
Learn Computer
Science with Swi�

Computation Concepts, Programming
Paradigms, Data Management, and
Modern Component Architectures
with Swi� and Playgrounds
—
Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Learn Computer
Science with Swift

Computation Concepts,
Programming Paradigms, Data

Management, and Modern
Component Architectures with

Swift and Playgrounds

Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Learn Computer Science with Swift: Computation Concepts, Programming
Paradigms, Data Management, and Modern Component Architectures
with Swift and Playgrounds

ISBN-13 (pbk): 978-1-4842-3065-7		 ISBN-13 (electronic): 978-1-4842-3066-4
https://doi.org/10.1007/978-1-4842-3066-4

Library of Congress Control Number: 2017962300

Copyright © 2018 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Aaron Crabtree
Coordinating Editor: Jessica Vakili
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/978-1-
4842-3065-7. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jesse Feiler
Plattsburgh, New York, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3066-4
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: Thinking Computationally��1

Computer Science Today��2

Using Swift Playgrounds��3

Basic Concepts and Practices of Computer Science Today�����������������������������������5

Recognizing Patterns��6

Using Abstractions��8

Combining Patterns and Abstractions for Development�����������������������������������9

Fundamental Tasks for Developers��9

Formulating a Computational Problem���10

Modeling the Problem or Process��14

Practicing Decomposition���14

Rearranging and Recomposing the Project Pieces��15

Validating Abstractions���15

Here Comes the Code��16

Chapter 2: �Writing Code and Using Swift Playgrounds������������������������19

The Basics of Writing Code��19

Actions and Data��20

Combining Actions and Data��22

What Happens Behind the Code���23

About the Author��xi

About the Technical Reviewer��xiii

Introduction���xv

www.allitebooks.com

http://www.allitebooks.org

iv

Compiling and Interpreting Code���25

Using Swift Playgrounds ���26

Moving On to Paradigms��35

Chapter 3: �Exploring Programming Paradigms�����������������������������������37

Structured Programming���38

Object-Oriented Programming���41

Imperative Programming (Procedural Programming)��46

Declarative Programming��46

Concurrent Programming���47

Chapter 4: �Using Algorithms��49

Considering the Purpose of Algorithms��50

Creating a Numerology Algorithm��51

Looking Carefully at Algorithms���52

Functions��53

Objects���53

Design Patterns��53

Implementing the Numerology Algorithm in Swift��54

Implementing the Number Table��56

Implementing the Addition���62

Summary���67

Chapter 5: �Managing Control Flow: Repetition������������������������������������69

Getting Ready for a Multi-Step Control Flow Project with Random Numbers������70

Creating a Random Number Playground��72

Writing the Playground Code��77

Creating Many Random Numbers��83

Create a Repetition Loop��85

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Creating the Code to Repeat���85

Creating the Repetition Control (Limit)���86

Summary���89

Chapter 6: �Working with Data: Collections��91

Using Types��92

Scalar Data��93

Moving On to Collected Data��93

Using Arrays���94

Basic Terminology��96

Indexing Array Elements���97

Swift Arrays and Types���98

Declaring and Creating Arrays��98

Modifying a var array��101

Multi-Dimensional Arrays���104

Finding Array Elements��105

Adding and Deleting Array Elements��109

Looping Through an Array��111

Using Sets��112

Basic Set Terminology��113

Identifying and Finding Set Elements���113

Adding and Deleting Set Elements���115

Working with Sets��116

Using Dictionaries��116

Basic Dictionary Terminology���117

Declaring and Creating a Dictionary���117

Adding and Deleting Dictionary Elements��120

Summary���120

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 7: �Working with Data: Types��123

Why Types Matter���124

Looking at Stacks and Heaps���126

Storing Data at Runtime���126

Stacks and Queues���128

Heaps���129

Basic Types��131

Numeric Storage���131

Using Integers��131

Using Floating Point Numbers��132

Storing Strings and Characters��134

Creating New Types���134

Working with Tuples���138

Summary���141

Chapter 8: �Managing Control Flow: Conditionals, Switches, and
Enumerations���143

What’s Next?��143

Using Go To Statements…Or Not���146

Using Conditionals��150

Switching Control���158

Comparing Swift Switches to Other Languages���159

Exploring the Swift Switch Syntax���160

Using Advanced Switch Case Elements: Ranges��161

Using Advanced Switch Case Elements: Where Clauses������������������������������163

Using Enumerated Types��165

Swift’s Approach to Enumerated Types��166

Using Swift Enums with Switch Statements��167

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

Exploring Repetitions and Strides��171

While and Repeat-While Loops���172

For-in Loops��173

Using Strides��177

Summary���178

Chapter 9: �Storing Data and Sharing Data���179

What Is the Data?���181

Where Is the Data Stored?���183

Storing Data in Nonpersistent App Storage��185

Storing Data in Persistent App Storage��185

Storing Persistent Data Outside of App Storage on a Device�����������������������187

Storing Data in Shared Storage Locations��187

Who Is in Charge of the Data?���189

Ownership of Data��189

Data Integrity��190

Using Checksums���191

Using Timestamps and Other Data Markers���192

Version Control���193

How Is the Data Managed��194

Managing External Data���194

Formatting and Structuring Data��195

Handling Data That Is Not There: Swift Optionals��201

Summary���206

Chapter 10: �Building Components���207

Why Build Components��207

Advantages of Components: Reusability��209

Advantages of Components: Manageability���209

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

The Basic Components of Development Projects��210

Subroutines, Functions, Procedures, and Methods��������������������������������������210

Classes���214

Larger Building Blocks���215

Looking at Blocks and Recursion���216

Terminology: Blocks and Closures��216

Using a Closure���217

Recursion���219

Building a Function in Swift���219

Summary���231

Chapter 11: �Using Events to Guide Actions���������������������������������������233

Where Blocks Fit In��234

Using Actions and Messaging for Managing Flow Control Summary����������������235

Passing a Button Press/Tap/Click On to… Somewhere�������������������������������������236

Implement a Button with Known Action���236

Implement a Button with a Notification��241

Summary���248

Chapter 12: �Getting into Xcode��249

How to Write Software���250

Developing an App with Xcode��255

Setting Up the Project���255

Testing the Project (without Modifications)��259

Adding the Code and Interface���261

Testing the Project (with Modifications)���268

Debugging an App with Xcode���268

Summary���270

Table of ContentsTable of Contents

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3066-4_11#Sec121
http://www.allitebooks.org

ix

Chapter 13: �Bringing in People��271

Computability for People��271

The Development Questions��273

What Are You Doing?��274

Who Will Be Involved?��274

Why Will People Be Involved?���275

When Will It Happen?���275

Where Will the Project Run?���277

How Will You Know the Results?��278

Summary���279

Chapter 14: �Graphics and Visualization Techniques
and Problems���281

Introducing Utility Smart��282

Beginning the App (Utility Smart 1)��282

Refining the App (Utility Smart 2)���288

Code Snippets��291

Creating a Popover: Code���292

Creating a Popover: Storyboard��293

Summary���294

�Index��295

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Jesse Feiler is an author and developer focusing on nonprofits and

small businesses using innovative tools and technologies. Active in the

community, he has served on the boards of Mid-Hudson Library System

(including three years as president), Philmont Main Street Committee,

Philmont and Plattsburgh Public Libraries, HB Studio and Playwrights

Foundation, Plattsburgh Planning Board, Friends of Saranac River Trail,

Saranac River Trail Greenway, and Spectra Arts.

His apps include NP Risk — The Nonprofit Risk App (with Gail

B. Nayowith), Saranac River Trail, Minutes Machine, and Utility Smart.

They are available through Champlain Arts on the App Store at http://bit.

ly/ChamplainArts.

His large-scale projects have included contingency planning and

support for open market monetary policy and bank supervision operations

for the Federal Reserve Bank of New York’s Systems Development and

Data Processing functions as chief of the Special Projects Staff and the

System Components Division; implementation of the Natural Sales

Projection Model at Young & Rubicam (the first computer-based new

product projection model); development of the Mac client for Prodigy to

implement their first web browser; management information systems and

interfaces for legal offices, Apple, and The Johnson Company; as well as

consulting, writing, and speaking about the Year 2000 problem.

Smaller-scale projects for businesses and nonprofits have included

design and development of the first digital version of Josef Albers’s

Interaction of Color (for Josef and Anni Albers Foundation and Yale

University Press), database and website development for Archipenko

Foundation, along with rescue missions for individuals and organizations

http://bit.ly/ChamplainArts
http://bit.ly/ChamplainArts

xii

who found out about contingency planning when they least expected to

learn about it. Together with Curt Gervich, Associate Professor at State

University of New York College at Plattsburgh, he created Utility Smart, an

app to help people monitor their use of shared natural resources.

Jesse is founder of Friends of Saranac River Trail and of Philmont

Main Street Committee. He is heard regularly on The Roundtable from

WAMC Public Radio for the Northeast where he discusses the intersection

of society and technology. He is a speaker and guest lecturer as well as a

teacher and trainer specializing in the business and technology of iOS app

development. He also provides consulting services for organizations that

need help focusing on their objectives and the means to achieve them

with modern technology. He is co-author with Gail B. Nayowith of The

Nonprofit Risk Book as well as The Nonprofit Risk App — NP Risk).

About the AuthorAbout the Author

xiii

About the Technical Reviewer

A passionate developer and experience enthusiast, Aaron Crabtree has

been involved in mobile development since the dawn of the mobile device.

He has written and provided technical editing for a variety of books on the

topic, as well as taken the lead on some very cool, cutting-edge projects

over the years. His latest endeavor, building apps for augmented reality

devices, has flung him back where he wants to be: as an early adopter in an

environment that changes day by day as new innovation hits the market.

Hit him up on Twitter where he tweets about all things mobile and AR: @

aaron_crabtree

xv

Introduction

Computer Science is the study of computers and their operations. It

includes concepts of computability and how software is designed that are

now being taught to students as young as six years old. It also includes

complex concepts of the largest, latest, and most advanced computers and

systems. This book provides an introduction to people who want to learn

the basics for practical reasons: they want to understand the principles

of computer science that will help them to become developers (or better

developers). The focus is on practical applications of computer science.

Along those lines, Swift, the modern language developed originally at

Apple, is used for many examples that are shown in Swift playgrounds. You

will find practical discussions of issues as varied as debugging techniques

and user-interface design that are essential to know in order to build apps

today. Note that Swift playgrounds are used to demonstrate a number of

computer science concepts, but this is not a book solely about Swift. Not

all of the language constructs are demonstrated in the book.

There is one critical piece of advice I give to people who want to learn

how to develop apps, and that is to use them. Download and try to use

every app that you possibly can. Read reviews of apps. Talk to people about

their experiences. Too often, people jump into trying to write apps without

knowing what the state of the art (and of the marketplace) is today.

Many people have helped in the development of this book. Carole

Jelen of Waterside Productions has once again been instrumental in

bringing the book into being. At Apress, Jessica Valiki and Aaron Black

have been essential guides and partners in helping to shape the book and

its content.

xvi

In the course of writing this book, I’ve been lucky enough to be

involved in several app development projects that have provided case

studies and examples of the process of app development. Thanks are due

particularly to Curt Gervich, Maeve Sherry, and Michael Otton at Center

for Earth and Environmental Science at State University of New York

College at Plattsburgh as well as Sonal Patel-Dame of Plattsburgh High

School.

�Downloading Playgrounds for the Book
You can download playgrounds from the book from the author’s website at

champlainarts.com.

IntroductionIntroduction

1
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_1

CHAPTER 1

Thinking
Computationally

Computer science is the term that applies to the basic principles involved in

developing computer software and systems that incorporate that software. It

is abstract and theoretical in the sense that it typically is considered outside

the syntax and structure of specific computer languages and hardware.

That is the definition that we use in this book. If you explore other

books and articles on the Web (including descriptions of computer science

courses at all levels and types of education), you will find a wide array of

other definitions.

This chapter provides an overview of the topic and focuses on key

elements of computer science. This book provides a practical approach

to computer science, so you’ll see how the elements can fit into your work

rather than looking at a theoretical view of computer science. The focus is

on how you will use the concepts and principles of computer science in

building real apps.

The key elements of computer science are divided into two groups in

this book. The first is the pair of concepts that developers use as part of

their work every day:

•	 Recognizing patterns

•	 Using abstractions

2

Then you’ll see the four tasks that are used in every aspect of software

development from the largest system to the smallest component of a tiny

system. These tasks are the following:

•	 Formulating a computational problem

•	 Modeling the problem or process

•	 Practicing decomposition

•	 Validating abstractions

In the remaining chapters, you’ll find descriptions of syntax elements

and structures, but in this chapter, the focus is on the concepts you use to

carry out the basic software development tasks that are over and above

syntax and structure.

�Computer Science Today
Computer science principles and techniques are implemented in

computer hardware and software using various programming languages

and devices. Even users get into the picture as they learn to enter data,

share it with others, convert data from one format to another (think

spreadsheet to email) and a host of other tasks that demonstrate computer

science in action.

One of the challenges in teaching and learning computer science is

that in order to learn the principles, you have to have enough knowledge

and experience of computer hardware and software to understand how

they interact with computer science principles.

This has been a tremendous challenge for decades. If you want to

learn how to be a builder, you can start by building a doll house or a bird

house. Your materials might consist of paper and (if you want a permanent

structure) some glue or even staples. The basic principles of home

construction can be simply demonstrated and described.

Chapter 1 Thinking Computationally

3

The challenge with computer science is that to build a small project,

you may be able to write a single line of code, but, in order for it to run and

do something – anything – you need a computer, and it needs an operating

system. (This was true going back to the earliest days of computers.)

The computer today will consist of electronic components, and the

operating system today of even the most minimal computer is incredibly

complex. The steps you take to get to a “simple” computer science app are

enormous.

�Using Swift Playgrounds
If you have an iPad or Mac, you have access to Apple’s free Swift

Playgrounds tool. Together with the device itself, you have all of the

components you need to start to build simple apps with even a single line

of code.

Swift Playgrounds provides a massive infrastructure on top of which

you can write a few lines of code to start to explore computer science as

well as specific languages and techniques. You can run this code in the

playground and watch the results. (You can also modify the results and the

code as it is running if you want to experiment).

For your own use or for others, you can easily annotate the code.

Figure 1-1 shows a playground with annotations. It is running, and you can

see the result of the print statements at the bottom of the window. At the

right, you see a sidebar that monitors the code as it runs.

Chapter 1 Thinking Computationally

4

If you see Figure 1-1 in color, you can see that the elements of code

syntax are colored automatically to help you understand what is going

on in the code. This coloring and indentation happens automatically as

you type.

In this book, you will find a number of examples of computer science

principles that are demonstrated with Swift Playgrounds. You can

download them as described in the Introduction.

One very important point to know about Swift Playgrounds is that

the code you are writing is real. It is real in the sense that it is actual code

Figure 1-1.  Swift Playgrounds in action

Chapter 1 Thinking Computationally

5

written in the Swift programming language (the language for most iOS,

tvOS, and watchOS apps today as well as a number of macOS apps). You

can copy some code from an app you’re working on and paste it into a

playground so you can experiment with it. (There are some details on how

to do this in Chapter 7).

Note T he playground shown in Figure 1-1 is a real-life example
of using production code in a playground. This code is part of an
app that was not doing exactly what it should. It was isolated into
a playground where we could fiddle with the syntax until it worked
properly. Once that was done, the revised code was pasted back
into the app, and it’s now part of Utility Smart that you can download
for free in the App Store. If some of the code in Figure 1-1 seems
complex, you are right. It was line 35 that caused the confusion. You’ll
find out about the map function in Chapter 3.

�Basic Concepts and Practices of Computer
Science Today
These are the basic concepts and practices that developers use in their

everyday work whether it is designing complex systems or writing very

simple apps. They apply to software that is used for games, for accounting,

for managing assets (real estate or digital media), or just about anything

else people want their computers to do. If you want details of the history

of computer science and the major steps to today’s world, you can find a

great deal of information on the Web and in your local library. This section

is based on actual developers’ work.

You can learn these over time as you develop apps, and you can find

them in many books and articles. These concepts and practices are not

Chapter 1 Thinking Computationally

6

specific to computer science: they are part and parcel of many design and

development disciplines. (Don’t worry, the following section is devoted

specifically to software development).

Both of these concepts and practices stem from a very basic truth:

writing code is a complex and expensive process. Not only does the code

have to be written, but it also needs to be tested and revised over time.

Computer code can have a very long life. (When the Year 2000 problem

was addressed in the late 1990s, code from the 1950s and 1960s was found

in many production systems. The authors of the code in many cases were

retired or deceased, and what documentation that might have existed was

lost. Much of the cost of mitigating the Year 2000 problems derived from

rewriting existing code).

Because writing code is expensive, it is wise to minimize the amount

of code to be written and rewritten and tested. Both of these concepts help

to minimize the amount of code to be written. The overall theme is that to

write the best code possible (that is, well-written, well-tested, and well-

documented code) as quickly as possible, follow one simple rule: Don’t

Write Code. Failing that, write as little code as possible. And, to put it in a

more traditional way, use as much existing code as possible.

�Recognizing Patterns
If you recognize patterns, you may be able to reduce the amount of work

you have to do by seeing a pattern and realizing that you can implement

the pattern itself rather than each particular variation of it from scratch.

A classic example of patterns is shown in Figure 1-2, the west front of

Notre Dame in Paris. Your first reaction may be personal (perhaps you

have been to Paris) or it may be general – along the lines of how beautiful

the facade is. An architect, designer, or software developer might go

beyond the personal and the general to notice that this facade consists of

three doorways at the street level and two towers at the top level.

Chapter 1 Thinking Computationally

7

Figure 1-2.  West front of Notre Dame, Paris

Chapter 1 Thinking Computationally

8

The west front of Notre Dame presents a multitude of patterns that

repeat with slight variations. The three doorways at the first level are

similar in overall width and height, but if you look closely, they are

not copies of one another. Likewise, the two towers are fundamentally

the same, but they, too, have variations. Almost every other element

of the facade is part of a repeating pattern of one sort or another. (The

most obvious exception to this is the large rose window in the center

of the second level: it is unique, and its uniqueness reflects its religious

importance).

The importance of recognizing patterns is that once you do so, your

job in describing or implementing a concept (be it an app or a cathedral)

may be made easier. You no longer have to describe or build each detail or

component: you can describe the pattern that is replicated.

�Using Abstractions
Often, as is the case on the west front of Notre Dame, patterns are repeated

with variations. (The dimensions of the doorways are the same but the

decoration and meaning of the statues differ.) The part of the pattern that

repeats can be considered an abstraction – the essence of the pattern. In

computer terms, the abstraction can be what you need to implement to

support multiple uses of the pattern.

For example, if you need code to ask the user of an app for an address, that

can become part of a pattern that also allows you to ask the user for a name.

(The term design pattern is sometimes used to describe the reusable code).

Chapter 1 Thinking Computationally

9

�Combining Patterns and Abstractions for
Development
In practice, developers often work with patterns and abstractions at the

same time because they are really two sides of the same coin. In designing

an app (or a part of an app), developers look to patterns that they can

implement with the same basic code. This reduces the amount of code that

needs to be written.

As the design process continues, developers also look for near-patterns.

If parts of the project can be modified slightly, a pattern may emerge. This

is an iterative, creative, and judgmental process. Frequently, the extreme of

pattern-building may make the app more complex for people to use. As a

project evolves with input from users and developers, refinements can be

made on both sides (user and developer) so that a good balance is made

between repetitive patterns and customization for the user.

As part of this process, you frequently find yourself looking at the

suggested process to see not only if there is some pattern to reuse but also

if there is an abstraction that can be created so that the user sees extreme

customization (that is, ease of use) and the developer works on a generic

abstraction).

A lot of the coding techniques you’ll find in modern software

development help you to implement patterns and abstractions.

�Fundamental Tasks for Developers
Building on the basic principles of patterns and abstractions, you can

actually start to plan your project. There are four basic tasks for developers.

Once you’re familiar with them, the rest of the book explores specifics of

implementation.

•	 Formulating a computational problem

•	 Modeling the problem or process

Chapter 1 Thinking Computationally

10

•	 Practicing decomposition

•	 Validating abstractions

�Formulating a Computational Problem
The first step is formulating your project as a computational problem. This

is more than just saying, “Let’s build an app.” It means deciding not only

what your goal is but also why it is amenable to computation (that is, why

computer science comes into play). Computer science isn’t the answer

to everything: if you want to paint the dining room, it’s not going to be of

much help.

In theoretical computer science, there are at least five types of

computational problems. In deciding whether or not a specific project is

amenable to computerization, classic computer science suggests that you

find if it falls into one of these categories:

•	 Choice or decision. Find a yes/no answer to a specific

question. Typically, the question is phrased in terms of

numbers and values (is person X greater than 21 years

of age?, is value x odd or even?)

•	 Search. In this problem, a body of data is searched and

the choice/decision true values are returned. (Of all

students enrolled in a school, how many will be eligible

to vote in the next election?)

•	 Count. This variation asks merely how many values

would be returned from a search. Note that the

operations involved in a search can be more complex

than in a count – you don’t care who the students are

in this case so you don’t need to find out names or

addresses.

Chapter 1 Thinking Computationally

11

•	 Optimization. Of all results of a search, which is the

best? If the search is for all eligible voters near a specific

address, you can use the results to optimize the result

to find the voters near a specific address who voted in

the last election and have a car (so might be willing to

provide a ride to the polling place).

•	 Function. In effect, this is a search problem (which

in turn is built on a choice problem). It is further

refined with the optimizable results that can be further

narrowed down. A simplified description of a function

problem is one that returns a more complicated

answer than yes/no or a count. (Remember, this is a

simplification.)

If a problem is not one of these five, it is not computational. This may

sound bizarre because it’s hard to see where something like Pages or

Excel or even Swift Playgrounds fits into this list. Never fear: a project can

be broken down into computational pieces. In fact, if you really want to

delve deeply into the project, you’ll find that each line of code can often be

considered to consist of a number (often many) of computational pieces.

�Recognizing and Describing the Problem

Once you have formulated the problem, your task isn’t over. There are still

two very important aspects involved in formulating an idea for an app. In

fact, these are steps that you take at the beginning and, repeatedly, at many

stages through the development process. You may be chomping at the bit

wanting to get into code and technology, but you have to start with the

idea: what is the purpose of your project? If it’s to build an app, what does

the app do?

Chapter 1 Thinking Computationally

12

Perhaps the best guidance in formulating what your app does can be

found on websites like Kickstarter or any other resource that helps people

describe a not-yet-built project. You can answer any number of specific

questions, but you must somehow know what your project or app will

accomplish.

Many developers are happy to leave the marketing to other people,

but you must be able to describe the project in clear and specific terms for

many purposes beyond marketing. In the case of an app, one critical step

in the development process is getting an icon for the app. Icon design is a

very special area of design and graphic arts. Few developers produce final

icons (many provide rough sketches for development). You are likely to

need to sit with a graphic designer to discuss what the icon will look like.

That conversation starts out with the designer’s question: what does this

app do?

Tip T he conversation between app developer and designer can be
particularly useful in the development process because it can clarify
the project. This applies to any discussion with a non-developer.
Describing the app to a friend or relative can be very productive: they
tend to ask basic questions that can help you refine your design.

�Defining a Project and Goal

With a computational problem that you want to focus on and a description

of the problem in hand, you can move to defining a project and your goal.

The project in general is to refine the computational problem at the core

of your project and to make sure you can define it in appropriate terms

for anyone who needs to know about it (friends, relatives, colleagues,

investors, potential users, and the like).

Chapter 1 Thinking Computationally

13

Specifically, you need to start thinking about the scope of your project.

Part of computer science is learning to define projects and split them into

component parts if necessary. For a specific project, you may want to think

about how to break it into manageable components even if you intend to

do it in one process. Knowing how to split it apart if necessary can be a

helpful backup plan in case you need to do it in the future.

What Isn’t a Computational Problem

The most common non-computational problems you run across tend to

involve people and data. (Note that this is an entirely subjective point of

view based on personal experiences. But it is shared by many developers).

Sometimes an app is envisioned as something almost magical – it will

provide the answer to a question posed by the user. If you cannot break

down the problem into computational components, you can’t answer

the question. In thinking and talking about a problem, you may want

to pose the question: how will we do this? You don’t need to look for an

answer in code at this point; rather, you need to know how the problem

under discussion can be resolved. If it involves a person’s judgment

and that judgment cannot be quantified, it’s hard to see how it can be

computational. If it involves referring to data and the data is not available,

you also have a non-computational problem. You may be able to break a

judgment down into computational components, but, ultimately, if you are

left with judgment that cannot be computed (“gut feeling” is a term some

people use for this), you need some tool other than computer science.

Tip A lthough not all problems are computational, you can frequently
use a computational formulation to crunch numbers and display data
so that a judgmental kernel is left. Users can use your app to clear
away every computational issue and then use their own judgment on
that non-computational kernel.

Chapter 1 Thinking Computationally

14

�Modeling the Problem or Process
As soon as you can formulate the problem and the part(s) of the problem

that your project encompasses, you can start to model the problem. At

this stage you can use any tools that you want to - pencil and paper, smart

board, iPad, or anything else. You might want to draw boxes that perform

parts of the task you want to build. Don’t worry about code - just think

about something (whatever it turns out to be) that, for example, computes

a person’s telephone number (yes, that is a computational problem - a

search).

This model might turn out to be how your app is structured, but at

this stage, it is just how parts of your app will do things that together make

up the entire app. What you want to do at this point is to decide if this

collection of tasks or operations (the terms are interchangeable in this

context) can produce the results you need. Once you have a rough model,

try to break it. What happens if the phone number lookup fails or returns

the wrong number? What other components will be impacted?

Don’t worry about every loose end in a high-level model, but many

people keep a list of these loose ends and assumptions. It’s very easy to

start assuming that they are all dealt with later on and, without that list

of assumptions, you can wind up with an almost-ready app that misses a

critical component. (Any developer can recount many examples of this).

�Practicing Decomposition
Once you have a conceptual model, it’s time to drill down into it: take each

component apart and look at its components. (This process is known as

decomposition.) As you decompose the entire project into smaller and

smaller parts, you are often going to be specifying components that will be

implemented in code.

Chapter 1 Thinking Computationally

15

As you decompose the model, you may start to realize that this or that

component is something that you know how to implement already or that

can be implemented using known resources. If you are very lucky, your

decomposed project can be implemented with very little additional work.

�Rearranging and Recomposing the
Project Pieces
But “lucky” doesn’t happen very often. In the real world, what developers

often find is that if they make some adjustments to the model, the

decomposed pieces may become easier to implement. Perhaps the most

important point to make about the entire design process is that until it is

actually being implemented, everything should be considered changeable.

Take the project apart and put it back together again as you rethink

each component. The goal is to make a project that does what you want

it to do and to gradually refine the components into manageable and

implementable pieces.

There’s not a word about code yet. All of the modeling and

decomposition is theoretical. Many developers (including the author)

think that the longer you work hypothetically, the more robust your

implementation will be. Somehow, moving into the code implementation

can be a distraction from the design and planning process. Not everyone

agrees with this, but many developers do agree.

�Validating Abstractions
One of the most important aspects of computer science is that it gives

us a way to talk about the development process and about not-yet-built

software. Concepts such as decomposition are formalized ways of working

in this realm of not-yet-built software. Of course, when a project is actually

implemented, the proof of the pudding is revealed: either it works or it

doesn’t.

Chapter 1 Thinking Computationally

www.allitebooks.com

http://www.allitebooks.org

16

There actually is a third possibility: the project description is not clear

enough to be able to determine whether or not a specific implementation

works or not. If this happens, you can refine your project definition to

include the missing information or you can add more components to the

project itself.

What you are working with are abstractions of the project and its

components. In addition to decomposing and recomposing them, also

validate the abstractions. You can do this by stepping through whatever

process a component or group of components or the entire project model

will do.

The closer you get to a final project plan, the more specific and

concrete your validations should be. At the beginning it’s fine to test your

model and its abstractions with made-up scenarios and data. As you move

on, start seeing if your ideas stand the test of reality. Start pushing the

model components to the limits. Don’t just use common circumstances:

see if your model will handle extreme cases.

If you are working with clients or users, don’t rely solely on them. They

will be glad to detail the data they want you to work with, but try to get

actual data into your hands. You may need to start doing some number

crunching and data analysis yourself with a spreadsheet or database tool.

As many developers and analysts say, “The data doesn’t lie.”

�Here Comes the Code
If you have followed these steps in thinking through the problem you want

to address and the project with which you will address it, you should start

to feel comfortable with what lies ahead. Review your problem description

to make certain you haven’t veered off the track (this happens!). Try to

decompose the model you are constructing into components that can be

implemented. Check this draft model for completeness, and try to validate

it with real data.

Chapter 1 Thinking Computationally

17

You now should have the outline of a project plan using some of

the tools and techniques of computer science including modeling,

decomposition, abstractions, and validation. Once you have moved into

implementation, you’ll start to use different tools and techniques:

•	 Modeling that you can do with paper and pencil will be

replaced by implementation using code.

•	 Decomposition will be replaced by composition as you

put implemented components together.

•	 Abstractions become concrete implementations using

real data.

•	 Validation becomes real-world testing.

This begins with the next chapter.

Chapter 1 Thinking Computationally

19
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_2

CHAPTER 2

Writing Code and
Using Swift
Playgrounds

In Chapter 1, “Thinking Computationally,” you see the basic ideas

behind computer science and the fundamental tasks involved in

creating software - a high-level view. This chapter jumps to the other

extreme - writing code which is as low-level and detailed as you can get.

The remaining chapters in this book explore specific computer science

concepts and techniques - everything between the high- and low-level

views.

�The Basics of Writing Code
The simplest kind of computer code is the type of code that was used in the

1950s and 1960s. Computers then were mainframe computers and some

minicomputers (like the PDP and VAX models). Input was with punched

cards and magnetic tape. Output consisted of printed reports as well as

punched cards and magnetic tape. (The cards and tape could become

input from one program to another).

20

Note  This is a very high-level view of code: you’ll find more details
and more specific terminology later on in this book.

�Actions and Data
The essence of a computer program is performing an action with some data.

For example, you can write a program to print out (the action) some data.

�Creating an Action

Many people wrote a common program, Hello World, as their first program.

It was published in The C Programming Language1 by Brian Kernighan and

Dennis Ritchie; earlier versions are in other publications, but this is its first

major publication. The entire program is shown in Listing 2-1.

Listing 2-1.  Hello World

#include <stdio.h>

main()

{

 printf("hello, world\n");

}

The text “hello, world” is printed out with the printf statement.

Everything else in this little program is code that creates and accesses

the environment that makes printing possible. The program is a terrific

demonstration of the difficulty of teaching and learning coding: in order to

do one thing (print out a line of text), you need one line of code and four

1�Kernighan, Brian W.; Ritchie, Dennis M. (1978). The C Programming Language
(1st ed.). Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-110163-3.

Chapter 2 Writing Code and Using Swift Playgrounds

21

lines of overhead. This is the issue that is addressed in Swift Playgrounds

(described later in this chapter). With a playground, that overhead is

embodied in Swift Playgrounds itself, so you can just write the one line you

care about.

Believe it or not, this is a pretty revolutionary feature. (It’s not a

revolutionary idea because people have tried to get this done for years, but

Swift Playgrounds may be the first widespread implementation of such a

simple coding tool).

In the single line of important code, you see one of the two basic

coding ideas: a command that will carry out an action. In almost every

programming language, there are commands you can use to instruct the

computer to do something in Hello World.

�Using Data

The Hello World program prints out the phrase “hello, world” (ignore the

extraneous - for now - \n characters). Programming languages and systems

let you store data. If you store data, you can print out whatever the stored

data is. You typically store data in a variable or in an external medium

(external to the program, that is) such as a punched card, magnetic tape,

disk drive, or other storage.

Data from external storage can be brought into a program so that what

exists on disk or a punched card is moved to a variable inside the program.

You can also set a variable to contain specific data. The code for this varies

by language, but in general it will look like this:

x = "hello, world"

x is a variable: a storage location where you can put data and from

which you can get it back. The data is a quoted string of characters —

“hello, world” — the characters and the quotation marks are treated as a

single piece of data.

Chapter 2 Writing Code and Using Swift Playgrounds

22

This means that you can write code such as this:

printf (x);

You can combine the two techniques:

Listing 2-2.  Building a combination of data and action

x = "hello, world"

printf (x)

While this may seem like a complication when you just want to

print out that phrase, consider what would happen if you wanted to do

something more complex than just printing. If there were five separate

commands to be carried out, keeping them together so that you can send

one variable to the collection of commands is efficient as long as you

can combine the five separate commands somehow. You can then send

another variable to the same collection of commands.

�Combining Actions and Data
You often want to carry out several actions together. In various coding

languages, you can combine them into a collection of actions that can

be executed as if they were one. The terminology varies by language, but

a collection of actions is referred to as a method, function, procedure,

subroutine, or block. (There are variations in the specific meaning of those

terms, but they all refer to collections of actions).

You also can create collections of data. In the example shown here,

x is a variable. At its most basic level, it is a specific storage location that

can contain data. Collections of data are arrays, sets, and dictionaries.

(There are other terms as well).

Chapter 2 Writing Code and Using Swift Playgrounds

23

Collections of actions can include data either as single variables or

as collections of data. Just as you can enter data values into actions (as in

printf ("hello, world") or use a variable as in Listing 2-2, you can use a

collection of data for the action to act on.

�What Happens Behind the Code
The code that you write is designed to be more or less readable by humans.

Behind the scenes, there are two other types of code. At the most basic

level, there is machine code: these are the instructions that are executed

by the computer itself (its central processing unit or CPU). Each type of

computer may have its own language for machine code. In practice, today

the machine code is specific to the type of chip that is at the heart of the

computer. There may be several chips, but they typically use the same

machine code so that it can be executed on whatever chip is available at

any time. (See “Threads” in Chapter 6, “Building Components.”)

Machine language can be turned into assembly by the use of a program

called an assembler. Assembly (or assembly language) is a bit easier for

humans to read. The key component here is the assembler program

itself that does the conversion from assembly language to machine code.

The code is called assembly language or assembler; while the tool that

generates it is often called an assembler. The context clarifies whether you

are talking about the tool or the code.

Even more human-readable than assembly is a computer

programming language. The first languages such as COBOL and FORTRAN

in the 1950s are referred to as higher-level programming languages. They

are turned into assembly by programs called compilers.

Tip F or more information, do research on Grace Hopper and her
colleagues.

Chapter 2 Writing Code and Using Swift Playgrounds

24

The hierarchy of programming languages from simple to more

complex is this:

•	 machine code (the most basic);

•	 assembly;

•	 higher-level languages such as FORTRAN and COBOL;

•	 later on languages such as C, Pascal, and now Swift and

Python among many others make reading and writing

code by and for humans much easier.

Higher-level languages are ideally machine independent so that

someone who knows how to write COBOL, FORTRAN, or Swift should be

able to have that code compiled into assembler and then assembled into

machine language on any computer. Assemblers are usually machine-

(or chip-) specific. Thus if you write a program in a higher-level language,

it can be compiled into assembler and thence to machine code. Two points

are critically important:

•	 Although higher-level programming languages are

portable (the common term for running on multiple

computer architectures), the compilers that turn them

into assembler and machine code are specific to a

specific architecture of computer or chip.

•	 There are often cross-compilers that take a higher-level

programming language and compile it into assembler

for a different computer than the one on which it is

running.

Because assembler and machine code are specific to computer and

chip architectures as well as the even more important point that most

programming and coding today is done in higher-level languages, this

book (like most computer science references today) does not go into

Chapter 2 Writing Code and Using Swift Playgrounds

25

assembler and machine language except for broad conceptual views such

as this section.

In today’s coding environment, compiled code is often combined with

graphics and many other assets. This process is referred to as building

(and the result is called a build.) The build process is often machine

specific. Thus, the code is machine independent if it uses a language such

as C, but the build process means that it is not portable. To write code that

can run on a specific computer, you need a compiler or cross-compiler

that can turn the code into assembler and thence to machine code; you

also need a build program to build it for the computer you are targeting

(the verb “target” is used to identify the ultimate computer on which your

code will run). A build program can even combine several programs in

several programming languages if you want.

�Compiling and Interpreting Code
Today’s computers are much more powerful than those from the early

days of programming languages (the 1940s to 1970s). As a result, the very

clear pattern of machine code, assembly, and higher-level languages

with assemblers and compilers is more complex. Instead of compiling

programming language code, in some cases it can be interpreted: the

higher-level language is processed and turned into executable code so

quickly that it happens as quickly as it is typed.

Tip  Executable code is the term for code that can actually run
on a computer. Sometimes, people refer to executable code as an
executable.

Chapter 2 Writing Code and Using Swift Playgrounds

26

�Using Swift Playgrounds
Swift playgrounds let you write code in the Swift language and have it

interpreted as you type it. Apple’s Xcode development tool, described in

Chapter 12, “Getting into Xcode,” combines the relevant compilers and

build processors to let you build apps. Playgrounds let you build and

explore interpreted code. You can share playgrounds with others, and, as

you see when you launch Swift Playgrounds, you start from a variety of

featured playgrounds as shown in Figure 2-1. If you don’t see this screen,

look for a + at the top right to begin browsing playgrounds.

Figure 2-1.  Explore Swift Playgrounds

Chapter 2 Writing Code and Using Swift Playgrounds

27

Use the tabs at the bottom to explore the built-in Swift playgrounds.

Starting Points are good places to start building your own playgrounds. Tap

Get to download any of the playgrounds you see in Figure 2-1 or to start

working with one as you see in Figure 2-2 by tapping New Playground or +.

Your playgrounds can be as simple as a line or two of code such as

the code shown in Chapter 1. Alternatively, you can create more complex

playgrounds that you use to explore syntax and test your code. You can also

build playgrounds to share with others. These can be quite sophisticated.

One way to get started with Swift Playgrounds is to tap one of the featured

playgrounds to explore it. If you tap one of the featured playgrounds, you’ll

see a description and more information as well as the all-important Get

button that lets you download it. Figure 2-3 shows the Get page for Learn

to Code 2 one of the early playgrounds.

Figure 2-2.  You can create your own playgrounds

Chapter 2 Writing Code and Using Swift Playgrounds

28

Note A t the moment, many playgrounds are designed for teaching
coding to kids. If you explore shared code resources like GitHub,
you’ll see that professional developers are using playgrounds for
coding snippets, testing, and training users as well as teaching
people how to code.

If you tap Starting Points, you can view the choices in Swift

Playgrounds as you see in Figure 2-4 (note that the Starting Points change

as Swift Playgrounds is enhanced).

Figure 2-3.  Explore Learn to Code 2

Chapter 2 Writing Code and Using Swift Playgrounds

29

Figure 2-4.  Starting points

Tap Get to download a starting point such as Shapes. It will download

to your playgrounds as you see in Figure 2-5.

Chapter 2 Writing Code and Using Swift Playgrounds

30

Figure 2-5.  Download the Shapes playground

Tap the playground to open it as you see in Figure 2-6.

Chapter 2 Writing Code and Using Swift Playgrounds

31

Figure 2-6.

Run the playground as you see in Figure 2-7.

Chapter 2 Writing Code and Using Swift Playgrounds

32

Figure 2-7.  The playground runs

The blue circle is movable — tap and drag it around as you wish.

You’ve got your first playground running. You can return to your

playgrounds at any time with the four squares at the top left of the

window.

You can add a new playground to My Playgrounds with + either from

the top of the view or the large + on a shelf.

Chapter 2 Writing Code and Using Swift Playgrounds

33

When you have a playground opened, use the three dots (ellipsis) at

the top right of the playground to explore additional tools as you see in

Figure 2-8.

Figure 2-8.  Use More to see other locations for your playground

Chapter 2 Writing Code and Using Swift Playgrounds

34

In any of the displays of playgrounds such as you see in Figure 2-5,

you can tap the Share button in the top right to start sharing. You select a

playground, and then you will be able to use the sharing options you see in

Figure 2-9.

Figure 2-9.  Share your playground

Chapter 2 Writing Code and Using Swift Playgrounds

35

When you no longer need a playground, you can delete it from your

iPad. Tap the list of playgrounds in the top left as you see in Figure 2-10,

and tap edit. Select any of the listed playgrounds (there may be more than

one) with the dot to the left of the playground name, and then tap Delete.

�Moving On to Paradigms
You now have the basic tools to use Swift Playgrounds to experiment.

The following chapter shows you examples of the two most important

programming paradigms today with examples of code for each.

Figure 2-10.  Delete a playground

Chapter 2 Writing Code and Using Swift Playgrounds

37
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_3

CHAPTER 3

Exploring
Programming
Paradigms

The snippets of code that you have seen in this book so far are just that -

snippets. They show a single line of code that does one thing such as set a

variable or print out a string. That is the way that programming began: one

line of code after another.

Before long, the shortcomings of this line-after-line style of writing

code became apparent as programming backlogs grew and programmers

found themselves lost in line after line that they and others had written over

years. In various ways and various places, developers created standards,

styles, and other organizational structures so that the line-after-line style of

programming was easier to write, maintain, and understand.

This chapter provides a very high-level view of some of the most

common programming paradigms in use today. The paradigms are

divided into two groups here. There are paradigms that are implemented

in languages (that is, if you use a specific language, its rules require you

to conform to a paradigm even if you don’t realize it). There also are

paradigms that are implemented in the structure of a specific section of

code or even an entire app.

www.allitebooks.com

http://www.allitebooks.org

38

The reason for introducing the paradigms is to show that some of the

specific features and idiosyncrasies of different languages are, in fact,

common paradigms. In other words, understanding the basic paradigms

makes it easier to use languages and code that use those paradigms

because there is less to learn that is new.

Note  The paradigms listed here are not exhaustive. There are other
paradigms and patterns of writing code, but these lists are the most
commonly used today. And all of them apply to Swift.

�Structured Programming
Historically, the first major programming paradigm was structured

programming in the late 1950s with the ALGOL language. From the very

earliest days of programming, it was possible to interrupt the line-after-line

flow of control in a program by testing some condition with an if statement.

Depending on the result, the program could go to one specific line of code

or another one. Lines of code were numbered, so the control could pass

to line number X or line number Y depending on the outcome of the test.

Because they were used to control the program’s flow, line numbers were

important parts of the code itself, and that started to become a problem. In

the simplest case, if you wanted to insert a new line between lines 22 and

23, you wound up having to renumber everything, and that meant that a

statement transferring control to line 3825 might have to be renumbered

to 3826. Line numbering was one of the first problems that structured

programming addressed.

Beyond that, a proliferation of go to statements (or if statements that

functioned as go to statements) led to a mess of code that quickly became

difficult to understand and maintain. The problem is suggested in the

common name for the problem: spaghetti code.

Chapter 3 Exploring Programming Paradigms

39

One way to get rid of spaghetti code and line numbers is to collect

one or more lines of code into a block that can be identified by name.

Thus, instead of writing goto line 43, a developer could write goto

computeBalance or, depending on the language, perform computeBalance

or call computeBalance and the like. This code is much easier to read and

maintain.

By the 1970s, structured programming was generally considered to be

the preferred way of writing code. However, much old code existed and still

exists today, so you should not be surprised to encounter goto statements

in code that you are reading.

Line numbers are still used in some code, but by now, line numbers

are generally considered formatting rather than part of the code. When you

use playgrounds with Xcode on macOS, you’ll find a line number option to

show or hide line numbers in Xcode ➤ Preferences ➤ Text Editing as you

see in Figure 3-1.

Chapter 3 Exploring Programming Paradigms

40

Note L ine numbers are so frowned upon today that while you
can show or hide them in Xcode, you cannot show then in Swift
Playgrounds on iPad. The same playground that can show line
numbers on macOS will not show them on your iPad.

Structured program is a style of programming: you can write structured

code in most programming languages.

Figure 3-1.  Set line number preferences in Xcode

Chapter 3 Exploring Programming Paradigms

41

�Object-Oriented Programming
Like structured programming, object-oriented programming arose in the

late 1950s. The blocks of code that were introduced in languages such as

ALGOL were refined to become in essence small programs themselves. A

program consists of instructions as well as data. Objects in object-oriented

programming are basically the same: instructions and data. The biggest

difference is that these objects can be inside an app or program. In OOP (the

abbreviation for object-oriented programming), instructions in an object are

methods and the data consists of fields. Methods themselves are structured

blocks of code, which, themselves, can contain blocks of various sorts.

Furthermore, objects can inherit. They often represent real-world

concepts. For example, you can create an object that represents a building.

It can contain data such as an address and, perhaps, the dimensions of the

building. It may also contain instructions in the form of methods such as

one to calculate the square footage of the building.

Typically, an object is a runtime construct. The code that describes

it (that is, the descriptions of the methods and fields) is a class. A class

is instantiated as an actual object at runtime, and that runtime object is

referred to as an instance. The instance has a memory location. A class can

have many instances. For example, there may be thousands of building

instances in an app that works with a city.

Classes can inherit from one another. A class with its methods

and functions can be subclassed. The subclass has all of the data

and functionality of the base class, but it can add its own data and

functionality. Thus a building class might have a subclass of a house or

a shop. All instances of house or shop would have dimensions (each

instance has its own values for data), but the subclass house might have

data indicating the number of bedrooms, and the subclass shop might

have data about the type of business conducted there. You can write code

that handles a particular instance of building or one of its subclasses either

as the base class (building) or as the subclass. For instance, you can ask any

Chapter 3 Exploring Programming Paradigms

42

instance of building or a subclass for its square footage, but you can only

ask a show about its type of business.

Figure 3-2 shows the declarations of a Building class and two

subclasses (House and Shop) in a playground.

You also see the creation of an instance of the House class with

this line:

let myHouse = House()

You can use the squareFootage function of myHouse to set a local

variable (area). However, if you attempt to use the function businessType of

the House subclass of Building, you’ll get an error as you see in Figure 3-2.

In fact, in a playground, you’ll have trouble typing the bad code.

businessType is an attribute of Shop and not of Building.

Figure 3-2.  Declaring a class and two subclasses

Chapter 3 Exploring Programming Paradigms

43

Remember that as a playground runs, you see the results of individual

lines of code in the sidebar at the right of the playground. As you see in

Figure 3-3, you can tap any of them to see the value.

The buttons at the right of the playground indicate the type of result

you will see. In Figure 3-4, the first is a numeric value, as is the last one.

The opened result is an object.

Figure 3-3.  Use a playground viewer

Chapter 3 Exploring Programming Paradigms

44

Figure 3-4.  Observe an object

Chapter 3 Exploring Programming Paradigms

45

If you decide to add a viewer to your playground, you’ll be able to

follow the results without having to tap each time as you see in Figure 3-5.

Figure 3-5.  Open several viewers to follow the playground’s execution

Chapter 3 Exploring Programming Paradigms

46

This is a high-level overview, but it’s important in modern computer

science. The most common programming languages in use today are

object-oriented. OOP enforced at the language level as opposed to

structured programming, which is a style of writing (badly) in almost any

programming language. It is hard to write unstructured code in an OOP

program, but it can be done as anyone who has been tasked with fixing

such a situation can tell you.

�Imperative Programming (Procedural
Programming)
Imperative programming uses statements to describe what an app or

program should do (the terms app and program are used interchangeably

in this section). Critically important is that the statements specify how the

program should achieve the desired results.

Imperative programming today often is based on blocks and

procedures: the imperative statements are grouped together into these

entities. The statements then invoke the required blocks or procedures as

needed to accomplish the program’s objectives.

�Declarative Programming
By contrast with imperative programming, declarative programming

focuses on the results. As a developer, you specify what you want to

achieve and it is up to the environment (the operating system and

other components) to achieve that result. Certain constructs such as

some advanced functions in Swift are declarative. SQL’s basic syntax is

declarative. (SQL is the most common database language in use today).

Chapter 3 Exploring Programming Paradigms

47

COMPARING IMPERATIVE AND DECLARATIVE PROGRAMMING

If you want to find all of the buildings on a certain street in a city, you can do

it either imperatively or declaratively. (The following is an overview. For more

details, see the descriptions of loops and advanced functions in Chapter 4,

“Using Algorithms.”)

For the imperative method, you would loop through every building in the

city and check to see if it is on the desired street. You would then put these

buildings aside into a variable or other storage location.

For the declarative method, you would specify that you want all the buildings

on a certain street. The operating system and environment would do whatever

is necessary – probably some kind of loop – but you wouldn’t be involved. You

wouldn’t have to write that code.

�Concurrent Programming
Concurrent programming and threading allows a program to run on

several processors or chips at the same time. In order to do this, it is

necessary to impose constraints on how the code is executed because

often the available processors are available in different sequences. There

is more on concurrency in the section on threads in Chapter 10, “Building

Components.”

Chapter 3 Exploring Programming Paradigms

49
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_4

CHAPTER 4

Using Algorithms

Algorithms are one of the key components of computer science, but they

go back to days long before computers. In “The Miller’s Tale” (1391),

Geoffrey Chaucer makes reference to “augrim” stones, which would

have been stones used in counting algorithms, but the term and concept

go back several centuries even before Chaucer. Simply described, an

algorithm is a sequence of actions (usually numeric) that, when performed

in a certain order, will produce a specific result.

Such sequences of actions can be written descriptively on paper, but

they also can be written in code. In either format - on paper or in code -

they can be used and reused in building apps, programs, modules, and

other components of computer science.

They are so ubiquitous in computer science and applications that

many people don’t even notice them, but it’s important to understand

what they are and how they can be used. That understanding can help

you get the most out of specific algorithms and the various techniques for

writing and debugging code that are based on algorithms.

Algorithms can be the building blocks of apps and systems. “Can be”

because some people would say that data structures are the building blocks,

and still others would opt for a variety of other building blocks. In reality,

a variety of building blocks come into play for most apps and systems

depending on who the developers are and what the system needs to do.

50

Algorithms as commonly considered are the sequence of steps referred

to at the beginning of this chapter. Note that in that broad definition,

nowhere does it state that a specific language is involved: it’s just a

sequence of steps. That can be coded in any language in most cases.

�Considering the Purpose of Algorithms
Why do you create an algorithm? Why don’t you just go ahead and write

code? The core answer is that an algorithm that is clearly described and

defined can be useful in many contexts. The logic and analysis can be reused.

It is expensive to write code. Every step of the process from design and

analysis to coding and testing can be expensive. Often, people focus only

on the coding part of the task. Experienced developers (and managers!) can

attest to the fact that written but untested code is not a finished product.

The first step - design and analysis - is often ignored as people focus

on writing code and, sometimes (but essentially), testing it. Design and

analysis seems not to be as real as the code and the testing. However, the

key to minimizing the costs of coding and testing often lies in the design and

analysis. Often a project gets well under way without a clear project definition,

and, when the lack of clarity becomes obvious, the project is in trouble.

By formalizing the design and analysis, you create a robust project.

The cost of design and analysis can be spread among many projects (either

formally or through your own knowledge and experience), but the design

and analysis need to be done in a rigorous way so that they can be used

and reused in the immediate project and in others.

That is where algorithms come into play. They let you formalize your

analysis. Once that is done, you can reuse the analysis with new or existing

code, but you don’t have to repeat the analysis. As you gain experience in

the world of software development, you will come across many algorithms

and create many for yourself. By having a rigorous definition of an

algorithm, its analysis is more easily reusable.

Chapter 4 Using Algorithms

51

That is why algorithms are so important in software development: they

can help you reuse your work (and that of other people) so that you don’t

start from scratch each time you start a new project.

�Creating a Numerology Algorithm
Bear in mind that algorithms have been around for centuries, and many of

them predate digital computers. Many well-known algorithms can be used

to find prime numbers, for example. The example that is presented in this

chapter addresses a simple issue of numerology. Numerology is a belief in a

relationship between numbers and events or concepts. Some people think

of 7 as a lucky number; others think of 13 as unlucky. There are reasons

for these connections, but in many cases it is unclear if the concept of luck

(good or bad) preceded or followed the reasons and explanations.

One particular application of numerology is using letters of the

alphabet as numbers and adding them up to get a number that represents

the name itself. For example, if you let the letter A stand for 1, B for 2, and

so forth, the name Dan has a numeric value of 19 as follows:

D = 4

A = 1

N = 14

Total = 19

The resulting number may itself be lucky or unlucky either on its own

or depending on the first or last digit (and there are any variations of the

interpretation).

Converting the letters to numbers also has many

variations. One of the most common makes the

numbers run from 1–10 (perhaps because that

Chapter 4 Using Algorithms

52

makes it easier to count on fingers. In the example

given here (Dan), the result in a 1–10 variation

would be

D = 4

A = 1

N = 4 (count to 10 and then start over with 1)

Total = 9

What you have here is definitely an algorithm, albeit one with

variations. It is a sequence of steps:

•	 start with converting the letters to numbers one way or

another;

•	 add the numbers together.

You can design an app or system based on numerology where one step

is “compute the numerology number,” and then that step can be done with

the algorithm

�Looking Carefully at Algorithms
With this simple numerology algorithm, you can look at how it can fit into

code you may write. Three basic concepts in computer science are similar

to algorithms but with key differences. The algorithm-like concepts are the

following:

•	 Functions

•	 Objects

•	 Design patterns

These often use algorithms in their implementations.

Chapter 4 Using Algorithms

53

�Functions
Algorithms can be expressed in natural languages like English or in

mathematical terminology. You can characterize them as abstract or

conceptual if you want. Comparing them to functions can make both of

those concepts clearer.

Briefly put, a function is an implementation of an algorithm in a

specific programming language. An algorithm can help you design an app

or part of an app, but a function can become part of it.

�Objects
Object-oriented programming is generally traced back to the Simula

programming language in 1967. Today, it is used in many, if not most,

development processes. Briefly described, object-oriented programming

uses objects that incorporate data and functionality to be self-contained

and functional building blocks for apps.

Algorithms can inform the development of objects, their methods, and

data. Usually, they are part of the development process as they are in a full-

fledged app. Objects rarely consist only of an algorithm’s implementation:

that is more often the role of a function.

�Design Patterns
Design patterns are sometimes considered alongside functions and

algorithms. As commonly used, the term design pattern refers to a

structure that can be used to implement an algorithm.

One of the key concepts of an algorithm is the steps it defines. Design

patterns are a feature of declarative programming in which the initial state

and desired final state are declared, but the specific steps are not part of

the design pattern. This alternative to declarative programming is often

called imperative programming.

Chapter 4 Using Algorithms

54

�Implementing the Numerology Algorithm in Swift
The basic numerology algorithm is described previously in this chapter. In

this section, you see one of the ways to convert it into code.

Note  You will see several other approaches to implementing the
numerology algorithm (and others) throughout this book.

Basically, the algorithm has two steps:

•	 Convert each letter of a name (or other string) to a

number.

•	 Add all of the numbers.

The discussion of the algorithm has identified a few open questions

that need to be resolved in the implementation. This is common: the

algorithm specifies the steps to follow, but it doesn’t normally contain

code, and it may contain references to external questions and issues that

need resolution in order to implement the algorithm.

The most obvious point to consider is whether the conversion to a

number is based on the letter’s position in the alphabet (1 to 26) in English

or if the number uses only the numbers to 10 (perhaps useful if you’re

counting on your fingers). In the first approach, the letter K would be 11,

but in the second, it would be 1.

In order to implement the algorithm, you need to know which choice

to make. In implementing this and any other algorithm, it is often a

common practice to look at these choices and, to the extent possible,

build an implementation that is general so that it can work with any of the

choices. The more general an algorithm implementation is, the more likely

it is that the implementation can be reused.

The heart of the algorithm has to be the mechanism for converting

a letter to a number. In order to set that up, you need to know which

Chapter 4 Using Algorithms

55

numbering scheme to use (1-26 or 1-10). In addition, as soon as you start

to think about it, you’ll need to consider the letters you will be converting.

Characters in software are can be either capital letters or lowercase.

When we talk of the letter J, we normally mean J (uppercase) as well as j

(lowercase). In converting a letter to a number, we need to know if we will

be working with uppercase or lowercase letters.

These are the types of questions that you encounter as you start

analyzing an algorithm for the purpose of implementing it. Note that the

algorithm, as described in English, doesn’t distinguish between upper- and

lowercase letters. This type of detail often comes up in the implementation

phase.

Tip  Upper- and lowercase letters are distinct. The styles of
characters (italic, bold, underlined, and so forth) are applied to
characters. Each letter and symbol in an alphabet that can be used
in an app has a digital value (often called an ASCII code in old
terminology). This numeric value is different from the numerology
value. For example, uppercase A generally has a digital value of 65,
while lowercase A is 97. Those numbers are the same no matter
what style is applied to the letter.

These questions are general and abstract issues that need to

be resolved in order to implement the algorithm. Sometimes, it is

possible or even necessary to do such clarifications before any work

on implementation is done. In other cases (and frequently with simple

algorithms with only a few steps such as this one), you can implement

each step separately. You may wind up slightly modifying the natural

language description of the algorithm to specify how the output from one

step is used in a subsequent step so that you don’t have to worry about

implementing each step on its own.

Chapter 4 Using Algorithms

56

With enough people and other resources, you can even implement the

steps out of sequence and simultaneously.

�Implementing the Number Table
Frequently an algorithm has a step in which one type of data is

transformed into another type. In this case, a specific letter of the alphabet

needs to be transformed into a number that represents its sequence in the

alphabet - possibly using only the numbers 1-10.

There are two common ways of doing such a conversion:

•	 In some cases, there is a computation that will do the

transformation.

•	 In other cases, you need to look up the transformed

value from a table that is stored.

The trade-off here is a common one. Do you store the conversion table

before you need it (possibly as part of the app code), or do you calculate

it? The trade-off is between runtime processing on an as-needed basis and

data storage that is dedicated to the data on a permanent basis.

In this case, the storage approach is easiest. First of all, there isn’t a

clear calculation that can be used for an as-needed conversion. Beyond

that, the amount of data to be stored is so small that you won’t have

difficulty storing it even on the smallest device.

Having decided to store the data, the question for the implementation

is How? Swift can interact with a variety of databases, but, like most

programming languages, it has a variety of language elements that

are used to store and manage data. These include sets, arrays, and

dictionaries, which are described more fully in Chapter 6, “Working with

Data: Collections.” This implementation of numerology numbers will

serve as an introduction to Swift dictionaries, the mechanism used in this

implementation.

Chapter 4 Using Algorithms

57

A Swift dictionary is an associative array. Arrays themselves are

collections of ordered data such as the name of each student in a class.

Each item (student) in the collection is identified by a number. This allows

you to access the appropriate item as you need to. It also lets you loop

through all of the items by referring to their numbers (they are called index

numbers or indexes). If you delete an item from an array, the other items

are moved up. In other words, if you delete item 8, item 9 becomes item 8.

The index numbers vary over time for each specific item.

An associative array doesn’t use index numbers: Instead, it uses a

key - often a string - to identify each item. Thus, if you use the string “eight”

to identify an item in an associative array, that is and will remain the key

for that item. In an array the items might be numbered 7, 8, 9, and if you

delete item 8 you will have 7 and 8 because 8 is deleted and 9 becomes

8. In an associative array, if your keys are “seven,” “eight,” and “nine,” and

you delete “eight,” you will have “seven” and “nine.” (In other languages,

associative arrays may be called hashes, hash tables, or maps.)

Tip T his a trade-off between storage and processing. You will find
some old documentation and practitioners who argue that the cost of
the computation to look up each key at runtime slows down the app.
Logically it does, but with today’s processors, that “delay” is unlikely
to be meaningful. Write for today’s devices!

Swift dictionaries consist of pairs of keys and values. The keys can be

any type, but often are strings. The values can be any type that conforms

to the Hashable protocol. (This is described in Chapter 6.) The value can

be any type that you choose, but it must be same for all entries in the

dictionary. However, you can use types such as AnyObject for the values,

which give you a lot of leeway.

Chapter 4 Using Algorithms

58

You can begin by declaring a variable of numerology numbers for

each letter of the alphabet. Listing 4-1 shows what that might look like.

In a declaration of a dictionary in Swift, the key/value pairs are shown

separated by a colon. The entire list is enclosed in square brackets. (Note

that, as you see in Chapter 6, you can add or delete dictionary entries.)

Listing 4-1.  Numerology dictionary

let numbers = [

 "a" : 1,

 "b" : 2,

 "c" : 3,

 "d" : 4,

 "e" : 5,

 "f" : 6,

 "g" : 7,

 "h" : 8,

 "i" : 9,

 "j" : 10,

 "k" : 11,

 "l" : 12,

 "m" : 13,

 "n" : 14,

 "o" : 15,

 "p" : 16,

 "q" : 17,

 "r" : 18,

 "s" : 19,

 "t" : 20,

 "u" : 21,

 "v" : 22,

Chapter 4 Using Algorithms

59

 "w" : 23,

 "x" : 24,

 "y" : 25,

 "z" : 26

]

To access the value for a specific key, you can use code such as this:

numbers["y"]

In an array, each index has a data element (you cannot access an

index beyond the bounds of the array, but otherwise you can access any

element). In a dictionary, the keys do not change as you add or delete

data. This means that the key “y” might have no value associated with it.

Therefore, when you access a key in a dictionary, Swift returns an optional

value that might be null. You can test to see if it is null, or you can unwrap

it with ? or !. (Find out more in the section, “Handling Data That Isn’t

There (Optionals),” in Chapter 7.)

The dictionary structure can help you answer the question of upper-

and lowercase letters. Although keys must be unique, values do not need

to be. Thus, you can create a dictionary with both upper- and lowercase

letters for keys as you see in Listing 4-2.

Listing 4-2.  Add uppercase letters

let numbers = [

 "a" : 1,

 "A" : 1,

 "b" : 2,

 "B" : 2,

 "c" : 3,

 "C" : 3,

 "d" : 4,

 "D" : 4,

Chapter 4 Using Algorithms

60

 "e" : 5,

 "E" : 5,

 "f" : 6,

 "F" : 6,

 "g" : 7,

 "G" : 7,

 "h" : 8,

 "H" : 8,

 "i" : 9,

 "I" : 9,

 "j" : 10,

 "J" : 10,

 "k" : 11,

 "K" : 11,

 "l" : 12,

 "L" : 12,

 "m" : 13,

 "M" : 13,

 "n" : 14,

 "N" : 14,

 "o" : 15,

 "O" : 15,

 "p" : 16,

 "P" : 16,

 "q" : 17,

 "Q" : 17,

 "r" : 18,

 "R" : 18,

 "s" : 19,

 "S" : 19,

 "t" : 20,

 "T" : 20,

Chapter 4 Using Algorithms

61

 "u" : 21,

 "U" : 21,

 "v" : 22,

 "V" : 22,

 "w" : 23,

 "W" : 23,

 "x" : 24,

 "X" : 24,

 "y" : 25,

 "Y" : 25,

 "z" : 26,

 "Z" : 26

]

If you want to unwrap the element, you can use code such as this:

print ("j force unwrapped: ", numbers["j"]!)

If you want to use a better and safer method, use the conditional cast

operator (as?) as you see here:

if let myValue = numbers ["r"] as? Int {

 print ("myValue = ", myValue)

} else {

 print ("no value")

}

The results are shown in Figure 4-1.

Figure 4-1.  Testing the dictionary

Chapter 4 Using Algorithms

62

Note in the sidebar that the Swift playground distinguishes between

optionals, forced unwrapped values, and values themselves.

�Implementing the Addition
The addition process requires two steps:

•	 Split the name into individual characters.

•	 Look up the numeric value of each one.

These two steps are inside a loop - you might want to call the loop itself

a step with two substeps.

You can set a variable to a name, then split it apart into individual

characters.

Here is the code to use if you want to use Swift’s string subscript syntax:

let name = "Jesse"

for character in "name" {

print character

}

You need to be able to convert a character to its appropriate value.

Although the keys in a dictionary are unique, the values are not. Thus, the

code that you use to convert a value to a key is an optional (it may be nil if

there is no value for the key), and it may be an array (if there is more than

one value for the key).

The code to look up the keys for a value is shown in Figure 4-2.

Figure 4-2.  Look up a key for a value

Chapter 4 Using Algorithms

63

If you want to use the Swift 4 String map function, you can separate

each character using a closure that takes advantage of the fact that a Swift 4

String is a collection of characters. The code is shown here:

let name = "Jesse"

let x = name.map {Character in

 print (Character)

}

This code merely disassembles and reassembles the characters and

string, but it is the beginning of the code you will need in the next step.

Now that you have seen how to split the string into characters, you can

loop through each character in turn. Listing 4-3 shows the code to loop

through each character.

Listing 4-3.  Loop through each key

if keys.count > 0 {

 print ("Keys for 1: ", keys)

} else {

 "No Key for value"

}

Note that it is prudent to check that there is at least one key to look

up. You can experiment with these lines of code to go through all of the

elements in the dictionary.

You should be comfortable with manipulating the dictionary, so it’s

time to look up the values for each letter and add them up. Listing 4-4

shows that loop along with the initialization of the total variable that will

be used to accumulate the values.

Chapter 4 Using Algorithms

64

Listing 4-4.  Adding up the looked-up numbers

var total = 0

for eachKey in chars {

 if let key = numbers[eachKey] {

 print ("Looked-up key value for ", eachKey,

numbers[eachKey]!)

 total += numbers[eachKey]!

 }

}

print ("Total: ", total)

Figure 4-3 shows the playground and the output (the top part is not

shown because it is repetitive).

Chapter 4 Using Algorithms

65

Figure 4-3.  Running the app in a playground

There’s one more point to observe before moving on. If you look at the

top of the playground as shown in Figure 4-4, you’ll see that the items in a

dictionary are in no order. Arrays are ordered, but dictionaries are not.

Chapter 4 Using Algorithms

66

If you want to see how to duplicate Figure 4-4, repeat the code. Then

tap the Show Result button at the right of the first line of code. That will

open the result view at the left. Drag the bottom of the frame down to

enlarge the result to show as much of the let statement as you want to see.

You can open or close the disclosure triangles to see the data.

Figure 4-4.  Elements in a dictionary

Chapter 4 Using Algorithms

67

�Summary
This chapter shows you the basics of algorithms - ordered steps to perform

an operation. They can be described in English or mathematically, but

they come to life when implemented in a specific language.

Chapter 4 Using Algorithms

69
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_5

CHAPTER 5

Managing Control
Flow: Repetition

Algorithms consist of steps to take to solve a problem, compute a result,

or otherwise do the work of an app or part of it. Each step is normally

executed in turn, and, at the end of the process, your work is done.

This type of programming has a name: it is procedural or imperative

(those words are used in their normal common meanings). (The word for

a type of programming such as this is a paradigm so you will see references

to the imperative paradigm in many places).

The contrasting paradigm is declarative or functional programming.

The two paradigms coexist often in the same app or program. Both have

their roots in the earliest days of computers and computer programming,

but in a vast overgeneralization, it is possible to say that declarative/

functional programming had its roots in mathematics and logic while

procedural/imperative programming was the paradigm of choice among

the engineers who built the first computers.

Both paradigms are useful, and, because of that as well as the fact that

you may find both in the same project, we take no sides in the occasional

argument as to which is better. They’re both necessary and useful is this

book’s mantra.

70

�Getting Ready for a Multi-Step Control Flow
Project with Random Numbers
To explore a multi-step project and its control, you need something to

work with. One of the most common uses of multi-step projects is in

managing collections of data such as arrays. (There is more on arrays in

Chapter 6, Structuring Data - The Swift Issues.)

An array is like a list — a list of students in a classroom, items on a

shopping list, stops on an itinerary — any list at all. The simplest list to

work with is a list of numbers. Numbers carry almost no meaning, so you

won’t be distracted by a list that might place Paris between Melbourne and

Auckland.

In order to have a set of numbers that really is meaningless, computer

scientists often use random numbers. Random numbers are just that —

numbers picked at random. Random numbers are used in many practical

applications. For example, if you have bowl full of raffle tickets, you often

would pick one at random to choose a winner of the raffle.

Random numbers are used in a variety of computer science processes

from automatically choosing game pieces and situations in a game to

statistical sampling and the conduct of randomized testing of drugs

and treatments as well as other scientific experiments. Because random

numbers are used in so many ways (including demonstrating computer

science control structures as in this chapter), it is useful to look at how you

create them for any of these purposes.

The first point to consider is that truly random numbers are hard to

create. In practice, they are usually generated by a series of calculations

that are designed to eliminate any patterns and therefore can be

considered to be random numbers. For this reason, the term pseudo-

random numbers is often used by people who want to be precise. For the

purposes of this book (and many other common purposes), the pseudo-

random numbers are fine for use; in this section, we use random number

in its broadest sense.

Chapter 5 Managing Control Flow: Repetition

71

Swift and playgrounds provide three built-in functions to produce

random numbers. They produce random numbers that you can then

use for your own purposes. You do not need to refer to a list of random

numbers (such lists do exist). They provide you with a random number

that is either between 0 and 1 or between 0 and an upper limit that you

provide. These numbers are returned as integers (specifically UInt32) or a

double in the case of drand48().

The three built-in Swift functions that generate random numbers are

as follows:

arc4random_uniform(_:) takes a single parameter

which must be an integer.

The random number will be between 0 and the parameter minus 1.

Thus, a call to arc4random_uniform(10) will return a value between 0 and 9.

drand48() returns a random number of double type. You do not

specify the range: the number will fall between 0 and 1.

arc4random() takes no parameters. The resulting number will be

between 0 and 2 ** 32-1.

In the case of drand48, you can take the resulting number and multiply

it by any value you want in order to get a random number between 0 and

that number. With arc4random_uniform(_:) you just provide the upper

bound so no multiplication is required.

Note that when you convert numbers from one type to another (float

or double to or from one of the integer types), the conversion process may

introduce some non-random aspects to the resulting number. For almost

all common purposes, this doesn’t matter.

If you want to preserve the randomness of the returned number, avoid

too much type conversion and manipulation. Particularly with floating-

point numbers, those calculations can introduce some non-random

elements into the mix. However, as pointed out previously, this is usually

not a problem in most applications of random numbers.

Chapter 5 Managing Control Flow: Repetition

72

�Creating a Random Number Playground
You can build on the Answers playground that is distributed with iOS

so that you can experiment with random numbers. Here is a way to do

that. With the shelf showing, tap + at the top right, and then tap the New

Playground + button as you see in Figure 5-1.

Figure 5-1.  Duplicate the Answers playground

Chapter 5 Managing Control Flow: Repetition

73

Tap the Starting Points tab at the bottom as shown in Figure 5-2 and

then get Answers by tapping its Get button.

Figure 5-2.  Get Answers

Chapter 5 Managing Control Flow: Repetition

74

A copy of Answers will be created for you as you see in Figure 5-3.

Figure 5-3.  Answers is created

Chapter 5 Managing Control Flow: Repetition

75

Tap Answers to open it as you see in Figure 5-4.

Figure 5-4.  Open Answers

Chapter 5 Managing Control Flow: Repetition

76

When you download a playground (or a template in Xcode), the safest

thing to do is to see if it runs as-is. Not all templates and playgrounds

are configured to run, but it’s a good idea to see if you do have a running

playground. Tap the playground’s Run My Code button. You’ll see the

result shown in Figure 5-5.

Figure 5-5.  Run Answers

Chapter 5 Managing Control Flow: Repetition

77

At the top of the playground, you see its result — a prompt and a data

entry field. Below that is a Stop button. Then you find the code itself and

the keyboard.

What you’ve got now in the Answers playground is an interactive

playground that displays a prompt and lets people enter a response. You’re

ready to build on that.

�Writing the Playground Code
You can build on existing code in Answers to ask people to enter an

upper limit for a random number to be generated using arc4random_

uniiform(_:) - the function that returns a pseudo-random number

between 0 and the upper limit given (minus 1 so the upper limit is outside

the range of random numbers). The result is a UInt32.

Here is the modified code.

First, ask the user to enter the upper limit:

show ("What is your name?")

becomes

show ("Upper limit for random number?")

let name = ask ("Name")

becomes

let upperLimit = ask ("Upper Limit")

show ("Hi " + name)

becomes

show (upperLimit)

You’ve now got a playground that runs and asks for a random number

limit and then shows the result. You can use the Swift playground to

modify the code. As you proceed, the shortcut bar and prompts will help

you write your code.

Chapter 5 Managing Control Flow: Repetition

78

The input data is a string, so you’ll need to convert it to an integer with

this code:

let intResponse = UInt32(upperLimit)

Generate the random number:

let random = arc4random_uniform(intResponse!)

random will be an integer, so convert it to a string for display

let randomString = String(random)

Finally show the result.

show (randomString)

Figure 5-6 shows the playground running. The upper limit is entered as

49 and the random number generated is 25.

Chapter 5 Managing Control Flow: Repetition

79

Figure 5-6.  Start to run the new playground

Chapter 5 Managing Control Flow: Repetition

80

As the playground runs, you see that there are displayable results for

each line of executed code (as always in a playground). You can show

viewers for any of these that you want to as shown in Figure 5-7.

Figure 5-7.  Shows viewers for the playground as it runs

Chapter 5 Managing Control Flow: Repetition

81

Remember that Swift is strict with types so you need to convert strings

to integers and vice versa - it doesn’t happen automatically unless it is

unambiguously possible. This helps to keep Swift code robust. In addition

to the type conversions, note, too, that intResponse is an optional that

needs to be unwrapped with !. (In production code, you would be safer to

unwrap it with ? so that it will fail instead of crash if there is a nil there. In

Chapter 7, in the section “Handling Data That Isn’t There,” you’ll find out

more about optionals.)

Go wrap up this section, and you can rename the Answer playground

Random. Display the shelf of playgrounds and then press and hold the

Answers playground. You’ll be able to rename it as you see in Figure 5-8.

Chapter 5 Managing Control Flow: Repetition

82

Figure 5-8.  Rename the playground to Random

Chapter 5 Managing Control Flow: Repetition

83

�Creating Many Random Numbers
Remember that the purpose of creating random numbers in this chapter

is to create a collection of meaningless (random) data that you can use to

experiment with as you explore control management in code. It’s easy to

modify the Random playground to create several random numbers at a

time. Just add the following lines of code to create 6 random numbers.

You already have the code to create and show a single random number.

(Here is is again in case you need it here.)

var random = arc4random_uniform(intResponse!)

var randomString = String(random)

show (randomString)

You can add to that code to create another random number:

random = arc4random_uniform(intResponse!)

randomString = String(random)

show (randomString)

The only change you have to make is to remember that the original

code declares variables as constants with let. Change the declarations

to var so you can change their values, and in the subsequent calls, omit

the type. Figure 5-9 shows the playground that now creates two random

numbers (159 and 173) from the same intResponse.

Chapter 5 Managing Control Flow: Repetition

84

Figure 5-9.  Create multiple random numbers

Chapter 5 Managing Control Flow: Repetition

85

�Create a Repetition Loop
This cut-and-paste method obviously doesn’t scale well. Programming

languages typically implement a variety of loops to do repetitive tasks.

Repetition is a core principle of Computer Science. There are a number

of types of repetition that you can choose from with most programming

languages (including Swift).

All of the repetition structures have two primary components:

•	 There is a section of code that is subject to repetition. It

can be a single line of code, several lines, or calls to one

or more functions.

•	 There are controls for the repetition; basically, this

determines how many times the process is repeated.

Rather than a specific number of times, it can be

conditional so that the repetition continues until that

condition changes.

Note T his chapter shows you how to produce multiple random
numbers: that is a basic use of repetition. Note that functional
programming (described in Chapter 10 shows another way of
handling repetition.)

�Creating the Code to Repeat
Using the common repetition structure described here, you can set up

the loop to create multiple random numbers. The code to start is shown

in Listing 5-1. It asks for the upper limit of random numbers, converts

the input (a string) into an integer (UInt32), and then calls the random

number generator (arc4random_uniform(intResponse!))

Chapter 5 Managing Control Flow: Repetition

86

After the code executes the first time, it needs to create the second

random number as in the previous listing. To repeat multiple times, you can

cut and paste that code. (Remember that the first time through you set the

variables, so it’s the second time code that you repeat as shown in Figure 5-9.

�Creating the Repetition Control (Limit)
The other part of repetition is the mechanism for controlling it. The logic

of a loop like this in Swift is to use a variable to count the number of times

you’ve been through the loop.

You can name the counter something imaginative and creative like i.

Make certain that it is a var, because you will need to update it each time

you go through the loop. Set it initially to 0.

var i = 0

Each time you go through the repetition loop, you will create a new

random number and increment counter. The easiest way to do this in

Swift is with the += counter, which is a compound assignment operator.

It adds a value to a variable and assigns the added value to the variable.

If you have a variable x that is set to 4, this code will set it to 5.

x += 1

That is the most common use, but you can also use x += 4.2 if your

variable is a Double.

You do this in a while loop, which continues processing while its value

is true. Thus, to execute the loop three times, set x to 0, add one to it each

time you go through the while loop, and continue until the value of x is no

longer less than 3.

Chapter 5 Managing Control Flow: Repetition

87

Put all of this together, and you have a loop that can run 3 times as

shown in Listing 5-1.

Listing 5-1.  Create 3 Random Numbers

let prompt = ask("Upper limit for random number")

let intResponse = UInt32(prompt)

var random = arc4random_uniform(intResponse!)

var randomString = String(random)

show (randomString)

var i = 0

while i < 3 {

 i += 1

 random = arc4random_uniform(intResponse!)

 randomString = String(random)

 show (randomString)

}

The results are shown in Figure 5-10.

Chapter 5 Managing Control Flow: Repetition

88

Figure 5-10.  Generating random numbers in a loop

Chapter 5 Managing Control Flow: Repetition

89

Because you are not generating printed output, you don’t waste

resources by printing output on paper. Try changing 3 to 10000 to produce

10,000 random numbers. (Remember not to use the comma when entering

10000 as code). You’ll see the results go by very quickly.

To speed things up, don’t show the result each time. Comment out the

show statement as follows

//show (randomString)

In order to see when your 10,000 iteration loop finishes, add a final

statement outside the brackets of the loop so that the last three lines look

like this:

show (randomString) }

show ("Done")

Things will go even faster!

There’s an important lesson to be learned here about just how fast and

powerful the processors on mobile devices are today. A lot of the tips and

“best practices” that you may find in older computer science books and

texts, you’ll find many ways to economize on the use of processors and

storage. Those tips are still relevant, but the scales have changed and you

need to apply them in more extreme cases.

�Summary
This chapter shows you the basics of repetition control flow. You see

how to set up a basic repetition in a Swift playground to generate 10,000

random numbers quickly. The basics of repetition control flow apply to

many other types of processes; you’ll see them throughout this book.

Chapter 5 Managing Control Flow: Repetition

www.allitebooks.com

http://www.allitebooks.org

91
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_6

CHAPTER 6

Working with Data:
Collections

In Chapter 5, you saw how to use repetition to create data - lots of it if you

followed the example to create 10,000 random numbers. The question may

have occurred to you: Why? What will you do with all that data that you

created with the repetition code?

Computers and computer science frequently join together to do useful

things. Neither data on its own without computation nor computation

without data is generally very useful. In this chapter you see how to put the

data you created in Chapter 5 into a usable collection. Later on in Chapter 9

(“Storing Data and Sharing Data”), you’ll see how to make your data even

more useful than it will be in this chapter.

Remember that the constructs and principles that are the backbone

of computer science are there to make it easier to develop and maintain

software. Successful developers look for ways to incorporate existing

concepts and implementations into their product. That means less code to

write, debug, and maintain. So don’t just look at collections as tools to use

to implement your ideas. Rather, look at ways in which to mold your ideas

to take advantage of collections and other concepts so that there’s less

work for you to do.

92

�Using Types
Whether taken as single items or as collections, computer data is typed.

Each data element that an app uses has a type that is assigned by the

developer. Programming languages from almost the beginning have used

types to convert the bits of digital storage into numbers of various sorts.

The simplest conversion takes all of the bits in a computer word and uses

their on/off status to create a binary number. Depending on the number

of bits in a computer word, the binary number can range from 0 to a very

large number.

Very early in the development of computers and computer science,

it became obvious that this conversion of bits to a binary number wasn’t

nearly enough. A common solution was to take a bit at the high end of the

binary number and reserve it for a special purpose: a minus sign. Thus

both positive and negative numbers could be stored.

Further refinements included storing a single set of bits in a word

as if they were two separate integers. This allowed the representation

of floating-point numbers with one integer representing the significand

(sometimes called the mantissa) and the other representing the exponent

for the power of ten that will create the appropriate value when it is used to

multiply the significand. All of this is done with software - the actual words

of storage remain just a row of bits. Because conversions from one type of

number can be done easily, they are done all the time in software. Often

neither developer nor user is aware of this.

There are details about using built-in types as well as types that are

created by Swift in the following chapter. For now, just be aware that

types are constructs that convert the physical bits in a computer word to

something with meaning to developers, users, and normal people.

Chapter 6 Working with Data: Collections

93

�Scalar Data
The simplest form of data is a scalar or variable - a single data element that

is basically the same as a simple algebraic term as in

x = 15

You will often find descriptions and definitions of scalars as the

contents of a single memory location. In fact, most of the time data is

stored in words that are collections of bits. The hardware handles these

words very efficiently as it stores and retrieves the contents of words.

When a computer word is 64 bits long, it can theoretically store 64

separate yes/no (Boolean) values. Hardware and software let you access

the word as a single value (usually a number) by the individual bits. You

can go further to access the bits in a word in groups that often correspond

to letters.

�Moving On to Collected Data
Storing one number in a single computer word that is referenced by a

simple variable (a scalar) is a good way of keeping track of data that you

calculate or read in. You can then use the basic operations described in

other chapters of this book to manipulate the data and create more data in

other formats and styles.

Modern programming languages support various collections of data.

The most basic of these is an array - a numbered list of items (perhaps the

names of students in a classroom). Another common type of collection is a

set - a collection of items that is not a list (“set” is used in the sense in which

it is used in logic and mathematics). Swift implements both arrays and sets.

There is another type of collection called dictionary in Swift and

associative array in languages such as PHP. Whereas the items in an array

make up a numbered list, items in a dictionary are identified by strings or

other types.

Chapter 6 Working with Data: Collections

94

Arrays are the oldest and most basic collections in computer science.

Sets are the next oldest, and dictionaries (associative arrays) are the most

recent. This chapter examines each of these in chronological order.

All are subclasses of Collection, and most use the same basic

methods that are described first in arrays in this section. Note that

these classes are in Foundation, so you must use either of these import

statements in your Swift code of Playground:

import Foundation

import UIKit

It is always a good practice to import the smallest number of

frameworks possible. UIKit imports Foundation automatically, but if

you only need Foundation, import it explicitly and don’t worry about

importing the code you don’t need in UIKit. Xcode and the build process

will strip it out if it’s not needed, but it’s better just to import what you need

to begin with.

�Using Arrays
Arrays in any computer language are basically ordered lists. A list of

students in a class is not ordered, but an alphabetized list is ordered.

Although arrays are ordered lists, sometimes the order is irrelevant. For

example, a list of students that is not ordered still contains all students in

the class. You don’t have to use the ordering in your code.

The numbering and ordering of elements in an array is handled by the

array construct itself: the numbers of individual items are not in the items

themselves unless you put them there. If you do, you can have items like

the ones shown in Table 6-1. Note that in Table 6-1 the indexes are integers

and the contents can be anything. The first two are strings, and the last one

is an integer (note the absence of quotes around it).

Chapter 6 Working with Data: Collections

95

Arrays of one sort or another are available in almost every

programming language and operating system. They enable you to store

and retrieve data in a basic way; in addition, they make it easy to repeat

processes for the elements of an array.

As you delve into computer science, you will notice that concepts such

as arrays are the building blocks that you use. As is the case with arrays,

you’ll find some basic features of these building blocks. (In the case of

arrays, it’s the basic principle that an array is an ordered list of elements

indexed as part of the data array rather than by elements within the array.)

Features beyond the basics have been implemented many times by

developers and designers who use programming languages to expand on

the basic structure. Over time, many of these enhancements and additions

have gradually moved into the programming languages and operating

systems. It is unfortunately true that many people continue to focus on the

initial building blocks and the individually crafted enhancements to it.

Swift itself incorporates many enhancements to basic arrays and their

functionality. This section discusses many of the things you can do with

arrays - most of which are built directly into Swift.

Experienced developers and designers know that using these features

in languages such as Swift is the path to successful code. The simplest way

to avoid bugs is not to write your own code, and the code that’s already

written in Swift and related frameworks has been written, tested, and

proven in use in some cases for decades if you include the Cocoa and

Cocoa Touch frameworks.

Table 6-1.  Sample array

Index Contents

0 “Content 17”

1 “Data for item 32”

2 2

Chapter 6 Working with Data: Collections

96

In the sections of this chapter that relate to arrays, the following topics

are covered:

•	 Basic Terminology

•	 Indexing Array Elements

•	 Swift Arrays and Types

•	 Declaring and Creating Arrays

•	 Modifying a var Array

•	 Multi-Dimensional Arrays

•	 Finding Array Elements

•	 Adding and Deleting Array Elements

•	 Looping Through an Array

�Basic Terminology
These are terms that are commonly used in talking about arrays.

•	 The contents of an array are called items or elements.

•	 The ordering of an array is governed by one or more

indexes.

•	 Items in an array are written with subscripts that

identify the element or item by its numerical position

in the array.

•	 In many languages including Swift, arrays are written

with their subscripts in square brackets as in myArray [3],

which would be item number three in myArray.

Chapter 6 Working with Data: Collections

97

�Indexing Array Elements
As you see in Table 6-1, the array handles indexes, and you do whatever

you want with the contents of the array. Notice that the default index

numbers start at zero. This is a legacy of the original implementation of

arrays. In many cases, an array location was the first element of the array

(often the first word of storage), and the index is the distance from the first

element’s memory location. Thus, the first element (which you might think

of element number 1) has no distance from the first element because it is

the first element.

Some languages allow you to start indexing your array at a number

other than zero but, in fact, the language and operating system itself

perform the manipulations to convert the 0-based index to a different

base.

And, just to make things more interesting, the physical storage of an

array may not be consecutive memory locations today, but arrays start at

zero because they always have started at zero.

There are no gaps in arrays. Thus, if you look at Table 6-1 and were

to delete the item at index 1, the array would look like Table 6-2. The old

index 1 item is gone, and the previous index 2 item becomes index 1.

Table 6-2.  Sample array with a row deleted

Index Contents

0 “Content 17”

1 2

Note S ee “Finding Array Elements” later in this chapter to see how
to locate array elements by content rather than by index.

Chapter 6 Working with Data: Collections

98

�Swift Arrays and Types
Arrays in Swift are typed. That means that the elements of an array all have

a common type. You can create an array of integers, an array of strings, or

an array of any other type.

Having a single type in an array can make for some efficiencies in code

generation as well as others at runtime. (Furthermore, it can make your

code more robust because improperly mixing types within an array can be

flagged by the compiler rather than generating a runtime error.)

Of course, having a single type in an array can also be inconvenient

in some ways. Swift manages this with its hierarchy of types. As you will

see in Chapter 7, Swift types include basic types such as integers as well

as special types Any and AnyObject. Thus, you can create an array of Any,

which could include integers as well as strings.

It is a best practice in Swift to use the most restrictive types you can

use. Yes, you could create all of your arrays as Any? (that is, optional

versions of any type at all), but that bypasses all the checking and

optimization that is built in.

�Declaring and Creating Arrays
In languages such as Swift, you must declare variables before you use

them. (This is different from languages such as PHP in which you can

create variables as you need them just by using them.)

Arrays are no different from any other symbols in Swift: you declare

them before you use them. Declarations of variables include their name

along with a modifier that determines if the variables is modifiable (var) or

not (let).

Because an array is typed, you commonly declare it with its type. There

are two forms of syntax you can use.

Chapter 6 Working with Data: Collections

99

The first method is to simply declare the array type as in:

Array <Int>

You can also declare a variable with both a name and a type that will be

an array using syntax such as this:

var intArray:[Int]

This is a normal declaration; the type following the colon is an array of

Ints.

This is just the declaration. If you attempt to use it you will get an error

message that it has not been initialized. Remember that there are two

steps to creating and using a variable or constant: the declaration must be

followed by initialization.

You can initialize an array just as you would initialize an instance of

a class or other elements in Swift. You add () after the name. This code

initializes the array:

intArray = [Int]()

You can declare, initialize, and print out the array in a Swift playground

as you see in Figure 6-1.

Figure 6-1.  Declare and initialize an array

Chapter 6 Working with Data: Collections

100

Elements of an array are enclosed in square brackets. In Figure 6-1, you

can see that the array is empty. It is an opening and closing bracket. With

additional spacing, here is what the array looks like:

[]

You can combine the declaration and initialization of an array with the

following syntax:

var intArray2 = [Int]()

Figure 6-2 shows this syntax in action. As you can see, once again you

have created an empty array. (The debug area at the bottom of the window

is the best place to see that the results are identical.)

This style is called initializer syntax.

Another way of declaring and creating an array is with an array literal:

that is, with the literal elements of the array. In this style, you declare the

array with its type;

var intArray3 : [Int]

Figure 6-2.  Declare and initialize an array in one line of code

Chapter 6 Working with Data: Collections

101

Then, to create the array you simply list the elements in square brackets:

var intArray3 : [Int] = [2, 3, 5, 7, 11]

You see this in Figure 6-3.

When you declare an array with literals, Swift can infer the type of the

array from the literals you provide.

�Modifying a var array
There are three ways you can modify a var array:

•	 You can modify the array structure itself. That is, you

can add or delete elements from the array.

•	 You can modify the elements themselves so that

they contain different data values but the number of

elements remains the same.

•	 You can also do both.

Figure 6-3.  Declare and initialize an array with literals

Chapter 6 Working with Data: Collections

102

In some languages the two types of modification are treated differently.

You can see this in the UITableViewController class of iOS and in apps that

use it.

Figure 6-4 shows the default behavior or UITableViewController. At

the left, you see a table view with rows grouped into sections; each section

has a header with a gray background. An Edit button is placed at the right

of the navigation bar at the top of the view. If you tap the Edit button,

the view switches to editing mode (specifically, it calls the setEditing

function in which you actually handle the transition to and from edit mode

for your app and its data).In editing mode (shown on the right), each row

has a red button at the left that lets you delete it. The developer can add

a + button at the top right to add a row. In some uses, the rows can be

rearranged.

Note T he screenshots in this section are from The Nonprofit Risk
App on the App Store at https://itunes.apple.com/us/app/
np-risk/id1262903630?ls=1&mt=8.

All of these operations modify the array and its structure: they do not

affect the array’s data. Although, if a row is deleted, its data is deleted so in

that case the data is modified. The typical implementation of this type of

interface provides for the editing of the array itself as shown in Figure 6-4,

which shows the table view on the left and the table view in edit mode on

the right. If you tap on an item in the list you then move to the detail data

for that item as you see in Figure 6-5. Note that there is a new Edit button at

the top right of the detail view. This controls editing of the detail view - the

content of the array elements.

Chapter 6 Working with Data: Collections

https://itunes.apple.com/us/app/np-risk/id1262903630?ls=1&mt=8
https://itunes.apple.com/us/app/np-risk/id1262903630?ls=1&mt=8

103

Figure 6-4.  (left) Table view and (right) Table view in edit mode

Chapter 6 Working with Data: Collections

104

�Multi-Dimensional Arrays
Arrays often have more than one dimension. A two-dimensional array

can handle data from a spreadsheet very easily. Such an array has two

indexes - one for rows and one for columns. Arrays can have a number of

dimensions in most languages.

For example, you could have an array representing customer

transactions. The first dimension might be customer data (name and

address for example). The next dimension might be for individual

transactions (with a date and amount). Then it might follow the dimension

Figure 6-5.  Editing the detail data of an array element

Chapter 6 Working with Data: Collections

105

of payments. You can’t do this in Swift, and, as you start thinking about it,

you may find it difficult to manage the multiple dimensions.

In any language, this kind of multi-dimensional array quickly becomes

unwieldy. We have other data structures that can more easily handle this

type of data. In Swift, you’ll find other types of collections such as sets

and dictionaries that can organize data into specific types of collections.

The single dimension of a swift array can itself contain other arrays,

dictionaries, or sets; that dimension could also contain tuples that are yet

another way of organizing data within a single entity which can be stored

in an array. (Tuples are discussed in the following chapter.)

So don’t let the one-dimensional aspect of Swift arrays trouble you

until you have seen these other features of the language.

�Finding Array Elements
Each element in an array can be accessed using its index. The first item

in an array is array[0] — remember arrays start at zero. However, as you

insert and delete elements, the indexes change so that the array has no

gaps. This means that what is index number 52 today may be index 35

tomorrow (and may not even be there the next day).

Swift (like a number of other languages) solves this issue for you by

letting you locate an array element by its content rather than by its index.

The code is shown in Figure 6-6.

Chapter 6 Working with Data: Collections

106

You create an array with its values using

let demoArray = [13, 29, 11, -9]

In Figure 6-6, you can see that you can print the entire array with

print (demoArray)

You can get the third element (index 2) with

print (demoArray[2])

Figure 6-6.  Finding an array element by value

Chapter 6 Working with Data: Collections

107

You can use the method index(of:) to find an element. Notice in

the code completion of Figure 6-6 that code completion expects an Int as

the argument. Nowhere did you declare the array as an array of Ints; the

parser has inferred that from the values you entered.

If you enter the values shown in Figure 6-7, a Double is inferred.

When you complete the code, the playground runs as you see in

Figure 6-8.

Figure 6-7.  Swift infers an array of Doubles when appropriate

Chapter 6 Working with Data: Collections

108

Tip  index(of:) and the code completion can be very useful.
Just start typing as shown in Figures 6-6 and 6-7 to see how Swift
has handled type inference. If you happened to create an array of Int
based on your initial data and you want to eventually add a float or
Double, declare it with the type as in let demoArray:Double =
[3, 29, 1, -9] This will create an array of Doubles even though
the initial values are Ints.

Figure 6-8.  Create and print arrays in a Swift playground

Chapter 6 Working with Data: Collections

109

�Adding and Deleting Array Elements
Adding and deleting array elements after you have first created it is not

complicated. The easiest way to get started is with code completion. Begin

by checking that your array’s declaration is var so that you can modify it.

(It might be let if you declared it with constants.)

If you think that the method you need is add, code completion will

balk. It’s append, and if you try that, you’ll see that it works, and, as you see

in Figure 6-9, an Int is expected.

After you append the new array element, the playground runs as you

see in Figure 6-10.

Figure 6-9.  Start to append a new array element

Chapter 6 Working with Data: Collections

110

You’ll notice that appending adds elements at the end of the array.

There are a variety of additional methods in Swift that you can use. It’s easy

to use code completion and just scroll down to find relevant methods as

you see in Figure 6-11.

Of course, you can also use Help ➤ API reference in Xcode or

developer.apple.com. Note that you can see methods to insert new

elements at various places in the array or to remove elements. These are

details of Swift and other languages, so you can explore the documentation.

Figure 6-10.  Append elements to a var array

Figure 6-11.  Use code completion to see other array methods

Chapter 6 Working with Data: Collections

111

The array principles are the same across languages and operating systems.

The only major difference is that some languages do not provide as many

built-in methods and functions to manipulate arrays. (Furthermore, some

people prefer to write the array manipulation code themselves although

that means more errors may be introduced into the code.)

Deleting an array element is simpler than adding one because you

don’t have to worry about keeping track of the new element and where

it belongs in the array. To delete an array element, just locate it either by

index or with one of the functions discussed in the previous section. To

remove an element, use one of the following methods of an array:

arrayName.remove(at: Int)

arrayName.removeFirst()

arrayName.removeLast()

arrayName.removeFirst(n: Int) // �to remove several first elements

arrayName.removeLast(n:Int) // to remove several last elements

You can use index(of:Int) to find the index and then use

remove(at: Int).

�Looping Through an Array
Often you want to access each of the elements of an array in turn. You

may want to display the names of each student in a class, you may want

to find the highest and lowest temperatures in a 24-hour period, you may

want to do anything else that involves looping through each element of

an array.

Chapter 6 Working with Data: Collections

112

Note G iven an array of 10,000 random numbers (which you may
have already created), you might want to calculate the average of the
first 5,000 numbers and another average for the last 5,000 numbers.
The closer those averages are, the more random the numbers
are if they are all created as being between the same upper and
lower bounds (such as 0 and 1.0). This is discussed in Chapter 8,
“Managing Control Flow.”

�Using Sets
Sets are collections — subclasses of Collection just like arrays. They are

the same sets that you encounter in set theory (a branch of mathematical

logic). If you haven’t read the previous section on arrays, you might want to

at least skim it because many of the set concepts are the same as for arrays.

(In fact, if you look at the documentation, you will find that many set and

array methods (like dictionary methods you will see later in this chapter)

are actually methods of Collection.

Sets have one critical feature that is the reason they are used in so

many places in Swift apps. Yes, you can do various set theory operations on

sets (unions, intersections, joins, and so forth — see “Working with Sets”

later in this section.) What matters to many developers is that sets can be

used in property lists (see Chapter 9, “Storing Data and Sharing Data”).

You can place a collection of various elements, most commonly instances

of classes or structures, into a set. At that point, the set can be used in a

property list and it will be written to and read from a property list or other

Cocoa/Cocoa Touch structures without any further coding on your part. So

if you want to forget about set theory and manipulating sets but use them

simply as a fast way to structure data to be stored and retrieved, you will

not be alone. This is one of the most-used aspects of sets.

Chapter 6 Working with Data: Collections

113

Other features of sets discussed in this section are the following:

•	 Basic Set Terminology

•	 Identifying and Finding Set Elements

•	 Declaring and Creating Swift Sets and Types

•	 Adding and Deleting Set Elements

•	 Working with Sets

�Basic Set Terminology
Sets are collections of elements that have no order to them. They are

unique. You cannot have two elements of a set that have the same value.

In an array, you can have multiple elements with the same value because

they also have unique indexes at any given moment (remember that those

indexes can change as elements are added to or removed from the array,

but at any given moment, the index is the way to access an array element

regardless of its value).

�Identifying and Finding Set Elements
Behind the scenes, the elements of a set are hashed. That is, a formula

is applied to the contents in such as way as to create an integer that is

unique to the data that has been hashed. It is this hashed value that is

used to identify set elements. There is no need for a subscript or other

identification. Because the hashed values are stored, there are no

duplicates (that is, no two set elements can have the same hashed value).

In order to access a set element, all you need is to know that the element

is in the set. Once you know it is in the set, you need no further access

mechanism.

Chapter 6 Working with Data: Collections

114

Of course, you need to find out if it is a member of a set. There is a set

function for that:

contains (_:)

It returns a Bool, so you can use it as in the following code:

let myElement = // something

if mySet.contains (myElement) {

 // go ahead and use it knowing that it’s a member of the set

}

�Declaring and Creating Swift Sets and Types

A set is declared using a type such as this:

Set<Int>

Set<String>

and so forth with the other basic Swift types including Double and Bool.

You can create a set using syntax like this:

var mySet = Set<String>()

The set is created and empty.

As with arrays, you can use an array literal to create a set using syntax

such as the following:

var mySet: Set<String> = ["mountain", "valley"]

This combines the basic type declaration with the creation of a variable

that contains the set’s initial data. Remember that if the set’s type can be

inferred from the initial elements, you can skip the type in the declaration,

but if the initial elements might suggest a less inclusive type than you want,

use the type declaration.

Chapter 6 Working with Data: Collections

115

�Adding and Deleting Set Elements
You can add an element to a set very simply as long as the new element

adheres to two important rules for sets:

	 1.	 The element cannot already be in the set.

Remember that set elements are unique.

	 2.	 The element must be of the type in the set

declaration. (Remember that you have Any? and

AnyObject? types you can use for tremendous

flexibility.)

To add an element to a set (as long as it obeys the two rules), the most

basic syntax is

insert(_:)

as in

mySet.insert(myNewElement)

The companion removal method is

remove(_:)

as in

mySet.remove(myNewElement)

Because sets are not ordered, you don’t worry about where to insert

the element (first, last, or so forth). You insert it into the set wherever it

happens to go.

Chapter 6 Working with Data: Collections

116

Tip  When debugging code, remember that sets are unordered,
but from time to time they may appear ordered because the order in
which you have added or removed elements may appear to create
an order but that is only a transient matter. From one execution of
your app to another the order may change. Do not rely on accidental
ordering that you may temporarily create while editing and debugging.

�Working with Sets
The two basic set theory operations are supported with set methods in Swift:

aSet.union(anotherSet)

aSet.intersection(anotherSet)

Other methods support more advanced operations, but, as noted

previously, many sets are created for their ability to be easily written and

read. Their set theory operations aren’t used in many cases.

Note S ee Chapter 8, “Managing Control Flow” for iterating
through sets.

�Using Dictionaries
Sets are totally unordered. Arrays are ordered by the sequence of items

in them. Dictionaries are more sophisticated. One way of thinking about

them is that they are ordered but not by numbers. With an array, you can

reference an element that is the fifth element of the array (remember the

array is zero-based) by using

myArray[6]

Chapter 6 Working with Data: Collections

117

With a dictionary, you might use syntax such as

myDictionary["six"]

Associative arrays are implemented in many languages such as PHP,

JavaScript, Python, Ruby, and Perl. In Swift and Objective-C, they are

dictionaries.

•	 Basic Dictionary Terminology

•	 Declaring and Creating a Dictionary

•	 Adding and Deleting Dictionary Elements

�Basic Dictionary Terminology
There is no ordering to set elements. Elements in an array are indexed,

and the indexes are managed by the array itself. What is element number 5

today may be element 25 tomorrow depending on additions and deletions.

Dictionaries are collections of pairs of data: keys and values

(key-value pairs). Commonly, keys are strings, but they need not be (in

some languages dictionary or associative array keys must be strings).

�Declaring and Creating a Dictionary
You can formally declare a dictionary in Swift with

Dictionary<Key, Value>

Key and Value are the types of keys and values in the dictionary.

The shorthand form omits the keyword Dictionary; you can declare a

dictionary with

[Key: Value]

Again, Key and Value are the types of keys and values in the dictionary.

Chapter 6 Working with Data: Collections

118

You can create an empty dictionary using () after the declaration as in

Dictionary <Int, String>()

This declaration deliberately reverses a common dictionary structure

in which the key is a string. Here, the key is an Int and the value is a

string. That shows you the options available to you.

If you forget the () when you intend to create a dictionary, Fix-It will

remind you as you see in Figure 6-12.

Tip I f you use dictionaries, you must import Foundation in your
app or playground. If you are importing UIKit, you don’t need to import
Foundation as well because it is included in UIKit.

You can assign a newly declared and created dictionary to a variable

using code such as

var testDictionary = Dictionary <Int, String>()

If you tap the viewer in line 3 of Figure 6-13, you’ll see how Swift

Playgrounds reports it:

[:]

Figure 6-12.  Declaring and creating a dictionary

Chapter 6 Working with Data: Collections

119

Dictionary entries are enclosed in square brackets with a colon

separating the key and value. An empty dictionary has only the square

brackets and the colon as you see.

You can also create a dictionary from a dictionary literal that functions

much as an array literal does. It is enclosed in square brackets and

contains comma-separated key-value pairs.

As an example, assume you want to create this dictionary:

"Breakfast":"Eggs"

"Lunch": "Soup"

"Dinner": "Vegetables and Rice"

You can create it with a dictionary literal as in:

var menu = ["Breakfast":"Eggs", "Lunch":"Soup",

"Dinner":"Vegetables and Rice"]

Figure 6-13.  Assign a dictionary to a var

Chapter 6 Working with Data: Collections

120

�Adding and Deleting Dictionary Elements
To add a dictionary element, insert it into the dictionary with its key as:

testDictionary [5] = "some text"

This is shown on line 4 of Figure 6-13.

You remove an element as follows

testDictionary.removeValue((forKey:Int)

As shown in Figure 6-14, code completion inserts the appropriate type

for the key depending on how you have declared the dictionary.

�Summary
This chapter shows you the basics collections in Swift and in computer

science in general. The constructs are basically the same in all languages

although some (such as associative arrays and dictionaries or sets) may

not be implemented in some special-purpose languages.

Figure 6-14.  Remove a dictionary element

Chapter 6 Working with Data: Collections

121

All collections let you handle collections of data as a single entity. For

example, a set containing many elements can read or written with a single

line of code in Swift. Furthermore, you can use collections where single

variables are required. In a dictionary, for example, there can only be

one element for a given key. However, if that element is itself a collection

(an array, set, or dictionary), that entire collection can be part of another

collection. You’ll see more on this in the following chapters.

Chapter 6 Working with Data: Collections

123
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_7

CHAPTER 7

Working with Data:
Types

One of the basics of computer science is the concept of data types. In the

simplest case, a type is a way of interpreting the digital bits in a computer’s

memory or in a data stream for or from a storage device. Bits have one

of two values (on/off), and they are typically grouped together logically

into bytes. Bytes began as collections of bits that could represent a single

character; the first implementations were of six bits, but today bytes are

typically either bits so that more characters can be represented by a single

byte.

It is important to note that while bits are physical items, bytes are

logical collections. They are assembled and interpreted by hardware and

software based on the underlying bits.

The bits (the hardware) are physically collected into words that

typically can contain enough bits to form several characters, but,

remember, the assembling of bits into bytes is logical and not physical

while the assembling of bits into words is done in hardware.

Words can be accessed directly in software, which is what programs

and operating systems do all the time. You can use software to look inside

a word to work with individual bits and bytes.

124

This chapter shows you what happens as words (physical groups of bits)

and bytes (logical groups of bits) are used by the operating system and,

through it, by users. One of the basic ways in which words are managed is by

grouping then into data types. This chapter explores data types and how you

can use them. The main topics covered in this chapter are the following:

•	 Why Types Matter

•	 Basic Types

•	 Working with Tuples

•	 Advanced Swift Types

•	 Creating New Types

•	 Handling Data That Isn’t There (Optionals)

�Why Types Matter
The basics of types are simple. They are the primary intermediary between

the on/off bits in storage and data flows and the higher-level constructs

such as bits and bytes as well as the even-higher constructs that bits and

bytes form.

If that were all that types did, that would be enough (as it was in the

very earliest computers). It’s a critical link between the hardware and the

software. Computer science goes beyond the basics of how computers

work. It encompasses the concepts that let computers and people perform

useful work and communicate with one another. From that point of view,

types have another critical role to play.

A type provides the rules for assembling bits into words that can be

used. Those words can have types assigned to them (the usage is that the

words are typed). Those typed words are then used in code. Remember

that types are logical constructs — the physical words never change no

matter what type they are used as. (The data within the words change.)

Chapter 7 Working with Data: Types

125

By referring to a word as a specific type, compilers can perform one of their

most critical roles. Languages and compilers support varying amounts of

type safety. Type safety is the set of rules that determines how a word of a

given type can be used in conjunction with other types. If the combination

of types is logically impossible according to the type safety rules, it is

caught as an error by the compiler, and the code won’t run. This is an

important role for the compiler to play, because the alternative is to just go

ahead and do something that is illogical and watch as the app crashes.

It is generally considered a good thing for coders to get the errors

rather than letting users get them.

Types and type safety make this possible.

You can mix types in various ways depending on the rules for each

type. For example, you can divide two integers by one another (5 divided

by 2, for example). The result that you probably want is a floating point

number (2.5).

Depending on the context, Swift, Xcode, or the runtime environment

will either refuse to perform an illegal operation (that is, it will get an

error), or it will warn you about performing a possibly illogical operation

(that is usually implemented with a warning to you, the coder).

A key part of implementing type safety is allowing developers to

convert one type to another (this is called type coercion). Sometimes, the

format of a number itself can serve as an indicator of its type. For example,

2 is an integer both in common usage and in Swift. 2.0 is a floating point

number (note the decimal point). Its value is the same as 2 (without a

decimal point), but it is of a different type.

Note S wift supports two kinds of floating point numbers. Float is
stored in such a way that it may have as few as 6 places to the right
of the decimal point. Double is stored with much greater precision.
Double is the preferred and default type for floating point numbers.

Chapter 7 Working with Data: Types

126

�Looking at Stacks and Heaps
Types describe how the bits in a word should be interpreted — be it as an

integer, floating point number, one or more characters or bytes, or even the

collection of individual bits that can be accessed as on/off values on their

own.

However, not everything you deal with in an app consists of words like

these. As you saw in Chapter 6, ’Working with Data: Collections,” you also

need to deal with collections of data. Most of the time, these collections are

collections of words that are interpreted as certain types. As you will see

in Chapter 10, “Building Components,” sometimes you deal with objects.

Collections and objects don’t fit inside single words, so another type of

storage is needed. For items like these, operating systems typically reserve

a section of memory in which they can place these large and often variably

sized items.

�Storing Data at Runtime
Where data is stored at runtime becomes a critical issue in designing

operating systems and compilers. It is largely — but not totally — handled

for you behind the scenes. Because it is not totally handled for you, you

need to know the basic concepts of runtime storage, and that is described

in this section. You’ll also see how it all fits together so that you as a

developer can provide the functionality and responsiveness that users

expect from modern software and development techniques.

In the first days of computers (mainframe computers in the 1940s),

one program ran at a time. The entire computer was dedicated to running

that program. All of its resources (storage, communication channels,

and printers) were devoted to the program that was running. Among the

resources devoted to that single program were the computer itself and

its operators. If you wanted to run a program in most environments, you

made an appointment. It was a far cry from picking up an iPhone and

Chapter 7 Working with Data: Types

127

tapping an app; these appointments were often scheduled for a time slot

sometime in the future. If your project was not a high priority, your time

slot might be 2:30 a.m. next Thursday.

This type of operation made a number of things much easier than they

are in today’s world. For one thing, with the entire computer available

to a single program, that meant all of its memory was dedicated to that

program with only a fairly small piece of that memory devoted to overhead

and maintenance of the computer (although the billing could be done

manually on cards or pages in a loose-leaf binder).

Now that people expect to run multiple apps at the same time on a

mobile device, it’s impossible to dedicate all of the device’s memory to

a single app. People wouldn’t stand for that. “What do you mean I can’t

watch a movie while I make a phone call and design a poster! I paid extra

for 256 gigs of storage! Where did it go? I’m going to take my iPhone to an

Apple Genius Bar and have them open it up to verify that someone didn’t

cheat me on my gigs.”

In order to make the most of the memory available in any device (this

goes back decades to the beginnings of time sharing in the 1960s), multiple

programs could run at the same time so that as resources like printers or

data storage devices were needed the program could be set aside with all

its data until the device was ready. Throughput was faster even though

there was time required to swap programs and data in and out. This is the

same basic model that we use today (this is a very basic overview).

Programs began to be structured in such a way that a discrete set of

code could execute from start to finish with the data that it needed. When

that set of code was completed, it and its data were simply discarded —

this is not the swapping in and out of programs and data to maximize the

use of resources. Rather, it is a separate type of requesting, using, and then

discarding memory. Both of these processes are necessary to make the

most of computers and their resources.

Chapter 7 Working with Data: Types

128

�Stacks and Queues
The word stack is used frequently in computer science. It is used in its

simple everyday sense of a pile of things (often a stack of paper, but

sometimes a stack of bricks or other objects). As is the case with everyday

stacks, you add items to the stack by placing them on top. The easiest way

of taking items off a stack is to take the topmost item. In computer science,

this is referred to as a last in-first out stack (sometimes referred to as LIFO).

With a stack, no matter how many items are in the stack, it’s really only

the top one (the last in/first out item) that needs to be accessed. The action

of adding items to the top of a stack and removing them from the top of

a stack is called pushing (pushing a new item onto the top of a stack) and

popping (removing the top item from the top of a stack).

The order of items in a stack is important.

A related concept to stacks is the concepts of queues. That, too, is an

ordered list of items, and you can also add items to the top of a queue.

However, with a queue, it is not the top item (the last added) that is the first to

be removed. Instead, with a queue you add items to the top (as in a stack), but

you remove items from the bottom. This is a last in-last out (LILO) structure.

You see this type of queue in action in many cases every day. In a supply

cabinet, you may store items in such a way that you use the oldest items first.

The order of items in a queue is just as important as in a stack.

Note T he following is a simplified overview of memory
management designed to help you understand the basic principles.
Modern computers have significant enhancements and optimizations
beyond these basics.

Inside the computer as an app runs, the data that is required for a

section of code (a function or procedure in many cases, but this applies

to any section of code), is pushed onto a stack. This means that as the

Chapter 7 Working with Data: Types

129

function or procedure starts to run, memory storage for each of the

variables needed by the code is set aside for the lifetime of the code. All of

the data is located together. When the section of code is finished, all of the

data set aside for the variables can be released to the system. This is called

cutting back the stack, and it is a critical way of reusing the memory of a

computer.

This way of optimizing memory use relies on being able to identify the

memory locations needed for the operation of a section of code. When that

code starts to run, whatever memory will be needed for its variables is set

aside (allocated) even if the variables are not yet in use. This assures that

the code can run to completion without running out of memory.

�Heaps
Stacks are a simple way of organizing and reusing memory, but there’s one

big problem: not all data fits nicely onto a stack of computer words. Many

data structures are much bigger than a single word. The simplest example

of these are the collections discussed in Chapter 6. Almost every computer

language has its collection types, and storing them has always been a

challenge. One way it is addressed has been to place a computer word

on the stack that has a special meaning — it is a reference to the actual

data that is placed elsewhere in the computer’s memory. (This method

of handling arrays goes back to the 1950s.) By using such references, you

can continue the basic idea of cutting back a stack. It is just a little bit more

complicated because the operating system has to recognize that when

it cuts back an array reference word from the stack, it must release the

associated memory for the array in question.

All of this can work well even though it takes some time and processing

power to handle the references. An array is declared in a procedure,

method, or function and its elements are referenced somewhere else in

memory. The “somewhere” else is referred to commonly as the heap.

That’s just what it is — an unstructured heap of data. When the data for an

Chapter 7 Working with Data: Types

130

array or other structured item is stored in the heap via a reference from the

stack, things are relatively easy to manage.

The big problem arises when there is data in the heap that is not

associated with a stack reference word. This situation is handled with yet

another strategy. The operating system still uses reference words on the

stack to refer to unstructured data in the heap, but there’s a new element

added to the process. The operating system keeps track of the number

of reference words pointing to some data in the heap. In the case of a

reference word on the stack, there’s only one reference: the one from the

stack. However, when there is shared data, this unstructured data on the

heap may be referred to by many references throughout your app. When

the operating system notices that the number of references to the data

decreases to zero, it can reuse that memory space.

All of this requires the operating system to keep track of the stacks

(for each app that’s running); storage in the heap; and, in the case of

mobile devices, constant changes in location as well as phone calls;

messages; tweets; and everything else that’s going on in those devices. The

amount of storage and processing power that are used for these operations

are significant in any computer.

Tip A ll of this work that is done behind the scenes on any computer
is most successful when users don’t know that it’s even happening.
However, when you are considering configuring a computer (or
buying a new one), these resources have to be factored into your
requirements. Having enough storage space for your library of a
thousand songs and nothing more is not going to leave you with a
functioning computer.

Chapter 7 Working with Data: Types

131

�Basic Types
The basic types for most computer languages represent numbers, characters,

and strings in various ways. Although the storage is ultimately one or more

computer words, the distinctions among these types are implemented

in software — the operating system and the apps that run on computers.

Computer words are basically interchangeable. In fact, one of the great

breakthroughs in the development of compilers and computer languages

was the realization that the data stored in and manipulated by a computer

could be what we normally would consider data (numbers, for example)

andit could also be computer instructions (add two numbers perhaps).

There is another type of storage that is used behind the scenes in

computer systems. Words can contain internal operational data and

instructions that are required for the operation of the computer itself. For

example, reference words (described in the previous section) are stored in

the same physical words that could otherwise be used for traditional data,

but the operating system makes certain that such data is protected from

unauthorized manipulation by apps and users.

�Numeric Storage
There are two was to store numbers: they can be stored as integers (whole

numbers) or numbers with a fractional component (commonly referred to

by various names such as decimal numbers, which is actually a misleading

term in some cases).

�Using Integers
Integer numbers are simple numbers. You can convert the bits in a

computer word into a base-2 number and there you have a number that

can be converted into any other base, but the most common conversion is

from base 2 to base 10.

Chapter 7 Working with Data: Types

132

Computers typically use almost an entire word to store integers.

“Almost” the entire word because one bit is often reserved as a sign bit: it

indicates whether the number is positive or negative. In old computers,

storage space was so scarce that “wasting” it in a sign seemed to be

a shame in many cases where the number could never be negative.

Thus, you will find old documentation and descriptions are integers

and unsigned integers as separate types. Today, most integers on most

operating systems do have a sign bit.

In describing the conversion of bits in a word to a binary number, there

are two methods you can use. They are referred to as big-endian and

low-endian depending on whether the sequence of bits should be

interpreted from the most significant to least significant digit or vice versa.

This matters when you get down to the extreme details of architectures,

but today this is generally hidden from view so that by the time you receive

a stream of bits over a communications channel, the software at both ends

has converted it to formats that don’t rely on ended-ness.

�Using Floating Point Numbers
There are a number of common ways of using floating point numbers.

Typically, the implementation of floating point numbers is left to a special

processor — a floating point unit (FPU). The basics of storing floating

points numbers generally consist of the following logic:

•	 The number is basically stored as an integer that may

be signed. This may be called a significand.

•	 Separately, an exponent is stored as another integer

that also may be signed.

Together, most numbers can be represented. For example, the number

12 can be stored with a significand of 12 (base 10), which may be stored in

binary as 1100.

Chapter 7 Working with Data: Types

133

BINARY NUMBER NOTATION

In common usage, we talk about the places of a number starting from the

decimal point (see note later in this sidebar about decimal points) and moving

to the left or the right. The first place to the left of the point is for values of 0

to the base - 1. In base-10, that means that place (or any other) can have the

digits 0-9, but in base-2 any place can have digits 0-1.

The next place to the left is the base itself. Thus, in base-10, 12 is interpreted

as 2x1 plus 1x10.

In binary, the number is 12. Start from the right-hand side, which is where the

point would be and calculate:

0x1

0x2

1x4

1x8

The sum is 12.

The second place to the left is for the number of items in the base to

the second power. Thus, in base-10, the number 213 is 3x1 plus 1x10,

plus 2x100.

There is disagreement over what to call the decimal point in non-base-10

systems. Some people make the argument that a decimal point is unique to

base-10 (decimal) systems. Others argue that it is not unique to base-10 just

as digit can be used to refer to a character in any base as long as it is valid.

If you want an unambiguous generic term for the decimal point, you can call it

a radix point. Mathematicians (and perhaps no one else) will understand you.

In this chapter, we hedge a bit and refer to it as a point, which is a commonly

used way of avoiding unnecessary arguments.

Chapter 7 Working with Data: Types

134

�Storing Strings and Characters
Strings and characters are used to display text in apps … sometimes. Text

can appear in images that are displayed in apps, and although you may

think that they are strings and characters, when they are part of an image,

they are as much an image as a photo of a cloud is.

Characters are represented by a sequence of bits. Depending on

the characters and language involved, a different number of bits can be

involved. Initially, characters in were six bits long, and then it stretched

to eight. Today, with Unicode characters, most of the characters and most

of the world’s languages can be displayed. The most commonly used

encodings you will encounter are UTF-8, UTF-16, and UTF-32 (the number

represents the number of bits used in a single character.

Strings are sequences of characters. As you can see from the possible

lengths of the characters, a string can easily extend far beyond a single

computer word so strings are normally not stored on the stack but are

accessed with some form of a reference word.

�Creating New Types
When you declare a constant or variable, you specify its type. You can do

that with a type annotation or by setting a value for the constant or variable

so that Swift can infer the type as you see in the following examples.

var myVariable:Int // type annotation

var myVariable = 20 // inferred type

The type annotation becomes important when the inferred type might

be not what you want. For example, although 20 would let Swift infer an

Int type, the following code will make the variable into a Double.

var myVariable: Double = 20 // type annotation overrides

inferred Int type

Chapter 7 Working with Data: Types

135

You can also declare new types in Swift. Other modern languages allow

you to do this as well, but traditional languages limit the types you can use

to what is built into the language and its compilers. This allows for the type

checking described previously in this chapter to be used to catch errors at

the coding/compiling process rather than when the user is trying to use

your app.

You can declare new types in Swift. Once declared, you can use them

just as the original types declaring variables and constants using them

and using your new types in type annotations. Your new types are built

on the existing types already in Swift (and in your own code). You can,

for example, create a type that relies on Int types. Your type can be used

alongside Int types. (You will see how this is useful in the following

section, “Working with Tuples.”)

To declare a new type, you use the Swift typealias syntax in which

one type is aliased to another. One reason to do this is to improve the

readability of your code. You can (and should) name your constants and

variables in a way that makes it clear what they are, but sometimes you

want to refine your nomenclature so that it is more precise. For example,

if you as use the built-in String type to name items that you deal with in

your app, using the String type is fine.

You may want to use a type alias to specify to yourself and others what

exactly that string represents. So you could use a typealias like this:

typealias productName = String

You can now use productName in declarations such as the following

var widget1:productName = "Widget 1"

var widget2:productName = "Widget 2"

Chapter 7 Working with Data: Types

136

You can move beyond simple names to use a typealias for a

collection type. For example, you could create an array of your inventory:

var inventory = Array <productName>()

inventory = [widget1, widget2]

You can add other arrays to an array as long as you respect the type.

Because arrays can have duplicate elements, you can make another array

out of widget1 and add that array to inventory.

inventory += [widget1]

print (inventory)

You can see the results in Figure 7-1.

Figure 7-1.  Add another element to the array

Chapter 7 Working with Data: Types

137

You can use the same logic to add a string in its own array to the

inventory array.

inventory += ["dog"]

print (inventory)

You can add the string “dog” to inventory because inventory is an

array of type productName that is a typealias for String.

If you apply the same logic to a new array of an Int (17), you’ll get

an error as you see in Figure 7-2. The array is an array of typealias

productName (String) and so Int types are not allowed.

inventory += [17]

print (inventory)

Figure 7-2.  You cannot add an Int to the array

Chapter 7 Working with Data: Types

138

If you put the 17 in quotes so that it is a String, all will be well as you

see in Figure 7-3.

Using typealias to make your code more readable is a very useful

idea, and it can help to prevent problems later on because the use of the

type can be made clear to you and other people who maintain the code.

�Working with Tuples
The numbers, strings, and characters described in the previous section

are common to most computer languages today. There are variations that

have been implemented over time in most languages, and Swift has many

of them.

Figure 7-3.  Add an Int as a String

Chapter 7 Working with Data: Types

139

Skipping over the many variations on the basic number, string, and

character types, we can look at a modern type that is implemented in Swift

and other languages such as Python and C# in similar ways. A tuple is a

sequence of types that together make up a single type.

You can, for instance, declare a tuple, which is a form of type that

you create from other types. You use typealias to provide an alias to an

existing type, and that existing type can be one that you create with a tuple.

In fact, using typealias to name a tuple may be the most common use of

typealias.

A tuple basically is a sequence of types enclosed in parentheses. It

is used in a type annotation or alias. For example, you can create a tuple

of two Double types to represent the dimensions (length and width) of a

rectangle). You can give it a typealias of dimensions as in the following

code:

typealias dimensions (Double, Double)

var myRectangle:dimensions = (2.0, 3.0)

You don’t have to use a typealias. You can create and use a tuple very

simple as in the following code:

var myRectangle = (2.0, 3.0)

There is no need to name a tuple type with a typealias unless you

want to refer to it elsewhere.

Tuples can be incredibly useful because they combine several items in

one addressable symbol (the typealias name if there is one). A function in

most languages can return a result that is normally one item. Many people

let a function return a collection (array, dictionary, or set), which has the

effect of returning multiple results. (In fact, dictionaries have commonly

been used to return multiple results in a single item.)

The items in a tuple are identified by order: You can’t rearrange them.

By default they are numbered starting at zero. Figure 7-4 shows how you

can create and use tuples. Notice in the viewer that follows line three

Chapter 7 Working with Data: Types

140

that the two elements of the tuple are shown preceded by their default

names — .0 and .1.

When declaring a tuple, you can provide names for the items. In

Figure 7-4, note that in line 7 the items are named:

typealias dimensionsLabeled = (width: Double, height: Double)

Figure 7-4.  Declaring and using tuples

Chapter 7 Working with Data: Types

141

You can refer to the items in a tuple by using the name of the variable

or constant followed by dot syntax and the name of each item as in line 9:

print (myLabeledRectangle.0, myLabeledRectangle.height)

Even if you provide a name for an item in a tuple, you can still refer to it

by its default number.

Note T he names of tuple elements are not quoted strings.

�Summary
This chapter provides you with an overview of types as used for data.

You see the types that are common to all languages and operating systems

(numbers, characters, and strings) as well as types that you can create such

as tuples.

The use of types — even dynamic types — can make your code safer to

develop and to maintain.

With the data side of things under control, it is time to move on to look

at how operating systems and applications actually work with the data that

you declare and store. That is the topic of the next chapter.

Chapter 7 Working with Data: Types

143
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_8

CHAPTER 8

Managing Control
Flow: Conditionals,
Switches, and
Enumerations

In Chapter 5, you saw the basics of repetitions, but there’s a lot more to

managing control flow than looping through repetition code. This chapter

explores the other main control flow aspects of code. These are present in

most languages and operating systems.

�What’s Next?
The basic flow of control in an app is from one line of code to the next.

A single line of code is a single statement even though it may involve

many steps — perhaps this is because the line of code causes a function or

method to run. Furthermore, several lines of code can be placed on one

physical line of code in Swift. As in many other languages a semicolon is

placed after each line of code when more than one is placed on a single

144

line. Furthermore, to improve readability, a single line of code can be

stretched over several physical lines of code. Nevertheless, we refer to a

"line of code” as if it were both a physical and logical entity even though

there is not an exact equivalence.

No matter how it is formatted, each line of code is executed in an

app, and, most of the time, after it is completed, the next line of code is

executed. If there are no more lines of code, the app terminates.

This is the basic pattern for apps and programs from the dawn of

computer time. It is important to note that there is a major variation on this

pattern that is particularly prevalent in apps that rely on user interaction.

In these cases, the app starts running, and, once it has started running, it

waits for an external event to be passed to it (that event might be a user

action). When the event is received, the app processes it and then waits for

its next event. A program like this may terminate only when the computer

is turned off or restarted.

On iOS devices, you can specifically terminate apps that are waiting for

events. You can see them in Control Center as you see in Figure 8-1. Just

drag an app up to the top of the window to terminate it.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

145

Figure 8-1.  See running apps in Control Center on iOS 11 and later

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

146

Within an app, the major exceptions to the next-line-of-code sequence

are the following:

•	 Go to. You can explicitly go to another line of code

other than the next line. As you will see, this is

normally discouraged, but it remains a commonly used

technique of managing control.

•	 Switch. You can execute one of several lines of code

(or sections of code) rather than the next line. This is

a useful technique to use when you want to do one

of several operations (show the current temperature,

show the calendar for next week, log out, or anything

else).

•	 Conditionals. You can execute a line of code if some

condition is (or isn’t) true.

•	 Repetitions. You can repeat one or more lines of

code as you saw in Chapter 5. There are a number of

variations on the repetition pattern — you can repeat

code until some condition is or isn’t true, for example.

�Using Go To Statements…Or Not
In many programming languages (particularly older ones) it is possible

to directly specify the next statement to be executed after the current

statement. In order to do this, programming languages need some way

of identifying statements. Originally, this was done by numbering them

sequentially. Statements in Swift may be numbered by Xcode, but the

numbers are not part of the code itself.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

147

In some languages (notably PL/1 and COBOL), statements can be

named. This is better than numbering them because the names don’t

change if you insert or delete statements. Line numbers are fragile.

When labels are used, they often must be the first characters on a line if

they are used on that line, and the label is terminated by a period, colon,

or other distinctive character. They typically cannot contain embedded

blanks.

In Swift and most modern languages, even if line numbers are shown,

they are only for your reference: you cannot transfer control to a specific

line number.

Figure 8-2 shows a Swift playground in Xcode with line numbers shown.

Figure 8-2.  Swift playground with lines numbers shown

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

148

Figure 8-3 shows the same code with line numbers hidden.

You turn line numbers on and off in Xcode preferences (Xcode ➤

Preferences) as shown in Figure 8-4. Once Preferences has opened, select

Text Editing from the top bar and choose the Editing option at the top of

the main window section. You can turn line numbers on and off depending

on what you’re doing at the time. You might want to turn the line numbers

on if you’re going to a code review meeting where people will want to talk

about the code whether it is printed out or shown on an Apple TV or other

device using AirPlay or a directly wired connection.

Figure 8-3.  Swift playground with line numbers hidden

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

149

Line numbers along with go to statements have become artifacts of

the past in the coding world, but, just as in the physical world, the past is

always with us or, as William Faulkner wrote, “The past is never dead. It’s

not even past.” [Requiem for a Nun and various misquoted variations on

the web] Being able to identify line numbers in discussions and documents

is very useful. (Line numbers are frequently used in the screenshots from

Xcode in this book, for example.)

Being able to specify a specific line as the next line to execute has

proven to be a dangerous programming technique. If you are writing code

and thinking about finding a way to jump to something other than the

next line of code, use one of the other techniques that are described in this

section.

Figure 8-4.  Xcode line number preferences in Xcode preferences

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

150

Being able to transfer control to a specific line of code results in what is

referred to as spaghetti code. It takes its name from the fact that if you draw

arrows indicating how a program executes, those arrows (in what is often

called a flow chart) start to look like a plate of spaghetti.

The alternative to line numbers and spaghetti code is structured

programming or structured code. The term was devised by Edsger

W. Dijkstra in 1968. A leading developer on the Burroughs Corporation

ALGOL programming team, his influence on that project and computer

programming in general in the late 1950s was enormous.

Note ALGOL on Burroughs mainframes was my second
programming language (my first was FORTRAN on CDC 6600
mainframes, which in the 1960s were considered the first successful
supercomputer). Much of the ALGOL syntax is relevant today and
some of its features are hallmarks of good programming style and
efficient coding for the largest and smallest devices.

Rather than transferring control to a specific line identified by label or

number, structured programming relies on structuring in the code into logical

sections (functions, procedures, or methods that you will find out more

about in Chapter 10, “Building Components,”). You can then transfer control

to the logical section, which may contain multiple lines of code. Because of

this structure, you don’t transfer control all over your code from one line to

another to another and so on (thus, the origin of the phrase spaghetti code).

�Using Conditionals
Perhaps the simplest way of structuring your code to avoid random

jumping around from one statement to some other statement and then

on to confusion is to set up a binary choice. If some condition is true, then

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

151

execute the following line of code. This means that instead of jumping

around, you simply do or don’t execute the next line of code. The structure

and flow of your code remains fairly easy to understand.

You can even begin to expand on this pattern by setting up a three-way

choice: if a condition is true, execute this line of code, and if it is not true,

execute that line of code. Note that these are not distant lines of code —

they are sequential. In this way, the choice is easy to understand and the

flow of control is simple.

You can build even more by using compound statements so that a

group of statements are treated as one. The logic is then modified a little so

that conceptually it is

If this condition is true execute these following lines of code;

if it is not true execute those lines of code.

The lines of code remain sequential so that the condition (or if

statement) is evaluated and several lines that follow it are executed or,

if the condition is not true, several other lines that follow are executed.

Although the control takes one set of statements rather than another, all of

the code is together.

The initial part of this pattern is the conditional expression itself. In

its simplest form, it is an if statement. The basic style in Swift (and many

other languages) is illustrated in this code snippet:

Listing 8-1.  Using a Swift if statement

var x = 5

if x > 4

{

 x = x + 1

}

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

152

In languages in the C family, the syntax is slightly different, as shown in

Listing 8-2:

Listing 8-2.  Using a C if statement

if (x > 4)

 x = x + 1;

As you can see, it is necessary to somehow differentiate between

the conditional test and the code to be executed (or not executed).

Parentheses or brackets are used for these purposes.

These are the concepts. Specific Swift examples follow.

�Using Compound Statements in Swift

In many languages (including Swift) you can group statements together by

enclosing them in brackets as in the following:

{

 let x = 5

 let y = 6

}

This lets you treat the statements as a compound statement — that is,

one statement. This is particularly useful when used in conjunction with

a conditional test. This means that the Swift example shown previously in

Listing 8-1 can be enhanced. The brackets around the conditional code

mean that it is already a compound statement. To make the if statement

apply to several statements within a compound statement, you just add the

second statement to the interior of the bracketed compound statement as

in Listing 8-3.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

153

Listing 8-3.  Using a Swift if statement with a compound statement

var x = 5

if x > 4

{

 x = x + 1

 print ("updated x")

}

You can use Xcode’s preferences to manage indentation. Choose

Xcode ➤ Preferences and select Text Editing and the Indentation segment

at the top of the pane as shown in Figure 8-5.

Figure 8-5.  Setting indentation options

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

154

With the settings shown in Figure 8-5, you can see how indentation

works in Figure 8-6. (The error is due to the fact that a disembodied

compound statement such as this one that is used only for a formatting

demonstration isn’t valid syntax.)

What you don’t see in Figure 8-6 is that after typing the initial opening

bracket, the insertion point moves to the indented space on the following

line so you can keep typing. When you type the closing bracket, the

indentation is dropped and it moves to the left. Embedded embedded

statements of any length display properly.

Figure 8-6.  Using indentation in Xcode preferences

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

155

Note that there are different styles and standards for indenting code.

One of the most basic is where to place the opening bracket. This is

particularly important in conditional statements where there is code

before the opening bracket of a compound statement. The two basic styles

are shown in Listing 8-4 and Listing 8-5.

Listing 8-4.  Dangling bracket

if x > 4

{

 x = x + 1

 print ("updated x")

}

Listing 8-5.  Embedded bracket

if x > 4 {

 x = x + 1

 print ("updated x")

}

There are arguments to be made for both styles. In the dangling style,

the opening and closing brackets are aligned so it may be easier to pick out

the compound statement. In the embedded style (Listing 8-5), the opening

and closing brackets are not aligned, but the entire conditional statement

appears as one unit (which it is).

The issue can be a bit more complicated when you expand an if

statement to provide an else clause — that is, a statement or compound

statement to be executed if the condition is false. Listing 8-6 shows one

version of a dangling else bracket. Common variations on this style do not

indent the else.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

156

Listing 8-6.  Dangling else bracket

if x > 4

{

 x = x + 1

 print ("updated x")

}

 else

{

 print ("no update")

}

In Listing 8-7, you see an embedded else. By comparison with Listing

8-6, this emphasizes the two components of the if statement. Which style

you use is a matter of preference (your preference and the preferences of

your project team).

Listing 8-7.  Embedded else bracket

if x > 4 {

 x = x + 1

 print ("updated x")

} else {

 print ("no update")

}

�Ternary Operators

So far in this chapter, the discussion has focused on the control of

statements within an app. There is a related operator that is used in a

somewhat similar way. The ternary operator does not manage control flow;

rather, within a single statement it lets you choose between two alternate

values as a result. It is discussed here because it frequently is used to

replace more complex if statements.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

157

The situation that ternary operators address is a common if pattern:

if x > 10 {

 message = "greater than 10"

} else {

 message = "not greater than 10"

}

Whether the condition is true or false, the message will be set to

something. With a ternary operator, you can make this much simpler. The

code using a ternary operator is a single line of code:

message = x > 10 ? "greater than 10" : "not greater than 10"

This is a replacement statement that incorporates the conditional test

and both the true and false results. Figure 8-7 shows this in a playground.

You can test this code for yourself by downloading the Conditional1

playground as described in the Introduction. Try adjusting the value of x in

the first line of code and the test for x > 10 in the ternary operator; you

can also experiment with changing the text strings.

Figure 8-7.  Explore a ternary operator

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

158

Remember that ternary operators are operators within a single

statement (not even a compound statement although you can get fancy

and produce some almost undecipherable code if you try to push that

limit).

�Switching Control
Conditional statements let you branch to one of two true/false conditions;

you can also place conditional statements within one or more branches

so that you continue to fork along true/false paths of various conditions. If

you want to implement more than a simple binary true/false branch, you

may find yourself deep in confusing branches of branches. You may realize

that what you want is more than two choices, but the if statement limits

you to one or two choices (two choices require an else clause as part of the

if statement).

The abstract idea of a switch statement is as follows:

•	 A condition is evaluated.

•	 Its result is used to choose a statement or set of

statements to be executed.

The basic idea is shown here in pseudocode in Listing 8-8:

Listing 8-8.  Pseudocode generic switch statement

switch <expression to evaluate> {

 case <expressionResult1>: <one or more statements to execute>

 �case <expressionResult2>: <another one or more statements to

execute>

}

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

159

�Comparing Swift Switches to Other Languages
Note that the entire switch statement is enclosed in delimiters (brackets

in this case). Switch statements are great tools for writing structured code,

but there are a number of significant variations across languages. Here are

some of them:

•	 Once an expression is evaluated and matched to an

expression result, that code is executed, but what

happens next? In some languages such as C, after

expressionResult1 is chosen and executed, control

will pass to the following statements. The word break

is used at the end of a case element to cause control to

simply leave the entire switch statement.

•	 break statements can appear anywhere. If you have five

case elements, you can place a break command after

any of them. You could choose the first case element,

execute it, drop through to execute the second case

element, and then terminate if a break statement is at

the end of the second case element.

•	 In languages in the ALGOL and Pascal families

(including Swift), the choice is limited to executing

the case element. There may not be a need for a break

statement. (This is the case in Swift.)

•	 The entire statement may be called a switch, a case, or

select.

•	 The case elements are often called cases and are

identified by the keyword case.

•	 Some languages (including Swift) let you modify the

conditions under which a case element is chosen.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

160

•	 Many languages require a special case (often called

default), which is executed if there is no case element

matching the expression result.

Much of the variations may be due to the fact that although the

statement is powerful and can help you create more structured and

readable code, developers added additional features rapidly, and they

were inconsistent. This may have been related to the period in which these

statements were developed — it was a time (the 1960s) of a great deal of

language development and modification.

�Exploring the Swift Switch Syntax
The Swift switch statement is highly structured and powerful. If you are

familiar with other language switch statements, it may be new to you,

so the basic Swift syntax is provided here and will continue in the “Using

Enumerations” section that follows).

The basic Swift syntax is shown in Listing 8-9. It is the same as the

generic pseudocode in Listing 8-8 but it has a default statement. The

default statement is required in Swift, and its interpretation may be

different than it is in other languages you are used to.

Swift switch statements must be exhaustive. That means that if the

controlling expression is of a certain type, the default statement applies to

all elements of that type other than those identified in case statements.

Listing 8-9.  Basic Swift switch statement

switch <expression to evaluate> {

 case <expressionResult1>: <one or more statements to execute>

 �case <expressionResult2>: <another one or more statements to

execute>

 default: <one or more statements to execute>

}

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

161

This means that the controlling expression must have a type (and all

expressions have a type either implicitly or explicitly). break statements

are not required in Swift: a case expression executes and is terminated by

the next case element or by the end of the switch statement.

You can have multiple values handled by a single case element in Swift.

You simply combine the case elements as in:

case "result1", "result2":

In some other languages, you might be used to writing it differently;

this code won’t work in Swift because control doesn’t pass from one case

element to the next. It is terminated by the next case element.

case "result1":

case "result2":

You can also use a number of other conditions for case elements. Two

are described in the following sections.

�Using Advanced Switch Case Elements: Ranges
Listing 8-10 shows the use of a Swift switch using a range. The code begins

with the declaration of an optional variable (myUserID), which is an Int.

It is set to 6 so it has a value, but note that if it is not set (that is an unset

optional) this code will still function properly and not cause an error. It

uses optional binding to set userID (if possible) to the unwrapped value of

myUserID.

Note T here is more on optionals and optional binding in Chapter 9.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

162

The switch statement now uses userID (the unwrapped value of

myUserID) to choose a case statement to execute. In this case, the case is

defined using a Swift range:

5..<9

This Swift syntax means the range between 5 and 9. Note that there

are three characters in the range: 2 periods followed by <. It is not three

characters followed by <.

Listing 8-10.  A Swift switch with a range

var myUserID:Int?

myUserID = 6

if let userID = myUserID {

 switch (userID) {

 case 5..<9: print ("first example:" + String(userID))

 default: print ("not a known ID")

 }

}

You can see the code in action in Figure 8-8.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

163

�Using Advanced Switch Case Elements: Where
Clauses
You can also create compound conditions with where in the case element,

as in the code shown in Listing 8-11.

Listing 8-11.  Using a where clause in a Swift switch

var myUserID:Int?

myUserID = 6

if let userID2 = myUserID {

 switch (userID2) {

Figure 8-8.  Using a range in a Swift switch

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

164

 �case 5..<9 where userID2 < 7: print ("preferred user:" +

String(userID2))

 case 5..<9: print ("not a preferred user:" + String(userID2))

 default: print ("not a known ID")

 }

}

This code builds on the code shown previously in Listing 8-10. Here,

the range condition is used twice. The first time, a where clause is added to

it to refine the case condition. The second time there is no where clause.

Note that these cases are evaluated one at a time in sequence. If you

reverse them so that the where follows the unconditional case as shown in

Listing 8-12, the unconditional case will be used and the where clause will

never be used.

Listing 8-12.  Reversing where and general cases in a switch

statement

if let userID2 = myUserID {

 switch (userID2) {

 case 5..<9: print ("not a preferred user:" + String(userID2))

 �case 5..<9 where userID2 < 7: print ("preferred user:" +

String(userID2))

 default: print ("not a known ID")

 }

}

This code is shown executing in Figure 8-9.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

165

�Using Enumerated Types
Just as Swift switch statements build on existing switch statements in many

languages, so, too, Swift enumerations (enums) build on enumerations

in other languages. Enumerated types (shortened to enums in common

usage) are just that: a type that is constructed by enumerating its values.

The most common example of an enumerated type is Suit, which

has the values Clubs, Spades, Hearts, and Diamonds. In many program

languages (particularly the C languages), the order of enumerated types

matters because an integer number can be inferred or assigned to each

type value. Thus, in the example of Clubs, Spades, Hearts, and Diamonds,

the values by default would be as follows:

Clubs = 0

Spades = 1

Hearts = 2

Diamonds = 3

Figure 8-9.  Using a where clause in a Swift switch

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

166

You can also assign values explicitly in any order you want. The cases

of enums are not strings so they are not quoted. You can use enum cases

to access their integer values. This means that you can use the enum case

Hearts in the example above as 2.

This works only in one direction: you can’t use 2 to indicate the Hearts

case of an enum called Suits. You can, however, write a small function that

converts an integer to a Suits name. One of the reasons for this reverse

conversion (from integer to enum case name) is that enum integers are not

unique in the namespace: the enum case Spades can have a value of 1 and

another enum with case Flowers can use the value of 1 for Geraniums.

As a result, many people think of enums primarily as ways to use

integers to represent text values (the case names) to create what is

sometimes referred to as self-documenting code. (Some other people refer

to this as a joke. It’s an area of contention.)

�Swift’s Approach to Enumerated Types
Swift has turned enumerated types into first-class types rather than just

a typing or documentation shortcut. In Swift the case names are (as in

other languages) not quoted strings. The notion of automatically assigning

values is used in some cases, but you can assign a raw value to each case.

That raw value can be an integer (as in most languages), but it can also be

a string, character, or number — even a floating point number).

Swift enums style capitalizes the enum name and uses lowercase for the

case values as in the following declarations.

enum Suit {

 case club

 case spade

 case heart

 case diamond

}

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

167

�Using Swift Enums with Switch Statements
Because enums in Swift are more tightly structured than in many other

languages, they fit well into Swift features such as the requirement that

switch statement case elements be exhaustive. You can use an enum to

assign a value as in the following line of code that assigns the enum case

club of the Suit enum to a constant called cardSuit:

let cardSuit = Suit.club

You can then start to create a switch statement that uses cardSuit. If

you attempt to close the switch statement, you will get an error as shown

in Figure 8-10.

Figure 8-10.  Swift flags non-exhaustive switch statements

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

168

This error message is made possible because Swift keeps track of the

cases for each enum. If you heed the message and type in the other cases,

you will no longer have an error as you see in Figure 8-11.

Instead of printing out a message for each case of a switch statement,

you can use the fact that enums are full-fledged types to refer to them more

generally, instead of printing out what the name of the case element is as

you see in Figure 8-11 or in Listing 8-13.

Figure 8-11.  Creating an exhaustive switch statement with an enum

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

169

Listing 8-13.  Simplifying the switch statement.

switch cardSuit {

default: print (cardSuit)

}

In Listing 8-13 all of the control flows through the default case, and you

don’t even need the switch at all. You can achieve the same result with one

line of code:

print (cardSuit)

Figure 8-12.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

170

You can set the raw value of an enum. As noted previously, the raw value

can be a number (integer or floating point), character, string, or other

value. You simply add it in the enum declaration as shown in Listing 8-14.

If you do that, you can then retrieve it by accessing the rawValue

property of an enum as in

cardSuit.rawValue

The example shown previously in this chapter is updated in Figure 8-13

to show how you can print the raw value. You can access the raw value for

any purpose — it doesn’t have to be for printing. You can use a numeric

value to perform calculations, and you can also add a meaningful string to

the case name.

Listing 8-14.  Using raw values in an enum

enum Suit:Double {

 case club = 15.3

 case spade = 32.6

 case heart = 0.0

 case diamond = -42.3

}

let cardSuit = Suit.spade

print (cardSuit)

print (cardSuit.rawValue)

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

171

�Exploring Repetitions and Strides
Most programming languages support a variety of repetition operators.

You see the basics in Chapter 5, “Managing Control Flow: Repetition” but

here is an overview of the common repetition variations. (All are available

in Swift, and, with occasional modifications, in most other languages you

may use.)

There are two basic types of repetition loops: while loops and for

loops. All repeat a statement or compound statement. while loops rely

on conditional statements for their control but for loops rely on data

structures for their control.

Figure 8-13.  Displaying enum raw values

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

172

Note R epetitions repeat a statement or compound statement. To
simplify the text, this section refers to statements, but rest assured
that you can replace a single statement with a compound statement
enclosed in brackets { } as was discussed previously in this chapter
(“Using Compound Statements”).

�While and Repeat-While Loops
There are two parts to a while loop: the condition that is true or false and

the statement to be repeated. The while loop behaves slightly differently

depending on whether the condition or the statement appears first.

If the condition is false when the while statement begins execution, the

difference becomes clear.

For a condition that is false initially, the following loop will not execute.

The code is executed as it would be in a natural language. Because the

while condition isn’t true, it won’t execute. When the condition becomes

false, the while loop terminates.

Note I f the condition never becomes false, the loop becomes an
infinite loop and will never stop. If the logic of your app is such that
the condition doesn’t change, you don’t want a while loop: You want
an if statement.

while <condition> {

 <statement>

}

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

173

The other version of the while statement always executes at least once.

Here is the basic code:

repeat {

 <statement>

} while <condition>

This loop will always execute at least once.

�For-in Loops
These repetitions rely on collections (arrays, dictionaries, or sets). The

main for-in loops rely on iterations and enumerations.

�Iterating Over a Collection

The simplest version simply loops through the collection (this is called

iteration). Listing 8-15 shows three simple collections (an array, a

dictionary, and a set) and how you can loop through each one with the

same syntax.

Listing 8-15.  Using for-in loops for collections

let myArray = ["dog", 4.6] as [Any]

let myDictionary = ["name": "Rover", "weight": 20.5] as

[String : Any]

let mySet = ["name", "weight"]

for arrayItem in myArray {

 print (arrayItem)

}

for dictionaryItem in myDictionary {

 print (dictionaryItem)

}

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

174

for setElement in mySet {

 print (setElement)

}

You can see this in the playground shown in Figure 8-14.

It is very common that you just want to deal with each item in a

collection in turn, and this does that job.

�Looping Through Indexes (Arrays) and Keys
(Dictionaries)

In the case of arrays and dictionaries, sometimes you need not only the

value of the item but its index (in an array) and its key (in a dictionary).

Note  Because sets are unordered, there are no keys or indexes
to use, so all you can do is iterate through the set elements as
described in the previous section.

Figure 8-14.  Explore loops in a playground

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

175

There is a difference between iterating over elements of a collection

as described in the previous section and enumerating those elements.

You will see that in this section where an array is enumerated. That

enumeration provides each element of the array along with its index.

(Remember that array indexes are part of the array structure itself and not

part of the data.)

The built-in enumerated function provides tuples for each element of

the array. Each tuple consists of the array index and the value. If you call

enumerated() on an array, you will see those tuples as shown in Figure 8-15.

Note that the data used previously has been changed to include a third

item (cat) in the array. The data viewer in the playground shows the array

with its three elements. If you open it with the disclosure triangle, you’ll

see the three indexes and their associated values.

If you want to use the enumerated values, you can display them with

code such as the following. First, the enumerated function is called on the

myArray array. Then, a for-in loop operates on the myArray.enumerated()

result. The two values in each tuple are printed out.

Figure 8-15.  Results of enumerated() on an array

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

176

for (index, item) in myArray.enumerated() {

 �print ("index: " + String(index) + " item:" +

String(describing: item))

}

The tuple names that you use don’t matter because it’s the order of the

items in the tuple that matter. If you want to change the code like this, it

will still work as well (as long as you update the print statement to match

the names you’re giving to the tuple values.

It is important to note that because you are dealing with values that

are not all strings, you can take the Fix-It suggestions you’ll get in Xcode

to convert the numbers to strings. They rely on the String(describing:)

function as you see in the code in this section.

To do a comparable enumeration with a dictionary, you don’t need to

call enumerated because the dictionary with its key-value pairs contains

the keys as well as the values with its data. Thus, you can just name the

tuple values as in

for (key, value) in myDictionary {

 print ("key:" + key + " value:" + String(describing: value))

}

The code in this section is shown in Listing 8-16.

Listing 8-16.

let myArray = ["dog", 4.6] as [Any]

let myDictionary = ["name": "Rover", "weight": 20.5] as

[String : Any]

for (index, item) in myArray.enumerated() {

 �print ("index: " + String(index) + " item:" +

String(describing: item))

}

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

177

for (key, value) in myDictionary {

 print ("key:" + key + " value:" + String(describing: value))

}

�Using Strides
In addition to the built-in repetitions (for-in and while), the Swift Standard

Library includes several that are frequently used in these situations. You

have already seen the enumerated() function, and it is worth exploring

others. One Standard Library function you may find useful is the

stride(from:to:by:) function. This function can be adopted by types

that adopt the Strideable protocol. You don’t have to worry much about

what that entails: just remember the list of types that are Strideable:

CGFloat

Decimal

Double

Float

Float80

Figure 8-16.  Showing keys and indexes for dictionaries and arrays

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

178

When dealing with arrays of those types, you can apply the two stride

functions:

stride (from: to: by:)

stride (from: through: by:)

The difference between them is whether the limit is included in the

stride (through) or not (to). With stride, you can do some of the C-style

looping that you may be used to (specifically, you can look not just from

and to a value but using steps rather than increments of one.

�Summary
This chapter goes into some basic computer science principles that are

common to many languages. In two of the topics discussed (enumerations

and switch statements), you see how Swift extends common functionality

and also makes common features more rigorously defined and used.

Having looked at data and types as well as control flow, you have many

of the basics of computer science at hand. The next step is to move on to

storing and retrieving data. After all, without those features, users have to

start from scratch each time they run an app.

Chapter 8 Managing Control Flow: Conditionals, Switches, and Enumerations

179
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_9

CHAPTER 9

Storing Data and
Sharing Data

Computer science focuses on the design and use of computers in one

standard phrase. Although there are early examples of computer-like

devices (notably the Charles Babbage Analytical Engine in the 1830s,

the Jacquard loom in 1804, and the Enigma machines in the 1930s and

through the Second World War with Turing’s advances), the modern

computer age really began in the 1940s. The big steps forward in the 1940s

were significant hardware advances, and, arguably, the most important

step forward was the development of programming and compilers so that

computers could generate their own instructions from English-like code

written by humans. (Look at information about Grace Hopper and her

colleagues on the Internet for more details of the software side of things.)

Even with the development of personal computers in the late 1970s

and the rise of the Internet in the 1990s, not much changed in the basics of

computer science as new technologies and new capabilities emerged. One

thing that has changed — quite dramatically — is the storing and sharing

of data.

Whereas the advances in computer hardware have often been

dramatically heralded in the media, changes related to data seem to be of

less interest to many people. In fact, many people consider data and data

180

management to be an almost trivial part of the computer science world.

Oh, yes, there’s data, and it needs to be stored somewhere, but let’s look

at exciting things like 3D printing, social media, and forget about that

mundane data storage. (Ask almost any data management specialist for

an opinion on this topic, and you’re likely to unleash a veritable torrent of

comments on the matter.)

The role of data is critical to computer science and its applications, and

that role has evolved in ways that few people have focused on until very

recently. This chapter addresses the data issues in computer science. It is

divided into four sections that address the four primary data concerns:

•	 What is the data? All apps generate, consume, and

store data. You may think your app is the exception, but

there are no exceptions if you look at all the data that

your app generates, consumes, and stores.

•	 Where is the data stored? With the exception of data

that is generated by hardware and software on demand,

the data that makes apps possible needs to be stored

somewhere. Sometimes the app is creating data,

and if that is the case, it typically needs to be stored

somewhere even if that location is temporary and on

some scratchpad that is built into the system or the app.

•	 Who is in charge of the data? Is it static or is it updated

periodically (and, if it is updated, who does that)? Who

owns the data (that’s not an easy question to answer in

many cases)? What procedures are in place to manage

updates and data integrity and security?

•	 How is the data managed? This question covers

everything from the formats of data in spreadsheets to

database management systems and the issues in the

new sphere of Big Data.

Chapter 9 Storing Data and Sharing Data

181

Note T his chapter is somewhat different from the others in this
book in that it doesn’t show you the code to write because most of
the issues are at a higher level than the code. In fact, it can be argued
that the issues of data management are at least as important as the
code that creates, manages, and uses the data. But whatever your
opinion on the relative importance of code and data, they are both so
important that both belong in any approach to computer science in
the twenty-first century. Perhaps fifty years ago when “data” meant
carton upon carton of punched cards, reel upon reel of magnetic
tape, and stacks and stack of paper documents to be keypunched,
it was possible to look at computer science without bothering about
all that data. It’s not true anymore. As the pioneers of computer
programming in the 1940s understood, computers can work with
codes that stand for numbers just as easily as codes that stand for
program logic and commands. Data and code are, in many ways,
interchangeable. That’s the lesson of Grace Hoppe: it’s what makes
compilers possible.

�What Is the Data?
If you think the answer to this question is simple, think again. When you

read, hear, or see a news item about a data breach, hacking, or system

failure, you often find references to data that you never thought about

before. When you first start to think about the data that an app uses

(creates, generates, or manages), you think clearly of various aspects of

that data.

What the news reports often tell us is what many data managers have

known for quite a while: that application data is just the tip of the iceberg.

Chapter 9 Storing Data and Sharing Data

182

The time and place where someone used the app are important in many

cases, and those items are part of the app’s data. (If you don’t believe this,

follow the news items and look for what investigators are searching for

when they search for data on a suspect’s phone, desktop, or other device.)

Data sent to or from an app can fall into the “app data” category. Also

in the category of app data is the app description on an app store along

with comments on media (including social media) about what the app can

be used for, and how it is used.

All of this is “app data,” and all of it matters in various ways to various

people. The data that routine users of an app deal with in their routine uses

of the app is just part of the app’s data.

Everyone needs to be aware of this data whether you are a user,

developer, or manager whose job includes using an app and its data. Each

role has to think about the app data. Start with the designer or developer. If

you start to think about this data, you may decide that you cannot control

who keeps track of when and where people use your app.

That’s wrong.

The record of use is, in part, generated by the app itself, and that is

your responsibility if you are a developer or designer. If your app welcomes

returning users with a “Welcome Back!” message, that may be a friendly

welcome, but in order to generate it, you as the developer have to store the

information that distinguishes between a first-time user and a returning

user. Right away, you are storing information that may or may not be

important to your users (and to others). Every design decision of this kind

affects the app data.

In some cases, it clearly doesn’t matter, and in others it does matter

and the user knows it. If your app charges per use, it’s reasonable that

you’re keeping track of the uses. In general, many experts in security and

data management suggest that you store everything you need and nothing

you don’t need. “It might come in handy some day” is really not a very

good rationale for deciding to store data. Remember that data that is not

stored can’t be stolen, it can’t be garbled or corrupted, and — perhaps

Chapter 9 Storing Data and Sharing Data

183

most important of all — it can’t take up valuable storage space on devices

and the cloud.

It is a source of amazement to many developers how clients come in

and sit down to discuss a new project with a long list of data to be stored

in this new project or app. If the developer asked the client where the data

will be stored, the response all too often is “in the app” or, sometimes, “in

the cloud.” Before you move very far into a project, make certain that you

understand exactly where the data will be stored. As you hone in on the

details of storing data, clients often start to understand what is entailed.

You can give them some estimates for the storage and maintenance of their

data, and, many times, the need to store lots and lots of possibly useful

“someday” data is reduced or disappears.

Remember: store what you need to store and nothing else. Read

histories of famous computer science projects and follow the adventures

of projects that have come to grief with overly ambitious data storage

schemes. There are many.

The need to clarify data and its storage doesn’t mean you shouldn’t

store data. You must store and use it in most cases. Just be careful.

�Where Is the Data Stored?
If you take the broad approach to app data, right away you are considering

that it is stored in several places because the usage data will wind up being

stored possibly by an Internet service provider and all of the intermediate

participants in running the app. Even on a dedicated personal device with

no network connection, chances are that the usage data in some form or

other is stored in the device. However, moving beyond those cases, you can

look at where the app’s own data is stored — that is where the data other

than the environmental and usage data is stored.

This data is separate from the data used as the app is running

(that is, the stack and heap locations that are discussed in Chapter 7).

Chapter 9 Storing Data and Sharing Data

184

This is the data that an app may store to keep track of game scores or moves,

to manage data ranging from word processing text or spreadsheet data or

even recordings that the app makes of music or video). That is the data that

needs to be stored somewhere so that users can come back to it when they

want to continue working with it (or even when they want to erase it).

The term persistent storage is often used for such data storage. The term

has its roots in descriptions of storage devices that retain their data even

when they are powered off. If you turn off a disk drive, you can turn it on

again and use the data. That is persistent storage. If you have data stored

in the memory of a device as in the stack and heap, when the app stops

running or you power off the device, the data is gone – it’s nonpersistent.

Note T hese are the concepts. Because people so often expect
persistence of their data even if the actual storage device or
medium is not available, there are ways that hardware and software
developers can keep the data available even when the physical
storage is not available, so you may observe persistence in what
appears to be nonpersistent storage.

There are three main places where this specific app data can be stored

(that is, where the data that most users and developers think of when they

think of app data). Those places are:

•	 Storage for the app on the device while it is running.

•	 Storage for the app on the device that is persistent.

•	 Storage on the device that is generalized for all apps on

the device.

•	 Storage on storage-focused locations that are designed

specifically for storage (Google Drive, Apple iCloud,

Microsoft OneDrive and Azure, Dropbox, and the like).

Chapter 9 Storing Data and Sharing Data

185

�Storing Data in Nonpersistent App Storage
Apps have storage locations that are available to them while they’re

running. This space is nonpersistent, and the data is not retained after

the app stops running or the device is powered down. In fact, computer

storage is cheaper than it was, but it is still an expensive and scarce

resource. It is reused where possible by the operating systems. In order to

reuse data storage when possible, the operating system keeps track of data

that is no longer needed. When you “delete” data, you typically cause the

operating system to mark the data as deletable: it typically does actually

erase the data.

Note T here are options available to actually delete data rather
than just mark it as reusable storage space. In fact, secure deletion
usually involves writing a random or known pattern over the storage
locations to be reused – sometimes repeatedly. It actually is very
hard to get rid of data once it has been written somewhere.

Although the reality may be different in some cases, developers

generally treat app storage as nonpersistent. To store data after the app

ends or to send it to other devices or apps, other techniques need to be

taken.

�Storing Data in Persistent App Storage
The model of storage on iOS (which includes Swift) has dedicated

persistent app storage. This storage is allocated for the app’s use, and the

app and its developer can do what they want with the storage (although

there are size limits to this storage). This is the storage that is erased when

you delete an app from your device as you see in Figure 9-1.

Chapter 9 Storing Data and Sharing Data

186

Figure 9-1.  Deleting an app deletes its data on iOS

Chapter 9 Storing Data and Sharing Data

187

�Storing Persistent Data Outside of App Storage
on a Device
Apps on all computers from mainframe supercomputers to the tiniest

smartphones have the ability to read and write data to persistent storage.

This general ability is mitigated by the fact that those features may not be

available to every app. In general, storing data on a device in this way is

the right way to store data that is specific to a device, app, and user. For

example, you can use available storage to store scores in games, data that is

entered for analysis, or any other purpose.

These storage locations for apps are often referred to as sandboxes.

Among the mitigations that limit the possibilities for app reading and writing

data, the most common is restricting reading and writing to an app’s sandbox.

Note  “Sandbox” is used in several senses. It can refer to a testing
area for apps and projects such as the sandboxes that let you test
out integration with eBay, Amazon, and the like. In such sandboxes,
you can actually test things such as purchases that will not actually
be charged to an actual credit card. Sandboxes often refer to runtime
nonpersistent data storage for apps such as heaps and stacks
as described in the previous section. A sandbox can also be the
persistent storage available only to a given app on a given device (or
on shared devices with a common user identifier such as an AppleID).

�Storing Data in Shared Storage Locations
There are many data storage locations for you to choose from once your

look beyond the device on which your app is running. Dropbox, and other

cloud services are common resources. Since iOS 11, the Files app on iOS

exposes the various locations for files to you as you see in Figure 9-2. If you

Chapter 9 Storing Data and Sharing Data

188

have Dropbox or other accounts, they show up in Locations. The integrated

user interface lets users see the files and their locations no matter where

they are. (Remember, that these are all persistent storage locations.)

Figure 9-2.  Use Files to manage files and locations on iOS devices

Chapter 9 Storing Data and Sharing Data

189

�Who Is in Charge of the Data?
If you have identified your app’s data and where it is to be stored, you

still have two issues to resolve: who is in charge of it and how is the data

managed and formatted. The issue of who is in charge (discussed in this

section) is remarkably untechnical.

If you write an app that lets people store some of their data — perhaps

sightings of wildlife along with the date, time, photo, and comments — who is

in charge of that data? Who owns it? Who can use it? There many questions.

Although computer science traditionally has focused on design and

implementation of computers and computer software, increasingly people

who work in the computer science fields are being asked to handle data

questions like these. The answers to these questions can be complex (and,

in many cases, there isn’t agreement as to what the answers may be).

In day-to-day practice of computer science by developers, designers,

users, managers, and everyone else who is involved, the issues of data

discussed in this chapter may be unresolved. Part of the lack of resolution

may be an absence of best practices and even a lack of people who are

aware of the issues.

Until such time as there are clear guidelines and standards, the

approach to data issues discussed in this chapter seems to be very much

haphazard. Many people who work in the field take the position that

unless there is some other guidance and standards for a specific project, it

behooves someone on each project to raise the issues discussed here and

to try to see that they are addressed in each project.

�Ownership of Data
There are several aspects to the ownership of data. The most basic is who

has ownership in the sense of the legal right to publish (or not publish) the

data as well as the right to allow (or disallow) access in means other than

publication.

Chapter 9 Storing Data and Sharing Data

190

In today’s world, there may not be simple answers, but increasingly we

find that specific aspects of data ownership are addressed. In documents

and agreements of various legal status, people rely on representations

about ownership every time they post or view data from a social media

site.

The question of ownership often arises when data is put to a new

use. If you are using an app to track your wildlife sightings, you may think

that your data is your data and that’s the end of it. However, if your data

is aggregated along with wildlife sightings from other people — perhaps

millions of people — that data then may have significant value. That value

may be of value to scientists as well as to marketers. In its aggregated form,

your spotting of a black squirrel may be useful and valuable.

In building and managing apps, the awareness of ownership often has

to be built into the app. The issue of who is the owner of the data may not

need to be resolved, but more and more apps are being designed so that

if the value of the data becomes significant, the app can support what is

needed to profit from that value.

The ways of achieving these results aren’t particularly complicated.

They may be as simple as making certain that access to data in an app is

protected by some mechanism such as passwords or other credentials so

that access can be controlled and granted (or not) depending on identity,

payment, or some other criterion.

All too often, an app’s data design is such that instead of turning on

an option to manage access control, major architecture changes to data

storage and access are required to manage access control.

�Data Integrity
Regardless of who owns data, there needs to be a mechanism in place

to secure the integrity of data. Stored data is inherently unstable if only

because the movement of data from computer to storage device and back

again is one of the weak spots of system development and integration.

Chapter 9 Storing Data and Sharing Data

191

In the simplest cases, the connection between computer operations and

data storage can be disrupted because the connection is missing (or

unstable). Either device can be missing or powered down.

Furthermore, the process of moving data is often fragile. The data

ultimately is a sequence of bits, and the integrity depends on each bit’s

value being accurately preserved during storage and transfer as well as the

sequence being similarly preserved.

There are three critical tools for use in managing data integrity:

•	 Checksums are used to help preserve the

representation of the data.

•	 Timestamps and other data markers are used to record

changes to the data

•	 Version control is used to help identify different

versions of data.

�Using Checksums
To this end, there are many strategies available to developers and

designers. One of the most common and simplest is to use a mechanism

such as a checksum. In this approach, the binary digits (or, more

commonly, the bytes or characters) of data are treated as binary numbers.

They are manipulated — often by adding them up — and the result is

stored. When the data needs to be verified, the bytes or characters are

re-added and that sum is compared to the stored sum (the checksum).

This approach, which is often enhanced with further manipulations

such as division by prime numbers will catch common errors such as

an incorrect bit in a long string of data. In fact, many communication

protocols, devices, and standards allow for such checking and automatic

retransmission of possibly corrupted data.

A basic understanding of checksums (perhaps in no more detail than

this paragraph) is a part of a computer science practitioner’s toolkit.

Chapter 9 Storing Data and Sharing Data

192

�Using Timestamps and Other Data Markers
Beyond the physical integrity of bits and bytes, there is a need to somehow

or other preserve the integrity of the data and its changes. Many database

designers automatically store a timestamp (the date and time) of the

storage of data and its updates.

Timestamps are often expressed and stored as a time interval since a

known date. There are several such reference dates in common use. (Epoch

date is a similar term.)

Among the common ones are:

•	 Midnight on January 1, 1970. This is the reference date

used in Unix (and related systems such as Linux and

macOS/iOS).

•	 Midnight on January 1, 2001. This was chosen to reflect

2001 being the year of the first release of Mac OS X

(now macOS).

Dates before the reference date are expressed as negative values of

seconds. The times expressed are generally in Coordinated Universal

Time(UTC), which formerly was known as Greenwich Mean Time (GMT).

Thus, these times are constant across the globe.

Along with timestamps, there often are other data markers that are

used to identify data and its changes. In addition to timestamps, there

are one or more universally unique identifiers (UUIDs). These are often

provided by operating systems. They are guaranteed to be as unique as

possible across the world. They are typically fairly long strings that you can

create through the operating system; you can also add your own identifiers

to them so that you have a universally unique identifier of a specific data

element. These can be helpful in debugging.

You will find comments that these markers take up valuable storage

space and that the computations involved in creating and decoding them

use up valuable computing resources.

Chapter 9 Storing Data and Sharing Data

193

These are absolutely valid concerns, but remember that their

significance has decreased over time with the advent of much more

powerful devices becoming the norm.

A common set of data markers is often stored as part of most data

items. The elements differ from project to project, but the values usually

come from this list:

•	 Timestamp of data creation (first storage)

•	 Timestamp of last modification

•	 Identification of data creation

1.	 User

2.	 Device

3.	 Location

•	 Identification of data modification

1.	 User

2.	 Device

3.	 Location

•	 Universally Unique Identifier of the data element.

•	 Data version

�Version Control
No matter how skilled you are and how much experience you have, it is

unusual for your design of data storage to not need modifications over

time. There may be errors, but even if there aren’t, things change. You may

need to store different data, and some data that you have stored may be

irrelevant.

Chapter 9 Storing Data and Sharing Data

194

In order to handle situations like these, it is common to provide an

identifier for a data format — that means some identifier of what data is

being stored and how it is stored. A common practice is to store the version

identifier in the simplest form possible at the beginning of a data record.

A simple binary number is sufficient for version management.

If you do this, when your app reads (or writes) data, the first thing read

or written is this number. As soon as it is read, the app can then know what

else is stored in that record, and it can be read.

With Swift, the way this is often done is to store the version number

and follow it with a dictionary (see Chapter 6, “Working with Data:

Collections.” A dictionary is very flexible so that you can determine what

the keys are at runtime or even use the version number to let you know

what they are. If the meaning of keys changes with versions (a sometimes

unavoidable situation), you have all the data you need to decode or encode

the data.

�How Is the Data Managed
There are two aspects to data management to consider:

•	 For external data, where and how it is managed.

•	 Formatting and structure of data.

�Managing External Data
If data is stored externally, that might be on a connected computer or disk

drive to which your app has access. More commonly, apps store data in

external data providers that specialize in providing storage for apps.

These are special use versions of products such as Dropbox, Google

Drive, Box, OneDrive, and iCloud. These are geared to users who want

basic file-based storage for the most part.

Chapter 9 Storing Data and Sharing Data

195

In addition, there are on-demand hosting services such as Amazon

Web Services (AWS), Microsoft/Azure, Google Cloud Platform, Aliyun, and

IBM Bluemix/SoftLayer. The difference between these services is that they

are geared to use by apps that want to directly access data storage rather

than working with files. (Note that this is a basic overview.)

Most modern development environments support Internet-centered

protocols like REST that make it easy to read and write data remotely.

Even more important, these on-demand hosting services support

various types of software as a services (SaaS) and storage as a service. If

your app suddenly takes off and you need to increase your data storage

dramatically very quickly, this is what they do automatically.

Their data farms and data centers are located around the world and

processing can be passed off from one to the other around the globe and

around the clock. This is the way in which rapidly scalable apps are able

to be deployed. From the standpoint of the app, the storage is at a single

location even though in reality it can be widely distributed for redundancy

in case of failures and automated backups.

This bring us back to the basic question of where your app data is. In

these modern architectures, you — and no one — may know where it is.

�Formatting and Structuring Data
Working with on-demand cloud storage means that you can determine the

type of storage that you use: the service only provides the storage.

Common storage protocols and formats come in several groups.

•	 Simple and portable. The most basic formats come

originally from spreadsheets. They are text-based

formats designed for rows and columns of data. The

two most common are comma-separated values (CSV),

text (tab-delimited). The data is character-based.

Chapter 9 Storing Data and Sharing Data

196

•	 JSON. Java Script Object Notation is a character-based

format that structures data into a hierarchical structure

(such as students within a class, which is within a

school). JSON is a text-based format, so it can be read

and written with any tools that work with text. See

Listing 9-1 and Figure 9-3 for examples of using JSON

with Swift 4.

•	 Property Lists. Apple has a property list (plist) design

pattern that consists of items with types of String,

Number, and Boolean as well as the collection types

Array and Dictionary. These can be combined, so a

property list might consist of a dictionary that itself

contains several arrays and another dictionary. As long

as all components are compatible plist types (String,

Number, Boolean, Array, and Dictionary), all will be

well. There are utility functions that quickly convert

property lists to and from formats that can easily be

stored. In addition, you can add your own types.

•	 Proprietary formats. These are the formats that

traditionally have been used for special purposes in

proprietary apps. It is getting to the point where people

are leery of trapping their data in proprietary formats.

More and more, wise consumers and managers look for

the use of common formats or, if proprietary formats

are used, the ability to easily import and export data

from standard formats.

•	 Dashboards and big data. Along with concern about

trapping data in proprietary formats, people are

recognizing that they need to combine data that is

stored in a variety of systems and formats. To that end,

Chapter 9 Storing Data and Sharing Data

197

dashboards and dashboard tools are being developed.

They take the data in whatever format it is and visualize

and synthesize it so that a unified picture can emerge.

(Tableau is a popular dashboard tool.)

•	 SQL and other databases. Traditional databases tend

to use proprietary formats for data storage, but they are

unified by their use of SQL as a management and query

language. The database management system (DBMS)

takes the responsiblity of storing the data, but almost

all DBMSs today provide SQL access. In this way,

Dashboards and SQL serve similar purposes: providing

common access to data stored in various formats.

�Using JSON with Swift 4

JSON is rapidly becoming one of the most common formats for data

sharing. There have been several iterations of code in Objective-C and

Swift that convert to and from JSON (particularly between JSON and the

plist types). With Swift 4, those built-in tools have been rewritten and

simplified. They are shown in Listing 9-1.

Listing 9-1 shows a Swift playground that takes one of the plist types

(an array in this case) and converts it to JSON and back again. This is a

common way of sharing data with spreadsheet, databases, and even web

browsers (many of them can read and format JSON files).

In Listing 9-1, you see the setup of the playground. Note that

Foundation must be imported, but the JSON tools don’t require UIKit.

They are lower-level tools. A local array is created and then printed out.

import Foundation

let myArray = ["one", "two", "three"]

print (myArray)

Chapter 9 Storing Data and Sharing Data

198

There is a class in Swift 4’s standard library that handles JSON

conversion. You need to create your own instance of that class:

let jsonEncoder = JSONEncoder()

The heart of the playground is two lines of code that use the

jsonEncoder instance. The first line that is optional specifies in this case

that the format of the JSON text should be easy for people to read:

jsonEncoder.outputFormatting = .prettyPrinted

Next, you use the encodeToJSON instance to encode myArray (or any

other plist-compatible type). The result of encoding is stored in this

example in encodeToJSON.

let encodeToJSON = try? jsonEncoder.encode(myArray)

The option spaces the JSON text to make it more readable. In the full

listing in Listing 9-1, you’ll see the error checking that surrounds this line

of code.

In Listing 9-1, encodeToJSON is then decoded using the same

jsonEncoder instance:

let decodeFromJSON = String(data: encodeToJSON, encoding: .utf8)

The UTF8 encoding is a standard text encoding that is commonly used.

You can find other encoding values in the documentation.

When you consider that you can encode and decode large arrays and

dictionaries into text to read and write, you have a very powerful way of

managing data that can be stored for other apps on other devices to read

and write.

Chapter 9 Storing Data and Sharing Data

199

Listing 9-1.  Converting to and from JSON

import Foundation

let myArray = ["one", "two", "three"]

print (myArray)

let jsonEncoder = JSONEncoder()

jsonEncoder.outputFormatting = .prettyPrinted

if let encodeToJSON = try? jsonEncoder.encode(myArray) {

 �if let decodeFromJSON = String(data: encodeToJSON, encoding:

.utf8) {

 print (decodeFromJSON)

 } else {

 print ("failed")

 }

 print ("did encode")

} else {

 print ("failed2")

}

Figure 9-3 shows the playground code with error checking code added.

Chapter 9 Storing Data and Sharing Data

200

Listing 9-2.  Encoding/Decoding JSON (Swift 4)

import Foundation

let myArray = ["one", "two", "three"]

print (myArray)

let jsonEncoder = JSONEncoder()

jsonEncoder.outputFormatting = .prettyPrinted

Figure 9-3.  Encoding and Decoding JSON in a playground

Chapter 9 Storing Data and Sharing Data

201

if let encodeToJSON = try? jsonEncoder.encode(myArray) {

 �if let decodeFromJSON = String(data: encodeToJSON,

encoding: .utf8) {

 print (decodeFromJSON)

 } else {

 print ("failed")

 }

 print ("did encode")

} else {

 print ("failed2")

}

�Handling Data That Is Not There: Swift
Optionals
One of the peskiest issues in computer science is the problem of how to

handle data that is not there. This is the case when there is missing data or

data that does not exist for any reason. If you leave the data blank, it may

be interpreted as a zero if the field is normally numeric. Counting a blank

field as zero will throw off averages if they are calculated. Of course, you

can simply ignore blank fields and keep your averages clean, but you then

have no way of indicating that there is no data for a valid reason. Perhaps

the reading on a sensor or gauge is missing because the telemetry or

power source has failed. If zero is a valid reading, then there is no way to

distinguish between zero-as-missing and zero-as value.

You can always pick another special number to use to indicate missing

data. Whatever number you choose can throw off calculations. (Many

mainframe computer programs used 99 to indicate missing data, including

the data for a year.) A year with a value 99 was unimagined in the 1960s

Chapter 9 Storing Data and Sharing Data

202

when such programs were often written. In the 1960s when financial

institutions were issuing 30-year mortgates and bonds that would mature

on or after 1999, this problem grew into the Year 2000 problem.

The only way to indicate missing data is to have some kind of value that

indicates whether the data is “real” or not. Different languages and systems

handle this issue in different ways. Swift uses optionals.

Optionals are written with a question mark; it indicates that the data

is of the specified type, but it may not exist at all. Thus a declaration for an

optional Int would be written as follows

var i: Int?

The variable can have any valid integer value; however, it can also have

no value. That is represented by nil as in

i = nil

You can test to see if a variable is nil or not using code such as this:

if i != nil ...

In Figure 9-4 you see an optional Int variable declared. It is not set to

anything, so its value is nil (you can see this in the sidebar at the right of

Figure 9-4.

Figure 9-4.  Test for an optional value

Chapter 9 Storing Data and Sharing Data

203

You can test to see if it is not nil (line 5) and, if so, print it out.

Otherwise, you print a message that it is nil.

If you try to use the optional for any purpose, you will get an error as

you see in Line 11 of Figure 9-5. Most of the time, this is generated by the

playground or Xcode: it won’t even compile as you see in Figure 9-5.

If you test to see that the value is not nil, then you can go ahead and

use it as you see in Figure 9-6.

Figure 9-5.  Trying to use a nil

Figure 9-6.  Using an optional

Chapter 9 Storing Data and Sharing Data

204

Even if a variable is declared as optional, you can see set its value.

Thereafter, if it is tested to see if it is nil, it will not be nil because it has a

value as you see in Figure 9-7. In Figure 9-7, you can see that the debug

pane shows the unwrapped value as an optional.

Instead of testing to see if an optional is nil, you can use Swift’s

optional binding. This lets you write code that may fail because part of it

is an optional. If it fails because a value is nil, the failure is graceful. If it

is not nil, the code proceeds. For example, in Figure 9-8 the code in line 3

starts the optional binding:

if let unwrappedI = i {

Figure 9-7.  Using optional binding

Chapter 9 Storing Data and Sharing Data

205

This code takes the value i that is declared as an integer, and attempts

to set that value to the new variable unwrappedI. If i is nil, setting

unwrappedI to the value of nil will fail. The entire clause will be false.

Thus, if i is nil in this snippet, this code will evaluate to false:

if let unwrappedI = i

Execution will continue with the else clause that prints “i is nil.”

The process of looking inside an optional to see if it has a value is

called unwrapping. You perform unwrapping in two ways:

! is forced unwrapping. The optional is treated as its underlying value.

If it happens to be nil, you will probably get an error.

? is conditional unwrapping; you use it in optional binding.

Figure 9-8 shows how this code behaves when the optional i is set to a

value in line 1.

In Figure 9-9, you see how the code runs when the optional does not

have a value.

Figure 9-8.  Unwrapping a value

Chapter 9 Storing Data and Sharing Data

206

�Summary
Managing app data is a critical part of computer science projects even

though it is sometimes taken for granted. In this chapter, you see the

basic issues you must be aware of and plan for in your computer science

projects. Most of the issues in this chapter aren’t code based: they are the

basic issues of data management and ownership.

If you want to get back to the nuts and bolts of coding, have no fear.

The next chapter, (Chapter 10, “Building Components”) has plenty of code

to help you understand and build usable projects and components.

Figure 9-9.  Leaving an optional wrapped

Chapter 9 Storing Data and Sharing Data

207
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_10

CHAPTER 10

Building Components

The basics of working with data and the flow of control can help you write

code, but how do you get from there to building something useful? (In fact,

this is one of the challenges of traditional programming instruction: people

learn on the first day how to write a program that prints out “Hello There,”

and there’s not a clear path from “Hello There” to building Facebook.)

This chapter provides you with a few of the stepping stones from a

single line of code to — if not Facebook, at least the tools you’ll need to

start working in a software environment like that. (Mind you, there are

many stepping stones on that journey, and this chapter just provides you

with an overview.)

�Why Build Components
There’s one phrase that sums up a major reason for building components:

“divide and conquer.” In fact, if you look on the Internet for references

to “divide and conquer,” you will find that it is the common name for a

specific architecture and development process in computer science. The

principle is analogous to the divide and conquer (or divide and rule)

phrase that dates back several millennia. If you take a large problem (or a

large group of people) you can often solve a problem or encourage people

to act in certain ways if you break the problem or the group down into

small groups or even individuals.

208

When it comes to app development, if your goal is to write the next

social media app (there’s a long line of people waiting to do that, in case

you’re planning to do that), starting with a blank piece of paper or empty

screen isn’t going to get you very far. You could break down the app’s design

into large components — perhaps a handful of less than a dozen. From

there, you might subdivide each component; more likely, you would get

individuals or groups to work on specific components. Before you know it,

you’ll have at last the broad outline of how to build a large and complex app.

There are theories and rules aplenty in the world of app design,

implementation, and management. A popular methodology (Agile)

encourages the development of working software as early as possible in the

process as possible. It won’t be complete, but it will run. This eliminates

the need for multiple documents and meetings to describe the possible

development path from the very beginning – something will be running in

some way.

The process continues with many iterations but at all times something

will be runnable. (In some environments, iterations are limited to a

week in length, which means that the steps along the road may be many

and small, but if there’s a need for backtracking it may not be terribly

disruptive.) And if there is a problem along the way, the next runnable

version — even if it’s a backtracking version — will only be a week away.

The idea of components as a divide-and-conquer strategy and

methodologies such as Agile in which small pieces are built and put together

reflects the need to get software developed as quickly and efficiently as

possible. In both of these methodologies as well as many others, the process of

building a large system involves building small components. The components

are either decomposed from the whole concept (divide and conquer) or they

are small components that become building blocks of the system.

Components have other advantages over building large-scale systems

in a single structure. Chief among these advantages are reusability and

manageability. Those features are major features of good computer

science design.

Chapter 10 Building Components

209

�Advantages of Components: Reusability
When designers break a large system down into components that can be

developed separately, not only does it make the overall project simpler

in many cases, but it also can mean that some of the components will be

reusable. In providing the architecture for an overall system, designers

and developers look for components that can serve the dual purpose of

advancing the primary project along with a secondary purpose of being

able to stand on their own.

Now that we are well into a world in which people are used to using

computers, certain operations are becoming common. These range from

interface elements to specific types of operations such as login security,

saving documents, and the like.

The actual process of developing the overall structure involves looking

for places in the design where reusable components can be developed or

employed (after all, if they are reusable, they should be reused).

Making components reusable means that they need to be structured

for reuse. At the simplest level, that may mean nothing more than greater

attention to documentation than for a one-off code component. The value

of reusable components is directly related to how reusable they are so

documentation and overall structure are keys.

�Advantages of Components: Manageability
When a large system is broken down into components that may be

implemented by different development teams, it is critical that their

behavior is clear. It’s not just a matter of documenting what a component

does but also a matter of thinking about what side effects it may have on

other parts of the larger system.

Chapter 10 Building Components

210

By being able to identify the functionality of a component, it is easy to

move it around on various system diagrams so that you can experiment

with its reuse.

Both reusability and manageability are enhanced by structuring

components with clear documentation and with a focus on specific actions

that they perform. Minimizing assumptions also plays into the picture:

ideally, a component should be able to be picked up and used without

much if any reprogramming.

�The Basic Components of Development
Projects
Bear in mind the previous points as you explore the rest of this chapter. It is

devoted to explaining the major types of components that you encounter

in computer science projects. It also shows you how you can use them

for reusability and manageability of systems — including systems that

you decompose from a large group of code modules into a structured

collection of components.

�Subroutines, Functions, Procedures, and
Methods
The most common components you find in projects are subroutines,

functions, procedures, and methods. Their names differ from one

programming language to another, and there are some differences in

their structures, but all of them basically are variations on the same

theme. They are miniature programs or apps. They receive input, do some

manipulations and calculations on the input, and then they generate

output.

Chapter 10 Building Components

211

The general structure is described in this section, with a focus on Swift.

This is the overall view, but it does apply to most components. The main

parts of a component are the following:

•	 Name

•	 Data inputs

•	 Data outputs

•	 Implementation — code

•	 Implementation — documentation

•	 Side effects and requirements

�Naming Components

Each component you create has a name. The names in most

languages cannot contain spaces or special characters except for

underscore characters. Other rules apply to languages or to usage

in a given environment (such as a specific company). Names are

chosen for readability and reuse. They often consist of several words

that describe what the component will do. When several words are

used, they are typically connected with underscore characters or

camelcase capitalization (each word is capitalized except the first —

camelCaseFormatting, for example). If you are using underscores, such

a name might be camel_case_formatting. You can combine the styles

into something such as camelCase_formatting. It is always a good idea to

adopt a standard for naming items as well as for using capitalization and

underscores (as well as other styles). It’s important for people to be able

to know what these items are. Remember that in some listing and cross-

references, the names may appear in alphabetical order, so you may want

to bear that in mind in your naming conventions.

Chapter 10 Building Components

212

Also, bear in mind that if you are writing code for reuse and are reusing

code that others have written, chances are very great that you will be working

with code that adheres to various naming conventions. Try for consistency

within individual components and, if possible, within related components

written in the same organization or group. Don’t spend too much time on

this: you can’t enforce standards on every developer in the world.

�Data Inputs

Data for a component can be provided when the component runs. For

example, a component that calculates the area of an object might receive

two values: length and width. Other components receive streams of data

from devices such as real-time sensors like thermometers or from streams

of data (such as social media messages like Tweets).

It makes for good programming style and easier maintenance if the

inputs to a component can be clearly defined. Length and width are

such easy concepts. Sometimes, the amount of data to be provided to a

component is large and varied. One way of managing such input data is to

format it into a collection like an array, set, or dictionary. Thus, instead of

many data observations from a weather station, you might have an array

of such observations — that turns the many into one input item. You can

also use a more structured collection such as a dictionary where each

element consists of a key (the date/time of the observation) and a value

(the observation itself).

The clearer the inputs are, the more easily the code can be reused.

�Data Outputs

Data outputs are subject to the same concerns as data inputs specifically

making the outputs clear in their meaning and in their structure. One specific

type of output is worth highlighting. Some outputs are designed specifically

to be used as inputs to other components. In such cases, any changes to

outputs need to be synchronized with changes to the related inputs.

Chapter 10 Building Components

213

This is not a trivial matter, because having such a dependency can limit

or even preclude the reusability of code on either side (input or output).

One common way of avoiding such problems is by assuming that all outputs

are going to be used in one way or another as inputs. Thus, the formats and

layouts of the outputs may well be designed using known methodologies

so that if necessary, outputs from one component can go to a translating

component and thence to the desired recipient. The intermediate component

then is responsible for the synchronization of input and output data.

Note T his design pattern is shown in the common model-view-
controller design pattern used extensively in Swift and Cocoa. The
model is basically the data, and the view is the user interface to
that data. An intermediate component – the controller – mediates
between the model and the view. That structure allows both models
and views to be changed as needed: only the controllers need to be
modified as a result of changes to model or view.

�Implementation – Code

The heart of a component is the code itself. That is what does the work.

�Implementation – Documentation

The code itself is not sufficient implementation. The code needs to be

documented. Reuse is dependent on good documentation.

�Side Effects and Requirements

In building successful components, most developers strive to minimize or

even eliminate any dependencies from outside the component. If data is

needed, it is good to provide it as input. Relying on the existence of some

Chapter 10 Building Components

214

data or other that is necessary for the component means once again that

the component’s reuse is limited to situations where that data is available.

On the other hand, if necessary data is provided with inputs, it is part and

parcel of the component.

�Classes
Components like subroutines, functions, procedures, and methods let

you write what are in effect small programs with inputs, outputs, and

computations and calculations in the middle. Classes are a different type

of component. Using the object-oriented technologies developed in the

1960s and later, classes provide a different type of structure for reusable

components.

The object-oriented programming paradigm lets you build objects

that contain data and functionality in the form of code. The difference

is that the paradigm of components harkens back to the earliest days of

computers and computer programming where a program would run by

reading in its inputs, calculating something, and exporting its outputs.

(This is often called batch processing.) At the end of the process, the

program would terminate. Sometimes, a containing program would be

created so that at the end of the process, the next set of inputs would be

read and the next set of outputs would be generated (think of a billing

system).

Classes and object-oriented programming fit well into a world that is

no longer batch oriented. In many cases today, a class contains data or

the ability to receive data, it performs calculations, and then exports data.

So far that is the same as batch processing, but, in many object-oriented

systems the objects stay around. Some data is received, calculations are

done, some more data of a different is received, calculations are done,

and other operations may ensue. It’s not a matter or read/calculate/write

in many cases. Rather, an object may be capable of reading, writing, and

calculating at various times. Note that this is an observation of a common

Chapter 10 Building Components

215

difference between many batch-oriented components and many classes: it

is not a necessary distinction.

Classes are the descriptions of objects; as they are created

(instantiated) into instances, these objects may stay around for a while.

The clear distinction between inputs, computations, and outputs in basic

components isn’t relevant to many objects.

From the perspective of reusability, classes are just as reusable as other

components. Classes often contain components themselves. Typically,

those components are functions; they may also be methods. There is a

technical distinction between the two, but in practice, the terms are often

used interchangeably. (See the sample object-building example later in

this chapter.)

With Swift, structs and enumerations are treated much like classes in

many ways. There is more on structs and enums in Chapter 8.

�Larger Building Blocks
In looking at reusable components including functions, methods,

procedures, and classes, modern languages like Swift let you create

larger building blocks. Just as classes can contain data and functionality,

frameworks can contain classes (and their components). The term

framework is used in several ways in computer science. The most basic

way is the same way it is used in English. There is also a specific use in

Swift and Xcode that lets you create reusable frameworks that you or

others can use in various projects. Cocoa and Cocoa Touch themselves

are frameworks. There are frameworks for user interface, audio, document

management, and many other commonly used parts of apps. Within the

frameworks, you’ll find classes, and within the classes, you’ll find more

classes and functions, and so on.

Chapter 10 Building Components

216

�Looking at Blocks and Recursion
Components of code need to be packaged in one way or another to be

used and reused. There are two special cases of code reuse to examine:

blocks and recursion.

�Terminology: Blocks and Closures
In the Swift documentation, you’ll find this definition of a closure:

“Closures are self-contained blocks of functionality

that can be passed around and used in your code.”

Subroutines, functions, procedures, and methods are all blocks.

Compound statements (as described in Chapter 9) also are often blocks.

A block is a section of code that can be packaged with or without the

formal structure of a procedure, function, method, or class. If it is not

part of a formal structure, it may be packaged with brackets (or, in some

languages, parentheses).

What is critically important in the Swift definition is that it is “self-

contained.” When a block of code is used as a closure, if the code in the

block refers to variables outside of the block itself, those variables are

made available to the block that is now called a closure (because it has

closed around the variables that are needed for the block to execute.

In Swift, all closures are blocks and many blocks are also closures. In

practice, many people use the terms interchangeably.

The most common use of blocks is in cases where you want to

perform a block of code and you don’t know when you want to perform it.

Commonly, it is code that you want to perform after some event or another

has happened. If that event is out of your control, you don’t know when

you’ll need to execute the block of code.

Chapter 10 Building Components

217

�Using a Closure
Here is a common example of using a closure. It is code that is typically

used in UIDocumentBrowserViewController to open documents in the

Files app in iOS 11 and later.

let document = UIDocument (fileURL: documentURL)

// instantiate a subclass of UIDocument

document.open (completionHandler: { (success) in

 if success {

 // show document

 } else {

 print ("no success opening document")

 } // else

 } // end of block

) // end of document.open parameters

Here is what the code does.

•	 Normally, you create an instance of UIDocument as the

comment indicates. A local variable called document (or

whatever you want) is typically used in this code.

•	 You then open the document using the UIDocument

open (completionhandler:) method.

•	 The argument of the method called completionHandler

is a block of code that will be called when open

completes. (This is a common naming convention.)

•	 The block of code that is the completion handler

is enclosed in brackets. The call to open with the

completion handler code removed makes this structure

clearer:

document.open (completionHandler: {...})

Chapter 10 Building Components

218

•	 The content of the block is shown here. When the

block is called, a single parameter will be passed in.

For convenience, it is named success here; as all

parameters, it is enclosed in parentheses.

Once success is passed in, it can be tested in an if

condition that indicates if opening was successful or

not. Thus, in this structure, the block is written out and

passed into open as the completionHandler parameter.

When the open function completes, it has the code

available to run in the completionHandler parameter.

How long it takes for that code to run depends on the

system workload.

{

 (success) in

 if success {

 // show document

 } else {

 print ("no success opening document")

 } // else

} // end of block

This type of structure makes multi-threading possible. That is, the

processing continues in one or more of the chips in the processor until the

completion handler comes into play.

In older software, you will often find this type of code implemented

using semaphores. Instead of waiting for open to finish, the code in older

apps might have a small loop that checks periodically to see if open has run.

In the architecture of Cocoa and Cocoa Touch, this structure that relies

on messaging and notifications makes for much simpler code to write in apps

and it makes for much simpler and faster code in the operating system itself.

You will find blocks used in many places.

Chapter 10 Building Components

219

�Recursion
Recursion is another aspect of components you should know about. If you

have components that can be reused, they can reuse themselves. This lets

you write code that is structured and efficient. Be aware that if not used

carefully, it can cause problems. When you work with recursive code,

unless you find a way to stop the recursion, you can generate a form of

infinite loop that never ends in theory. In practice, it ends when the app

runs out of memory.

Note I nfinite Loop is the name of the street on which Apple’s
Cupertino headquarters were located for many years. It is not an
infinite loop (you can see the entire thing if you stand on the street)
but it definitely is a loop. In 2017, Apple completed construction of its
new main headquarters near to Infinite Loop. The new headquarters
is known as Apple Park.

�Building a Function in Swift
In talking about components, the terminology in Swift uses function rather

than method. In common usage, many people do refer to these items as

methods when they are part of a class (this is a legacy from years of usage

where the distinction mattered more than it does now). The alternative

terms (subroutine and procedure) are not used in Swift today.

A function consists of a name, inputs and outputs, and the code itself.

Here’s how to create a simple function in a Swift playground. This function

will compute an area based on two parameters (length and width).

Start by creating a new playground on an iPad as you see in Figure 10-1.

(You can do the same steps on a playground in Xcode, but the interface is

different and less interactive.) The empty playground has suggestions for

Chapter 10 Building Components

220

you in the bar at the bottom of the screen. Among the top-level suggestions

is func to create a function.

Tap func, and the shell of a function is created for you by the

playground as you see in Figure 10-2.

Figure 10-1.  Create a new playground

Chapter 10 Building Components

221

Name is highlighted in red suggesting you should enter that first. The

function body is highlighted in gray suggesting that you attend to that next.

Type in the name of the function — area — as you see in Figure 10-3. Tap

the body of the function and it is now highlighted in red for you to attend to.

Figure 10-2.  Start creating a function

Chapter 10 Building Components

222

The next step would be to enter the function body. There are several

ways to do this. Chances are that no matter which route you take, you will

temporarily generate an error. (This is common in development.)

The single line of code shown in Figure 10-4 will return the value of

length multiplied by width. Neither variable has a value so far, so you’ll

generate an error (the red dot at the left).

Figure 10-3.  Enter the function name

Chapter 10 Building Components

223

One way of setting the values of length and width is to pass them into

the function as you see in Figure 10-5. (Passing data in with parameters

rather than hard-coding it inside the function body makes your code more

reusable.)

Figure 10-4.  Start building the body of the function

Chapter 10 Building Components

224

As you have seen in several code snippets in the book, the way to

declare a variable is with a name and a type. Thus, you can declare a

length variable (the name) of type Double with

length: Double

Double is the preferred floating point type to use in Swift (rather than

Float).

Although the parameters solve the problem of where to get the

data, the function needs to indicate in its declaration that a value will be

returned. This is the error you see in Figure 10-6.

Figure 10-5.  Pass the parameters into the function

Chapter 10 Building Components

225

You can complete the function declaration as you see in Figure 10-7 so

that now it intends to return a value.

Figure 10-6.  You must declare that a function will return a value

Chapter 10 Building Components

226

The return value syntax is

-> Double

This indicates that it is a return value of type Double.

If you want, you can run the code. Nothing will happen, but, in fact,

that is fairly good: no errors appear.

Just to recap the steps to build this small function, here they are:

•	 Tap func to create the shell

•	 Name the function

•	 Name the parameters passed in and set their types

•	 Name the return value

•	 Provide the body that computes the return value

Figure 10-7.  The complete function

Chapter 10 Building Components

227

Except for the first step where you create the function shell, you can

do these in any order. You’ll get errors along the line either because you

haven’t declared a variable before using it or because you declare it and

don’t use it. After a while, you’ll get used to this sequence.

You can add a line of code to invoke the function. You need to declare

a variable and set it to the result of the function. Look on the Shortcut Bar

and you’ll find let (it’s just off the screen in Figure 10-8). You often have to

scroll along the Shortcut Bar. Tap let and you’ll get the outline of code you

need to use as you see in Figure 10-8.

Figure 10-8.  Create a variable to use the function

Chapter 10 Building Components

228

Name the variable result (or anything you want), and type in the name

of the function as you seen in Figure 10-9. In the Shortcut Bar, the Swift

playground shows you the parameters (names and types).

Figure 10-9.  Start to use the function

Tap on the parameters in the Shortcut Bar, and they are filled in to

your code as you see in Figure 10-10. The first one (length) is highlighted

in red so that’s where you start. You get the number popover because the

playground knows you want to enter a number.

Chapter 10 Building Components

229

You’ll be guided through each of the parameters with appropriate data

entry tools as you see in Figure 10-11.

Figure 10-10.  Start entering the parameters

Chapter 10 Building Components

230

You can now tap Run My Code and see the results as you see in

Figure 10-12.

Figure 10-11.  Enter all parameters

Chapter 10 Building Components

231

�Summary
This chapter describes the reasons to use software components and shows

you how to construct them in Swift. You see how a Swift playground can

walk you through the process of building a function. You can also just type

the code into Xcode, but sometimes it’s easier to switch between Swift

playgrounds and Xcode.

All components have the same basic parts. Here they are presented

with the names that you see in a playground.

•	 name

•	 inputs (parameters)

•	 outputs (returned value)

•	 body (code)

Figure 10-12.  Run your code and check the result in a viewer

Chapter 10 Building Components

233
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_11

CHAPTER 11

Using Events to
Guide Actions

Computers have been getting smaller for years. Not only have their

components shrunk from vacuum tubes to transistors, there are now entire

systems on a single computer chip.

Users control apps. We launch them; interact with the interfaces; and,

when we’re finished, we shut them down. Sometimes as in the case of iOS,

when we don’t use them for a while, their data is automatically moved to

a safe space to be ready for when we want to use them again. They may

never (or rarely) end. They just wait for the next user input.

That’s not how things work now, and it hasn’t really been true for

decades, but mental images take a long time to fade away. More and more,

apps are controlled by other apps and even by other computers. When we

set an alarm on a computer, another app keeps track of the time and then

triggers something on the computer.

You may say that that’s just delayed human interaction, but as you

start to think of how apps are controlled today, you will find more and

more controls that are far removed from human intervention. In general,

when you schedule something (perhaps using Siri) using a phrase such

as “remind me at…,” you’re describing something that a computer can set

in motion. Whether your “at” is based on time or location, it’s easy for a

computer to figure out when “at” is true.

234

When your request to Siri is along the lines of “remind me when…”

chances are that there’s a more complex process involved in figuring out

if “when” is true. (Exclude the special case of “when it is 3:15,” which is

basically an “at” request.)

What is important about these “when” events is that they come as

a surprise to the person who sets them in motion. If you asked to be

reminded at 3:15, you may expect that reminder (and maybe even a

pre-reminder at 3:00). But “when” events may come with no expectation

on the part of the user. You’ll see how that works later in this chapter when

looking at notifications in Swift and Cocoa.

�Where Blocks Fit In
As you saw in Chapter 10, “Building Components,” you can modify the

normal sequence of command processing by using blocks. The snippet

of code here summarizes a common use of blocks. As noted in this

chapter, this is common code use in UIDocumentBrowserViewController

and many other places. The heart of the code is the document.

open(completionHandler:) function call. It opens the document, and,

when the document is opened, the completion handler is called and

executed so that you can inform the user that the document has or hasn’t

been successfully opened and take any other necessary actions (such as

updating the user interface with the contents of the document).

let document = UIDocument (fileURL: documentURL)

// instantiate UIDocument

document.open (completionHandler: { (success) in

 if success {

 // show document

 } else {

 print ("no success opening document")

Chapter 11 Using Events to Guide Actions

235

 } // else

 } // end of block

) // end of document.open parameters

What is important to remember is that although there is a pause

between the call to open and the execution of the closure (either the

success branch or the else branch), that sequence is set in the initial

code that sets up the block. Unless the code in the block does something

unusual, that block will be the code that opens calls after attempting to

open the document.

�Using Actions and Messaging for Managing
Flow Control Summary
It is commonly the case that you want to implement a different type of

managing the control flow rather than just waiting to move on to the next

step in the predefined sequence. That is where messaging comes into play.

Messaging lets you dynamically change what is going to be executed — not

just when it happens as you can do with completion handlers and closures.

Messaging lets you send some kind of message to a receiver that then

acts on it. Looking at the open code that uses a closure, consider the case

in which you do not want to specify what happens when the document

opens or doesn’t. A messaging structure lets you send a message to a

recipient that will then decide what to do about it. Messaging is used

extensively in modern apps for a variety of reasons, one of which is that it

helps in building maintainable apps because they don’t have to retain all

the logical linkages. In the open example, if you want to impost a limit of a

maximum of three open documents at a time, you need to know that every

open statement must obey that limit both in original coding as well as in

maintenance. (It will be very easy to forget to check on that limit when

you implement code to open a new type of document.) These issues can

Chapter 11 Using Events to Guide Actions

236

be avoided by implementing a generalized opening section of code, but

often when you are retrofitting or maintaining code, you don’t control how

every piece of it is already working. Being able to post a notification that

something has happened and letting another part of the app unknown at

the time of writing handle it is simpler. And that’s where notifications come

into play. Here is a concrete example.

Note  Messaging is widely used today. It is at the heart of
microkernel architectures for operating systems, and it is key to
Cocoa and Cocoa Touch frameworks. Some other frameworks and
development tools use different approaches and terminology, but this
is what you will find in Cocoa and Swift.

�Passing a Button Press/Tap/Click On to…
Somewhere
In this example, you’ll see how to implement a button that does something

that is not known when you write the button management code. This is an

overview of the notification architecture. It introduces you to some of the

tools in Xcode, the integrated development environment (IDE) used for all

Apple tools, but the details of using Xcode are described in the following

chapter so treat this section as a preview that focuses on notifications.

�Implement a Button with Known Action
To start with, here is the common case of implementing a button that

does something that you know about and implement together with the

button. This example starts from the Tabbed App starter template build

into Xcode. If you create an app based on it, you will have an app with two

views as shown in Figure 11-1.

Chapter 11 Using Events to Guide Actions

237

Figure 11-1.  (left) Tabbed App First View and (right) Tabbed
App Second View

The basic template implements two view controllers and the tab bar

controller at the bottom that lets you switch between them.

You can add buttons to one of the view controllers along with a label as

you see in Figure 11-2.

Chapter 11 Using Events to Guide Actions

238

You will see that you can easily write code for the button so that it

changes the text in the label as you see in Figure 11-3 where the text has

changed to Button Tapped.

Figure 11-2.  Add a button and label

Chapter 11 Using Events to Guide Actions

239

The code to implement the button is not particularly complex

particularly with Xcode helping you along the way as you will see in

Chapter 12. The code for the button and label is shown in Listing 11-1 and

in Figure 11-4.

Listing 11-1.  Implementing the button and label

import UIKit

class FirstViewController: UIViewController {

 @IBOutlet weak var label: UILabel!

 @IBOutlet weak var button: UIButton!

Figure 11-3.  Implement the button

Chapter 11 Using Events to Guide Actions

240

 @IBAction func buttonAction(_ sender: Any) {

 label.text = "Button Tapped"

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 �// Do any additional setup after loading the view,

typically from a nib.

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

Figure 11-4.  Code for First View Controller

Chapter 11 Using Events to Guide Actions

241

The code begins by linking the objects in the interface (using a

storyboard as described in Chapter 12) to the code. The label and button

are both @IBOutlet items — that means that they are in the interface but

can be addressed from code. You will see that one is the label and the other

is the button.

A similar style applies to @IBAction. That is the code that implements

the action for the button. You will see @IBOutlet and @IBAction

throughout code that implements the user interface.

The @IBAction line of code can be reformatted so that it is clearer:

@IBAction func buttonAction(_ sender: Any) {

 label.text = "Button Tapped"

}

When the button is tapped, buttonAction is called and the text of the

label changes to Button Tapped.

That is all that it takes to implement a button and its action.

�Implement a Button with a Notification
If you want to add a button that will update a label on the second view

controller, things get a little more difficult. It’s not hard to add a new button

to the first view controller that will start the process in motion. Figure 11-5

shows what that will look like.

Chapter 11 Using Events to Guide Actions

242

You can also add a label to the second view controller as you see in

Figure 11-6. This will be the label that is updated by the notification button

on the first view controller.

Figure 11-5.  Add a button to use a notification

Chapter 11 Using Events to Guide Actions

243

You can start to add the functionality to the button that will update

the label in the second view controller, but you immediately run into a

problem as shown in Listing 11-2 and Figure 11-7.

Listing 11-2.  Code for notification button

import UIKit

class SecondViewController: UIViewController {

 @IBOutlet weak var label: UILabel!

 override func viewDidLoad() {

 super.viewDidLoad()

Figure 11-6.  Add a label to the second view controller

Chapter 11 Using Events to Guide Actions

244

 �// Do any additional setup after loading the view,

typically from a nib.

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

The problem is that the declaration of the navigation button is in

the first view controller, but the declaration of the label that needs to be

updated is in the second navigation controller. How do you get from the

first view controller to the second view controller?

In this case, there are a number of ways to work around the problem.

The most obvious is to put the code into an object that connects to both

view controllers. That would mean that managing the buttons and labels

Figure 11-7.  Code for second view controller (Xcode)

Chapter 11 Using Events to Guide Actions

245

would move either into the app delegate or into the tab bar controller

that manages the two visible view controllers. Either of those strategies

will work, but the cost is that the app delegate or the tab bar controller

will become more complex. (In the case of the tab bar controller, it is the

difference between using a basic UITabBarController as in the template

and implementing a subclass so that you can modify one or both buttons

or labels from the subclass.)

As a general rule, added complexity is the cost you pay for mixing data

and interface elements. The solution is to use a notification.

Notifications consist of two components. The first broadcasts a

notification that an event has happened. The second component is an

observer that waits to find out about a notification. What is important is

that these do not have to know about one another. In the case of the button

and label in the first view controller, the communication is within that

view controller. With a notification, it can be generated by the first view

controller (where the notification button is) and observed by the second

view controller (where the label is).

Notifications are broadcast across an app; an object can request to be

notified of specific notifications, but there is no direct linkage as there is

among objects within a single view controller.

It is this lack of linkage that makes notifications so useful. It also

exposes an issue that you will see in the code that follows (along with the

solution).

�Notification Basics

There are two key points to remember about notifications.

•	 Each notification has a name. This is not a string, but

rather a Notification.Name type. You’ll see how to

specify this.

Chapter 11 Using Events to Guide Actions

246

•	 Notifications may not be delivered. Because there is

no direct linkage between notification and observer, if a

notification is not observed, no error is generated. The

notifier posts a notification, and it may or may not be

observed.

�Posting a Notification

The first step in the process of implementing the notification button is to

post it. Here is the standard code for posting a notification. It will be the

action for the notification button in the first view controller.

@IBAction func notificationButtonAction(_ sender: Any) {

 NotificationCenter.default.post(

 name: Notification.Name(rawValue:notificationKey),

 object: nil,

 userInfo: nil)

}

In this simple case, you need only have a name for the notification.

That is done in this line of code:

name: Notification.Name(rawValue:notificationKey),

That line refers to a variable declared in any area of your app (perhaps

in a globals.swift file) with the following code:

let notificationKey = "com.champlainarts.notificationKey"

Together, those two lines convert a string into a Notification.Name

type.

That’s all you have to do to post a notification from a button action

(or any either event).

Chapter 11 Using Events to Guide Actions

247

�Observing a Notification

To observe a notification, the object that wants to observe it needs to

register and then take some action. To observe a notification, here is the

line of code (it’s in the second view controller).

NotificationCenter.default.addObserver(

 self,

 �selector: #selector(SecondViewController.

didReceiveNotificationResultText),

 name: NSNotification.Name(rawValue: notificationKey),

 object: nil)

}

That line of code specifies that if a notification with the given name

arrives, a specific function should be called (it is defined as a #selector).

@objc func didReceiveNotificationResultText () {

 label.text = "Received Notification"

}

Once this setup is completed, the navigation button in the first view

controller can cause the label in the second view controller to be renamed.

Neither controller knows about the other, and the button doesn’t know

about the label. This means that if the observer’s action in response to the

button being clicked is something entirely different (that is, not setting a

label’s text), it should all still work.

Adding the observer should be done by an object that will be able

to act on the notification, so that code will go in that place. Your first

guess might be to put it into the viewDidLoad method of the second view

controller.

If you do that and run the app, you’ll see a problem. viewDidLoad in

the second view controller isn’t called until the second view controller

is displayed. Thus, if you run the app and see the (default) first view

Chapter 11 Using Events to Guide Actions

248

controller with its navigation button, tapping that button will send the

notification, but since the second view controller hasn’t been displayed

yet, viewDidLoad has not been called and the observer isn’t ready.

You can verify that this is the case by tapping the second view

controller tab, which will force viewDidLoad to be called and the observer

will be set up. Thereafter, the navigation button will work as you expect.

�Summary
This is a common problem, and it will be explored in Chapter 12 as Xcode

is explored.

Chapter 11 Using Events to Guide Actions

249
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_12

CHAPTER 12

Getting into Xcode

Previous chapters have covered many of the basics of computer science.

You’ve found some Swift playgrounds and snippets of code that illustrate

many of the concepts and issues. The focus of this book is on Swift and the

basic frameworks of iOS and macOS — Cocoa and Cocoa Touch.

To actually develop in these environments, you will need to use Xcode,

Apple’s integrated development environment (IDE). This chapter will give

you a general overview of how apps and other pieces of software are built

in general (that is, not just on these platforms and with Xcode). Then you’ll

find a focus on how to begin development of an app with Xcode — this will

provide more detail of the overview discussed in Chapter 11.

There is a lot to Xcode and the various Apple frameworks, but the

focus of the following part of the chapter will be a real-life case study

of analyzing a problem in the code for Chapter 11. You have a leg up,

because that problem was described in Chapter 11, but in this chapter

you’ll find a walkthrough of how to find and identify what the problem

is and how to fix it. Many developers believe that no amount of book- or

class-learning can compare to what you learn when you actually have to

diagnose and fix a bug.

250

�How to Write Software
Many people think that writing software means sitting down with a blank

screen or blank piece of paper and typing away. When you’ve typed

enough code, you have an app. This may have been true in the mainframe

era with punched cards, but it’s not true now.

An app today typically consists of code, graphical elements, other

forms of media (video, audio, and the like), as well as an enormous

amount of code in several frameworks that become part of the app. The

framework code handles routine functionality such as reading and writing

data, managing screen and mouse or trackpad, and much of what makes a

modern app a modern app.

This means that “writing” an app now starts to mean putting an app

together from a wide variety of components and pieces. Although the

mechanics of building an app are a separate topic than computer science,

a brief overview is worth considering so that you understand how the

pieces fit together.

Start by registering for an Apple developer ID at developer.apple.com.

You will walk through the process of registration. Note that if you are below

the age of majority (adulthood) in your region, you will need an adult to

vouch for you. If you are enrolled in a school or work for a company, they

may have an Apple developer account you can use.

Here is a generalized sequence of the steps in app development

on Xcode. You’ll see how to start the process in the following section,

“Developing an App with Xcode.” These are the questions you will have to

answer, so start thinking about them before you begin.

	 1.	 Decide what the app will do. Sitting down to “write

an app” without knowing what that app will do is

futile. Whether you are working as an independent

developer, part of a corporate team, or in any other

configuration, having what is known as an elevator

Chapter 12 Getting into Xcode

251

speech to sum up your project in a few seconds is

a good idea (many people would say it’s essential).

Your purpose or objective may change over time,

but that’s normal. Just make sure that you know

what today’s version is. (Note also that periodically

during the development process you may want

to think about versions.) Modern development

technologies like Agile suggest that at all times

there should be something runnable, and that

is a good practice to follow. This may mean that

periodically — maybe even once a week — you have

to take stock and either eliminate some functionality

or postpone it to a future version in order to have

next week’s version of the app on schedule.

	 2.	 Begin the app description. In addition to your

10-second version of the app’s purpose, many

people (including the author) suggest that you

start building the app’s App Store presence. That is

structured text and images that are more extensive

than your elevator speech version. If you will be

marketing your app yourself, you will need this

sooner or later. If other people do the marketing,

you can work out this description with them.

The main reason to start this description at the

beginning is that it provides more detail for you as

you are building the app. Look on developer.apple.

com for more information on building your app’s

online presence.

Chapter 12 Getting into Xcode

252

	 3.	 Name the app. This can be a code name or a name

that you plan on changing later (when you think of

a better one). It is easy to change the name that will

appear in marketing materials and the App Store.

(This is a change from the beginning of the App

Store.)

Figure 12-1 shows the General tab for the app in

Xcode where you will provide this information.

Figure 12-1.  Set General settings for the app

Chapter 12 Getting into Xcode

253

Display name is the name people will see for your

app. (In this example, it is Tabs.)

The bundle identifier is the internal name for the

app. It can be different from the Display Name.

The bundle identifier must be a unique name. It is

normally constructed from your developer account

name.

Each version of the app (a build) will have its own

version and build identifiers. You usually start with

version 1.0 (you may prefer something like 0.1)

and build 1. Each time you submit an app build to

the App Store, you will increase the build counter

so that it is always unique and increasing. You can

skip build numbers, but you can’t go backward.

The version numbers will appear to users so it is up

to you and your managers and marketers when to

decide that the next build will be something like 2.0

rather than 1.16.

Using default values in Xcode are fine until you need

to work with the App Store.

	 4.	 Choose the app environments. Will you run the

app on iPhone, iPad, Apple Watch, tvOS Mac, or

other devices? What orientation(s) will you support

for iPhone and iPad? These are choices you need to

make at the beginning (and they are required for the

app description). The choices are modifiable, but

you need a starting point.

Choose these in Deployment Info as shown in

Figure 12-1.

Chapter 12 Getting into Xcode

254

	 5.	 Choose the earliest app environment version

you support. The default versions in Xcode usually

adhere to Apple’s policy of supporting the current

and one prior version. Thus, with the release of

iOS 11 in 2017, iOS 10 is generally supported. Some

apps support earlier versions.

This is also set in Deployment Info using the

Deployment Target drop-down list. You can use

the default values for the rest of the settings in

Figure 12-1.

	 6.	 Choose the app development environment. Xcode

is a given for the Apple frameworks, and Swift is

usually a given these days. If you are incorporating

third-party frameworks for your development, you

may not be able to use Swift but as this is written,

the legacy Objective-C frameworks are becoming

fewer and fewer. You also need to choose the Xcode

development version you want to support.

This will be set when you set up your project. It is

discussed in “Developing an App with Xcode” next

in this section.

	 7.	 Decide on the graphics. You may work with a

designer to develop what the app should look like.

Also start considering an app logo.

	 8.	 Choose the capabilities you will support on the
Capabilities tab as shown in Figure 12-2. These

can be changed later, but this gives you an idea

of what you can build in. (Note that it’s easier to

choose capabilities now and not use them than to

retrofit them later in most cases.)

Chapter 12 Getting into Xcode

255

�Developing an App with Xcode
With your app plans in mind, you can start to actually develop an app with

Xcode.

�Setting Up the Project
Here are the steps to begin with.

Begin by launching Xcode. You can download it for free from the App

Store. Use About Xcode to check the version of Xcode you have installed

as you see in Figure 12-3. Note that Xcode build identifiers that tend to be

more complex than the simpler style most developers use for numbers like

1, 2, 3, and so forth.

Figure 12-2.  Set capabilities

Chapter 12 Getting into Xcode

256

Choose New ➤ Project from the Xcode menu to begin your project as

you see in Figure 12-4.

Figure 12-4.  Create a new project

Figure 12-3.  Version 9.0 build 9A235 of Xcode

Chapter 12 Getting into Xcode

257

You will be able to choose a template to start with. In this chapter,

Tabbed App is used. When you have time, explore the other templates by

creating projects with them. You can always delete them after you have

experimented with them.

You will be prompted to select a location on disk for your project.

The project will then open in Xcode. You’ll see it in a window like that in

Figure 12-1. You can use the settings in the top right to show and hide the

various parts of the window. (There’s more on navigating with Xcode on

developer.apple.com and the in-app help.)

Figure 12-5 shows the app at this point. Note that in Figure 12-1,

the Utilities at the right are not shown, but they are shown at the right

of Figure 12-5. Most developers show and hide the panes of the Xcode

window as they work.

Chapter 12 Getting into Xcode

258

With just a few clicks or taps, you can create a new project in Xcode,

but look at Figure 12-6 to see the number of files and folders that you have

created. Unless you are well-experienced with Xcode, do not move or

rename the project files: leave them where Xcode put them. The two most

important components are the xcodeproj file (shown at the bottom of the

list in Figure 12-6) and the project folder (Tabs in this case). If you collapse

the folders, you’ll see that the project consists of the xcodeproj file and the

project folder. Those two items can be moved together to another place,

but they must be next to one another in a folder (or on the desktop).

Figure 12-5.  Review the app

Chapter 12 Getting into Xcode

259

�Testing the Project (without Modifications)
If it is not already open, launch the project in Xcode by double-clicking

Tabs.xcodeproj. That should open the window you’ve seen before.

Remember that you may have to use the controls at the top right to show or

hide the parts of the main window. Figure 12-7 shows you the View menu

that you can use instead of the controls at the top right.

Figure 12-6.  Browse the app’s files

Chapter 12 Getting into Xcode

260

Figure 12-7.  Explore the View menu

Show or hide parts of the main window. If you want to explore them,

use this View menu to show or hide them, and you’ll be able to match the

terminology to the sections of the Xcode window you’re looking at.

Use the arrow at the top left of the main window (shown in Figure 12-5)

to build and run the app. You should see the results in Figure 12-8 (left and

right).

Chapter 12 Getting into Xcode

261

�Adding the Code and Interface
Once you are satisfied that a template works properly, you can add your

modifications. As you saw in Chapter 11, you can add interface elements

to your app in the files and folders created as part of your project, not

the folder called base.lproj. This folder will be in most of your projects. It

contains the interface elements. Today, those are built using storyboards.

(In the past they were built with xib and nib files.)

Figure 12-8.  Build and run the app

Chapter 12 Getting into Xcode

262

The base.lproj folder consolidates all of your interface elements in one

place so that you can easily localize them.

The storyboards give you a graphical tool to draw your interface and

connect it to your code. This section provides a very brief overview for you:

there is more in the Xcode documentation and at developer.apple.com.

There is also a lot of information on the Web, but make certain that it is

recent: there is a lot of old code out there.

If you click on a storyboard in Xcode, it will open and you will be able to

edit your interface. There already is an interface (that’s what you see when

you run the template as shown in Figure 12-8). Inside the main storyboard,

you’ll see a schematic view of the interface as you see in Figure 12-9. (This

view includes some elements that have been added — they were added in

Chapter 11 and you’ll see more about how to add them later in this chapter.)

Figure 12-9.  main.storyboard

Chapter 12 Getting into Xcode

263

At the bottom of the utility area at the right of the window, you see a

list of the objects that you can drag onto the storyboard. You don’t have to

draw anything — just drag.

The elements of the interface are scenes, and they are implemented

in code by view controllers. Most view controllers are visible, and that is

the case here. In the Tabs template, there are three view controllers: the

first and second views, and a tab bar controller that controls them as you

tap the buttons. The tab bar controller appears at the bottom of both view

controllers.

As you build your interface with objects from the utility area, you

can switch to the Assistant editor as you see in Figure 12-10. (You use the

two interlocking circles in the top right of the main window to do this.)

Assistant editor leaves the storyboard on the left side and shows the

relevant code on the right side of the window. You control drag from an

interface element to the code. You will be prompted to name the element

in the code. A filled-in circle indicates that the code is connected to the

interface. When it is connected, hovering over the interface will show you

the name of the connected code element as you see in Figure 12-10.

Chapter 12 Getting into Xcode

264

This is the key part of linking the code to the interface.

If you want to troubleshoot your connections, one simple way is to

control click on the relevant view controller in the storyboard to bring up

the view controller connections shown in Figure 12-11.

Figure 12-10.  Connecting the interface to code

Chapter 12 Getting into Xcode

265

Explore the interface and the elements to get a feel for this critical part

of building an app for iOS or mac OS.

Figure 12-11.  View controller connections

Chapter 12 Getting into Xcode

266

The code that was introduced in Chapter 11 builds on the user

interface. It is repeated here for convenience. Listing 12-1 is the code to

post a notification.

Listing 12-1.  Post a notification

import UIKit

class FirstViewController: UIViewController {

 @IBOutlet weak var label: UILabel!

 @IBOutlet weak var button: UIButton!

 @IBAction func buttonAction(_ sender: Any) {

 label.text = "Button Tapped"

 }

 // POST THE NOTIFICATION

 @IBAction func notificationButtonAction(_ sender: Any) {

 NotificationCenter.default.post(

 name: Notification.Name(rawValue:notificationKey),

 object: nil,

 userInfo: nil)

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 �// Do any additional setup after loading the view,

typically from a nib.

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

Chapter 12 Getting into Xcode

267

Listing 12-2 shows the code to observe the notification.

Listing 12-2.  Observe a notification

import UIKit

let notificationKey = "com.champlainarts.notificationKey"

class SecondViewController: UIViewController {

 @IBOutlet weak var label: UILabel!

 override func viewDidLoad() {

 super.viewDidLoad()

 �// Do any additional setup after loading the view,

typically from a nib.

 // OBSERVE THE NOTIFICATION

 NotificationCenter.default.addObserver(

 self,

 �selector: #selector(SecondViewController.

didReceiveNotificationResultText),

 name: NSNotification.Name(rawValue: notificationKey),

 object: nil)

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

 @objc func didReceiveNotificationResultText () {

 label.text = "Received Notification"

 }

}

Chapter 12 Getting into Xcode

268

�Testing the Project (with Modifications)
Start to test the app again, and you will periodically encounter a problem.

It may be a pesky one for you to solve because it appears to be erratic. The

debugging tips in the next section show you how to proceed.

�Debugging an App with Xcode
With your buttons and code in place, you’ll see that if you click the

navigation button in the first view controller, nothing seems to happen.

The first step in debugging is to use a breakpoint. This causes the app to

stop at a designated spot. The simplest way to proceed if you are not seeing

something happen that should happen is to set a breakpoint on the line of

code that is causing the problem (in this case, by not running). You set a

breakpoint by clicking in the gutter at the left of a line of code as shown in

Figure 12-12.

Figure 12-12.  Set a breakpoint

Chapter 12 Getting into Xcode

269

Run the app again, click the navigation button, and wait for the

breakpoint to be triggered.

It won’t happen.

All of this and you have confirmed what you already saw, but now you

have added the fact that it’s not just that the notification isn’t acted on, it’s

never received.

In a case like this, a common practice is to back up. What should have

called the didReceiveNotificationResultText function?

Because this is a small snippet of code, the answer is right in front

of you on line 24: that’s where the notification observer is set up. Set a

breakpoint there and see what happens when you run the app again.

The result is the same: this line of code is not being called so the

observer is not set up.

At this point, you have to do a little thinking to figure out how that

can have happened. If you think or do research or ask colleagues about

this, you’ll probably get the same answer from everyone: if the code is not

called, then the function that it is in is not being called (viewDidLoad). That

may make no sense because you can see the second view controller.

With both breakpoints still set, you can do some more experimenting.

What you’ll find is that the second view controller’s viewDidLoad function

is called just before it is displayed. If you run the app and click the

navigation button in the first view controller, the observer is not yet set

up. Use the tab at the bottom of the view to switch to the second view

controller to force the view to load, and then go back to the first view

controller and try it again. You’ll see that now the notification works

properly.

This is a very common problem (and a very common class of

problem). It is not limited to iOS or Cocoa: this type of problem and

debugging technique is common.

The solution is that the observer needs to be set up before a

notification is generated. This means that the observer has to be placed

in some part of the app that is present right at the beginning. You may

Chapter 12 Getting into Xcode

270

consider making AppDelegate the place for the observer (and it is

commonly used to receive notifications for just this reason).

�Summary
This chapter shows you the basics of Xcode so that you can get started

implementing the ideas and concepts of computer science in apps. Swift

playgrounds are an invaluable way of experimenting, but there are some

features that require more complex features that you need to start building

your own apps.

As noted, the concepts of debugging described in this chapter are

not unique to iOS or Cocoa. You can use then in most languages and

environments.

Chapter 12 Getting into Xcode

271
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_13

CHAPTER 13

Bringing in People

The field of computer science is often thought of in purely computer

hardware and software terms. Somewhere, we as a society need to look at

how people are involved because they are the users, creators, managers,

and funders of computer science projects.

This chapter looks at the people side of computer science with a focus

on the world of apps. Although the issues and principles described here

apply to projects that may appear not to involve people (interplanetary

space missions, control software for electric grids and generators), there are

people involved if only in the management and funding of those projects.

However, the focus in this chapter is more on the projects that you are

likely to work on with your knowledge of computer science. First is a quick

overview of the formal idea of what is and isn’t computable; then you’ll

find a list of the questions to ask and answer about a specific project you

may be developing. These are the questions that have to be resolved

�Computability for People
The core of computer science is the idea of computability. Simply put,

computability is a problem that can be solved with systematic steps. This

is different from an algorithm in that algorithms tend to be focused on

smaller areas than the computability problems. Thus, the solution of a

computability problem may include one or more algorithms.

272

Note  If you talk to various people, you’ll find out that there are
several candidates for “core” of computer science, and computability
is one of them. It is particularly useful now because a lot of the
current tools for teaching computer science to young people (even
preschoolers) focus on computability.

There are two basic types of computable problems:

•	 Decision problems. Given a collection of items, is an

item part of that collection or not? Is this invoice part of

the set of unpaid bills? Is the user ID authorized to log

in? These are problems with a yes-or-no answer.

•	 Function or computable problems. These are

problems that need to be calculated. What is the

product of X times Y?

Other types of computable problems are optimization problems (how

best to do something — often how best to compute the answer to one of

the two basic types given specific data) and search problems. Problems

are often decomposed into sub-problems so that even the most complex

problem can be broken into computable pieces.

The main reason for thinking about computable problems is to be

able to say with some confidence (and based on some logical analysis)

that a particular problem is or isn’t computable. That, after all, is the

first question people consider when they are thinking of putting their

knowledge of computer science to work: Can computer science help me

solve this problem?

Chapter 13 Bringing in People

273

�The Development Questions
You can find many guides to app development on the Web and in various

publications. The following six questions are the ones that need to be

answered at the beginning of any computer science project. If you can’t

answer these questions, you will sooner or later come to problems in your

project. Someone who is experienced in the use of computer science is

expected to be able to help put projects together. That may not be part of a

formal curriculum, but it is part of the real world. (If you talk to someone

about a potential job where “computer science” is one of the requirements,

a familiarity with the development process is usually as important as

knowledge of the terminology.)

The six questions may seem too simple to you if you’re chomping at

the bit and wanting to write code, but they have to be answered before you

and others invest time, energy, and money in a project that is not clearly

fleshed out. More details of each question (including how to answer it) are

found later in this chapter.

Tip A s you start to answer these questions, remember that you can
always change your mind, and, in fact, you should plan to change and
evolve your answers as any computer science project evolves.

Here are the six questions:

•	 What are you doing?

•	 Who is it for? Who will build it, use it, manage it,

maintain it, and fund it?

•	 Why are you building it? Why will people use it?

•	 When will the project take place? When will it start, and

when will it end?

Chapter 13 Bringing in People

274

•	 Where will the project run? What device(s) will it run

on; will it require other computer resources such as a

web server or database?

•	 How will you know the results of the project?

�What Are You Doing?
The project may be about building an app, but it could be about building

an open data resource so that other people can build apps that run on

the public data. Many people suggest that this question should be able

to be answered in 10 seconds (it’s sometimes called an elevator speech

suggesting that it’s what you would say if you found yourself in an elevator

with your boss or someone else important and you have the amount of

time it takes the elevator to go one floor).

If a friend says, “What are you working on?,” most of the time the

answer should be only a few seconds long. It is absolutely amazing how

hard it is for many people to answer that question. If you can’t describe

the project simply, chances are you can’t implement it. Even the most

complicated projects can be summarized: land an unmanned spacecraft

on Mars. That’s a simple description of a very complicated (and successful)

set of missions.

�Who Will Be Involved?
Who will do the work on the project, and who will use the end result? Are

you building an app for your own benefit so you learn how to build an app

and build your portfolio of projects? Is it a project for a job you have or

want to have? Will the users be adept users of mobile devices (if that’s what

you’re using) or will they be people who have 400 games on their mobile

device but don’t know how to change Settings? Will they be people who

are adept at using mobile devices but have never used a desk- or laptop

Chapter 13 Bringing in People

275

personal computer? (Yes, the number of people without experience with

personal computers is growing.)

Who will manage or lead the project? In many projects, a team works

together. More and more we are seeing collaborative cross-disciplinary

projects that benefit from the structured interaction of people from

different fields. If you’re not familiar with data science and the projects

that use it, you might look for references to data science on the Web.

There are many examples of successful projects, most of which involve the

development or use of computer science technologies.

�Why Will People Be Involved?
This boils down to the benefits that people will derive from the project. Are

they working on it to get a grade, get a job, make money? The motivations

for people who will use the project are typically different from the

motivations of people who develop it.

�When Will It Happen?
This is actually one of the most difficult questions to answer. In the non-

digital world, it is pretty easy to determine when a project is finished: a

dignitary cuts the ribbon, a band plays, and the bridge is open. Everyone

can see that.

Software isn’t visible. In the old days of shrink-wrapped software,

people could see the packages in a store, and that certainly made the

project seem complete. Determining when the project happens requires

you to pull together the answers for What, Who, and Why along with any

changes you have made.

There’s a new perspective on What Are You Doing? With the additional

information you have from the previous questions, now that question can

be refined: what are you delivering?

Chapter 13 Bringing in People

276

In the world of product development (and especially software

development), a common phrase is minimum viable product or MVP.

There are various interpretations of this phrase, but it generally is taken to

mean something that runs and performs the basic functions you expect in

the final product.

This may mean that error messages are not complete (which may

mean that the app may crash if not used carefully). It may mean that some

options are not yet implemented. But it means that you can show someone

what “it” is without using a slide presentation: there is something that will

run.

One interpretation of minimal viable product is that it can be — or is

being — sold. Sometimes it’s sold as an introductory or preview version

(even if the purchase price is free), but there is something there that works.

As you start to decide when you will have a basic product, there are

now a set of additional questions to answer. Basically, for most computer

science projects, you will be looking at a sequence of deliverables. (There

may be early-stage deliverables on a project such as a project proposal, a

slide presentation, and the like, but those are not yet something that runs.)

Depending on what you are building, you have a variety of options.

Here is an overview of the options, but you can have many, many others.

This just gives you an idea of the possibilities for delivering your work.

You can plan on versions of an app or database (or any other computer

science project). Typically, these versions are numbered 1, 2, 3… Intermediate

versions can be numbered. It is not uncommon for a first release to be Version

1. It may quickly be followed by Version 1.1, which might contain some fixes

for typos and other problems. You may continue on until Version 1 is stable.

At that point, it’s time to start thinking about Version 2.

As you move along, you can start to create a road map so that you have

a sense of what your versions will be. This road map and schedule will turn

into your project management tool. Typically the main versions (1, 2, 3)

and perhaps major subdivisions (1.1, 2.3, etc.) are tied to marketing efforts

(if they are apply). These milestones may also be tied to an academic

Chapter 13 Bringing in People

277

calendar, milestones for funding (grant or investment), or other dates.

Remember that once a milestone is attached to a date such as an academic

calendar or a payment, it is no longer totally under the control of the

computer science staff.

There’s another aspect to When for you to consider. Once the project

is stable, will it be used on a regular basis? If you are building a database

to be maintained with products that will be popular around the year-end

holidays, your critical time span for updating the database might be July

(a typical lead time for year-end holiday data preparation). Plan what will

be happening to and with your app, database, or other project.

�Where Will the Project Run?
Although software may be imaginary, it needs devices on which to run.

You have two major decisions about where you work will run. If it involves

data that must be stored in a centralized location, the common practice

is to host it on a web server; apps and websites can access it using the

common REST protocol. There is typically a cost for that storage, but it

can usually be managed fairly reasonable. Of course, if your project is for

an organization that already has web storage available (a corporation,

university, or private business), you may not have to worry.

Cloud platforms such as Amazon Web Services, Azure, and IBM let you

use and easily configure cloud storage. These platforms are designed to

react quickly to increased usage as a client suddenly needs more (or less)

storage.

If you are building an app, you need to decide which platform it will

run on. At the moment, there are four major mobile platforms:

•	 iOS

•	 Android

•	 Windows

•	 Web

Chapter 13 Bringing in People

278

Some apps must run on all of those platforms (think of an online

banking app). Others can run on just one of them. In many cases, one

platform is picked to start with. (Sort of a variation on minimal viable

product.) Once it is running, it is possible to get feedback and, if necessary,

additional support for further work on the project.

Microsoft has a Xamarin product that interests many people. It is

based on .NET and C#. The goal is the elusive write once/run anywhere

dream so that you can write code for iOS, Android, Windows, or macOS

and have it run anywhere. The challenge with these strategies is that as

modifications are made to the target systems, the combined system (like

Xamarin) tends to lag behind. For many, many purposes, this is a very

useful way of working. For others, the lack of contemporaneous support for

the latest native OS features is a serious problem.

Regardless of your opinion, if you want to be a guide through the world

of computer science to colleagues and clients, you need to understand the

cross-platform and multi-platform issues.

�How Will You Know the Results?
If you’ve decided what you’re doing, who you’re doing it for, why you’re

doing it, as well as when and where it will be used, you almost have the

project plan for a computer science project mapped out. All that remains is

to determine how to measure the status and success of the project.

Interestingly enough, this question that seems so obvious to many

people is just as difficult for people to answer as the first one (what are you

doing?). Once again, this is a question that didn’t really matter too much

in the non-digital world where you could see the results of your labors.

You can measure sales or downloads of apps, but is that what you want?

If you’re working on an app that is designed to increase sales at a brick-

and-mortar store, the downloads of the app don’t matter nearly as much

as the sales in the stores. If you are building a database of holiday gifts,

the most obvious metric is the sales of those gifts. The web is littered with

Chapter 13 Bringing in People

279

abandoned shopping carts on e-commerce sites (an oft-cited statistic is

around 67% of shopping carts are abandoned, but that is from 2014 and

online shopping sites are trying to bring that number down with new

interface tools).

A major benefit of online app distribution such as the App Store is the

wealth of data that is generated. (You can find a great deal of it on App

Annie — https://www.appannie.com.) Many people find all those data

incredibly useful, but if you really want to use it well, look at the data that

will be available to you in the App Store and other metrics like App Annie

and visitors to websites and databases. Look at what will be available and

plan your results strategy. Don’t wait until you have the data to decide

what to do with it: set up your analysis right from the start.

That way, you can track your results.

�Summary
This chapter shows you how computer science can fit into projects that you

work on in other disciplines. As the world of apps takes shape (remember

the App Store opened only in July 2008, less than 10 years before this book

is being written), it is expected that people who know computer science

know both the technology and the ways in which it can be used.

Chapter 13 Bringing in People

https://www.appannie.com/

281
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_14

CHAPTER 14

Graphics and
Visualization
Techniques and
Problems

You have seen examples of code, Xcode, and a storyboard in Chapters 11

and 12. In those cases as well as in the Swift playgrounds in other chapters,

you can see code and principles of design and implementation. This

chapter is different in that it does not focus on how to do one thing.

Rather, this chapter walks through a real-life sequence of implementation

questions and solutions. You can see how an interface evolves and how

to look at it not as just a pretty picture but as something that is useful in

conveying information and helping people work with an app that becomes

useful to them.

282

�Introducing Utility Smart
The case study in this chapter is real. It traces the evolution of the interface

of Utility Smart, an app designed to help people develop awareness of

the natural resources that they use and to moderate their use of those

resources.

The app starts from a simple idea: pose questions about recent

use of resources to people and let them answer using sliders. There is

background information that people can browse for more information, but

the heart of the app is the sliders.

The data is saved on the device, and it can be plotted on a graph.

The data is sharable using various technologies such as email and

AirDrop. It was built for Swift and Cocoa Touch by Jesse Feiler. The Utility

Smart project is led by Professor Curt Gervich of the Center for Earth

and Environmental Science at State University of New York College at

Plattsburgh. (If you want to see it in action, it is a free download from the

App Store at http://bit.ly/UtilitySmart.)

�Beginning the App (Utility Smart 1)
Using the basic questions from Chapter 13, we began by thinking about

what we wanted to do. The point of the sliders was to provide a simple

interface to let people enter their observed and behavioral data in less

than a minute. Figure 14-1 shows the first iteration of the app. (Note that

this is Version 1.0 of Utility Smart; it is no longer available in the App Store

because it has been replaced with the later versions shown in this chapter.)

Chapter 14 Graphics and Visualization Techniques and Problems

http://bit.ly/UtilitySmart

283

To provide for flexibility, note that the interface uses a navigation

controller and navigation item that provides the bar at the top of the

window with Share button (left), and Save button (right). It is embedded in

a tab bar controller (note the tabs at the bottom).

Note T he navigation controller provides the bar at the top of the
window; the navigation item, which is the lower part of the navigation
controller, is where the buttons and title are located.

Figure 14-1.  Sliders, version 1

Chapter 14 Graphics and Visualization Techniques and Problems

284

This type of user interface is flexible because it’s easy to add up to

five tabs at the bottom, and, with the addition of more buttons in the

navigation controller at the top, you easily have a variety of destinations

from any view in the app.

Utility Smart has run on all iOS devices including iPad from the

beginning, but many developers find it easier to work from the small

devices and scale up than the reverse. That is the case here: the basic

development is done on iPhone; Auto Layout is used for refinements.

The sliders are a useful part of the Cocoa Touch framework, and it’s

not difficult to reinforce the meaning of the settings by adjusting the

background color to reflect the value of the slider. The code is shown later

in this chapter, and the result is shown in Figure 14-2.

Chapter 14 Graphics and Visualization Techniques and Problems

285

The interface you see in Figure 14-2 is quite impressive to demonstrate:

you slide the slider back and forth and the background color changes

(from red to green to red) to reflect the environmental impact. It’s very

impressive.

And not very subtle. Although we are working with small devices, their

screens are powerful and, with today’s resolutions, you don’t need such

blunt tools to get peoples’ attention. Figure 14-3 shows the next iteration. It

actually uses the same code based on the slider values; this time, instead of

changing the background color of the slider view, the background color of

the text is changed. In addition, the navigation bar’s color is changed to a

standard color for all of the app screens.

Figure 14-2.  Set background color based on slider value

Chapter 14 Graphics and Visualization Techniques and Problems

286

There is space on the view for comments to be shown to encourage

positive behaviors. (This is in addition to the colors of the text

background.)

As you work with interfaces, you’ll soon learn the cardinal rule: there

is never enough space. (If you are designing a sign for the Goodyear blimp,

there’s not enough space.)

Figure 14-4 shows the introductory screen of Utility Smart 1.0 with

scrolling text that extends beyond the window. In addition to not having

Figure 14-3.  Text backgrounds change

Chapter 14 Graphics and Visualization Techniques and Problems

287

enough room for all the text, project team discussions brought up the fact

that there really should be two types of information:

•	 Information about the resource as shown in Figure 14-4

is one type of information.

•	 A second type of information — tips or advice —

can help people learn what they can do to help use

resources wisely.

Figure 14-4.  Not enough space…

Chapter 14 Graphics and Visualization Techniques and Problems

288

It would be nice to have more space and to be able to differentiate

between the two types of information. By emphasizing the different types

of information in this and other cases, you can make it more usable for

the user.

�Refining the App (Utility Smart 2)
It’s very common that as an app like this evolves, you have to stop

complaining about not having enough space and do something about

it. The solution for Utility Smart 2 is to break one aspect of the interface.

Instead of putting all the sliders on one screen, if you split them apart with

one slider per screen, you have much more space to work with. You lose

the ability to see everything all at once, but you can have more space for

information.

That is the approach taken in Utility Smart 2. Figure 14-5 shows a single

slider.

Chapter 14 Graphics and Visualization Techniques and Problems

289

There’s much more space now for background information. Because

the sliders are no longer on one screen, it doesn’t make too much sense

to share one slider’s data, so that frees up the space at the left of the

navigation item. It can be replaced with an Info button as you see in

Figure 14-5. That button can be connected in the storyboard to a popover

for a tip as you see in Figure 14-6.

Figure 14-5.  One slider per page

Chapter 14 Graphics and Visualization Techniques and Problems

290

This is a much more efficient use of space. It’s more elegant and it is

much more extensible for more information. Because popover views are

full-fledged views, if you wanted to come back and put a video into a tip

popover, that’s easy to do.

One of the important lessons to learn in computer science is to

constantly remember how you can implement features that have room for

extension and expansion.

Another vital lesson to learn is that you can’t design a good interface

sitting at your desk. In fact, as a developer, you probably know too much

about what the app can do to be able to build a useful interface for people

Figure 14-6.  Tip popover

Chapter 14 Graphics and Visualization Techniques and Problems

291

who have never seen it before (or for people who have seen it before but

approach it from a different perspective).

Figure 14-7 shows Utility Smart team members Curt Gervich, Maeve

Sherry, and Michael Otton sharing interface ideas and reactions with a

science class at Plattsburgh High School taught by Sonal Patel-Dame.

Trying out ideas and suggestions with a broad range of users and potential

users can help you refine your interface.

�Code Snippets
The code to implement parts of this interface is simple because it uses

some very basic Cocoa Touch tools.

Figure 14-7.  Utility Smart 2 interface brainstorming session

Chapter 14 Graphics and Visualization Techniques and Problems

292

�Creating a Popover: Code
The popover will be presented from a view controller. As is usually the

case, you create a subclass of UIViewController. The important code is

shown in Listing 14-1.

Here are the steps to implement the popover in the view controller:

•	 Make the view controller a

UIPopoverPresentationControllerDelegate in the

class declaration.

•	 Create the popover in the storyboard (shown in

the following section).

•	 Implement prepare(for segue:) for the popover.

•	 Add adaptivePresentationStyle (for controller:)

to manage popover size.

Listing 14-1.  Creating a popover

import UIKit

class NowPageViewController: UIViewController,

UIPopoverPresentationControllerDelegate {

 ... code omitted

 �override func prepare(for segue: UIStoryboardSegue,

sender: Any?) {

 switch segue.identifier! {

 case "tipPopoverSegue":

 �segue.destination.popoverPresentationController!

.delegate = self

 default: break

 }

 }

Chapter 14 Graphics and Visualization Techniques and Problems

293

 �func adaptivePresentationStyle(for controller:

UIPresentationController, traitCollection: UITraitCollection)

-> UIModalPresentationStyle

 {

 return .none

 }

... code omitted

�Creating a Popover: Storyboard
In your storyboard, add a new view controller as you see in Figure 14-8. In

Figure 14-8 it has a title (label) and a text view. Select it and choose the Size

inspector in the utilities are. Set it to Freeform. Dimensions of 300x400 are

a good starting place for a popover.

Control-drag from the view controller to the popover to create a segue.

Next, highlight the segue you have created as shown in Figure 14-9.

Figure 14-8.  Set popover size

Chapter 14 Graphics and Visualization Techniques and Problems

294

With the segue highlighted, click the Attributes inspector and

name it. The name must match the name in prepareForSegue code —

tipPopoverSegue in this example.

That should create the popover for you.

�Summary
The issues of visualization and interface creation are best resolved with

an iterative process and with input from as many people as possible. One

caution: don’t ask for interface advice directly, because people will give

you answers based on other things they have seen. Watch what they do

and try to do. See what confuses them. If you talk to them, talk to them

about actions and meaning: it’s your job to figure out what things should

look like.

Figure 14-9.  Provide a name for the segue

Chapter 14 Graphics and Visualization Techniques and Problems

295
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4

Index

A
Abstractions

patterns and, 9
validation, 15–16

Algorithms
building blocks of apps and

systems, 49
concepts, 52
design patterns, 53
functions, 53
implementation

addition, 62–66
number table, 56, 58–59, 61
numerology, 54–55

numerology, 51–52
objects, 53
purpose of, 50
sequences of actions, 49

Arrays
adding and deleting

elements, 109–111
basic terminology, 96
concepts, 95
declaration and creation

add (), 99
elements, 100
error message, 99
initialization, 100

initializer syntax, 100
literals, 101
Swift, 98
variables, 98

developers and designers, 95
elements, 94, 97
enhancements, 95
features, 95
finding, elements, 105–108
looping, 111
modification, var array

editing, 102–104
structure, 102
types, 102
UITableViewController, 102

multi-dimensional, 104
ordered lists, 94
sorting, 95
Swift, 95
Swift arrays and types, 98

Assembler, 23

B
Blocks fit in, 234
Button

action, 236
add, 238
buttonAction, 241

https://doi.org/10.1007/978-1-4842-3066-4

296

code, 241
@IBAction, 241
implementation, 239
and label, 239
notification

add, 242
add label, 243
basics, 245
broadcast, 245
code, 243–244
components, 245
navigation, 244
observation, 247
posting, 246
view controller, 242

Tabbed App, 237

C
Code snippets

code, popover, 292–293
storyboard, 293–294

Coding
actions and data, 22
assembler, 23
compilers, 23
compiling and interpreting, 25
creation, action, 20–21
data usage, 21
design, 23
environment, 25
process, 25

programming languages, 24
programming paradigms, 35
Swift playgrounds, 26–27,

32–33, 35
type of, 19

Compilers, 23
Components

advantages
manageability, 209
reusability, 209

Agile, 208
app development, 208
basic, 231
blocks and closures, 216
closure usage, 217–218
divide and conquer, 207
functions, Swift

body of, 222–223
complete, 226
creation, 220–221
declaration, 225
errors, 227
iPad, 219
name, 222
outcomes, 230–231
parameters, 224, 228–230
return value, 226
simple, 219
small, 226
Tap func, 220
values, 223
variables, 227

larger building blocks, 215

Button (cont.)

Index

297

projects development
classes, 214–215
code, 213
data inputs and

outputs, 212
documentation, 213
names, 211–212
side effects and

requirements, 213
recursion, 219
specific, 208
theories and rules, 208

Computer science
basic concepts and practices, 5
challenges, 2
code, 6
components, 3
developers (see Developers

fundamental tasks)
different tools and

techniques, 17
elements, 1
principles and techniques, 2
recognize patterns

abstractions, 8, 9
West front of Notre Dame,

Paris, 7
review, 16
Swift Playgrounds tool, 3–5
term, 1

Concurrent programming, 47
Control flow management

apps and programs, 144
C if statement, 152

compound statements, Swift
conditional test, 152
dangling bracket, 155
dangling else bracket, 155
embedded, 154
embedded bracket, 155
embedded else, 156
if statement, 153
indentation options, 153
Xcode preferences, 154

condition, 151
Control Center, 145
dangerous programming

technique, 149
enumerated types

Swift enums, 167–168,
170–171

Swift’s approach, 166
values, 165–166

exceptions, 146
line of code, 144
programming languages, 146
repetitions and strides

(see Repetitions)
structured programming/

structured code, 150
Swift if statement, 151
Swift playground

with line numbers hidden, 148
with lines numbers, 147

switching (see Switching control)
ternary operators, 156, 157
transfer, 150
Xcode preferences, 148

Index

298

D, E, F
Data

app, 182, 206
charge

computers and computer
software, 189

guidelines and
standards, 189

integrity (see Data integrity)
ownership, 189–190

developers, 183
development, 179
functions, 180
management (see Data

management)
managers, 181
record, 182
store (see Storing and

sharing data)
Swift optionals

binding, 204
declaration, 202
missing data, 201
playground or Xcode, 203
test, 202
unwrapping, 205
value, 203
variable, 204
wrapped, 206

Data collections
arrays (see Arrays)
classes, 94
dictionaries (see Dictionaries)

modern programming
languages, 93

scalar/variable, 93
sets (see Sets)
storing, 93
types, 92

Data integrity
checksums, 191
moving data, 191
stored data, 190
timestamps and data

markers, 192–193
tools, 191
version control, 193

Data management
external data, 194–195
formatting and structuring

JSON with Swift 4, 197–201
storage protocols, 195, 197

Data types
basic

binary number notation, 133
computer languages, 131
floating point numbers, 132
integers, 131
numeric storage, 131
storing strings and

characters, 134
bits and bytes, 123, 124
concept of, 123
context, Swif, Xcode, 125
creation, new types

arrays, 136
constant/variable, 134

Index

299

inferred type, 134
Int as string, 138
inventory array, 137
productName, 135
Swift, 135
typealias syntax, 135

languages, 141
safety, 125
stacks

and heaps, 129–130
and queues, 128–129
storing data,

runtime, 126–127
tuples, 138–141

Declarative programming, 46–47
Design patterns, algorithms, 53
Developers fundamental tasks

decomposition, 14
formulation, computational

problem, 10–11
modeling, problem/process, 14
non-computational

problems, 13
project and goal, 12–13
rearranging and recomposing, 15
recognizing and describing

problem, 11
validating abstractions, 15–16

Dictionaries
array, 116
basic dictionary

terminology, 117
declaration and creation, 118

elements, add and delete, 120
functions, 119
Key and Value, 117
Swift playgrounds

reports, 118

G, H
Graphics and visualization

techniques
background information, 282
beginning the App (Utility

Smart)
background color, slider

value, 284–285
information types, 287
iOS devices, 284
navigation controller and

navigation, 283
positive behaviors, 286
sliders, version 1, 283
space, 287
text, 285–286

code snippets, 291, 293–294
data, 282
iterative process, 294
refining the App (Utility Smart)

slider, 288–289
space, background

information, 289
team members, 291
tip popover, 290
views, 290

Index

300

I, J, K, L
Imperative and procedural

programming, 46

M
Managing control flow

actions and messaging, 235
creation, repetition loop (see

Repetition loop, creation)
declarative/functional

programming, 69
programming, 69
random numbers (see Multi-

step control flow project
with random numbers)

Multi-step control flow project with
random numbers

arc4random_uniform(_:), 71
array, 70
built-in Swift functions, 71
computer science processes, 70
conversion and manipulation, 71
creation

copy, Answers, 74
duplicate, answers

playground, 72
Get button, 73
interactive playground, 77
multiple random numbers, 84
New Playground +

button, 72
open Answers, 75
purpose of, 83

run Answers, 76
generations, 70
playground code, 77–78, 80, 82

N
Number table algorithm

associative array, 57
conditional cast operator, 61
conversion, 56
data, 56
Hashable protocol, 57
keys and values, 57
numerology dictionary, 58–59
storage approach, 56
Swift dictionaries, 57
testing, 61
upper- and lowercase

letters, 59–61
variables, 58

O
Object-oriented programming

algorithms, 53
classes, 41
concepts, 41
declarations, 42
House class, 42
instructions and data, 41
languages, 46
late 1950s, 41
methods, 41
outcomes, 43–44

Index

301

playground viewer, 43
runtime construction, 41
viewers, 45

Ownership, data, 189–190

P, Q
People knowledge, projects

computability, 271–272
development questions

determination, 275
elevator speech, 274
involvement, 274
new perspective, 275
outcomes, 278–279
planning, 276
product development, 276
run, cloud platforms, 277–278

Programming paradigms
coding, 37
concurrent, 47
declarative, 46–47
imperative and procedural, 46
implementation, languages, 37
object-oriented (see Object-

oriented programming)
structured, 38, 40

R
Repetition loop

creation
code, 85–86
control, 86–89

structures, 85
types, 85

Repetitions
for-in loops

arrays and
dictionaries, 174–177

collections, 173–174
explore, 174

and strides, 177
variations, 171
while and repeat-while

loops, 172–173

S
Scalar data, 93
Sets

basic set terminology, 113
concepts, 112
elements

adding and deleting, 115
function, 114
identification, 113
swift sets and types, 114

features, 113
set theory operations, 116
Swift apps, 112

Storing and sharing data
app, 183
data usage, 183
Internet service provider, 183
locations, 187–188
nonpersistent app, 185
persistent app, 185–186

Index

302

persistent data outside
of app, 187

persistent storage, 184
places, 184

Structured programming, 38, 40
Swift playgrounds

creation, 27
delete, 35
feature, 26
locations, 33
sharing options, 34
view, 32

Switching control
advanced Switch case elements

range, 161–163
if statement, 158
pseudocode, 158
statement, 159–160
Swift syntax, 160–161
where clause, 163–165

T, U
Ternary operators, 156, 158
Timestamps, 192–193
Tuples

code, 139
declaration, 140
function, 139
Python and C#, 139
sequence of types, 139

V, W
Validation, abstractions, 15–16

X, Y, Z
Xcode

Apple frameworks, 249
Apple’s IDE, 249
app review, 258
App Store, 255
basics, 270
browse, 259
code and interface

connection, 264
elements, 262
observe notification, 267
post notification, 266
storyboard, 262
view controller

connections, 264, 265
creation, new project, 256
debugging, 268–269
features, 270
identifiers, 255
process

capabilities, 254–255
choose, 254
code name, 252–253
description, 251
environments, 253
graphics, 254

Storing and sharing data (cont.)

Index

303

version, 254
write an app, 250

project test with
modifications, 268

project test without
modifications

controls, 259
Tabs.xcodeproj, 259
View menu, 260

Tabbed App, 257
Version 9.0, 9A235, 256
writing app, 250

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Thinking Computationally
	 Computer Science Today
	 Using Swift Playgrounds
	 Basic Concepts and Practices of Computer Science Today
	 Recognizing Patterns
	 Using Abstractions
	 Combining Patterns and Abstractions for Development

	 Fundamental Tasks for Developers
	 Formulating a Computational Problem
	 Recognizing and Describing the Problem
	 Defining a Project and Goal
	What Isn’t a Computational Problem

	 Modeling the Problem or Process
	 Practicing Decomposition
	 Rearranging and Recomposing the Project Pieces
	 Validating Abstractions

	 Here Comes the Code

	Chapter 2: Writing Code and Using Swift Playgrounds
	 The Basics of Writing Code
	 Actions and Data
	 Creating an Action
	 Using Data

	 Combining Actions and Data
	 What Happens Behind the Code
	 Compiling and Interpreting Code
	 Using Swift Playgrounds
	 Moving On to Paradigms

	Chapter 3: Exploring Programming Paradigms
	 Structured Programming
	 Object-Oriented Programming
	 Imperative Programming (Procedural Programming)
	 Declarative Programming
	 Concurrent Programming

	Chapter 4: Using Algorithms
	 Considering the Purpose of Algorithms
	 Creating a Numerology Algorithm
	 Looking Carefully at Algorithms
	 Functions
	 Objects
	 Design Patterns
	 Implementing the Numerology Algorithm in Swift
	 Implementing the Number Table
	 Implementing the Addition

	 Summary

	Chapter 5: Managing Control Flow: Repetition
	 Getting Ready for a Multi-Step Control Flow Project with Random Numbers
	 Creating a Random Number Playground
	 Writing the Playground Code

	 Creating Many Random Numbers
	 Create a Repetition Loop
	 Creating the Code to Repeat
	 Creating the Repetition Control (Limit)

	 Summary

	Chapter 6: Working with Data: Collections
	 Using Types
	 Scalar Data
	 Moving On to Collected Data
	 Using Arrays
	 Basic Terminology
	 Indexing Array Elements
	 Swift Arrays and Types
	 Declaring and Creating Arrays
	 Modifying a var array
	 Multi-Dimensional Arrays
	 Finding Array Elements
	 Adding and Deleting Array Elements
	 Looping Through an Array

	 Using Sets
	 Basic Set Terminology
	 Identifying and Finding Set Elements
	 Declaring and Creating Swift Sets and Types

	 Adding and Deleting Set Elements
	 Working with Sets

	 Using Dictionaries
	 Basic Dictionary Terminology
	 Declaring and Creating a Dictionary
	 Adding and Deleting Dictionary Elements

	 Summary

	Chapter 7: Working with Data: Types
	 Why Types Matter
	 Looking at Stacks and Heaps
	 Storing Data at Runtime
	 Stacks and Queues
	 Heaps

	 Basic Types
	 Numeric Storage
	 Using Integers
	 Using Floating Point Numbers
	 Storing Strings and Characters

	 Creating New Types
	 Working with Tuples
	 Summary

	Chapter 8: Managing Control Flow: Conditionals, Switches, and Enumerations
	 What’s Next?
	 Using Go To Statements…Or Not
	 Using Conditionals
	 Using Compound Statements in Swift
	 Ternary Operators

	 Switching Control
	 Comparing Swift Switches to Other Languages
	 Exploring the Swift Switch Syntax
	 Using Advanced Switch Case Elements: Ranges
	 Using Advanced Switch Case Elements: Where Clauses

	 Using Enumerated Types
	 Swift’s Approach to Enumerated Types
	 Using Swift Enums with Switch Statements

	 Exploring Repetitions and Strides
	 While and Repeat-While Loops
	 For-in Loops
	 Iterating Over a Collection
	 Looping Through Indexes (Arrays) and Keys (Dictionaries)

	 Using Strides

	 Summary

	Chapter 9: Storing Data and Sharing Data
	 What Is the Data?
	 Where Is the Data Stored?
	 Storing Data in Nonpersistent App Storage
	 Storing Data in Persistent App Storage
	 Storing Persistent Data Outside of App Storage on a Device
	 Storing Data in Shared Storage Locations

	 Who Is in Charge of the Data?
	 Ownership of Data
	 Data Integrity
	 Using Checksums
	 Using Timestamps and Other Data Markers
	 Version Control

	 How Is the Data Managed
	 Managing External Data
	 Formatting and Structuring Data
	 Using JSON with Swift 4

	 Handling Data That Is Not There: Swift Optionals
	 Summary

	Chapter 10: Building Components
	 Why Build Components
	 Advantages of Components: Reusability
	 Advantages of Components: Manageability

	 The Basic Components of Development Projects
	 Subroutines, Functions, Procedures, and Methods
	 Naming Components
	 Data Inputs
	 Data Outputs
	 Implementation – Code
	 Implementation – Documentation
	 Side Effects and Requirements

	 Classes

	 Larger Building Blocks
	 Looking at Blocks and Recursion
	 Terminology: Blocks and Closures
	 Using a Closure
	 Recursion

	 Building a Function in Swift
	 Summary

	Chapter 11: Using Events to Guide Actions
	 Where Blocks Fit In
	 Using Actions and Messaging for Managing Flow Control Summary
	 Passing a Button Press/Tap/Click On to… Somewhere
	 Implement a Button with Known Action
	 Implement a Button with a Notification
	 Notification Basics
	 Posting a Notification
	 Observing a Notification

	 Summary

	Chapter 12: Getting into Xcode
	 How to Write Software
	 Developing an App with Xcode
	 Setting Up the Project
	 Testing the Project (without Modifications)
	 Adding the Code and Interface
	 Testing the Project (with Modifications)

	 Debugging an App with Xcode
	 Summary

	Chapter 13: Bringing in People
	 Computability for People
	 The Development Questions
	 What Are You Doing?
	 Who Will Be Involved?
	 Why Will People Be Involved?
	 When Will It Happen?
	 Where Will the Project Run?
	 How Will You Know the Results?

	 Summary

	Chapter 14: Graphics and Visualization Techniques and Problems
	 Introducing Utility Smart
	 Beginning the App (Utility Smart 1)
	 Refining the App (Utility Smart 2)
	 Code Snippets
	 Creating a Popover: Code
	 Creating a Popover: Storyboard

	 Summary

	Index

