
www.allitebooks.com

http://www.allitebooks.org


[ FM-1 ]

Learning Embedded Android N 
Programming

Create the perfectly customized system by unleashing 
the power of Android OS on your embedded device

Ivan Morgillo

Stefano Viola

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


[ FM-2 ]

Learning Embedded Android N Programming

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1260716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-288-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


[ FM-3 ]

Credits

Authors
Ivan Morgillo

Stefano Viola

Reviewer
Andrew Reitz

Commissioning Editor
Nadeem Bagban

Acquisition Editor
Kirk D'costa

Content Development Editor
Sanjeet Rao

Technical Editor
Narsimha Pai

Copy Editors
Dipti Mankame

Laxmi Subramanian

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade 

www.allitebooks.com

http://www.allitebooks.org


[ FM-4 ]

About the Authors

Ivan Morgillo is a computer engineer, a conference speaker, and a community 
organizer. He is passionate about programming and embedded systems—from DIY 
domotics to Android devices.

He is cofounder of Alter Ego Solutions, a mobile development consulting company.

He is also the author of RxJava Essentials, by Packt Publishing and Grokking Rx, by 
Manning Publications.

I want to thank my sister, Selenia, and my mother for their love  
and support.

Stefano Viola is an embedded software developer with proved experience with 
Linux embedded devices and microcontrollers. He is an Android platform expert 
and application developer. He is passionate about programming and embedded 
systems, from DIY domotics and robots to customized Android devices.

He is currently working at SECO as an embedded software engineer. He is part of 
AXIOM project, an R&D project by the European Community, and the UDOO team.

I want to thank my wife, Carolina, my friend, Antonio, and my 
family for their love and support.

www.allitebooks.com

http://www.allitebooks.org


[ FM-5 ]

About the Reviewer

Andrew Reitz is an Android developer by day and an outdoor enthusiast by 
night. He is a maintainer of the Groovy Android plugin and Android Spock. Besides 
programming, Andrew likes rock climbing, biking, camping, and hanging out  
with his dog.

www.allitebooks.com

http://www.allitebooks.org


[ FM-6 ]

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org


[ i ]

Table of Contents
Preface	 ix
Chapter 1: Understanding the Architecture	 1

An overview of the Android system	 2
Linux kernel	 3
Hardware abstraction layer – HAL	 4
Libraries and the application framework	 5

Libraries	 5
The application framework	 5
Binder IPC	 6
The application layer	 6

Android compatibility	 7
The Android Compatibility Definition Document	 8

Device types	 8
Software compatibility	 9

Beyond Java	 10
Native API	 10
Maintaining 32-bit support	 11

From Dalvik to ART runtime	 12
The Android runtime	 13

A new old approach – AOT compilation	 14
Garbage collection and other improvements	 14
Waiting for Android Nougat	 15

Meeting the Compatibility Test Suite	 16
CTS setup	 19
Device setup	 19
Media files setup	 20
Run!	 22
Analyzing the test results	 23

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Diving deeper with CTS Verifier	 25
Setup	 25
Manual testing	 27
Retrieving the results	 29

Summary	 30
Chapter 2: Obtaining the Source Code – Structure and Philosophy	 31

The Android philosophy	 31
The license	 32
Open source, closed doors	 33
The Android development model	 33
Source code tags and builds	 35
Nexus	 36

Phones	 36
Tablets	 36
Digital media players	 37

Source code tools	 37
Git	 38
Repo	 38

Gerrit	 39
Setting up the environment	 39

Free space	 39
Installing the required tools	 40
Getting ready	 42

Downloading the code	 45
Hands on the code	 46

A look inside AOSP	 48
The ART directory	 50
The bionic directory	 50
The build directory	 50
The external directory	 51
The device directory	 51
The frameworks directory	 52
The out directory	 52
The packages directory	 52
The system directory	 53
The rest of the directory structure	 53

Summary	 54

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iii ]

Chapter 3: Set up and Build – the Emulator Way	 55
Preparing the host system	 55

Hardware requirements	 56
Software requirements	 56

Installing Java JDK	 57
Installing system dependencies	 58

Setting up a Mac OS X environment	 59
Creating a case-sensitive disk image	 60
Installing the required software	 61

The Android build system	 62
An overview	 62
Bootstrap	 64
Setup	 66

The TARGET_PRODUCT variable	 67
The TARGET_BUILD_VARIANT variable	 68
The TARGET_BUILD_TYPE variable	 69
The TARGET_TOOLS_PREFIX variable	 69
The OUT_DIR variable	 69
The TARGET_PREBUILT_KERNEL variable	 69
The buildspec.mk file	 69
The lunch command	 70

Building the system	 71
More about make	 72
Beyond the system image	 73

Inside an AOSP module	 74
Diving into Android.mk	 75
Android.mk variables ecosystem	 77
Module template examples	 80

Creating a custom device	 81
Diving into device configuration	 82

From zero to the screenlock	 83
Setup	 84
Build	 85
Run	 86

Summary	 87

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iv ]

Chapter 4: Moving to Real-World Hardware	 89
Debugging tools	 89

Introducing ADB	 89
Pushing files to devices	 92
Pulling files from devices	 94
Installing Android APK files	 94
Logcat	 95

Fastboot	 98
Choosing our hardware	 99

Hardware architectures	 100
Minimum requirements	 100
System on Chip – SoC	 101
The baseband processor	 102

Our hardware choice	 102
Motorola Nexus 6	 103
UDOO Quad	 104

Compiling Android for a real-world device	 106
Nexus 6	 106
UDOO Quad	 109

Setup	 110
Bootloader	 110
System	 111
Kernel	 112

Bootloader mode	 112
Nexus devices	 113
UDOO family boards	 115

Flashing Android images	 116
Nexus 6	 116
UDOO	 117

Summary	 121
Chapter 5: Customizing Kernel and Boot Sequence	 123

An overview of the Linux kernel	 123
Obtaining the kernel	 125

Retrieving the kernel's binary version	 126
Obtaining the kernel source code	 127

Setting up the toolchain	 129
Getting the toolchain	 130

Preparing the host system	 130
Configuring the kernel	 131
Compiling the kernel	 134



Table of Contents

[ v ]

Working with non-Google devices	 135
Driver management	 139
Altering the CPU frequency	 139

An overview of the governors	 140
Customizing the boot image	 142

Creating the boot image	 142
Upgrading the new boot image	 145

Android boot sequence	 145
Internal ROM – bios	 146
An overview of bootloader	 146
The kernel	 147
The Init process	 147
The Android init language	 148

Actions	 148
Services	 149
Options	 149
Triggers	 150
Commands	 151
Imports	 153

Summary	 153
Chapter 6: "Cooking" Your First ROM	 155

History of custom ROMs	 155
Cyanogenmod	 157

Building Cyanogenmod	 159
Installing a pre-build version	 159

The Android Open Kang Project	 160
Installing AOKP	 162

Minor ROMs	 163
Overview of OEM customizations	 164

Samsung – TouchWiz	 164
Huawei EMUI	 165
HTC Sense	 166
LG Optimus UI	 168
Xiaomi MIUI	 168

An overview of Android recovery	 170
Diving into Android recovery	 170
Installing an alternative recovery	 172

Clockworkmod	 173
TWRP – Team Win Recovery Project	 175
Connecting to the recovery shell using ADB	 176



Table of Contents

[ vi ]

Device permissions	 176
Root access	 177

SuperSu	 177
Obtaining root access	 178

Chef toolkit	 178
Preparing the environment	 179
Android kitchen	 179
Other developers' tools	 180

Manipulating DEX files with APKTool	 181
Cooking our first ROM	 182

Gathering the ingredients	 183
Dumping system partitions	 183

Modifying an Android system binary image	 185
Modifying an Android binary boot image	 186

Flashing our custom ROM	 187
Summary	 188

Chapter 7: Tailoring Your Personal Android System	 189
Receiving over the air updates – OTA	 190

Updating the whole system	 191
Updating the system incrementally	 191
Applying a single component update	 191

Creating over the air updates	 192
OTA internals	 194

Edify syntax	 195
OTA for custom ROM	 197

Advanced ROM customization	 198
ROM customization from binary	 198
Customizing ROM from source	 199
Adding new packages to Android's build system	 200

Adding a package by binary	 200
Adding packages by source code	 203

Hacking the Android framework	 209
Customizing the boot sequence UI	 209
Customizing the Android Settings menu	 213

Enhancing the system performance	 218
Customizing the system property file	 218
Adding a custom init sequence	 220



Table of Contents

[ vii ]

Advanced Linux kernel modding	 221
Diving into CPU frequency management	 221
Adding a custom CPU frequency governor	 222
Exploring I/O schedulers	 224

Looking forward	 225
Summary	 229

Chapter 8: Beyond the Smartphone	 231
Meeting Arduino	 232

Android ADK	 234
Using UDOO as an all-in-one ADK device	 235

Getting ready	 235
Flashing the Arduino board	 236
Creating the Android app	 241

Exploring the possibilities of the Internet of Things	 244
Android Auto	 245
Android Wear	 248

Domotics	 249
Can a green droid entertain you?	 251

Multimedia	 251
Toys	 252

Summary	 254
Index	 255





[ ix ]

Preface
Android has caused one of the greatest revolutions of our time. Being present 
on smartphones, TV, tables, watches, embedded boards, it can be considered 
ubiquitous. Its open source nature gives companies, expert users, and hackers the 
opportunity to learn from, improve, and customize the system, creating a tailored 
version of the most popular mobile operating system.

This book is a journey from the origins of the Android project to what's in the future, 
walking through all the phases needed to build a custom Android system from 
source and from binary images.

What this book covers
Chapter 1, Understanding the Architecture, explains the Android hardware and 
software architecture, the Android Compatibility Definition Document,  
the Android Compatibility Test Suite, and the Android Runtime.

Chapter 2, Obtaining the Source Code – Structure and Philosophy, explains the Android 
Open Source Project.

Chapter 3, Set up and Build – the Emulator Way, teaches how to set up the build 
environment and build a system image for the Android Emulator.

Chapter 4, Moving to Real-World Hardware, tells you about how to build a real device 
and how to flash the system image.

Chapter 5, Customizing Kernel and Boot Sequence, dives into kernel and boot sequence 
customization, in order to tailor the perfect system.

Chapter 6, "Cooking" Your First ROM, discusses about custom recovery images,  
root privileges, and Android Kitchen.



Preface

[ x ]

Chapter 7, Tailoring Your Personal Android System, discusses hacking the Android 
framework, adding apps, and optimizing the system.

Chapter 8, Beyond the Smartphone, discusses what's next, what the Android 
possibilities are once you step away from the smartphone world.

More about Android N Programming: In this chapter, you will find some more 
information about Android N Programming at https://www.packtpub.com/
sites/default/files/downloads/MoreaboutAndroidNProgramming.pdf.

What you need for this book
All you need for the journey is a personal computer, Ubuntu Linux or OS X will do, 
an Internet connection, and your passion!

Who this book is for
If you are a programmer or embedded systems hacker who wants to customize, 
build, and deploy your own Android version, then this book is definitely for you.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

LOCAL_SRC_FILES:=\
        netcat.c \
        atomicio.c

Any command-line input or output is written as follows:

$ git add art_new_feature

$ git commit -m "Add new awesome feature to ART"

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this: 
"Clicking the Next button moves you to the next screen."

https://www.packtpub.com/sites/default/files/downloads/MoreaboutAndroidNProgramming.pdf
https://www.packtpub.com/sites/default/files/downloads/MoreaboutAndroidNProgramming.pdf


Preface

[ xi ]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support


Preface

[ xii ]

You can also download the code files by clicking on the Code Files button on the 
book's webpage at the Packt Publishing website. This page can be accessed by 
entering the book's name in the Search box. Please note that you need to be  
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-Embedded-Android-N-Programming. We also  
have other code bundles from our rich catalog of books and videos available  
at https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or  
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

https://github.com/PacktPublishing/Learning-Embedded-Android-N-Programming
https://github.com/PacktPublishing/Learning-Embedded-Android-N-Programming
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

[ xiii ]

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.





[ 1 ]

Understanding the 
Architecture

In this chapter, the user will learn about Android hardware and software 
architecture. We will provide an overview on the Android Compatibility Definition 
Document to properly understand what we need in order to create a fully compliant 
and certified device.

The user will learn about the Android Application Framework (AAF), the two 
different Android runtime systems—Dalvik, and ART, and a collection on  
Google-provided system libraries.

The user will have a first hands-on moment, setting up and running Android 
Compatibility Test Suite. We will test together an existing certified device and  
we will take the first step on the path towards the creation of a certified device.



Understanding the Architecture

[ 2 ]

An overview of the Android system
Android, as with every other operating system, has a layer-based structure. The next 
image shows a properly abstracted overview of the whole system architecture:

We can divide the system into the following main layers:

•	 Linux kernel
•	 Hardware abstraction layer
•	 Core libraries and runtime environment



Chapter 1

[ 3 ]

•	 Application framework
•	 Binder IPC
•	 Applications

The software layer closest to the hardware architecture is the Linux kernel. This layer 
is in charge of communicating with the hardware components and provides an  
easy-to-use interface for the layer above.

Moving up on the architecture path, we have Android runtime and core libraries. 
This layer provides the basics tools for the application framework. The application 
framework is a collection of ready-to-use components that the system provides to the 
Applications layer via the Android SDK. The top layer contains all those applications 
we use everyday—games, productivity apps, multimedia, and so on.

Linux kernel
Android is based on the Linux kernel, but it's not a classic Linux-based desktop 
system: it's not Ubuntu. However, Android architecture designers and developers 
rely on the Linux kernel, because it's open source, it's extensively tested worldwide, 
and it can be easily tailored to fit Android-specific hardware needs, on any kind  
of device.

From a very pragmatic point of view, choosing to base the system on an open source 
heart reinforced the Android philosophy of being an open system, supported by its 
community and trusted by enterprise companies, thanks to its transparency. Besides, 
this approach saved a lot of development time—they didn't have to start from 
scratch and they could focus on the rest of the architecture, taking advantage  
of a popular and well-documented core.

The vanilla Linux kernel needed some love to properly fit all the Android 
requirements. Most of the contributions by Google were focused on:

•	 Fixing bugs
•	 Enabling new hardware
•	 Improving power management
•	 Improving error reporting
•	 Improving performance
•	 Improving security



Understanding the Architecture

[ 4 ]

From a hardware point of view, the Android team made a great effort to add new 
goodies to the Linux kernel. Lots of fixes and hacks were released to improve 
Bluetooth support and management, lots of General Purpose Input/Output (GPIO) 
drivers were added, ARM compatibility was enhanced, as ARM was the primary 
Android-supported architecture and also MMC management received lots of 
contributions. The new ADB gadget driver was added to help developers  
to communicate via USB with external devices.

From a memory point of view, the Android team introduced PMEM, the process 
memory allocator. This gave the ability to manage large physically contiguous 
memory regions between user space and kernel space. Working in a specific  
low-resource hardware domain, the Android team released Ashmem, Android 
Shared Memory, which targeted low-memory devices and provided an easy-to-use 
file-based API to manage shared memory, especially under memory pressure.

From a power management point of view, the Android team introduced an 
improved suspend system, wakelocks, and Android Alarm Timers, the kernel 
implementation to support Android Alarm Manager.

The other interesting contributions were the kernel support for Android logcat 
command, that provides logs of system messages, application debug messages, and 
exceptions, and Android Binder, an Android-specific interprocess communication 
system, used for remote method invocation too.

Hardware abstraction layer – HAL
To overcome the increasing hardware fragmentation, Android engineers created 
an abstraction layer that allows the system to interact with the hardware just being 
aware of a specific intercommunication interface. The system completely ignores the 
low-level implementation of hardware and drivers. This approach enforces the idea 
of developing software against an interface instead of against an implementation. With 
this approach, the Android system does not know and does not need to know how 
hardware is accessed or managed.

As a mid-level layer between the hardware and the system, Android HAL is 
commonly developed using native technology—C/C++ and shared libraries. There 
is no constraint from Google about how we need to implement our HAL and our 
device drivers: it's up to us to design it as we think best for our scenario. There is 
only one simple rule:

Our implementation must provide the same interface that the system is expecting.



Chapter 1

[ 5 ]

Libraries and the application framework
Going up on the architecture ladder, we find the two most important software 
layers. The Android application framework and Android system libraries are the 
middleware between the bare hardware, managed by the Linux kernel, and all those 
fancy, shiny apps we have on our smartphones.

Libraries
Android system libraries are a set of libraries, specifically created to work on 
Android, to allow and help with system components and app development.  
The most important are:

•	 SQLite: SQLite is the entry point to the SQL world. It's a tiny SQL 
implementation for embedded systems and it provides a standard way to 
access data published by content providers or SQL DB created by the user.

•	 SSL: SSL provides the standard security environment for network 
communication.

•	 OpenGL: OpenGL libraries are the link between the Java (and C/C++ JNI) 
world and the OpenGL/ES 3D graphics rendering API.

•	 SGL: SGL provides a way to access 2D rendering engine.
•	 Media framework: Media framework provides codecs for rendering, 

recording, and playback for the most common media formats.
•	 WebKit: WebKit is the popular HTML rendering engine.
•	 libc: The libc library is a BSD-derived implementation of the standard C 

library, specifically tuned to best perform on embedded Linux-based devices.
•	 Surface manager: Surface manager manages access to the display subsystem.

The application framework
This is the core of the Android software ecosystem. It provides a plethora of 
managers that facilitate the most common tasks of Android developers and 
the Android system itself. The most important components of the Application 
Framework are:

•	 Activity manager: This provides the navigation backstack and manages the 
Android activity lifecycle

•	 Resource manager: This provides access to noncode resources contained in 
the apps: graphics, localized string, styles, and colors



Understanding the Architecture

[ 6 ]

•	 Location manager: This is in charge of providing the most accurate position 
information, using data collected by the GPS sensor, from cell towers and 
Wi-Fi networks nearby

•	 Notification manager: This enables apps to display notification alerts in the 
status bar, according to Google Design Guidelines, to provide a common and 
familiar user experience

•	 Content providers: This provides a common approach to share data between 
different apps, for instance, accessing contacts data or sharing a common 
data set between two apps

•	 Views and widgets: These comprise the UI core of the Android experience. 
Buttons, text fields, and layouts are the building blocks of every Android 
system component and user app

Everything on Android is achieved using the official Android SDK that provides a 
consistent and documented way to use all these system managers, views, and logic 
components to let you create the next big hit of the Google Play Store.

Binder IPC
From an Application Framework point of view, the Binder Inter-Process 
Communication (IPC) is a hidden layer. It takes care of creating a transparent 
communication channel between the high-level Android API, accessible via the 
Android SDK, and the actual Android system.

The application layer
All the applications created by third-party entities, such as smartphone 
manufacturers or Android programmers will be installed on the application layer.

Usually, this relies on a read/write area of the handset solid memory, but for 
software provided by manufacturers, typically, it uses a read-only memory area to 
be sure that these applications will always be installed no matter what. Apps such as 
Google Maps, YouTube, Samsung TouchWiz Nature, and HTC Sense are examples 
of apps in this very group: they are shipped with the device's operating system, they 
are installed on a read-only memory area of the device, and they are meant to be 
uninstallable as a core component of the system.

As we will see, this is not 100% true—once you have the proper skill set, you will 
be able to manipulate the whole system. In the following chapters, you will acquire 
these skills and you will learn how to heavily modify an already existing Android 
version and get rid of those apps, if necessary.



Chapter 1

[ 7 ]

Android compatibility
Every successful Android device on the market, before being launched, has been 
certified. Manufacturers have designed, developed, and tested their device according 
to precise guidelines, rules, and constraints.

To make the task as easy as possible, Google has created the Android Compatibility 
Program that defines details and tools that help OEMs to create a device that will 
properly support the OS, the SDK, and the developers' expectations:

"To run Android apps on a variety of Android devices."

As a manufacturer, creating and distributing a certified device has critical 
importance. Our goal is to create a device with a unique, but at the same time 
familiar, user experience: we have to be cool, but not weird! Users want to customize 
their Android device and they want to be sure that their favorite apps will run 
smoothly, without problems of any sort. Developers want to be sure that they won't 
waste time fixing bugs on every different smartphone, tablet, or TV—they want a 
common ecosystem on which they can rely.

A well-defined and well-supported ecosystem brings more certified devices that 
bring more and more developers that bring more and more happy users. The 
following diagram shows exactly how the Android ecosystem lives thanks to the 
constant creation of well-designed, well-produced, certified devices:



Understanding the Architecture

[ 8 ]

The Android Compatibility Definition 
Document
The Android Compatibility Definition Document (CDD) is Google's way to specify 
guidelines, rules, and constraints to be considered for an Android-compatible device. 
Every device designer and manufacturer has to refer to the CDD to be able to easily 
port Android onto its own hardware platform.

For each release of the Android platform, Google provides a detailed CDD. The CDD 
represents the policy aspect of Android compatibility and its role is to codify and 
clarify all the requirements and eliminate any ambiguity. The main goal is to provide 
rules for manufacturers to let them create complex hardware devices, compatible 
with Android SDK and Android apps.

Designing and developing a new device is no easy task. Even the smallest detail 
matters. Think about OpenGL support. There is no possible way to be sure that 
the graphical experience will be great for the user. The only thing that's possible 
is working according to the guidelines and then "test, test, and test". That's why 
providing as many details and guidelines as possible is the only way to help the 
manufactures to achieve their goal.

However, the CDD does not attempt to be comprehensive—it couldn't be. It just 
serves as guidance to approach as easily as possible the final goal—a compatible 
device. Further help comes from the source code itself and from the Android SDK 
API that can be considered a compatibility-proof test bench. Think about CDD as an 
overview of the minimum set of constraints to be compliant with: it's the very first 
step of the journey.

Device types
In the beginning, Android was born to run on digital cameras. Luckily for us, a lot 
has happened since then: smartphones invaded our world! Then we had tablets and 
MP3 players. Nowadays, we have TVs, watches, media centers, glasses, and even 
cars, running Android and Android apps. Every device on the market will probably 
land in one specific category, according to its features. CDD gives a few pointers 
about which category your new device would be placed in:

•	 Every device with an embedded touchscreen, a power source that  
allows mobility, and that can be held in hand can be considered an  
Android Handset.



Chapter 1

[ 9 ]

•	 An Android Television device is a device designed for media content:  
video, music, TV, games, with users sitting about three meters or ten feet 
away. This kind of device must have an embedded screen or an output  
video interface—HDMI, VGA, DVI, or a wireless display port.

•	 A device designed to be worn on a wrist, with a touchscreen display with a 
diagonal between 2.79 cm and 6.35 cm is considered an Android Watch.

•	 Having a car with an infotainment system, based on Android, gives us an 
Android Automotive implementation.

Software compatibility
From a software execution point of view, the basic requirement is being capable 
of executing the Android Dalvik bytecode. Our device must support the Android 
Application Programming Interface and must provide complete implementations of 
any documented behaviors of any documented API exposed by the Android SDK or 
annotated with the @SystemAp annotation.

Hardware compatibility is a tricky task, because even if our device is lacking some 
specific hardware, for instance GPS or accelerometers, our implementation must 
contain GPS-related code and should be capable of handling inappropriate requests 
in a reasonable way to avoid crashes or misbehaviors.

One of the main players of software compatibility is the ability of our device to 
support intents. Every device properly implementing Android API must support 
Android loose-coupling intent system. Intents allow Android apps to easily request 
functionality from other Android components and avoid the effort to implement 
everything from scratch. The Android system has a set of core applications that 
implement the intent pattern:

•	 Desk clock
•	 Browser
•	 Calendar
•	 Contacts
•	 Gallery
•	 Global Search
•	 Launcher
•	 Music
•	 Settings

www.allitebooks.com

http://www.allitebooks.org


Understanding the Architecture

[ 10 ]

As a vendor, we could integrate the default Android components or implement our 
own component, according to the public API. Those components will have special 
system permissions to act as system apps and they will be the first proposed choice 
for the matching intent filter.

For instance, when a developer ask to open a web page, the system will suggest "our 
browser component" as the first chosen app to perform the task. Of course, being a 
good citizen means that we must provide a proper settings menu to give the user the 
possibility to override our default choice and let the final user pick a different app for 
the task.

Beyond Java
Android applications development is mostly based on Java programming. The SDK 
is based on Java, the runtime system is fully compliant with Java6, partially with 
Java7, and Google is already experimenting with Java8. Most developers will easily 
approach the platform if they already know Java programming language. However, 
Android offers a lot more to those developers that are dealing with heavy-duty, 
performance-oriented scenarios: Android Native API.

Native API
Native API gives the developers the opportunity to call native C, and partially C++, 
code from an Android Java application. Native code is compiled as standard ELF 
.so files and stored in the app APK file. Being native code, it has to be compiled for 
every architecture we are going to support, because, contrary to the bytecode, it can't 
be built once and run on every architecture.

As integrators, we must embrace one or more Android Application Binary 
Interfaces (ABIs) and aim for having full compatibility with the Android NDK. Of 
course, Google provides guidelines and constraints to easily reach this goal. These 
are the basic rules for proper compatibility:

•	 Our implementation must include support for code running in the managed 
environment, that is Java code, to call into native code, using the standard 
Java Native Interface (JNI) semantics

•	 If our implementation supports the 64-bit ABI, we must support its relative 
32-bit version, too, because we must provide compatibility to non-64 bit 
potential devices

•	 Google suggests that we build our implementation using the source code 
and header files available in the Android Open Source Project—just don't 
reinvent the wheel



Chapter 1

[ 11 ]

From a libraries point of view, our implementation must be source-compatible  
(that is, header compatible) and binary-compatible (for the ABI) with all the 
following libraries:

•	 libc (C library)
•	 libm (math library)
•	 liblog (Android logging)
•	 libz (Zlib compression)
•	 libdl (dynamic linker)
•	 libGLESv1_CM.so (OpenGL ES 1.x)
•	 libGLESv2.so (OpenGL ES 2.0)
•	 libGLESv3.so (OpenGL ES 3.x)
•	 libEGL.so (native OpenGL surface management)
•	 libjnigraphics.so, libOpenSLES.so (OpenSL ES 1.0.1 audio support)
•	 libOpenMAXAL.so (OpenMAX AL 1.0.1 support)
•	 libandroid.so (native Android activity support)
•	 libmediandk.so (native media APIs support)

These libraries also provide minimal support for the C++ JNI interface as well as 
support for OpenGL.

An implementation of each one of these libraries must be present in our system 
to be compatible with Android NDK. This is a dynamic list and we cannot treat it 
as a definitive set of libraries: future versions of Android could add new libraries 
and increase development possibilities and scenarios. That's why native code 
compatibility is challenging. For this reason, Google strongly suggests to use the 
implementations of the libraries listed earlier from the Android Open Source  
Project, taking advantage of the Open Source philosophy of Android and to enjoy 
well-supported and well-tested source code.

Maintaining 32-bit support
Nowadays, all major manufactures are switching to 64-bit architecture and new 
ARMv8 architecture deprecates lots of old CPU operations. Unfortunately, the 
market is still full of 32-bit compatible software and even on 64-bit architecture we 
must still support these deprecated operations, to avoid scaring developers and 
losing precious market share. Fortunately, we can choose to make them available  
via real hardware support or software emulation, at the expense of performance.



Understanding the Architecture

[ 12 ]

Supporting 32-bit architecture can be very tricky. We can just think about one simple 
scenario, for example, accessing the /proc/cpuinfo file. Legacy versions of the 
Android NDK used /proc/cpuinfo to discover CPU features. For compatibility 
with applications built using 32-bit NDK, we must specifically include the following 
things in /proc/cpuinfo when it is read by 32-bit ARM applications:

•	 Features: This is followed by a list of any optional ARMv7 CPU features 
supported by the device

•	 CPU architecture: This is followed by an integer describing the device's 
highest supported ARM architecture (for example, 8 for ARMv8 devices)

The tricky part is that these requirements only apply when /proc/cpuinfo is read 
by 32-bit ARM applications. The file must be not altered when read by 64-bit ARM or 
non-ARM applications.

From Dalvik to ART runtime
The original Android runtime implementation was Dalvik. Dalvik was a virtual 
machine, specifically created for Android, due to the necessity to target low-memory 
devices. It was an integral part of the system until Android KitKat.

As we already said, Android applications are mostly written in Java. When Dalvik 
was the in-use runtime system, the Java code was compiled into bytecode. This 
bytecode was then translated to Dalvik bytecode and finally stored into a .dex 
(Dalvik Executable). After this procedure, Dalvik was able to run the Android app.

Although Dalvik had been designed for slow devices, with low memory, its 
performance has never been astonishing, not even when the Just-In-Time 
compilation was introduced, back with Android 2.2 Froyo. Dalvik JIT was supposed 
to bring a huge performance boost to Android apps and, from some points of view, 
it did, but with limitations, such as the infamous maximum methods number, and the 
pressure from alternative solutions forced Google to look forward to a new runtime:



Chapter 1

[ 13 ]

The Android runtime
When Android 4.4 KitKat was released, users could select a new experimental 
runtime environment in the Settings menu: ART. Android RunTime or,  
shortened, ART, is the current default runtime solution that replaced Dalvik  
from Android 5 Lollipop. The previous diagram shows a comparison between  
Dalvik and ART architecture.



Understanding the Architecture

[ 14 ]

The idea behind Dalvik's JIT (just-in-time) execution was to profile the applications 
while they were being executed and dynamically compile the most-used segments 
of the bytecode into native machine code. Native execution of these most-used 
segments called traces would then greatly speed-up the execution of the application 
even though most of the code would still be interpreted.

A new old approach – AOT compilation
Art re-introduces the concept of AOT (ahead-of-time) compilation. It works as most 
compilers do, that is, it compiles the whole application code into the native machine 
code, without interpreting bytecode at all. This takes some time, but it is done 
only once when the user downloads the app, so considering the time and amount 
of resources needed for JIT profiling and optimization that are needed on every 
application start, it is an acceptable trade-off. Also, since the whole application is 
now compiled, it is quicker overall and the power consumption is reduced, which 
improves the device autonomy.

ART is the default runtime since Android 5, but Android needs to ensure 
compatibility with all those apps that are already on the market and all those  
devices that are running a previous version of Android and won't receive any 
operating system updates.

For backward compatibility reasons, the input bytecode is the same for ART and 
Dalvik. The application APK file still contains standard .dex files, but replaces 
the .odex files (Optimized Dalvik Executables) with the standard Unix ELF files 
(Executable and Linkable Format). During the installation, ART uses dex2oat 
utility to compile the bytecode into native code stored in the ELF file. As already 
mentioned, this step is performed only once and requires fewer resources and less 
overhead than Dalvik's JIT compilation. The downside is that the APK files are  
larger because they effectively contain double the code (uncompiled bytecode  
and compiled executable). After this compilation, the system will run just the  
ELF executable.

The bottom line is faster apps, but a bit less free space on your smartphone memory.

Garbage collection and other improvements
AOT compilation is not the only improvement that ART brought in. One of the most 
important features is the improved garbage collection. Garbage Collection (GC) is 
a form of automatic memory management, completely different from the old idea 
where the developer was the one in charge of allocating memory when needed and 
freeing it when it was not needed anymore.



Chapter 1

[ 15 ]

The whole philosophy is based on the concept of Garbage Collector, an entity 
that tries to reclaim memory occupied by objects that are not used anymore in the 
program. It's a well-known tool in the Java world and Android has always suffered 
from its downside—GC is very slow and blocking.

Android 2.3 introduced the concurrent garbage collector—GC is not blocking the 
app anymore when it occurs, but there will always be an overall slowdown when it 
occurs. Finally, ART introduced a few more performance improvements:

•	 Just one pause for garbage collection instead of Dalvik's two pauses
•	 GC processing is now parallelized, reducing the duration of the GC pause
•	 New Rosalloc memory allocator that uses thread-local region allocations  

for smaller objects and separate locks for bigger objects, instead of a single 
global lock

•	 Full garbage collection is run only when the phone is locked so that the user 
doesn't notice when the GC is run

•	 There is a compacting GC that reduces memory fragmentation and so 
diminishes the need to kill other applications just because bigger contiguous 
memory chunks are needed

From a development and debugging point of view, ART brought in the support for 
sampling profiler, support for more debugging features, and improved diagnostic 
details in exceptions and crash reports.

Waiting for Android Nougat
The upcoming version of Android will bring some enhancement to the current ART 
runtime. Google will introduce a so-called Profile-guided JIT/AOT compilation. JIT 
stands for Just In Time and looks similar to the old Dalvik approach: a compiler with 
code profiling capabilities. This JIT compiler will work together with ART and will 
provide constant performance improvement as it will continuously be profiling code 
and resource usage.



Understanding the Architecture

[ 16 ]

To improve performance during the installation phase, ART won't pre-compile 
Ahead-Of-Time the whole app. Instead, thanks to the profiling approach, it will 
detect hot methods in the app and will only pre-compile them, leaving unused parts 
of the app uncompiled. This precompilation process is smartly performed when 
the device is idle and charging, to have the smallest negative impact on the user 
experience and allow the user to install in instants apps that in Android 6 would  
take several seconds to be installed.

This whole new approach aims to improve applications and system performance  
on low end devices, reducing RAM memory footprint, battery draining and 
increasing runtime performance, for a satisfying Android experience on a  
wide range of devices.

Meeting the Compatibility Test Suite
We are aware of the CDD and we did our best to create a compatible device. A lot of 
aspects could still have glitches and we surely want to get rid of them. To make sure 
that everything works as expected, our Android implementation must be tested with 
Android Compatibility Test Suite. Android CTS will accompany us throughout the 
journey to our certified device. We will constantly use it to keep an eye on what is 
working and what is not working yet.

Every new version of Android platform comes with a new Compatibility Test Suite 
(CTS). This automated testing suite has two main components:

•	 Tradefed, that manages text execution from the desktop.
•	 Test cases executed on the Device Under Test (DUT). These cases are regular 

JUnit tests written in Java and packaged as Android .apk files so that they 
can be executed on the target device.

There is also the CTS Verifier, a tool for manual testing that consists of the verifier 
app that is executed on the device and collects the test results; and other executables 
or scripts that are executed on the desktop machine in order to provide further data 
or control for some test cases in the Verifier app.



Chapter 1

[ 17 ]

The following diagram shows the CTS workflow:

The test suite on your computer will install the test on the device and will launch it. 
The device will test that particular subset of features and will give the results back to 
the test suite on your computer. The test suite will store these results, install the next 
test, and will start the cycle again, until every test is executed.

Currently, the CTS provides two main types of test cases:

•	 Unit tests
•	 Functional tests

Unit tests test the smallest logical units of code within the Android platform,  
for example, a single class, such as java.util.HashMap.

Functional tests are used to test a specific function that can consist of numerous API 
method calls.



Understanding the Architecture

[ 18 ]

Google is planning to provide more tests in the future versions of the test case.  
A couple of ideas are:

•	 Robustness tests: This tests the system's durability under stress conditions
•	 Performance tests: This tests the system's performance, such as frames  

per second

The following table shows the areas covered by the Compatibility Test Suite:

Area Description
Signature tests For each Android release, there are XML files describing the 

signatures of all public APIs contained in the release. The CTS 
contains a utility to check those API signatures against the APIs 
available on the device. The results from signature checking are 
recorded in the test result XML file.

Platform API Tests These tests test the platform (core libraries and Android 
Application Framework) APIs as documented in the SDK Class 
Index to ensure API correctness, including correct class, attribute 
and method signatures, correct method behavior, and negative 
tests to ensure expected behavior for incorrect parameter 
handling.

Dalvik Tests These tests focus on testing the Dalvik Executable Format.
Platform Data 
Model

The CTS tests the core platform data model as exposed 
to application developers through Content Providers, as 
documented in the SDK android.provider package: contacts, 
browser, settings, and so on.

Platform Intents The CTS tests the core platform intents as documented in the 
SDK Available Intents.

Platform 
Permissions

The CTS tests the core platform permissions as documented in 
the SDK Available Permissions.

Platform Resources The CTS tests for correct handling of the core platform resource 
types, as documented in the SDK Available Resource Types. 
This includes tests for: simple values, drawables, nine-patch, 
animations, layouts, styles and themes, and loading alternate 
resources.



Chapter 1

[ 19 ]

CTS setup
Our journey will be very practical and hands-on, that's why in this section we are 
going to set up Android Compatibility Test Suite to test an existing device. We can't 
start working on our own Android implementation without knowing what we are 
going to support and test. To be able to run Android CTS, we will need:

•	 A computer running Linux or OS X
•	 Android SDK:  

http://developer.android.com/sdk/installing/index.html

•	 Java SDK 6 or 7: http://www.oracle.com/technetwork/java/javase/
downloads/index.html

•	 Android CTS:  
http://source.android.com/compatibility/downloads.html

•	 Android CTS Media: https://dl.google.com/dl/android/cts/android-
cts-media-1.1.zip

There are a lot of files to download. In the meantime, we will set up our device.

Device setup
We are testing an existing device, a smartphone, so we are already satisfying needs 
such as having a screen and we can move to device software configuration.

Tests should be executed on a clean device, so we should run a Factory Restore to 
erase all the data on the smartphone. Be sure of having a backup of your data if 
you are not using a development device. On Android 4.4 KitKat, you can reach the 
specific menu by navigating to Settings | Backup & reset | Factory data reset.

This will take a while—the device will shut down and the erasing process will start. 
The procedure will remove every single byte that is not part of the original Android 
system provided with your device, restoring all the settings and bringing the device 
to its original setup.

When the device restarts, we need to select English US language by navigating to 
Settings | Language & input | Language.

Now we need to turn on the Location: We need Wi-Fi and GPS and we need 
to provide some Internet connectivity. We need to disable any Screen Lock by 
navigating to Settings | Security | Screen Lock = 'None'.

http://developer.android.com/sdk/installing/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://source.android.com/compatibility/downloads.html
https://dl.google.com/dl/android/cts/android-cts-media-1.1.zip
https://dl.google.com/dl/android/cts/android-cts-media-1.1.zip


Understanding the Architecture

[ 20 ]

We need a few settings from the Developer options menu. On a brand new 
installation of a vanilla Android system this menu is hidden. We can enable  
using the following steps:

1.	 Navigate to Settings | About phone.
2.	 Scroll to the bottom.
3.	 Tap continuously on build number item.
4.	 You are now a developer!

If you are working with an HTC, Samsung, or Sony device and 
its custom version of Android, the previous steps could be a bit 
different. We leave it as an exercise to find the right navigation 
path for your non-vanilla Android version.

Once the Developer options menu has been enabled, navigate back to the Settings 
screen. In the Developer options menu, we need to enable the following:

•	 USB debugging
•	 Stay awake
•	 Allow mock locations

Before running any tests, it's important that the device is on a steady support to 
avoid triggering accelerometers and the gyroscope. The camera should be pointing 
to a focusable object. Don't press any buttons or keys during the tests—this could 
invalidate test results.

Media files setup
To properly run all the tests, we will need a few multimedia files on the  
device—Android CTS media files. First of all, let's connect the device to the USB. 
If this is the first time that you connect this device to this host PC, the device will 
display a dialog to authorize the connection—allow the connection:

Any Android device can communicate with a host PC using Android ADB. This 
key tool is covered in great detail in the next chapters, so, for now, we can start 
downloading the latest Android SDK from https://developer.android.com/
studio/index.html#downloads, according to your platform. Once the download 
is completed, decompress the file and you will be provided with an android-sdk 
folder, containing a platform-tools folder, containing adb executable.

https://developer.android.com/studio/index.html#downloads
https://developer.android.com/studio/index.html#downloads


Chapter 1

[ 21 ]

Back to our media files setup now:

1.	 Open a terminal.
2.	 Navigate to the downloaded file, for instance:

$ cd ~/Downloads

3.	 Unzip the file:
$ unzip android-cts-media-1.1.zip

4.	 Enter the brand new android-cts-media folder with:
$ cd android-cts-media

5.	 This folder contains a file that we must make executable:
$ chmod u+x copy_media.sh

6.	 Now we are ready to copy all the media files we need onto the device:

$ ./copy_media.sh all

The next screenshot shows the output of the whole procedure:



Understanding the Architecture

[ 22 ]

Run!
Everything is in place now and we can use cts-tradefed to run some test plans. 
Move to the Android CTS folder and run the following command to enter the  
cts console:

$ ./tools/cts-tradefed

The previous screenshot shows how cts-tradefed automatically identifies our 
connected device and gets ready to test.

CTS console provides a few useful commands:

•	 list plans: This will list all the available test plans in the repository
•	 list packages: This will list all the available test packages in the repository
•	 run: This will allow us to run all the tests we want

Typically, the following test plans are available:

•	 All CTS tests required for compatibility
•	 Signature tests the signature verification of all public APIs
•	 Android tests for the Android APIs
•	 Java tests for the Java core library
•	 VM tests for ART or Dalvik
•	 Performance tests for your implementation



Chapter 1

[ 23 ]

As our first approach to CTS, we are going to run CTS plan:

cts-tf > run cts --plan CTS --disable-reboot

The testing will start immediately and the console will be full of log messages in the 
blink of an eye, as shown in the following screenshot:

Now, grab some coffee or make some good tea: this will take a while. cts-tradefed 
will test everything that is possible to test with an automatic test. Luckily for us, 
there is a lot that can be tested in this way.

Analyzing the test results
Time has passed, the tea has gone, and the tests are over. On a quad-core 
smartphone, such as a Motorola Moto G or Nexus 4, this could take up to 10 hours. 
Eventually, we have got some nice results to check out. According to the folder's 
path we are working in, we will have results in a .zip file in the cts folder:

$ unzip ~/bin/android-cts/repository/results/START_TIME.zip



Understanding the Architecture

[ 24 ]

Unzipping the file, we will find a testResult.xml file. Opening this file with a 
recent web browser (Firefox is working fine here) will show plenty of meaningful 
tables, with all kind of test and results. The next screenshot shows the initial Test 
Summary. We have information about the test duration, how many tests were 
executed, how many tests passed, and how many tests failed:

As you can see, even testing a certified smartphone, currently on the market, will 
produce some failed tests. This gives you an idea about the complexity of producing 
the perfect Android device.

The next screenshot shows Test Summary by Package, specifying the test results one 
test after the other. For brevity, we are showing just a subset of the results:



Chapter 1

[ 25 ]

The previous Test Summary screenshot shows that 29 tests have failed. If we dig 
into the test result file, we see that detailed reports are also available. This further 
information is hugely useful to precisely spot the failed test, like the one in the 
following screenshot, and investigate the issue:

The test result file tries to play polite and, for brevity, does not show the full 
stacktrace of the failed test. To reach the stack trace of the failure, we must inspect 
the source code of testResult.xml. For every executed test, there is a corresponding 
<Test> tag. For those tests that failed, we will have a <StackTrace> tag too. That's 
what we are looking for!

As a final note, testResult.xml contains a huge section with all the information 
about the device it has been able to retrieve. It's a very large amount of data that,  
for brevity, we are not reporting here, not even as an example.

Diving deeper with CTS Verifier
We already know that there are lots of APIs and functions that we can automatically 
test with cts-tradefed, but what about all the other APIs and functions that cannot 
be tested within an automated environment?

CTS Verifier comes in every time an API or a function cannot be tested on a device 
without manual input. These are scenarios involving audio quality, touchscreen 
effectiveness, accelerometer precision and reactivity, camera quality, and features 
that are meant so specifically for human interaction that they are impossible to test 
without human interaction.

Setup
All we need to run CTS Verifier is an Android certified device and the appropriate 
CTS Verifier APK file. As we are testing an Android 4.4 device, we need to pay 
attention to downloading the proper CTS Verifier version. You can download the 
APK for your Android version and device architecture here: http://source.
android.com/compatibility/downloads.html.

http://source.android.com/compatibility/downloads.html
http://source.android.com/compatibility/downloads.html


Understanding the Architecture

[ 26 ]

You just need to unzip the downloaded file and you will find a folder hierarchy and 
two .apk files. You can install CtsVerifier.apk using ADB:

$ adb install –r CtsVerifier.apk

The following screenshot shows the properly installed CTS Verified app and the 
initial screen:



Chapter 1

[ 27 ]

Manual testing
As we know, CTS Verifier contains tests that need manual input to execute, evaluate, 
pass, or fail. Every test has its own Info screen that helps the tester to perform the 
test. As an example, we will run the Accelerometer Test, in the Sensors section.

Launching the test, we are welcomed by the info screen, as shown in the  
following screenshot:



Understanding the Architecture

[ 28 ]

The Info button explains how to perform the test and what to evaluate. As we  
move into the testing, we can evaluate if the accelerometer is working as expected. 
The following screenshot shows three different moments of the test:

•	 The smartphone lays on the desk
•	 The smartphone is held in hand, in portrait mode
•	 The smartphone is held in hand, in landscape mode

As specified in the Info button, the arrow is always pointing in the same direction as 
the gravity: the sensor is working properly. We can consider that we have passed the 
test and click on the Pass button.

We have passed our first test. CTS Verifier provides dozens of tests and, one by one, 
we are going to run, verify, and pass them, in the long journey towards our first 
Android Certified Device.



Chapter 1

[ 29 ]

Retrieving the results
When every test has been executed, we can save the result using the Save icon in the 
top-right corner of the initial screen, as shown in previous screenshot. The results 
will be saved on the device and a dialog box will show the precise path, as shown in 
the following screenshot:

Now, let's open a terminal and copy all the results from the phone to our computer:

$ adb pull /mnt/sdcard/ctsVerifierReports/ .

$ unzip *.zip

At this point, we have a ctsVerifierReport-[…].xml with all the info about our 
manually executed tests.

Congratulations! You have fully tested an Android device. Step 0 of our journey  
is complete.

www.allitebooks.com

http://www.allitebooks.org


Understanding the Architecture

[ 30 ]

Summary
In this chapter, we learned what we are going to need to create a certified Android 
device. We saw the Android Compatibility Definition Document and we learned 
how to design a system to match the Android architecture. We had an overview of 
the two different runtime systems: Dalvik and ART and their main differences.

We had a full immersion into Android device testing, we learned how to run CTS 
automated tests and CTS manual tests on a already certified device.

The next chapter will be very hands-on. We will learn how to retrieve Android source 
code and we will understand the code structure and organization.



[ 31 ]

Obtaining the Source Code – 
Structure and Philosophy

In the previous chapter, we had an overview about the system layer-based 
architecture and we had our first hands-on experience, testing a real-world  
device using CTS tools suite.

In this chapter, the user will learn about the philosophy behind the Android and 
Google development model. We will show how the source code is organized, which 
are the main branches, and what the workflow is. We will create a step-by-step 
journey to retrieve the Android Open Source Project (AOSP) source code and 
prepare the environment by installing all the required tools.

The user will learn how to contribute to the Android Open Source Project, how to 
use tools such as git, the version-control system, and, repo, the repository manager.

To complete the chapter, we will dig into the AOSP folder structure, analyzing the 
most important components that create the most popular mobile operating systems 
of the world.

The Android philosophy
Android is an open source platform created to be compatible with a huge number 
of different devices, from a hardware point of view to a purpose point of view. The 
main goal is to provide a freely available software platform for both large enterprise 
companies and small independent makers or even single developers. Android aims 
to provide an easy way to create innovative solutions and bring them to market with 
no effort.



Obtaining the Source Code – Structure and Philosophy

[ 32 ]

Everything started in 2005, when Google acquired Android Inc., a small company 
that was developing an operating system for mobile devices. A couple of years 
later, the Open Handset Alliance was born. In 2007, 84 companies, including mobile 
operators, handset manufacturers, and semiconductor and software companies, 
publicly announced their brand new, upcoming mobile operating system.

For one more whole year the project was kept a secret. Google worked hard to 
bring the project to version 1.0 and in 2008 Android was shown to the world. In the 
following seven years, four major versions of the system have been released. The 
following table tells the chronological history of all the Android versions. Every 
single version was released as open source software to the world. Every version, but 
Honeycomb, that was an ugly PR slip for Google, which spent a lot of energy to bring 
it down and replace it with Ice Cream Sandwich as soon as possible:

Version Codename API level Open source Date
1.0 Unknown 1 - 2 Yes September 2008
1.5 Cupcake 3 Yes April 27, 2009
1.6 Donut 4 Yes September 15, 2009
2.0 Eclair 5 - 6 -7 Yes October 26, 2009
2.2 Froyo 8 Yes May 20, 2010
2.3 Gingerbread 9 - 10 Yes December 6, 2010
3.0 Honeycomb 11 - 12 - 13 No February 22, 2011
4.0 Ice Cream Sandwich 14 - 15 Yes October 18, 2011
4.1 Jelly Bean 16 - 17 - 18 Yes June 9, 2012
4.4 KitKat 19 - 20 Yes October 31, 2013
5.0 Lollipop 21 - 22 Yes November 12, 2014

The license
Creating an open source platform brings in a few concerns about which license 
gives the perfect balance between protection and freedom. The goal is to give 
manufacturers enough freedom to adapt the system to their own hardware without 
being scared of dark licenses, trying to steal their intellectual property. To reach this 
goal, Google picked one of the most famous open source licenses available at the 
time and applied it to most parts of the operative system.



Chapter 2

[ 33 ]

The license that Google uses to protect the Android Open Source Project (AOSP) is 
the Apache Software License, Version 2.0, also known as Apache 2.0, and it covers 
almost every line of code published to AOSP. The Apache 2 license doesn't apply  
to one big system component—the kernel. Linux Kernel is protected by GNU  
Public License, V2, and it comes with a system exception to be able to be shipped  
with Android.

Being open source and being easily adaptable to popular hardware, it launched 
Android to the top of the mobile market at rocket speed, reaching one billion active 
devices all over the world with over one million apps available on the Google Play 
Store. One billion active devices is the result of a winning strategy—providing 
manufacturers with a software solution for their hardware, easy to integrate and 
customize, coming free of charge and community supported, in a market that was 
dominated by Apple.

Open source, closed doors
A closer look at the project shows how Android is slightly different from other open 
source projects: Android is developed by Google behind closed doors. Lots of people 
in the community don't agree about considering Android as open as Linux is. In fact, 
the two approaches are completely different. Yes, both of them have an open source 
license, but Linux is a community-developed project, Android, instead, is completely 
developed by Google.

Every technical discussion, every decision, every roadmap step is decided by Google. 
When the development life cycle completes, Google releases a new version of the 
operative system, updates the public source code repository and everybody is  
able to download the latest version of the OS.

Of course, there are e-mailing lists for discussion and support and there are a 
few ways to contribute to the project, but everything is decided by the Android 
development team.

The Android development model
To assure the stability of the Android current release, Google keeps the source 
code in code lines. This approach provides a proper mechanism to keep separated 
the current stable version, available on all latest devices, from the currently under 
development, unstable version. As you may easily notice, Google is using a different 
naming convention for Android compared to the usual nomenclature of open source 
projects—code line is used instead of branch, because a single code line can be 
based on multiple git branches.



Obtaining the Source Code – Structure and Philosophy

[ 34 ]

The following diagram shows how the source code history evolves over time, 
through different branches and releases:

The previous diagram shows the main public branch, Upstream, on the left. This 
branch is the main public development branch where all the critical bug fixes are 
released constantly, and where all the main experimentation with new devices and 
new technology is performed. Every developer or manufacturer can obtain this set of 
source code and start to create their own Android device.

On the right side of the diagram, we can see Google's private branch. This branch 
contains the Android next version. Generally, all the development is done by 
Google itself, with the support of a hardware partner that provides a reference 
device. Typically, this device is a high-end, top-class device that Google appoints 
as Google's next reference device, also known as Nexus. Every new Nexus has been 
chosen keeping in mind Google Android's development roadmap—every technical 
hardware specification supports or discourages particular software development, to 
create the perfect symbiosis between the device and the operating system.



Chapter 2

[ 35 ]

When the internal development reaches the desired stable point, the new version 
is released, every branch is updated accordingly and a new public/private 
development cycle begins, once again.

Source code tags and builds
To effectively refer to a specific Android version, every public release, since  
Android 1.5, comes with a fancy pop codename, a version number, and a more 
developer-oriented API level.

The following table shows how the correspondence between codename/version/API 
level is not always a one-to-one relationship. Most of the time, the code name has a 
longer life cycle than the version number:

Code name Version API level
Lollipop 5.1 API level 22

Lollipop 5.0 API level 21
KitKat 4.4 - 4.4.4 API level 19
Jelly Bean 4.3.x API level 18
Jelly Bean 4.2.x API level 17
Jelly Bean 4.1.x API level 16
Ice Cream Sandwich 4.0.3 - 4.0.4 API level 15, NDK 8
Ice Cream Sandwich 4.0.1 - 4.0.2 API level 14, NDK 7
Honeycomb 3.2.x API level 13
Honeycomb 3.1 API level 12, NDK 6
Honeycomb 3.0 API level 11
Gingerbread 2.3.3 - 2.3.7 API level 10
Gingerbread 2.3 - 2.3.2 API level 9, NDK 5
Froyo 2.2.x API level 8, NDK 4
Eclair 2.1 API level 7, NDK 3
Eclair 2.0.1 API level 6
Eclair 2.0 API level 5
Donut 1.6 API level 4, NDK 2
Cupcake 1.5 API level 3, NDK 1
(no code name) 1.1 API level 2
(no code name) 1.0 API level 1



Obtaining the Source Code – Structure and Philosophy

[ 36 ]

Nexus
The Nexus family contains all those Android devices that Google designs, produces, 
and sells, with the help of its hardware manufacture partners.

One of the peculiarities of the Nexus family is the bare Android system it equips 
the device—there is no customization of any sort, neither from the manufacturer 
nor from the telephone carrier. The system is based on pure Android source code, 
providing the user with the purest Android experience. As an advanced note, 
the device bootloader can be easily and legally unlocked, to allow every sort of 
modification any expert user could desire. Security-wise, the Nexus devices are the 
first ones that receive security fixes and system updates—stay updated, stay safe!

The Nexus family is continuously growing in numbers and quality and it now 
contains smartphones, tablets, and even digital players. The upcoming tables  
show an overview on all the currently available models.

Phones
Here is a list of all stock Nexus phones:

Name Android version Release date Vendor
Nexus One 2.1 updated at 2.3 January 2010 HTC
Nexus S 2.3 updated up to 4.1.2 December 2010 Samsung
Galaxy Nexus 4.0 updated up to 4.3 November 2011 Samsung
Nexus 4 4.2 updated up to 5.1 November 2012 LG
Nexus 5 4.4 updated up to 5.1 October 2013 LG
Nexus 6 5.0 updated up to 5.1 October 2014 Motorola

Tablets
Here is a list of all stock Nexus tablets:

Name Android version Release date Vendor
Nexus 7 4.1 updated at 5.0 June 2012 Asus
Nexus 7 4.3 updated up to 5.0 November 2013 Asus
Galaxy 9 5.0 updated up to 5.1 October 2014 HTC
Nexus 10 4.2 updated up to 5.1 November 2012 LG



Chapter 2

[ 37 ]

Digital media players
Here is a list of all stock Nexus digital media players:

Name Android version Release date Vendor
Nexus Q 4.0 June 2012 Google
Nexus Player 5.1 November 2014 Google and Asus

Every single device in these tables has its own Android build, specifically tailored for 
its hardware and purpose. The following table is an example of builds code names 
and versions that Google provides for all the expert Android users who want to 
manually replace the operative system and want to retrieve the official build  
by Google:

Build Branch Version Supported devices
LVY48C android-5.1.1_r8 Lollipop Nexus 6 (For Project Fi ONLY)
LMY48G android-5.1.1_r6 Lollipop Nexus 7 (flo)
LYZ28E android-5.1.1_r5 Lollipop Nexus 6 (For T-Mobile ONLY)
LMY47Z android-5.1.1_r4 Lollipop Nexus 6 (For Sprint, USC ONLY)
LMY48B android-5.1.1_r3 Lollipop Nexus 5

LMY47X android-5.1.1_r2 Lollipop Nexus 9 (volantis)
LMY47V android-5.1.1_r1 Lollipop Nexus 7 (flo/grouper), Nexus 10, 

Nexus Player
LMY47O android-5.1.0_r5 Lollipop Nexus 4, Nexus 7 (flo/deb)
... ... ... ...

Every build is identified by a build-code, for instance, LMY470. The first letter is the 
initial letter of the code name, for instance, Lollipop; the second letter identifies the 
branch used to produce this build; the following two letters identify the release date, 
based on quarters notation—A is Q1 2009, F is Q2 2010, and so on. The two numbers 
following the quarter letter specify the release day. The last letter identifies the build 
number. This notation is not critically precise. Google often reuses the same build 
code for more than one build. We need to consider it as a rough estimation of the 
release date.

Source code tools
Android is a huge project, with an astonishing amount of source code. Google itself 
manages the source code and stores it on its servers which are publicly accessible to 
the developers and advanced users.



Obtaining the Source Code – Structure and Philosophy

[ 38 ]

Considering the complexity of the project, we will need only two tools to retrieve the 
source code:

•	 git
•	 repo

Let's have a quick overview on these powerful tools that will accompany us during 
our journey.

Git
Git is currently the most popular source code version control system, openly 
available in the world. It's an impressive tool created by Linus Torvalds (yes,  
the same Linus Torvalds who created the Linux kernel contained in Android).

In 2005, Torvalds was struggling to find a proper way to manage the amount of 
code and contributions from the developers who were working on its Linux kernel. 
No tool available at that time was enough and, in a few days, he created the first 
working version of his new distributed revision control system that was able to 
manage a huge project with speed and flexibility.

Git provides effective and easy-to-achieve solutions for modular systems and Google 
takes full advantage of this opportunity. Every contribution to the Android code 
base is provided using git features—commits, branches, and patches.

The system is kept as modular as possible to allow developers and OEM to extract 
and replace components that need to be customized. Knowing this, it's easy to guess 
how many git repositories Android contains—dozens of interconnected repositories 
of different sizes and structures.

Repo
To overcome the difficulty of managing a plethora of different repositories, Google 
created git-repo, a tool written in Python that acts like a coordinator upon git and 
allows automation of some common parts of the workflow.

Repo comes in handy in a lot of scenarios. Most of all, all those network operations 
that involve the source code: retrieving, updating, and pushing the code to the 
remote servers. Repo is a pivot tool and we will learn a lot about it in the  
next sections.



Chapter 2

[ 39 ]

Gerrit
Worth mentioning, Gerrit is the code review tool used to evaluate and approve every 
contribution made to AOSP. It provides a graphical user interface to monitor the 
evolution of the code base and represent the central point where all the contributions 
end before being accepted and merged into the main code base, or rejected if the 
review resolves in a no, thanks.

Setting up the environment
The Android build system is officially supported by Ubuntu Linux. Google assures 
that the system setup, the environment setup, and all the requirements are easily 
reproducible on this particular Linux distribution. The truth is, nowadays, every 
Linux distribution can be prepared to perform a proper Android build with  
little effort.

To be closest to the guidelines and because we think that Ubuntu is the easiest 
system to set up for the job, in this book we are going to use Ubuntu Linux 15.04  
to perform all our building procedures.

If you are working on OS X or Windows and you prefer to stick to these  
operating systems, we are going to show you how to achieve our goal even  
using a virtual machine.

Free space
The amount of free space on the hard drive needed by the build system is massive. 
The Android source code by itself can reach 100 gigabytes of occupied space. When 
we move to more advanced scenarios, such as building using a caching system, such 
as ccache, to speed up multiple system builds, we can easily reach 200 gigabytes of 
occupied space. It's very important to be sure that this kind of free space is available 
on your machine, because filling up the hard disk during the building process could 
bring the system into an unstable state.

Another note is about your connection speed—considering the amount of data 
needed to get ready to build, be sure to have a fast Internet connection, or an 
appropriate amount of patience.



Obtaining the Source Code – Structure and Philosophy

[ 40 ]

Installing the required tools
Even if officially the supported Linux distribution is Ubuntu, the following 
procedures and commands are equally correct on every Debian-based distribution,  
if it is actually installed on your computer or is running as a virtual machine.

To be able to acquire the source code, retrieving it from Google git repository, we need 
to install git. Let's open a Terminal and run:

~$ sudo apt-get install git

Apt will ask for our super user password and will take care of installing git in the 
system. Once we have git, we need its trusted companion tool—repo. Repo does not 
need a real installation. It's a Python script, so we just need to download it and place 
it in a handy folder.

Let's create a bin folder in our home folder and add it to the system path:

~$ mkdir ~/bin

~$ export PATH=~/bin:$PATH

Now that we have a folder, we can download repo using curl:

~$ curl https://storage.googleapis.com/git-repo-downloads/repo >  
~/bin/repo

~$ chmod a+x ~/bin/repo

If curl is not available in your system, you can install it using 
apt-get as shown in the following command:
~$ sudo apt-get install curl

The following is the output:



Chapter 2

[ 41 ]

The previous screenshot shows the download and our chmod command, to make 
repo properly executable. The repo tool comes with a collection of help commands 
accessible like this:

$ repo help

This command lists all the available commands, as shown in the next screenshot:

For further help, every command, for instance info, has its own help screen 
accessible like this:

$ repo help command



Obtaining the Source Code – Structure and Philosophy

[ 42 ]

The following screenshot shows the help screen for the info command:

Getting ready
As we already know, Google is the official manager of the entire hardware 
infrastructure supporting Android—everything is hosted and maintained by Google. 
The source code repository also provides a web UI to graphically navigate the source 
code. This source code browser is available at https://android.googlesource.com/.

The following screenshot shows an example of what the page looks like:

https://android.googlesource.com/


Chapter 2

[ 43 ]

Every single item of the list shown in the previous screenshot is a git repository. 
This can give you a perfect idea of the importance of Google's repo tool—manually 
managing this many repositories would be pure madness! Using repo, retrieving, 
downloading, and creating the proper folder structure is a few-lines' task. Let's do it!

First things first—create a working folder. Open a Terminal and create a folder  
like this:

~$ mkdir WORKING_DIRECTORY

~$ cd WORKING_DIRECTORY

Once in the folder, run:

~/WORKING_DIRECTORY$ repo init -u  
https://android.googlesource.com/platform/manifest



Obtaining the Source Code – Structure and Philosophy

[ 44 ]

The URL specifies the project manifest file. The manifest specifies which repositories 
are necessary for the download and what the folder structure is that must be 
expected to run.

During this phase, repo will ask for your full name and e-mail. This sort of 
registration is needed to enable the system to receive your contributions. Gerrit 
will use this information to communicate with you with notifications and news. 
Obviously, your name will be associated to every contribution, fix, or feature you 
will submit in the future. Making sure that the provided e-mail address is a valid 
Google account is a wise choice.

A successful initialization ends with:

repo has been initialized

Congrats! We now have an initialized repo in the current folder and a configuration 
folder, named .repo, containing, for instance, the downloaded manifest file.

Run ls -la in your Terminal to spot the .repo folder.

Currently, our folder contains the master branch of the whole Android project. It 
has to be considered a development branch, so we have no guarantee that the system 
will work on a device or even build on our system. We can use this branch to submit 
some contribution, but this is a task for another step of our journey. Our current goal 
is to try to build a working system, so the smart move is to switch to a branch or a 
TAG that officially supports a specific device.

To switch to a specific branch, we will use repo, which will take care of configuring 
every single repository involved, to bring us to a stable and guaranteed environment:

:~/WORKING_DIRECTORY$ repo init -u  
https://android.googlesource.com/platform/manifest -b android- 
5.1.1_r3

The previously shown table contains every possible branch we could switch to.

To retrieve the whole list of available branches, we are going to use a trick—cloning 
one specific repository that provides this very information: manifest.git.  
Let's open a Terminal and clone it:

$ git clone  
http://https://android.googlesource.com/platform/manifest.git  
manifest

Enter the folder we have just created and get the list:

$ cd manifest

$ git branch -a



Chapter 2

[ 45 ]

The following screenshot shows part of the huge list of available branches:

Downloading the code
Everything is in place: folders are ready, repo is properly configured, we have tons 
of free hard disk space and a fast Internet connection. Let's sync!

Open a Terminal and run:

$ repo sync



Obtaining the Source Code – Structure and Philosophy

[ 46 ]

Make yourself a tasty coffee as this will take some time! The repo tool is going to 
download every single file of every single repository specified in the manifest file,  
for more than 50 gigabytes.

Hands on the code
Knowing that we will adapt Android to our hardware, it's important to have a clear 
understanding about the workflow to create and submit contributions. To achieve 
this goal, we will use both repo and git.

The contribution workflow is based on five steps:

1.	 We create a new topic branch:
$ repo branch

2.	 We develop all the edits, fixes, and features we want. We add these 
contributions to the next commit:
$ git add our_files

3.	 We save our staged file to the git repo:
$ git commit -m "Add awesome new feature"

4.	 We submit our new commits to the code review server:

$ repo uploads

Our code has been submitted and it's waiting to be reviewed—fingers crossed!

If you don't want to download the whole code base and you know already which 
specific module you are going to customize, you can sync just this module:

$ repo sync art

When our module has been synced, we need to create a new branch to keep our 
environment organized, with a clear structure and an easy way to compare our edits 
with the original content. To create our new topic branch, we need to enter the 
module folder and run a repo command:

$ cd art/

$ repo start my_branch .

If everything is in place, we run this command:

$ repo status .



Chapter 2

[ 47 ]

This command will be a bit comforting:

:$[…]/art$ repo status .

project art/                    branch my_branch

During our work, we can create as many branches as we need and we can list them 
as follows:

$ git branch

The following screenshot shows the list of all the branches in the current module:

The current branch is the one with the star symbol (asterisk). Now that we know 
which are the available branches, we can switch from branch to branch using:

$ git checkout branch_name

For every fix or feature we add, a new Git commit will land in our branch:

$ git add art_new_feature

$ git commit -m "Add new awesome feature to ART"

Once all our edits are complete, we need to get ready to submit our contribution to 
the Gerrit system and to the developers in charge of reviewing every code proposal.

Before being able to submit our patches, we need to generate a new password to 
access the source code repository. Google provides a quick service to generate 
a password at the URL https://android-review.googlesource.com/new-
password.

Choose your Google account that you want to connect to the Android source code 
repository and you will land at the git cookie configuration page. Google has 
everything already set up for you. Just copy and paste the configuration in one  
of your Terminals and you are ready to go.

https://android-review.googlesource.com/new-password
https://android-review.googlesource.com/new-password


Obtaining the Source Code – Structure and Philosophy

[ 48 ]

To submit our branch, we update the module to be sure it is aligned with upstream 
and then we update:

$ repo sync

$ repo upload

Once we ask for uploading, repo will ask for confirmation, showing all the 
contributions we are submitting, as shown in the following screenshot:

After the confirmation, repo will establish a secure connection with the repository 
server and your contribution will be stored online. You are now an Android 
developer or at least you are getting there!

A look inside AOSP
At this point, we have our copy of AOSP so we can start looking inside to see what 
the project consists of.

Before delving inside, we must warn you that, when generating a new build image 
from scratch, you won't find any of the Google applications that you can find on 
most of the Android devices. That is because the Google applications are not licensed 
under Apache 2.0 license, so they are not provided with the public project. We are 
talking about applications such as Play Store, Gmail, YouTube, Maps, and all other 
official Google apps.

These applications are provided only to the compatible devices, that is, the devices 
that pass the Compatibility Test Suite we met in the first chapter.

Being able to distribute an Android device with all Google's app on-board is no easy 
trip. After confirming that the device is compatible using CTS, it is also necessary  
to obtain a particular Google Mobile Services (GMS) license by contacting  
Google directly.



Chapter 2

[ 49 ]

Obviously, you can find those applications in their binary form on the Internet and 
add it like that to your build. It's not the official way to achieve the goal and we 
support a cleaner conduct to distribute our awesome device, but is worth mentioning 
that there are blurry shortcuts.

Going back to our source code, let's take a look inside our WORKING_DIRECTORY and 
see where we can find the basic Android components that AOSP is composed of.

The next screenshot shows a clear overview of all the folders contained in the  
root directory:



Obtaining the Source Code – Structure and Philosophy

[ 50 ]

The ART directory
One of the most important folders is surely art/. It contains the source code for the 
new Runtime Environment, designed and devolved by Google.

ART is an acronym of Android RunTime and it has been introduced in the Android 
4.4 Kitkat as an alternative to the Dalvik Virtual Machine. It has completely replaced 
Dalvik in Android 5.0 Lollipop. The old Dalvik VM was based on a Just-In-Time 
(JIT) compiler technology, that is, it interprets and compiles an application source 
code into machine code in real time. This implementation has its advantages, but also 
disadvantages since runtime compilation certainly impacts system performance.

ART is based on an AOT (Ahead-of-time) technology, which compiles all the 
application code at the time of application installation, that is, before the execution. 
That obviously requires more time to install the application, but that time is usually 
imperceptible seeing the hardware performance of the latest Android devices.

The bionic directory
Bionic is the C-runtime for Android. Unlike most Linux distributions, Android 
doesn't use the GNU C library (glibc). The main differences between the GNU 
C library and bionic is the license— glibc is distributed under the GPL license 
while bionic has the BSD license. A more permissive license is crucial in a world so 
commercially oriented.

Other very important features are the lightness and the size. Bionic is much  
smaller than glibc, which makes it more usable for embedded systems such as cell 
phones. Also, it has been made having in mind low-performance processors, so it 
performs better.

A big part of the bionic source code comes from the OpenBSD project, but there  
are also some parts, such as pthread and the dynamic linker, that have been  
written from scratch, to be sure to meet the performance, lightness, and  
flexibility requirements.

The build directory
This directory contains the whole Android build system. It contains all the makefile 
core templates.



Chapter 2

[ 51 ]

Besides that, it contains envsetup.sh, a script that allows the developer to work 
with Android sources without struggling with environment management. We will 
explain it in more detail later in the book, but in short, launching this script gives you 
various utilities that enable you to perform various operations on the source code, 
for example, compile specific modules or perform searches on specific files such as 
on all .java files, and so on.

The external directory
All the packages regarding open source projects used by Android can be found in 
this directory. It contains various libraries as well as very important utilities such as 
zlib, SQLite, and webkit.

The device directory
Here you can find all the configurations and definitions for specific devices. The 
following screenshot gives an overview of the content. As you can see, it's full of 
folders with names of well-known manufacturers:



Obtaining the Source Code – Structure and Philosophy

[ 52 ]

There are all the definitions for the official Google devices, that is for all the Nexus 
devices, but there are also other directories such as:

•	 common: This directory contains certain information about the GPS and a 
script that allows you to extract the binary parts regarding a specific device 
so that they can be included in the image build.

•	 generic: This directory contains the configuration for the generic device 
called "goldfish" and is used to build the emulator image.

•	 google: This directory contains the code for the Accessory Development 
Kit (ADK). It also contains a DEMOKIT Android app that allows you to 
control the ADK board. ADK is a reference implementation for hardware 
manufacturers and hobbyists that can be used as a starting point for making 
Android accessories;

•	 sample: This directory contains a complete example of how to write your 
own shared library for Android, without modifying the Android framework. 
It also shows how to write JNI code to be included in the library, and a client 
application that uses such a library.

The frameworks directory
This folder is very important because it contains the source code for the Android 
framework. It is here that you can find all the main components of Android such as 
Activity, Services, and so on. Here you can also find the mapping used between the 
native code in C/C++ and the code in Java.

The out directory
As intuitive as it can sound, when the build is done, the result of the compilations is 
in this directory. Here we will find images that are ready to be flashed on our device 
or emulator, under named subdirectories, such as out/product/generic/ for the 
emulator image. In one of its subfolders, in the out/host/linux-x86/, you can also 
find all the tools that are needed from the host side, such as fastboot, zipalign, 
dexdump, and so on.

The packages directory
As the folder name says, here you can find all the standard Android application 
packages, for example, Camera, Calculator, Dialer, Launcher, Settings, and 
so on. Once again, these are not Google apps such as YouTube or Maps, but just the 
system apps that are common to every Android installation.



Chapter 2

[ 53 ]

The system directory
The system/ directory contains the source code of the Android system core, that is 
a minimal Linux system that takes care of the initialization of the device before the 
ART virtual machine starts any Java-based service.

Inside this folder, you can find the source code for the init process and the relative 
init.rc default script that initializes and dynamically configures the platform, as 
well as applications such as Toolbox (the Android alternative to BusyBox) and the 
source codes for the adb and fastboot utilities that we will explain in more detail in 
the coming chapters.

The rest of the directory structure
Here are the remaining folders that are part of the AOSP:

•	 abi: This is the source file for libgabi++.
•	 bootable: This includes the boot and startup related code. Some of it is 

legacy, the fastboot protocol info could be interesting since it is implemented 
by boot loaders in a number of devices such as the Nexus ones.

•	 cts: This directory contains the code for the compatibility test suite.
•	 dalvik: This directory contains the code for the Dalvik virtual machine.
•	 development: This directory contains development tools—the source code of 

the SDK and the NDK.
•	 docs: This directory contains the documentation relative to the Android 

Open Source Project. It contains a subfolder called source.android.com, 
which contains all the required files to generate the static HTML. You can  
see the result of the build at http://source.android.com/.

•	 Note: This directory is the online version that often doesn't coincide with the 
one present in the AOSP.

•	 hardware: This folder contains HAL (Hardware Abstraction Layer), libraries 
that enable interfacing with the device hardware.

•	 libcore: This directory contains Apache Harmony.
•	 ndk: This directory contains the script to generate the Native Development 

Kit, that allows the use of the native code written in C/C++ from  
Android applications.

•	 pdk: This is the Platform Development Kit, a set of utilities that Google  
sends to various OEMs so that they can update their own frameworks  
before important system updates.

http://source.android.com/


Obtaining the Source Code – Structure and Philosophy

[ 54 ]

•	 prebuilts: This directory contains precompiled files, including various 
toolchain versions.

•	 sdk: This is the Software Development Kit.
•	 tools: These are some external IDE tools.

Summary
In this chapter, we have learned lots of very important things that represent the basis 
of Android.

We started with the Android philosophy regarding the licenses and the development 
model touching on different versions of Android that followed. We have learned to 
install and use the tools necessary to contribute to the AOSP project, and also how to 
download a copy of the AOSP source code, selecting the right TAG to get the wanted 
version of Android.

In the next chapter, we will make the first build, generating an image for the 
emulator, but first we will explain how the Android build system works and  
what tools we need to install.



[ 55 ]

Set up and Build – the 
Emulator Way

In the previous chapter, we learned how to retrieve the source code and we had an 
overview of the folder's structure. We now know how the branching model works 
and how to contribute to the project. This is an important topic, because Android 
is an open source prot, but it's managed in a very different way compared to other 
popular open source projects.

In this chapter, we will set up the whole environment to get ready to build our first 
Android system and flash it to a real target. Our efforts will be focused to create a 
fully-working version for the official Android emulator.

The user will learn how to use tools such as adb and fastboot, two of the most 
important tools that Google provides.

Preparing the host system
To build a complex system such as Android, we need to satisfy a few hardware and 
software requirements. First of all the host system.

The official Linux distribution supporting the Android build environment is Ubuntu 
Linux. Google periodically releases new Android builds for its devices and all of 
them are created using Ubuntu. Currently, Google is using Ubuntu 14.04 even if  
this is not the latest version available.



Set up and Build – the Emulator Way

[ 56 ]

Every example in this book will be developed and executed on a common notebook, 
with an Intel i5 CPU and 4 GB of RAM, running Ubuntu Linux 15.05, that's the latest 
available version. Using a different Linux version proves that if all the requirements 
are satisfied, you could build Android with any Linux distribution or even Mac OS 
X— if you can't set up Ubuntu, trying with a different version will be challenging, 
but will be worth trying, as a learning experience.

If you are a Microsoft Windows user, it is sad to say, you won't be able to build 
Android using the native operative system. A possible solution is using a virtual 
machine running Ubuntu, for instance.

Hardware requirements
Digging into hardware requirements, you will just need a recent personal computer. 
As anticipated in the previous section, we are going to use a middle-end notebook 
for our examples. It's a Lenovo x220, with Intel i5 CPU and 4GB of RAM: it's enough 
to do the job and it's affordable, but the build time won't be small.

To speed up the build time, using a high-end PC is advisable. A faster CPU, with 
more cores, and more RAM will take advantage of multithreading and parallel 
building and will significantly reduce the build time, allowing you to experiment 
more during the journey.

A critical point of the environment setup is the necessary hard disk free space. The 
required amount is considerable—the source code alone needs approximately 100 
GB to be stored. The whole build process will require approximately 150GB. If we 
are trying to build as fast as possible, probably we will enable the building system 
caching option, ccache. The caching system will require even more free space.

The following table will give you a rough estimation about minimum and 
recommended hardware:

Minimum Recommended
Processor 4 core processor at 2 GHz 8 core processor at 2.5 GHz
RAM 8 GB 16 GB
Disk Space 200 GB 500 GB

Software requirements
In this book, we are going to build the system using Ubuntu Linux 15.04. If you 
cannot obtain this version, you can successfully use an older version, like the guys  
at Google, a totally different distribution or even a Virtual Machine.



Chapter 3

[ 57 ]

One of the basic requirements, when it comes to the operating system, is the 
architecture: if we are planning to build Android 2.3 or greater, we will need a  
64-bit system. Older versions of Android will do fine with a 32-bit system, but  
that's an improbable scenario.

Installing Java JDK
Oracle's Java Development Kit is a crucial requirement, essential to be able to build 
Android. Every Android version needs a specific JDK version. According to what 
version we want to build, we are going to install:

•	 JDK 5 for Cupcake to Froyo
•	 JDK 6 for Gingerbread to KitKat
•	 JDK 7 for KitKat, Lollipop, and Marshmallow

We are going to build Android Lollipop 5.1.1 and we are going to need at least 
JDK 7. Installing JDK on Ubuntu is quite straightforward. Let's start by opening a 
Terminal and firing the following command:

~$ sudo apt-get install openjdk-7-jdk

The apt-get command will resolve all the dependencies, download all the required 
packages and install them. If you are a Mouse and icons user, you can achieve the 
same goal using Ubuntu Software Center, as shown in the following screenshot:



Set up and Build – the Emulator Way

[ 58 ]

If you are a Java developer or you plan to build different Android versions for 
specific reasons, Ice Cream Sandwich and Lollipop, for instance, you could end up 
having more than just one version of the Java Development Kit. This multipurpose 
scenario brings a few more steps of configuration. We need to specify which JDK 
version will be used as the default one in the system. Using our trusted Terminal, 
let's run these commands:

~$ sudo update-alternative –config javac

The following screenshot shows the output. As you can see, it lists all the available 
JDK versions and lets you pick the one to set as default. In our scenario, we are using 
JDK 7 because we are planning to build Android 5 or greater.

Installing system dependencies
Even if Java is a key player in the Android world, we also need a few low-level tools 
to satisfy all the Android build system requirements. Some of them are common 
tools and there is a chance that they are already installed, but our goal is to set up a 
whole system from scratch: we can't risk missing a dependency.

Using your Terminal, run the following apt-get command:

~$ sudo apt-get install bison g++-multilib git gperf libxml2-utils \

    make python-networkx zlib1g-dev:i386 zip



Chapter 3

[ 59 ]

As usual, apt-get will resolve all the dependencies and install all the required 
packages. The following screenshot shows the output of the command in the 
scenario in which you already have all the required packages, lucky you:

At this point, your Ubuntu contains all the required packages and applications to 
build the world's most popular mobile operating system.

Setting up a Mac OS X environment
One of the most important requirements to build Android is a case-sensitive 
filesystem. If you are planning to build Android using OS X, the most practical  
way to satisfy this requirement is to create a partition or a disk image containing  
a case-sensitive filesystem.



Set up and Build – the Emulator Way

[ 60 ]

Creating a case-sensitive disk image
OS X provides a handy graphical utility to create a new disk image. Fire up 
Spotlight and launch Disk Utility. The upper toolbar contains a New  
Image button that takes you to the disk image creation screen, as shown in  
the following screenshot:

As you can see from the preceding screenshot, the crucial setting is the Format: it 
has to be Case-sensitive, Journaled. For the Size setting, the larger the better, 
keeping in mind that an Android build could use hundreds of gigabytes in no time. 
As minimal size, we suggest at least 50 GB.



Chapter 3

[ 61 ]

If you are more a command line type, it's possible to create this disk image using the 
Terminal and hdiutil, as shown in the following command:

~$ hdiutil create -type SPARSE -fs 'Case-sensitive Journaled HFS+' \ 
 -size 50g ~/android.dmg

If the disk image creation succeeded, we now have a .dmg or .dmg.sparsefile 
file on our disk. Once we have mounted it, we can use it as a normal hark disk—
downloading Android source code and proceeding with the building procedure.

The two following commands will give you the ability to mount and unmount the 
disk image:

~$ hdiutil attach ~/android.dmg -mountpoint /Volumes/android-disk;

~$ hdiutil detach /Volumes/android-disk;

If you run out of space, the following command will give you the 
opportunity to resize the disk image and allow you to continue 
working on your desired Android build:
~$ hdiutil resize -size <new-size-you-want>g  
~/android.dmg.sparseimage

Installing the required software
Once we have our installation disk image, the same as for Linux, we need to install 
all those software requirements we need to properly build the system.

Installing the Java Development Kit is very straightforward: just download the 
proper .dmg file from http://www.oracle.com and install it. The same rules  
about Android target version and required Java version apply here too.

Further, we will need:

•	 Xcode: The installation is well documented at  
https://developer.apple.com as Xcode is the main player  
of iOS development.

•	 MacPorts: It's an open source project that will help us to install lots  
of useful tools. You can install it following the installation info at  
http://www.macports.org/install.php.

http://www.oracle.com
https://developer.apple.com
http://www.macports.org/install.php


Set up and Build – the Emulator Way

[ 62 ]

Once we have these two main pieces of the puzzle in place, we need to install make, 
git, bison, and GPG packages, using MacPorts, with the following command on  
your Terminal:

~$ POSIXLY_CORRECT=1 sudo port install gmake bison libsdl git gnupg

Last but not least, we need to increase the maximum number of possible file 
descriptors. OS X comes with a tiny value—the average user does not need all those 
file descriptors, but we are going to need a bigger amount due to the hundreds of 
files involved in the Android build procedure. To increase this value, we will need to 
launch our Terminal and run the following command:

~$ ulimit –S –n 1024 

Now, the limit is up to 1,024 files. We can make this value persistent by adding this 
to the ~/.bash_profile file, in your home folder.

The Android build system
Before digging into configuring and building your first Android system, we will 
have an overview of the build system itself, the tools involved, and the unique 
approach to the whole process Google has.

There is very little official documentation available about creating new modules and 
about the build system itself. Most of your knowledge at the end of this journey will 
come from your own hands-on experience and from our experience that we put in 
these pages.

An overview
As with lots of projects out there, open source or closed source, Android uses the 
powerful tool make to build the whole system, but compared to all other projects, 
Android uses it in a completely different way.

The common approach of using make would be to use a hierarchy of Makefiles: one 
single root Makefile retrieves and runs every other Makefile, contained in some of 
the subfolders of the project. Usually, every subfolder represents a submodule of the 
main project and it can be built alone or could depend upon other modules. Unlike 
other projects, Android has no menuconfig or any other graphical configuration 
utility to customize the build system, enable or disable modules. Every sort of  
build configuration is done using environment variables that we will show in  
the next sections.



Chapter 3

[ 63 ]

Moreover, the whole module building is unconventional. Taking the Linux kernel 
as an example, usually, when a module is built, in the same folder with the source 
code, we have the compiled files. Module after module, the build system compiles 
everything and, at the very end, it retrieves the required files, links them together, 
and generates the final output. Android works in a different way. As you will notice 
approaching the build completion, Android tries to keep every module folder as 
clean as possible—every compiled file ends up in the /out folder, so that it's easier 
to clean everything, just delete this folder and have everything perfectly in order in a 
blink of an eye.

As you could guess at this point, the build system is completely custom made by 
Google. Everything has been designed and developed from scratch, using existent 
tools, but approaching the problem in an unusual way. Android developers created 
a single huge Makefile, containing all the needed information to build every single 
module and to assemble the final system image.

The whole build system is contained in the build/ folder. This folder contains:

•	 Utility shell scripts
•	 Utility Python scripts
•	 A set of .mk files containing all the necessary information to create all the 

system modules

Every single module has its own folder. This folder contains the most important file 
to build the module Android.mk. This file contains all the information needed to 
perform a smooth compilation of the module source code and generate a binary file.

Module Android.mk files are the first step of the building procedure—the build 
system scans every folder looking for these files and includes them into the single 
huge Makefile that it will use for further steps.

The source code root folder contains a Makefile with the following content:

### DO NOT EDIT THIS FILE ###
include build/core/main.mk
### DO NOT EDIT THIS FILE ###



Set up and Build – the Emulator Way

[ 64 ]

The file looks pretty empty, but it contains the most important .mk file of all—main.
mk. This file, located in build/core, contains a sequence of checks and all the needed 
operations to retrieve all the Android.mk files to build all the modules.

Without special configuration, the Android build system only 
creates the Android system image. To generate CTS, NDK, and 
SDK, we will need a bit more setup effort as we will see later.

Bootstrap
The whole build system is fired up, thanks to a single shell script—build/envsetup.
sh. As you can see in the following screenshot, this script is in charge of preparing 
the building environment. It sets up a few configurations and provides useful  
tools that make our work much easier: it's the Swiss Army knife of the Android  
build system.

Fire up your Terminal and run the script as follows:

~$ . build/envsetup.sh

Here is the output:



Chapter 3

[ 65 ]

The previous screenshot shows the output of envsetup.sh, that brings the system 
to be fully operational and ready to build. To have a list of all the commands that we 
now have available, on your Terminal, run:

:~$ hmm

The previous screenshot shows the output of the hmm command. We will have a look 
at lots of them later, but as a yummy anticipation:

•	 lunch: This command helps you configure everything we need for a specific 
target with one single command

•	 mm: This command lets you compile just the module contained in your 
current folder



Set up and Build – the Emulator Way

[ 66 ]

Setup
A proper configuration environment is one of the most important things for a build 
system. Every build system provides a clear way to specify, for instance, which 
module to build of which platform we are targeting. Having the Linux kernel as a 
great example, we can say that it provides a handy graphical menu to perform all the 
necessary configurations:

$ make menuconfig

Menuconfig lets you enable or disable modules to be built, select the desired 
platform, and tons of other different possible configurations. Every single 
configuration bit is saved in a .config file that can be easily read or edited and 
reused for the build procedure.

As we anticipated, Android is based on something completely different. There is 
no graphical interface to perform the configuration. The only sort of interactive or 
automatic configuration system is envsetup.sh, which we already learned about. 
So why does Android not have any cool tools to configure the build system? Simply, 
because it does not need one! We are not supposed to disable all the modules we 
don't want to build, so Android just does not provide an easy way.

Let's say that we are building Android for a new device we have just created and it 
does not have a camera on-board. We might want to remove that part of the system 
that manages the camera. There is no official way to do it. If we want to do it, we 
need to get our hands dirty and with time and pages we will be able to do it.

We can safely say that the whole Android build system configuration can be 
stripped down to setting a few environment variables. The build system will use 
these variables to figure out which device we are targeting or which toolchain it is 
supposed to use.

The most important variables are:

•	 TARGET_PRODUCT
•	 TARGET_BUILD_VARIANT
•	 TARGET_BUILD_TYPE
•	 TARGET_TOOLS_PREFIX
•	 TARGET_PREBUILT_KERNEL
•	 OUT_DIR

In the upcoming sections, we are going to learn all about these variables we can 
manipulate to perfect our build.



Chapter 3

[ 67 ]

The TARGET_PRODUCT variable
This variable contains the information to specify the device we are preparing the 
system for. We are currently targeting the official emulator, so we are going to set the 
variable as aosp_arm. If we want to build the system for Google's Nexus 6, we will 
set the variable to aosp_shamu, or to aosp_hummerhead for Google's Nexus 5.

For quick access to all the values, specific for all the supported devices, we have 
provided a handy table as follows:

Device Code Name TARGET_PRODUCT
Nexus 6 shamu aosp_shamu
Nexus Player fugu aosp_fugu
Nexus 9 volantis 

(flounder)
aosp_flounder

Nexus 5 (GSM/LTE) hammerhead aosp_hammerhead
Nexus 7 (Wi-Fi) razor (flo) aosp_flo
Nexus 7 (Mobile) razorg (deb) aosp_deb
Nexus 10 mantaray (manta) full_manta
Nexus 4 occam (mako) full_mako
Nexus 7 (Wi-Fi) nakasi (grouper) full_grouper
Nexus 7 (Mobile) nakasig (tilapia) full_tilapia
Galaxy Nexus (GSM/HSPA+) Yakju (maguro) full_maguro
Galaxy Nexus (Verizon) mysid (toro) aosp_toro
Galaxy Nexus (Experimental) mysidspr 

(toroplus)
aosp_toroplus

Panda Board (Archived) panda aosp_panda
Motorola Xoom (US Wi-Fi) wingray full_wingray
Nexus S soju (crespo) full_crespo
Nexus S 4G sojus (crespo4g) full_crespo4g

As you can imagine, every device supports a specific version of the system. For 
instance, with our current downloaded source base, tag android-5.1.1:

•	 aosp_arm
•	 aosp_arm64
•	 aosp_mips
•	 aosp_mips64
•	 aosp_x86



Set up and Build – the Emulator Way

[ 68 ]

•	 aosp_x86_64
•	 aosp_manta
•	 aosp_flounder
•	 mini_emulator_x86_64
•	 mini_emulator_mips
•	 mini_emulator_x86
•	 mini_emulator_arm64
•	 m_e_arm
•	 aosp_mako
•	 aosp_hammerhead
•	 aosp_shamu
•	 full_fugu
•	 aosp_fugu
•	 aosp_deb
•	 aosp_tilapia
•	 aosp_flo
•	 aosp_grouper

Once we have decided on the target device, fire up a Terminal and run:

$ export TARGET_PRODUCT=aosp_arm

The TARGET_BUILD_VARIANT variable
Every Android.mk file refers to this variable to enable and disable the sections of 
its codebase to be compiled or not. This variable has three possible values and it 
specifies the build variant. We can set it to:

•	 eng: Here, every module tagged with user, debug, and eng is enabled
•	 userdebug: Here, every module tagged with the user and debug is enabled
•	 user: Here, every module tagged with the user is enabled

We can use the variable as follows:

$ export TARGET_BUILD_VARIANT=eng



Chapter 3

[ 69 ]

The TARGET_BUILD_TYPE variable
This variable specifies which type of build we are going to perform for every 
module. If we are going to create a development system, we are going to need 
more logging information, for instance. For this scenario, we are going to set this 
variable as debug, build, and test our system. After this phase, we will rebuild the 
system with this variable set to release, to disable the verbose logging and all the 
development perks.

The TARGET_TOOLS_PREFIX variable
This variable specifies the path for a custom toolchain to be used during the build 
process. Usually, it stays empty, but, gaining experience, you should try different 
toolchains, freely available on the Internet. One of the most famous and optimized 
custom toolchains is developed and distributed by the Linaro team.

The OUT_DIR variable
If for some specific reason we want to override the default path of the out/ folder, 
we can use this variable to specify a custom path. This variable is extremely useful 
in all the scenarios that have multiple hard drives or network shares. For instance, 
we could run the build process on a fast SSD disk and store the output on a standard 
old-fashioned disk or even a network disk, to share it with our teammates.

The TARGET_PREBUILT_KERNEL variable
This is a quite advanced variable. It allows us to provide the system with a kernel 
different from the default one. Every target device comes with a precompiled default 
kernel because the Android build system is not going to build it—it's already there.

Injecting a custom kernel is a very interesting topic that opens lots of interesting 
scenarios. In Chapter 5, Customizing Kernel and Boot Sequence, we are going to build 
a custom kernel and inject it into our Android system, to create a fully customized 
Android experience: this variable will be one of the most important pieces of  
the puzzle.

The buildspec.mk file
If we want to persist these variables, we can add them to a buildspec.mk file. Every 
time we will run make, the system will check this file, evaluate all the variables, 
and move forward accordingly. The buildspec.mk file comes in a handy template 
version in the build/ folder as buildspec.mk.default. This template file contains 
every available variable. Every variable is commented, disabled by default, and 
comes with a small note about its purpose and how to use it.



Set up and Build – the Emulator Way

[ 70 ]

We could consider this file the equivalent of the Linux kernel .config file, even if we 
have a smaller amount of possible configurations.

The lunch command
A few sections ago, we had a first bite at lunch already. If we don't want to  
manually set all those environment variables or we don't want to use buildspec.mk,  
we can use lunch. We can find it available in the system, after we have executed 
envsetup.sh.

Let's have a look at the command. Open a Terminal and reach your  
WORKING_DIRECTORY. Be sure to have launched envsetup.sh and then run:

$ lunch



Chapter 3

[ 71 ]

The preceding screenshot shows the output of the command and, as you can easily 
see, it helps us to pick the exact combination on the variable we want. Every specific 
Android version has its own lunch command and every lunch command version has 
its output. The preceding screenshot shows the output for tag android-5.1.1.

Once you have picked the desired configuration, lunch will show a summary of 
every variable it's going to set up and goes back to the Terminal, as shown in the 
following screenshot:

We are now ready to fire out the make command and build our first Android version!

Building the system
You have downloaded the source code, initialized the whole environment using 
envsetup.sh and configured every system variable with lunch. You are now ready 
to build the system. Open a Terminal and run:

:~$ make –j8

The building system will fire up, looking for all those modules and Android.mk files 
to include into the build process and perform the compilation.



Set up and Build – the Emulator Way

[ 72 ]

If you want to enjoy a more verbose compilation output, you can run:

:~$ make –j8 showcommands

With this extra parameter, the build system will print all GCC compilation logs and 
all javac compilation logs, to give you as much information as possible during the 
building process.

More about make
The make command offers a few interesting options that come handy in  
specific scenarios.

Building a module
For instance, if you want to build just one single module, you can run:

~$ make art

In this example, we are building only art. The module name is contained in the 
Android.mk file of the module folder. Just scroll the file and you will find a variable 
LOCAL_MODULE that represents the exact module name to use with make.

We can retrieve the module name also using the mm command. With a Terminal, just 
reach the module folder and run:

$ mm

Cleaning a module
If we are not satisfied after the module building is completed, we can clean all the 
compilation files and have a fresh start. Open a Terminal, reach the module folder, 
and run:

~$ make clean-<module>

Cleaning everything
If you want to clean the whole project and prepare the system for a new from-scratch 
build, open a Terminal, reach the WORKING_DIRECTORY, and run:

~$ make clean

This command removes every compilation file from the folder we have specified in 
the OUT_DIR variable.



Chapter 3

[ 73 ]

Listing modules
$ make modules

This command shows the list of every module available in the AOSP architecture. 
The amount of available modules is massive: we will have to wait for a few seconds 
to see any output from this command.

Recreating an image
This command recreates the system images, based on the current status of the source 
base, using an incremental building approach, as shown here:

$ make snod

This is a crucial command during development. Think about developing a single 
module. When you reach a development milestone, you build the module with:

$ make module_name

If everything is working, you might like to inject your brand new module into your 
Android system image. You can achieve this with:

:$ make module_name snod

Building tools
The following command will create and provide us with two of the most important 
tools for an Android expert—adb and fastboot:

:$ make tools

We will have plenty of time to learn about them in the next pages.

Beyond the system image
We are currently building a system image ready to be flashed to a device. 
Unfortunately, this procedure keeps out a few useful tools that we want to  
build as well: NDK, SDK, and CTS.



Set up and Build – the Emulator Way

[ 74 ]

Android SDK
Google provides the official Android SDK via the Android Developers website. 
It's already compiled for every platform and ready to be downloaded. In a more 
advanced scenario, you might need to extend the SDK and redistribute it as your 
own. Building a custom SDK is a three command job, with those we already learned 
about in the previous sections:

~$ . build/envsetup.sh

~$ lunch sdk-eng

~$ make

The output of this procedure will be a brand new custom Android SDK in out/
host/linux-x86/sdk/.

Android NDK
Android NDK is the native equivalent, based on C/C++, of the Android SDK, based 
on Java. To build the NDK, open a Terminal, reach WORKING_DIRECTORY, and run:

~$ cd ndk/build/tools

~$ export ANDROID_NDK_ROOT=path/to/WORKING_DIRECTORY/ndk

~$ ./make-release

The system will alert you about the possible long duration of the process. Just accept 
the message and prepare some coffee in the meantime.

Android CTS
CTS is a well-known tool. We learned everything about it in the previous chapters. 
To build our own version, we need only one command:

~$ make cts

Inside an AOSP module
The AOSP project is incredibly huge. The amount of modules contained in the  
source base is massive. Android 5 Lollipop contains about 4,000 different modules. 
They go from native modules, written in C/C++, to providing system components: 
daemons, libraries, and Java modules, to provide everything that is needed from 
APKs to JAR files.



Chapter 3

[ 75 ]

Every module contains an Android.mk file. This file contains every single piece of 
information needed to build the module. The Android build system does not use 
a recursive-make approach, but merges every Android.mk file to create one single 
huge Makefile to build the system: every Android.mk file is a piece of the puzzle.

In addition to Android.mk, the module folder also contains CleanSpeck.mk. This file 
helps the system to properly clean every compiled file when we execute a module 
clean command.

Diving into Android.mk
The quickest path to knowledge is getting your hands dirty. We are going to analyze 
a real Android.mk file from the Android source code to understand structure and 
purpose. In the previous chapter, we learned that the external/ folder contains lots 
of third-party tools that enrich the Android system. One of these tools is netcat. 
Let's see its Android.mk file:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SRC_FILES:=\
        netcat.c \
        atomicio.c

LOCAL_CFLAGS:=-O2 -g

LOCAL_MODULE_TAGS := eng

LOCAL_MODULE_PATH := $(TARGET_OUT_OPTIONAL_EXECUTABLES)

LOCAL_MODULE:=nc

# gold in binutils 2.22 will warn about the usage of mktemp
LOCAL_LDFLAGS += -Wl,--no-fatal-warnings

include $(BUILD_EXECUTABLE)

A few cryptic lines that need more detailed study:

LOCAL_PATH:= $(call my-dir)

This line specifies the LOCAL_PATH variable and sets it to the current module path.  
As you can guess, the $(call my-dir) function returns the current module path.



Set up and Build – the Emulator Way

[ 76 ]

This function is part of a collection of useful functions that the system provides to be 
used during the development of new modules. The whole list is contained in build/
core/definitions.mk. Every function comes with code, obviously, and a tiny, but 
effective description of its purpose, as shown in the next screenshot:

include $(CLEAR_VARS)

This line solves one big issue due to the nature of the Android build system—having 
all the Android.mk files merged into one single Makefile creates a dangerous 
scenario in which LOCAL_ variables from module A could be improperly used by 
module B. The $(CLEAR_VARS) function resets all the previously set variables and 
allows the current module to safely access its local variables, using this code:

LOCAL_SRC_FILES:=\
        netcat.c \
        atomicio.c



Chapter 3

[ 77 ]

The following line specifies the source files contained in the current module:

LOCAL_CFLAGS:=-O2 -g

The following line specifies which argument we are going to pass to the compiler:

LOCAL_MODULE_TAGS := eng

This line specifies which variant this module belongs to. This is closely related to 
the environment variable TARGET_BUILD_VARIANT we learned about in the previous 
sections. Specifying eng here will make this module available when we will build the 
eng build variant of the system:

LOCAL_MODULE_PATH := $(TARGET_OUT_OPTIONAL_EXECUTABLES)

This line specifies where to install the compiled executable file when the build 
process succeeds. In this specific case, the final file will be placed in the xbin/ folder 
of the system image. This variable is optional. The system will act based on default 
values, already specified in the global configuration. We can use this variable to 
specify a different destination folder:

LOCAL_MODULE:=nc

This line has been anticipated a few sections ago. This specifies the module name.  
It has to be unique and it will also be the executable file's final name. In this case, our 
netcat utility will become the nc exectutable, as commonly seen on *nix systems:

LOCAL_LDFLAGS += -Wl,--no-fatal-warnings

As for the compiler also, the linker will have its set of specific arguments. This line 
specifies which options the linker will operate according to:

include $(BUILD_EXECUTABLE)

This line specifies which type of module we are trying to build. Our current module 
is an executable utility, so we are going to specify $(BUILD_EXECUTABLE) and the 
system will properly produce an executable file from all the module source code.

Android.mk variables ecosystem
In the previous section, we analyzed a real-world Android.mk. This gave us a bit of 
confidence about creating our own Android module. In this section, we will continue 
our journey with an overview about all the variables we can use in our Android.mk.

LOCAL_ variables are all those variables necessary to achieve the proper module 
configuration and compilation. These kinds of variables get canceled by  
$(CLEAN_VARS) and are by far the most common kind in all Android.mk files.



Set up and Build – the Emulator Way

[ 78 ]

The INTERNAL_, HOST_, and TARGET_ variables should not be used for custom 
purposes because they are commonly used by the build system itself.

The BUILD_ variables specify the build type, as we already saw in a previous 
example where we used BUILD_EXECUTABLE.

Technically speaking, we could use any kind of variable, but that's a dangerous 
game. It is hard to predict how the build system will manipulate our Android.mk 
files to create its Makefile: order might be not respected, names could be overridden, 
and scopes could be invalidated. To play safely and rely on the build system 
architecture, let's focus on using only LOCAL_ variables for our tasks.

There is no official documentation about these variables. The upcoming list is the 
result of hard work, taking risks, guessing, and scavenging bits of information from 
all around the build system.

The LOCAL_ variables
When it comes to LOCAL_ variables, we can customize our module according to  
this list:

•	 LOCAL_PATH: This specifies the path of the module. Usually, the value is 
retrieved using the $(call my-dir) function.

•	 LOCAL_MODULE: This specifies the name of the module and, if we are dealing 
with an executable module, the name of the executable.

•	 LOCAL_MODULE_CLASS: This specifies the class the module belongs to. Based 
on its class, every result of the module building process will be placed in 
the proper folder. The examples of possible classes are EXECUTABLE, ETC, 
SHARED_LIBRARY, STATIC_LIBRARY, and APPS.

•	 LOCAL_SRC_FILES: This specifies the list of all source files contained in the 
module, separated by whitespace.

•	 LOCAL_PACKAGE_NAME: This specifies the name of the app, for instance: 
Contacts, Phone, Calculator, and so on.

•	 LOCAL_SHARED_LIBRARIES: This specifies the shared libraries that may  
be required.

•	 LOCAL_MODULE_TAGS: This specifies a tag, such as eng, and the system  
will include this module in every build that will target the eng type as 
TARGET_BUILD_VARIANT.

•	 LOCAL_MODULE_PATH: This specifies a custom installation path to override the 
one specified in the BUILD_ template.

•	 LOCAL_CC: This specifies a different C compiler to be used.
•	 LOCAL_CXX: This specifies a different C++ compiler to be used.



Chapter 3

[ 79 ]

•	 LOCAL_CFLAGS: This helps to add mode flags to the C compiler command line.
•	 LOCAL_CPPFLAGS: This helps to add mode flags to the C++ compiler 

command line.
•	 LOCAL_CPP_EXTENSION: This specifies a custom extension for C++ files, if for 

some reason the actual extension is not .cpp.
•	 LOCAL_C_INCLUDE: This specifies the path for custom C header files needed 

to build the module.
•	 LOCAL_LDFLAGS: This helps to add mode flags to the linker command line.
•	 LOCAL_PREBUILT_EXECUTABLES: During the creation of a BUILD_PREBUILD 

kind of module, this variable will contain every binary executable that will be 
part of the final system image. We are going to learn more about this in the 
next chapters.

•	 LOCAL_PREBUILT_LIBS: During the creation of a BUILD_PREBUILD kind of 
module, this variable will contain every library that will be part of the final 
system image.

•	 LOCAL_PREBUILT_PACKAGE: During the creation of a BUILD_PREBUILD kind of 
module, this variable will contain every prebuild APK that will be part of the 
final system image.

The BUILD_ variables
The following list contains the most common BUILD_ variables available during the 
development of a custom module:

•	 BUILD_EXECUTABLE: When necessary to build using native C/C++ code,  
we can add this line to our configuration:
include $(BUILD_EXECUTABLE)

•	 BUILD_PREBUILT: This allows us to add binary components to our  
final image.

•	 BUILD_MULTI_PREBUILT: This allows us to create modules that inject the  
final image with binarie components of the same category. It's usually used 
with LOCAL_MODULE_CLASS to specify the class and the position to place the 
binary files.

•	 BUILD_PACKAGE: This allows us to create modules that generate APK files.
•	 BUILD_SHARED_LIBRARY: This allows us to create modules that generate 

shared library files.

www.allitebooks.com

http://www.allitebooks.org


Set up and Build – the Emulator Way

[ 80 ]

•	 BUILD_STATIC_LIBRARY: This allows us to create modules that generate 
static library files.

•	 BUILD_JAVA_LIBRARY: This allows us to create modules that generate Java 
library files.

Module template examples
In this section, we are going to analyze real-world module template snippets, to have 
a clear idea about what a fully operational module template looks like.

The native executable template
If you are going to work on a generic native single-file executable application,  
for example, your_executable.c, you can use the following snippet to build it:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)         

LOCAL_SRC_FILES:= your_executable.c       
LOCAL_MODULE:= your_executable            

include $(BUILD_EXECUTABLE)

The shared library template
This snippet comes in handy if you are working with a so-called shared library: your 
library would be composed of a set of files, that is, foo.c and bar.c, and would be 
built accordingly:

LOCAL_PATH:= $(call my-dir)     
include $(CLEAR_VARS)
 
LOCAL_SRC_FILES:= foo.c bar.c
LOCAL_MODULE:= libmysharedlib
LOCAL_PRELINK_MODULE := false   # Prevent from prelink error

include $(BUILD_SHARED_LIBRARY) 

The application template
If you are going to work on a whole application, you could use the following snippet:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE_TAGS:= eng



Chapter 3

[ 81 ]

LOCAL_SRC_FILES:= $(call all-java-files-under src)
LOCAL_PACKAGE_NAME:= MyApplication

include $(BUILD_PACKAGE)

This snippet will build every .java file in the specified path and package everything 
as MyApplication.

Creating a custom device
During our journey, you learned how to retrieve the source code and how to set up 
the build system. In this section, you are going to learn how to create a new target 
device and add it to the build system. The device we are going to create now has 
specific hardware features. It's a proof-of-concept device, with the only purpose  
of showing you how easily and quickly you can create a brand new device and  
then customize it.

Every device definition is contained in the device/ folder. First level folders contains 
all the manufacturer's folders. Every manufacturer folder contains its own devices. 
Let's create our own manufacturer and device folders: our brand is Irarref and our 
model is an F488. Open a Terminal, reach the WORKING_DIRECTORY folder, and run:

~$ mkdir –p device/irarref/f488

Once we have the folder structure in place, we need to create all those files that will 
allow the build system to detect our device and make it available as a target for the 
build system. We are going to create the following files:

•	 Android.mk: Describes in a generic way how to compile the source files. 
Essentially, it represents a snippet of the global Makefile that will be later 
incorporated by the build system at the appropriate time.

•	 AndroidProducts.mk: This file contains a PRODUCS_MAKEFILEs variable, 
with a list of all the available products. In our scenario, we only have one 
device and it's represented by these files.

•	 full_f488.mk: This file specifies any relevant information about the device.
•	 BoardConfig.mk: This file specifies any relevant information about the 

device board.
•	 vendorsetup.sh: This script makes the device available to envsetup.sh  

and lunch.



Set up and Build – the Emulator Way

[ 82 ]

Diving into device configuration
As we know, our first device is quite simple, but very instructive. Let's see how our 
device specification is spread inside all our configuration files:

•	 Android.mk:
LOCAL_PATH:= $(call my-dir)
Include $(CLEAN_VARS)

Ifneq ($(filter f488, $(TARGET_DEVICE)),)
Include $(call all-makefile-unter, $(LOCAL_PATH))
Endif

•	 AndroidProducts.mk:
PRODUCT_MAKEFILES:= $(LOCAL_DIR)/full_f488.mk

•	 full_f488.mk:
$(call inherit-product, 
$(SRC_TARGET_DIR)/product/aosp_base.mk
#
DEVICE_PACKAGE_OVERLAY:=

PRODUCT_PACKAGE+=
PRODUCT_COPY_FILES+=
PRODUCT_NAME:= full_f488
PRODUCT_DEVICE:= f488
PRODUCT_MODEL:= Android for Irarref F488

•	 BoardConfig.mk:
TARGET_NO_BOOTLOADER := true
TARGET_NO_KERNEL := true
TARGET_CPU_ABI := armeabi
HAVE_HTC_AUDIO_DRIVER := true
BOARD_USES_GENERIC_AUDIO := true

# no hardware camera
USE_CAMERA_STUB := true

# CPU
TARGET_ARCH_VARIANT := armv7-a-neon
ARCH_ARM_HAVE_TLS_REGISTER := true



Chapter 3

[ 83 ]

•	 vendorsetup.sh:

add_lunch_combo full_f488-eng

Our Android.mk is pretty standard and completely based on what we have  
learned in the previous sections. AndroidProducts.mk just includes full_f488.mk, 
as expected.

The full_f488.mk file contains a few interesting lines. First of all, it includes aosp_
base.mk, a configuration file provided by the system, common to lots of real devices.

Moving on, we found a few interesting variables:

•	 DEVICE_PACKAGE_OVERLAY:=: This variable allows us to create a custom 
overlay, customizing, for instance, some settings of specific modules in the 
AOSP system. If you check, for instance, this variable in the equivalent file 
for the shamu device, you can notice that they are using it to customize a few 
settings in the launcher application.

•	 PRODUCT_PACKAGE+=: This variable allows us to add packages to the 
compilation process.

•	 PRODUCT_COPY_FILES+=: This variable performs a file copy operation.  
The syntax is pretty straight forward: source_file:dest_file

•	 PRODUCT_NAME:= full_f488: This variable specifies the product name.  
This is the exact same value that lunch will print as TARGET_PRODUCT.

•	 PRODUCT_DEVICE:= f488: This variable specifies the device name.
•	 PRODUCT_MODEL:=: Android for Irarref F488: This variable specifies  

the device model label that we will find in our Android system under 
Settings | About phone | Model Number.

With all these files in place, you can now relaunch envsetup.sh and our brand new 
proof-of-concept device will be in the list of the available devices.

From zero to the screenlock
So far we have gathered an incredible amount of information about the architecture, 
about how to configure the build system, and our PoC device. It's time to create 
our first image for a real device and use it! We want to keep away all the possible 
hardware-related issues, so we will target the simplest nonhardware Android device: 
the Android emulator.



Set up and Build – the Emulator Way

[ 84 ]

We are going to build the latest available Android Lollipop source code. As we 
learned, we are going to download it, configure it to target the emulator, build it,  
and try it on the device.

Setup
Let's set up our WORKING_DIRECTORY and download our precious source code.  
Open a Terminal and run the following commands:

:$ mkdir WORKING_DIRECTORY

:$ cd WORKING_DIRECTORY

:$ repo init –u https://android.googlesource.com/platform/manifest -b  
\

android-5.1.1_r9

:$ repo sync

After the download is completed, we can configure the environment. Let's run:

:$ build/envsetup.sh

This will create all those handy tools we will need during the work. We now have 
lunch, for instance, and running it we can keep on configuring the environment:

:$ lunch

Let's choose a target device:

aosp_arm-eng

The lunch command will set up everything and show us a configuration report,  
as shown in the next screenshot:



Chapter 3

[ 85 ]

Build
Everything is in place. We need only one command to launch the build procedure:

:$ make –j8



Set up and Build – the Emulator Way

[ 86 ]

Once the build process is over, head to out/target/product/generic/. This folder 
will contain our built images. The following screenshot shows the result of the build 
process: a folder full of .img files, ready to be flashed into the device:

Run
To launch the emulator, Android provides the emulator command. This command 
will be available the moment the compilation ends. Using the .img files, we have in 
the out/ folder, we can run it like this:

$ emulator -system out/target/product/generic/system.img -ramdisk  
out/target/product/generic/ramdisk.img -data  
out/target/product/generic/userdata-qemu.img

After a few moments, the emulator window will pop up and you will see something 
like the following screenshot:



Chapter 3

[ 87 ]

You can use the emulator with mouse and keyboard, performing the same 
operations you would do on a real device. Android emulator is a powerful tool and 
the amount of possibilities is almost endless. If you would like to dig into the topic, 
the Android Developers website provides a specific page for it: http://developer.
android.com/tools/help/emulator.html.

Summary
This chapter was a great run! You prepared your system to build your first Android 
system. You learned how to configure and customize the build system. You learned 
the basic skills to create a custom module and include it into your system image.  
You created a system image from scratch and tested it on the Android emulator.

In the next chapter, we will raise the bar. We are going to move our efforts to a real 
hardware device. We will work with a smartphone, the Nexus 5, and a development 
board, the UDOO. We will manipulate the bootloader and the recovery partition to 
take complete control of the system.

http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/emulator.html




[ 89 ]

Moving to Real-World 
Hardware

In the previous chapter, you learned how to set up the necessary environment 
configurations and how to build your first vanilla system, targeting the emulator. In 
this chapter, we will have a quick overview of the fundamental tools of every expert 
Android user and we will complete our first system for a real device—configure, 
build, flash, and test.

Debugging tools
Debugging tools are some of the tools that no developer can live without. With 
embedded systems such as Android systems they are even more important. Android 
provides lots of debugging tools to facilitate complex or boring tasks. The two most 
important tools are definitely adb and fastboot.

Introducing ADB
ADB stands for Android Debug Bridge and it's a toolkit made of two crucial parts:

•	 Adb server running on the device
•	 Adb client running on the PC

Usually, adb is considered a command-line tool, but you can find a few graphical 
frontends online if you prefer to use it in a more graphical way. Android Studio, 
the official IDE by Google for Android development, uses adb to communicate 
with every device and provide cool tools such as Android Device Monitor. Using 
the graphical interface, we can analyze logs coming from the device or even take a 
screenshot for debugging purposes.



Moving to Real-World Hardware

[ 90 ]

The following screenshot shows how the Android Device Monitor can be used to 
retrieve huge amounts of information from devices and apps running on the devices:

During our journey, we will use adb mostly on the command line, due to the 
embedded nature of our work. As we know, the emulator behaves like a hardware 
device, so we can easily use adb to communicate with it. Let's see a couple of useful 
commands to interact with our running emulator.

First of all, we need a handy list of all the available commands. That's easily 
achievable with the following command:

$ adb --help



Chapter 4

[ 91 ]

Now, we need to detect the connected devices. On our trusty Terminal, run the 
following command:

$ adb devices

The previous command will scan for every attached device and will list them.  
The previous screenshot shows that our emulator is attached and ready to 
communicate. In a multidevice scenario, we could have some issue when  
properly detecting our devices. Adb gives us a further option, -l:

Using the –l option, adb will show more details about the devices, and this will help 
us to identify them properly, as shown in the previous screenshot.

Once we have detected the device, we can communicate with it in a few ways. One of 
the most common way is connecting it to the device's internal shell. Every Android 
device comes with a system shell: it's a common tool for embedded or remote systems. 
To connect the the internal shell, we simply need to run the following command:

$ adb shell

If we have more then one device, we will need to specify which device we want to 
connect to, like this:

$ adb -s ZX1B226467 shell

Once we are connected to the internal shell, we can treat the system like a common 
*nix system. We can run an ls command:

$ ls –l



Moving to Real-World Hardware

[ 92 ]

As shown in the next screenshot, we obtain the directory listing:

We suggest you explore the filesystem and play around. You will find that you can 
do almost whatever you want, from manipulating files to manipulating applications.

Pushing files to devices
Adb gives us dozens of useful commands to manage our devices:

$ adb push

The adb push command is certainly one of the most useful. It allows us to copy files 
from our computer to our Android device. The next screenshot shows how to upload 
a single file to our device:



Chapter 4

[ 93 ]

We have created a new file, pippo.txt, containing a single line, hello pippo, then 
we uploaded this file to our connected device, into the /sdcard/ folder. As you can 
see, the first argument is the filename and the second one is the destination we want 
to copy the file to.

The next screenshot shows pippo.txt successfully uploaded to the device's  
/sdcard/ folder:



Moving to Real-World Hardware

[ 94 ]

Pulling files from devices
During development, we could need to retrieve a file from the device. To achieve 
this, adb gives us the opposite of push, which is pull:

$ adb pull

The preceding command is able to retrieve a file from a connected device and copy 
it to our computer. The syntax is fairly similar to push, simply with an inverse 
outcome. The next screenshot shows how to pull our pippo.txt from the device 
and copy it to the current directory:

We have deleted our original file from the current folder, pulled the one on the 
device to the current folder, using . as the destination, and checked that the copied 
pippo.txt file contains the expected line, hello pippo.

Installing Android APK files
As we know, any Android application is contained in an APK file. Usually, users 
don't see this file, because they install all their apps using the Google Play Store. 
As advanced users, we often deal with unreleased applications, for debugging and 
testing. These apps aren't available on Google Play Store yet, so adb gives us the 
opportunity to manually install them with the following command:

~$ adb install <path to .apk file>

The next screenshot shows how the APK file has been successfully installed on our 
device number ZX1B226467:



Chapter 4

[ 95 ]

Logcat
Every complex system such as Android needs a logging system. Android provides 
logging capabilities via logcat to help users with development and monitoring. 
Using the following command:

~$ adb logcat

We can instruct adb to connect to the Android logging system, select the default 
buffer, and start printing every single system logging message, in real-time, to our 
terminal. Android provides other two logging buffers for advanced use:

•	 radio: This contains all the relevant logging messages related to the radio 
communication system

•	 events: This contains messages related to the system events

We can select a buffer different from the default using the –b option. For instance,  
if we want all the logs related to events, we can use the following command:

:~$ adb logcat –b events

Adb logcat comes with a few interesting output modes. We can select them using 
the –v option and the mode name:

•	 brief
•	 color
•	 long
•	 printable
•	 process
•	 raw
•	 tag
•	 thread
•	 threadtime
•	 time
•	 usec



Moving to Real-World Hardware

[ 96 ]

The next screenshot shows logcat output when we choose the color mode:

As you can see, logcat will use a different color for every different logging level. We 
can even filter according to the logging level itself, using the following command:

~$ adb logcat *:E

In this case, we are only displaying error messages. The next screenshot shows every 
available filtering argument we can use:

For a complete list of all the possible options available with logcat, you can access 
the logcat command help using the following command:

~$ adb logcat –h



Chapter 4

[ 97 ]

The following screenshot shows the full list of all the available options with  
their description:



Moving to Real-World Hardware

[ 98 ]

Fastboot
Fastboot is the tool that Android gives us to manipulate the device Flash Memory 
and its partitions, using a computer and an USB connection. Fastboot does not 
communicate with the Android system. It communicates with a specific firmware 
able to interact in a minimal system environment: bootloader mode.

In the bootloader mode, the system initializes only the minimal amount of hardware 
and software to accomplish the most critical operations of all:

•	 flash: This option is used to deploy a new binary system image from the 
host computer to the device partitions

•	 erase: This option is used to delete a specific partition
•	 reboot: This option is used to reboot the device in one of the available 

booting modes: recovery, bootloader, or standard
•	 format: This option is used to format a specific partition

The next screenshot shows the output of the following command, the full list of all 
the available options of fastboot:

~$ fastboot –-help

As you can easily imagine, fastboot will be a big player in the future, when we will 
start building and testing our custom Android system:



Chapter 4

[ 99 ]

Choosing our hardware
In the previous chapters, we learned how to obtain the source code, how the build 
system works, and how to build our first custom Android system for the emulator. 
The only things we know about real hardware are that Android is primarily used 
on smartphones and tablets and that we can certify our hardware according to the 
Android Compatibility Definition Document (CDD), with all its constraints and 
rules. The truth is that Android CDD aims to provide guidelines to bring to the market 
devices that are compliant with Google Mobile Services requirements. This is crucial 
information because it gives us the freedom to choose different hardware if our goal is 
not to develop a smartphone or a tablet for the main consumer market.



Moving to Real-World Hardware

[ 100 ]

In the last two years, the amount of devices not being a smartphone or a tablet, 
but being able to run Android has increased enormously. There is a whole new 
ecosystem of te so-called development boards that can run Android or Ubuntu 
Linux, for instance. Most of these boards are not CDD compliant—they don't have 
apps such as Google Play Store, YouTube, Google Maps, and so on, but they still run 
Android and they can still be tested against Android CTS. This is a great opportunity 
for manufactures or advanced users who want to experiment.

This scenario is now possible because the actual hardware requirements to boot 
Android are getting very minimal nowadays. Keep in mind that Android is based 
on the Linux Kernel and the system itself has a few similarities if we strip away 
the Google apps ecosystem. Nowadays, most of the boards that are equipped with 
enough hardware to run Linux have a good chance of running Android as well.

Hardware architectures
The most popular hardware architecture we find in the Android market is  
definitely the ARM family, with its ARMv7 and ARMv8-A. Over time, the x86  
and MIPS platforms received official support and they have gained market  
shares in recent months. As a further note, Android 5 Lollipop introduced  
support for 64-bit architectures.

Minimum requirements
In a fashion that reminds us of minimal requirements just for playing games, even 
Android as its own. For instance, Android 5.1 requires at least 512 MB RAM if it is 
going to be installed on a device with a standard display density device. Otherwise, 
you will need at least 1.8GB RAM if you are planning to port it to a device with a 
high density display.

The previous versions are less demanding when it comes to RAM. Android 4.4 
KitKat, for instance, requires only 512 MB RAM. Unfortunately, KitKat comes with 
other constraints—there is no support for 64-bit architectures and a OpenGL ES 2.0 
GPU is necessary.

Lots of other hardware components, such as cameras, GPS sensors, accelerometers, 
gyroscopes, touchscreens, and so on, are very common, but they are absolutely 
optional—if your device does not need a camera, you can just save money. You can 
tailor your system, starting from a very minimal system, up to what is specifically 
needed for your use cases.



Chapter 4

[ 101 ]

System on Chip – SoC
The coming of advanced embedded systems, such as smartphones and tablets, 
created a huge demand for new embedded chips—more and more small and 
powerful. When you think about a computer, you think about CPUs, motherboards, 
video cards, and lots of external devices. In the embedded world, you think  
about SoC.

SoC stands for SYSTEM on Chip and it goes beyond the simple concept of a CPU. 
Most of the current SoC solutions embed a multicore CPU, RAM controller, ROMs, 
EEPROMs or Flash memories, USB support, Ethernet support, USART, SPI, and even 
a power management system. Everything is contained in one single chip, as shown 
in the next screenshot of an example SoC architecture:



Moving to Real-World Hardware

[ 102 ]

As you can imagine, the immediate advantage of this approach is the small size 
of the system. We can now have powerful, more and more feature complete and 
complex systems, with smaller and smaller power consumption in a smaller and 
smaller package, to satisfy every need that the market has.

The biggest players here are as follows:

•	 Samsung
•	 Qualcomm
•	 Huawei
•	 Mediatek
•	 Nvidia
•	 Intel
•	 Freescale
•	 Texas Instrument
•	 Broadcom

The baseband processor
If you are planning to develop a smartphone or a radio-enabled device, you are 
going to deal with some kind of baseband processor (BP). A baseband processor 
is a separated component; most of the time it is outside the SoC that is in charge of 
everything related to radio communications.

The BP is a critical component and it's kept separate for security reasons. Governments 
have strict policies about radio component certifications and basically, every 
Government requires that these components are equipped with read-only firmwares. 
Due to its nature, a BP is usually equipped with a specific real-time operating system 
and communicates with the external world via an AT commands-based serial bus.

Our hardware choice
The goal of this book in mainly to teach how to create a custom system for an existing 
device and how to approach the creation of a working Android system for a device 
that can be turned into an Android device with a fair amount of will and effort.



Chapter 4

[ 103 ]

We are going to use two popular devices in this journey:

•	 Google Nexus 6 by Motorola
•	 UDOO by Aidilab and SECO

Motorola Nexus 6
In the second chapter, we learned about Google devices—smartphones, tablets, 
and so on. In this chapter, we will work with their latest smartphone currently 
available—the Nexus 6.

Nexus 6, codename Shamu, is currently the top device available by Google.  
Its technical specifics are impressive:

•	 Qualcomm® Snapdragon™ 805 with quad-core 2.7 GHz CPU
•	 Display QHD AMOLED, 5.96" 2,560 x 1,440 (493 ppi), 16:9
•	 Back camera: 13 MP, LED flash, f/2.0
•	 Front camera: 2 MP
•	 GPU: Adreno 420
•	 Wireless: 802.11ac 2x2 (MIMO)
•	 Bluetooth: 4.1
•	 NFC
•	 RAM: 3 GB
•	 Storage: 32 GB or 64 GB
•	 Sensors: GPS, gyroscope, accelerometer, light sensor, barometer



Moving to Real-World Hardware

[ 104 ]

•	 Networking:
°° GSM: 850/900/1,800/1,900 MHz
°° Band WCDMA: 1/2/4/5/6/8/9/19
°° Band LTE: 1/3/5/7/8/9/19/20/28/41
°° CA DL: B3-B5, B3-B8

•	 Battery: 3,220 mAh, wireless charging systems

The following screenshot shows the internal structure—SoCs, battery, display panel:

Nexus 6 is obviously a fully CDD and CTS-compliant platform. It's shipped with the 
full Google Apps package and will be our reference as a certified device.

UDOO Quad
Completely different compare to the Nexus 6, UDOO is not a smartphone or a 
Google certified device—there are no Google Apps here. It's a so-called Single  
Board Computer—a development and experimentation board that can be equipped 
with Android or Ubuntu Linux. UDOO will be our reference board to prove that we 
can create a working Android system out of hardware that's pretty different from  
a smartphone.



Chapter 4

[ 105 ]

Let's have a look at its technical specifics:

•	 Freescale ARM i.MX6 Cortex A9 Quad core 1GHz CPU
•	 GPU Vivante GC 2000 + Vivante GC 355 + Vivante GC 320
•	 Atmel SAM3X8E ARM Cortex-M3 CPU (same as Arduino Due)
•	 76 fully available GPIO: 62 digital + 14 digital/analog
•	 RAM: DDR3 1GB
•	 Ethernet up to 1,000Mbit/s
•	 On board micro SD card as primary storage
•	 HDMI port
•	 LVDS port
•	 Wi-Fi module
•	 SATA interface
•	 RTC module
•	 CSI camera connection
•	 2 USB ports
•	 2 x 3.5" ports for mic and speakers



Moving to Real-World Hardware

[ 106 ]

As you can see, there are no sensors—there is no fancy light sensor or gyroscope, no 
accelerometer, and no GPS. There is no Baseband Processor either—we can't make 
phone calls, but we have more than enough to run Android on it!

You have surely spotted the Atmel microprocessor. Basically, UDOO 
comes with an embedded Arduino microprocessor that can be used to 
push your experimentations even further—go for it!

Compiling Android for a real-world 
device
By now, you know everything you need to know about the build system and how to 
retrieve the source code. Retrieving the proper source code for Google official devices 
is no big deal, but life isn't always so easy. Working with many different devices, you 
will certainly come across a manufacturer who is not willing to give the source code 
away. They are not legally forced to release it. This is an unfortunate scenario that, 
hopefully, will be considered bad marketing and will disappear in the future.

For our example, instead, we are going to play with two devices that offer great 
support and that will magnificently serve the purpose.

Nexus 6
The first device we are going to explore is the official Google Nexus 6 by Motorola. 
We have already had an overview of the device. If you want to push it even further, 
you can refer to the official Motorola Nexus 6 web page:

http://www.motorola.in/consumers/View-all-Mobile-Phones/Nexus-6-by-
Motorola/nexus-6-in.html

In the second chapter, we learned how to retrieve the source code for Google official 
devices. The only thing we need to know now is the specific tag to refer:

android-5.1.1_r14

The moment we have the source code, we can set up the environment with the  
setup script and run the lunch command to specifically target our Nexus 6.  
The next screenshot shows how we are choosing device number 16,  
Nexus 6— codename Shamu:

aosp_shamu_userdebug

http://www.motorola.in/consumers/View-all-Mobile-Phones/Nexus-6-by-Motorola/nexus-6-in.html
http://www.motorola.in/consumers/View-all-Mobile-Phones/Nexus-6-by-Motorola/nexus-6-in.html


Chapter 4

[ 107 ]

Here is the output:

For security and copyright reasons, the source base we acquired does not  
contain everything we need to build the system. Real-world devices, unlike  
the emulator, come with proprietary software components that must be  
downloaded separately. For instance, our Nexus 6 has proprietary software  
by three of its component manufacturers:

•	 Broadcom: NFC, Bluetooth, and Wi-Fi
•	 Motorola: Media, audio, thermal, touchscreen, and sensors
•	 Qualcomm: GPS, audio, camera, gesture, Graphics, DRM, video, and sensors



Moving to Real-World Hardware

[ 108 ]

The software components are distributed as binary files and can be downloaded 
at https://developers.google.com/android/nexus/drivers, by looking for 
Nexus 6, build codename LMY48M. Download the three files and extract them into 
your WORKING_DIRECTORY. The next screenshot shows the content of your download 
folder, with the three downloaded files:

Every one of the downloaded packages contains a script, once you extract the 
content. The moment you run this script, it will show you a license you need to 
accept in order to continue. The next screenshot shows you the process for the 
extract-broadcom-shamu.sh file:

$ chmod +x extract-broadcom-shamu.sh

$ ./extract-broadcom-shamu.sh

https://developers.google.com/android/nexus/drivers


Chapter 4

[ 109 ]

These three scripts are the final configuration step before launching the actual build 
process. After we have accepted all the three licenses, we can run our trusted make 
command and, patiently, wait for the build process to complete.

When the build process is over, the out/target/product/shamu/ folder will contain 
your first Android build for the Google Nexus 6.

UDOO Quad
UDOO is one of the most popular development boards on the market. The hardware 
is top notch, the user community is great, it's well documented and it's the perfect 
workbench for an infinite number of experiments.

UDOO is not a Google device, so there is no chance we could use the source code we 
already have to create out custom Android system. We must stick to the source code 
that UDOO manufacturers provide the advanced users with. You can download the 
source code from the following link:

http://download.udoo.org/files/Sources/UDOO_Android_4.4.2_Source_
v1.0.tar.gz

Once you have downloaded the file, you can extract it using your terminal and the 
following command:

$ tar zxf  UDOO_Android_4.4.2_Source_v1.0.tar.gz

As you have already figured out, the last available version of the UDOO 
Android source base is KitKat. When our adventure is over, you could try 
to port Lollipop to this platform as a new challenging Android project.

The extracted files and folders look exactly like the official Android folder structure 
we saw for the Nexus 6. The only real difference is that UDOO provides us with the 
source code for almost every component—you will find the bootloader source code 
and even the Linux kernel source code. Both bootloader and kernel will be compiled 
during the building process, unlike the Nexus 6 scenario, where we got them as 
precompiled files. The Android system, bootloader, and kernel will be combined to 
create the final image set we will need to deploy to our UDOO.

http://download.udoo.org/files/Sources/UDOO_Android_4.4.2_Source_v1.0.tar.gz
http://download.udoo.org/files/Sources/UDOO_Android_4.4.2_Source_v1.0.tar.gz


Moving to Real-World Hardware

[ 110 ]

Setup
Before launching the envsetup script, we need to configure the environment to be 
able to build the bootloader. We will learn a lot about the bootloader in the next 
sections. For now, you just need to open up your Terminal and run these commands:

$ export ARCH=arm

"$ export CROSS_COMPILE=$PWD/prebuilts/gcc/linux-x86/arm/arm-eabi- 
4.6/bin/arm-eabi-

$ export PATH=$PWD/bootable/bootloader/u-boot-imx/tools:$PATH

$ source build/envsetup.sh

As the last configuration step, we need to set up the build system to properly 
generate the system image for our UDOO:

~$: lunch udoo-eng

Bootloader
Everything is in place. We can now compile the bootloader. Open a Terminal and 
navigate to the bootloader folder:

$ cd bootbable/bootloader/uboot-imx

This folder contains the executable to perform the bootloader compilation. Run it  
like this:

$ ./compile –c

The previous command will show a configuration dialog, like the one in the next 
screenshot. You will select the hardware configuration you are targeting—CPU, 
RAM, and so on. When everything is properly configured, the compilation process 
will be performed and it will generate the bootloader binary images:



Chapter 4

[ 111 ]

System
Once we have the bootloader images, we can go back to the source code root folder 
and launch the main system image build process, using the following command:

$ make



Moving to Real-World Hardware

[ 112 ]

This could take a while, so be patient. As usual, when the compilation is over, you 
will find all the binary images you will need in the out/ folder, ready to be installed 
to our hardware and bring it to live.

Kernel
The Linux kernel will be compiled automatically during the Android system 
building process. If you want, you can also build the kernel by yourself, using  
the following commands:

$ make -C kernel_imx imx6_udoo_android_defconfig

$ make bootimage

The process will generate a brand new boot.img in the out/ folder. You can find the 
specific kernel file in kernel_imx/arch/arm/boot.

Bootloader mode
The previous sections guided you to your first system images, ready to be flashed to 
your hardware. These images will be deployed to the device memory. The Nexus 6 
has an internal Nand memory. The UDOO has a pretty standard SD card. The first 
step of the deployment is switching the device into the bootloader mode.

Bootloader mode is a particular state of the device that allows us to transfer and 
deploy a system image to the device itself, using the fastboot utility. Every device 
running Android has this mode, but not every device will let us access it. Some 
devices come with a locked bootloader, for security reasons or simply because of a 
short-sighted manufacturer.

Obviously, we will be able to access the bootloader on our devices: Google is 
a generous manufacturer and every Nexus device comes with an unlocked or 
unlockable bootloader; UDOO, as a development board, is designed to be  
developer friendly, as well.



Chapter 4

[ 113 ]

Nexus devices
Every Nexus device will let us to access bootloader mode, but every device will do it 
in its own way. According to the model, we will need a specific sequence of steps to 
boot the device in bootloader mode. The following table shows how to do it for every 
Nexus device. Be sure to turn off your device and unplug the USB cable, pick the 
model from the table, and press the right buttons:

Device Keys
shamu Press and hold Volume Down, then press and hold Power
fugu Press and hold Power
volantis Press and hold Volume Down, then press and hold Power
hammerhead Press and hold both Volume Up and Volume Down, then press 

and hold Power
flo Press and hold Volume Down, then press and hold Power
deb Press and hold Volume Down, then press and hold Power
manta Press and hold both Volume Up and Volume Down, then press 

and hold Power
mako Press and hold Volume Down, then press and hold Power
grouper Press and hold Volume Down, then press and hold Power
tilapia Press and hold Volume Down, then press and hold Power
phantasm Power the device, cover it with one hand after the LEDs light 

up and until they turn red
maguro Press and hold both Volume Up and Volume Down, then press 

and hold Power
toro Press and hold both Volume Up and Volume Down, then press 

and hold Power
toroplus Press and hold both Volume Up and Volume Down, then press 

and hold Power
panda Press and hold Input, then press Power
wingray Press and hold Volume Down, then press and hold Power
crespo Press and hold Volume Up, then press and hold Power
crespo4g Press and hold Volume Up, then press and hold Power



Moving to Real-World Hardware

[ 114 ]

For our Nexus 6, we need to press Volume Down then also press Power and keep both 
pressed. The smartphone will boot and you will land on a screen like the one in the 
following screenshot:

Here we are in Bootloader Mode!

The first thing you will notice is the quite explicit:

Device is LOCKED



Chapter 4

[ 115 ]

As we said, Nexus devices come with an unlockable bootloader. We just need to 
connect the device to our computer with a standard USB cable, open a terminal and 
run the following command:

$ fastboot oem unlock

You will see a notice message that will warn you that unlocking the bootloader will 
erase everything on your device. Yes, it will. That's unfortunate, but, from a security 
and system point of view, it's necessary.

This is the right moment to think about a data backup. You can still 
abort the process, restart your smartphone, save your data and try 
again. We will wait for you!

If you are brave enough and you just don't need all those pictures of little  
kitties on your phone anymore, just select YES and the bootloader will unlock 
smoothly. If for any reason you'd like the bootloader to lock again, you can use  
the following command:

$ fastboot oem lock

The moment we unlocked the bootloader, we gained full control of the Nand 
memory—we can erase partitions or flash the system images we have created. 
Unfortunately, Google does not release the source code of the bootloader, so we 
wouldn't know how they implement the whole fastboot protocol. Luckily for us,  
we are going to figure it out thanks to UDOO. The UDOO manufacturer provides  
us with the full source base, even the one for the bootloader.

UDOO family boards
UDOO comes as an open book. We can access every partition on its memory, with 
basically zero effort. There is no such thing as a "button ninja combination" to switch 
to bootloader mode. We can use a serial connection to analyze the whole boot 
process, stop it, and interact with it using the control console:

1.	 Connect the serial interface
2.	 Stop the boot sequence
3.	 Access the uboot console
4.	 Run fastboot

We now have the fastboot server ready to go. With the server in place, we will 
be able to connect to fastboot from our computer, using the fastboot client we 
already know.



Moving to Real-World Hardware

[ 116 ]

This process could seem a bit harder than the one from Nexus. That's true. The fact is 
that UDOO does not ship with a default secret bootloader like the Nexus or any other 
mainstream smartphone on the market does. UDOO is mainly a development board 
and, as with lots of such devices, gives you the freedom and power to choose the 
bootloader you prefer. However, in an effort to be more developer friendly, UDOO  
can perfectly work with the most popular open source bootloader solution—uboot.

The uboot solution is fully compliant with the standard requirements for a 
bootloader to properly launch an operating system—hardware initialization, 
memory test, and so on. It also implements the fastboot protocol and the extraction 
of the kernel contained in the boot.img, generated by the build system. These last 
two features make it fully compatible with Android.

Flashing Android images
Here we are. Every piece of the puzzle is in place—you can finally move forward to 
installing your brand new custom Android version onto your device.

As a reminder, we built the so-called stock version of the 
Android system: you won't find any of the Google apps in 
here—no YouTube, no Google Play Store.

Nexus 6
After the build process is complete, you will find all the system images you need in 
the out/target/product/shamu folder:

•	 system.img: This is, well, the system image. It contains the whole operating 
system—Android Framework, system native libraries, and the system utility 
app, such as Calc or Clock.

•	 recovery.img: This image contains what we are going to place in the 
Recovery partition. It contains a kernel and the recovery software itself.

•	 boot.img: This image contains the Linux Kernel and a small RamDisk. This 
image will be placed in the boot partition and will contain all the files needed 
to initialize the system: init.rc, for instance, and every other component 
needed to start the system.



Chapter 4

[ 117 ]

Every partition can be flashed using a specific partition image and an appropriate 
command. Switch your Nexus into bootloader mode, plug the USB cable, and let's 
flash a few partitions. Launch your Terminal, navigate to out/target/product/
shamu, and execute these commands:

:$ fastboot flash system system.img

:$ fastboot flash boot boot.img

:$ fastboot flash recovery recovery.img

:$ fastboot reboot

The last command will reboot your device and your brand new custom Android 
version will come to life! This first version of the system will definitely look bare 
without Google Play Store. With no possibility of installing applications, there is very 
little we can do with a device, indeed. No sad faces, please! In the next chapters, we 
will learn how to acquire and install the Google apps we need and how to customize 
our system.

As a final note, in this first run, we used the Linux Kernel provided by Google—we 
didn't compile it from sources. In the next chapters, we will learn how to do it and 
take full control.

UDOO
As usual, UDOO is slightly different. We have a few possible paths to achieve our 
goal, but first things first—partitions. The first step is to prepare the SD card with the 
proper partitions set. Unlike the Nexus and its pre-partitioned Nand memory, ready 
to be flashed, with UDOO we have full control of the system, even of the memory 
partitioning.

Freedom and power come with responsibility—we need to create the proper 
partitions before being able to install the system. Being developer friendly, the 
UDOO development team provides a handy script to speed up the job. The root 
folder of your UDOO working directory contains a make_sd.sh file. Insert the 
UDOO SD card in your computer and detect the disk number:

•	 On Linux, using df –f, you should look for something like /dev/mmcblkX
•	 On OS X, using diskutil list you should look for something like  

/dev/rdisksX

A super easy trick is to insert the SD card and note down all the disk numbers. Extract 
the SD card and figure out the one that is now missing! Once you have detected the 
disk number, you can run the script like this by specifying the proper disk name:

$ ./make_sd.sh /dev/mmcblkX



Moving to Real-World Hardware

[ 118 ]

The script will automatically erase the SD card, create the partition structure, and 
copy all the files the build system generated and deployed in out/. This could take  
a while, depending on the speed of your SD card.

As we saw, developing for a Google device is pretty straightforward: we download 
the source code and start configuring the system to achieve our built images. We end 
up with a stock version of the system we can later decide to customize as we like. 
Developing or porting Android to a new hardware is a totally different matter: it is 
quite different and requires a bit of effort and commitment.

When you decide to set out for a journey like this, the first crucial step is choosing 
the proper hardware platform. The market offers a large collection of vendors and 
every vendor offers his own particular solutions—different SoC, different on-board 
sensors, cheap low-end boards, or hyper-fast expensive boards. There is no place 
in this book for discussion about choosing an expensive board or not. We focus on 
the developer and their world and, as a professional, 99% of the time they will find 
themselves working with a so-called reference board.

A reference board is a particular kind of development board that every vendor offers 
to its potential clients. Usually, a reference board ships with everything possible  
on-board—tons of sensors, tons of external devices, tons of connectors, and possible 
purposes. The final goal is to provide developers with a board that can truly show off 
the full potential of the SoC and the whole hardware solution. Everything is tailored 
to make developers' life easy: the Linux Kernel source code is provided, the hardware 
components specifications are provided, and the documentation is provided.

The UDOO board we played with in the chapter can be considered close to a 
reference board. It does not have every possible sensor, but it's easily expandable 
with external sensors and we know how to communicate with those sensors because 
the platform is open and easy to debug. An easy way to debug our software and 
hardware is crucial to make our developing time effective.

UDOO comes with a handy micro-USB connection that is also a Serial-to-USB 
converter. Using this connection, we can interact with the board at one of the lowest 
level monitors and manipulate the boot sequence. To properly connect to the board 
console, we need to install a specific software on our computer: a modem control and 
terminal emulator named minicom.

You can install it on Ubuntu using apt-get:

$ sudo apt-get install minicom

You can install it on OS X using brew:

$ brew install minicom



Chapter 4

[ 119 ]

When we have minicom, we can connect the turned-off UDOO to the USB port and 
run the following command on our Terminal:

$ minicom –b 115200 –D /dev/ttyUSB0

ttyUSB0 is the system device that the operating system associated to the UDOO 
connection. It could be different on your system, that is ttyUSB1, ttyUSB2, according 
to the hardware configuration, other connected USB devices, and so on. A bit of trial 
and error could be necessary.

We can now plug the power cable in and turn on the board. If the connection  
is properly configured, you will see the boot sequence as shown in the  
following screenshot:



Moving to Real-World Hardware

[ 120 ]

We can monitor the boot sequence and interact with the system in a few interesting 
ways. The one we are interested in now is stopping the boot sequence and switching 
to bootloader mode.

During the boot sequence, you will see a message suggesting how to stop the boot 
sequence itself and access uboot. Once you are in, run fastboot as shown in the 
following screenshot:

We can now flash the system images we have:

$ fastboot flash system system.img

$ fastboot flash boot boot.img

$ fastboot flash recovery recovery.img

$ fastboot reboot

Having the serial connection still on, when the system reboots, we can enjoy all the 
system messages that the boot sequence provides: system initialization and Linux 
kernel loading, until we reach Android loading and finish to Android system console 
prompt. This is the beauty and the power of having deep access to and knowledge 
about your system and your hardware. The following screenshot shows a part of the 
boot sequence in the precise moment of kernel deployment:



Chapter 4

[ 121 ]

Summary
In this chapter, you have built and installed your first Android system for a  
real-world device. You now know a lot more about Google Nexus 6 and UDOO 
board. You have learned how to use ADB and Fastboot. You have learned how 
to interact with a development board using a serial connection and tools such as 
minicom, monitoring, and manipulating the boot sequence.

In the next chapter, we will dig into the Linux kernel building and customization.





[ 123 ]

Customizing Kernel and  
Boot Sequence

In the previous chapter, we created and deployed our first custom version of 
Android. We created a version for a commercial smartphone, the Google Nexus 6, 
and a more hard-core version for a development board, the Udoo Quad. We learned 
about more development tools, such as ADB and Fastboot. We focused on the 
debugging tools, mastering the serial connection, and the boot sequence.

In this chapter, we will dive into the system—from the kernel customization to the 
boot sequence. You will learn how to retrieve the proper source code for Google 
devices, how to set up the build environment, how to build your first custom  
version of the Linux kernel, and deploy it to your device. You will learn about:

•	 Toolchain overview
•	 How to configure the host system to compile your own Linux kernel
•	 How to configure the Linux kernel
•	 Linux kernel overview
•	 Android boot sequence
•	 The Init process

An overview of the Linux kernel
In Chapter 1, Understanding the Architecture, we learned how Android has been 
designed and built around the Linux kernel. One of the reasons to choose the Linux 
kernel was its unquestioned flexibility and the infinite possibilities to adjust it to any 
specific scenario and requirement. These are the features that have made Linux the 
most popular kernel in the embedded industry.



Customizing Kernel and Boot Sequence

[ 124 ]

Linux kernel comes with a GPL license. This particular license allowed Google to 
contribute to the project since the early stages of Android. Google provided bug 
fixing and new features, helping Linux to overcome a few obstacles and limitations 
of the 2.6 version. In the beginning, Linux 2.6.32 was the most popular version for the 
most part of the Android device market. Nowadays, we see more and more devices 
shipping with the new 3.x versions.

The following screenshot shows the current build for the official Google Motorola 
Nexus 6, with kernel 3.10.40:



Chapter 5

[ 125 ]

The Android version we created in the previous chapters was equipped with  
a binary version of the Linux kernel. Using an already compiled version of the  
kernel is the standard practice: as we have seen, AOSP provides exactly this  
kind of experience.

As advanced users, we can take it a step further and build a custom kernel for our 
custom Android system. The Nexus family offers an easy entry into this world as we 
can easily obtain the kernel source code we need to build a custom version. We can 
also equip our custom Android system with our custom Linux kernel and we will 
have a full-customized ROM, tailored for our specific needs.

In this book, we are using Nexus devices on purpose—Google is one of the few 
companies that formally make available the kernel source code. Even if every 
company producing and selling Android devices is forced by law to release the 
kernel source code, very few of them actually do it, despite all the GPL license rules.

Obtaining the kernel
Google provides the kernel source code and binary version for every single version 
of Android for every single device of the Nexus family.

The following table shows where the binary version and the source code are located, 
ordered by device code name:

Device Binary location Source location Build configuration
shamu device/moto/shamu-kernel kernel/msm shamu_defconfig
fugu device/asus/fugu-kernel kernel/x86_64 fugu_defconfig
volantis device/htc/flounder-kernel kernel/tegra flounder_defconfig
hammerhead device/lge/ hammerhead-

kernel
kernel/msm hammerhead_defconfig

flo device/asus/flo-kernel/kernel kernel/msm flo_defconfig
deb device/asus/flo-kernel/kernel kernel/msm flo_defconfig
manta device/samsung/manta/

kernel
kernel/exynos manta_defconfig

mako device/lge/mako-kernel/
kernel

kernel/msm mako_defconfig

grouper device/asus/grouper/kernel kernel/tegra tegra3_android_defconfig
tilapia device/asus/grouper/kernel kernel/tegra tegra3_android_defconfig
maguro device/samsung/tuna/kernel kernel/omap tuna_defconfig
toro device/samsung/tuna/kernel kernel/omap tuna_defconfig
panda device/ti/panda/kernel kernel/omap panda_defconfig
stingray device/moto/wingray/kernel kernel/tegra stingray_defconfig



Customizing Kernel and Boot Sequence

[ 126 ]

Device Binary location Source location Build configuration
wingray device/moto/wingray/kernel kernel/tegra stingray_defconfig
crespo device/samsung/crespo/

kernel
kernel/samsung herring_defconfig

crespo4g device/samsung/crespo/
kernel

kernel/samsung herring_defconfig

As in Chapter 4, Moving to real-world hardware, we are going to work with the 
Motorola Nexus 6, code name Shamu.

Both the kernel binary version and the kernel source code are stored in a 
git repository. All we need to do is compose the proper URL and clone the 
corresponding repository.

Retrieving the kernel's binary version
In this section, we are going to obtain the kernel as a binary, prebuilt file. All we 
need is the previous table that shows every device model, with its codename and 
its binary location that we can use to compose the download of the URL. We are 
targeting Google Nexus 6, codename shamu with binary location:

device/moto/shamu-kernel

So, to retrieve the binary version of the Motorola Nexus 6 kernel, we need the 
following command:

$ git clone https://android.googlesource.com/device/moto/shamu-kernel

The previous command will clone the repo and place it in the shamu-kernel folder. 
This folder contains a file named zImage-dtb—this file is the actual kernel image 
that can be integrated in our ROM and flashed into our device.

Having the kernel image, we can obtain the kernel version with the  
following command:

$ $ dd if=kernel bs=1 skip=$(LC_ALL=C grep -a -b -o $'\x1f\x8b\x08\x00\
x00\x00\x00\x00' kernel | cut -d ':' -f 1) | zgrep -a 'Linux version'



Chapter 5

[ 127 ]

Output:

The previous screenshot shows the command output: our kernel image version  
is 3.10.40 and it has been compiled with GCC version 4.8 on October the the  
twenty-second at 22:49.

Obtaining the kernel source code
As for the binary version, the previous table is critical also to download the kernel 
source code. Targeting the Google Nexus 6, we create the download URL using the 
source location string for the device codename shamu:

kernel/msm.git

Once we have the exact URL, we can clone the GIT repository with the  
following command:

$ git clone https://android.googlesource.com/kernel/msm.git

Git will create an msm folder. The folder will be strangely empty—that's because the 
folder is tracking the master branch by default. To obtain the kernel for our Nexus 6, 
we need to switch to the proper branch.

There are a lot of available branches and we can check out the list with the  
following command:

$ git branch -a



Customizing Kernel and Boot Sequence

[ 128 ]

The list will show every single branch, targeting a specific Android version for a 
specific Nexus device. The following screenshot shows a subset of these repositories:

Now that you have the branch name, for your device and your Android version,  
you just need to checkout the proper branch:

$ git checkout android-msm-shamu-3.10-lollipop-release



Chapter 5

[ 129 ]

The following screenshot shows the expected command output:

Setting up the toolchain
The toolchain is the set of all the tools needed to effectively compile a specific 
software to a binary version, enabling the user to run it. In our specific domain, the 
toolchain allows us to create a system image ready to be flashed to our Android 
device. The interesting part is that the toolchain allows us to create a system image 
for an architecture that is different from our current one: odds are that we are using 
an x86 system and we want to create a system image targeting an ARM (Advanced 
RISC Machine) device. Compiling software targeting an architecture different from 
the one on our host system is called cross-compilation.

The Internet offers a couple of handy solutions for this task—we can use the 
standard toolchain, available with the AOSP (Android Open Source Project) or we 
can use an alternative, very popular toolchain, the Linaro toolchain. Both toolchains 
will do the job—compile every single C/C++ file for the ARM architecture.

As usual, even the toolchain is available as precompiled binary or as source code, 
ready to be compiled. For our journey, we are going to use the official toolchain, 
provided by Google, but when you need to explore this world even more, you  
could try out the binary version of Linaro toolchain, downloadable from www.
linaro.org/download. Linaro toolchain is known to be the most optimized and 
performing toolchain in the market, but our goal is not to compare toolchains or 
stubbornly use the best or most popular one. Our goal is to create the smoothest 
possible experience, removing unnecessary variables from the whole building a 
custom Android system equation.

www.linaro.org/download
www.linaro.org/download


Customizing Kernel and Boot Sequence

[ 130 ]

Getting the toolchain
We are going to use the official toolchain, provided by Google. We can obtain it with 
Android source code or downloading it separately. Having your trusted Android 
source code folder at hand, you can find the toolchain in the following folder:

AOSP/prebuilts/gcc/linux-x86/arm/arm-eabi-4.8/

This folder contains everything we need to build a custom kernel—the compiler,  
the linker, and few more tools such as a debugger.

If, for some unfortunate reason, you are missing the Android source code folder,  
you can download the toolchain using the following git command:

$ git clone https://android.googlesource.com/platform/prebuilts/gcc/
linux-x86/arm/arm-eabi-4.8

Preparing the host system
To successfully compile our custom kernel, we need a properly configured host 
system. The requirements are similar to those we satisfied to build the whole 
Android system in the previous chapter:

•	 Ubuntu
•	 Linux kernel source code
•	 Toolchain
•	 Fastboot

Ubuntu needs a bit of love to accomplish this task: we need to install the ncurses-
dev package:

$ sudo apt-get install ncurses-dev

Once we have all the required tools installed, we can start configuring the environment 
variables we need. These variables are used during the cross-compilation and can be 
set via the console. Fire up your trusted Terminal and launch the following commands:

$ export PATH=<toolchain-path>/arm-eabi-4.8/bin:$PATH

$ export ARCH=arm

$ export SUBARCH=arm

$ export CROSS_COMPILE=arm-eabi-



Chapter 5

[ 131 ]

Configuring the kernel
Before being able to compile the kernel, we need to properly configure it. Every 
device in the Android repository has a specific branch with a specific kernel with a 
specific configuration to be applied.

The table on page 2 has a column with the exact information we need—Build 
configuration. This information represents the parameter we need to properly 
configure the kernel build system. Let's configure everything for our Google Nexus 
6. In your terminal, launch the following command:

$ make shamu_defconfig

This command will create a kernel configuration specific for your device. The 
following screenshot shows the command running and the final success message:

Once the .config file is in place, you could already build the kernel, using the 
default configuration. As advanced users, we want more and that's why we will 
take full control of the system, digging into the kernel configuration. Editing the 
configuration could enable missing features or disable unneeded hardware support, 
to create the perfect custom kernel, and fit your needs.



Customizing Kernel and Boot Sequence

[ 132 ]

Luckily, to alter the kernel configuration, we don't need to manually edit the 
.config file. The Linux kernel provides a graphical tool that will allow you to 
navigate the whole configuration file structure, get documentation about the single 
configurable item, and prepare a custom configuration file with zero effort.

To access the configuration menu, open your terminal, navigate to the kernel folder 
and launch the following command:

$ make menuconfig

The following screenshot shows the official Linux kernel configuration tool—no 
frills, but very effective:

\

In the upper half of the screenshot, you can see the version of the kernel we are going 
to customize and a quick doc about how you can navigate all those menu items: you 
navigate using the arrow keys, you enter a subsection with the Enter key, you select 
or deselect an item using Y/N or Spacebar to toggle.



Chapter 5

[ 133 ]

With great power comes great responsibility, so be careful enabling and disabling 
features—check the documentation in menuconfig, check the Internet, and, most 
of all, be confident. A wrong configuration could cause a freeze during the boot 
sequence and this would force you to learn, to create a different configuration and 
try again.

As a real-world example, we are going to enable the FTDI support. Future Technology 
Devices International or FTDI is a worldwide known semiconductor company, 
popular for its RS-232/TTL to USB devices. These devices come in very handy to 
communicate to embedded devices using a standard USB connection. To enable the 
FTDI support, you need to navigate to the right menu by following these steps:

Device Drivers|USB support|USB Serial Converter support

Once you reach this section, you need to enable the following item:

USB FTDI Single Port Serial Driver

The following screenshot shows the correctly selected item and gives you an idea of 
how many devices we could possibly support (this screen only shows the USB Serial 
Converter support):



Customizing Kernel and Boot Sequence

[ 134 ]

Once you have everything in place, just select Exit and save the configuration,  
as shown in the following screenshot:

With the exact same approach, you can add every new feature you want. One 
important note, we added the FTDI package merging it into the kernel image. Linux 
kernel gives you the opportunity to make a feature available also as a module. A 
module is an external file, with .ko extension, that can be injected and loaded in the 
kernel at runtime. The kernel modules are a great and handy feature when you are 
working on a pure Linux system, but they are very impractical on Android. With 
the hope of having a modular kernel, you should code yourself the whole module 
loading system, adding unnecessary complexity to the system. The choice we made 
of having the FTDI feature inside the kernel image penalizes the image from a size 
point of view, but relieves us from the manual management of the module itself. 
That's why the common strategy is to include every new feature we want right into 
the kernel core.

Compiling the kernel
Once you have a properly configured environment and a brand new configuration 
file, you just need one single command to start the building process. On your 
terminal emulator, in the kernel source folder, launch:

$ make



Chapter 5

[ 135 ]

The make command will wrap up the necessary configuration and will launch the 
compiling and assembling process. The duration of the process heavily depends on 
the performance of your system: it could be one minute or one hour. As a reference, 
an i5 2.40 GHz CPU with 8 GB of RAM takes 5-10 minutes to complete a clean build. 
This is incredibly quicker than compiling the whole AOSP image, as you can see, due 
to the different complexity and size of the code base.

Working with non-Google devices
So far, we have worked with Google devices, enjoying the Google open-source 
mindset. As advanced users, we frequently deal with devices that are not from 
Google or that are not even a smartphone. As a real-world example, we are going 
to use again a UDOO board: a single-board computer that supports Ubuntu or 
Android. For the time being, the most popular version of UDOO is the UDOO  
Quad and that's the version we are targeting.

As for every other device, the standard approach is to trust the manufacturer's 
website to obtain kernel source code and any useful documentation for the process: 
most of all, how to properly flash the new kernel to the system. When working with 
a custom kernel, the procedure is quite consolidated. You need the source code, the 
toolchain, a few configuration steps, and, maybe, some specific software package 
to be installed on to your host system. When it comes to flashing the kernel, every 
device can have a different procedure. This depends on how the system has been 
designed and which tools the manufacturing team provides. Google provides 
fastboot to flash our images to our devices. Other manufactures usually  
provide tools that are similar or that can do similar things with little effort.

The UDOO development team worked hard to make the UDOO board fully 
compatible with fastboot—instead of forcing you to adjust to their tools, they 
adjusted their device to work with the tools you already know. They tuned up the 
board's bootloader and you can now flash the boot.img using fastboot, like you 
were flashing a standard Google Android device.

To obtain the kernel, we just need to clone a git repository. With your trusted 
terminal, launch the following command:

$ git clone http://github.com/UDOOBoard/Kernel_Unico kernel

Once we have the kernel, we need to install a couple of software packages in our 
Ubuntu system to be able to work with it. With the following command, everything 
will be installed and put in place:

$ sudo apt-get install build-essential ncurses-dev u-boot-tools



Customizing Kernel and Boot Sequence

[ 136 ]

Time to pick a toolchain! UDOO gives you a few possibilities—you can use the same 
toolchain you used for the Nexus 6 or you can use the one provided by the UDOO 
team itself. If you decide to use the UDOO official toolchain, you can download it 
with a couple of terminal commands. Be sure you have already installed curl.  
If not, just install it with the following command:

$ sudo apt-get install curl

Once you have curl, you can use the following command to download  
the toolchain:

$ curl http://download.udoo.org/files/crosscompiler/arm-fsl-linux-
gnueabi.tar.gz | tar -xzf

Now, you have everything in place to launch the build process:

$ cd kernel

$ make ARCH=arm UDOO_defconfig

The following is the output:

The previous screenshot shows the output of the configuration process.  
When the default .config file is ready, you can launch the build process  
with the following command:

$ make –j4 CROSS_COMPILE ../arm-fsl-linux-gnueabi/bin/arm-fsl-linux-
gnueabi- ARCH=arm uImage modules

When the build process is over, you can find the kernel image in the arch folder:

$ arch/arm/boot/uImage



Chapter 5

[ 137 ]

As for the Nexus 6, we can customize the UDOO kernel using menuconfig. From the 
kernel source folder, launch the following command:

$ make ARCH=arm menuconfig

The following screenshot shows the UDOO kernel configuration menu. It's very 
similar to the Nexus 6 configuration menu. We have the same combination of keys  
to navigate, select and deselect features, and so on:

Working with UDOO, the same warnings we had with the Nexus 6 apply here  
too—be careful while removing components from the kernel. Some of them are just 
meant to be there to support specific hardware, some of them, instead, are vital for 
the system to boot. As always, feel free to experiment, but be careful about gambling!



Customizing Kernel and Boot Sequence

[ 138 ]

This kind of development device makes debugging the kernel a bit easier compared 
to a smartphone. UDOO, as with a lot of other embedded development boards, 
provides a serial connection that enables you to monitor the whole boot sequence. 
This comes in handy if you are going to develop a driver for some hardware and you 
want to integrate it into your kernel or even if you are simply playing around with 
some custom kernel configuration. Every kernel and boot-related message will be 
printed to the serial console, ready to be captured and analyzed.

The next screenshot shows the boot sequence for our UDOO Quad board:

As you can see, there is plenty of debugging information, from the board power-on 
to the Android system prompt.



Chapter 5

[ 139 ]

Driver management
Since version 2.6.x, Linux gives the developer the opportunity to compile parts of the 
kernel as separated modules that can be injected into the core, to add more features 
at runtime. This approach gives flexibility and freedom: there is no need to reboot 
the system to enjoy new features and there is no need to rebuild the whole kernel if 
you only need to update a specific module. This approach is widely use in the PC 
world, by embedded devices such as routers, smart TVs, and even by our familiar 
UDOO board.

To code a new kernel module is no easy task and it's far from the purpose of this 
book: there are plenty of books on the topic and most of the skill set comes from 
experience. In these pages, you are going to learn about the big picture, the key 
points, and the possibilities.

Unfortunately, Android doesn't use this modular approach: every required feature  
is built in a single binary kernel file, for practical and simplicity reasons. In the last 
few years there has been a trend to integrate into the kernel even the logic needed for 
Wi-Fi functionality, that was before it was loaded from a separated module during 
the boot sequence.

As we saw with the FTDI example in the previous pages, the most practical way 
to add a new driver to our Android kernel is using menuconfig and building the 
feature as a core part of the kernel.

In the next chapter, we will dig deeper in this topic and add new features to our 
kernel that are not present in the default configuration.

Altering the CPU frequency
Overclocking a CPU is one of the most loved topics among advanced users. The idea 
of getting the maximum amount of power from your device is exciting. Forums and 
blogs are filled with discussions about overclocking and in this section we are going 
to have an overview and clarify a few tricky aspects that you could deal with on  
your journey.

Every CPU is designed to work with a specific clock frequency or within a specific 
frequency range. Any modern CPU has the possibility to scale its clock frequency to 
maximize performance when needed and power consumption when performance 
is not needed, saving precious battery in case of our beloved mobile devices. 
Overclocking, then, denotes the possibility to alter this working clock frequency 
via software, increasing it to achieve performance higher than the one the CPU was 
designed for.



Customizing Kernel and Boot Sequence

[ 140 ]

Contrary to what we often read on unscrupulous forum threads or blogs, 
overclocking a CPU can be a very dangerous operation: we are forcing the CPU to 
work with a clock frequency that formally hasn't been tested. This could backfire on 
us with a device rebooting autonomously, for its own protection, or we could even 
damage the CPU, in the worst-case scenario.

Another interesting aspect of managing the CPU clock frequency is the so-called 
underclock. Leveraging the CPU clock frequency scaling feature, we can design 
and implement scaling policies to maximize the efficiency, according to CPU load 
and other aspects. We could, for instance, reduce the frequency when the device is 
idle or in sleep mode and push the clock to the maximum when the device is under 
heavy load, to enjoy the maximum effectiveness in every scenario. Pushing the 
CPU management even further, lots of smartphone CPUs come with a multicore 
architecture: you can completely deactivate a core if the current scenario  
doesn't need it.

The key concept of underclocking a CPU is adding a new frequency below the 
lowest frequency provided by the manufacturer. Via software, we would be able to 
force the device to this frequency and save battery. This process is not riskless. We 
could create scenarios in which the device has a CPU frequency so low that it will 
result in an unresponsive device or even a frozen device. As for overclocking, these 
are unexplored territories and only caution, experience and luck will get you to a 
satisfying result.

An overview of the governors
Linux kernel manages CPU scaling using specific policies called governors. There are 
a few pre-build governors in the Linux kernel, already available via menuconfig,  
but you can also add custom-made governors, for your specific needs.

The following screenshot shows the menuconfig section of Google Nexus 6 for CPU 
scaling configuration:



Chapter 5

[ 141 ]

As you can see, there are six prebuild governors. Naming conventions are quite 
useful and make names self-explanatory: for instance, the performance governor 
aims to keep the CPU always at maximum frequency, to achieve the highest 
performance at every time, sacrificing battery life.

The most popular governors on Android are definitely the ondemand and 
interactive governors: these are quite common in many Android-based  
device kernels. Our reference device, Google Nexus 6, uses interactive as  
the default governor.

As you would expect, Google disallows direct CPU frequency management, for 
security reasons. There is no quick way to select a specific frequency or a specific 
governor on Android. However, advanced users can satisfy their curiosity or 
their needs with a little effort. In the next chapter, you will learn more about CPU 
management, but, for now, let's customize your boot image.



Customizing Kernel and Boot Sequence

[ 142 ]

Customizing the boot image
So far, you learned how to obtain the kernel source code, how to set up the system, 
how to configure the kernel, and how to create your first custom kernel image. The 
next step is about equipping your device with your new kernel. To achieve this, 
we are going to analyze the internal structure of the boot.img file used by every 
Android device.

Creating the boot image
A custom ROM comes with four .img files, necessary to create a working Android 
system. Two of them (system.img and data.img) are compressed images of a Linux 
compatible filesystem.

The remaining two files (boot.img and recovery.img) don't contain a standard 
filesystem. Instead, they are custom image files, specific to Android. These images 
contain a 2KB header sector, the kernel core, compressed with gzip, a RAMdisk,  
and an optional second stated loader.

Android provides further info about the internal structure of the image file in the 
boot.img.h file contained in the mkbootimg package in the AOSP source folder.

The following screenshot shows a snippet of the content of this file:



Chapter 5

[ 143 ]

As you can see, the image contains a graphical representation of the boot.img 
structure. This ASCII art comes with a deeper explanation of sizes and pages.

To create a valid boot.img file, you need the kernel image you have just built and a 
ramdisk. A ramdisk is a tiny filesystem that is mounted into the system RAM during 
the boot time. A ramdisk provides a set of critically important files, needed for a 
successful boot sequence. For instance, it contains the init file that is in charge of 
launching all the services needed during the boot sequence.

There are two main ways to generate a boot image:

•	 We could use the mkbootimg tool
•	 We could use the Android build system

Using mkbootimg gives you a lot of freedom, but comes with a lot of complexity.  
You would need a serious amount of command-line arguments to properly configure 
the generating system and create a working image. On the other hand, the Android 
build system comes with the whole set of configuration parameters already set 
and ready to go, with zero effort for us to create a working image. Just to give you 
a rough idea of the complexity of mkbootimg, the following screenshot shows an 
overview of the required parameters:



Customizing Kernel and Boot Sequence

[ 144 ]

Playing with something so powerful is tempting, but, as you can see, the amount of 
possible wrong parameters passed to mkbootimg is large. As pragmatic developers, 
dealing with mkbootimg is not worth the risk at the moment. We want the job done, 
so we are going to use the Android build system to generate a valid boot image with 
no effort.

In the previous chapters, you created a custom version of the whole system using 
Android source code and a properly configured build system. We are going to take 
advantage of all the work that we have already done to complete this new step.  
All that you need to do is export a new environment variable, pointing to the  
kernel image you have created just a few pages ago. With your trusted terminal 
emulator, launch:

$ export TARGET_PREBUILT_KERNEL=<kernel_src>/arch/arm/boot/zImage-dtb

Once you have set and exported the TARGET_PREBUILT_KERNEL environment 
variable, you can launch:

$ make bootimage

A brand new, fully customized, boot image will be created by the Android build 
system and will be placed in the following folder:

$ target/product/<device-name>/boot.img

With just a couple of commands, we have a brand new boot.img file, ready to be 
flashed. Using the Android build system to generate the boot image is the preferred 
way for all the Nexus devices and for all those devices, such as the UDOO, that are 
designed to be as close as possible to an official Google device.

For all those devices on the market that are compliant to this philosophy, things start 
to get tricky, but not impossible. Some manufactures take advantage of the Apache 
v2 license and don't provide the whole Android source code. You could find yourself 
in a scenario where you only have the kernel source code and you won't be able to 
leverage the Android build system to create your boot image or even understand 
how boot.img is actually structured.

In these scenarios, one possible approach could be to pull the boot.img from a 
working device, extract the content, replace the default kernel with your custom 
version, and recreate boot.img using mkbootimg: easier said than done.

Right now, we want to focus on the main scenario, dealing with a system that is not 
fighting us. In the upcoming chapters, you will learn how to fight back and take full 
control of the system.



Chapter 5

[ 145 ]

Upgrading the new boot image
Once you have your brand new, customized boot image, containing your customized 
kernel image, you only need to flash it to your device. We are working with Google 
devices or, at least, Google-compatible devices, so you will be able to use fastboot 
to flash your boot.img file to your device.

To be able to flash the image to the device, you need to put the device in  
fastboot mode, also known as bootloader mode. Every device has its own  
way to reach this mode, so, according to the device you are using, you can examine 
the table in Chapter 4, Moving to Real-World Hardware with all the steps to reach the 
fastboot mode.

Once your device is in fastboot mode, you can connect it via USB to your host 
computer. Fire up a terminal emulator and launch the command to upgrade the  
boot partition:

$ sudo fastboot flash boot boot.img

In a few seconds, fastboot will replace the content of the device boot partition with 
the content of your boot.img file. When the flashing process is successfully over,  
you can reboot your device with:

$ sudo fastboot reboot

The device will reboot using your new kernel and, thanks to the new USB TTL 
support that you added a few pages ago, you will be able to monitor the whole  
boot sequence with your terminal emulator.

Android boot sequence
To fully understand all Android internals, we are going to learn how the whole 
boot sequence works: from the power-on to the actual Android system boot. The 
Android boot sequence is similar to any other embedded system based on Linux: in a 
very abstract way, after the power-on, the system initializes the hardware, loads the 
kernel, and finally the Android framework. Any Linux-based system undergoes a 
similar process during its boot sequence: your Ubuntu computer or even your home 
DSL router.

In the next sections, we are going to dive deeper in to these steps to fully 
comprehend the operating system we love so much.



Customizing Kernel and Boot Sequence

[ 146 ]

Internal ROM – bios
When you press the power button on your device, the system loads a tiny amount 
of code, stored inside a ROM memory. You can think about this as an equivalent of 
the BIOS software you have in your PC. This software is in charge of setting up all 
the parameters for CPU clock and running the RAM memory check. After this, the 
system loads the bootloader into memory and launches it.

An overview of bootloader
So far, the bootloader has been loaded into the RAM memory and started. The 
bootloader is in charge of loading the system kernel into the RAM memory and 
launching it, to continue the boot sequence.

The most popular bootloader software for Android devices is U-Boot, the Universal 
Bootloader. U-Boot is widely used in all kinds of embedded systems: DSL routers, 
smart TVs, infotainment systems, for example. U-boot is open source software and 
its flexibility to be customized for any device is definitely one of the reasons for  
its popularity.

U-boot's main task is to read the kernel image from the boot partition, load it into the 
RAM memory, and run it. From this moment on, the kernel is in charge of finishing 
the boot sequence.

You could think about U-boot on Android like GRUB on your Ubuntu system: 
it reads the kernel image, decompresses it, loads it into the RAM memory, and 
executes it. The following diagram gives you a graphical representation of the  
whole boot sequence as on an embedded Linux system, an Android system, and a 
Linux PC:



Chapter 5

[ 147 ]

The kernel
After the bootloader loads the kernel, the kernel's first task is to initialize the 
hardware. With all the necessary hardware properly set up, the kernel mounts  
the ramdisk from boot.img and launches init.

The Init process
In a standard Linux system, the init process takes care of starting all the core 
services needed to boot the system. The final goal is to complete the boot sequence 
and start the graphical interface or the command line to make the system available 
to the user. This whole process is based on a specific sequence of system scripts, 
executed in a rigorous order to assure system integrity and proper configuration.

Android follows the same philosophy, but it acts in a different way. In a standard 
Android system, the ramdisk, contained in the boot.img, provides the init script 
and all the scripts necessary for the boot.



Customizing Kernel and Boot Sequence

[ 148 ]

The Android init process consists of two main files:

•	 init.rc
•	 init.${ro.hardware}.rc

The init.rc file is the first initialization script of the system. It takes care of 
initializing those aspects that are common to all Android systems. The second file  
is very hardware specific. As you can guess, ${ro.hardware} is a placeholder  
for the reference of a particular hardware where the boot sequence is happening.  
For instance, ${ro.hardware} is replaced with goldfinsh in the emulator  
boot configuration.

In a standard Linux system, the init sequence executes a set of bash scripts. These 
bash scripts start a set of system services. Bash scripting is a common solution for a 
lot of Linux systems, because it is very standardized and quite popular.

Android systems use a different language to deal with the initialization sequence: 
Android Init Language.

The Android init language
The Android team chose to not use Bash for Android init scripts, but to create its 
own language to perform configurations and services launches.

The Android Init Language is based on five classes of statements:

•	 Actions
•	 Commands
•	 Services
•	 Options
•	 Imports

Every statement is line-oriented and is based on specific tokens, separated by white 
spaces. Comment lines start with a # symbol.

Actions
An Action is a sequence of commands bound to a specific trigger that's used to 
execute the particular action at a specific moment. When the desired event happens, 
the Action is placed in an execution queue, ready to be performed.



Chapter 5

[ 149 ]

This snippet shows an example of an Action statement:

on <trigger> [&& <trigger>]*
  <command>
  <command>
  <command>

Actions have unique names. If a second Action is created with the same name in 
the same file, its set of commands is added to the first Action commands, set and 
executed as a single action.

Services
Services are programs that the init sequence will execute during the boot.  
These services can also be monitored and restarted if it's mandatory they  
stay up. The following snippet shows an example of a service statement:

service <name> <pathname> [ <argument> ]*
  <option>
  <option>
  ...

Services have unique names. If in the same file, a service with a nonunique name 
exists, only the first one is evaluated as valid; the second one is ignored and the 
developer is notified with an error message.

Options
Options statements are coupled with services. They are meant to influence how and 
when init manages a specific service.

Android provides quite an amount of possible options statements:

•	 critical: This specifies a device-critical service. The service will be 
constantly monitored and if it dies more than four times in four minutes,  
the device will be rebooted in Recovery Mode.

•	 disabled: This service will be in a default stopped state. init won't launch it. 
A disabled service can only be launched manually, specifying it by name.

•	 setenv <name> <value>: This sets an environment variable using name  
and value.



Customizing Kernel and Boot Sequence

[ 150 ]

•	 socket <name> <type> <perm> [ <user> [ <group> [ <seclabel> 
] ] ]: This command creates a Unix socket, with a specified name, (/dev/
socket/<name>) and provides its file descriptor the specified service. <type> 
specifies the type of socket: dgram, stream, or seqpacket. Default <user> 
and <group> are 0. <seclabel> specifies the SELinx security context for the 
created socket.

•	 user <username>: This changes the username before the service is executed. 
The default username is root.

•	 group <groupname> [ <groupname> ]*: This changes the group name 
before the service is executed.

•	 seclabel <seclabel>: This changes the SELinux level before launching  
the service.

•	 oneshot: This disables the service monitoring and the service won't be 
restarted when it terminates.

•	 class <name>: This specifies a service class. Classes of services can be 
launched or stopped at the same time. A service with an unspecified  
class value will be associated to the default class.

•	 onrestart: This executes a command when the service is restarted.
•	 writepid <file...>: When a services forks, this option will write the 

process ID (PID) in a specified file.

Triggers
Triggers specify a condition that has to be satisfied to execute a particular action. 
They can be event triggers or property triggers. Event triggers can be fired by the 
trigger command or by the QueueEventTrigger() function. The example event 
triggers are boot and late-init. Property triggers can be fired when an observed 
property changes value. Every Action can have multiple Property triggers, but only 
one Event trigger; refer to the following code for instance:

on boot && property:a=b

This Action will be executed when the boot event is triggered and the property a is 
equal to b.



Chapter 5

[ 151 ]

Commands
The Command statement specifies a command that can be executed during the boot 
sequence, placing it in the init.rc file. Most of these commands are common Linux 
system commands. The list is quite extensive. Let's look at them in detail:

•	 bootchart_init: This starts bootchart if it is properly configured.  
Bootchart is a performance monitor and can provide insights about the  
boot performance of a device.

•	 chmod <octal-mode-permissions> <filename>: This changes  
file permissions.

•	 chown <owner> <group> <filename>: This changes the owner and the 
group for the specified file.

•	 class_start <serviceclass>: This starts a service specified by its  
class name.

•	 class_stop <serviceclass>: This stops and disables a service specified by 
its class name.

•	 class_reset <serviceclass>: This stops a service specified by its class 
name. It doesn't disable the service.

•	 copy <src> <dst>: This copies a source file to a new destination file.
•	 domainname <name>: This sets the domain name.
•	 enable <servicename>: This starts a service by its name. If the service is 

already queued to be started, then it starts the service immediately.
•	 exec [<seclabel>[<user>[<group> ]* ]] -- <command> [ <argument> 

]*: This forks and executes the specified command. The execution is 
blocking: no other command can be executed in the meantime.

•	 export <name> <value>: This sets and exports an environment variable.
•	 hostname <name>: This sets the hostname.
•	 ifup <interface>: This enables the specified network interface.
•	 insmod <path>: This loads the specified kernel module.
•	 load_all_props: This loads all the system properties.
•	 load_persist_props: This loads the persistent properties, after the 

successful decryption of the /data partition.



Customizing Kernel and Boot Sequence

[ 152 ]

•	 loglevel <level>: This sets the kernel log level.
•	 mkdir <path> [mode] [owner] [group]: This creates a folder with the 

specified name, permissions, owner, and group. The defaults are 755 as 
permissions, and root as owner and group.

•	 mount_all <fstab>: This mounts all the partitions in the fstab file.
•	 mount <type> <device> <dir> [ <flag> ]* [<options>]: This mounts 

a specific device in a specific folder. A few mount flags are available: rw, ro, 
remount, noatime, and all the common Linux mount flags.

•	 powerctl: This is used to react to changes of the sys.powerctl system 
parameter, critically important for the implementation of the reboot routing.

•	 restart <service>: This restarts the specified service.
•	 rm <filename>: This deletes the specified file.
•	 rmdir <foldername>: This deletes the specified folder.
•	 setpropr <name> <value>: This sets the system property with the specified 

name with the specified value.
•	 start <service>: This starts a service.
•	 stop <service>: This stops a service.
•	 swapon_all <fstab>: This enables the swap partitions specified in the  

fstab file.
•	 symlink <target> <path>: This creates a symbolic link from the target file 

to the destination path.
•	 sysclktz <mins_west_of_gtm>: This sets the system clock.
•	 trigger <event>: This programmatically triggers the specified event.
•	 wait <filename > [ <timeout> ]: This monitors a path for a file to 

appear. A timeout can be specified. If not, the default timeout value is  
5 seconds.

•	 write <filename> <content>: This writes the specified content to the 
specified file. If the file doesn't exist, it creates the file. If the file already 
exists, it won't append the content, but it will override the whole file.



Chapter 5

[ 153 ]

Imports
Imports specify all the external files that are needed in the current file and  
imports them:

import <path>

The previous snippet is an example of how the current init script can be extended, 
importing an external init script. path can be a single file or even a folder. In case 
path is a folder, all the files that exists in the first level of the specified folder will be 
imported. The command doesn't act recursively on folders: nested folders must be 
imported programmatically one by one.

Summary
In this chapter, you learned how to obtain the Linux kernel for your device, how to 
set up your host PC to properly build your custom kernel, how to add new features 
to the kernel, build it, package it, and flash it to your device.

You learned how the Android boot sequence works and how to manipulate the init 
scripts to customize the boot sequence.

In the next chapter, you will learn how to cook your first custom ROM, how to root 
your device, and replace the recovery partition.





[ 155 ]

"Cooking" Your First ROM
In Chapter 5, Customizing Kernel and Boot Sequence, we took an amazing journey into 
the Linux kernel—now you know how to obtain the right version for your device 
and how to build it. We got great satisfaction customizing and building your  
own kernel version, specific for your device—we added new drivers for your 
hardware and removed those that were unnecessary. You finally learned about  
the boot sequence.

In this chapter, we will enter the modding world and we will move forward with your 
first customized ROM. You will learn how to set up the system and how to create a 
custom ROM. We will see an overview of the most popular ROMs, and all the tools 
you need and how to use them.

The following topics will be covered in the chapter:

•	 History of Android modding (Cyanogenmod)
•	 Custom recovery
•	 Root access
•	 Kitchen and other tools

History of custom ROMs
First things first—What does "Custom ROM" mean?

Most Android devices come with so-called NAND memories. A NAND memory  
is a particular type of flash memory. A flash memory is based on transistors, 
instead of rotating disks, like in old hard drives. This type of memory is completely 
electrically managed—it can be written and erased and can store data indefinitely 
(not volatile). Knowing this, we may think that everything is writable on Android. 
Well, not exactly!



"Cooking" Your First ROM

[ 156 ]

The acronym ROM stands for Read-Only Memory. This type of memory is often 
used in embedded systems to safely store all those files that are part of the core 
system. In an effort to guarantee the highest system integrity possible, developers 
must be sure that the core system stays intact over device reboots and possible 
failures. That's why the core system is stored in a type of memory that can only be 
written once—Read-Only Memory, to be precise. With time, the Android hacking 
community took the acronym and transformed it. Nowadays, in saying Custom 
ROM, you are simply saying "My own custom Android system for this specific 
device," and this is the meaning we will use in the following pages.

As for the Linux kernel, Android is one of the most popular open source projects 
currently developed. Free to use and customizable, used by millions of people, 
Android is the base element for hundreds of customized operating systems—most 
of them were experiments, some were custom versions fixing particular bugs for 
specific scenarios, and others were optimized versions of the original system.

In the beginning, the modding community was very scattered—lots of lone wolves, 
hacking in their dark rooms. Over time, most of them converged into more social 
environments, combining their efforts in forums and communities, creating modding 
teams to provide users with better and more reliable ROMs.

In Chapter 5, Customizing Kernel and Boot Sequence, we saw how to create a custom 
version of Android working with the source code. We were able to radically alter the 
original system to create our version, perfectly fitting our needs, so what's all this 
hype about modding? Why couldn't we just grab the source code and customize  
our system? The truth is that, unfortunately, Google is a needle in a haystack. Most 
of the other manufacturers play the whole open source game a bit differently and it 
is not always possible to rebuild a system from scratch, due to the lack of provided 
source code.

Luckily for us, Android customization can be achieved by following a different  
path—going straight to the system memory partition, decompiling the components, 
and making customizations, or so-called surface modifications.

A totally different game is played in the Linux kernel field. As you can remember, 
Android and the Linux kernel have different licenses—Android is distributed 
under the Apache License v2, while the Linux kernel is distributed under the GPL 
license. The GPL license is stricter about modification and redistribution and the 
manufacturers have a hard time keeping the kernel secret. That's why the Linux 
kernel is always available and modders can add, remove, and improve whatever 
aspect they want—new drivers, improved power management, improved CPU 
management, and so on.



Chapter 6

[ 157 ]

When you look at the whole custom ROM idea, you end up thinking that you see 
custom ROMs everywhere and every day—manufacturer's ROM. If we think that 
the really pure Android system is the one shipped with Nexus devices, we realize 
that manufacturers are the first modders, turning the original system into something 
often completely different. Just think about Samsung or HTC custom UI. Those 
are huge modifications to the UI. Think about those devices that have an AM/FM 
radio—again, serious customization. Some manufacturers have gone so far with 
customizations over the years that they eventually made their device incompatible 
even with Google Play Store.

In the following pages, we will see an overview of the most popular custom ROMs to 
try to understand why they are so loved by advanced users.

Cyanogenmod
One of the undisputedly most popular Android custom ROMs is Cyanogenmod.  
It's one of the oldest ones and it brings features and performance that cannot be 
found in the official Android system:

Since the beginning, just after the first public releases of Android open source code, 
the Cyanogen team started back-porting the latest Android version to old devices. 
They basically overcame manufacturers' business decisions to leave old devices with 
old Android versions and made an effort to give new glory to so-called legacy devices.

During the years, the Cyanogenmod team added and tuned tons of features, and this 
approach attracted thousands of users. The improvements have been so good that 
often the official Google Android team merged them into the official Android source 
base, in the real open source community spirit.



"Cooking" Your First ROM

[ 158 ]

As said earlier, the Cyanogenmod team didn't start the project from scratch. They 
used the Android Open Source Project and enhanced it. Using a different approach 
to lots of other customizers, they decided that the whole project had to be available 
as open source code, allowing everybody to enjoy all the features, learn from the 
source code, and contribute to the project itself. Over the years, the community has 
grown significantly, and lots and lots of blog posts, tutorials, and practical guides 
have invaded the web-sphere, making Cyanogenmod one of the most popular 
custom ROMs currently available.

This is a list of the most-loved features that Cyanogenmod currently provides:

•	 Theming support: The whole system UI can be customized with user-made 
themes that can be applied to the system at runtime

•	 FLAC support: Free Lossless Audio Codec is one of the many audio codecs 
available on the system

•	 Bigger APN (Access Point Network) list: Lots of different APNs have been 
added over time, making it easy to quickly set up an Internet connection on a 
multitude of devices

•	 OpenVPN client: The popular VPN software is available and ready to  
be used

•	 Enriched Power Off menu: The Power Off menu contains new actions such 
as Reboot, Recovery Mode Reboot, and so on

Some other features include:

•	 Support for Wi-Fi, Bluetooth, and USB tethering
•	 CPU Overclock management and system-wide performance enhancements
•	 Advanced management of Soft Buttons
•	 New Toggle Buttons in the system notification menu such as GPS, Bluetooth, 

and Wi-Fi
•	 Advanced Application permissions management, for a meticulously  

secured system
•	 System-wide graphics enhancements
•	 Increased performance and reliability, as stated by the team, compared to 

any other Android system derived from the official Google vanilla one



Chapter 6

[ 159 ]

In April 2013, Cyanogenmod went from community project to an actual company. 
Despite this, the open source nature is still one of the main core values of the 
company. So far, it counts 17 employees working full-time on the project. In the 
last three years, they received a few donations from third-party partners, such as 
Benchmark Capital and Redpoint Ventures, pushing the development of an easier 
Cyanogenmod installation process.

In 2014, Cyanogenmod announced a partnership with OnePlus, a smartphone 
manufacturer, to distribute their devices with a pre-installed Cyanogenmod. 
According to their analytics, Cyanogenmod is currently used by 50 million devices.

Building Cyanogenmod
Inspired by Google AOSP, Cyanogenmod provides an official website where  
you can download the project source code and access the support forum:  
www.cyanogenmod.org.

The website also provides a complete list of every supported device. Unlike Google 
AOSP, which formally supports only Nexus devices, Cyanogenmod is available for 
dozens of different devices.

The Cyanogenmod build system is the exact same one you already mastered in the 
previous chapters. Knowing that, we leave it as an exercise to download and build 
your own Cyanogenmod version to fully understand how far Android AOSP can be 
customized and improved.

Installing a pre-build version
Being an open source project, you could build Cyanogen from source. If you want  
a quicker solution, Cyanogenmod provides pre-built installable versions of the 
system for a plethora of devices. Just check the website and look for one of your 
devices—chances are that it's on the list of supported devices.

Once you find that your device is supported, you can pick one of the many  
versions available. The release cycle is very different from Google's. One of the 
most adventurous features of the whole Cyanogenmod world is the nightly build—
every night, an automatic system starts a new build with the latest contribution to 
the source code repository. These are tricky versions, which must be considered 
unstable, but will contain all the new things that the development team adds to the 
system daily—only for the brave!

www.cyanogenmod.org


"Cooking" Your First ROM

[ 160 ]

In addition to the different release cycle, Cyanogenmod also uses a different version 
naming convention. The team uses tags to specify the different versions of the ROM:

•	 Nightly: As Already explained.
•	 Experimental: This is the version currently under testing.
•	 M Snapshot, or Milestone Snapshot: This is more stable than a nightly,  

but still to be considered unstable.
•	 Release Candidate: This is the final step before reaching the stable state. This 

is the first release that it would be wise to use on a daily basis on your device.
•	 Stable: This is the final state, targeting all users.

The Android Open Kang Project
Android Open Kang Project, also known as AOKP, is an open source project born 
in 2011 with the goal of providing an alternative to official Google Android for 
smartphones and tablets:

As you can imagine, the Kang team didn't create the system from scratch. They used 
the Android Open Source Project by Google as a starting point, as Cyanogenmod 
did. This particular Android version targets high-end smartphones and tablets and 
improves a few aspects to make the system more efficient and customizable. These 
are some of its main pros, which are the reason why more and more users decide to 
switch to AOKP.



Chapter 6

[ 161 ]

One of the aspects that users love is that the AOKP team focused on making the 
system as light as possible. They stripped away every unnecessary app and basically 
left just the official Google apps, to create the smallest possible system.

Most of the smartphones and tablets nowadays contain lots and lots of esthetical 
features that could slow down the system and are heavy on the eye. These types 
of apps are called bloatware and are usually pre-installed system apps that are 
impossible to remove from the system. AOKP made getting rid of these useless  
apps one of its main goals.

The Kang team works very hard to guarantee the maximum level of customization 
for the user's system. AOKP provides a ROM Control menu to customize lots of 
aspects of the system, from UI customization to behavior customizations. A large 
amount of energy has been spent in the gesture management domain, and one of 
the coolest features is the possibility to launch any desired app with a finger gesture 
instead of tapping on an icon.

As with Cyanogenmod, AOKP also provides plenty of documentation and 
downloads on their website at http://aokp.co. Again, you can check out the  
source code and build it yourself, or try out an already built version.

Here is a quick list of the goodies you can find in AOKP:

•	 Vibration Pattern: Every contact can be associated to a particular  
vibration pattern

•	 Navigation Ring: The Android lock screen can be customized with  
user-chosen apps to quickly access them even with a locked device

•	 LED Control: The system LED behavior can be customized in terms  
of color, blinking, and duration to create custom notifications for your 
custom scenarios

•	 Custom Toggles: The notification area can be customized with different 
toggle buttons to create the perfect setup that fits your needs

http://aokp.co


"Cooking" Your First ROM

[ 162 ]

The following image shows two screenshots from the actual system:

•	 The first one shows how to customize the Navigation Ring
•	 The second one shows how to customize the Vibration pattern

Installing AOKP
AOKP versioning is different from Google's and Cyanogenmod's. AOKP provides 
only too versions:

•	 Nightlies
•	 Milestones



Chapter 6

[ 163 ]

Nightlies are the equivalent of Cyanogenmod's nightly build. Indeed, this is just a 
build automatically generated every night by the AOKP build system. This is to be 
considered highly unstable and only to be installed for testing purposes.

By contrast, Milestones are stable builds, meant to be installed for stable daily usage.

To keep the community engaged, the Kang team created AOKP PUSH, an app that 
keeps the phone updated with new builds and also includes the ability to install 
a system update, when available. As a final note, like Cyanogenmod, AOKP is 
completely free and open to your contributions.

Minor ROMs
In the previous sections, we saw an overview of the two most popular custom ROMs 
available nowadays for Android smartphones and tablets. As you can imagine, this 
is just the tip of the iceberg—over the years, dozens of different custom ROMs have 
been developed and released. Lots of them target specific scenarios to solve specific 
issues or satisfy specific needs of their users, improving the Android system in their 
own way. Most of them are not built from scratch, but are based on already available 
systems that have been customized and redistributed.

Most of the available custom ROMs target a specific device, to solve device-specific 
issues and improve usability and performance. DroniX (https://goo.gl/R3c9pJ), 
for instance, a project created by the authors of this very book, targeted a specific 
device, the Huawei Ideos U8150, a low-end device that became very popular at the 
time. The development team focused on performance and squeezed every available 
Megahertz from the Ideos CPU. With the Kernel source code available, we were able 
to improve CPU frequencies and governors. Better power management meant better 
battery management, with better performance and increased battery life.

As always, be careful when you try out custom ROMs. Some of them could be very 
extreme and could be dangerous for your devices. This is unfortunate, but it's a real 
scenario. There is no magic for cooking a custom ROM, and there are a lot of things 
that can go wrong. Things like extreme overclocking, for instance, are dangerous, 
and a wise user should distrust ROMs that try to sell these kinds of features. 
Experimenting with Android can be fun, satisfying, and challenging, but it  
must be done with knowledge and wisdom.

We can't list here every custom ROM available in the wild. What we can do is 
to point you in the right direction: http://www.xda-developers.com/. This is 
probably the most famous forum to get the latest news and the latest crazy things.

https://goo.gl/R3c9pJ
http://www.xda-developers.com/


"Cooking" Your First ROM

[ 164 ]

Overview of OEM customizations
Even if they are not commonly considered custom ROMs, all the Android variants 
distributed by manufacturers can be considered to have heavy customizations.  
We witness these every day—every time you look at a Samsung device, you  
know that it's not pure Android.

From the system launcher to the Settings menu, every single component of these 
systems is heavily customized by the OEM and very far from the official Google 
version. In some cases, the system is so different that the average user doesn't  
know that he is using the same Android 5 system, for instance.

This is a list of the most popular OEM customizations to demonstrate how a system 
can be modified and how different the same Android version can look on devices by 
different manufactures.

Samsung – TouchWiz
TouchWiz is a graphical interface, optimized for touch interfaces. It has been 
developed by Samsung and its technical partners. Often, it's incorrectly defined as a 
"custom operating system", but technically speaking, it's just a heavy customization 
of the Android UI.

The first version of TouchWiz was released in 2010, for Android 2.1 and BADA, an 
operating system created by Samsung for its smartphones and tablets. The current 
version is TouchWiz 5 and we can find lots of improvements, added over the years. 
In the beginning, TouchWiz was just a different UI. Today, it's a collection of custom 
system applications, customized UI widgets, and lots of new settings and features, 
such as sound profiles, power management, toggles, and so on. The following 
screenshot shows the home screen and the applications drawer:



Chapter 6

[ 165 ]

Huawei EMUI
Under the influence of Samsung's work, Huawei also provides its own version of 
Android UI for its devices. As with Samsung, they started with a customized UI and 
added lots of features, such as theme customization—icons, colors, fonts, and lock 
screen. The notification area has been customized and improved, too.

One of the most useful new features is definitely the advanced power management. 
It provides three possible setups: Ultra, Smart, and Normal. Ultra is the extreme 
setup—one click, and you can turn off every sensor but the bare minimum ones, 
aiming to achieve the longest possible battery life. Smart tries to automatically 
manage the power usage as much as possible. Normal is all about performance—the 
battery won't last long, but the device will work at full speed.



"Cooking" Your First ROM

[ 166 ]

The following image shows the Hawei EMUI home screen:

HTC Sense
In 2009, HTC release the first version of its customized UI for smartphones.  
It targeted Android and Windows Mobile with a shared graphical user  
experience to not confuse users.



Chapter 6

[ 167 ]

The most popular feature in HTC is the big collection of home widgets, but there 
are other features that are just as interesting, such as a tracking system for use if the 
device is stolen. This system allows the user to make remote operations on the device 
to locate it or wipe the memory, or simply lock it. It's even possible to show a custom 
message on the lock screen, with an address or a reward to reobtain the device.

The following screenshot shows the home screen of HTC Sense 7:



"Cooking" Your First ROM

[ 168 ]

LG Optimus UI
LG, like others, provides a customized UI—user-picked images for the system icons, 
colors, and a few custom settings. An interesting feature is the vocal command to 
take a picture and the ability to pick the best picture from a burst of photo photos.

The following image shows the home screen and the customized notification area:

Xiaomi MIUI
This is definitely the heaviest customized system and it has one specific feature that 
none of the previous ones have—it's open source! Xiaomi began to work on MIUI 
with Android 2.3.7 and Cyanogenmod 7—those two were the core of the system. 
Over the years, they created a custom ROM that is way more than just a customized 
UI, adding more and more features.



Chapter 6

[ 169 ]

In 2011, Xiaomi jumped into the market, switching from system customizer to device 
manufacturer, with high-end, low-cost devices, equipped with its MIUI system.

The following image shows the MIUI home screen and app store:

Unfortunately, this is a popular trend—an easy method for branding and to assure 
customer loyalty, but it's not always the recommended way to go.

There are other manufacturers that prefer to ship their devices with a vanilla 
Android—Motorola, for instance. Motorola's branding approach is to add just a 
couple of by Motorola apps. These are usually utility apps, aiming to enrich the user 
experience while keeping the system clean.

Motorola's strategy also has one big pro—a system very close to Google's original 
one means faster updates. Every time Google releases a new Android version, 
Motorola devices receive system updates as well in a few days. This is very unusual 
for most of the other manufacturers, somehow doomed to stay on old Android 
versions due to the huge amount of work necessary to update such a heavily 
customized system.



"Cooking" Your First ROM

[ 170 ]

An overview of Android recovery
One of the most important parts of the whole Android architecture is the Recovery 
partition. A recovery partition is very common in embedded systems, and we saw 
an overview of it in previous chapters. As we know, the so-called Recovery is a 
minimal runtime system, completely decoupled from the main Android system and 
totally self-sufficient. Its main goal is to guarantee system integrity and provide the 
necessary tools to fix common minor issues and restore a properly working system.

With an Android vanilla Recovery, we can:

•	 Update the Android system
•	 Wipe the data partition and the cache partition

Wiping the data and cache partition is a common practice if we want to restore our 
device to the factory defaults, for instance, in order to have a clean system to start 
experimenting on something specific, or if we just want to sell it.

Diving into Android recovery
The Android Recovery system is completely standalone. This means that whatever 
might happen to the main Android system, recovery will be always able to restore a 
working system.

To achieve this level of resilience, recovery contains its own Linux kernel and its 
own rootfs. The following screenshot shows how recovery actually lives near the 
Android system, but is completely separate:



Chapter 6

[ 171 ]

The previous screenshot shows how access to the recovery is bound to the 
BootLoader. The BootLoader is unable to decide if the current boot sequence is  
going to end with a running recovery or a running Android system.

Recovery mode can be accessed with a button combination when the device is turned 
off. For our reference device, Google Nexus 6, you can take the following steps:

1.	 Press and hold Volume Down, Volume Up and Power buttons simultaneously.
2.	 Release all buttons when the Fastboot Mode menu appears.
3.	 Use the Volume buttons until the upper part of the screen displays the 

Recovery Mode text.
4.	 Press Power to select Recovery Mode—after that you will see an Android 

icon laid on its back.
5.	 Press and hold the Power button, then press the Volume Up button once.

Once you have landed on the recovery main screen, you can navigate using the 
Volume buttons and confirm your choice using the Power button.

The options you will find in the recovery menu could vary, but an Android vanilla 
recovery will definitely provide these options:

•	 Reboot system now: This option will restart the system.
•	 Apply update from ADB: Android Debug Bridge can be used from a host 

computer to upload an official Google system update. Only certified updates 
can be uploaded and applied this way due to security measures enforced by 
the recovery to guarantee system integrity.

•	 Wipe cache partition: This option will erase the cache partition. This partition 
usually contains the system's temporary data and app cache data. Deleting 
this file will free quite an amount of disk space, without losing user data  
or apps.

•	 Wipe data/factory reset: This option will erase the volatile memory  
and restore the original factory system. Everything that is not strictly  
system-related will be deleted: videos, music, documents, user apps,  
and so on. The cache partition will be erased as well.



"Cooking" Your First ROM

[ 172 ]

The following screenshot show a stock Android recovery:

Installing an alternative recovery
As with the whole Android system, even the recovery source code is available for 
study and modifications and, over the years, the Android community has developed 
alternatives that can be used in place of the Android stock recovery.

All these alternatives aim to improve and add more features to the stock recovery. 
The most common features are:

•	 Ability to save and restore system backups: NANDroid is extremely useful 
for experimenting with custom systems and adventurous configurations

•	 Ability to install custom ROMs: Probably the most important among the 
added features, from a custom ROM developer's point of view

•	 Enhanced UI and UXD: Some of these custom recoveries provide support for 
the touchscreen, instead of the default Volume/Power button navigation

The most popular recovery alternatives are:

•	 Clockworkmod
•	 4EXT
•	 Amon Ra Recovery
•	 Team Win Recovery Project (TWRP)



Chapter 6

[ 173 ]

Every one of them is different in some way—look and feel, advanced features,  
and so on, but all of them provide a clear way to allow the advanced user to  
install custom ROMs.

Clockworkmod
This is definitely one of the most popular custom recoveries in the game. It's  
often called CWM, and has been developed by Koushik "Koush" Dutta. He started  
with the ancient Android 2.1 recovery source code and, since then, he has kept  
on adding features.

One of the main features is the NANDroid backup, which allows the user to safely  
save and restore the whole system structure. Another interesting feature is the ability 
to connect to the recovery shell from a computer, via ADB. A critically important 
feature is the ability to update the system using unofficial update packages. Unlike 
the stock recovery, Clockworkmod ignores all signature certificates, knowing that 
only an advanced user would try to flash a custom-made update package.

Clockworkmod recovery can be easily installed using the specific app distributed via 
Google Play Store, or manually, as we will see.

To install it manually on your trusted Nexus device, you can use fastboot.  
Follow these steps to install Clockworkmod recovery:

1.	 First thing to do—download it. The Clockworkmod website has  
a complete list of supported devices and specific download files:  
https://www.clockworkmod.com/rommanager.

2.	 Once you have the file, decompress it and you will have a .img file.
3.	 Now, put your device in fastboot mode, as we saw in previous chapters, 

fire up a terminal, and use the following command to flash the .img file to 
the recovery partition:
$~: sudo fastboot flash recovery recovery.img

4.	 Once the brand new recovery has been installed, you can reboot the device 
straight to recovery mode with the following command:

$~: sudo fastboot reboot recovery

From this moment on, we can install custom ROMs or perform a total  
system backup.

https://www.clockworkmod.com/rommanager


"Cooking" Your First ROM

[ 174 ]

It's also possible to recompile the Clockworkmod source code from scratch, since 
the project is open source. You can also find a custom recovery source code in 
the custom Cyanogenmod ROM that we have discussed in previous paragraphs. 
Building Cyanogenmod from the source code follows the same steps you already 
followed to build official Android: the build system and the build setup are the  
same. Applying the same know-how as for vanilla Android, you can easily create  
a Cyanogenmod system image and a Clockworkmod custom recovery.

Here's a screenshot of the Clockworkmod UI:



Chapter 6

[ 175 ]

TWRP – Team Win Recovery Project
One alternative to the famous Clockworkmod recovery is TWRP, which stands for 
Team Win Recovery Project. One of the most important features of this recovery mod 
is support for touchscreens.

In this way, you can interact with the recovery mod directly using the screen, like 
you normally do using Android, which is very convenient, especially if we compare 
it to the volume keys used in all the other recovery mods. The graphical interface 
is pretty usable, with big buttons that show all the various options (they are very 
similar to the ones in the Clockwork mod). Using TWRP, you can install unofficial 
ROMs and also perform a complete system backup.

The project was born on 30th July 2011 and is an open source project— also, here  
you can either download a binary for your device or recompile from source code.

You can find more information on the official website at http://teamw.in/.

Here are some screenshots of TWRP:

http://teamw.in/


"Cooking" Your First ROM

[ 176 ]

Connecting to the recovery shell using ADB
Custom recovery can be operated using their standard UI, as we saw, and using an 
ADB connection. This feature is not available in the stock recovery and will be very 
useful during our experiments.

Once the custom recovery is installed, fire up a terminal and run the  
following command:

~$: adb devices

ADB will list all the available devices, as shown in the following screenshot:

Knowing that there is just a single device, we can simply use the following command 
to connect to the recovery shell:

~$: adb shell

You will be prompted with a # symbol, which lets you know that you have 
administrator powers as a root user. Being a root user gives you the opportunity to 
do advanced tasks, such as mount the system/ in read/write mode and add or remove 
any file you want, without starting the whole Android system.

Device permissions
As we have seen in previous chapters, Android is based on Linux, so it also inherits 
the part that concerns user permissions. As with a standard Linux system, Android 
also manages everything through groups and users. In the default configuration, it's 
not possible to obtain administrator (root) access, in order to prevent tampering with  
the system. Also, with access to the whole operating system, it's easy to corrupt  
the system itself, accidentally or deliberately (for example, to steal user data using  
a virus).



Chapter 6

[ 177 ]

Every Android app, when installed on the system, generates a new user and group, 
and inter-app communications are performed according to Android SDK constraints 
and protocols. Sometimes, though, it's useful to have complete control over the 
device, like, for example, when installing apps that manage CPU frequency and  
the CPU governor.

Now let's see how to obtain root access and what the implications of rooting the 
device are.

Root access
Root access enables the users of smartphones, tablets, and other devices with 
Android OS installed to obtain privileged access, also called root access, to the whole 
Android operating system. As we have already mentioned, Android uses a Linux 
kernel, so obtaining root access is very similar to obtaining administrator (superuser) 
access to a regular Linux or Unix-like OS, such as FreeBSD or Mac OS X.

Often, the reason for obtaining root access is to overcome the limits imposed on the 
device by the hardware producers. As a root user, you have the ability to modify 
or replace system apps and change the settings. Also, you can use the apps that 
require root permissions themselves, enabling you to execute operations that would 
otherwise be inaccessible to normal Android users. Rooting the device, that is, 
obtaining root access, can also help if you want to totally remove the device OS  
and replace it with another, maybe more recent, one.

In the following paragraphs, we will see how to obtain root access, which is the key 
precondition for installing the custom ROM.

SuperSu
To use root permissions in Android apps, an independent developer known as 
Chainfir Jorrit Jongma has developed a library that enables you to use them from 
your app and therefore execute root-level operations. Everything is open source and 
you can explore the documentation regarding the API at the official website of the 
developer: https://su.chainfire.eu.

If you would like to check out the library source code, you can find it (and 
contribute) here: https://github.com/Chainfire/libsuperuser.

https://su.chainfire.eu
https://github.com/Chainfire/libsuperuser


"Cooking" Your First ROM

[ 178 ]

Obtaining root access
Now it's time to see how to obtain root permissions on our device in practice. 
Unfortunately, it's not that simple, and there are various ways to obtain root 
permissions on a device. Every device has its quirks, and hence a different procedure 
to execute in order to obtain root permissions. Generally, we can say that if there's 
a possibility of installing a recovery mod, then there's also a possibility of installing 
everything necessary to become root. We just need to copy the right files to the 
system partition that is mounted as read-only by default, so we can access it either 
by making an ad hoc system partition using the source files, or—in cases when we 
don't have the Android source code—by mounting the partition in read/write mode 
through one of the custom recovery mods we described previously.

Up till now, we haven't talked about the legal issues regarding modifying the 
software present on the device. In general, it is not illegal to install custom ROMs 
onto our devices, except that there's the possibility of invalidating the device 
warranty. As far as the Nexus devices are concerned, there's no problem  
whatsoever; they are being sold for the purposes of software development,  
so the product warranty isn't tied to the software but to the hardware instead.

Chef toolkit
One of the main goals of this book is to help you realize your own version of a  
ROM customization. In the dictionary of modders, the act of modifying a version  
of Android in order to produce one's own ROM customization is often referred to  
with the verb to cook and the word kitchen.

"Cooking one's own ROM" means to modify the stock version of Android installed 
on one's device, with the aim of creating a new one.

For this reason, all the tools that might help to make the development of a ROM 
customization easier are called Chef toolkit.

As discussed in the previous chapters, it is indeed possible to create one's own ROM 
version starting from the source code, but this is not always possible, as some device 
manufacturers do not release their source code. In all those cases, we need to act on 
the system partitions, often directly on the binaries that build the internal core, both 
on the application framework and on the filesystem utilities.

In the next paragraphs, we will learn how to cook a ROM starting from binary 
images, beginning from the environment and analyzing the development tools  
that will help us carry out our first ROM customization.



Chapter 6

[ 179 ]

Preparing the environment
Before we can start developing the ROM, we most certainly need to prepare an 
adequate environment on our computer. Android can be used with basically all  
the most recent operating systems, from Windows, to Linux, to OS X.

We always refer to Ubuntu, as we did in the previous chapters when we dealt 
with compiling Android from the source code. Therefore, all you need to start is a 
computer with a recent version of Ubuntu installed on it. Besides that, we suggest 
to also install a good text editor for developers—it could either be VIM from the 
command line, or graphic editors such as ATOM, SublimeText, and so on. We will 
mostly work from the console, using different scripts and tools in order to finalize 
our first custom ROM.

Android kitchen
One of the chef's most important tools is undoubtedly the Kitchen. Although we are 
stealing our analogies from the world of cooking, we are actually focusing on the 
preparation of our first Android customization—the first step is obtaining the system 
binary images.

We refer to as the Android Kitchen the set of tools that are usually used, such as 
the scripts to be used in a shell, and which help the developer perform automated 
tasks, such as decompressing and editing the system images that build a ROM, 
decompiling APK packets, sometimes adding the root privileges to the ROM,  
and so on.

Of course, many different kitchens exist online, each one with its own peculiarities. 
We will study some of them and we will try to perform simple actions in order to  
get our first custom ROM ready to be flashed onto our device.

One of the most popular Android Kitchens is dsixda. The project is formally 
"retired," but it has been forked by lots of users and the development is still ongoing. 
It's open source and you can download it or fork it and contribute to the project 
starting from https://github.com/dsixda/Android-Kitchen.

The dsixda kitchen is based on a suite of Bash scripts and tools to provide an easy 
method to perform the most common cooking operations:

•	 Add Busybox
•	 Add root permissions
•	 Customize the boot screen

https://github.com/dsixda/Android-Kitchen


"Cooking" Your First ROM

[ 180 ]

These are just few of the possible operations available in its console menu. This 
kitchen is compatible with Windows, Linux, and OS X. We are going to use it with 
our trusted Ubuntu. Once you have downloaded the kitchen (https://github.com/
dsixda/Android-Kitchen/archive/0.224.zip), uncompress it into a folder, enter 
the folder, and run the following:

$: ./menu

This command will fire up the main menu, as shown in the following screenshot:

The dsixda kitchen manipulates two specific partitions—system and  
boot-respectively compressed in system.img and boot.img files. In the following  
sections, we will dig into extracting these partitions and customizing them.

Other developers' tools
Many other different tools could come in handy for the developer, of course strictly 
depending on one's specific needs. A hexadecimal editor would certainly be very 
useful for the analysis of binary images, while simple graphics editing software 
would help when it comes to modifying icons or other graphical aspects of the ROM, 
as well as for preparing the whole environment for compiling the Linux kernel, and 
possibly Android applications to add to the ROM.

https://github.com/dsixda/Android-Kitchen/archive/0.224.zip
https://github.com/dsixda/Android-Kitchen/archive/0.224.zip


Chapter 6

[ 181 ]

We usually prepare the environment as if we had to compile Android from the 
source together with the Linux kernel, so that we definitely have all the necessary 
tools to build our custom ROM.

Manipulating DEX files with APKTool
Working with an Android system, it's quite common to need to manipulate DEX 
files. DEX stands for Dalvik Executable and these files are used by Android 
Virtual Machine. To easily manipulate these files, you can use APKTool by Ryszard 
Wiśniewski and Connor Tumbleson. The tools are open source and you can 
download them at http://ibotpeaches.github.io/Apktool/.

APKTool is written in Java, so you need a JVM to use it. Once you have the APKTool 
jar file in place, fire up a terminal and run the following:

$: java –jar apktool_2.0.3.jar

Replace the version with yours, if necessary. The following screenshot shows the 
initial help menu of the tool:

http://ibotpeaches.github.io/Apktool/


"Cooking" Your First ROM

[ 182 ]

APKTool is based on two other tools—smali and baksmali, to assemble and 
disassemble the files. It requires an initial setup to work properly: framework-
res.apk position. You must specify where APKTool must look to obtain this file. 
framework-res.apk is part of the Android system and can be extracted from a 
running Android device, using our trusted ADB:

~$ adb pull /system/framework/framework-res.apk .

The previous command will copy the APK from the Android device into the current 
folder. Once we have the file in place, we can tell APKTool where to find it:

~$ apktool if {path to framework-res.apk}

Now that everything is configured, we can try to decompile and customize an APK, 
using the following command:

~$ apktool d myapk.apk path_destination_decompilation

The APK content will be placed in the destination folder we specified and we can 
edit any file we want. After all our modifications, we can recompress the folder into  
an APK file with the following command:

~$ apktool b path_decompiled_files new_apk_mod.apk

Once the new APK is ready, we can copy it to the device with a file transfer app or 
using ADB push, as we saw in the previous chapters.

Cooking our first ROM
So far, we have seen an overview of the suite of tools we need to create a custom 
ROM from a binary system image. The most important of all is the kitchen, and it 
needs system.img and boot.img partition files to properly do its job.

If you are targeting Google devices, this is an easy game. Google provides system 
source code for its devices, so we can always build our .img files from the source, 
as we learned in previous chapters. We can also grab the .img files from the official 
system installation packages that Google also provides for its devices at every new 
release of the Android system.



Chapter 6

[ 183 ]

If you are targeting a device that's not a Nexus, things become more adventurous. 
Most of the time you don't have the system source code; often you don't even have 
the downloadable system images. As you will see in the next sections, there is always 
a way to obtain every last piece of the puzzle to create our custom ROM.

Gathering the ingredients
The list is quite short. All you need is:

•	 Kernel source code, if you want to customize the system at core level
•	 system.img

•	 boot.img

The two .img files may be provided by the manufacturer, like Google does, or can be 
manually dumped from a running device system memory. The first scenario is the 
lucky one; the second one is more advanced and requires a bit of creativity. This is the 
scenario we are going to explore in greater depth, because, if you are lucky enough 
to have the manufactured system restore file, you simply need to decompress it into 
a folder and you will get the .img files you are looking for.

Dumping system partitions
To create a dump of the system memory, you will need to access the system with 
root privileges. As we already know, there are a few ways to gain root privileges—
device-specific rooting, installing a custom recovery, and so on. Pick the technique 
you prefer.

Once you have root privileges, fire up a terminal and connect to your device shell 
with the following command:

~$: adb shell

The system will welcome us with a # symbol. We can now proceed with dumping 
the partitions. To get an overview of the partitions structure, you can use the 
following command:

~ # cat /proc/partitions



"Cooking" Your First ROM

[ 184 ]

The following screenshot shows the output for a standard Google Nexus 6 device:

The number of partitions is almost overwhelming, but we need to focus just on 
the system partition and the boot partition. We know that the partitions we are 
interested in are there, among all those listed partitions. Now, we have to figure  
out which of those partitions is actually system/ and which is boot/.



Chapter 6

[ 185 ]

The relationship between a physical partition and its role in the Android architecture 
is shown with the following command:

~ # ls /dev/block/platform/msm_sdcc.1/by-name

The previous command will show something like this:

~ # . . .
~ # … recovery -> /dev/block/mmcblk0p35
~ # … system   -> /dev/block/mmcblk0p41
~ # … boot     -> /dev/block/mmcblk0p37
~ # … userdata -> /dev/block/mmcblk0p42
~ # . . .

As you can see, it shows every relevant partition and its role. We can easily figure 
out that the physical mccblk0p41 will become our system.img and mmcblk0p37 will 
become our boot.img file.

We will take advantage of the /sdcard partition to store the dumps, and we will 
create the dumps using the utility dd:

~ # dd if=/dev/block/mmcblk0p41 of=/sdcard/system.img

With the previous command, you are copying the whole system partition into a 
single file on the SD card. This process can take a while—be patient. Once you 
have the system.img file, you can move on to creating the boot.img file, with the 
following command:

~ # dd if=/dev/block/mmcblk0p37 of=/sdcard/boot.img

You now have the two most important files to create a custom ROM. Let's start 
customizing them.

Modifying an Android system binary image
Follow these steps to modify an Android system binary image:

1.	 Let's start with system.img. First of all, you need to bring it on to your  
host computer:
~$ adb pull /sdcard/system.img .

2.	 Then, you need to create a mount point to mount the image into it:
~$ mkdir system_mount_point

3.	 Now you can mount it as a common image file:

~$ mount –o loop system.img system_mount_point



"Cooking" Your First ROM

[ 186 ]

On old devices, the filesystem used for system.img was yaffs. 
Over the years, the Android system migrated to an ext4 filesystem, 
also very common on lots of Linux systems. Chances are that you 
are working with an ext4 filesystem right now.

Entering the mount point with cd and listing the files with ls, you will see a folder 
structure similar to the one in the next image:

You can now navigate the folders tree and study the structure, removing or adding 
the file you want. One interesting file to study is build.prop. This file contains juicy 
information about the system and its configuration. It's a very hardware-specific file, 
due to the infinite possibilities for customizing an Android system, but most of the 
variants share common details, such as memory heap size, display density, device 
code name, manufacturer name, Android framework SDK version, Android system 
version, and so on. There is even information about the system build time and the 
default ringtone for notifications and calls. There are plenty of little customizations 
with which you can play and experiment. For heavier modifications, keep reading 
and get ready for what's coming in the next chapter.

Modifying an Android binary boot image
As you already learned from the previous chapters, the boot image is a bit different 
from a system image. First of all, it doesn't contain a filesystem we can mount on our 
host system: the boot image has to be decompressed.



Chapter 6

[ 187 ]

To decompress the boot image, you are going to use the specific menu item in the 
Android Kitchen from the previous pages. The boot image is a key component of 
a custom ROM: that's where the kernel is and where the init scripts are. It's the 
perfect spot to place a system customization that must be applied before the Android 
system starts, such as the CPU governor setup.

To start working with the boot image, just copy the file into the Kitchen folder,  
fire up the menu, and start picking the options you want from the menu:

•	 Changing the ROM name can be the perfect first step
•	 Add root permissions
•	 zipalign the APK files for faster reading and loading
•	 deodexk the APK file for easy file manipulation, paying the price of  

slower loading

Once you are satisfied with the modifications, use the kitchen to generate an update 
file. This is a .zip file that can be flashed to the device using the custom recovery 
and represents your first custom ROM—congratulations!

Flashing our custom ROM
You have your .zip file and your customized system partition, and you are thrilled 
to have flashed them to your device.

To flash the system partition, we can use fastboot. First, you must unmount the 
partition itself using the following command:

~$ umount system_mount_point

Before we start experimenting with the system partition, it's always wise to do a 
system backup:

"Be prepared. You never know."

Now, you can put the device in Fastboot mode, according to the specific sequence of 
your device. For our reference device, Google Nexus 6, the sequence is:

1.	 Power off
2.	 Press Volume Up, Volume Down, and Power at the same time
3.	 Release when the Fastboot menu appears

The device is now ready to receive the new system partition. Flash it with the 
following command:

~ $ fastboot flash system system.img



"Cooking" Your First ROM

[ 188 ]

Your brand new system partition is in place! If your modifications were very extreme 
and adventurous, you could end up in a bootloop—the system keeps on rebooting and 
never ends the boot sequence. Stock system images distributed by manufacturers,  
or your own backups, come in very handy in this unfortunate scenario.

If you are working with a Samsung device and you have a Windows 
system, you can check out Samsung Odin, a GUI tool to flash your 
ROMs and root your devices.

The final step is to flash the .zip file you generated with the kitchen. The file is 
generated according to a specific file structure and it's ready to be passed to your 
custom recovery. The recovery will treat it as a "system update" even if it's a 
completely brand new, customized system.

First of all, reboot your system in recovery mode. You can do it with a button 
sequence or using ADB, with the following command:

$: adb reboot recovery

Once the device is in recovery mode, navigate with the volume buttons and select 
Apply update from ADB. This will put the device in waiting mode. Go back to your 
terminal and navigate to the .zip file generated with the kitchen. Finally, load the 
file to the device:

$: adb sideload filename.zip

Congratulations! Your first custom ROM is live on your device. Now, go back to 
customize it even more!

Summary
This chapter taught us what a custom ROM is. We started from a description of 
the currently existing, most relevant projects, and we have proceeded deep into 
the details. We have also had a look at some very important components, such as 
Android Recovery, both the stock ones and those that have been modified. Finally, as 
we did in the previous chapters, we have adopted a practical approach, learning how 
to prepare a suitable environment for Android customization. We have also studied 
the different tools that are generally used to perform this task, and, in the end, we 
have applied the concepts we just learned through a simple example of creating a 
custom ROM. In the next chapter, we will be diving deeper into every single aspect 
of a ROM, using practical examples to show how to customize and increase the 
performance of your ROM.



[ 189 ]

Tailoring Your Personal 
Android System

In the previous chapter, you learned about the most popular custom Android 
ROMs. We started to dive deep and analyze those parts of the system involved in 
the modding process, to effectively understand where to customize and how to do it, 
mastering the Android modding toolset.

In this chapter, we will go even further, diving deeper into every single aspect 
of a ROM, using practical examples to show how to customize and increase the 
performance of your ROM.

The main topics of this chapter are:

•	 Hacking the Android framework
•	 Adding new Android applications to the build system
•	 Adding new Linux-native apps, using the Android source code, or editing an 

existing binary ROM image
•	 Optimizing the system to better support custom hardware, with focus on the 

application layer and on the kernel layer.



Tailoring Your Personal Android System

[ 190 ]

Receiving over the air updates – OTA
Every Android device is, by design, able to receive updates over time. These can 
be system updates—when a new Android version has been released, or security 
updates—when some critical vulnerability has been fixed and Google is distributing 
the patch. Once the update has been received, every device is able to decompress and 
apply this update, following the required procedure.

These types of updates are called OTA, or over the air updates, because they can be 
downloaded and applied by the Android device itself, without the support of a host 
PC. These updates are typically going to patch operating system features, working in 
the so-called read-only part of the system. No user app will ever be affected by these 
updates— apps installed via the Google Play Store are completely safe.

Android will asynchronously notify you when a new OTA is available. Most of 
the time you will receive a notification if connected to a Wi-Fi network and if your 
battery is above 50% to ensure a possible fast download and a safe updating process. 
When an update is available, a new system notification will appear in the Status 
Bar notification area. Once the notification is clicked, Android will show you details 
about the update, as shown in the following image:



Chapter 7

[ 191 ]

OTA updates can be grouped into these three categories:

•	 Full system updates
•	 Incremental system updates
•	 Single update packages

Updating the whole system
As you can guess, this family of updates will bring up the whole system to a  
new version. They contain a whole system image, with system, boot, and  
recovery partitions.

To install these updates, the system needs to be able to properly boot the Recovery 
system and simply read and apply the update file.

Even if it is a full system update, the user partition is not affected and no app or user 
data is erased.

Updating the system incrementally
These updates are somewhat smaller than the full system ones and their goal is to 
apply patches to specific system components. Being tailored for a specific version of 
the operating system and a specific version of the file to be patched, these updates 
cannot be randomly applied to available devices.

To enforce this constraint, before installing such update files, the system checks for 
the correct file versions and any other possible requirement needed by the update. If 
some requirement is not satisfied, Android notifies the user with an error icon and 
the update procedure is aborted.

Applying a single component update
An OTA update package is a standard .zip file containing a META-INF/com/
Google/Android/update-binary file. Once Android has verified the ZIP file 
signature, it decompresses the file in /tmp and executes it. A few arguments are 
passed to the command line. These are:

•	 Update-binary API version number
•	 The command line file descriptor, to communicate with the command line,  

to send progress updates to the UI
•	 The filename



Tailoring Your Personal Android System

[ 192 ]

In the same folder as update-binary, there is another interesting file—updater-
binary. This file contains the sequence of actions to perform to install the update. 
All these actions are expressed in Edify, a custom Domain Specific Language 
(DSL) that Google created for this task. As is usual in the open source world, Google 
documented everything about this language and you can find the documentation in  
/bootable/recovery/edify.

The truth is that Recovery can execute every statically-linked binary named  
update-library. Leveraging this opportunity, lots of developers prefer to  
use different languages, which they are more familiar with, to perform all the 
operations needed to apply the update.

In the next pages we will see examples of both possible scenarios, using Google's 
Edify or a custom solution.

Creating over the air updates
Google provided plenty of developer tools to generate the different types of OTA.  
If you want to generate a Full Update OTA, the following two steps are required:

1.	 Generate a ZIP file containing the full update files
2.	 Generate the OTA package with all the necessary toolsets for the update

To generate the zip file containing the chosen target files, navigate to the root folder 
of the AOSP sources and run the following commands:

. build/envsetup.sh && lunch aosp-shamu

mkdir dist_output

make dist DIST_DIR=dist_output

If the process has been successful, we should have the zip file containing the target 
files in the directory dist_output. As an example, let's try listing the folder content 
with the following command:

ls -l dist_output/*target_files*

Now we should see a .zip file that will also have in its name the name of the target 
we are compiling for.



Chapter 7

[ 193 ]

At this point, you only need to generate the OTA package containing all the 
necessary files for the update. Among the available tools, there's a utility that  
will help us do so, through the following command:

./build/tools/releasetools/ota_from_target_files \

    dist_output/aosp_shamu-target_files-eng.esteban.zip  
ota_update.zip

As shown here, you'll find the screen with the generated OTA package and the 
command output:

Now we have our OTA package ready to be installed on development devices, because 
the default OTA is signed with test keys. If you want to provide your users with an 
installable OTA package, you need to sign the OTA with your own private keys, using 
the specific option provided by the OTA-generation tool.

In order to generate an incremental OTA, the procedure is nearly the same, except 
that you also need to indicate the ZIP file containing the previous OTA version.  
The command will be something like the following:

./build/tools/releasetools/ota_from_target_files \

    -i PREVIOUS-aosp-shamu-target_files.zip \ 

    dist_output/aosp-shamu-target_files.zip  
incremental_ota_update.zip

As for our previous example, you'll get a ZIP file containing the incremental backup.

Finally, there are no predefined tools for the composition of the Update OTA 
package, as it's up to us to decide what to install/update through the update  
script, which we will examine in detail later.



Tailoring Your Personal Android System

[ 194 ]

OTA internals
As anticipated in the previous section, an OTA package contains a binary file in its 
folder tree:

META-INF/com/google/android/update-binary

This binary file is generated by Android's build system, in the bootable/recovery/
updater folder, and it is used to properly perform the update.

The binary contains internal routines and an interpreter for the scripting language 
called Edify. This language supports a set of ad hoc commands in order to allow the 
correct execution of a system update without affecting the integrity of the system 
itself. You can find an example of an Edify script in one of the OTA ZIP files you  
have just generated, at:

META-INF/com/google/android/updater-script

Shown here is an example screenshot for an Edify script:

Usually, we don't need to manually write any Edify code, because in a standard 
scenario there are automated tools that generate the correct OTA packages 
containing all the necessary files, but it could be useful to manually modify them 
when debugging, or in case we are building our custom ROM from binaries and  
we need to customize the installation on the flash memory of the relative files.

Let's have a look at the Edify syntax in the next section.



Chapter 7

[ 195 ]

Edify syntax
The first thing to know is that Edify evaluates every expression as all string type 
values. An empty string is considered as false in a Boolean context, while any 
other value is considered as true. To recapitulate, Edify supports all the following 
expression types:

(expr )
 expr + expr  # string concatenation, not integer addition
 expr == expr
 expr != expr
 expr && expr
 expr || expr
 ! expr
 if expr then expr endif
 if expr then expr else expr endif
 function_name(expr, expr,...)
 expr; expr

Every string that contains the following type of character, which of course are not 
reserved words, are considered as string literal:

a-z, A-Z, 0-9, _, :, /, .

With reserved words, we refer to words such as if else, and endif.

Constant strings can also be written using double-quotes, in order to create  
strings with spaces or other characters not listed in the previous example,  
such as the following:

\n, \t,

It can also be respectively written as follows for the new line and tab:

\", \\ 

As an escape character, we use " and \ in a string written with double-quotes.

The operators are simply short-circuiting, that is, the right side isn't even considered 
if the logic result is determined by the left side of the expression. The syntax can be 
very concise, as shown in the following snippet; the two lines are equivalent:

a1 && a2
if a1 then a2 endif

The ; character is a sequence point, meaning that what's at its left is considered 
before, and what's at its right is considered after.



Tailoring Your Personal Android System

[ 196 ]

Let's see a richer example:

show_progress(0.750000, 0);
ui_print("Android Shamu");
mount("ext4", "EMMC", "/dev/block/…/system", "system");
unmount("/system");

The interpreter contains all the functions that are necessary to complete a correct 
update. Unless differently specified, the functions usually render true in case of 
success and false in case of error.

The language provides utility methods to control the flow and manage edge 
situations. If, for example, we want to trigger an error to block the installation,  
we can use the following functions:

abort();
assert();

As you can expect, in case you want to add a new feature, you can do that by 
modifying the sources, but before that, let's have a look at some of the most  
useful functions already available:

•	 abort([msg]): This method gives you the opportunity to abort the currently 
running script. It also takes a string argument, msg, that can be shown to the 
user as further information about the abort.

•	 assert(expr[, expr, ...]): This method takes a list of expressions as 
argument and evaluates them one by one. If any of these expressions fail, or 
returns false, the whole script execution stops. The system also shows an 
"Assert failed" message and the assert text that just failed.

•	 apply_patch(src_file, tgt_file, tgt_sha1, tgt_size, patch1_
sha1, patch1_blob, [...]): This method takes a patch1_blob file and 
applies it as a binary patch to the source file src_file to produce the target 
tgt_file.

•	 delete_recursive([dirname, ...]): This function takes a list of folder 
names as argument and deletes them, also deleting every single file they 
contain.

•	 file_getprop(filename, key): This method can be considered as a 
properties file inspector. It takes a couple of arguments, a filename and a key, 
and scans the file as if it were a property file, looking for the provided key.  
If the key is found, its value is returned.

•	 format(fs_type, partition_type, location, fs_size, mount_
point): This method provides a powerful way to format partitions.



Chapter 7

[ 197 ]

•	 ifelse(cond, e1[, e2]): This method represents the common  
it-then-else computer science statement.

•	 is_mounted(mount_point): This method helps to detect  
mounted partitions.

•	 mount(fs_type, partition_type, name, mount_point): This method 
mounts a filesystem of fs_type at mount_point.

•	 rename(src_filename, tgt_filename): This method takes two arguments, 
to perform a renaming from src_filename to tgt_filename.

•	 run_program(path[, arg, ...]): This method executes the binary at path, 
passing args, and it returns the program's exit status.

•	 sleep(secs): This method takes an integer, secs, as an argument and 
pauses the execution for secs seconds.

•	 symlink(target[, source, ...]): This method takes a target file and a 
list of sources and creates all sources as symlinks to target.

•	 unmount(mount_point): This is the counterpart of mount. This method 
unmounts the filesystem mounted at mount_point.

•	 This is just a subset of all the available commands. If you are curious about 
the whole list, you can check the official Google documentation at http://
source.android.com/devices/tech/ota/inside_packages.html.

We are now able to modify—or create from scratch—an Edify script for an Update 
installation. This knowledge will turn out to be very useful with the custom ROM, 
especially when the sources are not available, in case you want to modify the system 
through a custom recovery, installing specific files in the read-only system partitions.

OTA for custom ROM
As already anticipated, out of the OTA concept we get a convenient system for 
the custom ROM installation. The reason for this is that most custom ROMs are 
distributed as Update ZIP packages, to be fed to the custom Recovery, which 
will then take care of the package installation in the system. Analyzing the OTA 
structure—as we did in the previous section—we can intuitively understand how to 
organize a specific package to install a modified version of Android. In fact, through 
an ad hoc Edify script, it is possible to format and reinstall all the files that are 
contained in any system partition, in order to distribute your own modified  
Android version.

This task is left as an exercise to the reader as it can be achieved with the knowledge 
acquired so far.

http://source.android.com/devices/tech/ota/inside_packages.html
http://source.android.com/devices/tech/ota/inside_packages.html


Tailoring Your Personal Android System

[ 198 ]

Advanced ROM customization
In the previous chapters, you have made your first steps within the custom ROMs 
world; we have discovered what's already available online and analyzed the most 
characteristic aspects in detail. In this chapter we will go in deep and learn how to 
modify the most internal parts of Android's framework.

Custom ROMs are often associated with those "hackers" who add the most 
unexpected features and then share everything online, but it doesn't always  
happen like that.

As explained in the previous chapters, many device manufacturers propose their 
own modified Android version, which is nothing but an Android custom ROM.

This is a very important aspect, as this book is addressed both to the previously 
mentioned hackers and to those who use all this knowledge in their daily work—a 
hacker will often work with binary ROM, and rarely with sources, while the 
professional will certainly have the sources at their disposal, as well as all the 
relevant tools to make the development of additional features possible.

In the following section, we will try to explain the two different approaches to 
customization in a simple way. These are: from the sources and from binary.

ROM customization from binary
To modify a ROM starting from binary, we regrettably have few available choices. 
As we don't have the sources to generate the different images, we can only modify 
the filesystem, adding utilities and new apps, or making aesthetic changes to colors 
and icons, starting from the framework binary.

We can use the tools we saw in the previous chapter and apply all the required 
changes, then, when we are done, we can generate a package update.zip with the 
correct Edify script, that allows the installation of new features.

Furthermore, we can also add new applications both in Java and C, or enhance the 
system image adding a BASH environment, or copy in the /system partition updated 
application like Gmail or Maps, that might eat space in the /data partition.

Even if the possibilities are limited in this kind of scenario, starting from a  
binary image, we can try some optimization and tweak, as we will see in the 
upcoming sections.



Chapter 7

[ 199 ]

Customizing ROM from source
If you have the source code, you can do almost anything, but as you know,

"With great power comes great responsibility"—Uncle Ben, Spider-Man.

The first step is to identify the part we want to modify, and consequently, its 
repository. Let's take, for example Android's Settings menu, which we will keep 
as a master example to modify our ROM. The source code of Settings.apk is in the 
following path:

packages/apps/Settings

Once the source code path, and so, the repository, have been identified, the best way 
to start your customization is to mirror the repository on your server, where you will 
then operate the changes to the code.

In order to make sure your repository is part of the Android system, you need to 
update the manifest.xml, so that when you sync again with "repo", you will clone 
your own Settings version, and not Android's.

After that, you need to create another personal repository, where you'll keep your 
manifest, modifying the following line:

<project path="packages/apps/Settings"  
name="platform/packages/apps/Settings" groups="pdk-fs" />

Here you see where the code will be locally downloaded:

project path="packages/apps/Settings"

And here, its remote location:

name="platform/packages/apps/Settings"

You'll notice that there isn't a link in the remote position, because we'll use the 
default one, defined at the top as follows:

<remote name="aosp" fetch=".." />
<default revision="refs/tags/android-6.0.0_r6" remote="aosp" 
sync-j="4" />

As you can see, fetch refers to the parent folder ".." instead of an absolute path. 
The best thing to do to simplify our work is to add a remote as follows:

<remote  name="my_repo-github"  
fetch="git://github.com/my_personal_repo/" />



Tailoring Your Personal Android System

[ 200 ]

In this way, we have defined our remote, and we only have to fix the Settings line 
like this:

<project path="packages/apps/Settings" name="my_repo_Settings"  
remote="my_repo-github" />

We now have all the necessary configuration in place to proceed with the 
development: we have our separate repository, where we can develop the code, but 
most importantly, thanks to the modification in the manifest, we don't have to touch 
the remaining managed parts of the system managed by Google, so that the update 
of other components of Google is made simple and smooth.

Adding new packages to Android's build 
system
The first step is to add a package to Android's build system, so that, when we 
perform our build, it will be automatically compiled and added to the ROM, just as it 
happens with other applications. We can work on two levels: adding a system app as 
a compiled binary app, written in C, or adding a system app as an Application Layer 
that runs on Android Dalvik Machine and ships as an APK.

In order to create an Android application, the first thing to do is to prepare the 
environment for writing the code and generate the APK file that will be executed by 
Android's internal virtual machine. We are going to develop a standard Android app 
using Java, Android Studio, and Android SDK.

Adding a package by binary
While developing a custom ROM, you might need to add binary executables or 
applications you don't have the source code for. For example, you might want to add 
a particular application as the default application for a specific task, so that when the 
user boots the ROM, the application is already installed into the system. We can refer 
to the Facebook application as an example of this.

To successfully add a new application to your system image, you just need to get the 
APK file and copy it in the right ROM directory. You can do that with an update.zip 
file, adding the right Edify script, which will install the new APK—as we'll see later 
in more detail—or, as already anticipated in the previous chapters, you can perform 
the entire operation through Android's build system.

The first step is to write the correct Android.mk; let's imagine we have our APK file 
at the following path:

<aosp-root>/package/app/myapkfolder/



Chapter 7

[ 201 ]

Once your APK is in place, you need to create an Android.mk file and add the 
following snippet:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE := < your app folder name >
LOCAL_SRC_FILES := < app apk filename >
LOCAL_MODULE_CLASS := APPS
LOCAL_MODULE_SUFFIX := $(COMMON_ANDROID_PACKAGE_SUFFIX)
include $(BUILD_PREBUILT)

Analyzing the snippet, you will notice a couple of placeholders you will need to 
replace with your actual values. After that you'll need to create a new entry in the 
commons.mk file, situated in:

build/target/product

Add the new APK installation-related line, as follows:

PRODUCT_PACKAGES += < what you have defined in LOCAL_MODULE >

At this point, you only have to recompile the AOSP to find the new APK in the 
system, preinstalled among the other system apps.

Another very common and handy way to add a precompiled app to our ROM is 
doing it with the help of the Android update system. Provided that you have already 
installed a custom recovery image—which will make all your operations easier—to 
add a new binary to Android's /system/xbin directory, you only need to create an 
update.zip with an Edify script inside to perform the right operations.

Here you'll see an Edify script that performs a precompiled app installation in the 
target folder /system/xbin. The script is contained in:

META-INF/com/google/android/

The script contains the following code:

ui_print("Edify Script for binary installation");
ui_print("Flashing a binary");
show_progress(0.700000, 0);
ui_print("mounting /system");
mount("ext4", "EMMC", "/dev/block/system", "/system");
ui_print("");
ui_print("Installing binary");
package_extract_dir("system", "/system");
ui_print("unmounting system");



Tailoring Your Personal Android System

[ 202 ]

unmount("/system");
ui_print("unmounted system");
ui_print("Operations completed!");

The internal structure of the update.zip file will look like this:

update.zip
---> META-INF/com/google/android/update-script
---> META-INF/com/google/android/updater-script
---> system/xbin/mybinary

Once the update package has been created, you only need to apply it through the 
recovery custom that is installed on your device. As you have surely noted, the same 
approach, "edify script + update.zip + recovery", is used over and over, and this shows 
how Android's update system is solid and flexible and comes in handy for a huge 
number of tasks and scenarios; but we can go even further.

There's yet another procedure, that we might define as "dirty", which allows even 
more complex installations. You would still use the procedure of the update package, 
but instead of using the Edify syntax, which might often be inconvenient and not 
so powerful for advanced scenarios, you will redefine the content of the update-
script binary.

As you know, this binary, that by default contains the interpreter to execute the Edify 
script, is launched by the system. This "dirty" technique consists of replacing this 
binary with a shell script that performs the operations you need. With this alternative 
approach, you have the very powerful shell scripting language at your disposal, and 
let's consider that some recovery custom includes the Bash—as shell—which will 
hence work as the interpreter.

The following is an example of the busybox installation in the Android system,  
using an ad hoc update.zip, with a shell script that operates the installation:

#!/sbin/sh

FD=$2

ui_print() {
  echo -n -e "ui_print $1\n" > /proc/self/fd/$FD
  echo -n -e "ui_print\n" > /proc/self/fd/$FD
}

set_perm() {
  chown $1:$2 $4



Chapter 7

[ 203 ]

  chmod $3 $4
}

ui_print "- Mounting /system"
mount /system

ui_print "- Installing BusyBox"
unzip -o "$3" busybox -d /system/xbin

ui_print "- Setting right permissions -"
set_perm 0 2000 0755 /system/xbin/busybox

ui_print "- Symlinking BB applets"
for i in $(/system/xbin/busybox --list); do
  busybox ln -sf busybox "/system/xbin/$i"
done

ui_print "- Unmounting /system"
umount /system

ui_print "- BusyBox Installation complete -"

This script will replace our update-script and will operate the binary installation. 
As a result, the update package will have the following structure:

update.zip
---> META-INF/com/google/android/update-script
---> busybox

Thus, we can perform the most complex installations, and it turns out to be one of 
the most used methods by the Android ROM "modders".

Adding packages by source code
In Chapter 3, Setup and Build – the Emulator Way, we broadly explained how to add 
new packages to the build system from source. In this section, we will make a real 
example by creating a Hello World application, with the help of Android Studio, 
which we will import and compile together with the entire Android system.

First, we need to create a base application with Android Studio.

For the installation instructions, please read the following link:  
http://developer.android.com/sdk/index.html.

http://developer.android.com/sdk/index.html


Tailoring Your Personal Android System

[ 204 ]

When your system is ready, launch the IDE and create a new project:



Chapter 7

[ 205 ]

The previous image shows how to specify an app name, a domain, and a path folder 
for our Android project. Once you have entered all the data, you can click Next and 
move to the API level selection, as shown here:



Tailoring Your Personal Android System

[ 206 ]

As shown in the previous image, by default Android Studio will target API 16 to 
cover more than 95% of the market. This value doesn't really matter in our scenario, 
because this app will be installed only in our custom ROM, that is probably Android 
6. Let's move to the next screen—Activity Picker:



Chapter 7

[ 207 ]

The previous image shows the plethora of possible activities we can easily add to our 
apps. For this example, we will use just an Empty Activity, to keep things simple:



Tailoring Your Personal Android System

[ 208 ]

The previous image shows how to rename our brand new activity—MainActivity 
will do the job flawlessly. Just click Finish and Android Studio will bring you to the 
editor screen to add some code to your Hello, World app:

The previous image shows how to display a Toast message when our app starts; 
nothing fancy, but it's enough to give you an idea about how things can be made 
easy with the proper tool set and knowledge.

When your app is ready, just click the Run button and start building your APK file. 
Test it as much as you can and when you are satisfied with the results, copy the 
source code to the AOSP source code folder:

<aosp>/package/apps/Myapp

With your current know-how, you are able to update the manifest file to add this app 
to the Android build system.

The final touch is the Android.mk file. For this Hello,World example, just create a 
new file as follows:

<aosp>/package/apps/Myapp/Android.mk

Add the following snippet:

  LOCAL_PATH := $(call my-dir)
  include $(CLEAR_VARS)
  
  # Build all java files in the java subdirectory
  LOCAL_SRC_FILES := $(call all-subdir-java-files)
  



Chapter 7

[ 209 ]

  # Name of the APK to build
  LOCAL_PACKAGE_NAME := LocalPackage
  
  # Tell it to build an APK
  include $(BUILD_PACKAGE)

Using Android's build system, you are now able to build and package your own 
Android apps for your custom ROM.

Hacking the Android framework
In Chapter 6, "Cooking" Your First ROM, we had a look at a few heavily-customized 
versions of Android, and lots of these customizations were related to the User 
Interface. UI customization is a tricky topic due to the personal taste factor involved: 
many users love a "pure Android" UI, many other users love the idea of a "different 
Android" UI, far from the mainstream UI experience.

In this section, we are giving you free will and the chance to choose between a vanilla 
Android and a customized one. You will learn how to make small customizations,  
to the status bar or to the colors, for example, or big customizations, like adding a 
new item to the Settings menu to properly set up the custom features of your  
custom ROM.

Customizing the boot sequence UI
The graphical appearance of the ¾¦+ boot sequence is definitely one of the most 
popular customizations you'd like to do and often the one that your users will  
ask for and will love.

During the boot sequence, a standard Android device will show:

•	 The Splash image
•	 The Boot animation



Tailoring Your Personal Android System

[ 210 ]

The Splash image is a static image that the system shows in the first seconds  
after Power On. On a Google Nexus device, the Splash image looks like the  
following image:

The image shows the Google brand and a lock. As we already learned, the lock 
represents the status of the bootloader—locked or unlocked. The Splash image is 
associated to the initial phases of the boot—typically, the system shows the Splash 
image from the Power On to the completion of the bootloader and Linux kernel 
setup sequence.

Customizing the ¾¦+ Splash image is no easy thing, because even if theoretically 
it's just an image, or a sequence of images, stored on the NAND memory, every 
manufacturer uses a custom approach to accomplish this goal and they are very 
unwilling to document how we could revert their work. What is extremely easy for 
them, having plenty of tools and knowledge about their system, becomes hours and 
hours of reverse engineering for us, with unpredictable results and effects on the 
stability of the whole system.



Chapter 7

[ 211 ]

Turning our attention to the boot animation, we can see that the boot animation is 
that sequence of images, most of the time animated, that any Android device shows 
during the startup sequence, right after the Splash image and until the Android 
system completes boot. Many manufacturers customize this animation to enforce 
their brand, and you will do the same with your own brand. From a technical point 
of view, the moment you see the boot animation, the kernel has been loaded, the 
partitions have been mounted, and Android is starting to boot.

This sequence of images is way easier to customize compared to the Splash image. 
This is due to the fact that, even if the majority of the device has a custom boot 
animation, every single one of them respect very strict known requirements—that 
means that we have documentation for this!

As with lots of Android components, the boot animation comes as a standard .zip 
file and is placed in the /system/media/ folder or in the /data/local/. All we  
need to customize the boot animation is to grab it, edit it as we like, and place it 
back—piece of cake!

To retrieve the file, we can use our trusted adb. Fire up your terminal and run the 
following command:

adb pull /system/media/bootanimation.zip .

Of course, if the file is not there, try the second possible location, as we said 
previously. Once you have the file on your host computer, you can decompress  
it and you will see the same folder structure as shown in the following image:



Tailoring Your Personal Android System

[ 212 ]

All those part* folders contain the images that create the animation, and the desc.
txt file contains the instructions to properly perform the animation.

Open the desc.txt file with your preferred text editor and you will see something 
like the following image:

The first row specifies the resolution and the frame rate at which the animation will 
be displayed. Lines 2 to 6 specify how to show the different parts of the animation.

The first letter, "c", stands for "continue", and instructs the system to keep playing the 
sequence even if the boot sequence is completed.

The first number specifies how many times the part has to be repeated. In the 
example, just once, or infinite time (using 0 as the value to indicate an infinite loop). 
The second number specifies how many seconds will be waited before starting the 
next part. The last token of the row specifies the folder containing the images to show 
to create the animated sequence.

Now that you know about the inner structure of the bootanimation.zip file and 
how to set up the sequence, it's time to be creative and replace all those boring 
images to create your own awesome animation!

Once you are satisfied, it's time to create a new bootanimation.zip file. Fire up 
your terminal and run the following command:

zip -r -0 bootanimation.zip part0 part1 partX desc.txt



Chapter 7

[ 213 ]

Carefully, replace partx with the correct sequence of folders you have in your 
animated sequence. To try out your brand new boot animation, just upload the zip 
file to /data/local/ folder using adb. You could even create a custom update.zip 
and flash it to your device using Recovery. It's up to you.

FFMPEG is a handy tool to extract images from a video to create your 
animated sequence. Fire up a terminal and run the following:
ffmpeg -i "path_file" -r 1 -s 1024x768 -f image2  
"path_images-=.jpg"

The previous command specifies a few interesting parameters: -r 1 
to capture a frame every second, -s to specify a resolution for the final 
images, and -f image2 to actually capture a frame and save it as an 
image. As always, you can refer to –h for further documentation.

Customizing the Android Settings menu
One great feature of Android is modularity: most of the system features are actually 
Android apps, developed and maintained separately. The Android Settings menu, 
for instance, is just an Android app itself, called Settings.apk, and, being part  
of the AOSP, can be freely customized, according to our needs. In the next pages, 
you will learn how to work on Settings.apk to add your custom menu item.

Open your terminal emulator, and from your WORKING_DIRECTORY containing 
Android source code, navigate to:

WORKING_DIRECTORY/packages/apps/Settings

This folder contains the source code of the vanilla Settings menu; this is your 
starting point for the customization.

This is a crucial example, because, when you are working on a custom ROM, you 
are improving the system, adding new features, or enhancing existing ones. Your 
new features will probably need some level of setup and placing all the possible 
configuration options where the user expects them, that is, the Settings menu, 
which is a fundamental point for a great user experience.



Tailoring Your Personal Android System

[ 214 ]

The following image shows the vanilla Android Settings menu, the object of  
our customization:

Once you are in the Settings menu app folder, packages/apps/Settings, you can 
start editing files to add your new menu item. Let's start with adding a few strings. 
With your preferred editor—Android Studio, Atom, SublimeText, and so on—edit 
res/values/strings.xml and add the following lines:



Chapter 7

[ 215 ]

The strings.xml file contains the list of every text string used in the Settings app; 
it's the perfect starting point for your customization and gives you an idea about 
naming conventions and structure.

Once you are satisfied with the string file, create a new .java file named 
CustomSettings.java and place it in the src/com/android/settings folder.  
This will contain all the logic we need. The following image shows a snippet of a 
custom PreferenceFragment you can create:

This Fragment will load a specific layout file that you need to create. Let's call it 
custom_settings.xml and populate it as shown in the next image:



Tailoring Your Personal Android System

[ 216 ]

Now you need to add a few lines to the AndroidManifest.xml. Navigate to the root 
folder and edit the AndroidManifest.xml file as follows:

Navigate to the main src/ folder and open Settings.java. This file contains every 
Activity available in the Settings menu. Here you can add your own Activity,  
as shown in the next image:



Chapter 7

[ 217 ]

The src/ contains a SettingsActivity.java file. At the beginning of this you will 
find a field, String array, named ENTRY_FRAGMENTS. These are all the Fragments 
that can be loaded by the Activity files in the Settings menu. The list is quite 
impressive, and on Android Marshmallow, it contains about 70 Fragments; in your 
Android version, it will contain one more entry: yours. Add your CustomSettings 
class to the array, as shown in the following screenshot:

We are almost there. The next thing we need to do is compile the new package with 
the following command:

:$ mm

Once we have created the new package, we can create a new update file and flash 
it using Recovery. On the next boot, we will see our brand new menu item in the 
Settings screen, as shown in the next screenshot:



Tailoring Your Personal Android System

[ 218 ]

Enhancing the system performance
Lots of the custom ROMs that you can find on the Net bring performance 
enhancements, extended battery life, and lots of small tweaks. Most of these 
enhancements can be achieved with a surgical tuning of the build.prop file.

Customizing the system property file
The Android build.prop file contains details about a variety of system settings 
that are applied to the system during the boot sequence. Before diving into its 
customization, we need an overview about its internal structure.

Open a terminal and connect to your device using the following command:

:$ adb shell

Navigate to the /system folder and open the build.prop file. The content will look 
like the following snippet:

ro.product.model=Nexus 6
ro.product.brand=google
ro.product.name=shamu
ro.product.device=shamu
ro.product.board=shamu
[…]

As you can guess, parts of these instructions are specific for every device, but a few 
of them are quite common. We surely have device model name, brand, codename for 
product, device and board, and so on.

Some of these common values can be easily edited to obtain interesting behavioral 
changes in our system. For instance, you have probably noticed the tiny, but 
perceivable, delay that happens right before the smartphone starts ringing, when 
you receive a phone call. That delay can be removed by editing just a few lines in  
the build.prop file. Scan the file and look for these two lines:

ro.telephony.call_ring.delay=0
ring.delay=0

Simply replace whatever value is assigned to them with a nice 0 (zero) and you can 
say goodbye to the delay.



Chapter 7

[ 219 ]

Ever wondered why you cannot rotate the screen when the phone is displaying the 
lock screen or the application launcher? No more wondering. Look for these two 
lines and replace the existing properties with the new one:

log.tag.launcher_force_rotate=VERBOSE
lockscreen.rot_override=true

Do you want to rotate your device more than 180 degrees? Enable a 270 degree 
rotation with the following line:

windowsmgr.support_rotation_270=true

Another UI trick we can achieve with a single line edit is changing the LCD density 
value. Search for the following line:

ro.sf.lcd_density=XXX

Replace XXX with the value you want to try. Changing this value will produce a 
resizing of the system icons and an increase of the screen space: the smaller the value 
you set, the bigger the amount of free space you get. Unfortunately, there is no exact 
science here and a little trial-and-error is inevitable, so try to experiment with a few 
values until you find your preferred setup.

Android devices are getting more powerful every day, but, back in the day, the 
available CPU power was very limited. To guarantee satisfactory performance  
and user experience, Android used smart tweaks, like the next one:

ro.media.enc.jpeg.quality=xxx

The previous value alters the rendering quality of JPEG files. Even if it was useful in 
the past, we can consider it unnecessary on last generation smartphones, and we can 
safely set it to 100 and enjoy images at 100% of their original quality.

If your smartphone has physical navigation buttons, you can increase screen estate, 
removing the navigation softkeys at the bottom of the screen by setting the next 
property as follows:

qemu.hw.mainkeys=1

If your device has no physical key, you can still remove the softkeys and use gesture 
to navigate; check out the Google Play Store for gesture apps, like All in one Gestures. 
Continuing on the "screen estate" topic, you can remove the debug mode icon in the 
system notification bar with the following property:

persist.adb.notify=0



Tailoring Your Personal Android System

[ 220 ]

These last two tweaks refer to networking settings. The first one is as follows:

wifi.supplicant_scan_interval=300

This line configures how many seconds will be between every automatic Wi-Fi scan. 
Android performs automatic Wi-Fi scans by default, looking for an open network to 
connect or just to increase the precision of the navigation system. You can increase or 
decrease the frequency of these scans, trying to achieve the perfect balance between 
a higher precision of navigation and a longer battery life. The second networking 
tweak gives you the opportunity to set a default DNS server:

net.dns1=8.8.8.8
net.dns2=8.8.4.4

This is extremely useful in countries in which the government filters Internet 
websites according to their IP addresses. Using the DNS IPs shown in the previous 
snippet, Google's DNS servers, you will be able to bypass this kind of censorship.

Adding a custom init sequence
Linux legacy is still strong in a few key aspects of the Android architecture. One 
of the most interesting ones is the possibility to execute custom scripts during 
initialization time. If you are familiar with Linux systems, you know about the  
/etc/init.d folder. This system folder contains a collection of scripts that can be 
executed during system startup. To achieve the same behavior on Android, we can 
use busybox and its run-parts utility. This utility takes a folder as an argument and 
executes every script contained in this folder. For instance, the following command 
will execute every script contained in the /system/etc/init.d folder:

run-parts /system/etc/init.d

To properly copy Linux init.d behavior, we want to be able to execute the scripts 
in a rigorous order. You can achieve this with clever file naming. Just rename your 
scripts and prepend a number, like in the following example:

01settings
02optimizations

In the previous example, the 01settings script will be executed before the 
02optinimations script, and so on. Now that you have a collection of ordered 
scripts and you know how to execute them one by one, you need to edit the 
install-recovery.sh file we saw in the previous chapters and add the  
following line:

run-parts /system/etc/init.d



Chapter 7

[ 221 ]

Advanced Linux kernel modding
When you think about customizing the core of an Android system, you immediately 
think about customizing the Linux kernel. It manages CPU, sensors, radio, and 
display, and it's the starting point of every great system customization. As we 
already saw, modifying the kernel is no easy job, but with the right mindset, 
knowledge, and toolset, it can be a satisfying experience.

Every embedded system has its own customization possibilities and, when it comes 
to Android, most of the effort is focused on customizing the following:

•	 Governors
•	 I/O schedulers
•	 CPU overclocking/underclocking

Diving into CPU frequency management
In Chapter 5, Customizing Kernel and Boot Sequence, we had an overview about 
governors, how they work, and how you can pick a different one for different 
scenarios. In this section, you will learn how to customize existing governors and 
how to add new ones to your systems.

A governor, or CPU frequency manager, describes how the CPU 
behaves, based on specific environmental factors.

A typical general purpose governor would decrease the number of active cores  
and their working frequency when the system load is low and push the CPU to  
full power and full speed when the system is in need of high performance.

A standard Linux kernel provides the following governors:

•	 On-demand: This is the default governor on most of the kernels on the 
market. It's considered a balanced governor because it can guarantee the 
system to be reactive, quickly increasing the CPU frequency when needed. 
The truth is that, being so eager to increase the CPU frequency, this governor 
makes no real evaluation about the CPU power that is actually needed. The 
on-demand governor does not consider the actual system load; instead it 
just increases the CPU frequency to the max when it is triggered and then 
slowly decreases it if not needed. As you can see, this does not work well in 
a "battery saving" scenario: it is pushing to top speed every time the system 
thinks it is going to need more power, without a deeper analysis. This 
approach will surely guarantee a reactive device, but will definitely  
drain the battery very quickly.



Tailoring Your Personal Android System

[ 222 ]

•	 Powersave: This is definitely the most effective way to save battery life, 
in a way. This governor sets the maximum CPU frequency to the lowest 
possible value. The battery will surely last "an eternity", but the device will be 
unusable: a 2 GHz Quad-core CPU can easily go down to 200 MHz, and if it 
stays there all the time, that's just nonsense.

•	 Performance: This governor behaves as the exact opposite of the Powersave 
one: it sets the minimum CPU frequency to the maximum possible value 
to achieve maximum performance. Battery-wise, this will drain the battery 
in no time: a 2 GHz Quad-core running all the time at full power is surely 
performing well, but the smartphone won't last long.

•	 Interactive: This is a smarter version of the On-demand governor. Its goal is to 
provide a reactive CPU scaling without falling into on-demand pitfalls. The 
On-demand governor changes the CPU frequency according to preset values, 
without any specific analysis. The interactive governor, instead, continuously 
evaluates the system load and adjusts the CPU frequency accordingly, 
with a more linear CPU scaling curve: definitely a big pro. The whole CPU 
scaling analysis is not based on raw workload, but is performed according 
to the requested time. This approach guarantees system fluidity and better 
performance in a multimedia scenario, because the CPU won't jump up and 
down in frequency, but will be steady during the whole necessary time, 
providing a constant framerate when required.

•	 Conservative: This governor is a smoother version of the On-demand 
governor. Unlike On-demand, the Conservative governor won't push the 
CPU to the top frequency every single time, but will proceed through a series 
of CPU frequency steps, according to the CPU load.

•	 Userspace: This is the most customizable and least "automatic" governor. It 
provides the user with the possibility to manually pick the desired frequency.

Adding a custom CPU frequency governor
If you need a specific CPU behavior, or you simply want to dig deeper into kernel 
customization, you can create your own CPU governor.

For this task, you will need the kernel source code and to navigate to:

<root-source>/drivers/cpufreq



Chapter 7

[ 223 ]

This folder contains every governor we saw in the previous section and every 
possible custom governor you are going to add or that your device manufacturer 
already added.

Let's create a new governor, creating a .c file in this folder, for example:

<root-source>/drivers/cpufreq/cpufreq_mygovernor.c

Once you have the file in place, you need to add it to the file mentioned here:

 <root-source>/drivers/cpufreq/Kconfig 

We make changes as shown in the following snippet:

config CPU_FREQ_GOV_MYGOVERNOR
 tristate "'mygovernor' cpufreq governor"
 depends on CPU_FREQ
 help
 'mygovernor' - my optimized governor!

config CPU_FREQ_DEFAULT_GOV_ MYGOVERNOR
 bool "mygovernor"
 select CPU_FREQ_GOV_MYGOVERNOR
 help
 Use the CPUFreq governor 'mygovernor' as default.

Once you are done with the Kconfig, edit the Makefile and add the following line:

obj-$(CONFIG_CPU_FREQ_GOV_ MYGOVERNOR) += cpufreq_mygovernor.o

As a last step, edit the following file:

<root-source>/include/linux/cpufreq.h



Tailoring Your Personal Android System

[ 224 ]

Around line 400, there is a list of currently available governors, as shown in the 
following image:

Following the same pattern, let's add your new governor reference, using the 
following snippet:

#elif defined(CONFIG_CPU_FREQ_DEFAULT_GOV_MYGOVERNOR)
extern struct cpufreq_governor cpufreq_gov_mygovernor;
#define CPUFREQ_DEFAULT_GOVERNOR (&amp;cpufreq_gov_mygovernor)

Mission completed: your new governor is now available and ready to be integrated 
in your next kernel build. Try to run menuconfig and navigate to the governor 
screen; you will be able to enable it and set it as the default governor.

Exploring I/O schedulers
I/O schedulers specify how I/O-bound operations must be performed and balanced 
among CPU cores. Android comes with a default set of I/O schedulers:

•	 Noop: This can be barely considered a scheduler. Practically speaking, it has 
no effect on the tasks list: it just queues them as they come in.



Chapter 7

[ 225 ]

•	 SIO: This is the first real scheduler. Even if it does no task reordering, 
it guarantees the smallest possible latency from the moment the task is 
enqueued and the moment it is performed.

•	 CFQ: This scheduler orders tasks in separated queues, according to specific 
categories, and assigns an execution time window to every queue. The 
window size depends on the priority assigned to the tasks involved.

•	 BFQ: This scheduler is similar to the CFQ scheduler, but it uses disk 
bandwidth windows instead of time windows to group and schedule tasks.

•	 Anticipatory: This scheduler uses prediction techniques to group and 
schedule tasks, pausing executions for a short time period and waiting  
for a possible new task to be added to a specific queue.

•	 ROW: This scheduler is based on the "read over write" rule: every reading task 
has priority over writing tasks.

•	 Deadline: This scheduler guarantees termination for the enqueued tasks, 
trying to avoid "starvation" scenarios. Starvation is a well-known concept 
in computer science and applies to resource management. Imagine that N 
processes want to use the same shared resource. The shared resource can 
be used by one process at a time, and processes alternate according to their 
priority. What is going to happen if a low-priority process is asking for the 
resource, but the resource never becomes available due to other high-priority 
processes using it? The low-priority process will wait forever for the resource 
and never get to enjoy it. In computer science terminology, it will starve.

Every available scheduler is stored in the following folder:

<root-source>/block

Creating an I/O scheduler can be challenging and it's beyond the purpose of this 
book. What we can do is point you in the right direction and get you curious about 
the topic.

Looking forward
During the writing of this book, we were lucky enough to have a look at the 
upcoming Android N. The new version will probably be available at the end  
of 2016 as a stable release, after a few months of public developer preview.



Tailoring Your Personal Android System

[ 226 ]

Android N introduces a few interesting features, like the "Multi-Window" mode 
shown in the next image:

At Google, they are very focused on user feedback, and they decided to introduce 
this feature into the official version after a few months of testing by Samsung. Most 
of us will recognize the Multi-Windows mode from the already-available Android 
ROM, by Samsung. In Android N, this will be available for everybody, on every 
Android device, with full support for both orientations, portrait and landscape, and 
even the possibility to resize the split windows by dragging the "separator line".

According to lots of blog posts, one of the most popular categories for Google Play 
Store apps is Caller ID filters. With Android N, this feature will be already available 
as a system feature as for the new "mobile data saving" feature that aims to reduce 
background data consumption for specific apps.

One of the new UI enhancements that comes with Android N is the possibility to  
add and remove action icons in the scroll down quick settings menu, as shown  
in the next image:



Chapter 7

[ 227 ]

Furthermore, the scroll down notification menu comes with a new notification 
design, that enables richer interactions, with quicker access to common actions,  
as shown in the next image:



Tailoring Your Personal Android System

[ 228 ]

The Settings section received a bit of love as well, with the new in-place 
notifications, like the one shown in the next image, that gives you the opportunity  
to disable or enable settings without navigating to the specific location:

The next image shows, also, the new Navigation Drawer that has been added to the 
Setting section, for a quicker navigation to the deeper menu levels:



Chapter 7

[ 229 ]

An incredible amount of small fixes will be available in this new version, and lots 
of improvements are aiming to increase performance and battery life, as the most 
wanted doze on the go, that promises to be a game changer for Android devices.

Summary
In this chapter you learned how to effectively customize Android at different levels, 
following real-world examples. You now know how to programmatically create a 
custom ROM from source code, preparing a customized folder structure with every 
piece in place, ready to be assembled by Android's build system. You also know how 
to approach the customization task if you have an already-assembled system image, 
and how to customize and reassemble a binary image.

The next chapter will bring you outside the pure smartphone experience and will 
show you how Android is effectively becoming ubiquitous in our lives: Internet of 
Things, Android Auto and Android Wear, domotics, and entertainment are just a 
few of the scenarios in which we can currently find the green droid.





[ 231 ]

Beyond the Smartphone
In Chapter 7, Tailoring Your Personal Android System, you learned how to add the final 
personal touch to your custom Android system. You customized both the application 
layer and the system layer: new menus, new apps, and new daemons.

In this chapter, we are going even further: we are going outside the smartphone, 
connecting to external microcontrollers, sensors, and different devices. We will  
see how our whole world could be connected and interactive with Android.

You will learn about Android ADK and Arduino, and how Google is filling our lives 
with Android-oriented devices: from Chromecast devices to Android Auto, from 
smart watches to Internet of Things.



Beyond the Smartphone

[ 232 ]

Meeting Arduino
More than ten years ago, in a bar in a small Italian town, a group of students and 
researchers created a low-cost microcontroller that would revolutionize the world  
of DIY (Do It Yourself)—Arduino, shown in the next image:

The latest version of Ardunio (or Genuino, for the non-USA market) is called 
Arduino UNO. Uno means one in Italian and this codename celebrates the first 
stable version of the IDE (Integrated Development Environment) that comes with 
the board itself. This board is based on ATmega328P by Atmel and provides a set of 
controllable input/output pins. It can work as a standalone microcontroller, once it 
has been properly programmed, and can be used via its USB connection.

The greatest feature of Arduino is its open nature: everything, from the hardware 
schematics to the development IDE, has been open source since day one. This 
openness, and the extensible design of the board, allowed manufactures and 
advanced users to create an infinite number of so-called shields:



Chapter 8

[ 233 ]

An Arduino shield is a separate component that can be attached to Arduino to 
enhance it and to add new features. The previous image shows how Arduino shields 
can be stacked to create a totally new and customized device. Common examples of 
Arduino shields are:

•	 The Ethernet Shield, which gives Arduino the ability to communicate with 
the outside world via an Internet connection.

•	 The Proto Shield, which can be used to make a permanent version of a 
prototype that you created with a breadboard.

•	 The Relay Shield, which enables Arduino to pilot high-voltage circuits. This 
is crucial for home automation when you need to turn lights or appliances on 
and off.

•	 The Display Shield, which gives Arduino a visual way to communicate with 
the outside world.

Since Arduino came out, it has gained more and more fans and passionate 
developers, thanks to its easy interface and the extremely flat learning curve. Today, 
software developers without hardware or electronics knowledge can create projects 
that live outside their computers and can interact with the external world. To take 
advantage of these possibilities, in 2012 Google created the Android ADK.



Beyond the Smartphone

[ 234 ]

Android ADK
Android Accessory Development Kit is the reference implementation for the 
Android Open Accessory device. At Google I/O, in 2012 Google provided Android 
Accessory Development Kits to developers and provided manufacturers with clear 
specifications for creating their own kit, external accessory devices for Android. One 
of these certified devices is the Arduino itself, but thanks to the open nature of the 
whole project, you could build a compatible device yourself.

Unfortunately, Android ADK never really boomed among developers. Of course, 
you can find lots of interesting projects on the web about connecting an Android 
smartphone to an Arduino, like the one by TCRobotics at http://blog.bricogeek.
com/noticias/arduino/el-adk-de-google-en-un-arduino-uno. This is surely 
one of our favorites; it shows the great potential, but also the big sacrifice, of keeping 
an Android smartphone wired to a cable the whole time:

http://blog.bricogeek.com/noticias/arduino/el-adk-de-google-en-un-arduino-uno
http://blog.bricogeek.com/noticias/arduino/el-adk-de-google-en-un-arduino-uno


Chapter 8

[ 235 ]

Luckily for us, there are much cooler ways to use Android ADK to play around with 
sensors and electronics.

Using UDOO as an all-in-one ADK device
As you already know, UDOO can run Android. What you probably don't know 
is that it comes with an Arduino on it. Yes, both Android and Arduino are on the 
same board! When you think that you can connect a touchscreen, or even a mouse 
and keyboard to UDOO, you soon start fantasizing about all those geeky projects of 
yours becoming reality.

Getting ready
To start playing with Arduino, you just need to set up UDOO and connect the 
Android part to the SAM3X (Arduino-compatible) part. The following images show 
an UDOO, as seen from above. On the left, jumper 18 is highlighted. This jumper 
must be unplugged to enable the SAM3X. On the right, the USB port you are going 
to connect to is highlighted as well:

Once the board is ready, you can move to the software part.



Beyond the Smartphone

[ 236 ]

Flashing the Arduino board
For this quick example, we are going to command an LED connected to the UDOO. 
The LED will be connected to input 13 of the UDOO board. Every LED has two pins; 
the longer one is the anode and has to be connected to input 13, and the shorter one 
is the cathode and has to be connected to ground, the unnumbered input on the left 
of input 13:

The electronics setup is in place. Let's download the Arduino IDE from  
http://www.udoo.org/other-resources/.

The first time you run the Arduino IDE, you will be presented with an empty  
project file:

http://www.udoo.org/other-resources/


Chapter 8

[ 237 ]

This empty Arduino sketch gives you a skeleton structure for our Arduino program:

•	 A setup method that runs once and gets everything in place for the  
second method

•	 A loop method that keeps on running over and over until the board is 
turned off



Beyond the Smartphone

[ 238 ]

To properly connect and program our Arduino, we need to select the board  
type and port. From the Arduino IDE Tools menu, select Board|Arduino Due 
(Programming Port):

The previous image shows the amount of different Arduino boards that are available 
on the market nowadays. UDOO is compatible with the Arduino Due, so we are 
choosing that board model. Once we have selected the proper board, we need to 
select the Port to use to connect to the UDOO:



Chapter 8

[ 239 ]

As you can see in the image, the port name could be slightly different on different 
computers. The previous image shows a common configuration for an Apple 
MacBook Pro.

Once the IDE has been properly configured, we can start with the source code,  
as follows:

#include "variant.h"
#include <stdio.h>
#include <adk.h>

#define  LED_PIN  13

// Accessory descriptor. It's how Arduino identifies itself to  
Android.
char descriptionName[] = "ArduinoADK"; 
char modelName[] = "UDOO_ADK";           // Arduino Accessory name  
(Need to be the same defined in the Android App)
char manufacturerName[] = "Packt";     // Manufacturer (Need to be  
the same defined in the Android App)

char versionNumber[] = "1.0";            // version (Need to be  
the same defined in the Android App)
char serialNumber[] = "1";
char url[] = "http://www.packtpub.com";      // If there isn't any  
compatible app installed, Android suggest to visit this url

USBHost Usb;
ADK adk(&Usb, manufacturerName, modelName, descriptionName,  
versionNumber, url, serialNumber);



Beyond the Smartphone

[ 240 ]

#define RCVSIZE 128
uint8_t buf[RCVSIZE];
uint32_t bytesRead = 0;

void setup() {
    Serial.begin(115200);   
    pinMode(LED_PIN, OUTPUT);
    delay(500);
    Serial.println("Starting...");
}

void loop() {
    Usb.Task();
     
    if (adk.isReady()) {
      adk.read(&bytesRead, RCVSIZE, buf);// read data into buf  
variable
      if (bytesRead > 0) {
        if (parseCommand(buf[0]) == 1) {// compare received data
          // Received "1" - turn on LED
          digitalWrite(LED_PIN, HIGH);
        } else if (parseCommand(buf[0]) == 0) {
          // Received "0" - turn off LED
          digitalWrite(LED_PIN, LOW); 
        }  
      }
    } else {
      digitalWrite(LED_PIN , LOW); // turn off light
    }  
    
    delay(10);
}

// the characters sent to Arduino are interpreted as ASCII, we  
decrease 48 to return to ASCII range.
uint8_t parseCommand(uint8_t received) {
  return received - 48;
}

We can quickly analyze the source code and can find out that:

•	 We are specifying PIN number 13
•	 We are specifying the model name, manufacturer name, and version number 

that will identify our board once we connect it to Android



Chapter 8

[ 241 ]

•	 We are configuring the serial connection
•	 We are listening for incoming data on the serial connection and  

reacting accordingly:
°° turn on the LED if we received 1
°° turn off the LED if we received 0

Once the source code is in place, you can flash it to the Arduino using the IDE  
File | Upload menu.

Creating the Android app
The Android app will be super simple: a toggle button to turn the LED ON and OFF. 
You can create the initial app using the Android Studio wizard, creating an empty 
Activity to get things started. Once the skeleton is in place, you need to add a new 
dependency to your build.gradle:

dependencies {
    compile 'me.palazzetti:adktoolkit:0.3.0'
}

Emanuele Palazzetti, author of Getting started with UDOO by Packt Publishing, 
released a handy Android library, ADK Toolkit (https://github.com/palazzem/
adk-toolkit), for easier communication between your Android apps and your 
Android ADK device, and we are going to take full advantage of this library.

You need to add some specific configurations in your Android Manifest. In your 
<activity> tag, add the following lines:

<intent-filter>
  <action android:name="android.hardware.usb.action.USB_ACCESSORY_
ATTACHED"/>
</intent-filter>
<meta-data
  android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
  android:resource="@xml/accessory_filter"/>

As you will have noted, the <meta-data> tag refers to an XML resource, named 
accessory_filter. Right now, it's missing. Let's create a accessory_filter.xml  
in the src/res/xml/ folder:

<?xml version="1.0" encoding="utf-8"?>
<resources>
  <usb-accessory
    manufacturer="Packt"
    model="UDOO_ADK"
    version="1.0"/>
</resources>

https://github.com/palazzem/adk-toolkit
https://github.com/palazzem/adk-toolkit


Beyond the Smartphone

[ 242 ]

This is the exact information we added to the Arduino sketch and will allow Android 
to properly identify our board.

Setup is over. Let's move on to the UI of our app. Having followed the wizard,  
you now have a single Activity with its own layout; chances are that its name is 
main.xml and it's located in src/res/layout. Once you have located the layout,  
we can add our button:

<ToggleButton 
 android:id="@+id/toggleButtonLED"
 android:textOn="Turn OFF" 
 android:textOff="Turn ON" 
 android:layout_width="500dp" 
 android:layout_height="200dp" 
 android:layout_centerVertical="true" 
 android:layout_centerHorizontal="true"
 android:textSize="50sp"
 android:onClick="blinkLED"/>

It's pretty straightforward: an ID, a couple of labels, and an onClick method to 
trigger when the button is tapped.

The method referred by the onClick will be placed into our Activity:

public void blinkLED(View v) {
    if (buttonLED.isChecked()) {
        adkManager.write("1");
    } else {
        adkManager.write("0");
    }
}

When the button is clicked, we send 1 if it's ON, or 0 if it's OFF. Fair enough,  
but where do we send this data? What's that adkManager?

The adkManager module comes with the ADK Toolkit. We create it and set it up in 
our Activity. This is the final result:

public class UDOOBlinkLEDActivity extends Activity {

    private ToggleButton buttonLED;



Chapter 8

[ 243 ]

    private AdkManager adkManager;

    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
        buttonLED = (ToggleButton) findViewById(R.id.toggleButtonLED);

        adkManager = new AdkManager(this);
        registerReceiver(adkManager.getUsbReceiver(),  
adkManager.getDetachedFilter());
    }

    @Override
    public void onResume() {
        super.onResume();
        adkManager.open();
    }

    @Override
    public void onPause() {
        super.onPause();
        adkManager.close();
    }

    public void blinkLED(View v) {
        if (buttonLED.isChecked()) {
            adkManager.write("1");
        } else {
            adkManager.write("0");
        }
    }
}



Beyond the Smartphone

[ 244 ]

Finally, our app is completed. Just upload it to our UDOO and you will have a huge 
button to turn your LED ON and OFF:

Exploring the possibilities of the Internet 
of Things
Knowing that your favorite OS can run on thousands of devices, in hundreds of 
different customizations, and communicate with any kind of device, both wired or 
wireless, opens up incredible possibilities.



Chapter 8

[ 245 ]

Android Auto
In 2014, Google presented Android Auto, an innovative project that aims to 
command an Android system using the controls already available in our cars:

In 2015, the first version of Android Auto was released and the developer 
community started to really look into it. In 2016, dozens of car manufacturers  
are going to release models with integrated Android Auto support.

The idea behind Android Auto is to support driving safety and provide users with 
an alternative way to access their devices when they are driving. To achieve this 
goal, Google engineers worked with car manufacturers to create a bridge between 
our Android devices and car dashboards.

Car dashboards and controls represent the top of the user experience and interaction 
we can possibly have while driving. Everything is placed specifically to be accessible, 
everything is designed specifically to be easy to use, and everything is created to be 
effective and powerful, but not distracting.



Beyond the Smartphone

[ 246 ]

These constraints forced Google to rethink their popular apps for this new challenge. 
When you connect your Android smartphone to an Android Auto-ready car, you 
can enjoy a different OS user interface, tailored for this particular scenario. The next 
image shows the Google Maps interface for Android Auto:

The next image shows the Google Play Music user interface, once we connect our 
device to an Android Auto-compatible car:

Popular apps such as Google Maps or Google Play Music evolve into a more 
effective design and take full advantage of the dashboard's bigger screen and  
wheel controls.

From a developer perspective, Android Auto comes with an obvious question:

Do I need a car to develop and test my apps?



Chapter 8

[ 247 ]

Fortunately, Google provides testing tools for those who want to approach Android 
Auto: the Desktop Head Unit (DHU). Available with the Android SDK, the DHU 
runs on your computer and allows your computer to act as a car dashboard. The 
following images show how the smartphone switches to Android Auto mode and 
the UI switches to DHU:

The previous image is an example of how the smartphone display will look once 
we connect it to the car—it turns black and shows the Android Auto logo. The 
next image shows how the car dashboard becomes active when we connect the 
smartphone. The car dashboard turns into the Android Auto user interface and, in 
this example, shows a few Google Now cards, with traffic and weather information:



Beyond the Smartphone

[ 248 ]

Android Wear
While we wait for Android Auto-enabled cars to invade our lives, we can direct our 
attention to Android Wear.

In 2014, Google announced a particular version of Android, specifically designed and 
developed for smart watches. Started as a customization of Android 5.0 Lollipop, 
Android Wear is currently based on Android 6.0.1 Marshmallow.

Android Wear aims to enhance the way users can interact with the world every day. 
An Android Wear smart watch connects to an Android smartphone and provides 
quicker access to notifications, messages, and every possible type of content that can 
be enjoyed in a better way without interacting with the smartphone itself:



Chapter 8

[ 249 ]

Smart watches like the one in the previous picture provide integrations with dozens 
of services, such as Google Fit, Endomondo, and IFTTT. They have Bluetooth and 
Wi-Fi connectivity, GPS, and accelerometers. This huge range of possibilities pushed 
the Android community to experiment and create solutions for dozens of scenarios.

With the support of Android SDK and the Android community, in the last two years 
we have seen an increasing number of apps tailored for smart watches—we can turn 
on our Philips Hue lights with our watch, we can turn off our Google Nest with our 
watch, and we can know the state of our plants thanks to Parrot Flower Power.

Continuing on this path will take us straight to the next section.

Domotics
We are living in a world where lots of devices, appliances, and "things" that were 
disconnected are now part of a growing ecosystem of interconnected devices. We 
came from a past where computation could happen only in our computers—we are 
living in a present where computation happens in our pockets, with our smartphone. 
We are moving toward a future where computation will happen everywhere:  
a watch, a car, a drone, a house, a garden, and much more.

We had thermostats that had to be commanded manually and we have intelligent 
thermostats now, such as Google Nest, that learn from our habits and react 
accordingly to create a better and more effective user experience:



Beyond the Smartphone

[ 250 ]

We had lights that needed a wall switch to be turned ON and OFF and now we have 
intelligent lights, such as Philips Hue, that can be controlled via smartphone or even 
smart watch. These lights can turn ON automatically the moment we approach our 
home, taking advantage of concepts such as geo-fencing. We have light that can 
interconnect with other devices, such as smart door bells, and can create a visual 
trigger for hearing-impaired users:

We have plant sensors, such as Parrot Flower Power, that can show a notification on 
our smartphone and let us know that our plants need water. Knowing that, even if 
we are thousands of kilometers away from home on some remote beach, enjoying 
our holidays, we can remotely command a Belkin WeMo Switch to turn on our 
irrigation system and water our plants.

We have smart refrigerators, such as the Samsung Family Hub, that are connected 
to the Internet and allow you to actually see inside your refrigerator to check 
whether the orange juice for tomorrow's breakfast is missing. They are becoming so 
interconnected that the Korean version will be aware of possible discounts for your 
favorite products and suggests which particular supermarket you have to check to 
save some money.

We have smart mirrors, such as the one by Hannah Mittelstaedt (https://github.
com/HannahMitt/HomeMirror), which can be easily created with one of your old 
Android devices. Give your obsolete tablet a new life and a new purpose. It could 
give you weather forecast, the latest news, your plants' status, traffic information,  
or whatever useful information you would like to have while you are brushing  
your teeth in the morning.

https://github.com/HannahMitt/HomeMirror
https://github.com/HannahMitt/HomeMirror


Chapter 8

[ 251 ]

We have smart coffee machines, such as the Nespresso Prodigio, that can give us 
the current status of the water level, coffee capsules remaining, and maintenance 
necessary. The coffee machines can be controlled remotely, from your couch, and 
for the first time in our history, the classic joke is not a joke anymore; our Android 
phone can actually make us a coffee!

Can a green droid entertain you?
Once humanity satisfied every basic need, it started fighting boredom!

Okay, probably that's too much drama, but we are entering the entertaining section, 
so let's talk about having some fun!

Multimedia
Entertainment is a huge market and Google jumped into it pretty quickly with its 
Nexus Player and its Chromecast devices:

The previous image shows the latest model of Google Chromecast. When Google 
approached this market, they decided to provide users with a device that was as easy 
as possible to set up. Google Chromecast has one HDMI connector and a USB power 
cable; that's it. You connect the HDMI to your TV, connect the power supply, and 
your TV can now connect to your smart phone.



Beyond the Smartphone

[ 252 ]

Your smartphone becomes your remote and, with a few clicks, you can start 
streaming any multimedia content you want, straight to your TV: your preferred 
YouTube channels, your preferred movies from Google Play Store, your music from 
Google Play Music and hundreds of third-party apps can be sources of content.

If you don't like TV and you are a music addict, Google has you covered with 
Chromecast Audio:

As for the Chromecast, Chromecast Audio is very easy to connect to your Hi-
Fi system and it's easy to set up via the Chromecast app you can install on your 
Android smartphone.

One of the key features is that it has a standalone Wi-Fi connection via your home 
Wi-Fi system, so that it can be instructed to reproduce your music instead of 
requiring your phone to stream the music to the Chromecast Audio. You control it 
using your smartphone, but there is no battery drain, because there is no persistent 
Wi-Fi or Bluetooth connection between your phone and your Chromecast Audio.

Toys
Nowadays, when we think about Android-powered toys, we can only think  
about drones!



Chapter 8

[ 253 ]

The first and most popular, the Parrot ARDrone in the previous picture, set the bar  
and drove the market for quite a while. Over time, lots of commercial alternatives 
showed up, but, as with the smart mirror, the RC toys community also went full  
Do-It-Yourself.

During Droidcon Turin 2015 Hackaton, we demonstrated how you could build 
an RC car, powered by UDOO, controlled via Wi-Fi using an Android device… 
in 24 hours: https://www.hackster.io/team-dronix-alter-ego/dronixcar-
37b81a?f=1#:

https://www.hackster.io/team-dronix-alter-ego/dronixcar-37b81a?f=1#
https://www.hackster.io/team-dronix-alter-ego/dronixcar-37b81a?f=1#


Beyond the Smartphone

[ 254 ]

The RC car was equipped with a video camera, streaming in real time to the 
smartphone. The smartphone acted as video consumer and remote controller.

The whole project was released as open source, in the classic Android/Linux 
tradition.

Summary
Our journey is over! It's been quite a rollercoaster, from the history of the operating 
system to how it can equip devices ready to communicate with the external world. 
You learned how to retrieve the source code for your devices, how to navigate the 
source folder tree, and how to create the perfect setup to properly build a vanilla 
Android system.

You stepped up and started to add customizations to your system, to enrich the user 
experience, to improve the performance, and to add support for your own hardware. 
You went deep into the boot sequence's inner structure to customize the system even 
more. You swam back to the surface to customize the highest part of the architecture 
pyramid, the user interface, to provide your users with the ultimate customized 
Android system.

Finally, you saw how easy it is to step away from the Android device itself and find 
a whole world of devices waiting to communicate and interact, powered by the 
awesome Android platform.

Our journey is over, but your own has just started! Master what you learned, 
experiment, try out your ideas, fail, learn more, try again, and finally succeed!

Android is an awesome tool; you can use it to make your craziest ideas become  
a reality!



[ 255 ]

Index
Symbols
32-bit support

about  11, 12
CPU architecture  12
features  12

A
adb

about  73, 89
Android APK files, installing  94
files, pulling from devices  94
files, pushing to devices  92
used, for connecting to recovery shell  176

ADK Toolkit
reference link  241

advanced Linux kernel modding
about  221
CPU frequency management  221, 222
custom CPU frequency governor,  

adding  222-224
advanced ROM customization

about  198
ROM customization, from binary  198
ROM customization, from source  199

all-in-one ADK device
UDOO, used  235

alternative recovery
installing  172

Android
about  156
builds  35
compiling, for real-world device  106
development model  33, 34

devices, in Nexus family  36
Gerrit  39
license  32, 33
open source projects  33
philosophy  31, 32
reference link  53
source code tags  35
source code tools  37

Android ADK
reference link  234

Android Application Binary  
Interfaces (ABIs)  10

Android Auto  245-247
Android Automotive implementation  9
Android binary boot image

modifying  186, 187
Android boot sequence

about  145
internal ROM - bios  146

Android build system
about  62-64
building  71, 72
setting up  66

Android compatibility  7
Android Compatibility Definition  

Document (CDD)
about  8
device types  8, 9
software compatibility  9, 10

Android CTS  74
Android Debug Bridge. See  adb
Android Developers

reference  87
Android Device Monitor  90



[ 256 ]

Android framework, hacking
about  209
Android Settings menu  

customization  213-217
boot sequence UI customization  209-212

Android Handset  8
Android images, flashing

about  116
Nexus 6  116, 117
UDOO  117-120

Android init language
about  148
action  148
commands  151, 152
imports  153
options statements  149, 150
services  149
triggers  150

Android kitchen
about  179
reference  179

Android Lollipop source code
about  84
build process  85
running  86, 87
setting up  84

Android.mk
diving into  75-77

Android.mk variables ecosystem
about  77, 78
BUILD_ variables  79
LOCAL_ variables  78

Android N
new features  226-228

Android NDK  74
Android Open Kang Project (AOKP)

about  160
goodies  161
installing  162
reference  161
ROM Control menu  161

Android Open Source Project. See  AOSP
Android-powered toys  252-254
Android recovery

diving into  170, 171
overview  170

Android runtime
about  13
AOT compilation  14
Garbage Collection (GC)  14
performance improvements  15

Android SDK  74
Android system

application framework  5, 6
application layer  6
Binder IPC  6
hardware abstraction layer (HAL)  4
libraries  5
Linux kernel  3, 4
overview  2, 3

Android system binary image
modifying  185, 186

Android Television device  9
Android vanilla recovery

Apply update form ADB option  171
Reboot system now option  171
Wipe cache partition option  171
Wipe data/factory reset option  171

Android Watch  9
Android Wear  248, 249
AOKP PUSH  163
AOSP

about  48
ART directory  50
bionic directory  50
build directory  50
device directory  51, 52
directory structure  53
external directory  51
frameworks directory  52
out directory  52
packages directory  52
system directory  53

APKTool
about  181
DEX files, manipulating with  181, 182
reference  181

Application Framework
activity manager  5
content providers  6
location manager  6



[ 257 ]

notification manager  6
resource manager  5
views and widgets  6

application template  80
Arduino

about  232, 233
Android ADK  234
UDOO, using ADK device  235

Arduino IDE
reference link  236

Arduino shields
examples  233

Arduino UNO  232

B
baseband processor  102
binary version

retrieving, of kernel  126, 127
Binder Inter-Process  

Communication (IPC)  6
bloatware  161
boot image

creating  142-144
customizing  142
upgrading  145

bootloader  146
bootloader mode

about  112
erase option  98
flash option  98
format option  98
reboot option  98

Bootstrap  64, 65
buildspec.mk file  69
BUILD_ variables, Android.mk variables

BUILD_EXECUTABLE  79
BUILD_JAVA_LIBRARY  80
BUILD_MULTI_PREBUILT  79
BUILD_PACKAGE  79
BUILD_PREBUILT  79
BUILD_SHARED_LIBRARY  79
BUILD_STATIC_LIBRARY  80

C
Chef toolkit  178
Chromecast Audio  251, 252
Clockworkmod

about  173
installing  173
reference  173

Clockworkmod UI  174
Compatibility Test Suite (CTS)

about  16, 17
device setup  19, 20
functional tests  17
media files setup  20
performance tests  18
robustness tests  18
setup  19
test plan, running  22, 23
test results, analyzing  23-25
unit tests  17

CPU frequency
altering  139, 140

cross-compilation  129
CTS Verifier

about  25
manual testing  27, 28
results, retrieving  29
setup  25, 26

custom device
configuring  82, 83
creating  81

custom ROM
flashing  187, 188
history  155-157

Cyanogenmod
about  157
building  159
features  158
pre-build version, installing  159
reference  159



[ 258 ]

D
Dalvik  12
Dalvik Executable  181
debugging tools

about  89
adb  89-92
fastboot  98

device directory, AOSP
common directory  52
generic directory  52
google directory  52
sample directory  52

device permissions
about  176
root access  177

device setup
about  19
Factory Restore  19
Location, turning on  19
Screen Lock, disabling  19

Device Under Test (DUT)  16
DEX files

manipulating, with APKTool  181, 182
Display Shield  233
Domain Specific Language (DSL)  192
domotics  249-251
driver's management  139
DroniX

about  163
reference  163

dsixda  179

E
Edify syntax

about  195
methods  196, 197

environment, Android build system
free space  39
setting up  39

Ethernet Shield  233

F
fastboot  73, 98
features, Cyanogenmod

bigger APN (Access Point Network)  
list  158

enriched Power Off menu  158
FLAC support  158
OpenVPN client  158
theming support  158

flash memory  155
folders, AOSP directory structure

abi  53
bootable  53
dalvik  53
development  53
docs  53
hardware  53
libcore  53
ndk  53
note  53
pdk  53
prebuilts  54
sdk  54
tools  54

G
General purpose Input/Output (GPIO)  

drivers  4
goodies, Android Open Kang Project 

(AOKP)
Custom Toggles  161
LED Control  161
Navigation Ring  161
Vibration Pattern  161

Google Mobile Services (GMS)  48
governors

about  140, 141
interactive  141
ondemand  141



[ 259 ]

H
hardware

selecting  99, 100
hardware architectures

about  100
requisites  100

hexadecimal editor  180
HomeMirror

reference link  250
host system

hardware requisites  56
preparing  55, 56, 130
software requisites  56, 57

HTC Sense  166, 167
Huawei EMUI  165

I
image

recreating  73
incremental OTA  193
Init process  147
Internet of Things

possibilities, exploring  244
I/O schedulers

anticipatory  225
BFQ  225
CFQ  225
deadline  225
noop  224
ROW  225
SIO  225

J
Java Native Interface (JNI) semantics  10
Just-In-Time compilation  12

K
kernel

about  147
binary version, retrieving of  126, 127
compiling  134
configuring  131-134

obtaining  125, 126
source code, obtaining  127, 128

L
legacy devices  157
LG Optimus UI

about  168
vocal command feature  168

libraries, Android system
libc  5
Media Framework  5
OpenGL  5
SGL  5
SQLite  5
SSL  5
Surface manager  5
WebKit  5

Linaro toolchain
download link  129

Linux kernel  123-125
LOCAL_ variables, Android.mk variables

LOCAL_CC  78
LOCAL_CFLAGS  79
LOCAL_C_INCLUDE  79
LOCAL_CPP_EXTENSION  79
LOCAL_CPPFLAGS  79
LOCAL_CXX  78
LOCAL_LDFLAGS  79
LOCAL_MODULE  78
LOCAL_MODULE_CLASS  78
LOCAL_MODULE_PATH  78
LOCAL_MODULE_TAGS  78
LOCAL_PACKAGE_NAME  78
LOCAL_PATH  78
LOCAL_PREBUILT_EXECUTABLES  79
LOCAL_PREBUILT_LIBS  79
LOCAL_PREBUILT_PACKAGE  79
LOCAL_SHARED_LIBRARIES  78
LOCAL_SRC_FILES  78

logcat  95, 96
logging buffers

events  95
radio  95

lunch command  65, 70, 71



[ 260 ]

M
Mac OS X environment

case sensitive disk image, creating  60, 61
required software, installing  61
setting up  59

make command  72
minor ROMs  163
mkbootimg tool  143
mm command  65
module

building  72
cleaning  72
listing  73

module template examples
about  80
application template  80
native executable template  80
shared library template  80

Motorola Nexus 6
about  103
technical specifications  103

N
NAND memory  155
Native API  10, 11
native executable template  80
Nespresso Prodigio  251
Nexus

about  36
digital media players  37
phones  36
tablets  36

Nexus 6
about  106-108
URL, for official web page  106

Nexus devices  112-115
non-Google devices

working with  135-138

O
OEM customizations

HTC Sense  166, 167
Huawei EMUI  165
LG Optimus UI  168

overview  164
TouchWiz  164
Xiaomi MIUI  168, 169

OTA
about  190
for custom ROM  197

OTA internals  194
OTA updates

creating  192, 193
incremental system updates  191
receiving  190
single update packages  191, 192
whole system updates  191

OUT_DIR variable  69
Over The Air. See  OTA

P
packages, adding to Android's build system

about  200
by binary  200-203
by source code  203-208

possibilities
exploring, of Internet of Things  244

Proto Shield  233

R
RC car

reference link  253
ready-to-use components  3
real-world device

Android, compiling for  106
recovery alternatives

about  172
Clockworkmod  173
Team Win Recovery Project (TWRP)  175

reference board  118
Relay Shield  233
required tools

installing  40, 41
ROM

creating  182
requisites, gathering  183

root access
about  177
obtaining  178



[ 261 ]

S
shared library template  80
shields  232
SoC  101, 102
software requisites, host system

Java JDK, installing  57, 58
system dependencies, installing  58, 59

source.android.com
reference link  53

source code
about  42-45
downloading  45
reference link  42
working with  46-48

source code tools
about  37
Git  38
Repo  38

standard Linux kernel, governors
conservative  222
interactive  222
on-demand  221
performance  222
powersave  222
userspace  222

SuperSu
about  177
reference  177

System-on-chip. See  SoC
system partitions

dumping  183-185
system performance enhancement

about  218
custom init sequence, adding  220
system property file, customizing  218, 219

T
TARGET_BUILD_TYPE variable  69
TARGET_BUILD_VARIANT variable  68
TARGET_PREBUILT_KERNEL variable  69
TARGET_PRODUCT variable  67, 68
TARGET_TOOLS_PREFIX variable  69
Team Win Recovery Project (TWRP)

about  175
reference  175

toolchain
obtaining  130
setting up  129

TouchWiz  164
traces  14

U
UDOO

Android app, creating  241-244
Arduino board, flashing  236-240
used, all-in-one ADK device  235

UDOO family boards  115, 116
UDOO Quad

about  104, 109
bootloader, compiling  110
kernel, building  112
setup  110
system image build process, launching  111
technical specifications  105
URL, for source code  109

V
variables, Android build system

buildspec.mk file  69
lunch command  70, 71
OUT_DIR variable  69
TARGET_BUILD_TYPE variable  69
TARGET_BUILD_VARIANT variable  68
TARGET_PREBUILT_KERNEL variable  69
TARGET_PRODUCT variable  67, 68
TARGET_TOOLS_PREFIX variable  69

versions, Cyanogenmod
experimental  160
M Snapshot  160
nightly  160
Release Candidate  160
stable  160

X
Xiaomi MIUI  168, 169


	Cover 
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding the Architecture

	An overview of the Android system
	Linux kernel
	Hardware abstraction layer – HAL
	Libraries and the application framework
	Libraries

	The application framework
	Binder IPC
	The application layer

	Android compatibility
	The Android Compatibility Definition Document
	Device types
	Software compatibility


	Beyond Java
	Native API
	Maintaining 32-bit support

	From Dalvik to ART runtime
	The Android runtime
	A new old approach – AOT compilation
	Garbage collection and other improvements
	Waiting for Android Nougat


	Meeting the Compatibility Test Suite
	CTS setup
	Device setup
	Media files setup
	Run!
	Analyzing the test results

	Diving deeper with CTS Verifier
	Setup
	Manual testing
	Retrieving the results

	Summary

	Chapter 2: Obtaining the Source Code – Structure and Philosophy

	The Android philosophy
	The license
	Open source, closed doors
	The Android development model
	Source code tags and builds
	Nexus
	Phones
	Tablets
	Digital media players

	Source code tools
	Git
	Repo

	Gerrit

	Setting up the environment
	Free space

	Installing the required tools
	Getting ready
	Downloading the code
	Hands on the code

	A look inside AOSP
	The ART directory
	The bionic directory
	The build directory
	The external directory
	The device directory
	The frameworks directory
	The out directory
	The packages directory
	The system directory
	The rest of the directory structure

	Summary

	Chapter 3: Set up and Build – the Emulator Way

	Preparing the host system
	Hardware requirements
	Software requirements
	Installing Java JDK
	Installing system dependencies

	Setting up a Mac OS X environment
	Creating a case-sensitive disk image
	Installing the required software


	The Android build system
	An overview
	Bootstrap
	Setup
	The TARGET_PRODUCT variable
	The TARGET_BUILD_VARIANT variable
	The TARGET_BUILD_TYPE variable
	The TARGET_TOOLS_PREFIX variable
	The OUT_DIR variable
	The TARGET_PREBUILT_KERNEL variable
	The buildspec.mk file
	The lunch command

	Building the system
	More about make
	Beyond the system image

	Inside an AOSP module
	Diving into Android.mk
	Android.mk variables ecosystem
	Module template examples


	Creating a custom device
	Diving into device configuration

	From zero to the screenlock
	Setup
	Build
	Run

	Summary

	Chapter 4: Moving to Real-World Hardware

	Debugging tools
	Introducing ADB
	Pushing files to devices
	Pulling files from devices
	Installing Android APK files
	Logcat

	Fastboot

	Choosing our hardware
	Hardware architectures
	Minimum requirements
	System on Chip – SoC
	The baseband processor

	Our hardware choice
	Motorola Nexus 6
	UDOO Quad


	Compiling Android for a real-world device
	Nexus 6
	UDOO Quad
	Setup
	Bootloader
	System
	Kernel


	Bootloader mode
	Nexus devices
	UDOO family boards

	Flashing Android images
	Nexus 6
	UDOO

	Summary

	Chapter 5: Customizing Kernel and 
Boot Sequence

	An overview of the Linux kernel
	Obtaining the kernel
	Retrieving the kernel's binary version
	Obtaining the kernel source code


	Setting up the toolchain
	Getting the toolchain

	Preparing the host system
	Configuring the kernel
	Compiling the kernel
	Working with non-Google devices
	Driver management
	Altering the CPU frequency
	An overview of the governors

	Customizing the boot image
	Creating the boot image
	Upgrading the new boot image

	Android boot sequence
	Internal ROM – bios
	An overview of bootloader
	The kernel
	The Init process
	The Android init language
	Actions
	Services
	Options
	Triggers
	Commands
	Imports


	Summary

	Chapter 6: "Cooking" Your First ROM

	History of custom ROMs
	Cyanogenmod
	Building Cyanogenmod
	Installing a pre-build version

	The Android Open Kang Project
	Installing AOKP

	Minor ROMs
	Overview of OEM customizations
	Samsung – TouchWiz
	Huawei EMUI
	HTC Sense
	LG Optimus UI
	Xiaomi MIUI


	An overview of Android recovery
	Diving into Android recovery
	Installing an alternative recovery
	Clockworkmod
	TWRP – Team Win Recovery Project
	Connecting to the recovery shell using ADB


	Device permissions
	Root access
	SuperSu
	Obtaining root access


	Chef toolkit
	Preparing the environment
	Android kitchen
	Other developers' tools
	Manipulating DEX files with APKTool


	Cooking our first ROM
	Gathering the ingredients
	Dumping system partitions

	Modifying an Android system binary image
	Modifying an Android binary boot image

	Flashing our custom ROM
	Summary

	Chapter 7: Tailoring Your Personal Android System

	Receiving over the air updates – OTA
	Updating the whole system
	Updating the system incrementally
	Applying a single component update

	Creating over the air updates
	OTA internals
	Edify syntax

	OTA for custom ROM

	Advanced ROM customization
	ROM customization from binary
	Customizing ROM from source
	Adding new packages to Android's build system
	Adding a package by binary
	Adding packages by source code


	Hacking the Android framework
	Customizing the boot sequence UI
	Customizing the Android Settings menu

	Enhancing the system performance
	Customizing the system property file
	Adding a custom init sequence

	Advanced Linux kernel modding
	Diving into CPU frequency management
	Adding a custom CPU frequency governor
	Exploring I/O schedulers

	Looking forward
	Summary

	Chapter 8: Beyond the Smartphone

	Meeting Arduino
	Android ADK
	Using UDOO as an all-in-one ADK device
	Getting ready
	Flashing the Arduino board
	Creating the Android app


	Exploring the possibilities of the Internet of Things
	Android Auto
	Android Wear

	Domotics
	Can a green droid entertain you?
	Multimedia
	Toys

	Summary

	Index

