

Learning Modular Java
Programming

Explore the power of modular programming for
building applications with Java and Spring!

Tejaswini Mandar Jog

BIRMINGHAM - MUMBAI

Learning Modular Java Programming

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1270616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-882-3

www.packtpub.com

www.packtpub.com

Credits

Author
Tejaswini Mandar Jog

Reviewer
Dionisios Petrakopoulos

Acquisition Editor
Larissa Pinto

Content Development Editor
Shali Deeraj

Technical Editor
Anushree Arun Tendulkar

Copy Editor
Safis Editing

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Tejaswini Mandar Jog is a passionate and enthusiastic SCJP-certified trainer.
She has more than eight years' experience in the IT training field, specializing in
Java, J2EE, and relevant technologies. She has worked with many renowned
corporate companies on training and skill enhancement programs. She is also
involved in the development of projects using Java, Spring, and Hibernate.

I still remember the very first conversation with the editor about the
book. Before that day I was just a reader, I never thought of writing
a book. But now I had an opportunity to be an author! I was in a
dilemma, and confused—can I be? But then my personal guide and
philosopher Mandar gave me the confidence to go for it. Thank you
Mandar not just for providing strong support, but also for your
valuable suggestions, which helped me to improve the contents.

This book would not have been completed without the help of Shali,
the editor. Her suggestions and efforts made the difference. Aaron,
the acquisition editor, thank you for showing confidence in me, and
giving me the confidence to write this book.

Without the best wishes and support of my family, it is doubtful that
I would have completed this book.

It would be mean of me not to mention Ojas, my lovely son. I really
appreciate the way he supported me, so that I was able to write
peacefully. Love you a lot dear!!!

Finally, thank you to all who helped by supporting me directly
and indirectly to complete this book. Thank you all just for being
with me!!!

About the Reviewer

Dionisios Petrakopoulos has worked in several companies, using different
programming languages (C, C++, Java SE, Java EE, and Scala) and technologies,
as a senior software engineer for the past 15 years. His main interest is the Java
ecosystem and the various facets of it. His other area of interest is information
security, and especially cryptography. He holds a BSc in computer science and an
MSc in information security, both from Royal Holloway, University of London.

I would like to thank my wife, Anna, for her support and love.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface v
Chapter 1: Introducing Modular Programming 1

Software – the perspective 1
Modules 3

What is behind and in a module? 3
The practical aspect 3

The gang – modular programming 4
The world of modules 4

Tiers and layers in an enterprise application 5
One-tier applications 7
Two-tier applications 7
Three-tier applications 8
N-tier applications 9
Java Enterprise architecture 11

Sharing the work 12
Coordinate with the team 13

Versioning tools 13
Centralized versioning 14
The architecture of SVN 15
Distributed versioning 17

Summary 17
Chapter 2: Saying Hello to Java EE 19

The enterprise as an application 19
The Java EE platform 20

Features of the Java EE platform 21
The world of dotcoms 22
Servlet – the dynamicity 23
MVC I architecture 24
MVC II architecture 25

Table of Contents

[ii]

The practical aspect 25
What is a framework? 29
Spring MVC 30

The components 31
The front controller 32
Spring MVC controller 32
ModelAndView 32
ViewResolver 33
The configuration file 33

Summary 39
Chapter 3: Implementing the Presentation Layer 41

Presentation 41
Data binding 43

Case 1 – Reading request parameters for searching 43
Case 2 – Reading multiple form fields 46

Form validation 53
Developing customized validators using Spring validators 54
Annotation-based validations 59

Summary 65
Chapter 4: Talking to the Database 67

Persistence 67
Using object serialization 68

Disadvantages of using object serialization 68
Storing data in XML 68

Disadvantages of storing data in XML 68
Saving the data in a relational database 68

Advantages of saving data in a relational database 69
Interaction of Java with relational databases 69

Types of JDBC drivers 70
JDBC-ODBC bridge driver 70
JDBC Native API Driver/Partly Java Driver 71
JDBC Net Protocol Driver 72
All Java drivers 73

Spring-JDBC integration 76
Configuring DataSource in Spring JDBC 77

Types of integration of JDBC 78
Integrating the DataSource to get a connection reference 79
Integrating the JDBC template 82
Integrating JDBC DAO support 84

Problems with JDBC 86
Introduction to ORM 86

Advantages of using ORM 86
Introduction to Hibernate 86

Hibernate architecture 87

Table of Contents

[iii]

Spring Hibernate integration 93
Introduction to unit testing 98

Unit testing using JUnit 98
Steps for writing a TestCase using annotation 98

Summary 102
Chapter 5: Developing the Business Layer 103

Business logic 104
Domain knowledge 106
Rules, formulas, and conditions 107
Case studies 107
Developing the business layer 107

Transaction management 111
JDBC and transaction management 112
Spring and transaction management 112

Programmatic transaction 113
Declarative transaction 113

Declarative transaction management 117
Programmatic transaction management 119

Summary 121
Chapter 6: Testing Your Application 123

Software testing 123
The waterfall model 124
The spiral model 125
The V model 125

Verification phases 126
Validation phases 126

Mock testing 127
Spring testing framework 127

Case1 – Inserting contact with correct values as per validation rules 128
Case2 – Inserting a contact by violating validation rules for contacts 130

Why integration testing? 133
Mockito testing 141

Arquillian 146
Summary 147

Chapter 7: Securing the Application 149
Make it safe, make it secure 149
Spring security framework 151

Secure web request 152
Way 1 – Spring Security for URL using servlet filters 153

Case 1 – Basic authentication 157
Case 2 – Login form authentication 161
Case 3 – Authentication against database 163

Table of Contents

[iv]

Case 4 – Remember me 165
Case 5 – Logout 167

Way 2 – Spring Security using AOP 168
@Secured 168
@RolesAllowed 168
SpEL-enabled security annotations for securing the methods 169
Spring Security using pointcut 171

Way 3 – Custom security 172
Summary 172

Chapter 8: Versioning and Deploying 173
Versioning 173

Collabnet server 174
Visual SVN server 180

Adding SVN as a plugin to Eclipse 188
Adding files in the project and committing them to the repository 193
Importing the project in the workspace 194
Updating and tracking the project for latest changes in the repository 196

Project deployment 198
Copying a WAR file into Tomcat without Tomcat manager 198
Copying a WAR file into Tomcat with Tomcat manager 201

Summary 203
Index 205

[v]

Preface
Welcome to the world of Java EE development! A huge world, with a large number
of things to learn and so many skills to adapt. It's actually difficult to decide what to
start with. When I started, I faced a similar problem. Now, also when I am in training
sessions or seminars, I find many people who want be professional developers,
but don't have much exposure to the processes, stages, and thinking involved
in application development. This book helps you by providing a path for web
development that can used to understand the process of Java modular development
through an easy-to-understand case study. Nowadays, in Java EE, there are many
technologies in the market. One such technology is Spring.

Spring is useful for developing independent Java modules that can then be combined
to create a complete application. We have used Spring, Spring MVC, and many of its
features throughout the book, while discussing the concepts of database, unit testing,
security, and many other topics.

What this book covers
Chapter 1, Introducing Modular Programming, starts with a discussion about Enterprise
application, its architecture, and its development. Enterprise application development
is a team that activity faces many problems concerning collaboration between team
members. We will introduce coordinated development and the tools involved in
this chapter.

Chapter 2, Saying Hello to Java EE, involves a short warm up by discussing and
developing a Java web application using Servlet-JSP. We will redevelop the
application using a Spring to get startup gear as Spring MVC developer.

Chapter 3, Implementing the Presentation Layer, discusses the points that need to be
taken care of when developing the most important layer of an application: the
presentation layer. We will discuss how to develop the pages to incorporate data
binding for business logic, as well as for presentation, using Spring MVC features.

Preface

[vi]

Chapter 4, Talking to the Database, discusses Spring JDBC connectivity. Data collected
from the user and data to be used in the business logic need to be persisted. We
will also cover Spring DAO support persistency. We will then move on a step and
introduce Hibernate, the ORM technology, and its integration with Spring. We will
also cover unit testing to make sure our code is working fine.

Chapter 5, Developing the Business Layer, discusses the development of the most
important layer of an application—the business layer—and the communication
between the layers. An application needs to be developed by following a number
of business rules.

Chapter 6, Testing Your Application, explains that the modules developed by the
developer should produce the correct result. To ensure the correctness of the code
in this chapter, we will cover the basics of testing with the help of the V module.
We will also cover integration testing with JUnit and Mockito.

Chapter 7, Securing the Application, discusses why and how to secure the application.
In an application, there are certain modules that are open and available to all, and
some that are restricted. We will apply the Spring security module to secure the
Spring MVC application with the help of basic and form based security.

Chapter 8, Versioning and Deploying, shows us how to collaborate on the application,
which has been developed in parts, or by different team members simultaneously.
In this chapter, we will set up and integrate Tortoise SVN as a versioning tool used
to collaborate on the code. We will also discuss the creation of repositories, users,
and setting access rules for Collabnet and Visual SVN servers.

What you need for this book
You will need to have sound knowledge and practical exposure of core Java to
understand this book. Along with this, knowledge of basic JDBC and the concepts
of object-oriented programming language is required. As we are using Eclipse
IDE throughout the book, you should be familiar with it. Those who have an
introductory knowledge of Spring beginner framework can refer to this book easily.
If you are beginner for Spring, we suggest you first go through the basic concepts
of Spring configuration and get some practical experience. A basic knowledge of
Hibernate and JUnit will be an added advantage.

Preface

[vii]

Who this book is for
The idea for this book is to give the reader experience of creating an application
step by step using Java modular programming step by step. The book is useful for
any novice developer who wants to get exposure of modular Java development.
The book is also useful for anyone who wants to have a roadmap for developing
an application in stages such as problem statement, UI development, business logic
development, database layer development, and so on. The book covers all the aspects
of application development required into a turn a the problem statement to product,
with coverage of security, maintaining versions, and the deployment process.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Every object created based on this type will inherit these default properties such
as toString, valueOf, hasOwnProperty, and so on."

A block of code is set as follows:
function doAddition(num1, num2){
 return num1 + num2;
}
function doSubtraction(num1, num2){
 var result = null;
 if(num1 > num2){
 result = num1 - num2;

 }else{
 result = num2 - num1;
 }
 return result;
}

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-Modular-Java-Programming. We also have other
code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

https://github.com/PacktPublishing/Learning-Modular-Java-Programming
https://github.com/PacktPublishing/Learning-Modular-Java-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introducing Modular
Programming

Software development is a complex, time-consuming process, where success
depends on teamwork. We keep on talking about software or software development.
Sometimes we are part of the process as well. But we will be in one of the roles as
architect, developer, tester, or deployer. Though we are always concentrating on a
role, knowing the overall process always benefits us.

In this chapter, we will be going through the following topics:

• What is software and software development?
• What are enterprise applications?
• The role of modular programming in enterprise applications
• Introduction to and the importance of versioning

Software – the perspective
A software application is a program which enables end users to perform a specific
task, for example, online money transfer, and withdrawal of money from an ATM
or the use of an Eclipse to develop an application. This application is complex,
scalable, and distributed, providing a complete solution to the end user. Applications
known as enterprise applications are needs-based, providing solutions to business
requirements rather than to an individual. The organization will use this application
or integrate it within an existing application.

Introducing Modular Programming

[2]

Enterprise applications may vary from business to business, for example, school or
employee management systems, banking applications, online shopping applications,
or e-commerce applications. All such enterprise applications provide displaying,
processing, and storing data as their basic feature. Along with these features, the
application can also provide transaction management and security services as
advanced features. We access such applications typically through a network
system rather than on an individual machine.

Let's briefly discuss the software development process before moving ahead:

• The software is always a solution or part of the solution to an enterprise
problem. A good start in the development process is knowing exactly
what the expectations are from the software, what types of solutions need
to be included, what the data input will be, and what the output from the
application is. This phase will be called the requirement collection phase.

• Once we get an idea about the requirements, now it's time to decide the
hardware specification, the system requirements, the architecture to use,
the design to follow, and so on. This phase is called designing.

• Using the design document, now developers will come in action to start
a very important phase called development, where the actual coding
takes place.

• Suppose we have developed a product; how do we prove that it is the right
solution for the requirements which we got in the first phase? Yes, with the
help of testing. We can carry out unit testing, integration testing, assembly
testing, and acceptance testing to ensure that the requirement has been met.

• After successful testing, now it's time for the user to use it. This is nothing
but the deployment phase, after which it is ready for use.

• Talking in terms of one phase after deployment, the work is over but what
if any runtime issue emerges? What if the client recommends some minor or
major changes? Or what if it has a bug? Because of this, post-deployment is
also a very important step, which we call maintenance.

Although these phases theoretically come one after another, there can be different
approaches called software development process models, such as the waterfall
model, iterative model, spiral model, v model, agile model, and so on.

Chapter 1

[3]

Modules
Application development is composed of many interconnected parts which interact
with each other. To withstand high market demand and increasing competition,
software should have a good look and feel, and ease of use. To develop a compatible
solution, the developer has to think about compound structure as well as user
perspective. It's quite difficult to develop such a product single-handed. It's
teamwork, where the development is running alongside. The team members
will build up separate small modules dedicated to part of the actual solution.
These small modules will be clubbed together and interact with each other to
form a complete solution.

What is behind and in a module?
Each module which has been developed will be performing a unique responsibility.
When a module is responsible for a single task, it will be called cohesive. The
cohesiveness will make the module more maintainable. Also, it will be less
frequently changed. A good design perspective is to try writing a module which
will be highly cohesive.

The two modules developed separately will now need to have interaction. To make
them interactive, we have to introduce them. This will be done by making them
dependent on each other. This dependency is termed coupling. When the code size
and number of modules are small, coupling won't be a problem. But in an enterprise
application, the code size is huge. Any little change makes a difference and then
all of its dependencies should be changed accordingly at a number of places.
This makes the code unmanageable. So it's always recommended to have loosely
coupled modules.

The practical aspect
Let's take the example of a desktop, the one which we use in our routine. A desktop
consists of a monitor, CPU, keyboard, and mouse. If a new monitor with some
advanced features is introduced in the market, what we will do? Will we buy
a new desktop or just replace the monitor?

As per the convenience and also the cost, it's feasible to just replace the monitor
and not the whole desktop; how come this is possible? It's possible because the
desktop is assembled with subunits, which are easily replaceable. Each subunit is
cohesive for the work and they are not tightly coupled. This happens when we use
modularization. When we write an application that uses similar concepts, it is called
modular programming.

Introducing Modular Programming

[4]

The gang – modular programming
Modular programming is the process of dividing a problem into smaller subunits and
then making them interact with each other. Each subunit will revolve around a part
of the problem. These subparts are quite easily reusable or replaceable. This designing
technique gives a helping hand to the developers to develop their individual units
and later combine them. Each subpart can be termed a module. The developers do
not need to know what the other modules are or how they have been developed.
Modularizing the problem will help the developers to achieve high cohesion.

The world of modules
The pluggable component which can be easily integrated into the application will
provide the solution to a particular problem. For example, we want an Eclipse to
support Subversion (SVN) (one of the versioning tools). Now, we have two choices.
One, to start the development of Eclipse again from scratch or, two, to develop an
SVN application. If we choose the first choice, it's very time-consuming and we
already have Eclipse in a working condition. Then why start it from scratch? Yes,
it's a very bad idea. But it would be great to have an SVN solution to be developed
separately which is an SVN plugin; this plug-in can be easily integrated into eclipse.
See how easily the two modules— eclipse, which was in working and the new SVN
module—have been integrated. As SVN is a separate module, it can be integrated
with NetBeans (one of the IDEs). If we had developed it in eclipse, then it would not
be possible to integrate it in any other IDE. When we develop any application, from
our point of view, it's always the best. But being a good developer, we need to be
sure of it. How to check whether the application we have developed is working fine
for the aspects or not? Yes, we need to test it, whether each part is working correctly
or not. But is it really so simple? No, it's not. Not just because of complicated logic
but due to its dependency. Dependency is a factor which is not under the control of
the developer. For example, we need to check whether my credentials are correct
or not when I am trying to login. We don't want to test the tables where the data is
stored, but we want to check whether the logic of tracking the data is correct or not.
As we have developed a separate data access module, the testing becomes easy. In
Java, a single functionality can be tested with JUnit.

Testing helps the developer to test an application which processes the data and
provides an output. If we are getting the correct result, we do not have a problem,
but what if the output is wrong? The process of finding bugs in a module is called
debugging. The debugging helps us to find defects in an application. That means we
need to track the flow and then find out where the problem started. It's quite difficult
to find the defect if the system is without modules or if the modules are tightly
coupled. So it's good programming practice to write an application which consists
of highly cohesive, loosely coupled modules.

Chapter 1

[5]

There is one more fact which we need to discuss here. Sometimes, when the actual
main development is progressing, we come across a point where we actually want
to add a new feature. This new feature was not added while the basic discussion
was going on; here, we want to do parallel development. In this case, we don't want
to replace the previous development but we want to support or enhance it. As our
application consists of modules, a developer can go ahead as most of these modules
are independent and can be reused.

Tiers and layers in an enterprise
application
An enterprise application is an application which has been developed to fulfill
the requirements of a business. Being an enterprise application, it normally has
huge code. Maintaining such huge code all together is a very complex task. Also,
developing the code takes lots of time. So the code is been divided into small,
maintainable modules which can be easily developed separately and later on
combined to give a final product. All modules which provide similar kind of
functionality will be grouped together to form a layer. These layers are the logical
separation of modules. But sometimes, for better performance, one layer can be
also spread over the network.

Layers are a logical separation of the code to increase maintainability. But when we
physically move one typical layer and deploy it on another machine, then it will be
called as a tier. At any one time, many users will be using the enterprise application
simultaneously, so the use of a tiered application provides good performance.

Let's consider a web module for login. The user will open the browser and the
login page will be rendered. The user will enter their credentials (username and
password). After submitting the form, a request will be sent to the server to perform
the authentication. Once the data is received on the server side, the business logic
layer will process the data and put the result in the response. The result depends
on whether the credentials are present in database or not.

Introducing Modular Programming

[6]

Finally, the response will be generated and the result will be sent back to the
browser. Here, the user interface, business logic, and database are the three distinct
features involved. These are called as the presentation layer, business logic layer,
and data storage layer, respectively.

Presentation layer Business logic layer Data storeClient

Response

Request

Layers in an enterprise application

Each of these layers will talk with the above layer and exchange data. The process
broadly takes place as follows:

• The user will open the browser and hit the URL.
• A login page will be rendered on the browser. The user will fill in the form

and submit it to be processed by the business logic layer.
• To check the data, the business logic layer will communicate with the data

storage layer.
• According to the result returned from the data storage layer, the business

logic layer will now send the result to the presentation layer and the client's
browser will render the results page.

Now we understand the difference between a tier and a layer, let's discuss tiers
in detail. Depending on how many physical separations one application is using,
it will be called a one-tier, two-tier, or multi-tier application.

Chapter 1

[7]

One-tier applications
An enterprise application where all the components reside on a single computer
will be called as a one-tier application. These applications can also be called
single-tier applications. So we can broadly say that these are the applications
which get installed and run on a single computer.

For example, an Eclipse application as software. When we install eclipse and launch
it, it will be running on our personal computer. It doesn't require any network. The
presentation layer, that is, Swing GUI, business logic, and storing information in a
filesystem will be done on the same computer.

Terminal

user interaction

Mainframe

data and programs

A one-tier application

Two-tier applications
When the enterprise application gets divided over two computers, it will be called a
two-tier application. Generally the data storage, that is, the database, will be moved
onto a separate, dedicated computer. This will work as a database host machine or
database server. The presentation layer and business logic layer will be residing in
one location and data layer will be residing in another.

Introducing Modular Programming

[8]

An example of this is the Oracle database management system. When we want to
use an Oracle database, we will install Oracle on a dedicated machine which can be
called as the Oracle server. Now, on the user's machine, we can install the Oracle
client. Whenever we want to fetch data from the table in Oracle, we will use the
client application, which will connect to the server and give the required data.

Clients & Database are on the same Network (LAN)

Windows Clients

Database

2-Tier Deployment

A two-tier application

Three-tier applications
When in an application, the presentation layer, business layer, and data layer
will be running on their dedicated servers and interact with each other through a
network, it will be called a three-tier application. The web server is dedicated to the
presentation layer, the middleware server is dedicated to the business layer, and the
database server is dedicated to the database layer. The middleware server can also
provide services such as transaction and connection polling.

For example, any online shopping application can be considered a three-tier
application. Let's see how. In this application, the products will be displayed on a
browser in presentation pages. The business logic part, such as the calculation of
discounts, the total amount which the buyer has to pay, and so on, using transaction
or messaging services, will be provided by the application server. The buyer's
information, product information, bank details, delivery address, and so on, will
be saved in the tables on the database server for further reference. That means the
presentation tier, application tier and data tier are the three tiers which play roles
in this application.

Chapter 1

[9]

Application Server Data Source

Client Applications

Three-Tier Architecture

A three-tier application

N-tier applications
With the increase in the use of the Internet, it's very important for an application
to be capable of serving many requests at the same time. This puts a burden on the
server. In terms of performance, it's a better solution to take away the presentation
layer from the business logic and deploy it separately. It can be deployed on
one dedicated web server or may be on different servers. In the same way, the
business logic and database layers can be separated on different servers partially
or completely residing in one or more machines.

The client tier, presentation tier, business tier, and database tier are separated on
separate machines. They interact with each other through a network and perform
their services. This will be called an N-tier application.

Tier 2
Application Server

Tier 2
Application Server

Tier 3
Database

Tier 3
Web Service

Tier 4
Database

Tier 1
Client

N-Tier Architecture

An N-tier application

Introducing Modular Programming

[10]

Now, these tiers which consist of layers will be used to create an enterprise
application. But just by making parts of application, we cannot be sure of having a
complete solution. Each application has its own challenges, but if we keenly observe
them we will find that numerous functionalities are common, irrespective of their
problem statement. That means instead of a new team of architect designers fighting
for the solution to their problem every time, it will be good to have an answer which
is a generic solution for reference. These references will be used to build applications
called design patterns.

Christopher Alexander says, Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solutions to that problem, in
such a way that you can use this solution a million times over without ever doing it the
same way twice.

Each pattern provides a solution to a sort of problem and gives a result quickly. Let's
have a quick overview of design patterns. The design patterns are normally classified
as creational, structural, and behavioral patterns, which are subclassified as shown in
the following table:

Creational design
patterns

Structural design patterns Behavioral design patterns

Singleton pattern Adapter pattern Observer pattern
Factory pattern Composite pattern Interpreter pattern
Builder pattern Façade pattern Chain of responsibility

pattern
Prototype pattern Decorator pattern Visitor pattern

Mediator pattern

Frameworks such as Struts and Spring have been built upon these design patterns.
Struts uses the front controller design pattern and Spring uses the MVC design
pattern for ease of development. The use of frameworks has made the developer's
life easy.

Chapter 1

[11]

Java Enterprise architecture
High performance, faster processing, and good look and feel are the keys to success
for enterprise applications. Due to dedicated servers, the tasks of designing,
developing, and data storing will be leveraged to handle specialized tasks, as
discussed above in the N-tier applications section. In spite of providing just basic
things, the N-tier enterprise application needs a bit more. Let's have a look into
what else an enterprise application may need.

It's a festive season. The bank has consecutive holidays. I need to withdraw some
amount from the ATM, say, for example, x amount. I enter the password and all
other required details. Now I am just waiting for the money. I get a message of
withdrawal on my mobile as well but… as the ATM doesn't have any money, I
haven't received it. The money has been deducted from the account but not received
by me. Now what??? Am I going to be in loss? Is there any way to revert what
went wrong? Yes, certainly!! Here, we need to take into consideration transaction
management. A transaction is a bunch of consecutive operations which take place
one after another; either all of these should be completed successfully or none
of them. The transaction helps the developer to maintain data integrity. Using
this transaction management, the logic has been developed to rollback all such
unsuccessful operations. Using this concept, the debited amount can be reversed
and credited to my account again. Thank God, I got my money back!!!!

There are many such ATM centers in the city. And the same banking application
will be used by many users at the same time. So the application will have multiple
requests. All these requests have to be handled in sync. This is possible only if the
application supports multithreading, which technically we call concurrency.

The ATM is one of the ways to perform banking operations, but today we can even
use the Web for these tasks. On the Internet, the request will be sent to the server
and further processing happens. As this is a remote process, authentication and
authorization is important for recognizing that the user is genuine. This is normally
done by using a unique username/password pair which the user enters. The
sensitive data will now be transferred through the network; this can be hacked. So
such applications should provide secure service layers, which are the URLS with
the prefix https. We are doing all this to achieve a very important service, that is,
security. Security helps to minimize hazardous attacks on the web application.

Introducing Modular Programming

[12]

Do all such services have to be developed by the development team? Well, not
completely: in N tier applications, we do have a middleware server. This server can
also be called a container. This container will provide services such as transaction
management, security, connection pooling, caching, and concurrency.

Java EE 5 Application Server

Enterprise Information
Tier

Java 5 Virtual Machine

Database

Data Access
Layer

Business
LayerPresentation

Layer

Client Tier

HTTP
Request/
Response

JSP
(View)

Servlet
(Controller)

Web
Container

Presentation
Tier

EJB
(Model)

EJB
Container

Business
Tier

Enterprise architecture

Sharing the work
An enterprise application is always a team effort. It is an application where different
teams of designers, developers, and testers work on their respective specialized areas.
What is the guarantee that the teams are working from the same facility? No, it's not
guaranteed. There is a possibility that they are working from different locations. Now,
what is the chance of one team being spread over different locations and they are
operating from their locations? This is also quite possible. No, we are not saying that
different facilities are our problem. Not really. Our problem is different. Our problem
is about the work they have completed. How will others get it? How will they pass
on the files created by them or changed by them to other members of their team or
to members of other teams? Right, we need to do this manually.

Chapter 1

[13]

A share folder is a solution only in the case of a local network; for remote, it will not
be feasible. If there are a couple of files, we will not face any difficulty but what if
there are a number of files? One possible solution can be zipping all the files on which
they have worked and mailing it to their teammates. OK, I sent five files. What will
other team members do now? They will copy and paste these files in their source code
and start using them. We got the solution of exchanging the files. Really??? Do you
really think so? As we have seen the scenario only about one member who sent the
file and others received, it's true about the reverse case. Others will also send us one
or many file similarly. Does each one of us have to copy and paste these files? We are
in trouble as we need to share a file to all the team members and we will be getting it
from others. So our first problem is how to share files with team members.

Coordinate with the team
Let's discuss one more scenario. Suppose we developed code yesterday and have
already shared it with the team. And now our teammates are using it. But now we
want to change it because there is a possibility to have one more kind of solution
or the client requirement has been changed, or some other reason. A change is never
a problem; the problem is in keeping the old code as well as the new one; not only
for the one who developed the code, but also the one who received it. Changing the
code frequently and keeping it for use frequently is a big problem. It's not only a
pain but also frustrating to know what changed, when, and why? We need an easy,
practical solution.

The process which helps us to track a file for all of its changes and all of its revisions
is called versioning. Using versioning, we can keep the original file and all of its
step-by-step changes as well. Each changed file will be a new version of the old file.
As all of the versions are available, any point when we feel like using a file from
xxx version, we just have to get it. We not only store the file but versioning helps
to distribute the files so that we will get relief from sharing them manually.

Versioning tools
As versioning has become a very important part of software development, there are
many such tools available. These tools are basically divided in two categories:

• Centralized versioning
• Distributed versioning

Introducing Modular Programming

[14]

Centralized versioning
In centralized versioning systems, a copy of the application will be kept on a
centralized server from where the developers will take the file or commit their
changes to the server. Examples include Concurrent Versioning System (CVS)
and Subversion.

CVS
CVS is very old tool which was created in the Unix operating system in the 1980s.
It was very famous among the developers of Linux and other Unix-based systems;
cvslut was developed for Windows servers. CVS uses a central repository of files
to record the changes done in any file by the developer in separator directory. If the
developer wants his changes be made available to other developers, he will commit
the code to the repository. Now, along with the previous version file, the new
version also will be recorded.

Though maintaining the main flow of development has made things easy but
the branching is not. Sometimes the developers can do parallel development of
the products with unique features which they can combine later. This process is
called branching.

When we rename a file due to some reason or even the location of the file changes,
then it is supposed to be tracked by the SCM (supply chain management) but CVS
cannot update the version in these cases, which is not good.

CVS supports a first come, first served basis, so it's quite possible that some changes
will not be reflected or conflicted.

Apache Subversion
Apache Subversion was developed to provide an alternative to CVS. The aim was
to fix up the bugs in CVS to maintain high compatibility. It's an open source, where
either all the changes will be made or none of them. This feature helps the developers
to get the correct, latest revision of the file from the repository. Branching is well
supported in SVN.

The best thing about SVN is that a wide range of plugins has been developed, which
can be integrated with numerous IDEs to support SVN. The problem of keeping a
history of renamed or relocated files has been removed in SVN.

Along with these good things, there are some problems. The biggest problem is
what if the SVN server is down? No one will have access and then versioning is
not possible. One more issue is about the speed associated with SVN.

Chapter 1

[15]

Let's now have a discussion in depth about SVN as we are going to use it throughout
the book.

As we already know, SVN is an open source version control system which can
operate across the network. Its development was started in early 2000 by Collabnet.
In initial development, the base was CVS but without the bugs in CVS. This
development was started by a team of Karl, Jim, Jason Robbins, and Greg Stein to
name a few. This development finished in 2001, from when the developers started
using it. Though in the beginning, developers started with CVS as a base, later they
started from scratch and developed a fully-fledged new product. In 2009, Collabnet
started working with developers to add it to the Apache Software Foundation. They
succeeded in 2010.

The architecture of SVN
There are two consistent parts of Subversion: one is the repository which stores
all of the versioned data and the other is the client program that manages the
local reflections.

Subversion Repository

commandline
client app

GUI client apps

Client Library svnserve

Client interface Data store

The architecture of Subversion

The repository
The central store where all the versioned data is stored is called the repository. The
repository normally stores the data in the form of a filesystem tree. A number of
clients can get connected with this repository to pass the data in the repository so as
to make it available for other teammates. If any teammates want to get the data, they
just have to read the repository and the data will be available. The repository keeps
a record of each and every version of a file. The repository doesn't only give the
reflection of the changes but helps the developer to check what changes have been
made, who made them and when. Also, if they are interested in any specific version,
they can read it from the repository.

Introducing Modular Programming

[16]

So a version is nothing but a new state of the file where the changes took place.

SVN Client 1

Subversion RepositorySVN Server

update

Commit
SVN Client 2

SVN Client 3

update

update

Commit

Commit

The repository and the sharing of files

Now, we need to understand here the stages of a file.

If any developer creates a new file in his local system, it's not yet known to SVN.
So the first task of the developer is to copy this file in SVN, which is called as svn
add. Whenever we write the file (new or modified) to SVN, the process is called as
committing. Once the file is committed, it's under SVN and now can be available to
other team members. But to use this file, other team members have to take this file
into their local system; this will be called as checkout. Once any developer gets their
file, they are free to use it the way they want. Now, this local copy file will be known
as a working copy.

The client program
We can use SVN through the command line. But then we need to remember all
the commands for different operations. So instead of using the command line, a
UI application can be used. This can be used to commit, checkout, and update the
working copy. One such free application with an easy UI is Tortoise SVN, which has
been implemented as a Windows shell extension. Using Tortoise SVN, developers
can get rid of the command line. Tortoise SVN can easily be integrated in IDEs such
as eclipse and Visual Studio.

Chapter 1

[17]

Distributed versioning
Opposite to centralized versioning, in distributed versioning all the copies of an
application will be kept on the developer's machine, for example, GitHub.

GitHub
In opposition with CVS and subversion, GitHub uses a radial approach. The basic
idea behind GitHub is to speed up versioning. GitHub is also developed on Linux.
But it is also available on Unix native ports of GitHub and Windows operating
systems. This being a non-central server, it doesn't lend itself to single developer
projects or small projects.

A good thing about GitHub is that it helps the user to navigate through the history
of the file. Each instance of the source contains the entire history tree so as to track
the changes even when they are not connected to the Internet.

Due to the availability of the tracking of files, branching is well supported by
GitHub, but it has limited support for Windows.

Summary
In this chapter, we covered that enterprise applications are the applications
which provide solutions to enterprises. These applications consist of huge code.
To increase maintainability, performance, and testability, such applications will
be developed in tiers. These tiers consist of logical separation of code using layers.
Though each layer provides specific functionalities, they have been divided into
separate modules. These modules will be developed by a team of developers. To
establish coordination, easy sharing and maintaining the history of the files will be
done using a versioning tool.

In the next chapter, we will be covering the basics of web applications and
developing a sample application using JSP and Servlet. Also, we will be
covering the basics of developing a Spring MVC application.

[19]

Saying Hello to Java EE
To develop a scalable, distributed, well-presented, complex, and multi-layered
enterprise application is complicated. The development becomes even worse if the
developer is not well aware of the software development fundamentals. Instead of
looking at a bigger scenario, if we cut it down into parts and later combine them, it
becomes easy for understanding as well as for developing. Each technology has some
basics which we cannot overlook. Rather, if we overlook them, it will be the biggest
mistake; the same is applicable to Java EE. In this chapter, we are going to explore
the following:

• Java EE technologies
• Why servlet and JSP?
• Introduction to Spring MVC
• Creating a sample application through Spring MVC

The enterprise as an application
To withstand the high, competitive, and daily increasing requirements, it's becoming
more and more difficult nowadays to develop an enterprise application. The
difficulty is due to more than one kind of service, requirement of application to be
robust and should support concurrency, security, and many more. Along with these
things, enterprise applications should provide an easy user interface but good look
and feel for different users. We are going to explore all these things in detail in this
as well as in upcoming chapters.

Saying Hello to Java EE

[20]

In the last chapter, we discussed enterprise applications. The discussion was more
over understanding the terminology or the aspect. Let's now discuss it in terms of
development, and what developers look forward to:

• The very first thing even before starting the development is: what we are
we developing and why? Yes, as a developer we need to understand the
requirements or the expectations from the application. Developers have
to develop an application which will meet the requirements.

• The application should be efficient and with high quality so as to sustain
in the market.

• The application code should be reliable and bug-free to avoid runtime
problems.

• No application is perfect; it's a continuous process to update it for new
demands. Develop an application in such a way that it is easy to update.

• To meet high expectations, developers write code which becomes
complicated to understand as well as to change. Each one of us wants to have
a new and different product, different from what is on the market. To achieve
this, designers make an over-clumsy design which is not easy to change in
the future. Try to avoid over-complexity both in design and business logic.

• When development starts, developers look forward to providing a solution,
but they have to give thought to what they are developing and how the code
will be organized in terms of easy maintenance and future extension. Yes, we
are thinking about modules which are doing a defined task and those which
are less dependent. Try to write a module which will be loosely coupled and
highly cohesive.

• Today we are using enterprise applications through different browsers, such
as Internet Explorer, Mozilla, or Firefox. We are even using mobile browsers
for the same task. This demands an application that has been developed to
withstand the number of platforms and browsers.

Going through all this discussion, many technologies come to mind. We will go
through one such platform which covers the maximum of the above requirements:
the Java Enterprise Edition (Java EE) platform. Let's dive in and explore it!!

The Java EE platform
Sun Microsystems released the Java EE platform in 2000, which was formerly
known as the J2EE specification. It defines the standards for developing component-
based enterprise applications easily. The concrete implementation is provided by
application servers such as Weblogic and GlassFish, and servlet containers such as
Tomcat. Today we have Java EE 8 on the market.

Chapter 2

[21]

Features of the Java EE platform
The following are the various features of the Java EE platform:

• Platform independency: Different types of information which the user
needs in day-to-day life is spread all over the network on a wide range of
platforms. Java EE is well adapted to support, and use this widely spread
multiple format information on different platforms easily.

• Modularity: The development of enterprise applications is complex and
needs to be well organized. The complexity of the application can be reduced
by dividing it into different, small modules which perform individual tasks,
which allows for easy maintenance and testing. They can be organized in
separate layers or tiers. These modules interact with each other to perform
a business logic.

• Reusability: Enterprise applications need frequent updates to match up
client requirements. Inheritance, the fundamental aspect of an object-oriented
approach, offers reusability of the components with the help of functions. Java
EE offers modularity which can be used individually whenever required.

• Scalability: To meet the demands of the growing market, the enterprise
application should keep on providing new functionalities to the users. In
order to provide these new functionalities, the developers have to change the
application. They may add new modules or make changes in already existing
ones. Java EE offers well-managed modules which make scalability easy.

The technologies used in Java EE are as follows:

• Java servlet
• Java Server Pages
• Enterprise Java Bean
• Java Messaging API
• XML
• Java Transaction API
• Java Mail
• Web Services

Saying Hello to Java EE

[22]

The world of dotcoms
In the 1990s, many people started using computers for a number of reasons. For
personal use, it was really good. When it came to enterprise use, it was helpful
to speed up the work. But one main drawback was; how to share files, data or
information? The computers were in a network but if someone wanted to access the
data from any computer then they had to access it personally. Sometimes, they had
to learn the programs on that computer, which is not only very time-consuming but
also unending.

What if we can use the existing network to share the data remotely?? It was a
thought put forward by a British computer scientist, Sir Tim Berners-Lee. He thought
of a way to share the data through the network by exploring an emerging technology
called hypertext. In October 1990, Tim wrote three technologies to fulfill sharing
using Hyper Text Markup Language (HTML), Uniform Resource Identifier (URI),
and Hyper Text Transfer Protocol (HTTP):

• HTML is a computer language which is used in website creation. Hypertext
facilitates clicking on a link to navigate on the Internet. Markups are HTML
tags defining what to do with the text they contain.

• URIs defines a resource by location or name of resource, or both. URIs
generally refer to a text document or images.

• HTTP is the set of rules for transferring the files on the Web. HTTP runs on
the top of TCP/IP.

He also wrote the first web page browser (World Wide Webapp) and the first web
server (HTTP). The web server is where the application is hosted. This opened the
doors to the new amazing world of the dotcom. This was just the beginning and
many more technologies have been added to make the Web more realistic. Using
HTTP and HTML, people were able to browse files and get content from remote
servers. A little bit of user interaction or dynamicity was only possible through
JavaScript. People were using the Web but were not satisfied; they needed something
more. Something which was able to generate output in a totally dynamic way,
maybe displaying the data which had been obtained from the data store. Something
which can manipulate user input and accordingly display the results on the browser.

Java developed one technology: Common Gateway Interface (CGI). As CGI was a
small Java program, it was capable of manipulating the data at the server side and
producing the result. When any user made a request, the server forward the edit to
CGI, which was an external program. We got an output but with two drawbacks:

• Each time the CGI script was called, a new process was created. As we
were thinking of a huge number of hits to the server, the CGI became a
performance hazard.

Chapter 2

[23]

• Being an external script, CGI was not capable of taking advantage of
server abilities.

To add dynamic content which can overcome the above drawbacks and replace
CGI, the servlet was developed by Sun in June 1997.

Servlet – the dynamicity
Servlets are Java programs that generate dynamic output which will be displayed
in the browser and hosted on the server. These servers are normally called servlet
containers or web servers. These containers are responsible for managing the
lifecycle of the servlets and they can take advantage of the capabilities of servers.
A single instance of a servlet handles multiple requests through multithreading.
This enhances the performance of the application. Let's discuss servlets in depth
to understand them better.

The servlet is capable of handling the request (input) from the user and generates the
response (output) in HTML dynamically. To create a servlet, we have to write a class
which will be extended from GenericServlet or HttpServlet. These classes have
service() as a method, to handle request and response. The server manages the
lifecycle of a servlet as follows:

1. The servlet will be loaded on arrival of a request by the servers.
2. The instance will be created.
3. The init() will be invoked to do the initialization.
4. The preceding steps will be performed only once in the life cycle of the

servlet unless the servlet has not been destroyed.
5. After initialization, the thread will be created separately for each request

by the server, and request and response objects will be passed to the
servlet thread.

6. The server will call the service() function.
7. The service() function will generate a dynamic page and bind it to the

HttpResponse object.
8. Once the response is sent back to the user, the thread will be deallocated.

From the preceding steps, it is pretty clear that the servlet is responsible for:

• Reading the user input
• Manipulating the received input
• Generating the response

Saying Hello to Java EE

[24]

A good developer always keeps a rule of thumb in mind that a module should not
have more than one responsibility, but here the servlet is doing much more. So this
has addressed the first problem in testing the code, maybe we will find a solution
for this. But the second issue is about response generation. We cannot neglect a very
significant problem in writing well-designed code to have a nice look and feel for the
page from the servlet. That means a programmer has to know or adapt designing
skills as well, but, why should a servlet be responsible for presentation?

The basic thought of taking presentation out of the servlet leads to Java Server Page
(JSP). JSP solves the issue of using highly designed HTML pages. JSP provides the
facility of using all HTML tags as well as writing logical code using Java. The designers
can create well-designed pages using HTML, where programmers can add code using
scriptlet, expression, declaration, or directives. Even standard actions like useBean can
be used to take advantage of Java Beans. These JSP's now get transformed, compiled
into the servlet by the servers.

Now we have three components:

• Controller, which handles request and response
• Model, which holds data acquired from handling business logic
• View, which does the presentation

Combining these three we have come across a design pattern—Model-View-
Controller (MVC). Using MVC design patterns, we are trying to write modules
which have a clear separation of work. These modules can be upgradable for future
enhancement. These modules can be easily tested as they are less dependent on other
modules. The discussion of MVC is incomplete without knowing two architectural
flavors of it:

• MVC I architecture
• MVC II architecture

MVC I architecture
In this model, the web application development is page-centric around JSP pages.
In MVC I, JSP performs the functionalities of handling a request and response
and manipulating the input, as well as producing the output alone. In such web
applications, we find a number of JSP pages, each one of them performing different
functionalities. MVC I architecture is good for small web applications where less
complexity and maintaining the flow is easy. The JSP performs the dual task of
business logic and presentation together, which makes it unsuitable for enterprise
applications.

Chapter 2

[25]

User / Client

Web Application

WebServer

Data Source

JSP
Model Or
JavaBean

MVC I architecture

MVC II architecture
In MVC II, a more powerful model has been put forward to give a solution
to enterprise applications with a clear separation of work. It comprises two
components: one is the controller and other the view, as compared to MVC I where
view and controller is JSP (view). The servlets are responsible for maintaining the
flow (the controller) and JSP to present the data (the view). In MVC II, it's easy for
developers to develop business logic- the modules which are reusable. MVC II is
more flexible due to responsibility separation.

WebServer

Data Source
JSP

Model Or

JavaBean

Controller

User / Client

MVC II architecture

The practical aspect
We have traveled a long way. So, instead of moving ahead, let's first develop a web
application to accept data from the user and display that using MVC II architecture.
We need to perform the following steps:

1. Create a dynamic web application using the name Ch02_HelloJavaEE.
2. Find the servlet-api.jar file from your tomcat/lib folder. Add

servlet-api.jar to the lib folder.

Saying Hello to Java EE

[26]

3. Create index.jsp containing the form which will accept data from the user.
4. Create a servlet with the name HelloWorldServlet in the com.packt.ch02.

servlets package.
5. Declare the method doGet(HttpServletRequest req,HttpServletResponse

rs) to perform the following task:
1. Read the request data using the HttpServletRequest object.
2. Set the MIME type.
3. Get an object of PrintWriter.
4. Perform the business logic.
5. Bind the result to the session, application or request scope.

6. Create the view with name hello.jsp under the folder jsps.
7. Configure the servlet in deployment descriptor (DD) for the URL pattern.
8. Use expression language or Java Tag Library to display the model in the

JSP page.

Let's develop the code.

The filesystem for the project is shown in the following screenshot:

We have created a web application and added the JARs. Let's now add index.jsp to
accept the data from the user:

<form action="HelloWorldServlet">
 <tr>
 <td>NAME:</td>
 <td><input type="text" name="name"></td>
 </tr>

Chapter 2

[27]

 <tr>
 <td></td>
 <td><input type="submit" value="ENTER"></td>
 </tr>
</form>

When the user submits the form, the request will be sent to the URL
HelloWorldServlet.

Let's create the HelloWorldServlet which will get invoked for the above URL,
which will have doGet(). Create a model with the name message, which we
will display in the view. It is time to forward the request with the help of the
RequestDispatcher object. It will be done as follows:

protected void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {
 // TODO Auto-generated method stub
 //read the request parameter
 String name=request.getParameter("name");
 //get the writer
 PrintWriter writer=response.getWriter();

 //set the MIME type
 response.setContentType("text/html");

 // create a model and set it to the scope of request
 request.setAttribute("message","Hello "+name +" From JAVA
Enterprise");
 RequestDispatcher dispatcher=request.getRequestDispatcher("jsps/
hello.jsp");
 dispatcher.forward(request, response);

 }

Now create the page hello.jsp under the folder jsps to display the model message
as follows:

<h2>${message }</h2>

The final step is to configure the servlet which we just have created in DD. The
configuration is made for the URL HelloWorldServlet as follows:

<servlet>
<servlet-name>HelloWorldServlet</servlet-name>
<servlet-class>com.packt.ch02.servlets.HelloWorldServlet
</servlet-class>

Saying Hello to Java EE

[28]

</servlet>
<servlet-mapping>
<servlet-name>HelloWorldServlet</servlet-name>
<url-pattern>/HelloWorldServlet</url-pattern></servlet-mapping>

Let's deploy the application to check the output:

Displaying the home page for a J2EE application

The following screenshot shows the output when a name is entered by the user:

Showing the output when a name is entered by the user

Chapter 2

[29]

After developing the above application, we now have a sound knowledge of how
web development happens, how to manage the flow, and how navigation happens.
We can observe one more thing: that whether it's searching data, adding data, or any
other kind of operation, there are certain steps which are common, as follows:

• Reading the request data
• Binding this data to a domain object in terms of model data
• Sending the response

We need to perform one or more of the above steps as per the business requirement.
Obviously, by only performing the above steps, we will not be able to achieve the
end effect but there is no alternative. Let's discuss an example.

We want to manage our contact list. We want to have the facilities for adding a new
contact, updating a contact, searching one or many contacts, and deleting a contact.
The required data will be taken from the user by asking them to fill in a form. Then
the data will be persisted in the database.

Here, for example, we just want to insert the record in the database. We have to start
the coding from reading request data, binding it to an object and then our business
operation. The programmers have to unnecessarily repeat these steps. Can't they
get rid of them? Is it possible to automate this process?? This is the perfect time
to discuss frameworks.

What is a framework?
A framework is software which gives generalized solutions to common tasks which
occur in application development. It provides a platform which can be used by the
developers to build up their application elegantly.

Advantages of frameworks
The advantages of using frameworks are as follows:

• Faster development
• Easy binding of request data to a domain object
• Predefined solutions
• Validations framework

Saying Hello to Java EE

[30]

In December 1996, Sun Microsystems published a specification for JavaBean. This
specification was about the rules, using which developers can develop reusable,
less complex Java components. These POJO classes are now going to be used as a
basis for developing a lightweight, less complex, flexible framework: the Spring
framework. This framework is from the thoughts of Rod Johnson in February 2003.
The Spring framework consists of seven modules:

Spring AOP

Source-level Metadata

AOP Infrastructure

Spring MVC

Web Framework

Web Views

JSP, Velocity, Freemarker,

PDF, Excel, XML/XDL

Spring ORM

Hibernate, BATIS and JDO

Support

Spring DAO

Transaction Infrastructure

JDBC and DAO Support

Spring Context

Application Context

UI Support

Validation

JNDI, EJB & Remoting Support

Mail

Spring Web

Web Application Context

Multipart Resolver

Web Utilities

Spring Core

Supporting Utilities

Bean Factory Container

Spring modules

Though Spring consists of several modules, the developer doesn't have to be always
dependent on the framework. They can use any module as per the requirement. It's not
even compulsory to develop the code which has been dependent upon Spring API. It is
called a non-intrusive framework. Spring works on the basis of dependency injection
(DI), which makes it easy for integration. Each class which the developer develops has
some dependencies. Take the example of JDBC: to obtain a connection, the developer
needs to provide URL, username, and password values. Obtaining the connection is
dependent on these values so we can call them dependencies, and injection of these
dependencies in objects is called DI. This makes the emerging spring framework the
top choice for the middle tier or business tier in enterprise applications.

Spring MVC
The spring MVC module is a choice when we look forward for developing web
applications. The spring MVC helps to simplify development to develop a robust
application. This module can also be used to leave common concerns such as
reading request data, data binding to domain object, server-side validation and
page rendering to the framework and will concentrate on business logic processes.

Chapter 2

[31]

That's what, as a developer we were looking for. The spring MVC can be integrated
with technologies such as Velocity, Freemarker, Excel, and PDF. They can even take
advantage of other services such as aspect-oriented programming for cross-cutting
technologies, transaction management, and security provided by the framework.

The components
Let's first try to understand the flow of normal web applications in view of the Spring
framework so that it will be easy to discuss the component and all other details:

1. On hitting the URL, the web page will be displayed in the browser.
2. The user will fill in the form and submit it.
3. The front controller intercepts the request.
4. The front controller tries to find the Spring MVC controller and pass the

request to it.
5. Business logic will be executed and the generated result is bound to the

ModelAndView.
6. The ModelAndView will be sent back to the front controller.
7. The front controller, with the help of ViewResolver, will discover the view,

bind the data and send it to the browser.

Incoming

request

Return

response

Servlet engine

(e.g. Tomcat)

View

template

Render

response

Return

control

Create

model

Handle

request

Delegate

request

Delegate

rendering

of response

Controller
Front

controller

model

model

Spring MVC

Saying Hello to Java EE

[32]

The front controller
As already seen in servlet JSP to maintain each flow of the application the developer
will develop the servlet and data model from servlet will be forwarded to JSP using
attributes. There is no single servlet to maintain the application flow completely. This
drawback has been overcome in Spring MVC as it depends on the front controller
design pattern.

In the front controller design pattern, there will be a single entry point to the
application. Whatever URLs are hit by the client, it will be handled by a single
piece of the code and then it will delegate the request to the other objects in the
application.

In Spring MVC, the DispatcherServlet acts as front controller. DispatcherServlet
takes the decision about which Spring MVC controller the request will be delegated
to. In the case of a single Spring MVC controller in the application, the decision is
quite easy. But we know in enterprise applications, there are going to be multiple
Spring MVC controllers. Here, the front controller needs help to find the correct Spring
MVC controller. The helping hand is the configuration file, where the information to
discover the Spring MVC controller is configured using handler mapping. Once the
Spring MVC controller is found, the front controller will delegate the request to it.

Spring MVC controller
All processes, such as the actual business logic, decision making or manipulation
of data, happen in the Spring MVC controller. Once this module completes the
operation, it will send the view and the model encapsulated in the object normally
in the form of ModelAndView to the front controller. The front controller will further
resolve the location of the view. The module which helps front controller to obtain
the view information is ViewResolver.

ModelAndView
The object which holds information about the model and view is called as
ModelAndView. The model represents the piece of information used by the
view for display in the browser of different formats.

Chapter 2

[33]

ViewResolver
The Spring MVC controller returns ModelAndView to the front controller.
The ViewResolver interface helps to map the logical view name to the actual
view. In web applications, data can be displayed in a number of formats, from
as simple as JSP to complicated formats like JasperReport. Spring provides
InternalResourceViewResolver, JspViewResolver, JasperReportsViewResolver,
VelocityLayoutViewResolver, and so on, to support different view formats.

The configuration file
DispatcherServlet needs to discover information about the Spring MVC controller,
ViewResolver, and many more. All this information is centrally configured in a file
named XXX-servlet.xml where XXX is the name of the front controller. Sometimes
the beans will be distributed across multiple configuration files. In this case, extra
configuration has to be made, which we will see later in this chapter.

The basic configuration file will be:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">
<!—mapping of the controller -->
<!—bean to be configured here for view resolver - ->
</beans>

The controller configuration file will be named name_of_servlet-servlet.xml. In
our project, we will name this HelloWeb-servlet.xml.

Let's do the basics of a web application using Spring MVC to accept the data and
display it. We need to perform the following steps:

1. Create a web application named Ch02_HelloWorld.
2. Add the required JAR files for Spring (as shown in the following screenshot)

and servlets in the lib folder.
3. Create an index page from where the data can be collected from the user and

a request sent to the controller.
4. Configure the front controller in DD.

Saying Hello to Java EE

[34]

5. Create a SpringMVCcontroller as HelloWorldController.
6. Add a method for accepting requests in the controller which performs

business logic, and sends the view name and model name along with its
value to the front controller.

7. Create an XML file in WEB-INF as Front_Controller_name-servlet.xml
and configure SpringMVCcontroller and ViewResolver.

8. Create a JSP which acts as a view to display the data with the help
of Expression Language (EL) and JavaServer Pages Standard Tag
Library (JSTL).

Let's create the application.

The filesystem for the project is as follows:

We have already created the dynamic web project Ch02_HelloSpring and added the
required JAR files in lib folder. Let's start by creating index.jsp page as:

<form action="hello.htm">
 <tr>
 <td>NAME:</td>
 <td><input type="text" name="name"></td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="ENTER"></td>
 </tr>
</form>

Chapter 2

[35]

When we submit the form, the request is sent to the resource which is mapped for
the URL hello.htm. Spring MVC follows the front controller design pattern. So all
the requests hitting the application will be first attended by the front controller and
then it will send it to the respective Spring controllers.

The front controller is mapped in DD as:

<servlet>
 <servlet-name>HelloSpring</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>HelloSpring</servlet-name>
 <url-pattern>*.htm</url-pattern>
</servlet-mapping>

Now the controller needs help to find the Spring MVC controller. This will be taken
care of by the configuration file. This file will have the name XXX-servlet.xml
where XXX is replaced by the name of the front controller from DD. Here, in this case
HelloSpring-servlet.xml will have the configuration. This file we need to keep in
the WEB-INF folder. In the Configuration files section, we saw the structure of the
file. In this file, the mapping will be done to find out how the package in which the
controllers are kept will be configured. This is done as follows:

<context:component-scan base-package="com.packt.ch02.controllers" />

Now the front controller will find the controller from the package specified as a value
of base-package attribute. The front controller will now visit HelloController.
This class has to be annotated by @Controller:

@Controller
public class HelloController {
//code here
}

Once the front controller knows what the controller class is, the task of finding
the appropriate method starts. This will be done by matching the values of
@RequestMapping annotation applied either on the class or on the methods present
in the class. In our case, the URL mapping is hello.htm. So the method will be
developed as:

@RequestMapping(value="/hello.htm")
 public ModelAndView sayHello(HttpServletRequest request)
 {
 String name=request.getParameter("name");

Saying Hello to Java EE

[36]

 ModelAndView mv=new ModelAndView();
 mv.setViewName("hello");
 String message="Hello "+name +" From Spring";
 mv.addObject("message",message);
 return mv;
 }

This method will return a ModelAndView object which contains a view name,
model name and value for the model. In our code the view name is hello
and the model is presented by message. The Front Controller now again uses
HelloSpring-servlet.xml for finding the ViewResolver to get the actual name
and location of the view. ViewResolver will provide the directory name (location)
where the view is placed with a property prefix. The format of the view is given by
the property suffix. Using the view name, prefix and suffix, the front controller gets
the page. The ViewResolver will bind the model to be used in the view:

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.
InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/jsps/" />
 <property name="suffix" value=".jsp" />
 </bean>

In our case, it will be /WEB-INF/jsps/ as prefix, hello as the name of page, and
.jsp is the suffix value. Combining them, we will get /WEB-INF/jsps/hello.jsp,
which acts as our view.

The Actual view is written as prefix+view_name from ModelAndView+suffix,
for instance:

/WEB-INF/jsps/+hello+.jsp

The data is bounded by the front controller and the view will be able to use it:

<h2>${message}</h2>.

Chapter 2

[37]

This page is now ready to be rendered by the browser, which will give output
in the browser as:

Displaying the home page for a Spring application

Entering the name in the text field (for example, Bob) and submitting the form gives
the following output:

Showing an output when a name is entered by the user

Saying Hello to Java EE

[38]

Now we understand the working of spring MVC, let's discuss a few more things
required in order to develop the Spring MVC controller.

Each class which we want to discover as the controller should be annotated with
the @Controller annotation. In this class, there may be number of methods which
can be invoked on request. The method which we want to map for URL has to be
annotated with the annotation @RequestMapping.

There can be more than one method mapped for the same URL but it will be invoked
for different HTTP methods. This can be done as follows:

@RequestMapping(value="/hello.htm",method= RequestMethod.GET)
 public ModelAndView sayHello(HttpServletRequest request)
 {

 }
@RequestMapping(value="/hello.htm",method= RequestMethod.POST)
 public ModelAndView sayHello(HttpServletRequest request)
 {

 }

These methods normally accept Request as parameter and will return ModelAndView.
But the following return types and parameters are also supported.

The following are some of the supported method argument types:

• HttpServletRequest

• HttpSession

• Java.util.Map/ org.springframework.ui.Model/ org.
springframework.ui.ModelMap

• @PathVariable

• @RequestParam

• org.springframework.validation.Errors/ org.springframework.
validation.BindingResult

The following are some of the supported method return types:

• ModelAndView

• Model

• Map

• View

• String

• void

Chapter 2

[39]

Sometimes the bean configuration is scattered in more than one file. For example,
we can have controller configuration in one file and database, security-related
configuration in a separate file. In that case, we have to add extra configuration
in DD to load multiple configuration files, as follows:

<servlet>
 <servlet-name>HelloSpring</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/beans.xml</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>HelloSpring</servlet-name>
 <url-pattern>*.htm</url-pattern>
 </servlet-mapping>

Summary
In this chapter, we learned how the application will be single-handedly controlled by
the front controller, the dispatcher servlet. The actual work of performing business
logic and giving the name of the view, data model back will be done by the Spring
MVC controller. The view will be resolved by the front controller with the help of the
respective ViewResolver. The view will display the data got from the Spring MVC
controller. To understand and explore Spring MVC, we need to understand the web
layer, business logic layer and data layer in depth using the basics of Spring MVC
discussed in this chapter.

We will start with web layers in the next chapter to find out the answers to some
questions such as how to handle forms, how to bind form data, and how to do
server-side form validation.

[41]

Implementing the
Presentation Layer

In the world of the Web, everything is virtual, where presentation plays the most
important role. On the Web, the first thing which can present the product is the
presentation, that is, the look and feel. It gives comfort to the user to use the product.
A well-presented page attracts more users than an average-looking page. Are we
saying that business logic requirements are not so important? Certainly not! We are
saying you should make a balance between the good look and feel of the page and
the business logic requirements.

In this chapter, we will find out the following:

• How the presentation layer components need to interact with the user
• Spring MVC parameter binding and its implementation
• How to render the presentation layer

Presentation
As said by someone, The first impression is the best impression. From the user's
perspective, we cannot deny the fact that the product will be more used if it is easy
to use and well presented. If the instructions to the user are unclear or complicated,
the user tries to avoid using it. If I want to buy a book about J2EE from the bookshop,
what will be the first thing which will be visible to me? It is the cover. If the cover
is attractive, I will go and at least check out what the content inside is. That will
not happen if a book has an average cover and simple presentation. Everyone will
obviously check for the quality of the content and the usefulness but that's once we
take the book in hand. So to force someone to at least to have a look at it, the most
important thing is the presentation!! So we as developers need to make sure that the
web page is attractive.

Implementing the Presentation Layer

[42]

If the page is very well designed with a good color scheme, nice font, use of images
as per the theme, clear instruction provided in form navigation, and well-written
information, the user will be happy. What about developers? Does the developer
need to invest their time because the designers have not paid attention to the form
processing? Yes, how the form should be processed is not the designer's concern. But
if they had thought about it, the developer's life would be bit easier. What is form
processing and why are we fighting for it? Whenever the user submits the form, the
information which has been given by the user is important to serve him correctly.
Form parameters are the only means to know what the user is interested in. For
example, when we want to search for information about Spring MVC, what will
we do? Obviously, we will Google it!!! That means:

• We will type the URL: www.google.com
• We will enter Spring MVC in the text field on Google's web page

How will the web component, in our case the Spring MVC controller, read the string
'Spring MVC'? The controller will read it from request parameters, which we had
filled in the form. To read one or two request parameters is never a problem. But
what if a multifield form has to be submitted and then the developer has to read
them? Yes, it is not difficult, but you all will agree that it is lengthy work. Each time
form submission happens, the same boilerplate code will have to be repeated. Can't
we simplify this? Create a web page which will simplify the form-binding process?

In the form, a couple of times there are some fields which have a definite set of
values. For example, in a new account opening form (maybe for the bank), the
names of branches are available; on a Gmail account, a country list is available; and
in online reservations, there are routes or starting and end points well defined. These
values are pre-populated because the services are available only in those areas or
points and the user should choose from the options available. These pre-populated
values can easily be hardcoded by the designer but what if the list or the options are
frequently changing? It's better to fetch such values at runtime. A form should be
easily pre-populated.

Form submission is important, but the form field should have the correct type
of values, maybe in terms of the format of the values or the range of values. We
normally call this form validation. JavaScript is used as client-side validation. But
JavaScript can be turned off. This leads to a serious problem as the form parameter
values are the basics of the business logic. The problem can be resolved by doing
server-side validation. Hence the page should support server-side form validation.

www.google.com

Chapter 3

[43]

All of the discussed points are well supported by JSPs. Along with HTML in JSP, Java
code is well supported. To simplify Java support, a wide range of JSTL, as well as
Spring provided tags are available. JSP has support for Expression language where
data models can be rendered for runtime values. In Spring, instead of using plain
HTML code, we will use Spring provided tags so as to make data binding easier.

Let's have a look at different scenarios to bind the data.

Data binding
Whenever form submission happens, the usual process from the developer side
will be to read the request parameters which users have filled in the form. This
entered data is in text format. The process of converting this text-based data to
the appropriate Java data type is data binding.

When we use the form, it has two criteria:

• Form used for searching data
• Form to retrieve the data and get object values from it

Case 1 – Reading request parameters for searching
Let's create a dynamic web project with Ch03_Search_Form_Data having the
following outline. We will use this as the base project to add the further concepts
programmatically:

Implementing the Presentation Layer

[44]

Let's create a form named SearchByParam.jsp, which accepts data from the user:

 <form action="searchFromRequest.htm">
 <tr>
 <td>Enter ID:</td>
 <td><input type="text"name="id"></td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit"value="Search"></td>
 </tr>
</form>

To get this form, we need to add the link index.jsp page as follows:

<a href="searchByParam.jsp" style="font-size: large;xx-large; font-
family:Times New Roman ; font: bold; width: 300px; height: 200px;
">Search Using Parameter

The controller code to read the request parameter for search will be:

@RequestMapping(value="/searchFromRequest.htm")
 public ModelAndViewsayHello(HttpServletRequest request)
 {
 String name=request.getParameter("id");

 //will add code here to search from persistence layer in Chapter 4
 where we are going to develop the database
 //we will get object and return it to display it in chapter 4

 ModelAndView mv=newModelAndView();
 mv.setViewName("display");
 String message="Hello "+ name;
 mv.addObject("searchObject",message);
 return mv;
 }

Instead of reading request parameters one by one from the HttpServletRequest
object, let's take advantage of Spring and do it all at once as follows:

1. Create a new class SearchAnnotController in the com.packt.ch03.
controllers package.

2. Annotate it with @Controller and add the following method to map
/searchFromAnnot.htm:
@RequestMapping(value = "/searchFromAnnot.htm")
 public ModelAndViewsayHello(@RequestParam("id") int id) {

Chapter 3

[45]

 //will add code here to search from persistence layer in
Chapter 4 where we are going to develop the database
 //we will get object and return it to display it in chapter 4

 ModelAndView mv = newModelAndView();
 mv.setViewName("display");
 String message = "Hello " + id;
 mv.addObject("searchObject", message);
 return mv;
 }

Using @RequestParam, a developer can read a single parameter at a time.
Now we don't have to expose servlet APIs.

3. Create a page seachByAnnot.jsp with the following code to accept the data
from the user and process it in the method we defined in the preceding step
with the code as follows:
<body>
<jsp:include page="/WEB-INF/jsps/header.jsp"></jsp:include>
 <center>
 <h1>Please Enter Id to Search</h1>
 </center>
 <table align="center">
 <form action="searchFromAnnot.htm">
 <tr>
 <td>Enter ID:</td>
 <td><input type="text" name="id"></td>
 </tr>

 <tr>
 <td></td>
 <td><input type="submit" value="Search"></td>
 </tr>
 </form>
 </table>
</body>

4. To get this form, we need to add the link index.jsp page as follows:
<a href="searchByAnnot.jsp" style="font-size: large;xx-large;
font-family:Times New Roman ; font: bold; width: 300px; height:
200px; ">Search Using Annotation

Implementing the Presentation Layer

[46]

Case 2 – Reading multiple form fields
We have just seen how to read a single request parameter. Let's now create a form
to accept ID, name and address:

contactForm_old.jsp
<form method="POST" action="addContact.htm">
 <h2>
 <center>Contact Registration</center>
 </h2>

 <table width="100%" height="150" align="center" border="0">
 <tr>
 <td width="50%" align="right">ID</td>
 <td width="50%" align="left">
<input type="text" name="id" size="30" />
</td>
 </tr>
 <tr>
 <td width="50%" align="right">Name</td>
 <td width="50%" align="left">
<input type="text" name="name" size="30" />
</td>
 </tr>
 <tr>
 <td width="50%" align="right">Address</td>
 <td width="50%" align="left">
<input type="text" name="address" size="30" />
</td>
 </tr>
 <tr>
 <td colspan="2" align="center">
<input type="submit" value="Add Contact">
</td>
 </tr>

 </table>

 </form>

The code in the controller which reads and uses the request parameters will be
as follows:

@RequestMapping(value = "/searchFromAnnot.htm")
public ModelAndView addContact(@RequestParam("id") int id, @

Chapter 3

[47]

RequestParam("name") String name, @RequestParam("address") int
address) {

 //will add code here to search from persistence layer in Chapter 4
where we are going to develop the database
 //we will get object and return it to display it in chapter 4

 ModelAndView mv = newModelAndView();
 mv.setViewName("display");
 String message = "Hello " + id;
 String name= "Name " + name;
 String add = "Address " + address;
 mv.addObject("searchObject", message);
 return mv;
 }

Though we achieve abstraction, what if there are multiple fields in the form? We need
to read them individually using multiple @RequestParam in the method signature.

Let's discuss code to make this simpler using Spring MVC.

We use @RequestParam as we want to get the object of class Contact without
reading individual form parameters and then setting them. Here, the reading is
done without using servlet APIs but we can still sophisticate the process and get
the customized object of Contact. This can be done by using a form backing object
followed by reading the data in the controller class.

Form backing object
The object that is used to collect the values which the user has filled in the form is
called a form backing object. In Spring, the same terminology can be referred to
as a command object. This object contains the data which the user has filled in and
will be able to retrieve in the controller with the help of ModelAttribute. Now the
question arises, how to create, get, and use this command object? This can be easily
explained with the help of the last example which we just discussed.

The command object collects the values filled by the user. It means that the page where
the user fills in the data already needs to have an available object. It won't be possible
with HTML tags, but it's quite easy with the tags provided by Spring. When the user
submits the form, we will use a command object in the controller. In order to use the
command object, we need to change the signature of the addController() method.

Implementing the Presentation Layer

[48]

Let's start with developing the process of form binding.

1. In order to achieve a command object in the form page, we have to add a
method which creates the command object and makes it available for use.
We are going to create an object of class Contact available for use.
Declare the contact class (POJO) in com.packt.03.pojo with data members
firstName, lastName, address, email as String and gender as int.
It will be done as shown in the following code snippet:
@RequestMapping("/showForm.htm")
 public ModelAndView showContactForm(HttpServletRequest request,
 HttpServletResponse response, ModelMap map) throws Exception
{

 Contact contact = new Contact();
 map.addAttribute(contact);
 return new ModelAndView("contactForm");
 }

So when the user clicks on a link to get the contact form instead of directly
navigating to the JSP page to collect data from the user, the page has to be
sent by the controller where the command object has been made available for
use. In the preceding code, the object of contact has been created. This object
has been added to ModelMap in order to make it available to the form.

2. The form, instead of using HTML tags, will use Spring tags. Using Spring
tags, the request parameter values can be automatically set on the command
object:
contactForm.jsp

<form:form modelAttribute="contact" method="POST"
 action="addContact.htm">
 <h2>
 <center>Contact Registration</center>
 </h2>

 <table width="100%" height="150" align="center" border="0">
 <tr>
 <td width="50%" align="right">FIRST NAME</td>
 <td width="50%" align="left"><form:input path="firstName"
size="30" /></td>
 </tr>
 <tr>
 <td width="50%" align="right">LAST NAME</td>

Chapter 3

[49]

 <td width="50%" align="left"><form:input path="lastName"
size="30" /></td>
 </tr>
 <tr>
 <td width="50%" align="right">Gender</td>
 <td width="50%" align="left"><form:input path="gender"
size="30" /></td>
 </tr>

 <tr>
 <td width="50%" align="right">Address</td>
 <td width="50%" align="left"><form:input path="address"
 size="30" /></td>
 </tr>

 <tr>
 <td width="50%" align="right">EMAIL</td>
 <td width="50%" align="left"><form:input path="email"
size="30" /></td>
 </tr>

 <tr>
 <td colspan="2" align="center"><input type="submit"
value="Add Contact"></td>
 </tr>

 </table>

 </form:form>

To use Spring tags, we have to add the tag directive in the page as follows:
<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>

In the preceding code, the form tag contains the very important attribute
'modelAttribute'. This is our command object to which the values entered by
the user will be set. When the user submits the form, the method mapped for
the URL addContact.htm will be invoked. This method, in order to use the
command object, should have one of the parameters as @ModelAttribute. The
value of @ModelAttribute will be the value of the attribute "modelAttribute"
taken from the form. In our case it is "contact". The code will be as follows:
@RequestMapping("/addContact.htm")
 public ModelAndView addContact(@ModelAttribute("contact")Contact
contact) throws Exception {

Implementing the Presentation Layer

[50]

 // redirecting to the profile page (profile.jsp)
 ModelAndView modelAndView=new ModelAndView();
 modelAndView.setViewName("manageContact");
 modelAndView.addObject("id",contact.getName());
 return modelAndView;
 }

We got all the values entered by the user in the object of contact without
reading them individually. The Spring framework binds the object and
made it available to us. Isn't it great?

Pre-population of forms
We are now aware of form processing. Here, we have to discuss one more specific
scenario: pre-population of forms. Sometimes, when the form gets displayed in the
browser, there are some fields with predefined values. All such values need to be
predefined and sent from the server to the browser in order to achieve dynamicity.
For example, when we do online reservations, the input field for To as well as From
will display values in a drop-down menu. In the same way, the available stops are
also predefined. Let's discuss it here before moving ahead, how to pre-populate a
form. The process is quite similar to that of command objects. We need a variable
with predefined values available for use in the form. It can be done by adding a
method in the Spring MVC controller class, which will create and set the values for
the respective object. Such methods need to be annotated by @ModelAttribute.
When the Spring MVC controller is invoked, the method which has been annotated
by @ModelAttribute will be invoked, which will make the objects available for use.

Let's have a look into a scenario where we are able to implement ModelAttribute.
Suppose we want to display the list of genders with values Male and Female in the
drop-down menu. We can hardcode these values in the HTML tag. But doing so
can create a problem in updating the code every time the values in the drop-down
change. We need to have a method which facilitates us to add or remove the values
in the list without changing the code. Now let's see how it can be done in the code.

Let's implement pre-population of form in the project. We will create a new project
which will be an extension of the previous project Ch03_Search_Form_Data as
Ch03_FormHandling:

1. Declare a method which will return a List.
2. Decide the name of the list which can be used in the form to fetch the values

and use it at the time of declaration of ModelAttribute.

Chapter 3

[51]

3. Annotate the method with @ModelAttribute, as shown in the following
screenshot:
@ModelAttribute("genderList")
 public List<Gender>addGenders() {
 List<Gender> genders = newArrayList<Gender>();
 Gender genderF = newGender();
 genderF.setId(1);
 genderF.setValue("Female");

 Gender genderM = newGender();
 genderM.setId(1);
 genderM.setValue("Male");

 genders.add(genderF);
 genders.add(genderM);
 return genders;
 }

We need to declare Gender as class in com.packt.ch03.pojo as POJO with
ID and value as data members.

Here we have created a list of Genders. This list will be set to a key "genderList",
making it available in the form.

Create an updated JSP named contactForm.jsp, where we will use the key
"genderList" in Expression Language (EL) instead of just gender as the input
text field. It can be done as follows:

 <tr>
 <tdwidth="50%"align="right">GENDER</td>
 <tdwidth="50%"align="left">
 <form:selectpath="gender">
 <form:optionsitems="${genderList}"
itemValue="id"itemLabel="value" />
 </form:select>
 </td>
 </tr>
For the replacement for,
<tr>
 <td width="50%" align="right">Gender</td>
 <td width="50%" align="left"><form:input path="gender"
 size="30" /></td>
 </tr>

Implementing the Presentation Layer

[52]

The <form:options> tag takes three attributes:

• items: List from whom to fetch the values
• itemValue: The value which will be sent as request parameter
• itemLabel: The value which we want to show in the drop-down

The preceding code gives us the following output:

Form pre-processing

As shown in the output, the Gender tag has two values: Female and Male. These
values are displayed as a result of iteration through items. The Gender values to
be shown will be fetched from the list using the attribute 'itemLabel'. The data
member id has values 1, 2 respectively. Whenever the user selects any gender, the
ID value associated with it will be the value of selection; we did this by the attribute
'itemValue'.

Let's update manageContact.jsp to display the values accepted from the user with
the help of EL using mycontact as the attribute name declared in the addContact().
The updated code snippet will be as follows:

<center>
 <jsp:include page="header.jsp"></jsp:include>

 <table border="1">
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Gender</th>
 <th>Phone Number</th>
 <th>Email</th>

Chapter 3

[53]

 <th>Address</th>
 </tr>
 <tr>
 <th>${mycontact.firstName }</th>
 <th>${mycontact.lastName }</th>
 <th>${mycontact.gender }</th>
 <th>${mycontact.phone_number }</th>
 <th>${mycontact.email }</th>
 <th>${mycontact.address }</th>
 </tr>
 </table>
</center>

We now have an idea about how to develop a flow to read and bind the request
parameter. We also know how a form backing object will be used and how to
do pre-processing of the form. But when we handle forms, we have to be careful
about validating the form. Form validation is important because the developer has
developed the logic depending upon the assumption made about the received data.
If the data is incorrect, the logic will fail, and so will the application. Generally, form
validation is of two types:

• Client-side validation using JavaScript
• Server-side validation

Spring provides a good support for server-side validation. Spring has two different
ways to handle server-side validation:

• Validation interface
• Using annotation provided by JSR303

Form validation
Validation is a process which makes sure that the data which the user is entering
in the form is of correct format. For example, the user needs to add their mobile
number. They can enter their phone number as:

• 9765123456
• 09765123456
• +919765123456

Implementing the Presentation Layer

[54]

Though we know all of these forms are valid, if the data type is number then the
last value, +91 9765123456, will give a number format exception. In the same way,
we can face many problems in business logic because of the pre-assumption of the
values which the user enters. This may be because of the user's confusion or by
mistake. If we don't want to face this problem, we need to clear the user's confusion
and provide them with a clear instruction. Even if the instruction is pretty clear, for
some reason we cannot deny the fact that the user will enter the incorrect format. To
make sure that the Spring MVC controller will get only the correct data, we can do it
with the help of Validators.

Spring MVC provides two mechanisms for validations:

• Developing customized validators using Spring validators
• Annotation-based validation

Developing customized validators using Spring
validators
To develop custom validators, we need to do the following steps:

1. Write a class which implements the Validator interface.
2. Override the supports() and validate() methods.
3. Update the controller for one of the data members of type Validator

using autowiring:
Autowiring is auto-discovery of the dependencies. The AddController will
invoke the validate() method of the validator to perform the validation.
The AddController has the validator as a dependency which needs to be
injected. We are using @Autowired to inject this dependency automatically.
In the controller method where we want to trigger the validation, invoke the
validator's validate method in order to perform validation.

4. Configure the Validator in the Spring configuration file.
5. Change the JSP page which displays the form such that it will be able to

display the validation error messages.

Let's start developing the code.

Chapter 3

[55]

In developing a custom validator, we need to write a separate class which provides a
mechanism for validating the data associated with the object. In order to do this, we
need to follow certain steps as follows:

1. Create a dynamic web application Ch03_FormValidation_interface which
is an extension of Ch03_FormHandling. You can either create a replica of it or
use the project with the addition of new code which we are going to develop
here. The project outline is as shown:

2. Write a class ContactValidator which implements the Validator interface
from the Spring API in the com.packt.ch03.validators package:
public class ContactValidator implements Validator

{

// implementation goes here

}

Override supports() to cross-check support type as follows:
public boolean supports(Class<?> arg0) {
 // TODO Auto-generated method stub
 return arg0.equals(Contact.class);
 }

The supports() method checks whether the object to be validated is of the
type of the class under validation. Here we are checking for class Contact.

Implementing the Presentation Layer

[56]

3. Override validate() methods to write validation logic as follows:
public void validate(Object object, Errors errors) {
 // TODO Auto-generated method stub
 Contact contact = (Contact) object;
 if (contact.getFirstName().length() < 2
 || contact.getFirstName().length() > 10) {
 errors.rejectValue("firstName", "name.required",
 "Please Enter First Name");
 }

The validate() method accepts two arguments:
 ° The object whose value we want to validate
 ° If any validation fails, then the information about data binding and

validation errors is stored in the errors object.

The rejectValue() method is used to add a validation error to the error
object. This method takes three parameters as follows:

 ° The field which the error is associated with
 ° An error code which acts a message key
 ° The message to be shown if validation fails

4. Once the CustomValidator is ready, now it's time to use it for validation.
In order to use the Validator, we need to invoke the validate() method
in the AddController. If any errors are available in validation, we need to
show the respective messages in the form in the following steps:

1. First we need to change the signature of the controller method which
gets invoked on form submission to have BindingResult in its
parameter list.

2. Invoke the validate method of the Validator and pass to it the object
to validate and the object of BindingResult to whom validation
errors will be bounded.

3. Check whether the object of BindingResult has any errors or not.
If errors occur, then the same form where the user submits the value
has to be returned.

It can be done as shown in the following code snippet:
@RequestMapping("/addContact.htm")
 public ModelAndView addContact(@ModelAttribute("contact") Contact
contact,BindingResult result)
 throws Exception {

Chapter 3

[57]

 // will add code here to add data to persistance layer
 // we will get object and return it to display it

 validator.validate(contact, result);
 if(result.hasErrors())
 {
 return new ModelAndView("contactForm");
 }

 ModelAndView modelAndView = new ModelAndView();
 modelAndView.setViewName("manageContact");
 modelAndView.addObject("id", contact.getFirstName());
 return modelAndView;
 }

As we are going to invoke the validate method on the validator, the controller
should have an object available. We will do this by autowiring as follows:

@Autowired
Validator validator;

Also in the configuration file, we need to configure the bean for the Validator class
which we have developed. The configuration will look like this:

<bean id="validator" class="com.packt.ch03.validators.
ContactValidator"></bean>

In case there are validation errors, we need to show them to the user in the same
form in front of each field. To do this, the HTML code has to be changed as follows:

<tr>
 <td width="50%" align="right">First NAME</td>
 <td width="50%" align="left">
<form:input path="firstName"size="30"/>
 <fontcolor="red">
<form:errors path="firstName"/>

 </td>
</tr>

Implementing the Presentation Layer

[58]

The tag <form:errors> is used to display the validation error message which we
have bound in the validate() method for the value of attribute 'path'. In this
code, we showed how to display a validation error message for the data member
firstName. In the same way, we can develop the validation for the rest of the fields
in the form. After completing the code for validating each and every field in the
form, if the user tries to submit it with blank values, the expected output in the
browser is as follows:

Form validation using a validator

In the preceding code, we hardcoded the messages to be displayed to the user.
We can fetch the values of the messages at runtime using externalization. It can
done as follows:

1. Change the code of the validate method as follows:
public void validate(Object object, Errors errors) {
 // TODO Auto-generated method stub
 Contact contact=(Contact)object;
 if(contact.getFirstName().length()<2 || contact.
getFirstName().length()>10)
 {
 errors.rejectValue("firstName","NotEmpty.contact.
firstName");
 }

 }

The method rejectValue() accepts two parameters: first, the field which
the error is associated with and, second, the key whose message value has
to be fetched from the properties file.

2. Now we need to specify the messages for the key specified as the second
parameter in the rejectValue() in the properties file as:
NotEmpty.contact.firstName=Please enter your firstname

Chapter 3

[59]

3. Configure the resource bundle in the configuration file so that the Spring
container will load it and make it available for use. The configuration will be:
<bean id="messageSource" class="org.springframework.context.
support.ReloadableResourceBundleMessageSource">

 <property name="basename" value="/WEB-INF/validations" /></
bean>

The property baseName defines the location and the name of the properties
file where the messages have been configured for the key and its value. We
will use this in annotation-based validation in the upcoming application.

Annotation-based validations
To do form validation according to JSR 303 validations, we need to follow
these steps:

1. Create a POJO where the data members will be annotated by validation
annotations.

2. Write a method in the controller where one of the parameters has a @Valid
annotation that has values we want to validate and one BindingResult
argument to bind the validation errors to the field in the form.

3. Write the messages externally in the properties file.
4. Configure the properties file in the Spring configuration file.
5. Update JSP using <form:errors path="XXX"/> in order to show the

validation error messages fetched from the properties file to the user.

Let's start developing the code:

1. Create the dynamic web application Ch03_FormValidation_Annotation
which is a replica of Ch03_FormHandling.

2. Update the POJO class Contact where we apply the annotations on the data
members. It will be done as follows:
public class Contact {
 @NotEmpty
 @Length(min=2,max=10)
 private String firstName;
 @NotEmpty
 private String lastName;

 private int gender;
 @NotEmpty
 private String address;

Implementing the Presentation Layer

[60]

 @NotEmpty
 @Email
 private String email;

 @NotEmpty
 @Pattern(regexp="(^$|[0-9]{10})")
 private String phone_number;
// getter and setter method
}

All the data members to whom validation is applicable will be annotated
with respective annotation. Here we have applied annotation to check
whether a particular value is empty, has a particular length, and is a valid
e-mail and phone number.

3. This validation has to be triggered in order to perform validations. One of the
ways to do the triggering is applying @Valid annotation on the parameter
of the type which is under our validation criteria. The code of the controller
method which accepts the data from the submitted form will look like:
@RequestMapping("/addContact.htm")
 public ModelAndView addContact(
 @Valid@ModelAttribute("contact") Contact contact,
 BindingResult result) throws Exception {
 if (result.hasErrors()) {
 return new ModelAndView("contactForm");
 }
 return new ModelAndView("manageContact", "id", contact.
getEmail());
 }

We already discussed the use of @ModelAttribute in order to accept
the object. As we are interested in validating the same object, we have to
apply @Valid before this parameter, as shown in the code. In order to bind
the validation error messages which will be shown to the user, we need
BindingResult.

4. Now we need to configure the filename where we are going to put all the
error messages. It will be done by configuring the bean messageSource,
which will tell the framework the base name of the message file, as follows:
<bean id="messageSource"
 class="org.springframework.context.support.
ReloadableResourceBundleMessageSource">
 <property name="basename"value="/WEB-INF/validations"/>
 </bean>

Chapter 3

[61]

5. Update JSP using the following code in order to show the validation error
messages fetched from the properties file to the user:
<form:errors path="XXX"/>

Here, XXX is the property of the POJO class whose object is expected on the
form submission.

Let's start developing the properties file for showing the messages to the users
whenever some validation fails:

1. Create a validations.properties file under WEB-INF to configure the
messages. It will be done as follows:
NotEmpty.contact.firstName=Pleaseenteryourfirstname.
NotEmpty.contact.lastName=Pleaseenteryourlastname.

NotEmpty.contact.address=Pleaseenteryouraddress.

NotEmpty.contact.phone_number=Pleaseenteryourphonenumber.
Pattern.contact.phone_number=pleaseentervalid10digitphonenumber

NotEmpty.contact.email=Pleaseenteryoure-mail.
Email.contact.email=Youre-mailisincorrect.

2. We need to configure the location and the base name of the properties file
in the Spring configuration file so that Spring will load these messages at
runtime before the page is rendered in the browser. The configuration will
be as follows:
<bean id="messageSource"
 class="org.springframework.context.support.
ReloadableResourceBundleMessageSource">
 <property name="basename"value="/WEB-INF/validations"/>
 </bean>

The property base name has the value /WEB-INF/validations, where
/WEB-INF is the location where the properties file will be available and
it will have the base name validations.

3. The final step is to show the validation error messages to the user. It can be
done using the <form:errors> tag as follows:
<tr>
 <tdwidth="50%"align="right">FIRST NAME</td>
 <tdwidth="50%"align="left">
<form:input path="firstName"size="30" />
 <fontcolor="red">

Implementing the Presentation Layer

[62]

<form:errors path="firstName" />

 </td>
 </tr>

Here we have designed it so that if validation fails for the data member firstName,
the message will be shown in red color.

The final output on submitting the form with some validation errors will be as
follows:

Form validation using annotation

Let's dig into annotation validations bit more.

Spring supports JSR-303. JSR-303 is a specification for bean validation. It's
developed for providing a generalized validation solution which the developers
need for the model constraints. The developers can reduce the code by using the
HibernateValidator framework along with Spring. The following are the few
validations which the developer uses frequently to put constraints on the fields
or properties:

Annotation Use
@Length(min=, max=) Validate that the annotated string is between min and

maxincluded

@Max Check whether the annotated value is less than or equal to the
specified maximum

@Min Check whether the annotated value is higher than or equal to
the specified minimum

@NotNull Check that the annotated value is not null
@NotEmpty Check whether the annotated element is not null nor empty
@NotBlank Check that the annotated string is not null and the trimmed

length is greater than 0

Chapter 3

[63]

Annotation Use
@Pattern(regex=,
flag=

Check if the annotated string matches the regular expression
regex considering the given flagmatch

@Size(min=, max=) Check if the annotated element size is between min and max
(inclusive)

@Valid Perform validation recursively on the associated object

Instead of hardcoding the values, it's always best to externalize them in properties
files. The name and location can be anything. We just need to take care of configuring
whatever the name of the file and the location of file is that we selected in the Spring
configuration file. This properties file will contain the data in the format of:

Key = value

The format which we followed while writing the properties file to externalize the
messages is:

Annotation_name.attribute_name.property_name = message to show

In our case we used:

NotEmpty.contact.firstName=Pleaseenteryourfirstname

Now we have an idea about handling a form, it's time to handle the data. The data
which we just want to show to the user, we want the user to select the record to be
deleted from the drop-down menu are the situations where the data is expected to
be retrieved from Spring controller. In order to make the data available for use in the
presentation page, we have to add it to the ModelMap object. This object can then be
used to fetch the values associated with it.

Let's take the example of displaying a contact list in a browser. As we have not yet
created a database and related persistence layer we will use static data here. Follow
the steps to add the functionality of displaying the data:

1. Add a link Show All Records to the index page with showRecords.htm as
an action URL.

2. Add the showAllContacts(ModelMap map) method in the AddController
class, having URL mapping 'showRecords.htm'.

3. Implement the method to create a list of contacts and add it to the map object
and return the view where the contact list can be displayed.

4. Create showContact.jsp. Use JSTL's out and forEach tag for displaying
the data.

Implementing the Presentation Layer

[64]

Now we know what the steps are, let us start the implementation:

1. Add the following code to add a link:
Show All Records in index.jsp.

2. When the user clicks the link, a method mapped for showRecord.htm as a
URL pattern will get invoked. In our case, we created showAllContact()
annotated with @RequestMapping. This method will have the code to create
a list of contacts by creating some objects of the Contact class and then
adding them to the array list. Finally, add the list to the object of ModelMap
as an attribute. We declared the attribute name as 'myList'. Now return the
view 'showContacts' if the list is not empty. If the list is empty, then return
'error'. The method will look like this:
@RequestMapping("/showRecords.htm")
 public ModelAndView showAllContacts(ModelMap map)
 {
 List< Contact> contacts=new ArrayList<Contact>();

 Contact contact=new Contact();
 contact.setAddress("Pune");
 contact.setEmail("John@gmail.com");
 contact.setFirstName("John");
 contact.setLastName("Ray");
 contact.setGender(0);
 contact.setPhone_number("9856434562");
 Contact contact1=new Contact();
 contact1.setAddress("Mumbai");
 contact1.setEmail("Sonia@gmail.com");
 contact1.setFirstName("Sonai");
 contact1.setLastName("Rai");
 contact1.setGender(1);
 contact1.setPhone_number("9566434160");

 contacts.add(contact);
 contacts.add(contact1);

 if(contacts.size()>0)
 {
 map.addAttribute("myList",contacts);
 return new ModelAndView("showContacts");
 }
 return new ModelAndView("error");
 }

3. Create the showContacts.jsp page which will have the declaration of the
JSTL tag library as:
<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

Chapter 3

[65]

As we want to display the list, the best choice is a forEach tag from JSTL. It can be
done as follows:

<c:forEach var="record"items="${myList}"varStatus="st">
 <tr>
 <td><c:outvalue="${ record.firstName }"></c:out></td>
 <td><c:outvalue="${ record.lastName }"></c:out></td>
 <td><c:outvalue="${ record.email }"></c:out></td>
 <td><c:outvalue="${ record.phone_number }"></c:out></td>
 </tr>
</c:forEach>

The attribute which has be added as an attribute to the object of ModelMap is myList.
We can use it as the value for the attribute items using EL. On each iteration, one
contact record will be returned, which is going to be stored in the attribute var.
This value attribute will fetch the value of an individual property using EL as ${
record.firstName}, where record is the value of the var attribute. This attribute
temporarily holds the value of one object while iterating through the list. firstName
is the property name of the object whose data we had stored in the list. We will get
the output as follows:

Data processing using JSTL

Summary
In this chapter, we learned about the presentation layer. We saw how to handle
the data taken from the user, how to process form submission, and how to do pre-
processing of the form. We also saw server-side form validations and covered the
process of displaying the data back to the user. In this chapter, we collected the data
from the user but we did not see how to add the data to the persistence layer or how
to take data from the persistence layer and then display it to the user.

In the next chapter, we will discuss the persistence layer, using the information about
form handling which we just discussed. So let's move on to the exciting world of
data persistency!

[67]

Talking to the Database
On the web, browsing is a common task. The data for which the user is searching
will be defined and stored somewhere so that it can be used whenever required.
It is not necessarily only in a database; it can be in any format. Can we imagine
a dynamic Web without storing data?? Quite difficult to imagine!! Starting from
the login to the application and searching for a particular product from the user's
perspective, adding new products or updating the existing products from an
administrative perspective, in every stage we handle data. In the previous chapter,
where we discussed the presentation layer, we were accepting data from the user
for registration, searching for a particular ID or when we needed to show the data
to the user. But we were not able to save the data as there was no persistency layer
included by us.

In this chapter, we will add the persistence layer and find out the following:

• How to implement the persistence layer to take data from the user
• How to communicate with the persistence layer using Spring's

Hibernate template
• How to set up JUnit and how to use it for testing a unit

Persistence
Data storage is a very common and basic requirement of enterprise applications.
Data storage ensures that the data collected from the user will be saved over time.
The mechanism of saving data for the duration so as to make it available later is
called persistency.

Talking to the Database

[68]

In Java, normally the persistency is of an object. Java can save an object state using
the following ways:

• Object serialization
• Storing data in XML format
• Saving the data in a relational database

Using object serialization
The process by which an object is saved across the network is serialization. In
Java, an object is saved in the file. So we can even say, saving an object to the
file is serialization.

Disadvantages of using object serialization
The disadvantages of object serialization are as follows:

• Serialization adds resource overhead
• Serialization is slow

Storing data in XML
In the past few years, XML has emerged as a favorite choice to handle data in a file
using markups. The good thing is, the developer can use their own tags to represent
the data collection.

Disadvantages of storing data in XML
The disadvantages of storing data in XML are as follows:

• XML needs adequate processing applications
• XML is not for displaying in a browser but for holding data. Not all browsers

have inbuilt support. Developers need to use XSLT (extensible stylesheet
language) to present the data on browsers

Saving the data in a relational database
An object consists of data members to present its state. The relational database
consists of a table structure which has a row and column structure. One row in a table
is mapped to one object. Mapping is a technique that places an object's data members
in one or more fields of a database table. The relational database uses an easy query
writing mechanism to deal with the stored data. Over the years, the relational database
has become the choice of Java developers for achieving persistency.

Chapter 4

[69]

Advantages of saving data in a relational database
The advantages of saving data in a relational database are as follows:

• It supports easy mapping of a table in the database to object data members
• It has techniques such as primary key, timestamps and version numbers to

update an object as and when required
• It provides mapping techniques that can support Java inheritance
• It supports relational mappings such as one to one, one to many, and many

to many, which can be used to map Java collections and arrays

Interaction of Java with relational
databases
Java is a pure object-oriented programming (OOP) language while relational
databases use sequential programming language (SQL). Both of them have their
own data type, methods and programming techniques. OOP manages objects where
SQL manages tables. It is pretty clear that both of them cannot communicate directly
with each other due to the unavailability of compatible language support. Direct
communication is not possible so the unit is required to make them communicate
even though these two are fundamentally different. The Java Database Connectivity
(JDBC) architecture will be managed by JDBC APIs from a Java application which
helps to manage the incompetency. The one which manages the language and data
type difference is DriverManager. The following figure illustrates this:

JDBC DriverJDBC DriverJDBC DriverJDBC Driver

SQL Server Oracle Server MySql Server ODBC Data Source

Java Application

JDBC API

JDBC Driver
Manager

JDBC architecture

The JDBC driver is an implementation that defines the interface in JDBC API for
interacting with the database server.

Talking to the Database

[70]

Types of JDBC drivers
The four types of drivers that facilitate JDBC programming on the variety of
platforms and operating systems are as follows:

• JDBC-ODBC bridge driver
• JDBC Native API Driver / Partly JAVA Driver
• JDBC Net Protocol Driver
• All Java drivers

We shall now see all types of driver and their advantages and disadvantages.

JDBC-ODBC bridge driver
The Type 1 driver uses JDBC API to the Open Database Connectivity (ODBC)
API to access a database. The Type 1 driver is installed on the client machine which
translates all the JDBC calls into ODBC calls. In order to connect to the database it
uses an ODBC driver with the help of Data Source Name (DSN).

JDBC Driver

Java Application

JDBC API

ODBC Data Source

ODBC DriverDSN

JDBC-ODBC bridge driver

Advantages of the JDBC-ODBC bridge driver
These types of drivers are freely installed on the system, which allows access
to almost all types of databases.

Chapter 4

[71]

Disadvantages of the JDBC-ODBC bridge driver
The disadvantages of using the JDBC-ODBC bridge driver are as follows:

• When a program executes the JDBC, the call gets converted first of all to
JDBC-ODBC and then later from JDBC-ODBC to ODBC. As there are a high
number of conversions, the working of the driver is slow, which hampers
performance.

• The JDBC-ODBC Driver uses system installations so in order to use a Type 1
driver, the ODBC driver needs to be installed on the client system.

• The Type 1 driver uses DSN, which needs to be created on every client
machine to connect with a database. This leads to restricting the use of
the application to desktops. It's not useful for web applications.

JDBC Native API Driver/Partly Java Driver
The Type 2 Driver converts JDBC calls to the native calls of the database API, which
are database specific. It needs some binary code to be present on the client machine
to have communication with the database server.

Native API
Driver

Java Application

JDBC API

Data Base

Native API

JDBC Native API Driver/Partly JAVA Driver

Advantages of the JDBC Native API Driver
The advantage of using the JDBC Native API Driver is as follows:

• In comparison with the Type 1 driver, it gives better performance

Talking to the Database

[72]

Disadvantages of the JDBC Native API Driver
The disadvantages of using the JDBC Native API Driver are as follows:

• As a vendor-specific native API must be installed on each client machine,
it leads to problems using it for the Internet

• The communication with the database server is dependent upon the native
API, which leads to problems when the database changes

JDBC Net Protocol Driver
The Type 3 is useful in the case of a middleware server. The JDBC application will
send the request to this middleware server, which translates JDBC calls to the
respective database.

Type 3 Driver

Java Application

JDBC API

Data Base

Middleware Component

JDBC Net Protocol Driver

Advantages of the JDBC Net Protocol Driver
The advantages of using the JDBC Net Protocol Driver are as follows:

• Unlike the Type 2 driver, in the Type 3 driver there is no need for a
vendor-specific database library to be present on each and every machine

• It is portable as it is written in Java
• It can be used for web applications as there is no client-specific code or

configuration

Chapter 4

[73]

Disadvantages of the JDBC Net Protocol Driver
As the Type 3 driver uses a middleware server, it's required to install a separate
server application where database-specific coding needs to be performed.

All Java drivers
The Type 4 drivers are also called pure Java drivers as they are completely written in
Java. The Type 4 driver converts JDBC calls directly to the database-specific protocol
with minimum conversions.

Thin Driver

Java Application

JDBC API

Data Base

Pure Java driver

Advantage of Java drivers
The advantage of Java drivers is as follows:

• The conversion of calls is from JDBC API to database-specific calls, leading
to the best performance among all other drivers

Disadvantages of the Java Driver
The disadvantage of the Java Drivers is as follows:

• As Type 4 driver is specific to the database, whenever the database changes
the driver has to be changed accordingly

Talking to the Database

[74]

Let's look at a JDBC application which will insert contact details in the MySQL
database using Type 4 driver with the help of the following steps:

1. Register Type 4 driver of MYSQL.
2. Get a Connection object.
3. Fire the query using PreparedStatement to insert a record.
4. Close all resources.
5. Add the required JAR files for MySQL.

Let's start the development:

1. Create a new Java application Ch04_ContactManagement.
2. Create or copy the Contact and Gender POJOs which we used in

previous examples.
3. Create a new interface as ContactDAO in com.packt.ch04.dao package

as follows:
public interface ContactDAO {
int addContact(Contact contact);
}

4. DAO is a Data Access Object which provides an interface to the database or
persistence mechanism. It provides data operations without exposing the
actual implementations. The examples which we are going to take while
explaining how to handle databases will practically show the power of DAOs.

5. Create a class ContactDAOImpl in package com.packt.ch04.dao which
implements ContactDAO.

6. Add a data member Connection in ContactDAOImpl and initialize it in a
constructor. As we are using Type 4 driver for MySQL, the code will be as
follows for registering the driver:
Class.forName("com.mysql.jdbc.Driver");

Handle the ClassNotFoundException.

7. To obtain a Connection object, we need to pass the URL, username and
password as:
connection=DriverManager.getConnection("jdbc:mysql:3306/localhost/
contactDB","root","mysql");

Chapter 4

[75]

8. Implement the method addContactdecalred in the ContactDAO interface. In
this we will fire the query to insert a record in the Contact_CORE table with
runtime values. The code snippet will be as follows:
public int addContact(Contact contact)
 {
 int record=0;
 try {
 PreparedStatement ps=connection.prepareStatement("insert
into Contact_CORE values(?,?,?,?,?,?)");
 ps.setString(1,contact.getFirstName());
 ps.setString(2,contact.getLastName());
 ps.setInt(3,contact.getGender());
 ps.setString(4,contact.getAddress());
 ps.setString(5,contact.getEmail());
 ps.setString(6,contact.getPhone_number());
 record=ps.executeUpdate();
 } catch (SQLException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return record;
 }

9. Let's now create ContactMain with a main function as follows:
public static void main(String[] args) {
 // TODO Auto-generated method stub
 ContactDAO contactDAO=new ContactDAOImpl();
 Contact contact=new Contact();
 contact.setFirstName("John");
 contact.setLastName("Ray");
 contact.setGender(1);
 contact.setAddress("JB Road");
 contact.setEmail("john@gmail.com");
 contact.setPhone_number("9845321234");
 int record=contactDAO.addContact(contact);
 if(record==1)
 {
 System.out.println("RECORD INSERTED SUCCESSFULLY");
 }
 else {
 System.out.println("RECORD NOT INSERTED PLEASE TRY AGAIN");
 }
 }

Talking to the Database

[76]

Here we are adding hardcoded values just for checking but we
can even write code to take data from the user.

10. Now add the mysql-connector JAR file. You can download it from
http://www.java2s.com/Code/Jar/m/Downloadmysqlconnectorjar.htm
or https://dev.mysql.com/downloads/connector/j/3.1.html.

11. Finally, set up the MySQL database by creating the database and contact_
core table. We can set up the database as follows:
Create database contactDB.

Use contactDB.

Create table Contact_core(firstname varchar(20),lastname
varchar(20),gender int,address varchar(100),email
varchar(20),phone_number varchar(20)).

12. The same schema will be used throughout this book.
13. Execute the main code; if there is no exception, one row will be added to the

MySQL database. We can check it on the MySQL console as follows:

MYSQL output

Now we know the basics of databases, let's find out how to do Spring-JDBC integration.

Spring-JDBC integration
In the previous code, we managed the connection, wrote the JDBC query and
then obtained the results. Spring gives us the facility to manage these things
by the framework. We will move ahead step by step in order to understand
the integration completely.

In databases, in every task the developer always needs to obtain the database
connection. Spring acquires this connection through the Spring DataSource. The
DataSource is part of the Spring JDBC specification. This means that the developer
is not involved in the details of how to obtain the Connection. The complete
responsibility of getting and maintaining objects will be taken care of by the
Spring framework.

http://www.java2s.com/Code/Jar/m/Downloadmysqlconnectorjar.htm
https://dev.mysql.com/downloads/connector/j/3.1.html

Chapter 4

[77]

Configuring DataSource in Spring JDBC
Spring offers three different ways to configure a DataSource bean:

• Getting data sources by looking up using JNDI
• Getting data sources from the JDBC driver
• Getting data sources that pool connections have configured on a server

Let's see each configuration one by one.

Getting data sources by looking up using JNDI
The Spring MVC application gets deployed on the application as well as web servers.
Both types of server allow developers to configure DataSource, which facilitates
using container implementations. The Java Naming and Directory Interface (JNDI)
is an API for directory service which allows Java applications to find objects by name
using a lookup mechanism. As the JNDI will be managed by the servers and will be
used by the developers through a lookup mechanism, it provides great performance.

The JNDI can be configured as follows:

<jee:jndi-lookup id="dataSource"jndi-name="/jdbc/contactDS"
resource-ref="true" />

Here:

• jndi-name is name of resource in JNDI
• resource-ref is the value given in jndi-name, which can be prefixed with

java:comp/env/

Getting data sources that pool connections configured
on a server
Spring does not provide any pooled data source directly. But it provides support
for integrating Jakarta Commons Database Connection Pooling (DBCP). The
configuration of the BasicDataSourec bean will be:

<bean id="dataSource"
class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="url"
value=" jdbc:mysql://localhost:3306/TEST" />
<property name="username" value="root" />
<property name="password" value="mysql" />

Talking to the Database

[78]

<property name="initialSize" value="5" />
<property name="maxActive" value="10" />
</bean>

Getting data sources from the JDBC driver
This is the simplest way to configure the JDBC driver. There are two classes offered
by Spring which can be used to get reference of data sources, as follows:

• DriverManagerDataSource: The DriverManagerDataSource class returns
a new connection every time that the developer requests for the connection
along with multithreading support.

• SingleConnectionDataSource: The SingleConnectionDataSource
returns the same connection every time a connection is requested by the
developer. As every time the same object is returned, it doesn't perform
well in multithreaded applications.

The way in which we are going to configure the data source is as follows:

<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="com.mysql.jdbc.Driver" />
 <property name="url" value="jdbc:mysql://localhost:3306/TEST" />
 <property name="username" value="root" />
 <property name="password" value="mysql" />
</bean>

Both of these cannot provide support for a connection pool.

Types of integration of JDBC
We can use the integration of JDBC in the following three ways:

• Integrating the DataSource to get a connection reference
• Integrating JDBCTemplate
• Integrating JdbcDaoSupport

They are explained in the following sections.

Chapter 4

[79]

Integrating the DataSource to get a connection
reference
This is similar to using JDBC API, where the developer is responsible for managing
everything related to the database. The following are the steps which can be used in
order to leverage Spring to manage the connection:

1. Create a DAO class which has DataSource as a data member.
2. Use this DataSource to get the connection object.
3. Use the connection object to get Statement, PreparedStatement to execute

the query.
4. Configure the DataSource and the DAO class whose data member is

DataSource in XML file.

Let's start redeveloping the application Ch03_FormValidation_Annotation, which
we developed in the previous chapter for managing contacts. We will add a database
layer in order to maintain persistence. We will add extra code to achieve this by the
following steps:

1. Create a new interface ContactDAO in the package com.packt.ch04.dao.
Declare addContact()method as:
public int addContact(Contact contact);

2. Implement this interface by ContactDAOImpl.
3. In ContactDAOImpl, declare a data member of type DataSource as follows:

private DataSource dataSource;

4. Create getter and setters for the DataSource.
5. Create addContact(Contact contact) where we will use the DataSource

reference to create the Connection object. Using the Connection object, we
will insert the data in the database. The code snippet will be:
public int addContact(Contact contact) {
 // TODO Auto-generated method stub
 int record = 0;
 try {
 Connection connection = dataSource.getConnection();
 PreparedStatement ps = connection
 .prepareStatement("insert into Contact_CORE
values(?,?,?,?,?,?)");
 ps.setString(1, contact.getFirstName());
 ps.setString(2, contact.getLastName());
 ps.setInt(3, contact.getGender());

Talking to the Database

[80]

 ps.setString(4, contact.getAddress());
 ps.setString(5, contact.getEmail());
 ps.setString(6, contact.getPhone_number());
 record = ps.executeUpdate();

 } catch (SQLException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 return record;
 }

6. We have used dataSource but we haven't initialized it. We will configure
the dataSource in the XML file so that the Spring container will initialize it
and then with the help of DI we will inject it in the ContactDAOImpl. Let's
now configure the dataSource and ContactDAOImpl in connection.xml
as follows:
<bean id="dataSource"
class="org.springframework.jdbc.datasource.
DriverManagerDataSource">
 <property name="driverClassName" value="com.mysql.jdbc.Driver" />
 <property name="url" value="jdbc:mysql://localhost:3306/
contactDB" />
 <property name="username" value="root" />
 <property name="password" value="mysql" />
</bean>

<bean id="contactDao" class="com.packt.ch04.dao.ContactDAOImpl">
 <property name="dataSource" ref="dataSource" />
</bean>

The values used in the preceding code for driverClassName,
url, username and password will be the values which enable us
to connect to the database for the respective Type 4 driver for the
MySQL database.

7. The database layer will be used by the controller so the controller should
have reference to the ContactDAO. It can be done by adding the code in
class AddController as follows:
@Autowired
ContactDAO contactDAO;

Chapter 4

[81]

8. Update the addContact()method in the controller to invoke addContact()
from the DAO class. The code snippet will be:
@RequestMapping("/addContact.htm")
 public ModelAndView addContact(
 @Valid@ModelAttribute("contact") Contact contact,
 BindingResult result) throws Exception {
 if (result.hasErrors()) {
 return new ModelAndView("contactForm");
 } else {
 int record = contactDAO.addContact(contact);
 if (record > 0) {
 return new ModelAndView("manageContact", "id",
 contact.getEmail());
 }
 }
 return new ModelAndView("contactForm","error","Data Cannot be
inserted Email is already registered");
 }

9. After deploying the code, the output where the user will fill up the data for a
new contact will be as follows:

Contact registration form

10. When the user clicks on Add Contact, if the e-mail ID is not already in the
database, we will get a success message as follows:

Contact registration form

Talking to the Database

[82]

Here, ID is the e-mail the user entered in the contact registration
form. We can check the data in the table Contact_CORE under the
contactDB schema.

Integrating the JDBC template
In JDBC, the burden of managing the database, firing the queries and handling
the exceptions is always on the development side. Spring helps to clean the code
and facilitates the developer to write only necessary code. The template provides
the facility to the developer to develop a DAO version specific to their application
problem. The injection of the template is good for abstraction. Spring provides
three template classes to be chosen by the developer:

• JdbcTemplate: The PreparedStatement facilitates firing a query to the
database using runtime values by specifying the index of the parameter.
JdbcTemplate also facilitates querying the database using a similar kind
of indexing.

• NamedParameterJdbcTemplate: The NamedParameterJdbcTemplate class
enables the developer to query the database with binding the parameters
with the help of a name in a SQL query rather than indexing as done in
JdbcTemplate.

• SimpleJdbcTemplate: This class is similar to JdbcTemplate with one major
advantage of supporting Java 5 features.

Let's redevelop the application which we developed in case 1 using JDBCTemplate
instead of using DataSource using the following steps:

1. Let's change the implementation of ContactDAOImpl by declaring a data
member of type JdbcTemplate instead of DataSource as:
JdbcTemplate jdbcTemplate;

2. Add getter and setters for JdbcTemplate. We will use Spring DI to initialize
the object from XML.

3. We need to change the addContact() method to use JdbcTemplate to insert
the record. The code snippet will be as follows:
public int addContact(Contact contact) {
 // TODO Auto-generated method stub
 int record = 0;
 String SQL_INSERT_CONTACT = "insert into Contact_CORE
values(?,?,?,?,?,?)";
 try{
 record = jdbcTemplate.update(

Chapter 4

[83]

 SQL_INSERT_CONTACT,
 new Object[] { contact.getFirstName(),
contact.getLastName(),
 contact.getGender(),
contact.getAddress(),
 contact.getEmail(),
contact.getPhone_number() });
 }catch (DuplicateKeyException e) {
 // TODO: handle exception
 e.printStackTrace();
 return 0;
 }
 return record;
}

We have not handled any SQL exception as we did in JDBC; this is because,
internally, JdbcTemplate will catch any SQL exceptions that are thrown. It will
then translate the generic SQL exception into more specific data access exceptions
and rethrow it. This exception is an unchecked exception as all Spring's data access
exceptions are runtime exceptions. So it's not necessary for us to catch them. Still
we are catching them because that is our logical requirement:

1. The controller layer will remain the same as we have already injected
ContactDAO in AddController.

2. The configuration file, connection.xml, needs to be changed for the
injection and declaration of one more bean of type JdbcTemplate. The
JdbcTemplate has a data member of type DataSource. So, while configuring
the JdbcTemplate, we need to inject reference of type DataSource. The
JdbcTemplate is a data member of ContactDAOImpl. So, while configuring
the bean for ContactDAOImpl, the injection of type JdbcTemplate has to be
done. The connection.xml will have three beans as follows:

 ° Bean for DataSource
 ° Bean for JdbcTemplate
 ° Bean for ContactDAOImpl. The configuration will be as follows:

<bean id="dataSource"
class="org.springframework.jdbc.datasource.
DriverManagerDataSource">
 <property name="driverClassName" value="com.mysql.jdbc.
Driver" />
 <property name="url" value="jdbc:mysql://localhost:3306/
contactDB" />
 <property name="username" value="root" />
 <property name="password" value="mysql" />

Talking to the Database

[84]

</bean>

<bean id="jdbcTemplate"
class="org.springframework.jdbc.core.JdbcTemplate">
 <property name="dataSource" ref="dataSource"></property>
</bean>

<bean id="contactDao"
class="com.packt.ch04.dao.ContactDAOImpl_Template">
 <property name="jdbcTemplate" ref="jdbcTemplate" />
</bean>

3. Let's deploy the application to check with the data added in the table. The
output will be similar to the one which we got while using DataSource
injection.

Integrating JDBC DAO support
This is dependent upon the DAO design pattern, where the developer writes a
class which gets inherited from the JdbcDaoSupport class. Getting extended from
DAOSupport classes has the disadvantage of coupling with the framework.

Let's develop an application to demonstrate how to write an application which uses
DAOSupport class with the help of the following steps. We will change the same
application which we developed for JdbcTemplate:

1. Let's change the implementation of ContactDAOImpl by extending from
JdbcDAOSupport. The JdbcDAOSupport class provides a JdbcTemplate
instance which the developer can use. So remove JdbcTemplate as data
member and its getter and setters.

2. Change the addContact to use JdbcTempate which has been provided by
JdbcDaoSupport to insert a record as follows:
public int addContact(Contact contact) {
 // TODO Auto-generated method stub
 int record = 0;
 String SQL_INSERT_CONTACT = "insert into Contact_CORE
values(?,?,?,?,?,?)";
 try {
 record = getJdbcTemplate().update(
 SQL_INSERT_CONTACT,
 new Object[] { contact.getFirstName(),
 contact.getLastName(), contact.getGender(),
 contact.getAddress(), contact.getEmail(),
 contact.getPhone_number() });

Chapter 4

[85]

 } catch (DuplicateKeyException e) {
 // TODO: handle exception
 e.printStackTrace();
 return 0;
 }
 return record;
}

3. JdbcTemplate is not a data member of the ContactDAOImpl class but
the class is getting extended JdbcDAOSupport. So we need to provide
the reference of JdbcTempate or DataSource from the configuration.
The connection.xml will have the following code snippet:
<bean id="dataSource"
class="org.springframework.jdbc.datasource.
DriverManagerDataSource">
 <property name="driverClassName" value="com.mysql.jdbc.Driver"
/>
 <property name="url" value="jdbc:mysql://localhost:3306/
contactDB" />
 <property name="username" value="root" />
 <property name="password" value="mysql" />
</bean>

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.
JdbcTemplate">
 <property name="dataSource" ref="dataSource"></property>
</bean>

<bean id="contactDao" class="com.packt.ch04.dao.ContactDAOImpl">
 <property name="jdbcTemplate" ref="jdbcTemplate" />
</bean>

4. The ContcatController implementation remains untouched. After
deploying and executing the application, we will get one more row
added in the Contact_CORE table.

We have just seen the ways to handle a database using JDBC basics with the help
of Spring integration techniques. The developers don't have to get involved in
managing the Connection, exception handling and dealing with boilerplate code.
For smaller applications, it is fine, but when the application size increases, the pain
comes back. Now, as a developer, we need something more. We need something
which provides the facility to manage JDBC from the perspective of objects and
not SQL-centric.

Talking to the Database

[86]

Problems with JDBC
The problems with JDBC are as follows:

• In JDBC, the developer maps a data member to a table column. This is not
object-centric.

• No default mapping is available in JDBC with the table.
• JDBC works using the basics of SQL.
• JDBC uses database-specific code.
• No automatic versioning or timestamping is available.

Introduction to ORM
To overcome these drawbacks, developers have the Object Relational Mapping
(ORM) technique. ORM helps to manage the impedance mismatch between an
object-oriented application and a relational database. ORM helps to write less
complex applications. With the help of ORM frameworks, we can persist the objects
to the relational tables using the mapping between the tables and the objects. iBatis,
JPA and Hibernate are the ORM technologies which are on the market.

Advantages of using ORM
The advantages of using ORM are as follows:

• ORM maps an object to the table
• It supports its own query language instead of using SQL
• Less database-dependent code
• Low maintenance cost
• Optimizes the performance by providing caching
• Provides ways for automatic versioning and timestamping

Let's now discuss the Hibernate framework.

Introduction to Hibernate
Hibernate is a Java-based open source persistence framework also called an ORM
tool. It has APIs to support persistence. Hibernate applications define persistence
classes that are mapped to the database tables. These persistence classes are POJO
classes. POJOs are Plain Old Java Objects, which facilitate holding the data, which
makes it easier to send data from one layer to another.

Chapter 4

[87]

Hibernate architecture
The following diagram shows the core interfaces which are used in Hibernate
applications and the interaction of a Java application to access the data from the
database using these interfaces through APIs such as JDBC, JTA, or JNDI:

Application

Hibernate

Application with POJO
Classes

DataBase Server

Session

Query

SessionFactory

TransactionConfiguration

JDBC JTAJNDI

Hibernate architecture

When a developer uses Hibernate, the most important thing is to determine the
mapping between the class and the table in the application. This class may be just
a POJO or a POJO which supports inheritance or containment. Whatever OOPS
strategy the POJO is supporting, there are some facts which the developer needs
to always keep in mind:

• The POJO must follow JavaBean specification and must include getter and
setter methods.

• If the class exists on its own and if it's not a part of the inheritance or
composition strategy, the identifier strategy has to be provided. Hibernate
provides different identifier types to generate or built the identifier.

Hibernate internally uses JDBC to connect to the database. Hibernate can be used
with an application server where it uses JNDI to handle the connection resource.
Hibernate can use a JDBC connection or Java Transaction API (JTA) for transaction
support.

Talking to the Database

[88]

In Hibernate APIs, there are some important classes and interfaces which the
developer commonly comes across:

• Configuration: The Configuration class is very important in hibernate as
it has the responsibility to get the database connection and the mapping for
a class to the table:

 ° To handle the connection, hibernate uses a configuration file which
has the name hibernate.cfg.xml.

 ° Hibernate uses mapping files in order to map a class to a table.
The name of this file is normally XXX.hbm.xml, where XXX will be
replaced by the name of the POJO to be mapped. But nowadays,
instead of maintaining the file, developers can also use annotations
for the mapping.

• SessionFactory: It's a singleton, heavyweight class. The SessionFactory
configures hibernate for application using the configuration file and gives
an object of Session. As Sessionfactory is a heavyweight object, the
developer has to take care to use a single object per application.

• Session: Session is obtained from a SessionFactory object. It's needed
every time the developer deals with the database to add a new record or to
load an existing record from a table. Session is lightweight; when it gets
instantiated, the connection is made with the database.

• Query: The Query interface lets the developer query the database, which is
completely dependent upon the object identifier.

• Transaction: When communication happens between the database and
the application, there is a fair chance of something going wrong. This leads
to inconsistency on the database side, which may affect the developer's
business logic. Transaction supports the development side, helping to
maintain integrity.

Let's discuss a small application to get exposure with the hibernate application in the
XML way. We will cover mapping using annotation in the next application. We need
to do the following steps:

1. Write a POJO whose object we want to persist.
2. Map the POJO in a Hibernate bean mapping file with the name POJO_name.

hbm.xml. While writing the mapping, provide the identifier strategy and
map all the data members with the columns.

Chapter 4

[89]

3. Write the connection parameters in the hibernate.cfg.xml file. Put the
file in classpath as it's a default location from where hibernate loads the
configuration file.

4. Create a class where we write the code to insert the data to the table or to
perform other database-related operations.

The steps which need to be performed here will be:

1. Load the configuration file and get an object of SessionFactory.
2. From SessionFactory, obtain an object of Session.
3. Using the object of Session, get an object of Transaction.
4. Begin the transaction before performing the database operation.
5. Invoke a method on session to perform the database operation.
6. Commit the transaction on successful completion of the database operation.

If the operation has failed, rollback the transaction.
7. Close all the resources on completing the operation.

Let's start with development:

1. Create a new Java application with the name Ch04_Hibernate_
Introduction.

2. Add the following hibernate JAR FILES and mysql-connector-java-5.1.12-bin
jar:

The jar files for hibernate

You can download the jar from http://hibernate.org/orm/
downloads/.

3. Create or copy the Contact and Gender POJO classes following JavaBean
specification in the package com.packt.ch04.pojo. We have already used
these POJOs in previous examples.

http://hibernate.org/orm/downloads/
http://hibernate.org/orm/downloads/

Talking to the Database

[90]

4. Create contact.hbm.xml to map the bean. While writing the mapping file,
we need to provide the following information:

 ° This file will contain the tag class which has name and table as
attributes. The name is the name of POJO which is mapped to
the table specified by the attribute table.

 ° It has id as a tag, which gives an object identifier generation strategy.
It must configure id.

 ° Each data member in the POJO except the identifier will be mapped
by a separate tag property.

 ° The configuration file will be as follows:
<hibernate-mapping>
 <class name="com.packt.ch04.pojo.Contact"table="Contact_
hib">
 <id name="email"type="string">
 <column name="email"/>
 <generator class="assigned"/>
 </id>
 <property name="firstName"type="java.lang.String">
 <column name="FIRST_NAME"/>
 </property>
 <property name="lastName"type="java.lang.String">
 <column name="LAST_NAME"/>
 </property>
 <property name="gender"type="int">
 <column name="GENDER"/>
 </property>
 <property name="address"type="java.lang.String">
 <column name="ADDRESS"/>
 </property>
 <property name="phone_number"type="java.lang.String">
 <column name="PHONENUMBER"/>
 </property>
 </class>
</hibernate-mapping>

Chapter 4

[91]

5. Now create hibernate.cfg.xml in the classpath. The configuration file
consists of driver class name, URL, username, and password, which helps to
obtain a database connection. Along with this, we will configure a few more
properties, which are as follows:

 ° Dialect: Each database has its own way of firing a query.
In Hibernate, the developer is not involved in writing the query;
it will be taken care of by the framework. The dialect helps to fire
the database-specific query. As we are using a MYSQL database,
we are going to use MySQLDialect.

 ° Show_sql: As hibernate fires the query internally, it's behind the
screen. If the developer wants to know what and how a query is
fired, we will use this property. This will display the query on the
console, making it visible to the developer.

 ° hbm2ddl.auto: Hibernate works with tables. It may be possible that
the developer wants to create the table every time he is running the
application or may want to use existing ones. This property gives
information to the framework about what table creation strategy
is to be used, such as create, update, create-drop.

 ° resource: It specifies which files to load for Hibernate bean mapping.

The configuration file will be as follows:
<hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.driver_class">
 com.mysql.jdbc.Driver
 </property>
 <property name="hibernate.connection.url">
 jdbc:mysql://localhost:3306/contactDB
 </property>
 <property name="hibernate.connection.username">
 root
 </property>
 <property name="hibernate.connection.password">mysql</
property>
 <property name="hibernate.dialect">
 org.hibernate.dialect.MySQLDialect
 </property>
 <property name="show_sql">true</property>
 <property name="hbm2ddl.auto">create</property>
 <mapping resource="com/packt/ch04/pojo/Contact.hbm.
xml"/>
 </session-factory>
</hibernate-configuration>

Talking to the Database

[92]

6. Create an interface ContactHibernateDao as the following snippet in
com.packt.ch04.dao package:
public interface ContactHibernateDao {
 String insertContact(Contact contact);
}

7. Create the class ContactHibernateDaoImpl in the same dao package
where we use the hibernate API to insert the object of Contcat in table.
Add int insertContcat(Contact contact) for insertion. The code
snippet is as follows:
public String insertContact(Contact contact) {
 // TODO Auto-generated method stub
 SessionFactorysessionFactory = null;
 Transaction transaction=null;
 Session session=null;
 String email=null;
 try{
 sessionFactory=
new Configuration().configure().buildSessionFactory();
 Session session=sessionFactory.openSession();
 transaction=session.beginTransaction();
 email=(String)session.save(contact);
 transaction.commit();

 }catch (ConstraintViolationException e) {
 // TODO: handle exception
 transaction.rollback();
 e.printStackTrace();
 }
finally{
session.close();
sessionFactory.close();
 }

 return email;
}

8. Create the main class from where execution starts. The code snippet will be
as follows:
public static void main(String[] args) {
 // TODO Auto-generated method stub

 ContactHibernateDao dao=newContactHibernateDaoImpl();
 Contact contact=newContact();

Chapter 4

[93]

 contact.setEmail("billy@abc.com");
 contact.setAddress("Pune");
 contact.setFirstName("billy");
 contact.setLastName("brown");
 contact.setGender(1);
 contact.setPhone_number("7876432123");

 String email=dao.insertContact(contact);
 if(email!=null)
 {
 System.out.println("data inserted successfully with id:-
"+email);
}
 else {
 System.out.println("please choose new mail ID");
 }

 }

9. On successful execution, one row will be inserted in the contact_hib table.
We can check the query which has been fired by Hibernate for insertion of
records and the success message on the console as follows:

Hibernate console output

Spring Hibernate integration
Spring provides integration classes so that these ORM technologies can be used
depending upon Spring principles. For the integration of Hibernate, Spring provides
a class Hibernate template, which has the methods for persisting the object.

Talking to the Database

[94]

Let's redevelop the Ch04_JdbcTemplate_Integration application which we
developed using JDBCTemplate to integrate HibernateTemplate in a newly created
project Ch04_Hibernate_Template_Integration. We will use Hibernate using
annotation for the integration with the help of the following steps as we have
already seen how to use xxx.hbm.xml to map POJO to the table:

1. Add the .jar as listed in the following screenshot, which will be for Spring,
Hibernate using annotation and MYSQL connector:

The JAR file list for Spring-Hibernate integration.

We can download the spring jar files from http://repo.spring.io/
release/org/springframework/spring/.

2. As we want to use annotation-based hibernate mapping, we need to change
our Contact POJO with mapping annotations and no longer need Contact.
hbm.xml to map POJO to the database table used in the previous example:
@Entity
@Table(name="contact_hib")
public class Contact {

http://repo.spring.io/release/org/springframework/spring/
http://repo.spring.io/release/org/springframework/spring/

Chapter 4

[95]

 @NotEmpty
 @Length(min=2,max=10)
 @Column(name="FIRST_NAME")
 private String firstName;

 @NotEmpty
 @Column(name="LAST_NAME")
 private String lastName;

 @Column(name="GENDER")
 private int gender;

 @NotEmpty
 @Column(name="ADDRESS")
 private String address;

 @NotEmpty
 @Email(regexp="[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]
{2,4}")
 @Id
 @Column(name="EMAIL")
 private String email;

 @NotEmpty
 @Pattern(regexp="(^$|[0-9]{10})")
 @Column(name="PHONENUMBER")
 private String phone_number;
// getters and setters for all the data members.
}

The contact will be mapped to the table using the annotation @Entity. It maps
the class to the table with the same name; in our case, it will be Contact. But
if we want to map the class with a table having another name then we need to
use @Table annotation which accepts the name attribute. This name attribute
specifies the name of the table with which we want to map the class and each
data member which wants to be mapped with the table.
All the data members which we want to map with the columns in the table,
we will annotate as @Column. The name of the column and the data member
will be same. If we want to give something else as the column name then we
need to use the name attribute along with @Column as we did. We need to
add information about @Id also as, the @Id will map the data member to the
Primary Key of the table.

Talking to the Database

[96]

3. Instead of using JdbcTemplate, we need to declare a data member of type
HibernateTemplate as follows:
HibernateTemplate hibernateTemplate;

Add getter and setter for HibernateTemplate.

4. Change the addContact() method to use HibernateTemplate to persist the
data using the persist() method. The code snippet will be as follows:
public int addContact(Contact contact) {
 // TODO Auto-generated method stub
 try {
 hibernateTemplate.persist(contact);
 return 1;
 } catch (DataAccessException e) {
 // TODO: handle exception
 e.printStackTrace();
 }
 return 0;
 }

5. Let's use DI to inject the HibernateTemplate object. Hibernate uses
SessionFactory. So, while writing the configuration, we need to add a bean
for SessionFactory. SessionFactory needs the connection properties,
the class which provides mapping of the POJO to the table, and the dialect,
show_sql, and hbm2ddl.auto properties. The database connection will be
provided by the DataSource bean so there is no need to provide separate
hibernate.cfg.xml as we did in the Hibernate_Introduction application.
Finally, we are going to use HibernateTemplate provided by Spring for
integration. The configuration connection.xml file will look as follows:
<bean id="dataSource" class="org.springframework.jdbc.datasource.
DriverManagerDataSource">
 <property name="driverClassName" value="com.mysql.jdbc.Driver"
/>
 <property name="url"
value="jdbc:mysql://localhost:3306/contactDB" />
 <property name="username" value="root" />
 <property name="password" value="mysql" />
</bean>

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.annotation.
AnnotationSessionFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="annotatedClasses">

Chapter 4

[97]

 <list>
 <value>com.packt.ch04.pojo.Contact</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop
key="hibernate.dialect">org.hibernate.dialect.MySQLDialect
 </prop>
 <prop key="hibernate.show_sql">true</prop>
 <prop key="hibernate.hbm2ddl.auto">update</prop>
 </props>
 </property>
</bean>

<bean id="hibernateTemplate"
class="org.springframework.orm.hibernate3.HibernateTemplate">
 <property name="sessionFactory" ref="sessionFactory" />
</bean>

<bean id="contactDao" class="com.packt.ch04.dao.ContactDAOImpl">
 <property name="hibernateTemplate" ref="hibernateTemplate" />
 </bean>

6. On execution, when the user fills in the contact registration form, the data
will get inserted in the table contact_hib if the e-mail ID is not already
available in the database.

7. We specified the database connection related parameters in the hibernate.
cfg.xml file in the previous example. We will not use this file while doing
the integration as the sessionFactory object will use dataSource for
establishing the connection.

8. We will not create the Contact_hib manually as we specified hbm2ddl.auto
to be created while configuring sessionFactory for setting hibernate-related
properties.

Talking to the Database

[98]

Introduction to unit testing
Unit testing is the process of testing a single functionality in the code at a time.
In unit testing, the developer ensures that the functionality is working correctly
according to business logic. We will use JUnit for unit testing.

Unit testing using JUnit
JUnit is an automation testing framework which provides numbers of TestRunners
that can automate the execution of any Java class that extends from TestCase. It
facilitates the testing of the expected behavior of a method as a unit. The developer
can write test cases for all the functions in the code. Whenever a change occurs in
the functionality, causing it to behave differently than expected, it can be easily
identified and fixed as well. JUnit 4 supports annotation-based programming so
instead of getting extended from the TestCase, the developer can use annotation-
based programming as well.

Steps for writing a TestCase using annotation
Perform the following steps to write a TestCase:

1. Create a class TestCase by giving a name as XXXTest where XXX can be
replaced by the class under testing. This we called TestCase.

2. Create one or more methods for testing a function. Each one of them has
to be annotated by @Test. The name of this method in general will have a
format such as testXXX_positive() or testXX_negative(), where XXX is
replaced by the name of the method under testing.

3. In the method, use assertXXX() to validate the results of the method under
testing according to the expected business logic.

Let's develop a TestCase for the code of dao layer which we had developed in
Ch04_Hibernate_Template_Integrationusing eclipse:

1. The class under testing is ContactDAOImpl from the Ch04_Hibernate_
Template_Integration project.

2. Create a new TestCase under com.packt.ch04.dao.junit with the name
ContactDAOImplTest. Select the class under testing as com.packt.ch04.
dao.ContactDAOImpl. Select setup() and tearDown() for initializing and
releasing the memory. The selection will be as follows:

Chapter 4

[99]

Creation of a test case using Eclipse

3. Now we need to select the methods which we want to test by clicking on
the Next button. Select the checkbox of the methods which we want to take
under testing. The screenshot will look like this:

Method selection for JUnit testing

Talking to the Database

[100]

We selected addContact() for testing. Click on Finish to complete the steps.
If we are creating the JUnit TestCase for the first time in the workspace, we
will get a message to add Junit 4 on the build path as follows:

Adding JUnit library to build path

4. Click on OK to add the library on the build path.
5. By clicking on the Finish button, we have got TestCase created from

the template.
6. As the object of ContactDAO is required in the code and it has to be obtained

from the Spring container, we will use a spring API to get an object
as follows:
@Before
 public void setUp() throws Exception {
 ApplicationContext context=new ClassPathXmlApplicationContext(
"connection.xml");
 dao=(ContactDAO)context.getBean("contactDao");
}

7. The object will be set to null to release the memory by garbage collector.
The code will be:
@After
 public void tearDown() throws Exception {
 dao=null;
}

8. While writing the code to test addContact(), the argument expected by the
method is the Contact object. So the first task is to get an object and then
pass it to the addContact() method. Now it's time to test using assertXXX()
as per the return type of the method under testing. The code snippet will be:
@Test
 public void testAddContact() {

Chapter 4

[101]

 Contact contact=new Contact();
 contact.setEmail("abcde@abc.com");
 contact.setAddress("Waecity");
 contact.setFirstName("billy");
 contact.setLastName("brown");
 contact.setPhone_number("3456543129");

 int record=dao.addContact(contact);
 assertEquals(1,record);
 }

9. It's always better to be on the safe side when carrying out positive as well
as negative testing. The previous code is about positive testing where we
got the code successfully executed by inserting a new record in the table.
Now we will do negative testing to insert the same record which we did in
the previous code. This time we will get no record added as e-mail ID acts
as primary key. The code snippet will be as follows:
@Test
 public void testAddContact_Negative() {

 Contact contact=new Contact();
 contact.setEmail("abcd89@abc.com");
 contact.setAddress("Waecity");
 contact.setFirstName("billy");
 contact.setLastName("brown");
 contact.setPhone_number("3456543129");

 int record=dao.addContact(contact);
 assertEquals(0,record);
 }

10. Now select the TestCase and run it as JUnit Test as shown in the
following screenshot:

Running a JUnit test case

Talking to the Database

[102]

11. On successful execution, we will get the output from JUnit view as follows:

JUnit execution output

In the same way, we can develop the code for finding all the records or finding a
record by using mail ID from the database. The complete code along with JUnit
testing can be referred to in the project Ch04_Hibernate_Template_Integration.

Summary
When we write down an application, it needs to deal with information and data
taken from the real world. Along with processing the accepted data, we also need
to use this data for future purposes with the help of the persistence layer. The
goal of this chapter was to provide different techniques and ways of storing data
permanently. Here we have covered most of the techniques to save the data in
database tables using Spring. We've covered JDBC overview, mapping data using
Hibernate and the integration of these techniques in Spring. Instead of giving a full
stop to development, here we moved a step ahead and carried out JUnit testing to
find out how the code is actually behaving for a certain set of data.

In the next chapter, we will learn how to develop the most important layer of an
application—the business layer—and about communication between the layers.

[103]

Developing the
Business Layer

In every application, there are a number of components available. Some deal with
user interfaces, some deal with the database, and some deal with configuration.
But the core component which will decide how to deal with data is the business
component. The business component will be involved in handling the data with
immense care so that there will not be any mess; neither on the data side nor on the
application flow side. The responsibility of these components is to manipulate the
data by applying some mathematical formulae and certain business rules. These
components will be involved in taking all kinds of decisions for handling the data
to and fro in the application.

The application will have multiple layers that comprise of presentation, data
storage, and business logic handling. The data access object (DAO) layer and the
presentation layer are involved in adding data to the database layers and accepting
data from the user respectively. Both of these layers are involved in the handling
of data. These layers are not about what the logical part is, what the decision is,
or how manipulation of data will be done. These layers are not taking part in any
decision-making nor in deciding which module will come next in the flow. Nowhere
have they checked whether the data is getting inserted, updated, and whether they
have removed the correct layer or not. This scenario leads to problems such as
maintaining the consistency of data, applying a wrong business formula, invoking
a wrong module, data getting updated in one table but not in another, and many
more. That means, ultimately, the application fails in the market. It's the developer's
responsibility to develop the correct flow in an application which will fulfill the
business logic correctly. They need to understand the business flow and accordingly,
build up the modules which will communicate with each other and give the right
solution to the problem. If they get the business logic incorrect then there will be a
blunder when the application executes.

Developing the Business Layer

[104]

Both the layers which we already discussed in the previous two chapters have their
own responsibilities to perform. This is the point where we need to discuss the most
important layer: the business layer. Transaction management is one such concern
of the business logic. Transaction management helps developers to maintain the
consistency of the data with the help of commit or rollback methods. In the same
manner, there are many other ways to maintain the logical part of the project.

In this chapter, we will discuss the following topics:

• How to implement the business layer
• How to communicate with the business layer
• How to wrap up the layers to collaborate

Business logic
Let's discuss what exactly business logic is, in a simplified manner with a
few scenarios:

• Scenario 1: Let's take a very simple banking example. The common operations
which a bank holder does are the deposit and withdrawal of money. Every
bank has certain rules for the maintenance of a minimum balance. The
account holder cannot withdraw an amount below this minimum balance.
We also need to remember here that every bank has their set of rules about
what will be the minimum balance, for example, SBI has 500 Rupees, HDBC
and ICICI have 5,000 Rupees, and so on. The minimum balance of an account
is also dependent upon what type of account you have: for example, salary
accounts can be zero balance accounts. Again, these rules change from bank
to bank as a part of their business policy and their tie-ups with companies. In
the persistence layer, the developers will develop the code so that after every
withdrawal, the updated balance, the withdrawal amount, and other details
of the transaction will be stored in the database table. But here they also have
to follow the minimum balance rule in order to make sure that no one will
be able to withdraw an amount if the minimum balance has reached its limit.
They will do this by checking the minimum balance and the type of account
every time before a withdrawal.

• Scenario 2: Let's discuss a second scenario. Every bank has a number of
users specifically divided into two main categories of bank account: savings
accounts and current accounts. The savings account holders take advantage
of the interest rates on their balance offered by banks. But the current account
holder doesn't have such a facility. At the end of the financial year, every
bank gives yearly interest to account holders. This interest has to be calculated
depending upon the type of account and the amount in the account.

Chapter 5

[105]

This can also depend on the deposit and withdrawal transactions made on
the account. So, while calculating the interest, all these things have to be
carefully considered.
The interest gets calculated for fixed deposits as well. All banks provide a
facility of fixed deposit to customers. The interest rate varies as per bank
norms depending on the deposit amount, duration of deposit, and the
depositor's age. When a developer develops such modules, they have
to think about multiple scenarios where the rules and formulas will be
dependent upon certain scenarios. This is about normal conditions but
sometimes the account holder wants to withdraw the fixed deposit before
the term ends as well. Only, accepting data from the user and adding it to
the table will not complete the process flow, but along with accepting data, it
should be again processed depending upon the above-discussed conditions.

• Scenario 3: We will discuss one more scenario based on railway reservations.
At the time of railway reservations, we select a particular train and date of
travel. We check for the availability of seats and start the process of booking
the ticket. When the process of booking starts, a few available seats are shown
to us. We then select the seat and now we are in the mode of payment, which
may take too much time. Meanwhile, all the available tickets have been
booked by other passengers and no seat is available. Being unaware that the
seats are not available, we complete the payment process. Thus, instead of
getting confirmed tickets, we lose the money and do not have the booking
as well. We get frustrated as a user because the payment has already been
done and we cannot undo that. We cannot undo that as a user, but as part
of the development, the developers had already thought of such situation
and have developed a module for reverting the transaction done by you
by reversing the booking. Actually, booking and transferring the money
is the developer's task, but along with the booking, the developer needs
to think about successful and unsuccessful bookings as well. In the case of
successful bookings, the user should get the booking details. If the booking
is unsuccessful, the respective message should be shown on the UI. The
developers also have to think about transferring the money to the railway
on success or vice versa on an unsuccessful activity. Where the money gets
transferred correctly is a part of business logic.

All of the above discussed scenarios prove the significance of developing the correct
business logic and writing it for the appropriate situations. And if this module fails,
the whole business will collapse. Developing the business logic is simple as well as
complicated. It is simple because the formulas and decisions to be made are already
known to you as a developer; it is difficult because to apply the rule, we first need to
know the domain for which we are developing the application, you should have a
correct process knowledge and, last but not least, you should be aware of the rules
to be applied. Simply, there is no hard and fast rule—everything is dependent!

Developing the Business Layer

[106]

When someone wants to develop any kind of business layer, there are multiple
things which need to be considered, understood, and kept in mind with immense
care. Most of us feel that developing the business layer is difficult. Most of the time,
it is hard just because of the lack of knowledge and we don't know from where to
start and how to start.

Domain knowledge
While discussing why domain knowledge is important, we discussed many
scenarios. In each scenario, we used a number of technical terms, such as minimum
balance, interest rate, fixed deposits, savings account, reservation, bookings, and
many more. Much of this terminology is used in our day-to-day life; some of it is not
quite frequently in use but we are aware of it. When a team starts in any field, such
as banking, reservation, travelling, and insurance, they need to understand the basic
terms used in the respective field. They need to understand their importance and
when to use what. They should have conditional knowledge of the situations as well.

Acquiring expertise and thorough knowledge of a certain area, industry from in and
out is domain knowledge. Some examples of domain knowledge are:

• Knowledge of accounting systems, steps and procedures
• Knowledge of life insurance
• Knowledge of the tax sector
• Knowledge of the manufacturing industry
• E-commerce knowledge

Getting domain knowledge is a time-consuming task. Those who are interested in
getting domain knowledge can refer to the documentation available online or in
many books and reference material. The person also has to not only study each point
theoretically, but they have to also apply it to real examples. One of the best ways to
get domain knowledge is through case studies. We can also get domain knowledge
from group discussions. But when we get involved in group discussions, we need
to have some basic knowledge to understand what is going on. In all such fruitful
group discussions, the experts can share their past experiences.

Chapter 5

[107]

Rules, formulas, and conditions
Domain knowledge gives us information about situations, the rules which need to
be considered in those situations, situation-based formulae, and conditional-based
decision making. For example, in interest calculation, we consider the account type,
and in reservation booking, we need to know the number of seats, type of carriage,
and age of the passengers. Before starting the actual work, it's always better to put all
rules dependent on situations, and formulae to apply on certain cases together that
is well understood from knowledge or by discussions. All the situations where the
flow of an application can fail or should not flow unless being corrected are called
exceptional situations; for example, the user gives a withdrawal option while there
is no sufficient balance, and the user chooses to buy a product which is not in stock.
All such exceptional conditions need to be known to the developers as well as to the
testers. The developers and testers consider these situations while developing and
testing the applications respectively.

Case studies
Reading books, papers, and magazines will certainly help to get knowledge of how a
particular industry works and what the important terminologies and conditions are.
But it will not be sufficient as this acquired knowledge needs to be applied in reality.
With the help of a case study, a situation can be well understood and we come to
know the loopholes in it, why that situation occurred, and how to come out of it. As
a case study is situation-based, it helps the developer a lot as they can relate it to the
application flow.

A case study gives a practical solution which can be applied in the application
directly. It may not be possible to modify the solution as per the requirement. The
case study helps to grab domain knowledge relatively in a quick and easy way.

Developing the business layer
After a long, theoretical discussion, let's now develop the business layer for the code
which we developed in the previous chapter for contact management. We need to set
the rules which can be applied in our contact management project.

Developing the Business Layer

[108]

The following is the rule to be applied:

• A contact will be successfully inserted only when there is no pre-registration
of the e-mail in the table. We have already developed code where
DuplicateEntryExeption has been handled. This exception handling helps
the developer to understand that no duplicate contact has been entered in the
table. We can do this manually as well as using database basics. If we want
to do it manually, then we first need to fetch all the records from the contact
table and cross-check whether the email entered by the user is already
existing or not. We can make this simply by putting email as a primary key
in the database. So whenever the user enters an email which already exists,
an exception will be thrown.

Let's redevelop the Ch04_JdbcTemplate_Integration application as Ch05_contact_
management_case1 using the following steps:

1. First of all, we will add the business logic layer to provide implementation
of the business logic of checking whether the user is entering a duplicate
number or not. We will do the duplication check by adding the interface
with business methods for adding the contact.

2. Then we will check whether the data already exists or not.
3. If it doesn't exist then we will add it, otherwise we will return a message.

Let's start the code development:

1. Add a method in ContactDAO interface which we already used in all the
previous examples as int findContactToAdd(String email).

2. Implement it in ContactDAOImplto find out if there are any records available
with the same email. This is done as follows:
public int findContactToAdd(String email)
 {
 String sql = "select COUNT(*) from Contact_CORE where
email=?";
 return jdbcTemplate.queryForInt(sql,email);
 }

3. Add an interface ContactBussiness in com.packt.ch05.bussiness
package as follows:
public interface ContactBussiness {
 int addContact(Contact contact);
}

Chapter 5

[109]

4. Implement it in ContactBussinessImpl, but while implementing this we
need to understand a few things. The first one is, now the controller will not
be interacting with the DAO layer but it will interact with the business layer
and the business layer will interact with the DAO. So the class should have
an object of ContactDAO. This will be possible with @Autowired. In order
to manage the object of ContactBussnessImpl by the Spring container,
we have added @Component annotation. The @Component will give us the
advantage of getting an object of the class whose lifecycle will be managed
by the Spring container without configuring the XXX.xml file (in our case
connection.xml), that is, its replacement of the following configuration:
<bean id=" " class=""/>

When we use @Component by default, the value of id is
contactBussinessImpl, which is the decapitalized name of the class.
If we want a different value of id, we need to add an attribute named value.
Now we don't have to configure it in the XML file. checkContact(Contact
contact) will check whether the email already exists or not. As only
ContactBussinessImpl needs it, we will make this method private:
@Component(value="contactBussiness")
public class ContactBussinessImpl implements ContactBussiness {
 @Autowired
 ContactDAO contactDAO;
public int addContact(Contact contact) {
 // TODO Auto-generated method stub
 if(checkContact(contact))
 {
 return contactDAO.addContact(contact);
 }
 return 0;

 }
Private boolean checkContact(Contact contact)
 {
 if(contactDAO.findContactToAdd(contact.getEmail())==0)
 {
 return true;
 }
 return false;
 }
}

Developing the Business Layer

[110]

5. Let's update AddController. Take out the following code:
@Autowired
 ContactDAO contactDAO;

6. Add the code of integrating ContactBussiness as follows:
 @Autowired
 ContactBussiness contactBussiness;

7. Modify the code of the addController method as follows:
int record = contactBussiness.addContact(contact);

This replaces the following code:
int record = contactDAO.addContact(contact);

We are done with the development of the business logic layer. Let's execute the
application. After executing the code, if we enter an already existing email, the
output will be as shown in the following screenshot:

As we have already discussed in earlier chapters, the layering mechanism provides a
facility to write down code separated in multiple layers. But they can still collaborate
with each other with the help of DI and form one flow within an application. The
business layer is invoking the methods of the DAO layer, and the methods of the
business layer are invoked from the UI layer. To achieve collaboration, each layer
needs to invoke the methods of another. That means they need the object of another
class. It's clear from the code that we have made objects available using DI. DI makes
objects available for the code as well as helping in achieving the abstraction.

Chapter 5

[111]

As we have used separation of work using layers, it is easy to change any layer
without affecting another. If, for example, today developers are using MySQL and
tomorrow they want to use Oracle, the developers don't need to change anything
in the business layer. They just have to add a new class which will deal with Oracle
and a few changes in the configuration. We have just discussed a very basic scenario
of duplication of contact numbers. We can still extend the application by providing
a few more operations. We can have a mechanism for updating the contact
information from time to time. To achieve this and to make sure only authenticated
users will be able to update information, we need to provide credentials. The
username will be the email of the user and the password will be the firstname. The
password can be updated later by the user. So the information will get updated
in two tables: first where we added the user contact details and second in the
credentials table.

Both of the above situations can be managed by either of the following methods:

• A solution where the developer will first cross-check whether the email
entered by the user is already registered and inform the user

• Using transaction management, where if data is not entered in one table,
it will not be entered in another

Let's now discover how to use transaction management in our application. But
before discussing transaction management in Spring, first we will discuss transaction
management in general and also how we do transaction management using Java.

Transaction management
There are many times when in an application we need to fire multiple queries of add,
update, remove, or all of them as a batch. In a batch of statements where multiple
queries get fired against a database as a unit, all the queries should be successful
or none of them. This is called transaction management. Transaction management
is helpful in maintaining data consistency. In transaction management, it is not
necessary that the queries should be fired against different tables in a database.

The following are the properties of a transaction:

• Atomicity: When firing multiple queries, either all of them should be
committed or none of them. This property makes sure that whatever
operations are performed on the database and whenever any error
occurs, no operations will be performed on the database.

Developing the Business Layer

[112]

• Consistency: Before and after completing the transaction, the state of all the
tables will be consistent. If any error occurs, the state of every table may vary.
This leads to variable states of the tables. In order to maintain the states of all
the tables as unique, whatever data has been changed has to be returned to
the original state.

• Isolation: It may be possible that in each application there are occurrences
of multiple transactions that involve read, write, or update operations. So
the transaction which is in progress must be separated from the one which
is committed.

• Durability: The data which we try to write or update in the table may
fail partially. This leads to incorrect states of the tables. Durability makes
sure that whenever any operation fails, the data will be available in the
correct state.

JDBC and transaction management
In JDBC, transactions are automatically committed. In order to implement
transactions in JDBC, we need to add the following steps:

1. We need to invoke setAutoCommit(false) on a connection object.
2. Whenever all the operations on the database complete, invoke commit().
3. If any error occurs, invoke rollback() to get back to the original state of

the table.

Spring and transaction management
Spring provides a transaction management API which aims to provide an alternative
to EJB transaction management. Spring provides support for both declarative as
well as programmatic transaction management. Spring has the following two types
of transaction:

• Local transactions: Local transactions are useful when resources are
managed at a single point which involves a local transaction manager. JDBC
is one such example which handles local transaction which is easy to use and
manage. But local transactions cannot handle multiple transaction resources.

• Global transactions: Global transactions are useful in distributed systems
where resources are distributed at multiple locations with the help of
application servers through Java Transaction API (JTA). In order to manage
global transactions, JNDI is configured in the server which is used by the
developer.

Chapter 5

[113]

Spring is not managing the transaction management directly, but it gives flexibility
to choose transaction management implementation according to the platform. Some
of the transaction managers are as shown in the following diagram:

PlatformTransactionManager

JDBC

Hibernate

JPA

JTA
JtaTransaction

Manager

JpaTransaction
Manager

HibernateTransaction
Manager

DataSourceTransaction
Manager

Transaction managers

Let's now discover how to integrate TransactionManager in our application.
As we are dealing with plain JDBC in JdbcTemplate, we will configure the
DataSourceTransaction manager which provides good support. Also, we need
to know the different ways that are available to manage transactions. The following
two ways are used to manage transactions:

• Programmatic transactions
• Declarative transactions

Programmatic transaction
In programmatic transaction, the developer manages the transaction through coding.
The use of programmatic transaction provides fine control and flexibility to manage
operations as the operation is under the control of the developer. Developers can
define the rules of managing the transaction and are able to decide the boundaries
to decide where to start and where to complete the transaction.

Declarative transaction
Contrary to programmatic transaction, the developer will not code a lot in source
code but it will be configured in the XML file. It gives convenience but less precise
control. Let's discuss it in depth.

Developing the Business Layer

[114]

Managing declarative transaction in Spring
Transaction management is one of the very famous cross-cutting technologies.
Spring provides Aspect Oriented Programming (AOP) to manage cross-cutting
technologies. AOP will be used for managing declarative transactions as well.

The transaction is centered around advice which gets called before as well as
after the annotated business logic method with the help of the implemented class
TransactionInterceptor. The before aspect decides the scope of the database
transaction, such as keeping the ongoing transaction or creating a new transaction.
The after aspects decide to commit or rollback the transaction.

The transaction manager needs to decide to start a new or keep an ongoing
transaction continued at the time of transaction before advice. This decision is taken
with the help of the propagation attribute. Whenever any business logic method is
called by the developer the method of the proxy object gets called.

Let's discuss how to develop transaction management step-by-step.

Step 1
Decide the transaction attributes:

• Propagation behavior: Propagation behavior gives an idea of what to
do with the transaction when one method call gets propagated. It tells
whether to start a new transaction for the called method by suspending
what is available, pass on the same transaction further, and to support
or not to support the transaction.
The following table lists propagation behaviors and their meaning:

Propagation behavior Meaning
PROPAGATION_MANDATORY Indicates that the method must run within a transaction.

If no existing transaction is in progress, an exception
will be thrown.

PROPAGATION_NESTED Indicates that the method should be run within a nested
transaction if an existing transaction is in progress.

PROPAGATION_NEVER Indicates that the current method shouldn't run within
a transactional context. If an existing transaction is in
progress, an exception will be thrown.

PROPAGATION_NOT_
SUPPORTED

Indicates that the method shouldn't run within a
transaction. If an existing transaction is in progress, it'll
be suspended for the duration of the method.

Chapter 5

[115]

Propagation behavior Meaning
PROPAGATION_REQUIRED Indicates that the current method must run within a

transaction. If an existing transaction is in progress, the
method will run within that transaction.

PROPAGATION_REQUIRES_
NEW

Indicates that the current method must run within its
own transaction.

PROPAGATION_SUPPORTS Indicates that the current method doesn't require a
transactional context, but may run within a transaction
if one is already in progress.

• Isolation level: It's a possibility that at any one time, many transactions are
started by the application as it supports concurrency. The isolation level
defines the effect of one transaction on another in order to reflect the
updated data. This leads to some famous problems, such as the following:

 ° Dirty reads: Let's consider a situation where two users are using
the XXX table. The first user reads the data and has a set of values
which are there in the table at this moment, say, for example, 10
records. The second user is adding two new records, but has not yet
committed them. The first user can read their data, which is a new
set which says they have 12 records and not 10. If all goes well, no
problem. Both are happy. But if at the time of record insertion by the
second user, he has some problem and it gets rolled back then the
first user has 12 records and in the actual table, there are just 10.

 ° Phantom read: Suppose the first user tries to read data depending
upon some criteria. They discover no record matches the criteria. The
second user meanwhile inserts or updates a record which matches
the first user's searching criteria. If the first user re-executes the query
with the same criteria, surprisingly he finds a match.

 ° Non-repeatable reads: In this scenario, a transaction reads the
data twice. But in the first read and in the second, the data read
is different. The first user reads a table and gets the values in
transaction. The second user deletes or updates rows by transaction.
Now the first user again reads the data. They will discover that there
is no such row available or the values obtained this time are different
than they read earlier.

Developing the Business Layer

[116]

The possible isolations are as follows:

Isolation level Meaning
ISOLATION_DEFAULT Uses the default isolation level of the underlying

datastore.
ISOLATION_READ_UNCOMMITTED Allows you to read changes that haven't yet been

committed. May result in dirty reads, phantom
reads, and non-repeatable reads.

ISOLATION_READ_COMMITTED Allows reads from concurrent transactions that have
been committed. Dirty reads are prevented, but
phantom and non-repeatable reads may still occur.

ISOLATION_REPEATABLE_READ Multiple reads of the same field will yield the same
results, unless changed by the transaction itself.
Dirty reads and non-repeatable reads are prevented,
but phantom reads may still occur.

ISOLATION_SERIALIZABLE This fully ACID-compliant isolation level ensures
that dirty reads, non-repeatable reads, and phantom
reads are all prevented. This is the slowest of all
isolation levels because it's typically accomplished
by doing full table locks on the tables involved in
the transaction.

• Read-only: Sometimes the developers are interested in only reading the
underlying data and they want to avoid modification of the data. To apply
a read-only attribute, the propagation should be one of the following:
PROPAGATION_REQUIRED, PROPAGATION_NESTED, and PROPAGATION_
REQUIRES_NEW.

• Transaction timeout: Some transactions take more time to complete, which
hampers performance. In such situations, instead of waiting for a long time,
it's better to terminate it. A transaction timeout attribute helps to terminate
such time-consuming transactions automatically after a certain time. To
apply a timeout attribute, the propagation should be one of the following:
PROPAGATION_REQUIRED, PROPAGATION_NESTED, or PROPAGATION_REQUIRES_
NEW.
In an application, it may be possible that the process will take more time due
to loading of large data from a database or some coding errors of unending
loops. In such situations, the client needs to wait for the application to
load. The developer will specify the value of the timeout attribute in order
to manage after how much time the transaction should be rolled back
automatically:

Chapter 5

[117]

• Rollback rules: Normally rollback happens on occurrences of runtime
exceptions. But we can define the rules of when to roll back as well as
checked and unchecked exceptions. It's also possible to define the rule
of specific exceptions and when not to do a transaction rollback.

Step 2
Decide whether you want to adapt declarative transaction or programmatic
transaction. If you decide on declarative transaction, take a quick decision to go with
XML-based transaction configuration or annotation-based transaction. We will go
with declarative transaction using annotation.

Step 3
Due to the problems faced by using the TransactionProxyFactoryBean bean in
earlier versions of Spring, now Spring comes with namespace tx, which can be
configured and used to simplify declarative transaction using annotation:

<tx:annotation-driven transaction-manager="transactionManager" />

The preceding configuration will be configured in order to know which transaction
manager handles the operations. This configuration enables Spring to find out all
those beans which have been applied with the @Trasactional annotation. Now all
these beans will be advised with transaction advice. All transaction-related attributes
can be defined for @Transactional as parameters.

Declarative transaction management
Let's redevelop the application which we just developed in this chapter for case 1
using declarative transaction management as Ch05_JdbcTemplate_Transaction_
Declarative:

1. Declare a new interface ContactBussiness in the com.packt.ch05.
bussiness package.

2. Implement it in ContactBussinessImpl.
We will concentrate on two methods: addContact() and checkContact().
The addContact()method is expected to add the data to the database so that
it should come under transaction management and it should not be read-
only. So we will start with @Transactional(readOnly = false). In the
same way, checkContact() will also be considered for transactions but as
this method is involved in only reading the data from the table, it should not
be allowed to change it. That means this method should have the following
annotation: @Transactional(readOnly = true).

Developing the Business Layer

[118]

The code snippet will be as follows:
@Transactional(readOnly = false)
 public int addContact(Contact contact) {
 // TODO Auto-generated method stub
 if (checkContact(contact)) {
 return contactDAO.addContact(contact);
 }
 return 0;
 }

 @Transactional(readOnly = true)
 private boolean checkContact(Contact contact) {
 if (contactDAO.findContactToAdd(contact.getEmail()) == 0) {
 return true;
 }
 return false;
 }

There will not be any changes in underlying layers. Now it's time to
configure the transaction manager in the XML file.

3. In order to tell Spring to examine all the beans annotated with
@Transactional, we just need to configure a single line as follows:
<tx:annotation-driven/>

Here, by default, Spring will search for a bean with id =
"transactionManager". So there has to be one more bean, declared with the
following configuration:
<bean id="transactionManager"
 class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">
 <property name="dataSource"ref="dataSource"/>
 </bean>

As we are using JDBC, we have used DataSourceTrasactionManger here.

Sometimes we do have to configure more than one transaction manager or we don't
want to use some other value for the ID of the transaction manager; in such cases, we
can specify transaction-manager as an attribute to tell which transaction manager is
to be used. It can be done as follows:

<tx:annotation-driven transaction-manager="transactionManager1"/>

Chapter 5

[119]

If we are using the preceding configuration then we need to declare the configuration
as follows:

<bean id="transactionManager1"
 class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
 </bean>

The preceding configuration gives us a facility to use more than one transaction
manager for an application. We are ready to use the application which is taking
advantage of transaction management.

Programmatic transaction management
In the previous discussion, we discussed declarative transaction, where the
developer has least control. There are two ways in which a developer can opt
to go for programmatic transaction:

• Using a transaction template
• Using PlatformTransactionManager

Let's redevelop the application using programmatic transaction, which gives the
facility of having fine control. We will use the application which we developed
in this chapter for case 1 using declarative transaction management using
PlatformTransactionManager:

1. Declare a new interface ContactBussiness in the com.packt.ch05.
bussiness package in Ch05_JdbcTemplate_Transaction_Programmatic,
which is an extension of Ch04_JdbcTemplate_Integration. You can use the
application which we just developed for declarative transaction management.
You just need to change the implementation of ContactBussinessImpl as
discussed in the following steps.

2. Implement it in ContactBussinessImpl. Declare
PlatformTransactionManager as a data member which we will inject
using the @Autowired annotation as shown in the following code:
@Autowired
 PlatformTransactionManager transactionManager;

Developing the Business Layer

[120]

3. In the addContact(Contact contact) method, get an instance of
TransactionDefination. Use this instance to obtain an instance of
TransactionStatus. Whenever the operation of adding contacts to the
database gets completed, commit the operation. The code will be as follows:
public int addContact(Contact contact) {
 // TODO Auto-generated method stub
 TransactionDefinition definition=new
DefaultTransactionDefinition();
 TransactionStatus status=transactionManager.
getTransaction(definition);
 if (checkContact(contact)) {
 transactionManager.commit(status);
 return contactDAO.addContact(contact);
 }

 return 0;
 }

PlatformTransactionManager gives an abstract way to define transaction
strategy. It can be stubbed or mocked as necessary to use in programmatic
transaction as we did. We configured DataSourceTransactionManger,
which has been injected in the object of BussinessImpl. It has
the getTransaction() method, which returns an instance of
TransactionStatus.TransactionStatus which is a representation of
the transaction status. TransactionStatus will be used to obtain status
information and to commit or rollback the transaction as follows:
transactionManager.commit(status);

The getTransaction()method gives the status depending upon the
TransactionDefination instance. The TransactionDefination instance
has methods to set transaction attributes such as isolation level, propagation,
and timeout.

4. We need to change findContact() to use transaction management.
In findContact(), we need to use the readOnly policy as here we don't
want to have any change in the database. The readOnly method is available
on DefaultTransactionDefination. The code will be as follows:

public Contact findContact(String email) {
 // TODO Auto-generated method stub
 TransactionDefinition definition=newDefaultTransactionDefiniti
on();

Chapter 5

[121]

 ((DefaultTransactionDefinition)definition).setReadOnly(true);
 TransactionStatus status=transactionManager.
getTransaction(definition);
 return contactDAO.findContact(email);
 }

Depending upon the situation, the developer decides when to commit the data and
when to rollback. The developer can decide the transaction attributes and can change
them as per the requirements. It gives fine control on the transaction as opposed to
declarative transaction.

How to choose a transaction management strategy is a question of debate as it
depends upon the situation and process flow. But whenever developers want to
choose between programmatic transaction and declarative transaction, they need to
think of how finely they want to handle transactions. If the requirement is to have
fine control over transaction management, then they need to choose programmatic
transaction. If you also want to keep your code clean and don't want to get involved
in coding, use declarative transaction.

Summary
Data is collected from the user through the UI; it is handled using the DAO layer
but when to insert and how to insert is decided by the business logic layer. In this
chapter, we have discussed the parameters such as market rules, situations to be
taken care of, and transaction management to set up business rules. We discussed
the way Spring handles transaction management using AOP. We demonstrated
how to handle declarative transaction management and how to make transaction
management more effective with the help of transaction attributes such as isolation
level, timeout, or read-only.

Here we have completed the development of all layers. We have also done JUnit
testing of the DAO layer. In this chapter, we have looked at the collaboration of
layers. If there is code, there is a possibility of melting the code down. This leads
to testing of the give and take between two layers.

In the next chapter, we will talk about testing the collaboration between the layers,
and the integration testing. We will discuss what integration testing is, why we need
it and, most importantly, how to do integration testing.

[123]

Testing Your Application
Any application which has completed its development will proceed to the next
step of verifying whether the application is actually working. This phase is very
important as it is where we ensure the correctness of the product and try to find any
flaws in development which may have been overlooked at the time of writing the
code. This phase is technically called testing. But now the meaning, implementation,
and importance have been changed a lot. We are going to explore testing, the
involvement of testing in writing good code, the role of the developer in testing,
and much more.

In this chapter, we are going to explore the following topics:

• What is testing?
• The different phases involved in testing an application
• How to test JavaEE applications
• The use of JUnit/Mockito//
• Introduction to Arqullian testing

Software testing
An application is the solution to a problem proposed by the client. In providing the
solution, the developer provides an implementation depending upon some rules
and algorithms. They concentrate on providing a correct implementation to achieve
the appropriate level of quality, which meets the client requirement in all aspects.
The developed application must be verified to ensure that it meets the correct
requirement and specifications. The process of verifying, to prove that the product
is working correctly, is more precisely called; software testing.

Testing Your Application

[124]

Software testing cannot guarantee that the application is high-quality software,
but it ensures that the application will operate in a given manner based on the
values provided to it. It finds the flaws in the application but doesn't guarantee
their absence. We always need to remember that testing of an application is always
dependent upon the values which the tester is going to provide. So if a tester fails
to judge the condition, the application will be tested but with the wrong values.

Let's not directly move into the details of how to do testing and other such details.
First of all, let's get an overview of the application development lifecycle. This
discussion will be helpful for understanding the way testing has been changed
and the importance of it as well.

Each application development lifecycle is roughly divided into problem analysis,
designing the solution for the problem, implementing the design, testing the
implementation, and deploying the module. Traditionally, the waterfall model
was used for software development.

The waterfall model
In the waterfall model, each step must be completed before you start the next step.
In the waterfall model, understanding the problem is the most important factor in
order to design it correctly. The risks and problems emerge in the later stages of
the process, which is the drawback of this model.

The following diagram illustrates the flow of the waterfall model:

Analysis

Design

Implementation

Testing

Deployment

When the application is small, it is easy to adopt such a model but if the application
is large, each step takes a long time to complete. As testing comes at the end, whether
the requirements of the client have been met by the developed solutions or not comes
to our notice at a very late stage, which is a high risk. In the worst situations, the
solution may fail completely. Efforts have been made to overcome the drawbacks
of the waterfall model in the spiral model.

Chapter 6

[125]

The spiral model
The following diagram illustrates the flow of the Spiral model:

Analysis Evaluate To find Risk

BuildDeploy and Test

In the spiral model, the entire lifecycle is divided into small spans in contrast to
the waterfall model which takes a long time. It's mostly associated with Rapid
Application Development (RAD). It gives a facility to receive early customer feedback
to spot the problem and meet the exact requirement. As the requirement analysis is on
a regular basis, changes can be incorporated more easily. One of the drawbacks faced
in adopting this model is its difficulty to manage. In order to overcome this drawback,
the spiral model has been logically extended to iterative models.

The V model
The V model is considered an extension of the waterfall model and is in a V shape.
Actually, the name V is not just because of its V shape but because of two famous
terms used in the model: Verify and Validate. The following diagram illustrates
the V model:

Verify

Validate

High level Design

Detailed Design

Coding

Requirement Analysis

Unit Testing

System Testing

Product Testing

User Acceptance Testing

Integration Testing

Testing Your Application

[126]

Verification phases
Verification finds out whether the requirements are understood correctly or not. The
verification phases are as follows:

• Requirement analysis: This phase collects the client requirements in order to
understand their expectations. The acceptance test is written depending upon
this phase. The requirements collected from the client are used as the input in
the acceptance test.

• High-level design: After client requirement gathering, now it is time to take
decisions about the hardware and software to be used in development.

• Detailed design: In this phase, detailed designing of each module is done.
It's a very important phase to make the design of each module in such a way
that it will be compatible with other modules. It will be used rigorously in the
coding or implementation phase. After implementing, it is very important
to check whether each module is working in the expected way or not. Faults
and errors are caught by unit testing. This is a perfect time to design unit tests
based on detailed design.

Validation phases
Validation helps in finding whether the requirements which we understood are
correct or not from the previous phase. The validation phases are as follows:

• Unit testing: Unit testing is performed on a unit to find out whether it is
working as per expectations or not. Unit test cases will be written on the basis
of test cases which give a detailed description about what scenarios are to
be considered while writing the JUnit test case. As a unit test is concentrated
and executed on a module, errors and flaws in the module can be caught at
a very early stage and can be removed easily.

• Integration testing: Integration testing tests the integration or communication
of two modules.

• Product testing: In product testing, each and every functionality as per the
requirement is checked.

• Acceptance testing: This testing is used to find out whether each and every
requirement which has been put forward by the client has been fulfilled
or not. It's done in the client environment. Along with business logic, the
presentation is also tested rigorously.

• System testing: In system testing, the communication with the system and
compatibility with the platform is tested.

Chapter 6

[127]

After having a long discussion, we have now well understood the lifecycle of an
application. If we apply the V model in our contact management application, we
can conclude that we have already finished the development phase. If we recollect,
we have also done JUnit testing of the modules. We have developed the business
logic layer in the previous chapter. That means now it's time to go ahead with
integration testing. But we haven't yet done unit testing of the controller and the
business layer as well. Testing the data layer was easy for us because we had access
to the data layer. For a while, let's assume we don't have a database and we are
developing the data layer. Along with development, testing has to be done. But we
can't do that as there is no database. We cannot test! Actually, no. There are many
times in development when the code a developer is developing is dependent on
environmental factors, such as, in this case, the database. In the controller layer, the
methods need request parameter values. The request object is available only if the
application is running in containers. In JavaEE, most of the application has many
dependencies. So testing such an application becomes a headache. In such situations,
the testing will be carried out with the help of dummy objects. These dummy objects
are called mock objects.

Mock testing
The testing which is carried out with the help of mock objects is called mock testing.
There are a number of ways which provide the means for mock testing. Let's
discover them one by one.

Spring testing framework
Spring provides an API to conduct testing using the mock technique in JUnit.
Using this API, we can create mock objects of Request, Response, Filter, and
HttpSession, which is otherwise available from the container. All those methods
which are dependent on request or user's request and response can now be tested
easily without a container. Using this API, tests can be created even before the
development of the controller has been completed with mocking or stubbing.

Let's use it in our controller testing which we developed in Ch_05_jdbcTemplate_
Transaction_Declarative as per the following cases:

Testing Your Application

[128]

Case1 – Inserting contact with correct values as per
validation rules
Let's now write mock testing for the AddController with the help of the following
steps to find out how mock objects can be initialized:

1. Create a new JUnit test case with the name TestAddController in the
package com.packt.ch06.controllers.test and in this package by
selecting all three methods from AddController.

2. Annotate it with the following:
@WebAppConfiguration
@ContextConfiguration({ "file:WebContent/WEB-INF/DataWeb-servlet.
xml","classpath:connection.xml" })
@RunWith(value = SpringJUnit4ClassRunner.class)

JUnit has the @RunWith annotation, which tests by invoking the
class that has been passed to it as a parameter. In our case, it is
SpringJUnit4ClassRunner.
@ContextConfiguration is used to load the configuration files which have
been used to create objects using the Spring container. The location of a file
can be specified by file: to load files from folders, or classpath: to load
files from the classpath.
@WebApplicationContext is used to declare that ApplicationContext
loaded for testing is a WebApplicationContext.

3. Declare the data members as MockHttpServletRequest,
MockHttpServletResponse, and ModelAndView, AddController.

4. Annotate the AddController with @Autowired.
5. Initialize them in the setup method as follows:

@Before
 public void setUp() throws Exception {
 modelAndView = new ModelAndView();
 response = new MockHttpServletResponse();
 }

6. The data members will be set to null in tearDown() as follows:
@After
 public void tearDown() throws Exception {
 modelAndView = null;
 addController = null;
 response = null;
 }

Chapter 6

[129]

7. Let's write the code to test addContact() from AddController in
testAddContact(). In order to carry out positive testing, we need to pass
the first parameter as objects of contact. Initialize it with all correct values
according to the validation rules as follows:
Contact contact = new Contact();
 contact.setAddress("Mumbai");
 contact.setEmail("com@packt.com");
 contact.setFirstName("t_first");
 contact.setGender(1);
 contact.setLastName("t_last");
 contact.setPhone_number("9876008990");

8. Initialize BindingResult as follows:
BindingResult bindingResult = new BeanPropertyBindingResult(
 contact, "contact");

9. Let's invoke the method addContact() and do the assertion. As the return
type is modelAndView, we can find out whether the name of the view is
"manageContact". If it's returning a result, we can conclude it is working
correctly, else there is some problem in the code. It can be done as follows:
modelAndView =
addController.addContact(contact,bindingResult);
 assertEquals("manageContact", modelAndView.getViewName());

10. The complete code snippet for testAddContact() will be as follows:
@Test
 public void testAddContact() {
 try {
 Contact contact = new Contact();
 contact.setAddress("Mumbai");
 contact.setEmail("com@packt.com");
 contact.setFirstName("t");
 contact.setGender(1);
 contact.setLastName("test_l");
 contact.setPhone_number("9876008990");

 BindingResult bindingResult = new BeanPropertyBindingResult(
 contact, "contact");

 ModelAndView modelAndView = addController.
addContact(contact,
 bindingResult);
 assertEquals("manageContact", modelAndView.getViewName());

Testing Your Application

[130]

 } catch (Exception e) {
 // TODO Auto-generated catch block
 Fail(e.getMessage());
 }

 }

11. On execution of the test, it will be successfully executed and checked from
the output shown in the following screenshot:

12. Also we can check in mysql whether one record has been inserted in the
contact_core table.

Case2 – Inserting a contact by violating validation
rules for contacts
One of the reasons why the test will fail is when the Contact object does not contain
property values as per the validation rules specified in validation.properties
which we wrote in Chapter 3, Working on the Presentation Layer, for form validation.
The e-mail and first name have e-mail and minimum length criteria respectively. We
will violate these two rules and check what happens as shown in the following code:

@Test
 public void testAddContact_negative() {
 try {
 Contact contact = new Contact();

Chapter 6

[131]

 BindingResult bindingResult = new BeanPropertyBindingResult(
 contact, "contact");
 bindingResult.reject("NotEmpty.contact.email", "default
message");
 bindingResult.reject("NotEmpty.contact.FirstName", "name must be
filled");
 modelAndView=addController.addContact(contact, bindingResult);
 assertEquals("contactForm",modelAndView.getViewName());
 assertEquals("NotEmpty.contact.email", bindingResult.
getAllErrors()
 .get(0).getCode());
 assertEquals(2,bindingResult.getAllErrors().size());

 } catch (Exception e) {
 // TODO: handle exception
 fail("test failed"+e.getMessage());

 e.printStackTrace();
 }
 }

We are setting the rules for BindingResult and then cross-checking it with the help
of assertion. The above test will execute successfully and no record will get added in
the table as well.

Here we will only be able to find whether the contact object is following the
validation rules or not. If the rules are not being followed, then the validation
will fail. We created the contact object with no values to the data members. We
have bound two validation rules against which the test case has been written. The
validation triggered before the controller method gets invoked; so just by invoking
the controller and passing the binding result, we cannot prove that the validation is
being done correctly. In order to test it correctly with all rules, we need to construct
and call the URL to which our controller is mapped. But to know which field is not
following the validation rule, we need to write extra code with HandlerMapping,
which will make the code lengthier and complex. The solution has been provided
by the Spring testing framework with the MockMVC class. The MockMVC class does the
testing with mock requesting, annotations, and many more. MockMVC gives a facility
to perform requests. We can use it even when the code to test is not completely
implemented. The MockMVC API helps to test request mappings, type conversion,
and binding errors without the actual containers.

Testing Your Application

[132]

The following are the two ways to create an object of MockMVC:

• With loading the Spring configuration as follows:
@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration("DataWeb-servlet-context.xml")
public class MyControllerTests {

@Autowired
private WebApplicationContext wac;

private MockMvc mockMvc;

@Before
public void setup() {
this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).
build();
 }

}

• Without loading the Spring configuration:
public class MyControllerTests {

private MockMvc mockMvc;

@Before
public void setup() {
this.mockMvc = MockMvcBuilders.standaloneSetup(new
AddController()).build();
 }

}

Standalone setups are closer to unit testing as they test one controller at a time.
Standalone setup needs to inject the dependencies with mocks manually. To create
a mock object, mocking frameworks such as EasyMock and Mokito can be used.
Standalone setups are more focused on finding out if any specific Spring MVC
configuration is required. When the Spring configuration is loaded and used, it is
integration testing and not unit testing with the help of the TesContext framework.
Before going into how to implement MockMVC testing, let's have a look into MockMVC
and the methods it provides for testing.

Chapter 6

[133]

To create an object of MockMVC, the MockMvcBuilders.XXX method will be used as
shown above. It has just created an object which now needs an initialization of the
method to invoke from the controller. To invoke the controller method, we need
to tell which method to invoke and the URL on which the method will be invoked.
MockMVCRequestBuilder helps to build these URLs with methods as get, post,
delete and many more. The code will be like the following:

mockMvc.perform(MockMvcRequestBuilders .post("/addContact.htm")

If the /addContact URL is not required to have any further initialization such as
request parameters or anything else, we are set to start with testing. But sometimes,
the demand of the method can be greater. In the method addContact() from
AddController is expected to have @ModelAttribute which accepts the object
of contact on form submission. To handle form submission, contactType() has
to be used along with form parameters and their values. Once the initialization is
completed, it's time to cross-check the result. The addExpect() method helps us to
test the results with MockMvcResultMatchers. MockMvcResultMatchers has methods
such as view(), mode(), json(), content(), and cookies() for helping us in testing.
We will use these practically in the upcoming examples to carry out mock testing.

We have done a lot on unit testing. Now let's discover the integration testing with
MockMVC in Spring.

Why integration testing?
In real-world software development, each application development is divided into a
number of small modules. These modules will be developed by different developers.
It's very important to find out how such separately developed modules when
combined together are working. Each application is developed in different layers,
such as UI, business layer, and DAO layer. In each layer, the data which is accepted,
processed, and passed may be in a different format. So it's very important to find
out whether the data passed and collected is correct or not, otherwise there will be a
manipulation problem. Integration testing is also important as developers face a big
problem in meeting continuous changes in requirement. Integration testing helps to
find out problems of collaboration on layers at an early stage instead of getting it in
later stages of development.

Let's implement this in our application to test form validation:

1. Create a new JunitTest case TestAddController_standAlone in the
com.packt.ch06.controllers.test package.

2. Declare MockMVC and AddController as data members.

Testing Your Application

[134]

3. As Addcontroller has its own dependencies and we will not use
any frameworks to create Mock objects, we simply use @Autowired
on AddController for DI.

4. Override setup() to initialize MockMVC as follows:
@Before
 public void setUp() throws Exception {

 mockMvc=MockMvcBuilders
 .standaloneSetup(addController).build();

 }

5. Let's test addContact() from the AddController in testAddContact_
positive. In order to test this method, we need to set up perform() as:

 ° URL to /addContact for post method.
 ° Content type to application form urlencoded.
 ° All the request parameters as specified in contactForm.jsp in order

to initialize a contact object according to the validation rules specified
in validation.properties.

 ° The method addContact() has @ModelAttribute as a parameter
which specifies there is an attribute with the name contact. So
while carrying out testing, we need to set the same attribute for
the request object.

6. The testing will be done for the result with andExpect() which will be for :
 ° The result view as manageContact.
 ° The attribute ID with the value specified at the time of contact

initialization.
 ° In the addContact() from AddController, we set the attribute id to

value email from contact object. In the code above, we set the email
parameter for value packt@test.com, so we will consider the same
value while testing.

7. We will use MockMvcResultHandlers.print() which helps to print values.
The code will be as follows:
@Test
 public void testAddContact() {

 try {

Chapter 6

[135]

 mockMvc.perform(
 MockMvcRequestBuilders
 .post("/addContact.htm")
 .contentType(MediaType.
APPLICATION_FORM_URLENCODED)
 .param("email", "packt@test.com")
 .param("firstName", "first_n")
 .param("lastName", "last_n")
 .param("address", "testing address")
 .param("phone_number", "9191919191")
 .param("gender", "1")
 .requestAttr("contact", new Contact()))

 .andExpect(
 MockMvcResultMatchers.view().name("manageContact"))
 .andExpect(
 MockMvcResultMatchers.model().attribute("id",
 "packt@test.com"));
 } catch (Exception e) {
 // TODO: handle exception
 fail(e.getMessage());
 }
 }

8. On executing, the test will pass and on the console, we will get output
as follows:
MockHttpServletRequest:
 HTTP Method = POST
 Request URI = /addContact.htm
 Parameters = {email=[packt@test.com],
firstName=[first_n],
lastName=[last_n],
address=[testing address],
phone_number=[9191919191],
gender=[1]}
 Headers = {Content-Type=[application/x-www-form-
urlencoded]}

 Handler:
 Type = com.packt.ch06.controllers.AddController
 Method = public

Testing Your Application

[136]

org.springframework.web.servlet.ModelAndViewcom.packt.ch06.
controllers.AddController.addContact(com.packt.ch06.pojo.
Contact,org.springframework.validation.BindingResult) throws java.
lang.Exception
 Resolved Exception:
 Type = null
ModelAndView:
 View name = manageContact
 View = null
 Attribute = genderList
 value =
 [com.packt.ch06.pojo.Gender@17ebe66,
 com.packt.ch06.pojo.Gender@6279d]
 Attribute = contact
 value =
 com.packt.ch06.pojo.Contact@1b11b
 errors = []
 Attribute = id
 value = packt@test.com

FlashMap:

MockHttpServletResponse:
 Status = 200
Error message = null
 Headers = {}
 Content type = null
 Body =
 Forwarded URL = manageContact
 Redirected URL = null
 Cookies = []

The preceding code was of positive form validation testing to add a contact. Now we
will do negative testing where we submit a form with violations of some validation
rules. We will not follow the validation rules for e-mail and first name and will carry
out testing. Setting parameters will be the same process but to check the result we
will consider:

• The view is contactForm
• There are errors in the fields set for the form
• Email and first name are not set as per validation rules

Chapter 6

[137]

Let's develop testAddContact_negative() in TestAddController_negative to
find what is output when a form with validation errors is submitted. The code will
be as follows:

 @Test
 public void testAddContact_negative() {
 try {

 mockMvc.perform(
 MockMvcRequestBuilders.post("/addContact.htm")
.contentType(MediaType.APPLICATION_FORM_URLENCODED)
 .param("email", "packt").param("firstName", "f")
.param("lastName", "last_n")
 .param("address", "testing address")
 .param("phone_number", "9191919191")
 .param("gender", "1")
 .requestAttr("contact", new Contact())) .andExpect(MockMv
cResultMatchers.view().name("contactForm"))
 .andExpect(
 MockMvcResultMatchers
 .model()
 .attributeHasFieldErrors("contact", "email")) .andE
xpect(MockMvcResultMatchers.model()
 .attributeHasFieldErrors("contact",
 "firstName"))
 .andDo(MockMvcResultHandlers.print());

 } catch (Exception e) {
 // TODO: handle exception
 fail(e.getMessage());
 }
 }

The method model().attributeHasFiledErrors accepts the attribute name and
the field where the validation error is. We had set @ModelAttribute 'contact' which
has email and firstname as data members with validation errors. We will check
this with code as follows:

model().attributeHasFieldErrors("contact", "email"))
model().attributeHasFieldErrors("contact", "firstName"))

Testing Your Application

[138]

On executing, the result output on the console is as follows:

MockHttpServletRequest:
 HTTP Method = POST
 Request URI = /addContact.htm
 Parameters = {email=[packt],
firstName=[f],
lastName=[last_n],
address=[testing address],
phone_number=[9191919191], gender=[1]}
 Headers = {Content-Type=[application/x-www-form-urlencoded]}

Handler:
 Type = com.packt.ch06.controllers.AddController
 Method = public org.springframework.web.servlet.ModelAndView
 com.packt.ch06.controllers.AddController.addContact
 (com.packt.ch06.pojo.Contact,org.springframework.
 validation.BindingResult) throws java.lang.Exception

Resolved Exception:
 Type = null

ModelAndView:
 View name = contactForm
 View = null
 Attribute = genderList
value = [com.packt.ch06.pojo.Gender@a45a24,
 com.packt.ch06.pojo.Gender@1a1ff9]
 Attribute = contact
value = com.packt.ch06.pojo.Contact@c789fb
errors = [Field error in object 'contact' on field 'email':
rejected value [packt]; codes
 [Email.contact.email,Email.email,Email.java.
lang.String,Email]; arguments
[org.springframework.context.support.
DefaultMessageSourceResolvable: codes
 [contact.email,email]; arguments []; default message
[email],
[Ljavax.validation.constraints.Pattern$Flag;@12943ac,[A-
Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}]; default message [not a
well-formed email address],
Field error in object 'contact' on field 'firstName':
rejected value [f]; codes
[Length.contact.firstName,
Length.firstName,Length.java.lang.String,Length];

Chapter 6

[139]

 Arguments
[org.springframework.context.support.
DefaultMessageSourceResolvable: codes
[contact.firstName,firstName]; arguments [];

default message [firstName],10,2]; default message
[length must be between 2 and 10]]

FlashMap:

MockHttpServletResponse:
 Status = 200
 Error message = null
 Headers = {}
 Content type = null
 Body =
 Forwarded URL = contactForm
 Redirected URL = null
 Cookies = []

If we observe the errors field from modelandview it shows two reject values. It also
shows a message which we set in the validation.properties file for email and
firstName fields as:

[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}]; default message [not
a well-formed email address],
default message [firstName],10,2]; default message
 [length must be between 2 and 10]]

Also the view name is shown as:

 Forwarded URL = contactForm

Let's test showContactForm(). This method accepts request, response, and map
objects. We need to do the following:

• Set request object for '/showContact' URI
• Create an object of ExtendedMap as mock object and add to it the object

of contact

The code to carry out the test in testShowForm() will be as follows:

@Test
 public void testShowContactForm() {
 try {

Testing Your Application

[140]

 Contact contact = new Contact();
 ExtendedModelMap map=new ExtendedModelMap();
 map.addAttribute(contact);
 mockMvc.perform(MockMvcRequestBuilders.post("/addContact.htm"))
 .andExpect(MockMvcResultMatchers.status().isOk())
 .andExpect(MockMvcResultMatchers.view().name("contactForm"))
 .andExpect(
 MockMvcResultMatchers.model().attributeExists(
 "contact")).andDo(MockMvcResultHandlers.print());
 } catch (Exception e) {
 // TODO Auto-generated catch block
 fail(e.getMessage());
 }

 }

On execution of the test, it will print the following trace on the console:

MockHttpServletRequest:
 HTTP Method = POST
 Request URI = /showForm.htm
 Parameters = {}
 Headers = {}

Handler:
 Type = com.packt.ch06.controllers.AddController
 Method = public org.springframework.web.
servlet.ModelAndViewcom.packt.ch06.controllers.AddController.
showContactForm(javax.servlet.http.HttpServletRequest,javax.servlet.
http.HttpServletResponse,org.springframework.ui.ModelMap) throws java.
lang.Exception

Resolved Exception:
 Type = null

ModelAndView:
 View name = contactForm
 View = null
 Attribute = genderList
 value = [com.packt.ch06.pojo.Gender@6d3b92,
 com.packt.ch06.pojo.Gender@162198b]
 Attribute = contact value = com.packt.ch06.pojo.
 Contact@17b1d64errors = []

Chapter 6

[141]

FlashMap:

MockHttpServletResponse:
 Status = 200
 Error message = null
 Headers = {}
 Content type = null
 Body =
 Forwarded URL = /WEB-INF/jsps/contactForm.jsp
 Redirected URL = null
 Cookies = []

It's clear from the trace that an object of Contact got added to the contactForm
URI. Here we used the technique of MockMVC where we are using the actual
implementation of the controllers but frameworks such as EasyMock, Mockito,
and Arquillian provided the API to create mock objects.

Mockito testing
Mockito is an open source framework used in conjunction with JUnit for testing.
Mockito helps in creating Mock objects to be used while testing. Mockito tests help
in reducing the tight coupling by removing the requirement of the expectation
specification. Mockito creates mock objects with the static method mock() provided
by the org.mockito.Mockito class. In Mockito, the when() method defines the action
to be taken and then Return() returns the result of the action. When() can define a
method call and thenReturn() is expected to return from the method. The when()
accepts the argument of the method to be invoked and the result to be returned
will be the argument of thenReturn(). when() accepts the method under testing
and thenReturn() returns the result which we use for assertion. Methods such as
anyString(), anyInt() are used to define independent values from the methods.
Mockito can be used for behavioral testing as well. In behavior testing, a certain
result is expected on invocation of the method with some values. Mockito provides
verify() to find out whether the method is called with some typical values or not.
But we cannot use Mockito to test final class, anonymous classes, and primitive types.

Let's develop one sample Mockito test for ContactBussinessImpl in our application
using the following steps:

1. Create a new JUnit test case with the name TestContactBussiness in
com.packt.ch06.controllers.test.

2. Select addContact(), findContact(), and findAllContacts() methods
for testing.

Testing Your Application

[142]

3. Declare ContactBussinessImpl, and ContactDAOImpl. These two data
members have to be mocked in order to get object and invoke methods on it.
The class ContactBussinessImpl has a dependency ContactDAOImpl. The
class under testing ContactBussinessImpl is annotated as @InjectMocks
and its dependency ContactDAOImpl to inject has to be annotated as @Mock.
The code will be as follows:
@InjectMocks
 ContactBussinessImpl bussinessImpl;
@Mock
 ContactDAOImpl contactDAOImpl;

4. Initialize Mockito in setup() as:
@Before
 public void setUp() throws Exception {
 MockitoAnnotations.initMocks(this);
 }

5. Add testAddContact() to test addContact() from ContactBussinessImpl:
 ° In testAddContact(), we first have to create a contact and using

when() we invoke the method on the mock object of contact and will
return the expected value from thenReturn(). We will assume here
that the returned value is 1. This is our expected value.

 ° Now invocation of the actual business logic method will give the
actual value.

 ° Using assert, we will cross-check expected and actual values to test
the result. The code will be as follows:
@Test
 public void testAddContact() {
 Contact contact = new Contact();
 contact.setAddress("address1");
 contact.setEmail("test2@test.com");
 contact.setFirstName("first");
 contact.setLastName("last");
 contact.setGender(1);
 contact.setPhone_number("1212121212");
 Mockito.when(
contactDAOImpl.addContact(contact)).thenReturn(1);

 int result=bussinessImpl.addContact(contact);
 assertEquals(1,result);
 }

Chapter 6

[143]

6. The above test will execute successfully. In the same way, we can test
FindContact as follows:
@Test
 public void testFindContact() {
 Contact contact = new Contact();
 contact.setAddress("address1");
 contact.setEmail("test2@test.com");
 contact.setFirstName("first");
 contact.setLastName("last");
 contact.setGender(1);
 contact.setPhone_number("1212121212");
 Mockito.when(contactDAOImpl.findContact("test2@test.com")).
thenReturn(contact);

 Contact contact2=bussinessImpl.findContact("test2@test.com");
 assertEquals("test2@test.com", contact2.getEmail());
}

7. The test case for findAllContacts will be as follows:
@Test
 public void testFindAllContcats() {
 List<Contact>contacts=new ArrayList<Contact>();
 Contact contact = new Contact();
 contact.setAddress("address1");
 contact.setEmail("test2@test.com");
 contact.setFirstName("first");
 contact.setLastName("last");
 contact.setGender(1);
 contact.setPhone_number("1212121212");
 contacts.add(contact);
 contacts.add(contact);
 Mockito.when(contactDAOImpl.findAllContcats()).
thenReturn(contacts);
 List<Contact> contacts2=bussinessImpl.findAllContcats();

 assertEquals(contacts.size(),contacts2.size());
}

Testing Your Application

[144]

In the preceding code, we discussed testing the business layer. The controller
layer can also be tested on the same line but the way of writing the code will be
bit different. Let's develop a test case for addContact() with the help of the
following steps:

1. Create a new JUnit test case with the name TestAddController_Mokito in
the test package for addContact() for testing.

2. Declare AddController and ContactBussinessImpl and
BeanPropertyBindingResult as data members. The AddController has
dependency of ContactBussinessImpl. Both of these classes need to be
mocked to fulfill the dependency with the creation of objects. The code
will be as follows:
@InjectMocks
 AddController addController;
@Mock
 ContactBussinessImpl bussinessImpl;
@Mock
 BeanPropertyBindingResult bindingResult;

3. Initialize the Mockito in setup() as follows:
@Before
 public void setUp() throws Exception {
 MockitoAnnotations.initMocks(this);
 }

4. Declare testAddContact() where we write the test code:
 ° With the help of when()-thenReturn(), we will return an expected

value on execution of bussinessImpl.addContact().
 ° With the actual invocation of the controller's addContact method, we

will get an object of ModelAndView, using which we will extract value
from the modelMap.

 ° We will assert the size of the entries and the attribute value from map
as well.

The code will be as follows:

@Test
 public void testAddContact()
 {
 Contact contact = new Contact();
 contact.setAddress("address1");

Chapter 6

[145]

 contact.setEmail("abc@abc.com");
 contact.setFirstName("first");
 contact.setLastName("last");
 contact.setGender(1);
 contact.setPhone_number("1212121212");
 when(bussinessImpl.addContact(contact)).thenReturn(1);

 try {
 ModelAndView modelAndView =
 addController.addContact(contact, bindingResult);
 Set<Map.Entry<String,Object>> entries =
 modelAndView.getModel().entrySet();
 Iterator iterator=entries.iterator();
 String val=null;
 while (iterator.hasNext()) {
 Map.Entry entry=(Map.Entry)iterator.next();
 val=(String)entry.getValue();
 }
 assertEquals(1,entries.size());
 assertEquals("abc@abc.com",val);

 } catch (Exception e) {
 // TODO Auto-generated catch block
 fail(e.getMessage());
 }
 }

In the same way, we can carry out the testing for getContact(). The snippet code to
carry out testing will be as follows:

 @Test
 public void testGetContact()
 {
 Contact contact = new Contact();
 contact.setAddress("address1");
 contact.setEmail("abc@abc.com");
 contact.setFirstName("first");
 contact.setLastName("last");
 contact.setGender(1);
 contact.setPhone_number("1212121212");
 when(bussinessImpl.findContact("abc@abc.com")).
thenReturn(contact);

Testing Your Application

[146]

 ModelAndViewmodelAndView=searchAnnotController.getContcat("abc@
abc.com");
 Set<Map.Entry<String,Object>> entries =
 modelAndView.getModel().entrySet();
 Iterator iterator=entries.iterator();
 Contact contact2=null;
 while (iterator.hasNext()) {
 Map.Entry entry=(Map.Entry)iterator.next();
 contact2=(Contact)entry.getValue();
 }
 assertEquals(contact.getEmail(),contact2.getEmail());
 }

The preceding code execution shows that we are testing the controllers and business
logic code without loading any configuration files from the Spring controller and
also no container is required. In the same way, a new framework, Arquillian, has
been introduced to carry out testing without bothering about the dependencies
of the application.

Arquillian
Arquillian is the latest tool developed by Jboss.org which provides a satisfactory
solution to writing functional and integration tests. Arquillian provides a facility
to execute the test in the server environment, which can take advantage of using
the resources provided by the containers. Arquillian supports integration with
containers such as Tomcat, Glassfish, and JBoss. It has ShrinkWrap, which provides
modules for creating archives, descriptors, and resolvers. It also supports running
the tests in the cloud and has remote and embedded containers:

• The remote container resides on a separate JVM from the test runner.
• The embedded container resides in the same JVM in the same test runner.

Arquillian comprises a unit testing framework, ShrinkWrap, and target containers.
Arquillian bundles the test cases, dependent classes and resources in an archive.
It deploys the archives in a container that supports Arquillian tests and the result
will be reported to the test runner.

Jboss.org

Chapter 6

[147]

Summary
Application development is a lengthy and time-consuming process. In each step,
there are multiple loopholes where there is a chance of making mistakes. All such
mistakes will club together to make a blunder. If this got caught at the end when the
final product testing is carried out, it's of no use and the developers will run short
of time for development. In this chapter, we discussed various steps such as unit
testing, integration testing, and the modules to use for application development
in order to reduce the errors in the development with testing. We also saw the
complexities to manage request and response objects for carrying out unit testing
of controllers. The example covered here showed the use of mock objects. We saw
various ways, such as the Spring framework and Mockito, to create such Mock
objects. We also covered the MockMVC object to carry out integration testing.

Now we have a working product, but we haven't taken any measures for securing
URLs such as addContact and restricted them to be used by the authorized users
only. In the next chapter, we will cover the security techniques to be applied to
authenticate the authorized users and give them access to use the URLs.

[149]

Securing the Application
We have developed an application where we are maintaining contacts. This
information is right now publicly available. Anybody can come, visit my page, click
on the link and get the contact details. Anybody can even add contacts. What is the
assurance that the data which is being added is correct and not false? That the person
who is entering the data is genuine? No! It's not at all guaranteed, which leads to a
serious problem of data protection. We need to protect the application data so that it
is not mishandled and all possible care has to be taken from the developers' side to
make sure that the reliability of data will remain intact. In this chapter, we are going
to learn and explore how security helps to protect the data from getting used by an
unknown user. In this chapter, we will cover:

• What is security and why do we need it?
• How to secure web applications using Spring
• Application layer security
• Custom security

Make it safe, make it secure
On the Web, all data gets transferred through a channel where it is possible for
someone else to steal the information which you are sending or receiving from the
server. This stolen data can be misused and can affect the website as well as the user
badly. Let's take the example of accessing mail accounts. Whenever we try to access
our mail accounts, the URL gets changed from HTTP to HTTPS, which shows we are
going to access something secure. Some extra measures have been taken in order to
protect the data as it goes to and fro, from the security perspective.

Securing the Application

[150]

The security consists of the following:

• Authentication: This is the process by which the application checks whether
the user is who they are claiming to be or not. If we want to check our
e-mails, we cannot do it directly unless and until we prove that we are the
right person. How do we do that? For that, we need to provide our mail
ID and correct password. The application will check if this e-mail ID and
password pair is correct or not, and take the steps accordingly. Sometimes,
it may be possible that someone hacks your password and accesses the
account. The system cannot do physical checking. The one who provides
correct authentication information will get the data.

• Authorization: On the Web, there are some specific URLs which can be
accessed by some specific users and these links will not be available to the rest
of the users. These are role-based links which can be accessed only if you have
a respective role to perform a specific action. This is termed authorization.
Once a user gets authenticated, then the container checks for the role of that
user in the security table. If the URL with the specified username-password
pair has the correct security role, the container gives access to that page. Let's
take the example of blogs. When we search Spring framework blogs, we get
many links. We can visit and read them. Can we delete or update the blog? No,
because the data doesn't belong to us. The addition or updating can be made
only if you have an author role, otherwise not.

• Confidentiality: This is an arrangement which makes it difficult to steal
authentication information through a channel. It can be done by encryption
algorithms. Confidentiality makes sure to secure confidential information
about the user, which otherwise can be seen and can be used by fake users.

• Data integrity: The data which we fetched from the server can be seen or
altered by a middle unknown resource. Data integrity ensures the accuracy
and consistency of the data throughout the application.

The steps to provide security in a Web application are as follows:

1. Create a security realm. A realm is a place where the authorization
information is stored.

2. In the realm, we store roles, username and password by assigning them
some role.

3. Configure security constraints to specify which methods from which URL
are going to be accessed by whom.

Chapter 7

[151]

4. Provide an authentication mechanism. BASIC, FORM-BASE, CLIENTCERT,
and DIGEST are the four ways which can be used for the authentication
process:

 ° BASIC: The login information will be transmitted in encoded form,
leading to weak security

 ° FORM: Using FORM, developers can design their own forms
through HTML

 ° DIGEST: Transmits login information in a more secure way but the
encryption mechanism used is not in wide use

 ° CLIENTCERT: This is the most secure form to transmit the
information using a key

5. Provide configuration for the transport guarantee as CONFIDENTIAL to
give data integrity/confidentiality.

Spring security framework
Spring provides a handy, well-defined, declarative solution to provide security
by handling authentication and authorization at both request level and method
invocation level. Spring provides two ways to handle security:

• Servlet filters: To handle Web request and URL access restrictions
• Spring AOP: To handle secure method invocations

Spring provides eight modules to handle Spring Security, as follows:

Module Description
ACL This provides support for domain object security via access control

lists. The org.springframework.security.acls package
enables developers to use it.

CAS Client This provides integration with JA-SIG's Central Authentication
Service. The org.springframework.security.cas package
enables developers to use it.

Configuration This contains support for Spring Security's XML namespace. The
org.springframework.security.config package enables
developers to use it.

Securing the Application

[152]

Module Description
Core This provides the Spring Security library, which supports

standalone applications, service layer, JDBC user provisioning and
remote clients.

LDAP This provides support for authentication using Lightweight
Directory Access. The org.springframework.security.ldap
package enables developers to use it.

OpenID This provides integration with the OpenID standard. The
org.springframework.security.openid package enables
developers to use it.

Web This provides filter-based web Spring Security support. The
org.springframework.security.web package enables
developers to use it.

Tag Library Includes a set of JSP tags to provide security

It's not necessary to add all these eight modules in your web application; it all
depends on what facilities you want and how you want to provide security.

As we have a web application, we need web, core, and configuration modules. If we
decide to go for handling security in JSP, then the Tag Library module needs to be
added. These modules will be provided by Spring security-core.jar, Spring-
security-config.jar, and Spring-security-web.jar.

Secure web request
Everything in the Web is going to be accessed through a URL which is handled
by requests. The process of securing web applications starts from making secure
requests. In the application, find all those URLs which need to be handled with some
authority. The content of these URLs will be available only if the user is authorized.
Sometimes, we also need to provide data security through HTTPS, providing Secure
Service Layer (SSL). Whenever a user wants to access the data from the secure URL,
he or she needs to provide authentication credentials so that the application will be
able to recognize the user. If the user has the correct authentication and has the right
privilege, then the data will be given to the user, otherwise not.

Chapter 7

[153]

Way 1 – Spring Security for URL using servlet
filters
The following diagram illustrates the working of Spring Security using servlet filters:

uses

spring-security.xml

Polpulates

uses

AuthenticationManager

Spring Container

authenticated using

request

response

Spring Dispatcher
Servlet

Controller

Stack of Spring filters

Security-Context
Principal, Authority, Role

authentication providers

JDBC In Memory

OpenID CAAS JAAS

LDAP http-basic

form-based

The process can be described as follows:

• When a request for a resource is raised, it will be first compared to the URL
mapped in web.xml for <filter-mapping>. If a match is found, the request is
delegated to the bean having the ID springSecurityFilterChain.

• This 'springSecurityFilterChain' bean returns an instance of the
filterChainProxy bean, which consists of a list of security filters defined
in the Spring context to invoke, which provides security. The initialization
of filterChainProxy and its registration in a Spring context takes place
when HttpSecurityBeanDefinationParser reads <http> using spring the
security namespace.

• Let's take the filterChainProxy initialization a bit further. Let us assume
we have written a very basic configuration of <http> as:
<http>
 <form-login>
 <http-basic>
<logout>

Securing the Application

[154]

The <http> sets up the FilterChainProxy which is delegated to
DelegatingFilterProxy which has been configured in the web.xml.
The default <http> block creates SecurityContextPersistenceFilter,
ExceptionTransalationFilter and filterSecurityInterceptor. The above
configuration adds three more filters as BasicAuthenticationFilter, LogoutFilter,
and UsernamePasswordAuthenticationFilter in the filter chain. So, by default,
filterChainProxy initializes a series of filters to be invoked. It can also be possible to
choose the filters to be invoked in filterChain by defining our own configuration as:

<bean id="filterChainProxy" class="org.springframework.security.web.
FilterChainProxy">
<filter-chain-map path="abc">
<filter-chain pattern="/contact" filters="none"/>
<filter-chain pattern="/addContact.htm"
filters="logoutFilter,formLoginFilter,
exceptionTranslator, filterSecurityInterceptor"/>
<filter-chain-map>
</bean>

We configure DelegatingFilterProxy in web.xml, which delegates to the filter
implementation that has been defined in the spring application context as a bean
by taking advantage of Spring Dependency Injection. When Spring loads the
configuration file, and if it gets <http auto-config="true" > configuration, it
sets up the security. It will be done by registering the filter stack, protected URLs,
and FilterChainProxy with the name 'springSecurityFilterChain'. So the
name of this filter is used to look up the filter bean, which has the same ID in the
configuration file. Alternatively, we can do the configuration in another way,
as follows:

<bean id="springSecurityFilterChain" class="org.springframework.
security.web.FilterChainProxy">

Spring provides many filters which can be used for Spring Security, which got
woven by the filter chain. Let's have a look at some of the filters:

• LogoutFilter: This filter checks that if the request is for /j_spring_
security_logout to provide a default logout handler. If it is not a logout
request, it will be passed on to the next filter.

• BasicAuthenticationFilter: This filter attempts the process of basic login
authentication, if a header for basic authentication is found in the request.

• DefaultLoginPageGeneratingFilter: If the request for /spring_
security_login is received, then it will return a default login form,
otherwise the request will pass on to the next filter.

Chapter 7

[155]

• UsernamePasswordAuthenticationFilter: This filter checks for the request
with URL /j_spring_security_check to read values of j_username and
j_password to perform authentication using AuthenticationManager.

If we are using the default configuration, then the Spring framework loads the
following:

• The authentication manager to be used, which defines all the authentication
providers available for the application.

• The authentication provider has implementation of UserDetailsService.
Spring loads the user login information in this UserDetailsService to
perform the comparison of authentication credentials.

The authentication information can be stored in one of the two ways, as described:

• In an application context: The login information, along with user role, can be
configured in the XML file as:
<authentication-manager id="authenticationmanager">
<authentication-provider>
<user-service>
<user name="admin" password="admin" authorities="ROLE_USER"/>
<user name="guest" password="guest" authorities="ROLE_USER"/>
</user-service>
</authentication-provider>
</authentication-manager>

• In the database: If we want to check the login data against the database, we
need to provide the following configuration:
<authentication-manager id="authenticationmanager">
<authentication-provider>
<jdbc-user-service data-source-ref="dataSource">
</jdbc-user-service>
</authentication-provider>
</authentication-manager>

The dataSource is another bean which is used to obtain the connection, as discussed
in the Spring-JDBC integration section:

• The <http> configuration is checked to provide the authentication
mechanism. The authentication mechanism includes rendering of the
login page as follows:

 ° It checks the configuration for whether it is basic authentication or
form-based authentication. Depending upon the information, a login
page will be provided to the user where the credentials can be entered.

Securing the Application

[156]

 ° If we are using basic authentication, the login credentials are sent to
the server under the authentication http header. This now will be
further handled by BasicAuthenticationFilter.

 ° If we are using form-based authentication, the login credentials are
checked against data provided by the spring context to authenticate
the user.

If the user gets authenticated with the help of the authentication mechanism, then it's
time to check the authorization:

• The filter does the authentication for the roles and credential with
the help of AuthenticationSuccessHandler. If all the information
matches, the handler takes the user to the success page, otherwise
AuthenticationFailureHandler redirects the request to the
authentication page or the failure page respectively.

Let's use the following flow chart to understand security mechanism in an easy way:

Hit URL

<http> is checked to find

authentication method and

login page

login page displayed

on browser

user adds the credentials

Credentials are checked

against spring context data

login unsuccessful
login successful with correct Role

Page displayed
login page with error

message

Request Intercepted

Chapter 7

[157]

The process flow is as described here:

1. The user hits the URL to visit.
2. Hitting the URL, we make a request to the application. In order to find out

which resource is mapped to the URL, DD will be hit. The filter mapping will
be checked to find out if the resource is having limited access. If it is secure,
<http> configuration will be observed. The <http> configuration is checked
for the authentication mechanism to discover which authentication method
to be used, login form location, and other required information.

3. If its <http-basic>, a default login page by spring is provided where the
user can enter his credentials. If form-based authentication is configured,
a custom login form will be given.

4. The data will be taken to the server for authentication.
5. <authentication-manager> is checked to find how to load the

credential data.
6. Authentication is performed and, depending upon it, a success or failure

page will be shown to the user.

Let's start securing the URL for adding the contact data in our contact management.
The URL which we want to make secure is showForm.htm. Only ROLE_ADMIN can
access the URL to get the contact form and to add new contact; other roles cannot
access the information. Let's take Ch04_JdbcTemplate_Integraion to add Spring
Security with basic authentication with the help of the following steps.

Case 1 – Basic authentication
Perform the following steps for basic authentication:

1. Create a new XML named spring-security.xml in WEB-INF.
2. Add a new namespace to capture common uses of the framework

and simplify the syntax in the XML configuration file as
xmlns:security=http://www.springframework.org/schema/security
which is mapped to the schema locations such as:
http://www.springframework.org/schema/securityhttp://www.
springframework.org/schema/security/spring-security-3.0.xsd

Securing the Application

[158]

The XML will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:security="http://www.springframework.org/schema/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-
3.2.xsd">

Now we can use security as the namespace to use the security tags.

1. Configure the URL, the role which can access the URL, and the
authentication mechanism as:
 <security:http auto-config="true">
 <security:intercept-url pattern="/showForm.htm" access="ROLE_
ADMIN"/>
 <security:http-basic/>
 </security:http>

2. Next, configure the authentication manager and authentication provider. To
configure the authentication provider, we need to configure the user service.
The user service configures the username, password, and role. Only the
credential pair having the role ROLE_ADMIN can access showForm.htm. Take
care while configuring the role which can access the URL to be prefixed with
ROLE_. The configuration will be as follows:
<security:authentication-manager>
 <security:authentication-provider>
 <security:user-service>
 <security:username="admin" password="admin"
 authorities="ROLE_ADMIN"/>
 <security:username="user" password="user"
 authorities="ROLE_USER" />
 </security:user-service>
 </security:authentication-provider>
 </security:authentication-manager>

The preceding configuration defines two users: admin and user.

Chapter 7

[159]

Configure the basic authentication mechanism under <http> with
<security:http-basic>; the complete <http> configuration will
be as follows:
<security:http auto-config="true">
 <security:intercept-url pattern="/showForm.htm" access="ROLE_
ADMIN"/>
 <security:http-basic/>
 </security:http>

3. Configure a filter in the web.xml file as follows:
<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>
org.springframework.web.filter.DelegatingFilterProxy
</filter-class>
</filter>

4. As we have added a new .xml file, the servlet init param also needs to be
changed to load a new XML as follows:
<servlet>
<servlet-name>DataWeb</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>
<param-name>contextConfigLocation</param-name>
<param-value>classpath:connection.xml WEB-INF/DataWeb-servlet.xml
WEB-INF/spring-security.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

5. Also configure the ContextLoaderListener to load all XML to register
beans in a spring context as follows:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>classpath:connection.xml WEB-INF/DataWeb-servlet.xml
WEB-INF/spring-security.xml</param-value>
</context-param>
<listener>
<listener-class>org.springframework.web.context.
ContextLoaderListener</listener-class>
</listener>

Securing the Application

[160]

The following are the steps to execute the application:
1. Deploy the application.
2. From the home screen, click on the Add new Record link. As we

haven't implemented security, we are getting the Add New Contact
form. However, now we will be prompted to log in. It will be as
shown in the following screenshot:

3. Let's enter the credentials of a user who has 'user' as username and
the password is 'user'.

4. We will get the same login form again as the user doesn't have
authorization to get the form.

5. Now enter admin and admin as username and password respectively.
As the credentials are matching to the role as ROLE_ADMIN, we will
get the contact form to add a new contact.

Chapter 7

[161]

Case 2 – Login form authentication
In the preceding application, we have used the login from Windows, but sometimes
a customized login form will be the requirement of a project. Let's rewrite some part
of the code which allows us to use a customized login form. In order to incorporate
the new configuration, we just need to change a few configurations as follows:

1. Change the <http> configuration to support form login authentication
as follows:
<security:http auto-config="true">
 <security:intercept-url pattern="/showForm.htm"
 access="ROLE_ADMIN"/>
 <security:form-login login-processing-url="/j_spring_security_
check"
 login-page="/login.jsp" default-target-url="/index.jsp"
 authentication-failure-url="/login.jsp?error=error"/>

The <security:form-login> takes the following attributes :
 ° URL: This has a value /j_spring_security_check that acts as the

action in the form which the user is going to submit.
 ° Login-page: This is /login.jsp where the user enters the credentials.
 ° Default url: This will be /index.jsp.
 ° Authentication-failure-url: It has /login.jsp?error=error, a

URL where the user is redirected if the authentication fails and the
message to be shown to the user will be fetched from the request
parameter error.

2. Create a login.jsp page to take user credentials. The values of the action,
name, and password attributes are fixed so as to trigger the security
mechanism. Display the message to the user using an error parameter.
The code will look like this:
<html>
<body>
<jsp:include page="/WEB-INF/jsps/header.jsp"></jsp:include>
<c:set var="er"value="${param.error }"></c:set>
 <c:if test="${ er.equals('error')}">
 <c:out value="please provide correct credentials"></c:out>
 </c:if>

 <c:if test="${ not empty msg }">
 <c:out value="${msg}"></c:out>
 </c:if>

Securing the Application

[162]

<center>

L O G I N

 <form action="<c:url value='/j_spring_security_
check'/>"method="post">
 <table>
 <tr style="height:50px">
 <td align="left">User Name</td>
 <td><input type="text"name="j_username"value=""></td>
 </tr>
 <tr>
 <td align="left">Password</td>
 <td><input type="password"name="j_password"></td>
 </tr>
 <tr>
 <td></td>
 <td align="right">
 <input type="submit"name="username"value="LOGIN"></td>
 </tr>

 </table>
 </form>
 </center>
</body>
</html>

3. Deploy the application. On clicking Add New Record, we will get the
login.jsp page instead of getting the old window as follows:

4. If we add the credentials as admin for both username and password, we will
get the contact form.

Chapter 7

[163]

5. If we enter credentials of the user as user - user, we will get the same login
page with an error message as shown in the following screenshot:

Case 3 – Authentication against database
In cases 1 and 2, we authenticated the user against the data which is configured
in the authentication provider. Instead of configuring in the XML, we can store
the credentials in the database and use it for authentication. To use database
authentication, we need to follow the following steps:

1. In authentication-provider, instead of configuring a user service,
we need to configure the jdbc-user-service as:
<security:authentication-manager>
 <security:authentication-provider>
 <security:jdbc-user-serviceid="userService"
 data-source-ref="dataSource"
 users-by-username-query="select username,password, enabled
from contact_users where username=?"
 authorities-by-username-query="select username, role from
contact_users where username=?"/>
 </security:authentication-provider>

 ° The dataSource bean will provide the details to obtain the
connection

 ° The users-by-username-query queries the database for a user's
username, password, and enabled status, given the username

 ° The authorities-by-username-query queries the database for
a user's authorities given the username

Securing the Application

[164]

2. Create the table contact_users and add a few users as follows:
create table contact_users(username varchar(20), password
varchar(20), role varchar(10), enabled boolean);
insert into contact_users values('admin','admin','ROLE_
ADMIN',true);
insert into contact_users values('admin1','admin','ROLE_
ADMIN',true);
insert into contact_users values('user','user','ROLE_USER',true);

3. Deploy the application to get the home page. On clicking the Add New
Contact link, we will get the login form. If the credentials for role admin
are entered as admin - admin for username and password, we will get the
contact form.

4. If the credentials are wrong but the username is correct, we will get the
following screen:

5. If we enter credentials for the user role as user - user, we will get an access
denied page as follows:

Chapter 7

[165]

Case 4 – Remember me
Some of the URLs from the applications need to be secure but from the developer's
point of view. The user never likes to get prompted to enter the credentials every time.
We can have a remember me functionality, which lets the user keep users' information
stored so that next time they don't have to authenticate themselves again. In order to
provide the remember me functionality, we need to do the following steps:

1. Add a remember me tag under <http>, which provides the "remember me"
functionality. The updated configuration will be as follows:
 <security:http auto-config="true">
 <security:intercept-url pattern="/showForm.htm"
 access="ROLE_ADMIN"/>
 <security:form-login login-processing-url="/j_spring_security_
check"
 login-page="/login.jsp" default-target-url="/index.jsp"
 authentication-failure-url="/login.jsp?error=error"/>
 <security:remember-me key="contactdata"
 token-validity-seconds="2419200"/>
 </security:http>

The remember me configuration takes two attributes, key and token-
validity-seconds. This functionality works on the principle of cookie
management. Whenever a user selects remember me, a cookie gets stored on
the client machine which by default stores the value of username, password,
expiry date, and a private key in MD5 encoded format. By default, the value
of the private key is SpringSecured and this cookie exists for two weeks.
In the above configuration, we made the private key contactdata which is
application specific and it lasts for four weeks which we specified in seconds.

2. We need to update the login form as well as add Remember me as a
checkbox, which has the action as _spring_security_remember_me.
The code for it will be:
<tr><td><input id="remember_me"
 name="_spring_security_remember_me" type="checkbox"
/></td>
 <td><label for="remember_me">Remember me</label>
</td>
</tr>

Securing the Application

[166]

3. On executing the application, when we click on the Add new contact link,
we will get a login page with remember me functionality as follows:

4. On entering the correct credentials as admin - admin and on selecting the
Remember me checkbox, we will get the contact form.

5. The next time we execute the same application and click on the Add new
contact link, we will not get the login form but, in turn, the contact form
will be directly given to us. This is because we selected the checkbox.

6. For further information on how it happens, we can check out cookie
information from the browser after executing it on the Google browser.
We can get it from cookie management as follows:

From the preceding diagram we can find out the date of cookie creation
and expiry.

Chapter 7

[167]

Case 5 – Logout
Once the authentication process is done, the user will be able to browse freely to
access the data from the Web; login recognizes the user. In the same way, when a
user completes the work, the user needs to log out so as to not leave his information
open for browsing. To provide a logout mechanism, we need to perform the
following two steps:

• Provide a link to log out
• Configure logout in spring-security.xml to redirect the user to the page

which can be publicly accessible

Let's implement it in our application with the help of the following changes:

1. In the header.jsp file, add a Logout link as follows:
<a href="<c:url value='j_spring_security_logout'/>" style="font-
size: large; font-family: Times New Roman; font: bold;"> Logout</
a>

2. In <http>, configure the <logout> as:
<security:logout invalidate-session="true"
 logout-success-url="/index.jsp"/>

The preceding configuration tells the framework to redirect to index.jsp page on
logout and invalidate the session so the information will be accessible after logout.
We are set to check the logout functionality in our application. Now we will have
Logout as a link on every page as shown in the following screenshot:

Securing the Application

[168]

Way 2 – Spring Security using AOP
In the security method, we provide access restrictions to invoke a method rather than
a URL. To enable annotation-based security in an application, we declare:

<global-method-security pre-post-annotations="enabled" use-
expression="true"/>

The preceding configuration enables us to use @Secured annotation in our Java
code which takes a role name or expression. Spring supports the following four
ways to secure methods:

• Annotating the method with @Secured
• Annotating the methods with @RolesAllowed
• Methods annotated with pre- and post-invocation annotations as

@PreAuthorize, @PostAuthorize, @PostFilter, and @PreFilter
• Methods matched with pointcut expressions

The following configuration shows the use of expressions while securing a URL:

<security:intercept-urlpattern="/showForm.htm"
 access="hasRole('ROLE_ADMIN')"/>

The access attribute take the following values:

Expression Return value
permitAll Always true
denyAll Always false
hasRole(role) True if user has a specified role
hasAnyRole(role1,role2,…..) True if user has one of the specified roles

@Secured
@Secured takes an array of string as an argument where each argument is a value
of authorization, one of the roles the user should have to access the method. The
Spring Security exception will be thrown whenever an unauthorized user tries to
access the method.

@RolesAllowed
@RolesAllowed has been defined by JSR 250. To enable the annotation, we need to
do the following configuration:

<global-method-security jsr250-annotations="enabled"/>

Chapter 7

[169]

SpEL-enabled security annotations for securing the
methods
Spring 3.0 has introduced four methods to secure the method invocation depending
upon the role access, which are as follows:

• @PreAuthorized: The annotation takes the argument whose value will be the
value of Role which can access the method as:
@PreAuthorized ("hasRole('ROLE_ADMIN')")
public int getData()
{
 //some code here
}

The method getData() can be accessed by the user who has the privilege as
ROLE_ADMIN. Some expressions which we can use are as follows:

Sr.No Expression Description
1 hasRole(role) The method checks for the role which

has been passed as an argument and
return true if the current principle has a
specified role

2 hasAnyRole([role1,role2]) The method checks for any of the roles
which have been passed roles separated
by comma as an argument and returns
true if the current principal has any of
those supplied

3 Principal This allows direct access to the principal
object representing the current user

4 permitAll This always evaluates to true as it
permits all the users

5 denyAll This always evaluates to false and not
allowing anyone to access

6 isRememberMe() The method returns true if the current
principal is a remember me user

7 isAuthenticated() The method returns true if the user is not
anonymous

8 isFullyAuthenticated() This returns true if the user is not an
anonymous or a remember me user

Securing the Application

[170]

@PostAuthorized: This annotation involves decision making, depending
upon the object returned from the secured method:
@PostAuthorized("return Object.contact.email==principal.email")
public Contact getContact(String email)
{
 //some code here
}

The preceding configuration gives access to the user who has principal mail
ID matched to the contact object returned from the function. Opposite to the
@PreAuthorized annotation in @PostAuthorized, the method gets invoked
first. So the method should not give any side effects if authorization fails.

• @PostFilter: In some situations, developers don't want to secure the
method but want to secure the data returned from the method.

Let's implement method level security in our JdbcTemplate application, which we
developed in cases 1 and 2 for URL-based security:

1. Add configuration to add method level security using an expression in the
spring-security.xml file as follows:
<security:global-method-security secured-annotations="enabled"/>

2. By default, developers configure an access attribute which accepts a role name
which can access the URL with correct authentication. But if the developer
wants to use expressions as a user with some role (e.g. hasRole('admin'))
or IP address (for example, hasIpAddress('123.123.1.1')) then we
need to add use-expression="true" in <http>. We have already seen the
expressions which can be used for configuration.

3. Let's configure access for the resources as:
 ° A home page to be available to all the users by configuring

access='permitAll'

 ° showForm.htm to be accessed by the user having the role ROLE_ADMIN

To do the preceding configurations, we need to update the <http>
configuration as follows:
<security:http auto-config="true"use-expressions="true">
 <security:intercept-url pattern="/index.jsp"
 access="permitAll"/>
 <security:form-login login-processing-url="/j_spring_security_
check"
 login-page="/login.jsp"default-target-url="/index.jsp"

Chapter 7

[171]

 authentication-failure-url="/login.jsp?error=error"/>
 <security:remember-me key="contactdata"
 token-validity-seconds="2419200"/>
 </security:http>

4. Use @Secured('hasRole(ROLE_ADMIN')) or @Secured("ROLE_ADMIN') on
the showContactForm() method as we don't want everyone to access it. This
will allow users with the ROLE_ADMIN privilege to access the functionality.
The code will be as follows:
@Secured("ROLE_ADMIN")
 @RequestMapping("/showForm.htm")
 public ModelAndView showContactForm(HttpServletRequest request,
 HttpServletResponse response, ModelMap map) throws Exception
{

 Contact contact = new Contact();
 map.addAttribute(contact);
 return new ModelAndView("contactForm");
 }

5. We need to add the aopalliance.jar file as method security uses
Spring-AOP internally. You can download it from java2s.com or
mvnrepository.com.

6. Deploy the application and enter the credentials to check how the application
is working.

Spring Security using pointcut
Sometimes in the application, more than one method needs to be secured. Putting
constraints on the one-by-one method will not be good practice. In such cases,
authorization can be applied using point cut. To use pointcut for securing methods,
we need to configure <protect-pointcut> as follows:

<global-method-security>
<protect-pointcut access="ROLE_ADMIN"expression=
"execution(* com.packt.ch07.*.showContactForm(*))"/>
</global-method-security>

The preceding configuration restricts the access to showContactForm to the users
who have the ADMIN role.

Securing the Application

[172]

Way 3 – Custom security
Spring supports and provides all kinds of possible security methodologies, but then
also, sometimes for certain situations, we need to provide our own custom way to
extend spring API. One of the ways to provide custom security is by writing user-
defined AuthenticationProvider which has the authenticate() method. This
method uses UserDetailService to do authentication. The authenticate() method
returns AuthenticationToken containing username, password, and authorities.

Summary
Security is a very important part of any application and needs to be carefully
handled. As each application and its requirements are different due to the ways
of authentication, like form-based or basic; the developers need to wisely make
a decision on which one to use. In this chapter, we have seen URL-based, as well
as method-based, ways to provide security. The users with their assigned roles
can be configured in the XML. We also saw how to use databases to configure the
authentication information. Sometimes the user uses the application frequently
and may not want to log in each time they access the application. We also covered
remember me functionality to take away the burden of login. We also saw how to
use logout in the application.

In the next chapter, we will be covering problems during the versioning of an
application, problems for collaborating on the application when it's been distributed
among the team members. We will also configure the software which provides
versioning and collaboration with ease.

[173]

Versioning and Deploying
We have made a great effort to create an application. As the application was
quite simple and we were working alone on it, we haven't faced the difficulty of
collaborating with each other. We never even came across a situation where the
code had conflicts because someone else in the team did the changes. But in actual
development, we always work in a team, no matter what the size. A team always
works faster for better performance but faces problems when collaborating on the
work, synchronizing with each other, when more than one person works on the same
code, and many more. These are not code-related problems. Rather, the problem
is how efficiently we exchange code with each one of our team members with less
duplication. Versioning tools help us in such scenarios, as already discussed in the
introductory chapter. In this chapter, we will explore the real power of TortoiseSVN
as a versioning tool and how we can use it for collaboration. We will cover the
following topics:

• How to use versioning to collaborate the code
• How to manage the application lifecycle
• How to use Tomcat for deploying an application

Versioning
In the introductory chapter, we already discussed what versioning is, why developers
need versioning, and how to share the work in the repositories. We covered most
of the basics which we implement practically in the coming pages. To start with
versioning, we first need the TortoiseSVN setup and a server to manage TortoiseSVN.
We do have servers such as the VisualSVN server, Collabnet server, and UberSVN.

Versioning and Deploying

[174]

First of all, we need to install TortoiseSVN. Let's perform the following steps to
complete the installation:

1. Download the TortoiseSVN setup from https://tortoisesvn.net/
downloads.html for your platform.

2. Before starting the installation, configure the JAVA_HOME and Path variables.
3. Start the installation by clicking on the Run button.
4. A welcome screen will appear; click on Next to follow the step.
5. Then, accept the license agreement.
6. On the next screen, deselect the elements to start with custom setup. After

selecting the elements to install, click on the Next button.
7. Click on Install.
8. Click on Finish to complete the setup.

Now it's time to install the server to maintain repositories, users, and much more.

Collabnet server
We will install Collabnet and Visual SVN as two different servers for this purpose.
Let's start with Collabnet Subversion Edge. The setup is available at http://www.
collab.net/downloads/subversion. Once the setup is downloaded, install it by
keeping all the default settings.

We have installed the Collabnet server successfully. Now we will create repositories,
and users, and assign the access rules to the repositories. Let's then start with
repository creation:

1. From the Start menu, select Collabnet to launch it. We will get the console
status as shown in the following screenshot:

https://tortoisesvn.net/downloads.html
https://tortoisesvn.net/downloads.html
http://www.collab.net/downloads/subversion
http://www.collab.net/downloads/subversion

Chapter 8

[175]

2. Once the setup is done, we will be prompted to provide authentication
details as shown in the following snapshot:

Use admin as username and admin as password to log in.

3. We will get the home page. The server is down. We need to start it before
any other function. To start it, click on the Start button as shown in the
following screenshot:

Versioning and Deploying

[176]

4. Once the server is on, now it's time to create the repository. Click on the
Repositories menu, as shown here:

5. We will get the list of repositories if you have any, as shown here:

6. Click on the Create button to create a new repository.
7. We will get a form to enter the name of a new repository. Enter Repository1

as shown in the following screenshot:

8. Once a successful repository gets created, we will get it in the list of
repositories as we did in step 2. In this way, we can create many repositories.

Chapter 8

[177]

9. Now let us create users. Click on Users from the menu bar as shown in the
following screenshot:

10. We will get a list of available users. We haven't created any users yet; we will
get just admin as an available user as shown in the following screenshot:

We can even get the users list from the User List menu from the left panel
as shown:

Versioning and Deploying

[178]

11. Let's add two more users here. Click on the Create button to get the create
new user template as follows:

12. Add packt_user1 as Login Name, Contact1 as the password, select
ROLE_USER as the role. Click on create to create a new user.

13. In the same way, create one more user with the username packt_user2 and
password Contact1. You can use your choice of password but if you are
using anything else please remember it as we need it in the future.

14. On clicking User List, we can get the user list with three users; admin,
packt_user1, and packt_user2 as shown in the following screenshot:

Chapter 8

[179]

Next, let us see how to set access rules.

Repository1 should be accessed only by packt_user1 and packt_user2. To do
this, we need to set access rules with the help of the following steps:

1. Click on the Repositories menu.
2. On the left panel, we will get Access Rules as shown in following screenshot:

3. Click on Access Rules. As there are no rules set yet, all the users will be able
to read and write to all the repositories. It can be seen as follows:

4. To set the rule, click on the Edit button and add new rules as shown in the
following screenshot to give read and write access to both users which we
have created:

Now we have successfully secured our repository so that only authenticated users
will be able to access it.

Versioning and Deploying

[180]

Visual SVN server
It's time to create new users with the help of the following steps in Visual SVN.

Get the setup Visual SVN from https://www.visualsvn.com/downloads/ and
complete the setup with default settings.

1. Let's start the Windows-based VisualSVN server and explore its power to
manage repositories.

2. Start the VisualSVN server from the Start menu. We will get the
following window:

3. Now there are no repositories or users. We will now add them one by one.
A new repository can be created in two ways:

1. Right-click on the Repositories folder and select the Create New
Repository... option:

https://www.visualsvn.com/downloads/

Chapter 8

[181]

2. Click on Create new repository from the home page as shown in the
following screenshot:

Versioning and Deploying

[182]

4. Select the default option to create Regular FSFS repository and click
on Next:

5. Give the repository the name visual_repo1 and click on Next as shown in
the following screenshot:

Chapter 8

[183]

6. Select Empty repository and click on Next as shown:

7. Select Custom permissions and click on the Custom button to set access
rules if we have users already created. As there are no users, we cannot set
access rules now, we will set access rules in the following steps. Select All
Subversion users have read and write access and click on Create:

Versioning and Deploying

[184]

8. We will get a success page giving details like the name of the repository, the
users who can access it, and the URL to be used to fetch the data as shown:

9. Click on Finish to complete the process. We will use this URL to perform an
import of the repository or committing data to the repository.

We can now find our repository by clicking on Repositories on the left panel:

Chapter 8

[185]

Now let us start creating users. A new user can be created in two ways:

1. Right-click on the Users folder and select the Create User option:

2. Click on Create new user from the home page as shown:

Versioning and Deploying

[186]

3. Fill the details in the form and click on OK. Use the username svn_user1
and password svnpass1:

4. In the same way, add one more user having svn_user2 as the username and
svnpass2 as the password.

5. On clicking Users in the left panel, we can get list of available users,
as shown:

Next, we will add access rules for our repositories by performing the following steps:

1. Right-click visual-repo1 and select the Properties option. Earlier, we
created a repository without any access rules, all users can access that
repository, hence we get the following screenshot:

Chapter 8

[187]

2. Select Everyone as shown in the preceding screenshot and click on Remove.
Now no one can access visual_repo1.

3. Click on Add to add the new users which we created. We will get the
following screenshot:

4. Select svn_user1 and click on OK.
5. We will now get a properties dialog where svn_user1 got added. Here we

can set permissions by selecting the radio buttons. We will keep Read / Write
but if you want you can change it here.

Versioning and Deploying

[188]

6. Add one more user, svn_user2, in the same way with read/write access. We
will get a dialog as follows:

7. Click on Apply and then OK to reflect the changes.

Adding SVN as a plugin to Eclipse
Now, we can use TortoiseSVN through the command line. We don't have to keep on
remembering all the commands to use versioning. As we are using Eclipse, we can
use an SVN plugin to use versioning from our eclipse IDE. Let's integrate the SVN
plugin as follows:

1. Select Eclipse Marketplace from the Help menu.
2. Type Subclipse in Find and click on Search.
3. Once the search gets completed, we will get Subclipse at the top of the list.

Click on the Install button next to it as shown:

Chapter 8

[189]

4. Select all the checkboxes to download the plugin as shown in the
following screenshot:

5. Click on Next.
6. Select the Accept the terms and condition radio button.
7. Click on Finish.
8. A security warning will be shown; click on OK to proceed further.
9. Once installation is complete, we will get a dialog to restart eclipse as follows:

10. Click on Yes to restart.

Versioning and Deploying

[190]

We have successfully installed the plugin. We can check it by navigating to
Windows | Show View | other |. Type svn. We should get the following screen:

 Now we are set to start with versioning using eclipse. We will do it first with
Collabnet and then with Visual SVN. To start with, we need to create two
workspaces, svn_tut and svn_tut1, used by packt_user1 and packt_user2
respectively. Either we can get the project from the repository or if it's a new project,
we can create a directory structure of it and commit it to the repository. In our
repository, no projects are available; so now packt_user1 will create a new project
and store it in the central repository Repository1 so that others can access it from his
or her group. Let's follow the steps to complete the task:

1. Launch eclipse and select the workspace svn_tut1.
2. Create a new dynamic web project SVNDemo1.
3. Right-click on it and select the option Team | Share project.
4. Select SVN and click on Next as shown:

Chapter 8

[191]

5. We now need to select the repository location. To enter the URL, select the
Create new repository location radio button and click on Next as follows:

6. Enter the URL of Repository1 from the Collabnet server. To find out
the URL:

 ° Launch the Collabnet server.
 ° Enter the credentials.
 ° Click on Repositories; we will get the following screen, from

where the red underlined part is the URL to enter:

Versioning and Deploying

[192]

7. Copy and paste it in eclipse as repository info. Make sure to remove extra
spaces from the URL. Click on Next:

8. Select the project name as the folder name and click on Next.
9. Add comments as Initial Import and click on Finish.
10. We will be prompted to enter authentication several times. Use the

credentials which we created while configuring the Collabnet server for
Repository1 (packt_user1 as username and contact1 as password).

11. Once the operation is completed, we will be prompted to open Perspective.
Click on No.

12. Now we have to commit the project to the repository. To do this, right-click
on Project, select Team and click on Commit.

13. Enter the comments as Empty project; we can deselect the checkboxes for
the files which we don't want to add for versioning. Now we will keep
everything default as shown in the following screenshot:

Chapter 8

[193]

Adding files in the project and committing them
to the repository
After creating our project, now it's time to add packages or files:

1. Let's add index.jsp in WebContent.
2. The newly created file will have ? as an icon signifying this is new content

which is not added to versioning as shown in the following screenshot:

Versioning and Deploying

[194]

3. To add this in versioning, we need to commit this file. Right click on index.
jsp, select Team, and click on Commit. Add the appropriate comment and
click on OK. The files have been successfully committed to the repository.

Importing the project in the workspace
To get the project in the workspace, first of all the repository administrator has to:

• Give us the URL to access the repository
• Create a new user with credentials and give them access to the repository

We already created packt_user2, who has access to Repository1. We will use
this data to import the project from the repository. The process is generally called
checkout. We will follow the following steps to check out the SVNDemo1 project from
Repository1:

1. Open a new workspace to work. Select File | Import.
2. Type SVN and select Checkout Projects from SVN as shown in the

following screenshot:

3. Click on Next. Select Create a new repository location and click on Next.
4. Enter the URL of the repository which you got from the administrator or

copied from Collabnet as shown earlier.

Chapter 8

[195]

5. Enter the credentials as packt_user2 and Contact1 or the one which you
gave at the time of user creation.

6. All the projects from Repository1 will be listed as shown in the
following screenshot:

7. Select SVNDemo1 and click on Next. Enter credentials if asked.
8. Choose Check out as a project in the workspace as shown in the

following screenshot:

Versioning and Deploying

[196]

9. Click on Next.
10. Select Use Default work location and click on Finish.
11. We have successfully checked out the project from the repository.

It is a replica of the project which packt_user1 had committed.
12. Let's modify index.jsp and commit it to understand the concept

of collaboration:

1. Modify index.jsp as follows:
<body>
WELCOME to Collabnet.
<body>

2. A black star will be shown on index.jsp, signifying we made
some changes in the local file which we can commit to the
repository as shown:

3. Right click on index.jsp, select Team and click on Commit.
4. Enter a comment as Welcome message and click on OK. The file will

be committed to the repository.

Updating and tracking the project for latest changes
in the repository
As project development is a team effort, many people may be working on different
files in the project. That means they will keep on committing their latest work to
the repository. In order to reflect those changes in our local copy, we must update
our project. packt_user2 has added index.jsp in the last step, which is not with
packt_user1.

Chapter 8

[197]

Let's update the project for packt_user1 to get the latest copy with the help of the
following steps:

1. First of all, we may want to find out what changes have been made in the
SVNDemo1 project. To find this out, right click on projectSVNDemo1 | Team
| Synchronize with Repository.

2. Enter the credentials for packt_user1. We will be prompted to open
Perspective. Click on Yes.

3. In Perspective, we will get a list of the files which are in the repository but
not in our local copy as shown in the following screenshot:

4. Now we will accept all the changes from the repository in our local copy as:
1. Change Perspective to get the project explorer.
2. Right-click on WebContent, select Team, and click on Update to Head.
3. Enter packt_user1's credentials.
4. We will now have index.jsp with the same code added by packt_

user2 in the previous steps.

5. To find the version history, we need to click on project->Team->Show
History. A dialog will open as shown, with the list of the operations
performed on the project to keep a history of versioning:

Versioning and Deploying

[198]

In the same way we used Collabnet for versioning, we can use a VisualSVN server.
The only difference is the way we copy the URL. To copy the URL for the repository
in VisualSVN, we need to right-click on the repositories and select Copy URL to the
Clipboard as shown in the following screenshot:

Use the same step to check out, add, and update the data to and from the repository
visual-repo1 which we have already created. Follow the same steps as we did for
Collabnet. Don't forget to check the credentials for the VisualSVN server.

Project deployment
We created the project in Eclipse IDE and tested it there. It may be possible to give
our project to others to use, or want to use it on some other machine. The process of
installing our application into the server context is called project deployment. This
process is server-specific. On successful deployment, we can use a project without
eclipse IDE. Here we will discuss the possible ways of deploying our application into
a Tomcat7 server.

We can create a web archive file (WAR) and deploy it in Tomcat with one of the two
ways described in the following sections.

Copying a WAR file into Tomcat without
Tomcat manager
To copy a WAR file of our application, first of all we need to generate the WAR file
from eclipse as follows:

1. Create a new dynamic web project, Ch08_Demo_Deployment.
2. Add index.jsp in WebContent as follows:

<%@page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>

Chapter 8

[199]

<!DOCTYPE html PUBLIC"-//W3C//DTD HTML 4.01 Transitional//
EN""http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title>Insert title here</title>
</head>
<body>
Welcome to Project
CLICK HERE
</body>
</html>

3. Add welcome.jsp in WebContent as follows:
<%@page language="java"content Type="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC"-//W3C//DTD HTML 4.01 Transitional//
EN""http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title>Insert title here</title>
</head>
<body>
Hello from Tomcat
</body>

4. Let's now generate a WAR file by right-clicking on project | Export | WAR
file as shown:

Versioning and Deploying

[200]

5. Click on Browse to select the destination, for example, C drive or any other
location.

6. Enter the filename as MyProject1 and click on Save.
7. Open the Tomcat installation directory from the drive and browse to webapps.
8. Copy MyProject1.war in webapps as shown in the following screenshot:

9. To check the project is working, perform the following steps:
1. Browse to tomcat-> bin and start the Tomcat server by

double-clicking on the startup batch file.
2. Once Tomcat is started, we can observe the following log on the

Tomcat console, where Tomcat got started at 8080 and our WAR
got deployed as shown:

Chapter 8

[201]

3. Open the browser and write the URL for our project,
which is http://localhost:8080/MyProject1 in the
format of http://host_name:port_no/Name_of_war.

4. We will get the following output from the index page:

5. When we click on the link, the welcome page will go on browsing
through the project.

With the help of the preceding steps, we can deploy any project we have created in
this project without any extra effort apart from configuring security, as security users
need to be created in the server's configuration.

Copying a WAR file into Tomcat with
Tomcat manager
To deploy a WAR using Tomcat manager, we first need to have a user who has a
manager role. So let's first of all create a user with a managerial role:

1. Stop Tomcat if already running. Open the webapps folder and delete
MyProject1.war and the MyProject folder from it. We will now
deploy it with a new process.

2. Open tomcat-users.xml from the tomcat | conf folder.
3. Edit it to add a role as manager-gui and a user with tomcat as

username and tomcat as password. The code will be as follows:
<role rolenam'e="manager-gui"/>
<user username="tomcat" password="tomcat" roles="manager-gui"/>

4. Start Tomcat and type the following URL in the browser:
http://localhost:8080/manager.

5. It will ask for authentication. Enter tomcat as username and password as
tomcat, which we have just given in the earlier step.

Versioning and Deploying

[202]

6. A page for the Tomcat web application manager will open. We will get a
deployment form as follows:

7. Click on Choose File and select MyProject1.war from the destination which
we exported in a previous step.

8. Click on Deploy.
9. We will be able to find /MyProject1 in the Application list as follows:

10. Test it from the browser in the same way as we did in a previous step by
typing the URL.

Chapter 8

[203]

In this way, we can deploy a WAR of any project which we have created in the
Tomcat environment.

Summary
In this chapter, we discussed how to configure a Collabnet server and a Visual
SVN server. We covered the creation of users and repositories in both the servers.
We also set the access rules to the repositories. We learned the integration of the
Subclipse plugin in Eclipse to do versioning of projects from IDE. In easy steps, we
discovered the process of collaborating on the project with team members, with the
help of commit and update commands. We also covered the process of getting a new
project in our workspace from the repository to work. Deployment is one of the very
important steps in application development. We covered deployment of applications
with and without Tomcat Manager. And with this, now you are set to get on with
your own application development.

We started the journey by taking a simple application and develop it step-by-step.
We practically discovered the ways to develop modular Java programming using
SpringMVC. We developed a contact management application layer by layer to
make it easy to understand and develop thoroughly. Developing an application
which contains no flaws in business logic is possible if we carry out unit testing
and integration testing. Unsecure applications will not withstand the market so we
make sure our application is secure by using integration with Spring Security. The
messy work of handling teamwork has been made easy with the help of versioning.
Once the application was ready, we performed the deployment of the application on
the server, which was our last stop. I have tried to make this journey as smooth as
possible. Hope you enjoyed it and will explore it further.

[205]

Index
A
annotation-based validations

@Length(min=, max=) 62
@Max 62
@Min 62
@NotBlank 62
@NotEmpty 62
@NotNull 62
@Pattern(regex=, flag= 63
@Size(min=, max=) 63
@Valid 63
performing 59-65

Arquillian 146
Aspect Oriented Programming (AOP) 114

B
branching 14
business layer

developing 107-111
business logic

about 104-106
business layer, developing 107-111
case studies 107
conditions 107
domain knowledge 106
formulas 107
rules 107

C
client program 16
cohesive 3
Collabnet server 173
Collabnet Subversion Edge

download link 174

command object 47
committing 16
Concurrent Versioning System (CVS) 14
container 12
coupling 3

D
data

saving in relational database,
advantages 69

storing in XML, disadvantages 68
data binding, presentation layer

about 43
multiple form fields, reading 46, 47
request parameters for searching,

reading 43-45
Data Source Name (DSN) 70
data sources

getting 77
getting by looking up, JNDI used 77
getting, from JDBC sources 78

declarative transaction 113
isolation level 115
managing, in Spring 114-117
propagation behavior 114
read-only 116
rollback rules 117
transaction-timeout 116

declarative transaction management 117-119
design patterns 10
development 2
distributed versioning

about 17
GitHub 17

domain knowledge 106

[206]

E
Eclipse

SVN, adding as plugin 188-192
enterprise

as an application 19, 20
Expression Language (EL) 51

F
filters

BasicAuthenticationFilter 154
DefaultLoginPageGeneratingFilte 154
LogoutFilter 154
UsernamePasswordAuthenticationFilter

155
form backing object 47
form validation, presentation layer

about 53
annotation-based validations 59
customised validators, developing with

Spring validators 54-59
framework

about 29
advantages 29, 30

G
GitHub 17
global transactions 112
Google

URL 42

H
Hibernate

about 86
architecture 87-93
Spring Hibernate integration 93-97

I
integration testing 133-141

J
Java

interacting, with relational database 69
Java Database Connectivity (JDBC)

about 69
and transaction management 112
issues 86

Java driver
advantages 73
disadvantages 73-76

Java EE platform
about 20
features 21
MVC I architecture 24
MVC II architecture 25
practical aspect 25-29
Servlet 23, 24
world of dotcoms 22

Java Enterprise architecture 11, 12
Java Naming and Directory Interface

(JNDI) 77
Java Transaction API (JTA) 112
JDBC drivers, types

about 70
Java driver 73
JDBC Net Protocol Driver 72
JDBC-ODBC bridge driver 70, 71

JDBC integration, types
about 78
DataSource, integrating to get connection

reference 79-81
JDBC DAO support, integrating 84, 85
JDBC template, integrating 82-84

JDBC Native API Driver/Partly
JAVA Driver 71

advantages 71
disadvantages 72

JDBC Net Protocol Driver
advantages 72
disadvantages 73

JDBC-ODBC bridge driver 70
advantages 70
disadvantages 71

[207]

L
local transactions 112

M
maintenance 2
Mockito testing

about 141-146
Arquillian 146

Mock testing
about 127
contact, inserting by violating validation

rules for contacts 130-133
contact, inserting with correct values as

per validation rules 128-130
Spring testing framework 127

modular programming
about 4
world of modules 4

modules
about 3
practical aspect 3

modules, for handling Spring Security
ACL 151
CAS Client 151
configuration 151
Core 152
LDAP 152
OpenID 152
Web 152

multiple form fields
form backing object 47-49
multiple form fields, reading 47
pre-population of forms 50-53

N
N-tier applications 9, 10

O
object-oriented programming (OOP)

language 69
Object Relational Mapping (ORM)

about 86
advantages 86

object serialization
disadvantages 68

One-tier application 7
Open Database Connectivity (ODBC)

API 70

P
persistence

about 67
data, saving in relational database 68
data, storing in XML 68
object serialization, using 68

persistency 67
pre-population of forms 50
presentation layer

about 41, 42
data binding 43
form validation 53

programmatic transaction management 113,
119-121

project deployment
about 198
WAR file, copying into Tomcat without

Tomcat manager 198-201
WAR file, copying into Tomcat with

Tomcat manager 201, 202

R
requirement collection phase 2

S
SCM (supply chain management) 14
Secure Service Layer (SSL) 152
security

authentication 150
authorization 150
confidentiality 150
data integrity 150

sequential programming language (SQL) 69
serialization 68
software application 1, 2
software development process models 2
software testing

about 123, 124

[208]

spiral model 125
V model 125
waterfall model 124

SpEL enabled security annotations
@PostAuthorized 170
@PostFilter 170
@PreAuthorized 169

spiral model 125
Spring

and transaction management 112
Spring-JDBC integration

about 76
DataSource, configuring 77

Spring MVC
about 30
components 31
configuration file 33
front controller 32
ModelAndView 32
Spring MVC controller 32
ViewResolver 33

Spring Security for URL, using servlet filters
about 153-157
authentication against database 163, 164
basic authentication 157-160
login form authentication 161, 162
logout mechanism 167
remember me functionality 165, 166

Spring Security framework
about 151
custom security 172
secure web request 152
Servlet filters, using 151
SprAOP, using 168
Spring AOP, using 151
Spring Security for URL, using servlet

filters 153-157
Spring Security, using AOP

@RolesAllowed 168
@Secured 168about 168
pointcut, using 171
SpEL enabled security annotations for

securing methods 169-171
Spring testing framework 127
Spring validators

used, for developing customised
validators 54-59

Subversion (SVN)
about 4
architecture 15
repository 15, 16

SVN, adding as plugin to Eclipse
about 188-192
files, adding in project 193, 194
files, committing to repository 193
project, importing in workspace 194196
project, tracking for latest changes 196-198
project, updating for latest changes 196-198

T
team

coordinating with 13
three-tier applications 8
tier

about 5, 6
N-tier applications 9, 10
one-tier applications 7
three-tier applications 8
two-tier applications 7

TortoiseSVN 173
TortoiseSVN setup

download link 174
transaction management

about 111, 112
and JDBC 112
and Spring 112, 113

transaction, properties
about 111
atomicity 111
consistency 112
durability 112
isolation 112

two-tier applications 7

U
UberSVN 174
unit testing

about 98
JUnit used 98
TestCase writing, annotation used 98-102

[209]

V
versioning

about 13, 173, 174
collabnet server 174-179

versioning tools
about 13
Apache Subversion 14
centralized versioning 14

visual SVN server
about 180-187
reference link 180
SVN, adding as plugin to Eclipse 188-192

VisualSVN server 173
V model

about 125
validation phases 126, 127
verification phases 126

W
waterfall model 124
web application

security, providing 150, 151
web archive file (WAR) 198
work

sharing 12, 13

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Modular Programming
	Software – the perspective
	Modules
	What is behind and in a module?
	The practical aspect

	The gang – modular programming
	The world of modules

	Tiers and layers in an enterprise application
	One-tier applications
	Two-tier applications
	Three-tier applications
	N-tier applications
	Java Enterprise architecture

	Sharing the work
	Coordinate with the team
	Versioning tools
	Centralized versioning
	The architecture of SVN
	Distributed versioning

	Summary

	Chapter 2: Saying Hello to Java EE
	The enterprise as an application
	The Java EE platform
	Features of the Java EE platform
	The world of dotcoms
	Servlet – the dynamicity
	MVC I architecture
	MVC II architecture
	The practical aspect
	What is a framework?
	Spring MVC
	The components
	The front controller
	Spring MVC controller
	ModelAndView
	ViewResolver
	The configuration file

	Summary

	Chapter 3: Implementing the Presentation Layer
	Presentation
	Data binding
	Case 1 – Reading request parameters for searching
	Case 2: Reading multiple form fields

	Form validation
	Developing customised validators using Spring validators
	Annotation-based validations

	Summary

	Chapter 4: Talking to the Database
	Persistence
	Using object serialization
	Disadvantages of using object serialization

	Storing data in XML
	Disadvantages of storing data in XML

	Saving the data in a relational database
	Advantages of saving data in a relational database

	Interaction of Java with relational databases
	Types of JDBC drivers
	JDBC-ODBC bridge driver
	JDBC Native API Driver/Partly Java Driver
	JDBC Net Protocol Driver
	All Java drivers

	Spring-JDBC integration
	Configuring DataSource in Spring JDBC

	Types of integration of JDBC
	Integrating the DataSource to get a connection reference
	Integrating the JDBC template
	Integrating JDBC DAO support

	Problems with JDBC

	Introduction to ORM
	Advantages of using ORM
	Introduction to Hibernate
	Hibernate architecture
	Spring Hibernate integration

	Introduction to unit testing
	Unit testing using JUnit
	Steps for writing a TestCase using annotation

	Summary

	Chapter 5: Developing the
Business Layer
	Business logic
	Domain knowledge
	Rules, formulas, and conditions
	Case studies
	Developing the business layer

	Transaction management
	JDBC and transaction management
	Spring and transaction management
	Programmatic transaction
	Declarative transaction

	Declarative transaction management
	Programmatic transaction management

	Summary

	Chapter 6: Testing Your Application
	Software testing
	The waterfall model
	The spiral model
	The V model
	Verification phases
	Validation phases

	Mock testing
	Spring testing framework
	Case1: Inserting contact with correct values as per validation rules
	Case2: Inserting a contact by violating validation rules for contacts

	Why integration testing?
	Mockito testing
	Arquillian

	Summary

	Chapter 7: Securing the Application
	Make it safe, make it secure
	Spring security framework
	Secure web request
	Way 1 – Spring Security for URL using servlet filters
	Case 1 – Basic authentication
	Case 2 – Login form authentication
	Case 3 – Authentication against database
	Case 4 – Remember me
	Case 5: Logout

	Way 2 – Spring Security using AOP
	@Secured
	@RolesAllowed
	SpEL-enabled security annotations for securing the methods
	Spring Security using pointcut

	Way 3 – Custom security

	Summary

	Chapter 8: Versioning and Deploying
	Versioning
	Collabnet server

	Visual SVN server
	Adding SVN as a plugin to Eclipse
	Adding files in the project and committing them
to the repository
	Importing the project in the workspace
	Updating and tracking the project for latest changes in the repository

	Project deployment
	Copying a WAR file into Tomcat without Tomcat manager
	Copying a WAR file into Tomcat with Tomcat manager

	Summary

	Index

