because multiline strings

don’t support escape sequences, you have to use an embedded expression if you need
to use a literal dollar sign in the contents of your string. It looks like this: val price
= """${'$'}99.9""".

 One of the areas where multiline strings can be useful in your programs (besides
games that use ASCII art) is tests. In tests, it’s fairly common to execute an operation
that produces multiline text (for example, a web page fragment) and to compare the
result with the expected output. Multiline strings give you a perfect solution for includ-
ing the expected output as part of your test. No need for clumsy escaping or loading the
text from external files—just put in some quotation marks and place the expected
HTML or other output between them. And for better formatting, use the aforemen-
tioned trimMargin function, which is another example of an extension function.

NOTE You can now see that extension functions are a powerful way to extend
the APIs of existing libraries and to adapt them to the idioms of your new lan-
guage—something called the Pimp My Library pattern.1 And indeed, a large
portion of the Kotlin standard library is made up of extension functions for
standard Java classes. The Anko library (https://github.com/kotlin/anko),
also built by JetBrains, provides extension functions that make the Android
API more Kotlin-friendly. You can also find many community-developed
libraries that provide Kotlin-friendly wrappers around major third-party
libraries such as Spring.

Now that you can see how Kotlin gives you better APIs for the libraries you use, let’s
turn our attention back to your code. You’ll see some new uses for extension func-
tions, and we’ll also discuss a new concept: local functions.

1 Martin Odersky, “Pimp My Library,” Artima Developer, October 9, 2006, http://mng.bz/86Qh.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/kotlin/anko
http://mng.bz/86Qh

64 CHAPTER 3 Defining and calling functions
3.6 Making your code tidy: local functions and extensions
Many developers believe that one of the most important qualities of good code is the
lack of duplication. There’s even a special name for this principle: Don’t Repeat Your-
self (DRY). But when you write in Java, following this principle isn’t always trivial. In
many cases, it’s possible to use the Extract Method refactoring feature of your IDE to
break longer methods into smaller chunks, and then to reuse those chunks. But this
can make code more difficult to understand, because you end up with a class with
many small methods and no clear relationship between them. You can go even further
and group the extracted methods into an inner class, which lets you maintain the
structure, but this approach requires a significant amount of boilerplate.

 Kotlin gives you a cleaner solution: you can nest the functions you’ve extracted in
the containing function. This way, you have the structure you need without any extra
syntactic overhead.

 Let’s see how to use local functions to fix a fairly common case of code duplica-
tion. In the following listing, a function saves a user to a database, and you need to
make sure the user object contains valid data.

class User(val id: Int, val name: String, val address: String)

fun saveUser(user: User) {
if (user.name.isEmpty()) {

throw IllegalArgumentException(
"Can't save user ${user.id}: empty Name")

}

if (user.address.isEmpty()) {
throw IllegalArgumentException(

"Can't save user ${user.id}: empty Address")
}

// Save user to the database
}

>>> saveUser(User(1, "", ""))
java.lang.IllegalArgumentException: Can't save user 1: empty Name

The amount of duplicated code here is fairly small, and you probably won’t want to
have a full-blown method in your class that handles one special case of validating a
user. But if you put the validation code into a local function, you can get rid of the
duplication and still maintain a clear code structure. Here’s how it works.

class User(val id: Int, val name: String, val address: String)

fun saveUser(user: User) {

Listing 3.11 A function with repetitive code

Listing 3.12 Extracting a local function to avoid repetition

Field validation
is duplicated.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

65Making your code tidy: local functions and extensions

e

s
fun validate(user: User,
value: String,
fieldName: String) {

if (value.isEmpty()) {
throw IllegalArgumentException(

"Can't save user ${user.id}: empty $fieldName")
}

}

validate(user, user.name, "Name")
validate(user, user.address, "Address")

// Save user to the database
}

This looks better. The validation logic isn’t duplicated, and you can easily add more
validations if you need to add other fields to User as the project evolves. But having to
pass the User object to the validation function is somewhat ugly. The good news is
that it’s entirely unnecessary, because local functions have access to all parameters and
variables of the enclosing function. Let’s take advantage of that and get rid of the
extra User parameter.

class User(val id: Int, val name: String, val address: String)

fun saveUser(user: User) {
fun validate(value: String, fieldName: String) {

if (value.isEmpty()) {
throw IllegalArgumentException(

"Can't save user ${user.id}: " +
"empty $fieldName")

}
}

validate(user.name, "Name")
validate(user.address, "Address")

// Save user to the database
}

To improve this example even further, you can move the validation logic into an
extension function of the User class.

class User(val id: Int, val name: String, val address: String)

fun User.validateBeforeSave() {
fun validate(value: String, fieldName: String) {

if (value.isEmpty()) {
throw IllegalArgumentException(

"Can't save user $id: empty $fieldName")
}

}

Listing 3.13 Accessing outer function parameters in a local function

Listing 3.14 Extracting the logic into an extension function

Declares a local function
to validate any field

Calls the local function to
validate the specific fields

Now you don’t duplicate
the user parameter of th
saveUser function.

You can access parameters of
the outer function directly.

You can access propertie
of User directly.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

66 CHAPTER 3 Defining and calling functions
validate(name, "Name")
validate(address, "Address")

}

fun saveUser(user: User) {
user.validateBeforeSave()

// Save user to the database
}

Extracting a piece of code into an extension function turns out to be surprisingly use-
ful. Even though User is a part of your codebase and not a library class, you don’t
want to put this logic into a method of User, because it’s not relevant to any other
places where User is used. If you follow this approach the API of the class contains
only the essential methods used everywhere, so the class remains small and easy to
wrap your head around. On the other hand, functions that primarily deal with a single
object and don’t need access to its private data can access its members without extra
qualification, as in listing 3.14.

 Extension functions can also be declared as local functions, so you could go even
further and put User.validateBeforeSave as a local function in saveUser. But
deeply nested local functions are usually fairly hard to read; so, as a general rule, we
don’t recommend using more than one level of nesting.

 Having looked at all the cool things you can do with functions, in the next chapter
we’ll look at what you can do with classes.

3.7 Summary
 Kotlin doesn’t define its own collection classes and instead enhances the Java

collection classes with a richer API.
 Defining default values for function parameters greatly reduces the need to

define overloaded functions, and the named-argument syntax makes calls to
functions with many parameters much more readable.

 Functions and properties can be declared directly in a file, not just as members
of a class, allowing for a more flexible code structure.

 Extension functions and properties let you extend the API of any class, includ-
ing classes defined in external libraries, without modifying its source code and
with no runtime overhead.

 Infix calls provide a clean syntax for calling operator-like methods with a single
argument.

 Kotlin provides a large number of convenient string-handling functions for
both regular expressions and plain strings.

 Triple-quoted strings provide a clean way to write expressions that would
require a lot of noisy escaping and string concatenation in Java.

 Local functions help you structure your code more cleanly and eliminate
duplication.

Calls the extension
function
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Classes, objects,
and interfaces
This chapter gives you a deeper understanding of working with classes in Kotlin. In
chapter 2, you saw the basic syntax for declaring a class. You know how to declare
methods and properties, use simple primary constructors (aren’t they nice?), and
work with enums. But there’s more to see.

 Kotlin’s classes and interfaces differ a bit from their Java counterparts: for exam-
ple, interfaces can contain property declarations. Unlike in Java, Kotlin’s declara-
tions are final and public by default. In addition, nested classes aren’t inner by
default: they don’t contain an implicit reference to their outer class.

 For constructors, the short primary constructor syntax works great for the
majority of cases, but there’s also the full syntax that lets you declare constructors
with nontrivial initialization logic. The same works for properties: the concise syn-
tax is nice, but you can easily define your own implementations of accessors.

This chapter covers
 Classes and interfaces

 Nontrivial properties and constructors

 Data classes

 Class delegation

 Using the object keyword
67

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

68 CHAPTER 4 Classes, objects, and interfaces
 The Kotlin compiler can generate useful methods to avoid verbosity. Declaring a
class as a data class instructs the compiler to generate several standard methods for
this class. You can also avoid writing delegating methods by hand, because the delega-
tion pattern is supported natively in Kotlin.

 This chapter also describes a new object keyword that declares a class and also
creates an instance of the class. The keyword is used to express singleton objects, com-
panion objects, and object expressions (analogous to Java anonymous classes). Let’s
start by talking about classes and interfaces and the subtleties of defining class hierar-
chies in Kotlin.

4.1 Defining class hierarchies
This section discusses defining class hierarchies in Kotlin as compared to Java. We’ll
look at Kotlin’s visibility and access modifiers, which are similar to Java’s but with some
different defaults. You’ll also learn about the new sealed modifier, which restricts the
possible subclasses of a class.

4.1.1 Interfaces in Kotlin

We’ll begin with a look at defining and implementing interfaces. Kotlin interfaces are
similar to those of Java 8: they can contain definitions of abstract methods as well as
implementations of non-abstract methods (similar to the Java 8 default methods), but
they can’t contain any state.

 To declare an interface in Kotlin, use the interface keyword instead of class.

interface Clickable {
fun click()

}

This declares an interface with a single abstract method named click. All non-
abstract classes implementing the interface need to provide an implementation of this
method. Here’s how you implement the interface.

class Button : Clickable {
override fun click() = println("I was clicked")

}

>>> Button().click()
I was clicked

Kotlin uses the colon after the class name to replace both the extends and imple-
ments keywords used in Java. As in Java, a class can implement as many interfaces as
it wants, but it can extend only one class.

Listing 4.1 Declaring a simple interface

Listing 4.2 Implementing a simple interface
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

69Defining class hierarchies

Reg
met

declara
 The override modifier, similar to the @Override annotation in Java, is used to
mark methods and properties that override those from the superclass or interface.
Unlike Java, using the override modifier is mandatory in Kotlin. This saves you from
accidentally overriding a method if it’s added after you wrote your implementation;
your code won’t compile unless you explicitly mark the method as override or
rename it.

 An interface method can have a default implementation. Unlike Java 8, which
requires you to mark such implementations with the default keyword, Kotlin has no
special annotation for such methods: you just provide a method body. Let’s change
the Clickable interface by adding a method with a default implementation.

interface Clickable {
fun click()
fun showOff() = println("I'm clickable!")

}

If you implement this interface, you need to provide an implementation for click.
You can redefine the behavior of the showOff method, or you can omit it if you’re
fine with the default behavior.

 Let’s suppose now that another interface also defines a showOff method and has
the following implementation for it.

interface Focusable {
fun setFocus(b: Boolean) =

println("I ${if (b) "got" else "lost"} focus.")

fun showOff() = println("I'm focusable!")
}

What happens if you need to implement both interfaces in your class? Each of them
contains a showOff method with a default implementation; which implementation
wins? Neither one wins. Instead, you get the following compiler error if you don’t
implement showOff explicitly:

The class 'Button' must
override public open fun showOff() because it inherits
many implementations of it.

The Kotlin compiler forces you to provide your own implementation.

class Button : Clickable, Focusable {
override fun click() = println("I was clicked")

Listing 4.3 Defining a method with a body in an interface

Listing 4.4 Defining another interface implementing the same method

Listing 4.5 Invoking an inherited interface method implementation

ular
hod
tion

Method with a default
implementation
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

70 CHAPTER 4 Classes, objects, and interfaces
override fun showOff() {
super<Clickable>.showOff()
super<Focusable>.showOff()

}
}

The Button class now implements two interfaces. You implement showOff() by call-
ing both implementations that you inherited from supertypes. To invoke an inherited
implementation, you use the same keyword as in Java: super. But the syntax for select-
ing a specific implementation is different. Whereas in Java you can put the base type
name before the super keyword, as in Clickable.super.showOff(), in Kotlin you
put the base type name in angle brackets: super<Clickable>.showOff().

 If you only need to invoke one inherited implementation, you can write this:

override fun showOff() = super<Clickable>.showOff()

You can create an instance of this class and verify that all the inherited methods can
be called.

fun main(args: Array<String>) {
val button = Button()
button.showOff()
button.setFocus(true)
button.click()

}

The implementation of setFocus is declared in the Focusable interface and is
automatically inherited in the Button class.

Now that you’ve seen how Kotlin allows you to implement methods defined in interfaces,
let’s look at the second half of that story: overriding members defined in base classes.

4.1.2 Open, final, and abstract modifiers: final by default

As you know, Java allows you to create subclasses of any class, and to override any
method, unless it has been explicitly marked with the final keyword. This is often
convenient, but it’s also problematic.

Implementing interfaces with method bodies in Java
Kotlin 1.0 has been designed to target Java 6, which doesn’t support default meth-
ods in interfaces. Therefore, it compiles each interface with default methods to a
combination of a regular interface and a class containing the method bodies as static
methods. The interface contains only declarations, and the class contains all the
implementations as static methods. Therefore, if you need to implement such an
interface in a Java class, you have to define your own implementations of all meth-
ods, including those that have method bodies in Kotlin.

You must provide an explicit
implementation if more than
one implementation for the
same member is inherited.“super” qualified by the supertype

name in angle brackets specifies the
parent whose method you want to call.

I’m clickable!
I’m focusable!

I got
focus. I was clicked.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

71Defining class hierarchies
 The so-called fragile base class problem occurs when modifications of a base class
can cause incorrect behavior of subclasses because the changed code of the base class
no longer matches the assumptions in its subclasses. If the class doesn’t provide exact
rules for how it should be subclassed (which methods are supposed to be overridden
and how), the clients are at risk of overriding the methods in a way the author of the
base class didn’t expect. Because it’s impossible to analyze all the subclasses, the base
class is “fragile” in the sense that any change in it may lead to unexpected changes of
behavior in subclasses.

 To protect against this problem, Effective Java by Joshua Bloch (Addison-Wesley,
2008), one of the best-known books on good Java programming style, recommends
that you “design and document for inheritance or else prohibit it.” This means all
classes and methods that aren’t specifically intended to be overridden in subclasses
ought to be explicitly marked as final.

 Kotlin follows the same philosophy. Whereas Java’s classes and methods are open
by default, Kotlin’s are final by default.

 If you want to allow the creation of subclasses of a class, you need to mark the class
with the open modifier. In addition, you need to add the open modifier to every prop-
erty or method that can be overridden.

open class RichButton : Clickable {

fun disable() {}

open fun animate() {}

override fun click() {}
}

Note that if you override a member of a base class or interface, the overriding mem-
ber will also be open by default. If you want to change this and forbid the subclasses of
your class from overriding your implementation, you can explicitly mark the overrid-
ing member as final.

open class RichButton : Clickable {
final override fun click() {}

}

Listing 4.6 Declaring an open class with an open method

Listing 4.7 Forbidding an override

This class is open: others
can inherit from it.

This function is final: you can’t
override it in a subclass.

This function is open: you may
override it in a subclass.

This function overrides an open
function and is open as well.

“final” isn’t redundant here
because “override” without
“final” implies being open.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

72 CHAPTER 4 Classes, objects, and interfaces

This f
ab

doesn
implem

and
over

su
In Kotlin, as in Java, you may declare a class abstract, and such classes can’t be
instantiated. An abstract class usually contains abstract members that don’t have
implementations and must be overridden in subclasses. Abstract members are always
open, so you don’t need to use an explicit open modifier. Here’s an example.

abstract class Animated {

abstract fun animate()

open fun stopAnimating() {
}

fun animateTwice() {
}

}

Table 4.1 lists the access modifiers in Kotlin. The comments in the table are applicable
to modifiers in classes; in interfaces, you don’t use final, open, or abstract. A
member in an interface is always open; you can’t declare it as final. It’s abstract if
it has no body, but the keyword isn’t required.

Open classes and smart casts
One significant benefit of classes that are final by default is that they enable smart
casts in a larger variety of scenarios. As we mentioned in section 2.3.5, smart casts
work only for variables that couldn’t have changed after the type check. For a class,
this means smart casts can only be used with a class property that is a val and that
doesn’t have a custom accessor. This requirement means the property has to be
final, because otherwise a subclass could override the property and define a cus-
tom accessor, breaking the key requirement of smart casts. Because properties are
final by default, you can use smart casts with most properties without thinking
about it explicitly, which improves the expressiveness of your code.

Listing 4.8 Declaring an abstract class

Table 4.1 The meaning of access modifiers in a class

Modifier Corresponding member Comments

final Can’t be overridden Used by default for class members

open Can be overridden Should be specified explicitly

abstract Must be overridden Can be used only in abstract classes;
abstract members can’t have an imple-
mentation

override Overrides a member in a
superclass or interface

Overridden member is open by default, if
not marked final

This class is abstract: you
can’t create an instance of it.

unction is
stract: it

’t have an
entation
 must be
ridden in
bclasses.

Non-abstract functions in abstract
classes aren’t open by default but
can be marked as open.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

73Defining class hierarchies
Having discussed the modifiers that control inheritance, let’s now move on to another
type of modifiers: visibility modifiers.

4.1.3 Visibility modifiers: public by default

Visibility modifiers help to control access to declarations in your code base. By restrict-
ing the visibility of a class’s implementation details, you ensure that you can change
them without the risk of breaking code that depends on the class.

 Basically, visibility modifiers in Kotlin are similar to those in Java. You have the
same public, protected, and private modifiers. But the default visibility is differ-
ent: if you omit a modifier, the declaration becomes public.

 The default visibility in Java, package-private, isn’t present in Kotlin. Kotlin uses
packages only as a way of organizing code in namespaces; it doesn’t use them for visi-
bility control.

 As an alternative, Kotlin offers a new visibility modifier, internal, which means
“visible inside a module.” A module is a set of Kotlin files compiled together. It may be
an IntelliJ IDEA module, an Eclipse project, a Maven or Gradle project, or a set of files
compiled with an invocation of the Ant task.

 The advantage of internal visibility is that it provides real encapsulation for the
implementation details of your module. With Java, the encapsulation can be easily
broken, because external code can define classes in the same packages used by your
code and thus get access to your package-private declarations.

 Another difference is that Kotlin allows the use of private visibility for top-level
declarations, including classes, functions, and properties. Such declarations are visible
only in the file where they are declared. This is another useful way to hide the imple-
mentation details of a subsystem. Table 4.2 summarizes all the visibility modifiers.

Let’s look at an example. Every line in the giveSpeech function tries to violate the
visibility rules. It compiles with an error.

internal open class TalkativeButton : Focusable {
private fun yell() = println("Hey!")
protected fun whisper() = println("Let's talk!")

}

fun TalkativeButton.giveSpeech() {

Table 4.2 Kotlin visibility modifiers

Modifier Class member Top-level declaration

public (default) Visible everywhere Visible everywhere

internal Visible in a module Visible in a module

protected Visible in subclasses ---

private Visible in a class Visible in a file

Error: “public” member
exposes its “internal” receiver
type TalkativeButton
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

74 CHAPTER 4 Classes, objects, and interfaces
yell()

whisper()
}

Kotlin forbids you to reference the less-visible type TalkativeButton (internal, in
this case) from the public function giveSpeech. This is a case of a general rule that
requires all types used in the list of base types and type parameters of a class, or the
signature of a method, to be as visible as the class or method itself. This rule ensures
that you always have access to all types you might need to invoke the function or
extend a class. To solve the problem, you can either make the function internal or
make the class public.

 Note the difference in behavior for the protected modifier in Java and in Kotlin.
In Java, you can access a protected member from the same package, but Kotlin
doesn’t allow that. In Kotlin, visibility rules are simple, and a protected member is
only visible in the class and its subclasses. Also note that extension functions of a class
don’t get access to its private or protected members.

One more difference in visibility rules between Kotlin and Java is that an outer class
doesn’t see private members of its inner (or nested) classes in Kotlin. Let’s discuss
inner and nested classes in Kotlin next and look at an example.

Kotlin’s visibility modifiers and Java
public, protected, and private modifiers in Kotlin are preserved when compil-
ing to Java bytecode. You use such Kotlin declarations from Java code as if they were
declared with the same visibility in Java. The only exception is a private class: it’s
compiled to a package-private declaration under the hood (you can’t make a class
private in Java).

But, you may ask, what happens with the internal modifier? There’s no direct ana-
logue in Java. Package-private visibility is a totally different thing: a module usually
consists of several packages, and different modules may contain declarations from
the same package. Thus an internal modifier becomes public in the bytecode.

This correspondence between Kotlin declarations and their Java analogues (or their
bytecode representation) explains why sometimes you can access something from
Java code that you can’t access from Kotlin. For instance, you can access an inter-
nal class or a top-level declaration from Java code in another module, or a
protected member from Java code in the same package (similar to how you do that
in Java).

But note that the names of internal members of a class are mangled. Technically,
internal members can be used from Java, but they look ugly in the Java code. That
helps avoid unexpected clashes in overrides when you extend a class from another
module, and it prevents you from accidentally using internal classes.

Error: cannot access “yell”: it
is “private” in “TalkativeButton”

Error: cannot access
“whisper”: it is “protected”
in “TalkativeButton”
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

75Defining class hierarchies
4.1.4 Inner and nested classes: nested by default

As in Java, in Kotlin you can declare a class in another class. Doing so can be useful for
encapsulating a helper class or placing the code closer to where it’s used. The differ-
ence is that Kotlin nested classes don’t have access to the outer class instance, unless
you specifically request that. Let’s look at an example showing why this is important.

 Imagine you want to define a View element, the state of which can be serialized. It
may not be easy to serialize a view, but you can copy all the necessary data to another
helper class. You declare the State interface that implements Serializable. The
View interface declares getCurrentState and restoreState methods that can be
used to save the state of a view.

interface State: Serializable

interface View {
fun getCurrentState(): State
fun restoreState(state: State) {}

}

It’s handy to define a class that saves a button state in the Button class. Let’s see how
it can be done in Java (the similar Kotlin code will be shown in a moment).

/* Java */
public class Button implements View {

@Override
public State getCurrentState() {

return new ButtonState();
}

@Override
public void restoreState(State state) { /*...*/ }

public class ButtonState implements State { /*...*/ }
}

You define the ButtonState class that implements the State interface and holds spe-
cific information for Button. In the getCurrentState method, you create a new
instance of this class. In a real case, you’d initialize ButtonState with all necessary data.

 What’s wrong with this code? Why do you get a java.io.NotSerializable-
Exception: Button exception if you try to serialize the state of the declared button?
That may look strange at first: the variable you serialize is state of the ButtonState
type, not the Button type.

 Everything becomes clear when you recall that in Java, when you declare a class in
another class, it becomes an inner class by default. The ButtonState class in the
example implicitly stores a reference to its outer Button class. That explains why

Listing 4.9 Declaring a view with serializable state

Listing 4.10 Implementing View in Java with an inner class
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

76 CHAPTER 4 Classes, objects, and interfaces
ButtonState can’t be serialized: Button isn’t serializable, and the reference to it
breaks the serialization of ButtonState.

 To fix this problem, you need to declare the ButtonState class as static.
Declaring a nested class as static removes the implicit reference from that class to
its enclosing class.

 In Kotlin, the default behavior of inner classes is the opposite of what we’ve just
described, as shown next.

class Button : View {
override fun getCurrentState(): State = ButtonState()

override fun restoreState(state: State) { /*...*/ }

class ButtonState : State { /*...*/ }
}

A nested class in Kotlin with no explicit modifiers is the same as a static nested class
in Java. To turn it into an inner class so that it contains a reference to an outer class,
you use the inner modifier. Table 4.3 describes the differences in this behavior
between Java and Kotlin; and the difference between nested and inner classes is illus-
trated in figure 4.1.

The syntax to reference an instance of an outer class in Kotlin also differs from Java.
You write this@Outer to access the Outer class from the Inner class:

class Outer {
inner class Inner {

fun getOuterReference(): Outer = this@Outer
}

}

Listing 4.11 Implementing View in Kotlin with a nested class

Table 4.3 Correspondence between nested and inner classes in Java and Kotlin

Class A declared within another class B In Java In Kotlin

Nested class (doesn’t store a reference to an outer class) static class A class A

Inner class (stores a reference to an outer class) class A inner class A

This class is an analogue of
a static nested class in Java.

class Outer

class Nested

class Outer

inner class Inner

this@Outer Figure 4.1 Nested classes don’t reference
their outer class, whereas inner classes do.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

77Defining class hierarchies
You’ve learned the difference between inner and nested classes in Java and in Kotlin.
Now let’s discuss another use case when nested classes may be useful in Kotlin: creat-
ing a hierarchy containing a limited number of classes.

4.1.5 Sealed classes: defining restricted class hierarchies

Recall the expression hierarchy example from section 2.3.5. The superclass Expr has
two subclasses: Num, which represents a number; and Sum, which represents a sum of
two expressions. It’s convenient to handle all the possible subclasses in a when expres-
sion. But you have to provide the else branch to specify what should happen if none
of the other branches match:

interface Expr
class Num(val value: Int) : Expr
class Sum(val left: Expr, val right: Expr) : Expr

fun eval(e: Expr): Int =
when (e) {

is Num -> e.value
is Sum -> eval(e.right) + eval(e.left)
else ->

throw IllegalArgumentException("Unknown expression")
}

When you evaluate an expression using the when construct, the Kotlin compiler
forces you to check for the default option. In this example, you can’t return some-
thing meaningful, so you throw an exception.

 Always having to add a default branch isn’t convenient. What’s more, if you add a
new subclass, the compiler won’t detect that something has changed. If you forget to
add a new branch, the default one will be chosen, which can lead to subtle bugs.

 Kotlin provides a solution to this problem: sealed classes. You mark a superclass
with the sealed modifier, and that restricts the possibility of creating subclasses. All
the direct subclasses must be nested in the superclass:

sealed class Expr {
class Num(val value: Int) : Expr()
class Sum(val left: Expr, val right: Expr) : Expr()

}

fun eval(e: Expr): Int =
when (e) {

is Expr.Num -> e.value
is Expr.Sum -> eval(e.right) + eval(e.left)

}

Listing 4.12 Expressions as interface implementations

Listing 4.13 Expressions as sealed classes

You have to check
the “else” branch.

Mark a base class as sealed …

… and list all the
possible subclasses
as nested classes.

The “when” expression
covers all possible cases, so
no “else” branch is needed.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

78 CHAPTER 4 Classes, objects, and interfaces
If you handle all subclasses of a sealed class in a when expression, you don’t need to
provide the default branch. Note that the sealed modifier implies that the class is
open; you don’t need an explicit open modifier. The behavior of sealed classes is illus-
trated in figure 4.2.

Figure 4.2 Sealed classes can’t have inheritors defined outside of the class.

When you use when with sealed classes and add a new subclass, the when expression
returning a value fails to compile, which points you to the code that must be changed.

 Under the hood, the Expr class has a private constructor, which can be called
only inside the class. You can’t declare a sealed interface. Why? If you could, the Kot-
lin compiler wouldn’t be able to guarantee that someone couldn’t implement this
interface in the Java code.

NOTE In Kotlin 1.0, the sealed functionality is rather restricted. For
instance, all the subclasses must be nested, and a subclass can’t be made a
data class (data classes are covered later in this chapter). Kotlin 1.1 relaxes
the restrictions and lets you define subclasses of sealed classes anywhere in
the same file.

As you’ll recall, in Kotlin, you use a colon both to extend a class and to implement an
interface. Let’s take a closer look at a subclass declaration:

class Num(val value: Int) : Expr()

This simple example should be clear, except for the meaning of the parentheses after
the class name in Expr(). We’ll talk about them in the next section, which covers ini-
tializing classes in Kotlin.

4.2 Declaring a class with nontrivial constructors or properties
In Java, as you know, a class can declare one or more constructors. Kotlin is similar, with
one additional change: it makes a distinction between a primary constructor (which is
usually the main, concise way to initialize a class and is declared outside of the class
body) and a secondary constructor (which is declared in the class body). It also allows
you to put additional initialization logic in initializer blocks. First we’ll look at the syntax
of declaring the primary constructor and initializer blocks, and then we’ll explain how
to declare several constructors. After that, we’ll talk more about properties.

Sum

class Expr

Num ? Expr.Sum

sealed class Expr

Expr.Num
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

79Declaring a class with nontrivial constructors or properties
4.2.1 Initializing classes: primary constructor and initializer blocks

In chapter 2, you saw how to declare a simple class:

class User(val nickname: String)

Normally, all the declarations in a class go inside curly braces. You may wonder why
this class has no curly braces and instead has only a declaration in parentheses. This
block of code surrounded by parentheses is called a primary constructor. It serves two
purposes: specifying constructor parameters and defining properties that are initial-
ized by those parameters. Let’s unpack what happens here and look at the most
explicit code you can write that does the same thing:

class User constructor(_nickname: String) {
val nickname: String

init {
nickname = _nickname

}
}

In this example, you see two new Kotlin keywords: constructor and init. The
constructor keyword begins the declaration of a primary or secondary constructor.
The init keyword introduces an initializer block. Such blocks contain initialization
code that’s executed when the class is created, and are intended to be used together
with primary constructors. Because the primary constructor has a constrained syntax,
it can’t contain the initialization code; that’s why you have initializer blocks. If you
want to, you can declare several initializer blocks in one class.

 The underscore in the constructor parameter _nickname serves to distinguish the
name of the property from the name of the constructor parameter. An alternative pos-
sibility is to use the same name and write this to remove the ambiguity, as is com-
monly done in Java: this.nickname = nickname.

 In this example, you don’t need to place the initialization code in the initializer
block, because it can be combined with the declaration of the nickname property. You
can also omit the constructor keyword if there are no annotations or visibility mod-
ifiers on the primary constructor. If you apply those changes, you get the following:

class User(_nickname: String) {
val nickname = _nickname

}

This is another way to declare the same class. Note how you can refer to primary con-
structor parameters in property initializers and in initializer blocks.

 The two previous examples declared the property by using the val keyword in the
body of the class. If the property is initialized with the corresponding constructor

Primary constructor
with one parameter

Initializer block

Primary constructor
with one parameter

The property is initialized
with the parameter.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

80 CHAPTER 4 Classes, objects, and interfaces
parameter, the code can be simplified by adding the val keyword before the parame-
ter. This replaces the property definition in the class:

class User(val nickname: String)

All the declarations of the User class are equivalent, but the last one uses the most
concise syntax.

 You can declare default values for constructor parameters just as you can for func-
tion parameters:

class User(val nickname: String,
val isSubscribed: Boolean = true)

To create an instance of a class, you call the constructor directly, without the new
keyword:

>>> val alice = User("Alice")
>>> println(alice.isSubscribed)
true
>>> val bob = User("Bob", false)
>>> println(bob.isSubscribed)
false
>>> val carol = User("Carol", isSubscribed = false)
>>> println(carol.isSubscribed)
false

It seems that Alice subscribed to the mailing list by default, whereas Bob read the
terms and conditions carefully and deselected the default option.

NOTE If all the constructor parameters have default values, the compiler gen-
erates an additional constructor without parameters that uses all the default
values. That makes it easier to use Kotlin with libraries that instantiate classes
via parameterless constructors.

If your class has a superclass, the primary constructor also needs to initialize the super-
class. You can do so by providing the superclass constructor parameters after the
superclass reference in the base class list:

open class User(val nickname: String) { ... }

class TwitterUser(nickname: String) : User(nickname) { ... }

If you don’t declare any constructors for a class, a default constructor that does noth-
ing will be generated for you:

open class Button

“val” means the corresponding property is
generated for the constructor parameter.

Provides a default value for
the constructor parameter

Uses the default value “true”
for the isSubscribed parameter

You can specify all parameters
according to declaration order.

You can explicitly specify
names for some
constructor arguments.

The default constructor without
arguments is generated.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

81Declaring a class with nontrivial constructors or properties
If you inherit the Button class and don’t provide any constructors, you have to explic-
itly invoke the constructor of the superclass even if it doesn’t have any parameters:

class RadioButton: Button()

That’s why you need empty parentheses after the name of the superclass. Note the dif-
ference with interfaces: interfaces don’t have constructors, so if you implement an
interface, you never put parentheses after its name in the supertype list.

 If you want to ensure that your class can’t be instantiated by other code, you have
to make the constructor private. Here’s how you make the primary constructor
private:

class Secretive private constructor() {}

Because the Secretive class has only a private constructor, the code outside of the
class can’t instantiate it. Later in this chapter, we’ll talk about companion objects,
which may be a good place to call such constructors.

In most real use cases, the constructor of a class is straightforward: it contains no
parameters or assigns the parameters to the corresponding properties. That’s why
Kotlin has concise syntax for primary constructors: it works great for the majority of
cases. But life isn’t always that easy, so Kotlin allows you to define as many constructors
as your class needs. Let’s see how this works.

4.2.2 Secondary constructors: initializing the superclass in different ways

Generally speaking, classes with multiple constructors are much less common in Kot-
lin code than in Java. The majority of situations where you’d need overloaded con-
structors in Java are covered by Kotlin’s support for default parameter values and
named argument syntax.

TIP Don’t declare multiple secondary constructors to overload and provide
default values for arguments. Instead, specify default values directly.

But there are still situations when multiple constructors are required. The most com-
mon one comes up when you need to extend a framework class that provides multiple
constructors that initialize the class in different ways. Imagine a View class that’s

Alternatives to private constructors
In Java, you can use a private constructor that prohibits class instantiation to
express a more general idea: that the class is a container of static utility members
or is a singleton. Kotlin has built-in language features for these purposes. You use
top-level functions (which you saw in section 3.2.3) as static utilities. To express sin-
gletons, you use object declarations, as you’ll see in section 4.4.1.

This class has a
private constructor.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

82 CHAPTER 4 Classes, objects, and interfaces
declared in Java and that has two constructors (you may recognize the definition if
you’re an Android developer). A similar declaration in Kotlin is as follows:

open class View {
constructor(ctx: Context) {

// some code
}
constructor(ctx: Context, attr: AttributeSet) {

// some code
}

}

This class doesn’t declare a primary constructor (as you can tell because there are no
parentheses after the class name in the class header), but it declares two secondary
constructors. A secondary constructor is introduced using the constructor keyword.
You can declare as many secondary constructors as you need.

 If you want to extend this class, you can declare the same constructors:

class MyButton : View {
constructor(ctx: Context)

: super(ctx) {
// ...

}
constructor(ctx: Context, attr: AttributeSet)

: super(ctx, attr) {
// ...

}
}

Here you define two constructors, each of which calls the corresponding constructor
of the superclass using the super() keyword. This is illustrated in figure 4.3; an arrow
shows which constructor is delegated to.

Figure 4.3 Using different superclass constructors

Just as in Java, you also have an option to call another constructor of your own class
from a constructor, using the this() keyword. Here’s how this works:

class MyButton : View {
constructor(ctx: Context): this(ctx, MY_STYLE) {

// ...
}

Secondary
constructors

Calling superclass
constructors

MyButton

constructor
(Context

constructor
(Context, AttributeSet)

Delegates to

Delegates to

View

constructor
(Context)

constructor
(Context, AttributeSet)

Delegates to another
constructor of the class
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

83Declaring a class with nontrivial constructors or properties
constructor(ctx: Context, attr: AttributeSet): super(ctx, attr) {
// ...

}
}

You change the MyButton class so that one of the constructors delegates to the other
constructor of the same class (using this), passing the default value for the parame-
ter, as shown in figure 4.4. The second constructor continues to call super().

If the class has no primary constructor, then each secondary constructor has to initial-
ize the base class or delegate to another constructor that does so. Thinking in terms of
the previous figures, each secondary constructor must have an outgoing arrow start-
ing a path that ends at any constructor of the base class.

 Java interoperability is the main use case when you need to use secondary con-
structors. But there’s another possible case: when you have multiple ways to create
instances of your class, with different parameter lists. We’ll discuss an example in sec-
tion 4.4.2.

 We’ve discussed how to define nontrivial constructors. Now let’s turn our attention
to nontrivial properties.

4.2.3 Implementing properties declared in interfaces

In Kotlin, an interface can contain abstract property declarations. Here’s an example
of an interface definition with such a declaration:

interface User {
val nickname: String

}

This means classes implementing the User interface need to provide a way to obtain
the value of nickname. The interface doesn’t specify whether the value should be
stored in a backing field or obtained through a getter. Therefore, the interface itself
doesn’t contain any state, and only classes implementing the interface may store the
value if they need to.

 Let’s look at a few possible implementations for the interface: PrivateUser, who
fills in only their nickname; SubscribingUser, who apparently was forced to provide

MyButton

constructor
(Context)

constructor
(Context, AttributeSet)

Delegates to

Delegates to

View

constructor
(Context)

constructor
(Context, AttributeSet)

Figure 4.4 Delegating to a constructor of the same class
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

84 CHAPTER 4 Classes, objects, and interfaces
an email to register; and FacebookUser, who rashly shared their Facebook account ID.
All of these classes implement the abstract property in the interface in different ways.

class PrivateUser(override val nickname: String) : User

class SubscribingUser(val email: String) : User {
override val nickname: String

get() = email.substringBefore('@'))
}

class FacebookUser(val accountId: Int) : User {
override val nickname = getFacebookName(accountId)

}

>>> println(PrivateUser("test@kotlinlang.org").nickname)
test@kotlinlang.org
>>> println(SubscribingUser("test@kotlinlang.org").nickname)
test

For PrivateUser, you use the concise syntax to declare a property directly in the pri-
mary constructor. This property implements the abstract property from User, so you
mark it as override.

 For SubscribingUser, the nickname property is implemented through a custom
getter. This property doesn’t have a backing field to store its value; it has only a getter
that calculates a nickname from the email on every invocation.

 For FacebookUser, you assign the value to the nickname property in its initial-
izer. You use a getFacebookName function that’s supposed to return the name of a
Facebook user given their account ID. (Assume that it’s defined somewhere else.) This
function is costly: it needs to establish a connection with Facebook to get the desired
data. That’s why you decide to invoke it once during the initialization phase.

 Pay attention to the different implementations of nickname in SubscribingUser
and FacebookUser. Although they look similar, the first property has a custom getter
that calculates substringBefore on every access, whereas the property in Facebook-
User has a backing field that stores the data computed during the class initialization.

 In addition to abstract property declarations, an interface can contain properties
with getters and setters, as long as they don’t reference a backing field. (A backing
field would require storing state in an interface, which isn’t allowed.) Let’s look at an
example:

interface User {
val email: String
val nickname: String

get() = email.substringBefore('@')
}

This interface contains the abstract property email, as well as the nickname property
with a custom getter. The first property must be overridden in subclasses, whereas the
second one can be inherited.

Listing 4.14 Implementing an interface property

Primary constructor
property

Custom
getter

Property
initializer

Property doesn’t have a
backing field: the result value
is computed on each access.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

85Declaring a class with nontrivial constructors or properties
 Unlike properties implemented in interfaces, properties implemented in classes
have full access to backing fields. Let’s see how you can refer to them from accessors.

4.2.4 Accessing a backing field from a getter or setter

You’ve seen a few examples of two kinds of properties: properties that store values and
properties with custom accessors that calculate values on every access. Now let’s see how
you can combine the two and implement a property that stores a value and provides
additional logic that’s executed when the value is accessed or modified. To support
that, you need to be able to access the property’s backing field from its accessors.

 Let’s say you want to log any change of data stored in a property. You declare a
mutable property and execute additional code on each setter access.

class User(val name: String) {
var address: String = "unspecified"

set(value: String) {
println("""

Address was changed for $name:
"$field" -> "$value".""".trimIndent())

field = value
}

}

>>> val user = User("Alice")
>>> user.address = "Elsenheimerstrasse 47, 80687 Muenchen"
Address was changed for Alice:
"unspecified" -> "Elsenheimerstrasse 47, 80687 Muenchen".

You change a property value as usual by saying user.address = "new value",
which invokes a setter under the hood. In this example, the setter is redefined, so the
additional logging code is executed (for simplicity, in this case you print it out).

 In the body of the setter, you use the special identifier field to access the value of
the backing field. In a getter, you can only read the value; and in a setter, you can both
read and modify it.

 Note that you can redefine only one of the accessors for a mutable property. The
getter in listing 4.15 is trivial and only returns the field value, so you don’t need to
redefine it.

 You may wonder what the difference is between making a property that has a back-
ing field and one that doesn’t. The way you access the property doesn’t depend on
whether it has a backing field. The compiler will generate the backing field for the
property if you either reference it explicitly or use the default accessor implementa-
tion. If you provide custom accessor implementations that don’t use field (for the
getter if the property is a val and for both accessors if it’s a mutable property), the
backing field won’t be present.

 Sometimes you don’t need to change the default implementation of an accessor,
but you need to change its visibility. Let’s see how you can do this.

Listing 4.15 Accessing the backing field in a setter

Reads the backing
field value

Updates the backing
field value
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

86 CHAPTER 4 Classes, objects, and interfaces
4.2.5 Changing accessor visibility

The accessor’s visibility by default is the same as the property’s. But you can change
this if you need to, by putting a visibility modifier before the get or set keyword. To
see how you can use it, let’s look at an example.

class LengthCounter {
var counter: Int = 0

private set

fun addWord(word: String) {
counter += word.length

}
}

This class calculates the total length of the words added to it. The property holding the
total length is public, because it’s part of the API the class provides to its clients. But
you need to make sure it’s only modified in the class, because otherwise external code
could change it and store an incorrect value. Therefore, you let the compiler generate
a getter with the default visibility, and you change the visibility of the setter to private.

 Here’s how you can use this class:

>>> val lengthCounter = LengthCounter()
>>> lengthCounter.addWord("Hi!")
>>> println(lengthCounter.counter)
3

You create an instance of LengthCounter, and then you add a word “Hi!” of length 3.
Now the counter property stores 3.

Listing 4.16 Declaring a property with a private setter

More about properties later
Later in the book, we’ll continue our discussion of properties. Here are some refer-
ences:

 The lateinit modifier on a non-null property specifies that this property is
initialized later, after the constructor is called, which is a common case for
some frameworks. This feature will be covered in chapter 6.

 Lazy initialized properties, as part of the more general delegated properties
feature, will be covered in chapter 7.
For compatibility with Java frameworks, you can use annotations that emulate
Java features in Kotlin. For instance, the @JvmField annotation on a prop-
erty exposes a public field without accessors. You’ll learn more about anno-
tations in chapter 10.

 The const modifier makes working with annotations more convenient and lets
you use a property of a primitive type or String as an annotation argument.
Chapter 10 provides details.

You can’t change this property
outside of the class.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

87Compiler-generated methods: data classes and class delegation
That concludes our discussion of writing nontrivial constructors and properties in
Kotlin. Next, you’ll see how to make value-object classes even friendlier, using the con-
cept of data classes.

4.3 Compiler-generated methods: data classes and class delegation
The Java platform defines a number of methods that needs to be present in many
classes and are usually implemented in a mechanical way, such as equals, hashCode,
and toString. Fortunately, Java IDEs can automate the generation of these methods,
so you usually don’t need to write them by hand. But in this case, your codebase con-
tains the boilerplate code. The Kotlin compiler takes a step forward: it can perform
the mechanical code generation behind the scenes, without cluttering your source
code files with the results.

 You already saw how this works for trivial class constructor and property accessors.
Let’s look at more examples of cases where the Kotlin compiler generates typical
methods that are useful for simple data classes and greatly simplifies the class-delega-
tion pattern.

4.3.1 Universal object methods

As is the case in Java, all Kotlin classes have several methods you may want to override:
toString, equals, and hashCode. Let’s look at what these methods are and how
Kotlin can help you generate their implementations automatically. As a starting point,
you’ll use a simple Client class that stores a client’s name and postal code.

class Client(val name: String, val postalCode: Int)

Let’s see how class instances are represented as strings.

STRING REPRESENTATION: TOSTRING()
All classes in Kotlin, just as in Java, provide a way to get a string representation of the
class’s objects. This is primarily used for debugging and logging, although you can use
this functionality in other contexts as well. By default, the string representation of an
object looks like Client@5e9f23b4, which isn’t very useful. To change this, you need to
override the toString method.

class Client(val name: String, val postalCode: Int) {
override fun toString() = "Client(name=$name, postalCode=$postalCode)"

}

Now the representation of a client looks like this:

>>> val client1 = Client("Alice", 342562)
>>> println(client1)
Client(name=Alice, postalCode=342562)

Listing 4.17 Initial declaration of the Client class

Listing 4.18 Implementing toString() for Client
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

88 CHAPTER 4 Classes, objects, and interfaces

all
e
ll.

Check
“other”

Checks
c

proper
Much more informative, isn’t it?

OBJECT EQUALITY: EQUALS()
All the computations with the Client class take place outside of it. This class just
stores the data; it’s meant to be plain and transparent. Nevertheless, you may have
some requirements for the behavior of such a class. For example, suppose you want
the objects to be considered equal if they contain the same data:

>>> val client1 = Client("Alice", 342562)
>>> val client2 = Client("Alice", 342562)
>>> println(client1 == client2)
false

You see that the objects aren’t equal. That means you must override equals for the
Client class.

Let’s look at the changed Client class.

class Client(val name: String, val postalCode: Int) {
override fun equals(other: Any?): Boolean {

if (other == null || other !is Client)
return false

return name == other.name &&
postalCode == other.postalCode

}
override fun toString() = "Client(name=$name, postalCode=$postalCode)"

}

Just to remind you, the is check in Kotlin is the analogue of instanceof in Java. It
checks whether a value has the specified type. Like the !in operator, which is a nega-
tion for the in check (we discussed both in section 2.4.4), the !is operator denotes
the negation of the is check. Such operators make your code easier to read. In chap-
ter 6, we’ll discuss nullable types in detail and why the condition other == null ||
other !is Client can be simplified to other !is Client.

== for equality
In Java, you can use the == operator to compare primitive and reference types. If
applied to primitive types, Java’s == compares values, whereas == on reference
types compares references. Thus, in Java, there’s the well-known practice of always
calling equals, and there’s the well-known problem of forgetting to do so.

In Kotlin, the == operator is the default way to compare two objects: it compares their
values by calling equals under the hood. Thus, if equals is overridden in your
class, you can safely compare its instances using ==. For reference comparison, you
can use the === operator, which works exactly the same as == in Java by comparing
the object references.

Listing 4.19 Implementing equals() for Client

In Kotlin, == checks whether the
objects are equal, not the references.
It is compiled to a call of “equals”.

“Any” is the analogue of
java.lang.Object: a superclass of
classes in Kotlin. The nullable typ
“Any?” means “other” can be nu

s whether
is a Client

 whether the
orresponding
ties are equal
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

89Compiler-generated methods: data classes and class delegation
 Because in Kotlin the override modifier is mandatory, you’re protected from
accidentally writing fun equals(other: Client), which would add a new method
instead of overriding equals. After you override equals, you may expect that clients
with the same property values are equal. Indeed, the equality check client1 ==
client2 in the previous example returns true now. But if you want to do more com-
plicated things with clients, it doesn’t work. The usual interview question is, “What’s
broken, and what’s the problem?” You may say that the problem is that hashCode is
missing. That is in fact the case, and we’ll now discuss why this is important.

HASH CONTAINERS: HASHCODE()
The hashCode method should be always overridden together with equals. This sec-
tion explains why.

 Let’s create a set with one element: a client named Alice. Then you create a new
Client instance containing the same data and check whether it’s contained in the
set. You’d expect the check to return true, because the two instances are equal, but in
fact it returns false:

>>> val processed = hashSetOf(Client("Alice", 342562))
>>> println(processed.contains(Client("Alice", 342562)))
false

The reason is that the Client class is missing the hashCode method. Therefore, it
violates the general hashCode contract: if two objects are equal, they must have the
same hash code. The processed set is a HashSet. Values in a HashSet are com-
pared in an optimized way: at first their hash codes are compared, and then, only if
they’re equal, the actual values are compared. The hash codes are different for two
different instances of the Client class in the previous example, so the set decides that
it doesn’t contain the second object, even though equals would return true. There-
fore, if the rule isn’t followed, the HashSet can’t work correctly with such objects.

 To fix that, you can add the implementation of hashCode to the class.

class Client(val name: String, val postalCode: Int) {
...
override fun hashCode(): Int = name.hashCode() * 31 + postalCode

}

Now you have a class that works as expected in all scenarios—but notice how much
code you’ve had to write. Fortunately, the Kotlin compiler can help you by generating
all of those methods automatically. Let’s see how you can ask it to do that.

4.3.2 Data classes: autogenerated implementations of universal methods

If you want your class to be a convenient holder for your data, you need to override
these methods: toString, equals, and hashCode. Usually, the implementations of
those methods are straightforward, and IDEs like IntelliJ IDEA can help you generate
them automatically and verify that they’re implemented correctly and consistently.

Listing 4.20 Implementing hashCode() for Client
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

90 CHAPTER 4 Classes, objects, and interfaces
 The good news is, you don’t have to generate all of these methods in Kotlin. If you
add the modifier data to your class, the necessary methods are automatically gener-
ated for you.

data class Client(val name: String, val postalCode: Int)

Easy, right? Now you have a class that overrides all the standard Java methods:

 equals for comparing instances
 hashCode for using them as keys in hash-based containers such as HashMap
 toString for generating string representations showing all the fields in decla-

ration order

The equals and hashCode methods take into account all the properties declared in
the primary constructor. The generated equals method checks that the values of all
the properties are equal. The hashCode method returns a value that depends on the
hash codes of all the properties. Note that properties that aren’t declared in the pri-
mary constructor don’t take part in the equality checks and hash code calculation.

 This isn’t a complete list of useful methods generated for data classes. The next
section reveals one more, and section 7.4 fills in the rest.

DATA CLASSES AND IMMUTABILITY: THE COPY() METHOD

Note that even though the properties of a data class aren’t required to be val—you
can use var as well— it’s strongly recommended that you use only read-only proper-
ties, making the instances of the data class immutable. This is required if you want to
use such instances as keys in a HashMap or a similar container, because otherwise the
container could get into an invalid state if the object used as a key was modified after
it was added to the container. Immutable objects are also much easier to reason about,
especially in multithreaded code: once an object has been created, it remains in its
original state, and you don’t need to worry about other threads modifying the object
while your code is working with it.

 To make it even easier to use data classes as immutable objects, the Kotlin compiler
generates one more method for them: a method that allows you to copy the instances
of your classes, changing the values of some properties. Creating a copy is usually a
good alternative to modifying the instance in place: the copy has a separate lifecycle
and can’t affect the places in the code that refer to the original instance. Here’s what
the copy method would look like if you implemented it manually:

class Client(val name: String, val postalCode: Int) {
...
fun copy(name: String = this.name,

postalCode: Int = this.postalCode) =
Client(name, postalCode)

}

Listing 4.21 Client as a data class
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

91Compiler-generated methods: data classes and class delegation
And here’s how the copy method can be used:

>>> val bob = Client("Bob", 973293)
>>> println(bob.copy(postalCode = 382555))
Client(name=Bob, postalCode=382555)

You’ve seen how the data modifier makes value-object classes more convenient to
use. Now let’s talk about the other Kotlin feature that lets you avoid IDE-generated
boilerplate code: class delegation.

4.3.3 Class delegation: using the “by” keyword

A common problem in the design of large object-oriented systems is fragility caused by
implementation inheritance. When you extend a class and override some of its meth-
ods, your code becomes dependent on the implementation details of the class you’re
extending. When the system evolves and the implementation of the base class changes
or new methods are added to it, the assumptions about its behavior that you’ve made
in your class can become invalid, so your code may end up not behaving correctly.

 The design of Kotlin recognizes this problem and treats classes as final by
default. This ensures that only those classes that are designed for extensibility can be
inherited from. When working on such a class, you see that it’s open, and you can
keep in mind that modifications need to be compatible with derived classes.

 But often you need to add behavior to another class, even if it wasn’t designed to
be extended. A commonly used way to implement this is known as the Decorator pat-
tern. The essence of the pattern is that a new class is created, implementing the same
interface as the original class and storing the instance of the original class as a field.
Methods in which the behavior of the original class doesn’t need to be modified are
forwarded to the original class instance.

 One downside of this approach is that it requires a fairly large amount of boiler-
plate code (so much that IDEs like IntelliJ IDEA have dedicated features to generate
that code for you). For example, this is how much code you need for a decorator that
implements an interface as simple as Collection, even when you don’t modify any
behavior:

class DelegatingCollection<T> : Collection<T> {
private val innerList = arrayListOf<T>()

override val size: Int get() = innerList.size
override fun isEmpty(): Boolean = innerList.isEmpty()
override fun contains(element: T): Boolean = innerList.contains(element)
override fun iterator(): Iterator<T> = innerList.iterator()
override fun containsAll(elements: Collection<T>): Boolean =

innerList.containsAll(elements)
}

The good news is that Kotlin includes first-class support for delegation as a language
feature. Whenever you’re implementing an interface, you can say that you’re
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

92 CHAPTER 4 Classes, objects, and interfaces

delegating the implementation of the interface to another object, using the by
keyword. Here’s how you can use this approach to rewrite the previous example:

class DelegatingCollection<T>(
innerList: Collection<T> = ArrayList<T>()

) : Collection<T> by innerList {}

All the method implementations in the class are gone. The compiler will generate
them, and the implementation is similar to that in the DelegatingCollection
example. Because there’s little interesting content in the code, there’s no point in
writing it manually when the compiler can do the same job for you automatically.

 Now, when you need to change the behavior of some methods, you can override
them, and your code will be called instead of the generated methods. You can leave
out methods for which you’re satisfied with the default implementation of delegating
to the underlying instance.

 Let’s see how you can use this technique to implement a collection that counts the
number of attempts to add an element to it. For example, if you’re performing some
kind of deduplication, you can use such a collection to measure how efficient the pro-
cess is, by comparing the number of attempts to add an element with the resulting size
of the collection.

class CountingSet<T>(
val innerSet: MutableCollection<T> = HashSet<T>()

) : MutableCollection<T> by innerSet {

var objectsAdded = 0

override fun add(element: T): Boolean {
objectsAdded++
return innerSet.add(element)

}

override fun addAll(c: Collection<T>): Boolean {
objectsAdded += c.size
return innerSet.addAll(c)

}
}

>>> val cset = CountingSet<Int>()
>>> cset.addAll(listOf(1, 1, 2))
>>> println("${cset.objectsAdded} objects were added, ${cset.size} remain")
3 objects were added, 2 remain

As you see, you override the add and addAll methods to increment the count, and
you delegate the rest of the implementation of the MutableCollection interface to
the container you’re wrapping.

 The important part is that you aren’t introducing any dependency on how the
underlying collection is implemented. For example, you don’t care whether that

Listing 4.22 Using class delegation

Delegates the MutableCollection
implementation to innerSet

Does not delegate; provides a
different implementation
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

93The “object” keyword: declaring a class and creating an instance, combined
collection implements addAll by calling add in a loop, or if it uses a different imple-
mentation optimized for a particular case. You have full control over what happens
when the client code calls your class, and you rely only on the documented API of the
underlying collection to implement your operations, so you can rely on it continuing
to work.

 We’ve finished our discussion of how the Kotlin compiler can generate useful
methods for classes. Let’s proceed to the final big part of Kotlin’s class story: the
object keyword and the different situations in which it comes into play.

4.4 The “object” keyword: declaring a class and creating
an instance, combined
The object keyword comes up in Kotlin in a number of cases, but they all share the
same core idea: the keyword defines a class and creates an instance (in other words, an
object) of that class at the same time. Let’s look at the different situations when it’s used:

 Object declaration is a way to define a singleton.
 Companion objects can contain factory methods and other methods that are

related to this class but don’t require a class instance to be called. Their mem-
bers can be accessed via class name.

 Object expression is used instead of Java’s anonymous inner class.

Now we’ll discuss these Kotlin features in detail.

4.4.1 Object declarations: singletons made easy

A fairly common occurrence in the design of object-oriented systems is a class for
which you need only one instance. In Java, this is usually implemented using the Sin-
gleton pattern: you define a class with a private constructor and a static field hold-
ing the only existing instance of the class.

 Kotlin provides first-class language support for this using the object declaration fea-
ture. The object declaration combines a class declaration and a declaration of a single
instance of that class.

 For example, you can use an object declaration to represent the payroll of an orga-
nization. You probably don’t have multiple payrolls, so using an object for this sounds
reasonable:

object Payroll {
val allEmployees = arrayListOf<Person>()

fun calculateSalary() {
for (person in allEmployees) {

...
}

}
}

Object declarations are introduced with the object keyword. An object declaration
effectively defines a class and a variable of that class in a single statement.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

94 CHAPTER 4 Classes, objects, and interfaces
 Just like a class, an object declaration can contain declarations of properties, meth-
ods, initializer blocks, and so on. The only things that aren’t allowed are constructors
(either primary or secondary). Unlike instances of regular classes, object declarations
are created immediately at the point of definition, not through constructor calls from
other places in the code. Therefore, defining a constructor for an object declaration
doesn’t make sense.

 And just like a variable, an object declaration lets you call methods and access
properties by using the object name to the left of the . character:

Payroll.allEmployees.add(Person(...))

Payroll.calculateSalary()

Object declarations can also inherit from classes and interfaces. This is often useful
when the framework you’re using requires you to implement an interface, but your
implementation doesn’t contain any state. For example, let’s take the java
.util.Comparator interface. A Comparator implementation receives two objects
and returns an integer indicating which of the objects is greater. Comparators almost
never store any data, so you usually need just a single Comparator instance for a par-
ticular way of comparing objects. That’s a perfect use case for an object declaration.

 As a specific example, let’s implement a comparator that compares file paths case-
insensitively.

object CaseInsensitiveFileComparator : Comparator<File> {
override fun compare(file1: File, file2: File): Int {

return file1.path.compareTo(file2.path,
ignoreCase = true)

}
}

>>> println(CaseInsensitiveFileComparator.compare(
... File("/User"), File("/user")))
0

You use singleton objects in any context where an ordinary object (an instance of a
class) can be used. For example, you can pass this object as an argument to a function
that takes a Comparator:

>>> val files = listOf(File("/Z"), File("/a"))
>>> println(files.sortedWith(CaseInsensitiveFileComparator))
[/a, /Z]

Here you’re using the sortedWith function, which returns a list sorted according to
the specified comparator.

Listing 4.23 Implementing Comparator with an object
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

95The “object” keyword: declaring a class and creating an instance, combined
You can also declare objects in a class. Such objects also have just a single instance; they
don’t have a separate instance per instance of the containing class. For example, it’s log-
ical to place a comparator comparing objects of a particular class inside that class.

data class Person(val name: String) {
object NameComparator : Comparator<Person> {

override fun compare(p1: Person, p2: Person): Int =
p1.name.compareTo(p2.name)

}
}

>>> val persons = listOf(Person("Bob"), Person("Alice"))
>>> println(persons.sortedWith(Person.NameComparator))
[Person(name=Alice), Person(name=Bob)]

Now let’s look at a special case of objects nested inside a class: companion objects.

Singletons and dependency injection
Just like the Singleton pattern, object declarations aren’t always ideal for use in large
software systems. They’re great for small pieces of code that have few or no depen-
dencies, but not for large components that interact with many other parts of the sys-
tem. The main reason is that you don’t have any control over the instantiation of
objects, and you can’t specify parameters for the constructors.

This means you can’t replace the implementations of the object itself, or other
classes the object depends on, in unit tests or in different configurations of the soft-
ware system. If you need that ability, you should use regular Kotlin classes together
with a dependency injection framework (such as Guice, https://github.com/google/
guice), just as in Java.

Listing 4.24 Implementing Comparator with a nested object

Using Kotlin objects from Java
An object declaration in Kotlin is compiled as a class with a static field holding its
single instance, which is always named INSTANCE. If you implemented the Singleton
pattern in Java, you’d probably do the same thing by hand. Thus, to use a Kotlin
object from the Java code, you access the static INSTANCE field:

/* Java */
CaseInsensitiveFileComparator.INSTANCE.compare(file1, file2);

In this example, the INSTANCE field has the type CaseInsensitiveFile-
Comparator.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/google/guice
https://github.com/google/guice

96 CHAPTER 4 Classes, objects, and interfaces
4.4.2 Companion objects: a place for factory methods
and static members

Classes in Kotlin can’t have static members; Java’s static keyword isn’t part of the
Kotlin language. As a replacement, Kotlin relies on package-level functions (which
can replace Java’s static methods in many situations) and object declarations (which
replace Java static methods in other cases, as well as static fields). In most cases, it’s
recommended that you use top-level functions. But top-level functions can’t access
private members of a class, as illustrated by figure 4.5. Thus, if you need to write a
function that can be called without having a class instance but needs access to the
internals of a class, you can write it as a member of an object declaration inside that
class. An example of such a function would be a factory method.

One of the objects defined in a class can be marked with a special keyword: compan-
ion. If you do that, you gain the ability to access the methods and properties of that
object directly through the name of the containing class, without specifying the name
of the object explicitly. The resulting syntax looks exactly like static method invocation
in Java. Here’s a basic example showing the syntax:

class A {
companion object {

fun bar() {
println("Companion object called")

}
}

}

>>> A.bar()
Companion object called

Remember when we promised you a good place to call a private constructor? That’s
the companion object. The companion object has access to all private members of
the class, including the private constructor, and it’s an ideal candidate to imple-
ment the Factory pattern.

 Let’s look at an example of declaring two constructors and then change it to use
factory methods declared in the companion object. We’ll build on listing 4.14, with
FacebookUser and SubscribingUser. Previously, these entities were different

class

private foo

object

top-level function

Can call foo

Cannot call foo
Figure 4.5 Private members can’t
be used in top-level functions
outside of the class.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

97The “object” keyword: declaring a class and creating an instance, combined

Decla
com
classes implementing the common interface User. Now you decide to manage with
only one class, but to provide different means of creating it.

class User {
val nickname: String

constructor(email: String) {
nickname = email.substringBefore('@')

}

constructor(facebookAccountId: Int) {
nickname = getFacebookName(facebookAccountId)

}
}

An alternative approach to express the same logic, which may be beneficial for many
reasons, is to use factory methods to create instances of the class. The User instance is
created through factory methods, not via multiple constructors.

class User private constructor(val nickname: String) {
companion object {

fun newSubscribingUser(email: String) =
User(email.substringBefore('@'))

fun newFacebookUser(accountId: Int) =
User(getFacebookName(accountId))

}
}

You can invoke the methods of companion object via the class name:

>>> val subscribingUser = User.newSubscribingUser("bob@gmail.com")
>>> val facebookUser = User.newFacebookUser(4)

>>> println(subscribingUser.nickname)
bob

Factory methods are very useful. They can be named according to their purpose, as
shown in the example. In addition, a factory method can return subclasses of the class
where the method is declared, as in the example when SubscribingUser and
FacebookUser are classes. You can also avoid creating new objects when it’s not nec-
essary. For example, you can ensure that every email corresponds to a unique User
instance and return an existing instance instead of a new one when the factory
method is called with an email that’s already in the cache. But if you need to extend
such classes, using several constructors may be a better solution, because companion
object members can’t be overridden in subclasses.

Listing 4.25 Defining a class with multiple secondary constructors

Listing 4.26 Replacing secondary constructors with factory methods

Secondary constructors

Marks the primary
constructor as private

res the
panion
object

Declaring a named
companion object

Factory method creating a new
user by Facebook account ID
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

98 CHAPTER 4 Classes, objects, and interfaces
4.4.3 Companion objects as regular objects

A companion object is a regular object that is declared in a class. It can be named,
implement an interface, or have extension functions or properties. In this section,
we’ll look at an example.

 Suppose you’re working on a web service for a company’s payroll, and you need to
serialize and deserialize objects as JSON. You can place the serialization logic in a com-
panion object.

class Person(val name: String) {
companion object Loader {

fun fromJSON(jsonText: String): Person = ...
}

}

>>> person = Person.Loader.fromJSON("{name: 'Dmitry'}")
>>> person.name
Dmitry
>>> person2 = Person.fromJSON("{name: 'Brent'}")
>>> person2.name
Brent

In most cases, you refer to the companion object through the name of its containing
class, so you don’t need to worry about its name. But you can specify it if needed, as in
listing 4.27: companion object Loader. If you omit the name of the companion
object, the default name assigned to it is Companion. You’ll see some examples using
this name later, when we talk about companion-object extensions.

IMPLEMENTING INTERFACES IN COMPANION OBJECTS

Just like any other object declaration, a companion object can implement interfaces.
As you’ll see in a moment, you can use the name of the containing class directly as an
instance of an object implementing the interface.

 Suppose you have many kinds of objects in your system, including Person. You
want to provide a common way to create objects of all types. Let’s say you have an
interface JSONFactory for objects that can be deserialized from JSON, and all objects
in your system should be created through this factory. You can provide an implemen-
tation of that interface for your Person class.

interface JSONFactory<T> {
fun fromJSON(jsonText: String): T

}

class Person(val name: String) {
companion object : JSONFactory<Person> {

Listing 4.27 Declaring a named companion object

Listing 4.28 Implementing an interface in a companion object

You can use both ways
to call fromJSON.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

99The “object” keyword: declaring a class and creating an instance, combined

ect
override fun fromJSON(jsonText: String): Person = ...
}

}

Then, if you have a function that uses an abstract factory to load entities, you can pass
the Person object to it.

fun loadFromJSON<T>(factory: JSONFactory<T>): T {
...

}

loadFromJSON(Person)

Note that the name of the Person class is used as an instance of JSONFactory.

COMPANION-OBJECT EXTENSIONS

As you saw in section 3.3, extension functions allow you to define methods that can be
called on instances of a class defined elsewhere in the codebase. But what if you need
to define functions that can be called on the class itself, like companion-object meth-
ods or Java static methods? If the class has a companion object, you can do so by defin-
ing extension functions on it. More specifically, if class C has a companion object, and
you define an extension function func on C.Companion, you can call it as
C.func().

 For example, imagine that you want to have a cleaner separation of concerns for
your Person class. The class itself will be part of the core business-logic module, but
you don’t want to couple that module to any specific data format. Because of that, the
deserialization function needs to be defined in the module responsible for client/
server communication. You can accomplish this using extension functions. Note how

Kotlin companion objects and static members
The companion object for a class is compiled similarly to a regular object: a static
field in a class refers to its instance. If the companion object isn’t named, it can be
accessed through the Companion reference from the Java code:

/* Java */
Person.Companion.fromJSON("...");

If a companion object has a name, you use this name instead of Companion.

But you may need to work with Java code that requires a member of your class to be
static. You can achieve this with the @JvmStatic annotation on the corresponding
member. If you want to declare a static field, use the @JvmField annotation on
a top-level property or a property declared in an object. These features exist spe-
cifically for interoperability purposes and are not, strictly speaking, part of the core
language. We’ll cover annotations in detail in chapter 10.

Note that Kotlin can access static methods and fields declared in Java classes, using
the same syntax as Java.

Companion obj
implementing
an interface

Passes the companion-object
instance to the function
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

100 CHAPTER 4 Classes, objects, and interfaces

Mou
you use the default name (Companion) to refer to the companion object that was
declared without an explicit name:

// business logic module
class Person(val firstName: String, val lastName: String) {

companion object {
}

}

// client/server communication module
fun Person.Companion.fromJSON(json: String): Person {

...
}

val p = Person.fromJSON(json)

You call fromJSON as if it was defined as a method of the companion object, but it’s
actually defined outside of it as an extension function. As always with extension func-
tions, it looks like a member, but it’s not. But note that you have to declare a companion
object in your class, even an empty one, in order to be able to define extensions to it.

 You’ve seen how useful companion objects can be. Now let’s move to the next fea-
ture in Kotlin that’s expressed with the same object keyword: object expressions.

4.4.4 Object expressions: anonymous inner classes rephrased

The object keyword can be used not only for declaring named singleton-like objects,
but also for declaring anonymous objects. Anonymous objects replace Java’s use of anon-
ymous inner classes. For example, let’s see how you can convert a typical use of a Java
anonymous inner class—an event listener—into Kotlin:

window.addMouseListener(
object : MouseAdapter() {

override fun mouseClicked(e: MouseEvent) {
// ...

}

override fun mouseEntered(e: MouseEvent) {
// ...

}
}

)

The syntax is the same as with object declarations, except that you omit the name of
the object. The object expression declares a class and creates an instance of that class,
but it doesn’t assign a name to the class or the instance. Typically, neither is necessary,
because you’ll use the object as a parameter in a function call. If you do need to assign
a name to the object, you can store it in a variable:

Listing 4.29 Defining an extension function for a companion object

Listing 4.30 Implementing an event listener with an anonymous object

Declares an empty
companion object

Declares an
extension function

Declares an anonymous
object extending
MouseAdapterOverrides

seAdapter
methods
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

101Summary
val listener = object : MouseAdapter() {
override fun mouseClicked(e: MouseEvent) { ... }
override fun mouseEntered(e: MouseEvent) { ... }

}

Unlike a Java anonymous inner class, which can only extend one class or implement
one interface, a Kotlin anonymous object can implement multiple interfaces or no
interfaces.

NOTE Unlike object declarations, anonymous objects aren’t singletons. Every
time an object expression is executed, a new instance of the object is created.

Just as with Java’s anonymous classes, code in an object expression can access the vari-
ables in the function where it was created. But unlike in Java, this isn’t restricted to
final variables; you can also modify the values of variables from within an object
expression. For example, let’s see how you can use the listener to count the number of
clicks in a window.

fun countClicks(window: Window) {
var clickCount = 0

window.addMouseListener(object : MouseAdapter() {
override fun mouseClicked(e: MouseEvent) {

clickCount++
}

})
// ...

}

NOTE Object expressions are mostly useful when you need to override multi-
ple methods in your anonymous object. If you only need to implement a sin-
gle-method interface (such as Runnable), you can rely on Kotlin’s support
for SAM conversion (converting a function literal to an implementation of an
interface with a single abstract method) and write your implementation as a
function literal (lambda). We’ll discuss lambdas and SAM conversion in much
more detail in chapter 5.

We’ve finished our discussion of classes, interfaces, and objects. In the next chapter,
we’ll move on to one of the most interesting areas of Kotlin: lambdas and functional
programming.

4.5 Summary
 Interfaces in Kotlin are similar to Java’s but can contain default implementa-

tions (which Java supports only since version 8) and properties.
 All declarations are final and public by default.
 To make a declaration non-final, mark it as open.

Listing 4.31 Accessing local variables from an anonymous object

Declares a
local variable

Updates the value
of the variable
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

102 CHAPTER 4 Classes, objects, and interfaces
 internal declarations are visible in the same module.
 Nested classes aren’t inner by default. Use the keyword inner to store a refer-

ence to the outer class.
 A sealed class can only have subclasses nested in its declaration (Kotlin 1.1 will

allow placing them anywhere in the same file).
 Initializer blocks and secondary constructors provide flexibility for initializing

class instances.
 You use the field identifier to reference a property backing field from the

accessor body.
 Data classes provide compiler-generated equals, hashCode, toString, copy,

and other methods.
 Class delegation helps to avoid many similar delegating methods in your code.
 Object declaration is Kotlin’s way to define a singleton class.
 Companion objects (along with package-level functions and properties) replace

Java’s static method and field definitions.
 Companion objects, like other objects, can implement interfaces, as well as

have extension functions and properties.
 Object expressions are Kotlin’s replacement for Java’s anonymous inner classes,

with added power such as the ability to implement multiple interfaces and to
modify the variables defined in the scope where the object is created.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Programming
with lambdas
Lambda expressions, or simply lambdas, are essentially small chunks of code that can
be passed to other functions. With lambdas, you can easily extract common code
structures into library functions, and the Kotlin standard library makes heavy use of
them. One of the most common uses for lambdas is working with collections, and
in this chapter you’ll see many examples of replacing common collection access
patterns with lambdas passed to standard library functions. You’ll also see how
lambdas can be used with Java libraries—even those that weren’t originally
designed with lambdas in mind. Finally, we’ll look at lambdas with receivers—a spe-
cial kind of lambdas where the body is executed in a different context than the sur-
rounding code.

This chapter covers
 Lambda expressions and member references

 Working with collections in a functional style

 Sequences: performing collection operations lazily

 Using Java functional interfaces in Kotlin

 Using lambdas with receivers
103

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

104 CHAPTER 5 Programming with lambdas
5.1 Lambda expressions and member references
The introduction of lambdas to Java 8 was one of the longest-awaited changes in the
evolution of the language. Why was it such a big deal? In this section, you’ll find out why
lambdas are so useful and what the syntax of lambda expressions in Kotlin looks like.

5.1.1 Introduction to lambdas: blocks of code as function parameters

Passing and storing pieces of behavior in your code is a frequent task. For example,
you often need to express ideas like “When an event happens, run this handler” or
“Apply this operation to all elements in a data structure.” In older versions of Java, you
could accomplish this through anonymous inner classes. This technique works but
requires verbose syntax.

 Functional programming offers you another approach to solve this problem: the
ability to treat functions as values. Instead of declaring a class and passing an instance
of that class to a function, you can pass a function directly. With lambda expressions,
the code is even more concise. You don’t need to declare a function: instead, you can,
effectively, pass a block of code directly as a function parameter.

 Let’s look at an example. Imagine that you need to define a behavior for clicking a
button. You add a listener responsible for handling the click. This listener implements
the corresponding OnClickListener interface with one method, onClick.

/* Java */
button.setOnClickListener(new OnClickListener() {

@Override
public void onClick(View view) {

/* actions on click */
}

});

The verbosity required to declare an anonymous inner class becomes irritating when
repeated many times. The notation to express just the behavior—what should be
done on clicking—helps eliminate redundant code. In Kotlin, as in Java 8, you can use
a lambda.

button.setOnClickListener { /* actions on click */ }

This Kotlin code does the same thing as an anonymous class in Java but is more con-
cise and readable. We’ll discuss the details of this example later in this section.

 You saw how a lambda can be used as an alternative to an anonymous object with
only one method. Let’s now continue with another classical use of lambda expres-
sions: working with collections.

Listing 5.1 Implementing a listener with an anonymous inner class

Listing 5.2 Implementing a listener with a lambda
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

105Lambda expressions and member references

S
maxim
5.1.2 Lambdas and collections

One of the main tenets of good programming style is to avoid any duplication in your
code. Most of the tasks we perform with collections follow a few common patterns, so
the code that implements them should live in a library. But without lambdas, it’s diffi-
cult to provide a good, convenient library for working with collections. Thus if you
wrote your code in Java (prior to Java 8), you most likely have a habit of implementing
everything on your own. This habit must be changed with Kotlin!

 Let’s look at an example. You’ll use the Person class that contains information
about a person’s name and age.

data class Person(val name: String, val age: Int)

Suppose you have a list of people, and you need to find the oldest of them. If you had
no experience with lambdas, you might rush to implement the search manually.
You’d introduce two intermediate variables—one to hold the maximum age and
another to store the first found person of this age—and then iterate over the list,
updating these variables.

fun findTheOldest(people: List<Person>) {
var maxAge = 0
var theOldest: Person? = null
for (person in people) {

if (person.age > maxAge) {
maxAge = person.age
theOldest = person

}
}
println(theOldest)

}
>>> val people = listOf(Person("Alice", 29), Person("Bob", 31))
>>> findTheOldest(people)
Person(name=Bob, age=31)

With enough experience, you can bang out such loops pretty quickly. But there’s quite
a lot of code here, and it’s easy to make mistakes. For example, you might get the com-
parison wrong and find the minimum element instead of the maximum.

 In Kotlin, there’s a better way. You can use a library function, as shown next.

>>> val people = listOf(Person("Alice", 29), Person("Bob", 31))
>>> println(people.maxBy { it.age })
Person(name=Bob, age=31)

The maxBy function can be called on any collection and takes one argument: the
function that specifies what values should be compared to find the maximum

Listing 5.3 Searching through a collection manually

Listing 5.4 Searching through a collection using a lambda

tores the
um age

Stores a person of
the maximum age

If the next person is older
than the current oldest person,
changes the maximum

Finds the maximum by
comparing the ages
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

106 CHAPTER 5 Programming with lambdas
element. The code in curly braces { it.age } is a lambda implementing that logic.
It receives a collection element as an argument (referred to using it) and returns a
value to compare. In this example, the collection element is a Person object, and the
value to compare is its age, stored in the age property.

 If a lambda just delegates to a function or property, it can be replaced by a mem-
ber reference.

people.maxBy(Person::age)

This code means the same thing as listing 5.5. Section 5.1.5 will cover the details.
 Most of the things we typically do with collections in Java (prior to Java 8) can be

better expressed with library functions taking lambdas or member references. The
resulting code is much shorter and easier to understand. To help you start getting
used to it, let’s look at the syntax for lambda expressions.

5.1.3 Syntax for lambda expressions

As we’ve mentioned, a lambda encodes a small piece of
behavior that you can pass around as a value. It can be
declared independently and stored in a variable. But
more frequently, it’s declared directly when passed to a
function. Figure 5.1 shows the syntax for declaring
lambda expressions.

 A lambda expression in Kotlin is always surrounded
by curly braces. Note that there are no parentheses
around the arguments. The arrow separates the argu-
ment list from the body of the lambda.

 You can store a lambda expression in a variable and then treat this variable like a
normal function (call it with the corresponding arguments):

>>> val sum = { x: Int, y: Int -> x + y }
>>> println(sum(1, 2))
3

If you want to, you can call the lambda expression directly:

>>> { println(42) }()
42

But such syntax isn’t readable and doesn’t make much sense (it’s equivalent to execut-
ing the lambda body directly). If you need to enclose a piece of code in a block, you
can use the library function run that executes the lambda passed to it:

>>> run { println(42) }
42

Listing 5.5 Searching using a member reference

Parameters

Always in curly braces

{ x: Int, y: Int -> x + y }

Body

Figure 5.1 Lambda expression
syntax

Calls the lambda
stored in a variable

Runs the code
in the lambda
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

107Lambda expressions and member references
In section 8.2, you’ll learn why such invocations have no runtime overhead and are as
efficient as built-in language constructs. Let’s return to listing 5.4, which finds the old-
est person in a list:

>>> val people = listOf(Person("Alice", 29), Person("Bob", 31))
>>> println(people.maxBy { it.age })
Person(name=Bob, age=31)

If you rewrite this example without using any syntax shortcuts, you get the following:

people.maxBy({ p: Person -> p.age })

It should be clear what happens here: the piece of code in curly braces is a lambda
expression, and you pass it as an argument to the function. The lambda expression
takes one argument of type Person and returns its age.

 But this code is verbose. First, there’s too much punctuation, which hurts readabil-
ity. Second, the type can be inferred from the context and therefore omitted. Last,
you don’t need to assign a name to the lambda argument in this case.

 Let’s make these improvements, starting with braces. In Kotlin, a syntactic conven-
tion lets you move a lambda expression out of parentheses if it’s the last argument in a
function call. In this example, the lambda is the only argument, so it can be placed
after the parentheses:

people.maxBy() { p: Person -> p.age }

When the lambda is the only argument to a function, you can also remove the empty
parentheses from the call:

people.maxBy { p: Person -> p.age }

All three syntactic forms mean the same thing, but the last one is the easiest to read. If
a lambda is the only argument, you’ll definitely want to write it without the parenthe-
ses. When you have several arguments, you can emphasize that the lambda is an argu-
ment by leaving it inside the parentheses, or you can put it outside of them—both
options are valid. If you want to pass two or more lambdas, you can’t move more than
one out, so it’s usually better to pass them using the regular syntax.

 To see what these options look like with a more complex call, let’s go back to the
joinToString function that you used extensively in chapter 3. It’s also defined in
the Kotlin standard library, with the difference that the standard library version takes
a function as an additional parameter. This function can be used to convert an ele-
ment to a string differently than the toString function. Here’s how you can use it to
print names only.

>>> val people = listOf(Person("Alice", 29), Person("Bob", 31))
>>> val names = people.joinToString(separator = " ",
... transform = { p: Person -> p.name })
>>> println(names)
Alice Bob

Listing 5.6 Passing a lambda as a named argument
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

108 CHAPTER 5 Programming with lambdas
And here’s how you can rewrite that call with the lambda outside the parentheses.

people.joinToString(" ") { p: Person -> p.name }

Listing 5.7 uses a named argument to pass the lambda, making it clear what the
lambda is used for. Listing 5.8 is more concise, but it doesn’t express explicitly what
the lambda is used for, so it may be harder to understand for people not familiar with
the function being called.

INTELLIJ IDEA TIP To convert one syntactic form to the other, you can use the
actions: “Move lambda expression out of parentheses” and “Move lambda
expression into parentheses.”

Let’s move on with simplifying the syntax and get rid of the parameter type.

people.maxBy { p: Person -> p.age }
people.maxBy { p -> p.age }

As with local variables, if the type of a lambda parameter can be inferred, you don’t
need to specify it explicitly. With the maxBy function, the parameter type is always the
same as the collection element type. The compiler knows you’re calling maxBy on a
collection of Person objects, so it can understand that the lambda parameter will also
be of type Person.

 There are cases when the compiler can’t infer the lambda parameter type, but we
won’t discuss them here. The simple rule you can follow is to always start without the
types; if the compiler complains, specify them.

 You can specify only some of the argument types while leaving others with just
names. Doing so may be convenient if the compiler can’t infer one of the types or if
an explicit type improves readability.

 The last simplification you can make in this example is to replace a parameter with
the default parameter name: it. This name is generated if the context expects a
lambda with only one argument, and its type can be inferred.

people.maxBy { it.age }

This default name is generated only if you don’t specify the argument name explicitly.

NOTE The it convention is great for shortening your code, but you shouldn’t
abuse it. In particular, in the case of nested lambdas, it’s better to declare the

Listing 5.7 Passing a lambda outside of parentheses

Listing 5.8 Omitting lambda parameter type

Listing 5.9 Using the default parameter name

Parameter type
explicitly writtenParameter type

inferred

“it” is an autogenerated
parameter name.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

109Lambda expressions and member references

Acc

para
th
parameter of each lambda explicitly; otherwise it’s difficult to understand
which value the it refers to. It’s useful also to declare parameters explicitly if
the meaning or the type of the parameter isn’t clear from the context.

If you store a lambda in a variable, there’s no context from which to infer the parame-
ter types, so you have to specify them explicitly:

>>> val getAge = { p: Person -> p.age }
>>> people.maxBy(getAge)

So far, you’ve only seen examples with lambdas that consist of one expression or state-
ment. But lambdas aren’t constrained to such a small size and can contain multiple
statements. In this case, the last expression is the result:

>>> val sum = { x: Int, y: Int ->
... println("Computing the sum of $x and $y...")
... x + y
... }
>>> println(sum(1, 2))
Computing the sum of 1 and 2...
3

Next, let’s talk about a concept that often goes side-by-side with lambda expressions:
capturing variables from the context.

5.1.4 Accessing variables in scope

You know that when you declare an anonymous inner class in a function, you can refer
to parameters and local variables of that function from inside the class. With lambdas,
you can do exactly the same thing. If you use a lambda in a function, you can access the
parameters of that function as well as the local variables declared before the lambda.

 To demonstrate this, let’s use the forEach standard library function. It’s one of
the most basic collection-manipulation functions; all it does is call the given lambda
on every element in the collection. The forEach function is somewhat more concise
than a regular for loop, but it doesn’t have many other advantages, so you needn’t
rush to convert all your loops to lambdas.

 The following listing takes a list of messages and prints each message with the same
prefix.

fun printMessagesWithPrefix(messages: Collection<String>, prefix: String) {
messages.forEach {

println("$prefix $it")
}

}

>>> val errors = listOf("403 Forbidden", "404 Not Found")
>>> printMessagesWithPrefix(errors, "Error:")
Error: 403 Forbidden
Error: 404 Not Found

Listing 5.10 Using function parameters in a lambda

Takes as an argument a
lambda specifying what to
do with each element

esses the
“prefix”
meter in
e lambda
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

110 CHAPTER 5 Programming with lambdas
One important difference between Kotlin and Java is that in Kotlin, you aren’t
restricted to accessing final variables. You can also modify variables from within a
lambda. The next listing counts the number of client and server errors in the given set
of response status codes.

fun printProblemCounts(responses: Collection<String>) {
var clientErrors = 0
var serverErrors = 0
responses.forEach {

if (it.startsWith("4")) {
clientErrors++

} else if (it.startsWith("5")) {
serverErrors++

}
}
println("$clientErrors client errors, $serverErrors server errors")

}

>>> val responses = listOf("200 OK", "418 I'm a teapot",
... "500 Internal Server Error")
>>> printProblemCounts(responses)
1 client errors, 1 server errors

Kotlin, unlike Java, allows you to access non-final variables and even modify them in a
lambda. External variables accessed from a lambda, such as prefix, clientErrors,
and serverErrors in these examples, are said to be captured by the lambda.

 Note that, by default, the lifetime of a local variable is constrained by the function
in which the variable is declared. But if it’s captured by the lambda, the code that uses
this variable can be stored and executed later. You may ask how this works. When you
capture a final variable, its value is stored together with the lambda code that uses it.
For non-final variables, the value is enclosed in a special wrapper that lets you change
it, and the reference to the wrapper is stored together with the lambda.

Listing 5.11 Changing local variables from a lambda

Capturing a mutable variable: implementation details
Java allows you to capture only final variables. When you want to capture a mutable
variable, you can use one of the following tricks: either declare an array of one ele-
ment in which to store the mutable value, or create an instance of a wrapper class
that stores the reference that can be changed. If you used this technique explicitly in
Kotlin, the code would be as follows:

class Ref<T>(var value: T)
>>> val counter = Ref(0)
>>> val inc = { counter.value++ }

Declares variables that will be
accessed from the lambda

Modifies variables
in the lambda

Class used to simulate
capturing a mutable variable

Formally, an immutable variable is
captured; but the actual value is stored
in a field and can be changed.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

111Lambda expressions and member references
An important caveat is that, if a lambda is used as an event handler or is otherwise exe-
cuted asynchronously, the modifications to local variables will occur only when the
lambda is executed. For example, the following code isn’t a correct way to count but-
ton clicks:

fun tryToCountButtonClicks(button: Button): Int {
var clicks = 0
button.onClick { clicks++ }
return clicks

}

This function will always return 0. Even though the onClick handler will modify the
value of clicks, you won’t be able to observe the modification, because the onClick
handler will be called after the function returns. A correct implementation of the
function would need to store the click count not in a local variable, but in a location
that remains accessible outside of the function—for example, in a property of a class.

 We’ve discussed the syntax for declaring lambdas and how variables are captured
in lambdas. Now let’s talk about member references, a feature that lets you easily pass
references to existing functions.

5.1.5 Member references

You’ve seen how lambdas allow you to pass a block of code as a parameter to a func-
tion. But what if the code that you need to pass as a parameter is already defined as a
function? Of course, you can pass a lambda that calls that function, but doing so is
somewhat redundant. Can you pass the function directly?

 In Kotlin, just like in Java 8, you can do so if you convert the function to a value.
You use the :: operator for that:

val getAge = Person::age

This expression is called member reference, and it provides a short syntax for creating
a function value that calls exactly one method or accesses a property. A double colon

In real code, you don’t need to create such wrappers. Instead, you can mutate the
variable directly:

var counter = 0
val inc = { counter++ }

How does it work? The first example shows how the second example works under the
hood. Any time you capture a final variable (val), its value is copied, as in Java. When
you capture a mutable variable (var), its value is stored as an instance of a Ref
class. The Ref variable is final and can be easily captured, whereas the actual value
is stored in a field and can be changed from the lambda.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

112 CHAPTER 5 Programming with lambdas
separates the name of a class from the name of the member
you need to reference (a method or property), as shown in
figure 5.2.

 This is a more concise expression of a lambda that does
the same thing:

val getAge = { person: Person -> person.age }

Note that, regardless of whether you’re referencing a func-
tion or a property, you shouldn’t put parentheses after its
name in a member reference.

 A member reference has the same type as a lambda that calls that function, so you
can use the two interchangeably:

people.maxBy(Person::age)

You can have a reference to a function that’s declared at the top level (and isn’t a
member of a class), as well:

fun salute() = println("Salute!")
>>> run(::salute)
Salute!

In this case, you omit the class name and start with ::. The member reference
::salute is passed as an argument to the library function run, which calls the corre-
sponding function.

 It’s convenient to provide a member reference instead of a lambda that delegates
to a function taking several parameters:

val action = { person: Person, message: String ->
sendEmail(person, message)

}
val nextAction = ::sendEmail

You can store or postpone the action of creating an instance of a class using a construc-
tor reference. The constructor reference is formed by specifying the class name after the
double colons:

data class Person(val name: String, val age: Int)

>>> val createPerson = ::Person
>>> val p = createPerson("Alice", 29)
>>> println(p)
Person(name=Alice, age=29)

Note that you can also reference extension functions the same way:

fun Person.isAdult() = age >= 21
val predicate = Person::isAdult

Class

Separated by double colon

Person::age

Member

Figure 5.2 Member
reference syntax

Reference to the
top-level function

This lambda delegates
to a sendEmail function.

You can use a member
reference instead.

An action of creating an instance
of “Person” is saved as a value.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

113Functional APIs for collections
Although isAdult isn’t a member of the Person class, you can access it via refer-
ence, just as you can access it as a member on an instance: person.isAdult().

In the following section, we’ll look at many library functions that work great with
lambda expressions, as well as member references.

5.2 Functional APIs for collections
Functional style provides many benefits when it comes to manipulating collections.
You can use library functions for the majority of tasks and simplify your code. In this
section, we’ll discuss some of the functions in the Kotlin standard library for working
with collections. We’ll start with staples like filter and map and the concepts behind
them. We’ll also cover other useful functions and give you tips about how not to over-
use them and how to write clear and comprehensible code.

 Note that none of these functions were invented by the designers of Kotlin. These
or similar functions are available for all languages that support lambdas, including C#,
Groovy, and Scala. If you’re already familiar with these concepts, you can quickly look
through the following examples and skip the explanations.

5.2.1 Essentials: filter and map

The filter and map functions form the basis for manipulating collections. Many col-
lection operations can be expressed with their help.

 For each function, we’ll provide one example with numbers and one using the
familiar Person class:

data class Person(val name: String, val age: Int)

Bound references
In Kotlin 1.0, when you take a reference to a method or property of a class, you always
need to provide an instance of that class when you call the reference. Support for bound
member references, which allow you to use the member-reference syntax to capture
a reference to the method on a specific object instance, is planned for Kotlin 1.1:

>>> val p = Person("Dmitry", 34)
>>> val personsAgeFunction = Person::age
>>> println(personsAgeFunction(p))
34
>>> val dmitrysAgeFunction = p::age
>>> println(dmitrysAgeFunction())
34

Note that personsAgeFunction is a one-argument function (it returns the age of
a given person), whereas dmitrysAgeFunction is a zero-argument function (it
returns the age of a specific person). Before Kotlin 1.1, you needed to write the
lambda { p.age } explicitly instead of using the bound member reference p::age.

A bound member reference
that you can use in Kotlin 1.1
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

114 CHAPTER 5 Programming with lambdas
The filter function goes through a collection and selects the elements for which
the given lambda returns true:

>>> val list = listOf(1, 2, 3, 4)
>>> println(list.filter { it % 2 == 0 })
[2, 4]

The result is a new collection that contains only the elements from the input collec-
tion that satisfy the predicate, as illustrated in figure 5.3.

If you want to keep only people older than 30, you can use filter:

>>> val people = listOf(Person("Alice", 29), Person("Bob", 31))
>>> println(people.filter { it.age > 30 })
[Person(name=Bob, age=31)]

The filter function can remove unwanted elements from a collection, but it doesn’t
change the elements. Transforming elements is where map comes into play.

 The map function applies the given function to each element in the collection and
collects the results into a new collection. You can transform a list of numbers into a list
of their squares, for example:

>>> val list = listOf(1, 2, 3, 4)
>>> println(list.map { it * it })
[1, 4, 9, 16]

The result is a new collection that contains the same number of elements, but each
element is transformed according to the given predicate (see figure 5.4).

If you want to print just a list of names, not a list of people, you can transform the list
using map:

>>> val people = listOf(Person("Alice", 29), Person("Bob", 31))
>>> println(people.map { it.name })
[Alice, Bob]

Note that this example can be nicely rewritten using member references:

people.map(Person::name)

Only even
numbers remain.

Input collection Output collection

1 2 3 4
{ it % 2 == 0 }

filter
... 2 4 ...

Figure 5.3 The filter
function selects elements
matching given predicate

Input collection Output collection

1 4 9 161 2 3 4
{ it * it }

map
... ...

Figure 5.4 The map function
applies a lambda to all
elements in a collection.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

115Functional APIs for collections
You can easily chain several calls like that. For example, let’s print the names of peo-
ple older than 30:

>>> people.filter { it.age > 30 }.map(Person::name)
[Bob]

Now, let’s say you need the names of the oldest people in the group. You can find the
maximum age of the people in the group and return everyone who is that age. It’s
easy to write such code using lambdas:

people.filter { it.age == people.maxBy(Person::age).age }

But note that this code repeats the process of finding the maximum age for every per-
son, so if there are 100 people in the collection, the search for the maximum age will
be performed 100 times!

 The following solution improves on that and calculates the maximum age only once:

val maxAge = people.maxBy(Person::age).age
people.filter { it.age == maxAge }

Don’t repeat a calculation if you don’t need to! Simple-looking code using lambda
expressions can sometimes obscure the complexity of the underlying operations.
Always keep in mind what is happening in the code you write.

 You can also apply the filter and transformation functions to maps:

>>> val numbers = mapOf(0 to "zero", 1 to "one")
>>> println(numbers.mapValues { it.value.toUpperCase() })
{0=ZERO, 1=ONE}

There are separate functions to handle keys and values. filterKeys and mapKeys
filter and transform the keys of a map, respectively, where as filterValues and
mapValues filter and transform the corresponding values.

5.2.2 “all”, “any”, “count”, and “find”: applying a predicate to a collection

Another common task is checking whether all elements in a collection match a certain
condition (or, as a variation, whether any elements match). In Kotlin, this is expressed
through the all and any functions. The count function checks how many elements
satisfy the predicate, and the find function returns the first matching element.

 To demonstrate those functions, let’s define the predicate canBeInClub27 to
check whether a person is 27 or younger:

val canBeInClub27 = { p: Person -> p.age <= 27 }

If you’re interested in whether all the elements satisfy this predicate, you use the all
function:

>>> val people = listOf(Person("Alice", 27), Person("Bob", 31))
>>> println(people.all(canBeInClub27))
false
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

116 CHAPTER 5 Programming with lambdas
If you need to check whether there’s at least one matching element, use any:

>>> println(people.any(canBeInClub27))
true

Note that !all (“not all”) with a condition can be replaced with any with a negation
of that condition, and vice versa. To make your code easier to understand, you should
choose a function that doesn’t require you to put a negation sign before it:

>>> val list = listOf(1, 2, 3)
>>> println(!list.all { it == 3 })
true
>>> println(list.any { it != 3 })
true

The first check ensures that not all elements are equal to 3. That’s the same as having
at least one non-3, which is what you check using any on the second line.

 If you want to know how many elements satisfy this predicate, use count:

>>> val people = listOf(Person("Alice", 27), Person("Bob", 31))
>>> println(people.count(canBeInClub27))
1

To find an element that satisfies the predicate, use the find function:

>>> val people = listOf(Person("Alice", 27), Person("Bob", 31))
>>> println(people.find(canBeInClub27))
Person(name=Alice, age=27)

This returns the first matching element if there are many or null if nothing satisfies
the predicate. A synonym of find is firstOrNull, which you can use if it expresses
the idea more clearly for you.

Using the right function for the job: “count” vs. “size”
It’s easy to forget about count and implement it by filtering the collection and getting
its size:

>>> println(people.filter(canBeInClub27).size)
1

But in this case, an intermediate collection is created to store all the elements that
satisfy the predicate. On the other hand, the count method tracks only the number
of matching elements, not the elements themselves, and is therefore more efficient.

As a general rule, try to find the most appropriate operation that suits your needs.

The negation ! isn’t noticeable, so
it’s better to use “any” in this case.

The condition in the argument
has changed to its opposite.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

117Functional APIs for collections
5.2.3 groupBy: converting a list to a map of groups

Imagine that you need to divide all elements into different groups according to some
quality. For example, you want to group people of the same age. It’s convenient to
pass this quality directly as a parameter. The groupBy function can do this for you:

>>> val people = listOf(Person("Alice", 31),
... Person("Bob", 29), Person("Carol", 31))
>>> println(people.groupBy { it.age })

The result of this operation is a map from the key by which the elements are grouped
(age, in this case) to the groups of elements (persons); see figure 5.5.

For this example, the output is as follows:

{29=[Person(name=Bob, age=29)],
31=[Person(name=Alice, age=31), Person(name=Carol, age=31)]}

Each group is stored in a list, so the result type is Map<Int, List<Person>>. You can
do further modifications with this map, using functions such as mapKeys and
mapValues.

 As another example, let’s see how to group strings by their first character using
member references:

>>> val list = listOf("a", "ab", "b")
>>> println(list.groupBy(String::first))
{a=[a, ab], b=[b]}

Note that first here isn’t a member of the String class, it’s an extension. Neverthe-
less, you can access it as a member reference.

5.2.4 flatMap and flatten: processing elements in nested collections

Now let’s put aside our discussion of people and switch to books. Suppose you have a
storage of books, represented by the class Book:

class Book(val title: String, val authors: List<String>)

Each book was written by one or more authors. You can compute the set of all the
authors in your library:

books.flatMap { it.authors }.toSet()

Input collection Output collection

{ it.age }

groupBy

Alice, 31 Bob, 29

Alice, 31

29

31 Carol, 31

Bob, 29

Carol, 31

Figure 5.5 The result
of applying the
groupBy function

Set of all authors who wrote
books in the “books” collection
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

118 CHAPTER 5 Programming with lambdas
The flatMap function does two things: At first it trans-
forms (or maps) each element to a collection according to
the function given as an argument, and then it combines
(or flattens) several lists into one. An example with strings
illustrates this concept well (see figure 5.6):

>>> val strings = listOf("abc", "def")
>>> println(strings.flatMap { it.toList() })
[a, b, c, d, e, f]

The toList function on a string converts it into a list of
characters. If you used the map function together with
toList, you’d get a list of lists of characters, as shown in
the second row in the figure. The flatMap function does the following step as well,
and returns one list consisting of all the elements.

 Let’s return to the authors:

>>> val books = listOf(Book("Thursday Next", listOf("Jasper Fforde")),
... Book("Mort", listOf("Terry Pratchett")),
... Book("Good Omens", listOf("Terry Pratchett",
... "Neil Gaiman")))
>>> println(books.flatMap { it.authors }.toSet())
[Jasper Fforde, Terry Pratchett, Neil Gaiman]

Each book can be written by multiple authors, and the book.authors property
stores the collection of authors. The flatMap function combines the authors of all
the books in a single, flat list. The toSet call removes duplicates from the resulting
collection—so, in this example, Terry Pratchett is listed only once in the output.

 You may think of flatMap when you’re stuck with a collection of collections of ele-
ments that have to be combined into one. Note that if you don’t need to transform
anything and just need to flatten such a collection, you can use the flatten function:
listOfLists.flatten().

 We’ve highlighted a few of the collection operation functions in the Kotlin stan-
dard library, but there are many more. We won’t cover them all, for reasons of space,
and also because showing a long list of functions is boring. Our general advice when
you write code that works with collections is to think of how the operation could be
expressed as a general transformation, and to look for a library function that per-
forms such a transformation. It’s likely that you’ll be able to find one and use it to
solve your problem more quickly than with a manual implementation.

 Now let’s take a closer look at the performance of code that chains collection oper-
ations. In the next section, you’ll see the different ways in which such operations can
be executed.

5.3 Lazy collection operations: sequences
In the previous section, you saw several examples of chained collection functions,
such as map and filter. These functions create intermediate collections eagerly,

a b c

“abc”

d e f

a b c d e f

“def”

map

flatten

Figure 5.6 The result of
applying the flatMap
function
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

119Lazy collection operations: sequences
meaning the intermediate result of each step is stored in a temporary list. Sequences
give you an alternative way to perform such computations that avoids the creation of
intermediate temporary objects.

 Here’s an example:

people.map(Person::name).filter { it.startsWith("A") }

The Kotlin standard library reference says that both filter and map return a list. That
means this chain of calls will create two lists: one to hold the results of the filter
function and another for the results of map. This isn’t a problem when the source list
contains two elements, but it becomes much less efficient if you have a million.

 To make this more efficient, you can convert the operation so it uses sequences
instead of using collections directly:

people.asSequence()
.map(Person::name)
.filter { it.startsWith("A") }
.toList()

The result of applying this operation is the same as in the previous example: a list of
people’s names that start with the letter A. But in the second example, no intermedi-
ate collections to store the elements are created, so performance for a large number
of elements will be noticeably better.

 The entry point for lazy collection operations in Kotlin is the Sequence interface.
The interface represents just that: a sequence of elements that can be enumerated
one by one. Sequence provides only one method, iterator, that you can use to
obtain the values from the sequence.

 The strength of the Sequence interface is in the way operations on it are imple-
mented. The elements in a sequence are evaluated lazily. Therefore, you can use
sequences to efficiently perform chains of operations on elements of a collection with-
out creating collections to hold intermediate results of the processing.

 You can convert any collection to a sequence by calling the extension function
asSequence. You call toList for backward conversion.

 Why do you need to convert the sequence back to a collection? Wouldn’t it be
more convenient to use sequences instead of collections, if they’re so much better?
The answer is: sometimes. If you only need to iterate over the elements in a sequence,
you can use the sequence directly. If you need to use other API methods, such as
accessing the elements by index, then you need to convert the sequence to a list.

NOTE As a rule, use a sequence whenever you have a chain of operations on a
large collection. In section 8.2, we’ll discuss why eager operations on regular
collections are efficient in Kotlin, in spite of creating intermediate collec-
tions. But if the collection contains a large number of elements, the interme-
diate rearranging of elements costs a lot, so lazy evaluation is preferable.

Converts the initial
collection to Sequence

Sequences support the
same API as collections.

Converts the resulting
Sequence back into a list
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

120 CHAPTER 5 Programming with lambdas
Because operations on a sequence are lazy, in order to perform them, you need to
iterate over the sequence’s elements directly or by converting it to a collection. The
next section explains that.

5.3.1 Executing sequence operations: intermediate and terminal operations

Operations on a sequence are divided into two categories: intermediate and terminal.
An intermediate operation returns another sequence, which knows how to transform the
elements of the original sequence. A terminal operation returns a result, which may be a
collection, an element, a number, or any other object that’s somehow obtained by the
sequence of transformations of the initial collection (see figure 5.7).

Intermediate operations are always lazy. Look at this example, where the terminal
operation is missing:

>>> listOf(1, 2, 3, 4).asSequence()
... .map { print("map($it) "); it * it }
... .filter { print("filter($it) "); it % 2 == 0 }

Executing this code snippet prints nothing to the console. That means the map and
filter transformations are postponed and will be applied only when the result is
obtained (that is, when the terminal operation is called):

>>> listOf(1, 2, 3, 4).asSequence()
... .map { print("map($it) "); it * it }
... .filter { print("filter($it) "); it % 2 == 0 }
... .toList()
map(1) filter(1) map(2) filter(4) map(3) filter(9) map(4) filter(16)

The terminal operation causes all the postponed computations to be performed.
 One more important thing to notice in this example is the order in which the com-

putations are performed. The naive approach would be to call the map function on
each element first and then call the filter function on each element of the resulting
sequence. That’s how map and filter work on collections, but not on sequences. For
sequences, all operations are applied to each element sequentially: the first element is
processed (mapped, then filtered), then the second element is processed, and so on.

 This approach means some elements aren’t transformed at all if the result is
obtained before they are reached. Let’s look at an example with map and find

Intermediate operations

Terminal operation

sequence.map { ... }.filter { ... }.toList()

Figure 5.7 Intermediate and terminal
operations on sequences
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

121Lazy collection operations: sequences
operations. First you map a number to its square, and then you find the first item
that’s greater than 3:

>>> println(listOf(1, 2, 3, 4).asSequence()
.map { it * it }.find { it > 3 })

4

If the same operations are applied to
a collection instead of a sequence,
then the result of map is evaluated
first, transforming all elements in the
initial collection. In the second step,
an element satisfying the predicate is
found in the intermediate collection.
With sequences, the lazy approach
means you can skip processing some
of the elements. Figure 5.8 illustrates
the difference between evaluating this
code in an eager (using collections)
and lazy (using sequences) manner.

 In the first case, when you work
with collections, the list is trans-
formed into another list, so the map transformation is applied to each element,
including 3 and 4. Afterward, the first element satisfying the predicate is found: the
square of 2.

 In the second case, the find call begins processing the elements one by one. You
take a number from the original sequence, transform it with map, and then check
whether it matches the predicate passed to find. When you reach 2, you see that its
square is greater than 3 and return it as the result of the find operation. You don’t
need to look at 3 and 4, because the result was found before you reached them.

 The order of the operations you perform on a collection can affect performance
as well. Imagine that you have a collection of people, and you want to print their
names if they’re shorter than a certain limit. You need to do two things: map each per-
son to their name, and then filter out those names that aren’t short enough. You can
apply map and filter operations in any order in this case. Both approaches give the
same result, but they differ in the total number of transformations that should be per-
formed (see figure 5.9).

>>> val people = listOf(Person("Alice", 29), Person("Bob", 31),
... Person("Charles", 31), Person("Dan", 21))
>>> println(people.asSequence().map(Person::name)
... .filter { it.length < 4 }.toList())
[Bob, Dan]
>>> println(people.asSequence().filter { it.name.length < 4 }
... .map(Person::name).toList())
[Bob, Dan]

Eager

1 2 3 4 ...

1 4 9 16

1 4

Result

...

Lazy

1 2 3 4 ...

1 4

1 4

Result

map

find

1 1

Figure 5.8 Eager evaluation runs each operation on
the entire collection; lazy evaluation processes
elements one by one.

“map” goes first,
then “filter”.

“map” goes
after “filter”.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

122 CHAPTER 5 Programming with lambdas

Figure 5.9 Applying filter
first helps to reduce the total
number of transformations.

If map goes first, each element is transformed. If you apply filter first, inappropriate
elements are filtered out as soon as possible and aren’t transformed.

5.3.2 Creating sequences

The previous examples used the same method to create a sequence: you called
asSequence() on a collection. Another possibility is to use the generateSequence
function. This function calculates the next element in a sequence given the previous
one. For example, here’s how you can use generateSequence to calculate the sum
of all natural numbers up to 100.

>>> val naturalNumbers = generateSequence(0) { it + 1 }
>>> val numbersTo100 = naturalNumbers.takeWhile { it <= 100 }
>>> println(numbersTo100.sum())
5050

Note that naturalNumbers and numbersTo100 in this example are both sequences
with postponed computation. The actual numbers in those sequences won’t be evalu-
ated until you call the terminal operation (sum in this case).

 Another common use case is a sequence of parents. If an element has parents of its
own type (such as a human being or a Java file), you may be interested in qualities of
the sequence of all of its ancestors. In the following example, you inquire whether the

Streams vs. sequences
If you’re familiar with Java 8 streams, you’ll see that sequences are exactly the same
concept. Kotlin provides its own version of the same concept because Java 8
streams aren’t available on platforms built on older versions of Java, such as
Android. If you’re targeting Java 8, streams give you one big feature that isn’t cur-
rently implemented for Kotlin collections and sequences: the ability to run a stream
operation (such as map or filter) on multiple CPUs in parallel. You can choose
between streams and sequences based on the Java versions you target and your spe-
cific requirements.

Listing 5.12 Generating and using a sequence of natural numbers

A B C D ...

...

...

A' B'

B'

C' D'

D'

A B C D

B D

...

...

...B' D'

filter

map

map

filter

All the delayed operations are performed
when the result “sum” is obtained.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

123Using Java functional interfaces
file is located in a hidden directory by generating a sequence of its parent directories
and checking this attribute on each of the directories.

fun File.isInsideHiddenDirectory() =
generateSequence(this) { it.parentFile }.any { it.isHidden }

>>> val file = File("/Users/svtk/.HiddenDir/a.txt")
>>> println(file.isInsideHiddenDirectory())
true

Once again, you generate a sequence by providing the first element and a way to get
each subsequent element. By replacing any with find, you’ll get the desired direc-
tory. Note that using sequences allows you to stop traversing the parents as soon as you
find the required directory.

 We’ve thoroughly discussed a frequently used application of lambda expressions:
using them to simplify manipulating collections. Now let’s continue with another
important topic: using lambdas with an existing Java API.

5.4 Using Java functional interfaces
Using lambdas with Kotlin libraries is nice, but the majority of APIs that you work with
are probably written in Java, not Kotlin. The good news is that Kotlin lambdas are fully
interoperable with Java APIs; in this section, you’ll see exactly how this works.

 At the beginning of the chapter, you saw an example of passing a lambda to a Java
method:

button.setOnClickListener { /* actions on click */ }

The Button class sets a new listener to a button via an setOnClickListener
method that takes an argument of type OnClickListener:

/* Java */
public class Button {

public void setOnClickListener(OnClickListener l) { ... }
}

The OnClickListener interface declares one method, onClick:

/* Java */
public interface OnClickListener {

void onClick(View v);
}

In Java (prior to Java 8), you have to create a new instance of an anonymous class to
pass it as an argument to the setOnClickListener method:

button.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {

Listing 5.13 Generating and using a sequence of parent directories

Passes the lambda
as an argument
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

124 CHAPTER 5 Programming with lambdas
...
}

}

In Kotlin, you can pass a lambda instead:

button.setOnClickListener { view -> ... }

The lambda used to implement OnClickListener has one parameter of type View,
as in the onClick method. The mapping is illustrated in figure 5.10.

Figure 5.10 Parameters of the lambda correspond to method parameters.

This works because the OnClickListener interface has only one abstract method.
Such interfaces are called functional interfaces, or SAM interfaces, where SAM stands for
single abstract method. The Java API is full of functional interfaces like Runnable and
Callable, as well as methods working with them. Kotlin allows you to use lambdas
when calling Java methods that take functional interfaces as parameters, ensuring that
your Kotlin code remains clean and idiomatic.

NOTE Unlike Java, Kotlin has proper function types. Because of that, Kotlin
functions that need to take lambdas as parameters should use function types,
not functional interface types, as the types of those parameters. Automatic
conversion of lambdas to objects implementing Kotlin interfaces isn’t sup-
ported. We’ll discuss the use of function types in function declarations in sec-
tion 8.1.

Let’s look in detail at what happens when you pass a lambda to a method that expects
an argument of a functional interface type.

5.4.1 Passing a lambda as a parameter to a Java method

You can pass a lambda to any Java method that expects a functional interface. For
example, consider this method, which has a parameter of type Runnable:

/* Java */
void postponeComputation(int delay, Runnable computation);

In Kotlin, you can invoke it and pass a lambda as an argument. The compiler will auto-
matically convert it into an instance of Runnable:

postponeComputation(1000) { println(42) }

Note that when we say “an instance of Runnable,” what we mean is “an instance of an
anonymous class implementing Runnable.” The compiler will create that for you and

public interface OnClickListener {
 void onClick(View v); { view -> ... }
}

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

125Using Java functional interfaces
will use the lambda as the body of the single abstract method—the run method, in
this case.

 You can achieve the same effect by creating an anonymous object that implements
Runnable explicitly:

postponeComputation(1000, object : Runnable {
override fun run() {

println(42)
}

})

But there’s a difference. When you explicitly declare an object, a new instance is cre-
ated on each invocation. With a lambda, the situation is different: if the lambda
doesn’t access any variables from the function where it’s defined, the corresponding
anonymous class instance is reused between calls:

postponeComputation(1000) { println(42) }

Therefore, the equivalent implementation with an explicit object declaration is the
following snippet, which stores the Runnable instance in a variable and uses it for
every invocation:

val runnable = Runnable { println(42) }
fun handleComputation() {

postponeComputation(1000, runnable)
}

If the lambda captures variables from the surrounding scope, it’s no longer possible to
reuse the same instance for every invocation. In that case, the compiler creates a new
object for every call and stores the values of the captured variables in that object. For
example, in the following function, every invocation uses a new Runnable instance,
storing the id value as a field:

fun handleComputation(id: String) {
postponeComputation(1000) { println(id) }

}

Lambda implementation details
As of Kotlin 1.0, every lambda expression is compiled into an anonymous class,
unless it’s an inline lambda. Support for generating Java 8 bytecode is planned for
later versions of Kotlin. Once implemented, it will allow the compiler to avoid gener-
ating a separate .class file for every lambda expression.

If a lambda captures variables, the anonymous class will have a field for each cap-
tured variable, and a new instance of that class will be created for every invocation.

Passes an object expression
as an implementation of a
functional interface

One instance of Runnable is
created for the entire program.

Compiled to a global variable;
only one instance in the program

One object is used for every
handleComputation call.

Captures the variable
“id” in a lambda

Creates a new instance of Runnable
on each handleComputation call
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

126 CHAPTER 5 Programming with lambdas
Note that the discussion of creating an anonymous class and an instance of this class
for a lambda is valid for Java methods expecting functional interfaces, but does not
apply to working with collections using Kotlin extension methods. If you pass a
lambda to the Kotlin function that’s marked inline, no anonymous classes are cre-
ated. And most of the library functions are marked inline. Details of how this works
are discussed in section 8.2.

 As you’ve seen, in most cases the conversion of a lambda to an instance of a func-
tional interface happens automatically, without any effort on your part. But there are
cases when you need to perform the conversion explicitly. Let’s see how to do that.

5.4.2 SAM constructors: explicit conversion of lambdas to
functional interfaces

A SAM constructor is a compiler-generated function that lets you perform an explicit con-
version of a lambda into an instance of a functional interface. You can use it in contexts
when the compiler doesn’t apply the conversion automatically. For instance, if you have
a method that returns an instance of a functional interface, you can’t return a lambda
directly; you need to wrap it into a SAM constructor. Here’s a simple example.

fun createAllDoneRunnable(): Runnable {
return Runnable { println("All done!") }

}

>>> createAllDoneRunnable().run()
All done!

(continued)

Otherwise, a single instance will be created. The name of the class is derived by add-
ing a suffix from the name of the function in which the lambda is declared: Handle-
Computation$1, for this example.

Here’s what you’ll see if you decompile the code of the previous lambda expression:

class HandleComputation$1(val id: String) : Runnable {
override fun run() {

println(id)
}

}
fun handleComputation(id: String) {

postponeComputation(1000, HandleComputation$1(id))
}

As you can see, the compiler generates a field and a constructor parameter for each
captured variable.

Listing 5.14 Using a SAM constructor to return a value

Under the hood, instead of
a lambda, an instance

of a special class is created.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

127Using Java functional interfaces
The name of the SAM constructor is the same as the name of the underlying func-
tional interface. The SAM constructor takes a single argument—a lambda that will be
used as the body of the single abstract method in the functional interface—and
returns an instance of the class implementing the interface.

 In addition to returning values, SAM constructors are used when you need to store
a functional interface instance generated from a lambda in a variable. Suppose you
want to reuse one listener for several buttons, as in the following listing (in an
Android application, this code can be a part of the Activity.onCreate method).

val listener = OnClickListener { view ->
val text = when (view.id) {

R.id.button1 -> "First button"
R.id.button2 -> "Second button"
else -> "Unknown button"

}
toast(text)

}
button1.setOnClickListener(listener)
button2.setOnClickListener(listener)

listener checks which button was the source of the click and behaves accordingly.
You could define a listener by using an object declaration that implements OnClick-
Listener, but SAM constructors give you a more concise option.

Also, even though SAM conversion in method calls typically happens automatically,
there are cases when the compiler can’t choose the right overload when you pass a
lambda as an argument to an overloaded method. In those cases, applying an explicit
SAM constructor is a good way to resolve the compilation error.

 To finish our discussion of lambda syntax and usage, let’s look at lambdas with
receivers and how they’re used to define convenient library functions that look like
built-in constructs.

Listing 5.15 Using a SAM constructor to reuse a listener instance

Lambdas and adding/removing listeners
Note that there’s no this in a lambda as there is in an anonymous object: there’s
no way to refer to the anonymous class instance into which the lambda is converted.
From the compiler’s point of view, the lambda is a block of code, not an object, and
you can’t refer to it as an object. The this reference in a lambda refers to a sur-
rounding class.

If your event listener needs to unsubscribe itself while handling an event, you can’t
use a lambda for that. Use an anonymous object to implement a listener, instead. In
an anonymous object, the this keyword refers to the instance of that object, and
you can pass it to the API that removes the listener.

Uses view.id to determine
which button was clicked

Shows the value of
“text” to the user
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

128 CHAPTER 5 Programming with lambdas

C
o

5.5 Lambdas with receivers: “with” and “apply”
This section demonstrates the with and apply functions from the Kotlin standard
library. These functions are convenient, and you’ll find many uses for them even with-
out understanding how they’re declared. Later, in section 11.2.1, you’ll see how you
can declare similar functions for your own needs. The explanations in this section,
however, help you become familiar with a unique feature of Kotlin’s lambdas that isn’t
available with Java: the ability to call methods of a different object in the body of a
lambda without any additional qualifiers. Such lambdas are called lambdas with receiv-
ers. Let’s begin by looking at the with function, which uses a lambda with a receiver.

5.5.1 The “with” function

Many languages have special statements you can use to perform multiple operations
on the same object without repeating its name. Kotlin also has this facility, but it’s pro-
vided as a library function called with, not as a special language construct.

 To see how it can be useful, consider the following example, which you’ll then
refactor using with.

fun alphabet(): String {
val result = StringBuilder()
for (letter in 'A'..'Z') {

result.append(letter)
}
result.append("\nNow I know the alphabet!")
return result.toString()

}
>>> println(alphabet())
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Now I know the alphabet!

In this example, you call several different methods on the result instance and
repeating the result name in each call. This isn’t too bad, but what if the expression
you were using was longer or repeated more often?

 Here’s how you can rewrite the code using with.

fun alphabet(): String {
val stringBuilder = StringBuilder()
return with(stringBuilder) {

for (letter in 'A'..'Z') {
this.append(letter)

}
append("\nNow I know the alphabet!")
this.toString()

}
}

Listing 5.16 Building the alphabet

Listing 5.17 Using with to build the alphabet

Specifies the receiver value on
which you’re calling the methods

Calls a method on the receiver
value though an explicit “this”

alls a method,
mitting “this”

Returns a value
from the lambda
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

129Lambdas with receivers: “with” and “apply”
The with structure looks like a special construct, but it’s a function that takes two
arguments: stringBuilder, in this case, and a lambda. The convention of putting
the lambda outside of the parentheses works here, and the entire invocation looks
like a built-in feature of the language. Alternatively, you could write this as
with(stringBuilder, { … }), but it’s less readable.

 The with function converts its first argument into a receiver of the lambda that’s
passed as a second argument. You can access this receiver via an explicit this refer-
ence. Alternatively, as usual for a this reference, you can omit it and access methods
or properties of this value without any additional qualifiers.

 In listing 5.17, this refers to stringBuilder, which is passed to with as the first
argument. You can access methods on stringBuilder via explicit this references,
as in this.append(letter); or directly, as in append("\nNow…").

Let’s refactor the initial alphabet function even further and get rid of the extra
stringBuilder variable.

fun alphabet() = with(StringBuilder()) {
for (letter in 'A'..'Z') {

append(letter)
}
append("\nNow I know the alphabet!")
toString()

}

This function now only returns an expression, so it’s rewritten using the expression-
body syntax. You create a new instance of StringBuilder and pass it directly as an
argument, and then you reference it without the explicit this in the lambda.

Lambdas with receiver and extension functions
You may recall that you saw a similar concept with this referring to the function
receiver. In the body of an extension function, this refers to the instance of the type
the function is extending, and it can be omitted to give you direct access to the
receiver’s members.

Note that an extension function is, in a sense, a function with a receiver. The follow-
ing analogy can be applied:

A lambda is a way to define behavior similar to a regular function. A lambda with a
receiver is a way to define behavior similar to an extension function.

Listing 5.18 Using with and an expression body to build the alphabet

Regular function Regular lambda

Extension function Lambda with a receiver
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

130 CHAPTER 5 Programming with lambdas
The value that with returns is the result of executing the lambda code. The result is
the last expression in the lambda. But sometimes you want the call to return the
receiver object, not the result of executing the lambda. That’s where the apply
library function can be of use.

5.5.2 The “apply” function

The apply function works almost exactly the same as with; the only difference is that
apply always returns the object passed to it as an argument (in other words, the
receiver object). Let’s refactor the alphabet function again, this time using apply.

fun alphabet() = StringBuilder().apply {
for (letter in 'A'..'Z') {

append(letter)
}
append("\nNow I know the alphabet!")

}.toString()

The apply function is declared as an extension function. Its receiver becomes the
receiver of the lambda passed as an argument. The result of executing apply is
StringBuilder, so you call toString to convert it to String afterward.

 One of many cases where this is useful is when you’re creating an instance of an
object and need to initialize some properties right away. In Java, this is usually accom-
plished through a separate Builder object; and in Kotlin, you can use apply on any
object without any special support from the library where the object is defined.

 To see how apply is used for such cases, let’s look at an example that creates an
Android TextView component with some custom attributes.

fun createViewWithCustomAttributes(context: Context) =
TextView(context).apply {

text = "Sample Text"
textSize = 20.0

Method-name conflicts
What happens if the object you pass as a parameter to with has a method with the
same name as the class in which you’re using with? In this case, you can add an
explicit label to the this reference to specify which method you need to call.

Imagine that the alphabet function is a method of the class OuterClass. If you
need to refer to the toString method defined in the outer class instead of the one
in StringBuilder, you can do so using the following syntax:

this@OuterClass.toString()

Listing 5.19 Using apply to build the alphabet

Listing 5.20 Using apply to initialize a TextView
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

131Summary
setPadding(10, 0, 0, 0)
}

The apply function allows you to use the compact expression body style for the func-
tion. You create a new TextView instance and immediately pass it to apply. In the
lambda passed to apply, the TextView instance becomes the receiver, so you can call
methods and set properties on it. After the lambda is executed, apply returns that
instance, which is already initialized; it becomes the result of the createViewWith-
CustomAttributes function.

 The with and apply functions are basic generic examples of using lambdas with
receivers. More specific functions can also use the same pattern. For example, you can
simplify the alphabet function even further by using the buildString standard
library function, which will take care of creating a StringBuilder and calling
toString. The argument of buildString is a lambda with a receiver, and the
receiver is always a StringBuilder.

fun alphabet() = buildString {
for (letter in 'A'..'Z') {

append(letter)
}
append("\nNow I know the alphabet!")

}

The buildString function is an elegant solution for the task of creating a String
with the help of StringBuilder.

 You’ll see more interesting examples in chapter 11, when we begin discussing
domain-specific languages. Lambdas with receivers are great tools for building DSLs;
we’ll show you how to use them for that purpose and how to define your own func-
tions that call lambdas with receivers.

5.6 Summary
 Lambdas allow you to pass chunks of code as arguments to functions.
 Kotlin lets you pass lambdas to functions outside of parentheses and refer to a

single lambda parameter as it.
 Code in a lambda can access and modify variables in the function containing

the call to the lambda.
 You can create references to methods, constructors, and properties by prefixing

the name of the function with ::, and pass such references to functions instead
of lambdas.

 Most common operations with collections can be performed without manually
iterating over elements, using functions such as filter, map, all, any, and
so on.

Listing 5.21 Using buildString to build the alphabet
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

132 CHAPTER 5 Programming with lambdas
 Sequences allow you to combine multiple operations on a collection without
creating collections to hold intermediate results.

 You can pass lambdas as arguments to methods that take a Java functional inter-
face (an interface with a single abstract method, also known as a SAM interface)
as a parameter.

 Lambdas with receivers are lambdas in which you can directly call methods on a
special receiver object.

 The with standard library function allows you to call multiple methods on the
same object without repeating the reference to the object. apply lets you con-
struct and initialize any object using a builder-style API.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

The Kotlin type system
By now, you’ve seen a large part of Kotlin’s syntax in action. You’ve moved beyond
creating Java-equivalent code in Kotlin and are ready to enjoy some of Kotlin’s pro-
ductivity features that can make your code more compact and readable.

 Let’s slow down a bit and take a closer look at one of the most important parts
of Kotlin: its type system. Compared to Java, Kotlin’s type system introduces several
new features that are essential for improving the reliability of your code, such as
support for nullable types and read-only collections. It also removes some of the features
of the Java type system that have turned out to be unnecessary or problematic, such
as first-class support for arrays. Let’s look at the details.

6.1 Nullability
Nullability is a feature of the Kotlin type system that helps you avoid
NullPointerException errors. As a user of a program, you’ve probably seen an
error message similar to “An error has occurred: java.lang.NullPointerException,”

This chapter covers
 Nullable types and syntax for dealing with nulls

 Primitive types and their correspondence to the
Java types

 Kotlin collections and their relationship to Java
133

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

134 CHAPTER 6 The Kotlin type system
with no additional details. Another version is a message like “Unfortunately, the appli-
cation X has stopped,” which often also conceals a NullPointerException as a
cause. Such errors can be troublesome for both users and developers.

 The approach of modern languages, including Kotlin, is to convert these problems
from runtime errors into compile-time errors. By supporting nullability as part of the
type system, the compiler can detect many possible errors during compilation and
reduce the possibility of having exceptions thrown at runtime.

 In this section, we’ll discuss nullable types in Kotlin: how Kotlin marks values that
are allowed to be null, and the tools Kotlin provides to deal with such values. Moving
beyond that, we’ll cover the details of mixing Kotlin and Java code with respect to
nullable types.

6.1.1 Nullable types

The first and probably most important difference between Kotlin’s and Java’s type sys-
tems is Kotlin’s explicit support for nullable types. What does this mean? It’s a way to
indicate which variables or properties in your program are allowed to be null. If a
variable can be null, calling a method on it isn’t safe, because it can cause a
NullPointerException. Kotlin disallows such calls and thereby prevents many pos-
sible exceptions. To see how this works in practice, let’s look at the following Java func-
tion:

/* Java */
int strLen(String s) {

return s.length();
}

Is this function safe? If the function is called with a null argument, it will throw a
NullPointerException. Do you need to add a check for null to the function? It
depends on the function’s intended use.

 Let’s try to rewrite this function in Kotlin. The first question you must answer is, do
you expect the function to be called with a null argument? We mean not only the
null literal directly, as in strLen(null), but also any variable or other expression
that may have the value null at runtime.

 If you don’t expect it to happen, you declare this function in Kotlin as follows:

fun strLen(s: String) = s.length

Calling strLen with an argument that may be null isn’t allowed and will be flagged
as error at compile time:

>>> strLen(null)
ERROR: Null can not be a value of a non-null type String

The parameter is declared as type String, and in Kotlin this means it must always
contain a String instance. The compiler enforces that, so you can’t pass an argument
containing null. This gives you the guarantee that the strLen function will never
throw a NullPointerException at runtime.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

135Nullability
 If you want to allow the use of this function with all arguments, including those
that can be null, you need to mark it explicitly by putting a question mark after the
type name:

fun strLenSafe(s: String?) = ...

You can put a question mark after any type, to
indicate that the variables of this type can store
null references: String?, Int?, MyCustom-
Type?, and so on (see figure 6.1).

 To reiterate, a type without a question mark denotes that variables of this type can’t
store null references. This means all regular types are non-null by default, unless
explicitly marked as nullable.

 Once you have a value of a nullable type, the set of operations you can perform on
it is restricted. For example, you can no longer call methods on it:

>>> fun strLenSafe(s: String?) = s.length()
ERROR: only safe (?.) or non-null asserted (!!.) calls are allowed
on a nullable receiver of type kotlin.String?

You can’t assign it to a variable of a non-null type:

>>> val x: String? = null
>>> var y: String = x
ERROR: Type mismatch: inferred type is String? but String was expected

You can’t pass a value of a nullable type as an argument to a function having a non-
null parameter:

>>> strLen(x)
ERROR: Type mismatch: inferred type is String? but String was expected

So what can you do with it? The most important thing is to compare it with null. And
once you perform the comparison, the compiler remembers that and treats the value
as being non-null in the scope where the check has been performed. For example,
this code is perfectly valid.

fun strLenSafe(s: String?): Int =
if (s != null) s.length else 0

>>> val x: String? = null
>>> println(strLenSafe(x))
0
>>> println(strLenSafe("abc"))
3

If using if checks was the only tool for tackling nullability, your code would become
verbose fairly quickly. Fortunately, Kotlin provides a number of other tools to help deal

Listing 6.1 Handling null values using if checks

Type? Type null= or

Figure 6.1 A variable of a nullable type
can store a null reference

By adding the check for null,
the code now compiles.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

136 CHAPTER 6 The Kotlin type system
with nullable values in a more concise manner. But before we look at those tools, let’s
spend time discussing the meaning of nullability and what variable types are.

6.1.2 The meaning of types

Let’s think about the most general questions: what are types, and why do variables
have them? The Wikipedia article on types (http://en.wikipedia.org/wiki/Data_type)
gives a pretty good answer to what a type is: “A type is a classification … that deter-
mines the possible values for that type, and the operations that can be done on values
of that type.”

 Let’s try to apply this definition to some of the Java types, starting with the double
type. As you know, a double is a 64-bit floating-point number. You can perform stan-
dard mathematical operations on these values. All of those functions are equally appli-
cable to all values of type double. Therefore, if you have a variable of type double,
then you can be certain that any operation on its value that’s allowed by the compiler
will execute successfully.

 Now let’s contrast this with a variable of type String. In Java, such a variable can
hold one of two kinds of values: an instance of the class String or null. Those kinds
of values are completely unlike each other: even Java’s own instanceof operator will
tell you that null isn’t a String. The operations that can be done on the value of the
variable are also completely different: an actual String instance allows you to call any
methods on the string, whereas a null value allows only a limited set of operations.

 This means Java’s type system isn’t doing a good job in this case. Even though the
variable has a declared type—String—you don’t know what you can do with values of
this variable unless you perform additional checks. Often, you skip those checks
because you know from the general flow of data in your program that a value can’t be
null at a certain point. Sometimes you’re wrong, and your program then crashes with
a NullPointerException.

Other ways to cope with NullPointerException errors
Java has some tools to help solve the problem of NullPointerException. For
example, some people use annotations (such as @Nullable and @NotNull) to
express the nullability of values. There are tools (for example, IntelliJ IDEA’s built-in
code inspections) that can use these annotations to detect places where a
NullPointerException can be thrown. But such tools aren’t part of the standard
Java compilation process, so it’s hard to ensure that they’re applied consistently. It’s
also difficult to annotate the entire codebase, including the libraries used by the proj-
ect, so that all possible error locations can be detected. Our own experience at Jet-
Brains shows that even widespread use of nullability annotations in Java doesn’t
completely solve the problem of NPEs.

Another path to solving this problem is to never use null values in code and to use
a special wrapper type, such as the Optional type introduced in Java 8, to represent
values that may or may not be defined. This approach has several downsides: the code
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://en.wikipedia.org/wiki/Data_type

137Nullability
Nullable types in Kotlin provide a comprehensive solution to this problem. Distin-
guishing nullable and non-null types provides a clear understanding of what opera-
tions are allowed on the value and what operations can lead to exceptions at runtime
and are therefore forbidden.

NOTE Objects of nullable or non-null types at runtime are the same; a
nullable type isn’t a wrapper for a non-null type. All checks are performed at
compilation time. That means there’s no runtime overhead for working with
nullable types in Kotlin.

Now let’s see how to work with nullable types in Kotlin and why dealing with them is
by no means annoying. We’ll start with the special operator for safely accessing a
nullable value.

6.1.3 Safe call operator: “?.”

One of the most useful tools in Kotlin’s arsenal is the safe-call operator: ?., which
allows you to combine a null check and a method call into a single operation. For
example, the expression s?.toUpperCase() is equivalent to the following, more
cumbersome one: if (s != null) s.toUpperCase() else null.

 In other words, if the value on which you’re trying to call the method isn’t null,
the method call is executed normally. If it’s null, the call is skipped, and null is used
as the value instead. Figure 6.2 illustrates.

Note that the result type of such an invocation is nullable. Although String.toUp-
perCase returns a value of type String, the result type of an expression s?.toUp-
perCase() when s is nullable will be String?:

fun printAllCaps(s: String?) {
val allCaps: String? = s?.toUpperCase()
println(allCaps)

}

gets more verbose, the extra wrapper instances affect performance at runtime, and it’s
not used consistently across the entire ecosystem. Even if you do use Optional
everywhere in your own code, you’ll still need to deal with null values returned from
methods of the JDK, the Android framework, and other third-party libraries.

foo.bar()

foo?.bar()

null

foo != null

foo == null Figure 6.2 The safe-call operator calls
methods only on non-null values.

allCaps may
be null.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

138 CHAPTER 6 The Kotlin type system
>>> printAllCaps("abc")
ABC
>>> printAllCaps(null)
null

Safe calls can be used for accessing properties as well, not just for method calls. The
following example shows a simple Kotlin class with a nullable property and demon-
strates the use of a safe-call operator for accessing that property.

class Employee(val name: String, val manager: Employee?)

fun managerName(employee: Employee): String? = employee.manager?.name

>>> val ceo = Employee("Da Boss", null)
>>> val developer = Employee("Bob Smith", ceo)
>>> println(managerName(developer))
Da Boss
>>> println(managerName(ceo))
null

If you have an object graph in which multiple properties have nullable types, it’s often
convenient to use multiple safe calls in the same expression. Say you store information
about a person, their company, and the address of the company using different classes.
Both the company and its address may be omitted. With the ?. operator, you can access
the country property for a Person in one line, without any additional checks.

class Address(val streetAddress: String, val zipCode: Int,
val city: String, val country: String)

class Company(val name: String, val address: Address?)

class Person(val name: String, val company: Company?)

fun Person.countryName(): String {
val country = this.company?.address?.country
return if (country != null) country else "Unknown"

}
>>> val person = Person("Dmitry", null)
>>> println(person.countryName())
Unknown

Sequences of calls with null checks are a common sight in Java code, and you’ve now
seen how Kotlin makes them more concise. But listing 6.3 contains unnecessary repe-
tition: you’re comparing a value to null and returning either that value or something
else if it’s null. Let’s see if Kotlin can help get rid of that repetition.

Listing 6.2 Using safe calls to deal with nullable properties

Listing 6.3 Chaining multiple safe-call operators

Several safe-call
operators can be in a chain.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

139Nullability
6.1.4 Elvis operator: “?:”

Kotlin has a handy operator to provide default values instead of null. It’s called the
Elvis operator (or the null-coalescing operator, if you prefer more serious-sounding names
for things). It looks like this: ?: (you can visualize it being Elvis if you turn your head
sideways). Here’s how it’s used:

fun foo(s: String?) {
val t: String = s ?: ""

}

The operator takes two values, and its result is the first value if it isn’t null or the sec-
ond value if the first one is null. Figure 6.3 shows how it works.

The Elvis operator is often used together with the safe-call operator to substitute a
value other than null when the object on which the method is called is null. Here’s
how you can use this pattern to simplify listing 6.1.

fun strLenSafe(s: String?): Int = s?.length ?: 0

>>> println(strLenSafe("abc"))
3
>>> println(strLenSafe(null))
0

The countryName function from listing 6.3 also fits on one line now.

fun Person.countryName() =
company?.address?.country ?: "Unknown"

What makes the Elvis operator particularly handy in Kotlin is that operations such as
return and throw work as expressions and therefore can be used on the operator’s
right side. In that case, if the value on the left side is null, the function will immedi-
ately return a value or throw an exception. This is helpful for checking preconditions
in a function.

Listing 6.4 Using the Elvis operator to deal with null values

If “s” is null, the result
is an empty string.

foo

foo ?: bar

bar

foo != null

foo == null Figure 6.3 The Elvis operator substitutes
a specified value for null.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

140 CHAPTER 6 The Kotlin type system
 Let’s see how you can use this operator to implement a function to print a ship-
ping label with the person’s company address. The following listing repeats the decla-
rations of all the classes—in Kotlin, they’re so concise that it’s not a problem.

class Address(val streetAddress: String, val zipCode: Int,
val city: String, val country: String)

class Company(val name: String, val address: Address?)

class Person(val name: String, val company: Company?)

fun printShippingLabel(person: Person) {
val address = person.company?.address

?: throw IllegalArgumentException("No address")
with (address) {

println(streetAddress)
println("$zipCode $city, $country")

}
}

>>> val address = Address("Elsestr. 47", 80687, "Munich", "Germany")
>>> val jetbrains = Company("JetBrains", address)
>>> val person = Person("Dmitry", jetbrains)

>>> printShippingLabel(person)
Elsestr. 47
80687 Munich, Germany

>>> printShippingLabel(Person("Alexey", null))
java.lang.IllegalArgumentException: No address

The function printShippingLabel prints a label if everything is correct. If there’s
no address, it doesn’t just throw a NullPointerException with a line number, but
instead reports a meaningful error. If an address is present, the label consists of the
street address, the ZIP code, the city, and the country. Note how the with function,
which you saw in the previous chapter, is used to avoid repeating address four times
in a row.

 Now that you’ve seen the Kotlin way to perform “if not-null” checks, let’s talk
about the Kotlin safe version of instanceof checks: the safe-cast operator that often
appears together with safe calls and Elvis operators.

6.1.5 Safe casts: “as?”

In chapter 2, you saw the regular Kotlin operator for type casts: the as operator. Just
like a regular Java type cast, as throws a ClassCastException if the value doesn’t
have the type you’re trying to cast it to. Of course, you can combine it with an is
check to ensure that it does have the proper type. But as a safe and concise language,
doesn’t Kotlin provide a better solution? Indeed it does.

Listing 6.5 Using throw together with Elvis operator

Throws an exception
if the address is absent

“address” is
non-null.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

141Nullability

C

retu
if

.

The as? operator tries to cast a value to the specified type and returns null if the
value doesn’t have the proper type. Figure 6.4 illustrates this.

 One common pattern of using a safe cast is combining it with the Elvis operator.
For example, this comes in handy for implementing the equals method.

class Person(val firstName: String, val lastName: String) {
override fun equals(o: Any?): Boolean {

val otherPerson = o as? Person ?: return false

return otherPerson.firstName == firstName &&
otherPerson.lastName == lastName

}

override fun hashCode(): Int =
firstName.hashCode() * 37 + lastName.hashCode()

}

>>> val p1 = Person("Dmitry", "Jemerov")
>>> val p2 = Person("Dmitry", "Jemerov")
>>> println(p1 == p2)
true
>>> println(p1.equals(42))
false

With this pattern, you can easily check whether the parameter has a proper type, cast
it, and return false if the type isn’t right—all in the same expression. Of course,
smart casts also apply in this context: after you’ve checked the type and rejected null
values, the compiler knows that the type of the otherPerson variable’s value is
Person and lets you use it accordingly.

 The safe-call, safe-cast, and Elvis operators are useful and appear often in Kotlin
code. But sometimes you don’t need Kotlin’s support in handling nulls; you just
need to tell the compiler that the value is in fact not null. Let’s see how you can
achieve that.

6.1.6 Not-null assertions: “!!”

The not-null assertion is the simplest and bluntest tool Kotlin gives you for dealing with
a value of a nullable type. It’s represented by a double exclamation mark and converts

Listing 6.6 Using a safe cast to implement equals

foo as Type

foo as? Type

null

foo is Type

foo !is Type
Figure 6.4 The safe-cast operator tries
to cast a value to the given type and
returns null if the type differs.

hecks the
type and
rns false

no match
After the safe cast, the
variable otherPerson is
smart-cast to the Person type

The == operator calls
the “equals” method.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

142 CHAPTER 6 The Kotlin type system
any value to a non-null type. For null values, an exception is thrown. The logic is
illustrated in figure 6.5.

 Here’s a trivial example of a function that uses the assertion to convert a nullable
argument to a non-null one.

fun ignoreNulls(s: String?) {
val sNotNull: String = s!!
println(sNotNull.length)

}

>>> ignoreNulls(null)
Exception in thread "main" kotlin.KotlinNullPointerException

at <...>.ignoreNulls(07_NotnullAssertions.kt:2)

What happens if s is null in this function? Kotlin doesn’t have much choice: it will
throw an exception (a special kind of NullPointerException) at runtime. But note
that the place where the exception is thrown is the assertion itself, not a subsequent
line where you’re trying to use the value. Essentially, you’re telling the compiler, “I
know the value isn’t null, and I’m ready for an exception if it turns out I’m wrong.”

NOTE You may notice that the double exclamation mark looks a bit rude: it’s
almost like you’re yelling at the compiler. This is intentional. The designers
of Kotlin are trying to nudge you toward a better solution that doesn’t involve
making assertions that can’t be verified by the compiler.

But there are situations when not-null assertions are the appropriate solution for a
problem. When you check for null in one function and use the value in another
function, the compiler can’t recognize that the use is safe. If you’re certain the check
is always performed in another function, you may not want to duplicate it before using
the value; then you can use a not-null assertion instead.

 This happens in practice with action classes, which appear in many UI frameworks
such as Swing. In an action class, there are separate methods for updating the state of
an action (to enable or disable it) and for executing it. The checks performed in the
update method ensure that the execute method won’t be called if the conditions
aren’t met, but there’s no way for the compiler to recognize that.

Listing 6.7 Using a not-null assertion

foo

foo!!

NullPointerException

foo != null

foo == null
Figure 6.5 By using a not-null
assertion, you can explicitly throw
an exception if the value is null.

The exception
points to this line.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

143Nullability
 Let’s look at an example of a Swing action that uses a not-null assertion in this sit-
uation. The CopyRowAction action is supposed to copy the value of the selected row
in a list to the clipboard. We’ve omitted all the unnecessary details, keeping only the
code responsible for checking whether any row was selected (meaning therefore the
action can be performed) and obtaining the value for the selected row. The Action
API implies that actionPerformed is called only when isEnabled is true.

class CopyRowAction(val list: JList<String>) : AbstractAction() {
override fun isEnabled(): Boolean =

list.selectedValue != null

override fun actionPerformed(e: ActionEvent) {
val value = list.selectedValue!!
// copy value to clipboard

}
}

Note that if you don’t want to use !! in this case, you can write val value =
list.selectedValue ?: return to obtain a value of a non-null type. If you use
that pattern, a nullable value of list.selectedValue will cause an early return
from the function, so value will always be non-null. Although the not-null check
using the Elvis operator is redundant here, it may be a good protection against
isEnabled becoming more complicated later.

 There’s one more caveat to keep in mind: when you use !! and it results in an
exception, the stack trace identifies the line number in which the exception was
thrown but not a specific expression. To make it clear exactly which value was null,
it’s best to avoid using multiple !! assertions on the same line:

person.company!!.address!!.country

If you get an exception in this line, you won’t be able to tell whether it was company or
address that held a null value.

 So far, we’ve discussed mostly how to access the values of nullable types. But what
should you do if you need to pass a nullable value as an argument to a function that
expects a non-null value? The compiler doesn’t allow you to do that without a check,
because doing so is unsafe. The Kotlin language doesn’t have any special support for
this case, but there’s a standard library function that can help you: it’s called let.

6.1.7 The “let” function

The let function makes it easier to deal with nullable expressions. Together with a
safe-call operator, it allows you to evaluate an expression, check the result for null,
and store the result in a variable, all in a single, concise expression.

Listing 6.8 Using a not-null assertion in a Swing action

actionPerformed is
called only if isEnabled
returns “true”.

Don’t write code like this!
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

144 CHAPTER 6 The Kotlin type system
 One of its most common uses is handling a nullable argument that should be
passed to a function that expects a non-null parameter. Let’s say the function send-
EmailTo takes one parameter of type String and sends an email to that address.
This function is written in Kotlin and requires a non-null parameter:

fun sendEmailTo(email: String) { /*...*/ }

You can’t pass a value of a nullable type to this function:

>>> val email: String? = ...
>>> sendEmailTo(email)
ERROR: Type mismatch: inferred type is String? but String was expected

You have to check explicitly whether this value isn’t null:

if (email != null) sendEmailTo(email)

But you can go another way: use the let function, and call it via a safe call. All the let
function does is turn the object on which it’s called into a parameter of the lambda. If
you combine it with the safe call syntax, it effectively converts an object of a nullable
type on which you call let into a non-null type (see figure 6.6).

The let function will be called only if the email value is non-null, so you use the
email as a non-null argument of the lambda:

email?.let { email -> sendEmailTo(email) }

After using the short syntax, the autogenerated name it, the result is much shorter:
email?.let { sendEmailTo(it) }. Here’s a more complete example that shows
this pattern.

fun sendEmailTo(email: String) {
println("Sending email to $email")

}

>>> var email: String? = "yole@example.com"
>>> email?.let { sendEmailTo(it) }
Sending email to yole@example.com
>>> email = null
>>> email?.let { sendEmailTo(it) }

Listing 6.9 Using let to call a function with a non-null parameter

it is non-null
inside lambda

foo?.let {
 ...it...
}

Nothing happens

foo != null

foo == null Figure 6.6 Safe-calling “let” executes a
lambda only if an expression isn’t null.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

145Nullability
Note that the let notation is especially convenient when you have to use the value of
a longer expression if it’s not null. You don’t have to create a separate variable in this
case. Compare this explicit if check

val person: Person? = getTheBestPersonInTheWorld()
if (person != null) sendEmailTo(person.email)

to the same code without an extra variable:

getTheBestPersonInTheWorld()?.let { sendEmailTo(it.email) }

This function returns null, so the code in the lambda will never be executed:

fun getTheBestPersonInTheWorld(): Person? = null

When you need to check multiple values for null, you can use nested let calls to
handle them. But in most cases, such code ends up fairly verbose and hard to follow.
It’s generally easier to use a regular if expression to check all the values together.

 One other common situation is properties that are effectively non-null but can’t
be initialized with a non-null value in the constructor. Let’s see how Kotlin allows you
to deal with that situation.

6.1.8 Late-initialized properties

Many frameworks initialize objects in dedicated methods called after the object
instance has been created. For example, in Android, the activity initialization happens
in the onCreate method. JUnit requires you to put initialization logic in methods
annotated with @Before.

 But you can’t leave a non-null property without an initializer in the constructor
and only initialize it in a special method. Kotlin normally requires you to initialize all
properties in the constructor, and if a property has a non-null type, you have to pro-
vide a non-null initializer value. If you can’t provide that value, you have to use a
nullable type instead. If you do that, every access to the property requires either a
null check or the !! operator.

class MyService {
fun performAction(): String = "foo"

}

class MyTest {
private var myService: MyService? = null

@Before fun setUp() {
myService = MyService()

}

@Test fun testAction() {
Assert.assertEquals("foo",

Listing 6.10 Using non-null assertions to access a nullable property

Declares a property
of a nullable type to
initialize it with null

Provides a real initializer
in the setUp method
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

146 CHAPTER 6 The Kotlin type system
myService!!.performAction())
}

}

This looks ugly, especially if you access the property many times. To solve this, you can
declare the myService property as late-initialized. This is done by applying the
lateinit modifier.

class MyService {
fun performAction(): String = "foo"

}

class MyTest {
private lateinit var myService: MyService

@Before fun setUp() {
myService = MyService()

}

@Test fun testAction() {
Assert.assertEquals("foo",

myService.performAction())
}

}

Note that a late-initialized property is always a var, because you need to be able to
change its value outside of the constructor, and val properties are compiled into final
fields that must be initialized in the constructor. But you no longer need to initialize it
in a constructor, even though the property has a non-null type. If you access the
property before it’s been initialized, you get an exception “lateinit property
myService has not been initialized”. It clearly identifies what has happened and is
much easier to understand than a generic NullPointerException.

NOTE A common use case for lateinit properties is dependency injection.
In that scenario, the values of lateinit properties are set externally by a
dependency-injection framework. To ensure compatibility with a broad range
of Java frameworks, Kotlin generates a field with the same visibility as the
lateinit property. If the property is declared as public, the field will be
public as well.

Now let’s look at how you can extend Kotlin’s set of tools for dealing with null values
by defining extension functions for nullable types.

6.1.9 Extensions for nullable types

Defining extension functions for nullable types is one more powerful way to deal with
null values. Rather than ensuring that a variable can’t be null before a method call,
you can allow the calls with null as a receiver, and deal with null in the function.

Listing 6.11 Using a late-initialized property

You have to take care of
nullability: use !! or ?.

Declares a property of a non-null
type without an initializer

Initializes the property in the
setUp method as before

Accesses the property
without extra null checks
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

147Nullability
This is only possible for extension functions; regular member calls are dispatched
through the object instance and therefore can never be performed when the instance
is null.

 As an example, consider the functions isEmpty and isBlank, defined as exten-
sions of String in the Kotlin standard library. The first one checks whether the string
is an empty string "", and the second one checks whether it’s empty or if it consists
solely of whitespace characters. You’ll generally use these functions to check that the
string is non-trivial in order to do something meaningful with it. You may think it
would be useful to handle null in the same way as trivial empty or blank strings. And,
indeed, you can do so: the functions isEmptyOrNull and isBlankOrNull can be
called with a receiver of type String?.

fun verifyUserInput(input: String?) {
if (input.isNullOrBlank()) {

println("Please fill in the required fields")
}

}

>>> verifyUserInput(" ")
Please fill in the required fields
>>> verifyUserInput(null)
Please fill in the required fields

You can call an extension function that was declared for
a nullable receiver without safe access (see figure 6.7).
The function handles possible null values.

Figure 6.7 Extensions for nullable types can
be accessed without a safe call.

The function isNullOrBlank checks explicitly for null, returning true in this case,
and then calls isBlank, which can be called on a non-null String only:

fun String?.isNullOrBlank(): Boolean =
this == null || this.isBlank()

When you declare an extension function for a nullable type (ending with ?), that
means you can call this function on nullable values; and this in a function body can
be null, so you have to check for that explicitly. In Java, this is always not-null,
because it references the instance of a class you’re in. In Kotlin, that’s no longer the
case: in an extension function for a nullable type, this can be null.

Listing 6.12 Calling an extension function with a nullable receiver

No safe call is needed.

No exception happens when
you call isNullOrBlank with
“null” as a receiver.

Extension for
nullable type

No safe call!

input.isNullOrBlank()

Value of
nullable type

Extension for a
nullable String

A smart cast is applied
to the second “this”.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

148 CHAPTER 6 The Kotlin type system
 Note that the let function we discussed earlier can be called on a nullable
receiver as well, but it doesn’t check the value for null. If you invoke it on a nullable
type without using the safe-call operator, the lambda argument will also be nullable:

>>> val person: Person? = ...
>>> person.let { sendEmailTo(it) }
ERROR: Type mismatch: inferred type is Person? but Person was expected

Therefore, if you want to check the arguments for being non-null with let, you have
to use the safe-call operator ?., as you saw earlier: person?.let { send-
EmailTo(it) }.

NOTE When you define your own extension function, you need to consider
whether you should define it as an extension for a nullable type. By default,
define it as an extension for a non-null type. You can safely change it later
(no code will be broken) if it turns out it’s used mostly on nullable values, and
the null value can be reasonably handled.

This section showed you something unexpected. If you dereference a variable without
an extra check, as in s.isNullOrBlank(), it doesn’t immediately mean the variable
is non-null: the function can be an extension for a nullable type. Next, let’s discuss
another case that may surprise you: a type parameter can be nullable even without a
question mark at the end.

6.1.10 Nullability of type parameters

By default, all type parameters of functions and classes in Kotlin are nullable. Any type,
including a nullable type, can be substituted for a type parameter; in this case, declara-
tions using the type parameter as a type are allowed to be null, even though the type
parameter T doesn’t end with a question mark. Consider the following example.

fun <T> printHashCode(t: T) {
println(t?.hashCode())

}
>>> printHashCode(null)
null

In the printHashCode call, the inferred type for the type parameter T is a nullable
type, Any?. Therefore, the parameter t is allowed to hold null, even without a ques-
tion mark after T.

 To make the type parameter non-null, you need to specify a non-null upper
bound for it. That will reject a nullable value as an argument.

Listing 6.13 Dealing with a nullable type parameter

No safe call, so “it”
has a nullable type.

You have to use a safe call
because “t” might be null.

“T” is inferred
as “Any?”.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

149Nullability

fun <T: Any> printHashCode(t: T) {
println(t.hashCode())

}
>>> printHashCode(null)
Error: Type parameter bound for `T` is not satisfied
>>> printHashCode(42)
42

Chapter 9 will cover generics in Kotlin, and section 9.1.4 will cover this topic in more
detail.

 Note that type parameters are the only exception to the rule that a question mark
at the end is required to mark a type as nullable, and types without a question mark
are non-null. The next section shows another special case of nullability: types that
come from the Java code.

6.1.11 Nullability and Java

The previous discussion covered the tools for working with nulls in the Kotlin world.
But Kotlin prides itself on its Java interoperability, and you know that Java doesn’t sup-
port nullability in its type system. So what happens when you combine Kotlin and
Java? Do you lose all safety, or do you have to check every value for null? Or is there a
better solution? Let’s find out.

 First, as we mentioned, sometimes Java
code contains information about nullability,
expressed using annotations. When this
information is present in the code, Kotlin
uses it. Thus @Nullable String in Java is
seen as String? by Kotlin, and @NotNull
String is just String (see figure 6.8)

 Kotlin recognizes many different flavors
of nullability annotations, including those
from the JSR-305 standard (in the javax
.annotation package), the Android ones (android.support.annotation), and
those supported by JetBrains tools (org.jetbrains.annotations). The interest-
ing question is what happens when the annotations aren’t present. In that case, the
Java type becomes a platform type in Kotlin.

PLATFORM TYPES

A platform type is essentially a type for which
Kotlin doesn’t have nullability information; you
can work with it as either a nullable or a non-
null type (see figure 6.9). This means, just as in
Java, you have full responsibility for the opera-
tions you perform with that type. The compiler
will allow all operations. It also won’t highlight

Listing 6.14 Declaring a non-null upper bound for a type parameter

Now “T” can’t
be nullable.

This code doesn’t compile:
you can’t pass null because a
non-null value is expected.

@Nullable Type Type?+ =

@NotNull Type Type+ =

Java Kotlin

Figure 6.8 Annotated Java types are
represented as nullable and non-null types
in Kotlin, according to the annotations.

Type?Type Type= or

Java Kotlin

Figure 6.9 Java types are represented
in Kotlin as platform types, which you
can use either as a nullable type or as a
non-null type.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

150 CHAPTER 6 The Kotlin type system
as redundant any null-safe operations on such values, which it normally does when
you perform a null-safe operation on a value of a non-null type. If you know the
value can be null, you can compare it with null before use. If you know it’s not
null, you can use it directly. Just as in Java, you’ll get a NullPointerException at
the usage site if you get this wrong.

 Let’s say the class Person is declared in Java.

/* Java */
public class Person {

private final String name;

public Person(String name) {
this.name = name;

}

public String getName() {
return name;

}
}

Can getName return null or not? The Kotlin compiler knows nothing about nulla-
bility of the String type in this case, so you have to deal with it yourself. If you’re sure
the name isn’t null, you can dereference it in a usual way, as in Java, without addi-
tional checks. But be ready to get an exception in this case.

fun yellAt(person: Person) {
println(person.name.toUpperCase() + "!!!")

}

>>> yellAt(Person(null))
java.lang.IllegalArgumentException: Parameter specified as non-null
is null: method toUpperCase, parameter $receiver

Note that instead of a plain NullPointerException, you get a more detailed error
message that the method toUpperCase can’t be called on a null receiver.

 In fact, for public Kotlin functions, the compiler generates checks for every param-
eter (and a receiver as well) that has a non-null type, so that attempts to call such a
function with incorrect arguments are immediately reported as exceptions. Note that
the value-checking is performed right away when the function is called, not when the
parameter is used. This ensures that incorrect calls are detected early and won’t cause
hard-to-understand exceptions if the null value is accessed after being passed around
between multiple functions in different layers of the codebase.

 Your other option is to interpret the return type of getName() as nullable and
access it safely.

Listing 6.15 A Java class without nullability annotations

Listing 6.16 Accessing a Java class without null checks

The receiver person.name of
the toUpperCase() call is null,
so an exception is thrown.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

151Nullability

fun yellAtSafe(person: Person) {
println((person.name ?: "Anyone").toUpperCase() + "!!!")

}

>>> yellAtSafe(Person(null))
ANYONE!!!

In this example, null values are handled properly, and no runtime exception is thrown.
 Be careful while working with Java APIs. Most of the libraries aren’t annotated, so

you may interpret all the types as non-null, but that can lead to errors. To avoid
errors, you should check the documentation (and, if needed, the implementation) of
the Java methods you’re using to find out when they can return null, and add checks
for those methods.

You can’t declare a variable of a platform type in Kotlin; these types can only come
from Java code. But you may see them in error messages and in the IDE:

>>> val i: Int = person.name
ERROR: Type mismatch: inferred type is String! but Int was expected

The String! notation is how the Kotlin compiler denotes platform types coming
from Java code. You can’t use this syntax in your own code, and usually this exclama-
tion mark isn’t connected with the source of a problem, so you can usually ignore it. It
just emphasizes that the nullability of the type is unknown.

 As we said already, you may interpret platform types any way you like—as nullable
or as non-null—so both of the following declarations are valid:

>>> val s: String? = person.name
>>> val s1: String = person.name

Listing 6.17 Accessing a Java class with null checks

Why platform types?
Wouldn’t it be safer for Kotlin to treat all values coming from Java as nullable? Such
a design would be possible, but it would require a large number of redundant null
checks for values that can never be null, because the Kotlin compiler wouldn’t be
able to see that information.

The situation would be especially bad with generics—for example, every Array-
List<String> coming from Java would be an ArrayList<String?>? in Kotlin,
and you’d need to check values for null on every access or use a cast, which would
defeat the safety benefits. Writing such checks is extremely annoying, so the design-
ers of Kotlin went with the pragmatic option and allowed the developers to take
responsibility for correctly handling values coming from Java.

Java’s property can
be seen as nullable …

… or non-null.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

152 CHAPTER 6 The Kotlin type system
In this case, just as with the method calls, you need to make sure you get the nullability
right. If you try to assign a null value coming from Java to a non-null Kotlin variable,
you’ll get an exception at the point of assignment.

 We’ve discussed how Java types are seen from Kotlin. Let’s now talk about some pit-
falls of creating mixed Kotlin and Java hierarchies.

INHERITANCE

When overriding a Java method in Kotlin, you have a choice whether to declare the
parameters and the return type as nullable or non-null. For example, let’s look at a
StringProcessor interface in Java.

/* Java */
interface StringProcessor {

void process(String value);
}

In Kotlin, both of the following implementations will be accepted by the compiler.

class StringPrinter : StringProcessor {
override fun process(value: String) {

println(value)
}

}

class NullableStringPrinter : StringProcessor {
override fun process(value: String?) {

if (value != null) {
println(value)

}
}

}

Note that it’s important to get nullability right when implementing methods from Java
classes or interfaces. Because the implementation methods can be called from non-
Kotlin code, the Kotlin compiler will generate non-null assertions for every parame-
ter that you declare with a non-null type. If the Java code does pass a null value to
the method, the assertion will trigger, and you’ll get an exception, even if you never
access the parameter value in your implementation.

 Let’s summarize our discussion of nullability. We’ve discussed nullable and non-
null types and the means of working with them: operators for safe operations (safe
call ?., Elvis operator ?:, and safe cast as?), as well as the operator for unsafe deref-
erence (the not-null assertion !!). You’ve seen how the library function let can
help you accomplish concise non-null checks and how extensions for nullable types
can help move a not-null check into a function. We’ve also discussed platform types
that represent Java types in Kotlin.

Listing 6.18 A Java interface with a String parameter

Listing 6.19 Implementing the Java interface with different parameter nullability
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

153Primitive and other basic types
 Now that we’ve covered the topic of nullability, let’s talk about how the primitive
types are represented in Kotlin. This knowledge of nullability will be important for
understanding how Kotlin handles Java’s boxed types.

6.2 Primitive and other basic types
This section describes the basic types used in programs, such as Int, Boolean, and
Any. Unlike Java, Kotlin doesn’t differentiate primitive types and wrappers. You’ll
shortly learn why, and how it works under the hood. You’ll see the correspondence
between Kotlin types and such Java types as Object and Void, as well.

6.2.1 Primitive types: Int, Boolean, and more

As you know, Java makes a distinction between primitive types and reference types. A
variable of a primitive type (such as int) holds its value directly. A variable of a reference
type (such as String) holds a reference to the memory location containing the object.

 Values of primitive types can be stored and passed around more efficiently, but you
can’t call methods on such values or store them in collections. Java provides special
wrapper types (such as java.lang.Integer) that encapsulate primitive types in situ-
ations when an object is needed. Thus, to define a collection of integers, you can’t say
Collection<int>; you have to use Collection<Integer> instead.

 Kotlin doesn’t distinguish between primitive types and wrapper types. You always
use the same type (for example, Int):

val i: Int = 1
val list: List<Int> = listOf(1, 2, 3)

That’s convenient. What’s more, you can call methods on values of a number type. For
example, consider this snippet, which uses the coerceIn standard library function to
restrict the value to the specified range:

fun showProgress(progress: Int) {
val percent = progress.coerceIn(0, 100)
println("We're ${percent}% done!")

}

>>> showProgress(146)
We're 100% done!

If primitive and reference types are the same, does that mean Kotlin represents all
numbers as objects? Wouldn’t that be terribly inefficient? Indeed it would, so Kotlin
doesn’t do that.

 At runtime, the number types are represented in the most efficient way possible. In
most cases—for variables, properties, parameters, and return types—Kotlin’s Int type
is compiled to the Java primitive type int. The only case in which this isn’t possible is
generic classes, such as collections. A primitive type used as a type argument of a
generic class is compiled to the corresponding Java wrapper type. For example, if the
Int type is used as a type argument of the collection, then the collection will store
instances of java.lang.Integer, the corresponding wrapper type.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

154 CHAPTER 6 The Kotlin type system
 The full list of types that correspond to Java primitive types is:

 Integer types—Byte, Short, Int, Long
 Floating-point number types—Float, Double
 Character type—Char

 Boolean type—Boolean

A Kotlin type such as Int can be easily compiled under the hood to the correspond-
ing Java primitive type, because the values of both types can’t store the null refer-
ence. The other direction works in a similar way: When you use Java declarations from
Kotlin, Java primitive types become non-null types (not platform types), because they
can’t hold null values. Now let’s discuss the nullable versions of the same types.

6.2.2 Nullable primitive types: Int?, Boolean?, and more

Nullable types in Kotlin can’t be represented by Java primitive types, because null
can only be stored in a variable of a Java reference type. That means whenever you use
a nullable version of a primitive type in Kotlin, it’s compiled to the corresponding
wrapper type.

 To see the nullable types in use, let’s go back to the opening example of the book
and recall the Person class declared there. The class represents a person whose name
is always known and whose age can be either known or unspecified. Let’s add a func-
tion that checks whether one person is older than another.

data class Person(val name: String,
val age: Int? = null) {

fun isOlderThan(other: Person): Boolean? {
if (age == null || other.age == null)

return null
return age > other.age

}
}

>>> println(Person("Sam", 35).isOlderThan(Person("Amy", 42)))
false
>>> println(Person("Sam", 35).isOlderThan(Person("Jane")))
null

Note how the regular nullability rules apply here. You can’t just compare two values of
type Int?, because one of them may be null. Instead, you have to check that both
values aren’t null. After that, the compiler allows you to work with them normally.

 The value of the age property declared in the class Person is stored as a
java.lang.Integer. But this detail only matters if you’re working with the class
from Java. To choose the right type in Kotlin, you only need to consider whether null
is a possible value for the variable or property.

 As mentioned earlier, generic classes are another case when wrapper types come
into play. If you use a primitive type as a type argument of a class, Kotlin uses the

Listing 6.20 Using nullable primitive types
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

155Primitive and other basic types
boxed representation of the type. For example, this creates a list of boxed Integer
values, even though you’ve never specified a nullable type or used a null value:

val listOfInts = listOf(1, 2, 3)

This happens because of the way generics are implemented on the Java virtual
machine. The JVM doesn’t support using a primitive type as a type argument, so a
generic class (both in Java and in Kotlin) must always use a boxed representation of
the type. As a consequence, if you need to efficiently store large collections of primi-
tive types, you need to either use a third-party library (such as Trove4J, http://
trove.starlight-systems.com) that provides support for such collections or store them
in arrays. We’ll discuss arrays in detail at the end of this chapter.

 Now let’s look at how you can convert values between different primitive types.

6.2.3 Number conversions

One important difference between Kotlin and Java is the way they handle numeric con-
versions. Kotlin doesn’t automatically convert numbers from one type to the other, even
when the other type is larger. For example, the following code won’t compile in Kotlin:

val i = 1
val l: Long = i

Instead, you need to apply the conversion explicitly:

val i = 1
val l: Long = i.toLong()

Conversion functions are defined for every primitive type (except Boolean):
toByte(), toShort(), toChar() and so on. The functions support converting in
both directions: extending a smaller type to a larger one, like Int.toLong(), and
truncating a larger type to a smaller one, like Long.toInt().

 Kotlin makes the conversion explicit in order to avoid surprises, especially when
comparing boxed values. The equals method for two boxed values checks the box
type, not just the value stored in it. Thus, in Java, new Integer(42).equals(new
Long(42)) returns false. If Kotlin supported implicit conversions, you could write
something like this:

val x = 1
val list = listOf(1L, 2L, 3L)
x in list

This would evaluate to false, contrary to everyone’s expectations. Thus the line x in
list from this example doesn’t compile. Kotlin requires you to convert the types
explicitly so that only values of the same type are compared:

>>> val x = 1
>>> println(x.toLong() in listOf(1L, 2L, 3L))
true

Error: type mismatch

Int variable List of Long
values

False if Kotlin supported
implicit conversions
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://trove.starlight-systems.com
http://trove.starlight-systems.com

156 CHAPTER 6 The Kotlin type system
If you use different number types in your code at the same time, you have to convert
variables explicitly to avoid unexpected behavior.

Note that when you’re writing a number literal, you usually don’t need to use conver-
sion functions. One possibility is to use the special syntax to mark the type of the con-
stant explicitly, such as 42L or 42.0f. And even if you don’t use it, the necessary
conversion is applied automatically if you use a number literal to initialize a variable of
a known type or pass it as an argument to a function. In addition, arithmetic operators
are overloaded to accept all appropriate numeric types. For example, the following
code works correctly without any explicit conversions:

fun foo(l: Long) = println(l)

>>> val b: Byte = 1
>>> val l = b + 1L
>>> foo(42)
42

Note that the behavior of Kotlin arithmetic operators with regard to number-range
overflow is exactly the same in Java; Kotlin doesn’t introduce any overhead for over-
flow checks.

Primitive type literals
Kotlin supports the following ways to write number literals in source code, in addition
to simple decimal numbers:

 Literals of type Long use the L suffix: 123L.
 Literals of type Double use the standard representation of floating-point

numbers: 0.12, 2.0, 1.2e10, 1.2e-10.
 Literals of type Float use the f or F suffix: 123.4f, .456F, 1e3f.
 Hexadecimal literals use the 0x or 0X prefix (such as 0xCAFEBABE or

0xbcdL).
 Binary literals use the 0b or 0B prefix (such as 0b000000101).

Note that underscores in number literals are only supported starting with Kotlin 1.1.

For character literals, you use mostly the same syntax as in Java. You write the char-
acter in single quotes, and you can also use escape sequences if you need to. The
following are examples of valid Kotlin character literals: '1', '\t' (the tab charac-
ter), '\u0009' (the tab character represented using a Unicode escape sequence).

Conversion from String
The Kotlin standard library provides a similar set of extension functions to convert a
string into a primitive type (toInt, toByte, toBoolean, and so on):

>>> println("42".toInt())
42

Constant value gets
the correct type

+ works with Byte
and Long arguments.The compiler interprets

42 as a Long value.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

157Primitive and other basic types
Before we move on to other types, there are three more special types we need to men-
tion: Any, Unit, and Nothing.

6.2.4 “Any” and “Any?”: the root types

Similar to how Object is the root of the class hierarchy in Java, the Any type is the
supertype of all non-nullable types in Kotlin. But in Java, Object is a supertype of all
reference types only, and primitive types aren’t part of the hierarchy. That means you
have to use wrapper types such as java.lang.Integer to represent a primitive type
value when Object is required. In Kotlin, Any is a supertype of all types, including the
primitive types such as Int.

 Just as in Java, assigning a value of a primitive type to a variable of type Any per-
forms automatic boxing:

val answer: Any = 42

Note that Any is a non-nullable type, so a variable of the type Any can’t hold the value
null. If you need a variable that can hold any possible value in Kotlin, including
null, you must use the Any? type.

 Under the hood, the Any type corresponds to java.lang.Object. The Object
type used in parameters and return types of Java methods is seen as Any in Kotlin.
(More specifically, it’s viewed as a platform type, because its nullability is unknown.)
When a Kotlin function uses Any, it’s compiled to Object in the Java bytecode.

 As you saw in chapter 4, all Kotlin classes have the following three methods:
toString, equals, and hashCode. These methods are inherited from Any. Other
methods defined on java.lang.Object (such as wait and notify) aren’t available
on Any, but you can call them if you manually cast the value to java.lang.Object.

6.2.5 The Unit type: Kotlin’s “void”

The Unit type in Kotlin fulfills the same function as void in Java. It can be used as a
return type of a function that has nothing interesting to return:

fun f(): Unit { ... }

Syntactically, it’s the same as writing a function with a block body without a type decla-
ration:

fun f() { ... }

In most cases, you won’t notice the difference between void and Unit. If your Kotlin
function has the Unit return type and doesn’t override a generic function, it’s com-
piled to a good-old void function under the hood. If you override it from Java, the
Java function just needs to return void.

Each of these functions tries to parse the contents of the string as the corresponding
type and throws a NumberFormatException if the parsing fails.

The value 42 is boxed, because
Any is a reference type.

Explicit Unit declaration
is omitted
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

158 CHAPTER 6 The Kotlin type system
 What distinguishes Kotlin’s Unit from Java’s void, then? Unit is a full-fledged
type, and, unlike void, it can be used as a type argument. Only one value of this type
exists; it’s also called Unit and is returned implicitly. This is useful when you override a
function that returns a generic parameter and make it return a value of the Unit type:

interface Processor<T> {
fun process(): T

}

class NoResultProcessor : Processor<Unit> {
override fun process() {

// do stuff
}

}

The signature of the interface requires the process function to return a value; and,
because the Unit type does have a value, it’s no problem to return it from the
method. But you don’t need to write an explicit return statement in NoResult-
Processor.process, because return Unit is added implicitly by the compiler.

 Contrast this with Java, where neither of the possibilities for solving the problem of
using “no value” as a type argument is as nice as the Kotlin solution. One option is to
use separate interfaces (such as Callable and Runnable) to represent interfaces
that don’t and do return a value. The other is to use the special java.lang.Void
type as the type parameter. If you use the second option, you still need to put in an
explicit return null; to return the only possible value matching that type, because
if the return type isn’t void, you must always have an explicit return statement.

 You may wonder why we chose a different name for Unit and didn’t call it Void.
The name Unit is used traditionally in functional languages to mean “only one
instance,” and that’s exactly what distinguishes Kotlin’s Unit from Java’s void. We
could have used the customary Void name, but Kotlin has a type called Nothing that
performs an entirely different function. Having two types called Void and Nothing
would be confusing because the meanings are so close. So what’s this Nothing type
about? Let’s find out.

6.2.6 The Nothing type: “This function never returns”

For some functions in Kotlin, the concept of a “return value” doesn’t make sense
because they never complete successfully. For example, many testing libraries have a
function called fail that fails the current test by throwing an exception with a speci-
fied message. A function that has an infinite loop in it will also never complete suc-
cessfully.

 When analyzing code that calls such a function, it’s useful to know that the func-
tion will never terminate normally. To express that, Kotlin uses a special return type
called Nothing:

fun fail(message: String): Nothing {
throw IllegalStateException(message)

}

Returns Unit, but you
omit the type specification

You don’t need an
explicit return here.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

159Collections and arrays
>>> fail("Error occurred")
java.lang.IllegalStateException: Error occurred

The Nothing type doesn’t have any values, so it only makes sense to use it as a func-
tion return type or as a type argument for a type parameter that’s used as a generic
function return type. In all other cases, declaring a variable where you can’t store any
value doesn’t make sense.

 Note that functions returning Nothing can be used on the right side of the Elvis
operator to perform precondition checking:

val address = company.address ?: fail("No address")
println(address.city)

This example shows why having Nothing in the type system is extremely useful. The
compiler knows that a function with this return type never terminates normally and
uses that information when analyzing the code calling the function. In the previous
example, the compiler infers that the type of address is non-null, because the
branch handling the case when it’s null always throws an exception.

 We’ve finished our discussion of the basic types in Kotlin: primitive types, Any,
Unit, and Nothing. Now let’s look at the collection types and how they differ from
their Java counterparts.

6.3 Collections and arrays
You’ve already seen many examples of code that uses various collection APIs, and you
know that Kotlin builds on the Java collections library and augments it with features
added through extension functions. There’s more to the story of the collection sup-
port in Kotlin and the correspondence between Java and Kotlin collections, and now
is a good time to look at the details.

6.3.1 Nullability and collections

Earlier in this chapter, we discussed the concept of nullable types, but we only briefly
touched on nullability of type arguments. But this is essential for a consistent type sys-
tem: it’s no less important to know whether a collection can hold null values than to
know whether the value of a variable can be null. The good news is that Kotlin fully
supports nullability for type arguments. Just as the type of a variable can have a ? char-
acter appended to indicate that the variable can hold null, a type used as a type argu-
ment can be marked in the same way. To see how this works, let’s look at an example of
a function that reads a list of lines from a file and tries to parse each line as a number.

fun readNumbers(reader: BufferedReader): List<Int?> {
val result = ArrayList<Int?>()
for (line in reader.lineSequence()) {

try {
val number = line.toInt()

Listing 6.21 Building a collection of nullable values

Creates a list of
nullable Int values
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

160 CHAPTER 6 The Kotlin type system
result.add(number)
}
catch(e: NumberFormatException) {

result.add(null)
}

}
return result

}

List<Int?> is a list that can hold values of type Int?: in other words, Int or null.
You add an integer to the result list if the line can be parsed, or null otherwise.
Note that since Kotlin 1.1, you can shrink this example by using the function
String.toIntOrNull, which returns null if the string value can’t be parsed.

 Note how the nullability of the type of the variable itself is distinct from the nul-
lability of the type used as a type argument. The difference between a list of nullable
Ints and a nullable list of Ints is illustrated in figure 6.10.

In the first case, the list itself is always not null, but each value in the list can be null.
A variable of the second type may contain a null reference instead of a list instance,
but the elements in the list are guaranteed to be non-null.

 In another context, you may want to declare a variable that holds a nullable list of
nullable numbers. The Kotlin way to write this is List<Int?>?, with two question
marks. You need to apply null checks both when using the value of the variable and
when using the value of every element in the list.

 To see how you can work with a list of nullable values, let’s write a function to add
all the valid numbers together and count the invalid numbers separately.

fun addValidNumbers(numbers: List<Int?>) {
var sumOfValidNumbers = 0
var invalidNumbers = 0
for (number in numbers) {

Listing 6.22 Working with a collection of nullable values

Adds an integer (a non-null
value) to the list

Adds null to the list, because
the current line can’t be
parsed to an integer

Int

Individual values are
nullable within the list.

Entire list
is nullable.

null

null

null

Int

Int

Int

List<Int?> List<Int>?

Int

Int

null
Figure 6.10 Be careful what you make
nullable: the elements of the collection
or the collection itself?

Reads a nullable
value from the list
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

161Collections and arrays
if (number != null) {
sumOfValidNumbers += number

} else {
invalidNumbers++

}
}
println("Sum of valid numbers: $sumOfValidNumbers")
println("Invalid numbers: $invalidNumbers")

}

>>> val reader = BufferedReader(StringReader("1\nabc\n42"))
>>> val numbers = readNumbers(reader)
>>> addValidNumbers(numbers)
Sum of valid numbers: 43
Invalid numbers: 1

There isn’t much special going on here. When you access an element of the list, you
get back a value of type Int?, and you need to check it for null before you can use it
in arithmetical operations.

 Taking a collection of nullable values and filtering out null is such a common
operation that Kotlin provides a standard library function filterNotNull to per-
form it. Here’s how you can use it to greatly simplify the previous example.

fun addValidNumbers(numbers: List<Int?>) {
val validNumbers = numbers.filterNotNull()
println("Sum of valid numbers: ${validNumbers.sum()}")
println("Invalid numbers: ${numbers.size - validNumbers.size}")

}

Of course, the filtering also affects the type of the collection. The type of valid-
Numbers is List<Int>, because the filtering ensures that the collection doesn’t con-
tain any null elements.

 Now that you understand how Kotlin distinguishes between collections that hold
nullable and non-null elements, let’s look at another major distinction introduced by
Kotlin: read-only versus mutable collections.

6.3.2 Read-only and mutable collections

An important trait that sets apart Kotlin’s collection design from Java’s is that it sepa-
rates interfaces for accessing the data in a collection and for modifying the data. This
distinction exists starting with the most basic interface for working with collections,
kotlin.collections.Collection. Using this interface, you can iterate over the ele-
ments in a collection, obtain its size, check whether it contains a certain element, and
perform other operations that read data from the collection. But this interface
doesn’t have any methods for adding or removing elements.

 To modify the data in the collection, use the kotlin.collections.Mutable-
Collection interface. It extends the regular kotlin.collections.Collection and

Listing 6.23 Using filterNotNull with a collection of nullable values

Checks the
value for null
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

162 CHAPTER 6 The Kotlin type system
provides methods for adding and removing the elements, clearing the collection, and
so on. Figure 6.11 shows the key methods defined in the two interfaces.

 As a general rule, you should use read-only interfaces everywhere in your code.
Use the mutable variants only if the code will modify the collection.

 Just like the separation between val and var, the separation between read-only and
mutable interfaces for collections makes it much easier to understand what’s happen-
ing with data in your program. If a function takes a parameter that is a Collection but
not a MutableCollection, you know it’s not going to modify the collection, but only
read data from it. And if a function requires you to pass a MutableCollection, you
can assume that it’s going to modify the data. If you have a collection that’s part of the
internal state of your component, you may need to make a copy of that collection
before passing it to such a function. (This pattern is usually called a defensive copy.)

 For example, you can clearly see that the following copyElements function will
modify the target collection but not the source collection.

fun <T> copyElements(source: Collection<T>,
target: MutableCollection<T>) {

for (item in source) {
target.add(item)

}
}

>>> val source: Collection<Int> = arrayListOf(3, 5, 7)
>>> val target: MutableCollection<Int> = arrayListOf(1)
>>> copyElements(source, target)
>>> println(target)
[1, 3, 5, 7]

You can’t pass a variable of a read-only collection type as the target argument, even
if its value is a mutable collection:

>>> val source: Collection<Int> = arrayListOf(3, 5, 7)
>>> val target: Collection<Int> = arrayListOf(1)
>>> copyElements(source, target)
Error: Type mismatch: inferred type is Collection<Int>

but MutableCollection<Int> was expected

A key thing to keep in mind when working with collection interfaces is that read-only
collections aren’t necessarily immutable.1 If you’re working with a variable that has a

Listing 6.24 Using read-only and mutable collection interfaces

1 Immutable collections are planned to be added to the Kotlin standard library later.

Collection

size
iterator()
contains()

MutableCollection

add()
remove()
clear()

Figure 6.11 MutableCollection extends
Collection and adds methods to modify a
collection’s contents.

Loops over all items
in the source collection

Adds items to the mutable
target collection

Error on the
“target” argument
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

163Collections and arrays
read-only interface type, this can be just one of the many references to the same collec-
tion. Other references can have a mutable interface type, as illustrated in figure 6.12.

 If you call the code holding the other reference to your collection or run it in par-
allel, you can still come across situations where the collection is modified by other
code while you’re working with it, which leads to ConcurrentModification-
Exception errors and other problems. Therefore, it’s essential to understand that
read-only collections aren’t always thread-safe. If you’re working with data in a multi-
threaded environment, you need to ensure that your code properly synchronizes
access to the data or uses data structures that support concurrent access.

 How does the separation between read-only and mutable collections work? Didn’t
we say earlier that Kotlin collections are the same as Java collections? Isn’t there a con-
tradiction? Let’s see what really happens here.

6.3.3 Kotlin collections and Java

It’s true that every Kotlin collection is an instance of the corresponding Java collection
interface. No conversion is involved when moving between Kotlin and Java; there’s no
need for wrappers or copying data. But every Java collection interface has two represen-
tations in Kotlin: a read-only one and a mutable one, as you can see in figure 6.13.

Figure 6.13 The hierarchy of the Kotlin collection interfaces. The Java classes ArrayList and
HashSet extend Kotlin mutable interfaces.

list:
List<String>

mutableList:
MutableList<String>

a b c

Figure 6.12 Two different references,
one read-only and one mutable, pointing
to the same collection object

Iterable MutableIterable

Read-only interfacesCollection MutableCollection

List MutableList

ArrayList

Set MutableSet

HashSet

Mutable interfaces

Java classes
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

164 CHAPTER 6 The Kotlin type system
All collection interfaces shown in figure 6.13 are declared in Kotlin. The basic struc-
ture of the Kotlin read-only and mutable interfaces is parallel to the structure of the
Java collection interfaces in the java.util package. In addition, each mutable inter-
face extends the corresponding read-only interface. Mutable interfaces correspond
directly to the interfaces in the java.util package, whereas the read-only versions
lack all the mutating methods.

 Figure 6.13 also contains the Java classes java.util.ArrayList and
java.util.HashSet to show how Java standard classes are treated in Kotlin. Kotlin
sees them as if they inherited from the Kotlin’s MutableList and MutableSet inter-
faces, respectively. Other implementations from the Java collection library
(LinkedList, SortedSet, and so on) aren’t presented here, but from the Kotlin
perspective they have similar supertypes. This way, you get both compatibility and
clear separation of mutable and read-only interfaces.

 In addition to the collections, the Map class (which doesn’t extend Collection or
Iterable) is also represented in Kotlin as two distinct versions: Map and Mutable-
Map. Table 6.1 shows the functions you can use to create collections of different types.

Note that setOf() and mapOf() return instances of classes from the Java standard
library (at least in Kotlin 1.0), which are all mutable under the hood.2 But you
shouldn’t rely on that: it’s possible that a future version of Kotlin will use truly immu-
table implementation classes as return values of setOf and mapOf.

 When you need to call a Java method and pass a collection as an argument, you
can do so directly without any extra steps. For example, if you have a Java method that
takes a java.util.Collection as a parameter, you can pass any Collection or
MutableCollection value as an argument to that parameter.

 This has important consequences with regard to mutability of collections. Because
Java doesn’t distinguish between read-only and mutable collections, Java code can mod-
ify the collection even if it’s declared as a read-only Collection on the Kotlin side. The
Kotlin compiler can’t fully analyze what’s being done to the collection in the Java
code, and therefore there’s no way for Kotlin to reject a call passing a read-only
Collection to Java code that modifies it. For example, the following two snippets of
code form a compilable cross-language Kotlin/Java program:

Table 6.1 Collection-creation functions

Collection type Read-only Mutable

List listOf mutableListOf, arrayListOf

Set setOf mutableSetOf, hashSetOf, linkedSetOf, sortedSetOf

Map mapOf mutableMapOf, hashMapOf, linkedMapOf, sortedMapOf

2 Wrapping things into Collection.unmodifiable introduces indirection overhead, so it’s not done.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

165Collections and arrays
/* Java */
// CollectionUtils.java
public class CollectionUtils {

public static List<String> uppercaseAll(List<String> items) {
for (int i = 0; i < items.size(); i++) {

items.set(i, items.get(i).toUpperCase());
}
return items;

}
}

// Kotlin
// collections.kt
fun printInUppercase(list: List<String>) {

println(CollectionUtils.uppercaseAll(list))
println(list.first())

}

>>> val list = listOf("a", "b", "c")
>>> printInUppercase(list)
[A, B, C]
A

Therefore, if you’re writing a Kotlin function that takes a collection and passes it to
Java, it’s your responsibility to use the correct type for the parameter, depending on whether
the Java code you’re calling will modify the collection.

 Note that this caveat also applies to collections with non-null element types. If you
pass such a collection to a Java method, the method can put a null value into it;
there’s no way for Kotlin to forbid that or even to detect that it has happened without
compromising performance. Because of that, you need to take special precautions
when you pass collections to Java code that can modify them, to make sure the Kotlin
types correctly reflect all the possible modifications to the collection.

 Now, let’s take a closer look at how Kotlin deals with collections declared in Java
code.

6.3.4 Collections as platform types

If you recall the discussion of nullability earlier in this chapter, you’ll remember that
types defined in Java code are seen as platform types in Kotlin. For platform types, Kot-
lin doesn’t have the nullability information, so the compiler allows Kotlin code to
treat them as either nullable or non-null. In the same way, variables of collection
types declared in Java are also seen as platform types. A collection with a platform type
is essentially a collection of unknown mutability—the Kotlin code can treat it as either
read-only or mutable. Usually this doesn’t matter, because, in effect, all the operations
you may want to perform just work.

 The difference becomes important when you’re overriding or implementing a Java
method that has a collection type in its signature. Here, as with platform types for nul-
lability, you need to decide which Kotlin type you’re going to use to represent a Java
type coming from the method you’re overriding or implementing.

Declares a
read-only

parameter
Calls a Java function that
modifies the collection

Shows that the collection
has been modified
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

166 CHAPTER 6 The Kotlin type system
 You need to make multiple choices in this situation, all of which will be reflected in
the resulting parameter type in Kotlin:

 Is the collection nullable?
 Are the elements in the collection nullable?
 Will your method modify the collection?

To see the difference, consider the following cases. In the first example, a Java inter-
face represents an object that processes text in a file.

/* Java */
interface FileContentProcessor {

void processContents(File path,
byte[] binaryContents,
List<String> textContents);

}

A Kotlin implementation of this interface needs to make the following choices:

 The list will be nullable, because some files are binary and their contents can’t
be represented as text.

 The elements in the list will be non-null, because lines in a file are never null.
 The list will be read-only, because it represents the contents of a file, and those

contents aren’t going to be modified.

Here’s how this implementation looks.

class FileIndexer : FileContentProcessor {
override fun processContents(path: File,

binaryContents: ByteArray?,
textContents: List<String>?) {

// ...
}

}

Contrast this with another interface. Here the implementations of the interface parse
some data from a text form into a list of objects, append those objects to the output
list, and report errors detected when parsing by adding the messages to a separate list.

/* Java */
interface DataParser<T> {

void parseData(String input,
List<T> output,
List<String> errors);

}

Listing 6.25 A Java interface with a collection parameter

Listing 6.26 Kotlin implementation of FileContentProcessor

Listing 6.27 Another Java interface with a collection parameter
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

167Collections and arrays
The choices in this case are different:

 List<String> will be non-null, because the callers always need to receive
error messages.

 The elements in the list will be nullable, because not every item in the output
list will have an associated error message.

 List<String> will be mutable, because the implementing code needs to add
elements to it.

Here’s how you can implement that interface in Kotlin.

class PersonParser : DataParser<Person> {
override fun parseData(input: String,

output: MutableList<Person>,
errors: MutableList<String?>) {

// ...
}

}

Note how the same Java type—List<String>—is represented by two different Kot-
lin types: a List<String>? (nullable list of strings) in one case and a Mutable-
List<String?> (mutable list of nullable strings) in the other. To make these
choices correctly, you must know the exact contract the Java interface or class needs
to follow. This is usually easy to understand based on what your implementation
needs to do.

 Now that we’ve discussed collections, it’s time to look at arrays. As we’ve men-
tioned before, you should prefer using collections to arrays by default. But because
many Java APIs still use arrays, we’ll cover how to work with them in Kotlin.

6.3.5 Arrays of objects and primitive types

The syntax of Kotlin arrays appears in every example, because an array is part of the
standard signature of the Java main function. Here’s a reminder of how it looks:

fun main(args: Array<String>) {
for (i in args.indices) {

println("Argument $i is: ${args[i]}")
}

}

An array in Kotlin is a class with a type parameter, and the element type is specified as
the corresponding type argument.

Listing 6.28 Kotlin implementation of DataParser

Listing 6.29 Using arrays

Uses the array.indices
extension property to iterate
over the range of indices

Accesses elements by
index with array[index]
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

168 CHAPTER 6 The Kotlin type system

is
en

ected.
 To create an array in Kotlin, you have the following possibilities:

 The arrayOf function creates an array containing the elements specified as
arguments to this function.

 The arrayOfNulls function creates an array of a given size containing null
elements. Of course, it can only be used to create arrays where the element type
is nullable.

 The Array constructor takes the size of the array and a lambda, and initializes
each array element by calling the lambda. This is how you can initialize an
array with a non-null element type without passing each element explicitly.

As a simple example, here’s how you can use the Array function to create an array of
strings from "a" to "z".

>>> val letters = Array<String>(26) { i -> ('a' + i).toString() }
>>> println(letters.joinToString(""))
abcdefghijklmnopqrstuvwxyz

The lambda takes the index of the array element and returns the value to be placed in
the array at that index. Here you calculate the value by adding the index to the 'a'
character and converting the result to a string. The array element type is shown for
clarity; you can omit it in real code because the compiler can infer it.

 Having said that, one of the most common cases for creating an array in Kotlin
code is when you need to call a Java method that takes an array, or a Kotlin function
with a vararg parameter. In those situations, you often have the data already stored
in a collection, and you just need to convert it into an array. You can do this using the
toTypedArray method.

>>> val strings = listOf("a", "b", "c")
>>> println("%s/%s/%s".format(*strings.toTypedArray()))
a/b/c

As with other types, type arguments of array types always become object types. Therefore, if
you declare something like an Array<Int>, it will become an array of boxed integers
(its Java type will be java.lang.Integer[]). If you need to create an array of values
of a primitive type without boxing, you must use one of the specialized classes for
arrays of primitive types.

 To represent arrays of primitive types, Kotlin provides a number of separate
classes, one for each primitive type. For example, an array of values of type Int is
called IntArray. For other types, Kotlin provides ByteArray, CharArray,

Listing 6.30 Creating an array of characters

Listing 6.31 Passing a collection to a vararg method

The spread operator (*)
used to pass an array wh
vararg parameter is exp
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

169Collections and arrays
BooleanArray, and so on. All of these types are compiled to regular Java primitive
type arrays, such as int[], byte[], char[], and so on. Therefore, values in such an
array are stored without boxing, in the most efficient manner possible.

 To create an array of a primitive type, you have the following options:

 The constructor of the type takes a size parameter and returns an array initial-
ized with default values for the corresponding primitive type (usually zeros).

 The factory function (intArrayOf for IntArray, and so on for other array
types) takes a variable number of values as arguments and creates an array hold-
ing those values.

 Another constructor takes a size and a lambda used to initialize each element.

Here’s how the first two options work for creating an integer array holding five zeros:

val fiveZeros = IntArray(5)
val fiveZerosToo = intArrayOf(0, 0, 0, 0, 0)

Here’s how you can use the constructor accepting a lambda:

>>> val squares = IntArray(5) { i -> (i+1) * (i+1) }
>>> println(squares.joinToString())
1, 4, 9, 16, 25

Alternatively, if you have an array or a collection holding boxed values of a primitive
type, you can convert them to an array of that primitive type using the corresponding
conversion function, such as toIntArray.

 Next, let’s look at some of the things you can do with arrays. In addition to the
basic operations (getting the array’s length and getting and setting elements), the
Kotlin standard library supports the same set of extension functions for arrays as for
collections. All the functions you saw in chapter 5 (filter, map, and so on) work for
arrays as well, including the arrays of primitive types. (Note that the return values of
these functions are lists, not arrays.)

 Let’s see how to rewrite listing 6.30 using the forEachIndexed function and a
lambda. The lambda passed to that function is called for each element of the array
and receives two arguments, the index of the element and the element itself.

fun main(args: Array<String>) {
args.forEachIndexed { index, element ->

println("Argument $index is: $element")
}

}

Now you know how to use arrays in your code. Working with them is as simple as work-
ing with collections in Kotlin.

Listing 6.32 Using forEachIndexed with an array
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

170 CHAPTER 6 The Kotlin type system
6.4 Summary
 Kotlin’s support of nullable types detects possible NullPointerException

errors at compile time.
 Kotlin provides tools such as safe calls (?.), the Elvis operator (?:), not-null

assertions (!!), and the let function for dealing with nullable types concisely.
 The as? operator provides an easy way to cast a value to a type and to handle

the case when it has a different type.
 Types coming from Java are interpreted as platform types in Kotlin, allowing

the developer to treat them as either nullable or non-null.
 Types representing basic numbers (such as Int) look and function like regular

classes but are usually compiled to Java primitive types.
 Nullable primitive types (such as Int?) correspond to boxed primitive types in

Java (such as java.lang.Integer).
 The Any type is a supertype of all other types and is analogous to Java’s Object.

Unit is an analogue of void.
 The Nothing type is used as a return type of functions that don’t terminate

normally.
 Kotlin uses the standard Java classes for collections and enhances them with a

distinction between read-only and mutable collections.
 You need to carefully consider nullability and mutability of parameters when

you extend Java classes or implement Java interfaces in Kotlin.
 Kotlin’s Array class looks like a regular generic class, but it’s compiled to a Java

array.
 Arrays of primitive types are represented by special classes such as IntArray.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Part 2

Embracing Kotlin

By now, you should be very familiar with using Kotlin to access existing
APIs. In this part of the book, you’ll learn how to build your own APIs in Kotlin.
It’s important to remember that building APIs isn’t restricted to library authors:
every time you have two interacting classes in your program, one of them pro-
vides an API to the other.

 In chapter 7, you’ll learn about the principle of conventions, which are used in
Kotlin to implement operator overloading and other abstraction techniques such
as delegated properties. Chapter 8 takes a closer look at lambdas, and you’ll see
how you can declare your own functions that take lambdas as parameters. You’ll
become familiar with Kotlin’s take on some more advanced Java concepts, such as
generics (chapter 9) and annotations and reflection (chapter 10). Also in chapter
10, you’ll study a fairly large real-world Kotlin project: JKid, a JSON serialization
and deserialization library. And finally, in chapter 11, you’ll reach one of Kotlin’s
crown jewels: its support for building domain-specific languages.

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

172 CHAPTER

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Operator overloading
and other conventions
As you know, Java has several language features tied to specific classes in the stan-
dard library. For example, objects that implement java.lang.Iterable can be
used in for loops, and objects that implement java.lang.AutoCloseable can
be used in try-with-resources statements.

 Kotlin has a number of features that work in a similar way, where specific lan-
guage constructs are implemented by calling functions that you define in your own
code. But instead of being tied to specific types, in Kotlin those features are tied to
functions with specific names. For example, if your class defines a special method
named plus, then, by convention, you can use the + operator on instances of this
class. Because of that, in Kotlin we refer to this technique as conventions. In this
chapter, we’ll look at different conventions supported by Kotlin and how they can
be used.

This chapter covers
 Operator overloading

 Conventions: special-named functions supporting
various operations

 Delegated properties
173

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

174 CHAPTER 7 Operator overloading and other conventions

A
coo
and
a ne
 Kotlin uses the principle of conventions, instead of relying on types as Java does,
because this allows developers to adapt existing Java classes to the requirements of
Kotlin language features. The set of interfaces implemented by a class is fixed, and
Kotlin can’t modify an existing class so that it would implement additional interfaces.
On the other hand, defining new methods for a class is possible through the mecha-
nism of extension functions. You can define any convention methods as extensions
and thereby adapt any existing Java class without modifying its code.

 As a running example in this chapter, we’ll use a simple Point class, representing
a point on a screen. Such classes are available in most UI frameworks, and you can eas-
ily adapt the definitions shown here to your environment:

data class Point(val x: Int, val y: Int)

Let’s begin by defining some arithmetic operators on the Point class.

7.1 Overloading arithmetic operators
The most straightforward example of the use of conventions in Kotlin is arithmetic
operators. In Java, the full set of arithmetic operations can be used only with primitive
types, and additionally the + operator can be used with String values. But these oper-
ations could be convenient in other cases as well. For example, if you’re working with
numbers through the BigInteger class, it’s more elegant to sum them using + than
to call the add method explicitly. To add an element to a collection, you may want to
use the += operator. Kotlin allows you to do that, and in this section we’ll show you
how it works.

7.1.1 Overloading binary arithmetic operations

The first operation you’re going to support is adding two points together. This opera-
tion sums up the points’ X and Y coordinates. Here’s how you can implement it.

data class Point(val x: Int, val y: Int) {
operator fun plus(other: Point): Point {

return Point(x + other.x, y + other.y)
}

}

>>> val p1 = Point(10, 20)
>>> val p2 = Point(30, 40)
>>> println(p1 + p2)
Point(x=40, y=60)

Note how you use the operator keyword to declare the plus function. All functions
used to overload operators need to be marked with that keyword. This makes it explicit
that you intend to use the function as an implementation of the corresponding con-
vention and that you didn’t define a function that accidentally had a matching name.

Listing 7.1 Defining the plus operator

Defines an operator
function named “plus”dds the

rdinates
 returns
w point

Calls the “plus”
function using the + sign
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

175Overloading arithmetic operators
 After you declare the plus function with the opera-
tor modifier, you can sum up your objects using just the +
sign. Under the hood, the plus function is called as
shown in figure 7.1.

 As an alternative to declaring the operator as a mem-
ber, you can define the operator as an extension function.

operator fun Point.plus(other: Point): Point {
return Point(x + other.x, y + other.y)

}

The implementation is exactly the same. Future examples will use the extension func-
tion syntax because it’s a common pattern to define convention extension functions
for external library classes, and the same syntax will work nicely for your own classes
as well.

 Compared to some other languages, defining and using overloaded operators in
Kotlin is simpler, because you can’t define your own operators. Kotlin has a limited set
of operators that you can overload, and each one corresponds to the name of the
function you need to define in your class. Table 7.1 lists all the binary operators you
can define and the corresponding function names.

Operators for your own types always use the same precedence as the standard
numeric types. For example, if you write a + b * c, the multiplication will always be
executed before the addition, even if you’ve defined those operators yourself. The
operators *, /, and % have the same precedence, which is higher than the precedence
of the + and - operators.

Listing 7.2 Defining an operator as an extension function

Table 7.1 Overloadable binary arithmetic operators

Expression Function name

a * b times

a / b div

a % b mod

a + b plus

a - b minus

a + b a.plus(b)

Figure 7.1 The + operator
is transformed into a plus
function call.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

176 CHAPTER 7 Operator overloading and other conventions
When you define an operator, you don’t need to use the same types for the two oper-
ands. For example, let’s define an operator that will allow you to scale a point by a cer-
tain number. You can use it to translate points between different coordinate systems.

operator fun Point.times(scale: Double): Point {
return Point((x * scale).toInt(), (y * scale).toInt())

}

>>> val p = Point(10, 20)
>>> println(p * 1.5)
Point(x=15, y=30)

Note that Kotlin operators don’t automatically support commutativity (the ability to
swap the left and right sides of an operator). If you want users to be able to write 1.5
* p in addition to p * 1.5, you need to define a separate operator for that: opera-
tor fun Double.times(p: Point): Point.

 The return type of an operator function can also be different from either of the
operand types. For example, you can define an operator to create a string by repeat-
ing a character a number of times.

operator fun Char.times(count: Int): String {
return toString().repeat(count)

}

>>> println('a' * 3)
aaa

This operator takes a Char as the left operand and an Int as the right operand and
has String as the result type. Such combinations of operand and result types are per-
fectly acceptable.

 Note that you can overload operator functions like regular functions: you can
define multiple methods with different parameter types for the same method name.

Operator functions and Java
Kotlin operators are easy to call from Java: because every overloaded operator is
defined as a function, you call them as regular functions using the full name. When
you call Java from Kotlin, you can use the operator syntax for any methods with
names matching the Kotlin conventions. Because Java doesn’t define any syntax for
marking operator functions, the requirement to use the operator modifier doesn’t
apply, and the matching name and number of parameters are the only constraints. If
a Java class defines a method with the behavior you need but gives it a different
name, you can define an extension function with the correct name that would dele-
gate to the existing Java method.

Listing 7.3 Defining an operator with different operand types

Listing 7.4 Defining an operator with a different result type
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

177Overloading arithmetic operators

Now let’s discuss the operators like += that merge two actions: assignment and the cor-
responding arithmetic operator.

7.1.2 Overloading compound assignment operators

Normally, when you define an operator such as plus, Kotlin supports not only the +
operation but += as well. Operators such as +=, -=, and so on are called compound
assignment operators. Here’s an example:

>>> var point = Point(1, 2)
>>> point += Point(3, 4)
>>> println(point)
Point(x=4, y=6)

This is the same as writing point = point + Point(3, 4). Of course, that works
only if the variable is mutable.

 In some cases, it makes sense to define the += operation that would modify an
object referenced by the variable on which it’s used, but not reassign the reference.
One such case is adding an element to a mutable collection:

>>> val numbers = ArrayList<Int>()
>>> numbers += 42
>>> println(numbers[0])
42

No special operators for bitwise operations
Kotlin doesn’t define any bitwise operators for standard number types; consequently,
it doesn’t allow you to define them for your own types. Instead, it uses regular func-
tions supporting the infix call syntax. You can define similar functions that work with
your own types.

Here’s the full list of functions provided by Kotlin for performing bitwise operations:

 shl—Signed shift left
 shr—Signed shift right
 ushr—Unsigned shift right
 and—Bitwise and
 or—Bitwise or
 xor—Bitwise xor
 inv—Bitwise inversion

The following example demonstrates the use of some of these functions:

>>> println(0x0F and 0xF0)
0
>>> println(0x0F or 0xF0)
255
>>> println(0x1 shl 4)
16
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

178 CHAPTER 7 Operator overloading and other conventions
If you define a function named plusAssign with the Unit return type, Kotlin will
call it when the += operator is used. Other binary arithmetic operators have similarly
named counterparts: minusAssign, timesAssign, and so on.

 The Kotlin standard library defines a function plusAssign on a mutable collec-
tion, and the previous example uses it:

operator fun <T> MutableCollection<T>.plusAssign(element: T) {
this.add(element)

}

When you write += in your code, theoretically
both plus and plusAssign functions can be
called (see figure 7.2). If this is the case, and both
functions are defined and applicable, the com-
piler reports an error. One possibility to resolve it
is replacing your use of the operator with a regular
function call. Another is to replace a var with a
val, so that the plusAssign operation becomes inapplicable. But in general, it’s best
to design new classes consistently: try not to add both plus and plusAssign opera-
tions at the same time. If your class is immutable, like Point in one of the earlier
examples, you should provide only operations that return a new value (such as plus).
If you design a mutable class, like a builder, provide only plusAssign and similar
operations.

 The Kotlin standard library supports both approaches for collections. The + and -
operators always return a new collection. The += and -= operators work on mutable
collections by modifying them in place, and on read-only collections by returning a
modified copy. (This means += and -= can only be used with a read-only collection if
the variable referencing it is declared as a var.) As operands of those operators, you
can use either individual elements or other collections with a matching element type:

>>> val list = arrayListOf(1, 2)
>>> list += 3
>>> val newList = list + listOf(4, 5)
>>> println(list)
[1, 2, 3]
>>> println(newList)
[1, 2, 3, 4, 5]

So far, we’ve discussed overloading of binary operators—operators that are applied to
two values, such as a + b. In addition, Kotlin allows you to overload unary operators,
which are applied to a single value, as in -a.

7.1.3 Overloading unary operators

The procedure for overloading a unary operator is the same as you saw previously:
declare a function (member or extension) with a predefined name, and mark it with
the modifier operator. Let’s look at an example.

a += b
a = a.plus(b)

a.plusAssign(b)

Figure 7.2 The += operator can be
transformed into either the plus or
the plusAssign function call.

+= changes “list”.

+ returns a new list
containing all the elements.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

179Overloading arithmetic operators

operator fun Point.unaryMinus(): Point {
return Point(-x, -y)

}

>>> val p = Point(10, 20)
>>> println(-p)
Point(x=-10, y=-20)

Functions used to overload unary operators don’t take
any arguments. As shown in figure 7.3, the unary plus
operator works the same way. Table 7.2 lists all the unary
operators you can overload.

When you define the inc and dec functions to overload increment and decrement
operators, the compiler automatically supports the same semantics for pre- and post-
increment operators as for the regular number types. Consider the following exam-
ple, which overloads the ++ operator for the BigDecimal class.

operator fun BigDecimal.inc() = this + BigDecimal.ONE

>>> var bd = BigDecimal.ZERO
>>> println(bd++)
0
>>> println(++bd)
2

The postfix operation ++ first returns the current value of the bd variable and after
that increases it, whereas the prefix operation works the other way round. The printed
values are the same as you’d see if you used a variable of type Int, and you didn’t
need to do anything special to support this.

Listing 7.5 Defining a unary operator

Table 7.2 Overloadable unary arithmetic operators

Expression Function name

+a unaryPlus

-a unaryMinus

!a not

++a, a++ inc

--a, a-- dec

Listing 7.6 Defining an increment operator

The unary minus function
has no parameters.

Negates the
coordinates of the
point, and returns it

+a a.unaryPlus()

Figure 7.3 The unary +
operator is transformed into a
unaryPlus function call.

Increments after the first
println statement executes

Increments before the second
println statement executes
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

180 CHAPTER 7 Operator overloading and other conventions

Ov
the

defined
7.2 Overloading comparison operators
Just as with arithmetic operators, Kotlin lets you use comparison operators (==, !=, >,
<, and so on) with any object, not just with primitive types. Instead of calling equals or
compareTo, as in Java, you can use comparison operators directly, which is intuitive and
concise. In this section, we’ll look at the conventions used to support these operators.

7.2.1 Equality operators: “equals”

We touched on the topic of equality in section 4.3.1. You saw that using the == opera-
tor in Kotlin is translated into a call of the equals method. This is just one more
application of the conventions principle we’ve been discussing.

 Using the != operator is also trans-
lated into a call of equals, with the
obvious difference that the result is
inverted. Note that unlike all other
operators, == and != can be used with
nullable operands, because those
operators check equality to null

under the hood. The comparison a == b checks whether a isn’t null, and, if it’s not,
calls a.equals(b) (see figure 7.4). Otherwise the result is true only if both argu-
ments are null references.

 For the Point class, the implementation of equals is automatically generated by
the compiler, because you’ve marked it as a data class (section 4.3.2 explained the
details). But if you did implement it manually, here’s what the code could look like.

class Point(val x: Int, val y: Int) {
override fun equals(obj: Any?): Boolean {

if (obj === this) return true
if (obj !is Point) return false
return obj.x == x && obj.y == y

}
}

>>> println(Point(10, 20) == Point(10, 20))
true
>>> println(Point(10, 20) != Point(5, 5))
true
>>> println(null == Point(1, 2))
false

You use the identity equals operator (===) to check whether the parameter to equals
is the same object as the one on which equals is called. The identity equals operator
does exactly the same thing as the == operator in Java: it checks that both of its argu-
ments reference the same object (or have the same value, if they have a primitive

Listing 7.7 Implementing the equals method

a == b a?.equals(b) ?: (b == null)

Figure 7.4 An equality check == is transformed
into an equals call and a null check.

errides
method
 in Any

Optimization: checks whether the
parameter is the same object as “this”

Checks the parameter type

Uses a smart cast to
Point to access the
x and y properties
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

181Overloading comparison operators
type). Using this operator is a common optimization when implementing equals.
Note that the === operator can’t be overloaded.

 The equals function is marked as override, because, unlike other conventions,
the method implementing it is defined in the Any class (equality comparison is sup-
ported for all objects in Kotlin). That also explains why you don’t need to mark it as
operator: the base method in Any is marked as such, and the operator modifier on
a method applies also to all methods that implement or override it. Also note that
equals can’t be implemented as an extension, because the implementation inherited
from the Any class would always take precedence over the extension.

 This example shows that using the != operator is also translated into a call of the
equals method. The compiler automatically negates the return value, so you don’t
need to do anything for this to work correctly.

 What about other comparison operators?

7.2.2 Ordering operators: compareTo

In Java, classes can implement the Comparable interface in order to be used in algo-
rithms that compare values, such as finding a maximum or sorting. The compareTo
method defined in that interface is used to determine whether one object is larger
than another. But in Java, there’s no shorthand syntax for calling this method. Only
values of primitive types can be compared using < and >; all other types require you to
write element1.compareTo(element2) explicitly.

 Kotlin supports the same Comparable
interface. But the compareTo method
defined in that interface can be called by con-
vention, and uses of comparison operators (<,
>, <=, and >=) are translated into calls of
compareTo, as shown in figure 7.5. The
return type of compareTo has to be Int. The expression p1 < p2 is equivalent to
p1.compareTo(p2) < 0. Other comparison operators work exactly the same way.

 Because there’s no obviously right way to compare points with one another, let’s
use the good-old Person class to show how the method can be implemented. The
implementation will use address book ordering (compare by last name, and then, if
the last name is the same, compare by first name).

class Person(
val firstName: String, val lastName: String

) : Comparable<Person> {

override fun compareTo(other: Person): Int {
return compareValuesBy(this, other,

Person::lastName, Person::firstName)
}

}

Listing 7.8 Implementing the compareTo method

a >= b a.compareTo(b) >= 0

Figure 7.5 Comparison of two objects is
transformed into comparing the result of
the compareTo call with zero.

Evaluates the given callbacks
in order, and compares values
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

182 CHAPTER 7 Operator overloading and other conventions
>>> val p1 = Person("Alice", "Smith")
>>> val p2 = Person("Bob", "Johnson")
>>> println(p1 < p2)
false

In this case, you implement the Comparable interface so that the Person objects can
be compared not only by Kotlin code but also by Java functions, such as the functions
used to sort collections. Just as with equals, the operator modifier is applied to the
function in the base interface, so you don’t need to repeat the keyword when you
override the function.

 Note how you can use the compareValuesBy function from the Kotlin standard
library to implement the compareTo method easily and concisely. This function
receives a list of callbacks that calculate values to be compared. The function calls
each callback in order for both objects and compares the return values. If the values
are different, it returns the result of the comparison. If they’re the same, it proceeds
to the next callback or returns 0 if there are no more callbacks to call. The callbacks
can be passed as lambdas or, as you do here, as property references.

 Note, however, that a direct implementation comparing fields by hand would be
faster, although it would contain more code. As always, you should prefer the concise
version and worry about performance only if you know the implementation will be
called frequently.

 All Java classes that implement the Comparable interface can be compared in Kot-
lin using the concise operator syntax:

>>> println("abc" < "bac")
true

You don’t need to add any extensions to make that work.

7.3 Conventions used for collections and ranges
Some of the most common operations for working with collections are getting and
setting elements by index, as well as checking whether an element belongs to a collec-
tion. All of these operations are supported via operator syntax: To get or set an ele-
ment by index, you use the syntax a[b] (called the index operator). The in operator
can be used to check whether an element is in a collection or range and also to iterate
over a collection. You can add those operations for your own classes that act as collec-
tions. Let’s now look at the conventions used to support those operations.

7.3.1 Accessing elements by index: “get” and “set”

You know already that in Kotlin, you can access the elements in a map similarly to how
you access arrays in Java—via square brackets:

val value = map[key]

You can use the same operator to change the value for a key in a mutable map:

mutableMap[key] = newValue
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

183Conventions used for collections and ranges
Now it’s time to see how this works. In Kotlin, the index operator is one more conven-
tion. Reading an element using the index operator is translated into a call of the get
operator method, and writing an element becomes a call to set. The methods are
already defined for the Map and MutableMap interfaces. Let’s see how to add similar
methods to your own class.

 You’ll allow the use of square brackets to reference the coordinates of the point:
p[0] to access the X coordinate and p[1] to access the Y coordinate. Here’s how to
implement and use it.

operator fun Point.get(index: Int): Int {
return when(index) {

0 -> x
1 -> y
else ->

throw IndexOutOfBoundsException("Invalid coordinate $index")
}

}

>>> val p = Point(10, 20)
>>> println(p[1])
20

All you need to do is define a function named get
and mark it as operator. Once you do that, expres-
sions like p[1], where p has type Point, will be
translated into calls to the get method, as shown in
figure 7.6.

 Note that the parameter of get can be any type, not just Int. For example, when
you use the indexing operator on a map, the parameter type is the key type of the
map, which can be an arbitrary type. You can also define a get method with multiple
parameters. For example, if you’re implementing a class to represent a two-dimen-
sional array or matrix, you can define a method such as operator fun get(row-
Index: Int, colIndex: Int) and call it as matrix[row, col]. You can define
multiple overloaded get methods with different parameter types, if your collection
can be accessed with different key types.

 In a similar way, you can define a function that lets you change the value at a given
index using the bracket syntax. The Point class is immutable, so it doesn’t make
sense to define such a method for Point. Let’s define another class to represent a
mutable point and use that as an example.

data class MutablePoint(var x: Int, var y: Int)

operator fun MutablePoint.set(index: Int, value: Int) {
when(index) {

Listing 7.9 Implementing the get convention

Listing 7.10 Implementing the set convention

Defines an operator
function named “get”

Gets the coordinate corresponding
to the given index

x[a, b] x.get(a, b)

Figure 7.6 Access via square
brackets is transformed into a
get function call.

Defines an operator
function named “set”
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

184 CHAPTER 7 Operator overloading and other conventions

ge

Uses th
function

an op
0 -> x = value
1 -> y = value
else ->

throw IndexOutOfBoundsException("Invalid coordinate $index")
}

}

>>> val p = MutablePoint(10, 20)
>>> p[1] = 42
>>> println(p)
MutablePoint(x=10, y=42)

This example is also simple: to allow the use of
the index operator in assignments, you just
need to define a function named set. The last
parameter to set receives the value used on
the right side of the assignment, and the other
arguments are taken from the indices used
inside the brackets, as you can see in figure 7.7.

7.3.2 The “in” convention

One other operator supported by collections is the in operator, which is used to
check whether an object belongs to a collection. The corresponding function is called
contains. Let’s implement it so that you can use the in operator to check whether a
point belongs to a rectangle.

data class Rectangle(val upperLeft: Point, val lowerRight: Point)

operator fun Rectangle.contains(p: Point): Boolean {
return p.x in upperLeft.x until lowerRight.x &&

p.y in upperLeft.y until lowerRight.y
}

>>> val rect = Rectangle(Point(10, 20), Point(50, 50))
>>> println(Point(20, 30) in rect)
true
>>> println(Point(5, 5) in rect)
false

The object on the right side of in becomes the object on which the contains
method is called, and the object on the left side becomes the argument passed to the
method (see figure 7.8).

 In the implementation of Rectangle

.contains, you use the until standard library
function to build an open range and then you use
the in operator on a range to check that a point
belongs to it.

Listing 7.11 Implementing the in convention

Changes the coordinate corresponding
to the specified index

x[a, b] = c x.set(a, b, c)

Figure 7.7 Assignment through square
brackets is transformed into a set
function call.

Builds a range, and
checks that coordinate
“x” belongs to this ran

e “until”
 to build
en range

a in c c.contains(a)

Figure 7.8 The in operator is
transformed into a contains
function call.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

185Conventions used for collections and ranges
 An open range is a range that doesn’t include its ending point. For example, if you
build a regular (closed) range using 10..20, this range includes all numbers from 10
to 20, including 20. An open range 10 until 20 includes numbers from 10 to 19 but
doesn’t include 20. A rectangle class is usually defined in such a way that its bottom
and right coordinates aren’t part of the rectangle, so the use of open ranges is appro-
priate here.

7.3.3 The rangeTo convention

To create a range, you use the .. syntax: for
instance, 1..10 enumerates all the num-
bers from 1 to 10. You met ranges in section
2.4.2, but now let’s discuss the convention
that helps create one. The .. operator is a concise way to call the rangeTo function
(see figure 7.9).

 The rangeTo function returns a range. You can define this operator for your own
class. But if your class implements the Comparable interface, you don’t need that:
you can create a range of any comparable elements by means of the Kotlin standard
library. The library defines the rangeTo function that can be called on any compara-
ble element:

operator fun <T: Comparable<T>> T.rangeTo(that: T): ClosedRange<T>

This function returns a range that allows you to check whether different elements
belong to it.

 As an example, let’s build a range of dates using the LocalDate class (defined in
the Java 8 standard library).

>>> val now = LocalDate.now()
>>> val vacation = now..now.plusDays(10)
>>> println(now.plusWeeks(1) in vacation)
true

The expression now..now.plusDays(10) is transformed into now.rangeTo

(now.plusDays(10)) by the compiler. The rangeTo function isn’t a member of
LocalDate but rather is an extension function on Comparable, as shown earlier.

 The rangeTo operator has lower priority than arithmetic operators. But it’s better
to use parentheses for its arguments to avoid confusion:

>>> val n = 9
>>> println(0..(n + 1))
0..10

Listing 7.12 Working with a range of dates

start..end start.rangeTo(end)

Figure 7.9 The .. operator is transformed
into a rangeTo function call.

Creates a 10-day range
starting from now

Checks whether a specific
date belongs to a range

You can write 0..n + 1, but
parentheses make it clearer.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

186 CHAPTER 7 Operator overloading and other conventions

N

Ret

be
Also note that the expression 0..n.forEach {} won’t compile, because you have to
surround a range expression with parentheses to call a method on it:

>>> (0..n).forEach { print(it) }
0123456789

Now let’s discuss how conventions allow you to iterate over a collection or a range.

7.3.4 The “iterator” convention for the “for” loop

As we discussed in chapter 2, for loops in Kotlin use the same in operator as range
checks. But its meaning is different in this context: it’s used to perform iteration. This
means a statement such as for (x in list) { … } will be translated into a call of
list.iterator(), on which the hasNext and next methods are then repeatedly
called, just like in Java.

 Note that in Kotlin, it’s also a convention, which means the iterator method can
be defined as an extension. That explains why it’s possible to iterate over a regular
Java string: the standard library defines an extension function iterator on Char-
Sequence, a superclass of String:

operator fun CharSequence.iterator(): CharIterator

>>> for (c in "abc") {}

You can define the iterator method for your own classes. For example, defining the
following method makes it possible to iterate over dates.

operator fun ClosedRange<LocalDate>.iterator(): Iterator<LocalDate> =
object : Iterator<LocalDate> {

var current = start

override fun hasNext() =
current <= endInclusive

override fun next() = current.apply {
current = plusDays(1)

}
}

>>> val newYear = LocalDate.ofYearDay(2017, 1)
>>> val daysOff = newYear.minusDays(1)..newYear
>>> for (dayOff in daysOff) { println(dayOff) }
2016-12-31
2017-01-01

Note how you define the iterator method on a custom range type: you use Local-
Date as a type argument. The rangeTo library function, shown in the previous sec-
tion, returns an instance of ClosedRange, and the iterator extension on
ClosedRange<LocalDate> allows you to use an instance of the range in a for loop.

Listing 7.13 Implementing a date range iterator

Put a range in parentheses
to call a method on it.

This library function
makes it possible to
iterate over a string.

This object implements
an Iterator over
LocalDate elements.ote the compareTo

convention
used for dates.

urns the current
date as a result
fore changing it

Increments the current
date by one day

Iterates over daysOff when
the corresponding iterator
function is available
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

187Destructuring declarations and component functions
7.4 Destructuring declarations and component functions
When we discussed data classes in section 4.3.2, we mentioned that some of their fea-
tures would be revealed later. Now that you’re familiar with the principle of conven-
tions, we can look at the final feature: destructuring declarations. This feature allows you
to unpack a single composite value and use it to initialize several separate variables.

 Here’s how it works:

>>> val p = Point(10, 20)
>>> val (x, y) = p
>>> println(x)
10
>>> println(y)
20

A destructuring declaration looks like a regular variable declaration, but it has multi-
ple variables grouped in parentheses.

 Under the hood, the destructuring declaration once again uses the principle of con-
ventions. To initialize each variable in a destructuring declaration, a function named
componentN is called, where N is the position of the variable in the declaration. In
other words, the previous example would be transformed as shown in figure 7.10.

 For a data class, the compiler gen-
erates a componentN function for
every property declared in the primary
constructor. The following example
shows how you can declare these func-
tions manually for a non-data class:

class Point(val x: Int, val y: Int) {
operator fun component1() = x
operator fun component2() = y

}

One of the main use cases where destructuring declarations are helpful is returning
multiple values from a function. If you need to do that, you can define a data class to
hold the values you need to return and use it as the return type of the function. The
destructuring-declaration syntax makes it easy to unpack and use the values after you
call the function. To demonstrate, let’s write a simple function to split a filename into
a name and an extension.

data class NameComponents(val name: String,
val extension: String)

fun splitFilename(fullName: String): NameComponents {
val result = fullName.split('.', limit = 2)
return NameComponents(result[0], result[1])

}

Listing 7.14 Using a destructuring declaration to return multiple values

Declares variables x and y,
initialized with components of p

val (a, b) = p
val a = p.component1()
val b = p.component2()

Figure 7.10 Destructuring declarations are
transformed into componentN function calls.

Declares a data class
to hold the values

Returns an instance of the
data class from the function
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

188 CHAPTER 7 Operator overloading and other conventions
>>> val (name, ext) = splitFilename("example.kt")
>>> println(name)
example
>>> println(ext)
kt

You can improve this example even further if you note that componentN functions
are also defined on arrays and collections. This is useful when you’re dealing with col-
lections of a known size—and this is such a case, with split returning a list of two
elements.

data class NameComponents(
val name: String,
val extension: String)

fun splitFilename(fullName: String): NameComponents {
val (name, extension) = fullName.split('.', limit = 2)
return NameComponents(name, extension)

}

Of course, it’s not possible to define an infinite number of such componentN func-
tions so the syntax would work with an arbitrary number of items, but that wouldn’t be
useful, either. The standard library allows you to use this syntax to access the first five
elements of a container.

 A simpler way to return multiple values from a function is to use the Pair and
Triple classes from the standard library. It’s less expressive, because those classes
don’t make it clear what’s contained in the returned object, but it requires less code
because you don’t need to define your own class.

7.4.1 Destructuring declarations and loops

Destructuring declarations work not only as top-level statements in functions but also
in other places where you can declare variables—for example, in loops. One good use
for that is enumerating entries in a map. Here’s a small example using this syntax to
print all entries in a given map.

fun printEntries(map: Map<String, String>) {
for ((key, value) in map) {

println("$key -> $value")
}

}

>>> val map = mapOf("Oracle" to "Java", "JetBrains" to "Kotlin")
>>> printEntries(map)
Oracle -> Java
JetBrains -> Kotlin

Listing 7.15 Using a destructuring declaration with a collection

Listing 7.16 Using a destructuring declaration to iterate over a map

Uses the destructuring
declaration syntax to
unpack the class

Destructuring
declaration in a loop
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

189Reusing property accessor logic: delegated properties
This simple example uses two Kotlin conventions: one to iterate over an object and
another to destructure declarations. The Kotlin standard library contains an exten-
sion function iterator on a map that returns an iterator over map entries. Thus,
unlike Java, you can iterate over a map directly. It also contains extensions functions
component1 and component2 on Map.Entry, returning its key and value, respec-
tively. In effect, the previous loop is translated to the equivalent of the following code:

for (entry in map.entries) {
val key = entry.component1()
val value = entry.component2()
// ...

}

This example again illustrates the importance of extension functions for conventions.

7.5 Reusing property accessor logic: delegated properties
To conclude this chapter, let’s look at one more feature that relies on conventions and
is one of the most unique and powerful in Kotlin: delegated properties. This feature lets
you easily implement properties that work in a more complex way than storing values
in backing fields, without duplicating the logic in each accessor. For example, proper-
ties can store their values in database tables, in a browser session, in a map, and so on.

 The foundation for this feature is delegation: a design pattern where an object,
instead of performing a task, delegates that task to another helper object. The helper
object is called a delegate. You saw this pattern earlier, in section 4.3.3, when we were
discussing class delegation. Here this pattern is applied to a property, which can also
delegate the logic of its accessors to a helper object. You can implement that by hand
(you’ll see examples in a moment) or use a better solution: take advantage of Kotlin’s
language support. We’ll begin with a general explanation and then look at specific
examples.

7.5.1 Delegated properties: the basics

The general syntax of a delegated property is this:

class Foo {
var p: Type by Delegate()

}

The property p delegates the logic of its accessors to another object: in this case, a new
instance of the Delegate class. The object is obtained by evaluating the expression
following the by keyword, which can be anything that satisfies the rules of the conven-
tion for property delegates.

 The compiler creates a hidden helper property, initialized with the instance of the
delegate object, to which the initial property p delegates. For simplicity, let’s call it
delegate:

class Foo {
private val delegate = Delegate()

This helper property is
generated by the compiler.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

190 CHAPTER 7 Operator overloading and other conventions

”

e”.
var p: Type
set(value: Type) = delegate.setValue(..., value)
get() = delegate.getValue(...)

}

By convention, the Delegate class must have getValue and setValue methods
(the latter is required only for mutable properties). As usual, they can be members or
extensions. To simplify the explanation, we omit their parameters; the exact signa-
tures will be covered later in this chapter. In a simple form, the Delegate class might
look like the following:

class Delegate {
operator fun getValue(...) { ... }

operator fun setValue(..., value: Type) { ... }
}

class Foo {
var p: Type by Delegate()

}

>>> val foo = Foo()
>>> val oldValue = foo.p
>>> foo.p = newValue

You use foo.p as a regular property, but under the hood the methods on the helper
property of the Delegate type are called. To investigate how this mechanism is used
in practice, we’ll begin by looking at one example of the power of delegated proper-
ties: library support for lazy initialization. Afterward, we’ll explore how you can define
your own delegated properties and when this is useful.

7.5.2 Using delegated properties: lazy initialization and “by lazy()”

Lazy initialization is a common pattern that entails creating part of an object on
demand, when it’s accessed for the first time. This is helpful when the initialization
process consumes significant resources and the data isn’t always required when the
object is used.

 For example, consider a Person class that lets you access a list of the emails written
by a person. The emails are stored in a database and take a long time to access. You
want to load the emails on first access to the property and do so only once. Let’s say
you have the following function loadEmails, which retrieves the emails from the
database:

class Email { /*...*/ }
fun loadEmails(person: Person): List<Email> {

println("Load emails for ${person.name}")
return listOf(/*...*/)

}

Generated accessors of the “p
property call the getValue and
setValue methods on “delegat

The getValue method contains the
logic for implementing a getter.

The setValue method
contains the logic for
implementing a setter.The “by” keyword

associates a property
with a delegate object.

Accessing a property foo.p
calls delegate.getValue(…)
under the hood. Changing a property value calls

delegate.setValue(…, newValue).
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

191Reusing property accessor logic: delegated properties

L

Here’s how you can implement lazy loading using an additional _emails property
that stores null before anything is loaded and the list of emails afterward.

class Person(val name: String) {
private var _emails: List<Email>? = null

val emails: List<Email>
get() {

if (_emails == null) {
_emails = loadEmails(this)

}
return _emails!!

}
}
>>> val p = Person("Alice")
>>> p.emails
Load emails for Alice
>>> p.emails

Here you use the so-called backing property technique. You have one property,
_emails, which stores the value, and another, emails, which provides read access to
it. You need to use two properties because the properties have different types:
_emails is nullable, whereas emails is non-null. This technique can be used fairly
often, so it’s worth getting familiar with it.

 But the code is somewhat cumbersome: imagine how much longer it would
become if you had several lazy properties. What’s more, it doesn’t always work cor-
rectly: the implementation isn’t thread-safe. Surely Kotlin provides a better solution.

 The code becomes much simpler with the use of a delegated property, which can
encapsulate both the backing property used to store the value and the logic ensuring
that the value is initialized only once. The delegate you can use here is returned by
the lazy standard library function.

class Person(val name: String) {
val emails by lazy { loadEmails(this) }

}

The lazy function returns an object that has a method called getValue with the
proper signature, so you can use it together with the by keyword to create a delegated
property. The argument of lazy is a lambda that it calls to initialize the value. The
lazy function is thread-safe by default; and if you need to, you can specify additional
options to tell it which lock to use or to bypass the synchronization entirely if the class
is never used in a multithreaded environment.

 In the next section, we’ll dive into details of how the mechanism of delegated
properties works and discuss the conventions in play here.

Listing 7.17 Implementing lazy initialization using a backing property

Listing 7.18 Implementing lazy initialization using a delegated property

“_emails” property that
stores the data and to
which “emails” delegates

oads the data
on access

If the data was loaded
before, returns it

Emails are loaded
on first access.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

192 CHAPTER 7 Operator overloading and other conventions
7.5.3 Implementing delegated properties

To see how delegated properties are implemented, let’s take another example: the
task of notifying listeners when a property of an object changes. This is useful in many
different cases: for example, when objects are presented in a UI and you want to auto-
matically update the UI when the objects change. Java has a standard mechanism for
such notifications: the PropertyChangeSupport and PropertyChangeEvent
classes. Let’s see how you can use them in Kotlin without using delegated properties
first, and then refactor the code into a delegated property.

 The PropertyChangeSupport class manages a list of listeners and dispatches
PropertyChangeEvent events to them. To use it, you normally store an instance of
this class as a field of the bean class and delegate property change processing to it.

 To avoid adding this field to every class, you’ll create a small helper class that will
store a PropertyChangeSupport instance and keep track of the property change lis-
teners. Later, your classes will extend this helper class to access changeSupport.

open class PropertyChangeAware {
protected val changeSupport = PropertyChangeSupport(this)

fun addPropertyChangeListener(listener: PropertyChangeListener) {
changeSupport.addPropertyChangeListener(listener)

}

fun removePropertyChangeListener(listener: PropertyChangeListener) {
changeSupport.removePropertyChangeListener(listener)

}
}

Now let’s write the Person class. You’ll define a read-only property (the person’s
name, which typically doesn’t change) and two writable properties: the age and the
salary. The class will notify its listeners when either the age or the salary of the person
is changed.

class Person(
val name: String, age: Int, salary: Int

) : PropertyChangeAware() {

var age: Int = age
set(newValue) {

val oldValue = field
field = newValue
changeSupport.firePropertyChange(

"age", oldValue, newValue)
}

Listing 7.19 Helper class for using PropertyChangeSupport

Listing 7.20 Manually implementing property change notifications

The “field” identifier lets you access
the property backing field.

Notifies listeners about
the property change
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

193Reusing property accessor logic: delegated properties
var salary: Int = salary
set(newValue) {

val oldValue = field
field = newValue
changeSupport.firePropertyChange(

"salary", oldValue, newValue)
}

}

>>> val p = Person("Dmitry", 34, 2000)
>>> p.addPropertyChangeListener(
... PropertyChangeListener { event ->
... println("Property ${event.propertyName} changed " +
... "from ${event.oldValue} to ${event.newValue}")
... }
...)
>>> p.age = 35
Property age changed from 34 to 35
>>> p.salary = 2100
Property salary changed from 2000 to 2100

Note how this code uses the field identifier to access the backing field of the age
and salary properties, as we discussed in section 4.2.4.

 There’s quite a bit of repeated code in the setters. Let’s try to extract a class that
will store the value of the property and fire the necessary notification.

class ObservableProperty(
val propName: String, var propValue: Int,
val changeSupport: PropertyChangeSupport

) {
fun getValue(): Int = propValue
fun setValue(newValue: Int) {

val oldValue = propValue
propValue = newValue
changeSupport.firePropertyChange(propName, oldValue, newValue)

}
}

class Person(
val name: String, age: Int, salary: Int

) : PropertyChangeAware() {

val _age = ObservableProperty("age", age, changeSupport)
var age: Int

get() = _age.getValue()
set(value) { _age.setValue(value) }

val _salary = ObservableProperty("salary", salary, changeSupport)
var salary: Int

get() = _salary.getValue()
set(value) { _salary.setValue(value) }

}

Listing 7.21 Implementing property change notifications with a helper class

Attaches a property
change listener
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

194 CHAPTER 7 Operator overloading and other conventions
Now you’re close to understanding how delegated properties work in Kotlin. You’ve
created a class that stores the value of the property and automatically fires property
change notifications when it’s modified. You removed the duplication in the logic, but
instead quite a bit of boilerplate is required to create the ObservableProperty
instance for each property and to delegate the getter and setter to it. Kotlin’s dele-
gated property feature lets you get rid of that boilerplate. But before you can do that,
you need to change the signatures of the ObservableProperty methods to match
those required by Kotlin conventions.

class ObservableProperty(
var propValue: Int, val changeSupport: PropertyChangeSupport

) {
operator fun getValue(p: Person, prop: KProperty<*>): Int = propValue

operator fun setValue(p: Person, prop: KProperty<*>, newValue: Int) {
val oldValue = propValue
propValue = newValue
changeSupport.firePropertyChange(prop.name, oldValue, newValue)

}
}

Compared to the previous version, this code has the following changes:

 The getValue and setValue functions are now marked as operator, as
required for all functions used through conventions.

 You add two parameters to those functions: one to receive the instance for
which the property is get or set, and the second to represent the property itself.
The property is represented as an object of type KProperty. We’ll look at it in
more detail in section 10.2; for now, all you need to know is that you can access
the name of the property as KProperty.name.

 You remove the name property from the primary constructor because you can
now access the property name through KProperty.

You can finally use the magic of Kotlin’s delegated properties. See how much shorter
the code becomes?

class Person(
val name: String, age: Int, salary: Int

) : PropertyChangeAware() {

var age: Int by ObservableProperty(age, changeSupport)
var salary: Int by ObservableProperty(salary, changeSupport)

}

Listing 7.22 ObservableProperty as a property delegate

Listing 7.23 Using delegated properties for property change notifications
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

195Reusing property accessor logic: delegated properties
Through the by keyword, the Kotlin compiler does automatically what you did manu-
ally in the previous version of the code. Compare this code to the previous version of
the Person class: the generated code when you use delegated properties is very simi-
lar. The object to the right of by is called the delegate. Kotlin automatically stores the
delegate in a hidden property and calls getValue and setValue on the delegate
when you access or modify the main property.

 Instead of implementing the observable property logic by hand, you can use the
Kotlin standard library. It turns out the standard library already contains a class similar
to ObservableProperty. The standard library class isn’t coupled to the Property-
ChangeSupport class you’re using here, so you need to pass it a lambda that tells it
how to report the changes in the property value. Here’s how you can do that.

class Person(
val name: String, age: Int, salary: Int

) : PropertyChangeAware() {

private val observer = {
prop: KProperty<*>, oldValue: Int, newValue: Int ->
changeSupport.firePropertyChange(prop.name, oldValue, newValue)

}

var age: Int by Delegates.observable(age, observer)
var salary: Int by Delegates.observable(salary, observer)

}

The expression to the right of by doesn’t have to be a new instance creation. It can
also be a function call, another property, or any other expression, as long as the value
of this expression is an object on which the compiler can call getValue and set-
Value with the correct parameter types. As with other conventions, getValue and
setValue can be either methods declared on the object itself or extension functions.

 Note that we’ve only shown you how to work with delegated properties of type Int,
to keep the examples simple. The delegated-properties mechanism is fully generic
and works with any other type, too.

7.5.4 Delegated-property translation rules

Let’s summarize the rules for how delegated properties work. Suppose you have a
class with a delegated property:

class C {
var prop: Type by MyDelegate()

}

val c = C()

Listing 7.24 Using Delegates.observable to implement property change notification
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

196 CHAPTER 7 Operator overloading and other conventions
The instance of MyDelegate will be stored in a hidden property, which we’ll refer to
as <delegate>. The compiler will also use an object of type KProperty to represent
the property. We’ll refer to this object as <property>.

 The compiler generates the following code:

class C {
private val <delegate> = MyDelegate()

var prop: Type
get() = <delegate>.getValue(this, <property>)
set(value: Type) = <delegate>.setValue(this, <property>, value)

}

Thus, inside every property accessor, the compiler generates calls to the correspond-
ing getValue and setValue methods, as shown in figure 7.11.

Figure 7.11 When you access a property, the getValue and setValue
functions on <delegate> are called.

The mechanism is fairly simple, yet it enables many interesting scenarios. You can cus-
tomize where the value of the property is stored (in a map, in a database table, or in
the cookies of a user session) and also what happens when the property is accessed (to
add validation, change notifications, and so on). All of this can be accomplished with
compact code. Let’s look at one more use for delegated properties in the standard
library and then see how you can use them in your own frameworks.

7.5.5 Storing property values in a map

Another common pattern where delegated properties come into play is objects that
have a dynamically defined set of attributes associated with them. Such objects are
sometimes called expando objects. For example, consider a contact-management system
that allows you to store arbitrary information about your contacts. Each person in the
system has a few required properties (such as a name) that are handled in a special
way, as well as any number of additional attributes that can be different for each per-
son (youngest child’s birthday, for example).

 One way to implement such a system is to store all the attributes of a person in a
map and provide properties for accessing the information that requires special han-
dling. Here’s an example.

class Person {
private val _attributes = hashMapOf<String, String>()

Listing 7.25 Defining a property that stores its value in a map

val x = c.prop val x = <delegate>.getValue(c, <property>)

c.prop = x <delegate>.setValue(c, <property>, x)
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

197Reusing property accessor logic: delegated properties
fun setAttribute(attrName: String, value: String) {
_attributes[attrName] = value

}

val name: String
get() = _attributes["name"]!!

}

>>> val p = Person()
>>> val data = mapOf("name" to "Dmitry", "company" to "JetBrains")
>>> for ((attrName, value) in data)
... p.setAttribute(attrName, value)
>>> println(p.name)
Dmitry

Here you use a generic API to load the data into the object (in a real project, this
could be JSON deserialization or something similar) and then a specific API to access
the value of one property. Changing this to use a delegated property is trivial; you can
put the map directly after the by keyword.

class Person {
private val _attributes = hashMapOf<String, String>()

fun setAttribute(attrName: String, value: String) {
_attributes[attrName] = value

}

val name: String by _attributes
}

This works because the standard library defines getValue and setValue extension
functions on the standard Map and MutableMap interfaces. The name of the property
is automatically used as the key to store the value in the map. As in listing 7.25,
p.name hides the call of _attributes.getValue(p, prop), which in turn is imple-
mented as _attributes[prop.name].

7.5.6 Delegated properties in frameworks

Changing the way the properties of an object are stored and modified is extremely
useful for framework developers. In section 1.3.1, you saw an example of a database
framework using delegated properties. This section shows a similar example and
explains how it works.

 Let’s say your database contains the table Users with two columns: name of string
type and age of integer type. You can define the classes Users and User in Kotlin.
Then all the user entities stored in the database can be loaded and changed in Kotlin
code via instances of the User class.

Listing 7.26 Using a delegated property which stores its value in a map

Retrieves the attribute
from the map manually

Uses the map as a
delegated property
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

198 CHAPTER 7 Operator overloading and other conventions

The
corre
to a t

the da

object Users : IdTable() {
val name = varchar("name", length = 50).index()
val age = integer("age")

}

class User(id: EntityID) : Entity(id) {
var name: String by Users.name
var age: Int by Users.age

}

The Users object describes a database table; it’s declared as an object because it
describes the table as a whole, so you only need one instance of it. Properties of the
object represent columns of the table.

 The Entity class, the superclass of User, contains a mapping of database columns
to their values for the entity. The properties for the specific User have the values name
and age specified in the database for this user.

 Using the framework is especially convenient because accessing the property auto-
matically retrieves the corresponding value from the mapping in the Entity class,
and modifying it marks the object as dirty so that it can be saved to the database when
needed. You can write user.age += 1 in your Kotlin code, and the corresponding
entity in the database will be automatically updated.

 Now you know enough to understand how a framework with such an API can be
implemented. Each of the entity attributes (name, age) is implemented as a delegated
property, using the column object (Users.name, Users.age) as the delegate:

class User(id: EntityID) : Entity(id) {
var name: String by Users.name
var age: Int by Users.age

}

Let’s look at the explicitly specified types of columns:

object Users : IdTable() {
val name: Column<String> = varchar("name", 50).index()
val age: Column<Int> = integer("age")

}

For the Column class, the framework defines the getValue and setValue methods,
satisfying the Kotlin convention for delegates:

operator fun <T> Column<T>.getValue(o: Entity, desc: KProperty<*>): T {
// retrieve the value from the database

}
operator fun <T> Column<T>.setValue(o: Entity, desc: KProperty<*>, value: T) {

// update the value in the database
}

Listing 7.27 Accessing database columns using delegated properties

 object
sponds
able in
tabase.

Properties correspond
to columns in this table.

Each instance of User corresponds
to a specific entity in the table.

The value of “name” is the value
stored in the database for that user.

Users.name is a delegate
for the “name” property.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

199Summary
You can use the Column property (Users.name) as a delegate for a delegated prop-
erty (name). When you write user.age += 1 in your code, the code will perform
something similar to user.ageDelegate.setValue(user.ageDelegate.get-
Value() + 1) (omitting the parameters for the property and object instances). The
getValue and setValue methods take care of retrieving and updating the informa-
tion in the database.

 The full implementation of the classes in this example can be found in the source
code for the Exposed framework (https://github.com/JetBrains/Exposed). We’ll
return to this framework in chapter 11, to explore the DSL design techniques used
there.

7.6 Summary
 Kotlin allows you to overload some of the standard mathematical operations by

defining functions with the corresponding names, but you can’t define your
own operators.

 Comparison operators are mapped to calls of equals and compareTo meth-
ods.

 By defining functions named get, set, and contains, you can support the []
and in operators to make your class similar to Kotlin collections.

 Creating ranges and iterating over collections and arrays also work through
conventions.

 Destructuring declarations let you initialize multiple variables by unpacking a
single object, which is handy for returning multiple values from a function.
They work with data classes automatically, and you can support them for your
own classes by defining functions named componentN.

 Delegated properties allow you to reuse logic controlling how property values
are stored, initialized, accessed, and modified, which is a powerful tool for
building frameworks.

 The lazy standard library function provides an easy way to implement lazily
initialized properties.

 The Delegates.observable function lets you add an observer of property
changes.

 Delegated properties can use any map as a property delegate, providing a flexi-
ble way to work with objects that have variable sets of attributes.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/JetBrains/Exposed

Higher-order functions:
lambdas as parameters

and return values
You were introduced to lambdas in chapter 5, where we explored the general con-
cept and the standard library functions that use lambdas. Lambdas are a great tool
for building abstractions, and of course their power isn’t restricted to collections and
other classes in the standard library. In this chapter, you’ll learn how to create higher-
order functions—your own functions that take lambdas as arguments or return them.
You’ll see how higher-order functions can help simplify your code, remove code
duplication, and build nice abstractions. You’ll also become acquainted with inline
functions—a powerful Kotlin feature that removes the performance overhead associ-
ated with using lambdas and enables more flexible control flow within lambdas.

This chapter covers
 Function types

 Higher-order functions and their use for structuring
code

 Inline functions

 Non-local returns and labels

 Anonymous functions
200

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

201Declaring higher-order functions

lue
8.1 Declaring higher-order functions
The key new idea of this chapter is the concept of higher-order functions. By definition, a
higher-order function is a function that takes another function as an argument or
returns one. In Kotlin, functions can be represented as values using lambdas or func-
tion references. Therefore, a higher-order function is any function to which you can
pass a lambda or a function reference as an argument, or a function which returns
one, or both. For example, the filter standard-library function takes a predicate
function as an argument and is therefore a higher-order function:

list.filter { x > 0 }

In chapter 5, you saw many other higher-order functions declared in the Kotlin stan-
dard library: map, with, and so on. Now you’ll learn how you can declare such func-
tions in your own code. To do this, you must first be introduced to function types.

8.1.1 Function types

In order to declare a function that takes a lambda as an argument, you need to know
how to declare the type of the corresponding parameter. Before we get to this, let’s
look at a simpler case and store a lambda in a local variable. You already saw how you
can do this without declaring the type, relying on Kotlin’s type inference:

val sum = { x: Int, y: Int -> x + y }
val action = { println(42) }

In this case, the compiler infers that both the sum and action variables have function
types. Now let’s see what an explicit type declaration for these variables looks like:

val sum: (Int, Int) -> Int = { x, y -> x + y }
val action: () -> Unit = { println(42) }

To declare a function type, you put the function parameter types in parentheses, fol-
lowed by an arrow and the return type of the function (see figure 8.1).

 As you remember, the Unit type is used to specify that a function returns no mean-
ingful value. The Unit return type can be omitted when you declare a regular func-
tion, but a function type declaration always requires an explicit return type, so you
can’t omit Unit in this context.

 Note how you can omit the types of the parameters
x, y in the lambda expression { x, y -> x + y }.
Because they’re specified in the function type as part
of the variable declaration, you don’t need to repeat
them in the lambda itself.

Function that takes two Int
parameters and returns an Int va

Function that takes no arguments
and doesn’t return a value

Parameter types

(Int, String) -> Unit

Return type

Figure 8.1 Function-type
syntax in Kotlin
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

202 CHAPTER 8 Higher-order functions: lambdas as parameters and return values
 Just like with any other function, the return type of a function type can be marked
as nullable:

var canReturnNull: (Int, Int) -> Int? = { null }

You can also define a nullable variable of a function type. To specify that the variable
itself, rather than the return type of the function, is nullable, you need to enclose the
entire function type definition in parentheses and put the question mark after the
parentheses:

var funOrNull: ((Int, Int) -> Int)? = null

Note the subtle difference between this example and the previous one. If you omit the
parentheses, you’ll declare a function type with a nullable return type, and not a
nullable variable of a function type.

8.1.2 Calling functions passed as arguments

Now that you know how to declare a higher-order function, let’s discuss how to imple-
ment one. The first example is as simple as possible and uses the same type declara-
tion as the sum lambda you saw earlier. The function performs an arbitrary operation
on two numbers, 2 and 3, and prints the result.

fun twoAndThree(operation: (Int, Int) -> Int) {
val result = operation(2, 3)
println("The result is $result")

}

Parameter names of function types
You can specify names for parameters of a function type:

fun performRequest(
url: String,
callback: (code: Int, content: String) -> Unit

) {
/*...*/

}

>>> val url = "http://kotl.in"
>>> performRequest(url) { code, content -> /*...*/ }
>>> performRequest(url) { code, page -> /*...*/ }

Parameter names don’t affect type matching. When you declare a lambda, you don’t
have to use the same parameter names as the ones used in the function type dec-
laration. But the names improve readability of the code and can be used in the IDE
for code completion.

Listing 8.1 Defining a simple higher-order function

The function type
now has named
parameters.

You can use the names
provided in the API as

lambda argument names …

… or you can
change them.

Declares a parameter
of a function type

Calls the parameter
of a function type
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

203Declaring higher-order functions
>>> twoAndThree { a, b -> a + b }
The result is 5
>>> twoAndThree { a, b -> a * b }
The result is 6

The syntax for calling the function passed as an argument is the same as calling a reg-
ular function: you put the parentheses after the function name, and you put the
parameters inside the parentheses.

 As a more interesting example, let’s reimplement one of the most commonly used
standard library functions: the filter function. To keep things simple, you’ll imple-
ment the filter function on String, but the generic version that works on a collec-
tion of any elements is similar. Its declaration is shown in figure 8.2.

The filter function takes a predicate as a parameter. The type of predicate is a
function that takes a character parameter and returns a boolean result. The result is
true if the character passed to the predicate needs to be present in the resulting
string, or false otherwise. Here’s how the function can be implemented.

fun String.filter(predicate: (Char) -> Boolean): String {
val sb = StringBuilder()
for (index in 0 until length) {

val element = get(index)
if (predicate(element)) sb.append(element)

}
return sb.toString()

}

>>> println("ab1c".filter { it in 'a'..'z' })
abc

The filter function implementation is straightforward. It checks whether each char-
acter satisfies the predicate and, on success, adds it to the StringBuilder containing
the result.

INTELLIJ IDEA TIP IntelliJ IDEA supports smart stepping into lambda code in
the debugger. If you step through the previous example, you’ll see how

Listing 8.2 Implementing a simple version of the filter function

Receiver type Parameter name

fun String.filter(predicate: (Char) -> Boolean): String

Parameter type of function
passed as parameter

Return type of function
passed as parameter

Parameter function type

Figure 8.2 Declaration of
the filter function,
taking a predicate as a
parameter

Calls the function passed
as the argument for the
“predicate” parameter

Passes a lambda as an
argument for “predicate”
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

204 CHAPTER 8 Higher-order functions: lambdas as parameters and return values
execution moves between the body of the filter function and the lambda
you pass through it, as the function processes each element in the input list.

8.1.3 Using function types from Java

Under the hood, function types are declared as regular interfaces: a variable of a func-
tion type is an implementation of a FunctionN interface. The Kotlin standard library
defines a series of interfaces, corresponding to different numbers of function argu-
ments: Function0<R> (this function takes no arguments), Function1<P1, R> (this
function takes one argument), and so on. Each interface defines a single invoke
method, and calling it will execute the function. A variable of a function type is an
instance of a class implementing the corresponding FunctionN interface, with the
invoke method containing the body of the lambda.

 Kotlin functions that use function types can be called easily from Java. Java 8 lamb-
das are automatically converted to values of function types:

/* Kotlin declaration */
fun processTheAnswer(f: (Int) -> Int) {

println(f(42))
}

/* Java */
>>> processTheAnswer(number -> number + 1);
43

In older Java versions, you can pass an instance of an anonymous class implementing
the invoke method from the corresponding function interface:

/* Java */
>>> processTheAnswer(
... new Function1<Integer, Integer>() {
... @Override
... public Integer invoke(Integer number) {
... System.out.println(number);
... return number + 1;
... }
... });
43

In Java, you can easily use extension functions from the Kotlin standard library that
expect lambdas as arguments. Note, however, that they don’t look as nice as in Kot-
lin—you have to pass a receiver object as a first argument explicitly:

/* Java */
>>> List<String> strings = new ArrayList();
>>> strings.add("42");
>>> CollectionsKt.forEach(strings, s -> {
... System.out.println(s);
... return Unit.INSTANCE;
... });

Uses the Kotlin function
type from Java code
(prior to Java 8)

You can use a function from the
Kotlin standard library in Java code.

You have to return a value
of Unit type explicitly.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

205Declaring higher-order functions
In Java, your function or lambda can return Unit. But because the Unit type has a
value in Kotlin, you need to return it explicitly. You can’t pass a lambda returning
void as an argument of a function type that returns Unit, like (String) -> Unit in
the previous example.

8.1.4 Default and null values for parameters with function types

When you declare a parameter of a function type, you can also specify its default
value. To see where this can be useful, let’s go back to the joinToString function
that we discussed in chapter 3. Here’s the implementation we ended up with.

fun <T> Collection<T>.joinToString(
separator: String = ", ",
prefix: String = "",
postfix: String = ""

): String {
val result = StringBuilder(prefix)

for ((index, element) in this.withIndex()) {
if (index > 0) result.append(separator)
result.append(element)

}

result.append(postfix)
return result.toString()

}

This implementation is flexible, but it doesn’t let you control one key aspect of the
conversion: how individual values in the collection are converted to strings. The code
uses StringBuilder.append(o: Any?), which always converts the object to a string
using the toString method. This is good in a lot of cases, but not always. You now
know that you can pass a lambda to specify how values are converted into strings. But
requiring all callers to pass that lambda would be cumbersome, because most of them
are OK with the default behavior. To solve this, you can define a parameter of a func-
tion type and specify a default value for it as a lambda.

fun <T> Collection<T>.joinToString(
separator: String = ", ",
prefix: String = "",
postfix: String = "",
transform: (T) -> String = { it.toString() }

): String {
val result = StringBuilder(prefix)

for ((index, element) in this.withIndex()) {
if (index > 0) result.append(separator)

Listing 8.3 joinToString with hard-coded toString conversion

Listing 8.4 Specifying a default value for a parameter of a function type

Converts the object to a
string using the default
toString method

Declares a parameter of a
function type with a
lambda as a default value
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

206 CHAPTER 8 Higher-order functions: lambdas as parameters and return values

result.append(transform(element))
}

result.append(postfix)
return result.toString()

}

>>> val letters = listOf("Alpha", "Beta")
>>> println(letters.joinToString())
Alpha, Beta
>>> println(letters.joinToString { it.toLowerCase() })
alpha, beta
>>> println(letters.joinToString(separator = "! ", postfix = "! ",
... transform = { it.toUpperCase() }))
ALPHA! BETA!

Note that this function is generic: it has a type parameter T denoting the type of the
element in a collection. The transform lambda will receive an argument of that type.

 Declaring a default value of a function type requires no special syntax—you just put
the value as a lambda after the = sign. The examples show different ways of calling the
function: omitting the lambda entirely (so that the default toString() conversion is
used), passing it outside of the parentheses, and passing it as a named argument.

 An alternative approach is to declare a parameter of a nullable function type. Note
that you can’t call the function passed in such a parameter directly: Kotlin will refuse
to compile such code, because it detects the possibility of null pointer exceptions in
this case. One option is to check for null explicitly:

fun foo(callback: (() -> Unit)?) {
// ...
if (callback != null) {

callback()
}

}

A shorter version makes use of the fact that a function type is an implementation of an
interface with an invoke method. As a regular method, invoke can be called
through the safe-call syntax: callback?.invoke().

 Here’s how you can use this technique to rewrite the joinToString function.

fun <T> Collection<T>.joinToString(
separator: String = ", ",
prefix: String = "",
postfix: String = "",
transform: ((T) -> String)? = null

): String {
val result = StringBuilder(prefix)

Listing 8.5 Using a nullable parameter of a function type

Calls the function passed
as an argument for the
“transform” parameter

Uses the default
conversion function

Passes a lambda
as an argument

Uses the named argument
syntax for passing several
arguments including a lambda

Declares a nullable parameter
of a function type
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

207Declaring higher-order functions

Uses
s

R
lambd

the f
for ((index, element) in this.withIndex()) {
if (index > 0) result.append(separator)
val str = transform?.invoke(element)

?: element.toString()
result.append(str)

}

result.append(postfix)
return result.toString()

}

Now you know how to write functions that take functions as arguments. Let’s look next
at the other kind of higher-order functions: functions that return other functions.

8.1.5 Returning functions from functions

The requirement to return a function from another function doesn’t come up as
often as passing functions to other functions, but it’s still useful. For instance, imagine
a piece of logic in a program that can vary depending on the state of the program or
other conditions—for example, calculating the cost of shipping depending on the
selected shipping method. You can define a function that chooses the appropriate
logic variant and returns it as another function. Here’s how this looks as code.

enum class Delivery { STANDARD, EXPEDITED }

class Order(val itemCount: Int)

fun getShippingCostCalculator(
delivery: Delivery): (Order) -> Double {

if (delivery == Delivery.EXPEDITED) {
return { order -> 6 + 2.1 * order.itemCount }

}

return { order -> 1.2 * order.itemCount }
}

>>> val calculator =
... getShippingCostCalculator(Delivery.EXPEDITED)
>>> println("Shipping costs ${calculator(Order(3))}")
Shipping costs 12.3

To declare a function that returns another function, you specify a function type as its
return type. In listing 8.6, getShippingCostCalculator returns a function that
takes an Order and returns a Double. To return a function, you write a return
expression followed by a lambda, a member reference, or another expression of a
function type, such as a local variable.

 Let’s see another example where returning functions from functions is useful. Sup-
pose you’re working on a GUI contact-management application, and you need to
determine which contacts should be displayed, based on the state of the UI. Let’s say

Listing 8.6 Defining a function that returns another function

 the safe-call
yntax to call
the function Uses the Elvis operator to

handle the case when a
callback wasn’t specified

Declares a function that
returns a function

eturns
as from
unction

Stores the returned
function in a variable

Invokes the returned
function
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

208 CHAPTER 8 Higher-order functions: lambdas as parameters and return values
the UI allows you to type a string and then shows only contacts with names starting
with that string; it also lets you hide contacts that don’t have a phone number speci-
fied. You’ll use the ContactListFilters class to store the state of the options.

class ContactListFilters {
var prefix: String = ""
var onlyWithPhoneNumber: Boolean = false

}

When a user types D to see the contacts whose first or last name starts with D, the pre-
fix value is updated. We’ve omitted the code that makes the necessary changes. (A
full UI application would be too much code for the book, so we show a simplified
example.)

 To decouple the contact-list display logic from the filtering UI, you can define a
function that creates a predicate used to filter the contact list. This predicate checks
the prefix and also checks that the phone number is present if required.

data class Person(
val firstName: String,
val lastName: String,
val phoneNumber: String?

)

class ContactListFilters {
var prefix: String = ""
var onlyWithPhoneNumber: Boolean = false

fun getPredicate(): (Person) -> Boolean {
val startsWithPrefix = { p: Person ->

p.firstName.startsWith(prefix) || p.lastName.startsWith(prefix)
}
if (!onlyWithPhoneNumber) {

return startsWithPrefix
}
return { startsWithPrefix(it)

&& it.phoneNumber != null }
}

}

>>> val contacts = listOf(Person("Dmitry", "Jemerov", "123-4567"),
... Person("Svetlana", "Isakova", null))
>>> val contactListFilters = ContactListFilters()
>>> with (contactListFilters) {
>>> prefix = "Dm"
>>> onlyWithPhoneNumber = true
>>> }
>>> println(contacts.filter(
... contactListFilters.getPredicate()))
[Person(firstName=Dmitry, lastName=Jemerov, phoneNumber=123-4567)]

Listing 8.7 Using functions that return functions in UI code

Declares a function
that returns a function

Returns a variable
of a function type

Returns a lambda
from this function

Passes the function
returned by getPredicate as
an argument to “filter”
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

209Declaring higher-order functions
The getPredicate method returns a function value that you pass to the filter
function as an argument. Kotlin function types allow you to do this just as easily as for
values of other types, such as strings.

 Higher-order functions give you an extremely powerful tool for improving the
structure of your code and removing duplication. Let’s see how lambdas can help
extract repeated logic from your code.

8.1.6 Removing duplication through lambdas

Function types and lambda expressions together constitute a great tool to create reus-
able code. Many kinds of code duplication that previously could be avoided only
through cumbersome constructions can now be eliminated by using succinct lambda
expressions.

 Let’s look at an example that analyzes visits to a website. The class SiteVisit
stores the path of each visit, its duration, and the user’s OS. Various OSs are repre-
sented with an enum.

data class SiteVisit(
val path: String,
val duration: Double,
val os: OS

)

enum class OS { WINDOWS, LINUX, MAC, IOS, ANDROID }

val log = listOf(
SiteVisit("/", 34.0, OS.WINDOWS),
SiteVisit("/", 22.0, OS.MAC),
SiteVisit("/login", 12.0, OS.WINDOWS),
SiteVisit("/signup", 8.0, OS.IOS),
SiteVisit("/", 16.3, OS.ANDROID)

)

Imagine that you need to display the average duration of visits from Windows
machines. You can perform the task using the average function.

val averageWindowsDuration = log
.filter { it.os == OS.WINDOWS }
.map(SiteVisit::duration)
.average()

>>> println(averageWindowsDuration)
23.0

Now, suppose you need to calculate the same statistics for Mac users. To avoid duplica-
tion, you can extract the platform as a parameter.

Listing 8.8 Defining the site visit data

Listing 8.9 Analyzing site visit data with hard-coded filters
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

210 CHAPTER 8 Higher-order functions: lambdas as parameters and return values

fun List<SiteVisit>.averageDurationFor(os: OS) =
filter { it.os == os }.map(SiteVisit::duration).average()

>>> println(log.averageDurationFor(OS.WINDOWS))
23.0
>>> println(log.averageDurationFor(OS.MAC))
22.0

Note how making this function an extension improves readability. You can even
declare this function as a local extension function if it makes sense only in the local
context.

 But it’s not powerful enough. Imagine that you’re interested in the average dura-
tion of visits from the mobile platforms (currently you recognize two of them: iOS and
Android).

val averageMobileDuration = log
.filter { it.os in setOf(OS.IOS, OS.ANDROID) }
.map(SiteVisit::duration)
.average()

>>> println(averageMobileDuration)
12.15

Now a simple parameter representing the platform doesn’t do the job. It’s also likely
that you’ll want to query the log with more complex conditions, such as “What’s the
average duration of visits to the signup page from iOS?” Lambdas can help. You can
use function types to extract the required condition into a parameter.

fun List<SiteVisit>.averageDurationFor(predicate: (SiteVisit) -> Boolean) =
filter(predicate).map(SiteVisit::duration).average()

>>> println(log.averageDurationFor {
... it.os in setOf(OS.ANDROID, OS.IOS) })
12.15
>>> println(log.averageDurationFor {
... it.os == OS.IOS && it.path == "/signup" })
8.0

Function types can help eliminate code duplication. If you’re tempted to copy and
paste a piece of the code, it’s likely that the duplication can be avoided. With lambdas,
you can extract not only the data that’s repeated, but the behavior as well.

NOTE Some well-known design patterns can be simplified using function
types and lambda expressions. Let’s consider the Strategy pattern, for exam-
ple. Without lambda expressions, it requires you to declare an interface with

Listing 8.10 Removing duplication with a regular function

Listing 8.11 Analyzing site visit data with a complex hard-coded filter

Listing 8.12 Removing duplication with a higher-order function

Duplicated code
extracted into the function
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

211Inline functions: removing the overhead of lambdas
several implementations for each possible strategy. With function types in
your language, you can use a general function type to describe the strategy,
and pass different lambda expressions as different strategies.

We’ve discussed how to create higher-order functions. Next, let’s look at their perfor-
mance. Won’t your code be slower if you begin using higher-order functions for every-
thing, instead of writing good-old loops and conditions? The next section discusses
why this isn’t always the case and how the inline keyword helps.

8.2 Inline functions: removing the overhead of lambdas
You’ve probably noticed that the shorthand syntax for passing a lambda as an argu-
ment to a function in Kotlin looks similar to the syntax of regular statements such as
if and for. You saw this in chapter 5, when we discussed the with and apply func-
tions. But what about performance? Aren’t we creating unpleasant surprises by defin-
ing functions that look exactly like Java statements but run much more slowly?

 In chapter 5, we explained that lambdas are normally compiled to anonymous
classes. But that means every time you use a lambda expression, an extra class is cre-
ated; and if the lambda captures some variables, then a new object is created on every
invocation. This introduces runtime overhead, causing an implementation that uses a
lambda to be less efficient than a function that executes the same code directly.

 Could it be possible to tell the compiler to generate code that’s as efficient as a Java
statement and yet lets you extract the repeated logic into a library function? Indeed,
the Kotlin compiler allows you to do that. If you mark a function with the inline
modifier, the compiler won’t generate a function call when this function is used and
instead will replace every call to the function with the actual code implementing the
function. Let’s explore how that works in detail and look at specific examples.

8.2.1 How inlining works

When you declare a function as inline, its body is inlined—in other words, it’s substi-
tuted directly into places where the function is called instead of being invoked nor-
mally. Let’s look at an example to understand the resulting code.

 The function in listing 8.13 can be used to ensure that a shared resource isn’t
accessed concurrently by multiple threads. The function locks a Lock object, executes
the given block of code, and then releases the lock.

inline fun <T> synchronized(lock: Lock, action: () -> T): T {
lock.lock()
try {

return action()
}
finally {

lock.unlock()
}

}

Listing 8.13 Defining an inline function
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

212 CHAPTER 8 Higher-order functions: lambdas as parameters and return values
val l = Lock()
synchronized(l) {

// ...
}

The syntax for calling this function looks exactly like using the synchronized state-
ment in Java. The difference is that the Java synchronized statement can be used
with any object, whereas this function requires you to pass a Lock instance. The defi-
nition shown here is just an example; the Kotlin standard library defines a different
version of synchronized that accepts any object as an argument.

 But using explicit locks for synchronization provides for more reliable and main-
tainable code. In section 8.2.5, we’ll introduce the withLock function from the Kotlin
standard library, which you should prefer for executing the given action under a lock.

 Because you’ve declared the synchronized function as inline, the code gener-
ated for every call to it is the same as for a synchronized statement in Java. Consider
this example of using synchronized():

fun foo(l: Lock) {
println("Before sync")
synchronized(l) {

println("Action")
}
println("After sync")

}

Figure 8.3 shows the equivalent code, which will be compiled to the same bytecode:

Note that the inlining is applied to the lambda expression as well as the implementa-
tion of the synchronized function. The bytecode generated from the lambda
becomes part of the definition of the calling function and isn’t wrapped in an anony-
mous class implementing a function interface.

 Note that it’s also possible to call an inline function and pass the parameter of a
function type from a variable:

class LockOwner(val lock: Lock) {
fun runUnderLock(body: () -> Unit) {

fun __foo__(l: Lock) {

 println("Before sync")

 l.lock()

 try {

 println("Action")

 } finally {

 l.unlock()

 }

 println("After sync")

}

Code of the calling foo fuction

Inlined code of the synchronized function

Inlined code of the lambda body

Figure 8.3 The compiled
version of the foo function
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

213Inline functions: removing the overhead of lambdas
synchronized(lock, body)
}

}

In this case, the lambda’s code isn’t available at the site where the inline function is
called, and therefore it isn’t inlined. Only the body of the synchronized function is
inlined; the lambda is called as usual. The runUnderLock function will be compiled
to bytecode similar to the following function:

class LockOwner(val lock: Lock) {
fun __runUnderLock__(body: () -> Unit) {

lock.lock()
try {

body()
}
finally {

lock.unlock()
}

}
}

If you have two uses of an inline function in different locations with different lambdas,
then every call site will be inlined independently. The code of the inline function will
be copied to both locations where you use it, with different lambdas substituted into it.

8.2.2 Restrictions on inline functions

Due to the way inlining is performed, not every function that uses lambdas can be
inlined. When the function is inlined, the body of the lambda expression that’s passed
as an argument is substituted directly into the resulting code. That restricts the possi-
ble uses of the corresponding parameter in the function body. If this parameter is
called, such code can be easily inlined. But if the parameter is stored somewhere for
further use, the code of the lambda expression can’t be inlined, because there must
be an object that contains this code.

 Generally, the parameter can be inlined if it’s called directly or passed as an argu-
ment to another inline function. Otherwise, the compiler will prohibit the inlining
of the parameter with an error message that says “Illegal usage of inline-parameter.”

 For example, various functions that work on sequences return instances of classes
that represent the corresponding sequence operation and receive the lambda as a
constructor parameter. Here’s how the Sequence.map function is defined:

fun <T, R> Sequence<T>.map(transform: (T) -> R): Sequence<R> {
return TransformingSequence(this, transform)

}

The map function doesn’t call the function passed as the transform parameter
directly. Instead, it passes this function to the constructor of a class that stores it in a
property. To support that, the lambda passed as the transform argument needs to be

A variable of a function type is passed
as an argument, not a lambda.

This function is similar to the
bytecode the real
runUnderLock is compiled to.

The body isn’t inlined,
because there’s no lambda
at the invocation.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

214 CHAPTER 8 Higher-order functions: lambdas as parameters and return values
compiled into the standard non-inline representation, as an anonymous class imple-
menting a function interface.

 If you have a function that expects two or more lambdas as arguments, you may
choose to inline only some of them. This makes sense when one of the lambdas is
expected to contain a lot of code or is used in a way that doesn’t allow inlining. You
can mark the parameters that accept such non-inlineable lambdas with the noinline
modifier:

inline fun foo(inlined: () -> Unit, noinline notInlined: () -> Unit) {
// ...

}

Note that the compiler fully supports inlining functions across modules, or functions
defined in third-party libraries. You can also call most inline functions from Java; such
calls will not be inlined, but will be compiled as regular function calls.

 Later in the book, in section 9.2.4, you’ll see another case where it makes sense to
use noinline (with some constraints on Java interoperability, however).

8.2.3 Inlining collection operations

Let’s consider the performance of Kotlin standard library functions that work on col-
lections. Most of the collection functions in the standard library take lambda expres-
sions as arguments. Would it be more efficient to implement these operations directly,
instead of using the standard library functions?

 For example, let’s compare the ways you can filter a list of people, as shown in the
next two listings.

data class Person(val name: String, val age: Int)

val people = listOf(Person("Alice", 29), Person("Bob", 31))

>>> println(people.filter { it.age < 30 })
[Person(name=Alice, age=29)]

The previous code can be rewritten without lambda expressions, as shown next.

>>> val result = mutableListOf<Person>()
>>> for (person in people) {
>>> if (person.age < 30) result.add(person)
>>> }
>>> println(result)
[Person(name=Alice, age=29)]

In Kotlin, the filter function is declared as inline. It means the bytecode of the
filter function, together with the bytecode of the lambda passed to it, will be

Listing 8.14 Filtering a collection using a lambda

Listing 8.15 Filtering a collection manually
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

215Inline functions: removing the overhead of lambdas
inlined where filter is called. As a result, the bytecode generated for the first ver-
sion that uses filter is roughly the same as the bytecode generated for the second
version. You can safely use idiomatic operations on collections, and Kotlin’s support
for inline functions ensures that you don’t need to worry about performance.

 Imagine now that you apply two operations, filter and map, in a chain.

>>> println(people.filter { it.age > 30 }
... .map(Person::name))
[Bob]

This example uses a lambda expression and a member reference. Once again, both
filter and map are declared as inline, so their bodies are inlined, and no extra
classes or objects are created. But the code creates an intermediate collection to store
the result of filtering the list. The code generated from the filter function adds ele-
ments to that collection, and the code generated from map reads from it.

 If the number of elements to process is large, and the overhead of an intermediate
collection becomes a concern, you can use a sequence instead, by adding an
asSequence call to the chain. But as you saw in the previous section, lambdas used to
process a sequence aren’t inlined. Each intermediate sequence is represented as an
object storing a lambda in its field, and the terminal operation causes a chain of calls
through each intermediate sequence to be performed. Therefore, even though oper-
ations on sequences are lazy, you shouldn’t strive to insert an asSequence call into
every chain of collection operations in your code. This helps only for large collections;
smaller ones can be processed nicely with regular collection operations.

8.2.4 Deciding when to declare functions as inline

Now that you’ve learned about the benefits of the inline keyword, you might want to
start using inline throughout your codebase, trying to make it run faster. As it turns
out, this isn’t a good idea. Using the inline keyword is likely to improve perfor-
mance only with functions that take lambdas as arguments; all other cases require
additional measuring and investigation.

 For regular function calls, the JVM already provides powerful inlining support. It
analyzes the execution of your code and inlines calls whenever doing so provides the
most benefit. This happens automatically while translating bytecode to machine code.
In bytecode, the implementation of each function is repeated only once and doesn’t
need to be copied to every place where the function is called, as with Kotlin’s inline
functions. What’s more, the stacktrace is clearer if the function is called directly.

 On the other hand, inlining functions with lambda arguments is beneficial. First,
the overhead you avoid through inlining is more significant. You save not only on the
call, but also on the creation of the extra class for each lambda and an object for the
lambda instance. Second, the JVM currently isn’t smart enough to always perform
inlining through the call and the lambda. Finally, inlining lets you use features that
are impossible to make work with regular lambdas, such as non-local returns, which
we’ll discuss later in this chapter.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

216 CHAPTER 8 Higher-order functions: lambdas as parameters and return values
 But you should still pay attention to the code size when deciding whether to use
the inline modifier. If the function you want to inline is large, copying its bytecode
into every call site could be expensive in terms of bytecode size. In that case, you
should try to extract the code not related to the lambda arguments into a separate
non-inline function. You can verify for yourself that the inline functions in the Kot-
lin standard library are always small.

 Next, let’s see how higher-order functions can help you improve your code.

8.2.5 Using inlined lambdas for resource management

One common pattern where lambdas can remove duplicate code is resource manage-
ment: acquiring a resource before an operation and releasing it afterward. Resource
here can mean many different things: a file, a lock, a database transaction, and so on.
The standard way to implement such a pattern is to use a try/finally statement in
which the resource is acquired before the try block and released in the finally block.

 Earlier in this section, you saw an example of how you can encapsulate the logic of
the try/finally statement in a function and pass the code using the resource as a
lambda to that function. The example showed the synchronized function, which
has the same syntax as the synchronized statement in Java: it takes the lock object as
an argument. The Kotlin standard library defines another function called withLock,
which has a more idiomatic API for the same task: it’s an extension function on the
Lock interface. Here’s how it can be used:

val l: Lock = ...
l.withLock {

// access the resource protected by this lock
}

Here’s how the withLock function is defined in the Kotlin library:

fun <T> Lock.withLock(action: () -> T): T {
lock()
try {

return action()
} finally {

unlock()
}

}

Files are another common type of resource where this pattern is used. Java 7 has even
introduced special syntax for this pattern: the try-with-resources statement. The follow-
ing listing shows a Java method that uses this statement to read the first line from a file.

/* Java */
static String readFirstLineFromFile(String path) throws IOException {

try (BufferedReader br =
new BufferedReader(new FileReader(path))) {

Listing 8.16 Using try-with-resources in Java

Executes the given
action under the lock

The idiom of working with locks is
extracted into a separate function.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

217Control flow in higher-order functions
return br.readLine();
}

}

Kotlin doesn’t have equivalent syntax, because the same task can be accomplished
almost as seamlessly through a function with a parameter of a function type (that
expects a lambda as an argument). The function is called use and is included in the
Kotlin standard library. Here’s how you can use this function to rewrite listing 8.16 in
Kotlin.

fun readFirstLineFromFile(path: String): String {
BufferedReader(FileReader(path)).use { br ->

return br.readLine()
}

}

The use function is an extension function called on a closable resource; it receives a
lambda as an argument. The function calls the lambda and ensures that the resource
is closed, regardless of whether the lambda completes normally or throws an excep-
tion. Of course, the use function is inlined, so its use doesn’t incur any performance
overhead.

 Note that in the body of the lambda, you use a non-local return to return a value
from the readFirstLineFromFile function. Let’s discuss the use of return expres-
sions in lambdas in detail.

8.3 Control flow in higher-order functions
When you start using lambdas to replace imperative code constructs such as loops,
you quickly run into the issue of return expressions. Putting a return statement in
the middle of a loop is a no-brainer. But what if you convert the loop into the use of a
function such as filter? How does return work in that case? Let’s look at some
examples.

8.3.1 Return statements in lambdas: return from an enclosing function

We’ll compare two different ways of iterating over a collection. In the following listing,
it’s clear that if the person’s name is Alice, you return from the function look-
ForAlice.

data class Person(val name: String, val age: Int)

val people = listOf(Person("Alice", 29), Person("Bob", 31))

fun lookForAlice(people: List<Person>) {
for (person in people) {

Listing 8.17 Using the use function for resource management

Listing 8.18 Using return in a regular loop

Creates the BufferedReader,
calls the “use” function, and
passes a lambda to execute
the operation on the file

Returns the line
from the function
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

218 CHAPTER 8 Higher-order functions: lambdas as parameters and return values
if (person.name == "Alice") {
println("Found!")
return

}
}
println("Alice is not found")

}

>>> lookForAlice(people)
Found!

Is it safe to rewrite this code using forEach iteration? Will the return statement mean
the same thing? Yes, it’s safe to use the forEach function instead, as shown next.

fun lookForAlice(people: List<Person>) {
people.forEach {

if (it.name == "Alice") {
println("Found!")
return

}
}
println("Alice is not found")

}

If you use the return keyword in a lambda, it returns from the function in which you called
the lambda, not just from the lambda itself. Such a return statement is called a non-
local return, because it returns from a larger block than the block containing the
return statement.

 To understand the logic behind the rule, think about using a return keyword in a
for loop or a synchronized block in a Java method. It’s obvious that it returns from
the function and not from the loop or block. Kotlin allows you to preserve the same
behavior when you switch from language features to functions that take lambdas as
arguments.

 Note that the return from the outer function is possible only if the function that takes
the lambda as an argument is inlined. In listing 8.19, the body of the forEach function is
inlined together with the body of the lambda, so it’s easy to compile the return
expression so that it returns from the enclosing function. Using the return expres-
sion in lambdas passed to non-inline functions isn’t allowed. A non-inline function
can save the lambda passed to it in a variable and execute it later, when the function
has already returned, so it’s too late for the lambda to affect when the surrounding
function returns.

8.3.2 Returning from lambdas: return with a label

You can write a local return from a lambda expression as well. A local return in a
lambda is similar to a break expression in a for loop. It stops the execution of the

Listing 8.19 Using return in a lambda passed to forEach

This line is printed if there’s
no Alice among “people”.

Returns from a function
as in listing 8.18
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

219Control flow in higher-order functions

L

e

lambda and continues execution of the code from which the lambda was invoked. To
distinguish a local return from a non-local one, you use labels. You can label a lambda
expression from which you want to return, and then refer to this label after the
return keyword.

fun lookForAlice(people: List<Person>) {
people.forEach label@{

if (it.name == "Alice") return@label
}
println("Alice might be somewhere")

}

>>> lookForAlice(people)
Alice might be somewhere

To label a lambda expression, put the label name (which can be any identifier), fol-
lowed by the @ character, before the opening curly brace of the lambda. To return
from a lambda, put the @ character followed by the label name after the return key-
word. This is illustrated in figure 8.4.

Alternatively, the name of the function that takes this lambda as an argument can be
used as a label.

fun lookForAlice(people: List<Person>) {
people.forEach {

if (it.name == "Alice") return@forEach
}
println("Alice might be somewhere")

}

Note that if you specify the label of the lambda expression explicitly, labeling using
the function name doesn’t work. A lambda expression can’t have more than one label.

Listing 8.20 Using a local return with a label

Listing 8.21 Using the function name as a return label

abels the
lambda

xpression

return@label refers
to this label.

This line is
always printed.

Lambda label

Return
expression label

people.forEach label@{
 if (it.name == "Alice") return@label
}

Figure 8.4 Returns from a lambda use
the “@” character to mark a label.

return@forEach returns from
the lambda expression.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

220 CHAPTER 8 Higher-order functions: lambdas as parameters and return values
The non-local return syntax is fairly verbose and becomes cumbersome if a lambda
contains multiple return expressions. As a solution, you can use an alternate syntax to
pass around blocks of code: anonymous functions.

8.3.3 Anonymous functions: local returns by default

An anonymous function is a different way to write a block of code passed to a func-
tion. Let’s start with an example.

fun lookForAlice(people: List<Person>) {
people.forEach(fun (person) {

if (person.name == "Alice") return
println("${person.name} is not Alice")

})
}

>>> lookForAlice(people)
Bob is not Alice

You can see that an anonymous function looks similar to a regular function, except
that its name and parameter types are omitted. Here’s another example.

people.filter(fun (person): Boolean {
return person.age < 30

})

Labeled “this” expression
The same rules apply to the labels of this expressions. In chapter 5, we discussed
lambdas with receivers—lambdas that contain an implicit context object that can be
accessed via a this reference in a lambda (chapter 11 will explain how to write your
own functions that expect lambdas with receivers as arguments). If you specify the
label of a lambda with a receiver, you can access its implicit receiver using the cor-
responding labeled this expression:

>>> println(StringBuilder().apply sb@{
... listOf(1, 2, 3).apply {
... this@sb.append(this.toString())
... }
... })
[1, 2, 3]

As with labels for return expressions, you can specify the label of the lambda
expression explicitly or use the function name instead.

Listing 8.22 Using return in an anonymous function

Listing 8.23 Using an anonymous function with filter

This lambda’s implicit receiver
is accessed by this@sb.

“this” refers to the
closest implicit
receiver in the scope.

All implicit receivers can be accessed,
the outer ones via explicit labels.

Uses an anonymous
function instead of a
lambda expression

“return” refers to the
closest function: an

anonymous function.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

221Summary
Anonymous functions follow the same rules as regular functions for specifying the
return type. Anonymous functions with a block body, such as the one in listing 8.23,
require the return type to be specified explicitly. If you use an expression body, you
can omit the return type.

people.filter(fun (person) = person.age < 30)

Inside an anonymous function, a return expression without a label returns from the
anonymous function, not from the enclosing one. The rule is simple: return returns
from the closest function declared using the fun keyword. Lambda expressions don’t use the
fun keyword, so a return in a lambda returns from the outer function. Anonymous
functions do use fun; therefore, in the previous example, the anonymous function is
the closest matching function. Consequently, the return expression returns from the
anonymous function, not from the enclosing one. The difference is illustrated in
figure 8.5.

Note that despite the fact that an anonymous function looks similar to a regular func-
tion declaration, it’s another syntactic form of a lambda expression. The discussion of
how lambda expressions are implemented and how they’re inlined for inline func-
tions applies to anonymous functions as well.

8.4 Summary
 Function types allow you to declare a variable, parameter, or function return

value that holds a reference to a function.
 Higher-order functions take other functions as arguments or return them. You

can create such functions by using a function type as the type of a function
parameter or return value.

 When an inline function is compiled, its bytecode along with the bytecode of a
lambda passed to it is inserted directly into the code of the calling function,

Listing 8.24 Using an anonymous function with an expression body

fun lookForAlice(people: List<Person>) {

 people.forEach(fun(person) {
 if (person.name == "Alice") return

 })
}

fun lookForAlice(people: List<Person>) {
 people.forEach {
 if (it.name == "Alice") return
 }
}

Figure 8.5 The return expression returns from
the function declared using the fun keyword.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

222 CHAPTER 8 Higher-order functions: lambdas as parameters and return values
which ensures that the call happens with no overhead compared to similar code
written directly.

 Higher-order functions facilitate code reuse within the parts of a single compo-
nent and let you build powerful generic libraries.

 Inline functions allow you to use non-local returns—return expressions placed in
a lambda that return from the enclosing function.

 Anonymous functions provide an alternative syntax to lambda expressions with
different rules for resolving the return expressions. You can use them if you
need to write a block of code with multiple exit points.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Generics
You’ve already seen a few code examples that use generics in this book. The basic
concepts of declaring and using generic classes and functions in Kotlin are similar to
Java, so the earlier examples should have been clear without a detailed explanation.
In this chapter, we’ll return to some of the examples and look at them in more detail.

 We’ll then go deeper into the topic of generics and explore new concepts intro-
duced in Kotlin, such as reified type parameters and declaration-site variance.
These concepts may be novel to you, but don’t worry; the chapter covers them thor-
oughly.

 Reified type parameters allow you to refer at runtime to the specific types used as
type arguments in an inline function call. (For normal classes or functions, this
isn’t possible, because type arguments are erased at runtime.)

 Declaration-site variance lets you specify whether a generic type with a type argu-
ment is a subtype or a supertype of another generic type with the same base type
and a different type argument. For example, it regulates whether it’s possible to

This chapter covers
 Declaring generic functions and classes

 Type erasure and reified type parameters

 Declaration-site and use-site variance
223

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

224 CHAPTER 9 Generics
pass arguments of type List<Int> to functions expecting List<Any>. Use-site vari-
ance achieves the same goal for a specific use of a generic type and therefore accom-
plishes the same task as Java’s wildcards.

9.1 Generic type parameters
Generics allow you to define types that have type parameters. When an instance of such
a type is created, type parameters are substituted with specific types called type argu-
ments. For example, if you have a variable of type List, it’s useful to know what kind of
things are stored in that list. The type parameter lets you specify exactly that—instead
of “This variable holds a list,” you can say something like “This variable holds a list of
strings.” Kotlin’s syntax for saying “a list of strings” looks the same as in Java:
List<String>. You can also declare multiple type parameters for a class. For exam-
ple, the Map class has type parameters for the key type and the value type: class
Map<K, V>. We can instantiate it with specific arguments: Map<String, Person>.
So far, everything looks exactly as it does in Java.

 Just as with types in general, type arguments can often be inferred by the Kotlin
compiler:

val authors = listOf("Dmitry", "Svetlana")

Because the two values passed to the listOf function are both strings, the compiler
infers that you’re creating a List<String>. On the other hand, if you need to create
an empty list, there’s nothing from which to infer the type argument, so you need to
specify it explicitly. In the case of creating a list, you have a choice between specifying
the type as part of the variable declaration and specifying a type argument for the
function that creates a list. The following example shows how this is done:

val readers: MutableList<String> = mutableListOf()

val readers = mutableListOf<String>()

These declarations are equivalent. Note that collection-creation functions are covered
in section 6.3.

NOTE Unlike Java, Kotlin always requires type arguments to be either speci-
fied explicitly or inferred by the compiler. Because generics were added to
Java only in version 1.5, it had to maintain compatibility with code written for
older versions, so it allows you to use a generic type without type arguments—
a so-called raw type. For example, in Java, you can declare a variable of type
List without specifying what kind of things it contains. Because Kotlin has
had generics from the beginning, it doesn’t support raw types, and the type
arguments must always be defined.

9.1.1 Generic functions and properties

If you’re going to write a function that works with a list, and you want it to work with
any list (a generic one), not a list of elements of a specific type, you need to write a
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

225Generic type parameters
generic function. A generic function has type parameters of its own. These type parame-
ters must be replaced with the specific type arguments on each function invocation.

 Most of the library functions working with collections are generic. For example,
let’s look at the slice function declaration, shown in figure 9.1. This function
returns a list containing only elements at indices in the specified range.

Figure 9.1 The generic function slice has the type parameter T.

The function’s type parameter T is used in the receiver type and in the return type;
both of them are List<T>. When you call such a function on a specific list, you can
specify the type argument explicitly. But in almost all cases you don’t need to, because
the compiler infers it, as shown next.

>>> val letters = ('a'..'z').toList()
>>> println(letters.slice<Char>(0..2))
[a, b, c]
>>> println(letters.slice(10..13))
[k, l, m, n]

The result type of both of these calls is List<Char>. The compiler substitutes the
inferred type Char for T in the function return type List<T>.

 In section 8.1, you saw the declaration of the filter function, which takes a
parameter of the function type (T) -> Boolean. Let’s see how you can apply it to
the readers and authors variables from the previous examples.

val authors = listOf("Dmitry", "Svetlana")
val readers = mutableListOf<String>(/* ... */)

fun <T> List<T>.filter(predicate: (T) -> Boolean): List<T>

>>> readers.filter { it !in authors }

The type of the autogenerated lambda parameter it is String in this case. The com-
piler has to infer that: after all, in the declaration of the function, the lambda parameter

Listing 9.1 Calling a generic function

Listing 9.2 Calling a generic higher-order function

Type parameter declaration

fun <T> List<T>.slice(indices: IntRange): List<T>

Type parameter is used in receiver and return types

Specifies the type
argument explicitly

The compiler infers
that T is Char here.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

226 CHAPTER 9 Generics
has a generic type T (it’s the type of the function parameter in (T) -> Boolean). The
compiler understands that T is String, because it knows the function should be called
on List<T>, and the actual type of its receiver, readers, is List<String>.

 You can declare type parameters on methods of classes or interfaces, top-level
functions, and extension functions. In the last case, the type parameter can be used in
the types of the receiver and the parameters, as in listings 9.1 and 9.2: the type param-
eter T is part of the receiver type List<T>, and it’s used in the parameter function
type (T) -> Boolean as well.

 You can also declare generic extension properties using the same syntax. For
example, here’s an extension property that returns the element before the last one in
a list:

val <T> List<T>.penultimate: T
get() = this[size - 2]

>>> println(listOf(1, 2, 3, 4).penultimate)
3

Now let’s recap how you can declare generic classes.

9.1.2 Declaring generic classes

Just as in Java, you declare a Kotlin generic class or interface by putting angle brackets
after the class name and the type parameters in the angle brackets. Once you do that,
you can use the type parameters in the body of the class, just like any other types. Let’s
look at how the standard Java interface List can be declared in Kotlin. To simplify it,
we’ve omitted the majority of the methods:

interface List<T> {
operator fun get(index: Int): T
// ...

}

Later in this chapter, when we get to the topic of variance, you’ll improve on this
example and see how List is declared in the Kotlin standard library.

You can’t declare a generic non-extension property
Regular (non-extension) properties can’t have type parameters. It’s not possible to
store multiple values of different types in a property of a class, and therefore declar-
ing a generic non-extension property doesn’t make sense. If you try to do that, the
compiler reports an error:

>>> val <T> x: T = TODO()
ERROR: type parameter of a property must be used in its receiver type

This generic extension property
can be called on a list of any kind.

The type parameter T is inferred
to be Int in this invocation.

The List interface defines
a type parameter T.

T can be used as a regular type
in an interface or a class.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

227Generic type parameters

Strin
ins
 If your class extends a generic class (or implements a generic interface), you have
to provide a type argument for the generic parameter of the base type. It can be either
a specific type or another type parameter:

class StringList: List<String> {
override fun get(index: Int): String = ... }

class ArrayList<T> : List<T> {
override fun get(index: Int): T = ...

}

The StringList class is declared to contain only String elements, so it uses
String as the type argument of the base type. Any function from the subclass substi-
tutes this proper type instead of T, so you have a signature fun get(Int): String
in StringList, rather than fun get(Int): T.

 The ArrayList class defines its own type parameter T and specifies that as a type
argument of the superclass. Note that T in ArrayList<T> is not the same as in
List<T>—it’s a new type parameter, and it doesn’t need to have the same name.

 A class can even refer to itself as a type argument. Classes implementing the Com-
parable interface are the classical example of this pattern. Any comparable element
must define how to compare it with objects of the same type:

interface Comparable<T> {
fun compareTo(other: T): Int

}

class String : Comparable<String> {
override fun compareTo(other: String): Int = /* ... */

}

The String class implements the generic Comparable interface, providing the type
String for the type parameter T.

 So far, generics look similar to those in Java. We’ll talk about the differences later
in the chapter, in sections 9.2 and 9.3. Now let’s discuss another concept that works
similar to Java: the one that allows you to write useful functions for working with com-
parable items.

9.1.3 Type parameter constraints

Type parameter constraints let you restrict the types that can be used as type arguments
for a class or function. For example, consider a function that calculates the sum of ele-
ments in a list. It can be used on a List<Int> or a List<Double>, but not, for exam-
ple, a List<String>. To express this, you can define a type parameter constraint that
specifies that the type parameter of sum must be a number.

 When you specify a type as an upper bound constraint for a type parameter of a
generic type, the corresponding type arguments in specific instantiations of the
generic type must be either the specified type or its subtypes. (For now, you can think
of subtype as a synonym for subclass. Section 9.3.2 will highlight the difference.)

This class implements List, providing
a specific type argument: String.Note how

g is used
tead of T. Now the generic type parameter T of

ArrayList is a type argument for List.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

228 CHAPTER 9 Generics

 To specify a constraint, you put a colon
after the type parameter name, followed
by the type that’s the upper bound for the
type parameter; see figure 9.2. In Java, you
use the keyword extends to express the
same concept: <T extends Number> T
sum(List<T> list).

 This function invocation is allowed because the actual type argument (Int in the
following example) extends Number:

>>> println(listOf(1, 2, 3).sum())
6

Once you’ve specified a bound for a type parameter T, you can use values of type T as
values of its upper bound. For example, you can invoke methods defined in the class
used as the bound:

fun <T : Number> oneHalf(value: T): Double {
return value.toDouble() / 2.0

}

>>> println(oneHalf(3))
1.5

Now let’s write a generic function that finds the maximum of two items. Because it’s
only possible to find a maximum of items that can be compared to each other, you
need to specify that in the signature of the function. Here’s how you do that.

fun <T: Comparable<T>> max(first: T, second: T): T {
return if (first > second) first else second

}

>>> println(max("kotlin", "java"))
kotlin

When you try to call max on incomparable items, the code won’t compile:

>>> println(max("kotlin", 42))
ERROR: Type parameter bound for T is not satisfied:
inferred type Any is not a subtype of Comparable<Any>

The upper bound for T is a generic type Comparable<T>. As you saw earlier, the
String class extends Comparable<String>, which makes String a valid type argu-
ment for the max function.

 Remember, the short form first > second is compiled to first.compa-
reTo(second) > 0, according to Kotlin operator conventions. This comparison is

Listing 9.3 Declaring a function with a type parameter constraint

Type parameter Upper bound

fun <T : Number> List<T>.sum(): T

Figure 9.2 Constraints are defined by specify-
ing an upper bound after a type parameter.

Specifies Number as the type
parameter upper bound

Invokes a method defined
in the Number class

The arguments of this
function must be
comparable elements.

The strings are compared
alphabetically.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

229Generic type parameters

Li
p

co

possible because the type of first, which is T, extends from Comparable<T>, and
thus you can compare first to another element of type T.

 In the rare case when you need to specify multiple constraints on a type parameter,
you use a slightly different syntax. For example, the following listing is a generic way to
ensure that the given CharSequence has a period at the end. It works with both the
standard StringBuilder class and the java.nio.CharBuffer class.

fun <T> ensureTrailingPeriod(seq: T)
where T : CharSequence, T : Appendable {

if (!seq.endsWith('.')) {
seq.append('.')

}
}

>>> val helloWorld = StringBuilder("Hello World")
>>> ensureTrailingPeriod(helloWorld)
>>> println(helloWorld)
Hello World.

In this case, you specify that the type used as a type argument must implement both
the CharSequence and Appendable interfaces. This means both the operations
accessing the data (endsWith) as well as the operation modifying it (append) can be
used with values of that type.

 Next, we’ll discuss another case when type parameter constraints are common:
when you want to declare a non-null type parameter.

9.1.4 Making type parameters non-null

If you declare a generic class or function, any type arguments, including nullable
ones, can be substituted for its type parameters. In effect, a type parameter with no
upper bound specified will have the upper bound of Any?. Consider the following
example:

class Processor<T> {
fun process(value: T) {

value?.hashCode()
}

}

In the process function, the parameter value is nullable, even though T isn’t
marked with a question mark. This is the case because specific instantiations of the
Processor class can use a nullable type for T:

val nullableStringProcessor = Processor<String?>()
nullableStringProcessor.process(null)

Listing 9.4 Specifying multiple constraints for a type parameter

st of type
arameter
nstraints

Calls an extension function defined
for the CharSequence interface

Calls the method from the
Appendable interface

“value” is nullable, so you
have to use a safe call.

String?, which is a nullable
type, is substituted for T.

This code compiles fine, having
“null” as the “value” argument.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

230 CHAPTER 9 Generics
If you want to guarantee that a non-null type will always be substituted for a type
parameter, you can achieve this by specifying a constraint. If you don’t have any
restrictions other than nullability, you can use Any as the upper bound, replacing the
default Any?:

class Processor<T : Any> {
fun process(value: T) {

value.hashCode()
}

}

The <T : Any> constraint ensures that the T type will always be a non-nullable type.
The code Processor<String?> won’t be accepted by the compiler, because the type
argument String? isn’t a subtype of Any (it’s a subtype of Any?, which is a less spe-
cific type):

>>> val nullableStringProcessor = Processor<String?>()
Error: Type argument is not within its bounds: should be subtype of 'Any'

Note that you can make a type parameter non-null by specifying any non-null type
as an upper bound, not only the type Any.

 So far, we’ve covered the basics of generics—the topics that are most similar to
Java. Now let’s discuss another concept that may be somewhat familiar if you’re a Java
developer: how generics behave at runtime.

9.2 Generics at runtime: erased and reified type parameters
As you probably know, generics on the JVM are normally implemented through type
erasure, meaning the type arguments of an instance of a generic class aren’t preserved
at runtime. In this section, we’ll discuss the practical implications of type erasure for
Kotlin, and how you can get around its limitations by declaring a function as inline.
You can declare an inline function so that its type arguments aren’t erased (or, in
Kotlin terms, are reified). We’ll discuss reified type parameters in detail and look at
examples when they’re useful.

9.2.1 Generics at runtime: type checks and casts

Just as in Java, Kotlin’s generics are erased at runtime. This means an instance of a
generic class doesn’t carry information about the type arguments used to create that
instance. For example, if you create a List<String> and put a bunch of strings into
it, at runtime you’ll only be able to see that it’s a List. It’s not possible to identify
which type of elements the list was intended to contain. (Of course, you can get an
element and check its type, but that won’t give you any guarantees, because other ele-
ments may have different types.)

 Consider what happens with these two lists when you run the code (shown in
figure 9.3):

val list1: List<String> = listOf("a", "b")
val list2: List<Int> = listOf(1, 2, 3)

Specifying a non-“null”
upper bound

“value” of type T
is now non-“null”.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

231Generics at runtime: erased and reified type parameters
Even though the compiler sees two distinct types for the lists, at execution time they
look exactly the same. Despite that, you can normally be sure that a List<String>
contains only strings and a List<Int> contains only integers, because the compiler
knows the type arguments and ensures that only elements of the correct type are
stored in each list. (You can deceive the compiler through type casts or by using Java
raw types to access the list, but you need to make a special effort to do that.)

 Let’s talk next about the constraints that go with erasing the type information.
Because type arguments aren’t stored, you can’t check them—for example, you can’t
check whether a list is a list of strings rather than other objects. As a general rule, it’s
not possible to use types with type arguments in is checks. The following code won’t
compile:

>>> if (value is List<String>) { ... }
ERROR: Cannot check for instance of erased type

Even though it’s perfectly possible to find out at runtime that value is a List, you
can’t tell whether it’s a list of strings, persons, or something else: that information has
been erased. Note that erasing generic type information has its benefits: the overall
amount of memory used by your application is smaller, because less type information
needs to be saved in memory.

 As we stated earlier, Kotlin doesn’t let you use a generic type without specifying
type arguments. Thus you may wonder how to check that the value is a list, rather than
a set or another object. You can do that by using the special star projection syntax:

if (value is List<*>) { ... }

Effectively, you need to include a * for every type parameter the type has. We’ll discuss
the star projection in detail (including why it’s called a projection) later in the chapter;
for now, you can think of it as a type with unknown arguments (or an analogue of
Java’s List<?>). In the previous example, you check whether a value is a List, and
you don’t get any information about its element type.

 Note that you can still use normal generic types in as and as? casts. But the cast
won’t fail if the class has the correct base type and a wrong type argument, because the
type argument isn’t known at runtime when the cast is performed. Because of that,
the compiler will emit an “unchecked cast” warning on such a cast. It’s only a warning,
so you can later use the value as having the necessary type, as shown next.

["a", "b"]List

list1

list2

List

[1, 2, 3]

Figure 9.3 At runtime, you don’t know whether
list1 and list2 were declared as lists of
strings or integers. Each of them is just List.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

232 CHAPTER 9 Generics

:

fun printSum(c: Collection<*>) {
val intList = c as? List<Int>

?: throw IllegalArgumentException("List is expected")
println(intList.sum())

}

>>> printSum(listOf(1, 2, 3))
6

Everything compiles fine: the compiler only issues a warning, which means this code is
legitimate. If you call the printSum function on a list of ints or a set, it works as
expected: it prints a sum in the first case and throws an IllegalArgument-
Exception in the second case. But if you pass in a value of a wrong type, you’ll get a
ClassCastException at runtime:

>>> printSum(setOf(1, 2, 3))
IllegalArgumentException: List is expected
>>> printSum(listOf("a", "b", "c"))
ClassCastException: String cannot be cast to Number

Let’s discuss the exception that’s thrown if you call the printSum function on a list of
strings. You don’t get an IllegalArgumentException, because you can’t check
whether the argument is a List<Int>. Therefore the cast succeeds, and the function
sum is called on such a list anyway. During its execution, an exception is thrown. This
happens because the function tries to get Number values from the list and add them
together. An attempt to use a String as a Number results in a ClassCastException
at runtime.

 Note that the Kotlin compiler is smart enough to allow is checks when the corre-
sponding type information is already known at compile time.

fun printSum(c: Collection<Int>) {
if (c is List<Int>) {

println(c.sum())
}

}

>>> printSum(listOf(1, 2, 3))
6

In listing 9.6, the check whether c has type List<Int> is possible because you know
at compile time that this collection (no matter whether it’s a list or another kind of
collection) contains integer numbers.

 Generally, the Kotlin compiler takes care of letting you know which checks are
dangerous (forbidding is checks and emitting warnings for as casts) and which are

Listing 9.5 Using a type cast with a generic type

Listing 9.6 Using a type check with a known type argument

Warning here. Unchecked cast
List<*> to List<Int>

Everything works
as expected.

Set isn’t a list, so an
exception is thrown.

The cast succeeds, and another
exception is thrown later.

This check
is legitimate.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

233Generics at runtime: erased and reified type parameters
possible. You just have to know the meaning of those warnings and understand which
operations are safe.

 As we already mentioned, Kotlin does have a special construct that allows you to
use specific type arguments in the body of a function, but that’s only possible for
inline functions. Let’s look at this feature.

9.2.2 Declaring functions with reified type parameters

As we discussed earlier, Kotlin generics are erased at runtime, which means if you
have an instance of a generic class, you can’t find out the type arguments used when
the instance was created. The same holds for type arguments of a function. When you
call a generic function, in its body you can’t determine the type arguments it was
invoked with:

>>> fun <T> isA(value: Any) = value is T
Error: Cannot check for instance of erased type: T

This is true in general, but there’s one case where this limitation can be avoided:
inline functions. Type parameters of inline functions can be reified, which means you
can refer to actual type arguments at runtime.

 We discussed inline functions in detail in section 8.2. As a reminder, if you mark
a function with the inline keyword, the compiler will replace every call to the func-
tion with the actual code implementing the function. Making the function inline
may improve performance if this function uses lambdas as arguments: the lambda
code can be inlined as well, so no anonymous class will be created. This section shows
another case when inline functions are helpful: their type arguments can be reified.

 If you declare the previous isA function as inline and mark the type parameter
as reified, you can check value to see whether it’s an instance of T.

inline fun <reified T> isA(value: Any) = value is T

>>> println(isA<String>("abc"))
true
>>> println(isA<String>(123))
false

Let’s look at some less-trivial examples of the use of reified type parameters. One of the
simplest examples where reified type parameters come into play is the filterIs-
Instance standard library function. The function takes a collection, selects instances
of the specified class, and returns only those instances. Here’s how it can be used.

>>> val items = listOf("one", 2, "three")
>>> println(items.filterIsInstance<String>())
[one, three]

Listing 9.7 Declaring a function with a reified type parameter

Listing 9.8 Using the filterIsInstance standard library function

Now this code
compiles.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

234 CHAPTER 9 Generics
You say that you’re interested in strings only, by specifying <String> as a type argu-
ment for the function. The return type of the function will therefore be
List<String>. In this case, the type argument is known at runtime, and filterIs-
Instance uses it to check which values in the list are instances of the class specified as
the type argument.

 Here’s a simplified version of the declaration of filterIsInstance from the
Kotlin standard library.

inline fun <reified T>
Iterable<*>.filterIsInstance(): List<T> {

val destination = mutableListOf<T>()
for (element in this) {

if (element is T) {
destination.add(element)

}
}
return destination

}

Listing 9.9 A simplified implementation of filterIsInstance

Why reification works for inline functions only
How does this work? Why are you allowed to write element is T in inline func-
tion but not in a regular class or function?

As we discussed in section 8.2, the compiler inserts the bytecode implementing the
inline function into every place where it’s called. Every time you call the function with
a reified type parameter, the compiler knows the exact type used as the type argu-
ment in that particular call. Therefore, the compiler can generate the bytecode that
references the specific class used as a type argument. In effect, for the filter-
IsInstance<String> call shown in listing 9.8, the generated code will be equiv-
alent to the following:

for (element in this) {
if (element is String) {

destination.add(element)
}

}

Because the generated bytecode references a specific class, not a type parameter,
it isn’t affected by the type-argument erasure that happens at runtime.

Note that inline function with reified type parameters can’t be called from Java
code. Normal inline functions are accessible to Java as regular functions—they can
be called but aren’t inlined. Functions with reified type parameters require additional
processing to substitute the type argument values into the bytecode, and therefore
they must always be inlined. This makes it impossible to call them in a regular way,
as the Java code does.

“reified” declares that
this type parameter will
not be erased at runtime.

You can check whether
the element is an instance
of the class specified
as a type argument.

References a
specific class.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

235Generics at runtime: erased and reified type parameters
An inline function can have multiple reified type parameters, and it can have non-
reified type parameters in addition to the reified ones. Note that the filter-
IsInstance function is marked as inline even though it doesn’t expect any lamb-
das as arguments. In section 8.2.4, we discussed that marking a function as inline only
has performance benefits when the function has parameters of the function type and
the corresponding arguments—lambdas—are inlined together with the function. But
in this case, you aren’t marking the function as inline for performance reasons;
instead, you’re doing it to enable the use of reified type parameters.

 To ensure good performance, you still need to keep track of the size of the func-
tion marked as inline. If the function becomes large, it’s better to extract the code
that doesn’t depend on the reified type parameters into separate non-inline functions.

9.2.3 Replacing class references with reified type parameters

One common use case for reified type parameters is building adapters for APIs that
take parameters of type java.lang.Class. An example of such an API is Service-
Loader from the JDK, which takes a java.lang.Class representing an interface or
an abstract class and returns an instance of a service class implementing that inter-
face. Let’s look at how you can use reified type parameters to make those APIs simpler
to call.

 To load a service using the standard Java API of ServiceLoader, you use the fol-
lowing call:

val serviceImpl = ServiceLoader.load(Service::class.java)

The ::class.java syntax shows how you can get a java.lang.Class correspond-
ing to a Kotlin class. This is an exact equivalent of Service.class in Java. We’ll
cover this in much more detail in section 10.2, in our discussion of reflection.

 Now let’s rewrite this example using a function with a reified type parameter:

val serviceImpl = loadService<Service>()

Much shorter, isn’t it? The class of the service to load is now specified as a type argu-
ment to the loadService function. Specifying a class as a type argument is easier to
read because it’s shorter than the ::class.java syntax you need to use otherwise.

 Next, let’s see how this loadService function can be defined:

inline fun <reified T> loadService() {
return ServiceLoader.load(T::class.java)

}

You can use the same ::class.java syntax on reified type parameters that you can
use on regular classes. Using this syntax gives you the java.lang.Class correspond-
ing to the class specified as the type parameter, which you can then use normally.

The type parameter is
marked as “reified”.

Accesses the class of the
type parameter as T::class
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

236 CHAPTER 9 Generics
9.2.4 Restrictions on reified type parameters

Even though reified type parameters are a handy tool, they have certain restrictions.
Some are inherent to the concept, and others are determined by the current imple-
mentation and may be relaxed in future versions of Kotlin.

 More specifically, here’s how you can use a reified type parameter:

 In type checks and casts (is, !is, as, as?)
 To use the Kotlin reflection APIs, as we’ll discuss in chapter 10 (::class)
 To get the corresponding java.lang.Class (::class.java)
 As a type argument to call other functions

You can’t do the following:

 Create new instances of the class specified as a type parameter
 Call methods on the companion object of the type parameter class
 Use a non-reified type parameter as a type argument when calling a function

with a reified type parameter
 Mark type parameters of classes, properties, or non-inline functions as reified

The last constraint leads to an interesting consequence: because reified type parame-
ters can only be used in inline functions, using a reified type parameter means the
function along with all the lambdas passed to it are inlined. If the lambdas can’t be
inlined because of the way the inline function uses them, or if you don’t want them to
be inlined for performance reasons, you can use the noinline modifier introduced
in section 8.2.2 to mark them as non-inlineable.

 Now that we’ve discussed how generics work as a language feature, let’s take a
more detailed look at the most common generic types that come up in every Kotlin
program: collections and their subclasses. We’ll use them as a starting point for
exploring the concepts of subtyping and variance.

Simplifying the startActivity function on Android
If you’re an Android developer, you may find another example to be more familiar:
showing activities. Instead of passing the class of the activity as a
java.lang.Class, you can also use a reified type parameter:

inline fun <reified T : Activity>
Context.startActivity() {

val intent = Intent(this, T::class.java)
startActivity(intent)

}

startActivity<DetailActivity>()

The type parameter is
marked as “reified”.

Accesses the class of the
type parameter as T::class

Invokes the method
to show an activity
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

237Variance: generics and subtyping
9.3 Variance: generics and subtyping
The concept of variance describes how types with the same base type and different type
arguments relate to each other: for example, List<String> and List<Any>. First
we’ll discuss why this relation is important in general, and then we’ll look at how it’s
expressed in Kotlin. Understanding variance is essential when you write your own
generic classes or functions: it helps you create APIs that don’t restrict users in incon-
venient ways and don’t break their type-safety expectations.

9.3.1 Why variance exists: passing an argument to a function

Imagine that you have a function that takes a List<Any> as an argument. Is it safe to
pass a variable of type List<String> to this function? It’s definitely safe to pass a string
to a function expecting Any, because the String class extends Any. But when Any and
String become type arguments of the List interface, it’s not so clear any more.

 For example, let’s consider a function that prints the contents of the list.

fun printContents(list: List<Any>) {
println(list.joinToString())

}

>>> printContents(listOf("abc", "bac"))
abc, bac

It looks like a list of strings works fine here. The function treats each element as Any,
and because every string is Any, it’s totally safe.

 Now let’s look at another function, which modifies the list (and therefore takes
MutableList as a parameter):

fun addAnswer(list: MutableList<Any>) {
list.add(42)

}

Can anything bad happen if you pass a list of strings to this function?

>>> val strings = mutableListOf("abc", "bac")
>>> addAnswer(strings)
>>> println(strings.maxBy { it.length })
ClassCastException: Integer cannot be cast to String

You declare a variable strings of type MutableList<String>. Then you try to pass
it to the function. If the compiler accepted it, you’d be able to add an integer to a list
of strings, which would then lead to a runtime exception when you tried to access the
contents of the list as strings. Because of that, this call doesn’t compile. This example
shows that it’s not safe to pass a MutableList<String> as an argument when a
MutableList<Any> is expected; the Kotlin compiler correctly forbids that.

If this line
compiled …

… you’d get an
exception at runtime.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

238 CHAPTER 9 Generics
 Now you can answer the question of whether it’s safe to pass a list of strings to a
function that expects a list of Any objects. It’s not safe if the function adds or replaces
elements in the list, because this creates the possibility of type inconsistencies. It’s safe
otherwise (we’ll discuss why in more detail later in this section). In Kotlin, this can be
easily controlled by choosing the right interface, depending on whether the list is
mutable. If a function accepts a read-only list, you can pass a List with a more specific
element type. If the list is mutable, you can’t do that.

 Later in this section, we’ll generalize the same question for any generic class, not
only List. You’ll also see why two interfaces List and MutableList are different
with regard to their type argument. But before that, we need to discuss the concepts
of type and subtype.

9.3.2 Classes, types, and subtypes

As we discussed in section 6.1.2, the type of a variable specifies the possible values for
this variable. We’ve sometimes used the terms type and class as equivalent, but they
aren’t, and now is the time to look at the difference.

 In the simplest case, with a non-generic class, the name of the class can be used
directly as a type. For example, if you write var x: String, you declare a variable that
can hold instances of the String class. But note that the same class name can also be
used to declare a nullable type: var x: String?. This means each Kotlin class can be
used to construct at least two types.

 The story becomes even more complicated with generic classes. To get a valid type,
you have to substitute a specific type as a type argument for the class’s type parameter.
List isn’t a type (it’s a class), but all of the following substitutions are valid types:
List<Int>, List<String?>, List<List<String>>, and so on. Each generic class
produces a potentially infinite number of types.

 In order for us to discuss the relation between types, you need to be familiar with
the term subtype. A type B is a subtype of a type A if you can use the value of the type B
whenever a value of the type A is required. For instance, Int is a subtype of Number,
but Int isn’t a subtype of String. This definition also indicates that a type is consid-
ered a subtype of itself. Figure 9.4 illustrates this.

 The term supertype is the opposite of subtype. If A is a subtype of B, then B is a super-
type of A.

A

B

Number

Int

Int

Int

String

Int
Figure 9.4 B is a subtype of A if you can
use it when A is expected.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

239Variance: generics and subtyping
 Why is it important whether one type is a subtype of the other? The compiler per-
forms this check every time when you assign a value to a variable or pass an argument
to a function. Consider the following example.

fun test(i: Int) {
val n: Number = i

fun f(s: String) { /*...*/ }
f(i)

}

Storing a value in a variable is allowed only when the value type is a subtype of the vari-
able type; for instance, the type Int of the variable initializer i is a subtype of the vari-
able type Number, so the declaration of n is valid. Passing an expression to a function
is allowed only when the type of the expression is a subtype of the function parameter
type. In the example the type Int of the argument i isn’t a subtype of the function
parameter String, so the invocation of the f function doesn’t compile.

 In simple cases, subtype means essentially the same thing as subclass. For example,
the Int class is a subclass of Number, and therefore the Int type is a subtype of the
Number type. If a class implements an interface, its type is a subtype of the interface
type: String is a subtype of CharSequence.

 Nullable types provide an example of when subtype isn’t the same as subclass; see
figure 9.5.

A non-null type is a subtype of its nullable version, but they both correspond to one
class. You can always store the value of a non-null type in a variable of a nullable type,
but not vice versa (null isn’t an acceptable value for a variable of a non-null type):

val s: String = "abc"
val t: String? = s

The difference between subclasses and subtypes becomes especially important when
we start talking about generic types. The question from the previous section of
whether it’s safe to pass a variable of type List<String> to a function expecting
List<Any> now can be reformulated in terms of subtyping: is List<String> a
subtype of List<Any>? You’ve seen why it’s not safe to treat MutableList<String>

Listing 9.10 Checking whether a type is a subtype of another

Compiles, because Int
is a subtype of Number

Doesn’t compile, because
Int isn’t a subtype of String

A?

A

Int?

Int

Int

Int?
Figure 9.5 A non-null type A is a subtype of
nullable A?, but not vice versa.

This assignment is legal because
String is a subtype of String?.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

240 CHAPTER 9 Generics
as a subtype of MutableList<Any>. Clearly, the reverse isn’t true either: Mutable-
List<Any> isn’t a subtype of MutableList<String>.

 A generic class—for instance, MutableList—is called invariant on the type
parameter if, for any two different types A and B, MutableList<A> isn’t a subtype or
a supertype of MutableList. In Java, all classes are invariant (even though spe-
cific uses of those classes can be marked as non-invariant, as you’ll see soon).

 In the previous section, you saw a class for which the subtyping rules are different:
List. The List interface in Kotlin represents a read-only collection. If A is a subtype
of B, then List<A> is a subtype of List. Such classes or interfaces are called
covariant. The next section discusses the concept of covariance in detail and explains
when it’s possible to declare a class or interface as covariant.

9.3.3 Covariance: preserved subtyping relation

A covariant class is a generic class (we’ll use Producer<T> as an example) for which
the following holds: Producer<A> is a subtype of Producer if A is a subtype of B.
We say that the subtyping is preserved. For example, Producer<Cat> is a subtype of
Producer<Animal> because Cat is a subtype of Animal.

 In Kotlin, to declare the class to be covariant on a certain type parameter, you put
the out keyword before the name of the type parameter:

interface Producer<out T> {
fun produce(): T

}

Marking a type parameter of a class as covariant makes it possible to pass values of that
class as function arguments and return values when the type arguments don’t exactly match
the ones in the function definition. For example, imagine a function that takes care of
feeding a group of animals, represented by the Herd class. The type parameter of the
Herd class identifies the type of the animal in the herd.

open class Animal {
fun feed() { ... }

}

class Herd<T : Animal> {
val size: Int get() = ...
operator fun get(i: Int): T { ... }

}

fun feedAll(animals: Herd<Animal>) {
for (i in 0 until animals.size) {

animals[i].feed()
}

}

Suppose that a user of your code has a herd of cats and needs to take care of them.

Listing 9.11 Defining an invariant collection-like class

This class is declared
as covariant on T.

The type parameter isn’t
declared as covariant.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

241Variance: generics and subtyping

class Cat : Animal() {
fun cleanLitter() { ... }

}

fun takeCareOfCats(cats: Herd<Cat>) {
for (i in 0 until cats.size) {

cats[i].cleanLitter()
// feedAll(cats)

}
}

Unfortunately, the cats will remain hungry: if you tried to pass the herd to the feed-
All function, you’d get a type-mismatch error during compilation. Because you don’t
use any variance modifier on the T type parameter in the Herd class, the herd of cats
isn’t a subclass of the herd of animals. You could use an explicit cast to work around
the problem, but that approach is verbose, error-prone, and almost never a correct
way to deal with a type-mismatch problem.

 Because the Herd class has an API similar to List and doesn’t allow its clients to
add or change the animals in the herd, you can make it covariant and change the call-
ing code accordingly.

class Herd<out T : Animal> {
...

}

fun takeCareOfCats(cats: Herd<Cat>) {
for (i in 0 until cats.size) {

cats[i].cleanLitter()
}
feedAll(cats)

}

You can’t make any class covariant: it would be unsafe. Making the class covariant on a
certain type parameter constrains the possible uses of this type parameter in the class.
To guarantee type safety, it can be used only in so-called out positions, meaning the
class can produce values of type T but not consume them.

 Uses of a type parameter in declarations of class members can be divided into in
and out positions. Let’s consider a class that declares a type parameter T and contains
a function that uses T. We say that if T is used as the return type of a function, it’s in the
out position. In this case, the function produces values of type T. If T is used as the type
of a function parameter, it’s in the in posi-
tion. Such a function consumes values of type T.
Figure 9.6 illustrates this.

Figure 9.6 The function parameter type is called in
position, and the function return type is called out position.

Listing 9.12 Using an invariant collection-like class

Listing 9.13 Using a covariant collection-like class

A Cat is
an Animal.

Error: inferred type is Herd<Cat>,
but Herd<Animal> was expected

The T parameter is
now covariant.

You don’t
need a cast.

“in” position “out” position

interface Transformer<T> {
 fun transform(t: T): T
}

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

242 CHAPTER 9 Generics
The out keyword on a type parameter of the class requires that all methods using T
have T only in out positions and not in in positions. This keyword constrains possible
use of T, which guarantees safety of the corresponding subtype relation.

 As an example, consider the Herd class. It uses the type parameter T in only one
place: in the return value of the get method.

class Herd<out T : Animal> {
val size: Int get() = ...
operator fun get(i: Int): T { ... }

}

This is an out position, which makes it safe to declare the class as covariant. Any code
calling get on a Herd<Animal> will work perfectly if the method returns a Cat,
because Cat is a subtype of Animal.

 To reiterate, the out keyword on the type parameter T means two things:

 The subtyping is preserved (Producer<Cat> is a subtype of Producer<Animal>).
 T can be used only in out positions.

Now let’s look at the List<T> interface. List is read-only in Kotlin, so it has a
method get that returns an element of type T but doesn’t define any methods that
store a value of type T in the list. Therefore, it’s also covariant.

interface List<out T> : Collection<T> {
operator fun get(index: Int): T
// ...

}

Note that a type parameter can be used not only as a parameter type or return type
directly, but also as a type argument of another type. For example, the List interface
contains a method subList that returns List<T>.

interface List<out T> : Collection<T> {
fun subList(fromIndex: Int, toIndex: Int): List<T>
// ...

}

In this case, T in the function subList is used in the out position. We won’t go deep
into detail here; if you’re interested in the exact algorithm that determines which
position is out and which is in, you can find this information in the Kotlin language
documentation.

 Note that you can’t declare MutableList<T> as covariant on its type parameter,
because it contains methods that take values of type T as parameters and return such
values (therefore, T appears in both in and out positions).

interface MutableList<T>
: List<T>, MutableCollection<T> {

override fun add(element: T): Boolean
}

Uses T as the
return type

Read-only interface that defines
only methods that return T
(so T is in the “out” position)

Here T is in the “out”
position as well.

MutableList can’t be declared
as covariant on T …

… because T is used
in the “in” position.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

243Variance: generics and subtyping
The compiler enforces this restriction. It would report an error if the class was
declared as covariant: Type parameter T is declared as 'out' but occurs
in 'in' position.

 Note that constructor parameters are in neither the in nor the out position. Even
if a type parameter is declared as out, you can still use it in a constructor parameter
declaration:

class Herd<out T: Animal>(vararg animals: T) { ... }

The variance protects the class instance from misuse if you’re working with it as an
instance of a more generic type: you just can’t call the potentially dangerous methods.
The constructor isn’t a method that can be called later (after an instance creation),
and therefore it can’t be potentially dangerous.

 If you use the val or var keyword with a constructor parameter, however, you also
declare a getter and a setter (if the property is mutable). Therefore, the type parame-
ter is used in the out position for a read-only property and in both out and in posi-
tions for a mutable property:

class Herd<T: Animal>(var leadAnimal: T, vararg animals: T) { ... }

In this case, T can’t be marked as out, because the class contains a setter for the
leadAnimal property that uses T in the in position.

 Also note that the position rules cover only the externally visible (public, pro-
tected, and internal) API of a class. Parameters of private methods are in neither
the in nor the out position. The variance rules protect a class from misuse by exter-
nal clients and don’t come into play in the implementation of the class itself:

class Herd<out T: Animal>(private var leadAnimal: T, vararg animals: T) { ... }

Now it’s safe to make Herd covariant on T, because the leadAnimal property has
been made private.

 You may ask what happens with classes or interfaces where the type parameter is
used only in an in position. In that case, the reverse relation holds. The next section
presents the details.

9.3.4 Contravariance: reversed subtyping relation

The concept of contravariance can be thought of as a mirror to covariance: for a con-
travariant class, the subtyping relation is the opposite of the subtyping relations of
classes used as its type arguments. Let’s start with an example: the Comparator inter-
face. This interface defines one method, compare, which compares two given objects:

interface Comparator<in T> {
fun compare(e1: T, e2: T): Int { ... }

}
Uses T in
“in” positions
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

244 CHAPTER 9 Generics
You can see that the method of this interface only consumes values of type T. That
means T is used only in in positions, and therefore its declaration can be preceded by
the in keyword.

 A comparator defined for values of a certain type can, of course, compare the val-
ues of any subtype of that type. For example, if you have a Comparator<Any>, you
can use it to compare values of any specific type.

>>> val anyComparator = Comparator<Any> {
... e1, e2 -> e1.hashCode() - e2.hashCode()
... }
>>> val strings: List<String> = ...
>>> strings.sortedWith(anyComparator)

The sortedWith function expects a Comparator<String> (a comparator that can
compare strings), and it’s safe to pass one that can compare more general types. If you
need to perform comparisons on objects of a certain type, you can use a comparator
that handles either that type or any of its supertypes. This means Comparator<Any>
is a subtype of Comparator<String>, where Any is a supertype of String. The sub-
typing relation between comparators for two different types goes in the opposite
direction of the subtyping relation between those types.

 Now you’re ready for the full definition of contravariance. A class that is contravari-
ant on the type parameter is a generic class (let’s consider Consumer<T> as an exam-
ple) for which the following holds: Consumer<A> is a subtype of Consumer if B is
a subtype of A. The type arguments A and B changed places, so we say the subtyping is
reversed. For example, Consumer<Animal> is a subtype of Consumer<Cat>.

 Figure 9.7 shows the difference between the subtyping relation for classes that are
covariant and contravariant on a type parameter. You can see that for the Producer
class, the subtyping relation replicates the subtyping relation for its type arguments,
whereas for the Consumer class, the relation is reversed.

The in keyword means values of the corresponding type are passed in to methods of
this class and consumed by those methods. Similar to the covariant case, constraining
use of the type parameter leads to the specific subtyping relation. The in keyword on
the type parameter T means the subtyping is reversed and T can be used only in in
positions. Table 9.1 summarizes the differences between the possible variance choices.

You can use the comparator for
any objects to compare specific
objects, such as strings.

Producer<Animal>

Producer<Cat>

Animal

Cat

Consumer<Animal>

Consumer<Cat>

Covariant Contravariant

Figure 9.7 For a covariant type
Producer<T>, the subtyping is
preserved, but for a
contravariant type Consumer<T>,
the subtyping is reversed.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

245Variance: generics and subtyping

A class or interface can be covariant on one type parameter and contravariant on
another. The classic example is the Function interface. The following declaration
shows a one-parameter Function:

interface Function1<in P, out R> {
operator fun invoke(p: P): R

}

The Kotlin notation (P) -> R is another, more readable form to express
Function1<P, R>. You can see that P (the parameter type) is used only in the in
position and is marked with the in keyword, whereas R (the return type) is used only
in the out position and is marked with the out keyword. That means the subtyping
for the function type is reversed for its first type argument and preserved for the sec-
ond. For example, if you have a higher-order function that tries to enumerate your
cats, you can pass a lambda accepting any animals.

fun enumerateCats(f: (Cat) -> Number) { ... }
fun Animal.getIndex(): Int = ...

>>> enumerateCats(Animal::getIndex)

Figure 9.8 illustrates the subtyping relationships in the previous example.
 Note that in all the examples so far, the variance of a class is specified directly in its

declaration and applies to all places where the class is used. Java doesn’t support that
and instead uses wildcards to specify the variance for specific uses of a class. Let’s look
at the difference between the two approaches and see how you can use the second
approach in Kotlin.

Table 9.1 Covariant, contravariant, and invariant classes

Covariant Contravariant Invariant

Producer<out T> Consumer<in T> MutableList<T>

Subtyping for the class is preserved:
Producer<Cat> is a subtype of
Producer<Animal>.

Subtyping is reversed:
Consumer<Animal> is a sub-
type of Consumer<Cat>.

No subtyping.

T only in out positions T only in in positions T in any position

This code is legal in Kotlin.
Animal is a supertype of Cat,
and Int is a subtype of Number.

(Cat) -> Number

(Animal) -> Int

Cat

Animal

Number

Int

Figure 9.8 The function (T) -> R is
contravariant on its argument and
covariant on its return type.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

246 CHAPTER 9 Generics
9.3.5 Use-site variance: specifying variance for type occurrences

The ability to specify variance modifiers on class declarations is convenient because
the modifiers apply to all places where the class is used. This is called declaration-site
variance. If you’re familiar with Java’s wildcard types (? extends and ? super), you’ll
realize that Java handles variance differently. In Java, every time you use a type with a
type parameter, you can also specify whether this type parameter can be replaced with
its subtypes or supertypes. This is called use-site variance.

Kotlin supports use-site variance too, allowing you to specify the variance for a specific
occurrence of a type parameter even when it can’t be declared as covariant or contra-
variant in the class declaration. Let’s see how that works.

 You’ve seen that many interfaces, like MutableList, aren’t covariant or contra-
variant in a general case, because they can both produce and consume values of types
specified by their type parameters. But it’s common for a variable of that type in a
particular function to be used in only one of those roles: either as a producer or as a
consumer. For example, consider this simple function.

fun <T> copyData(source: MutableList<T>,
destination: MutableList<T>) {

for (item in source) {
destination.add(item)

}
}

This function copies elements from one collection to another. Even though both col-
lections have an invariant type, the source collection is only used for reading, and the
destination collection is only used for writing. In this situation, the element types of

Declaration-site variance in Kotlin vs. Java wildcards
Declaration-site variance allows for more concise code, because you specify the vari-
ance modifiers once, and clients of your class don’t have to think about them. In
Java, to create APIs that behave according to users’ expectations, the library writer
has to use wildcards all the time: Function<? super T, ? extends R>. If you
examine the source code of the Java 8 standard library, you’ll find wildcards on every
use of the Function interface. For example, here’s how the Stream.map method
is declared:

/* Java */
public interface Stream<T> {

<R> Stream<R> map(Function<? super T, ? extends R> mapper);
}

Specifying the variance once on the declaration makes the code much more concise
and elegant.

Listing 9.14 A data copy function with invariant parameter types
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

247Variance: generics and subtyping
the collections don’t need to match exactly. For example, it’s perfectly valid to copy a
collection of strings into a collection that can contain any objects.

 To make this function work with lists of different types, you can introduce the sec-
ond generic parameter.

fun <T: R, R> copyData(source: MutableList<T>,
destination: MutableList<R>) {

for (item in source) {
destination.add(item)

}
}
>>> val ints = mutableListOf(1, 2, 3)
>>> val anyItems = mutableListOf<Any>()
>>> copyData(ints, anyItems)
>>> println(anyItems)
[1, 2, 3]

You declare two generic parameters representing the element types in the source and
destination lists. To be able to copy elements from one list to the other, the source ele-
ment type should be a subtype of elements in the destination list, like Int is a sub-
type of Any in listing 9.15.

 But Kotlin provides a more elegant way to express this. When the implementation
of a function only calls methods that have the type parameter in the out (or only in
the in) position, you can take advantage of it and add variance modifiers to the partic-
ular usages of the type parameter in the function definition.

fun <T> copyData(source: MutableList<out T>,
destination: MutableList<T>) {

for (item in source) {
destination.add(item)

}
}

You can specify a variance modifier on any usage of a type parameter in a type declara-
tion: for a parameter type (as in listing 9.16), local variable type, function return type,
and so on. What happens here is called type projection: we say that source isn’t a regu-
lar MutableList, but a projected (restricted) one. You can only call methods that
return the generic type parameter or, strictly speaking, use it in the out position only.
The compiler prohibits calling methods where this type parameter is used as an argu-
ment (in the in position):

>>> val list: MutableList<out Number> = ...
>>> list.add(42)
Error: Out-projected type 'MutableList<out Number>' prohibits
the use of 'fun add(element: E): Boolean'

Listing 9.15 A data copy function with two type parameters

Listing 9.16 A data copy function with an out-projected type parameter

Source’s element type
should be a subtype of the
destination’s element type

You can call this function,
because Int is a subtype of Any.

You can add the “out” keyword to
the type usage: no methods with
T in the “in” position are used.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

248 CHAPTER 9 Generics

nt
e
Don’t be surprised that you can’t call some of the methods if you’re using a projected type. If you
need to call them, you need to use a regular type instead of a projection. This may
require you to declare a second type parameter that depends on the one that was orig-
inally a projection, as in listing 9.15.

 Of course, the right way to implement the function copyData would be to use
List<T> as a type of the source argument, because we’re only using the methods
declared in List, not in MutableList, and the variance of the List type parameter
is specified in its declaration. But this example is still important for illustrating the
concept, especially keeping in mind that most classes don’t have a separate covariant
read interface and an invariant read/write interface, such as List and MutableList.

 There is no sense to get an out projection of a type parameter that already has out
variance, such as List<out T>. That would mean the same as List<T>, because
List is declared as class List<out T>. The Kotlin compiler will warn that such a
projection is redundant.

 In a similar way, you can use the in modifier on a usage of a type parameter to
indicate that in this particular location the corresponding value acts as a consumer,
and the type parameter can be substituted with any of its supertypes. Here’s how you
can rewrite listing 9.16 using an in-projection.

fun <T> copyData(source: MutableList<T>,
destination: MutableList<in T>) {

for (item in source) {
destination.add(item)

}
}

NOTE Use-site variance declarations in Kotlin correspond directly to Java
bounded wildcards. MutableList<out T> in Kotlin means the same as
MutableList<? extends T> in Java. The in-projected MutableList<in
T> corresponds to Java’s MutableList<? super T>.

Use-site projections can help to widen the range of acceptable types. Now let’s discuss
the extreme case: when types with all possible type arguments become acceptable.

9.3.6 Star projection: using * instead of a type argument

While talking about type checks and casts earlier in this chapter, we mentioned the
special star-projection syntax you can use to indicate that you have no information about a
generic argument. For example, a list of elements of an unknown type is expressed using
that syntax as List<*>. Let’s explore the semantics of star projections in detail.

 First, note that MutableList<*> isn’t the same as MutableList<Any?> (it’s
important here that MutableList<T> is invariant on T). A MutableList<Any?> is
a list that you know can contain elements of any type. On the other hand, a

Listing 9.17 A data copy function with an in-projected type parameter

Allows the destination eleme
type to be a supertype of th
source element type
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

249Variance: generics and subtyping
MutableList<*> is a list that contains elements of a specific type, but you don’t
know what type it is. The list was created as a list of elements of a specific type, such as
String (you can’t create a new ArrayList<*>), and the code that created it
expects that it will only contain elements of that type. Because you don’t know what
the type is, you can’t put anything into the list, because any value you put there might
violate the expectations of the calling code. But it’s possible to get the elements from
the list, because you know for sure that all values stored there will match the type
Any?, which is the supertype of all Kotlin types:

>>> val list: MutableList<Any?> = mutableListOf('a', 1, "qwe")
>>> val chars = mutableListOf('a', 'b', 'c')
>>> val unknownElements: MutableList<*> =
... if (Random().nextBoolean()) list else chars
>>> unknownElements.add(42)
Error: Out-projected type 'MutableList<*>' prohibits
the use of 'fun add(element: E): Boolean'
>>> println(unknownElements.first())
a

Why does the compiler refers to MutableList<*> as an out-projected type? In this
context, MutableList<*> is projected to (acts as) MutableList<out Any?>: when
you know nothing about the type of the element, it’s safe to get elements of Any?
type, but it’s not safe to put elements into the list. Speaking about Java wildcards,
MyType<*> in Kotlin corresponds to Java’s MyType<?>.

NOTE For contravariant type parameters such as Consumer<in T>, a star
projection is equivalent to <in Nothing>. In effect, you can’t call any meth-
ods that have T in the signature on such a star projection. If the type parame-
ter is contravariant, it acts only as a consumer, and, as we discussed earlier,
you don’t know exactly what it can consume. Therefore, you can’t give it any-
thing to consume. If you’re interested in more details, see the Kotlin online
documentation (http://mng.bz/3Ed7).

You can use the star-projection syntax when the information about type arguments isn’t
important: you don’t use any methods that refer to the type parameter in the signature,
or you only read the data and you don’t care about its specific type. For instance, you
can implement the printFirst function taking List<*> as a parameter:

fun printFirst(list: List<*>) {
if (list.isNotEmpty()) {

println(list.first())
}

}

>>> printFirst(listOf("Svetlana", "Dmitry"))
Svetlana

MutableList<*>
isn’t the same as
MutableList<Any?>.

The compiler forbids
you to call this method.

It’s safe to get elements: first()
returns an element of the Any? type.

Every list is a
possible argument.

isNotEmpty() doesn’t
use the generic type
parameter.

first() now returns Any?, but
in this case that’s enough.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://mng.bz/3Ed7

250 CHAPTER 9 Generics

As in the case with use-site variance, you have an alternative—to introduce a generic
type parameter:

fun <T> printFirst(list: List<T>) {
if (list.isNotEmpty()) {

println(list.first())
}

}

The syntax with star projection is more concise, but it works only if you aren’t inter-
ested in the exact value of the generic type parameter: you use only methods that pro-
duce values, and you don’t care about the types of those values.

 Now let’s look at another example of using a type with a star projection and com-
mon traps you may fall into while using that approach. Let’s say you need to validate
user input, and you declare an interface FieldValidator. It contains its type param-
eter in the in position only, so it can be declared as contravariant. And, indeed, it’s
correct to use the validator that can validate any elements when a validator of strings is
expected (that’s what declaring it as contravariant lets you do). You also declare two
validators that handle String and Int inputs.

interface FieldValidator<in T> {
fun validate(input: T): Boolean

}

object DefaultStringValidator : FieldValidator<String> {
override fun validate(input: String) = input.isNotEmpty()

}

object DefaultIntValidator : FieldValidator<Int> {
override fun validate(input: Int) = input >= 0

}

Now imagine that you want to store all validators in the same container and get the
right validator according to the type of input. Your first attempt might use a map to
store them. You need to store validators for any types, so you declare a map from
KClass (which represents a Kotlin class—chapter 10 will cover KClass in detail) to
FieldValidator<*> (which may refer to a validator of any type):

>>> val validators = mutableMapOf<KClass<*>, FieldValidator<*>>()
>>> validators[String::class] = DefaultStringValidator
>>> validators[Int::class] = DefaultIntValidator

Once you do that, you may have difficulties when trying to use the validators. You
can’t validate a string with a validator of the type FieldValidator<*>. It’s unsafe,
because the compiler doesn’t know what kind of validator it is:

Listing 9.18 Interfaces for input validation

Again, every list is a
possible argument.

first() now returns
a value of T.

Interface declared as
contravariant on T

T is used only in the “in”
position (this method
consumes a value of T).
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

251Variance: generics and subtyping

ay be
es.

It’s
wa

r.
>>> validators[String::class]!!.validate("")
Error: Out-projected type 'FieldValidator<*>' prohibits
the use of 'fun validate(input: T): Boolean'

You saw this error earlier when you tried to put an element into MutableList<*>. In
this case, this error means it’s unsafe to give a value of a specific type to a validator for
an unknown type. One of the ways to fix that is to cast a validator explicitly to the type
you need. It’s not safe and isn’t recommended, but we show it here as a fast trick to
make your code compile so that you can refactor it afterward.

>>> val stringValidator = validators[String::class]
as FieldValidator<String>

>>> println(stringValidator.validate(""))
false

The compiler emits a warning about the unchecked cast. Note, however, that this code
will fail on validation only, not when you make the cast, because at runtime all the
generic type information is erased.

>>> val stringValidator = validators[Int::class]
as FieldValidator<String>

>>> stringValidator.validate("")
java.lang.ClassCastException:

java.lang.String cannot be cast to java.lang.Number
at DefaultIntValidator.validate

This incorrect code and listing 9.19 are similar in a sense that in both cases, only a warn-
ing is emitted. It becomes your responsibility to cast only values of the correct type.

 This solution isn’t type-safe and is error-prone. So, let’s investigate what other
options you have if you want to store validators for different types in one place.

 The solution in listing 9.21 uses the same validators map but encapsulates all
the access to it into two generic methods responsible for having only correct validators
registered and returned. This code also emits a warning about the unchecked cast
(the same one), but here the object Validators controls all access to the map, which
guarantees that no one will change the map incorrectly.

object Validators {
private val validators =

mutableMapOf<KClass<*>, FieldValidator<*>>()

Listing 9.19 Retrieving a validator using an explicit cast

Listing 9.20 Incorrectly retrieving a validator

Listing 9.21 Encapsulating access to the validator collection

The value stored in
the map has the type
FieldValidator<*>.

Warning:
unchecked cast

You get an incorrect validator (m
by mistake), but this code compil

 only a
rning. The real error is hidden

until you use the validato

Uses the same map as
before, but now you
can’t access it outside
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

252 CHAPTER 9 Generics
fun <T: Any> registerValidator(
kClass: KClass<T>, fieldValidator: FieldValidator<T>) {

validators[kClass] = fieldValidator
}

@Suppress("UNCHECKED_CAST")
operator fun <T: Any> get(kClass: KClass<T>): FieldValidator<T> =

validators[kClass] as? FieldValidator<T>
?: throw IllegalArgumentException(
"No validator for ${kClass.simpleName}")

}

>>> Validators.registerValidator(String::class, DefaultStringValidator)
>>> Validators.registerValidator(Int::class, DefaultIntValidator)

>>> println(Validators[String::class].validate("Kotlin"))
true
>>> println(Validators[Int::class].validate(42))
true

Now you have a type-safe API. All the unsafe logic is hidden in the body of the class;
and by localizing it, you guarantee that it can’t be used incorrectly. The compiler for-
bids you to use an incorrect validator, because the Validators object always gives
you the correct validator implementation:

>>> println(Validators[String::class].validate(42))
Error: The integer literal does not conform to the expected type String

This pattern can be easily extended to the storage of any custom generic classes.
Localizing unsafe code in a separate place prevents misuse and makes uses of a con-
tainer safe. Note that the pattern described here isn’t specific to Kotlin; you can use
the same approach in Java as well.

 Java generics and variance are generally considered the trickiest part of the lan-
guage. In Kotlin, we’ve tried hard to come up with a design that is easier to under-
stand and easier to work with, while remaining interoperable with Java.

9.4 Summary
 Kotlin’s generics are fairly similar to those in Java: you declare a generic func-

tion or class in the same way.
 As in Java, type arguments for generic types only exist at compile time.
 You can’t use types with type arguments together with the is operator, because

type arguments are erased at runtime.
 Type parameters of inline functions can be marked as reified, which allows you

to use them at runtime to perform is checks and obtain java.lang.Class
instances.

Puts into the map only the correct key-value
pairs, when a validator corresponds to a class

Suppresses the warning
about the unchecked cast

to FieldValidator<T>

Now the “get” method returns an
instance of FieldValidator<String>.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

253Summary
 Variance is a way to specify whether one of two generic types with the same base
class and different type arguments is a subtype or a supertype of the other one if
one of the type arguments is the subtype of the other one.

 You can declare a class as covariant on a type parameter if the parameter is used
only in out positions.

 The opposite is true for contravariant cases: you can declare a class as contra-
variant on a type parameter if it’s used only in in positions.

 The read-only interface List in Kotlin is declared as covariant, which means
List<String> is a subtype of List<Any>.

 The function interface is declared as contravariant on its first type parameter
and covariant on its second, which makes (Animal)->Int a subtype of
(Cat)->Number.

 Kotlin lets you specify variance both for a generic class as a whole (declaration-
site variance) and for a specific use of a generic type (use-site variance).

 The star-projection syntax can be used when the exact type arguments are
unknown or unimportant.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Annotations and reflection
Up to this point, you’ve seen many features for working with classes and functions,
but they all require you to specify the exact names of classes and functions you’re
using as part of the program source code. In order to call a function, you need to
know the class in which it was defined, as well as its name and parameter types.
Annotations and reflection give you the power to go beyond that and to write code
that deals with arbitrary classes that aren’t known in advance. You can use annota-
tions to assign library-specific semantics to those classes; and reflection allows you
to analyze the structure of the classes at runtime.

 Applying annotations is straightforward. But writing your own annotations, and
especially writing the code that handles them, is less trivial. The syntax for using
annotations is exactly the same as in Java, whereas the syntax for declaring your
own annotation classes is a bit different. The general structure of the reflection
APIs is also similar to Java, but the details differ.

 As a demonstration of the use of annotations and reflection, we’re going to walk
you through an implementation of a real-life project: a JSON serialization and

This chapter covers
 Applying and defining annotations

 Using reflection to introspect classes at runtime

 A real example of a Kotlin project
254

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

255Declaring and applying annotations
deserialization library called JKid. The library uses reflection to access properties of
arbitrary Kotlin objects at runtime and also to create objects based on data provided
in JSON files. Annotations let you customize how specific classes and properties are
serialized and deserialized by the library.

10.1 Declaring and applying annotations
Most modern Java frameworks use annotations extensively, so you’ve surely encoun-
tered them when working on Java applications. The core concept in Kotlin is the
same. An annotation allows you to associate additional metadata with a declaration.
The metadata can then be accessed by tools that work with source code, with com-
piled class files, or at runtime, depending on how the annotation is configured.

10.1.1 Applying annotations

You use annotations in Kotlin in the same way as in Java. To apply an annotation, you
put its name, prefixed with the @ character, in the beginning of the declaration you’re
annotating. You can annotate different code elements, such as functions and classes.

 For instance, if you’re using the JUnit framework (http://junit.org/junit4/), you
can mark a test method with the @Test annotation:

import org.junit.*

class MyTest {
@Test fun testTrue() {

Assert.assertTrue(true)
}

}

As a more interesting example, let’s look at the @Deprecated annotation. Its mean-
ing in Kotlin is the same as in Java, but Kotlin enhances it with the replaceWith
parameter, which lets you provide a replacement pattern to support a smooth transi-
tion to a new version of the API. The following example shows how you can provide
arguments for the annotation (a deprecation message and a replacement pattern):

@Deprecated("Use removeAt(index) instead.", ReplaceWith("removeAt(index)"))
fun remove(index: Int) { ... }

The arguments are passed in parentheses, just as in a regular function call. With this
declaration, if someone uses the function remove, IntelliJ IDEA will not only show
what function should be used instead (removeAt in this case) but also offer a quick
fix to replace it automatically.

 Annotations can have parameters of the following types only: primitive types,
strings, enums, class references, other annotation classes, and arrays thereof. The syn-
tax for specifying annotation arguments is slightly different from Java’s:

 To specify a class as an annotation argument, put ::class after the class name:
@MyAnnotation(MyClass::class).

The @Test annotation instructs
the JUnit framework to invoke
this method as a test.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://junit.org/junit4/

256 CHAPTER 10 Annotations and reflection
 To specify another annotation as an argument, don’t put the @ character before the
annotation name. For instance, ReplaceWith in the previous example is an
annotation, but you don’t use @ when you specify it as an argument of the
Deprecated annotation.

 To specify an array as an argument, use the arrayOf function: @Request-
Mapping(path = arrayOf("/foo", "/bar")). If the annotation class is
declared in Java, the parameter named value is automatically converted to a
vararg parameter if necessary, so the arguments can be provided without using
the arrayOf function.

Annotation arguments need to be known at compile time, so you can’t refer to arbi-
trary properties as arguments. To use a property as an annotation argument, you need
to mark it with a const modifier, which tells the compiler that the property is a com-
pile-time constant. Here’s an example of JUnit’s @Test annotation that specifies the
timeout for the test, in milliseconds, using the timeout parameter:

const val TEST_TIMEOUT = 100L

@Test(timeout = TEST_TIMEOUT) fun testMethod() { ... }

As discussed in section 3.3.1, properties annotated with const need to be declared at
the top level of a file or in an object and must be initialized with values of primitive
types or String. If you try to use a regular property as an annotation argument, you’ll
get the error “Only ‘const val’ can be used in constant expressions.”

10.1.2 Annotation targets

In many cases, a single declaration in the Kotlin source code corresponds to multiple
Java declarations, and each of them can carry annotations. For example, a Kotlin
property corresponds to a Java field, a getter, and possibly a setter and its parameter. A
property declared in the primary constructor has one more corresponding element:
the constructor parameter. Therefore, it may be necessary to specify which of these
elements needs to be annotated.

 You specify the element to be annotated with a
use-site target declaration. The use-site target is
placed between the @ sign and the annotation name
and is separated from the name with a colon. The
word get in figure 10.1 causes the annotation
@Rule to be applied to the property getter.

 Let’s look at an example of using this annota-
tion. In JUnit, you can specify a rule to be executed
before each test method. For instance, the standard TemporaryFolder rule is used
to create files and folders that are deleted when the test method finishes.

 To specify a rule, in Java you declare a public field or method annotated with
@Rule. But if you just annotate the property folder in your Kotlin test class with
@Rule, you’ll get a JUnit exception: “The @Rule 'folder' must be public.” It happens

Use-site target Annotation name

@get:Rule

Figure 10.1 The syntax for
specifying use-site targets
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

257Declaring and applying annotations
because @Rule is applied to the field, which is private by default. To apply it to the get-
ter, you need to write that explicitly, @get:Rule, as follows:

class HasTempFolder {
@get:Rule
val folder = TemporaryFolder()

@Test
fun testUsingTempFolder() {

val createdFile = folder.newFile("myfile.txt")
val createdFolder = folder.newFolder("subfolder")
// ...

}
}

If you annotate a property with an annotation declared in Java, it’s applied to the cor-
responding field by default. Kotlin also lets you declare annotations that can be
directly applied to properties.

 The full list of supported use-site targets is as follows:

 property—Java annotations can’t be applied with this use-site target.
 field—Field generated for the property.
 get—Property getter.
 set—Property setter.
 receiver—Receiver parameter of an extension function or property.
 param—Constructor parameter.
 setparam—Property setter parameter.
 delegate—Field storing the delegate instance for a delegated property.
 file—Class containing top-level functions and properties declared in the file.

Any annotation with the file target needs to be placed at the top level of the file,
before the package directive. One of the annotations commonly applied to files is
@JvmName, which changes the name of the corresponding class. Section 3.2.3 showed
you an example: @file:JvmName("StringFunctions").

 Note that unlike Java, Kotlin allows you to apply annotations to arbitrary expres-
sions, not only to class and function declarations or types. The most common example
is the @Suppress annotation, which you can use to suppress a specific compiler warn-
ing in the context of the annotated expression. Here’s an example that annotates a
local variable declaration to suppress an unchecked cast warning:

fun test(list: List<*>) {
@Suppress("UNCHECKED_CAST")
val strings = list as List<String>
// ...

}

Note that IntelliJ IDEA will insert this annotation for you when you press Alt-Enter on a
compiler warning and select Suppress from the intention options menu.

The getter is annotated,
not the property.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

258 CHAPTER 10 Annotations and reflection
10.1.3 Using annotations to customize JSON serialization

One of the classic use cases for annotations is customizing object serialization. Serial-
ization is a process of converting an object to a binary or text representation that can
be then stored or sent over the network. The reverse process, deserialization, converts
such a representation back to an object. One of the most common formats used for
serialization is JSON. There are many widely used libraries for serializing Java objects
to JSON, including Jackson (https://github.com/FasterXML/jackson) and GSON
(https://github.com/google/gson). Just like any other Java library, they’re fully com-
patible with Kotlin.

 Over the course of this chapter, we’ll discuss the implementation of a pure Kotlin
library for this purpose, called JKid. It’s small enough for you to read all of its source
code easily, and we encourage you to do that while reading this chapter.

Controlling the Java API with annotations
Kotlin provides a variety of annotations to control how declarations written in Kotlin
are compiled to Java bytecode and exposed to Java callers. Some of those annota-
tions replace the corresponding keywords of the Java language: for example, the
@Volatile and @Strictfp annotations serve as direct replacements for Java’s
volatile and strictfp keywords. Others are used to change how Kotlin’s decla-
rations are visible to Java callers:

 @JvmName changes the name of a Java method or field generated from a Kot-
lin declaration.

 @JvmStatic can be applied to methods of an object declaration or a com-
panion object to expose them as static Java methods.

 @JvmOverloads, mentioned in section 3.2.2, instructs the Kotlin compiler
to generate overloads for a function that has default parameter values.

 @JvmField can be applied to a property to expose that property as a public
Java field with no getters or setters.

You can find more details on the use of those annotations in their documentation
comments and in the Java interop section of the online documentation.

The JKid library source code and exercises
The full implementation is available as part of the book’s source code, as well as
online at https://manning.com/books/kotlin-in-action and http://github.com/yole/
jkid. To study the library implementation and examples, open ch10/jkid/build.gradle
as a Gradle project in your IDE. The examples can be found in the project under src/
test/kotlin/examples. The library isn’t as full-featured or flexible as GSON or Jack-
son, but it’s performant enough for real use, and you’re welcome to use it in your
projects if it suits your needs.

The JKid project has a series of exercises you can work through after you finish reading
the chapter to ensure that you understand the concepts. You can find a description of
the exercises in the project’s README.md file or read it at the project page on GitHub.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/FasterXML/jackson
https://github.com/google/gson
https://manning.com/books/kotlin-in-action
http://github.com/yole/jkid
http://github.com/yole/jkid

259Declaring and applying annotations
Let’s start with the simplest example to test the library: serializing and deserializing an
instance of the Person class. You pass the instance to the serialize function, and it
returns a string containing its JSON representation:

data class Person(val name: String, val age: Int)

>>> val person = Person("Alice", 29)
>>> println(serialize(person))
{"age": 29, "name": "Alice"}

The JSON representation of an object consists of key/value pairs: pairs of property
names and their values for the specific instance, such as "age": 29.

 To get an object back from the JSON representation, you call the deserialize
function:

>>> val json = """{"name": "Alice", "age": 29}"""
>>> println(deserialize<Person>(json))
Person(name=Alice, age=29)

When you create an instance from JSON data, you must specify the class explicitly as a
type argument, because JSON doesn’t store object types. In this case, you pass the
Person class.

 Figure 10.2 illustrates the equivalence between an object and its JSON representa-
tion. Note that the serialized class can contain not only values of primitive types or
strings, as shown on the figure, but also collections and instances of other value object
classes.

Figure 10.2 Serialization and deserialization of the Person instance

You can use annotations to customize the way objects are serialized and deserialized.
When serializing an object to JSON, by default the library tries to serialize all the prop-
erties and uses the property names as keys. The annotations allow you to change the
defaults. In this section, we’ll discuss two annotations, @JsonExclude and @Json-
Name, and you’ll see their implementation later in the chapter:

 The @JsonExclude annotation is used to mark a property that should be
excluded from serialization and deserialization.

 The @JsonName annotation lets you specify that the key in the key/value pair
representing the property should be the given string, not the name of the
property.

Person("Alice", 29)

Serialize

{"age": 29, "name": "Alice"}

Deserialize
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

260 CHAPTER 10 Annotations and reflection
Consider this example:

data class Person(
@JsonName("alias") val firstName: String,
@JsonExclude val age: Int? = null

)

You annotate the property firstName to change the key used to represent it in JSON.
You annotate the property age to exclude it from serialization and deserialization.
Note that you must specify the default value of the property age. Otherwise, you
wouldn’t be able to create a new instance of Person during deserialization. Figure
10.3 shows how the representation of an instance of the Person class changes.

You’ve seen most of the features available in JKid: serialize(), deserialize(),
@JsonName, and @JsonExclude. Now let’s start our investigation of its implementa-
tion, starting with the annotation declarations.

10.1.4 Declaring annotations

In this section, you’ll learn how to declare annotations, using the annotations from
JKid as an example. The @JsonExclude annotation has the simplest form, because it
doesn’t have any parameters:

annotation class JsonExclude

The syntax looks like a regular class declaration, with the added annotation modi-
fier before the class keyword. Because annotation classes are only used to define the
structure of metadata associated with declarations and expressions, they can’t contain
any code. Therefore, the compiler prohibits specifying a body for an annotation class.

 For annotations that have parameters, the parameters are declared in the primary
constructor of the class:

annotation class JsonName(val name: String)

You use the regular primary constructor declaration syntax. The val keyword is man-
datory for all parameters of an annotation class.

 For comparison, here’s how you’d declare the same annotation in Java:

/* Java */
public @interface JsonName {

String value();
}

Person("Alice")

Serialize

{"alias": "Alice"}

Deserialize

Figure 10.3 Serialization and
deserialization of the Person
instance with annotations applied
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

261Declaring and applying annotations
Note how the Java annotation has a method called value, whereas the Kotlin annota-
tion has a name property. The value method is special in Java: when you apply an
annotation, you need to provide explicit names for all attributes you’re specifying
except value. In Kotlin, on the other hand, applying an annotation is a regular con-
structor call. You can use the named-argument syntax to make the argument names
explicit, or you can omit them: @JsonName(name = "first_name") means the
same as @JsonName("first_name"), because name is the first parameter of the
JsonName constructor. If you need to apply an annotation declared in Java to a Kotlin
element, however, you’re required to use the named-argument syntax for all argu-
ments except value, which Kotlin also recognizes as special.

 Next, let’s discuss how to control annotation usage and how you can apply annota-
tions to other annotations.

10.1.5 Meta-annotations: controlling how an annotation is processed

Just as in Java, a Kotlin annotation class can itself be annotated. The annotations that
can be applied to annotation classes are called meta-annotations. The standard library
defines several of them, and they control how the compiler processes annotations.
Other frameworks use meta-annotations as well—for example, many dependency-
injection libraries use meta-annotations to mark annotations used to identify different
injectable objects of the same type.

 Of the meta-annotations defined in the standard library, the most common is
@Target. The declarations of JsonExclude and JsonName in JKid use it to specify
the valid targets for those annotations. Here’s how it’s applied:

@Target(AnnotationTarget.PROPERTY)
annotation class JsonExclude

The @Target meta-annotation specifies the types of elements to which the annota-
tion can be applied. If you don’t use it, the annotation will be applicable to all declara-
tions. That wouldn’t make sense for JKid, because the library processes only property
annotations.

 The list of values of the AnnotationTarget enum gives the full range of possible
targets for an annotation. It includes classes, files, functions, properties, property
accessors, types, all expressions, and so on. You can declare multiple targets if you
need to: @Target(AnnotationTarget.CLASS, AnnotationTarget.METHOD).

 To declare your own meta-annotation, use ANNOTATION_CLASS as its target:

@Target(AnnotationTarget.ANNOTATION_CLASS)
annotation class BindingAnnotation

@BindingAnnotation
annotation class MyBinding

Note that you can’t use annotations with a PROPERTY target from Java code; to make
such an annotation usable from Java, you can add the second target Annotation-
Target.FIELD. In this case, the annotation will be applied to properties in Kotlin
and to fields in Java.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

262 CHAPTER 10 Annotations and reflection
10.1.6 Classes as annotation parameters

You’ve seen how to define an annotation that holds static data as its arguments, but
sometimes you need something different: the ability to refer to a class as declaration
metadata. You can do so by declaring an annotation class that has a class reference as
a parameter. In the JKid library, this comes up in the @DeserializeInterface
annotation, which allows you to control the deserialization of properties that have an
interface type. You can’t create an instance of an interface directly, so you need to
specify which class is used as the implementation created during deserialization.

 Here’s a simple example showing how this annotation is used:

interface Company {
val name: String

}

data class CompanyImpl(override val name: String) : Company

data class Person(
val name: String,
@DeserializeInterface(CompanyImpl::class) val company: Company

)

Whenever JKid reads a nested company object for a Person instance, it creates and
deserializes an instance of CompanyImpl and stores it in the company property. To
specify this, you use CompanyImpl::class as an argument of the @Deserialize-
Interface annotation. In general, to refer to a class, you use its name followed by
the ::class keyword.

 Now let’s see how the annotation is declared. Its single argument is a class refer-
ence, as in @DeserializeInterface(CompanyImpl::class):

annotation class DeserializeInterface(val targetClass: KClass<out Any>)

The KClass type is Kotlin’s counterpart to Java’s java.lang.Class type. It’s used to
hold references to Kotlin classes; you’ll see what it lets you do with those classes in the
“Reflection” section later in this chapter.

 The type parameter of KClass specifies which Kotlin classes can be referred to by
this reference. For instance, CompanyImpl::class has a type KClass<Company-
Impl>, which is a subtype of the annotation parameter type (see figure 10.4).

The @Retention annotation
In Java, you’ve probably seen another important meta-annotation, @Retention. You
can use it to specify whether the annotation you declare will be stored in the .class
file and whether it will be accessible at runtime through reflection. Java by default
retains annotations in .class files but doesn’t make them accessible at runtime.
Most annotations do need to be present at runtime, so in Kotlin the default is differ-
ent: annotations have RUNTIME retention. Therefore, the JKid annotations do not
have an explicitly specified retention.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

263Declaring and applying annotations
If you wrote KClass<Any> without the out modifier, you wouldn’t be able to pass
CompanyImpl::class as an argument: the only allowed argument would be
Any::class. The out keyword specifies that you’re allowed to refer to classes that
extend Any, not just to Any itself. The next section shows one more annotation that
takes a reference to generic class as a parameter.

10.1.7 Generic classes as annotation parameters

By default, JKid serializes properties of nonprimitive types as nested objects. But you
can change this behavior and provide your own serialization logic for some values.

 The @CustomSerializer annotation takes a reference to a custom serializer class
as an argument. The serializer class should implement the ValueSerializer
interface:

interface ValueSerializer<T> {
fun toJsonValue(value: T): Any?
fun fromJsonValue(jsonValue: Any?): T

}

Suppose you need to support serialization of dates, and you’ve created your own
DateSerializer class for that, implementing the ValueSerializer<Date> inter-
face. (This class is provided as an example in the JKid source code: http://mng.bz/
73a7). Here’s how you apply it to the Person class:

data class Person(
val name: String,
@CustomSerializer(DateSerializer::class) val birthDate: Date

)

Now let’s see how the @CustomSerializer annotation is declared. The Value-
Serializer class is generic and defines a type parameter, so you need to provide a
type argument value whenever you refer to the type. Because you know nothing about
the types of properties with which this annotation will be used, you can use a star projec-
tion (discussed in section 9.3.6) as the argument:

annotation class CustomSerializer(
val serializerClass: KClass<out ValueSerializer<*>>

)

Figure 10.5 examines the type of the serializerClass parameter and explains its
different parts. You need to ensure that the annotation can only refer to classes that

KClass<out Any>

KClass<CompanyImpl>

Figure 10.4 The type of the annotation argument
CompanyImpl::class (KClass<CompanyImpl>) is a subtype
of the annotation parameter type (KClass<out Any>).
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://mng.bz/73a7
http://mng.bz/73a7

264 CHAPTER 10 Annotations and reflection
implement the ValueSerializer interface. For instance, writing @Custom-
Serializer(Date::class) should be prohibited, because Date doesn’t imple-
ment the ValueSerializer interface.

Tricky, isn’t it? The good news is that you can apply the same pattern every time you
need to use a class as an annotation argument. You can write KClass<out Your-
ClassName>, and if YourClassName has its own type arguments, replace them with *.

 You’ve now seen all the important aspects of declaring and applying annotations in
Kotlin. The next step is to find out how to access the data stored in the annotations.
For this, you need to use reflection.

10.2 Reflection: introspecting Kotlin objects at runtime
Reflection is, simply put, a way to access properties and methods of objects dynamically
at runtime, without knowing in advance what those properties are. Normally, when
you access a method or a property of an object, the source code of your program ref-
erences a specific declaration, and the compiler statically resolves the reference and
ensures that the declaration exists. But sometimes you need to write code that can
work with objects of any type, or where the names of methods and properties to be
accessed are only known at runtime. The JSON serialization library is a great example
of such code: it needs to be able to serialize any object to JSON, so it can’t reference
specific classes and properties. This is where reflection comes into play.

 When working with reflection in Kotlin, you deal with two different reflection APIs.
The first is the standard Java reflection, defined in the java.lang.reflect package.
Because Kotlin classes are compiled to regular Java bytecode, the Java reflection API
supports them perfectly well. In particular, this means Java libraries that use the reflec-
tion API are fully compatible with Kotlin code.

 The second is the Kotlin reflection API, defined in the kotlin.reflect package.
It gives you access to concepts that don’t exist in the Java world, such as properties and
nullable types. But at this time it doesn’t provide a comprehensive replacement for
the Java reflection API, and, as you’ll see later, there are cases where you need to fall
back to Java reflection. An important note is that the Kotlin reflection API isn’t
restricted to Kotlin classes: you can use the same API to access classes written in any
JVM language.

Accepts DateSerializer::class
as a valid argument, but rejects Date::class

Accepts any class implementing
ValueSerializer, not only
 ValueSerializer::class

Allows ValueSerializer
to serialize any values

KClass<out ValueSerializer<*>>
Figure 10.5 The type of the
serializerClass annotation
parameter. Only class references to
classes that extend
ValueSerializer will be valid
annotation arguments.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

265Reflection: introspecting Kotlin objects at runtime
NOTE To reduce the runtime library size on platforms where it matters, such
as Android, the Kotlin reflection API is packaged into a separate .jar file, kot-
lin-reflect.jar, which isn’t added to the dependencies of new projects by
default. If you’re using the Kotlin reflection API, you need to make sure the
library is added as a dependency. IntelliJ IDEA can detect the missing depen-
dency and assist you with adding it. The Maven group/artifact ID for the
library is org.jetbrains.kotlin:kotlin-reflect.

In this section, you’ll see how JKid uses the reflection API. We’ll walk you through the
serialization part first, because it’s more straightforward and easier for us to explain,
and then proceed to JSON parsing and deserialization. But first let’s take a close look
at the contents of the reflection API.

10.2.1 The Kotlin reflection API: KClass, KCallable, KFunction, and KProperty

The main entry point of the Kotlin reflection API is KClass, which represents a class.
KClass is the counterpart of java.lang.Class, and you can use it to enumerate
and access all the declarations contained in the class, its superclasses, and so on. You
get an instance of KClass by writing MyClass::class. To get the class of an object
at runtime, first you obtain its Java class using the javaClass property, which is a
direct equivalent to Java’s java.lang.Object.getClass(). Then you access the
.kotlin extension property to move from Java to Kotlin reflection API:

class Person(val name: String, val age: Int)

>>> val person = Person("Alice", 29)
>>> val kClass = person.javaClass.kotlin
>>> println(kClass.simpleName)
Person
>>> kClass.memberProperties.forEach { println(it.name) }
age
name

This simple example prints the name of the class and the names of its properties and
uses .memberProperties to collect all non-extension properties defined in the class,
as well as in all of its superclasses.

 If you browse the declaration of KClass, you’ll see that it contains a bunch of use-
ful methods for accessing the contents of the class:

interface KClass<T : Any> {
val simpleName: String?
val qualifiedName: String?
val members: Collection<KCallable<*>>
val constructors: Collection<KFunction<T>>
val nestedClasses: Collection<KClass<*>>
...

}

Many other useful features of KClass, including memberProperties used in the pre-
vious example, are declared as extensions. You can see the full list of methods on

Returns an instance
of KClass<Person>
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

266 CHAPTER 10 Annotations and reflection
KClass (including extensions) in the standard library reference (http://mng.bz/
em4i).

 You may have noticed that the list of all members of a class is a collection of
KCallable instances. KCallable is a superinterface for functions and properties. It
declares the call method, which allows you to call the corresponding function or the
getter of the property:

interface KCallable<out R> {
fun call(vararg args: Any?): R
...

}

You provide the function arguments in a vararg list. The following code demon-
strates how you can use call to call a function through reflection:

fun foo(x: Int) = println(x)
>>> val kFunction = ::foo
>>> kFunction.call(42)
42

You saw the ::foo syntax in section 5.1.5, and now you can see that the value of this
expression is an instance of the KFunction class from the reflection API. To call the
referenced function, you use the KCallable.call method. In this case, you need to
provide a single argument, 42. If you try to call the function with an incorrect number
of arguments, such as kFunction.call(), it will throw a runtime exception: “Illegal-
ArgumentException: Callable expects 1 arguments, but 0 were provided.”

 In this case, however, you can use a more specific method to call the function. The
type of the ::foo expression is KFunction1<Int, Unit>, which contains informa-
tion about parameter and return types. The 1 denotes that this function takes one
parameter. To call the function through this interface, you use the invoke method. It
accepts a fixed number of arguments (1 in this case), and their types correspond to
the type parameters of the KFunction1 interface. You can also call kFunction
directly:1

import kotlin.reflect.KFunction2

fun sum(x: Int, y: Int) = x + y
>>> val kFunction: KFunction2<Int, Int, Int> = ::sum
>>> println(kFunction.invoke(1, 2) + kFunction(3, 4))
10
>>> kFunction(1)
ERROR: No value passed for parameter p2

Now you can’t call the invoke method on kFunction with an incorrect number of
arguments: it won’t compile. Therefore, if you have a KFunction of a specific type,
with known parameters and return type, it’s preferable to use its invoke method. The

1 Section 11.3 will explain the details of why it’s possible to call kFunction without an explicit invoke.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://mng.bz/em4i
http://mng.bz/em4i

267Reflection: introspecting Kotlin objects at runtime
call method is a generic approach that works for all types of functions but doesn’t
provide type safety.

You can invoke the call method on a KProperty instance as well, and it will call the
getter of the property. But the property interface gives you a better way to obtain the
property value: the get method.

 To access the get method, you need to use the correct interface for the property,
depending on how it’s declared. Top-level properties are represented by instances of
the KProperty0 interface, which has a no-argument get method:

var counter = 0
>>> val kProperty = ::counter
>>> kProperty.setter.call(21)
>>> println(kProperty.get())
21

A member property is represented by an instance of KProperty1, which has a one-argu-
ment get method. To access its value, you must provide the object instance for which
you need the value. The following example stores a reference to the property in a
memberProperty variable; then you call memberProperty.get(person) to obtain
the value of this property for the specific person instance. So if a memberProperty
refers to the age property of the Person class, memberProperty.get(person) is a
way to dynamically get the value of person.age:

class Person(val name: String, val age: Int)

>>> val person = Person("Alice", 29)
>>> val memberProperty = Person::age
>>> println(memberProperty.get(person))
29

Note that KProperty1 is a generic class. The memberProperty variable has the type
KProperty<Person, Int>, where the first type parameter denotes the type of the
receiver and the second type parameter stands for the property type. Thus you can

How and where are KFunctionN interfaces defined?
Types such as KFunction1 represent functions with different numbers of parame-
ters. Each type extends KFunction and adds one additional member invoke with
the appropriate number of parameters. For example, KFunction2 declares oper-
ator fun invoke(p1: P1, p2: P2): R, where P1 and P2 represent the func-
tion parameter types and R represents the return type.

These function types are synthetic compiler-generated types, and you won’t find their
declarations in the kotlin.reflect package. That means you can use an inter-
face for a function with any number of parameters. The synthetic-types approach
reduces the size of kotlin-runtime.jar and avoids artificial restrictions on the possible
number of function-type parameters.

Calls a setter through reflection,
passing 21 as an argument

Obtains a property
value by calling “get”
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

268 CHAPTER 10 Annotations and reflection
call its get method only with a receiver of the right type; the call member-
Property.get("Alice") won’t compile.

 Also note that you can only use reflection to access properties defined at the top
level or in a class, but not local variables of a function. If you define a local variable x
and try to get a reference to it using ::x, you’ll get a compilation error saying that
“References to variables aren’t supported yet”.

 Figure 10.6 shows a hierarchy of interfaces that you can use to access source code
elements at runtime. Because all declarations can be annotated, the interfaces that rep-
resent declaration at runtime, such as KClass, KFunction, and KParameter, all
extend KAnnotatedElement. KClass is used to represent both classes and objects.
KProperty can represent any property, whereas its subclass, KMutableProperty, rep-
resents a mutable property, which you declare with var. You can use the special inter-
faces Getter and Setter declared in Property and KMutableProperty to work
with property accessors as functions—for example, if you need to retrieve their anno-
tations. Both interfaces for accessors extend KFunction. For simplicity, we’ve omitted
the specific interfaces for properties like KProperty0 in the figure.

Now that you’re acquainted with the basics of the Kotlin reflection API, let’s investi-
gate how the JKid library is implemented.

10.2.2 Implementing object serialization using reflection

First, let’s recall the declaration of the serialization function in JKid:

fun serialize(obj: Any): String

This function takes an object and returns its JSON representation as a string. It’ll build
up the resulting JSON in a StringBuilder instance. As it serializes object properties
and their values, it’ll append them to this StringBuilder object. To make the append

KAnnotatedElement

KParameterKCallableKClass

KPropertyKFunction

KMutableProperty

KFunction0

KFunction1

KFunction2

...

KProperty.Getter

KMutableProperty.Setter
Figure 10.6 Hierarchy of interfaces
in the Kotlin reflection API
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

269Reflection: introspecting Kotlin objects at runtime

Gets t
for t

prope
calls more concise, let’s put the implementation in an extension function to String-
Builder. That way, you can conveniently call the append method without a qualifier:

private fun StringBuilder.serializeObject(x: Any) {
append(...)

}

Converting a function parameter into an extension function receiver is a common
pattern in Kotlin code, and we’ll discuss it in detail in section 11.2.1. Note that seri-
alizeObject doesn’t extend the StringBuilder API. It performs operations that
make no sense outside of this particular context, so it’s marked private to ensure
that it can’t be used elsewhere. It’s declared as an extension to emphasize a particular
object as primary for this code block and to make it easier to work with that object.

 Consequently, the serialize function delegates all the work to serialize-
Object:

fun serialize(obj: Any): String = buildString { serializeObject(obj) }

As you saw in section 5.5.2, buildString creates a StringBuilder and lets you fill
it with content in a lambda. In this case, the content is provided by the call to
serializeObject(obj).

 Now let’s discuss the behavior of the serialization function. By default, it will serial-
ize all properties of the object. Primitive types and strings will be serialized as JSON
number, boolean, and string values, as appropriate. Collections will be serialized as
JSON arrays. Properties of other types will be serialized as nested objects. As we dis-
cussed in the previous section, this behavior can be customized through annotations.

 Let’s look at the implementation of serializeObject, where you can observe
the reflection API in a real scenario.

private fun StringBuilder.serializeObject(obj: Any) {
val kClass = obj.javaClass.kotlin
val properties = kClass.memberProperties

properties.joinToStringBuilder(
this, prefix = "{", postfix = "}") { prop ->

serializeString(prop.name)
append(": ")
serializePropertyValue(prop.get(obj))

}
}

The implementation of this function should be clear: you serialize each property of
the class, one after another. The resulting JSON will look like this: { prop1:

value1, prop2: value2 }. The joinToStringBuilder function ensures that
properties are separated with commas. The serializeString function escapes spe-
cial characters as required by the JSON format. The serializePropertyValue

Listing 10.1 Serializing an object

he KClass
he object Gets all properties

of the class

Gets the
rty name

Gets the
property value
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

270 CHAPTER 10 Annotations and reflection
function checks whether a value is a primitive value, string, collection, or nested
object, and serializes its content accordingly.

 In the previous section, we discussed a way to obtain the value of the KProperty
instance: the get method. In that case, you worked with the member reference Per-
son::age of the type KProperty1<Person, Int>, which lets the compiler know the
exact types of the receiver and the property value. In this example, however, the exact
types are unknown, because you enumerate all the properties of an object’s class.
Therefore, the prop variable has the type KProperty1<Any, *>, and
prop.get(obj) returns a value of Any type. You don’t get any compile-time checks
for the receiver type, but because you’re passing the same object from which you
obtained the list of properties, the receiver type will be correct. Next, let’s see how the
annotations that tune up serialization are implemented.

10.2.3 Customizing serialization with annotations

Earlier in this chapter, you saw the definitions of annotations that let you customize
the process of JSON serialization. In particular, we discussed the @JsonExclude,
@JsonName, and @CustomSerializer annotations. Now it’s time to see how these
annotations can be handled by the serializeObject function.

 We’ll start with @JsonExclude. This annotation allows you to exclude some prop-
erties from serialization. Let’s investigate how you should change the implementation
of the serializeObject function to support that.

 Recall that to get all member properties of the class, you use the extension prop-
erty memberProperties on the KClass instance. But now the task gets more compli-
cated: properties annotated with @JsonExclude need to be filtered out. Let’s see
how this is done.

 The KAnnotatedElement interface defines the property annotations, a collec-
tion of instances of all annotations (with runtime retention) applied to the element in
the source code. Because KProperty extends KAnnotatedElement, you can access
all annotations for a property by saying property.annotations.

 But here the filtering doesn’t use all annotations; it needs to find a specific one.
The helper function findAnnotation does the job:

inline fun <reified T> KAnnotatedElement.findAnnotation(): T?
= annotations.filterIsInstance<T>().firstOrNull()

The findAnnotation function returns an annotation of a type specified as an argu-
ment if such an annotation is present. It uses the pattern discussed in section 9.2.3 and
makes the type parameter reified in order to pass the annotation class as the type
argument.

 Now you can use findAnnotation together with the filter standard library
function to filter out the properties annotated with @JsonExclude:

val properties = kClass.memberProperties
.filter { it.findAnnotation<JsonExclude>() == null }
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

271Reflection: introspecting Kotlin objects at runtime

sts
The next annotation is @JsonName. As a reminder, we’ll repeat its declaration and an
example of its usage:

annotation class JsonName(val name: String)

data class Person(
@JsonName("alias") val firstName: String,
val age: Int

)

In this case, you’re interested not only in its presence but also in its argument: the
name that should be used for the annotated property in JSON. Fortunately, the find-
Annotation function helps here:

val jsonNameAnn = prop.findAnnotation<JsonName>()
val propName = jsonNameAnn?.name ?: prop.name

If a property isn’t annotated with @JsonName, then jsonNameAnn is null, and you
still use prop.name as the name for the property in JSON. If the property is anno-
tated, you use the specified name instead.

 Let’s look at the serialization of an instance of the Person class declared earlier.
During the serialization of the firstName property, jsonNameAnn contains the corre-
sponding instance of the annotation class JsonName. Thus jsonNameAnn?.name
returns the non-null value "alias", which is used as a key in JSON. When the age prop-
erty is serialized, the annotation isn’t found, so the property name age is used as a key.

 Let’s combine the changes discussed so far and look at the resulting implementa-
tion of the serialization logic.

private fun StringBuilder.serializeObject(obj: Any) {
obj.javaClass.kotlin.memberProperties

.filter { it.findAnnotation<JsonExclude>() == null }

.joinToStringBuilder(this, prefix = "{", postfix = "}") {
serializeProperty(it, obj)

}
}

Now the properties annotated with @JsonExclude are filtered out. We’ve also
extracted the logic responsible for property serialization into a separate serialize-
Property function.

private fun StringBuilder.serializeProperty(
prop: KProperty1<Any, *>, obj: Any

) {
val jsonNameAnn = prop.findAnnotation<JsonName>()

Listing 10.2 Serializing an object with property filtering

Listing 10.3 Serializing a single property

Gets an instance of the
@JsonName annotation if it exi

Gets its “name” argument or
uses “prop.name” as a fallback
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

272 CHAPTER 10 Annotations and reflection
val propName = jsonNameAnn?.name ?: prop.name
serializeString(propName)
append(": ")

serializePropertyValue(prop.get(obj))
}

The property name is processed according to the @JsonName annotation discussed
earlier.

 Next, let’s implement the remaining annotation, @CustomSerializer. The
implementation is based on the function getSerializer, which returns the Value-
Serializer instance registered via the @CustomSerializer annotation. For exam-
ple, if you declare the Person class as shown next and call getSerializer() when
serializing the birthDate property, it will return an instance of DateSerializer:

data class Person(
val name: String,
@CustomSerializer(DateSerializer::class) val birthDate: Date

)

Here’s a reminder of how the @CustomSerializer annotation is declared, to help
you better understand the implementation of getSerializer:

annotation class CustomSerializer(
val serializerClass: KClass<out ValueSerializer<*>>

)

Here’s how the getSerializer function is implemented.

fun KProperty<*>.getSerializer(): ValueSerializer<Any?>? {
val customSerializerAnn = findAnnotation<CustomSerializer>() ?: return null
val serializerClass = customSerializerAnn.serializerClass

val valueSerializer = serializerClass.objectInstance
?: serializerClass.createInstance()

@Suppress("UNCHECKED_CAST")
return valueSerializer as ValueSerializer<Any?>

}

It’s an extension function to KProperty, because the property is the primary object
handled by the method. It calls the findAnnotation function to get an instance of
the @CustomSerializer annotation if it exists. Its argument, serializerClass,
specifies the class for which you need to obtain an instance.

 The most interesting part here is the way you handle both classes and objects (Kot-
lin’s singletons) as values of the @CustomSerializer annotation. They’re both rep-
resented by the KClass class. The difference is that objects have a non-null value of
the objectInstance property, which can be used to access the singleton instance
created for the object. For example, DateSerializer is declared as an object, so

Listing 10.4 Retrieving the value serializer for a property
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

273Reflection: introspecting Kotlin objects at runtime
its objectInstance property stores the singleton DateSerializer instance. You’ll
use that instance to serialize all objects, and createInstance won’t be called.

 If the KClass represents a regular class, you create a new instance by calling
createInstance. This function is similar to java.lang.Class.newInstance.

 Finally, you can use getSerializer in the implementation of serialize-
Property. Here’s the final version of the function.

private fun StringBuilder.serializeProperty(
prop: KProperty1<Any, *>, obj: Any

) {
val name = prop.findAnnotation<JsonName>()?.name ?: prop.name
serializeString(name)
append(": ")

val value = prop.get(obj)
val jsonValue =

prop.getSerializer()?.toJsonValue(value)
?: value

serializePropertyValue(jsonValue)
}

serializeProperty uses the serializer to convert the property value to a JSON-com-
patible format by calling toJsonValue. If the property doesn’t have a custom serial-
izer, it uses the property value.

 Now that you’ve seen the implementation of the JSON serialization part of the
library, we’ll move to parsing and deserialization. The deserialization part requires
quite a bit more code, so we won’t examine all of it, but we’ll look at the structure of
the implementation and explain how reflection is used to deserialize objects.

10.2.4 JSON parsing and object deserialization

Let’s start with the second part of the story: implementing the deserialization logic.
First, recall that the API, like that used for serialization, consists of a single function:

inline fun <reified T: Any> deserialize(json: String): T

Here’s an example of its use:

data class Author(val name: String)
data class Book(val title: String, val author: Author)

>>> val json = """{"title": "Catch-22", "author": {"name": "J. Heller"}}"""
>>> val book = deserialize<Book>(json)
>>> println(book)
Book(title=Catch-22, author=Author(name=J. Heller))

You pass the type of object to be deserialized as a reified type parameter to the dese-
rialize function and get back a new object instance.

Listing 10.5 Serializing a property, with custom serializer support

Uses a custom serializer
for the property if it exists

Otherwise uses the
property value as before
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

274 CHAPTER 10 Annotations and reflection
 Deserializing JSON is a more difficult task than serializing, because it involves pars-
ing the JSON string input in addition to using reflection to access object internals. The
JSON deserializer in JKid is implemented in a fairly conventional way and consists of
three main stages: a lexical analyzer, usually referred to as a lexer; a syntax analyzer, or
parser; and the deserialization component itself.

 The lexical analysis splits an input string consisting of characters into a list of tokens.
There are two kinds of tokens: character tokens, which represent characters with special
meanings in the JSON syntax (comma, colon, braces, and brackets); and value tokens,
which correspond to string, number, Boolean, and null constants. A left brace ({), a
string value ("Catch-22"), and an integer value (42) are examples of different tokens.

 The parser is generally responsible for converting a plain list of tokens into a struc-
tured representation. Its task in JKid is to understand the higher-level structure of
JSON and to convert individual tokens into semantic elements supported in JSON: key-
value pairs, objects, and arrays.

 The JsonObject interface keeps track of the object or array currently being dese-
rialized. The parser calls the corresponding methods when it discovers new properties
of the current object (simple values, composite properties, or arrays).

interface JsonObject {
fun setSimpleProperty(propertyName: String, value: Any?)

fun createObject(propertyName: String): JsonObject

fun createArray(propertyName: String): JsonObject
}

The propertyName parameter in these methods receives the JSON key. Thus, when
the parser encounters an author property with an object as its value, the create-
Object("author") method is called. Simple value properties are reported as calls to
setSimpleProperty, with the actual token value passed as the value argument.
The JsonObject implementations are responsible for creating new objects for prop-
erties and storing references to them in the outer object.

 Figure 10.7 shows the input and output of each stage for lexical and syntactic anal-
yses when deserializing a sample string. Once again, the lexical analysis divides an
input string into a list of tokens; then the syntactic analysis (the parser) processes this
list of tokens and invokes an appropriate method of JsonObject on every new mean-
ingful element.

 The deserializer then provides an implementation for JsonObject that gradually
builds a new instance of the corresponding type. It needs to find the correspondence
between class properties and JSON keys (title, author, and name in figure 10.7) and
build nested object values (an instance of Author); only after that it can create a new
instance of the required class (Book).

Listing 10.6 JSON parser callback interface
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

275Reflection: introspecting Kotlin objects at runtime
Figure 10.7 JSON parsing: lexer, parser, and deserializer

The JKid library is intended to be used with data classes, and, as such, it passes all the
name-value pairs loaded from the JSON file as parameters to the constructor of the
class being deserialized. It doesn’t support setting properties on object instances after
they’ve been created. This means it needs to store the data somewhere while reading
it from JSON and before it can construct the object.

 The requirement to save the components before creating the object looks similar
to the traditional Builder pattern, with the difference that builders are generally tai-
lored to creating a specific kind of object, and the solution needs to be completely
generic. To avoid being boring, we use the term seed for the implementation. In JSON,
you need to build different types of composite structures: objects, collections, and
maps. The classes ObjectSeed, ObjectListSeed, and ValueListSeed are respon-
sible for building objects and lists of composite objects or simple values appropriately.
The construction of maps is left as an exercise for you.

 The basic Seed interface extends JsonObject and provides an additional spawn
method to get the resulting instance after the building process is finished. It also
declares the createCompositeProperty method that’s used to create both nested
objects and nested lists (they use the same underlying logic to create instances
through seeds).

interface Seed: JsonObject {
fun spawn(): Any?

fun createCompositeProperty(
propertyName: String,
isList: Boolean

): JsonObject

override fun createObject(propertyName: String) =
createCompositeProperty(propertyName, false)

Listing 10.7 Interface for creating objects from JSON data

{"title": "Catch-22", "author": {"name": "J.Heller"}}

Lexer: divides JSON into tokens

{ "title" : "Catch-22" , "author" : { "name" : "J.Heller" } }

Deserializer: creates and returns an instance of required class

o1.setSimpleProperty("title", "Catch-22")

val o2 = o1.createObject("author")

o2.setSimpleProperty("name", "J.Heller")

Book("Catch-22", Author("J. Heller"))

Parser: handles different semantic elements
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

276 CHAPTER 10 Annotations and reflection

rs
override fun createArray(propertyName: String) =
createCompositeProperty(propertyName, true)

// ...
}

You may think of spawn as an analogue of build—a method that returns the result
value. It returns the constructed object for ObjectSeed and the resulting list for
ObjectListSeed or ValueListSeed. We won’t discuss in detail how lists are deseri-
alized. We’ll focus our attention on creating objects, which is more complicated and
serves to demonstrate the general idea.

 But before that, let’s study the main deserialize function that does all the work
of deserializing a value.

fun <T: Any> deserialize(json: Reader, targetClass: KClass<T>): T {
val seed = ObjectSeed(targetClass, ClassInfoCache())
Parser(json, seed).parse()
return seed.spawn()

}

To start the parsing, you create an ObjectSeed to store the properties of the object
being deserialized, and then you invoke the parser and pass the input stream reader
json to it. Once you reach the end of the input data, you call the spawn function to
build the resulting object.

 Now let’s focus on the implementation of ObjectSeed, which stores the state of
an object being constructed. ObjectSeed takes a reference to the resulting class and
a classInfoCache object containing cached information about the properties of
the class. This cached information will be used later to create instances of that class.
ClassInfoCache and ClassInfo are helper classes that we’ll discuss in the next
section.

class ObjectSeed<out T: Any>(
targetClass: KClass<T>,
val classInfoCache: ClassInfoCache

) : Seed {

private val classInfo: ClassInfo<T> =
classInfoCache[targetClass]

private val valueArguments = mutableMapOf<KParameter, Any?>()
private val seedArguments = mutableMapOf<KParameter, Seed>()

private val arguments: Map<KParameter, Any?>
get() = valueArguments +

seedArguments.mapValues { it.value.spawn() }

Listing 10.8 The top-level deserialization function

Listing 10.9 Deserializing an object

Caches the information needed to
create an instance of targetClass

Builds a map from
constructor paramete
to their values
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

277Reflection: introspecting Kotlin objects at runtime

Recor
th

para

C
acc

para

e
override fun setSimpleProperty(propertyName: String, value: Any?) {
val param = classInfo.getConstructorParameter(propertyName)
valueArguments[param] =

classInfo.deserializeConstructorArgument(param, value)
}

override fun createCompositeProperty(
propertyName: String, isList: Boolean

): Seed {
val param = classInfo.getConstructorParameter(propertyName)
val deserializeAs =

classInfo.getDeserializeClass(propertyName)
val seed = createSeedForType(

deserializeAs ?: param.type.javaType, isList)
return seed.apply { seedArguments[param] = this }

}

override fun spawn(): T =
classInfo.createInstance(arguments)

}

ObjectSeed builds a map from constructor parameters to their values. Two mutable
maps are used for that: valueArguments for simple value properties and seed-
Arguments for composite properties. While the result is being built, new arguments
are added to the valueArguments map by calling setSimpleProperty and to the
seedArguments map by calling createCompositeProperty. New composite seeds
are added in an empty state and are then filled with data coming from the input
stream. Finally, the spawn method builds all nested seeds recursively by calling spawn
on each.

 Note how calling arguments in the body of the spawn method launches the
recursive building of composite (seed) arguments: the custom getter of arguments
calls the spawn methods on each of the seedArguments. The createSeedForType
function analyzes the type of the parameter and creates either ObjectSeed,
ObjectListSeed, or ValueListSeed, depending on whether the parameter is
some kind of collection. We’ll leave the investigation of how it’s implemented to you.
Next, let’s see how the ClassInfo.createInstance function creates an instance of
targetClass.

10.2.5 Final deserialization step: callBy() and creating
objects using reflection

The last part you need to understand is the ClassInfo class that builds the resulting
instance and caches information about constructor parameters. It is used in Object-
Seed. But before we dive into the implementation details, let’s look at the APIs that
you use to create objects through reflection.

 You’ve already seen the KCallable.call method, which calls a function or a con-
structor by taking a list of arguments. This method works great in many cases, but it
has a restriction: it doesn’t support default parameter values. In this case, if a user is

ds a value for
e constructor
meter, if it’s a

simple value Loads the value of the
DeserializeInterface

annotation for the
property, if any

Creates an
ObjectSeed or
ollectionSeed
ording to the
meter type…

…and records it in th
seedArguments map

Creates the resulting
instance of targetClass,
passing an arguments map
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

278 CHAPTER 10 Annotations and reflection
trying to deserialize an object with a constructor that has default parameter values,
you definitely don’t want to require those arguments to be specified in the JSON.
Therefore, you need to use another method, which does support default parameter
values: KCallable.callBy.

interface KCallable<out R> {
fun callBy(args: Map<KParameter, Any?>): R
...

}

The method takes a map of parameters to their corresponding values that will be
passed as arguments. If a parameter is missing from the map, its default value will be
used if possible. It’s also nice that you don’t have to put the parameters in the correct
order; you can read the name-value pairs from JSON, find the parameter correspond-
ing to each argument name, and put its value in the map.

 One thing you do need to take care of is getting the types right. The type of the
value in the args map needs to match the constructor parameter type; otherwise,
you’ll get an IllegalArgumentException. This is particularly important for
numeric types: you need to know whether the parameter takes an Int, a Long, a Dou-
ble, or another primitive type, and to convert the numeric value coming from JSON
to the correct type. To do that, you use the KParameter.type property.

 The type conversion works through the same ValueSerializer interface used
for custom serialization. If a property doesn’t have an @CustomSerializer annota-
tion, you retrieve a standard implementation based on its type.

fun serializerForType(type: Type): ValueSerializer<out Any?>? =
when(type) {

Byte::class.java -> ByteSerializer
Int::class.java -> IntSerializer
Boolean::class.java -> BooleanSerializer
// ...
else -> null

}

The corresponding ValueSerializer implementations perform the necessary type
checking or conversion.

object BooleanSerializer : ValueSerializer<Boolean> {
override fun fromJsonValue(jsonValue: Any?): Boolean {

if (jsonValue !is Boolean) throw JKidException("Boolean expected")
return jsonValue

}

override fun toJsonValue(value: Boolean) = value
}

Listing 10.10 Getting a serializer based on value type

Listing 10.11 Serializer for Boolean values
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

279Reflection: introspecting Kotlin objects at runtime
The callBy method gives you a way to invoke the primary constructor of an object,
passing a map of parameters and corresponding values. The ValueSerializer
mechanism ensures that the values in the map have the right types. Now let’s see how
you invoke the API.

 The ClassInfoCache class is intended to reduce the overhead of reflection oper-
ations. Recall that the annotations used to control the serialization and deserialization
process (@JsonName and @CustomSerializer) are applied to properties, rather
than parameters. When you’re deserializing an object, you’re dealing with constructor
parameters, not properties; and in order to retrieve the annotations, you need to find
the corresponding property. Performing this search when reading every key-value pair
would be exceedingly slow, so you do this once per class and cache the information.
Here’s the entire implementation of ClassInfoCache.

class ClassInfoCache {
private val cacheData = mutableMapOf<KClass<*>, ClassInfo<*>>()

@Suppress("UNCHECKED_CAST")
operator fun <T : Any> get(cls: KClass<T>): ClassInfo<T> =

cacheData.getOrPut(cls) { ClassInfo(cls) } as ClassInfo<T>
}

You use the same pattern we discussed in section 9.3.6: you remove the type informa-
tion when you store the values in the map, but the implementation of the get method
guarantees that the returned ClassInfo<T> has the right type argument. Note the
use of getOrPut: if the cacheData map already contains an entry for cls, you
return that entry. Otherwise, you call the passed lambda, which calculates the value
for the key, stores the value in the map, and returns it.

 The ClassInfo class is responsible for creating a new instance of the target class
and caching the necessary information. To simplify the code, we’ve omitted some
functions and trivial initializers. Also, you may notice that instead of !!, the produc-
tion code throws an exception with an informative message (which is a good pattern
for your code as well).

class ClassInfo<T : Any>(cls: KClass<T>) {
private val constructor = cls.primaryConstructor!!

private val jsonNameToParamMap = hashMapOf<String, KParameter>()
private val paramToSerializerMap =

hashMapOf<KParameter, ValueSerializer<out Any?>>()
private val jsonNameToDeserializeClassMap =

hashMapOf<String, Class<out Any>?>()

init {
constructor.parameters.forEach { cacheDataForParameter(cls, it) }

}

Listing 10.12 Storage of cached reflection data

Listing 10.13 Cache of constructor parameter and annotation data
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

280 CHAPTER 10 Annotations and reflection
fun getConstructorParameter(propertyName: String): KParameter =
jsonNameToParam[propertyName]!!

fun deserializeConstructorArgument(
param: KParameter, value: Any?): Any? {

val serializer = paramToSerializer[param]
if (serializer != null) return serializer.fromJsonValue(value)

validateArgumentType(param, value)
return value

}

fun createInstance(arguments: Map<KParameter, Any?>): T {
ensureAllParametersPresent(arguments)
return constructor.callBy(arguments)

}

// ...
}

On initialization, this code locates the property corresponding to each constructor
parameter and retrieves its annotations. It stores the data in three maps: jsonName-
ToParam specifies the parameter corresponding to each key in the JSON file, param-
ToSerializer stores the serializer for each parameter, and jsonNameTo

DeserializeClass stores the class specified as the @DeserializeInterface
argument, if any. ClassInfo can then provide a constructor parameter by the prop-
erty name, and the calling code uses the parameter as a key for the parameter-to-
argument map.

 The cacheDataForParameter, validateArgumentType, and ensureAll-
ParametersPresent functions are private functions in this class. Following is the
implementation of ensureAllParametersPresent; you can browse the code of the
others yourself.

private fun ensureAllParametersPresent(arguments: Map<KParameter, Any?>) {
for (param in constructor.parameters) {

if (arguments[param] == null &&
!param.isOptional && !param.type.isMarkedNullable) {

throw JKidException("Missing value for parameter ${param.name}")
}

}
}

This function checks that you provide all required values for parameters. Note how
the reflection API helps you here. If a parameter has a default value, then
param.isOptional is true and you can omit an argument for it; the default one will
be used instead. If the parameter type is nullable (type.isMarkedNullable tells
you that), null will be used as the default parameter value. For all other parameters,
you must provide the corresponding arguments; otherwise, an exception will be

Listing 10.14 Validating that required parameters are provided
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

281Summary
thrown. The reflection cache ensures that the search for annotations that customize
the deserialization process is performed only once, and not for every property you see
in the JSON data.

 This completes our discussion of the JKid library implementation. Over the course
of this chapter, we’ve explored the implementation of a JSON serialization and deseri-
alization library, implemented on top of the reflection APIs, and using annotations to
customize its behavior. Of course, all the techniques and approaches demonstrated in
this chapter can be used for your own frameworks as well.

10.3 Summary
 The syntax for applying annotations in Kotlin is almost the same as in Java.
 Kotlin lets you apply annotations to a broader range of targets than Java, includ-

ing files and expressions.
 An annotation argument can be a primitive value, a string, an enum, a class ref-

erence, an instance of another annotation class, or an array thereof.
 Specifying the use-site target for an annotation, as in @get:Rule, allows you to

choose how the annotation is applied if a single Kotlin declaration produces
multiple bytecode elements.

 You declare an annotation class as a class with a primary constructor where all
parameters are marked as val properties and without a body.

 Meta-annotations can be used to specify the target, retention mode, and other
attributes of annotations.

 The reflection API lets you enumerate and access the methods and properties of
an object dynamically at runtime. It has interfaces representing different kinds
of declarations, such as classes (KClass), functions (KFunction), and so on.

 To obtain a KClass instance, you can use ClassName::class if the class is
statically known and obj.javaClass.kotlin to get the class from an object
instance.

 The KFunction and KProperty interfaces both extend KCallable, which
provides the generic call method.

 The KCallable.callBy method can be used to invoke methods with default
parameter values.

 KFunction0, KFunction1, and so on are functions with different numbers of
parameters that can be called using the invoke method.

 KProperty0 and KProperty1 are properties with different numbers of receiv-
ers that support the get method for retrieving the value. KMutableProperty0
and KMutableProperty1 extend those interfaces to support changing prop-
erty values through the set method.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

DSL construction
In this chapter, we’ll discuss how you can design expressive and idiomatic APIs for
your Kotlin classes through the use of domain-specific languages (DSLs). We’ll explore
the differences between traditional and DSL-style APIs, and you’ll see how DSL-style
APIs can be applied to a wide variety of practical problems in areas as diverse as
database access, HTML generation, testing, writing build scripts, defining Android
UI layouts, and many others.

 Kotlin DSL design relies on many language features, two of which we haven’t yet
fully explored. One of them you saw briefly in chapter 5: lambdas with receivers,
which let you create a DSL structure by changing the name-resolution rules in code
blocks. The other is new: the invoke convention, which enables more flexibility in
combining lambdas and property assignments in DSL code. We’ll study those fea-
tures in detail in this chapter.

This chapter covers
 Building domain-specific languages

 Using lambdas with receivers

 Applying the invoke convention

 Examples of existing Kotlin DSLs
282

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

283From APIs to DSLs
11.1 From APIs to DSLs
Before we dive into the discussion of DSLs, let’s get a better understanding of the
problem we’re trying to solve. Ultimately, the goal is to achieve the best possible code
readability and maintainability. To reach that goal, it’s not enough to focus on individ-
ual classes. Most of the code in a class interacts with other classes, so we need to look
at the interfaces through which these interactions happen—in other words, the APIs
of the classes.

 It’s important to remember that the challenge of building good APIs isn’t reserved
to library authors; rather, it’s something every developer has to do. Just as a library
provides a programming interface for using it, every class in an application provides
possibilities for other classes to interact with it. Ensuring that those interactions are
easy to understand and can be expressed clearly is essential for keeping a project
maintainable.

 Over the course of this book, you’ve seen many examples of Kotlin features that
allow you to build clean APIs for classes. What do we mean when we say an API is clean?
Two things:

 It needs to be clear to readers what’s going on in the code. This can be achieved
with a good choice of names and concepts, which is important in any language.

 The code needs to look clean, with minimal ceremony and no unnecessary syn-
tax. Achieving this is the main focus of this chapter. A clean API can even be
indistinguishable from a built-in feature of a language.

Examples of Kotlin features that enable you to build clean APIs include extension func-
tions, infix calls, lambda syntax shortcuts, and operator overloading. Table 11.1 shows
how these features help reduce the amount of syntactic noise in the code.

Table 11.1 Kotlin support for clean syntax

Regular syntax Clean syntax Feature in use

StringUtil.capitalize(s) s.capitalize() Extension function

1.to("one") 1 to "one" Infix call

set.add(2) set += 2 Operator overloading

map.get("key") map["key"] Convention for the get
method

file.use({ f -> f.read() }) file.use { it.read() } Lambda outside of
parentheses

sb.append("yes")
sb.append("no")

with (sb) {
 append("yes")
 append("no")
}

Lambda with a receiver
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

284 CHAPTER 11 DSL construction
In this chapter, we’ll take a step beyond clean APIs and look at Kotlin’s support for
constructing DSLs. Kotlin’s DSLs build on the clean-syntax features and extend them
with the ability to create structure out of multiple method calls. As a result, DSLs can be
even more expressive and pleasant to work with than APIs constructed out of individ-
ual method calls.

 Just like other features of the language, Kotlin DSLs are fully statically typed. This
means all the advantages of static typing, such as compile-time error detection and
better IDE support, remain in effect when you use DSL patterns for your APIs.

 As a quick taste, here are a couple of examples that show what Kotlin DSLs can do.
This expression goes back in time and returns the previous day (all right, just the pre-
vious date):

val yesterday = 1.days.ago

and this function generates an HTML table:

fun createSimpleTable() = createHTML().
table {

tr {
td { +"cell" }

}
}

Over the course of the chapter, you’ll learn how these examples are constructed. But
before we begin a detailed discussion, let’s look at what DSLs are.

11.1.1 The concept of domain-specific languages

The general idea of a DSL has existed for almost as long as the idea of a programming
language. We make a distinction between a general-purpose programming language, with a
set of capabilities complete enough to solve essentially any problem that can be solved
with a computer; and a domain-specific language, which focuses on a specific task, or
domain, and forgoes the functionality that’s irrelevant for that domain.

 The most common DSLs that you’re no doubt familiar with are SQL and regular
expressions. They’re great for solving the specific tasks of manipulating databases and
text strings, respectively, but you can’t use them to develop an entire application. (At
least, we hope you don’t. The idea of an entire application built in the regular-
expression language makes us shudder.)

 Note how these languages can effectively accomplish their goal by reducing the set
of functionality they offer. When you need to execute an SQL statement, you don’t
start by declaring a class or a function. Instead, the first keyword in every SQL state-
ment indicates the type of operation you need to perform, and each type of operation
has its own distinct syntax and set of keywords specific to the task at hand. With the
regular-expression language, there’s even less syntax: the program directly describes
the text to be matched, using compact punctuation syntax to specify how the text can
vary. Through such a compact syntax, a DSL can express a domain-specific operation
much more concisely than an equivalent piece of code in a general-purpose language.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

285From APIs to DSLs
 Another important point is that DSLs tend to be declarative, as opposed to general-
purpose languages, most of which are imperative. Whereas an imperative language
describes the exact sequence of steps required to perform an operation, a declarative
language describes the desired result and leaves the execution details to the engine
that interprets it. This often makes the execution more efficient, because the neces-
sary optimizations are implemented only once in the execution engine; on the other
hand, an imperative approach requires every implementation of the operation to be
optimized independently.

 As a counterweight to all of those benefits, DSLs of this type have one disadvantage:
it can be difficult to combine them with a host application in a general-purpose lan-
guage. They have their own syntax that can’t be directly embedded into programs in a
different language. Therefore, to invoke a program written in a DSL, you need to
either store it in a separate file or embed it in a string literal. That makes it non-trivial
to validate the correct interaction of the DSL with the host language at compile time,
to debug the DSL program, and to provide IDE code assistance when writing it. Also,
the separate syntax requires separate learning and often makes code harder to read.

 To solve that issue while preserving most of the other benefits of DSLs, the concept
of internal DSLs has recently gained popularity. Let’s see what this is about.

11.1.2 Internal DSLs

As opposed to external DSLs, which have their own independent syntax, internal DSLs
are part of programs written in a general-purpose language, using exactly the same
syntax. In effect, an internal DSL isn’t a fully separate language, but rather a particular
way of using the main language while retaining the key advantages of DSLs with an
independent syntax.

 To compare the two approaches, let’s see how the same task can be accomplished
with an external and an internal DSL. Imagine that you have two database tables, Cus-
tomer and Country, and each Customer entry has a reference to the country the
customer lives in. The task is to query the database and find the country where the
majority of customers live. The external DSL you’re going to use is SQL; the internal
one is provided by the Exposed framework (https://github.com/JetBrains/Exposed),
which is a Kotlin framework for database access. Here’s how you do this with SQL:

SELECT Country.name, COUNT(Customer.id)
FROM Country
JOIN Customer

ON Country.id = Customer.country_id
GROUP BY Country.name
ORDER BY COUNT(Customer.id) DESC

LIMIT 1

Writing the code in SQL directly may not be convenient: you have to provide a means
for interaction between your main application language (Kotlin in this case) and the
query language. Usually, the best you can do is put the SQL into a string literal and
hope that your IDE will help you write and verify it.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/JetBrains/Exposed

286 CHAPTER 11 DSL construction
 As a comparison, here’s the same query built with Kotlin and Exposed:

(Country join Customer)
.slice(Country.name, Count(Customer.id))
.selectAll()
.groupBy(Country.name)
.orderBy(Count(Customer.id), isAsc = false)
.limit(1)

You can see the similarity between the two versions. In fact, executing the second ver-
sion generates and runs exactly the same SQL query as the one written manually. But
the second version is regular Kotlin code, and selectAll, groupBy, orderBy, and
others are regular Kotlin methods. Moreover, you don’t need to spend any effort on
converting data from SQL query result sets to Kotlin objects—the query-execution
results are delivered directly as native Kotlin objects. Thus we call this an internal DSL:
the code intended to accomplish a specific task (building SQL queries) is imple-
mented as a library in a general-purpose language (Kotlin).

11.1.3 Structure of DSLs

Generally speaking, there’s no well-defined boundary between a DSL and a regular
API; often the criterion is as subjective as “I know it’s a DSL when I see it.” DSLs often
rely on language features that are broadly used in other contexts too, such as infix
calls and operator overloading. But one trait comes up often in DSLs and usually
doesn’t exist in other APIs: structure, or grammar.

 A typical library consists of many methods, and the client uses the library by calling
the methods one by one. There’s no inherent structure in the sequence of calls, and
no context is maintained between one call and the next. Such an API is sometimes
called a command-query API. As a contrast, the method calls in a DSL exist in a larger
structure, defined by the grammar of the DSL. In a Kotlin DSL, structure is most com-
monly created through the nesting of lambdas or through chained method calls. You
can clearly see this in the previous SQL example: executing a query requires a combi-
nation of method calls describing the different aspects of the required result set, and
the combined query is much easier to read than a single method call taking all the
arguments you’re passing to the query.

 This grammar is what allows us to call an internal DSL a language. In a natural lan-
guage such as English, sentences are constructed out of words, and the rules of gram-
mar govern how those words can be combined with one another. Similarly, in a DSL, a
single operation can be composed out of multiple function calls, and the type checker
ensures that the calls are combined in a meaningful way. In effect, the function names
usually act as verbs (groupBy, orderBy), and their arguments fulfill the role of nouns
(Country.name).

 One benefit of the DSL structure is that it allows you to reuse the same context
between multiple function calls, rather than repeat it in every call. This is illustrated
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

287From APIs to DSLs
by the following example, showing the Kotlin DSL for describing dependencies in Gra-
dle build scripts (https://github.com/gradle/gradle-script-kotlin):

dependencies {
compile("junit:junit:4.11")
compile("com.google.inject:guice:4.1.0")

}

In contrast, here’s the same operation performed through a regular command-query
API. Note that there’s much more repetition in the code:

project.dependencies.add("compile", "junit:junit:4.11")
project.dependencies.add("compile", "com.google.inject:guice:4.1.0")

Chained method calls are another way to create structure in DSLs. For example,
they’re commonly used in test frameworks to split an assertion into multiple method
calls. Such assertions can be much easier to read, especially if you can apply the infix
call syntax. The following example comes from kotlintest (https://github.com/
kotlintest/kotlintest), a third-party test framework for Kotlin that we’ll discuss in more
detail in section 11.4.1:

str should startWith("kot")

Note how the same example expressed through regular JUnit APIs is noisier and not as
readable:

assertTrue(str.startsWith("kot"))

Now let’s look at an example of an internal DSL in more detail.

11.1.4 Building HTML with an internal DSL

One of the teasers at the beginning of this chapter was a DSL for building HTML
pages. In this section, we’ll discuss it in more detail. The API used here comes from
the kotlinx.html library (https://github.com/Kotlin/kotlinx.html). Here’s a small
snippet that creates a table with a single cell:

fun createSimpleTable() = createHTML().
table {

tr {
td { +"cell" }

}
}

It’s clear what HTML corresponds to the previous structure:

<table>
<tr>

<td>cell</td>
</tr>

</table>

Structure through
lambda nesting

Structure through
chained method calls
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/gradle/gradle-script-kotlin
https://github.com/kotlintest/kotlintest
https://github.com/kotlintest/kotlintest
https://github.com/Kotlin/kotlinx.html

288 CHAPTER 11 DSL construction
The createSimpleTable function returns a string containing this HTML fragment.
 Why would you want to build this HTML with Kotlin code, rather than write it as

text? First, the Kotlin version is type-safe: you can use the td tag only in tr; otherwise,
this code won’t compile. What’s more important is that it’s regular code, and you can
use any language construct in it. That means you can generate table cells dynamically
(for instance, corresponding to elements in a map) in the same place when you
define a table:

fun createAnotherTable() = createHTML().table {
val numbers = mapOf(1 to "one", 2 to "two")
for ((num, string) in numbers) {

tr {
td { +"$num" }
td { +string }

}
}

}

The generated HTML contains the desired data:

<table>
<tr>

<td>1</td>
<td>one</td>

</tr>
<tr>

<td>2</td>
<td>two</td>

</tr>
</table>

HTML is a canonical example of a markup language, which makes it perfect for illus-
trating the concept; but you can use the same approach for any languages with a simi-
lar structure, such as XML. Shortly we’ll discuss how such code works in Kotlin.

 Now that you know what a DSL is and why you might want to build one, let’s see
how Kotlin helps you do that. First we’ll take a more in-depth look at lambdas with
receivers: the key feature that helps establish the grammar of DSLs.

11.2 Building structured APIs: lambdas with receivers in DSLs
Lambdas with receivers are a powerful Kotlin feature that allows you to build APIs with
a structure. As we already discussed, having structure is one of the key traits distin-
guishing DSLs from regular APIs. Let’s examine this feature in detail and look at some
DSLs that use it.

11.2.1 Lambdas with receivers and extension function types

You had a brief encounter with the idea of lambdas with receivers in section 5.5,
where we introduced the buildString, with, and apply standard library functions.
Now let’s look at how they’re implemented, using the buildString function as an
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

289Building structured APIs: lambdas with receivers in DSLs
example. This function allows you to construct a string from several pieces of content
added to an intermediate StringBuilder.

 To begin the discussion, let’s define the buildString function so that it takes a
regular lambda as an argument. You saw how to do this in chapter 8, so this should be
familiar material.

fun buildString(
builderAction: (StringBuilder) -> Unit

): String {
val sb = StringBuilder()
builderAction(sb)
return sb.toString()

}

>>> val s = buildString {
... it.append("Hello, ")
... it.append("World!")
... }
>>> println(s)
Hello, World!

This code is easy to understand, but it looks less easy to use than we’d prefer. Note that
you have to use it in the body of the lambda to refer to the StringBuilder instance
(you could define your own parameter name instead of it, but it still has to be
explicit). The main purpose of the lambda is to fill the StringBuilder with text, so
you want to get rid of the repeated it. prefixes and invoke the StringBuilder
methods directly, replacing it.append with append.

 To do so, you need to convert the lambda into a lambda with a receiver. In effect, you
can give one of the parameters of the lambda the special status of a receiver, letting you
refer to its members directly without any qualifier. The following listing shows how
you do that.

fun buildString(
builderAction: StringBuilder.() -> Unit

) : String {
val sb = StringBuilder()
sb.builderAction()
return sb.toString()

}

>>> val s = buildString {
... this.append("Hello, ")
... append("World!")
... }
>>> println(s)
Hello, World!

Listing 11.1 Defining buildString() that takes a lambda as an argument

Listing 11.2 Redefining buildString() to take a lambda with a receiver

Declares a parameter
of a function type

Passes a StringBuilder as an
argument to the lambda

Uses “it” to refer to the
StringBuilder instance

Declares a parameter of a
function type with a receiver

Passes a StringBuilder as
a receiver to the lambda

The “this” keyword refers to
the StringBuilder instance.

Alternatively, you can omit
“this” and refer to
StringBuilder implicitly.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

290 CHAPTER 11 DSL construction
Pay attention to the differences between listing 11.1 and listing 11.2. First, consider
how the way you use buildString has improved. Now you pass a lambda with a
receiver as an argument, so you can get rid of it in the body of the lambda. You
replace the calls to it.append() with append(). The full form is this.append(),
but as with regular members of a class, an explicit this is normally used only for dis-
ambiguation.

 Next, let’s discuss how the declaration of the buildString function has changed.
You use an extension function type instead of a regular function type to declare the param-
eter type. When you declare an extension function type, you effectively pull one of the
function type parameters out of the parentheses and put it in front, separated from the
rest of the types with a dot. In listing 11.2, you replace (StringBuilder) -> Unit
with StringBuilder.() -> Unit. This special type is called the receiver type, and the
value of that type passed to the lambda becomes the receiver object. Figure 11.1 shows a
more complex extension function type declaration.

Why an extension function type? The idea of accessing members of an external type
without an explicit qualifier may remind you of extension functions, which allow you
to define your own methods for classes defined elsewhere in the code. Both extension
functions and lambdas with receivers have a receiver object, which has to be provided
when the function is called and is available in its body. In effect, an extension function
type describes a block of code that can be called as an extension function.

 The way you invoke the variable also changes when you convert it from a regular
function type to an extension function type. Instead of passing the object as an argu-
ment, you invoke the lambda variable as if it were an extension function. When you
have a regular lambda, you pass a StringBuilder instance as an argument to it using
the following syntax: builderAction(sb). When you change it to a lambda with a
receiver, the code becomes sb.builderAction(). To reiterate, builderAction
here isn’t a method declared on the StringBuilder class; it’s a parameter of a func-
tion type that you call using the same syntax you use to call extension functions.

 Figure 11.2 shows the correspondence between an argument and a parameter of
the buildString function. It also illustrates the receiver on which the lambda body
will be called.

Receiver type Return typeParameter types

String.(Int, Int) -> Unit

Figure 11.1 An extension function type
with receiver type String and two
parameters of type Int, returning Unit
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

291Building structured APIs: lambdas with receivers in DSLs
Figure 11.2 The argument of the buildString function (lambda with a receiver)
corresponds to the parameter of the extension function type (builderAction). The
receiver (sb) becomes an implicit receiver (this) when the lambda body is invoked.

You can also declare a variable of an extension function type, as shown in the follow-
ing listing. Once you do that, you can either invoke it as an extension function or pass
it as an argument to a function that expects a lambda with a receiver.

val appendExcl : StringBuilder.() -> Unit =
{ this.append("!") }

>>> val stringBuilder = StringBuilder("Hi")
>>> stringBuilder.appendExcl()
>>> println(stringBuilder)
Hi!

>>> println(buildString(appendExcl))
!

Note that a lambda with a receiver looks exactly the same as a regular lambda in the
source code. To see whether a lambda has a receiver, you need to look at the function
to which the lambda is passed: its signature will tell you whether the lambda has a
receiver and, if it does, what its type is. For example, you can look at the declaration of
buildString or look up its documentation in your IDE, see that it takes a lambda of
type StringBuilder.() -> Unit, and conclude from this that in the body of the
lambda, you can invoke StringBuilder methods without a qualifier.

 The implementation of buildString in the standard library is shorter than in
listing 11.2. Instead of calling builderAction explicitly, it is passed as an argument
to the apply function (which you saw in section 5.5). This allows you to collapse the
function into a single line:

fun buildString(builderAction: StringBuilder.() -> Unit): String =
StringBuilder().apply(builderAction).toString()

Listing 11.3 Storing a lambda with a receiver in a variable

fun buildString(builderAction: StringBuilder.() -> Unit): String {
 val sb = StringBuilder()

 sb.builderAction()
 ...
}

buildString { this.append("!") }

appendExcl is a value of an
extension function type.

You can call appendExcl
as an extension function.

You can also pass appendExcl
as an argument.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

292 CHAPTER 11 DSL construction

the
The apply function effectively takes the object on which it was called (in this case, a
new StringBuilder instance) and uses it as an implicit receiver to call the function
or lambda specified as argument (builderAction in the example). You’ve also seen
another useful library function previously: with. Let’s study their implementations:

inline fun <T> T.apply(block: T.() -> Unit): T {
block()
return this

}

inline fun <T, R> with(receiver: T, block: T.() -> R): R =
receiver.block()

Basically, all apply and with do is invoke the argument of an extension function type
on the provided receiver. The apply function is declared as an extension to that
receiver, whereas with takes it as a first argument. Also, apply returns the receiver
itself, but with returns the result of calling the lambda.

 If you don’t care about the result, these functions are interchangeable:

>>> val map = mutableMapOf(1 to "one")
>>> map.apply { this[2] = "two"}
>>> with (map) { this[3] = "three" }
>>> println(map)
{1=one, 2=two, 3=three}

The with and apply functions are used frequently in Kotlin, and we hope you’ve
already appreciated their conciseness in your own code.

 We’ve reviewed lambdas with receivers and talked about extension function types.
Now it’s time to see how these concepts are used in the DSL context.

11.2.2 Using lambdas with receivers in HTML builders

A Kotlin DSL for HTML is usually called an HTML builder, and it represents a more gen-
eral concept of type-safe builders. Initially, the concept of builders gained popularity in
the Groovy community (www.groovy-lang.org/dsls.html#_builders). Builders provide
a way to create an object hierarchy in a declarative way, which is convenient for gener-
ating XML or laying out UI components.

 Kotlin uses the same idea, but in Kotlin builders are type-safe. That makes them
more convenient to use, safe, and in a sense more attractive than Groovy’s dynamic
builders. Let’s look in detail at how HTML builders work in Kotlin.

fun createSimpleTable() = createHTML().
table {

tr {
td { +"cell" }

}
}

Listing 11.4 Producing a simple HTML table with a Kotlin HTML builder

Equivalent to this.block(); invokes
the lambda with the receiver of
“apply” as the receiver object

Returns
receiver

Returns the result of
calling the lambda
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

293Building structured APIs: lambdas with receivers in DSLs
This is regular Kotlin code, not a special template language or anything like that:
table, tr, and td are just functions. Each of them is a higher-order function, taking a
lambda with a receiver as an argument.

 The remarkable thing here is that those lambdas change the name-resolution rules. In
the lambda passed to the table function, you can use the tr function to create the
<tr> HTML tag. Outside of that lambda, the tr function would be unresolved. In the
same way, the td function is only accessible in tr. (Note how the design of the API
forces you to follow the grammar of the HTML language.)

 The name-resolution context in each block is defined by the receiver type of each
lambda. The lambda passed to table has a receiver of a special type TABLE, which
defines the tr method. Similarly, the tr function expects an extension lambda to TR.
The following listing is a greatly simplified view of the declarations of these classes
and methods.

open class Tag

class TABLE : Tag {
fun tr(init : TR.() -> Unit)

}
class TR : Tag {

fun td(init : TD.() -> Unit)
}
class TD : Tag

TABLE, TR, and TD are utility classes that shouldn’t appear explicitly in the code, and
that’s why they’re named in capital letters. They all extend the Tag superclass. Each
class defines methods for creating tags allowed in it: the TABLE class defines the tr
method, among others, whereas the TR class defines the td method.

 Note the types of the init parameters of the tr and td functions: they’re exten-
sion function types TR.() -> Unit and TD.() -> Unit. They determine the types
of receivers in the argument lambdas: TR and TD, respectively.

 To make it clearer what happens here, you can rewrite listing 11.4, making all
receivers explicit. As a reminder, you can access the receiver of the lambda that’s the
argument of the foo function as this@foo.

fun createSimpleTable() = createHTML().
table {

(this@table).tr {
(this@tr).td {

+"cell"
}

}
}

Listing 11.5 Declaring tag classes for the HTML builder

Listing 11.6 Making receivers of HTML builder calls explicit

The tr function expects a lambda
with a receiver of type TR.

The td function expects a lambda
with a receiver of type TD.

this@table has
type TABLE.

this@tr has
type TR. The implicit receiver this@td

of type TD is available here.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

294 CHAPTER 11 DSL construction
If you tried to use regular lambdas instead of lambdas with receivers for builders, the
syntax would become as unreadable as in this example: you’d have to use the it refer-
ence to invoke the tag-creation methods or assign a new parameter name for every
lambda. Being able to make the receiver implicit and hide the this reference makes
the syntax of builders nice and similar to the original HTML.

 Note that if one lambda with a receiver is placed in the other one, as in listing 11.6,
the receiver defined in the outer lambda remains available in the nested lambda. For
instance, in the lambda that’s the argument of the td function, all three receivers
(this@table, this@tr, this@td) are available. But starting from Kotlin 1.1, you’ll
be able to use the @DslMarker annotation to constrain the availability of outer receiv-
ers in lambdas.

 We’ve explained how the syntax of HTML builders is based on the concept of lamb-
das with receivers. Next, let’s discuss how the desired HTML is generated.

 Listing 11.6 uses functions defined in the kotlinx.html library. Now you’ll imple-
ment a much simpler version of an HTML builder library: you’ll extend the declara-
tions of the TABLE, TR, and TD tags and add support for generating the resulting
HTML. As the entry point for this simplified version, a top-level table function cre-
ates a fragment of HTML with <table> as a top tag.

fun createTable() =
table {

tr {
td {
}

}
}

>>> println(createTable())
<table><tr><td></td></tr></table>

The table function creates a new instance of the TABLE tag, initializes it (calls the
function passed as the init parameter on it), and returns it:

fun table(init: TABLE.() -> Unit) = TABLE().apply(init)

In createTable, the lambda passed as an argument to the table function contains
the invocation of the tr function. The call can be rewritten to make everything as
explicit as possible: table(init = { this.tr { … } }). The tr function will be
called on the created TABLE instance, as if you’d written TABLE().tr { … }.

 In this toy example, <table> is a top-level tag, and other tags are nested into it.
Each tag stores a list of references to its children. Therefore, the tr function should
not only initialize the new instance of the TR tag but also add it to the list of children
of the outer tag.

Listing 11.7 Generating HTML to a string
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

295Building structured APIs: lambdas with receivers in DSLs

ds

fun tr(init: TR.() -> Unit) {
val tr = TR()
tr.init()
children.add(tr)

}

This logic of initializing a given tag and adding it to the children of the outer tag is
common for all tags, so you can extract it as a doInit member of the Tag superclass.
The doInit function is responsible for two things: storing the reference to the child
tag and calling the lambda passed as an argument. The different tags then just call it:
for instance, the tr function creates a new instance of the TR class and then passes it
to the doInit function along with the init lambda argument: doInit(TR(),
init). The following listing is the full example that shows how the desired HTML is
generated.

open class Tag(val name: String) {
private val children = mutableListOf<Tag>()

protected fun <T : Tag> doInit(child: T, init: T.() -> Unit) {
child.init()
children.add(child)

}

override fun toString() =
"<$name>${children.joinToString("")}</$name>"

}

fun table(init: TABLE.() -> Unit) = TABLE().apply(init)

class TABLE : Tag("table") {
fun tr(init: TR.() -> Unit) = doInit(TR(), init)

}
class TR : Tag("tr") {

fun td(init: TD.() -> Unit) = doInit(TD(), init)
}
class TD : Tag("td")

fun createTable() =
table {

tr {
td {
}

}
}

>>> println(createTable())
<table><tr><td></td></tr></table>

Listing 11.8 Defining a tag builder function

Listing 11.9 A full implementation of a simple HTML builder

Stores all nested tags

Initializes
the child tag Stores a reference

to the child tag

Returns the resulting
HTML as String

Creates, initializes, and ad
to the children of TABLE a
new instance of the TR tag

Adds a new instance
of the TD tag to the
children of TR
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

296 CHAPTER 11 DSL construction
Every tag stores a list of nested tags and renders itself accordingly: it renders its name
and all the nested tags recursively. Text inside tags and tag attributes aren’t supported
here; for the full implementation, you can browse the aforementioned kotlinx.html
library.

 Note that tag-creation functions add the corresponding tag to the parent’s list of
children on their own. That lets you generate tags dynamically.

fun createAnotherTable() = table {
for (i in 1..2) {

tr {
td {
}

}
}

}
>>> println(createAnotherTable())
<table><tr><td></td></tr><tr><td></td></tr></table>

As you’ve seen, lambdas with receivers are a great tool for building DSLs. Because you
can change the name-resolution context in a code block, they let you create structure
in your API, which is one of the key traits that distinguishes DSLs from flat sequences
of method calls. Now let’s discuss the benefits of integrating this DSL into a statically
typed programming language.

11.2.3 Kotlin builders: enabling abstraction and reuse

When you write regular code in a program, you have a lot of tools to avoid duplication
and to make the code look nicer. Among other things, you can extract repetitive code
into new functions and give them self-explanatory names. That may not be as easy or
even possible with SQL or HTML. But using internal DSLs in Kotlin to accomplish the
same tasks gives you a way to abstract repeated chunks of code into new functions and
reuse them.

 Let’s look at an example from the Bootstrap library (http://getbootstrap.com), a
popular HTML, CSS, and JS framework for developing responsive, mobile-first projects
on the web. We’ll consider a specific example: adding drop-down lists to an applica-
tion. To add such a list directly to an HTML page, you can copy the necessary snippet
and paste it in the required place, under the button or other element that shows the
list. You only need to add the necessary references and their titles for the drop-down
menu. The initial HTML code (a bit simplified to avoid too many style attributes)
looks like this.

<div class="dropdown">
<button class="btn dropdown-toggle">

Dropdown

Listing 11.10 Generating tags dynamically with an HTML builder

Listing 11.11 Building a drop-down menu in HTML using Bootstrap

Each call to “tr” creates a
new TR tag and adds it to
the children of TABLE.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://getbootstrap.com

297Building structured APIs: lambdas with receivers in DSLs

</button>
<ul class="dropdown-menu">

Action
Another action
<li role="separator" class="divider">
<li class="dropdown-header">Header
Separated link

</div>

In Kotlin with kotlinx.html, you can use the functions div, button, ul, li, and so on
to replicate the same structure.

fun buildDropdown() = createHTML().div(classes = "dropdown") {
button(classes = "btn dropdown-toggle") {

+"Dropdown"
span(classes = "caret")

}
ul(classes = "dropdown-menu") {

li { a("#") { +"Action" } }
li { a("#") { +"Another action" } }
li { role = "separator"; classes = setOf("divider") }
li { classes = setOf("dropdown-header"); +"Header" }
li { a("#") { +"Separated link" } }

}
}

But you can do better. Because div, button, and so on are regular functions, you can
extract the repetitive logic into separate functions, improving the readability of the
code. The result may look as follows.

fun dropdownExample() = createHTML().dropdown {
dropdownButton { +"Dropdown" }
dropdownMenu {

item("#", "Action")
item("#", "Another action")
divider()
dropdownHeader("Header")
item("#", "Separated link")

}
}

Now the unnecessary details are hidden, and the code looks much nicer. Let’s discuss
how this trick is implemented, starting with the item function. This function has two
parameters: the reference and the name of the corresponding menu item. The func-
tion code should add a new list item: li { a(href) { +name } }. The only question

Listing 11.12 Building a drop-down menu using a Kotlin HTML builder

Listing 11.13 Building a drop-down menu with helper functions
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

298 CHAPTER 11 DSL construction
that remains is, how can you call li in the body of the function? Should it be an
extension? You can indeed make it an extension to the UL class, because the li func-
tion is itself an extension to UL. In listing 11.13, item is called on an implicit this of
type UL:

fun UL.item(href: String, name: String) = li { a(href) { +name } }

After you define the item function, you can call it in any UL tag, and it will add an
instance of a LI tag. Having extracted item, you can change the original version to
the following without changing the generated HTML code.

ul {
classes = setOf("dropdown-menu")
item("#", "Action")
item("#", "Another action")
li { role = "separator"; classes = setOf("divider") }
li { classes = setOf("dropdown-header"); +"Header" }
item("#", "Separated link")

}

The other extension functions defined on UL are added in a similar way, allowing you
to replace the remaining li tags.

fun UL.divider() = li { role = "separator"; classes = setOf("divider") }

fun UL.dropdownHeader(text: String) =
li { classes = setOf("dropdown-header"); +text }

Now let’s see how the dropdownMenu function is implemented. It creates a ul tag
with the specified dropdown-menu class and takes a lambda with a receiver as an
argument that’s used to fill the tag with content.

dropdownMenu {
item("#", "Action")
...

}

You replace the ul { … } block with the invocation of dropdownMenu { … }, so the
receiver in the lambda can stay the same. The dropdownMenu function can take an
extension lambda to UL as an argument, which allows you to call functions such as
UL.item as you did before. Here’s how the function is declared:

fun DIV.dropdownMenu(block: UL.() -> Unit) = ul("dropdown-menu", block)

The dropdownButton function is implemented in a similar way. We omit it here, but
you can find the full implementation in the samples for the kotlinx.html library.

 Last, let’s look at the dropdown function. This one is less trivial, because it can be
called on any tag: the drop-down menu can be put anywhere in the code.

Listing 11.14 Using the item function for drop-down menu construction

You can use the “item”
function instead of “li” here.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

299More flexible block nesting with the “invoke” convention

fun StringBuilder.dropdown(
block: DIV.() -> Unit

): String = div("dropdown", block)

This is a simplified version that you can use if you want to print your HTML to a string.
The full implementation in kotlinx.html uses an abstract TagConsumer class as the
receiver and thus supports different destinations for the resulting HTML.

 This example illustrates how the means of abstraction and reuse can help improve
your code and make it easier to understand. Now let’s look at one more tool that can
help you support more flexible structures in your DSLs: the invoke convention.

11.3 More flexible block nesting with the “invoke” convention
The invoke convention allows you to call objects of custom types as functions. You’ve
already seen that objects of function types can be called as functions; with the invoke
convention, you can define your own objects that support the same syntax.

 Note that this isn’t a feature for everyday use, because it can be used to write hard-
to-understand code, such as 1(). But it’s sometimes very useful in DSLs. We’ll show
you why, but first let’s discuss the convention itself.

11.3.1 The “invoke” convention: objects callable as functions

In chapter 7, we discussed in detail Kotlin’s concept of conventions: specially named
functions that are called not through the regular method-call syntax but using differ-
ent, more concise notations. As a reminder, one of the conventions we discussed was
get, which allows you to access an object using the index operator. For a variable foo
of type Foo, a call to foo[bar] is translated into foo.get(bar), provided the corre-
sponding get function is defined as a member in the Foo class or as an extension
function to Foo.

 In effect, the invoke convention does the same thing, except that the brackets are
replaced with parentheses. A class for which the invoke method with an operator
modifier is defined can be called as a function. Here’s an example of how this works.

class Greeter(val greeting: String) {
operator fun invoke(name: String) {

println("$greeting, $name!")
}

}

>>> val bavarianGreeter = Greeter("Servus")
>>> bavarianGreeter("Dmitry")
Servus, Dmitry!

Listing 11.15 The top-level function for building a drop-down menu

Listing 11.16 Defining an invoke method in a class

Defines the “invoke”
method on Greeter

Calls the Greeter instance
as a function
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

300 CHAPTER 11 DSL construction

Imp
the “
This code defines the invoke method in Greeter, which allows you to call instances
of Greeter as if they were functions. Under the hood, the expression bavarian-
Greeter("Dmitry") is compiled to the method call bavarianGreeter.invoke
("Dmitry"). There’s no mystery here. It works like a regular convention: it provides
a way to replace a verbose expression with a more concise, clearer one.

 The invoke method isn’t restricted to any specific signature. You can define it
with any number of parameters and with any return type, or even define multiple
overloads of invoke with different parameter types. When you call the instance of the
class as a function, you can use all of those signatures for the call. Let’s look at the
practical situations where this convention is used, first in a regular programming con-
text and then in a DSL.

11.3.2 The “invoke” convention and functional types

You may remember seeing invoke earlier in the book. In section 8.1.2 we discussed
that you can call a variable of a nullable function type as lambda?.invoke(), using
the safe-call syntax with the invoke method name.

 Now that you know about the invoke convention, it should be clear that the way
you normally invoke a lambda (by putting parentheses after it: lambda()) is nothing
but an application of this convention. Lambdas, unless inlined, are compiled into
classes that implement functional interfaces (Function1 and so on), and those inter-
faces define the invoke method with the corresponding number of parameters:

interface Function2<in P1, in P2, out R> {
operator fun invoke(p1: P1, p2: P2): R

}

When you invoke a lambda as a function, the operation is translated into a call of the
invoke method, thanks to the convention. Why might that be useful to know? It gives
you a way to split the code of a complex lambda into multiple methods while still
allowing you to use it together with functions that take parameters of a function type.
To do so, you can define a class that implements a function type interface. You can
specify the base interface either as an explicit FunctionN type or, as shown in the fol-
lowing listing, using the shorthand syntax: (P1, P2) -> R. This example uses such a
class to filter a list of issues by a complex condition.

data class Issue(
val id: String, val project: String, val type: String,
val priority: String, val description: String

)

class ImportantIssuesPredicate(val project: String)
: (Issue) -> Boolean {

override fun invoke(issue: Issue): Boolean {
return issue.project == project && issue.isImportant()

}

Listing 11.17 Extending a function type and overriding invoke()

This interface denotes a function
that takes exactly two arguments.

Uses the function
type as a base class

lements
invoke”
method
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

301More flexible block nesting with the “invoke” convention
private fun Issue.isImportant(): Boolean {
return type == "Bug" &&

(priority == "Major" || priority == "Critical")
}

}

>>> val i1 = Issue("IDEA-154446", "IDEA", "Bug", "Major",
... "Save settings failed")
>>> val i2 = Issue("KT-12183", "Kotlin", "Feature", "Normal",
... "Intention: convert several calls on the same receiver to with/apply")
>>> val predicate = ImportantIssuesPredicate("IDEA")
>>> for (issue in listOf(i1, i2).filter(predicate)) {
... println(issue.id)
... }
IDEA-154446

Here the logic of the predicate is too complicated to put into a single lambda, so you
split it into several methods to make the meaning of each check clear. Converting a
lambda into a class that implements a function type interface and overriding the
invoke method is one way to perform such a refactoring. The advantage of this
approach is that the scope of methods you extract from the lambda body is as narrow
as possible; they’re only visible from the predicate class. This is valuable when there’s a
lot of logic both in the predicate class and in the surrounding code and it’s worth-
while to separate the different concerns cleanly.

 Now let’s see how the invoke convention can help you create a more flexible
structure for your DSLs.

11.3.3 The “invoke” convention in DSLs: declaring dependencies in Gradle

Let’s go back to the example of the Gradle DSL for configuring the dependencies of a
module. Here’s the code we showed you earlier:

dependencies {
compile("junit:junit:4.11")

}

You often want to be able to support both a nested block structure, as shown here, and
a flat call structure in the same API. In other words, you want to allow both of the fol-
lowing:

dependencies.compile("junit:junit:4.11")

dependencies {
compile("junit:junit:4.11")

}

With such a design, users of the DSL can use the nested block structure when there are
multiple items to configure and the flat call structure to keep the code more concise
when there’s only one thing to configure.

 The first case calls the compile method on the dependencies variable. You can
express the second notation by defining the invoke method on dependencies so

Passes the predicate
to filter()
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

302 CHAPTER 11 DSL construction
that it takes a lambda as an argument. The full syntax of this call is dependencies
.invoke({…}).

 The dependencies object is an instance of the DependencyHandler class, which
defines both compile and invoke methods. The invoke method takes a lambda
with a receiver as an argument, and the type of the receiver of this method is again
DependencyHandler. What happens in the body of the lambda is already familiar:
you have a DependencyHandler as a receiver and can call methods such as compile
directly on it. The following minimal example shows how that part of Dependency-
Handler is implemented.

class DependencyHandler {
fun compile(coordinate: String) {

println("Added dependency on $coordinate")
}

operator fun invoke(
body: DependencyHandler.() -> Unit) {

body()
}

}

>>> val dependencies = DependencyHandler()

>>> dependencies.compile("org.jetbrains.kotlin:kotlin-stdlib:1.0.0")
Added dependency on org.jetbrains.kotlin:kotlin-stdlib:1.0.0

>>> dependencies {
... compile("org.jetbrains.kotlin:kotlin-reflect:1.0.0")
>>> }
Added dependency on org.jetbrains.kotlin:kotlin-reflect:1.0.0

When you add the first dependency, you call the compile method directly. The sec-
ond call is effectively translated to the following:

dependencies.invoke({
this.compile("org.jetbrains.kotlin:kotlin-reflect:1.0.0")

})

In other words, you’re invoking dependencies as a function and passing a lambda as
an argument. The type of the lambda’s parameter is a function type with a receiver,
and the receiver type is the same DependencyHandler type. The invoke method
calls the lambda. Because it’s a method of the DependencyHandler class, an instance
of that class is available as an implicit receiver, so you don’t need to specify it explicitly
when you call body().

 One fairly small piece of code, the redefined invoke method, has significantly
increased the flexibility of the DSL API. This pattern is generic, and you can reuse it in
your own DSLs with minimal modifications.

Listing 11.18 Using invoke to support flexible DSL syntax

Defines a regular
command API

Defines “invoke” to
support the DSL API

“this” becomes a receiver of
the body function: this.body()
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

303Kotlin DSLs in practice
 You’re now familiar with two new features of Kotlin that can help you build DSLs:
lambdas with receivers and the invoke convention. Let’s look at how previously dis-
cussed Kotlin features come in play in the DSL context.

11.4 Kotlin DSLs in practice
By now, you’re familiar with all the Kotlin features used when building DSLs. Some of
them, such as extensions and infix calls, should be your old friends by now. Others,
such as lambdas with receivers, were first discussed in detail in this chapter. Let’s put
all of this knowledge to use and investigate a series of practical DSL construction
examples. We’ll cover fairly diverse topics: testing, rich date literals, database queries,
and Android UI construction.

11.4.1 Chaining infix calls: “should” in test frameworks

As we mentioned previously, clean syntax is one of the key traits of an internal DSL,
and it can be achieved by reducing the amount of punctuation in the code. Most
internal DSLs boil down to sequences of method calls, so any features that let you
reduce syntactic noise in method calls find a lot of use there. In Kotlin, these features
include the shorthand syntax for invoking lambdas, which we’ve discussed in detail, as
well as infix function calls. We discussed infix calls in section 3.4.3; here we’ll focus on
their use in DSLs.

 Let’s look at an example that uses the DSL of kotlintest (https://github.com/
kotlintest/kotlintest, the testing library inspired by Scalatest), which you saw earlier in
this chapter.

s should startWith("kot")

This call will fail with an assertion if the value of the s variable doesn’t start with “kot”.
The code reads almost like English: “The s string should start with this constant.” To
accomplish this, you declare the should function with the infix modifier.

infix fun <T> T.should(matcher: Matcher<T>) = matcher.test(this)

The should function expects an instance of Matcher, a generic interface for per-
forming assertions on values. startWith implements Matcher and checks whether a
string starts with the given substring.

interface Matcher<T> {
fun test(value: T)

}

Listing 11.19 Expressing an assertion with the kotlintest DSL

Listing 11.20 Implementing the should function

Listing 11.21 Defining a matcher for the kotlintest DSL
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/kotlintest/kotlintest
https://github.com/kotlintest/kotlintest

304 CHAPTER 11 DSL construction
class startWith(val prefix: String) : Matcher<String> {
override fun test(value: String) {

if (!value.startsWith(prefix))
throw AssertionError("String $value does not start with $prefix")

}
}

Note that in regular code, you’d capitalize the name of the startWith class, but DSLs
often require you to deviate from standard naming conventions. Listing 11.21 shows
that applying infix calls in the DSL context is simple and can reduce the amount of
noise in your code. With a bit more cunning, you can reduce the noise even further.
The kotlintest DSL supports that.

"kotlin" should start with "kot"

At first glance, this doesn’t look like Kotlin. To understand how it works, let’s convert
the infix calls to regular ones.

"kotlin".should(start).with("kot")

This shows that listing 11.22 was a sequence of two infix calls, and start was the argu-
ment of the first one. In fact, start refers to an object declaration, whereas should
and with are functions called using the infix call notation.

 The should function has a special overload that uses the start object as a param-
eter type and returns the intermediate wrapper on which you can then call the with
method.

object start

infix fun String.should(x: start): StartWrapper = StartWrapper(this)

class StartWrapper(val value: String) {
infix fun with(prefix: String) =

if (!value.startsWith(prefix))
throw AssertionError(

"String does not start with $prefix: $value")
}

Note that, outside of the DSL context, using an object as a parameter type rarely
makes sense, because it has only a single instance, and you can access that instance
rather than pass it as an argument. Here, it does make sense: the object is used not
to pass any data to the function, but as part of the grammar of the DSL. By passing
start as an argument, you can choose the right overload of should and obtain a
StartWrapper instance as the result. The StartWrapper class has the with mem-
ber, taking as an argument the actual value that you need to perform the assertion.

Listing 11.22 Chaining calls in the kotlintest DSL

Listing 11.23 Defining the API to support chained infix calls
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

305Kotlin DSLs in practice
 The library supports other matchers as well, and they all read as English:

"kotlin" should end with "in"
"kotlin" should have substring "otl"

To support this, the should function has more overloads that take object instances
like end and have and return EndWrapper and HaveWrapper instances, respectively.

 This was a relatively tricky example of DSL construction, but the result is so nice
that it’s worth figuring out how this pattern works. The combination of infix calls and
object instances lets you construct fairly complex grammars for your DSLs and use
those DSLs with a clean syntax. And of course, the DSL remains fully statically typed.
An incorrect combination of functions and objects won’t compile.

11.4.2 Defining extensions on primitive types: handling dates

Now let’s take a look at the remaining teaser from the beginning of this chapter:

val yesterday = 1.days.ago
val tomorrow = 1.days.fromNow

To implement this DSL using the Java 8 java.time API and Kotlin, you need just a
few lines of code. Here’s the relevant part of the implementation.

val Int.days: Period
get() = Period.ofDays(this)

val Period.ago: LocalDate
get() = LocalDate.now() - this

val Period.fromNow: LocalDate
get() = LocalDate.now() + this

>>> println(1.days.ago)
2016-08-16
>>> println(1.days.fromNow)
2016-08-18

Here, days is an extension property on the Int type. Kotlin has no restrictions on
the types that can be used as receivers for extension functions: you can easily define
extensions on primitive types and invoke them on constants. The days property
returns a value of type Period, which is the JDK 8 type representing an interval
between two dates.

 To complete the sentence and support the ago word, you need to define another
extension property, this time on the Period class. The type of that property is a
LocalDate, representing a date. Note that the use of the - (minus) operator in the
ago property implementation doesn’t rely on any Kotlin-defined extensions. The
LocalDate JDK class defines a method named minus with a single parameter that
matches the Kotlin convention for the - operator, so Kotlin maps the operator to that

Listing 11.24 Defining a date manipulation DSL

“this” refers to the value
of the numeric constant.

Invokes LocalDate.minus
using operator syntax

Invokes LocalDate.plus
using operator syntax
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

306 CHAPTER 11 DSL construction
method automatically. You can find the full implementation of the library, supporting
all time units and not just days, in the kxdate library on GitHub (https://github.com/
yole/kxdate).

 Now that you understand how this simple DSL works, let’s move on to something
more challenging: the implementation of the database query DSL.

11.4.3 Member extension functions: internal DSL for SQL

You’ve seen the significant role played by extension functions in DSL design. In this
section, we’ll study a further trick that we’ve mentioned previously: declaring exten-
sion functions and extension properties in a class. Such a function or property is both
a member of its containing class and an extension to some other type at the same
time. We call such functions and properties member extensions.

 Let’s look at a couple of examples that use member extensions. They come from the
internal DSL for SQL, the Exposed framework, mentioned earlier. Before we get to that,
though, we need to discuss how Exposed allows you to define the database structure.

 In order to work with SQL tables, the Exposed framework requires you to declare
them as objects extending the Table class. Here’s a declaration of a simple Country
table with two columns.

object Country : Table() {
val id = integer("id").autoIncrement().primaryKey()
val name = varchar("name", 50)

}

This declaration corresponds to a table in the database. To create this table, you call
the SchemaUtils.create(Country) method, and it generates the necessary SQL
statement based on the declared table structure:

CREATE TABLE IF NOT EXISTS Country (
id INT AUTO_INCREMENT NOT NULL,
name VARCHAR(50) NOT NULL,
CONSTRAINT pk_Country PRIMARY KEY (id)

)

As with generating HTML, you can see how declarations in the original Kotlin code
become parts of the generated SQL statement.

 If you examine the types of the properties in the Country object, you’ll see that
they have the Column type with the necessary type argument: id has the type
Column<Int>, and name has the type Column<String>.

 The Table class in the Exposed framework defines all types of columns that you
can declare for your table, including the ones just used:

class Table {
fun integer(name: String): Column<Int>
fun varchar(name: String, length: Int): Column<String>

Listing 11.25 Declaring a table in Exposed
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/yole/kxdate
https://github.com/yole/kxdate

307Kotlin DSLs in practice
// ...
}

The integer and varchar methods create new columns for storing integers and
strings, respectively.

 Now let’s see how to specify properties for the columns. This is when member
extensions come into play:

val id = integer("id").autoIncrement().primaryKey()

Methods like autoIncrement and primaryKey are used to specify the properties of
each column. Each method can be called on Column and returns the instance it was
called on, allowing you to chain the methods. Here are the simplified declarations of
these functions:

class Table {
fun <T> Column<T>.primaryKey(): Column<T>
fun Column<Int>.autoIncrement(): Column<Int>
// ...

}

These functions are members of the Table class, which means you can’t use them out-
side of the scope of this class. Now you know why it makes sense to declare methods as
member extensions: you constrain their applicability scope. You can’t specify the prop-
erties of a column outside the context of a table: the necessary methods won’t resolve.

 Another great feature of extension functions that you use here is the ability to
restrict the receiver type. Although any column in a table can be its primary key, only
numeric columns can be auto-incremented. You can express this in the API by declar-
ing the autoIncrement method as an extension on Column<Int>. An attempt to
mark a column of a different type as auto-incremented will fail to compile.

 What’s more, when you mark a column as primaryKey, this information is stored
in the table containing the column. Having this function declared as a member of
Table allows you to store the information in the table instance directly.

Member extensions are still members
Member extensions have a downside, as well: the lack of extensibility. They belong
to the class, so you can’t define new member extensions on the side.

For example, imagine that you wanted to add support for a new database to Exposed
and that the database supported some new column attributes. To achieve this goal,
you’d have to modify the definition of the Table class and add the member exten-
sion functions for new attributes there. You wouldn’t be able to add the necessary
declarations without touching the original class, as you can do with regular (nonmem-
ber) extensions, because the extensions wouldn’t have access to the Table
instance where they could store the definitions.

Sets this column as a
primary key in the table

Only integer values can
be auto-incremented.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

308 CHAPTER 11 DSL construction
Let’s look at another member extension function that can be found in a simple
SELECT query. Imagine that you’ve declared two tables, Customer and Country, and
each Customer entry stores a reference to the country the customer is from. The fol-
lowing code prints the names of all customers living in the USA.

val result = (Country join Customer)
.select { Country.name eq "USA" }

result.forEach { println(it[Customer.name]) }

The select method can be called on Table or on a join of two tables. Its argument is
a lambda that specifies the condition for selecting the necessary data.

 Where does the eq method come from? We can say now that it’s an infix function
taking "USA" as an argument, and you may correctly guess that it’s another member
extension.

 Here you again come across an extension function on Column that’s also a mem-
ber and thus can be used only in the appropriate context: for instance, when specify-
ing the condition of the select method. The simplified declarations of the select
and eq methods are as follows:

fun Table.select(where: SqlExpressionBuilder.() -> Op<Boolean>) : Query

object SqlExpressionBuilder {
infix fun<T> Column<T>.eq(t: T) : Op<Boolean>
// ...

}

The SqlExpressionBuilder object defines many ways to express conditions: com-
pare values, check for being not null, perform arithmetic operations, and so on.
You’ll never refer to it explicitly in the code, but you’ll regularly call its methods when
it’s an implicit receiver. The select function takes a lambda with a receiver as an
argument, and the SqlExpressionBuilder object is an implicit receiver in this
lambda. That allows you to use in the body of the lambda all the possible extension
functions defined in this object, such as eq.

 You’ve seen two types of extensions on columns: those that should be used to
declare a Table, and those used to compare the values in a condition. Without mem-
ber extensions, you’d have to declare all of these functions as extensions or members
of Column, which would let you use them in any context. The approach with member
extensions gives you a way to control that.

NOTE In section 7.5.6, we looked at some code that worked with Exposed
while talking about using delegated properties in frameworks. Delegated
properties often come up in DSLs, and the Exposed framework illustrates that
well. We won’t repeat the discussion of delegated properties here, because

Listing 11.26 Joining two tables in Exposed

Corresponds to this SQL code:
WHERE Country.name = “USA”
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

309Kotlin DSLs in practice
we’ve covered them in detail. But if you’re eager to create a DSL for your own
needs or improve your API and make it cleaner, keep this feature in mind.

11.4.4 Anko: creating Android UIs dynamically

While talking about lambdas with receivers, we mentioned that they’re great for laying
out UI components. Let’s look at how the Anko library (https://github.com/Kotlin/
anko) can help you build a UI for Android applications.

 First let’s see how Anko wraps familiar Android APIs into a DSL-like structure. The
following listing defines an alert dialog that shows a somewhat bothersome message
and two options (to proceed further or to stop the operation).

fun Activity.showAreYouSureAlert(process: () -> Unit) {
alert(title = "Are you sure?",

message = "Are you really sure?") {
positiveButton("Yes") { process() }
negativeButton("No") { cancel() }

}
}

Can you spot the three lambdas in this code? The first is the third argument of the
alert function. The other two are passed as arguments to positiveButton and
negativeButton. The receiver of the first (outer) lambda has the type Alert-
DialogBuilder. The same pattern comes up again: the name of the AlertDialog-
Builder class won’t appear in the code directly, but you can access its members to
add elements to the alert dialog. The declarations of the members used in listing
11.27 are as follows.

fun Context.alert(
message: String,
title: String,
init: AlertDialogBuilder.() -> Unit

)

class AlertDialogBuilder {
fun positiveButton(text: String, callback: DialogInterface.() -> Unit)
fun negativeButton(text: String, callback: DialogInterface.() -> Unit)
// ...

}

You add two buttons to the alert dialog. If the user clicks the Yes button, the process
action will be called. If the user isn’t sure, the operation will be canceled. The cancel
method is a member of the DialogInterface interface, so it’s called on an implicit
receiver of this lambda.

Listing 11.27 Using Anko to show an Android alert dialog

Listing 11.28 Declarations of the alert API
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/Kotlin/anko
https://github.com/Kotlin/anko

310 CHAPTER 11 DSL construction

od(…)
 Now let’s look at a more complex example where the Anko DSL acts as a complete
replacement for a layout definition in XML. The next listing declares a simple form
with two editable fields: one for entering an email address and another for putting in
a password. At the end, you add a button with a click handler.

verticalLayout {
val email = editText {

hint = "Email"
}
val password = editText {

hint = "Password"
transformationMethod =

PasswordTransformationMethod.getInstance()
}
button("Log In") {

onClick {
logIn(email.text, password.text)

}
}

}

Lambdas with receivers are a great tool, providing a concise way to declare structured
UI elements. Declaring them in code (compared to XML files) lets you extract repeti-
tive logic and reuse it, as you saw in section 11.2.3. You can separate UI and business
logic into different components, but everything will still be Kotlin code.

11.5 Summary
 Internal DSLs are an API design pattern you can use to build more expressive

APIs with structures composed of multiple method calls.
 Lambdas with receivers employ a nesting structure to redefine how methods

are resolved in the lambda body.
 The type of a parameter taking a lambda with a receiver is an extension func-

tion type, and the calling function provides a receiver instance when invoking
the lambda.

 The benefit of using Kotlin internal DSLs rather than external template or
markup languages is the ability to reuse code and create abstractions.

 Using specially named objects as parameters of infix calls allows you to create
DSLs that read exactly like English, with no extra punctuation.

 Defining extensions on primitive types lets you create a readable syntax for vari-
ous kinds of literals, such as dates.

 Using the invoke convention, you can call arbitrary objects as if they were
functions.

Listing 11.29 Using Anko to define a simple activity

Declares an EditText view element,
and stores a reference to it An implicit receiver in this lambda

is a regular class from Android
API: android.widget.EditText.

A short way to call
EditText.setHint(“Password”)

Calls
EditText.setTransformationMeth

Declares
a new

button…
…and defines what
should be done when
the button is clicked.

References declared UI
elements to access their data
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

311Summary
 The kotlinx.html library provides an internal DSL for building HTML pages,
which can be easily extended to support various front-end development frame-
works.

 The kotlintest library provides an internal DSL that supports readable assertions
in unit tests.

 The Exposed library provides an internal DSL for working with databases.
 The Anko library provides various tools for Android development, including an

internal DSL for defining UI layouts.

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

312 CHAPTER 11 DSL construction

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

appendix A
Building Kotlin projects

This appendix explains how to build Kotlin code with Gradle, Maven, and Ant. It
also covers how to build Kotlin Android applications.

A.1 Building Kotlin code with Gradle
The recommended system for building Kotlin projects is Gradle. Gradle is the stan-
dard build system for Android projects, and it also supports all other kinds of proj-
ects where Kotlin can be used. Gradle has a flexible project model and delivers
great build performance thanks to its support for incremental builds, long-lived
build processes (the Gradle daemon), and other advanced techniques.

 The Gradle team is working on the support for writing Gradle build scripts in
Kotlin, which will allow you to use the same language for writing your application
and its build scripts. As of this writing, this work is still in progress; you can find
more information about it at https://github.com/gradle/gradle-script-kotlin. In
this book, we use Groovy syntax for Gradle build scripts.

 The standard Gradle build script for building a Kotlin project looks like this:

buildscript {
ext.kotlin_version = '1.0.6'

repositories {
mavenCentral()

}
dependencies {

classpath "org.jetbrains.kotlin:" +
 "kotlin-gradle-plugin:$kotlin_version"

}
}

apply plugin: 'java'
apply plugin: 'kotlin'

repositories {

Specifies the version
of Kotlin to use

Adds a build-script dependency
on the Kotlin Gradle plugin

Applies the Kotlin
Gradle plugin
313

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/gradle/gradle-script-kotlin

314 APPENDIX A Building Kotlin projects
mavenCentral()
}

dependencies {
compile "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"

}

The script looks for Kotlin source files in the following locations:

 src/main/java and src/main/kotlin for the production source files
 src/test/java and src/test/kotlin for the test source files

In most cases, the recommended approach is to store both Kotlin and Java source files
in the same directory. Especially when you’re introducing Kotlin into an existing proj-
ect, using a single source directory reduces friction when converting Java files to Kotlin.

 If you’re using Kotlin reflection, you need to add one more dependency: the Kot-
lin reflection library. To do so, add the following in the dependencies section of
your Gradle build script:

compile "org.jetbrains.kotlin:kotlin-reflect:$kotlin_version"

A.1.1 Building Kotlin Android applications with Gradle

Android applications use a different build process compared to regular Java applica-
tions, so you need to use a different Gradle plugin to build them. Instead of apply
plugin: 'kotlin', add the following line to your build script:

apply plugin: 'kotlin-android'

The rest of the setup is the same as for non-Android applications.
 If you prefer to store your Kotlin source code in Kotlin-specific directories such as

src/main/kotlin, you need to register them so that Android Studio recognizes them
as source roots. You can do this using the following snippet:

android {
...

sourceSets {
main.java.srcDirs += 'src/main/kotlin'

}
}

A.1.2 Building projects that use annotation processing

Many Java frameworks, especially those used in Android development, rely on annota-
tion processing to generate code at compile time. To use those frameworks with Kot-
lin, you need to enable Kotlin annotation processing in your build script. You can do
this by adding the following line:

apply plugin: 'kotlin-kapt'

If you have an existing Java project that uses annotation processing and you’re intro-
ducing Kotlin to it, you need to remove the existing configuration of the apt tool. The

Adds the dependency on the
Kotlin standard library
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

315Building Kotlin code with Ant
Kotlin annotation processing tool handles both Java and Kotlin classes, and having two
separate annotation processing tools would be redundant. To configure dependencies
required for annotation processing, use the kapt dependency configuration:

dependencies {
compile 'com.google.dagger:dagger:2.4'
kapt 'com.google.dagger:dagger-compiler:2.4'

}

If you use annotation processors for your androidTest or test source, the respec-
tive kapt configurations are named kaptAndroidTest and kaptTest.

A.2 Building Kotlin projects with Maven
If you prefer to build your projects with Maven, Kotlin supports that as well. The easi-
est way to create a Kotlin Maven project is to use the org.jetbrains.kotlin:
kotlin-archetype-jvm archetype. For existing Maven projects, you can easily add
Kotlin support by choosing Tools > Kotlin > Configure Kotlin in Project in the Kotlin
IntelliJ IDEA plugin.

 To add Maven support to a Kotlin project manually, you need to perform the fol-
lowing steps:

1 Add dependency on the Kotlin standard library (group ID org.jetbrains
.kotlin, artifact ID kotlin-stdlib).

2 Add the Kotlin Maven plugin (group ID org.jetbrains.kotlin, artifact ID
kotlin-maven-plugin), and configure its execution in the compile and
test-compile phases.

3 Configure source directories, if you prefer to keep your Kotlin code in a source
root separate from Java source code.

For reasons of space, we’re not showing full pom.xml examples here, but you can find
them in the online documentation at https://kotlinlang.org/docs/reference/using-
maven.html.

 In a mixed Java/Kotlin project, you need to configure the Kotlin plugin so that it
runs before the Java plugin. This is necessary because the Kotlin plugin can parse Java
sources, whereas the Java plugin can only read .class files; so, the Kotlin files need to
be compiled to .class before the Java plugin runs. You can find an example showing
how this can be configured at http://mng.bz/73od.

A.3 Building Kotlin code with Ant
To build projects with Ant, Kotlin provides two different tasks: the <kotlinc> task
compiles pure Kotlin modules, whereas <withKotlin> is an extension to the
<javac> task for building mixed Kotlin/Java modules. Here’s a minimal example of
using <kotlinc>:

<project name="Ant Task Test" default="build">
<typedef resource="org/jetbrains/kotlin/ant/antlib.xml"

classpath="${kotlin.lib}/kotlin-ant.jar"/>

Defines the
<kotlinc> task
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
http://mng.bz/73od

316 APPENDIX A Building Kotlin projects

Pa
compi

int
<target name="build">
<kotlinc output="hello.jar">

<src path="src"/>
</kotlinc>

</target>
</project>

The <kotlinc> Ant task adds the standard library dependency automatically, so you
don’t need to add any extra arguments to configure it. It also supports packaging the
compiled .class files into a jar file.

 Here’s an example of using a <withKotlin> task to build a mixed Java/Kotlin
module:

<project name="Ant Task Test" default="build">
<typedef resource="org/jetbrains/kotlin/ant/antlib.xml"

classpath="${kotlin.lib}/kotlin-ant.jar"/>

<target name="build">
<javac destdir="classes" srcdir="src">

<withKotlin/>
</javac>
<jar destfile="hello.jar">

<fileset dir="classes"/>
</jar>

</target>
</project>

Unlike the <kotlinc> task, <withKotlin> doesn’t support automatic packaging of
compiled classes, so this example uses a separate <jar> task to package them.

Builds a single source directory
with <kotlinc>, and packs the
result into a jar file

Defines the
<withKotlin> task

Uses the <withKotlin>
task to enable mixed
Kotlin/Java compilationckages the

led classes
o a jar file
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

appendix B
Documenting Kotlin code

This appendix covers writing documentation comments for Kotlin code and gener-
ating API documentation for Kotlin modules.

B.1 Writing Kotlin documentation comments
The format used to write documentation comments for Kotlin declarations is similar
to Java’s Javadoc and is called KDoc. Just as in Javadoc, KDoc comments begin with
/** and use tags starting with @ to document specific parts of a declaration. The key
difference between Javadoc and KDoc is that the format used to write the comments
themselves is Markdown (https://daringfireball.net/projects/markdown) rather
than HTML. To make writing documentation comments easier, KDoc supports a
number of additional conventions to refer to documentation elements such as func-
tion parameters.

 Here’s a simple example of a KDoc comment for a function.

/**
* Calculates the sum of two numbers, [a] and [b]
*/

fun sum(a: Int, b: Int) = a + b

To refer to declarations from a KDoc comment, you enclose their names in brack-
ets. The example uses that syntax to refer to the parameters of the function being
documented, but you can also use it to refer to other declarations. If the declara-
tion you need to refer to is imported in the code containing the KDoc comment,
you can use its name directly. Otherwise, you can use a fully qualified name. If you
need to specify a custom label for a link, you use two pairs of brackets and put the
label in the first pair and the declaration name in the second: [an example]
[com.mycompany.SomethingTest.simple].

Listing B.1 Using a KDoc comment
317

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://daringfireball.net/projects/markdown

318 APPENDIX B Documenting Kotlin code

Docum
 the r
 Here’s a somewhat more complicated example, showing the use of tags in a
comment.

/**
* Performs a complicated operation.
*
* @param remote If true, executes operation remotely
* @return The result of executing the operation
* @throws IOException if remote connnection fails
* @sample com.mycompany.SomethingTest.simple
*/

fun somethingComplicated(remote: Boolean): ComplicatedResult { ... }

The general syntax of using the tags is exactly the same as in Javadoc. In addition to
the standard Javadoc tags, KDoc supports a number of additional tags for concepts
that don’t exist in Java, such as the @receiver tag for documenting the receiver of an
extension function or property. You can find the full list of supported tags at http://
kotlinlang.org/docs/reference/kotlin-doc.html.

 The @sample tag can be used to include the text of the specified function into the
documentation text, as an example of using the API being documented. The value of
the tag is the fully qualified name of the method to be included.

 Some Javadoc tags aren’t supported in KDoc:

 @deprecated is replaced with the @Deprecated annotation.
 @inheritdoc isn’t supported because in Kotlin, documentation comments are

always automatically inherited by overriding declarations.
 @code, @literal, and @link are replaced with the corresponding Markdown

formatting.

Note that the documentation style preferred by the Kotlin team is to document the
parameters and the return value of a function directly in the text of a documentation
comment, as shown in listing B.1. Using tags, as in listing B.2, is recommended only
when a parameter or return value has complex semantics and needs to be clearly sep-
arated from the main documentation text.

B.2 Generating API documentation
The documentation-generation tool for Kotlin is called Dokka: https://github.com/
kotlin/dokka. Just like Kotlin, Dokka fully supports cross-language Java/Kotlin proj-
ects. It can read Javadoc comments in Java code and KDoc comments in Kotlin code
and generate documentation covering the entire API of a module, regardless of the
language used to write each class in it. Dokka supports multiple output formats,
including plain HTML, Javadoc-style HTML (using the Java syntax for all declarations
and showing how the APIs can be accessed from Java), and Markdown.

Listing B.2 Using tags in a comment

Documents a parameter

ents
eturn
value

Documents
a possible exception

Includes the text of the specified function
as a sample in documentation text
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/kotlin/dokka
https://github.com/kotlin/dokka
http://kotlinlang.org/docs/reference/kotlin-doc.html
http://kotlinlang.org/docs/reference/kotlin-doc.html

319Generating API documentation
 You can run Dokka from the command line or as part of your Ant, Maven, or Gra-
dle build script. The recommended way to run Dokka is to add it to the Gradle build
script for your module. Here’s the minimum required configuration of Dokka in a
Gradle build script:

buildscript {
ext.dokka_version = '0.9.13'

repositories {
jcenter()

}
dependencies {

classpath "org.jetbrains.dokka:dokka-gradle-plugin:${dokka_version}"
}

}

apply plugin: 'org.jetbrains.dokka'

With this configuration, you can run ./gradlew dokka to generate documentation
for your module in HTML format.

 You can find information on specifying additional generation options in the Dokka
documentation (https://github.com/Kotlin/dokka/blob/master/README.md). The
documentation also shows how Dokka can be run as a standalone tool or integrated
into Maven and Ant build scripts.

Specifies the version
of Dokka to use
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/Kotlin/dokka/blob/master/README.md

appendix C
The Kotlin ecosystem

Despite Kotlin’s relatively young age, it already has a broad ecosystem of libraries,
frameworks, and tools, most of which have been created by the external develop-
ment community. In this appendix, we’ll give you pointers to help you explore this
ecosystem. Of course, a book isn’t the perfect medium to describe a fast-growing
collection of tools, so the first thing we’ll do is point you to an online resource
where you can find more up-to-date information: https://kotlin.link/

 And to remind you again, Kotlin is fully compatible with the entire Java library
ecosystem. When looking for the right library for your problem, you shouldn’t
need to restrict your search to libraries written in Kotlin—standard Java libraries
work just as well. Now let’s look at some libraries that are worth exploring. Some of
the Java libraries offer Kotlin-specific extensions with more clean and idiomatic
APIs, and you should strive to use such extensions whenever they are available.

C.1 Testing
In addition to the standard JUnit and TestNG, which work well with Kotlin, the fol-
lowing frameworks offer a more expressive DSL for writing tests in Kotlin:

 KotlinTest (https://github.com/kotlintest/kotlintest)—A flexible ScalaTest-
inspired test framework, mentioned in chapter 11, that supports a number of
different layouts for writing tests

 Spek (https://github.com/jetbrains/spek)—A BDD-style test framework for
Kotlin, originally started by JetBrains and now maintained by the community

If you’re fine with JUnit and are only interested in a more expressive DSL for asser-
tions, check out Hamkrest (https://github.com/npryce/hamkrest). If you’re using
mocking in your tests, you should definitely look at Mockito-Kotlin (https://
github.com/nhaarman/mockito-kotlin), which solves some of the issues of mock-
ing Kotlin classes and provides a nicer DSL for mocking.
320

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://kotlin.link/
https://github.com/kotlintest/kotlintest
https://github.com/jetbrains/spek
https://github.com/nhaarman/mockito-kotlin
https://github.com/nhaarman/mockito-kotlin
https://github.com/npryce/hamkrest

321Web applications
C.2 Dependency injection
Common Java dependency injection frameworks, such as Spring, Guice and Dagger,
work well with Kotlin. If you’re interested in a Kotlin-native solution, check out Kodein
(https://github.com/SalomonBrys/Kodein), which provides a nice Kotlin DSL for
configuring the dependencies and has a very efficient implementation.

C.3 JSON serialization
If you need a heavier-duty solution for JSON serialization than the JKid library
described in chapter 10, you have a lot to choose from. If you prefer to use Jackson,
jackson-module-kotlin (https://github.com/FasterXML/jackson-module-kotlin) pro-
vides deep Kotlin integration, including support for data classes. For GSON, Kotson
(https://github.com/SalomonBrys/Kotson) provides a nice set of wrappers. And if
you’re after a lightweight, pure Kotlin solution, check out Klaxon (https://
github.com/cbeust/klaxon).

C.4 HTTP clients
If you need to build a client for a REST API in Kotlin, look no further than Retrofit
(http://square.github.io/retrofit). It’s a Java library, also compatible with Android,
and it works smoothly with Kotlin. For a lower-level solution, check out OkHttp
(http://square.github.io/okhttp/), or Fuel, a pure Kotlin HTTP library (https://
github.com/kittinunf/Fuel).

C.5 Web applications
If you’re developing a server-side web application, the most mature options available
today are Java frameworks such as Spring, Spark Java, and vert.x. Spring 5.0 will
include Kotlin support and extensions out of the box. For using Kotlin with earlier
versions of Spring, you can find additional information and helper functions in the
Spring Kotlin project (https://github.com/sdeleuze/spring-kotlin). vert.x provides
official support for Kotlin as well: https://github.com/vert-x3/vertx-lang-kotlin/

 For pure Kotlin solutions, you can consider the following options:

 Ktor (https://github.com/Kotlin/ktor)—A JetBrains research project exploring
how to build a modern, full-featured web application framework with an idiom-
atic API

 Kara (https://github.com/TinyMission/kara)—The original Kotlin web frame-
work, used in production by JetBrains and other companies

 Wasabi (https://github.com/wasabifx/wasabi)—An HTTP framework built on
top of Netty, with an expressive Kotlin API

 Kovert (https://github.com/kohesive/kovert)—A REST framework built on top
of vert.x
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

http://square.github.io/retrofit
http://square.github.io/okhttp/
https://github.com/SalomonBrys/Kodein
https://github.com/FasterXML/jackson-module-kotlin
https://github.com/SalomonBrys/Kotson
https://github.com/cbeust/klaxon
https://github.com/cbeust/klaxon
https://github.com/kittinunf/Fuel
https://github.com/kittinunf/Fuel
https://github.com/sdeleuze/spring-kotlin
https://github.com/kohesive/kovert
https://github.com/Kotlin/ktor
https://github.com/TinyMission/kara
https://github.com/wasabifx/wasabi
https://github.com/vert-x3/vertx-lang-kotlin/

322 APPENDIX C The Kotlin ecosystem
For your HTML-generation needs, check out kotlinx.html (https://github.com/
kotlin/kotlinx.html), which we discuss in chapter 11. Or, if you prefer a more tradi-
tional approach, use a Java template engine such as Thymeleaf (www.thymeleaf.org).

C.6 Database access
In addition to traditional Java options such as Hibernate, you have a number of
Kotlin-specific choices for your database-access needs. We have the most experience
with Exposed (https://github.com/jetbrains/Exposed), a SQL-generation framework
discussed a few times in the book. A number of alternatives are listed at https://
kotlin.link.

C.7 Utilities and data structures
One of the most popular new programming paradigms these days is reactive program-
ming, and Kotlin is really well-suited for it. RxJava (https://github.com/ReactiveX/
RxJava), the de-facto standard reactive programming library for the JVM, offers official
Kotlin bindings at https://github.com/ReactiveX/RxKotlin.

 The following libraries provide utilities and data structures that you may find use-
ful in your projects:

 funKTionale (https://github.com/MarioAriasC/funKTionale)—Implements a
broad range of functional programming primitives (such as partial function
application)

 Kovenant (https://github.com/mplatvoet/kovenant)—An implementation of
promises for Kotlin and Android

C.8 Desktop programming
If you're building desktop applications on the JVM these days, you're most likely using
JavaFX. TornadoFX (https://github.com/edvin/tornadofx) provides a powerful set of
Kotlin adapters for JavaFX, making it natural to use Kotlin for desktop development.
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxKotlin
https://github.com/kotlin/kotlinx.html
https://github.com/kotlin/kotlinx.html
www.thymeleaf.org
https://github.com/jetbrains/Exposed
https://kotlin.link
https://kotlin.link
https://github.com/MarioAriasC/funKTionale
https://github.com/mplatvoet/kovenant
https://github.com/edvin/tornadofx

index
Symbols

-= operator 177
! negation 116
!! (not-null assertion) 141–143, 145, 152
!in operator 39
!is operator 88
? (Elvis operator) 4, 139–140, 147, 159, 170
?. (Safe call operator) 137–138, 148, 170
. (dot character) 62, 94
.. operator 36
{ } (curly braces) 106
@ character 219, 255–256
* operator

overview 59, 168, 175
using instead of type argument 248–252

/ operator 175
% operator 175
+ operator 175
++ operator 179
+= operator 174, 177
== operator 88
=== operator 180
$ prefix 42
${} syntax 22

A

abstract class 72
abstract modifier 70, 72–73
accessor methods 24
accessor visibility, changing 86–87
action variable 201
actionPerformed function 143
Activity.onCreate method 127
add method 92

addAll method 92
age property 4, 106, 154, 260
alert function 309
AlertDialogBuilder class 309
all function 115–116
alphabet function 129–131
Android applications, building with Gradle 314
Android framework 9–10
Android Studio, plug-in for 14
androidTest source 315
Anko 63, 309
annotation modifier 260
annotation processing, building projects that

use 314–315
ANNOTATION_CLASS 261
annotations

annotation targets 256–258
applying 255–256
classes as annotation parameters 262–264
controlling how processed 261–262
customizing serialization with 270–273
declaring 260–261
meta-annotations 261–262
using to customize JSON serialization 258–260

AnnotationTarget enum 261
anonymous functions 220
anonymous objects 100
Ant, building Kotlin code with 315–316
Any class 181
any function 115–116
Any type 157, 170
APIs, structured 288–299
append method 269, 290
Appendable interface 229
applications, Kotlin 7–10

Android 9–10
server side 8–9
323

Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX324
apply function 128, 130–131, 211, 291–292
apply plugin, ’kotlin’ 314
apt tool 314
args array 22
arithmetic operators, overloading 174–179

binary arithmetic operations 174–177
compound assignment operators 177–178
unary operators 178–179

Array constructor 168
ArrayList class 151, 163, 227
arrayOf function 168, 256
arrayOfNulls function 168
as keyword 33, 53, 140
as? operator 140–141, 170
asSequence() function 122
author variable 225
autoIncrement method 307
average function 209

B

backing field 85
backing property 191
bd variable 179
@Before annotation 145
BigDecimal class 179
BigInteger class 174
binary arithmetic operations 174–177
binary literals 156
binary operators 178
block body 19
block nesting, flexible, with invoke

convention 299–303
declaring dependencies in Gradle 301–303
functional types and 300–301
objects callable as functions 299–300

Book class 117
book.authors property 118
Boolean type 153–155
break statements 29, 218
BufferedReader.close method 41
build method 276
builderAction parameter 290
buildString function 131, 288, 290
Button class 55, 69–70, 75, 81, 123
button function 297
ButtonState class 75–76
by keyword

delegation of classes using 91–93
overview 189, 195

by lazy() method 190–191

C

cacheData map 279
Callable interface 124, 158

callback?.invoke() method 206
callBy() method 277–281
captured variables 110
CaseInsensitiveFileComparator 95
casts, combining type checks and 31–33
catch block 40–41
changeSupport class 192
character tokens 274
CharSequence class 186, 229
checked exception 41
class keyword 28
ClassCastException 12, 140, 232
classes

as annotation parameters 262–264
data classes 89–91
declaring and creating instance, combined

93–101
companion objects 96–97
object declarations 93–95
object expressions 100–101

declaring with nontrivial constructors or
properties 78–87
accessing backing field from getter or

setter 85
changing accessor visibility 86–87
implementing properties declared in

interfaces 83–85
initializing classes 79–81
primary constructor and initializer blocks

79–81
secondary constructors 81–83

defining class hierarchies 68–78
inner and nested classes 75–77
interfaces 68–70
open, final, and abstract modifiers 70–73
restricted 77–78
visibility modifiers 73–74

delegation of 91–93
generic

as annotation parameters 263–264
declaring 226–227

overview 23–28
universal object methods 87–89

equals() 88–89
hashCode() 89
toString() 87–88

ClassInfo class 276, 279
ClassInfoCache class 276, 279
clean APIs 283
click method 68
click variable 55
Clickable interface 69
Clickable.super.showOff() function 70
Client class 87–89
clientErrors variable 110
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX 325
close method 41
closed ranges 36, 185
code, Kotlin

building with Ant 315–316
building with Gradle 313–315
compiling 13–14
documenting

generating API documentation 318–319
writing documentation comments 317–318

coerceIn function 153
collections 57–60

conventions used for 182–186
in operator 184–185
index operator 182–184
iterator method for for loop 186

creating 45–46
extending Java collections API 57–58
functional APIs for 113–118

all 115–116
any 115–116
count 115–116
filter 113–115
find 115–116
flatMap and flatten 117–118
groupBy 117
map 113–115

infix calls and destructuring declarations 59–60
lambdas and 105–106
varargs feature 58–59

Collections class 49
Color class 30
Column class 198
command-query APIs 286
commutativity 176
companion objects 93, 96–97

as regular objects 98–100
extensions 99–100
implementing interfaces in 98–99

Comparable interface 39, 181, 227
compare method 243
compareTo method 181–182
compareValuesBy function 182
comparison operators, overloading 180–182

equality operators 180–181
ordering operators 181–182

compile method 301
compile-time constant 256
compiling code 13–14
component1 function 189
component2 function 189
componentN function 187–188
compound assignment operators 177–178
conciseness of Kotlin 11
const modifier 86, 256
constructor keyword 79, 82

constructor reference 112
ContactListFilters class 208
contains function 184
contravariance 243
control flow, in higher-order functions 217–221

anonymous functions 220–221
return statements in lambdas 217–218
returning from lambdas 218–220

copy() method 90–91
copyData function 248
CopyRowAction 143
count function 115–116
counter property 86
countryName function 139
covariant 240
createCompositeProperty method 275
createRandomRectangle function 27
createSeedForType function 277
createSimpleTable function 288
createTable function 294
curly braces 106
custom accessors 25–26
@CustomSerializer annotation 263, 272, 278

D

data classes 4, 7, 68, 78, 89–91
data modifier 90–91
data structures 322
database access 322
DataSerializer class 263, 272
day property 305
dec function 179
declaration-site variance 223, 246
declarations, destructuring 59–60
declarative DSLs 285
Decorator pattern 91
default keyword 69
default parameter values 48–49
defensive copy 162
Delegate class 190
delegated properties 86, 189–199

implementing 192–195
in frameworks 197–199
lazy initialization 190–191
overview 189–190
storing property values in map 196–197
translation rules 195–196

Delegates.observable function 199
DelegatingCollection 92
dependencies section, Gradle 314
dependency injection 321
DependencyHandler class 302
@Deprecated annotation 255, 318
deserialization 258
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX326
deserialize function 273
@DeserializeInterface annotation 262
destructure declarations 187
destructured property 62
destructuring

component functions 187–189
declarations 59–60, 187–189
loops 188–189

destructuring declaration 59
DialogInterface 309
directories 26–28
div function 175, 297
do-while loop 35
documenting Kotlin code

generating API documentation 318–319
writing documentation comments 317–318

doInit function 295
Dokka 318–319
domain-specific languages. See DSLs
dot character 62, 94
Double type 20, 136, 156
dropdown function 298
dropdownButton function 298
dropdownMenu function 298
DRY (don't repeat yourself) 64
@DslMarker annotation 294
DSLs (domain-specific languages) 282–285

building HTML with 287–288
flexible block nesting with invoke

convention 299–303
declaring dependencies in Gradle 301–303
functional types and 300–301
objects callable as functions 299–300

in practice 303–310
Anko library 309–310
defining extensions on primitive types

305–306
infix calls 303–305
member extensions 306–309

internal 285–286
lambdas with receivers in 288–299

enabling abstraction and reuse 296–299
extension function types and 288–292
using 292–296

structure of 286–287
dynamically typed languages 5

E

Eclipse plug-in 15
ecosystem of Kotlin

database access 322
dependency injection 321
HTTP clients 321
JSON serialization 321
testing 320

utilities and data structures 322
web applications 321–322

Effective Java 71
else branch 30, 77
Elvis operator 4, 139–140, 147, 159, 170
email property 84
emails property 191
endsWith 229
ensureAllParametersPresent 280
Entity class 198
enum classes

declaring 28–29
using when expression to deal with 29–30

equals method 88, 90, 141, 180–181, 308
eval function 33–34
evalWithLogging function 35
exceptions 39–42

catch block 40–41
finally block 40–41
try block 40–42

execute method 142
expando objects 196
Exposed framework 8, 285, 322
Expr class 77–78
Expr interface 31–32
expression body 19
extends keyword 68, 228
extension functions 51–57

calling from Java 53–54
imports and 53
no overriding for 55–56
properties 56–57
utility functions as extensions 54–55

extensions, for nullable types 146–148
external DSLs 285
external variables 110

F

fail function 158
feedAll function 241
field identifier 85, 193
FieldValidator interface 250
file target 257
filter function 113–115, 119–121, 201, 203, 209, 214
filterIsInstance function 233, 235
filterKeys function 115
filterNotNull function 161
filterValues 115
final keyword 70
final modifier 70, 72–73
final variables 110
finally block 40–41
find function 115–116, 121
findAnnotation function 270
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX 327
first-class functions 6
firstName property 260, 271
firstOrNull 116
flatMap function 117–118
flatten function 117–118
Float type 156
floating-point constant 20
Focusable interface 70
foo function 293
foo.p property 190
for loop

iterator method for 186
overview 109

for-each loop 35
forEach function 109, 218
forEachIndexed function 169
fragile base class problem 71
fromJSON function 100
Fuel 321
fully statically typed 284
fun keyword 18–19, 42, 221
function caller 39
Function interface 245
function types 201
functional and object-oriented 6–7
functional interfaces 124
functional types 6–7
FunctionN type 204, 300
functions 18–20

extension functions 51–57
calling from Java 53–54
imports and 53
no overriding for 55–56
properties 56–57
utility functions as extensions 54–55

generic 224–226
local functions and extensions 64–66
making easier to call 46–51

default parameter values 48–49
named arguments 47–48
top-level functions 49–51
top-level properties 51

objects callable as 299–300
See also collection; higher-order functions;

strings
funKTionale 322

G

generateSequence function 122
generics

at runtime 230–236
declaring functions with reified type

parameters 233–235
replacing class references with reified type

parameters 235–236

restrictions on reified type parameters 236
type checks and casts 230–233

generic type parameters 224–230
declaring generic classes 226–227
generic functions and properties 224–226
making type parameters non-null 229–230
type parameter constraints 227–229

subtyping and 237–252
classes, types, and 238–240
passing argument to a function 237–238
preserved subtyping relation 240–243
reversed subtyping relation 243–245
specifying variance for type occurrences

246–248
using * instead of type argument 248–252

geometry package 27
geometry.shapes package 27
get keyword 86
get method 183, 242, 283
getCurrentState method 75
getFacebookName function 84
getName method 24–25, 150
getPredicate method 209
getSerializer function 272
getShippingCostCalculator 207
Getter interface 268
getValue method 190–191, 195, 199
GitHub 7, 306
giveSpeech function 73
Gradle build scripts 287
Gradle DSL

building Android applications with 314
building Kotlin code with 313–315
declaring dependencies in 301–303

Greeter 300
Groovy 292
groupBy method 117, 286

H

hashCode method 89–90
HashMap 90
HashSet class 89, 163
Herd class 240–241
hexadecimal literals 156
higher-order functions

control flow in 217–221
anonymous functions 220–221
return statements in lambdas 217–218
returning from lambdas 218–220

declaring 201–211
calling functions passed as arguments 202–204
default and null values for parameters with

function types 205–207
function types 201–202
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX328
higher-order functions (continued)
removing duplication through lambdas

209–211
returning functions from functions 207–209
using function types from Java 204–205

inline functions 211–217
how inlining works 211–213
inlined lambdas for resource

management 216–217
inlining collection operations 214–215
restrictions on 213–214
when to declare functions as 215–216

HTML (HyperText Markup Language) 8, 287–288
HTTP clients 321

I

identity equals operator 180
if checks 135
if expression 19, 145

blocks as branches of 34–35
replacing with when expression 33–34

IllegalArgumentException 232, 278
immutable objects 6
immutable variables 21, 110
implements keyword 68
import keyword 26
imports, extension functions and 53
in check 88
in keyword 38, 244
in operator

overview 184–185
using to check values 38–39

inc function 179
inclusive ranges 36
index operator 182–184
infix calls 59–60
infix function 283, 303
@inheritdoc annotation 318
init keyword 79
initializer blocks 78–81
initializing classes 79–81
inline functions 126, 200, 211–217, 233

how inlining works 211–213
inlined lambdas for resource management

216–217
inlining collection operations 214–215
restrictions on 213–214
when to declare functions as 215–216

inline keyword 211, 215
inner classes 75–77
inner keyword 102
inner modifier 76
Install JetBrains Plugin button, Android Studio 14
INSTANCE field 95
instanceof operator 136

instanceof, Java 33
Int parameter 290
Int type 20, 153–154, 157
Int.toLong() function 155
intArrayOf function 169
integer method 307
Intel Multi-OS Engine 5
IntelliJ IDEA plug-in 11, 14, 47
interactive shell 15
interface keyword 68
interfaces 68–70
intermediate operation 120
internal modifier 73–74
internal visibility 73
interoperability of Kotlin 12–13
invoke convention, flexible block nesting

with 299–303
declaring dependencies in Gradle 301–303
functional types and 300–301
objects callable as functions 299–300

invoke method 204, 266, 300–302
IOException 41
is checks 33, 88, 231
is operator 252
isBlank function 147
isBlankOrNull function 147
isEmpty function 147
isEmptyOrNull function 147
isEnabled function 143
isSquare method 25–26
it convention 108
it parameter 225
item function 297
iterator method 119, 186

J

Jackson 321
Java

calling extension functions from 53–54
functional interfaces, lambdas using 123–127

passing lambda as parameter to Java
method 124–126

SAM constructors 126–127
nullability and 149–153

inheritance 152–153
platform types 149–152

using function types from 204–205
Java collections API, extending 57–58
java command 14
Java-to-Kotlin converter 15
java.lang.Class 236
java.lang.Comparable interface 39
java.lang.Iterable 173
java.lang.Object 157
java.lang.Thread 48
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX 329
java.nio.CharBuffer class 229
java.util package 164
java.util.Collection parameter 164
java.util.Comparator interface 94
javaClass property 45, 265
JavaFX 5
javax.annotation package 149
join function 54
join.kt file 50
joinToString function 46–48, 50–51, 54, 107, 205
joinToStringBuilder function 269
JSON

parsing and object deserialization 273–277
serialization, using annotations to

customize 258–260
@JsonExclude annotation 259–260, 270
JSONFactory interface 98
@JsonName annotation 259, 271
jsonNameToDeserializeClass 280
jsonNameToParam map 280
JsonObject interface 274
@JvmField annotation 86, 258
@JvmName annotation 50, 258
@JvmOverloads annotation 49, 258
@JvmStatic annotation 99, 258

K

KAnnotatedElement interface 270
kapt configuration 315
kaptAndroidTest configuration 315
kaptTest configuration 315
Kara 321
KCallable 265–268
KCallable.call method 277
KCallable.callBy 278
KClass 250, 265–268, 273
key variable 60
key/value pairs 259
KFunction 265–268
kFunction.call() function 266
Klaxon 321
Kodein 321
Kotlin

applications 7–10
Android 9–10
server side 8–9

examples 3–4
philosophy of 10–13

concise 11
interoperable 12–13
pragmatic 10–11
safe 12

primary traits of 4–7
free and open source 7
functional and object-oriented 6–7

statically typed 5–6
target platforms 4–5

tools 13–15
compiling code 13–14
Eclipse plug-in 15
interactive shell 15
Java-to-Kotlin converter 15
online playground 15
plug-in for IntelliJ IDEA and Android

Studio 14
when expression, using to deal with enum

classes 29–30
kotlin property 265
kotlin.Collection 161
kotlin.MutableCollection interface 161
kotlinc command 14–15
KotlinTest 320
kotlintest 287
kotlinx 296
Kotson 321
Kovenant 322
Kovert 321
KProperty 196, 265–268
Ktor 321

L

lambdas 7
accessing variables in scope 109–111
apply function 130–131
collections and 105–106
functional APIs for collections 113–118

all, any, count, and find 115–116
filter and map 113–115
flatMap and flatten 117–118
groupBy 117

inlined, for resource management 216–217
member references 111–113
overview 104
removing duplication through 209–211
return statements in 217–218
returning from 218–220
sequences 118–123

creating 122–123
executing sequence operations 120–122

syntax for 106–109
using Java functional interfaces 123–127

passing lambda as parameter to Java
method 124–126

SAM constructors 126–127
with function 128–130
with receivers 128, 288
with receivers in DSLs 288–299

enabling abstraction and reuse 296–299
extension function types and 288–292
using 292–296
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX330
last function 46, 58
lastChar method 54, 56
late-initialized properties 145–146
lateinit property 86, 146
lazy function 191, 199
lazy initialization 190–191
left argument 32
LengthCounter 86
let function 143–145, 148, 152
li function 298
LI tag 298
List interface 226, 242
list.selectedValue 143
listener 127
listOf function 224
listOfLists.flatten() function 118
loadEmails function 190
loadService function 235
local functions

extensions and 64–66
overview 63

LocalDate class 185, 305
Lock object 211
Long type 156

M

maintainability 5
map function 113–115, 118–121, 213, 215
Map interface 183
mapKeys function 115
mapOf function 59–60
maps

iterating over 37–38
storing property values in 196–197

mapValues 115
Markdown 317
Maven, building projects with 315
max function 19–20, 46, 58, 228
maxBy function 4, 105, 108
member property 267
member references 111–113
meta-annotations 261–262
metadata 255
methods, universal object methods 87–89

equals() 88–89
hashCode() 89
toString() 87–88

minus function 175
minusAssign function 178
mixOptimized function 31
Mockito-Kotlin 320
mod function 175
module 73
MouseAdapter 100

multiline triple-quoted strings 62–63
mutable variables 21, 110
MutableCollection implementation 92
MutableList interface 164, 237, 240, 246
MutableMap interface 183
MutableSet interface 164
MyButton class 83
myService property 146

N

name property 4, 24, 194
named arguments 47–48
naturalNumbers 122
nested classes 67, 75–77, 102
new keyword 25, 40, 80
New Project dialog, IntelliJ IDEA 14
nickname property 84
noinline modifier 214, 236
non-data class 187
non-final variable 21
non-null parameter 135
not function 179
not-null assertion (!!) 141–143
Nothing type 158–159, 170
@NotNull annotation 136
null argument 134
null-coalescing operator 139
nullability 133–153

as? operator 140–141
Elvis operator 139–140
extensions for nullable types 146–148
Java and 149–153

inheritance 152–153
platform types 149–152

late-initialized properties 145–146
let function 143–145
meaning of types 136–137
not-null assertion (!!) 141–143
nullable primitive types 154–155
nullable types 134–136
of type parameters 148–149
Safe call operator (?.) 137–138

@Nullable annotation 136
nullable data 12
@Nullable String 149
nullable types 6, 133–134
NullPointerException 9, 12, 133–134, 142, 146, 150
Num class 77
Num node 31
number conversions 155–157
NumberFormatException 41–42, 157
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX 331
O

object keyword 68, 93
objectInstance property 272
ObjectListSeed class 275
objects 93–101

callable as functions 299–300
companion objects 96–97

as regular objects 98–100
extensions 99–100
implementing interfaces in 98–99

object declarations 93–95
object expressions 100–101
serialization of

implementing using reflection 268–270
ObjectSeed class 275
ObservableProperty 194
onClick method 111, 123–124
OnClickListener interface 104, 123–124, 127
onCreate method 145
online playground 15
open modifier 70–73
open range 185
open source 7
operator keyword 174, 299
Optional type 136
orderBy method 286
ordering operators 181–182
out keyword 240, 242
Outer class 76
overflow checks 156
overloaded methods 48
overloading

arithmetic operators 174–179
binary arithmetic operations 174–177
compound assignment operators 177–178
unary operators 178–179

comparison operators 180–182
equality operators 180–181
ordering operators 181–182

overriding modifier 69, 72, 89

P

package statement 26
package-private visibility 73
packages 26–28
Pair class 59, 188
parameter values, default 48–49
paramToSerializer map 280
parsePath function 62
passed in types 244
percentage variable 40
performance 5
Person class 3, 23–24, 98, 106, 195, 259, 272

philosophy of Kotlin 10–13
concise 11
interoperable 12–13
pragmatic 10–11
safe 12

plus method 173–175
plusAssign function 178
Point class 174, 180, 183
pragmatism of Kotlin 10–11
predicate parameter 203
prefix variable 110
primary constructor 78–81
primary traits of Kotlin 4–7

free and open source 7
functional and object-oriented 6–7
statically typed 5–6
target platforms 4–5

primaryKey method 307
primitive types 153–154
printFirst function 249
printIn 18
printShippingLabel function 140
printSum function 232
private constructor 81
private modifier 73
private visibility 73
process action 309
process function 158, 229
Process Has Stopped dialog 9
Processor class 229
Producer class 244
progressions 36–37
projects, building

that use annotation processing 314–315
with Maven 315

prop variable 270
properties 23–25

declared in interfaces, implementing 83–85
generic 224–226

property target 261
PropertyChangeEvent class 192
PropertyChangeSupport class 192, 195
propertyName parameter 274
protected modifier 73
public modifier 23, 73
public static final field 51

R

ranges
conventions used for 185–186
overview 36–37

rangeTo function 185–186
read-only collections 133, 163
read-only property 24
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX332
readers variable 225
real-world function 20
receiver object 52, 290
@receiver tag 318
receiver type 52
Rectangle.contains 184
Ref variable 111
reflection

callBy() and creating objects using 277–281
customizing serialization with annotations

270–273
implementing object serialization using 268–270
JSON parsing and object deserialization 273–277
Kotlin reflection API 265–268

Regex type 60
regular expressions, triple-quoted strings and

61–62
reified functions 233
reified type parameters 223

declaring functions with 233–235
replacing class references with 235–236
restrictions on 236

reliability 5
remove function 255
REPL 15
replaceWith parameter 255
restoreState method 75
restricted class hierarchies, defining 77–78
Retrofit 321
return expression 207
return operator 139
return statements 19, 33, 42, 217–218
right argument 32
@Rule annotation 256
Run button, Kotlin 4
run method 112, 125
Runnable interface 101, 124, 158
runtime library, Kotlin 14
runUnderLock function 213

S

s?.toUpperCase() expression 137
s.isNullOrBlank() function 148
Safe call operator (?.) 137–138
safe multithreading 7
safe-cast operator 140
safety of Kotlin 12
SAM (single abstract method) 124, 126–127
@sample tag 318
saveUser 66
sb.builderAction() function 290
sealed classes 77–78, 102
sealed modifier 68
secondary constructors 81–83

Seed interface 275
select method 308
selectAll method 286
sendEmailTo function 144
Sequence.map function 213
sequences 119
serialize function 259, 269
serializeProperty function 271, 273
serializePropertyValue function 270
serializerClass parameter 263
serializeString function 269
server side applications 8–9
serverErrors variable 110
ServiceLoader 235
set function 184
set keyword 86
setFocus 70
setName method 25
setOf function 30
setOnClickListener method 123
setSimpleProperty 274
Setter interface 268
setValue method 190, 195, 199
shapes package 27
should function 303–305
showOff method 56, 69
side effects 6
single abstract method. See SAM
Singleton pattern 93–95
SiteVisit class 209
size parameter 169
slash symbol 62
slice function 225
smart casts 17, 28, 31
soft keyword 28
sortedWith function 94, 244
source roots 314
spawn function 276
spawn method 277
Spek 320
split method 60–61
splitting strings 60–61
spread operator 59, 168
Spring Kotlin project 321
SqlExpressionBuilder object 308
square brackets 183
Stack Overflow 60
star import 27
star projection syntax

overview 231
using instead of type argument 248–252

startWith class 304
State interface 75
static class 76
static keyword 96
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX 333
static utility classes, getting rid of 49–51
statically typed programming language, Kotlin

as 5–6
step 37
Stream.map method 246
@Strictfp annotation 258
strictfp keyword 258
String class 39, 52, 117, 136, 227
string templates 22
String type 21
String.toIntOrNull function 160
String.toUpperCase 137
stringBuilder argument 129
StringBuilder class 22, 46, 57, 229, 289
StringList class 227
StringProcessor interface 152
strings 60–63

splitting 60–61
triple-quoted strings

multiline 62–63
regular expressions and 61–62

strings package 50
strLen function 134
subList method 242
SubscribingUser 83–84
substringAfterLast function 61
substringBeforeLast function 61
subtyping, generics and 237–252

classes, types, and 238–240
passing argument to a function 237–238
preserved subtyping relation 240–243
reversed subtyping relation 243–245
specifying variance for type occurrences 246–248
using * instead of type argument 248–252

Sum class 77
Sum node 31
sum variable 201–202
super keyword 70, 82
supertype 238
@Suppress annotation 257
switch statement 28–29
synchronized function 212, 216
synthetic compiler-generated types 267

T

T parameter 148, 206, 225–226, 228
Table class 306–307
table function 293–294
TagConsumer class 299
TalkativeButton type 74
@Target annotation 261
target argument 162
target platforms 4–5
td function 293–294

td tag 288
TemporaryFolder rule 256
terminal operation 120
@Test annotation 256
test source 315
testing 320
TextView 130–131
this expressions 220
this keyword 82, 127
throw operator 40, 139
timeout parameter 256
times function 175
to function 45, 59–60
toList function 118–119
tool support 6
tools, Kotlin 13–15

compiling code 13–14
Eclipse plug-in 15
interactive shell 15
Java-to-Kotlin converter 15
online playground 15
plug-in for IntelliJ IDEA and Android Studio 14

top-level functions 49–51
top-level properties 51
toRegex function 61
toSet function 118
toString() method 46, 87–88, 90, 107, 130, 205
toTypedArray method 168
toUpperCase function 150
tr function 293–294
TR tag 294
transform parameter 213
trimMargin function 63
Triple class 188
triple-quoted strings

multiline 62–63
regular expressions and 61–62

try block 40–42
try keyword 42
try-with-resources statement 216
try/finally statement 216
type arguments 224
type checks, combining casts and 31–33
type erasure 230
type inference 5, 20
type parameters

constraints 227–229
making non-null 229–230
nullability of 148–149
reified type parameters

declaring functions with 233–235
replacing class references with 235–236
restrictions on 236

type projection 247
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

INDEX334
type system
Any and Any? types 157
arrays 167–169
collections

as platform types 165–167
Java and 163–165
nullability and 159–161
read-only and mutable collections 161–163

Nothing type 158–159
nullability 133–153

as? operator 140–141
Elvis operator 139–140
extensions for nullable types 146–148
Java and 149–153
late-initialized properties 145–146
let function 143–145
meaning of types 136–137
not-null assertion (!!) 141–143
nullable primitive types 154–155
nullable types 134–136
of type parameters 148–149
Safe call operator (?.) 137–138

number conversions 155–157
primitive types 153–154
Unit type 157–158

type-safe builders 292
types 288–292

U

UL class 298
unary operators 178–179
unaryMinus function 179
unaryPlus function 179
Unit parameter 290
Unit type 157–158
universal object methods 87–89

equals() 88–89
hashCode() 89
toString() 87–88

until function 37
update method 142
upper bound types 227
use function 217
use-site variance 246, 256
User class 80, 198
User parameter 65
User.validateBeforeSave 66

utilities 322
utility classes, static 49–51
utility functions, as extensions 54–55

V

val keyword 79
val property 51
Validators object 251
value method 23, 261
value variable 60
ValueListSeed class 275
values, using in operator to check 38–39
ValueSerializer interface 263–264, 278
var property 21, 24, 51
vararg keyword 57–59
varchar method 307
variables 20–21
View class 55, 81
View interface 75
visibility modifiers 73–74
void argument 205
void type 157
@Volatile annotation 258
volatile keyword 258

W

Wasabi 321
web applications 321–322
when expression 20, 28, 77

blocks as branches of 34–35
replacing if expression with 33–34
using to deal with enum classes 29–30
using with arbitrary objects 30
using without an argument 31

while loop 35
wildcard types 246
wildcards 249
with function 128, 132, 211, 292
withIndex function 60
withLock function 212, 216
wrapper types 157

Z

zero-argument function 113
Licensed to Édouard WILLISSECK <edouard.willisseck@gmail.com>

Jemerov ● Isakova

D
evelopers want to get work done—and the less hassle, the
better. Coding with Kotlin means less hassle. The Kotlin
programming language offers an expressive syntax, a

strong intuitive type system, and great tooling support along
with seamless interoperability with existing Java code, librar-
ies, and frameworks. Kotlin can be compiled to Java bytecode,
so you can use it everywhere Java is used, including Android.
And with an effi cient compiler and a small standard library,
Kotlin imposes virtually no runtime overhead.

Kotlin in Action teaches you to use the Kotlin language for
production-quality applications. Written for experienced Java
developers, this example-rich book goes further than most
language books, covering interesting topics like building
DSLs with natural language syntax. The authors are core
Kotlin developers, so you can trust that even the gnarly
details are dead accurate.

What’s Inside
● Functional programming on the JVM
● Writing clean and idiomatic code
● Combining Kotlin and Java
● Domain-specifi c languages

This book is for experienced Java developers.

Dmitry Jemerov and Svetlana Isakova are core Kotlin developers
at JetBrains.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/kotlin-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

Kotlin IN ACTION

JAVA/PROGRAMMING LANGUAGES

M A N N I N G

“Explains high-level
concepts and provides all the
necessary details as well.”

—From the Foreword by
Andrey Breslav

Lead Designer of Kotlin

“Like all the other great
in Action titles from

Manning, this book gives
you everything you need to

become productive quickly.”
—Kevin Orr, Sumus Solutions

“Kotlin is fun and easy to
learn when you have this
 book to guide you!”—Filip Pravica, Info.nl

“Thorough, well written,
 and easily accessible.”

—Jason Lee, NetSuite

SEE INSERT

	Kotlin in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	Code conventions and downloads
	Author Online
	Other online resources

	about the authors
	about the cover illustration
	Part 1 Introducing Kotlin
	1 Kotlin: what and why
	1.1 A taste of Kotlin
	1.2 Kotlin’s primary traits
	1.2.1 Target platforms: server-side, Android, anywhere Java runs
	1.2.2 Statically typed
	1.2.3 Functional and object-oriented
	1.2.4 Free and open source

	1.3 Kotlin applications
	1.3.1 Kotlin on the server side
	1.3.2 Kotlin on Android

	1.4 The philosophy of Kotlin
	1.4.1 Pragmatic
	1.4.2 Concise
	1.4.3 Safe
	1.4.4 Interoperable

	1.5 Using the Kotlin tools
	1.5.1 Compiling Kotlin code
	1.5.2 Plug-in for IntelliJ IDEA and Android Studio
	1.5.3 Interactive shell
	1.5.4 Eclipse plug-in
	1.5.5 Online playground
	1.5.6 Java-to-Kotlin converter

	1.6 Summary

	2 Kotlin basics
	2.1 Basic elements: functions and variables
	2.1.1 Hello, world!
	2.1.2 Functions
	2.1.3 Variables
	2.1.4 Easier string formatting: string templates

	2.2 Classes and properties
	2.2.1 Properties
	2.2.2 Custom accessors
	2.2.3 Kotlin source code layout: directories and packages

	2.3 Representing and handling choices: enums and “when”
	2.3.1 Declaring enum classes
	2.3.2 Using “when” to deal with enum classes
	2.3.3 Using “when” with arbitrary objects
	2.3.4 Using “when” without an argument
	2.3.5 Smart casts: combining type checks and casts
	2.3.6 Refactoring: replacing “if” with “when”
	2.3.7 Blocks as branches of “if” and “when”

	2.4 Iterating over things: “while” and “for” loops
	2.4.1 The “while” loop
	2.4.2 Iterating over numbers: ranges and progressions
	2.4.3 Iterating over maps
	2.4.4 Using “in” to check collection and range membership

	2.5 Exceptions in Kotlin
	2.5.1 “try”, “catch”, and “finally”
	2.5.2 “try” as an expression

	2.6 Summary

	3 Defining and calling functions
	3.1 Creating collections in Kotlin
	3.2 Making functions easier to call
	3.2.1 Named arguments
	3.2.2 Default parameter values
	3.2.3 Getting rid of static utility classes: top-level functions and properties

	3.3 Adding methods to other people’s classes: extension functions and properties
	3.3.1 Imports and extension functions
	3.3.2 Calling extension functions from Java
	3.3.3 Utility functions as extensions
	3.3.4 No overriding for extension functions
	3.3.5 Extension properties

	3.4 Working with collections: varargs, infix calls, and library support
	3.4.1 Extending the Java Collections API
	3.4.2 Varargs: functions that accept an arbitrary number of arguments
	3.4.3 Working with pairs: infix calls and destructuring declarations

	3.5 Working with strings and regular expressions
	3.5.1 Splitting strings
	3.5.2 Regular expressions and triple-quoted strings
	3.5.3 Multiline triple-quoted strings

	3.6 Making your code tidy: local functions and extensions
	3.7 Summary

	4 Classes, objects, and interfaces
	4.1 Defining class hierarchies
	4.1.1 Interfaces in Kotlin
	4.1.2 Open, final, and abstract modifiers: final by default
	4.1.3 Visibility modifiers: public by default
	4.1.4 Inner and nested classes: nested by default
	4.1.5 Sealed classes: defining restricted class hierarchies

	4.2 Declaring a class with nontrivial constructors or properties
	4.2.1 Initializing classes: primary constructor and initializer blocks
	4.2.2 Secondary constructors: initializing the superclass in different ways
	4.2.3 Implementing properties declared in interfaces
	4.2.4 Accessing a backing field from a getter or setter
	4.2.5 Changing accessor visibility

	4.3 Compiler-generated methods: data classes and class delegation
	4.3.1 Universal object methods
	4.3.2 Data classes: autogenerated implementations of universal methods
	4.3.3 Class delegation: using the “by” keyword

	4.4 The “object” keyword: declaring a class and creating an instance, combined
	4.4.1 Object declarations: singletons made easy
	4.4.2 Companion objects: a place for factory methods and static members
	4.4.3 Companion objects as regular objects
	4.4.4 Object expressions: anonymous inner classes rephrased

	4.5 Summary

	5 Programming with lambdas
	5.1 Lambda expressions and member references
	5.1.1 Introduction to lambdas: blocks of code as function parameters
	5.1.2 Lambdas and collections
	5.1.3 Syntax for lambda expressions
	5.1.4 Accessing variables in scope
	5.1.5 Member references

	5.2 Functional APIs for collections
	5.2.1 Essentials: filter and map
	5.2.2 “all”, “any”, “count”, and “find”: applying a predicate to a collection
	5.2.3 groupBy: converting a list to a map of groups
	5.2.4 flatMap and flatten: processing elements in nested collections

	5.3 Lazy collection operations: sequences
	5.3.1 Executing sequence operations: intermediate and terminal operations
	5.3.2 Creating sequences

	5.4 Using Java functional interfaces
	5.4.1 Passing a lambda as a parameter to a Java method
	5.4.2 SAM constructors: explicit conversion of lambdas to functional interfaces

	5.5 Lambdas with receivers: “with” and “apply”
	5.5.1 The “with” function
	5.5.2 The “apply” function

	5.6 Summary

	6 The Kotlin type system
	6.1 Nullability
	6.1.1 Nullable types
	6.1.2 The meaning of types
	6.1.3 Safe call operator: “?.”
	6.1.4 Elvis operator: “?:”
	6.1.5 Safe casts: “as?”
	6.1.6 Not-null assertions: “!!”
	6.1.7 The “let” function
	6.1.8 Late-initialized properties
	6.1.9 Extensions for nullable types
	6.1.10 Nullability of type parameters
	6.1.11 Nullability and Java

	6.2 Primitive and other basic types
	6.2.1 Primitive types: Int, Boolean, and more
	6.2.2 Nullable primitive types: Int?, Boolean?, and more
	6.2.3 Number conversions
	6.2.4 “Any” and “Any?”: the root types
	6.2.5 The Unit type: Kotlin’s “void”
	6.2.6 The Nothing type: “This function never returns”

	6.3 Collections and arrays
	6.3.1 Nullability and collections
	6.3.2 Read-only and mutable collections
	6.3.3 Kotlin collections and Java
	6.3.4 Collections as platform types
	6.3.5 Arrays of objects and primitive types

	6.4 Summary

	Part 2 Embracing Kotlin
	7 Operator overloading and other conventions
	7.1 Overloading arithmetic operators
	7.1.1 Overloading binary arithmetic operations
	7.1.2 Overloading compound assignment operators
	7.1.3 Overloading unary operators

	7.2 Overloading comparison operators
	7.2.1 Equality operators: “equals”
	7.2.2 Ordering operators: compareTo

	7.3 Conventions used for collections and ranges
	7.3.1 Accessing elements by index: “get” and “set”
	7.3.2 The “in” convention
	7.3.3 The rangeTo convention
	7.3.4 The “iterator” convention for the “for” loop

	7.4 Destructuring declarations and component functions
	7.4.1 Destructuring declarations and loops

	7.5 Reusing property accessor logic: delegated properties
	7.5.1 Delegated properties: the basics
	7.5.2 Using delegated properties: lazy initialization and “by lazy()”
	7.5.3 Implementing delegated properties
	7.5.4 Delegated-property translation rules
	7.5.5 Storing property values in a map
	7.5.6 Delegated properties in frameworks

	7.6 Summary

	8 Higher-order functions: lambdas as parameters and return values
	8.1 Declaring higher-order functions
	8.1.1 Function types
	8.1.2 Calling functions passed as arguments
	8.1.3 Using function types from Java
	8.1.4 Default and null values for parameters with function types
	8.1.5 Returning functions from functions
	8.1.6 Removing duplication through lambdas

	8.2 Inline functions: removing the overhead of lambdas
	8.2.1 How inlining works
	8.2.2 Restrictions on inline functions
	8.2.3 Inlining collection operations
	8.2.4 Deciding when to declare functions as inline
	8.2.5 Using inlined lambdas for resource management

	8.3 Control flow in higher-order functions
	8.3.1 Return statements in lambdas: return from an enclosing function
	8.3.2 Returning from lambdas: return with a label
	8.3.3 Anonymous functions: local returns by default

	8.4 Summary

	9 Generics
	9.1 Generic type parameters
	9.1.1 Generic functions and properties
	9.1.2 Declaring generic classes
	9.1.3 Type parameter constraints
	9.1.4 Making type parameters non-null

	9.2 Generics at runtime: erased and reified type parameters
	9.2.1 Generics at runtime: type checks and casts
	9.2.2 Declaring functions with reified type parameters
	9.2.3 Replacing class references with reified type parameters
	9.2.4 Restrictions on reified type parameters

	9.3 Variance: generics and subtyping
	9.3.1 Why variance exists: passing an argument to a function
	9.3.2 Classes, types, and subtypes
	9.3.3 Covariance: preserved subtyping relation
	9.3.4 Contravariance: reversed subtyping relation
	9.3.5 Use-site variance: specifying variance for type occurrences
	9.3.6 Star projection: using * instead of a type argument

	9.4 Summary

	10 Annotations and reflection
	10.1 Declaring and applying annotations
	10.1.1 Applying annotations
	10.1.2 Annotation targets
	10.1.3 Using annotations to customize JSON serialization
	10.1.4 Declaring annotations
	10.1.5 Meta-annotations: controlling how an annotation is processed
	10.1.6 Classes as annotation parameters
	10.1.7 Generic classes as annotation parameters

	10.2 Reflection: introspecting Kotlin objects at runtime
	10.2.1 The Kotlin reflection API: KClass, KCallable, KFunction, and KProperty
	10.2.2 Implementing object serialization using reflection
	10.2.3 Customizing serialization with annotations
	10.2.4 JSON parsing and object deserialization
	10.2.5 Final deserialization step: callBy() and creating objects using reflection

	10.3 Summary

	11 DSL construction
	11.1 From APIs to DSLs
	11.1.1 The concept of domain-specific languages
	11.1.2 Internal DSLs
	11.1.3 Structure of DSLs
	11.1.4 Building HTML with an internal DSL

	11.2 Building structured APIs: lambdas with receivers in DSLs
	11.2.1 Lambdas with receivers and extension function types
	11.2.2 Using lambdas with receivers in HTML builders
	11.2.3 Kotlin builders: enabling abstraction and reuse

	11.3 More flexible block nesting with the “invoke” convention
	11.3.1 The “invoke” convention: objects callable as functions
	11.3.2 The “invoke” convention and functional types
	11.3.3 The “invoke” convention in DSLs: declaring dependencies in Gradle

	11.4 Kotlin DSLs in practice
	11.4.1 Chaining infix calls: “should” in test frameworks
	11.4.2 Defining extensions on primitive types: handling dates
	11.4.3 Member extension functions: internal DSL for SQL
	11.4.4 Anko: creating Android UIs dynamically

	11.5 Summary

	appendix A Building Kotlin projects
	A.1 Building Kotlin code with Gradle
	A.1.1 Building Kotlin Android applications with Gradle
	A.1.2 Building projects that use annotation processing

	A.2 Building Kotlin projects with Maven
	A.3 Building Kotlin code with Ant

	appendix B Documenting Kotlin code
	B.1 Writing Kotlin documentation comments
	B.2 Generating API documentation

	appendix C The Kotlin ecosystem
	C.1 Testing
	C.2 Dependency injection
	C.3 JSON serialization
	C.4 HTTP clients
	C.5 Web applications
	C.6 Database access
	C.7 Utilities and data structures
	C.8 Desktop programming

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	Kotlin in Action-back

