
Learn JavaScript
with p5.js

Coding for Visual Learners
—
Engin Arslan

www.allitebooks.com

http://www.allitebooks.org

Learn JavaScript
with p5.js

Coding for Visual Learners

Engin Arslan

www.allitebooks.com

http://www.allitebooks.org

Learn JavaScript with p5.js: Coding for Visual Learners

ISBN-13 (pbk): 978-1-4842-3425-9 ISBN-13 (electronic): 978-1-4842-3426-6
https://doi.org/10.1007/978-1-4842-3426-6

Library of Congress Control Number: 2018935139

Copyright © 2018 by Engin Arslan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-3425-9. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Engin Arslan
Toronto, Ontario, Canada

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3426-6
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: Introduction���1

Why Learn Coding? ���1

Coding vs� Programming ���2

On HTML and CSS ���3

Why Learn JavaScript? ���4

Why Do We Have Different Languages? ��6

Learning JavaScript with p5�js ���8

Chapter 2: Getting Started ��13

Installing p5�js ���13

Gentle Introduction to JavaScript ��16

Getting Started with p5�js ���24

More About Functions ���26

Coordinates in p5�js ��31

Summary���35

Practice ���36

Chapter 3: Colors in p5�js ���37

Color Functions in p5�js ��37

Changing Shape Colors ���39

About the Author ��vii

About This Book���ix

www.allitebooks.com

http://www.allitebooks.org

iv

Summary���42

Practice ���42

Chapter 4: Operators and Variables ��45

Setup ���45

Variables ���47

Variables Continued ��49

Predefined Variables in p5�js ���55

Summary���58

Practice ���59

Chapter 5: Conditional Statements and Comparison Operators ���������61

frameCount, frameRate, and frame ���61

Conditionals ��66

Summary���75

Practice ���76

Chapter 6: More p5�js Variables ���77

mouseIsPressed ��77

mouseX and mouseY ��80

Summary���83

Practice ���84

Chapter 7: Loops ���85

For Loop ��85

Random and Noise Functions ���92

Summary���99

Practice ���100

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 8: Functions ��101

Creating Functions ��101

Revisiting Setup and Draw Functions ���107

Summary���108

Practice ���108

Chapter 9: Objects ��109

Using Object Initializer ��109

Using the Constructor Function���117

Summary���123

Chapter 10: Arrays ��125

Using the push Method ���125

Using Arrays ��133

Using the remainder Operator ���136

Summary���141

Practice ���141

Chapter 11: Events ���143

Using mousePressed ��143

Using keyPressed ���145

Summary���151

Practice ���151

Chapter 12: More on p5�js ��153

Rotate and Translate ���153

Push and Pop ��159

Summary���164

Practice ���165

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 13: Final Project ��167

Getting Started ��168

User Interaction ���176

Keeping the User Score ��181

Final Code ���198

Summary���208

 Appendix: Final Words ��209

 Where to Go Next ��210

 Additional Resources ��212

 Index ���213

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

About the Author

Engin Arslan is a Software Developer with a Bachelor of Science in

Materials Engineering and a Postgraduate Degree in Visual Effects. Before

becoming a Developer, he worked as a Visual Effects Artist / Technical

Director on films and TV shows including Resident Evil, Tron, Mama,

Pompeii, Vikings, and Strain. He received an Emmy nomination and won a

Canadian Screen Award for his achievements in Visual Effects. During his

time in VFX, he fell in love with Python and with programming in general.

As a result, he changed careers to be able to immerse himself completely

in software development. Engin currently works at a Toronto-based digital

services company, where he helps develop solutions in strategic problem

spaces using emerging technologies. He also works at Seneca College as

a part-time professor and creates online courses for Lynda/LinkedIn and

Pluralsight.

www.allitebooks.com

http://www.allitebooks.org

ix

About This Book

The emphasis of this book will be primarily on learning programming

using JavaScript and p5.js and secondarily in creating visuals. The main

focus is to teach you how to program so that you can choose to pursue

whatever field that you would like with your newly established skill set.

The skills that you will acquire from this book are highly transferrable and

can be used with whatever you choose to build: whether web applications,

programmable robots, or generative art. This means that I will provide

you with enough context so that you can build a strong foundation for

programming. But I also won’t hinder your momentum with irrelevant

technical or theoretical points. The aim is to build a strong but a minimum

viable knowledge to get you running with coding. This is the book that I

wished I had available when I was learning coding myself.

If you are an artist or a visual designer, this book is perfect for you as

you might find the examples we will be building to be directly relevant

to your work. If not, this is still a great book for learning programming as

the visual nature of the exercises will help you grasp the fundamentals

of programming more easily and let you build a strong foundation in a

shorter amount of time.

This book will present various JavaScript and p5.js features and

concepts in the following chapters. The knowledge will be reinforced

by building several useful examples like an animation and a data

visualization; and as a final project, we will be building a game that can be

deployed online using what we learned in this book!

www.allitebooks.com

http://www.allitebooks.org

x

Here is a rundown of the topics that we will be covering:

Chapter 1 - Introduction: Provides an overview of coding versus

programming.

Chapter 2 - Getting Started: We will learn some very basic JavaScript

commands and operations to get started with using p5.js.

Chapter 3 - Colors in p5.js: This will be a p5.js-specific chapter where

we learn about how colors are defined and used in p5.js. This doesn't

pertain to JavaScript but needs to be explored regardless to be able to use

p5.js in a comfortable manner.

Chapter 4 - Operations and Variables: We will make use of the

JavaScript knowledge we acquired in the second chapter in p5.js context.

Chapter 5 - Conditional Statements and Comparison Operators:

This chapter will allow us to write programs that can respond to different

conditions by using conditionals and comparison operators.

Chapter 6 - More p5.js Variables: This will be another p5.js-specific

chapter where we will learn about several library-specific variables.

Chapter 7 - Loops: Here we will learn about loops, which will allow us

to build programs that handle enormous amounts of calculations.

Chapter 8 - Functions: Functions are the building blocks of JavaScript

and we will learn more about them in order to build more scalable,

modular, and robust programs.

Chapter 9 - Objects and Chapter 10 - Arrays: Objects and Arrays

are JavaScript data structures that will allow us to organize our code and

handle complexity in more intelligent ways.

Chapter 11 - Events: Event handling will allow us to write programs

that handles user interaction.

Chapter 12 - More on p5.js: Another p5.js-only chapter where we

learn more about library-specific features before diving into our final

project.

Chapter 13 - Final Project: We will build a game using everything we

have learned up to this chapter!

abouT This bookabouT This book

www.allitebooks.com

http://www.allitebooks.org

1© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_1

CHAPTER 1

Introduction
At this age and time that we live in, coding is simply invaluable. It has

the power to uplift your career, your future prospects, and even your

intellectual capacity. Computation is driving one of the largest capital

expansions in history, and there has never been a better time to learn

coding than now.

 Why Learn Coding?
My first serious interaction with coding was at college. We had to take a

course on a programming language called C Sharp. I failed the course the

first time I had to take it and barely passed it the second time when I had

to take it again. With that defeat in mind, I stayed away from coding for

the longest time. I considered it to be a talent that I simply didn’t possess.

Later, I went on to change my career from engineering to visual effects as

I wanted to work in a field that had more room for creative expression.

But working in visual effects, I came to realize that the entire operation is

actually enabled by the power of computation. From the software that is

used to the pipeline management that facilitates the production… Coding

is everywhere. It allows studios to deliver mind-blowing effects for movies

that make hundreds of millions of dollars in the box office.

Upon realizing the power of coding in my field, I decided to embark

on a journey to learn more about it. I ended up teaching myself Python,

a programming language that is widely used in visual effects. And doing

2

so has been immensely gratifying. Not only has it allowed me to become

more accomplished in my work in visual effects and create award-winning

effects, but it has also empowered me to transition to an even more

rewarding career in software development.

 Coding vs. Programming
You must be hearing the terms coding and programming in similar

contexts and might be wondering what the difference between them

is. In the past few years, coding has become the term of choice to make

programming more approachable to the general population. Basically the

premise is that you could be coding and still be contributing to the digital

economy without actually doing programming.

Let me give you an example of that: you could be using web languages

such as HTML and CSS, which are not programming languages. So when

coding in those languages you are not really programming but styling

or structuring websites (more on their usage in the next section). But

you could also be coding in JavaScript, which is an actual programming

language. Programming languages allow you to make a computer “do”

things. Every time you are programming something, you are also coding.

But when you are coding, you might not be programming. Coding is a

more general term that is used for describing all cases where you are

communicating intent to the computer.

Basically you can think of programming as a subset of coding. But if

truth be told, these two terms are used almost interchangeably nowadays.

The main purpose of this book is to teach you how to program. We will be

coding for programming purposes by using the programming language

JavaScript.

Chapter 1 IntroduCtIon

3

 On HTML and CSS
Looking at my path for learning programming, I find some of the efforts to

teach coding to beginners to be a bit lacking. One of the primary problems

in the area is using HTML and CSS as introductory languages.

The problem with these languages is that they are not even

programming languages! HTML is a markup language that is used to

define the structure of a document in a way that a web browser would

understand. For example, HTML teaches you how to write text for a

browser so that the browser would know what parts of it is a document

header vs. a paragraph, etc…

Likewise, CSS is not a programming language either. It is a styling

language that allows us to style HTML documents to have them look

aesthetically pleasing and ideally make them more user friendly than

before. Furthermore, even though CSS can be used to create incredibly

good looking results, it is usually very unintuitive to work with and can be

hard to reason about even for a programmer. Learning CSS, you are not

only not learning programming, you are very likely engaging in an activity

that might not be fun as a beginner if styling websites is not your sole

intention.

This push to teach coding using these languages is understandable.

After all, given the large dominance of web applications and their

immense profitability in certain cases, people found themselves wanting

to build their own projects for the Web. And if you are to build a website,

you need to use these languages to a certain degree. But having these

languages as a starting point could create a misconception about what

coding is. Coding can be an immensely rewarding and engaging activity

when you are building programs or applications as the domain of

possibilities is substantially bigger. As discussed previously, we need to be

using programming languages to build programs so the apparent question

is: “What makes a language a programming language?”

Chapter 1 IntroduCtIon

4

You can always check Wikipedia for a semi-formal definition. But to

me, for a language to be considered a programming language, it needs to

have certain control structures available to it that would allow us to express

some basic operations. Even this definition probably makes little sense

to a beginner. What is meant is that there are structures in programming

languages that allow the computer to perform logical operations. Some of

the examples of such structures, which we will see more about later, are the

following: conditionals that allow the program to output different results

based on given conditions and variables that store values or loops that

allow a program to repeat operations for a desired amount of time. Don’t

worry if none of this makes any sense right now; the purpose of this book is

for us to learn about all these fundamental programming concepts.

Almost all programming languages have these kinds of basic structures

that enable us to construct immensely more complicated applications.

Think of English, or any other language you might know. You have verbs,

nouns, and adjectives. And using these building blocks, people can say

the simplest things or go on to write amazing novels. And these are the

building blocks that are missing from HTML and CSS that make people

miss out on what could be achieved when using programming languages.

In this book we will learn all these basic structures that would allow

us to communicate our intent to the computer using the programming

language JavaScript.

 Why Learn JavaScript?
There are many programming languages out there. This book will be

teaching you how to code, by using the immensely popular programming

language JavaScript.

JavaScript is one of the most widely used programming languages out

there as it is built into every web browser. Due to this, almost all the web

pages and applications out there use JavaScript to some degree. In recent

Chapter 1 IntroduCtIon

5

years JavaScript started to be used not only to program user interaction in

web pages but also server side - back-end - applications, Internet of Things

(IOT) devices or mobile apps for platforms such as Android or iPhone.

Even though it has its roots in web development, JavaScript knowledge is

now applicable to a vast number of other domains.

Given the popularity and ubiquity of JavaScript, it is really easy to find

resources and information about it if you are to ever get stuck. It has a big,

vibrant community behind it. In the popular Q&A website, StackOverflow,

there are more than a million questions that are related to JavaScript. If you

end up coding in this language and get stuck in a problem, the chances are

that someone else also had the same problem, posted a question on this

website, and got an answer that you can learn from.

I won’t go into details of what makes a programming language

dynamic or static, but being a dynamic programming language, JavaScript

code is more concise and easier to write compared to static languages.

Listings 1-1 and 1-2 are some examples where a simple statement that

displays the words ‘hello world’ to the screen are written by using different

languages. Notice how much shorter it is to write the same code using

JavaScript.

Listing 1-1. Displaying Hello World to the screen in C++ (Source:

http://helloworldcollection.de/)

// Hello World in C++ (pre-ISO)

#include <iostream.h>

main()

{

 cout << "Hello World!" << endl;

 return 0;

}

Chapter 1 IntroduCtIon

6

Listing 1-2. Displaying Hello World to the screen in Java (Source:

http://helloworldcollection.de/)

// Hello World in Java

class HelloWorld {

 static public void main(String args[]) {

 System.out.println("Hello World!");

 }

}

Displaying Hello World to the screen in JavaScript:

console.log('Hello World');

One other advantage of learning JavaScript is that, since it is the

language of the Web, you would be able to share your creations with other

people in a really easy manner. I think to be able to do so and receive

feedback is an important consideration when learning a new skill set.

To summarize, there are lots of reasons to learn programming and

JavaScript stands to be a great choice since it:

• is easier to write;

• is popular and ubiquitous;

• has a vast application domain.

 Why Do We Have Different Languages?
You must be wondering why there are different languages if they are all

share similar features.

That’s a great question. Different languages exist because they are

designed with different principles in mind. Some of them can be harder

to type out, but they give you more control over the stability and speed of

Chapter 1 IntroduCtIon

7

your programs. Others can be much more concise but could be slower to

execute. Some languages are better suited for certain tasks. JavaScript is

perfect for full stack web development, Matlab is great for mathematical

calculations, C++ has dominance in game programming, and Julia is used

for data science. This doesn’t mean you can’t be using other languages

in these domains, though. Unity Game Engine offers C# for game

development. Python can be preferred for data science. And GoLang or

many other languages could be used for back-end web development. It

sometimes boils down to what the developers prefer to use and what they

already know. And sometimes it comes down to the constraints of a given

project.

I used to work in the visual effects industry and the software packages

that we would be using in the field could be automated using Python or

C++. So those were great language choices for that domain given that’s

what the tools that we were using were supporting. Knowing Java in visual

effects would have been largely useless except for the fact that knowing a

programming language actually makes it more likely that you will be able to

pick up another language as they share similar principles among each other.

Choosing which language to learn as your first can sometimes be a

tough choice as there are lots of viable options out there. Sometimes the

choice is dictated by the application domain. If you are seeking to build

a game using the Unreal Engine maybe you should just learn C++. But

then again if it’s your first time interfacing with a programming language,

you might be faced with such a steep learning curve that it might be

discouraging.

JavaScript stands to be a great choice to learn as your first

programming language. As mentioned earlier, it is widely used and has a

vast application domain that would allow you to experiment with lots of

different applications. It has a big and active community behind it and also

has a very concise syntax that makes it closer to human languages.

Chapter 1 IntroduCtIon

8

 Learning JavaScript with p5.js
One of the most challenging aspects of learning programming is to

find engaging examples that are not only fun and impressive but also

illustrative of the subject matter at hand. Once you get the hang of

it, programming is a highly rewarding and engaging activity, but to a

beginner most of the problems that a professional programmer has to

tackle might seem uninteresting or straight up boring. That’s why this

book uses a JavaScript library, an add-on, called p5.js in teaching this

introduction to programming book. p5.js will allow you to create engaging

interactive and visual pieces that you will have fun while creating, and

it will also let you build a strong foundation for software development.

The visual nature of this library will allow us to actually see the results

from our scripts as graphics and develop an intimate understanding of

programming structures.

p5.js is a programming library. A programming library can be thought

as a collection of code that is built for a specific purpose, so that whenever

you need to perform an action that relates to that purpose you can use

a library instead of building that functionality yourself. Libraries build

on and extend the core capabilities of a language. For JavaScript, there

are more than a hundred thousand libraries out there that allow you to

perform a large variety of operations. So it is always a good idea to check

if someone already created an open source or even a paid library for your

needs before trying to implement your own functionality. The idea is that

a library would be a battle-tested solution for a particular problem that

you can utilize with confidence, instead of devising your own solution,

which might introduce unforeseen problems into the program you are

developing. This is particularly true for JavaScript as the core language

doesn’t have any built-in, standard, library; and hence development efforts

Chapter 1 IntroduCtIon

9

rely heavily on external libraries to tackle common problems. Here are

examples for a couple of interesting libraries to give you a taste of what is

available out there:

• Faker.js (https://github.com/Marak/Faker.js):

Generate massive amounts of fake data.

• franc (https://github.com/wooorm/franc): Detect the

language of a given text.

• jimp (https://github.com/oliver-moran/jimp): An

image processing library.

• cylon.js (https://cylonjs.com/): A robotics

framework for robotics, physical computing and the

Internet of Things.

p5.js is a creative coding library that is based on the idea of sketching.

Just like how sketching can be thought of as a minimal approach to

drawing to quickly prototype an idea, p5.js is built on the concept of

writing the minimal amount of code to translate your visual, interaction, or

animation ideas to the screen. p5.js is a JavaScript implementation of the

popular library called Processing, which is based on the Java programming

language.

It is worth mentioning that Java and JavaScript are completely

unrelated languages. The reason why JavaScript is named after Java is an

unfortunate branding and marketing decision made back in the day.

The concise nature of p5.js makes it a very easy library to learn. But

don’t let this simplicity trick you into believing that p5.js has limited

capabilities. p5.js has an impressive amount of functionality, history,

and community behind it to make it a valuable learning investment

if you ever wanted to create art, design, motion, or interactive pieces

using code. A p5.js program can be anywhere from a few lines of code to

Chapter 1 IntroduCtIon

https://github.com/Marak/Faker.js
https://github.com/wooorm/franc
https://github.com/oliver-moran/jimp
https://cylonjs.com/

10

thousands. Since p5.js was built with simplicity in mind, sometimes small

p5.js programs are referred to as sketches. Even though that’s a clever

way to describe it, I am personally not a huge fan of that wording since it

obfuscates the fact that what you are doing is programming after all.

You can find pragmatic applications of p5.js such as creating data

visualizations (Figure 1-1).

Figure 1-1. Data visualization with p5.js

Chapter 1 IntroduCtIon

www.allitebooks.com

http://www.allitebooks.org

11

Or you can use it to create abstract generative art (Figure 1-2).

Figure 1-2. Abstract generative art with p5.js

You can even create animated or interactive visuals. We will be

building an interactive game by the end of this book using p5.js!

Chapter 1 IntroduCtIon

13© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_2

CHAPTER 2

Getting Started
 Installing p5.js
There are a couple of ways you can start using p5.js and JavaScript. One

option is to visit the p5.js website (https://p5js.org/download) and

download the p5.js source code on to your system (see Figure 2-1).

At the time of the writing of this walkthrough, the download page has a

link called ‘p5.js complete’ that includes the p5.js library and an example

project. Download this archive file and find the folder named empty-

example inside it. In this folder, you will find two files: the sketch.js

file where you can write JavaScript code and an index.html file that can

be launched with a web browser such as Chrome and would execute and

display the result of the JavaScript code inside sketch.js file. You can also

find a copy of these files on my GitHub repository: https://github.com/

hibernationTheory/p5js-complete.

Even though you can change the contents of sketch.js JavaScript file

with a plain text editor like NotePad, you might instead want to use a code

editor such as `Sublime Text` to do so.

A code editor is pretty similar to a text editor, like Notepad or Word, but

it has special features that make coding much easier such as highlighting

of special words for a given programming language, which in this case

that language is JavaScript. Sublime Text is a code editor that you can use,

which can be downloaded and evaluated for free.

https://p5js.org/download
https://github.com/hibernationTheory/p5js-complete
https://github.com/hibernationTheory/p5js-complete

14

Perhaps the easiest way to get started with p5.js is to use an online

editor. An online code editor can be used inside the web browser and

doesn’t require you to install anything on your system. It is my preferred

way of working when I am learning as it makes it really easy to get started.

An easy-to-use Online Code Editor that is available at the time of the

preparation of this book can be found at this link:

[p5.js online editor - alpha](https://alpha.editor.p5js.org/)

If the above link is not accessible for any reason, you can also try the

p5.js template that is hosted on my Codepen account:

[Codepen - p5.js simple template](https://codepen.io/

enginarslan/pen/qpBBXz?editors=0011). CodePen (https://codepen.

io) is a social development platform that allows you to write code in

the browser and share your work with other developers. It is a great

environment for development and experimentation. The difference

between Codepen and the p5.js editor that is mentioned above is that the

p5.js editor only allows you to run p5.js related code inside itself whereas

Codepen can execute any front-end code.

Chapter 2 GettinG Started

https://alpha.editor.p5js.org/
https://codepen.io/enginarslan/pen/qpBBXz?editors=0011
https://codepen.io/enginarslan/pen/qpBBXz?editors=0011
https://codepen.io/
https://codepen.io/

15

Figure 2-1. Web page to download p5.js source code

Figure 2-2. p5.js online editor

Chapter 2 GettinG Started

16

How the online editor works is that, whenever we have some code

ready to be executed, we will press the play button at the top of the page.

This play button will show the results of our code on the right-hand

side panel. The online editor of Codepen is slightly different in that it

automatically executes the code any time you change it. Pressing the Play

button at this point wouldn’t do much as we didn’t write any code that

draws shapes to the screen. We will just see an empty screen get generated.

But as we can see, this editor has some code already written into it. This

code that we see is needed for almost all the p5.js programs that we will be

writing so it is included here for our convenience (Listing 2-1).

Listing 2-1. Default p5.js code

function setup() {

 createCanvas(400, 400);

}

function draw() {

 background(220);

}

Let’s just delete this code for now. Before we start using p5.js to learn

JavaScript, we will see a couple of things on the fundamentals of JavaScript.

You can find the code examples that we will be using throughout this

book at the GitHub repository: https://github.com/hibernationTheory/

coding-for-visual-learners.

 Gentle Introduction to JavaScript
We can write something as simple as 1 + 1 to the screen. This is a valid

JavaScript code that adds these two numbers together. If we are to execute

this code by pressing the Play button, we still won’t see anything. This is

Chapter 2 GettinG Started

https://github.com/hibernationTheory/coding-for-visual-learners
https://github.com/hibernationTheory/coding-for-visual-learners

17

kind of disappointing because we would have at least expected to see the

result of this calculation.

To be able to see the results of JavaScript operations on the screen, we

can use a function called console.log().

A function is a programming structure that contains other code inside

it that is written to perform a specific action. Functions allow us to perform

complex operations by just calling them with their defined function name.

When we are calling a function – which we can also refer to as executing

the function – we would write its name, in this case console.log, and

place brackets next to it. If the function requires an input to perform its

functionality, then we would provide that input inside the brackets just like

we are doing in this example.

console.log is a built-in JavaScript function that displays – or logs –

the given value inside the console below the editor. When I say built-in,

it means that most JavaScript execution environments would have this

function. For example, web browsers have a section in their interfaces

called console, which we can access through the developer tools. p5.js,

and Codepen online editors also have a section that is called console as

well below the editing area.

We can also have user-defined functions that we can create for

ourselves that won’t be available to anyone else until we somehow share

it with other people. Libraries such as p5.js have a bunch of functions of

their own. We will be using p5.js functions to draw shapes to the screen

and create all kinds of interactive and animated visuals. We will dive more

into the concept of functions later on but for now, know that there is this

function that comes with JavaScript called console.log that accepts a

value and displays that value inside the console underneath the editor.

Initially the other functions we will learn won’t have a dot in their name.

console.log is a bit different in that sense, but the reasons for the dot

usage will be explained later.

Chapter 2 GettinG Started

18

Let’s add a couple of more console.log statements into our code

(Listing 2-2).

Listing 2-2. console.log statements

console.log(1 + 1)

console.log(5 + 10)

console.log(213 * 63)

console.log(321314543265 + 342516463155)

Listing 2-3 shows the results that will be displayed inside the console

once the code in Listing 2-2 is executed.

Listing 2-3. Results for console.log statements

2

15

13419

663831006420

One takeaway should be that code executes from top to bottom. There

are some programming structures that alter this flow, but we will see them

later on. Another takeaway should be that computers don’t mind working

with large numbers. We can throw hard operations at them that would take

days for a human to perform.

In the last console.log statement from Listing 2-2 we have two

ridiculously large numbers. What if we wanted to use the resulting number

from that operation and subtract 10 from it on the next line? Right now to

be able to do this we have to type that number again:

console.log(321314543265 + 342516463155 - 10)

This is obviously very wasteful. But luckily another thing that

computers are great at is storing and remembering values. Therefore we

can create something called a variable to hold on to that value.

In programming languages, a variable is a name that refers to a value.

Chapter 2 GettinG Started

19

So we can use a variable name to refer to that value instead of typing the

value again. Here is how that works:

var bigNumber = 321314543265 + 342516463155

console.log(bigNumber)

console.log(bigNumber - 10)

We are creating a variable called bigNumber by using the var keyword.

var is the keyword that we need to use whenever we are creating a

variable. After the var keyword, we are giving this variable a name, which

in this case is bigNumber.

It is important to choose a variable name that makes sense for the

current context. In this example, this might not matter too much, but as

our programs get more complex, meaningful variable names can help us

understand what’s going when reading our code. So naming this kind of

a variable that holds a large number as cat wouldn’t make much sense

and can confuse other people that might read our code. It might even

confuse us if we are to come back to our code a couple of months later.

Programmers always strive to make their code as readable as possible.

Once this variable is declared, we can assign a value to it by using

the equal operator. This might seem unusual at first. In Math, the equal

operator is used to signify equality in between two values. Here we are

using it to do a value assignment to a variable. It takes the value on the

right-hand side of the operation and assigns it to the variable on the

left-hand side. This is a pretty common procedure that exists in many

programming languages.

Now that we have a variable that points to a value, we can use this

variable name in operations instead of the value itself. As mentioned

earlier, it is good to have variable names that make sense. There are also

some rules that govern what we can and can’t use as variable names. For

example, we can’t use some of the special characters such as dashes or

exclamation marks or use a space character inside our variable names.

Another restriction is that we can’t use certain JavaScript reserved names

Chapter 2 GettinG Started

20

as variable names; we can’t call our variable var as this name is already in

use by JavaScript. If we tried to use var as a variable name; as in var var =

5, JavaScript would throw an error.

This mention of rules might be making you uneasy at this point.

After all, programming is supposed to be fun right? But don’t worry; the

reserved name list is relatively short, so you don’t need to memorize it.

And as you learn more of the language, you would also develop a better

sense as to which names to avoid.

Regarding rules, there is another rule that should be mentioned.

JavaScript needs us to place semicolons after each statement. If we don't

do this, our program can still work but might fail in certain edge conditions

that can be hard to identify later on. So it is a good idea to use semicolons

after every statement even though it means a bit more work on our part.

Previous code should actually be written as shown in Listing 2-4:

Listing 2-4. Using semicolons

console.log(1 + 1);

console.log(5 + 10);

console.log(213 * 63);

var bigNumber = 321314543265 + 342516463155;

console.log(bigNumber);

console.log(bigNumber - 10);

Notice that doing bigNumber - 10 wouldn’t change the initial value

of the bigNumber variable. In this following example, the console.log

statement would still output 10.

var x = 10;

x + 5;

console.log(x);

If we want to change the value of a variable, then we need to assign a

new value to it (Listing 2-5).

Chapter 2 GettinG Started

21

Listing 2-5. Overriding the variable value

var bigNumber = 321314543265 + 342516463155;

console.log(bigNumber);

bigNumber = 3;

console.log(bigNumber);

In this example, the console.log would display the value 3 because we

override the initial value with another value on line 3.

There is this concept of data types in JavaScript (and in other languages

as well) to differentiate between different kinds of values. These numbers

that we have been using are of a data type called Number. There is another

data type called String that is used to represent textual information.

In JavaScript, we can’t just write a word and expect it to represent data.

For example, we want to console.log the word hello. If we do this right now,

we will notice that we are getting an error. JavaScript doesn’t understand what

hello means. It assumes that it is a variable that is not defined yet.

console.log(hello);

> 1: Uncaught ReferenceError: hello is not defined

But what if we wanted to actually input the word hello to the

computer? There are programs out there that work with textual data, which

needs to process a given name or address, etc. In that case we can provide

the data using quotation marks, which means that we are providing the

value as a string.

console.log('hello');

JavaScript is not complaining this time. Anytime we are dealing with

textual data, we need to place it in quotation marks; this would make it

registered as a string. And when I say textual data, it can be numbers as

well. A string can consist of numeric values:

console.log('1234');

Chapter 2 GettinG Started

22

In that case, they are not treated as Mathematical numbers that we can

perform Math operations with, but just as text.

We can perform operations on strings, but it doesn’t yield the same

result as when we would perform those operations using numbers. We can

actually add two strings together:

console.log('hello' + 'world');

> 'helloworld'

And this will just combine these two words together. And when I

say we can’t perform Math operations with strings that contain numeric

values, this is what it meant:

console.log('1' + '1');

> '11'

In this case, the numeric values are not treated as numbers but as

strings, and they are not summed together but combined. This act of

combining strings is commonly referred to as concatenation operation in

programming.

String might sound like a weird name choice, but it refers to string of

characters. So a string is actually a collection of individual characters as

far as the computer is concerned. We can define strings by using either

a single quotation ' or double quotation marks " but we have to finish the

string with the same symbol we choose to start defining with. Also in our

programs, we shouldn’t use one type of quotation mark for one string and

another for a different one. Consistency is very important when developing

programs.

One other thing that’s worth mentioning before wrapping up this

section is the concept of comments. Comments allow us to write things

into our programs that won’t get executed by the computer, as shown in

Listing 2-6.

Chapter 2 GettinG Started

23

Listing 2-6. Example for using comments in our program

// various examples. (this is a comment)

console.log(1 + 1);

console.log(5 + 10);

console.log(213 * 63);

var bigNumber = 321314543265 + 342516463155;

console.log(bigNumber);

console.log(bigNumber - 10);

The line that starts with double slashes // gets ignored by JavaScript.

Double slashes allow us to comment on a single line; if we needed to

comment on multiple lines, we would either need to use double slashes

at the beginning of each line or use the /* */ symbol, as shown in

Listing 2-7.

Listing 2-7. Using // and /* */ for comments

// various examples

// disabling the first 3 lines by using multiline comments:

/*

console.log(1 + 1);

console.log(5 + 10);

console.log(213 * 63);

*/

var bigNumber = 321314543265 + 342516463155;

console.log(bigNumber);

console.log(bigNumber - 10);

Believe it or not, this is enough of a JavaScript primer to get us started

with using p5.js. If you are using the code editor, click on the New Project

button to be able to get a new editor window that has the template that we

will use for our p5.js code.

Chapter 2 GettinG Started

24

 Getting Started with p5.js
What we see when we start a new project in the p5.js code editor are two

function declarations with these names: setup and draw (Listing 2-8).

Listing 2-8. Default function declarations

function setup() {

}

function draw() {

}

These two function declarations need to be made for pretty much

every p5.js program that we would write. p5.js finds these function

definitions in our code and executes whatever is written inside them. But

there is a difference in between how these functions are executed.

The block inside the setup function, the area in between the curly

brackets, is the place where we will be writing the code that is to be

executed for the initialization of our program. Code written inside the

setup function is executed only once before the draw function.

function setup() {

 // write your code for setup function inside these

curly brackets

}

The draw function is where the real magic happens. Any code that is

written inside the draw function is repeatedly executed by p5.js. This allows

us to create all sorts of animated and interactive works.

p5.js makes sure to execute the setup function before the draw

function. And to reiterate, p5.js executes the setup function only once but

the draw function over and over again (actually close to 60 times a second).

And this is how we can create interactive and animated content using p5.js.

Chapter 2 GettinG Started

25

We can actually see this in action by placing console.log statements

at different places in our code. Place a console.log() statement inside

the setup function, inside the draw function, and outside both of these

functions using different values (Listing 2-9).

Listing 2-9. Logging the behavior of setup and draw functions.

function setup() {

 console.log('setup');

}

function draw() {

 console.log('draw');

}

console.log('hello');

Let’s execute this code and immediately try to stop it. We would

notice that the message hello is displayed as the very first thing. This is

an expected behavior. A function call that we have should be executed by

JavaScript. What is rather unexpected is that setup and draw functions

get executed as well. This is unexpected because these are only function

declarations; they define the behavior of a function, but we still need to

execute these functions to be able to use them.

This means that if we were just using JavaScript, we would need to call

the setup and draw functions explicitly in order to have the console.log

messages inside them to be displayed:

setup();

draw();

console.log('hello');

But we don’t need to do this using the p5.js library. Because of how the

p5.js library is architected, it looks for function declarations with the name

setup and draw and executes these functions for us. The reason why p5.js

Chapter 2 GettinG Started

26

takes control of the execution of these functions is that it executes them in

a very specific manner.

p5.js executes the setup function only once and then goes on to

execute the draw function in a repeated manner such that if we don’t

stop the process, it will just keep working forever. This is a very standard

behavior with any graphical interface – think of the web browser, the

games you play, or the operating system you interface with. These are just

programs that continuously work – and display to the screen – until we

explicitly close them. This is why p5.js creates an execution loop for the

draw function so that things will persist on the screen instead of appearing

for a second and then disappearing.

 More About Functions
Let’s talk more about functions because they will be the building blocks of

the programs that we will be writing.

Function names are usually verbs. They represent the specific action

that can be performed by executing that function. Hypothetically speaking,

we might have a function called drawCat that when called can draw a cat to

the screen:

drawCat();

However, this is not hypothetical at all as I actually created a cat

drawing function that is called drawCat for this chapter (Figure 2-3). We are

free to create whatever functions we want to create in JavaScript, and that

gives us immense power when programming applications.

Chapter 2 GettinG Started

27

OK, to be fair, this function doesn’t do a great job in drawing a cat.

To use a function, we call it by its name and then put parentheses

next to it to have the function executed. Sometimes functions, depending

on how they are created or defined, are parameterized. This means they

can accept input values that would affect the outcome of a function. For

example, a drawCat function might get a number input, which would

determine the size of the cat that is drawn. Or maybe the number input

determines the amount of cats that would be drawn to the screen. It really

depends on how this function is constructed.

In our example, this function that I created can get an input that

allows us to change the size of the cat head that gets drawn on the screen

(Figure 2-4):

drawCat(2);

Figure 2-3. The graphic output of the drawCat function

Chapter 2 GettinG Started

28

Unfortunately, p5.js doesn’t come with a drawCat function – I had to

create my own – but it has lots of other useful functions that allow us to

perform complicated tasks in an easy manner. To be able to do anything

using the p5.js library, we will be using the functions that come with it,

which are coded by the smart people who created this library.

Here is a function from p5.js library that probably all the sketches

we will be writing will require: the createCanvas function. What the

createCanvas function does is that it creates a drawing-area canvas inside

the web page for us to work. But for this function to work, we need to

provide it with two comma-separated values: a width and height for the

drawing area. We should be calling the createCanvas function inside the

setup function because it only needs to get executed once and it needs to

be executed before we can do any drawing.

Let’s provide this function with the values 800 and 300 and execute our

sketch to see what’s happening (Listing 2-10). It seems like not much has

changed, but the size of the browser window that gets launched seems to

have increased. It is now using the dimensions that we have provided. Let’s

change the dimensions again to see the window size updating.

Figure 2-4. Drawing a cat face

Chapter 2 GettinG Started

29

Listing 2-10. Working with the createCanvas function

function setup() {

 createCanvas(800, 300);

}

function draw() {

}

There is another function that we will frequently be using, which is

called background. The background function sets the color of the canvas

using the given value. We will look at how color values are represented in

p5.js in another chapter, but for now, we can just provide this function with

the value (220,220,220) to see the background become light gray (Listing 2-11).

Listing 2-11. Working with the background function

function setup() {

 createCanvas(800, 300);

 background(220,220,220);

}

function draw() {

}

As we can see again, the code is executed from top to bottom. p5.js first

creates the canvas for us and then sets the background to be gray.

It is worth emphasizing this once more: the setup and draw are

function definitions that we need for p5.js to work correctly. Our job when

we are using p5.js is to determine what is placed inside these functions that

are executed by p5.js. This is due to how p5.js is architected. The creators

of p5.js wanted to make sure some of the code we will write will only be

executed once for initialization and setup purposes, while some will be

executed all the time for drawing, animation, and interactivity purposes.

Chapter 2 GettinG Started

30

We used functions that come with the p5.js library such as

createCanvas and background inside these function definitions. These

functions are already defined by someone else so we don’t actually know

what code is contained inside them. But we don’t really need to have this

knowledge anyway since all we care about is what they do and how to use

them.

Functions allow us to perform complicated tasks in an easy manner.

By using the createCanvas function, we don’t need to know what kind

of work goes into creating a canvas element in a page. These details are

hidden away, abstracted, from us. We just need to know how to call this

function to make it work for us.

Finally, we will be calling one more function, this time inside the draw

function definition, to draw a rectangle on the page (Listing 2-12).

To draw a rectangle we will be utilizing a function called rect. The

rect function requires us to provide it with four input values: the x and y

position of the upper-left corner of the rectangle inside the canvas drawing

area, and the width and height values for the rectangle.

Without knowing anything about how the coordinates work in p5.js,

we will just provide this function with the x value of 50, y of 100, the width

of 200, and height of 100 (Figure 2-5).

Listing 2-12. Drawing a rectangle

function setup() {

 createCanvas(800, 300);

 background(220,220,220);

}

function draw() {

 rect(50, 100, 200, 100);

}

Chapter 2 GettinG Started

31

Figure 2-5. Output of the rect function

By calling this function, we drew our first shape to the screen!

 Coordinates in p5.js
At this point, let's take some time to explain how the coordinate system

works in p5.js.

To locate any point on a flat surface, we use a two-axis coordinate

system. The vertical axis is called the Y-axis, and the horizontal one is

the X-axis. The point where these two axes meet is called the origin. In

canvas, where we draw our shapes, the origin point is at the top left of the

canvas. From there below, the Y values increases; and to the right, the X

values increases (Figure 2-6).

Chapter 2 GettinG Started

32

When we draw a rectangle to the screen, provided coordinates define

the top-left corner of the rectangle (Listing 2-13 and Figure 2-7).

Listing 2-13. Drawing a rectangle

function setup() {

 createCanvas(800, 300);

 background(220,220,220);

}

function draw() {

 rect(400, 150, 100, 100);

}

Figure 2-6. Coordinate origins

Chapter 2 GettinG Started

33

Figure 2-7. Drawing a rectangle

If this is not the behavior that you want, we can make a call to another

p5.js function called rectMode and provide it with the value CENTER to

change how rectangles are drawn in our program (Listing 2-14). Since this

function is more like a setup and initialization-related function, we will be

placing it under the setup function definition.

Listing 2-14. Using the rectMode function and CENTER value

function setup() {

 createCanvas(800, 300);

 background(220,220,220);

 rectMode(CENTER);

}

function draw() {

 rect(400, 150, 100, 100);

}

Chapter 2 GettinG Started

34

There is also an ellipse function in p5.js to draw circular shapes. How

ellipse works is very similar to the rect function. First, two arguments

are x and y coordinates of the center of the ellipse, the third argument is

the horizontal radius, and the fourth one is the vertical radius. So to be

able to draw a circle with the ellipse function, we need to provide equal

horizontal and vertical radius values for it (Listing 2-15).

If you are experimenting with drawing these shapes to the screen, you

might have noticed at this point that, whenever a shape function is called,

it draws itself on top of the previous shapes. We can change the order of the

function calls to affect the stacking order of the shapes.

Listing 2-15. Using the ellipse function

function setup() {

 createCanvas(800, 300);

 background(220,220,220);

 rectMode(CENTER);

}

function draw() {

 rect(400, 150, 100, 100);

 ellipse(350, 120, 100, 100);

}

Figure 2-8. Output for a centered rectangle

Chapter 2 GettinG Started

35

One more drawing function that I want to introduce is the line

function. As the name implies, the line function draws a line to the screen.

We need to provide four arguments to the line function: the starting x and y

coordinates and the ending x and y coordinates. Play with the line function

a bit; it will give you a good sense of how the coordinate system works in

p5.js. You can, for example, try drawing an X that spans the entire canvas.

 Summary
In this chapter we made a quick start with using p5.js and actually drew

shapes on the screen.

We have seen that we need to write our code in two function definition

blocks that go with the name setup and draw. Anything that only needs to

be executed once is placed under the setup function, and anything that we

might like to animate or interact with goes into the draw function. Writing

our code into these two functions is something that p5.js requires us to

do. It is not a general programming principle, convention, or anything

like that. We could have been using a different library that doesn’t require

this kind of a structuring to our code. This requirement has to do with

how p5.js is architected as a library. We will need to start all of our p5.js

sketches with these two function definitions.

Figure 2-9. Output for an ellipse and centered rectangle

Chapter 2 GettinG Started

36

Code like this, which needs to be written repetitively with little or no

alteration, is called boilerplate code. Having lots of boilerplate is never a

good thing since we would find ourselves having to repeat our work a lot,

but in this case the amount of boilerplate is very manageable.

Inside these function definitions we made use of functions that come

with p5.js library such as createCanvas, background, and some shape

functions such as rect. As mentioned earlier, functions are general

programming structures that allow us to bundle code together for reusability

purposes. Functions also abstract away a great deal of complexity from us.

We don’t need to know how a function works; we just need to know how

to use it. We can absolutely have no idea how the createCanvas actually

creates a canvas element inside a web page. It doesn’t matter as long as we

know how to use this function. Think of driving a car; we don’t necessarily

need to know how an internal combustion engine works to be able to drive

it. We just need to know how to interface with the car using the steering

wheel, the pedals, etc. This similar idea applies to the functions as well.

Later on, we will be creating our functions as well to manage the

complexity of our programs and to create reusable pieces of code.

 Practice
Try to re-create the image in Figure 2-10.

Figure 2-10. Practice image

Chapter 2 GettinG Started

37© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_3

CHAPTER 3

Colors in p5.js
Now that we can draw shapes in p5.js, let’s look at how to control the

color in our sketches. We are already assigning a light gray color to the

background by passing the values 220, 220, 220 to the background

function.

 Color Functions in p5.js
p5.js by default uses the RGB color system where R stands for red, G stands

for green, and B stands for blue. This means that we will usually need to

pass these three color components to a color accepting function to set the

desired color. Each of these color components can have a value in between

0 and 255. This means that if we are to pass 0, 0, 0 to the background

function, we will end up getting a black color for the background and if we

are to pass 255, 255, 255, we will get a white color. p5.js, being a helpful

library, allows us to pass a single value when we want all these three values

to be equal. This means that instead of passing 0, 0, 0; we can also just

pass a single 0.

Whenever we have equal amounts of these three color components,

the resulting color will be a white, black, or a shade of gray. So passing

a single value to a color setting function is useful if we wanted to have

a grayscale color. But if we want hue in our color, then we need to pass

all these three values to be able to specify the amount that we want for

each component. The number 255 is the maximum value that a color

38

component can accept; so if we are to pass 255, 0, 0 as a color to the

background function we will get a pure red color. If we pass 0, 255, 0,

then we will get a pure green color, and so on.

The RGB color model is an additive model, which means that adding

these colors together in their full intensity will result in white compared

to paint colors that are subtractive, where adding them all together will

result in a dark-brownish color. Finding the exact color that you want by

tinkering with these values can be a bit hard if you are not too familiar

working with additive RGB colors. If that's the case you can use an online

color picker service to help you with finding the desired color. An online

search for the term “color picker” will result in numerous results that you

can use to identify the RGB components for the desired color. Here is an

example service from Firefox (Figure 3-1).

• Color picker tool: https://developer.mozilla.org/

en-US/docs/Web/CSS/CSS_Colors/Color_picker_tool

Figure 3-1. Firefox color picker tool

Using a service like this, you can make note of the RGB values that

correspond to the color that you choose and make use of those values

inside p5.js.

Chapter 3 Colors in p5.js

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Colors/Color_picker_tool
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Colors/Color_picker_tool

39

We can actually pass a fourth argument to a color setting function.

This fourth argument, called the alpha component of the color, controls

the opacity of the color and again accepts values from 0 to 255. A 0 would

result in full transparency and 255 would result in full opaqueness.

So we can pass a single value, three values, or four values to a

color setting function. I don’t want to overwhelm you with too much

information, but we can pass only two arguments as well. If we are to do

so, we would be setting a grayscale color and an alpha component for that

grayscale color.

If this abundance of options seems overwhelming, remember that

they are there for our convenience. p5.js could have restricted the color

functions to only work with four inputs, which would have covered all the

cases but would have been time consuming to provide additional data

when we only wanted something like opaque white, which happens more

often than not. It seems like developers of p5.js built their functions smart

enough so that they would result in different output based on a different

number of arguments.

 Changing Shape Colors
Knowing how the colors work in p5.js is great, but we can only change the

color of the background so far. To be able to change the color of the shapes,

we will have to make use of a couple of more functions.

The first function that we should know of is fill. fill allows us to set

the fill color of the shapes. Fill color is the color that fills inside the shapes

and if you are wondering what other color controls there are for shapes,

there is also the stroke color that defines the color of the outline of a shape.

The default color for the fill and the stroke is white and black respectively.

All the shapes except for line have both a fill and a stroke color.

Chapter 3 Colors in p5.js

40

We can set the fill color of the shapes by calling the fill function and

passing color arguments to this function as discussed earlier. The fill

function will set the active color to be the chosen color until we set the

color to something else by using another fill function.

The stroke function works in a similar manner. We pass it color

arguments, and it sets the color of the stroke for all the shapes until the

next stroke function. A fill or a stroke function that comes after a prior

one would override the settings of those prior.

At this point, one other useful function to know could be

strokeWeight, which allows us to set the thickness of an outline.

Listing 3-1 is a small sketch that makes use of some of the functions

we learned about in this chapter. You can see the results of Listing 3-1 in

Figure 3-2.

Listing 3-1. Using fill, stroke, and strokeWeight functions

function setup() {

 createCanvas(800, 400);

}

function draw() {

 background(220);

 // circle 01

 fill(51, 51, 51);

 strokeWeight(2);

 stroke(75);

 ellipse(400, 200, 300, 300);

 // circle 02

 stroke(0);

 fill(255, 53, 139);

 ellipse(400, 200, 275, 275);

Chapter 3 Colors in p5.js

41

 // circle 03

 fill(1, 176, 240);

 ellipse(400, 200, 250, 250);

 // circle 04

 fill(174, 238, 0);

 ellipse(400, 200, 150, 150);

}

Figure 3-2. Output showing the use of fill, stroke, and strokeWeight
functions

Notice how we are using the fill function before the shape that I want

to set the color for. And we keep using it to be able to switch the color for

different ellipses.

Two more functions that are worth mentioning are noFill and

noStroke functions. As their name implies, when called, these functions

will respectively get rid of the fill and the stroke of shapes. These functions

are called without any arguments.

noFill();

noStroke();

Chapter 3 Colors in p5.js

www.allitebooks.com

http://www.allitebooks.org

42

 Summary
In this chapter, we haven’t seen any new JavaScript functionalities or new

programming structures. We just looked at some operating principles

of the p5.js library and some specific functions that come with it. In

particular, we learned about how some of the color-setting functions

work in p5.js, such as fill, stroke, and strokeWeight. We also learned

about other functions that are related to fill and stroke operations such

as noStroke and noFill. Another thing we learned about is the RGB

color model.

Even though this chapter didn't really advance our JavaScript

programming knowledge, I think one point is very valuable to make. You

might be thinking to yourself that you are not into creative coding and

won’t need this p5.js specific information after this book, having learned

to code. But these operating principles such as using additive RGB values,

or concepts such as fill and stroke are so commonly used that even though

what we are learning could seem very specific to p5.js, they are general

principles or concepts that are utilized by lots of other drawing libraries

or programs. Understanding them will serve us well in our journey of

learning how to program.

 Practice
Build the script in Listing 3-1 in such a way that one variable would control

the size of all the circles (meaning changing that variable should change

the size of all the circles) and another one should control the radius

difference for all the circles (results in Figure 3-3 and Figure 3-4).

Chapter 3 Colors in p5.js

43

Figure 3-3. Practice image

Figure 3-4. Practice Image - 2

Chapter 3 Colors in p5.js

45© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_4

CHAPTER 4

Operators
and Variables
In Chapters 1 and 2 we learned about variables and math operations that

we can use in JavaScript. In this chapter, we will put that knowledge to use.

 Setup
Let’s first create a couple of shapes to have something to work with.

Using the ellipse and rect functions, let’s create a shape that roughly

resembles a cart (Listing 4-1 and Figure 4-1).

Listing 4-1. Creating a cart using rect and ellipse functions

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(220);

 ellipse(100, 200, 50, 50); // left wheel

 ellipse(200, 200, 50, 50); // right wheel

 rect(50, 160, 200, 20) // cart

}

46

Looking at our rough drawing in Figure 4-1, I am not entirely happy

with its position. I now wish that we drew it more to the right-hand side.

Moving the shape now will mean that we would need to increase the value

of the x position argument of each of the shape functions.

Let’s assume that we want to add 150 to all these numbers that specify

the x position. We can try to do the math in our head and type the result in

there, but luckily we can do math operations easily with JavaScript. Instead

of typing the result of addition, we can just type out the operation needed,

and JavaScript will do the calculation for us (Listing 4-2 and Figure 4-2).

Listing 4-2. Using Math Operations

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(220);

 ellipse(100 + 150, 200, 50, 50);

 ellipse(200 + 150, 200, 50, 50);

 rect(50 + 150, 160, 200, 20)

}

Figure 4-1. Output of Listing 4-1

Chapter 4 OperatOrs and Variables

47

The same thing works with other operators as well; we can do

subtraction, multiplication, or division in a similar manner.

One thing that we need to keep in mind with operators is the order

of operations. You might already know this from your math classes, but

some operators take precedence over others. For example, if we wanted to

add 2 to a number and then multiply it by 4, we might be tempted to write

something like this: 10 + 2 * 4

But in this operation multiplication will happen before addition. The 2

will get multiplied with 4 before being added to 10, so this above operation

will yield 18 instead of the expected value 48.

To be able to control the order of operations we can use parentheses.

For example, we can write the top equation like this: (10 + 2) * 4

Anything inside parentheses will be evaluated before other operations.

In the order of operations, parentheses come first, then the multiplication

and division, and then addition and subtraction.

 Variables
To be able to evaluate expressions like this will make our job easier in

doing calculations. But I think the real problem here, in this example, is the

need to type the same number at all these three different spots. This is very

Figure 4-2. Output of Listing 4-2

Chapter 4 OperatOrs and Variables

48

repetitive, laborious, and prone to errors. This is an instance where usage

of a variable would be useful.

Whenever we need a value, and we need to use that value in multiple

places, we would want to store that value in a variable. The advantage

of using a variable is that, if we ever needed to update the value of the

variable, we would only need to do it in a single place. Let’s update this

example to use a variable.

Remember how to create variables. We would start off by using the var

keyword. Using this keyword is really important for reasons that are to be

discussed later.

Then we would choose a name for our variable. It is also important to

choose a name that makes sense. Calling this variable offset or x might

make sense as we would be using it to offset shapes in the x-axis. Using

sensible names would help others or even us in understanding our code.

We always want our programs to be as readable as possible.

Now that we have a variable that points to a value, we can use this

variable in operations instead of the value itself. Doing that, we would only

need to change the value of this variable from one spot to see the shapes

moving (Listing 4-3).

Listing 4-3. Using variable offset

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(220);

 var offset = 150;

 ellipse(100 + offset, 200, 50, 50);

 ellipse(200 + offset, 200, 50, 50);

 rect(50 + offset, 160, 200, 20)

}

Chapter 4 OperatOrs and Variables

49

 Variables Continued
I would like to illustrate another behavior of variables in a different

example. Let’s just draw a single circle in the middle of the screen and a

rectangle in the middle (Listing 4-4 and Figure 4-3).

Listing 4-4. Circle and rectangle

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

}

function draw() {

 background(1, 186, 240);

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(400, 150, 200, 200);

 // rectangle

 fill(255);

 rect(400, 150, 150, 30);

}

Chapter 4 OperatOrs and Variables

50

Can you think of one optimization that we could do to the above

program? Notice how we are repeating the x and y position values for the

shapes. Let’s use a variable instead (Listing 4-5).

Listing 4-5. Using a variable to create a circle and rectangle

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

}

function draw() {

 background(1, 186, 240);

 // declaration of variables

 var x = 400;

 var y = 150;

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, 200, 200);

Figure 4-3. Output from Listing 4-4

Chapter 4 OperatOrs and Variables

51

 // rectangle

 fill(255);

 rect(x, y, 150, 30);

}

Since these shapes are not being positioned relative to the canvas

size, if we are to change the size of the canvas, the relative position of the

shapes will change as well. For a square canvas, the shape is currently at

the center, but for a wider canvas, the shape might start falling to the left-

hand side. To have the shapes close to the center for any given canvas size,

we can start off by using variables to set the width and height values for the

canvas. Then we can utilize the same variables to control the position of

the shapes.

Inside the setup function, we are going to create two new variables

called canvasWidth and canvasHeight with the value of 800 and 300. And

we will pass these variables to the createCanvas function instead of using

hard-coded values from before. The plan is that we can use these same

variables inside the draw function as well so that even if we are to change the

size of the canvas, the relative position of the shapes will remain the same.

So let’s put these variables into use in the draw function (Listing 4- 6). We will

divide them by 2 so that we can get the half point of width and height of the

canvas.

Listing 4-6. Using variables in the draw function

function setup() {

 var canvasWidth = 800;

 var canvasHeight = 300;

 createCanvas(canvasWidth, canvasHeight);

 rectMode(CENTER);

}

Chapter 4 OperatOrs and Variables

52

function draw() {

 background(1, 186, 240);

 // declaration of variables

 var x = canvasWidth/2;

 var y = canvasHeight/2;

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, 200, 200);

 // rectangle

 fill(255);

 rect(x, y, 150, 30);

}

When executing the code, you will notice that we get an error. If we are

to look at the error message inside the console, it says something about the

variable name not being defined:

Uncaught ReferenceError: canvasHeight is not defined

(sketch: line 14)

Uncaught ReferenceError: canvasWidth is not defined

(sketch: line 14)

This might come as a surprise since we clearly declared these variables

inside the setup function. The reason for this error has to do with

something called the scope. The scope of a variable determines where a

variable will be accessible. JavaScript variables have a function scope when

using the var keyword to declare them.

You can also use the 'let' and 'const' keywords to declare variables

as well. Variables that are declared using these keywords have different

scoping rules associated with them, but for the purposes of this book we

won’t be delving into usage of these keywords.

Chapter 4 OperatOrs and Variables

53

How function scope works is that any variable declared inside a

function won’t be visible from outside the function. It is only available

to the function that it lives in and other functions that might be nested

inside this function. Likewise, if we were to have a variable that is at the top

level, this variable would be visible to everything that is at that level and

at levels nested inside, like the functions that might be defined in there.

The problem that we are faced with right now is that the variables defined

inside the setup function are not visible from the draw function. Therefore

if were to declare variables inside the draw function, they wouldn’t be

visible inside other functions at the same level.

The solution to this problem is this: instead of declaring our variables

inside the setup function, we should declare them at this top level so they

would be accessible from everything else that is declared inside at the top

level (Listing 4-7).

Listing 4-7. Declaring a global variable

// declaration of global variables

var canvasWidth = 800;

var canvasHeight = 300;

function setup() {

 createCanvas(canvasWidth, canvasHeight);

 rectMode(CENTER);

}

function draw() {

 background(1, 186, 240);

 // declaration of variables

 var x = canvasWidth/2;

 var y = canvasHeight/2;

Chapter 4 OperatOrs and Variables

54

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, 200, 200);

 // rectangle

 fill(255);

 rect(x, y, 150, 30);

}

A variable that is declared at the top level is called a global variable.

It is usually not the best idea to declare variables at this top level since

we run our code in a browser, where other things that are working in

the browser such as plug-ins, add-on’s, etc., might cause conflicts by

defining variables with the same name for their purposes. Whenever two

variable declarations share the same name, the one that gets declared later

overwrites the other one since the code is executed from top to bottom.

This might result in programs not behaving as expected. But it is not

something that you should necessarily worry about as a beginner. Other,

more experienced, developers - having the same concern - would have

safeguards in place to ensure their variables are not being overwritten. For

now, we can put our variables in the top section and be able to share them

in different functions that are defined at the same level or below.

In this case, we are initializing the necessary variables outside the

setup function so that those variables would be accessible from both

the setup and draw functions. Now we can try setting the canvasWidth

and canvasHeight variables to different values and notice how the shape

always remains at the center because its position is derived using the same

variables as the canvas.

Chapter 4 OperatOrs and Variables

55

 Predefined Variables in p5.js
p5.js, being a super helpful library, has a couple of predefined variables

that we can use to obtain certain values. Two such variable names that we

can use are width and height. By using these variable names inside the

setup or draw functions, we can get the current canvas size. This allows us

to do the same thing that we were trying to do by defining our own variable

names. p5.js developers must have realized this is something that a lot of

developers would try to do by themselves and hence provided an easier

solution to the problem.

With this knowledge, the code from Listing 4-7 could be written as

shown in Listing 4-8.

Listing 4-8. Working with predefined variables

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

}

function draw() {

 background(1, 186, 240);

 // declaration of variables

 var x = width / 2;

 var y = height / 2;

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, 200, 200);

Chapter 4 OperatOrs and Variables

56

 // rectangle

 fill(255);

 rect(x, y, 150, 30);

}

You should note that width and height are p5.js variables, which mean

that they won’t be available outside the setup or draw functions.

Now that we know how to use variables, we can animate our shapes!

The trick to animation in p5.js is remembering that the draw function is

constantly being executed for us by p5.js. Whatever we are putting inside

this function is actually being redrawn each time the draw function is

executed again.

The number of times that this draw function is executed (can be

thought as rendered to the screen) is called a frame rate. By default, p5.js

has a frame rate of 60. This means that it tries to re-draw (or render) the

content of the draw function 60 times a second. If we had a way to change

the values of the variables that we are using in between each of these draw

calls, then we would be able to create animations.

This should remind you of flipbook animations. Each call to a draw

function results in a static image, but since it happens 60 times a second

when each of these images is slightly different, you perceive it to be

animated.

To be able to create an animation, we are going to initialize a variable

outside the draw function called count. And inside the draw function, we

will use this simple expression that will increment the count variable by

one every time the draw function is called.

count = count + 1;

Now if we are to make use of this variable in a position argument, we

can make a shape move (Listing 4-9). This is an amazing step forward in

our p5.js adventure.

Chapter 4 OperatOrs and Variables

57

Listing 4-9. Animating a shape

var count = 0; // initialize a counter variable

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

}

function draw() {

 background(1, 186, 240);

 // declaration of variables

 var x = width / 2 + count;

 var y = height / 2;

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, 200, 200);

 // rectangle

 fill(255);

 rect(x, y, 150, 30);

 count = count + 1; // increment the counter variable

}

What if instead of making the shape move, we wanted to make it

bigger? Easy! We will first create a size variable and use that inside our

shapes instead of hard-coded values to be able to update the size easier

(Listing 4-10).

Chapter 4 OperatOrs and Variables

58

Listing 4-10. Using a size variable

var count = 0; // initialize a counter variable

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

}

function draw() {

 background(1, 186, 240);

 // declaration of variables

 var x = width / 2;

 var y = height / 2;

 var size = 200 + count; // control the size of the shapes

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, size, size);

 // rectangle

 fill(255);

 rect(x, y, size*0.75, size*0.15);

 count = count + 1; // increment the counter variable

}

 Summary
In this chapter, we revisited operators that we have seen before and talked

a bit about operator precedence. Then we looked at variables again and

learned more about their behavior, especially regarding their scope. We

also learned about some of the built-in variables that p5.js comes with

Chapter 4 OperatOrs and Variables

59

such as the width and height that are only available inside the setup and

draw functions.

And finally we created our first animation!

 Practice
Create an animation where five rectangles that are initially offscreen are

animated to enter the screen from the left-hand side and exit from the

right-hand side. They should also be moving at different speeds.

Chapter 4 OperatOrs and Variables

61© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_5

CHAPTER 5

Conditional
Statements
and Comparison
Operators
In the previous chapter, we saw some of the variables that p5.js makes

available for us. One important thing to note is that these variables can

only be used from inside the p5.js functions setup and draw. If we were to

try to use them outside these functions, we would get an error saying that

they are not declared.

In this chapter we’ll look at another useful variable that p5.js makes

available for us: frameCount. We will also learn about frames and

frameRate function.

 frameCount, frameRate, and frame
Remember how we defined a count function in the previous chapter to be

able to count the number of times that the draw function is getting called.

We can actually use the variable called frameCount that p5.js provides us

for this same purpose. frameCount is a variable that keeps count of the

number of times the draw function is called throughout the lifetime of a

62

program. By default, the draw function is called a maximum of 60 times per

second. A setting called frameRate inside p5.js determines this value.

The introduction of this variable warrants a discussion about what

frames are in p5.js. We can think of a frame as the result of the draw

function call. The draw function gets called numerous times in a second,

and the frameRate function determines this amount. If we are to call the

frameRate function with no arguments, it will return us the current frame

rate for p5.js - which we can save into a variable and console.log to see

its value for every frame (Listing 5-1).

Listing 5-1. Console.log the frame rate

function setup() {

 createCanvas(400, 400);

}

function draw() {

 background(220);

 console.log(frameRate());

}

The default rate is around 60. This means the draw function will be

executed for a maximum amount of 60 times per second. This number

depends on our system resources. For performance-related reasons, such

as limited system resources, the actual frame rate that can be achieved

might be lower than this target value. We can consider 60 as an ideal frame

rate that p5.js strives to achieve, but the actual frame rate and hence the

performance might be less than this.

Think of frames as sheets in a flip book animation. More sheets viewed

per second will mean smoother animation. That’s why high frame rates

are desirable. The animation might look jaggy if the frame rate is low. We

can set the frame rate explicitly in p5.js by passing an integer value to the

frameRate function. A frameRate of 1 will have our draw function called

every one second.

Chapter 5 Conditional StatementS and CompariSon operatorS

63

If we didn’t want any animation, then we can call a function called

noLoop inside the setup function. This function call will cause the draw

function to be called only once.

To summarize, frameCount is the number of times the draw function is

executed throughout the lifetime of a program. frameRate is the number

of times the draw function is executed in a second. If the frameRate for

a program were 60, the frameCount after 3 seconds would be around

60*3=180.

As mentioned earlier, we can see what the current frame rate is by calling

the frameRate function with no arguments. But instead of console.log’ing

the result, we can actually do much better and display it onscreen.

In p5.js, we can use the text function to display a value to the screen.

The text function displays the value that is given as the first argument at

the x and y positions that are provided as the second and third arguments

(Listing 5-2 and Figure 5-1). With this, we can more easily visualize the frame

rate in our program. Please note that the actual result is going to be hard to

read at a high frame rate as it fluctuates a lot from one frame to another.

Listing 5-2. Visualize the frame rate

function setup() {

 createCanvas(800, 300);

 textAlign(CENTER, CENTER);

}

function draw() {

 background(220);

 fill(237, 34, 93);

 textSize(36);

 // get the current frame rate as an integer.

 var fps = parseInt(frameRate(), 10);

 text("frameRate: " + fps, width/2, height/2);

}

Chapter 5 Conditional StatementS and CompariSon operatorS

64

parseInt is a JavaScript function that allows us to convert a

decimal number into an integer. It requires a second argument to

signify which number base we are working with (which is almost

always going to be 10).

Notice also how in Listing 5-2 we are using a p5.js function called

textAlign with the arguments CENTER, CENTER to be able to align the text

horizontally and vertically on the screen. Otherwise the text gets drawn

from the top-left corner instead of being centered.

We can also try displaying the frameCount variable onscreen

(Listing 5- 3). As mentioned earlier, this is the variable that holds the

number of times the draw function is called.

Listing 5-3. Displaying the frameCount

function setup() {

 createCanvas(800, 300);

 textAlign(CENTER, CENTER);

}

Figure 5-1. Visualize the frame rate

Chapter 5 Conditional StatementS and CompariSon operatorS

65

function draw() {

 background(220);

 fill(237, 34, 93);

 textSize(36);

 text("frameCount: " + frameCount, width/2, height/2);

}

Using the frameCount variable, we can quickly have a value at our

disposal that increments with each execution of the draw function. Notice

in Listing 5-4 that the frameCount variable will change more slowly if the

frameRate is lower.

Listing 5-4. Using the frameRate variable

function setup() {

 createCanvas(800, 300);

 textAlign(CENTER, CENTER);

 frameRate(6); // make animation slower

}

function draw() {

 background(220);

 fill(237, 34, 93);

 textSize(36);

 text("frameCount: " + frameCount, width/2, height/2);

}

We could rewrite our example from the earlier chapter to make use

of the built-in frameCount variable instead of using our count variable

(Listing 5-5).

Chapter 5 Conditional StatementS and CompariSon operatorS

66

Listing 5-5. Using the frameCount variable

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

}

function draw() {

 background(1, 186, 240);

 // declaration of variables

 var x = width / 2;

 var y = height / 2;

 // increment the size with the current frameCount value

 var size = 200 + frameCount;

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, size, size);

 // rectangle

 fill(255);

 rect(x, y, size*0.75, size*0.15);

}

 Conditionals
So far all the programs we wrote executes in a top-to-bottom, linear

fashion. But it is quite common in programming to have some parts of the

program to execute only if a certain condition is satisfied. For example,

using the variable frameCount, we are now able to animate a shape across

the screen, but what if I wanted this animation to start only after a certain

frame, like after frame 100?

Chapter 5 Conditional StatementS and CompariSon operatorS

67

This can be done using a programming structure called an if

statement. The if statement allows us to execute a block of code only if

a certain condition is satisfied. How an if statement is written is that we

start off with the declaration if and inside the parentheses next to it, we

write an expression that should evaluate to true or false. Next, inside curly

brackets right after the if statement, we write a block of code that we would

like to have executed if the expression that we wrote evaluates to true:

if (<conditional statement>) {

 // do something

}

true or false are actual values in JavaScript just like how numbers are

values. They are just a different type of a value than a Number or a String.

They are referred to as Boolean values or a Boolean data type. Since true

and false are native JavaScript data types, we could type them without any

quotation marks and not get an error:

console.log(true);

We can’t get the same result if we are to type True or False (with the

first letter capitalized). Programming languages are particular in how you

write things. True is not equivalent to true. Moreover True is not a value

that JavaScript recognizes, so writing it without quotation marks will result

in an error:

console.log(True);

//Uncaught ReferenceError: True is not defined(...)

We can also use comparison operators to generate true or false

values. Comparison operators allow us to compare two values to each

other, and as a result they generate a true or false value based on the

result of that comparison. Here are examples of comparison operators.

We have the bigger-than symbol > that compares two numbers, and if the

number on the left-hand side is bigger than the one on the right-hand side

it returns true; otherwise it returns false.

Chapter 5 Conditional StatementS and CompariSon operatorS

68

console.log(10 > 2); // would evaluate to true

console.log(1 > 100); // false

console.log(100 > 1); //true

Bigger or equals >= returns true if the value on the left-hand side is

bigger or equal to the value on the right-hand side.

console.log(100 >= 100); //true

There is also smaller < and smaller or equals <= comparison

operators.

console.log(1 < 10); //true

console.log(10 <= 10); //true

To compare two values to each other to check for equivalency we

would use the triple equal sign ===. This is different than what we might

be used to from our math classes where the equality operator is a single

equal sign operator =. But in JavaScript we already use the single equal sign

operator as an assignment operation.

console.log(1 === 1); //true

We can also make a comparison to check if two values are not equal to

each other. For this purpose, we use an exclamation mark in front of the

equal sign.

console.log(1 !== 1);

Make sure to try to use the comparison operations that we learned

about to see what kind of results they generate in the console.

Let’s look at Listing 5-6 and Figure 5-2 for an example that makes use

of if structures.

Chapter 5 Conditional StatementS and CompariSon operatorS

69

Listing 5-6. Using the if structures

var num;

function setup() {

 num = 1;

 createCanvas(800, 300);

 textAlign(CENTER, CENTER);

}

function draw() {

 background(220);

 fill(237, 34, 93);

 textSize(48);

 if (num === 1) {

 // this code gets executed only if num is

equivalent to 1.

 text('TRUE', width / 2, height / 2);

 }

}

Figure 5-2. Output from Listing 5-6

Chapter 5 Conditional StatementS and CompariSon operatorS

70

The if block will be executed since the expression inside the

parentheses will evaluate to true. After all, number one is equivalent to

number one. We will see the word TRUE displayed on screen because

that’s what the code inside the if block does.

If we were to change the value of the num variable to 2, then we won’t

see anything displayed onscreen because this time, the comparison for the

if block will evaluate to false and the conditional will not get executed.

There is this additional structure that can only be used with an if

block that is called an else block. An else block follows an if block and

gets executed for every other comparison that is not covered by the if

block. Let’s extend the previous example using an else block (Listing 5-7

and Figure 5-3).

Listing 5-7. Using an else block

var num;

function setup() {

 num = 2;

 createCanvas(800, 300);

 textAlign(CENTER, CENTER);

}

function draw() {

 background(220);

 fill(237, 34, 93);

 textSize(48);

 if (num === 1) {

 // this code gets executed only if num is

equivalent to 1.

 text('TRUE', width / 2, height / 2);

 } else {

Chapter 5 Conditional StatementS and CompariSon operatorS

71

 // this code gets executed if num is NOT

equivalent to 1.

 text('FALSE', width / 2, height / 2);

 }

}

Figure 5-3. Output from Listing 5-7

Now in the Listing 5-7 example, the else statement would only get

executed whenever the if statement is not executed. That is for every

value of the num variable that is not 1.

By the way, notice how we are repeating ourselves by writing the text

function twice. We could refactor our code to be a bit more concise

(Listing 5-8). Refactoring is, per Wikipedia, the process of restructuring

existing computer code — changing the factoring — without changing its

external behavior.

Listing 5-8. Refactoring our code

var num;

function setup() {

 num = 2;

 createCanvas(800, 300);

Chapter 5 Conditional StatementS and CompariSon operatorS

72

 textAlign(CENTER, CENTER);

}

function draw() {

 var value;

 background(220);

 fill(237, 34, 93);

 textSize(48);

 if (num === 1) {

 value = 'TRUE';

 } else {

 value = 'FALSE'

 }

 text(value, width/2, height/2);

}

The problem with this code before refactoring was that if we wanted

to change the position of the text, we would need to remember to change

it in both text function calls. It might seem easy to remember to do this,

but even small things like this can actually make code maintenance

much harder.

There is one more conditional block that we can add to an if

conditional and that is an else if block. An else if block would allow us

to handle additional conditions. For example, in Listing 5-9 we can add a

couple of else if blocks to the previous example:

Listing 5-9. Using the else if block

var num;

function setup() {

 num = 2;

 createCanvas(800, 300);

Chapter 5 Conditional StatementS and CompariSon operatorS

73

 textAlign(CENTER, CENTER);

 fill(237, 34, 93);

}

function draw() {

 var value;

 background(220);

 textSize(48);

 if (num === 1) {

 value = 'TRUE';

 } else if (num === 2) {

 value = 'STILL TRUE';

 } else if (num === 3) {

 value = 'YEP, TRUE';

 } else {

 value = 'FALSE'

 }

 text(value, width/2, height/2);

}

Try changing the value of the num variable to see how the code behaves.

Using else if blocks, we can handle two more specific conditions for the

value of num.

Using what we learned, let’s alter the code we wrote in the previous

chapter (Listing 4-10) to make the behavior of the animation conditional to

the frameCount variable, as shown in Listing 5-10.

Listing 5-10. Making the animation conditional

var size;

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

Chapter 5 Conditional StatementS and CompariSon operatorS

www.allitebooks.com

http://www.allitebooks.org

74

 size = 200;

}

function draw() {

 background(1, 186, 240);

 // declaration of variables

 var x = width / 2;

 var y = height / 2;

 var size = 200;

 if (frameCount < 30) {

 size = size + frameCount;

 } else {

 size = size + 30;

 }

 // ellipse

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, size, size);

 // rectangle

 fill(255);

 rect(x, y, size*0.75, size*0.15);

}

We changed the previous example so that if the frameCount value is

less than 30, then the shape will be animated using the frameCount; if not it

will remain static.

We can also combine two logical expressions together to create

compound statements by using the && or || operators. && stands for AND.

This allows us to write expressions that will only evaluate to true only if

all parts of the conditional statement is true. Say we wanted to animate

Chapter 5 Conditional StatementS and CompariSon operatorS

75

the shape only if the frameCount is greater than 20 AND less than 30.

We can combine these two conditions using a compound and statement

(Listing 5-11).

Listing 5-11. Using a compound and statement

if (20 < frameCount && frameCount < 30) {

 size = size + frameCount;

}

|| stands for OR. OR compound statements returns true as long as one

part of the conditional statement is true. Say we wanted to animate the

shape if the frameCount is smaller than 30 OR if the frameCount value is

bigger than 120. To express this, we could write the script shown in Listing

5-12.

Listing 5-12. Using a compound or statement

if (frameCount < 30 || frameCount > 120) {

 size = size + frameCount;

}

 Summary
In this chapter, we learned about the concept of frames and how it helps us

to create animated images in p5.js.

We also learned about the p5.js frameCount variable that keeps track

of how many frames are displayed so far and the frameRate function that

allows us to set the frame rate for p5.js.

We learned a couple of other p5.js functions such as the text function

that allows us to draw text to the screen and the textAlign function that

allows us to align the text that we draw on the screen.

Chapter 5 Conditional StatementS and CompariSon operatorS

76

From the JavaScript world, we learned about comparison operators;

Boolean data types; true and false; and most importantly the if, else

if, and else conditionals. These structures are commonly used in

programming and found in many other programming languages. They

allow us to write code that behaves in a little bit more intelligent manner

instead of executing blindly from top to bottom.

 Practice
Create an animation where five rectangles that are initially offscreen are

animated to enter the screen from the left-hand side. They should be

moving at different speeds, and they should come to a stop just before

exiting the screen.

Chapter 5 Conditional StatementS and CompariSon operatorS

77© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_6

CHAPTER 6

More p5.js Variables
In the previous chapter, we learned about the p5.js frameCount variable

that provides us with a number that represents the number of times the

draw function is called. There are a bunch of other highly useful variables

that we could be using in p5.js. We will learn a few more in this chapter.

 mouseIsPressed
mouseIsPressed is the first p5.js variable that we will see that allows us to add

some interactivity to our programs. mouseIsPressed is a p5.js variable that

assumes the value true when the mouse is clicked on the canvas area and

false for every other time. Let’s alter one of the examples from Chapter 4

(Listing 4-10) to quickly see how we can use this variable (Listing 6-1).

Listing 6-1. Conditionally display rectangle inside the circle

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

}

function draw() {

 background(1, 186, 240);

 // declaration of variables

 var x = width / 2;

78

 var y = height / 2;

 var size = 200; // control the size of the shapes

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, size, size);

 // conditionally display rectangle on mouse press

 if (mouseIsPressed === true) {

 fill(255);

 rect(x, y, size*0.75, size*0.15);

 }

}

Clicking on the canvas area will now display the rectangle inside the

circle. By using the mouseIsPressed p5.js variable, we made the display of

the rectangle conditional to the mouse being pressed.

Toggling the state of something based on a mouse click might be a

more involving example, so let’s see how to tackle that as well. Say we

would like to change the background color for our sketch every time we

click the mouse button. In Listing 6-2, we will make it so that it will toggle

in between two colors.

Listgin 6-2. Toggle display on mouse click

var toggle = true;

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

}

Chapter 6 More p5.js Variables

79

function draw() {

 // change the toggle value based on mouse press.

 if (mouseIsPressed === true) {

 toggle = !toggle;

 }

 // display a different bg color based on the toggle value

 if (toggle === true) {

 background(1, 186, 240);

 } else {

 background(250, 150, 50);

 }

 // declaration of variables

 var x = width / 2;

 var y = height / 2;

 var size = 200;

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, size, size);

 // rectangle

 fill(255);

 rect(x, y, size * 0.75, size * 0.15);

}

In this example, we are creating a global variable called toggle that

would store a Boolean value. Then we make this Boolean value change to

the opposite of what it was with each mouse click by using the exclamation

mark operator. When used in front of a Boolean value, the exclamation

mark simply inverts the value, meaning it would make a true a false and

vice versa.

Chapter 6 More p5.js Variables

80

You might notice that the mouseIsPressed variable doesn’t seem

to work great in capturing our clicks. This is because the draw function

is being called numerous times in a second, which makes it hard to

detect mouse clicks using a conditional. Later, we will see a better way of

detecting mouse clicks using p5.js Events.

 mouseX and mouseY
p5.js variable mouseX holds the current horizontal position of the mouse

and mouseY holds the current vertical position. This sounds simple enough,

but they have the potential to enable a great deal of user interaction in our

programs and hence are incredibly useful variables. If we are to provide

these values as x and y coordinates of a shape, we would essentially be

moving that shape as we move our cursor on the screen.

Let’s try this with a simplified version of our previous program

(Listing 6-1). Listing 6-3 and Figure 6-1 show a version of it with just a

circle being drawn in the middle of the screen.

Listing 6-3. Drawing a simple circle to the screen

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(1, 75, 100);

 // declaration of variables

 var x = width / 2;

 var y = height / 2;

 var size = 50;

Chapter 6 More p5.js Variables

81

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, size, size);

}

Now let’s use mouseX and mouseY variables for x and y values in

Listing 6-4.

Listing 6-4. Using mouseX and mouseY variables

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(1, 75, 100);

 // declaration of variables

 var x = mouseX;

 var y = mouseY;

 var size = 50;

Figure 6-1. Drawing a circle

Chapter 6 More p5.js Variables

82

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, size, size);

}

Try moving your mouse on the canvas. Isn’t this amazing? By using two

built-in variables, we made our otherwise static sketch into something that

a user can interact with.

Did you ever wonder why we are setting the background function

inside the draw function? We seem to only need to set this value once, so

you might have assumed it should go to the setup function.

Placing the background function inside the draw function allows us

to override everything that was drawn in the previous frame with a solid

color. Without that declaration, at the beginning of the frame, you would

notice that drawings from the previous frame persist on the screen. But for

certain use cases, this might be exactly what you are going for.

Listing 6-5 and Figure 6-2 show the example from before (Listing 6-4)

with a smaller circle size, lower opacity for the shape color, and the

background being declared only once in the setup function.

Listing 6-5. Persisting the drawing on the screen

function setup() {

 createCanvas(800, 300);

 background(1, 75, 100);

}

function draw() {

 // declaration of variables

 var x = mouseX;

 var y = mouseY;

 var size = 25;

Chapter 6 More p5.js Variables

83

 // circle

 fill(237, 34, 93, 100);

 noStroke();

 ellipse(x, y, size, size);

}

 Summary
In this chapter, we learned about a couple of more p5.js built-in variables

that would specifically help us in creating programs that are interactive:

programs that can respond to the user action.

We learned about the p5.js mouseIsPressed variable that assumes a

true value whenever the mouse is clicked. But we also learned that this

variable might not be the best way to handle user input. We will later

see the concept of Events in p5.js, which is much better in handling user

input.

Figure 6-2. Drawing onscreen using mouseX and mouseY variables

Chapter 6 More p5.js Variables

84

We also saw mouseX and mouseY variables and how they can be used to

animate objects based on the mouse cursor position, which allows us to

add a great deal of interactivity to our programs in an easy manner.

 Practice
Build a script that would draw a rectangle to the screen at every mouse

click, at the position of the mouse cursor.

Chapter 6 More p5.js Variables

85© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_7

CHAPTER 7

Loops
One of things that computers are great at is repetition. Imagine having

to create a thousand shapes onscreen with varying parameters. It would

take us an unreasonable amount of time to do so with our current

programming knowledge. For this kind of case where we want to repeat

our code as it is or with variations, we can leverage a programming

structure called loops. A loop allows us to execute a block of code over and

over again.

We are already familiar with the idea of a loop in p5.js. If you think

about it, the draw function is a continuous loop that gets executed over

and over again until we exit the p5.js program. In this chapter, we will learn

how to build this kind of loop ourselves.

 For Loop
There are a couple of different kinds of loop structures in JavaScript, but a

for loop is by far the most popular. It allows us to repeat an operation for

a given amount of times. A for loop has four parts. Listing 7-1 provides an

example of how a for loop is constructed.

Listing 7-1. Example of a for loop

for (var i = 0; i < 10; i = i + 1) {

 //do something

}

86

In the first part, we initialize a variable that will keep track of the

number of times the loop gets executed – let’s call this a counter variable.

var i = 0;

By convention, inside the for loop, we usually tend to use short

variable names like i or j, especially if that variable is only in use for

controlling the flow of the for loop. But feel free to use other names as

well if it makes sense for your use case.

In the second part, we define a test condition for our loop that gets

evaluated each time the loop is about to start. In this example, we are

checking to see if our counter variable is smaller than the number 10.

i < 10;

In the third part, we define a way to update the counter variable that

gets evaluated at the end of the loop. In this example, we get the current

value of the variable i and add one to it.

i = i + 1;

Finally, inside curly braces we write the code that we want to have

repeated. Once the counter variable doesn’t satisfy the test condition, the

loop terminates, and the program returns to its normal evaluation.

If the test condition never fails, then we would have a loop that would

end up creating an infinite loop, a loop that doesn’t have an exit

condition so that it keeps going on and on until the program is terminated

by external means. The draw function in p5.js is in an infinite loop; it keeps

drawing to the screen until we close the browser window.

Even though infinite loops are a valid use case, loops are most

commonly used for executing an operation for a known amount of times.

Let’s create a loop that will draw a given number of ellipses to the screen

using a for loop (Listing 7-2 and Figure 7-1).

Chapter 7 Loops

87

Listing 7-2. Create ellipses using a for loop

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(1, 75, 100);

 // circle properties

 fill(237, 34, 93);

 noStroke();

 for (var i=0; i<10; i=i+1) {

 ellipse(0, 0, 50, 50);

 }

}

In our example, we are drawing 10 circles to the screen, but there is no

way of visually making that distinction since all the circles are being drawn

on top of each other. This is where making use of the loop counter variable

can make sense. I can basically use this variable to offset the position of

circles each time the loop is called (Listing 7-3 and Figure 7-2).

Figure 7-1. Output for Listing 7-2

Chapter 7 Loops

88

Listing 7-3. Using a loop counter in a for loop

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(1, 75, 100);

 // circle properties

 fill(237, 34, 93);

 noStroke();

 for (var i=0; i<10; i=i+1) {

 ellipse(i * 50, 0, 50, 50);

 }

}

We are multiplying the loop variable by 50 (the diameter of the circle)

before feeding into the ellipse function. This allows us to have the shapes

not overlap with each other.

Figure 7-2. Output for Listing 7-3

Chapter 7 Loops

89

Now if we are to execute this, we will see all those circles that the for

loop is creating for us. The great thing about this is that since we built

the structure for repeating our operations, scaling it up can be as easy as

changing the number that we are using inside the loop conditional to a

bigger value. Rendering 100 or 1000 circles instead of 10 is just a matter of

changing this one value. However, we might start noticing performance

degradation if we were to start using huge numbers.

Let’s build our code so that we can fill the entire width of the screen

with circles (Listing 7-4 and Figure 7-3).

If the width of the screen is 800, and the diameter of a circle is 50 units,

then it would mean that we can fill 800 / 50 circles into the width of the

page. We would notice a bit of a gap at the end of the page since the first

circle is a little bit outside the canvas. We can offset everything to get rid of

this gap by adding 25 to the x position, which is half the diameter value. As

you already know, we actually don’t need to do this math ourselves as we

can have JavaScript calculate that value for us.

What you might notice at this point is that we are hard-coding lots of

values into our code, and it would be better to use variables instead for

flexibility. We will refactor our code to do so.

Listing 7-4. Filling the screen width with circles

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(1, 75, 100);

 // circle properties

 fill(237, 34, 93);

 noStroke();

 var diameter = 50;

Chapter 7 Loops

90

 for (var i=0; i< width/diameter; i=i+1) {

 ellipse(diameter/2 + i * diameter, 0, diameter,

diameter);

 }

}

Now, if we are to change a single value, the diameter of the circle, the

entire code will still draw just enough circles to fill the screen. That’s a

pretty impressive thing to have.

What if we wanted to fill the height of the screen with circles as well?

To be able to do this, we need to write another for loop that would place

circles for the entire length of the canvas for each circle that is placed for the

width. This requires us to place a second loop inside the first one, effectively

nesting a loop inside another loop. See Listing 7-5 and Figure 7- 4.

Listing 7-5. Filling the screen with circles

function setup() {

 createCanvas(800, 300);

}

Figure 7-3. Output for Listing 7-4

Chapter 7 Loops

91

function draw() {

 background(1, 75, 100);

 // circle properties

 fill(237, 34, 93);

 noStroke();

 var diameter = 50;

 for (var i=0; i<width/diameter; i=i+1) {

 for (var j=0; j<height/diameter; j=j+1) {

 ellipse(

 diameter/2 + i * diameter,

 diameter/2 + j * diameter,

 diameter,

 diameter

);

 }

 }

}

Figure 7-4. Output for Listing 7-5

Chapter 7 Loops

92

Notice the way we declared the ellipse function in this example.

We are writing it over multiple lines to be able to increase the legibility.

JavaScript doesn’t care about the whitespace so writing our code using

multiple lines doesn’t result in any errors.

This code is pretty useful right now. For one thing, it is robust; we

could be changing the size of the drawing area or the number of circles

being drawn, but things will still continue to function properly.

Something to keep in mind is this: putting loops inside one another

can make our program really slow due to the number of operations that

need to be performed. Also, sometimes nested structures can make our

programs hard to read as well.

 Random and Noise Functions
Since we can now create loops that make use of a different value each time

they are executed, it might be a good time to learn about the p5.js random

function. The p5.js random function generates a random number every

time it’s called. This is useful when we want to use random values for the

parameters of the shapes we are drawing.

If we call the random function without any parameters, then it would

result in a random number between 0 and 1 for each draw function call

or each frame. If we provide a value to the random function, then it would

return a random value that is above 0 and below the given value. If we

provide two values to the random function, then we would get a random

value that is in between the given two numbers. See Listing 7-6 for

examples of these situations.

Listing 7-6. Examples of using the random function

console.log(random()); // a random number in between 0 and 1

console.log(random(10)); // a random number in between 0 and 10

console.log(random(100, 1000)); // a random number in between

100 and 1000

Chapter 7 Loops

93

Listing 7-7 is a small script for using the random function in different

ways. Figure 7-5 shows the results of that script. Numbers that are

displayed are randomly generated and will be different each time the code

is executed.

Listing 7-7. Using the random function

function setup() {

 createCanvas(800, 300);

 textAlign(CENTER, CENTER);

 fill(237, 34, 93);

 frameRate(1);

}

function draw() {

 var random_0 = random();

 var random_1 = random(10);

 var random_2 = random(100, 1000);

 var offset = 40;

 textSize(24);

 background(255);

 text(random_0, width/2, height/2-offset);

 text(random_1, width/2, height/2-0);

 text(random_2, width/2, height/2+offset);

}

Chapter 7 Loops

94

With Listing 7-8 and Figure 7-6, let’s update our previous code

(Listing 7-5) to make use of the random function.

Listing 7-8. Using the random function

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(1, 75, 100);

 // circle properties

 fill(237, 34, 93);

 noStroke();

 var diameter = 50;

 for (var i=0; i<width/diameter; i=i+1) {

 for (var j=0; j<height/diameter; j=j+1) {

 ellipse(

 diameter/2 + i * diameter,

 diameter/2 + j * diameter,

Figure 7-5. Output from Listing 7-7

Chapter 7 Loops

95

 diameter * random(), // using

the random function

 diameter

);

 }

 }

}

We are using the result of the random function to multiply the width

of the ellipse with a random number that would be a value in between 0

and 1 each time the random function is called. Since the random function

can assume any value in its range in any frame, the animation looks pretty

aggressive. If we want randomness that changes gradually, and hence

looks a bit more organic, then we should look into the noise function.

We can feed any numeric value to the noise function and it would

return a semi-random value in between 0 and 1. It would always return

the same output for the given value. The good thing about the noise

function is that if the value we feed to the noise function changes only

incrementally, then the output value will only change incrementally as

well. This will result in a smooth transition between the random values we

are getting back.

Figure 7-6. Output from Listing 7-8

Chapter 7 Loops

96

To be able to conceptualize how the noise function works, we can

think of an infinite amount of random values that are changing gradually

like a wave, and the values that we provide to the noise function are like

coordinates for these random values. Essentially we are just sampling

an already existing noise. Whenever we provide the noise function with

the same values, we are going to receive the same semi-random value in

return.

We will rewrite the above program (Listing 7-8) to make use of noise

function instead. We will feed the noise function with the frameCount

variable since it is a good way of getting sequential numbers in p5.js. But

we will divide the frameCount with 100 to be able to slow down the change

of values and hence the resulting animation a bit. See Listing 7-9 and

Figure 7-7.

Listing 7-9. Using the noise function

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(1, 75, 100);

 // circle properties

 fill(237, 34, 93);

 noStroke();

 var diameter = 50;

 for (var i=0; i<width/diameter; i=i+1) {

 for (var j=0; j<height/diameter; j=j+1) {

 ellipse(

 diameter/2 + i * diameter,

 diameter/2 + j * diameter,

Chapter 7 Loops

97

 diameter * noise(frameCount/100),

// using then noise function

 diameter * noise(frameCount/100)

// using then noise function

);

 }

 }

}

Notice how all the shapes are using the same animation right now.

What if we wanted to get a different noise value for each one of these

shapes? Currently we have the values repeating since the noise function,

when provided with the same values, returns the same output. To be able

to get a different output value for each of the shapes, we might want to

rewrite the above function to make use of i and j values of the for loop

to adjust where the noise is being sampled from. See Listing 7-10 and

Figure 7-8.

Figure 7-7. Output from Listing 7-9

Chapter 7 Loops

98

Listing 7-10. Applying a different animation to each circle

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(1, 75, 100);

 // circle properties

 fill(237, 34, 93);

 noStroke();

 var diameter = 50;

 for (var i=0; i<width/diameter; i=i+1) {

 for (var j=0; j<height/diameter; j=j+1) {

 ellipse(

 diameter/2 + i * diameter,

 diameter/2 + j * diameter,

 // applying a different

animation to each circle

 diameter * noise(frameCount/100 +

j*10000 + i*10000),

 // applying a different

animation to each circle

 diameter * noise(frameCount/100 +

j*10000 + i*10000)

);

 }

 }

}

Chapter 7 Loops

99

The value 10000 we are using above as a multiplier is completely

arbitrary. We are just trying to make sure that the coordinates we provide

to the noise function are farther apart from each other.

 Summary
Loops are one of the most powerful structures in programming. They

allow us to tap into the true computational power of computers, repeating

operations on a larger scale that could be impossible for a human to

perform in a reasonable amount of time.

In this chapter we learned about how to build for loops and how to

nest loops in each other to get a grid of repeating shapes instead of just a

line of them.

We also learned about the p5.js random and noise functions and the

differences between them.

Figure 7-8. Output from Listing 7-10

Chapter 7 Loops

100

 Practice
Create a loop that would create an array of rectangles that have their color

changed gradually from black to white (Figure 7-9). You should build the

loop in such a way that a single variable would control the number of

rectangles drawn.

Figure 7-9. Practice image

Chapter 7 Loops

101© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_8

CHAPTER 8

Functions
Functions are primary building blocks of JavaScript. They allow us to write

programs in a more efficient and scalable manner. Functions help us to

manage complexity by containing and grouping operations under a single

executable name. We already know how to call functions by using the p5.js

predefined functions such as ellipse or background. We even declared

our own functions as p5.js forces us to put our code into two function

declarations: setup and draw. If we wanted to create our own functions, we

would follow the same convention we have been using for the creation, or

declaration, of these functions.

 Creating Functions
To create (or declare) a new function, we would start off by using the

function keyword and then give the function a name of our choosing that

ideally describes the behavior or purpose of the function. See Listing 8-1.

Listing 8-1. Creating a function

function functionName() {

 // function body

}

Next to the function name we would open brackets. If we want to build

a function that works with user input, we can define parameters inside the

brackets that act as placeholder variable names for the future user input.

We will see how this works in a bit.

102

Then we have curly braces. Inside the curly braces can be referred to as

the function body. In there, we write the code that constructs the logic of

the function. We can also make use of the parameters, the variable names

we defined inside the brackets next to the function name, as part of the

operations we want to perform inside the function body.

Let’s look at a simple example. Notice how p5.js has an ellipse

function but not a circle function. This is not really an issue since we

can easily create a circle by providing the ellipse function with the same

width and height values. For argument’s sake, though, let’s create a circle

function that would work with three values: the x and y position that we

want to draw our circle at and the diameter of the circle.

Listing 8-2 shows how to do it. Inside the brackets, we will write

down variable names that will eventually be provided when this function

is called. These names are called parameters as they parameterize

the functionality of the operation we are creating. We will use these

parameters inside our function to allow the user to control the inner

workings of the function.

Listing 8-2. Declaring a circle function

function circle(x, y, diameter) {

 ellipse(x, y, diameter, diameter);

}

We can choose anything as parameter names, but it usually makes

sense to use names that communicate the intent clearly. So in our case,

using the names x, y, and diameter make sense.

After defining this function, we can call it by using its name and

providing it with values. Values provided to the function are called

arguments to the function. Notice that the function might fail or not work

as expected if all the required arguments are not provided (Listing 8-3).

Chapter 8 FunCtions

103

Listing 8-3. Calling the circle function

circle(width/2, height/2, 100);

Don’t worry too much if you feel like the terminology is confusing. It

might take some time to get used to it. The parameters of a function can be

thought as the values that the user would eventually provide when they are

using the function. Those same values that are provided when calling the

function are referred to as arguments.

With the circle function, we don’t need to worry about using the

ellipse function to draw circles anymore. We can just use our own

function to draw those perfectly round circles. Having implemented the

circle function ourselves, we know that it actually uses the ellipse

function under the hood to draw those circles. But the neat thing about

functions is that we don’t really need to know how they work once they

are available to us. We can just use them without thinking how they are

implemented. The ellipse function that is implemented by the smart

people who created p5.js might be using all sorts of things inside to draw

an ellipse, but as far as we are concerned, it draws an ellipse when it is

called, and that’s all that matters.

In this example, creating a circle function doesn’t buy us too much

efficiency. As a matter of fact, we can just pass three arguments to the

ellipse function instead of four to draw a circle instead. But functions

become really important to use when we are building more complex

programs. They help us manage the complexity by containing and

grouping operations under a single executable name. Functions are

essentially black boxes. They encapsulate the code contained inside.

Additionally, whatever variables are declared using the var keyword inside

the function are not visible from outside the function. This means that

calling them from outside of the function that they are defined in will result

in an error. See Listing 8-4 for an example.

Chapter 8 FunCtions

104

Listing 8-4. Variable visibility (scope)

function setup() {

 createCanvas(800, 300);

 sayHello();

}

function draw() {

 background(220);

}

function sayHello() {

 var message = 'Hello World!';

 console.log(message);

}

console.log(message); // this line will throw an error

The console.log function on line 15 will throw an error because the

variable message is only visible from inside the function sayHello.

Functions can work with no input, a single input, or multiple inputs;

and they either return a result or they don’t. Let me explain what I mean by

returning a value.

Let’s say we want to create a function that multiplies a given numeric

value by itself, essentially calculating the square of the given number.

Listing 8-5 shows one function that does that. It receives a number as a

parameter and creates text that displays that number on the screen. So it is

somewhat useful since we can use this function to display the square of a

number on the screen. Results are shown in Figure 8-1.

Listing 8-5. Creating a multiplying function

function setup() {

 createCanvas(800, 300);

}

Chapter 8 FunCtions

105

function draw() {

 background(1, 75, 100);

 squared(10);

}

function squared(num) {

 fill(237, 34, 93);

 textSize(60);

 textAlign(CENTER, CENTER);

 text(num * num, width/2, height/2);

}

But if we wanted to use this resulting number in another calculation,

we might hit a roadblock. This function is not returning the number

to us; it is just displaying it on the screen. Calling this function affects

the environment that we are in, but it doesn’t return a value for it to be

used in further calculations. Some of the functions we have seen so far,

like ellipse, rect, etc…, behaved in a similar fashion where they do

something but don’t actually return a value as a result of that calculation.

However, the random function when executed doesn’t display anything on

the screen but returns a value that we can capture in a variable.

Figure 8-1. Output from Listing 8-5

Chapter 8 FunCtions

106

To be able to return values from a function, we can use the return

keyword. Let’s alter the squared function to both: display the results on the

screen and also to return a value (Listing 8-6).

Listing 8-6. Using the return keyword

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(1, 75, 100);

 var x = squared(10);

 console.log(x);

}

function squared(num) {

 fill(237, 34, 93);

 textSize(60);

 textAlign(CENTER, CENTER);

 var result = num * num;

 text(result, width/2, height/2);

 // return the value of the result from the function

 return result;

}

Now, this function returns a value that we are using in a console.log

function. Whenever the program comes across the keyword return, the

program terminates the execution of the function and returns the value

that is declared next to it – to the caller of the function. This means that

if we had any other lines below the return keyword, they wouldn’t get

executed since return terminates the execution of the current function.

Chapter 8 FunCtions

107

The return keyword is only available inside functions. Trying to use it from

outside a function will result in an error. As outside of a function, there is

nothing to be returned.

 Revisiting Setup and Draw Functions
Now that we learned about creating our functions, it is important to

emphasize the difference between declaring a function versus calling a

function. Notice how when we created our functions that we had to call

them in order for them to be executed. For example, in this code example

in Listing 8-7, we are only creating or declaring a function:

Listing 8-7. Creating and declaring a function

function myFunction() {

}

To be able to make use of this function, we need to execute it, by calling

it with its name and using parentheses next to that name, as shown in

Listing 8-8.

Listing 8-8. Calling a function

myFunction();

Notice one thing slightly strange when working in p5.js. We never really

call the setup and draw functions and yet they get executed anyway! This

is due to how p5.js is architected. p5.js handles the execution of the setup

and draw functions for us as their execution follows some simple rules that

are the following:

• setup function gets executed before the draw function.

• setup function is only executed one time, whereas draw

function is executed continuously at a certain default rate.

Chapter 8 FunCtions

108

 Summary
We have made use of functions from the moment we started to use p5.js.

Its very own architecture depends on the existence of two functions inside

our programs that has to have the name setup and draw. Moreover, we

have been using functions that come with the p5.js library such as ellipse,

rect, etc.

We have seen that functions can be built to work with external user

input or not. We can also build functions that either return a value using

the return keyword or not.

Functions are a way to create modular blocks of code that can be

reused throughout our code. These functions make our programs more

maintainable and scalable by decreasing the amount of code we need to

write. Whenever we find ourselves repeating a block of code in multiple

places, it’s likely a good candidate to create a function from.

 Practice
Create a function called grid that would work with three parameters: a

numX and a numY parameter that would create numX amount of shapes

(say rectangles) on the x-axis and numY amount of shapes on the y-axis and

a size parameter that would set the size of the shapes.

For example:

grid(10, 30, 20); // Would create 10 x 30 rectangles of size

20px.

Chapter 8 FunCtions

109© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_9

CHAPTER 9

Objects
JavaScript contains a data structure called Objects. Objects help you

organize code and they make it easier to work with in certain cases. There

are two ways of creating objects: by using an object initializer or by

using constructor functions. In this chapter we’ll create a single object

using an object initializer, while constructor functions act as a blueprint

from which we can create many object instances using the new keyword.

 Using Object Initializer
JavaScript uses a data structure called Object that helps organize data

together. There are a couple of ways of creating an object in JavaScript.

One way is by using the curly brackets, as seen in Listing 9-1.

Listing 9-1. Creating an object with curly brackets

var colors = {};

These curly brackets are called Object Initializer. They create

an empty object. We hold a reference to the object by using the variable

colors.

Now we can add properties to this colors object by providing the

desired property names after a dot. This is called dot notation. We will also

assign values to these newly created properties. See Listing 9-2.

110

Listing 9-2. Adding properties to an object

var colors = {};

colors.black = 0;

colors.darkGray = 55;

colors.gray = 125;

colors.lightGray = 175;

colors.white = 255;

console.log(colors);

If we are to look at the object at this point by using console.log, we

would see it looks something like this:

{"black":0,"darkGray":55,"gray":125,"lightGray":175,

"white":255}

We could also have created an object with the same properties from the

get go, by providing these properties inside the curly brackets (Listing 9-3).

Listing 9-3. Adding properties inside the curly brackets

var colors = {

 black: 0,

 darkGray: 55,

 gray: 125,

 lightGray: 175,

 white: 255,

};

console.log(colors);

Objects are basically key-value pairs. Each key stores a value and each

key-value pair makes up a property on an object.

As shown in Listing 9-4, to access a value on an object, we can again

use the dot notation.

Chapter 9 ObjeCts

111

Listing 9-4. Access a value of an object

console.log(colors.gray);

For some situations, the dot notation doesn’t work. An example of this

is when we use numbers as our key values in an object. In that case, we can

use square brackets to access values instead. See Listing 9-5.

Listing 9-5. Use square brackets to access values

console.log(colors[1]); // Assuming you were using numbers

instead of color names as key values.

What do you think this above expression will return if we were to

console.log it? We would get the value undefined as the key 1 doesn’t

exist in our current colors object.

We can also define functions as values for keys in an object. In that

case, the resulting property would be referred to as a method.

Continuing from our colors object, let’s define a method inside that

object called paintItBlack, which would make the background color be

black (Listing 9-6).

Listing 9-6. Defining a method

var colors = {

 black: 0,

 darkGray: 55,

 gray: 125,

 lightGray: 175,

 white: 255,

 paintItBlack: function() {

 background(this.black);

 }

};

Chapter 9 ObjeCts

112

Listing 9-7 shows a p5.js code that makes use of this object.

Listing 9-7. Using an object

var colors;

function setup() {

 createCanvas(800, 300);

 colors = {

 black: 0,

 darkGray: 55,

 gray: 125,

 lightGray: 175,

 white: 255,

 paintItBlack: function() {

 background(this.black);

 }

 };

}

function draw() {

 background(220);

 // calling the paintItBlack method after frame 120.

 if (frameCount > 120) {

 colors.paintItBlack();

 }

}

In this example, we are initializing the colors variable outside the

scope of the setup and draw functions and then creating its content inside

the setup function. After all, we only need the content to be created once.

And then we call its paintItBlack method if the frameCount is bigger

than 120, which would happen after two seconds with default settings.

Chapter 9 ObjeCts

113

(Remember the default value for the frameRate is 60, which means that

approximately 60 frames are rendered per second.)

To be able to use a key that is defined inside the object from within, we

need to be able to refer to the object itself. In JavaScript, there is a keyword

called this, which allows us to do so (Listing 9-8). Using the this keyword,

we can refer to the keys that are defined on the object itself.

Listing 9-8. Using the this keyword

paintItBlack: function() {

 background(this.black);

}

Once we have defined a method on the object, we can call the method

by accessing it using the dot notation (Listing 9-9). Since we are executing

a function in this instance, we need to have brackets after the function

name.

Listing 9-9. Calling the method

colors.paintItBlack();

The concept of objects in JavaScript (or in other languages that

implement objects) exists so that we can model after real-world objects or

concepts. Just like how real-world objects have properties and sometimes

a behavior, programming language objects can have properties that

describe what they are and methods that specify how they behave.

With Listing 9-10, let me give you an example of a programming

language object that models after a real-world concept. We will create

an object called circle. This circle object will have several properties

defining how it looks, and also it will have several methods that describe

how it behaves.

Chapter 9 ObjeCts

114

Listing 9-10. Creating an object

var circle = {

 x: width/2,

 y: height/2,

 size: 50,

};

This circle object has an x and y property that defines its coordinates

and a size property that defines its size. We will also create a method on it,

a property that is a function, which defines a certain behavior (Listing 9-11).

In this case, the defined behavior will be to draw the circle to the screen.

Listing 9-11. Adding a draw method to the circle object

var circle = {

 x: width/2,

 y: height/2,

 size: 50,

 draw: function() {

 ellipse(this.x, this.y, this.size, this.size);

 },

};

In this example, we are again using the this keyword to be able to

access the properties on an object. The this keyword basically refers to the

object itself and allows us to call the object’s properties while inside the

object. We can now draw this circle on the screen by using the

circle.draw() method call:

circle.draw();

Chapter 9 ObjeCts

115

You must be thinking to yourself: this was the most convoluted thing

ever. Because why should we ever need to draw a circle this way when we

can just call a function to draw it onscreen (Listing 9-12)?

Listing 9-12. Using the ellipse function to draw a circle to the screen

ellipse(width/2, height/2, 50, 50);

We are just getting started, though. Let’s add another method to the

circle called grow, which would increase the size of the circle by one unit

whenever it’s called (Listing 9-13).

Listing 9-13. Adding grow method

var circle = {

 x: width/2,

 y: height/2,

 size: 50,

 draw: function() {

 ellipse(this.x, this.y, this.size, this.size);

 },

 grow: function() {

 if (this.size < 200) {

 this.size += 1;

 }

 },

};

Now, if we are to call this function inside the draw function, we would

see our circle keep growing as the draw function is continuously called

by p5.js. Listing 9-14 provides the whole example. Figure 9-1 shows the

resulting output.

Chapter 9 ObjeCts

116

Listing 9-14. Using the circle object

var circle;

function setup() {

 createCanvas(800, 300);

 circle = {

 x: width/2,

 y: height/2,

 size: 50,

 draw: function() {

 ellipse(this.x, this.y, this.size,

this.size);

 },

 grow: function() {

 if (this.size < 200) {

 this.size += 1;

 }

 },

 };

}

function draw() {

 background(220);

 // circle properties

 fill(237, 34, 93);

 noStroke();

 circle.draw();

 circle.grow();

}

Chapter 9 ObjeCts

117

As mentioned earlier, the usage of objects is about code organization.

We don’t have separate functions that manipulate the circle, but we have

a circle object that carries those functions and its properties within itself.

This can make our code easier to reason about in certain cases.

 Using the Constructor Function
There is another way to create objects in JavaScript, and that is by using

functions (Listing 9-15). The declarations we make inside an object that

is creating a function is very similar to what we were doing when working

with an object initializer. Notice how we are using the width and height

p5.js variables inside the function. For these variables to be available to

this function, it needs to be called after the createCanvas function.

Listing 9-15. Using a function to create an object

var Circle = function() {

 this.x = width/2;

 this.y = height/2;

 this.size = 50;

Figure 9-1. Output from Listing 9-14

Chapter 9 ObjeCts

118

 this.draw = function() {

 ellipse(this.x, this.y, this.size, this.size);

 };

 this.grow = function() {

 if (this.size < 200) {

 this.size += 1;

 }

 };

};

An object-creating function is called a constructor function. We can

think of it as a template or a blueprint for creating new objects that derive

their properties from this constructor function.

Listing 9-16 shows an example to better explain what I mean. Say we

want to have a circle just like in the previous examples that exhibits the

behavior that is defined by this Circle constructor. In this case, we will not

use this constructor function directly for our purposes, but we will use it to

instantiate a new circle that is modeled after this template function.

Listing 9-16. Using a constructor function

var myCircle = new Circle();

We used the Circle constructor function and the new keyword to

create a new instance of a circle called myCircle that gets its properties

from the constructor function. Basically, the new keyword allows us to

create a new instance of an object from a constructor function. We can

think of the Circle constructor function as a blueprint and the myCircle

as an actual circle built from that blueprint. Now we can draw this newly

created circle to the screen by calling the draw method on it (Listing 9-17).

Listing 9-17. Calling the draw method

myCircle.draw();

Chapter 9 ObjeCts

119

Listing 9-18 provides the full example.

Listing 9-18. Using a constructor function

var circle;

function setup() {

 createCanvas(800, 300);

 // instantiating a new circle using the Circle

Constructor Function

 circle = new Circle();

}

function draw() {

 background(220);

 // circle properties

 fill(237, 34, 93);

 noStroke();

 circle.draw();

 circle.grow();

}

var Circle = function() {

 this.x = width/2;

 this.y = height/2;

 this.size = 50;

 this.draw = function() {

 ellipse(this.x, this.y, this.size, this.size);

 };

Chapter 9 ObjeCts

120

 this.grow = function() {

 if (this.size < 200) {

 this.size += 1;

 }

 };

};

The beauty of this method is that we can keep creating new circles

from the same blueprint. And since these circles are separate entities or

instances, they can have different properties from each other. Let’s see an

example of that in Listing 9-19 and Figure 9-2.

Listing 9-19. Creating separate circle instances

var circle_1;

var circle_2;

var circle_3;

function setup() {

 createCanvas(800, 300);

 // instantiating circles

 circle_1 = new Circle();

 circle_2 = new Circle();

 circle_3 = new Circle();

}

function draw() {

 background(220);

 // circle properties

 fill(237, 34, 93);

 noStroke();

Chapter 9 ObjeCts

121

 circle_1.draw();

 circle_1.grow();

 circle_2.x = 150;

 circle_2.draw();

 circle_2.grow();

 circle_3.x = 650;

 circle_3.draw();

 circle_3.grow();

}

var Circle = function() {

 this.x = width / 2;

 this.y = height / 2;

 this.size = 50;

 this.draw = function() {

 ellipse(this.x, this.y, this.size, this.size);

 };

 this.grow = function() {

 if (this.size < 200) {

 this.size += 1;

 }

 };

};

Chapter 9 ObjeCts

122

In this example, we are creating three variables outside the p5.js

functions called circle_1, circle_2, and circle_3. These variables are

created outside the p5.js functions so that they would be in scope for both

of those functions.

We are making these variables to be Circle instances by assigning the

Circle constructor function using the new keyword to them. Now that we

have three separate circle objects, we can change their properties in the

draw function, and we get different results from each one of them.

One thing that is important to note is how we are using a function

name that starts with a capital letter for the constructor function. We

use a capital letter to remind ourselves and others that this function is a

constructor function and needs to be called with the new keyword.

It is important to call a constructor function with the new keyword.

If we don’t, it won’t work properly, as the this keyword inside the

constructor function wouldn’t refer to the instance object but the global

object.

Usage of the capital letter is not a rule but a convention. No one forces

us to do it. But it is expected that we follow this convention since not

realizing a function is a constructor function, and then calling it without

the new keyword will have unintended consequences.

Figure 9-2. Output from Listing 9-19

Chapter 9 ObjeCts

123

 Summary
In this chapter, we learned about the JavaScript objects. Simply put, objects

are a way of organizing code. There are two ways of creating objects. One

of the ways is using an object initializer, and the other one is using

constructor functions.

We also learned about the dot notation and the square bracket

notation that are used to access the properties on an object. The this

keyword allows us to refer to the properties of the object from within the

object itself.

There is a whole programming paradigm called Object-Oriented

Programming across different programming languages that leverages the

usage of objects for code organization and clarity. Using p5.js, we don’t

necessarily need to create objects to organize our code, but I wanted to

introduce objects for two reasons:

• They are a fundamental part of the JavaScript

Language. If you would like to learn more about

the language at a later time, you would need to get

comfortable with how objects work.

• JavaScript has other built-in structures that are based

on objects we will be using, so it was important for us to

further familiarize ourselves with objects.

Chapter 9 ObjeCts

125© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_10

CHAPTER 10

Arrays
Arrays are another useful data structure in JavaScript. They are a

sequential collection of data stored with a numbered index and are based

on Objects, which make certain operations much easier to perform.

In this chapter we’ll populate an array using the push method. We’ll

also learn about the remainder operator, which we can use to derive

sequential values that cycle in between zero and the desired value.

 Using the push Method
Remember that we use curly brackets to create an empty object. We can

create an empty array in a similar fashion by using square brackets

(Listing 10-1).

Listing 10-1. Create an empty array

var arr = [];

In this example, we created an empty array and used a variable called

arr to store that array. Now if we wanted to add elements to this array, we

can use the push method that array objects have (Listing 10-2).

126

Listing 10-2. Adding elements to the array

var arr = [];

arr.push(1);

arr.push("hello world");

arr.push({"name":"value"});

console.log(arr);

In this example, we are pushing three new values to the previously

empty array. In the first line, we are pushing in a value of number type, in

the second line we are pushing a string type into the array, and in the

third line we are pushing an object type into it.

Now if we are to look at the contents of the array by using console.log,

we will see something like this onscreen:

[1,"hello world",{"name":"value"}]

Notice how we used different data types and objects to populate the

Array. Arrays can contain any object, even other arrays. Just like how it

is with JavaScript objects, we can populate an Array at creation time by

providing desired values inside square brackets using a comma to separate

them. Let’s create an array with four numbers in it (Listing 10-3).

Listing 10-3. Creating an array with different data types

var arr = [15, 40, 243, 53];

console.log(arr);

We can use the index number property that is automatically generated

to access the individual items in an array. One thing to know, though, is the

indices that refer to the stored items in an array start counting from 0. To

access an individual item in an array, we can type the variable name that

the array is stored in, and then use the index number in square brackets to

Chapter 10 arrays

127

refer to that item at that index (see Listing 10-4). The number 0 will refer to

the first item in the array - which is 15 -, the index number 1 will be for the

second item, etc…

Listing 10-4. Accessing the items of an array

var arr = [15, 40, 243, 53];

var firstItem = arr[0];

console.log(firstItem);

If we try to access an item that doesn’t exist, we will get an undefined

value. This makes sense because that item is not defined. Remember

objects also return an undefined value when we try to access a property

that doesn’t exist.

Let’s see how the array data structure can simplify things when

building programs. We will start with a simple example (Listing 10-5).

Imagine we want to create five different circles of distinct sizes. To be able

to do so with our current knowledge, we would need to create five different

variables and assign those variables the desired values. And then we call

the ellipse function five times, using a different variable each time.

Listing 10-5. Drawing circles of different sizes

var size1 = 200;

var size2 = 150;

var size3 = 100;

var size4 = 50;

var size5 = 25;

function setup() {

 createCanvas(800, 300);

}

Chapter 10 arrays

128

function draw() {

 // circle properties

 fill(237, 34, 93);

 strokeWeight(2);

 ellipse(width/2, height/2, size1, size1);

 ellipse(width/2, height/2, size2, size2);

 ellipse(width/2, height/2, size3, size3);

 ellipse(width/2, height/2, size4, size4);

 ellipse(width/2, height/2, size5, size5);

}

We are only drawing five circles to the screen, but this is already

looking like a burdensome solution. What if we needed to draw 100 circles

or even 1000? This is where arrays come into play and make our job much

easier.

First, let’s create an array of desired circle sizes. As mentioned earlier,

we can use the index numbers to access the individual items in an array.

We will use this knowledge to fetch the desired values from our array. See

Listing 10-6.

Listing 10-6. Using an array to store the size values

var sizes = [200, 150, 100, 50, 25];

function setup() {

 createCanvas(800, 300);

}

function draw() {

 // circle properties

 fill(237, 34, 93);

 strokeWeight(2);

Chapter 10 arrays

129

 ellipse(width/2, height/2, sizes[0], sizes[0]);

 ellipse(width/2, height/2, sizes[1], sizes[1]);

 ellipse(width/2, height/2, sizes[2], sizes[2]);

 ellipse(width/2, height/2, sizes[3], sizes[3]);

 ellipse(width/2, height/2, sizes[4], sizes[4]);

}

This is already looking so much better. But notice the amount of

repetition that’s still happening. We are essentially typing the same thing

over and over again when calling the ellipse function; the only thing

that’s changing is the index numbers. A very clear pattern is emerging

here: if we had a structure that would create a loop for us to call ellipse

function five times with increasing values, then we won’t have to repeat

ourselves.

Luckily, we know how to create a for loop that will help us to do

precisely that. Listing 10-7 provides the above code rewritten to use a for

loop.

Listing 10-7. A for-loop snippet

var sizes = [200, 150, 100, 50, 25];

for (var i = 0; i < 5; i++) {

 ellipse(width / 2, height / 2, sizes[i], sizes[i]);

}

Listing 10-8 and Figure 10-1 shows the usage of the code inside a p5.js

example:

Listing 10-8. Entire code using for loop

var sizes = [200, 150, 100, 50, 25];

function setup() {

 createCanvas(800, 300);

}

Chapter 10 arrays

130

function draw() {

 // circle properties

 fill(237, 34, 93);

 strokeWeight(2);

 for (var i = 0; i < 5; i++) {

 ellipse(width / 2, height / 2, sizes[i],

sizes[i]);

 }

}

Notice the usage of the number five inside the for loop header? It is

there because the array we are using has five items in it. So if there were six

items, then we should update this value to six. But this is a bit problematic;

what if we made our array bigger but forgot to update this value? Luckily

we can use an array property called length instead, which would give us

the number of items in an array. We can rewrite the above code to make

use of the length property (Listing 10-9).

Figure 10-1. Circles drawn using a for loop

Chapter 10 arrays

131

Listing 10-9. Using the array height property

var sizes = [200, 150, 100, 50, 25];

function setup() {

 createCanvas(800, 300);

}

function draw() {

 // circle properties

 fill(237, 34, 93);

 strokeWeight(2);

 for (var i = 0; i < sizes.length; i++) {

 ellipse(width / 2, height / 2, sizes[i],

sizes[i]);

 }

}

Our code is much more concise now, and it is insanely scalable as

well. We can just keep adding new values to the sizes array, and an equal

amount of circles will be drawn for us. Just for fun, let’s automate this setup

even further. Currently, we are manually creating the array that has the

size values. But we could create another for loop that would populate this

array with any amount of random numbers of our choosing by using the

random function (see Listing 10-10 and Figure 10-2).

Listing 10-10. Using the random function

var sizes = [];

function setup() {

 createCanvas(800, 600);

 noFill();

Chapter 10 arrays

132

 // populating the sizes array with random values

 for (var i=0; i<100; i++) {

 var randomValue = random(5, 500);

 sizes.push(randomValue);

 }

}

function draw() {

 background(255);

 for (var i = 0; i < sizes.length; i++) {

 ellipse(width / 2, height / 2, sizes[i],

sizes[i]);

 }

}

Figure 10-2. Output from Listing 10-10

Chapter 10 arrays

133

Let’s walk through what’s happening in this example. First, we are

setting the background color to be white inside the draw function. Also, we

are calling the noFill function that would draw the shapes without a fill

color. These are just stylistic choices. We are creating an empty sizes array

that we will populate with random numbers. Then we are creating a loop

that will iterate for 100 times. Inside that loop, for each iteration, we are

creating a random value in between 5 and 500 using the random function,

and we are pushing that generated random value inside the sizes array

using the push method.

The next step remains the same. We are creating ellipses for all the

values that exist in the sizes array. Notice how changing a single value in

this program, the amount of random numbers being generated, which is

at 100 right now, controls the entire outcome. This is a great example that

exhibits how simple programming structures can create very robust and

scalable solutions.

 Using Arrays
Let’s work on another visualization using Arrays! The plan is to create an

animation that is sequentially and continuously going to display the given

words in a stylistic manner.

First, let’s refresh our knowledge on how to create text in p5.js. We will

be using the text function that takes three arguments: the text to display,

and the x and y positions of that text. Using this knowledge, let’s just

display the word "JavaScript" on the screen on a light-colored background

(see Listing 10-11 and Figure 10-3).

Listing 10-11. Using the text fucntion

function setup() {

 createCanvas(800, 300);

}

Chapter 10 arrays

134

function draw() {

 background(200);

 text('JavaScript', width/2, height/2);

}

Notice that the text we created is not vertically aligned. It doesn’t look

centered. It is easy to fix this using a function called textAlign in p5.js

(Listing 10-12). Just call this function inside the setup function by passing

the value CENTER to it. This will take care of the vertical alignment. We

could pass CENTER to this function one more time to horizontally align the

text as well.

Listing 10-12. Using the textAlign function

textAlign(CENTER, CENTER);

Next, let’s format the text so that it would look a bit better. In Listing 10-13,

we set the text size to 45 pixels by using the textSize function and made the

text color white using the fill function (see Figure 10-4 for the results).

Figure 10-3. Output from Listing 10-11

Chapter 10 arrays

135

Listing 10-13. Using textAlign and styling the text

function setup() {

 createCanvas(800, 300);

 textAlign(CENTER, CENTER); // centering the text

}

function draw() {

 background(200);

 fill(255); // text color

 textSize(45); // text size

 text('JavaScript', width/2, height/2);

}

Perfect! In this example, we would like to create an array of words

and continuously cycle through them. Let’s first create the array that we

will be using. We will be creating it outside the draw function because we

only need to create this array once. If we were to declare it inside the draw

function, then it would continuously be created and destroyed with each

call to the draw function (which happens around 60 times a second by

default!).

Figure 10-4. Output for Listing 10-13

Chapter 10 arrays

136

Let’s create a variable called words outside the draw and setup

functions (Listing 10-14). Since the variable is initialized outside of both

the setup and draw functions, it can be used from both of them.

Listing 10-14. Creating a words variable

var words = ['I', 'love', 'programming', 'with', 'JavaScript'];

Next, we need to devise a way that will continuously generate a value in

between 0 and the length of this array to be able to refer to the individual

items in an array. To do so, we can use the remainder (%) operator.

 Using the remainder Operator
The remainder operator is a bit different than all the operators we have

seen previously, such as plus or minus, so it might be beneficial to see how

it works. Given two values, the remainder operator returns the remainder

left over when the first value is divided by the second value. The % operator

symbolizes it.

As we can see in Listing 10-15, given an incrementally increasing first

value, the remainder operator allows us to cycle through the second value

minus one.

Listing 10-15. Remainder operator

console.log(1 % 6) // returns 1.

console.log(2 % 6) // returns 2.

console.log(3 % 6) // returns 3.

console.log(4 % 6) // returns 4.

console.log(5 % 6) // returns 5.

console.log(6 % 6) // returns 0.

console.log(7 % 6) // returns 1.

// etc..

Chapter 10 arrays

137

You might find yourself thinking: "how would you even know this?"

As in, this can be something that is really hard to think of, if all we knew

was what the remainder operator did but didn’t have any practice using it.

This is perfectly normal. You get to understand what kind of an operator or

structure you can use for a certain purpose by seeing other people use it. It

is sometimes a matter of experience and practice rather than knowledge.

If I am to provide a constant supply of incremental values to a

remainder operator alongside with the length of my array, I will be able to

generate values cycling in between 0 and that length.

In the p5.js context, that constant supply of values could be the

frameCount variable. Remember frameCount tells us how many times the

draw function has been called so far. As shown in Listing 10-16, let’s create

a variable inside the draw function with the name currentIndex, which

uses the remainder operator, the frameCount p5.js variable and the length

of the words array to create values in between 0 and the length of the array

minus one.

Listing 10-16. Using the remainder operator

var currentIndex = frameCount % words.length;

We can console.log this statement to verify we are indeed creating

values in the desired range. But a better way of doing things might be just

to use the text function that we already have to display this value using

p5.js. We are visual learners after all.

One thing to notice at this point is that the display of the numbers is

simply too fast; it is really hard to understand what’s going on. We should

slow p5.js down or else our text will be very hard to read. One way of doing

it could be to decrease the frame rate using the frameRate function. As

shown in Listing 10-17, let’s change the frameRate value inside the setup

function to 3. See the results in Figure 10-5.

Chapter 10 arrays

138

Listing 10-17. Slowing down the frameRate

var words = ['I', 'love', 'programming', 'with', 'JavaScript'];

function setup() {

 createCanvas(800, 300);

 textAlign(CENTER, CENTER);

 frameRate(3); // using a lower frame rate to slowdown

the text

}

function draw() {

 var currentIndex = frameCount % words.length;

 background(200);

 fill(255);

 textSize(45);

 text(currentIndex, width/2, height/2);

}

Awesome! Using this code we should be able to see a range of numbers

being displayed on the screen. But we are not interested in displaying

numbers to the screen – but the words inside the array. That’s very easy to

Figure 10-5. Output from Listing 10-17

Chapter 10 arrays

139

do using our knowledge. We will use the square bracket notation to access

individual items inside the array.

As shown in Listing 10-18, let’s create another variable called

currentWord. This variable will store the current word as determined

by the currentIndex variable. Now we can use this variable instead of

currentIndex inside the text function.

Listing 10-18. Creating variable currentWord

var currentWord = words[currentIndex];

We are almost done. But one another thing that I would like to do is

to change the background color per word since this is not aesthetically

pleasing at all right now.

We will create another array called colors that will contain color

information. It turns out that we can pass an array into p5.js color

functions, and it is the same as passing values one by one to it.

So, as shown in Listing 10-19, these two expressions will create the

same color as each other.

Listing 10-19. Using an array as a value for the fill function

fill(255, 0, 0);

fill([255, 0, 0]);

We will create the colors array that contains arrays of colors we will

use. We can try to come up with color values by ourselves, but it is hard to

find good-looking colors that way.

Adobe has a web page called Adobe Color CC (https://color.adobe.

com) where we can find color themes to use in our designs. I will use it to

find a theme that will go with my visualization.

Under the explore tab in Adobe Color CC, you can select a desirable

theme. Hover over your desired theme and click “Edit Copy.” This will lead

you to a page where you can see the RGB values for the colors. Listing 10- 20

is a sample of colors picked from that website.

Chapter 10 arrays

https://color.adobe.com/
https://color.adobe.com/

140

Listing 10-20. Color samples from Adobe Color CC

var colors = [

 [63, 184, 175],

 [127, 199, 175],

 [218, 216, 167],

 [255, 158, 157],

 [255, 61, 127],

];

Notice my formatting for the data is a bit different because I didn’t

want the line length to be too long as it might hamper the legibility of our

code. This is just a stylistic choice.

Now we can use these color values inside the fill function to change

the color of the background with each frame. Listing 10-21 shows what the

final code looks like.

Listing 10-21. Final Code

var words = ['I', 'love', 'programming', 'with', 'JavaScript'];

var colors = [

 [63, 184, 175],

 [127, 199, 175],

 [218, 216, 167],

 [255, 158, 157],

 [255, 61, 127],

];

function setup() {

 createCanvas(800, 300);

 textAlign(CENTER, CENTER);

 frameRate(3); // using a lower frame rate to slowdown

the text

}

Chapter 10 arrays

141

function draw() {

 var currentIndex = frameCount % words.length;

 var currentColor = colors[currentIndex];

 var currentWord = words[currentIndex];

 background(currentColor);

 fill(255);

 textSize(45);

 text(currentWord, width / 2, height / 2);

}

 Summary
In this chapter we learned about a JavaScript data structure called Arrays.

Arrays allow us to store multiple values of any type in a sequential fashion.

The values stored in an array can be accessed using the square bracket

notation.

We can populate an array with the desired values when they are

first created or after their creation, using the push method. Arrays are

particularly useful when used with loops. Loops let us access the items in

an array in a very easy manner.

We also learned about the remainder operator. A remainder operator

returns the remainder from a division operation in between two numbers.

Using this operator, we can derive sequential values that cycle in between

zero and the desired value.

 Practice
Build a function called countdown that will get two arguments – a number

and a message – (Listing 10-22) and will create a visualization that is

similar to the one above, which will display a countdown from the given

Chapter 10 arrays

142

number to the number 0. At the end of the countdown, it should display

the given message, the second argument, to the screen.

Feel free to add another parameter to the function that will control

how long each number will stay on the screen.

Listing 10-22.

countdown(10, "Launch!");

Chapter 10 arrays

143© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_11

CHAPTER 11

Events
In Chapter 6, we learned about a p5.js variable called mouseIsPressed,

which assumes the value to be true while the mouse is being pressed and

false for all other instances.

We also learned that this is not a great way of capturing user input

as the execution speed of the draw function can make it hard to get this

variable updated in a reliable way. In this chapter we’ll review other ways

of handling user input inside p5.js, namely, the events, which solve this

problem. Using events, we can capture the user input outside the draw

function loop.

There are numerous event functions in p5.js that we can declare to

make use of the event system. Here we’ll focus on two event functions: the

mousePressed and keyPressed event functions.

 Using mousePressed
The idea is similar to the draw and setup functions where we declare this

function with this particular name, which is treated by p5.js in a special

manner (just like setup and draw functions are).

In a p5.js code, the function we declare under the name mousePressed

gets triggered every time the mouse buttons are pressed. Let’s rewrite our

previous example that makes use of the mouseIsPressed variable to make

use of the mousePressed event function instead (Listing 11-1).

144

Listing 11-1. Using mousePressed event function

var toggle = true;

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

}

function draw() {

 // display a different bg color based on the toggle

value

 if (toggle === true) {

 background(1, 186, 240);

 } else {

 background(250, 150, 50);

 }

 // declaration of variables

 var x = width / 2;

 var y = height / 2;

 var size = 200;

 if (frameCount < 60) {

 size = size + frameCount;

 } else {

 size = size + 60;

 }

 // circle

 fill(237, 34, 93);

 noStroke();

 ellipse(x, y, size, size);

Chapter 11 events

145

 // rectangle

 fill(255);

 rect(x, y, size*0.75, size*0.15);

}

function mousePressed() {

 toggle = !toggle; // change the toggle value to be

opposite.

}

Well, that was a simple refactor! We are simply declaring a function we

don’t execute ourselves. The execution is handled by p5.js whenever the

corresponding action takes place.

There are lots of other event functions. A complete list can be found at

https://p5js.org/reference/#group-Events.

 Using keyPressed
One other event function worth learning about is the keyPressed function.

As the name implies, the keyPressed function gets triggered every time a

key is pressed. In Listing 11-2, let’s quickly test how it works in a brand new

sketch.

Listing 11-2. Using the keyPressed function

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(220);

}

Chapter 11 events

https://p5js.org/reference/#group-Events

146

function keyPressed() {

 console.log('pressed');

}

In this example, every time we press a key, we will see a message

‘pressed’ displayed in the console. In Listing 11-3, let’s look at a more

involved example where pressing a key each time creates a shape in the

canvas.

Listing 11-3. Drawing a shape with every keypress

var pressed;

function setup() {

 createCanvas(800, 300);

 background(220);

}

function draw() {

 if (pressed === true) {

 ellipse(

 random(width),

 random(height),

 50,

 50

);

 }

 pressed = false;

}

function keyPressed() {

 pressed = true;

}

Chapter 11 events

147

The shapes are created after we press a key (Figure 11-1).

Notice a couple of things. First of all, we moved the background

function to be under the setup function. This is to ensure that the shapes

we draw remain on the screen. If we are to have a background function

called inside the draw function, then it would paint over everything, on

every frame which is not desirable for this use case. Also, we are spreading

the ellipse function call over a couple of lines, again, to increase legibility.

We have a global variable called pressed. With each keypress, we are

setting the value of this global variable to be true. When this happens,

the draw function renders an ellipse to the screen since the conditional

statement gets executed. Then the draw function immediately sets the

pressed value to false again so that we only get one ellipse.

In Listing 11-4, we will improve this example a little bit to make it more

pleasing to the eye. Currently, the circles are looking a bit too uniform,

and the colors are a bit too dull. We will make it so that every time we are

creating a circle, it uses a random size between 0 and 200 and a random

color from a list of predefined random colors (Figure 11-2).

Figure 11-1. Output from Listing 11-3

Chapter 11 events

148

Listing 11-4. Changing size and color

var pressed;

var colors = [];

function setup() {

 createCanvas(800, 300);

 background(0);

 colors = [

 [245, 3, 155],

 [13, 159, 215],

 [148, 177, 191],

 [100, 189, 167],

 [242, 226, 133],

 [176, 230, 110],

 [123, 90, 240]

];

}

function draw() {

 noStroke();

 if (pressed === true) {

 var randomIndex = parseInt(random(colors.length), 10);

// convert the given number to an integer

 var randomSize = random(200);

 fill(colors[randomIndex]);

 ellipse(

 random(width),

 random(height),

 randomSize,

 randomSize

);

Chapter 11 events

149

 }

 pressed = false;

}

function keyPressed() {

 pressed = true;

}

Figure 11-2. Output from Listing 11-4

To be able to select a random color each time a key is pressed, we need

to generate a random integer in between 0 and the length of the colors

array minus 1. We use minus 1 because array indices start counting from 0.

To generate any random number in between 0 and the length of the

array minus 1, we can simply write the random function as random(colors.

length). This will end up generating a number in between 0 and up until

the number of items in the colors array (excluding that number). The

problem, though, is that the number being generated is a floating-point

number, meaning it has decimal places. However, we need an integer

number to be able to access items in an array. So we need to convert the

decimal number into a whole number. There are a couple of ways to solve

this. One way could be to use the p5.js floor function, which rounds down

the given floating-point number to the nearest integer. Another solution

could be to use the native JavaScript function called parseInt, which

Chapter 11 events

150

converts a given value into an integer - if the value can be converted. We

can’t expect to throw a string name value to it and receive an integer.

As shown in Listing 11-5, we need to pass a second parameter to

parseInt function to set the number base that the calculation will happen.

That base almost always is 10. Using the parseInt function on a float

number looks something like this.

Listing 11-5. Using parseInt on a float number

var num = parseInt(0.5, 10);

console.log(num); // will be 0.

Identifying the pressed key is only part of the issue, though. Another

thing that we should be able to do is to identify which button the user

pressed. Inside the keyPressed function, we could theoretically identify

any key pressed by using the keyCode variable. A keyCode variable holds

the last key that the user pressed in an encoded manner, such that if the

user pressed the key ‘a’, it would return the value ‘65’, for ‘b’; ‘66’, etc…

Since p5.js is a helpful library, this makes it easier to identify some

of the keys by providing predefined variables for them, like: BACKSPACE,

DELETE, ENTER, RETURN, TAB, ESCAPE, SHIFT, CONTROL, OPTION, ALT,

UP_ARROW, DOWN_ARROW, LEFT_ARROW, RIGHT_ARROW.

For example, Listing 11-6 provides a small code snippet that executes a

console.log statement whenever the ‘Enter’ key is pressed.

Listing 11-6. Using keyCode values

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(220);

}

Chapter 11 events

151

function keyPressed() {

 if (keyCode === ENTER) {

 console.log('Enter Pressed');

 }

}

Using the keyCode variable, we could identify which alphanumeric key

is pressed with a bit of decoding. But there is another variable that works

specifically well for the alphanumeric characters and that is called key.

The key variable stores the value of the alphanumeric key that is pressed as

is, so it makes it easier to identify which key was pressed.

 Summary
In this chapter, we learned about a better way to handle events, and that

is event functions. We focused specifically on two event functions: the

mousePressed and keyPressed event functions.

We also learned about some of the variables we can use inside the

keyPressed function: key and keyCode. Using key makes identifying the

alphanumeric keypresses easier whereas keyCode is ideal for detecting

other keypresses as it can be compared against p5.js variables such as

ENTER, SPACE, etc. That makes identifying those buttons easier.

From the JavaScript part of the things, we learned about the parseInt

function that can be used to convert number-like values (which include

strings that represent a number as well) into an integer number.

 Practice
Draw a rectangle to the screen where the keyboard arrow keys can control

the position of the rectangle.

Chapter 11 events

153© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_12

CHAPTER 12

More on p5.js
At this point, we are almost ready to work on our final project: an

interactive game built using JavaScript and p5.js! That’s in the next chapter.

Before we do that, I would like to demonstrate a couple of more useful

p5.js functions to extend the realm of things we can build.

Have you noticed how we can draw shapes on the screen using our

current knowledge, but we can’t really transform them such as rotating

them around their center? That’s a big blocker on the kinds of visuals we

can build, so in this chapter let’s learn how to do transformations in p5.js

to enhance our abilities.

 Rotate and Translate
Having used other kinds of drawing libraries, I should say that doing

transformations such as scaling, rotating, and translating shapes can be a

bit unintuitive in p5.js. Listings 12-1 and 12-2 are examples demonstrating

how to use the p5.js rotate function, which allows us to rotate shapes.

Listing 12-1. Drawing rectangles without rotation

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

 noStroke();

}

154

function draw() {

 background(220);

 fill(237, 34, 93);

 rect(width/2, height/2, 50, 50);

 rect(width/2+50, height/2+50, 50, 50);

}

Figure 12-1. Output for Listing 12-1

Currently, we are drawing two rectangles that are diagonal to each

other (Figure 12-1). Let’s make use of the rotate function to see what’s

going to happen.

Listing 12-2. Using the rotate function

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

 noStroke();

}

function draw() {

 background(220);

 fill(237, 34, 93);

 rotate(5);

Chapter 12 More on p5.js

155

 rect(width/2, height/2, 50, 50);

 rect(width/2+50, height/2+50, 50, 50);

}

You will notice that both of the shapes disappeared from the screen.

If you were expecting the shapes to move by only 5 degrees, this must be a

confusing result. This happens because the default units that rotate function

work within p5.js are radians. We can make this function work using degrees

instead by using the angleMode function with the DEGREES p5.js variable. As

shown in Listing 12-3, make this declaration inside the setup function.

Listing 12-3. Using angleMode

angleMode(DEGREES);

Now things work in a way that is more or less expected. We can now

observe that when we call the rotate function, we end up rotating every

shape that comes after the function call (Listing 12-4 and Figure 12-2).

Listing 12-4. Using rotate with angleMode

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

 noStroke();

 angleMode(DEGREES);

}

function draw() {

 background(220);

 fill(237, 34, 93);

 rotate(5);

 rect(width/2, height/2, 50, 50);

 rect(width/2+50, height/2+50, 50, 50);

}

Chapter 12 More on p5.js

156

Another thing to notice is that the rotation happens around the origin

point, the top-left corner of the canvas. However, when we control shapes,

we usually like to have them rotate around their origin. So this function, as

is, doesn’t seem to be extremely useful.

To have better control over the rotate function, we should look into

the translate function. The translate function moves the object for the

given x and y translation amount from the origin point. In Listing 12-5, let’s

make use of it inside our current setup. See Figure 12-3 for the results.

Listing 12-5. Using the translate function

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

 noStroke();

 angleMode(DEGREES);

}

function draw() {

 background(220);

 fill(237, 34, 93);

 translate(150, 0); // using translate function

Figure 12-2. Output from Listing 12-4

Chapter 12 More on p5.js

157

 rotate(5);

 rect(width/2, height/2, 50, 50);

 rect(width/2+50, height/2+50, 50, 50);

}

Figure 12-3. Output from Listing 12-5

What’s happening right now is that the translate function moves

everything inside the canvas 150 pixels to the right. It moves the entire

coordinate system as the rotation is also happening around the 150px

right-hand side of the origin instead of happening from the origin.

Without further ado, Listing 12-6 and Figure 12-4 are about how to

rotate things around their origin. I think it is easier to show how it is done

than to explain it. We will work with a single shape for now.

Listing 12-6. Rotating around the origin

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

 noStroke();

 angleMode(DEGREES);

}

Chapter 12 More on p5.js

158

function draw() {

 background(220);

 fill(237, 34, 93);

 // rotating the shape around it's origin

 translate(width/2, height/2);

 rotate(45);

 rect(0, 0, 100, 100);

}

Figure 12-4. Output from Listing 12-6

In this example, we are drawing a shape as usual, but using the

translation function to set its x and y coordinates instead of feeding

those values directly into the shape drawing function. Doing this, when

coupled with using the rectMode function, allows us to draw the shape

with its center located at the origin. Basically, we start off by drawing the

shape at the origin point as all the transformation functions work relative

to that point. Then we use the translate and rotate functions to move

the shape to the desired position and angle. Using this approach, we need

to remember to call the rotate after the translate function or the rotation

will still happen relative to the original origin point, which is probably not

desired.

Chapter 12 More on p5.js

159

The current shortcoming with this approach and with the usage of

transformation functions, in general, is that everything we draw from this

point onward will be using this new origin point. The way to fix this is by

using the push and pop functions.

 Push and Pop
The p5.js push function allows us to create a new state and the pop

function restores the state to the previous conditions. This allows us to

have completely different settings applied to individual objects without

worrying if those settings will affect the shapes that come after, as long as

we do everything in between a push and a pop call. Again it is easier to see

this in an example (Listing 12-7 and Figure 12-5).

With our current setup, everything we draw after the translate and

rotate functions will have that 45 degrees of rotation applied to them.

Listing 12-7. Translate function with multiple shapes

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

 noStroke();

 angleMode(DEGREES);

}

function draw() {

 background(220);

 translate(width/2, height/2);

 rotate(45);

Chapter 12 More on p5.js

160

 // pink rectangle

 fill(237, 34, 93);

 rect(0, 0, 150, 150);

 // white rectangle

 fill(255, 255, 255);

 rect(0, 0, 75, 75);

}

Fgure 12-5. Output from Listing 12-7

In Listing 12-8, let’s implement the push and pop functions here so that

we can isolate the transformation we are applying to the larger rectangle.

See Figure 12-6 for results.

Listing 12-8. Using the push and pop functions

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

 noStroke();

 angleMode(DEGREES);

}

Chapter 12 More on p5.js

161

function draw() {

 background(220);

 // translation and rotation will be contained in between

 // push and pop function calls.

 push();

 translate(width/2, height/2);

 rotate(45);

 // pink rectangle

 fill(237, 34, 93);

 rect(0, 0, 150, 150);

 pop();

 // white rectangle

 fill(255, 255, 255);

 rect(0, 0, 75, 75);

}

Figure 12-6. Output for Listing 12-8

Brilliant! Whatever we are doing in between the push and pop functions

don’t end up affecting anything else outside these function calls. It is

important to note that we will always call the push and pop functions

together. Using one but not the other doesn’t make any sense.

Chapter 12 More on p5.js

162

In Listing 12-9, let’s update our example so that we can still translate

the pink rectangle to the middle but apply a different rotation value to it.

Listing 12-9. Applying different translations to different shapes

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

 noStroke();

 angleMode(DEGREES);

}

function draw() {

 background(220);

 push();

 translate(width/2, height/2);

 rotate(45);

 // pink rectangle

 fill(237, 34, 93);

 rect(0, 0, 150, 150);

 pop();

 push();

 translate(width/2, height/2);

 rotate(30);

 // white rectangle

 fill(255, 255, 255);

 rect(0, 0, 75, 75);

 pop();

}

Chapter 12 More on p5.js

163

If you find yourself wishing that p5.js transformations weren’t this

complicated, you can try building your own functions to handle and

abstract away the complexity. Listing 12-10 provides an example rectangle

function that takes a fifth argument, which is the rotation parameter.

Listing 12-10. Declaring a custom function to handle transformations

function rectC(x, y, width, height, rotation) {

 if (rotation === undefined) {

 rotation = 0;

 }

 push();

 translate(x, y);

 rotate(rotation);

 rect(0, 0, width, height);

 pop();

}

Here, we are creating our rectangle drawing function called rectC

that wraps the original rect function but uses the push and pop internally

to save state and set transformations, and it accepts an optional rotation

parameter. If the rotation argument is not provided, then it will assume the

value is undefined. If that’s the case, I can just set the rotation value to be

0 instead. Listing 12-11 is the previous example refactored to make use of

this function. Notice it is much more concise this time.

Listing 12-11. Using a custom function to handle transformations

function setup() {

 createCanvas(800, 300);

 rectMode(CENTER);

 noStroke();

 angleMode(DEGREES);

}

Chapter 12 More on p5.js

164

function draw() {

 background(220);

 // pink rectangle

 fill(237, 34, 93);

 rectC(width/2, height/2, 150, 150, 45);

 // white rectangle

 fill(255, 255, 255);

 rectC(width/2, height/2, 75, 75, 30);

}

function rectC(x, y, width, height, rotation) {

 // if rotation value is not provided assume it is 0

 if (rotation === undefined) {

 rotation = 0;

 }

 push();

 translate(x, y);

 rotate(rotation);

 rect(0, 0, width, height);

 pop();

}

 Summary
When working with a drawing library, it becomes pretty important to be

able to transform shapes. In this chapter, we saw how the p5.js transform

functions work. We learned about the translate and rotate functions. We

also learned about the angleMode function, which lets us set the units used

by the rotate function.

Chapter 12 More on p5.js

165

We then learned about the push and pop functions and found out

how they can be used in conjunction with the transformation functions

to isolate the state and apply transformations to individual shapes. While

these functions aren’t crucial to learning JavaScript, I find that knowing

about them is pretty essential when using p5.js.

 Practice
Try building something cool on your own before moving on to the next

chapter where we will be building an interactive game together!

Chapter 12 More on p5.js

167© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6_13

CHAPTER 13

Final Project
In this chapter, we will be building a game that makes use of everything

that we have seen so far. We will also learn a couple of more tricks along the

way as well. The fact that we can build a simple game using the p5.js library

is pretty impressive and very illustrative of the capabilities of this library.

Our game is going to be simple. It is a typing speed game where we will

be rapidly displaying numbers to the player and expect the player to enter

the current number on the screen using their keyboard. If they enter the

correct number in the given amount of time, they score. We will keep track

of the score to be able to display it at the end of the game. It would be great

if the game presents a strong visual experience, but the primary focus is

going to be around getting the game logic right.

Let’s create a breakdown of things that we need to create:

• We need to display a number on the screen every

N frames.

• We don’t want the number to remain static on the

screen. It should be animated to make it easier or

harder to read with time.

• That number needs to remain on the screen until the

next number is displayed or until the player presses a

key in an attempt to match the number.

• If the player entry matches the number on the screen,

we will display a success message. If not, the failure will

be indicated.

168

• We need to keep track of the amount of success and

failure. After X many frames or attempts, display the

results to the user.

• We need to find a way to restart the game after it is over.

 Getting Started
The first item on our list is to be able to display a unique number on

the screen at regular intervals. Remember that we used the remainder

operator (%) to achieve this feat before. Here, we will be displaying a

number in between 0 and 9 on the screen every 100 frames (Listing 13-1).

Listing 13-1. Displaying a random integer every 100 frames

var content;

function setup() {

 createCanvas(800, 300);

 textAlign(CENTER, CENTER);

}

function draw() {

 background(220);

 if (frameCount === 1 || frameCount % 100 === 0) {

 content = parseInt(random(10), 10);

 }

 text(content, width/2, height/2);

}

In this example, we are first initializing a variable called content in the

global scope. Then in the draw function, we are using the random function

to generate a random number on the first frame or every 100 frames and

Chapter 13 Final projeCt

169

then save that value inside the content variable. However, the problem

with the random function is that it returns a floating-point number. We

would like to have whole numbers, integers, for the purpose of this game.

So we are using the parseInt function to convert the floating-point

number to an integer number. Remember that the parseInt function

requires you to pass the second argument to set the base for the numerical

system of the operation, which is almost always going to be the number 10

for common use cases.

We are storing the generated number inside a variable called content

and then passing that variable into a text function that displays it in the

middle of the screen.

We will need lots of custom behavior from the number that we will

display on the screen; so we will create a JavaScript object to represent

it. This way, the functions we create to manipulate the number (such as

transformation operations, color configurations, etc.) can remain grouped

under the object that helps with the organization of the program. We will

call this new object GuessItem. I am well aware that’s a terrible name

but as they say, there are two hard things in computer science: cache

invalidation, naming things, and off-by-one errors.

If we are to look at our code after this attempt at creating a JavaScript

object that wraps the p5.js text function, it might look like we are adding

additional complexity for no reason, as our code grew almost twice in size.

But containing the text drawing functionality under an object will help

with organizing our code a lot down the road. See Listing 13-2.

Listing 13-2. Text drawing functionality

var guessItem;

function setup() {

 createCanvas(800, 300);

}

Chapter 13 Final projeCt

170

function draw() {

 if (frameCount === 1 || frameCount % 100 === 0) {

 background(220);

 guessItem = new GuessItem(width/2, height/2, 1);

 }

 guessItem.render();

}

function GuessItem(x, y, scl) {

 this.x = x;

 this.y = y;

 this.scale = scl;

 this.content = getContent();

 function getContent() {

 // generate a random integer in between 0 and 9

 return parseInt(random(10), 10);

 }

 this.render = function () {

 push();

 textAlign(CENTER, CENTER);

 translate(this.x, this.y);

 scale(this.scale);

 text(this.content, 0, 0);

 pop();

 }

}

Let’s focus on the GuessItem object first. GuessItem is an object-

creating Constructor Function that requires three arguments: the x and

y position and the scale of the shape that it draws to the screen. It also

has two methods on itself. One of them is getContent, which generates

Chapter 13 Final projeCt

171

a random number in between 0 and 10 and stores it inside a property

called content. Another method it contains is render, which displays the

content property of a GuessItem object instance on the screen.

Every operation inside the render method lives under the push and pop

function calls. This allows us to contain the setting and transformation-

related state changes that happen inside this method contained in this

object. Here, we are using the translate and scale transform functions

to change the position and size of the text object. We didn’t see the scale

function before, but it’s a transformation function that is very similar to

translate and rotate functions. Just as the name implies, it controls the

scale of the drawing area, and it has similar working principles to other

transformation functions, so it is best to contain it in between the push and

pop functions.

We could have used a textSize function call for the size, but I usually

find working with transform functions to be a bit more intuitive.

In Listing 13-3, we will now use this GuessItem constructor function

to create an object that draws to the screen. We instantiate a GuessItem

object with several parameters on line 10 and save it inside a variable

called guessItem.

Listing 13-3. Creating a GuessItem instance

guessItem = new GuessItem(width/2, height/2, 1);

The number that the GuessItem is going to display is determined at the

instantiation as well. Drawing this object to the screen happens on line 13

using the render method it has (Listing 13-4).

Listing 13-4. Using the render method

guessItem.render();

Chapter 13 Final projeCt

172

In Listing 13-5, let’s make it so that the text grows in size during its

lifetime to add some dynamism to the game.

Listing 13-5. Making the text grow in size

var guessItem;

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(220);

 if (frameCount === 1 || frameCount % 100 === 0) {

 guessItem = new GuessItem(width / 2, height /

2, 1);

 }

 guessItem.render();

}

function GuessItem(x, y, scl) {

 this.x = x;

 this.y = y;

 this.scale = scl;

 this.scaleIncrement = 1;

 this.content = getContent();

 function getContent() {

 // generate a random integer in between 0 and 9

 return parseInt(random(10), 10);

 }

Chapter 13 Final projeCt

173

 this.render = function() {

 push();

 textAlign(CENTER, CENTER);

 translate(this.x, this.y);

 scale(this.scale);

 text(this.content, 0, 0);

 // increase the scale value by the increment

value with each render

 this.scale = this.scale + this.scaleIncrement;

 pop();

 }

}

We added a way to increment the scale function with each call to the

render function (Listing 13-6).

Listing 13-6. Increment the scale function

this.scale = this.scale + this.scaleIncrement;

We also added a new variable inside the GuessItem constructor

function called scaleIncrement that controls the speed of scaling. Play

with this value to be able to change the pace of animation. We could, for

example, increase this value to make the game harder.

In Listing 13-7, we will add a bit more parameterization to our script to

be able to control the way and frequency the numbers are displayed.

Listing 13-7. Controlling the frequency of numbers

var guessItem;

// controls the frequency that a new random number is

generated.

var interval = 100;

Chapter 13 Final projeCt

174

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(220);

 if (frameCount === 1 || frameCount % interval === 0) {

 guessItem = new GuessItem(width / 2,

height / 2, 1);

 }

 guessItem.render();

}

function GuessItem(x, y, scl) {

 this.x = x;

 this.y = y;

 this.scale = scl;

 this.scaleIncrement = 0.5;

 this.content = getContent();

 this.alpha = 255;

 this.alphaDecrement = 3;

 function getContent() {

 // generate a random integer in between 0 and 9

 return parseInt(random(10), 10);

 }

 this.render = function() {

 push();

 fill(0, this.alpha);

 textAlign(CENTER, CENTER);

 translate(this.x, this.y);

 scale(this.scale);

Chapter 13 Final projeCt

175

 text(this.content, 0, 0);

 // increase the scale value by the increment

value with each render

 this.scale = this.scale + this.scaleIncrement;

 // decrease the alpha value by the decrement

value with each render

 this.alpha = this.alpha - this.alphaDecrement;

 pop();

 }

}

Here, we have a couple of more small tweaks. We added a fill function

to the render method, and we are now dynamically setting alpha for the

displayed number to get more transparent with each frame. I think that

adds to the dynamism of the game. Set that number to something small

to see things get stressful. We also parameterized the frequency of the

creation of GuessItem using a global variable called interval so that we

can play with the value of that variable to make the game easier or harder.

By the way, can you guess why we named the number-generating

function getContent? That’s because after we are done with this game, it

should be a fairly trivial thing to update the game to display words instead

of numbers on the screen. Keeping our function names generic helps a

little bit with the future expansion work that we might want to do for this

game.

So far, we only completed two items from our to-do list, which are

displaying a number on the screen by using a given interval and having

that number animated on the screen to add dynamism to our game. In the

next section, we will handle the player interaction.

Chapter 13 Final projeCt

176

 User Interaction
We still have the outstanding task of fetching the user input and comparing

it to the number on the screen. Let’s implement that (Listing 13-8).

Listing 13-8. Fetching and comparing user input

var guessItem = null;

// controls the frequency that a new random number is

generated.

var interval = 100;

var solution = null;

function setup() {

 createCanvas(800, 300);

}

function draw() {

 background(220);

 if (frameCount === 1 || frameCount % interval === 0) {

 solution = null;

 guessItem = new GuessItem(width / 2,

height / 2, 1);

 }

 if (guessItem) {

 guessItem.render();

 }

 if (solution === true) {

 background(255);

 } else if (solution === false) {

 background(0);

 }

}

Chapter 13 Final projeCt

177

function keyPressed() {

 if (guessItem !== null) {

 // check to see if the pressed key matches to

the displayed number.

 // if so set the solution global variable to a

corresponding value.

 console.log('you pressed: ', key);

 solution = guessItem.solve(key);

 console.log(solution)

 guessItem = null;

 } else {

 console.log('nothing to be solved');

 }

}

function GuessItem(x, y, scl) {

 this.x = x;

 this.y = y;

 this.scale = scl;

 this.scaleIncrement = 0.5;

 this.content = getContent();

 this.alpha = 255;

 this.alphaDecrement = 3;

 this.solved = null;

 function getContent() {

 // generate a random integer in between 0 and 9

 return parseInt(random(10), 10);

 }

Chapter 13 Final projeCt

178

 this.solve = function(input) {

 // check to see if the given input is

equivalent to the content.

 // set solved to the corresponding value.

 var solved;

 if (input === this.content) {

 solved = true;

 } else {

 solved = false;

 }

 this.solved = solved;

 return solved;

 }

 this.render = function() {

 push();

 if (this.solved === false) {

 return;

 }

 fill(0, this.alpha);

 textAlign(CENTER, CENTER);

 translate(this.x, this.y);

 scale(this.scale);

 text(this.content, 0, 0);

 // increase the scale value by the increment

value with each render

 this.scale = this.scale + this.scaleIncrement;

 // decrease the alpha value by the decrement

value with each render

 this.alpha = this.alpha - this.alphaDecrement;

 pop();

 }

}

Chapter 13 Final projeCt

179

We updated the code in a bunch of places. To be able to achieve our

task, we implemented a new method on the GuessItem object called

solve. The solve method gets a user input and returns either true

or false depending if the given user input matches to the GuessItem

content variable. We end up saving the result inside a solution global

variable (Listing 13-9).

Listing 13-9. Solve method inside the GuessItem

this.solve = function(input) {

 // check to see if the given input is equivalent to the

content.

 // set solved to the corresponding value.

 var solved;

 if (input === this.content) {

 solved = true;

 } else {

 solved = false;

 }

 this.solved = solved;

 return solved;

}

To be able to get user input, we created a p5.js event function,

keyPressed, which is called every time the user presses a key. Inside this

keyPressed function we call the solve method of a guessItem object to see

if the pressed key matches the content of the guessItem. If so, the solution

variable will be true, and if not, it would be false.

Listing 13-10. Handling key press

function keyPressed() {

 // check to see if the pressed key matches to

the displayed number.

Chapter 13 Final projeCt

180

 // if so set the solution global variable to a

corresponding value.

 if (guessItem !== null) {

 console.log('you pressed: ', key);

 solution = guessItem.solve(key);

 console.log(solution)

 guessItem = null;

 } else {

 console.log('nothing to be solved');

 }

}

We are only reading the keypresses from the player if there is a

GuessItem that exists. That’s because we are now assigning a null to the

guessItem variable once the player makes a guess. Doing so effectively gets

rid of the current guessItem object. That allows us to prevent the player

from making multiple guesses for a number. Since the guessItem variable

can now have a null variable, meaning there might not be a guess item

present in the game because the user tried to guess its value, our call to the

render method might fail. To prevent that from happening, we are putting

that render call inside a conditional. Additionally, we have a couple of

console.log functions inside the keyPressed function to have a sense of

what’s going on by looking at the console messages.

As a testing measure, we have added a conditional that changes the

background color to black if the player guess is wrong and to white, if it is

correct using the solution variable.

Having said all that, this code doesn’t work right now. Even our correct

guesses are turning the screen to black. Can you guess why?

It turns out the reason is that the keyPressed function captures

the pressed keys as strings whereas the generated content inside the

GuessItem object is a number. Using triple equal signs, ===, we are looking

to see if there is strict equality in between these two values, and there is

Chapter 13 Final projeCt

181

none. That is because a number is never equal to a string. So, our function

returns false. To be able to fix this issue, we are going to convert the

number generated into a string by using the JavaScript function String

(Listing 13-11).

Listing 13-11. Converting the random integer to a string

function getContent() {

 return String(parseInt(random(10), 10));

}

 Keeping the User Score
To be able to give feedback to the user as to how they are doing in the game,

we will start storing their scores. We will make use of this stored data to

make the game stop after a set amount of guesses or losses (Listing 13- 12).

Listing 13-12. Storing scores

var guessItem = null;

// controls the frequency that a new random number is

generated.

var interval = 100;

// an array to store solution values

var results = [];

var solution = null;

function setup() {

 createCanvas(800, 300);

}

Chapter 13 Final projeCt

182

function draw() {

 background(220);

 if (frameCount === 1 || frameCount % interval === 0) {

 solution = null;

 guessItem = new GuessItem(width/2, height/2, 1);

 }

 if (guessItem) {

 guessItem.render();

 }

 if (solution === true) {

 background(255);

 } else if (solution === false) {

 background(0);

 }

}

function keyPressed() {

 if (guessItem !== null) {

 // check to see if the pressed key matches to

the displayed number.

 // if so set the solution global variable to a

corresponding value.

 console.log('you pressed: ', key);

 solution = guessItem.solve(key);

 console.log(solution);

 if (solution) {

 results.push(true);

 } else {

 results.push(false);

 }

 guessItem = null;

Chapter 13 Final projeCt

183

 } else {

 console.log('nothing to be solved');

 }

}

function GuessItem(x, y, scl) {

 this.x = x;

 this.y = y;

 this.scale = scl;

 this.scaleIncrement = 0.5;

 this.content = getContent();

 this.alpha = 255;

 this.alphaDecrement = 3;

 this.solved = null;

 function getContent() {

 // generate a random integer in between 0 and 9

 return String(parseInt(random(10), 10));

 }

 this.solve = function(input) {

 // check to see if the given input is

equivalent to the content.

 // set solved to the corresponding value.

 var solved;

 if (input === this.content) {

 solved = true;

 } else {

 solved = false;

 }

 this.solved = solved;

 return solved;

 }

Chapter 13 Final projeCt

184

 this.render = function () {

 push();

 if (this.solved === false) {

 return;

 }

 fill(0, this.alpha);

 textAlign(CENTER, CENTER);

 translate(this.x, this.y);

 scale(this.scale);

 text(this.content, 0, 0);

 // increase the scale value by the increment

value with each render

 this.scale = this.scale + this.scaleIncrement;

 // decrease the alpha value by the decrement

value with each render

 this.alpha = this.alpha - this.alphaDecrement;

 pop();

 }

}

In Listing 13-13, we created a results array to be able to store the

player score. Every time the player makes a correct guess, we push a

true value in there; and every time the player makes a wrong guess, we

push a false.

Listing 13-13. Creating a results array

if (solution) {

 results.push(true);

} else {

 results.push(false);

}

Chapter 13 Final projeCt

185

We should also build some functionality to get the value of the results

array and evaluate it. For that purpose, we will build a function called

getGameScore (Listing 13-14). It will get the results array and evaluate it

to see what the current user score is.

Listing 13-14. Building a getGameScore function

var guessItem = null;

// controls the frequency that a new random number is generated

var interval = 100;

// an array to store solution values

var results = [];

var solution = null;

function setup() {

 createCanvas(800, 300);

}

function draw() {

 // if there are 3 losses or 10 attempts stop the game

 var gameScore = getGameScore(results);

 if (gameScore.loss === 3 || gameScore.total === 10) {

 return;

 }

 background(220);

 if (frameCount === 1 || frameCount % interval === 0) {

 solution = null;

 guessItem = new GuessItem(width/2, height/2, 1);

 }

 if (guessItem) {

 guessItem.render();

 }

Chapter 13 Final projeCt

186

 if (solution === true) {

 background(255);

 } else if (solution === false) {

 background(0);

 }

}

function getGameScore(score) {

 // given a score array, calculate the number of wins

and losses.

 var wins = 0;

 var losses = 0;

 var total = score.length;

 for (var i = 0; i < total; i++) {

 var item = score[i];

 if (item === true) {

 wins = wins+1;

 } else {

 losses = losses+1;

 }

 }

 return {win: wins, loss: losses, total: total};

}

function keyPressed() {

 if (guessItem !== null) {

 // check to see if the pressed key matches to

the displayed number.

 // if so set the solution global variable to a

corresponding value.

 console.log('you pressed: ', key);

Chapter 13 Final projeCt

187

 solution = guessItem.solve(key);

 console.log(solution);

 if (solution) {

 results.push(true);

 } else {

 results.push(false);

 }

 guessItem = null;

 } else {

 console.log('nothing to be solved');

 }

}

function GuessItem(x, y, scl) {

 this.x = x;

 this.y = y;

 this.scale = scl;

 this.scaleIncrement = 0.5;

 this.content = getContent();

 this.alpha = 255;

 this.alphaDecrement = 3;

 this.solved;

 function getContent() {

 // generate a random integer in between 0 and 9

 return String(parseInt(random(10), 10));

 }

 this.solve = function(input) {

 // check to see if the given input is

equivalent to the content.

 // set solved to the corresponding value.

 var solved;

Chapter 13 Final projeCt

188

 if (input === this.content) {

 solved = true;

 } else {

 solved = false;

 }

 this.solved = solved;

 return solved;

 }

 this.render = function () {

 push();

 if (this.solved === false) {

 return;

 }

 fill(0, this.alpha);

 textAlign(CENTER, CENTER);

 translate(this.x, this.y);

 scale(this.scale);

 text(this.content, 0, 0);

 // increase the scale value by the increment

value with each render

 this.scale = this.scale + this.scaleIncrement;

 // decrease the alpha value by the decrement

value with each render

 this.alpha = this.alpha - this.alphaDecrement;

 pop();

 }

}

Our script is growing in size and complexity! Here in Listing 13-15 is

the most recent function that we have added: getGameScore. It takes the

score variable and loops through it to aggregate the number of wins and

losses, as well as the total amount of guesses.

Chapter 13 Final projeCt

189

Listing 13-15. Calculating the game score using the getGameScore

function

function getGameScore(score) {

 var wins = 0;

 var losses = 0;

 var total = score.length;

 for (var i = 0; i < total; i++) {

 var item = score[i];

 if (item === true) {

 wins = wins+1;

 } else {

 losses = losses+1;

 }

 }

 return {win: wins, loss: losses, total: total};

}

We added a conditional at the beginning of the draw function to check

the results of the getGameScore function. If there are 3 losses or a total of 10

guesses, the conditional executes what basically has a return statement in

it (Listing 13-16).

Listing 13-16. Conditionally stopping the game

var gameScore = getGameScore(results);

if (gameScore.loss === 3 || gameScore.total === 10) {

 return;

}

As seen in Listing 13-17, any line that comes after the return

statement won’t get executed since the current loop will terminate and a

new one will begin - which will also terminate as long as the player’s score

remains the same.

Chapter 13 Final projeCt

190

Listing 13-17. Using the return statement to stop the draw loop

if (gameScore.loss === 3 || gameScore.total === 10) {

 return;

}

We need a mechanism to restart the game at this point. As shown in

Listing 13-18, first, we will build a screen that is displayed when the game

is over to display the player’s score and prompt the player to press a key,

ENTER, to restart the game (Figure 13-1). Secondly, we will make it so that

if the player presses the ENTER key after the game is over, it will restart.

Listing 13-18. Restarting the game

var guessItem = null;

// controls the frequency that a new random number is

generated.

var interval = 100;

// an array to store solution values

var results = [];

var solution = null;

// stores if the game is over or not.

var gameOver = false;

function setup() {

 createCanvas(800, 300);

}

function draw() {

 var gameScore = getGameScore(results);

 if (gameScore.loss === 3 || gameScore.total === 10) {

 gameOver = true;

 displayGameOver(gameScore);

 return;

 }

Chapter 13 Final projeCt

191

 background(220);

 if (frameCount === 1 || frameCount % interval === 0) {

 solution = null;

 guessItem = new GuessItem(width/2, height/2, 1);

 }

 if (guessItem) {

 guessItem.render();

 }

 if (solution === true) {

 background(255);

 } else if (solution === false) {

 background(0);

 }

}

function displayGameOver(score) {

 // create the Game Over screen

 push();

 background(255);

 textSize(24);

 textAlign(CENTER, CENTER);

 translate(width / 2, height / 2);

 fill(237, 34, 93);

 text('GAME OVER!', 0, 0);

 translate(0, 36);

 fill(0);

 // have spaces inside the strings for the text to look

proper.

 text('You have ' + score.win + ' correct guesses', 0, 0);

 translate(0, 100);

 textSize(16);

Chapter 13 Final projeCt

192

 var alternatingValue = map(sin(frameCount / 10), -1, 1,

0, 255);

 fill(237, 34, 93, alternatingValue);

 text('PRESS ENTER', 0, 0);

 pop();

}

function getGameScore(score) {

 // given a score array, calculate the number of wins

and losses.

 var wins = 0;

 var losses = 0;

 var total = score.length;

 for (var i = 0; i < total; i++) {

 var item = score[i];

 if (item === true) {

 wins = wins+1;

 } else {

 losses = losses+1;

 }

 }

 return {

 win: wins,

 loss: losses,

 total: total

 };

}

function restartTheGame() {

 // sets the game state to start.

 results = [];

Chapter 13 Final projeCt

193

 solution = null;

 gameOver = false;

}

function keyPressed() {

 // if game is over, then restart the game on ENTER key

press.

 if (gameOver === true) {

 if (keyCode === ENTER) {

 console.log('restart the game');

 restartTheGame();

 return;

 }

 }

 if (guessItem !== null) {

 // check to see if the pressed key matches to

the displayed number.

 // if so set the solution global variable to a

corresponding value.

 console.log('you pressed: ', key);

 solution = guessItem.solve(key);

 console.log(solution);

 if (solution) {

 results.push(true);

 } else {

 results.push(false);

 }

 guessItem = null;

 } else {

 console.log('nothing to be solved');

 }

}

Chapter 13 Final projeCt

194

function GuessItem(x, y, scl) {

 this.x = x;

 this.y = y;

 this.scale = scl;

 this.scaleIncrement = 0.5;

 this.content = getContent();

 this.alpha = 255;

 this.alphaDecrement = 3;

 this.solved = null;

 function getContent() {

 return String(parseInt(random(10), 10));

 }

 this.solve = function(input) {

 var solved;

 if (input === this.content) {

 solved = true;

 } else {

 solved = false;

 }

 this.solved = solved;

 return solved;

 }

 this.render = function() {

 push();

 if (this.solved === false) {

 return;

 }

 fill(0, this.alpha);

 textAlign(CENTER, CENTER);

 translate(this.x, this.y);

Chapter 13 Final projeCt

195

 scale(this.scale);

 text(this.content, 0, 0);

 // increase the scale value by the increment

value with each render

 this.scale = this.scale + this.scaleIncrement;

 // decrease the alpha value by the decrement

value with each render

 this.alpha = this.alpha - this.alphaDecrement;

 pop();

 }

}

Figure 13-1. Output from Listing 13-18

Let’s see what we did with the displayGameOver function first

(Listing 13-19). There are a couple of things happening here that we

didn’t learn about before.

Listing 13-19. DisplayGameOver function

function displayGameOver(score) {

 push();

 background(255);

 textSize(24);

Chapter 13 Final projeCt

196

 textAlign(CENTER, CENTER);

 translate(width/2, height/2);

 fill(237, 34, 93);

 text('GAME OVER!', 0, 0);

 translate(0, 36);

 fill(0);

 // have spaces inside the strings for the text to look

proper.

 text('You have ' + score.win + ' correct guesses', 0, 0);

 translate(0, 100);

 textSize(16);

 var alternatingValue = map(sin(frameCount/10), -1, 1,

0, 255);

 fill(237, 34, 93, alternatingValue);

 text('PRESS ENTER', 0, 0);

 pop();

}

The first thing you should notice is that the translate function call

results accumulate. If we perform a translate of (0, 100) after width/2,

height/2, the resulting translate would be width/2, height/2 + 100.

Another thing that is new in this code is the p5.js sin and map

functions that we are using to create a blinking text. A sin function

calculates the sine of an angle. Given sequential values, the resulting sine

value would alternate in between -1 and 1. But -1 and 1 are hardly useful

to us as numeric values in our use case. A value that alternates in between

0 and 255 would be vastly more useful if we are to use this value to set the

alpha of a fill function. This is where the map function comes into play

(Listing 13-20). The map function maps the given value within the given

range (second and third arguments) to the new given range (fourth and

fifth arguments).

Chapter 13 Final projeCt

197

Listing 13-20. Using the map function

var alternatingValue = map(sin(frameCount/10), -1, 1, 0, 255);

We are mapping the result of the sin function that is in between -1 and

1 to 0 and 255.

Instead of simply executing a return statement, we can instead call

this new function to display a message to the player. The next thing we

implemented is a way to restart the game once it is over. For this, we

require two things. First, we need a way to respond to the ENTER key. And

then we need to re-initialize the relevant game variables to create the

impression that a new game is starting.

Listing 13-21 shows the part of the keyPressed function that responds

to the ENTER key.

Listing 13-21. Responding to the ENTER key

if (gameOver === true) {

 if (keyCode === ENTER) {

 console.log('restart the game');

 restartTheGame();

 return;

 }

}

We are using the keyCode variable alongside with the ENTER variable to

respond to the ENTER key press.

The contents of the restartTheGame function are simple (Listing 13- 22).

It just re-initializes a couple of variables that are in global scope such as the

user score to make it start working again.

Listing 13-22. The restartTheGame function

function restartTheGame() {

 // sets the game state to start.

 results = [];

Chapter 13 Final projeCt

198

 solution = null;

 gameOver = false;

}

And this is it! We could keep working on it to make the game

experience much better by tweaking the mechanics and enhancing the

visuals of the game. But we have laid down the foundation that makes up

the skeleton of our game, which can now be developed further according

to your specific needs.

 Final Code
This is the final code (Listing 13-23). I decided to do a couple of updates for

the version I was working on. Instead of displaying numbers, I decided to

display the words for the numbers. I find that to be more visually pleasing

and also more challenging from a gameplay point of view, as it adds a bit

of an overhead to parsing what you see. I also added a new method into

the GuessItem called drawEllipse that draws ellipses on the screen along

with the words for a more visually engaging game. Finally, I tweaked the

game parameters a bit to make the timing right and added messages to be

displayed whenever the player enters a right or wrong number Figure 13-2

shows a screen from the final game code.

Listing 13-23. The final code

var guessItem = null;

// controls the frequency that a new random number is

generated.

var interval = 60; // changing this to make the game feel

faster.

// an array to store solution values

var results = [];

var solution = null;

Chapter 13 Final projeCt

199

// stores if the game is over or not.

var gameOver = false;

function setup() {

 createCanvas(800, 300);

}

function draw() {

 // if there are 3 losses or 10 attempts stop the game.

 var gameScore = getGameScore(results);

 if (gameScore.loss === 3 || gameScore.total === 10) {

 gameOver = true;

 displayGameOver(gameScore);

 return;

 }

 background(0); // black background

 if (frameCount === 1 || frameCount % interval === 0) {

 solution = null;

 guessItem = new GuessItem(width/2, height/2, 1);

 }

 if (guessItem) {

 guessItem.render();

 }

 if (solution == true || solution === false) {

 // displaying a text on screen instead of flat

color.

 solutionMessage(gameScore.total, solution);

 }

}

Chapter 13 Final projeCt

200

function solutionMessage(seed, solution) {

 // display a random message based on a true of false

solution.

 var trueMessages = [

 'GOOD JOB!',

 'DOING GREAT!',

 'OMG!',

 'SUCH WIN!',

 'I APPRECIATE YOU',

 'IMPRESSIVE'

];

 var falseMessages = [

 'OH NO!',

 'BETTER LUCK NEXT TIME!',

 'PFTTTT',

 ':('

];

 var messages;

 push();

 textAlign(CENTER, CENTER);

 fill(237, 34, 93);

 textSize(36);

 randomSeed(seed * 10000);

 if (solution === true) {

 background(255);

 messages = trueMessages;

 } else if (solution === false) {

 background(0);

 messages = falseMessages;

 }

Chapter 13 Final projeCt

201

 text(messages[parseInt(random(messages.length), 10)],

width / 2, height / 2);

 pop();

}

function displayGameOver(score) {

 // create the Game Over screen

 push();

 background(255);

 textSize(24);

 textAlign(CENTER, CENTER);

 translate(width / 2, height / 2);

 fill(237, 34, 93);

 text('GAME OVER!', 0, 0);

 translate(0, 36);

 fill(0);

 // have spaces inside the string for the text to look

proper.

 text('You have ' + score.win + ' correct guesses', 0, 0);

 translate(0, 100);

 textSize(16);

 var alternatingValue = map(sin(frameCount / 10), -1, 1,

0, 255);

 fill(237, 34, 93, alternatingValue);

 text('PRESS ENTER', 0, 0);

 pop();

}

function getGameScore(score) {

 // given a score array, calculate the number of wins

and losses.

 var wins = 0;

 var losses = 0;

 var total = score.length;

Chapter 13 Final projeCt

202

 for (var i = 0; i < total; i++) {

 var item = score[i];

 if (item === true) {

 wins = wins + 1;

 } else {

 losses = losses + 1;

 }

 }

 return {

 win: wins,

 loss: losses,

 total: total

 };

}

function restartTheGame() {

 // sets the game state to start.

 results = [];

 solution = null;

 gameOver = false;

}

function keyPressed() {

 // if game is over, then restart the game on ENTER key

press.

 if (gameOver === true) {

 if (keyCode === ENTER) {

 console.log('restart the game');

 restartTheGame();

 return;

 }

 }

Chapter 13 Final projeCt

203

 if (guessItem !== null) {

 // check to see if the pressed key matches to

the displayed number.

 // if so set the solution global variable to a

corresponding value.

 console.log('you pressed: ', key);

 solution = guessItem.solve(key);

 console.log(solution);

 if (solution) {

 results.push(true);

 } else {

 results.push(false);

 }

 guessItem = null;

 } else {

 console.log('nothing to be solved');

 }

}

function GuessItem(x, y, scl) {

 this.x = x;

 this.y = y;

 this.scale = scl;

 this.scaleIncrement = 0.25;

 this.clr = 255;

 this.content = getContent();

 this.alpha = 255;

 this.alphaDecrement = 6;

 this.solved = null;

 this.contentMap = {

 '1': 'one',

 '2': 'two',

Chapter 13 Final projeCt

204

 '3': 'three',

 '4': 'four',

 '5': 'five',

 '6': 'six',

 '7': 'seven',

 '8': 'eight',

 '9': 'nine',

 '0': 'zero'

 };

 this.colors = [

 [63, 184, 175],

 [127, 199, 175],

 [218, 216, 167],

 [255, 158, 157],

 [255, 61, 127],

 [55, 191, 211],

 [159, 223, 82],

 [234, 209, 43],

 [250, 69, 8],

 [194, 13, 0]

];

 function getContent() {

 // generate a random integer in between 0 and 9

 return String(parseInt(random(10), 10));

 }

 this.solve = function(input) {

 // check to see if the given input is

equivalent to the content.

 // set solved to the corresponding value.

 var solved;

Chapter 13 Final projeCt

205

 if (input === this.content) {

 solved = true;

 } else {

 solved = false;

 }

 this.solved = solved;

 return solved;

 }

 this.drawEllipse = function(size, strkWeight,

speedMultiplier, seed) {

 // draw an animated ellipse with a random color

to the screen.

 push();

 randomSeed(seed);

 translate(this.x, this.y);

 var ellipseSize = this.scale * speedMultiplier;

 scale(ellipseSize);

 var clr = this.colors[parseInt(random(this.

colors.length), 10)]

 stroke(clr);

 noFill();

 strokeWeight(strkWeight);

 ellipse(0, 0, size, size);

 pop();

 }

 this.render = function() {

 push();

 this.drawEllipse(100, 15, 2, 1 * this.content *

1000);

 this.drawEllipse(60, 7, 2, 1 * this.content *

2000);

Chapter 13 Final projeCt

206

 this.drawEllipse(35, 3, 1.2, 1 * this.content *

3000);

 pop();

 push();

 fill(this.clr, this.alpha);

 textAlign(CENTER, CENTER);

 translate(this.x, this.y);

 scale(this.scale);

 // display the word for the corresponding number

 text(this.contentMap[this.content], 0, 0);

 // increase the scale value by the increment

value with each render

 this.scale = this.scale + this.scaleIncrement;

 // decrease the alpha value by the decrement

value with each render

 this.alpha = this.alpha - this.alphaDecrement;

 pop();

 }

}

Figure 13-2. Screen from the final game code

Chapter 13 Final projeCt

207

The biggest change to the code is the solutionMessage function so

let’s take a look at that in a bit more detail (Listing 13-24). Previously we

were just using an if-else statement based on the value of the solution

variable to decide what to display on screen. If the solution was true, we

were displaying a white background, and if the solution was false, we

were displaying a black background.

Now if the solution is either of these values (true or false), we are

passing it to a function called solutionMessage, which chooses a random

message to display using gameScore.total as a seed for the random

function.

Listing 13-24. Displaying a message on the screen

if (solution == true || solution === false) {

 solutionMessage(gameScore.total, solution);

}

As seen in Listing 13-25, inside the solutionMessage function, there

are two arrays with a bunch of message values that are to be displayed

based on the value of the solution.

Listing 13-25. Conditionally choosing a message

if (solution === true) {

 background(255);

 messages = trueMessages;

} else if (solution === false) {

 background(0);

 messages = falseMessages;

}

In Listing 13-26, we pick a random value from these arrays by

converting the return value of the random function to an integer.

Chapter 13 Final projeCt

208

Listing 13-26. Choosing a random message

text(messages[parseInt(random(messages.length), 10)], width / 2,

height / 2);

 Summary
This was definitely a challenging example that put everything we learned

so far to the test.

It is very impressive that we can build a game by just using p5.js that

can run on the web and can be played by millions of people. And it wasn’t

all that difficult as well; the entire program is just around 200 lines. There

is certainly room for improvement where we can make the game difficulty

dynamic based on the player’s performance, add more visual flair and add

a dynamic scoring system where we can assign different points to correct

guesses based on the amount of time it took to guess a number. The game

can be converted to display words instead of numbers. It can show images

that you need to type the name for or calculations that you need to answer.

The possibilities are numerous!

Having said that, p5.js might not be the best platform to create games

with if we wanted to build more advanced projects. A proper game library

would come with features such as an asset loading system, sprite support,

collision detection, physics engine, particle systems… which is more often

than not required when building advanced games. This is not to say you

can’t use p5.js to build a game, though. We just proved that it is entirely

possible. It is just that there are other libraries out there that are more

specialized around that solution whereas p5.js is more tailored towards

creating interactive, animated experiences on the web. But by learning

p5.js, you are not only learning how to use JavaScript and all the things

that it is great at, but you are also developing an understanding for working

with other 3rd party libraries in the JavaScript ecosystem.

Chapter 13 Final projeCt

209© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6

 APPENDIX

Final Words
Having completed this book, you should now be familiar with the basics of

the JavaScript language and with programming in general since the concepts

we learned are widely applicable to different programming languages.

Think of learning what past tense is, in a natural, spoken, language

like in English. How you construct a past tense sentence might structurally

differ between English and Japanese, but the fact that you have a

conceptual understanding of what past tense is would allow you to transfer

your knowledge from one language to the next in a much easier manner

once you figure out the mapping in between them.

In this book, we learned about the fundamental structures in

programming languages such as variables, operators, loops, conditionals,

functions, objects, and arrays using JavaScript. All the programming

languages that I personally had to interface so far had an implementation

of these concepts in one way or another. The syntax for them might differ

but the workings are pretty similar. Generally speaking, the knowledge

you acquire in one programming language is highly transferrable to other

languages.

Alongside JavaScript, we also learned about the p5.js library along

the way. This means that if you wanted to utilize your newly found

programming knowledge, you could continue to do so by using p5.js with

great comfort.

The thing that is currently missing from our knowledge is how to

deploy our work on the Web, thereby sharing it with the rest of the world.

Since this has been a book focused on learning how to program, I didn’t

https://doi.org/10.1007/978-1-4842-3426-6

210

want to burden us with secondary, operational, concerns like these. There

are already great resources out there on building applications on the Web.

You might find yourself constrained a bit at this point, especially if you

don’t want to keep sharpening your newly acquired skills in p5.js. Where

should one go next from here?

 Where to Go Next
As I mentioned at the beginning of the book, learning JavaScript will open

a world of opportunities in front of you as there are a lot of domains where

you can apply your knowledge. Where to go next surely depends on where

you would like to grow your skill set in.

If you want to move beyond p5.js and create user-facing web

applications, you will surely need to learn the basics of HTML and CSS to

build graphical interfaces for your projects. The Additional Resources

section at the end of the Appendix is a good place to start.

After that, learning some DOM API would be useful to be able to hook

up the interface elements on the page to execute JavaScript commands.

If you wanted to build slightly more complicated interfaces, then jQuery

might help as it makes working with JavaScript slightly easier when

working with web pages. If you are looking to build more advanced

interfaces where there are lots of interactions and state dependencies

in between page elements, then a front-end framework such as Angular

or a library like React can be very useful. I would suggest not rushing to

learn these tools even though they are all the hype nowadays. Starting

out with pure JavaScript and then moving to jQuery to build slightly more

challenging interfaces will help you appreciate the problems that these

more complicated tools are built to solve.

Maybe you might want to do some server-side programming. Then

Node.js is the tool that you should pick up. Server-side programming might

Appendix FinAl Words

211

involve any back-end calculations that don’t need to happen on the client

side, on the browser, and might involve building scripts that interface

with the operating system of the host computer to do things like creating

files and folders, deleting them, etc. A Node.js script doesn’t necessarily

need to be in service of a web application back end. The prime advantage

of Node.js is that it provides you with an environment on your machine,

rather than on the browser, to run JavaScript in. Node.js sets the JavaScript

free from the constraints of the browser environment. For example, there is

Electron. It is a Node.js-based framework that allows you to build native

desktop applications using web technologies. You can use Electron to

build a web browser using JavaScript rather than to build something on the

browser using JavaScript!

Automating web pages, programmatically connecting to the Internet,

and scraping online data might be your thing. For that, there is Casper.js

and Puppeteer. If you wanted to do advanced data visualizations, then

you should check out the D3 library. Maybe you want to get into robotics,

or program IOT devices using JavaScript. How about giving Johnny-Five a

try then? You can build native mobile apps (React Native), HTML5 games

(Phaser), databases (mongoDB) 3D visuals, and animations (Three.js),

or even cognitive applications that make use of Artificial Intelligence

(IBM Watson) all by using JavaScript. See the Additional Resources section

for links to all these resources.

When learning a new programming language it is best to have a

plan: a vision for something that you would like to build. Ideally, build

the minimum viable project that you can lift off the ground without

encumbering yourself with too much work or too many technicalities.

It’s about getting to that point and then building the next thing – always

getting better, always learning something new. Welcome to the world of

programming. I can’t wait to see what you will come up with.

Appendix FinAl Words

212

 Additional Resources
• HTML - https://developer.mozilla.org/en-US/

docs/Web/HTML

• CSS - https://developer.mozilla.org/en-US/docs/

Web/CSS

• DOM API - https://developer.mozilla.org/en-US/

docs/Web/API/Document_Object_Model

• jQuery - https://jquery.com/

• Angular - https://angular.io/

• React - https://reactjs.org/

• Node.js - https://nodejs.org/en/

• Electron - https://electronjs.org/

• CasperJS - http://casperjs.org/

• Puppeteer - https://github.com/GoogleChrome/

puppeteer

• D3.js - https://d3js.org/

• Johnny-Five - http://johnny-five.io/

• React Native - https://facebook.github.io/react-

native/

• Phaser - https://phaser.io/

• MongoDB - https://mongodb.github.io/node-

mongodb- native/

• Three.js - https://threejs.org/

• IBM Watson - https://www.ibm.com/watson/

products-services/

Appendix FinAl Words

https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://jquery.com/
https://angular.io/
https://reactjs.org/
https://nodejs.org/en/
https://electronjs.org/
http://casperjs.org/
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://d3js.org/
http://johnny-five.io/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://phaser.io/
https://mongodb.github.io/node-mongodb-native/
https://mongodb.github.io/node-mongodb-native/
https://threejs.org/
https://www.ibm.com/watson/products-services/
https://www.ibm.com/watson/products-services/

213© Engin Arslan 2018
E. Arslan, Learn JavaScript with p5.js, https://doi.org/10.1007/978-1-4842-3426-6

Index

A, B
Arrays

push method
access an item, 127
array height property, 131
data types, creation, 126
drawing circles,

sizes, 127
elements adding, 126
empty array,

creation, 125
for loop, 129–130
random function, 131–133
size values, store, 128

remainder Operator
coding, 140–141
colors samples, 139
currentWord variable

creation, 139
draw function, 137
fill function, 139
frameRate

function, 137, 138
incremental values, 137

textAlign function, 134
text fucntion, 133–134
textSize function, 134, 135
words variable, creation, 136

C
Circle constructor function, 118
Code editor, 13
Color functions

color picker tool, 38
components, 37
shapes, 39–41

Conditionals
and statement, 75
animation conditional, 73–74
else, 70–71
else if, 72–73
if statement, 67, 69, 70
or statement, 75
refactoring, 71–72

Constructor function, 117
createCanvas function, 28

D
DisplayGameOver

function, 195–196
drawCat function, 27, 28

E
ellipse function, 34, 102
Events

https://doi.org/10.1007/978-1-4842-3426-6

214

keyPressed (see keyPressed
event functions)

mousePressed, 143–145

F
Floating-point number, 169
For loop

counter variable, 86, 88
ellipses, 87
infinite loops, 86
screen width, 89
setup(), 90–92

frameCount, 64–66
Frame rate, 62–64
frameRate function, 65, 137, 138
Functions

arguments, 102
creation

calling circle
function, 103

circle function, 103
declaring circle

function, 102
define parameters, 101
multiplying function,

104–105
return keyword, 106
variable visibility, 104

parameters, 103
setup and draw

functions, 107

G
Games, building

coding, 198
display unique number

custom behavior, 169
guessItem, 173–174
GuessItem object, 170
GuessItem instance,

creation, 171
random integer,

100 frames, 168
render method, 171
scale function,

increment, 173
text drawing functionality,

169–170
text grow in size, 172
textSize function, 171

message display, 207
random message, choosing, 208
solutionMessage, 207
user interaction (see User

interaction)
user score (see User score)

getGameScore function, 185
GuessItem constructor function, 171

H, I
HTML

and CSS, 3–4
coding vs. programming, 2

Events (cont.)

Index

215

J
JavaScript

advantage, 6
bigNumber variable, 19, 20
comments, 22
console.log, 17–18, 21
data types, 21
dynamic/static languages, 5
Math operations, 22
overriding variable value, 21
p5.js, 8–10
semicolons, 20
strings, 21–22
variable, 18–19
word hello, 21

K
keyCode variable, 151
keyPressed event functions

floating-point number, 149
keyCode values, 150–151
parseInt, float number, 150
random number generation, 149
shape drawing, 146–147
size and color changing, 148–149

keyPressed function, 179–180

L
Loop

creation, 100
for (see For loop)

noise functions (see Noise
functions)

random (see Random function)

M
map function, 197
mouseIsPressed

conditionally display, 77–78
event functions, 143–145
toggle display, 78–79

mouseX and mouseY, 80–83

N
Noise function, 96–99

O
Object-creating function, 118
Objects

constructor function
circle constructor function,

118, 120–122
draw method, 118
key-value pairs, 110
object-creating function, 118

Object initializer
calling the method, 113
circle object, 113–114,

116–117
creation, curly brackets, 109
ellipse function, 115
grow method, 115

Index

216

method defining, 111
paintItBlack method, 112
properties adding, 110
square brackets, access

values, 111
this keyword, 113
value access, 111

uses, 112
Online Code Editor, 14

P, Q
p5.js

background function, 29
color (see Color functions)
console.log(), 16–18, 20–23
coordinate system, 31–35
createCanvas, 28, 30
default function declarations, 24
drawCat function, 27–28
installation

Codepen, 14
default p5.js code, 16
download, source code, 15
online editor, 15

JavaScript, 8–10
mouseIsPressed, 77–79
mouseX and mouseY, 80–83
predefined variables, 55–58
push and pop function

(see Push and Pop function)
rect function, 30–31
rotate function, 153–155

setup and draw, 24–25
translate function, 156–158

parseInt function, 150
Push and Pop function

custom function,
transformations, 163–164

different rotation value, 162–163
translate function, multiple

shapes, 159

R
Random function, 92–96
Remainder operator, 136
Render method, 171
restartTheGame function, 197, 198
Rotation

angleMode, 155–156
around the origin, 157
function, 155
rectangles drawing, 153–154

S
Scale transform functions, 171
Setup

math operations, 46–47
rect and ellipse, 45–46

solutionMessage function, 207

T
Transformation-related state, 171
translate function, 156–158

Objects (cont.)

Index

217

U
User interaction

convert random integer into
string, 181

fetching and comparing user
input, 176

keyPressed function, 180
solve method, GuessItem, 179

User score
calculation, getGameScore

function, 189
conditionally stopping,

game, 189
DisplayGameOver function,

195–196
ENTER key, 197
getGameScore function, 185
map function, 197

restarting game, 190
restartTheGame function,

197, 198
results array creation, 184
return statement, draw

loop, 190
storing scores, 181

V, W, X, Y, Z
Variables, 47–48

circle and rectangle, 49–51
draw function, 51–53
function scope, 52, 53
global variable, 53–54
offset, 48
predefined variables,

p5.js, 55–58

Index

	Table of Contents
	About the Author
	About This Book
	Chapter 1: Introduction
	Why Learn Coding?
	Coding vs. Programming
	On HTML and CSS
	Why Learn JavaScript?
	Why Do We Have Different Languages?
	Learning JavaScript with p5.js

	Chapter 2: Getting Started
	Installing p5.js
	Gentle Introduction to JavaScript
	Getting Started with p5.js
	More About Functions
	Coordinates in p5.js
	Summary
	Practice

	Chapter 3: Colors in p5.js
	Color Functions in p5.js
	Changing Shape Colors
	Summary
	Practice

	Chapter 4: Operators and Variables
	Setup
	Variables
	Variables Continued
	Predefined Variables in p5.js
	Summary
	Practice

	Chapter 5: Conditional Statements and Comparison Operators
	frameCount, frameRate, and frame
	Conditionals
	Summary
	Practice

	Chapter 6: More p5.js Variables
	mouseIsPressed
	mouseX and mouseY
	Summary
	Practice

	Chapter 7: Loops
	For Loop
	Random and Noise Functions
	Summary
	Practice

	Chapter 8: Functions
	Creating Functions
	Revisiting Setup and Draw Functions
	Summary
	Practice

	Chapter 9: Objects
	Using Object Initializer
	Using the Constructor Function
	Summary

	Chapter 10: Arrays
	Using the push Method
	Using Arrays
	Using the remainder Operator
	Summary
	Practice

	Chapter 11: Events
	Using mousePressed
	Using keyPressed
	Summary
	Practice

	Chapter 12: More on p5.js
	Rotate and Translate
	Push and Pop
	Summary
	Practice

	Chapter 13: Final Project
	Getting Started
	User Interaction
	Keeping the User Score
	Final Code
	Summary

	Appendix:
Final Words
	Where to Go Next
	Additional Resources

	Index

