
www.allitebooks.com

http://www.allitebooks.org

Learning PHP 7

Learn the art of PHP programming through this
example-rich book filled to the brim with tutorials
every PHP developer needs to know

Antonio Lopez

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning PHP 7

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1210316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-054-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Antonio Lopez

Reviewer
Brad Bonkoski

Commissioning Editor
Kunal Parikh

Acquisition Editors
Nikhil Karkal

Divya Poojari

Content Development Editor
Rohit Kumar Singh

Technical Editor
Taabish Khan

Copy Editors
Shruti Iyer

Sonia Mathur

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Antonio Lopez is a software engineer with more than 7 years of experience. He has
worked with PHP since university, which was 10 years ago, building small personal
projects. Later, Antonio started his journey around Europe, working in Barcelona,
London, Dublin, and back in Barcelona. He has worked in a number of different areas,
from web applications to REST APIs and internal tools. Antonio likes to spend his
spare time on personal projects and start-ups and has a strong vocation in education
and teaching.

I would like to give thanks to my wife, Neri, for supporting me
through the whole process of writing this book without going crazy.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Brad Bonkoski has been developing software for over 15 years, specializing in
internal operations, systems, tools, and automation. Sometimes, this role is loosely
referred to as DevOps. He leans more toward the Dev side of this misunderstood
buzzword. After building an incident management system and managing change
management for Yahoo, Brad became motivated by metrics and now lives by the
mantra that what doesn't get measured doesn't get fixed. Today, he greases the
wheels of productivity for Shazam.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Setting Up the Environment 1

Setting up the environment with Vagrant 1
Introducing Vagrant 2
Installing Vagrant 2
Using Vagrant 2

Setting up the environment on OS X 5
Installing PHP 5
Installing MySQL 7
Installing Nginx 9
Installing Composer 9

Setting up the environment on Windows 9
Installing PHP 10
Installing MySQL 10
Installing Nginx 12
Installing Composer 13

Setting up the environment on Ubuntu 13
Installing PHP 14
Installing MySQL 14
Installing Nginx 14

Summary 16
Chapter 2: Web Applications with PHP 17

The HTTP protocol 17
A simple example 18
Parts of the message 18

URL 18
The HTTP method 19
Body 19

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Headers 19
The status code 20

A more complex example 20
Web applications 21

HTML, CSS, and JavaScript 22
Web servers 24

How they work 24
The PHP built-in server 25
Putting things together 26

Summary 27
Chapter 3: Understanding PHP Basics 29

PHP files 29
Variables 31

Data types 32
Operators 33

Arithmetic operators 34
Assignment operators 34
Comparison operators 35
Logical operators 36
Incrementing and decrementing operators 36
Operator precedence 37

Working with strings 38
Arrays 40

Initializing arrays 41
Populating arrays 42
Accessing arrays 43
The empty and isset functions 44
Searching for elements in an array 45
Ordering arrays 45
Other array functions 48

PHP in web applications 49
Getting information from the user 49
HTML forms 51
Persisting data with cookies 52
Other superglobals 53

Control structures 54
Conditionals 54
Switch…case 58
Loops 59

While 59
Do…while 60

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

For 60
Foreach 61

Functions 63
Function declaration 63
Function arguments 64
The return statement 66
Type hinting and return types 66

The filesystem 68
Reading files 68
Writing files 70
Other filesystem functions 73

Summary 73
Chapter 4: Creating Clean Code with OOP 75

Classes and objects 76
Class properties 76
Class methods 77
Class constructors 79
Magic methods 80

Properties and methods visibility 81
Encapsulation 83

Static properties and methods 87
Namespaces 88
Autoloading classes 90

Using the __autoload function 90
Using the spl_autoload_register function 92

Inheritance 92
Introducing inheritance 92
Overriding methods 96
Abstract classes 97

Interfaces 100
Polymorphism 105

Traits 106
Handling exceptions 112

The try…catch block 113
The finally block 115
Catching different types of exceptions 117

Design patterns 121
Factory 121
Singleton 124

Anonymous functions 128
Summary 131

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 5: Using Databases 133
Introducing databases 133

MySQL 134
Schemas and tables 136

Understanding schemas 136
Database data types 138

Numeric data types 138
String data types 139
List of values 139
Date and time data types 140

Managing tables 141
Keys and constraints 143

Primary keys 143
Foreign keys 145
Unique keys 148
Indexes 149

Inserting data 149
Querying data 152
Using PDO 156

Connecting to the database 156
Performing queries 157
Prepared statements 159

Joining tables 161
Grouping queries 164
Updating and deleting data 165

Updating data 166
Foreign key behaviors 168
Deleting data 169

Working with transactions 171
Summary 173

Chapter 6: Adapting to MVC 175
The MVC pattern 175
Using Composer 176

Managing dependencies 176
Autoloader with PSR-4 179
Adding metadata 180
The index.php file 181

Working with requests 181
The request object 182
Filtering parameters from requests 183

Table of Contents

[v]

Mapping routes to controllers 186
The router 189

URLs matching with regular expressions 190
Extracting the arguments of the URL 192
Executing the controller 192

M for model 194
The customer model 196
The book model 198
The sales model 203

V for view 207
Introduction to Twig 207
The book view 208
Layouts and blocks 210
Paginated book list 211
The sales view 212
The error template 214
The login template 215

C for controller 215
The error controller 218
The login controller 219
The book controller 220
Borrowing books 223
The sales controller 225

Dependency injection 226
Why is dependency injection necessary? 226
Implementing our own dependency injector 228

Summary 232
Chapter 7: Testing Web Applications 233

The necessity for tests 233
Types of tests 234
Unit tests and code coverage 236

Integrating PHPUnit 237
The phpunit.xml file 238
Your first test 239
Running tests 241

Writing unit tests 242
The start and end of a test 243
Assertions 244
Expecting exceptions 249
Data providers 250

Table of Contents

[vi]

Testing with doubles 251
Injecting models with DI 252
Customizing TestCase 252
Using mocks 254

Database testing 260
Test-driven development 265

Theory versus practice 270
Summary 271

Chapter 8: Using Existing PHP Frameworks 273
Reviewing frameworks 273

The purpose of frameworks 274
The main parts of a framework 274

Other features of frameworks 276
Authentication and roles 276
ORM 276
Cache 277
Internationalization 279

Types of frameworks 279
Complete and robust frameworks 279
Lightweight and flexible frameworks 280

An overview of famous frameworks 280
Symfony 2 281
Zend Framework 2 281
Other frameworks 281

The Laravel framework 282
Installation 282
Project setup 282
Adding the first endpoint 285
Managing users 289

User registration 290
User login 293
Protected routes 295

Setting up relationships in models 295
Creating complex controllers 296
Adding tests 300

The Silex microframework 303
Installation 303
Project setup 304

Managing configuration 304
Setting the template engine 305
Adding a logger 306

Table of Contents

[vii]

Adding the first endpoint 306
Accessing the database 307

Silex versus Laravel 313
Summary 313

Chapter 9: Building REST APIs 315
Introducing APIs 316
Introducing REST APIs 316
The foundations of REST APIs 317

HTTP request methods 317
GET 318
POST and PUT 318
DELETE 319

Status codes in responses 320
2xx – success 320
3xx – redirection 320
4xx – client error 321
5xx – server error 321

REST API security 321
Basic access authentication 322
OAuth 2.0 322

Using third-party APIs 323
Getting the application's credentials 323
Setting up the application 324
Requesting an access token 325
Fetching tweets 327

The toolkit of the REST API developer 330
Testing APIs with browsers 330
Testing APIs using the command line 331

Best practices with REST APIs 332
Consistency in your endpoints 332
Document as much as you can 333
Filters and pagination 333
API versioning 333
Using HTTP cache 334

Creating a REST API with Laravel 334
Setting OAuth2 authentication 335

Installing OAuth2Server 335
Setting up the database 336
Enabling client-credentials authentication 337
Requesting an access token 338

Preparing the database 339

Table of Contents

[viii]

Setting up the models 341
Designing endpoints 344
Adding the controllers 346

Testing your REST APIs 353
Summary 358

Chapter 10: Behavioral Testing 359
Behavior-driven development 359

Introducing continuous integration 360
Unit tests versus acceptance tests 362
TDD versus BDD 363
Business writing tests 364

BDD with Behat 365
Introducing the Gherkin language 366
Defining scenarios 366

Writing Given-When-Then test cases 367
Reusing parts of scenarios 367

Writing step definitions 368
The parameterization of steps 371

Running feature tests 371
Testing with a browser using Mink 380

Types of web drivers 381
Installing Mink with Goutte 381
Interaction with the browser 382

Summary 384
Index 385

[ix]

Preface
There is no need to state how much weight web applications have in our lives.
We use web applications to know what our friends are doing, to get the latest
news about politics, to check the results of our favorite football team in a game, or
graduate from an online university. And as you are holding this book, you already
know that building these applications is not a job that only a selected group of
geniuses can perform, and that it's rather the opposite.

There isn't only one way to build web applications; there are actually quite a lot of
languages and technologies with the sole purpose of doing this. However, if there
is one language that stands out from the rest, either historically or because it is
extremely easy to use, it is PHP and all the tools of its ecosystem.

The Internet is full of resources that detail how to use PHP, so why bother reading
this book? That's easy. We will not give you the full documentation of PHP as the
official website does. Our goal is not that you get a PHP certification, but rather
to teach you what you really need in order to build web applications by yourself.
From the very beginning, we will use all the information provided in order to build
applications, so you can note why each piece of information is useful.

However, we will not stop here. Not only will we show you what the language offers
you, but also we will discuss the best approaches to writing code. You will learn all
the techniques that any web developer has to master, from OOP and design patterns
such as MVC, to testing. You will even work with the existing PHP frameworks that
big and small companies use for their own projects.

In short, you will start a journey in which you will learn how to master web
development rather than how to master a programming language. We hope you
enjoy it.

Preface

[x]

What this book covers
Chapter 1, Setting Up the Environment, will guide you through the installation of the
different software needed.

Chapter 2, Web Applications with PHP, will be an introduction to what web
applications are and how they work internally.

Chapter 3, Understanding PHP Basics, will go through the basic elements of the PHP
language—from variables to control structures.

Chapter 4, Creating Clean Code with OOP, will describe how to develop web
applications following the object-oriented programming paradigm.

Chapter 5, Using Databases, will explain how you can use MySQL databases in your
applications.

Chapter 6, Adapting to MVC, will show how to apply the most famous web design
pattern, MVC, to your applications.

Chapter 7, Testing Web Applications, will be an extensive introduction to unit testing
with PHPUnit.

Chapter 8, Using Existing PHP Frameworks, will introduce you to existing PHP
frameworks used by several companies and developers, such as Laravel and Silex.

Chapter 9, Building REST APIs, will explain what REST APIs are, how to use
third-party ones, and how to build your own.

Chapter 10, Behavioral Testing, will introduce the concepts of continuous integration
and behavioral testing with PHP and Behat.

What you need for this book
In Chapter 1, Setting Up the Environment, we will go through the details of how to
install PHP and the rest of tools that you need in order to go though the examples of
this book. The only thing that you need to start reading is a computer with Windows,
OS X, or Linux, and an Internet connection.

Preface

[xi]

Who this book is for
This book is for anyone who wishes to write web applications with PHP. You do not
need to be a computer science graduate in order to understand it. In fact, we will
assume that you have no knowledge at all of software development, neither with
PHP nor with any other language. We will start from the very beginning so that
everybody can follow the book.

Experienced readers can still take advantage of the book. You can quickly review the
first chapter in order to discover the new features PHP 7 comes with, and then focus
on the chapters that might interest you. You do not need to read the book from start
to end, but instead keep it as a guide, in order to refresh specific topics whenever
they are needed.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now, create a myactions.js file with the following content."

A block of code is set as follows:

#special {
 font-size: 30px;
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<head>
 <meta charset="UTF-8">
 <title>Your first app</title>
 <link rel="stylesheet" type="text/css" href="mystyle.css">
</head>

Any command-line input or output is written as follows:

$ sudo apt-get update

Preface

[xii]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Click on Next until the end of the installation wizard."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiv]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Setting Up the Environment
You are about to start a journey—a long one, in which you will learn how to write
web applications with PHP. However, first, you need to set up your environment,
something that has proven to be tricky at times. This task includes installing PHP 7,
the language of choice for this book; MySQL, the database that we will use in some
chapters; Nginx, the web server that will allow us to visualize our applications with
a browser; and Composer, the favorite PHP dependencies management tool. We
will do all of this with Vagrant and also on three different platforms: Windows,
OS X, and Ubuntu.

In this chapter, you will learn about:

• Using Vagrant to set up a development environment
• Setting up your environment manually on the main platforms

Setting up the environment with Vagrant
Not so long ago, every time you started working for a new company, you would spend
an important part of your first few days setting up your new environment—that is,
installing all the necessary tools on your new computer in order to be able to code. This
was incredibly frustrating because even though the software to install was the same,
there was always something that failed or was missing, and you would spend less time
being productive.

Setting Up the Environment

[2]

Introducing Vagrant
Luckily for us, people tried to fix this big problem. First, we have virtual machines,
which are emulations of computers inside your own computer. With this, we can
have Linux inside our MacBook, which allows developers to share environments.
It was a good step, but it still had some problems; for example, VMs were quite
big to move between different environments, and if developers wanted to make a
change, they had to apply the same change to all the existing virtual machines in
the organization.

After some deliberation, a group of engineers came up with a solution to these issues
and we got Vagrant. This amazing software allows you to manage virtual machines
with simple configuration files. The idea is simple: a configuration file specifies
which base virtual machine we need to use from a set of available ones online and
how you would like to customize it—that is, which commands you will want to run
the first time you start the machine—this is called "provisioning". You will probably
get the Vagrant configuration from a public repository, and if this configuration ever
changes, you can get the changes and reprovision your machine. It's easy, right?

Installing Vagrant
If you still do not have Vagrant, installing it is quite easy. You will need to visit the
Vagrant download page at https://www.vagrantup.com/downloads.html and
select the operating system that you are working with. Execute the installer, which
does not require any extra configuration, and you are good to go.

Using Vagrant
Using Vagrant is quite easy. The most important piece is the Vagrantfile file.
This file contains the name of the base image we want to use and the rest of the
configuration that we want to apply. The following content is the configuration
needed in order to get an Ubuntu VM with PHP 7, MySQL, Nginx, and Composer.
Save it as Vagrantfile at the root of the directory for the examples of this book.

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ubuntu/trusty32"
 config.vm.network "forwarded_port", guest: 80, host: 8080
 config.vm.provision "shell", path: "provisioner.sh"
end

https://www.vagrantup.com/downloads.html

Chapter 1

[3]

As you can see, the file is quite small. The base image's name is ubuntu/trusty32,
messages to our port 8080 will be redirected to the port 80 of the virtual machine,
and the provision will be based on the provisioner.sh script. You will need to
create this file, which will be the one that contains all the setup of the different
components that we need. This is what you need to add to this file:

#!/bin/bash

sudo apt-get install python-software-properties -y
sudo LC_ALL=en_US.UTF-8 add-apt-repository ppa:ondrej/php -y
sudo apt-get update
sudo apt-get install php7.0 php7.0-fpm php7.0-mysql -y
sudo apt-get --purge autoremove -y
sudo service php7.0-fpm restart

sudo debconf-set-selections <<< 'mysql-server mysql-server/root_
password password root'
sudo debconf-set-selections <<< 'mysql-server mysql-server/root_
password_again password root'
sudo apt-get -y install mysql-server mysql-client
sudo service mysql start

sudo apt-get install nginx -y
sudo cat > /etc/nginx/sites-available/default <<- EOM
server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 root /vagrant;
 index index.php index.html index.htm;

 server_name server_domain_or_IP;

 location / {
 try_files \$uri \$uri/ /index.php?\$query_string;
 }

 location ~ \.php\$ {
 try_files \$uri /index.php =404;
 fastcgi_split_path_info ^(.+\.php)(/.+)\$;
 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME \$document_root\$fastcgi_script_
name;
 include fastcgi_params;
 }
}
EOM
sudo service nginx restart

Setting Up the Environment

[4]

The file looks quite long, but we will do quite a lot of stuff with it. With the first
part of the file, we will add the necessary repositories to be able to fetch PHP 7,
as it does not come with the official ones, and then install it. Then, we will try to
install MySQL, server and client. We will set the root password on this provisioning
because we cannot introduce it manually with Vagrant. As this is a development
machine, it is not really a problem, but you can always change the password once
you are done. Finally, we will install and configure Nginx to listen to the port 8080.

To start the virtual machine, you need to execute the following command in the same
directory where Vagrantfile is:

$ vagrant up

The first time you execute it, it will take some time as it will have to download
the image from the repository, and then it will execute the provisioner.sh file.
The output should be something similar to this one followed by some more
output messages:

In order to access your new VM, run the following command on the same directory
where you have your Vagrantfile file:

$ vagrant ssh

Vagrant will start an SSH session to the VM, which means that you are inside the
VM. You can do anything you would do with the command line of an Ubuntu
system. To exit, just press Ctrl + D.

Chapter 1

[5]

Sharing files from your laptop to the VM is easy; just move or copy them to the
same directory where your Vagrantfile file is, and they will "magically" appear
on the /vagrant directory of your VM. They will be synchronized, so any changes
that you make while in your VM will be reflected on the files of your laptop.

Once you have a web application and you want to test it through a web browser,
remember that we will forward the ports. This means that in order to access the port
80 of your VM, the common one for web applications, you will have to point to the
port 8080 on your browsers; here's an example: http://localhost:8080.

Setting up the environment on OS X
If you are not convinced with Vagrant and prefer to use a Mac to develop PHP
applications, this is your section. Installing all the necessary tools on a Mac might be
a bit tricky, depending on the version of your OS X. At the time of writing this book,
Oracle has not released a MySQL client that you can use via the command line that
works with El Capitan, so we will describe how to install another tool that can do a
similar job.

Installing PHP
If it is the first time you are using a Mac to develop applications of any kind,
you will have to start by installing Xcode. You can find this application for free
on the App Store:

Setting Up the Environment

[6]

Another indispensable tool for Mac users is Brew. This is the package manager for
OS X and will help us install PHP with almost no pain. To install it, run the following
command on your command line:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install)"

If you already have Brew installed, you can make sure that everything works fine by
running these two commands:

$ brew doctor

$ brew update

It is time to install PHP 7 using Brew. To do so, you will just need to run one
command, as follows:

$ brew install homebrew/php/php70

The result should be as shown in the following screenshot:

Chapter 1

[7]

Make sure to add the binary to your PATH environment variable by executing
this command:

$ export PATH="$(brew --prefix homebrew/php/php70)/bin:$PATH"

You can check whether your installation was successful by asking which version
of PHP your system is using with the $ php –v command.

Installing MySQL
As pointed out at the beginning of this section, MySQL is a tricky one for Mac users.
You need to download the MySQL server installer and MySQL Workbench as
the client. The MySQL server installer can be found at https://dev.mysql.com/
downloads/mysql/. You should find a list of different options, as shown here:

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/

Setting Up the Environment

[8]

The easiest way to go is to download DMG Archive. You will be asked to log in
with your Oracle account; you can create one if you do not have any. After this, the
download will start. As with any DMG package, just double-click on it and go through
the options—in this case, just click on Next all the time. Be careful because at the end of
the process, you will be prompted with a message similar to this:

Make a note of it; otherwise, you will have to reset the root password. The next one
is MySQL Workbench, which you can find at http://www.mysql.com/products/
workbench/. The process is the same; you will be asked to log in, and then you will
get a DMG file. Click on Next until the end of the installation wizard. Once done,
you can launch the application; it should look similar to this:

http://www.mysql.com/products/workbench/
http://www.mysql.com/products/workbench/

Chapter 1

[9]

Installing Nginx
In order to install Nginx, we will use Brew, as we did with PHP. The command
is the following:

$ brew install nginx

If you want to make Nginx start every time you start your laptop, run the
following command:

$ ln -sfv /usr/local/opt/nginx/*.plist ~/Library/LaunchAgents

If you have to change the configuration of Nginx, you will find the file in /usr/
local/etc/nginx/nginx.conf. You can change things, such as the port that Nginx
is listening to or the root directory where your code is (the default directory is /
usr/local/Cellar/nginx/1.8.1/html/). Remember to restart Nginx to apply the
changes with the sudo nginx command.

Installing Composer
Installing Composer is as easy as downloading it with the curl command; move
the binary to /usr/local/bin/ with the following two commands:

$ curl -sS https://getcomposer.org/installer | php

$ mv composer.phar /usr/local/bin/composer

Setting up the environment on Windows
Even though it is not very professional to pick sides based on personal opinions, it
is well known among developers how hard it can be to use Windows as a developer
machine. They prove to be extremely tricky when it comes to installing all the software
since the installation mode is always very different from OS X and Linux systems,
and quite often, there are dependency or configuration problems. In addition, the
command line has different interpreters than Unix systems, which makes things a bit
more confusing. This is why most developers would recommend you use a virtual
machine with Linux if you only have a Windows machine at your disposal.

However, to be fair, PHP 7 is the exception to the rule. It is surprisingly simple to
install it, so if you are really comfortable with your Windows and would prefer not to
use Vagrant, here you have a short explanation on how to set up your environment.

www.allitebooks.com

http://www.allitebooks.org

Setting Up the Environment

[10]

Installing PHP
In order to install PHP 7, you will first download the installer from the official
website. For this, go to http://windows.php.net/download. The options should
be similar to the following screenshot:

Choose x86 Thread Safe for Windows 32-bit or x64 Thread Safe for the 64-bit one.
Once downloaded, uncompress it in C:\php7. Yes, that is it!

Installing MySQL
Installing MySQL is a little more complex. Download the installer from http://
dev.mysql.com/downloads/installer/ and execute it. After accepting the license
agreement, you will get a window similar to the following one:

http://windows.php.net/download
http://dev.mysql.com/downloads/installer/
http://dev.mysql.com/downloads/installer/

Chapter 1

[11]

For the purposes of the book—and actually for any development environment—you
should go for the first option: Developer Default. Keep going forward, leaving all
the default options, until you get a window similar to this:

Setting Up the Environment

[12]

Depending on your preferences, you can either just set a password for the root
user, which is enough as it is only a development machine, or you can add an extra
user by clicking on Add User. Make sure to set the correct name, password, and
permissions. A user named test with administration permissions should look
similar to the following screenshot:

For the rest of the installation process, you can select all the default options.

Installing Nginx
The installation for Nginx is almost identical to the PHP 7 one. First, download the
ZIP file from http://nginx.org/en/download.html. At the time of writing, the
versions available are as follows:

http://nginx.org/en/download.html

Chapter 1

[13]

You can safely download the mainline version 1.9.10 or a later one if it is stable.
Once the file is downloaded, uncompress it in C:\nginx and run the following
commands to start the web server:

$ cd nginx

$ start nginx

Installing Composer
To finish with the setup, we need to install Composer. To go for the automatic
installation, just download the installer from https://getcomposer.org/Composer-
Setup.exe. Once downloaded, execute it in order to install Composer on your system
and to update your PATH environment variable.

Setting up the environment on Ubuntu
Setting up your environment on Ubuntu is the easiest of the three platforms. In fact,
you could take the provisioner.sh script from the Setting up the environment with
Vagrant section and execute it on your laptop. That should do the trick. However,
just in case you already have some of the tools installed or you want to have a sense
of control on what is going on, we will detail each step.

https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/Composer-Setup.exe

Setting Up the Environment

[14]

Installing PHP
The only thing to consider in this section is to remove any previous PHP versions on
your system. To do so, you can run the following command:

$ sudo apt-get -y purge php.*

The next step is to add the necessary repositories in order to fetch the correct PHP
version. The commands to add and update them are:

$ sudo apt-get install python-software-properties

$ sudo LC_ALL=en_US.UTF-8 add-apt-repository ppa:ondrej/php -y

$ sudo apt-get update

Finally, we need to install PHP 7 together with the driver for MySQL. For this,
just execute the following three commands:

$ sudo apt-get install php7.0 php7.0-fpm php7.0-mysql -y

$ sudo apt-get --purge autoremove -y

$ sudo service php7.0-fpm start

Installing MySQL
Installing MySQL manually can be slightly different than with the Vagrant script.
As we can interact with the console, we do not have to specify the root password
previously; instead, we can force MySQL to prompt for it. Run the following
command and keep in mind that the installer will ask you for the password:

$ sudo apt-get -y install mysql-server mysql-client

Once done, if you need to start the MySQL server, you can do it with the following
command:

$ sudo service mysql start

Installing Nginx
The first thing that you need to know is that you can only have one web server
listening on the same port. As port 80 is the default one for web applications, if you are
running Apache on your Ubuntu machine, you will not be able to start an Nginx web
server listening on the same port 80. To fix this, you can either change the ports for
Nginx or Apache, stop Apache, or uninstall it. Either way, the installation command
for Nginx is as follows:

$ sudo apt-get install nginx –y

Chapter 1

[15]

Now, you will need to enable a site with Nginx. The sites are files under /etc/
nginx/sites-available. There is already one file there, default, which you can
safely replace with the following content:

server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 root /var/www/html;
 index index.php index.html index.htm;

 server_name server_domain_or_IP;

 location / {
 try_files $uri $uri/ /index.php?$query_string;
 }

 location ~ \.php$ {
 try_files $uri /index.php =404;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_
name;
 include fastcgi_params;
 }
}

This configuration basically points the root directory of your web application
to the /var/www/html directory. You can choose the one that you prefer, but
make sure that it has the right permissions. It also listens on the port 80, which
you can change with the one you prefer; just keep this in mind that when you try
to access your application via a browser. Finally, to apply all the changes, run the
following command:

$ sudo service nginx restart

Setting Up the Environment

[16]

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

You can download the code files by following these steps:
• Log in or register to our website using your e-mail address and

password.
• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the code

files.
• Choose from the drop-down menu where you purchased this

book from.
• Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Summary
In this chapter, you learned how easy it is to set up a development environment
using Vagrant. If this did not convince you, you still got the chance to set up all the
tools manually. Either way, now you are able to work on the next chapters.

In the next chapter, we will take a look at the idea of web applications with PHP,
going from the protocols used to how the web server serves requests, thus setting
the foundation for the following chapters.

http://www.packtpub.com
http://www.packtpub.com/support

[17]

Web Applications with PHP
Web applications are a common thing in our lives, and they are usually very user
friendly; users do not need to understand how they work behind the scenes. As a
developer, though, you need to understand how your application works internally.

In this chapter, you will learn about:

• HTTP and how web applications make use of it
• Web applications and how to build a simple one
• Web servers and how to launch your PHP built-in web server

The HTTP protocol
If you check the RFC2068 standard at https://tools.ietf.org/html/rfc2068,
you will see that its description is almost endless. Luckily, what you need to know
about this protocol, at least for starters, is way shorter.

HTTP stands for HyperText Transfer Protocol. As any other protocol, the goal is
to allow two entities or nodes to communicate with each other. In order to achieve
this, the messages need to be formatted in a way that they both understand, and the
entities must follow some pre-established rules.

https://tools.ietf.org/html/rfc2068

Web Applications with PHP

[18]

A simple example
The following diagram shows a very basic interchange of messages:

Sender Receiver

Processing
Request

GET
Request

200
Response

A simple GET request

Do not worry if you do not understand all the elements in this diagram; we will
describe them shortly. In this representation, there are two entities: sender and
receiver. The sender sends a message to the receiver. This message, which starts
the communication, is called the request. In this case, the message is a GET request.
The receiver receives the message, processes it, and generates a second message: the
response. In this case, the response shows a 200 status code, meaning that the request
was processed successfully.

HTTP is stateless; that is, it treats each request independently, unrelated to any
previous one. This means that with this request and response sequence, the
communication is finished. Any new requests will not be aware of this specific
interchange of messages.

Parts of the message
An HTTP message contains several parts. We will define only the most important
of them.

URL
The URL of the message is the destination of the message. The request will contain
the receiver's URL, and the response will contain the sender's.

Chapter 2

[19]

As you might know, the URL can contain extra parameters, known as a query string.
This is used when the sender wants to add extra data. For example, consider this URL:
http://myserver.com/greeting?name=Alex. This URL contains one parameter:
name with the value Alex. It could not be represented as part of the URL http://
myserver.com/greeting, so the sender chose to add it at the end of it. You will see
later that this is not the only way that we can add extra information into a message.

The HTTP method
The HTTP method is the verb of the message. It identifies what kind of action
the sender wants to perform with this message. The most common ones are GET
and POST.

• GET: This asks the receiver about something, and the receiver usually sends
this information back. The most common example is asking for a web page,
where the receiver will respond with the HTML code of the requested page.

• POST: This means that the sender wants to perform an action that will
update the data that the receiver is holding. For example, the sender can ask
the receiver to update his profile name.

There are other methods, such as PUT, DELETE, or OPTION, but they are less used
in web development, although they play a crucial role in REST APIs, which will be
explained in Chapter 9, Building REST APIs.

Body
The body part is usually present in response messages even though a request
message can contain it too. The body of the message contains the content of the
message itself; for example, if the user requested a web page, the body of the
response would consist of the HTML code that represents this page.

Soon, we will discuss how the request can also contain a body, which is used to send
extra information as part of the request, such as form parameters.

The body can contain text in any format; it can be an HTML text that represents a
web page, plain text, the content of an image, JSON, and so on.

Headers
The headers on an HTTP message are the metadata that the receiver needs in order
to understand the content of the message. There are a lot of headers, and you will
see some of them in this book.

Web Applications with PHP

[20]

Headers consist of a map of key-value pairs. The following could be the headers
of a request:

Accept: text/html
Cookie: name=Richard

This request tells the receiver, which is a server, that it will accept text as HTML,
which is the common way of representing a web page; and that it has a cookie
named Richard.

The status code
The status code is present in responses. It identifies the status of the request with a
numeric code so that browsers and other tools know how to react. For example, if we
try to access a URL that does not exist, the server should reply with a status code 404.
In this way, the browser knows what happened without even looking at the content
of the response.

Common status codes are:

• 200: The request was successful
• 401: Unauthorized; the user does not have permission to see this resource
• 404: Page not found
• 500: Internal server error; something wrong happened on the server side and

it could not be recovered

A more complex example
The following diagram shows a POST request and its response:

Sender Receiver

Processing
Request

POST
Request

Headers: Cookie: id=B4
Body: name=lucy&age=27

200
Response

Body:
{id:84 , name: "lucy", age: 27}

A more complex POST request

Chapter 2

[21]

In this exchange of messages, we can see the other important method, POST, in
action. In this case, the sender tries to send a request in order to update some entity's
data. The message contains a cookie ID with the value 84, which may identify the
entity to update. It also contains two parameters in the body: name and age. This is
the data that the receiver has to update.

Submitting web forms
Representing the parameters as part of the body is a common way to send
information when submitting a form, but not the only one. You can add a
query string to the URL, add JSON to the body of the message, and so on.

The response has a status code of 200, meaning that the request was processed
successfully. In addition, the response also contains a body, this time formatted as
JSON, which represents the new status of the updated entity.

Web applications
Maybe you have noticed that in the previous sections, I used the not very intuitive
terms of sender and receiver as they do not represent any specific scenario that you
might know but rather all of them in a generic way. The main reason for this choice
of terminology is to try to separate HTTP from web applications. You will see at the
end of the book that HTTP is used for more than just websites.

If you are reading this book, you already know what a web application is.
Alternatively, maybe you know it by other terms, such as website or web page.
Let's try to give some definitions.

A web page is a single document with content. It contains links that open other web
pages with different content.

A website is the set of web pages that usually live in the same server and are related
to each other.

A web application is just a piece of software that runs on a client, which is usually
a browser, and communicates with a server. A server is a remote machine that
receives requests from a client, processes them, and generates a response. This
response will go back to the client, generally rendered by the browser in order to
display it to the user.

Even though this is out of the scope of this book, you may be interested to know
that not only browsers can act as clients, generating requests and sending them
to the servers; even servers can be the ones taking the initiative of sending messages
to the browsers.

Web Applications with PHP

[22]

So, what is the difference between a website and a web application? Well, the web
application can be a small part of a bigger website with a specific functionality. Also,
not all websites are web applications as a web application always does something
but a website can just display information.

HTML, CSS, and JavaScript
Web applications are rendered by the browser so that the user can see its content. To
do this, the server needs to send the content of the page or document. The document
uses HTML to describe its elements and how they are organized. Elements can be
links, buttons, input fields, and so on. A simple example of a web page looks like this:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Your first app</title>
</head>
<body>
 Your page</
a>
 Their page
</body>
</html>

Let's focus on the highlighted code. As you can see, we are describing two <a> links
with some properties. Both links have a class, a destination, and a text. The first one
also contains an ID. Save this code into a file named index.html and execute it. You
will see how your default browser opens a very simple page with two links.

If we want to add some styles, or change the color, size, and position of the links, we
need to add CSS. CSS describes how elements from the HTML are displayed. There
are several ways to include CSS, but the best approach is to have it in a separated file
and then reference it from the HTML. Let's update our <head> section as shown in
the following code:

<head>
 <meta charset="UTF-8">
 <title>Your first app</title>
 <link rel="stylesheet" type="text/css" href="mystyle.css">
</head>

Chapter 2

[23]

Now, let's create a new mystyle.css file in the same folder with the following content:

.link {
 color: green;
 font-weight: bold;
}

#special {
 font-size: 30px;
}

This CSS file contains two style definitions: one for the link class and one for the
special ID. The class style will be applied to both the links as they both define this
class, and it sets them as green and bold. The ID style that increases the font of the
link is only applied to the first link.

Finally, in order to add behavior to our web page, we need to add JS or JavaScript.
JS is a programming language that would need an entire book for itself, and in fact,
there are quite a lot of them. If you want to give it a chance, we recommend the free
online book Eloquent JavaScript, Marijn Haverbeke, which you can find at http://
eloquentjavascript.net/. As with CSS, the best approach would be to add a
separate file and then reference it from our HTML. Update the <body> section with
the following highlighted code:

<body>
 Your page</
a>
 Their page
 <script src="myactions.js"></script>
</body>

Now, create a myactions.js file with the following content:

document.getElementById("special").onclick = function() {
 alert("You clicked me?");
}

The JS file adds a function that will be called when the special link is clicked on.
This function just pops up an alert. You can save all your changes and refresh the
browser to see how it looks now and how the links behave.

http://eloquentjavascript.net/
http://eloquentjavascript.net/

Web Applications with PHP

[24]

Different ways of including JS
You might notice that we included the CSS file reference at the end
of the <head> section and JS at the end of <body>. You can actually
include JS in both the <head> and the <body>; just bear in mind
that the script will be executed as soon as it is included. If your script
references fields that are not yet defined or other JS files that will be
included later, JS will fail.

Congratulations! You just wrote your very first web page. Not impressed? Well, then
you are reading the correct book! You will have the chance to work with more HTML,
CSS, and JS during the book, even though the book focuses especially on PHP.

Web servers
So, it is about time that you learn what those famous web servers are. A web server
is no more than a piece of software running on a machine and listening to requests
from a specific port. Usually, this port is 80, but it can be any other that is available.

How they work
The following diagram represents the flow of request-response on the server side:

HTTP Response

HTTP Request

Client
server

Web application
code

Web Server

port 80

1
6

43

52

Request-response flow on the server side

Chapter 2

[25]

The job of a web server is to route external requests to the correct application so that
they can be processed. Once the application returns a response, the web server will
send this response to the client. Let's take a close look at all the steps:

1. The client, which is a browser, sends a request. This can be of any type—GET
or POST—and contain anything as long as it is valid.

2. The server receives the request, which points to a port. If there is a web server
listening on this port, the web server will then take control of the situation.

3. The web server decides which web application—usually a file in the
filesystem—needs to process the request. In order to decide, the web server
usually considers the path of the URL; for example, http://myserver.com/
app1/hi would try to pass the request to the app1 application, wherever
it is in the filesystem. However, another scenario would be http://app1.
myserver.com/hi, which would also go to the same application. The rules
are very flexible, and it is up to both the web server and the user as to how to
set them.

4. The web application, after receiving a request from the web server, generates
a response and sends it to the web server.

5. The web server sends the response to the indicated port.
6. The response finally arrives to the client.

The PHP built-in server
There are powerful web servers that support high loads of traffic, such as Apache or
Nginx, which are fairly simple to install and manage. For the purpose of this book,
though, we will use something even simpler: a PHP built-in server. The reason to
use this is that you will not need extra package installations, configurations, and
headaches as it comes with PHP. With just one command, you will have a web server
running on your machine.

Web Applications with PHP

[26]

Production web servers
Note that the PHP built-in web server is good for testing purposes, but
it is highly recommended not to use it in production environments. If
you have to set up a server that needs to be public and your application
is written in PHP, I highly recommend you to choose either of the
classics: Apache (http://httpd.apache.org) or Nginx (https://
www.nginx.com). Both can run almost on any server, are free and easy
to install and configure, and, more importantly, have a huge community
that will support you on virtually any problem you might encounter.

Finally, hands on! Let's try to create our very first web page using the built-in server.
For this, create an index.php file inside your workspace directory—for example,
Documents/workspace/index.php. The content of this file should be:

<?php
echo 'hello world';

Now, open your command line, go to your workspace directory, probably by
running the cd Documents/workspace command, and run the following command:
$ php -S localhost:8000

The command line will prompt you with some information, the most important one
being what is listening, which should be localhost:8000 as specified, and how to
stop it, usually by pressing Ctrl + C. Do not close the command line as it will stop the
web server too.

Now, let's open a browser and go to http://localhost:8000. You should see a
hello world message on a white page. Yay, success! If you are interested, you can
check your command line, and you will see log entries of each request you are
sending via your browser.

So, how does it really work? Well, if you check again in the previous diagram, the
php -S command started a web server—in our case, listening to port 8000 instead of
80. Also, PHP knows that the web application code will be on the same directory that
you started the web server: your workspace. There are more specific options, but by
default, PHP will try to execute the index.php file in your workspace.

Putting things together
Let's try to include our first project (index.html with its CSS and JS files) as part
of the built-in server. To do this, you just need to open the command line and
go to the directory in which these files are and start the web server with php -S
localhost:8000. If you check localhost:8000 in your browser, you will see our
two-link page, as is expected.

http://httpd.apache.org
https://www.nginx.com
https://www.nginx.com

Chapter 2

[27]

Let's now move our new index.php file to the same directory. You do not need to
restart your web server; PHP will know about the changes automatically. Go to your
browser and refresh the page. You should now see the hello world message instead
of the links. What happened here?

If you do not change the default options, PHP will always try to find an index.php file
in the directory in which you started the web server. If this is not found, PHP will try
to find an index.html file. Previously, we only had the index.html file, so PHP failed
to find index.php. Now that it can find its first option, index.php, it will load it.

If we want to see our index.html file from the browser, we can always specify
it in the URL like http://localhost:8000/index.html. If the web server notices
that you are trying to access a specific file, it will try to load it instead of the
default options.

Finally, if we try to access a file that is not on our filesystem, the web server will
return a response with status code 404—that is, not found. We can see this code if
we open the Developer tools section of our browser and go to the Network section.

Developer tools are your friends
As a web developer, you will find very few tools more useful
than the developer tools of your browser. It changes from
browser to browser, but all of the big names, such as Chrome
or Firefox, have it. It is very important that you get familiar
with how to use it as it allows you to debug your applications
from the client side.
I will introduce you to some of these tools during the course of
this book.

Summary
In this chapter, you learned what HTTP is and how web applications use it in order
to interact with the server. You also now know how web servers work and how
to launch a light built-in server with PHP. Finally, you took the first steps toward
building your first web application. Congratulations!

In the next chapter, we will take a look at the basics of PHP so that you can start
building simple applications.

[29]

Understanding PHP Basics
Learning a new language is not easy. You need to understand not only the syntax
of the language, but also its grammatical rules, that is, when and why to use each
element of the language. Luckily for you, some languages come from the same root.
For example, Spanish and French are Romance languages, as they both evolved from
spoken Latin; that means that these two languages share a lot of rules, and if you
already know French, learning Spanish becomes much easier.

Programming languages are quite the same. If you already know another
programming language, it will be very easy for you to go through this chapter.
If this is your first time though, you will need to understand all those grammatical
rules from scratch, and so, it might take some more time. But fear not! We are here
to help you in this endeavor.

In this chapter, you will learn about the following:

• PHP files
• Variables, strings, arrays, and operators in PHP
• PHP in web applications
• Control structures in PHP
• Functions in PHP
• The PHP filesystem

PHP files
From now on, we will work on your index.php file, so you can just start the web
server, and go to http://localhost:8080 to see the results.

www.allitebooks.com

http://www.allitebooks.org

Understanding PHP Basics

[30]

You might have already noticed that in order to write PHP code, you have to start
the file with <?php. There are other options, and you can also finish the file with ?>,
but none of them are needed. What is important to know is that you can mix PHP
code with other content, like HTML, CSS, or JavaScript, in your PHP file as soon as
you enclose the PHP bits with the <?php ?> tags.

<?php
 echo 'hello world';
?>
bye world

If you check the result of the preceding code snippet in your browser, you will
see that it prints both messages, hello world and bye world. The reason why this
happens is simple: you already know that the PHP code there prints the hello
world message. What happens next is that anything outside the PHP tags will be
interpreted as is. If there is an HTML code for instance, it would not be printed as is,
but will be interpreted by the browser.

You will learn in Chapter 6, Adapting to MVC, why it is usually a bad idea to mix PHP
and HTML. For now, assuming that it is bad, let's try to avoid it. For that, you can
include one file from another PHP file using any one of these four functions:

• include: This will try to find and include the specified file each time it is
invoked. If the file is not found, PHP will throw a warning, but will continue
with the execution.

• require: This will do the same as include, but PHP will throw an error
instead of a warning if the file is not found.

• include_once: This function will do what include does, but it will include
the file only the first time that it is invoked. Subsequent calls will be ignored.

• require_once: This works the same as require, but it will include the file
only the first time that it is invoked. Subsequent calls will be ignored.

Each function has its own usage, so it is not right to say that one is better than the
other. Just think carefully what your scenario is, and then decide. For example, let's
try to include our index.html file from our index.php file such that we do not mix
PHP with HTML, but have the best of both worlds:

<?php
echo 'hello world';
require 'index.html';

We chose require as we know the file is there—and if it is not, we are not interested
in continuing the execution. Moreover, as it is some HTML code, we might want to
include it multiple times, so we did not choose the require_once option. You can
try to require a file that does not exist, and see what the browser says.

Chapter 3

[31]

PHP does not consider empty lines; you can add as many as you want to make
your code easier to read, and it will not have any repercussion on your application.
Another element that helps in writing understandable code, and which is ignored by
PHP, is comments. Let's see both in action:

<?php

/*
 * This is the first file loaded by the web server.
 * It prints some messages and html from other files.
 */

// let's print a message from php
echo 'hello world';

// and then include the rest of html
require 'index.html';

The code does the same job as the previous one, but now everyone will easily
understand what we are trying to do. We can see two types of comments: single-line
comments and multiple-line comments. The first type consists of a single line starting
with //, and the second type encloses multiple lines within /* and */. We start each
commented line with an asterisk, but that is completely optional.

Variables
Variables keep a value for future reference. This value can change if we want it to;
that is why they are called variables. Let's take a look at them in an example. Save
this code in your index.php file:

<?php
$a = 1;
$b = 2;
$c = $a + $b;
echo $c; // 3

In this preceding piece of code, we have three variables: $a has value 1, $b has 2, and
$c contains the sum of $a and $b, hence, $c equals 3. Your browser should print the
value of the variable $c, which is 3.

Assigning a value to a variable means to give it a value, and it is done with the
equals sign as shown in the previous example. If you did not assign a value to a
variable, we will get a notice from PHP when it checks its contents. A notice is just a
message telling us that something is not exactly right, but it is a minor problem and
you can continue with the execution. The value of an unassigned variable will be
null, that is, nothing.

Understanding PHP Basics

[32]

PHP variables start with the $ sign followed by the variable name. A valid variable
name starts with a letter or an underscore followed by any combination of letters,
numbers, and/or underscores. It is case sensitive. Let's see some examples:

<?php
$_some_value = 'abc'; // valid
$1number = 12.3; // not valid!
$some$signs% = '&^%'; // not valid!
$go_2_home = "ok"; // valid
$go_2_Home = 'no'; // this is a different variable
$isThisCamelCase = true; // camel case

Remember that everything after // is a comment, and is thus ignored by PHP.

In this piece of code, we can see that variable names like $_some_value and $go_2_
home are valid. $1number and $some$signs% are not valid as they start with a
number, or they contain invalid symbols. As names are case sensitive, $go_2_home
and $go_2_Home are two different variables. Finally, we show the CamelCase
convention, which is the preferred option among most developers.

Data types
We can assign more than just numbers to variables. PHP has eight primitive types,
but for now, we will focus on its four scalar types:

• Booleans: These take just true or false values
• Integers: These are numeric values without a decimal point, for example,

2 or 5
• Floating point numbers or floats: These are numbers with a decimal point,

for example, 2.3
• Strings: These are concatenations of characters which are surrounded by

either single or double quotes, like 'this' or "that"

Even though PHP defines these types, it allows the user to assign different types of
data to the same variable. Check the following code to see how it works:

<?php
$number = 123;
var_dump($number);
$number = 'abc';
var_dump($number);

If you check the result on your browser, you will see the following:

int(123) string(3) "abc"

Chapter 3

[33]

The code first assigns the value 123 to the variable $number. As 123 is an integer,
the type of the variable will be integer int. That is what we see when printing the
content of the variable with var_dump. After that, we assign another value to the
same variable, this time a string. When printing the new content, we see that the type
of the variable changed from integer to string, yet PHP did not complain at any time.
This is called type juggling.

Let's check another piece of code:

<?php
$a = "1";
$b = 2;
var_dump($a + $b); // 3
var_dump($a . $b); // 12

You already know that the + operator returns the sum of two numeric values. You
will see later that the . operator concatenates two strings. Thus, the preceding
code assigns a string and an integer to two variables, and then tries to add and
concatenate them.

When trying to add them, PHP knows that it needs two numeric values, and so it
tries to adapt the string to an integer. In this case, it is easy as the string represents a
valid number. That is the reason why we see the first result as an integer 3 (1 + 2).

In the last line, we are performing a string concatenation. We have an integer in $b,
so PHP will first try to convert it to a string—which is "2"—and then concatenate it
with the other string, "1". The result is the string "12".

Type juggling
PHP tries to convert the data type of a variable only when there is a
context where the type of variable needed is different. But PHP does
not change the value and type of the variable itself. Instead, it will
take the value and try to transform it, leaving the variable intact.

Operators
Using variables is nice, but if we cannot make them interact with each other, there
is nothing much we can do. Operators are elements that take some expressions—
operands—and perform actions on them to get a result. The most common examples
of operators are arithmetic operators, which you already saw previously.

Understanding PHP Basics

[34]

An expression is almost anything that has a value. Variables, numbers, or text are
examples of expressions, but you will see that they can get way more complicated.
Operators expect expressions of a specific type, for example, arithmetic operators
expect either integers or floats. But as you already know, PHP takes care of
transforming the types of the expressions given whenever possible.

Let's take a look at the most important groups of operators.

Arithmetic operators
Arithmetic operators are very intuitive, as you already know. Addition, subtraction,
multiplication, and division (+, -, *, and /) do as their names say. Modulus (%) gives
the remainder of the division of two operands. Exponentiation (**) raises the first
operand to the power of the second. Finally, negation (-) negates the operand. This
last one is the only arithmetic operator that takes just one operand.

Let's see some examples:

<?php
$a = 10;
$b = 3;
var_dump($a + $b); // 13
var_dump($a - $b); // 7
var_dump($a * $b); // 30
var_dump($a / $b); // 3.333333...
var_dump($a % $b); // 1
var_dump($a ** $b); // 1000
var_dump(-$a); // -10

As you can see, they are quite easy to understand!

Assignment operators
You already know this one too, as we have been using it in our examples. The
assignment operator assigns the result of an expression to a variable. Now you know
that an expression can be as simple as a number, or, for example, the result of a series
of arithmetic operations. The following example assigns the result of an expression to
a variable:

<?php
$a = 3 + 4 + 5 - 2;
var_dump($a); // 10

Chapter 3

[35]

There are a series of assignment operators that work as shortcuts. You can build
them combining an arithmetic operator and the assignment operator. Let's see some
examples:

$a = 13;
$a += 14; // same as $a = $a + 14;
var_dump($a);
$a -= 2; // same as $a = $a - 2;
var_dump($a);
$a *= 4; // same as $a = $a * 4;
var_dump($a);

Comparison operators
Comparison operators are one of the most used groups of operators. They take two
operands and compare them, returning the result of the comparison usually as a
Boolean, that is, true or false.

There are four comparisons that are very intuitive: < (less than), <= (less or equal to),
> (greater than), and >= (greater than or equal to). There is also the special operator
<=> (spaceship) that compares both the operands and returns an integer instead of a
Boolean. When comparing a with b, the result will be less than 0 if a is less than b, 0 if
a equals b, and greater than 0 if a is greater than b. Let's see some examples:

<?php
var_dump(2 < 3); // true
var_dump(3 < 3); // false
var_dump(3 <= 3); // true
var_dump(4 <= 3); // false
var_dump(2 > 3); // false
var_dump(3 >= 3); // true
var_dump(3 > 3); // false
var_dump(1 <=> 2); // int less than 0
var_dump(1 <=> 1); // 0
var_dump(3 <=> 2); // int greater than 0

There are comparison operators to evaluate if two expressions are equal or not, but
you need to be careful with type juggling. The == (equals) operator evaluates two
expressions after type juggling, that is, it will try to transform both expressions to the
same type, and then compare them. Instead, the === (identical) operator evaluates
two expressions without type juggling, so even if they look the same, if they are not of
the same type, the comparison will return false. The same applies to != or <> (not
equal to) and !== (not identical):

<?php
$a = 3;
$b = '3';

Understanding PHP Basics

[36]

$c = 5;
var_dump($a == $b); // true
var_dump($a === $b); // false
var_dump($a != $b); // false
var_dump($a !== $b); // true
var_dump($a == $c); // false
var_dump($a <> $c); // true

You can see that when asking if a string and an integer that represent the same
number are equal, it replies affirmatively; PHP first transforms both to the same type.
On the other hand, when asked if they are identical, it replies they are not as they are
of different types.

Logical operators
Logical operators apply a logic operation—also known as a binary operation—to its
operands, returning a Boolean response. The most used ones are ! (not), && (and),
and || (or). && will return true only if both operands evaluate to true. || will return
true if any or both of the operands are true. ! will return the negated value of the
operand, that is, true if the operand is false or false if the operand is true. Let's
see some examples:

<?php
var_dump(true && true); // true
var_dump(true && false); // false
var_dump(true || false); // true
var_dump(false || false); // false
var_dump(!false); // true

Incrementing and decrementing operators
Incrementing/decrementing operators are also shortcuts like += or -=, and they only
work on variables. There are four of them, and they need special attention. We've
already seen the first two:

• ++: This operator on the left of the variable will increase the variable by
1, and then return the result. On the right, it will return the content of the
variable, and after that increase it by 1.

• --: This operator works the same as ++ but decreases the value by 1 instead
of increasing by 1.

Chapter 3

[37]

Let's see an example:

<?php
$a = 3;
$b = $a++; // $b is 3, $a is 4
var_dump($a, $b);
$b = ++$a; // $a and $b are 5
var_dump($a, $b);

In the preceding code, on the first assignment to $b, we use $a++. The operator on
the right will return first the value of $a, which is 3, assign it to $b, and only then
increase $a by 1. In the second assignment, the operator on the left first increases $a
by 1, changes the value of $a to 5, and then assigns that value to $b.

Operator precedence
You can add multiple operators to an expression to make it as long as it needs to be,
but you need to be careful as some operators have higher precedence than others,
and thus, the order of execution might not be the one you expect. The following table
shows the order of precedence of the operators that we've studied until now:

Operator Type
** Arithmetic
++, -- Increasing/decreasing
! Logical
*, /, % Arithmetic
+, - Arithmetic
<, <=, >, >= Comparison
==, !=, ===, !== Comparison
&& Logical
|| Logical
=, +=, -=, *=, /=, %=, **= Assignment

The preceding table shows us that the expression 3+2*3 will first evaluate the
product 2*3 and then the sum, so the result is 9 rather than 15. If you want to perform
operations in a specific order, different from the natural order of precedence, you
can force it by enclosing the operation within parentheses. Hence, (3+2)*3 will first
perform the sum and then the product, giving the result 15 this time.

Understanding PHP Basics

[38]

Let's see some examples to clarify this quite tricky subject:

<?php
$a = 1;
$b = 3;
$c = true;
$d = false;
$e = $a + $b > 5 || $c; // true
var_dump($e);
$f = $e == true && !$d; // true
var_dump($f);
$g = ($a + $b) * 2 + 3 * 4; // 20
var_dump($g);

This preceding example could be endless, and still not be able to cover all the
scenarios you can imagine, so let's keep it simple. In the first highlighted line, we
have a combination of arithmetic, comparison, and logical operators, plus the
assignment operator. As there are no parentheses, the order is the one detailed in the
previous table. The operator with the highest preference is the sum, so we perform
it first: $a + $b equals 4. The next one is the comparison operator, so 4 > 5, which is
false. Finally, the logical operator, false || $c ($c is true) results in true.

The second example might need a bit more explanation. The first operator we see in
the table is the negation, so we resolve it. !$d is !false, so it is true. The expression
is now, $e == true && true. First we need to solve the comparison $e == true.
Knowing that $e is true, the comparison results in true. The final operation then is
the logical end, and it results in true.

Try to work out the last example by yourself to get some practice. Do not be afraid
if you think we are not covering operators enough. During the next few sections, we
will see a lot of examples.

Working with strings
Working with strings in real life is really easy. Actions like Check if this string contains
this or Tell me how many times this character appears are very easy to perform. But when
programming, strings are concatenations of characters that you cannot see at once
when searching for something. Instead, you have to look one by one and keep track
of what the content is. In this scenario, those really easy actions are not that easy any
more.

Luckily for you, PHP brings a whole set of predefined functions that help you in
interacting with strings. You can find the entire list of functions at http://php.net/
manual/en/ref.strings.php, but we will only cover the ones that are used the
most. Let's look at some examples:

http://php.net/manual/en/ref.strings.php
http://php.net/manual/en/ref.strings.php

Chapter 3

[39]

<?php

$text = ' How can a clam cram in a clean cream can? ';

echo strlen($text); // 45
$text = trim($text);
echo $text; // How can a clam cram in a clean cream can?
echo strtoupper($text); // HOW CAN A CLAM CRAM IN A CLEAN CREAM CAN?
echo strtolower($text); // how can a clam cram in a clean cream can?
$text = str_replace('can', 'could', $text);
echo $text; // How could a clam cram in a clean cream could?
echo substr($text, 2, 6); // w coul
var_dump(strpos($text, 'can')); // false
var_dump(strpos($text, 'could')); // 4

In the preceding long piece of code, we are playing with a string with different
functions:

• strlen: This function returns the number of characters that the string
contains.

• trim: This function returns the string, removing all the blank spaces to the
left and to the right.

• strtoupper and strtolower: These functions return the string with all the
characters in upper or lower case respectively.

• str_replace: This function replaces all occurrences of a given string by the
replacement string.

• substr: This function extracts the string contained between the positions
specified by parameters, with the first character being at position 0.

• strpos: This function shows the position of the first occurrence of the given
string. It returns false if the string cannot be found.

Additionally, there is an operator for strings (.) which concatenates two strings (or
two variables transformed to a string when possible). Using it is really simple: in the
following example, the last statement will concatenate all the strings and variables
forming the sentence, I am Hiro Nakamura!.

<?php
$firstname = 'Hiro';
$surname = 'Nakamura';
echo 'I am ' . $firstname . ' ' . $surname . '!';

Understanding PHP Basics

[40]

Another thing to note about strings is the way they are represented. So far, we have
been enclosing the strings within single quotes, but you can also enclose them within
double quotes. The difference is that within single quotes, a string is exactly as it is
represented, but within double quotes, some rules are applied before showing the
final result. There are two elements that double quotes treat differently than single
quotes: escape characters and variable expansions.

• Escape characters: These are special characters than cannot be represented
easily. Examples of escape characters are new lines or tabs. To represent
them, we use escape sequences, which are the concatenation of a backslash
(\) followed by some other character. For example, \n represents a new line,
and \t represents a tabulation.

• Variable expanding: This allows you to include variable references inside
the string, and PHP replaces them by their current value. You have to include
the $ sign too.

Have a look at the following example:

<?php
$firstname = 'Hiro';
$surname = 'Nakamura';
echo "My name is $firstname $surname.\nI am a master of time and
space. \"Yatta!\"";

The preceding piece of code will print the following in the browser:

My name is Hiro Nakamura.
I am a master of time and space. "Yatta!"

Here, \n inserted a new line. \" added the double quotes (you need to escape them
too, as PHP would understand that you want to end your string), and the variables
$firstname and $surname were replaced by their values.

Arrays
If you have some experience with other programming languages or data structures
in general, you might be aware of two data structures that are very common and
useful: lists and maps. A list is an ordered set of elements, whereas a map is a set of
elements identified by keys. Let's see an example:

List: ["Harry", "Ron", "Hermione"]

Map: {
 "name": "James Potter",
 "status": "dead"
}

Chapter 3

[41]

The first element is a list of names that contains three values: Harry, Ron, and
Hermione. The second one is a map, and it defines two values: James Potter
and dead. Each of these two values is identified with a key: name and status
respectively.

In PHP, we do not have lists and maps; we have arrays. An array is a data structure
that implements both, a list and a map.

Initializing arrays
You have different options for initializing an array. You can initialize an empty
array, or you can initialize an array with data. There are different ways of writing the
same data with arrays too. Let's see some examples:

<?php
$empty1 = [];
$empty2 = array();
$names1 = ['Harry', 'Ron', 'Hermione'];
$names2 = array('Harry', 'Ron', 'Hermione');
$status1 = [
 'name' => 'James Potter',
 'status' => 'dead'
];
$status2 = array(
 'name' => 'James Potter',
 'status' => 'dead'
);

In the preceding example, we define the list and map from the previous section.
$names1 and $names2 are exactly the same array, just using a different notation.
The same happens with $status1 and $status2. Finally, $empty1 and $empty2
are two ways of creating an empty array.

Later you will see that lists are handled like maps. Internally, the array $names1
is a map, and its keys are ordered numbers. In this case, another initialization for
$names1 that leads to the same array could be as follows:

$names1 = [
 0 => 'Harry',
 1 => 'Ron',
 2 => 'Hermione'
];

Understanding PHP Basics

[42]

Keys of an array can be any alphanumeric value, like strings or numbers. Values of
an array can be anything: strings, numbers, Booleans, other arrays, and so on. You
could have something like the following:

<?php
$books = [
 '1984' => [
 'author' => 'George Orwell',
 'finished' => true,
 'rate' => 9.5
],
 'Romeo and Juliet' => [
 'author' => 'William Shakespeare',
 'finished' => false
]
];

This array is a list that contains two arrays—maps. Each map contains different
values like strings, doubles, and Booleans.

Populating arrays
Arrays are not immutable, that is, they can change after being initialized. You can
change the content of an array either by treating it as a map or as a list. Treating it as
a map means that you specify the key that you want to override, whereas treating it
as a list means appending another element to the end of the array:

<?php
$names = ['Harry', 'Ron', 'Hermione'];
$status = [
 'name' => 'James Potter',
 'status' => 'dead'
];
$names[] = 'Neville';
$status['age'] = 32;
print_r($names, $status);

In the preceding example, the first highlighted line appends the name Neville to the
list of names, hence the list will look like ['Harry', 'Ron', 'Hermione', 'Neville']. The
second change actually adds a new key-value to the array. You can check the result
from your browser by using the function print_r. It does something similar to var_
dump, just without the type and size of each value.

Chapter 3

[43]

print_r and var_dump in a browser
When printing the content of an array, it is useful to see one key-value
per line, but if you check your browser, you will see that it displays
the whole array in one line. That happens because what the browser
tries to display is HTML, and it ignores new lines or whitespaces. To
check the content of the array as PHP wants you to see it, check the
source code of the page—you will see the option by right-clicking on
the page.

If you need to remove an element from the array, instead of adding or updating one,
you can use the unset function:

<?php
$status = [
 'name' => 'James Potter',
 'status' => 'dead'
];
unset($status['status']);
print_r ($status);

The new $status array contains the key name only.

Accessing arrays
Accessing an array is as easy as specifying the key as when you were updating it. For
that, you need to understand how lists work. You already know that lists are treated
internally as a map with numeric keys in order. The first key is always 0; so, an array
with n elements will have keys from 0 to n-1.

You can add any key to a given array, even if it previously consisted of numeric
entries. The problem arises when adding numeric keys, and later, you try to append
an element to the array. What do you think will happen?

<?php
$names = ['Harry', 'Ron', 'Hermione'];
$names['badguy'] = 'Voldemort';
$names[8] = 'Snape';
$names[] = 'McGonagall';
print_r($names);

The result of that last piece of code is as follows:

Array
(
 [0] => Harry

Understanding PHP Basics

[44]

 [1] => Ron
 [2] => Hermione
 [badguy] => Voldemort
 [8] => Snape
 [9] => McGonagall
)

When trying to append a value, PHP inserts it after the last numeric key, in this
case 8.

You might've already figured it out by yourself, but you can always print any part of
the array by specifying its key:

<?php
$names = ['Harry', 'Ron', 'Hermione'];
print_r($names[1]); // prints 'Ron'

Finally, trying to access a key that does not exist in an array will return you a
null and throw a notice, as PHP identifies that you are doing something wrong
in your code.

<?php
$names = ['Harry', 'Ron', 'Hermione'];
var_dump($names[4]); // null and a PHP notice

The empty and isset functions
There are two useful functions for enquiring about the content of an array. If you
want to know if an array contains any element at all, you can ask if it is empty with
the empty function. That function actually works with strings too, an empty string
being a string with no characters (' '). The isset function takes an array position, and
returns true or false depending on whether that position exists or not:

<?php
$string = '';
$array = [];
$names = ['Harry', 'Ron', 'Hermione'];
var_dump(empty($string)); // true
var_dump(empty($array)); // true
var_dump(empty($names)); // false
var_dump(isset($names[2])); // true
var_dump(isset($names[3])); // false

Chapter 3

[45]

In the preceding example, we can see that an array with no elements or a string with
no characters will return true when asked if it is empty, and false otherwise. When
we use isset($names[2]) to check if the position 2 of the array exists, we get true,
as there is a value for that key: Hermione. Finally, isset($names[3]) evaluates to
false as the key 3 does not exist in that array.

Searching for elements in an array
Probably, one of the most used functions with arrays is in_array. This function
takes two values, the value that you want to search for and the array. The function
returns true if the value is in the array and false otherwise. This is very useful,
because a lot of times what you want to know from a list or a map is if it contains an
element, rather than knowing that it does or its location.

Even more useful sometimes is array_search. This function works in the same
way except that instead of returning a Boolean, it returns the key where the value is
found, or false otherwise. Let's see both functions:

<?php
$names = ['Harry', 'Ron', 'Hermione'];
$containsHermione = in_array('Hermione', $names);
var_dump($containsHermione); // true
$containsSnape = in_array('Snape', $names);
var_dump($containsSnape); // false
$wheresRon = array_search('Ron', $names);
var_dump($wheresRon); // 1
$wheresVoldemort = array_search('Voldemort', $names);
var_dump($wheresVoldemort); // false

Ordering arrays
An array can be sorted in different ways, so there are a lot of chances that the order
that you need is different from the current one. By default, the array is sorted by the
order in which the elements were added to it, but you can sort an array by its key or
by its value, both ascending and descending. Furthermore, when sorting an array by
its values, you can choose to preserve their keys or to generate new ones as a list.

Understanding PHP Basics

[46]

There is a complete list of these functions on the official documentation website at
http://php.net/manual/en/array.sorting.php, but here we will display the
most important ones:

Name Sorts by Maintains key
association

Order of sort

sort Value No Low to high
rsort Value No High to low
asort Value Yes Low to high
arsort Value Yes High to low
ksort Key Yes Low to high
krsort Key Yes High to low

These functions always take one argument, the array, and they do not return anything.
Instead, they directly sort the array we pass to them. Let's see some of them:

<?php
$properties = [
 'firstname' => 'Tom',
 'surname' => 'Riddle',
 'house' => 'Slytherin'
];
$properties1 = $properties2 = $properties3 = $properties;
sort($properties1);
var_dump($properties1);
asort($properties3);
var_dump($properties3);
ksort($properties2);
var_dump($properties2);

Okay, there is a lot going on in the last example. First of all, we initialize an array
with some key values and assign it to $properties. Then we create three variables
that are copies of the original array—the syntax should be intuitive. Why do we do
that? Because if we sort the original array, we will not have the original content any
more. This is not what we want in this specific example, as we want to see how the
different sort functions affect the same array. Finally, we perform three different
sorts, and print each of the results. The browser should show you something like
the following:

array(3) {
 [0]=>
 string(6) "Riddle"
 [1]=>

http://php.net/manual/en/array.sorting.php

Chapter 3

[47]

 string(9) "Slytherin"
 [2]=>
 string(3) "Tom"
}
array(3) {
 ["surname"]=>
 string(6) "Riddle"
 ["house"]=>
 string(9) "Slytherin"
 ["firstname"]=>
 string(3) "Tom"
}
array(3) {
 ["firstname"]=>
 string(3) "Tom"
 ["house"]=>
 string(9) "Slytherin"
 ["surname"]=>
 string(6) "Riddle"
}

The first function, sort, orders the values alphabetically. Also, if you check the keys,
now they are numeric as in a list, instead of the original keys. Instead, asort orders
the values in the same way, but keeps the association of key-values. Finally, ksort
orders the elements by their keys, alphabetically.

How to remember so many function names
PHP has a lot of function helpers that will save you from writing
customized functions by yourself, for example, it provides you with up
to 13 different sorting functions. And you can always rely on the official
documentation. But, of course, you would like to write code without
going back and forth from the docs. So, here are some tips to remember
what each sorting function does:

• An a in the name means associative, and thus, will preserve the
key-value association.

• An r in the name means reverse, so the order will be from high
to low.

• A k means key, so the sorting will be based on the keys instead
of the values.

Understanding PHP Basics

[48]

Other array functions
There are around 80 different functions related to arrays. As you can imagine, you
will never even hear about some of them, as they have very specific purposes. The
complete list can be found at http://php.net/manual/en/book.array.php.

We can get a list of the keys of the array with array_keys, and a list of its values
with array_values:

<?php
$properties = [
 'firstname' => 'Tom',
 'surname' => 'Riddle',
 'house' => 'Slytherin'
];
$keys = array_keys($properties);
var_dump($keys);
$values = array_values($properties);
var_dump($values);

We can get the number of elements in an array with the count function:

<?php
$names = ['Harry', 'Ron', 'Hermione'];
$size = count($names);
var_dump($size); // 3

And we can merge two or more arrays into one with array_merge:

<?php
$good = ['Harry', 'Ron', 'Hermione'];
$bad = ['Dudley', 'Vernon', 'Petunia'];
$all = array_merge($good, $bad);
var_dump($all);

The last example will print the following array:

array(6) {
 [0]=>
 string(5) "Harry"
 [1]=>
 string(3) "Ron"
 [2]=>
 string(8) "Hermione"
 [3]=>
 string(6) "Dudley"
 [4]=>

http://php.net/manual/en/book.array.php

Chapter 3

[49]

 string(6) "Vernon"
 [5]=>
 string(7) "Petunia"
}

As you can see, the keys of the second array are now different, as originally, both
the arrays had the same numeric keys, and an array cannot have two values for the
same key.

PHP in web applications
Even though the main purpose of this chapter is to show you the basics of PHP,
doing it in a reference-manual kind of a way is not interesting enough, and if we
were to copy-paste what the official documentation says, you might as well go there
and read it by yourself. Keeping in mind the main purpose of this book and your
main goal is to write web applications with PHP, let us show you how to apply
everything you are learning as soon as possible, before you get too bored.

In order to do that, we will now start on a journey towards building an online
bookstore. At the very beginning, you might not see the usefulness of it, but that is
just because we've still not shown all that PHP can do.

Getting information from the user
Let's start by building a home page. In this page, we are going to figure out if the
user is looking for a book or just walking by. How do we find that out? The easiest
way right now is to inspect the URL that the user used to access our application, and
extract some information from there.

Save this content as your index.php:

<?php
$looking = isset($_GET['title']) || isset($_GET['author']);
?>
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Bookstore</title>
</head>
<body>
 <p>You lookin'? <?php echo (int) $looking; ?></p>
 <p>The book you are looking for is</p>

Understanding PHP Basics

[50]

 Title: <?php echo $_GET['title']; ?>
 Author: <?php echo $_GET['author']; ?>

</body>
</html>

Now access the link, http://localhost:8000/?author=HarperLee&title=To
Kill a Mockingbird. You will see that the page prints some of the information that
you passed on to the URL.

For each request, PHP stores all the parameters that come from the query string in
an array called $_GET. Each key of the array is the name of the parameter, and its
associated value is the value of the parameter. So $_GET contains two entries: $_
GET['author'] contains Harper Lee and $_GET['title'] has the value To Kill a
Mockingbird.

In the first highlighted line, we assign a Boolean value to the variable $looking.
If either $_GET['title'] or $_GET['author'] exists, that variable will be true,
otherwise false. Just after that, we close the PHP tag and then we print some
HTML, but as you can see, we are actually mixing the HTML with some PHP code.

Another interesting line here is the second highlighted one. Before printing the
content of $looking, we cast the value. Casting means forcing PHP to transform a
type of value to another one. Casting a Boolean to an integer means that the resultant
value will be 1 if the Boolean is true or 0 if the Boolean is false. As $looking is
true since $_GET contains valid keys, the page shows a "1".

If we try to access the same page without sending any information, as in http://
localhost:8000, the browser will say Are you looking for a book? 0. Depending
on the settings of your PHP configuration, you will see two notice messages
complaining that you are trying to access keys of the array that do not exist.

Casting versus type juggling
We already know that when PHP needs a specific type of variable,
it will try to transform it, which is called type juggling. But PHP is
quite flexible, so sometimes, you have to be the one specifying the
type that you need. When printing something with echo, PHP tries to
transform everything it gets into strings. Since the string version of the
Boolean false is an empty string, that would not be useful for our
application. Casting the Boolean to an integer first assures that we will
see a value, even if it is just a 0.

Chapter 3

[51]

HTML forms
HTML forms are one of the most popular ways of collecting information from the
user. They consist of a series of fields—called input in the HTML world—and a final
submit button. In HTML, the form tag contains two attributes: action points where
the form will be submitted, and method, which specifies the HTTP method that the
form will use (GET or POST). Let's see how it works. Save the following content as
login.html and go to http://localhost:8000/login.html.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Bookstore - Login</title>
</head>
<body>
 <p>Enter your details to login:</p>
 <form action="authenticate.php" method="post">
 <label>Username</label>
 <input type="text" name="username" />
 <label>Password</label>
 <input type="password" name="password" />
 <input type="submit" value="Login"/>
 </form>
</body>
</html>

The form defined in the preceding code contains two fields, one for the username
and one for the password. You can see that they are identified by the attribute
name. If you try to submit this form, the browser will show you a Page Not Found
message, as it is trying to access http://localhost:8000/authenticate.php and
the web server cannot find it. Let's create it then:

<?php
$submitted = !empty($_POST);
?>
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Bookstore</title>
</head>
<body>
 <p>Form submitted? <?php echo (int) $submitted; ?></p>
 <p>Your login info is</p>

Understanding PHP Basics

[52]

 username: <?php echo $_POST['username']; ?>
 password: <?php echo $_POST['password']; ?>

</body>
</html>

As with $_GET, $_POST is an array that contains the parameters received by POST.
In this preceding piece of code, we first ask if that array is not empty—note the !
operator. Afterwards, we just display the information received, just as in index.php.
Notice that the keys of the $_POST array are the values for the argument name of
each input field.

Persisting data with cookies
When we want the browser to remember some data like whether you are logged in
or not on your web application, your basic info, and so on, we use cookies. Cookies
are stored on the client side and are sent to the server when making a request as
headers. As PHP is oriented towards web applications, it allows you to manage
cookies in a very easy way.

There are few things you need to know about cookies and PHP. You can write
cookies with the setcookie function that accepts several arguments:

• A valid name for the cookie as a string.
• The value of the cookie—only strings or values that can be casted to a

string. This parameter is optional, and if not set, PHP will actually remove
the cookie.

• Expiration time as a timestamp. If not set, the cookie will be removed once
the browser is closed.

Timestamps
Computers use different ways for describing dates and times, and a
very common one, especially on Unix systems, is the use of timestamps.
They represent the number of seconds passed since January 1, 1970.
For example, the timestamp that represents October 4, 2015 at 6:30 p.m.
would be 1,443,954,637, which is the number of seconds since that date.
You can get the current timestamp with PHP using the time function.

Chapter 3

[53]

There are other arguments related to security, but they are out of the scope of this
section. Also note that you can only set cookies if there is no previous output from
your application, that is, before HTML, echo calls, and any other similar functions
that send some output.

To read the cookies that the client sends to us, we just need to access the array, $_
COOKIE. It works as the other two arrays, so the keys of the array will be the name of
the cookies and the value of the array will be their values.

A very common usage for cookies is authenticating the user. There are several
different ways of doing so, depending on the level of security you need for your
application. Let's try to implement one very simple—albeit insecure one (do not use
it for live web applications). Leaving the HTML intact, update the PHP part of your
authenticate.php file with the following content:

<?php
setcookie('username', $_POST['username']);
$submitted = !empty($_POST);
?>

Do the same with the body tag in your index.php:

<body>
 <p>You are <?php echo $_COOKIE['username']; ?></p>
 <p>Are you looking for a book? <?php echo (int) $lookingForBook;
?></p>
 <p>The book you are looking for is</p>

 Title: <?php echo $_GET['title']; ?>
 Author: <?php echo $_GET['author']; ?>

</body>

If you access http://localhost:8000/login.html again, try to log in, open a new
tab (in the same browser), and go to the home page at http://localhost:8000, you
will see how the browser still remembers your username.

Other superglobals
$_GET, $_POST, and $_COOKIE are special variables called superglobals. There
are other superglobals too, like $_SERVER or $_ENV, which will give you extra
information. The first one shows you information about headers, paths accessed, and
other information related to the request. The second one contains the environment
variables of the machine where your application is running. You can see the full
list of these arrays and their elements at http://php.net/manual/es/language.
variables.superglobals.php.

http://php.net/manual/es/language.variables.superglobals.php
http://php.net/manual/es/language.variables.superglobals.php

Understanding PHP Basics

[54]

In general, using superglobals is useful, since it allows you to get information from the
user, the browser, the request, and so on. This is of immeasurable value when writing
web applications that need to interact with the user. But with great power comes great
responsibility, and you should be very careful when using these arrays. Most of those
values come from the users themselves, which could lead to security issues.

Control structures
So far, our files have been executed line by line. Due to that, we have been getting
notices on some scenarios, such as when the array does not contain what we are
looking for. Would it not be nice if we could choose which lines to execute? Control
structures to the rescue!

A control structure is like a traffic diversion sign. It directs the execution flow
depending on some predefined conditions. There are different control structures, but
we can categorize them in conditionals and loops. A conditional allows us to choose
whether to execute a statement or not. A loop executes a statement as many times as
you need. Let's take a look at each one of them.

Conditionals
A conditional evaluates a Boolean expression, that is, something that returns a value.
If the expression is true, it will execute everything inside its block of code. A block
of code is a group of statements enclosed by {}. Let's see how it works:

<?php
echo "Before the conditional.";
if (4 > 3) {
 echo "Inside the conditional.";
}
if (3 > 4) {
 echo "This will not be printed.";
}
echo "After the conditional.";

In the preceding piece of code, we use two conditionals. A conditional is defined by
the keyword if followed by a Boolean expression in parentheses and by a block of
code. If the expression is true, it will execute the block, otherwise it will skip it.

Chapter 3

[55]

You can increase the power of conditionals by adding the keyword else. This tells
PHP to execute some block of code if the previous conditions were not satisfied. Let's
see an example:

if (2 > 3) {
 echo "Inside the conditional.";
} else {
 echo "Inside the else.";
}

The preceding example will execute the code inside the else as the condition of the
if was not satisfied.

Finally, you can also add an elseif keyword followed by another condition and
a block of code to continue asking PHP for more conditions. You can add as many
elseif as you need after an if. If you add an else, it has to be the last one of the
chain of conditions. Also keep in mind that as soon as PHP finds a condition that
resolves to true, it will stop evaluating the rest of conditions.

<?php
if (4 > 5) {
 echo "Not printed";
} elseif (4 > 4) {
 echo "Not printed";
} elseif (4 == 4) {
 echo "Printed.";
} elseif (4 > 2) {
 echo "Not evaluated.";
} else {
 echo "Not evaluated.";
}
if (4 == 4) {
 echo "Printed";
}

In the last example, the first condition that evaluates to true is the highlighted one.
After that, PHP does not evaluate any more conditions until a new if starts.

With this knowledge, let's try to clean up our application a bit, executing statements
only when needed. Copy this code to your index.php file:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Bookstore</title>

Understanding PHP Basics

[56]

</head>
<body>
 <p>
<?php
if (isset($_COOKIE[username'])) {
 echo "You are " . $_COOKIE['username'];
} else {
 echo "You are not authenticated.";
}
?>
 </p>
<?php
if (isset($_GET['title']) && isset($_GET['author'])) {
?>
 <p>The book you are looking for is</p>

 Title: <?php echo $_GET['title']; ?>
 Author: <?php echo $_GET['author']; ?>

<?php
} else {
?>
 <p>You are not looking for a book?</p>
<?php
}
?>
</body>
</html>

In this new code, we have mixed conditionals and HTML code in two different
ways. The first one opens a PHP tag, and adds an if…else clause that will print
whether we are authenticated or not with an echo. No HTML is merged within the
conditionals, which makes it clear.

The second option—the second highlighted block—shows an uglier solution, but
sometimes necessary. When you have to print a lot of HTML code, echo is not that
handy, and it is better to close the PHP tag, print all HTML you need, and then open
the tag again. You can do that even inside the code block of an if clause as you can
see in the code.

Chapter 3

[57]

Mixing PHP and HTML
If you feel that the last file we edited looks rather ugly, you are
right. Mixing PHP and HTML is confusing, and you should
avoid it. In Chapter 6, Adapting to MVC, we will see how to do
things properly.

Let's edit our authenticate.php file too, as it is trying to access the $_POST entries
that might not be there. The new content of the file would be as follows:

<?php
$submitted = isset($_POST['username']) && isset($_POST['password']);
if ($submitted) {
 setcookie('username', $_POST['username']);
}
?>
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Bookstore</title>
</head>
<body>
<?php if ($submitted): ?>
 <p>Your login info is</p>

 username: <?php echo $_POST['username']; ?>
 password: <?php echo $_POST['password']; ?>

<?php else: ?>
 <p>You did not submit anything.</p>
<?php endif; ?>
</body>
</html>

This code also contains conditionals, which we already know. We are setting a
variable to know if we submitted a login or not, and set the cookies if so. But the
highlighted lines show you a new way of including conditionals with HTML. This
makes the code more readable when working with HTML code, avoiding the use of
{}, and instead using : and endif. Both syntaxes are correct, and you should use the
one that you consider more readable in each case.

Understanding PHP Basics

[58]

Switch…case
Another control structure similar to if…else is switch…case. This structure
evaluates only one expression, and executes the block depending on its value.
Let's see an example:

<?php
switch ($title) {
 case 'Harry Potter':
 echo "Nice story, a bit too long.";
 break;
 case 'Lord of the Rings':
 echo "A classic!";
 break;
 default:
 echo "Dunno that one.";
 break;
}

The switch clause takes an expression, in this case a variable, and then defines a
series of cases. When the case matches the current value of the expression, PHP
executes the code inside it. As soon as PHP finds a break statement, it exits the
switch…case. In case none of the cases are suitable for the expression, PHP executes
the default, if there is one, but that is optional.

You also need to know that breaks are mandatory if you want to exit the switch…
case. If you do not specify any, PHP will keep on executing statements, even if it
encounters a new case. Let's see a similar example, but without the breaks:

<?php
$title = 'Twilight';
switch ($title) {
 case 'Harry Potter':
 echo "Nice story, a bit too long.";
 case 'Twilight':
 echo 'Uh...';
 case 'Lord of the Rings':
 echo "A classic!";
 default:
 echo "Dunno that one.";
}

If you test this code in your browser, you will see that it prints Uh...A classic! Dunno
that one. PHP found that the second case is valid, so it executes its content. But as
there are no breaks, it keeps on executing until the end. This might be the desired
behavior sometimes but not usually, so be careful when using it!

Chapter 3

[59]

Loops
Loops are control structures that allow you to execute certain statements several
times, as many times as you need. You might use them in several different scenarios,
but the most common one is when interacting with arrays. For example, imagine you
have an array with elements, but you do not know what is in it. You want to print all
its elements, so you loop through all of them.

There are four types of loops. Each of them has its own use cases, but in general,
you can transform one type of loop into another. Let's look at them closely.

While
The while loop is the simplest of the loops. It executes a block of code until the
expression to evaluate returns false. Let's see one example:

<?php
$i = 1;
while ($i < 4) {
 echo $i . " ";
 $i++;
}

In the preceding example, we define a variable with value 1. Then we have a while
clause in which the expression to evaluate is $i < 4. This loop executes the content
of the block of code until that expression is false. As you can see, inside the loop we
are incrementing the value of $i by 1 each time, so the loop ends after 4 iterations.
Check the output of that script and you will see "0 1 2 3". The last value printed is 3,
so at that time the value of $i was 3. After that, we increased its value to 4, so when
the while clause evaluates if $i < 4, the result is false.

Whiles and infinite loops
One of the most common problems with the while loops is creating
an infinite loop. If you do not add any code inside the while loop that
updates any of the variables considered in the while expression such
that it can be false at some point, PHP will never exit the loop!

Understanding PHP Basics

[60]

Do…while
The do…while loop is very similar to while in the sense that it evaluates an expression
each time, and will execute the block of code until that expression is false. The only
difference is that when this expression is evaluated, the while clause evaluates the
expression before executing the code, so sometimes, we might not even enter the loop
if the expression evaluates to false the very first time. On the other hand, do…while
evaluates the expression after it executes its block of code, so even if the expression is
false from the very beginning, the loop will be executed at least once.

<?php
echo "with while: ";
$i = 1;
while ($i < 0) {
 echo $i . " ";
 $i++;
}
echo "with do-while: ";
$i = 1;
do {
 echo $i . " ";
 $i++;
} while ($i < 0);

The preceding piece of code defines two loops with the same expression and block of
code, but if you execute them, you will see that only the code inside the do…while is
executed. In both cases, the expression is false since the beginning, so while does
not even enter the loop, whereas the do…while enters the loop once.

For
The for loop is the most complex of the four loops. It defines an initialization
expression, an exit condition, and the end of an iteration expression. When PHP
first encounters the loop, it executes what is defined as the initialization expression.
Then, it evaluates the exit condition and if it resolves to true, it enters the loop. After
executing everything inside the loop, it executes the end of the iteration expression.
Once done, it evaluates the end condition again, going through the loop code and
the end of the iteration expression, until it evaluates to false. As always, an example
will clarify it:

<?php
for ($i = 1; $i < 10; $i++) {
 echo $i . " ";
}

Chapter 3

[61]

The initialization expression is $i = 1, and is executed only the first time. The exit
condition is $i < 10, and it is evaluated at the beginning of each iteration. The end
of the iteration expression is $i++, which is executed at the end of each iteration. This
example prints the numbers from 1 to 9. Another more common usage of the for
loop is with arrays:

<?php
$names = ['Harry', 'Ron', 'Hermione'];
for ($i = 0; $i < count($names); $i++) {
 echo $names[$i] . " ";
}

In this example, we have an array of names. Since it is defined as a list, its keys will
be 0, 1, and 2. The loop initializes the variable $i to 0, and it iterates until the value of
$i is not less than the number of elements in the array, that is, 3. In the first iteration,
$i is 0, in the second, it is 1, and in the third one it is equal to 2. When $i is 3, it will
not enter the loop, as the exit condition evaluates to false.

On each iteration, we print the content of the position $i of the array, hence the
result of this code will be all three names in the array.

Be careful with exit conditions
It is very common to set an exit condition that is not exactly what we
need, especially with arrays. Remember that arrays start with 0 if they
are a list, so an array of three elements will have entries of 0, 1, and 2.
Defining the exit condition as $i <= count($array) will cause an
error in your code, as when $i is 3, it also satisfies the exit condition
and will try to access the key 3, which does not exist.

Foreach
The last, but not least, type of loop is foreach. This loop is exclusive for arrays, and
it allows you to iterate an array entirely, even if you do not know its keys. There are
two options for the syntax, as you can see in the following examples:

<?php
$names = ['Harry', 'Ron', 'Hermione'];
foreach ($names as $name) {
 echo $name . " ";
}
foreach ($names as $key => $name) {
 echo $key . " -> " . $name . " ";
}

Understanding PHP Basics

[62]

The foreach loop accepts an array—in this case $names—and it specifies a variable
which will contain the value of the entry of the array. You can see that we do not
need to specify any end condition, as PHP will know when the array has been
iterated. Optionally, you can specify a variable that contains the key of each iteration,
as in the second loop.

The foreach loops are also useful with maps, where the keys are not necessarily
numeric. The order in which PHP iterates the array will be the same order that you
used to insert the contents in the array.

Let's use some loops in our application. We want to show the available books in our
home page. We have the list of books in an array, so we will have to iterate all of
them with a foreach loop, printing some information from each one. Append the
following code to the body tag in index.php:

<?php endif;
 $books = [
 [
 'title' => 'To Kill A Mockingbird',
 'author' => 'Harper Lee',
 'available' => true,
 'pages' => 336,
 'isbn' => 9780061120084
],
 [
 'title' => '1984',
 'author' => 'George Orwell',
 'available' => true,
 'pages' => 267,
 'isbn' => 9780547249643
],
 [
 'title' => 'One Hundred Years Of Solitude',
 'author' => 'Gabriel Garcia Marquez',
 'available' => false,
 'pages' => 457,
 'isbn' => 9785267006323
],
];
?>

<?php foreach ($books as $book): ?>

 <i><?php echo $book['title']; ?></i>
 - <?php echo $book['author']; ?>

Chapter 3

[63]

<?php if (!$book['available']): ?>
 Not available
<?php endif; ?>

<?php endforeach; ?>

The highlighted code shows a foreach loop using the : notation as well, which
is better when mixing it with HTML. It iterates all of the $books array, and for
each book, it prints some information as an HTML list. Notice also that we have a
conditional inside a loop, which is perfectly fine. Of course, this conditional will be
executed for each entry in the array, so you should keep the block of code of your
loops as simple as possible.

Functions
A function is a reusable block of code that, given an input, performs some actions
and, optionally, returns some result. You already know several predefined functions
like empty, in_array, or var_dump. Those functions come with PHP so you do not
have to reinvent the wheel, but you can create your own very easily. You can define
functions when you identify portions of your application that have to be executed
several times, or just to encapsulate some functionality.

Function declaration
Declaring a function means writing it down so it can be used later. A function has
a name, takes some arguments, and has a block of code. Optionally, it can define
what kind of value is to be returned. The name of the function has to follow the same
rules as variable names, that is, it has to start with a letter or an underscore, and can
contain any letters, numbers, or underscore. It cannot be a reserved word.

Let's see a simple example:

function addNumbers($a, $b) {
 $sum = $a + $b;
 return $sum;
}
$result = addNumbers(2, 3);

The preceding function's name is addNumbers, and it takes two arguments: $a
and $b. The block of code defines a new variable $sum, which is the sum of both
arguments, and then returns its content with return. In order to use this function,
you just need to call it by its name while sending all the required arguments, as
shown in the highlighted line.

Understanding PHP Basics

[64]

PHP does not support overloaded functions. Overloading refers to the ability of
declaring two or more functions with the same name but different arguments. As
you can see, you can declare the arguments without knowing what their types are, so
PHP would not be able to decide which function to use.

Another important thing to note is the variable scope. We are declaring a variable
$sum inside the block of code, so once the function ends, the variable will not be
accessible any more. That means that the scope of variables declared inside the
function is just the function itself. Furthermore, if you had a variable $sum declared
outside the function, it would not be affected at all since the function cannot access
that variable unless we send it as an argument.

Function arguments
A function gets information from outside via arguments. You can define any number
of arguments—including 0 (none). These arguments need at least a name so they
can be used inside the function; there cannot be two arguments with the same name.
When invoking the function, you need to send the arguments in the same order as
declared.

A function may contain optional arguments, that is, you are not forced to provide
a value for those arguments. When declaring the function, you need to provide a
default value for those arguments. So, in case the user does not provide a value, the
function will use the default one.

function addNumbers($a, $b, $printResult = false) {
 $sum = $a + $b;
 if ($printResult) {
 echo 'The result is ' . $sum;
 }
 return $sum;
}

$sum1 = addNumbers(1, 2);
$sum1 = addNumbers(3, 4, false);
$sum1 = addNumbers(5, 6, true); // it will print the result

This new function in the last example takes two mandatory arguments and an
optional one. The default value of the optional argument is false, and it is then used
normally inside the function. The function will print the result of the sum if the user
provides true as the third argument, which happens only the third time that the
function is invoked. For the first two, $printResult is set to false.

Chapter 3

[65]

The arguments that the function receives are just copies of the values that the user
provided. That means that if you modify these arguments inside the function, it will
not affect the original values. This feature is known as sending arguments by value.
Let's see an example:

function modify($a) {
 $a = 3;
}

$a = 2;
modify($a);
var_dump($a); // prints 2

We are declaring a variable $a with value 2, and then calling the modify method
sending that $a. The modify method modifies the argument $a, setting its value to 3,
but this does not affect the original value of $a, which remains 2 as you can see from
var_dump.

If what you want is to actually change the value of the original variable used in the
invocation, you need to pass the argument by reference. To do that, you add an
ampersand (&) before the argument when declaring the function:

function modify(&$a) {
 $a = 3;
}

Now, on invoking the function modify, $a will always be 3.

Arguments by value versus by reference
PHP allows you to do it, and in fact, some native functions of PHP use
arguments by reference. Remember the array sorting functions? They
did not return the sorted array, but sorted the array provided instead.
But using arguments by reference is a way of confusing developers.
Usually, when someone uses a function, they expect a result, and they
do not want the arguments provided by them to be modified. So try to
avoid it; people will be grateful!

Understanding PHP Basics

[66]

The return statement
You can have as many return statements as you want inside your function, but
PHP will exit the function as soon as it finds one. That means that if you have two
consecutive return statements, the second one will never be executed. Still, having
multiple return statements can be useful if they are inside conditionals. Add this
function inside your functions.php file:

function loginMessage() {
 if (isset($_COOKIE['username'])) {
 return "You are " . $_COOKIE['username'];
 } else {
 return "You are not authenticated.";
 }
}

And let's use the last example in your index.php file by replacing the highlighted
content (note that to save some trees, I replaced most of the code that was not
changed at all with //…):

//...
<body>
 <p><?php echo loginMessage(); ?></p>
<?php if (isset($_GET['title']) && isset($_GET['author'])): ?>
//...

Additionally, you can omit the return statement if you do not want the function
to return anything. In this case, the function will end once it reaches the end of the
block of code.

Type hinting and return types
With the release of PHP 7, the language allows the developer to be more specific
about what functions are getting and returning. You can—always optionally—
specify the type of argument that the function needs (type hinting), and the type of
result the function will return (return type). Let's first see an example:

<?php

declare(strict_types=1);

function addNumbers(int $a, int $b, bool $printSum): int {
 $sum = $a + $b;
 if ($printSum) {
 echo 'The sum is ' . $sum;

Chapter 3

[67]

 }
 return $sum;
}

addNumbers(1, 2, true);
addNumbers(1, '2', true); // it fails when strict_types is 1
addNumbers(1, 'something', true); // it always fails

This preceding function states that the arguments need to be integer, integer, and
Boolean, and that the result will be an integer. Now, you know that PHP has type
juggling, so it can usually transform a value of one type to its equivalent value of
another type, for example, the string "2" can be used as integer 2. To stop PHP from
using type juggling with the arguments and results of functions, you can declare the
directive strict_types as shown in the first highlighted line. This directive has to
be declared at the top of each file where you want to enforce this behavior.

The three invocations work as follows:

• The first invocation sends two integers and a Boolean, which is what the
function expects, so regardless of the value of strict_types, it will always
work.

• The second invocation sends an integer, a string, and a Boolean. The string
has a valid integer value, so if PHP was allowed to use type juggling, the
invocation would resolve just normally. But in this example, it will fail
because of the declaration at the top of the file.

• The third invocation will always fail as the string "something" cannot be
transformed into a valid integer.

Let's try to use a function within our project. In our index.php, we have a foreach
loop that iterates the books and prints them. The code inside the loop is kind of
hard to understand as it is a mix of HTML with PHP, and there is a conditional too.
Let's try to abstract the logic inside the loop into a function. First, create the new
functions.php file with the following content:

<?php
function printableTitle(array $book): string {
 $result = '<i>' . $book['title'] . '</i> - ' . $book['author'];
 if (!$book['available']) {
 $result .= ' Not available';
 }
 return $result;
}

Understanding PHP Basics

[68]

This file will contain our functions. The first one, printableTitle, takes an array
representing a book, and builds a string with a nice representation of the book in
HTML. The code is the same as before, just encapsulated in a function.

Now index.php will have to include the functions.php file, and then use the
function inside the loop. Let's see how:

<?php require_once 'functions.php' ?>
<!DOCTYPE html>
<html lang="en">

//...

?>

<?php foreach ($books as $book): ?>
 <?php echo printableTitle($book); ?>
<?php endforeach; ?>

//...

Well, now our loop looks way cleaner, right? Also, if we need to print the title of the
book somewhere else, we can reuse the function instead of duplicating code!

The filesystem
As you might have already noticed, PHP comes with a lot of native functions
that help you to manage arrays and strings in an easier way as compared to other
languages. The filesystem is another of those areas where PHP tried to make it as
easy as possible. The list of functions extends to over 80 different ones, so we will
cover here just the ones that you are more likely to use.

Reading files
In our code, we define a list of books. So far, we have only three books, but you can
guess that if we want to make this application useful, the list will grow way more.
Storing the information inside your code is not practical at all, so we have to start
thinking about externalizing it.

Chapter 3

[69]

If we think in terms of separating the code from the data, there is no need to keep
using PHP arrays to define the books. Using a less language-restrictive system will
allow people who do not know PHP to edit the content of the file. There are many
solutions for this, like CSV or XML files, but nowadays, one of the most used systems
to represent data in web applications is JSON. PHP allows you to convert arrays
to JSON and vice versa using just a couple of functions: json_encode and
json_decode. Easy, right?

Save the following into books.json:

[
 {
 "title": "To Kill A Mockingbird",
 "author": "Harper Lee",
 "available": true,
 "pages": 336,
 "isbn": 9780061120084
 },
 {
 "title": "1984",
 "author": "George Orwell",
 "available": true,
 "pages": 267,
 "isbn": 9780547249643
 },
 {
 "title": "One Hundred Years Of Solitude",
 "author": "Gabriel Garcia Marquez",
 "available": false,
 "pages": 457,
 "isbn": 9785267006323
 }
]

The preceding code snippet is a JSON representation of our array in PHP. Now,
let's read this information with the function file_get_contents, and transform
it to a PHP array with json_decode. Replace the array with these two lines:

$booksJson = file_get_contents('books.json');
$books = json_decode($booksJson, true);

With just one function, we are able to store all the content from the JSON file in
a variable as a string. With the function, we transform this JSON string into an
array. The second argument in json_decode tells PHP to transform it to an array,
otherwise it would use objects, which we have not covered as yet.

Understanding PHP Basics

[70]

When referencing files within PHP functions, you need to know whether to use
absolute or relative paths. When using relative paths, PHP will try to find the file
inside the same directory where the PHP script is. If not found, PHP will try to find it
in other directories defined in the include_path directive, but that is something you
would like to avoid. Instead, you could use absolute paths, which is a way to make
sure the reference will not be misunderstood. Let's see two examples:

$booksJson = file_get_contents('/home/user/bookstore/books.json');
$booksJson = file_get_contents(__DIR__, '/books.json');

The constant __DIR__ contains the directory name of the current PHP file, and
if we prefix it to the name of our file, we will have an absolute path. In fact, even
though you might think that writing down the whole path by yourself is better,
using __DIR__ allows you to move your application anywhere else without needing
to change anything in the code, as its content will always match the directory of the
script, whereas the hardcoded path from the first example will not be valid anymore.

Writing files
Let's add some functionality to our application. Imagine that we want to allow the
user to take the book that he or she is looking for, but only if it is available. If you
remember, we identify the book by the query string. That is not very practical, so
let's help the user by adding links to the list of books, so when you click on a link,
the query string will contain that book's information.

<?php require_once 'functions.php' ?>
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Bookstore</title>
</head>
<body>
 <p><?php echo loginMessage(); ?></p>
<?php
$booksJson = file_get_contents('books.json');
$books = json_decode($booksJson, true);
if (isset($_GET['title'])) {
 echo '<p>Looking for ' . $_GET['title'] . '</p>';
} else {
 echo '<p>You are not looking for a book?</p>';
}
?>

Chapter 3

[71]

<?php foreach ($books as $book): ?>

 <a href="?title=<?php echo $book['title']; ?>">
 <?php echo printableTitle($book); ?>

<?php endforeach; ?>

</body>
</html>

If you try the preceding code in your browser, you will see that the list contains
links, and by clicking on them, the page refreshes with the new title as part of the
query string. Let's now check if the book is available or not, and if it is, let's update
its available field to false. Add the following function in your functions.php:

function bookingBook(array &$books, string $title): bool {
 foreach ($books as $key => $book) {
 if ($book['title'] == $title) {
 if ($book['available']) {
 $books[$key]['available'] = false;
 return true;
 } else {
 return false;
 }
 }
 }
 return false;
}

We have to pay attention as the code starts getting complex. This function takes
an array of books and a title, and returns a Boolean, being true if it could book it
or false if not. Moreover, the array of books is passed by reference, which means
that all changes to that array will affect the original array too. Even though we
discouraged this previously, in this case, it is a reasonable approach.

We iterate the whole array of books, asking each time if the title of the current book
matches the one we are looking for. Only if that is true, we will check if the book
is available or not. If it is, we will update the availability to false and return true,
meaning that we booked the book. If the book is not available, we will just return
false.

Finally, note that foreach defines $key and $book. We do so because the $book
variable is a copy of the $books array, and if we edit it, the original one will not be
affected. Instead, we ask for the key of that book too, so when editing the array, we
use $books[$key] instead of $book.

Understanding PHP Basics

[72]

We can use this function from the index.php file:

//...
 echo '<p>Looking for ' . $_GET['title'] . '</p>';
 if (bookingBook($books, $_GET['title'])) {
 echo 'Booked!';
 } else {
 echo 'The book is not available...';
 }
} else {
//...

Try it out in your browser. By clicking on an available book, you will get the
Booked! message. We are almost done! We are just missing the last part: persist this
information back to the filesystem. In order to do that, we have to construct the new
JSON content and then to write it back to the books.json file. Of course, let's do that
only if the book was available.

function updateBooks(array $books) {
 $booksJson = json_encode($books);
 file_put_contents(__DIR__ . '/books.json', $booksJson);
}

The json_encode function does the opposite of json_decode: it takes an array—or
any other variable—and transforms it to JSON. The file_put_contents function
is used to write to the file referenced as the first argument, the content sent as the
second argument. Would you know how to use this function?

//...
if (bookingBook($books, $_GET['title'])) {
 echo 'Booked!';
 updateBooks($books);
} else {
 echo 'The book is not available...';
}
//...

Files versus databases
Storing information in JSON files is better than having it in your
code, but it is still not the best option. In Chapter 5, Using Databases,
you will learn how to store data of the application in a database,
which is a way better solution.

Chapter 3

[73]

Other filesystem functions
If you want to make your application more robust, you could check that the books.
json file exists, that you have read and write permission, and/or that the previous
content was a valid JSON. You can use some PHP functions for that:

• file_exists: This function takes the path of the file, and returns a Boolean:
true when the file exists and false otherwise.

• is_writable: This function works the same as file_exists, but checks
whether the file is writable or not.

You can find the full list of functions at http://uk1.php.net/manual/en/book.
filesystem.php. You can find functions to move, copy, or remove files, create
directories, give permissions and ownership, and so on.

Summary
In this chapter, we went through all the basics of procedural PHP while writing
simple examples in order to practice them. You now know how to use variables
and arrays with control structures and functions, how to get information from
HTTP requests, and how to interact with the filesystem among other things.

In the next chapter, we will study the other and most used paradigm: OOP.
That is one step closer to writing clean and well-structured applications.

http://uk1.php.net/manual/en/book.filesystem.php
http://uk1.php.net/manual/en/book.filesystem.php

[75]

Creating Clean Code
with OOP

When applications start growing, representing more complex data structures
becomes necessary. Primitive types like integers, strings, or arrays are not enough
when you want to associate specific behavior to data. More than half a century ago,
computer scientists started using the concept of objects to refer to the encapsulation
of properties and functionality that represented an object in real life.

Nowadays, OOP is one of the most used programming paradigms, and you will be
glad to know that PHP supports it. Knowing OOP is not just a matter of knowing the
syntax of the language, but knowing when and how to use it. But do not worry, after
this chapter and a bit of practice, you will become a confident OOP developer.

In this chapter, you will learn about the following:

• Classes and objects
• Visibility, static properties, and methods
• Namespaces
• Autoloading classes
• Inheritance, interfaces, and traits
• Handling exceptions
• Design patterns
• Anonymous functions

Creating Clean Code with OOP

[76]

Classes and objects
Objects are representations of real-life elements. Each object has a set of attributes
that differentiates it from the rest of the objects of the same class, and is capable of a
set of actions. A class is the definition of what an object looks like and what it can do,
like a pattern for objects.

Let's take our bookstore example, and think of the kind of real-life objects it contains.
We store books, and let people take them if they are available. We could think of two
types of objects: books and customers. We can define these two classes as follows:

<?php

class Book {
}

class Customer {
}

A class is defined by the keyword class followed by a valid class name—that
follows the same rules as any other PHP label, like variable names—and a block
of code. But if we want to have a specific book, that is, an object Book—or instance
of the class Book—we have to instantiate it. To instantiate an object, we use the
keyword new followed by the name of the class. We assign the instance to a variable,
as if it was a primitive type:

$book = new Book();
$customer = new Customer();

You can create as many instances as you need, as long as you assign them to
different variables:

$book1 = new Book();
$book2 = new Book();

Class properties
Let's think about the properties of books first: they have a title, an author, and an
ISBN. They can also be available or unavailable. Write the following code inside
Book.php:

<?php

class Book {
 public $isbn;
 public $title;

Chapter 4

[77]

 public $author;
 public $available;
}

This preceding snippet defines a class that represents the properties that a book has.
Do not bother about the word public; we will explain what it means when talking
about visibility in the next section. For now, just think of properties as variables inside
the class. We can use these variables in objects. Try adding this code at the end of the
Book.php file:

$book = new Book();
$book->title = "1984";
$book->author = "George Orwell";
$book->available = true;
var_dump($book);

Printing the object shows the value of each of its properties, in a way similar to the way
arrays do with their keys. You can see that properties have a type at the moment of
printing, but we did not define this type explicitly; instead, the variable took the type
of the value assigned. This works exactly the same way that normal variables do.

When creating multiple instances of an object and assigning values to their properties,
each object will have their own values, so you will not override them. The next bit of
code shows you how this works:

$book1 = new Book();
$book1->title = "1984";
$book2 = new Book();
$book2->title = "To Kill a Mockingbird";
var_dump($book1, $book2);

Class methods
Methods are functions defined inside a class. Like functions, methods get some
arguments and perform some actions, optionally returning a value. The advantage
of methods is that they can use the properties of the object that invoked them. Thus,
calling the same method in two different objects might have two different results.

Even though it is usually a bad idea to mix HTML with PHP, for the sake of learning,
let's add a method in our class Book that returns the book as in our already existing
function printableTitle:

<?php

class Book {
 public $isbn;

Creating Clean Code with OOP

[78]

 public $title;
 public $author;
 public $available;

 public function getPrintableTitle(): string {
 $result = '<i>' . $this->title
 . '</i> - ' . $this->author;
 if (!$this->available) {
 $result .= ' Not available';
 }
 return $result;
 }
}

As with properties, we add the keyword public at the beginning of the function,
but other than that, the rest looks just as a normal function. The other special bit
is the use of $this: it represents the object itself, and allows you to access the
properties and methods of that same object. Note how we refer to the title, author,
and available properties.

You can also update the values of the current object from one of its functions.
Let's use the available property as an integer that shows the number of units
available instead of just a Boolean. With that, we can allow multiple customers to
borrow different copies of the same book. Let's add a method to give one copy of a
book to a customer, updating the number of units available:

public function getCopy(): bool {
 if ($this->available < 1) {
 return false;
 } else {
 $this->available--;
 return true;
 }
}

In this preceding method, we first check if we have at least one available unit. If we
do not, we return false to let them know that the operation was not successful. If we
do have a unit for the customer, we decrease the number of available units, and then
return true, letting them know that the operation was successful. Let's see how you
can use this class:

<?php
$book = new Book();
$book->title = "1984";
$book->author = "George Orwell";

Chapter 4

[79]

$book->isbn = 9785267006323;
$book->available = 12;

if ($book->getCopy()) {
 echo 'Here, your copy.';
} else {
 echo 'I am afraid that book is not available.';
}

What would this last piece of code print? Exactly, Here, your copy. But what would
be the value of the property available? It would be 11, which is the result of the
invocation of getCopy.

Class constructors
You might have noticed that it looks like a pain to instantiate the Book class, and
set all its values each time. What if our class has 30 properties instead of four? Well,
hopefully, you will never do that, as it is very bad practice. Still, there is a way to
mitigate that pain: constructors.

Constructors are functions that are invoked when someone creates a new instance
of the class. They look like normal methods, with the exception that their name is
always __construct, and that they do not have a return statement, as they always
have to return the new instance. Let's see an example:

public function __construct(int $isbn, string $title, string $author,
int $available) {
 $this->isbn = $isbn;
 $this->title = $title;
 $this->author = $author;
 $this->available = $available;
}

The constructor takes four arguments, and then assigns the value of one of the
arguments to each of the properties of the instance. To instantiate the Book class,
we use the following:

$book = new Book("1984", "George Orwell", 9785267006323, 12);

This object is exactly the same as the object when we set the value to each of its
properties manually. But this one looks cleaner, right? This does not mean you
cannot set new values to this object manually, it just helps you in constructing
new objects.

www.allitebooks.com

http://www.allitebooks.org

Creating Clean Code with OOP

[80]

As a constructor is still a function, it can use default arguments. Imagine that the
number of units will usually be 0 when creating the object, and later, the librarian
will add units when available. We could set a default value to the $available
argument of the constructor, so if we do not send the number of units when creating
the object, the object will be instantiated with its default value:

public function __construct(
 int $isbn,
 string $title,
 string $author,
 int $available = 0
) {
 $this->isbn = $isbn;
 $this->title = $title;
 $this->author = $author;
 $this->available = $available;
}

We could use the preceding constructor in two different ways:

$book1 = new Book("1984", "George Orwell", 9785267006323, 12);
$book2 = new Book("1984", "George Orwell", 9785267006323);

$book1 will set the number of units available to 12, whereas $book2 will set it to the
default value of 0. But do not trust me; try it by yourself!

Magic methods
There is a special group of methods that have a different behavior than the normal
ones. Those methods are called magic methods, and they usually are triggered by
the interaction of the class or object, and not by invocations. You have already seen
one of them, the constructor of the class, __construct. This method is not invoked
directly, but rather used when creating a new instance with new. You can easily
identify magic methods, because they start with __. The following are some of the
most used magic methods:

• __toString: This method is invoked when we try to cast an object to a
string. It takes no parameters, and it is expected to return a string.

• __call: This is the method that PHP calls when you try to invoke a method
on a class that does not exist. It gets the name of the method as a string
and the list of parameters used in the invocation as an array, through the
argument.

• __get: This is a version of __call for properties. It gets the name of the
property that the user was trying to access through parameters, and it can
return anything.

Chapter 4

[81]

You could use the __toString method to replace the current getPrintableTitle
method in our Book class. To do that, just change the name of the method as follows:

public function __toString() {
 $result = '<i>' . $this->title . '</i> - ' . $this->author;
 if (!$this->available) {
 $result .= ' Not available';
 }
 return $result;
}

To try the preceding code, you can just add the following snippet that creates an
object book and then casts it to a string, invoking the __toString method:

$book = new Book(1234, 'title', 'author');
$string = (string) $book; // title - author Not available

As the name suggests, those are magic methods, so most of the time their features
will look like magic. For obvious reasons, we personally encourage developers to use
constructors and maybe __toString, but be careful about when to use the rest, as
you might make your code quite unpredictable for people not familiar with it.

Properties and methods visibility
So far, all the properties and methods defined in our Book class were tagged as
public. That means that they are accessible to anyone, or more precisely, from
anywhere. This is called the visibility of the property or method, and there are three
types of visibility. In the order of being more restrictive to less, they are as follows:

• private: This type allows access only to members of the same class. If A and
B are instances of the class C, A can access the properties and methods of B.

• protected: This type allows access to members of the same class and
instances from classes that inherit from that one only. You will see
inheritance in the next section.

• public: This type refers to a property or method that is accessible from
anywhere. Any classes or code in general from outside the class can access it.

In order to show some examples, let's first create a second class in our application.
Save this into a Customer.php file:

<?php

class Customer {
 private $id;

Creating Clean Code with OOP

[82]

 private $firstname;
 private $surname;
 private $email;

 public function __construct(
 int $id,
 string $firstname,
 string $surname,
 string $email
) {
 $this->id = $id;
 $this->firstname = $firstname;
 $this->surname = $surname;
 $this->email = $email;
 }
}

This class represents a customer, and its properties consist of the general information
that the bookstores usually know about their customers. But for security reasons, we
cannot let everybody know about the personal data of our customers, so we set every
property as private.

So far, we have been adding the code to create objects in the same Book.php file,
but since now we have two classes, it seems natural to leave the classes in their
respective files, and create and play with objects in a separate file. Let's name this
third file init.php. In order to instantiate objects of a given class, PHP needs to
know where the class is. For that, just include the file with require_once.

<?php

require_once __DIR__ . '/Book.php';
require_once __DIR__ . '/Customer.php';

$book1 = new Book("1984", "George Orwell", 9785267006323, 12);
$book2 = new Book("To Kill a Mockingbird", "Harper Lee",
9780061120084, 2);

$customer1 = new Customer(1, 'John', 'Doe', 'johndoe@mail.com');
$customer2 = new Customer(2, 'Mary', 'Poppins', 'mp@mail.com');

You do not need to include the files every single time. Once you include them, PHP
will know where to find the classes, even though your code is in a different file.

Chapter 4

[83]

Conventions for classes
When working with classes, you should know that there are some
conventions that everyone tries to follow in order to ensure clean code
which is easy to maintain. The most important ones are as follows:

• Each class should be in a file named the same as the class along
with the .php extension

• Class names should be in CamelCase, that is, each word should
start with an uppercase letter, followed by the rest of the word in
lowercase

• A file should contain only the code of one class
• Inside a class, you should first place the properties, then the

constructor, and finally, the rest of the methods

To show how visibility works, let's try the following code:

$book1->available = 2; // OK
$customer1->id = 3; // Error!

We already know that the properties of the Book class' objects are public, and
therefore, editable from outside. But when trying to change a value from Customer,
PHP complains, as its properties are private.

Encapsulation
When working with objects, one of the most important concepts you have to know
and apply is encapsulation. Encapsulation tries to group the data of the object
with its methods in an attempt to hide the internal structure of the object from the
rest of the world. In simple words, you could say that you use encapsulation if the
properties of an object are private, and the only way to update them is through
public methods.

The reason for using encapsulation is to make it easier for a developer to make
changes to the internal structure of the class without directly affecting the external
code that uses that class. For example, imagine that our Customer class, that now has
two properties to define its name—firstname and surname—has to change. From
now on, we only have one property name that contains both. If we were accessing its
properties straightaway, we should change all of those accesses!

Instead, if we set the properties as private and enable two public methods,
getFirstname and getSurname, even if we have to change the internal structure of
the class, we could just change the implementation of those two methods—which is
at one place only—and the rest of the code that uses our class will not be affected at
all. This concept is also known as information hiding.

Creating Clean Code with OOP

[84]

The easiest way to implement this idea is by setting all the properties of the class as
private and enabling two methods for each of the properties: one will get the current
value (also known as getter), and the other will allow you to set a new value (known
as setter). That's at least the most common and easy way to encapsulate data.

But let's go one step further: when defining a class, think of the data that you want
the user to be able to change and to retrieve, and only add setters and getters for
them. For example, customers might change their e-mail address, but their name,
surname, and ID remains the same once we create them. The new definition of the
class would look like the following:

<?php

class Customer {
 private $id;
 private $name;
 private $surname;
 private $email;

 public function __construct(
 int $id,
 string $firstname,
 string $surname,
 string $email
) {
 $this->id = $id;
 $this->firstname = $firstname;
 $this->surname = $surname;
 $this->email = $email;
 }

 public function getId(): id {
 return $this->id;
 }
 public function getFirstname(): string {
 return $this->firstname;
 }
 public function getSurname(): string {
 return $this->surname;
 }
 public function getEmail(): string {
 return $this->email;
 }
 public function setEmail(string $email) {

Chapter 4

[85]

 $this->email = $email;
 }
}

On the other hand, our books also remain almost the same. The only change possible
is the number of available units. But we usually take or add one book at a time
instead of setting the specific number of units available, so a setter here is not really
useful. We already have the getCopy method that takes one copy when possible; let's
add an addCopy method, plus the rest of the getters:

<?php

class Book {
 private $isbn;
 private $title;
 private $author;
 private $available;

 public function __construct(
 int $isbn,
 string $title,
 string $author,
 int $available = 0
) {
 $this->isbn = $isbn;
 $this->title = $title;
 $this->author = $author;
 $this->available = $available;
 }
 public function getIsbn(): int {
 return $this->isbn;
 }
 public function getTitle(): string {
 return $this->title;
 }
 public function getAuthor(): string {
 return $this->author;
 }
 public function isAvailable(): bool {
 return $this->available;
 }

 public function getPrintableTitle(): string {
 $result = '<i>' . $this->title . '</i> - ' . $this->author;
 if (!$this->available) {

Creating Clean Code with OOP

[86]

 $result .= ' Not available';
 }
 return $result;
 }

 public function getCopy(): bool {
 if ($this->available < 1) {
 return false;
 } else {
 $this->available--;
 return true;
 }
 }

 public function addCopy() {
 $this->available++;
 }
}

When the number of classes in your application, and with it, the number of
relationships between classes increases, it is helpful to represent these classes in a
diagram. Let's call this diagram a UML diagram of classes, or just an hierarchic tree.
The hierarchic tree for our two classes would look as follows:

We only show public methods, as the protected or private ones cannot be called from
outside the class, and thus, they are not useful for a developer who just wants to use
these classes externally.

Chapter 4

[87]

Static properties and methods
So far, all the properties and methods were linked to a specific instance; so two
different instances could have two different values for the same property. PHP allows
you to have properties and methods linked to the class itself rather than to the object.
These properties and methods are defined with the keyword static.

private static $lastId = 0;

Add the preceding property to the Customer class. This property shows the last ID
assigned to a user, and is useful in order to know the ID that should be assigned to a
new user. Let's change the constructor of our class as follows:

public function __construct(
 int $id,
 string $name,
 string $surname,
 string $email
) {
 if ($id == null) {
 $this->id = ++self::$lastId;
 } else {
 $this->id = $id;
 if ($id > self::$lastId) {
 self::$lastId = $id;
 }
 }
 $this->name = $name;
 $this->surname = $surname;
 $this->email = $email;
}

Note that when referring to a static property, we do not use the variable $this.
Instead, we use self::, which is not tied to any instance but to the class itself. In
this last constructor, we have two options. We are either provided with an ID value
that is not null, or we send a null in its place. When the received ID is null, we use
the static property $lastId to know the last ID used, increase it by one, and assign
it to the property $id. If the last ID we inserted was 5, this will update the static
property to 6, and then assign it to the instance property. Next time we create a new
customer, the $lastId static property will be 6. Instead, if we get a valid ID as part
of the arguments, we assign it, and check if the assigned $id is greater than the static
$lastId. If it is, we update it. Let's see how we would use this:

$customer1 = new Customer(3, 'John', 'Doe', 'johndoe@mail.com');
$customer2 = new Customer(null, 'Mary', 'Poppins', 'mp@mail.com');
$customer3 = new Customer(7, 'James', 'Bond', '007@mail.com');

Creating Clean Code with OOP

[88]

In the preceding example, $customer1 specifies that his ID is 3, probably because
he is an existing customer and wants to keep the same ID. That sets both his ID and
the last static ID to 3. When creating the second customer, we do not specify the ID,
so the constructor will take the last ID, increase it by 1, and assign it to the customer.
So $customer2 will have the ID 4, and the latest ID will be 4 too. Finally, our secret
agent knows what he wants, so he forces the system to have the ID as 7. The latest ID
will be updated to 7 too.

Another benefit of static properties and methods is that we do not need an object to
use them. You can refer to a static property or method by specifying the name of the
class, followed by ::, and the name of the property/method. That is, of course, if the
visibility rules allow you to do that, which, in this case, it does not, as the property is
private. Let's add a public static method to retrieve the last ID:

public static function getLastId(): int {
 return self::$lastId;
}

You can reference it either using the class name or an existing instance, from
anywhere in the code:

Customer::getLastId();
$customer1::getLastId();

Namespaces
You know that you cannot have two classes with the same name, since PHP would
not know which one is being referred to when creating a new object. To solve this
issue, PHP allows the use of namespaces, which act as paths in a filesystem. In this
way, you can have as many classes with the same name as you need, as long as
they are all defined in different namespaces. It is worth noting that, even though
namespaces and the file path will usually be the same, this is enforced by the
developer rather than by the language; you could actually use any namespace that
has nothing to do with the filesystem.

Specifying a namespace has to be the first thing that you do in a file. In order to do
that, use the namespace keyword followed by the namespace. Each section of the
namespace is separated by \, as if it was a different directory. If you do not specify
the namespace, the class will belong to the base namespace, or root. At the beginning
of both files—Book.php and Customer.php—add the following:

<?php

namespace Bookstore\Domain;

Chapter 4

[89]

The preceding line of code sets the namespace of our classes as Bookstore\Domain.
The full name of our classes then is Bookstore\Domain\Book and Bookstore\
Domain\Customer. If you try to access the init.php file from your browser, you will
see an error saying that either the class Book or the class Customer were not found.
But we included the files, right? That happens because PHP thinks that you are
trying to access \Book and \Customer from the root. Do not worry, there are several
ways to amend this.

One way would be to specify the full name of the classes when referencing
them, that is, using $customer = new Bookstore\Domain\Book(); instead
of $book = new Book();. But that does not sound practical, does it?

Another way would be to say that the init.php file belongs to the BookStore\
Domain namespace. That means that all the references to classes inside init.php
will have the BookStore\Domain prefixed to them, and you will be able to use Book
and Customer. The downside of this solution is that you cannot easily reference
other classes from other namespaces, as any reference to a class will be prefixed
with that namespace.

The best solution is to use the keyword use. This keyword allows you to specify
a full class name at the beginning of the file, and then use the simple name of the
class in the rest of that file. Let's see an example:

<?php

use Bookstore\Domain\Book;
use Bookstore\Domain\Customer;

require_once __DIR__ . '/Book.php';
require_once __DIR__ . '/Customer.php';
//...

In the preceding file, each time that we reference Book or Customer, PHP will know
that we actually want to use the full class name, that is, with Bookstore\Domain\
prefixed to it. This solution allows you to have a clean code when referencing those
classes, and at the same time, to be able to reference classes from other namespaces
if needed.

But what if you want to include two different classes with the same name in the
same file? If you set two use statements, PHP will not know which one to choose,
so we still have the same problem as before! To fix that, either you use the full class
name—with namespace—each time you want to reference any of the classes, or you
use aliases.

Creating Clean Code with OOP

[90]

Imagine that we have two Book classes, the first one in the namespace Bookstore\
Domain and the second one in Library\Domain. To solve the conflict, you could do
as follows:

use Bookstore\Domain\Book;
use Library\Domain\Book as LibraryBook;

The keyword as sets an alias to that class. In that file, whenever you reference the
class LibraryBook, you will actually be referencing the class Library\Domain\Book.
And when referencing Book, PHP will just use the one from Bookstore. Problem
solved!

Autoloading classes
As you already know, in order to use a class, you need to include the file that defines
it. So far, we have been including the files manually, as we only had a couple of classes
and used them in one file. But what happens when we use several classes in several
files? There must be a smarter way, right? Indeed there is. Autoloading to the rescue!

Autoloading is a PHP feature that allows your program to search and load files
automatically given some set of predefined rules. Each time you reference a class
that PHP does not know about, it will ask the autoloader. If the autoloader can figure
out which file that class is in, it will load it, and the execution of the program will
continue as normal. If it does not, PHP will stop the execution.

So, what is the autoloader? It is no more than a PHP function that gets a class name
as a parameter, and it is expected to load a file. There are two ways of implementing
an autoloader: either by using the __autoload function or the spl_autoload_
register one.

Using the __autoload function
Defining a function named __autoload tells PHP that the function is the autoloader
that it must use. You could implement an easy solution:

function __autoload($classname) {
 $lastSlash = strpos($classname, '\\') + 1;
 $classname = substr($classname, $lastSlash);
 $directory = str_replace('\\', '/', $classname);
 $filename = __DIR__ . '/' . $directory . '.php';
 require_once($filename);
}

Chapter 4

[91]

Our intention is to keep all PHP files in src, that is, the source. Inside this directory,
the directory tree will emulate the namespace tree of the classes excluding the first
section BookStore, which is useful as a namespace but not necessary as a directory.
That means that our Book class, with full class name BookStore\Domain\Book, will
be in src/Domain/Book.php.

In order to achieve that, our __autoload function tries to find the first occurrence of
the backslash \ with strpos, and then extracts from that position until the end with
substr. This, in practice, just removes the first section of the namespace, BookStore.
After that, we replace all \ by / so that the filesystem can understand the path.
Finally, we concatenate the current directory, the class name as a directory, and the
.php extension.

Before trying that, remember to create the src/Domain directory and move the
two classes inside it. Also, to make sure that we are testing the autoloader, save the
following as your init.php, and go to http://localhost:8000/init.php:

<?php

use Bookstore\Domain\Book;
use Bookstore\Domain\Customer;

function __autoload($classname) {
 $lastSlash = strpos($classname, '\\') + 1;
 $classname = substr($classname, $lastSlash);
 $directory = str_replace('\\', '/', $classname);
 $filename = __DIR__ . '/src/' . $directory . '.php'
 require_once($filename);
}

$book1 = new Book("1984", "George Orwell", 9785267006323, 12);
$customer1 = new Customer(5, 'John', 'Doe', 'johndoe@mail.com');

The browser does not complain now, and there is no explicit require_once. Also
remember that the __autoload function has to be defined only once, not in each
file. So from now on, when you want to use your classes, as soon as the class is in
a namespace and file that follows the convention, you only need to define the use
statement. Way cleaner than before, right?

Creating Clean Code with OOP

[92]

Using the spl_autoload_register function
The __autoload solution looks pretty good, but it has a small problem: what if our
code is so complex that we do not have only one convention, and we need more
than one implementation of the __autoload function? As we cannot define two
functions with the same name, we need a way to tell PHP to keep a list of possible
implementations of the autoloader, so it can try all of them until one works.

That is the job of spl_autoload_register. You define your autoloader function
with a valid name, and then invoke the function spl_autoload_register, sending
the name of your autoloader as an argument. You can call this function as many
times as the different autoloaders you have in your code. In fact, even if you have
only one autoloader, using this system is still a better option than the __autoload
one, as you make it easier for someone else who has to add a new autoloader later:

function autoloader($classname) {
 $lastSlash = strpos($classname, '\\') + 1;
 $classname = substr($classname, $lastSlash);
 $directory = str_replace('\\', '/', $classname);
 $filename = __DIR__ . '/' . $directory . '.php';
 require_once($filename);
}
spl_autoload_register('autoloader');

Inheritance
We have presented the object-oriented paradigm as the panacea for complex data
structures, and even though we have shown that we can define objects with properties
and methods, and it looks pretty and fancy, it is not something that we could not solve
with arrays. Encapsulation was one feature that made objects more useful than arrays,
but their true power lies in inheritance.

Introducing inheritance
Inheritance in OOP is the ability to pass the implementation of the class from parents
to children. Yes, classes can have parents, and the technical way of referring to this
feature is that a class extends from another class. When extending a class, we get all
the properties and methods that are not defined as private, and the child class can
use them as if they were its own. The limitation is that a class can only extend from
one parent.

Chapter 4

[93]

To show an example, let's consider our Customer class. It contains the properties
firstname, surname, email, and id. A customer is actually a specific type of person,
one that is registered in our system, so he/she can get books. But there can be other
types of persons in our system, like librarian or guest. And all of them would have
some common properties to all people, that is, firstname and surname. So it would
make sense if we create a Person class, and make the Customer class extend from it.
The hierarchic tree would look as follows:

Note how Customer is connected to Person. The methods in Person are not defined
in Customer, as they are implicit from the extension. Now save the new class in
src/Domain/Person.php, following our convention:

<?php

namespace Bookstore\Domain;

class Person {
 protected $firstname;
 protected $surname;

 public function __construct(string $firstname, string $surname) {
 $this->firstname = $firstname;
 $this->surname = $surname;
 }

 public function getFirstname(): string {
 return $this->firstname;
 }

 public function getSurname(): string {
 return $this->surname;
 }
}

Creating Clean Code with OOP

[94]

The class defined in the preceding code snippet does not look special; we have just
defined two properties, a constructor and two getters. Note though that we defined
the properties as protected, because if we defined them as private, the children
would not be able to access them. Now we can update our Customer class by
removing the duplicate properties and its getters:

<?php

namespace Bookstore\Domain;

class Customer extends Person {
 private static $lastId = 0;
 private $id;
 private $email;

 public function __construct(
 int $id,
 string $name,
 string $surname,
 string $email
) {
 if (empty($id)) {
 $this->id = ++self::$lastId;
 } else {
 $this->id = $id;
 if ($id > self::$lastId) {
 self::$lastId = $id;
 }
 }
 $this->name = $name;
 $this->surname = $surname;
 $this->email = $email;
 }

 public static function getLastId(): int {
 return self::$lastId;
 }

 public function getId(): int {
 return $this->id;
 }

 public function getEmail(): string {
 return $this->email;

Chapter 4

[95]

 }

 public function setEmail($email): string {
 $this->email = $email;
 }
}

Note the new keyword extends; it tells PHP that this class is a child of the Person
class. As both Person and Customer are in the same namespace, you do not have to
add any use statement, but if they were not, you should let it know how to find the
parent. This code works fine, but we can see that there is a bit of duplication of code.
The constructor of the Customer class is doing the same job as the constructor of the
Person class! We will try to fix it really soon.

In order to reference a method or property of the parent class from the child, you
can use $this as if the property or method was in the same class. In fact, you could
say it actually is. But PHP allows you to redefine a method in the child class that was
already present in the parent. If you want to reference the parent's implementation,
you cannot use $this, as PHP will invoke the one in the child. To force PHP to
use the parent's method, use the keyword parent:: instead of $this. Update the
constructor of the Customer class as follows:

public function __construct(
 int $id,
 string $firstname,
 string $surname,
 string $email
) {
 parent::__construct($firstname, $surname);
 if (empty($id)) {
 $this->id = ++self::$lastId;
 } else {
 $this->id = $id;
 if ($id > self::$lastId) {
 self::$lastId = $id;
 }
 }
 $this->email = $email;
}

This new constructor does not duplicate code. Instead, it calls the constructor of the
parent class Person, sending $firstname and $surname, and letting the parent do
what it already knows how to do. We avoid code duplication and, on top of that, we
make it easier for any future changes to be made in the constructor of Person. If we
need to change the implementation of the constructor of Person, we will change it in
one place only, instead of in all the children.

Creating Clean Code with OOP

[96]

Overriding methods
As said before, when extending from a class, we get all the methods of the parent
class. That is implicit, so they are not actually written down inside the child's class.
What would happen if you implement another method with the same signature
and/or name? You will be overriding the method.

As we do not need this feature in our classes, let's just add some code in our init.php
file to show this behavior, and then you can just remove it. Let's define a class Pops,
a class Child that extends from the parent, and a sayHi method in both of them:

class Pops {
 public function sayHi() {
 echo "Hi, I am pops.";
 }
}

class Child extends Pops{
 public function sayHi() {
 echo "Hi, I am a child.";
 }
}

$pops = new Pops();
$child = new Child();
echo $pops->sayHi(); // Hi, I am pops.
echo $child->sayHi(); // Hi, I am Child.

The highlighted code shows you that the method has been overridden, so when
invoking it from a child's point of view, we will be using it rather than the one
inherited from its father. But what happens if we want to reference the inherited one
too? You can always reference it with the keyword parent. Let's see how it works:

class Child extends Pops{
 public function sayHi() {
 echo "Hi, I am a child.";
 parent::sayHi();
 }
}

$child = new Child();
echo $child->sayHi(); // Hi, I am Child. Hi I am pops.

Now the child is saying hi for both himself and his father. It seems very easy and
handy, right? Well, there is a restriction. Imagine that, as in real life, the child was
very shy, and he would not say hi to everybody. We could try to set the visibility of
the method as protected, but see what happens:

Chapter 4

[97]

class Child extends Pops{
 protected function sayHi() {
 echo "Hi, I am a child.";
 }
}

When trying this code, even without trying to instantiate it, you will get a fatal
error complaining about the access level of that method. The reason is that when
overriding, the method has to have at least as much visibility as the one inherited.
That means that if we inherit a protected one, we can override it with another
protected or a public one, but never with a private one.

Abstract classes
Remember that you can extend only from one parent class each time. That means
that Customer can only extend from Person. But if we want to make this hierarchic
tree more complex, we can create children classes that extend from Customer,
and those classes will extend implicitly from Person too. Let's create two types of
customer: basic and premium. These two customers will have the same properties
and methods from Customer and from Person, plus the new ones that we implement
in each one of them.

Save the following code as src/Domain/Customer/Basic.php:

<?php

namespace Bookstore\Domain\Customer;

use Bookstore\Domain\Customer;

class Basic extends Customer {
 public function getMonthlyFee(): float {
 return 5.0;
 }

 public function getAmountToBorrow(): int {
 return 3;
 }

 public function getType(): string {
 return 'Basic';
 }
}

Creating Clean Code with OOP

[98]

And the following code as src/Domain/Customer/Premium.php:

<?php

namespace Bookstore\Domain\Customer;

use Bookstore\Domain\Customer;

class Premium extends Customer {
 public function getMonthlyFee(): float {
 return 10.0;
 }

 public function getAmountToBorrow(): int {
 return 10;
 }

 public function getType(): string {
 return 'Premium';
 }
}

Things to note in the preceding two codes are that we extend from Customer in two
different classes, and it is perfectly legal— we can extend from classes in different
namespaces. With this addition, the hierarchic tree for Person would look as follows:

Chapter 4

[99]

We define the same methods in these two classes, but their implementations are
different. The aim of this approach is to use both types of customers indistinctively,
without knowing which one it is each time. For example, we could temporally have
the following code in our init.php. Remember to add the use statement to import
the class Customer if you do not have it.

function checkIfValid(Customer $customer, array $books): bool {
 return $customer->getAmountToBorrow() >= count($books);
}

The preceding function would tell us if a given customer could borrow all the books
in the array. Notice that the type hinting of the method says Customer, without
specifying which one. This will accept objects that are instances of Customer or any
class that extends from Customer, that is, Basic or Premium. Looks legit, right? Let's
try to use it then:

$customer1 = new Basic(5, 'John', 'Doe', 'johndoe@mail.com');
var_dump(checkIfValid($customer1, [$book1])); // ok
$customer2 = new Customer(7, 'James', 'Bond', 'james@bond.com');
var_dump(checkIfValid($customer2, [$book1])); // fails

The first invocation works as expected, but the second one fails, even though we are
sending a Customer object. The problem arises because the parent does not know
about any getAmountToBorrow method! It also looks dangerous that we rely on the
children to always implement that method. The solution lies in using abstract classes.

An abstract class is a class that cannot be instantiated. Its sole purpose is to make
sure that its children are correctly implemented. Declaring a class as abstract is done
with the keyword abstract, followed by the definition of a normal class. We can also
specify the methods that the children are forced to implement, without implementing
them in the parent class. Those methods are called abstract methods, and are defined
with the keyword abstract at the beginning. Of course, the rest of the normal
methods can stay there too, and will be inherited by its children:

<?php
abstract class Customer extends Person {
//...
 abstract public function getMonthlyFee();
 abstract public function getAmountToBorrow();
 abstract public function getType();
//...
}

Creating Clean Code with OOP

[100]

The preceding abstraction solves both problems. First, we will not be able to send
any instance of the class Customer, because we cannot instantiate it. That means that
all the objects that the checkIfValid method is going to accept are only the children
from Customer. On the other hand, declaring abstract methods forces all the children
that extend the class to implement them. With that, we make sure that all objects will
implement getAmountToBorrow, and our code is safe.

The new hierarchic tree will define the three abstract methods in Customer, and will
omit them for its children. It is true that we are implementing them in the children,
but as they are enforced by Customer, and thanks to abstraction, we are sure that all
classes extending from it will have to implement them, and that it is safe to do so.
Let's see how this is done:

With the last new addition, your init.php file should fail. The reason is that it
is trying to instantiate the class Customer, but now it is abstract, so you cannot.
Instantiate a concrete class, that is, one that is not abstract, to solve the problem.

Interfaces
An interface is an OOP element that groups a set of function declarations without
implementing them, that is, it specifies the name, return type, and arguments, but
not the block of code. Interfaces are different from abstract classes, since they cannot
contain any implementation at all, whereas abstract classes could mix both method
definitions and implemented ones. The purpose of interfaces is to state what a class
can do, but not how it is done.

Chapter 4

[101]

From our code, we can identify a potential usage of interfaces. Customers have an
expected behavior, but its implementation changes depending on the type of customer.
So, Customer could be an interface instead of an abstract class. But as an interface
cannot implement any function, nor can it contain properties, we will have to move the
concrete code from the Customer class to somewhere else. For now, let's move it up to
the Person class. Edit the Person class as shown:

<?php

namespace Bookstore\Domain;

class Person {

 private static $lastId = 0;
 protected $id;
 protected $firstname;
 protected $surname;
 protected $email;

 public function __construct(
 int $id,
 string $firstname,
 string $surname,
 string $email
) {
 $this->firstname = $firstname;
 $this->surname = $surname;
 $this->email = $email;

 if (empty($id)) {
 $this->id = ++self::$lastId;
 } else {
 $this->id = $id;
 if ($id > self::$lastId) {
 self::$lastId = $id;
 }
 }
 }

 public function getFirstname(): string {
 return $this->firstname;
 }
 public function getSurname(): string {
 return $this->surname;

Creating Clean Code with OOP

[102]

 }
 public static function getLastId(): int {
 return self::$lastId;
 }
 public function getId(): int {
 return $this->id;
 }
 public function getEmail(): string {
 return $this->email;
 }
}

Complicating things more than necessary
Interfaces are very useful, but there is always a place and a time for
everything. As our application is very simple due to its didactic nature,
there is no real place for them. The abstract class already defined in the
previous section is the best approach for our scenario. But just for the sake
of showing how interfaces work, we will be adapting our code to them.
Do not worry though, as most of the code that we are going to introduce
now will be replaced by better practices once we introduce databases and
the MVC pattern in Chapter 5, Using Databases, and Chapter 6, Adapting to
MVC.
When writing your own applications, do not try to complicate things
more than necessary. It is a common pattern to see very complex code
from developers that try to show up all the skills they have in a very
simple scenario. Use only the necessary tools to leave clean code that is
easy to maintain, and of course, that works as expected.

Change the content of Customer.php with the following:

<?php

namespace Bookstore\Domain;

interface Customer {
 public function getMonthlyFee(): float;
 public function getAmountToBorrow(): int;
 public function getType(): string;
}

Note that an interface is very similar to an abstract class. The differences are that it
is defined with the keyword interface, and that its methods do not have the word
abstract. Interfaces cannot be instantiated, since their methods are not implemented
as with abstract classes. The only thing you can do with them is make a class to
implement them.

Chapter 4

[103]

Implementing an interface means implementing all the methods defined in it, like
when we extended an abstract class. It has all the benefits of the extension of
abstract classes, such as belonging to that type—useful when type hinting. From the
developer's point of view, using a class that implements an interface is like writing
a contract: you ensure that your class will always have the methods declared in
the interface, regardless of the implementation. Because of that, interfaces only
care about public methods, which are the ones that other developers can use. The
only change you need to make in your code is to replace the keywords extends by
implements:

class Basic implements Customer {

So, why would someone use an interface if we could always use an abstract class that
not only enforces the implementation of methods, but also allows inheriting code as
well? The reason is that you can only extend from one class, but you can implement
multiple instances at the same time. Imagine that you had another interface that
defined payers. This could identify someone that has the ability to pay something,
regardless of what it is. Save the following code in src/Domain/Payer.php:

<?php

namespace Bookstore\Domain;

interface Payer {
 public function pay(float $amount);
 public function isExtentOfTaxes(): bool;
}

Now our basic and premium customers can implement both the interfaces. The basic
customer will look like the following:

//...
use Bookstore\Domain\Customer;
use Bookstore\Domain\Person;

class Basic extends Person implements Customer {
 public function getMonthlyFee(): float {
//...

And the premium customer will change in the same way:

//...
use Bookstore\Domain\Customer;
use Bookstore\Domain\Person;

class Premium extends Person implements Customer {
 public function getMonthlyFee(): float {
//...

Creating Clean Code with OOP

[104]

You should see that this code would no longer work. The reason is that although
we implement a second interface, the methods are not implemented. Add these two
methods to the basic customer class:

public function pay(float $amount) {
 echo "Paying $amount.";
}

public function isExtentOfTaxes(): bool {
 return false;
}

Add these two methods to the premium customer class:

public function pay(float $amount) {
 echo "Paying $amount.";
}

public function isExtentOfTaxes(): bool {
 return true;
}

If you know that all customers will have to be payers, you could even make the
Customer interface to inherit from the Payer interface:

interface Customer extends Payer {

This change does not affect the usage of our classes at all. Other developers will see
that our basic and premium customers inherit from Payer and Customer, and so
they contain all the necessary methods. That these interfaces are independent, or
they extend from each other is something that will not affect too much.

Interfaces can only extend from other interfaces, and classes can only extend from
other classes. The only way to mix them is when a class implements an interface, but
neither does a class extend from an interface, nor does an interface extend from a
class. But from the point of view of type hinting, they can be used interchangeably.

To summarize this section and make things clear, let's show what the hierarchic tree
looks like after all the new additions. As in abstract classes, the methods declared
in an interface are shown in the interface rather than in each of the classes that
implement it.

Chapter 4

[105]

Polymorphism
Polymorphism is an OOP feature that allows us to work with different classes
that implement the same interface. It is one of the beauties of object-oriented
programming. It allows the developer to create a complex system of classes and
hierarchic trees, but offers a simple way of working with them.

Imagine that we have a function that, given a payer, checks whether it is exempt of
taxes or not, and makes it pay some amount of money. This piece of code does not
really mind if the payer is a customer, a librarian, or someone who has nothing to do
with the bookstore. The only thing that it cares about is that the payer has the ability
to pay. The function could be as follows:

function processPayment(Payer $payer, float $amount) {
 if ($payer->isExtentOfTaxes()) {
 echo "What a lucky one...";
 } else {
 $amount *= 1.16;
 }
 $payer->pay($amount);
}

Creating Clean Code with OOP

[106]

You could send basic or premium customers to this function, and the behavior will
be different. But, as both implement the Payer interface, both objects provided are
valid types, and both are capable of performing the actions needed.

The checkIfValid function takes a customer and a list of books. We already saw
that sending any kind of customer makes the function work as expected. But what
happens if we send an object of the class Librarian, which extends from Payer?
As Payer does not know about Customer (it is rather the other way around), the
function will complain as the type hinting is not accomplished.

One useful feature that comes with PHP is the ability to check whether an object is
an instance of a specific class or interface. The way to use it is to specify the variable
followed by the keyword instanceof and the name of the class or interface.
It returns a Boolean, which is true if the object is from a class that extends or
implements the specified one, or false otherwise. Let's see some examples:

$basic = new Basic(1, "name", "surname", "email");
$premium = new Premium(2, "name", "surname", "email");
var_dump($basic instanceof Basic); // true
var_dump($basic instanceof Premium); // false
var_dump($premium instanceof Basic); // false
var_dump($premium instanceof Premium); // true
var_dump($basic instanceof Customer); // true
var_dump($basic instanceof Person); // true
var_dump($basic instanceof Payer); // true

Remember to add all the use statements for each of the class or interface, otherwise
PHP will understand that the specified class name is inside the namespace of the file.

Traits
So far, you have learned that extending from classes allows you to inherit code
(properties and method implementations), but it has the limitation of extending only
from one class each time. On the other hand, you can use interfaces to implement
multiple behaviors from the same class, but you cannot inherit code in this way. To
fill this gap, that is, to be able to inherit code from multiple places, you have traits.

Traits are mechanisms that allow you to reuse code, "inheriting", or rather
copy-pasting code, from multiple sources at the same time. Traits, as abstract classes
or interfaces, cannot be instantiated; they are just containers of functionality that can
be used from other classes.

Chapter 4

[107]

If you remember, we have some code in the Person class that manages the
assignment of IDs. This code is not really part of a person, but rather part of an
ID system that could be used by some other entity that has to be identified with IDs
too. One way to extract this functionality from Person—and we are not saying that
it is the best way to do so, but for the sake of seeing traits in action, we choose this
one—is to move it to a trait.

To define a trait, do as if you were defining a class, just use the keyword trait
instead of class. Define its namespace, add the use statements needed, declare its
properties and implement its methods, and place everything in a file that follows the
same conventions. Add the following code to the src/Utils/Unique.php file:

<?php

namespace Bookstore\Utils;

trait Unique {
 private static $lastId = 0;
 protected $id;

 public function setId(int $id) {
 if (empty($id)) {
 $this->id = ++self::$lastId;
 } else {
 $this->id = $id;
 if ($id > self::$lastId) {
 self::$lastId = $id;
 }
 }
 }

 public static function getLastId(): int {
 return self::$lastId;
 }
 public function getId(): int {
 return $this->id;
 }
}

Observe that the namespace is not the same as usual, since we are storing this code in
a different file. This is a matter of conventions, but you are entirely free to use the file
structure that you consider better for each case. In this case, we do not think that this
trait represents "business logic" like customers and books do; instead, it represents a
utility for managing the assignment of IDs.

Creating Clean Code with OOP

[108]

We include all the code related to IDs from Person. That includes the properties,
the getters, and the code inside the constructor. As the trait cannot be instantiated,
we cannot add a constructor. Instead, we added a setId method that contains the
code. When constructing a new instance that uses this trait, we can invoke this setId
method to set the ID based on what the user sends as an argument.

The class Person will have to change too. We have to remove all references to IDs
and we will have to define somehow that the class is using the trait. To do that, we
use the keyword use, like in namespaces, but inside the class. Let's see what it would
look like:

<?php

namespace Bookstore\Domain;

use Bookstore\Utils\Unique;

class Person {
 use Unique;

 protected $firstname;
 protected $surname;
 protected $email;

 public function __construct(
 int $id,
 string $firstname,
 string $surname,
 string $email
) {
 $this->firstname = $firstname;
 $this->surname = $surname;
 $this->email = $email;
 $this->setId($id);
 }

 public function getFirstname(): string {
 return $this->firstname;
 }
 public function getSurname(): string {
 return $this->surname;
 }
 public function getEmail(): string {
 return $this->email;

Chapter 4

[109]

 }
 public function setEmail(string $email) {
 $this->email = $email;
 }
}

We add the use Unique; statement to let the class know that it is using the trait. We
remove everything related to IDs, even inside the constructor. We still get an ID as the
first argument of the constructor, but we ask the method setId from the trait to do
everything for us. Note that we refer to that method with $this, as if the method was
inside the class. The updated hierarchic tree would look like the following (note that
we are not adding all the methods for all the classes or interfaces that are not involved
in the recent changes in order to keep the diagram as small and readable as possible):

Let's see how it works, even though it does so in the way that you probably expect.
Add this code into your init.php file, include the necessary use statements, and
execute it in your browser:

$basic1 = new Basic(1, "name", "surname", "email");
$basic2 = new Basic(null, "name", "surname", "email");
var_dump($basic1->getId()); // 1
var_dump($basic2->getId()); // 2

Creating Clean Code with OOP

[110]

The preceding code instantiates two customers. The first of them has a specific ID,
whereas the second one lets the system choose an ID for it. The result is that the
second basic customer has the ID 2. That is to be expected, as both customers are
basic. But what would happen if the customers are of different types?

$basic = new Basic(1, "name", "surname", "email");
$premium = new Premium(null, "name", "surname", "email");
var_dump($basic->getId()); // 1
var_dump($premium->getId()); // 2

The IDs are still the same. That is to be expected, as the trait is included in the
Person class, so the static property $lastId will be shared across all the instances of
the class Person, including Basic and Premium customers. If you used the trait from
Basic and Premium customer instead of Person (but you should not), you would
have the following result:

var_dump($basic->getId()); // 1
var_dump($premium->getId()); // 1

Each class will have its own static property. All Basic instances will share the same
$lastId, different from the $lastId of Premium instances. This should make clear
that the static members in traits are linked to whichever class uses them, rather than
the trait itself. That could also be reflected on testing the following code which uses
our original scenario where the trait is used from Person:

$basic = new Basic(1, "name", "surname", "email");

$premium = new Premium(null, "name", "surname", "email");

var_dump(Person::getLastId()); // 2

var_dump(Unique::getLastId()); // 0

var_dump(Basic::getLastId()); // 2

var_dump(Premium::getLastId()); // 2

If you have a good eye for problems, you might start thinking about some potential
issues around the usage of traits. What happens if we use two traits that contain
the same method? Or what happens if you use a trait that contains a method that is
already implemented in that class?

Ideally, you should avoid running into these kinds of situations; they are warning
lights for possible bad design. But as there will always be extraordinary cases, let's
see some isolated examples on how they would behave.

Chapter 4

[111]

The scenario where the trait and the class implement the same method is easy.
The method implemented explicitly in the class is the one with more precedence,
followed by the method implemented in the trait, and finally, the method inherited
from the parent class. Let's see how it works. Take for example the following trait
and class definitions:

<?php

trait Contract {
 public function sign() {
 echo "Signing the contract.";
 }
}

class Manager {
 use Contract;

 public function sign() {
 echo "Signing a new player.";
 }
}

Both implement the sign method, which means that we have to apply the precedence
rules defined previously. The method defined in the class takes precedence over the
one from the trait, so in this case, the executed method will be the one from the class:

$manager = new Manager();
$manager->sign(); // Signing a new player.

The most complicated scenario would be one where a class uses two traits with the
same method. There are no rules that solve the conflict automatically, so you have to
solve it explicitly. Check the following code:

<?php

trait Contract {
 public function sign() {
 echo "Signing the contract.";
 }
}

trait Communicator {
 public function sign() {
 echo "Signing to the waitress.";
 }

Creating Clean Code with OOP

[112]

}

class Manager {
 use Contract, Communicator;
}

$manager = new Manager();
$manager->sign();

The preceding code throws a fatal error, as both traits implement the same method.
To choose the one you want to use, you have to use the operator insteadof. To use
it, state the trait name and the method that you want to use, followed by insteadof
and the trait that you are rejecting for use. Optionally, use the keyword as to add an
alias like we did with namespaces so that you can use both the methods:

class Manager {
 use Contract, Communicator {
 Contract::sign insteadof Communicator;
 Communicator::sign as makeASign;
 }
}

$manager = new Manager();
$manager->sign(); // Signing the contract.
$manager->makeASign(); // Signing to the waitress.

You can see how we decided to use the method of Contract instead of
Communicator, but added the alias so that both methods are available. Hopefully,
you can see that even the conflicts can be solved, and there are specific cases where
there is nothing to do but deal with them; in general, they look like a bad sign—no
pun intended.

Handling exceptions
It does not matter how easy and intuitive your application is designed to be, there
will be bad usage from the user or just random errors of connectivity, and your
code has to be ready to handle these scenarios so that the user experience is a good
as possible. We call these scenarios exceptions: an element of the language that
identifies a case that is not as we expected.

Chapter 4

[113]

The try…catch block
Your code can throw exceptions manually whenever you think it necessary. For
example, take the setId method from the Unique trait. Thanks to type hinting, we
are enforcing the ID to be a numeric one, but that is as far as it goes. What would
happen if someone tries to set an ID that is a negative number? The code right now
allows it to go through, but depending on your preferences, you would like to avoid
it. That would be a good place for an exception to happen. Let's see how we would
add this check and consequent exception:

public function setId($id) {
 if ($id < 0) {
 throw new \Exception('Id cannot be negative.');
 }
 if (empty($id)) {
 $this->id = ++self::$lastId;
 } else {
 $this->id = $id;
 if ($id > self::$lastId) {
 self::$lastId = $id;
 }
 }
}

As you can see, exceptions are objects of the class exception. Remember adding
the backslash to the name of the class, unless you want to include it with use
Exception; at the top of the file. The constructor of the Exception class takes
some optional arguments, the first one of them being the message of the exception.
Instances of the class Exception do nothing by themselves; they have to be thrown
in order to be noticed by the program.

Let's try forcing our program to throw this exception. In order to do that, let's try to
create a customer with a negative ID. In your init.php file, add the following:

$basic = new Basic(-1, "name", "surname", "email");

If you try it now in your browser, PHP will throw a fatal error saying that there was
an uncaught exception, which is the expected behavior. For PHP, an exception is
something from what it cannot recover, so it will stop execution. That is far from ideal,
as you would like to just display an error message to the user, and let them try again.

Creating Clean Code with OOP

[114]

You can—and should—capture exceptions using the try…catch blocks. You insert
the code that might throw an exception in the try block and if an exception happens,
PHP will jump to the catch block. Let's see how it works:

public function setId(int $id) {
 try {
 if ($id < 0) {
 throw new Exception('Id cannot be negative.');
 }
 if (empty($id)) {
 $this->id = ++self::$lastId;
 } else {
 $this->id = $id;
 if ($id > self::$lastId) {
 self::$lastId = $id;
 }
 }
 } catch (Exception $e) {
 echo $e->getMessage();
 }
}

If we test the last code snippet in our browser, we will see the message printed from
the catch block. Calling the getMessage method on an exception instance will give
us the message—the first argument when creating the object. But remember that
the argument of the constructor is optional; so, do not rely on the message of the
exception too much if you are not sure how it is generated, as it might be empty.

Note that after the exception is thrown, nothing else inside the try block is executed;
PHP goes straight to the catch block. Additionally, the block gets an argument,
which is the exception thrown. Here, type hinting is mandatory—you will see why
very soon. Naming the argument as $e is a widely used convention, even though it is
not a good practice to use poor descriptive names for variables.

Being a bit critical, so far, there is not any real advantage to be seen in using
exceptions in this example. A simple if…else block would do exactly the same job,
right? But the real power of exceptions lies in the ability to be propagated across
methods. That is, the exception thrown on the setId method, if not captured, will
be propagated to wherever the method was invoked, allowing us to capture it there.
This is very useful, as different places in the code might want to handle the exception
in a different way. To see how this is done, let's remove the try…catch inserted in
setId, and place the following piece of code in your init.php file, instead:

try {
 $basic = new Basic(-1, "name", "surname", "email");
} catch (Exception $e) {

Chapter 4

[115]

 echo 'Something happened when creating the basic customer: '
 . $e->getMessage();
}

The preceding example shows how useful it is to catch propagated exceptions: we
can be more specific of what happens, as we know what the user was trying to do
when the exception was thrown. In this case, we know that we were trying to create
the customer, but this exception might have been thrown when trying to update the
ID of an existing customer, which would need a different error message.

The finally block
There is a third block that you can use when dealing with exceptions: the finally
block. This block is added after the try…catch one, and it is optional. In fact, the
catch block is optional too; the restriction is that a try must be followed by at least
one of them. So you could have these three scenarios:

// scenario 1: the whole try-catch-finally
try {
 // code that might throw an exception
} catch (Exception $e) {
 // code that deals with the exception
} finally {
 // finally block
}

// scenario 2: try-finally without catch
try {
 // code that might throw an exception
} finally {
 // finally block
}

// scenario 3: try-catch without finally
try {
 // code that might throw an exception
} catch (Exception $e) {
 // code that deals with the exception
}

Creating Clean Code with OOP

[116]

The code inside the finally block is executed when either the try or the catch
blocks are executed completely. So, if we have a scenario where there is no exception,
after all the code inside the try block is executed, PHP will execute the code inside
finally. On the other hand, if there is an exception thrown inside the try block,
PHP will jump to the catch block, and after executing everything there, it will
execute the finally block too.

In order to test this functionality, let's implement a function that contains a try…
catch…finally block, trying to create a customer with a given ID (through an
argument), and logging all the actions that take place. You can add the following
code snippet into your init.php file:

function createBasicCustomer($id)
{
 try {
 echo "\nTrying to create a new customer.\n";
 return new Basic($id, "name", "surname", "email");
 } catch (Exception $e) {
 echo "Something happened when creating the basic customer: "
 . $e->getMessage() . "\n";
 } finally {
 echo "End of function.\n";
 }
}

createBasicCustomer(1);
createBasicCustomer(-1);

If you try this, your browser will show you the following output—remember to
display the source code of the page to see it formatted prettily:

The result might not be the one you expected. The first time we invoke the function,
we are able to create the object without an issue, and that means we execute the
return statement. In a normal function, this should be the end of it, but since we are
inside the try…catch…finally block, we still need to execute the finally code! The
second example looks more intuitive, jumping from the try to the catch, and then to
the finally block.

Chapter 4

[117]

The finally block is very useful when dealing with expensive resources like
database connections. In Chapter 5, Using Databases, you will see how to use them.
Depending on the type of connection, you will have to close it after use for allowing
other users to connect. The finally block is used for closing those connections,
regardless of whether the function throws an exception or not.

Catching different types of exceptions
Exceptions have already been proven useful, but there is still one important feature
to show: catching different types of exceptions. As you already know, exceptions are
instances of the class Exception, and as with any other class, they can be extended.
The main goal of extending from this class is to create different types of exceptions,
but we will not add any logic inside—even though you can, of course. Let's create a
class that extends from Exception, and which identifies exceptions related to invalid
IDs. Put this code inside the src/Exceptions/InvalidIdException.php file:

<?php

namespace Bookstore\Exceptions;

use Exception;

class InvalidIdException extends Exception {
 public function __construct($message = null) {
 $message = $message ?: 'Invalid id provided.';
 parent::__construct($message);
 }
}

The InvalidIdException class extends from the class Exception, and so it can be
thrown as one. The constructor of the class takes an optional argument, $message.
The following two lines inside it contain interesting code:

• The ?: operator is a shorter version of a conditional, and works like this: the
expression on the left is returned if it does not evaluate to false, otherwise,
the expression on the right will be returned. What we want here is to use the
message given by the user, or a default one in case the user does not provide
any. For more information and usages, you can visit the PHP documentation
at http://php.net/manual/en/language.operators.comparison.php.

http://php.net/manual/en/language.operators.comparison.php

Creating Clean Code with OOP

[118]

• parent::__construct will invoke the parent's constructor, that is, the
constructor of the class Exception. As you already know, this constructor gets
the message of the exception as the first argument. You could argue that, as
we are extending from the Exception class, we do not really need to call any
functions, as we can edit the properties of the class straightaway. The reason
for avoiding this is to let the parent class manage its own properties. Imagine
that, for some reason, in a future version of PHP, Exception changes the
name of the property for the message. If you modify it directly, you will have
to change that in your code, but if you use the constructor, you have nothing
to fear. Internal implementations are more likely to change than external
interfaces.

We can use this new exception instead of the generic one. Replace it in your Unique
trait as follows:

throw new InvalidIdException('Id cannot be a negative number.');

You can see that we are still sending a message: that is because we want to be even
more specific. But the exception would work as well without one. Try your code
again, and you will see that nothing changes.

Now imagine that we have a very small database and we cannot allow more than
50 users. We can create a new exception that identifies this case, let's say, as src/
Exceptions/ExceededMaxAllowedException.php:

<?php

namespace Bookstore\Exceptions;

use Exception;

class ExceededMaxAllowedException extends Exception {
 public function __construct($message = null) {
 $message = $message ?: 'Exceeded max allowed.';
 parent::__construct($message);
 }
}

Let's modify our trait in order to check for this case. When setting an ID, if this ID is
greater than 50, we can assume that we've reached the maximum number of users:

public function setId(int $id) {
 if ($id < 0) {
 throw new InvalidIdException(
 'Id cannot be a negative number.'
);

Chapter 4

[119]

 }
 if (empty($id)) {
 $this->id = ++self::$lastId;
 } else {
 $this->id = $id;
 if ($id > self::$lastId) {
 self::$lastId = $id;
 }
 }
 if ($this->id > 50) {
 throw new ExceededMaxAllowedException(
 'Max number of users is 50.'
);
 }
 }

Now the preceding function throws two different exceptions: InvalidIdException
and ExceededMaxAllowedException. When catching them, you might want to
behave in a different way depending on the type of exception caught. Remember
how you have to declare an argument in your catch block? Well, you can add as
many catch blocks as needed, specifying a different exception class in each of them.
The code could look like this:

function createBasicCustomer(int $id)
{
 try {
 echo "\nTrying to create a new customer with id $id.\n";
 return new Basic($id, "name", "surname", "email");
 } catch (InvalidIdException $e) {
 echo "You cannot provide a negative id.\n";
 } catch (ExceededMaxAllowedException $e) {
 echo "No more customers are allowed.\n";
 } catch (Exception $e) {
 echo "Unknown exception: " . $e->getMessage();
 }
}

createBasicCustomer(1);
createBasicCustomer(-1);
createBasicCustomer(55);

Creating Clean Code with OOP

[120]

If you try this code, you should see the following output:

Note that we catch three exceptions here: our two new exceptions and the generic
one. The reason for doing this is that it might happen that some other piece of code
throws an exception of a different type than the ones we defined, and we need to
define a catch block with the generic Exception class to get it, as all exceptions
will extend from it. Of course, this is absolutely optional, and if you do not do it, the
exception will be just propagated.

Bear in mind the order of the catch blocks. PHP tries to use the catch blocks in the
order that you defined them. So, if your first catch is for Exception, the rest of the
blocks will be never executed, as all exceptions extend from that class. Try it with the
following code:

try {
 echo "\nTrying to create a new customer with id $id.\n";
 return new Basic($id, "name", "surname", "email");
} catch (Exception $e) {
 echo 'Unknown exception: ' . $e->getMessage() . "\n";
} catch (InvalidIdException $e) {
 echo "You cannot provide a negative id.\n";
} catch (ExceededMaxAllowedException $e) {
 echo "No more customers are allowed.\n";
}

The result that you get from the browser will always be from the first catch:

Chapter 4

[121]

Design patterns
Developers have been creating code since way before the appearance of with
Internet, and they have been working on a number of different areas, not just web
applications. Because of that, a lot of people have already had to confront similar
scenarios, carrying the experience of previous attempts for fixing the same thing.
In short, it means that almost surely, someone has already designed a good way of
solving the problem that you are facing now.

A lot of books have been written trying to group solutions to common problems,
also known as design patterns. Design patterns are not algorithms that you copy
and paste into your program, showing how to fix something step-by-step, but rather
recipes that show you, in a heuristic way, how to look for the answer.

Studying them is essential if you want to become a professional developer, not only
for solving problems, but also for communicating with other developers. It is very
common to get an answer like "You could use a factory here", when discussing
your program design. It saves a lot of time knowing what a factory is, rather than
explaining the pattern each time someone mentions it.

As we said, there are entire books that talk about design patterns, and we highly
recommend you to have a look at some of them. The goal of this section is to show
you what a design pattern is and how you can use it. Additionally, we will show
you some of the most common design patterns used with PHP when writing web
applications, excluding the MVC pattern, which we will study in Chapter 6, Adapting
to MVC.

Other than books, you could also visit the open source project DesignPatternsPHP at
http://designpatternsphp.readthedocs.org/en/latest/README.html. There
is a good collection of them, and they are implemented in PHP, so it would be easier
for you to adapt.

Factory
A factory is a design pattern of the creational group, which means that it allows
you to create objects. You might think that we do not need such a thing, as creating
an object is as easy as using the new keyword, the class, and its arguments. But
letting the user do that is dangerous for different reasons. Apart from the increased
difficulty caused by using new when unit testing our code (you will learn about unit
testing in Chapter 7, Testing Web Applications), a lot of coupling too gets added into
our code.

http://designpatternsphp.readthedocs.org/en/latest/README.html

Creating Clean Code with OOP

[122]

When we discussed encapsulation, you learned that it is better to hide the internal
implementation of a class, and you could consider the constructor as part of it. The
reason is that the user needs to know at all times how to create objects, including
what the arguments of the constructor are. And what if we want to change our
constructor to accept different arguments? We need to go one by one to all the places
where we have created objects and update them.

Another reason for using factories is to manage different classes that inherit a super
class or implement the same interface. As you know, thanks to polymorphism, you
can use one object without knowing the specific class that it instantiates, as long as
you know the interface being implemented. It might so happen that your code needs
to instantiate an object that implements an interface and use it, but the concrete class
of the object may not be important at all.

Think about our bookstore example. We have two types of customers: basic and
premium. But for most of the code, we do not really care what type of customer
a specific instance is. In fact, we should implement our code to use objects that
implement the Customer interface, being unaware of the specific type. So, if
we decide in the future to add a new type, as long as it implements the correct
interface, our code will work without an issue. But, if that is the case, what do we
do when we need to create a new customer? We cannot instantiate an interface, so
let's use the factory pattern. Add the following code into src/Domain/Customer/
CustomerFactory.php:

<?php

namespace Bookstore\Domain\Customer;

use Bookstore\Domain\Customer;

class CustomerFactory {
 public static function factory(
 string $type,
 int $id,
 string $firstname,
 string $surname,
 string $email
): Customer {
 switch ($type) {
 case 'basic':
 return new Basic($id, $firstname, $surname, $email);
 case 'premium':
 return new Premium($id, $firstname, $surname, $email);
 }
 }
}

Chapter 4

[123]

The factory in the preceding code is less than ideal for different reasons. In the first
one, we use a switch, and add a case for all the existing customer types. Two types
do not make much difference, but what if we have 19? Let's try to make this factory
method a bit more dynamic.

public static function factory(
 string $type,
 int $id,
 string $firstname,
 string $surname,
 string $email
): Customer {
 $classname = __NAMESPACE__ . '\\' . ucfirst($type);
 if (!class_exists($classname)) {
 throw new \InvalidArgumentException('Wrong type.');
 }
 return new $classname($id, $firstname, $surname, $email);
}

Yes, you can do what we did in the preceding code in PHP. Instantiating classes
dynamically, that is, using the content of a variable as the name of the class, is one of
the things that makes PHP so flexible… and dangerous. Used wrongly, it will make
your code horribly difficult to read and maintain, so be careful about it. Note too the
constant __NAMESPACE__, which contains the namespace of the current file.

Now this factory looks cleaner, and it is also very dynamic. You could add more
customer types and, as long as they are inside the correct namespace and implement
the interface, there is nothing to change on the factory side, nor in the usage of
the factory.

In order to use it, let's change our init.php file. You can remove all our tests,
and just leave the autoloader code. Then, add the following:

CustomerFactory::factory('basic', 2, 'mary', 'poppins', 'mary@poppins.
com');
CustomerFactory::factory('premium', null, 'james', 'bond', 'james@
bond.com');

The factory design pattern can be as complex as you need. There are different
variants of it, and each one has its own place and time, but the general idea is
always the same.

Creating Clean Code with OOP

[124]

Singleton
If someone with a bit of experience with design patterns, or web development in
general, reads the title of this section, they will probably start tearing their hair out
and claiming that singleton is the worst example of a design pattern. But just bear
with me.

When explaining interfaces, I added a note about how developers tend to complicate
their code too much just so they can use all the tools they know. Using design
patterns is one of the cases where this happens. They have been so famous, and
people claimed that good use of them is directly linked to great developers, that
everybody that learns them tries to use them absolutely everywhere.

The singleton pattern is probably the most infamous of the design patterns used
in PHP for web development. This pattern has a very specific purpose, and when
that is the case, the pattern proves to be very useful. But this pattern is so easy to
implement that developers continuously try to add singletons everywhere, turning
their code into something unmaintainable. It is for this reason that people call this
an anti-pattern, something that should be avoided rather than used.

I do agree with this point of view, but I still think that you should be very familiar
with this design pattern. Even though you should avoid its overuse, people still use
it everywhere, and they refer to it countless times, so you should be in a position to
either agree with them or rather have enough reasons to discourage them to use it.
Having said that, let's see what the aim of the singleton pattern is.

The idea is simple: singletons are used when you want one class to always have one
unique instance. Every time, and everywhere you use that class, it has to be through
the same instance. The reason is to avoid having too many instances of some heavy
resource, or to keep always the same state everywhere—to be global. Examples of
this are database connections or configuration handlers.

Imagine that in order to run, our application needs some configuration, such as
credentials for the database, URLs of special endpoints, directory paths for finding
libraries or important files, and so on. When you receive a request, the first thing you
do is to load this configuration from the filesystem, and then you store it as an array
or some other data structure. Save the following code as your src/Utils/Config.
php file:

<?php

namespace Bookstore\Utils;

use Bookstore\Exceptions\NotFoundException;

Chapter 4

[125]

class Config {
 private $data;

 public function __construct() {
 $json = file_get_contents(__DIR__ . '/../../config/app.json');
 $this->data = json_decode($json, true);
 }

 public function get($key) {
 if (!isset($this->data[$key])) {
 throw new NotFoundException("Key $key not in config.");
 }
 return $this->data[$key];
 }
}

As you can see, this class uses a new exception. Create it under src/Utils/
NotFoundException.php:

<?php

namespace Bookstore\Exceptions;

use Exception;

class NotFoundException extends Exception {
}

Also, the class reads a file, config/app.json. You could add the following JSON
map inside it:

{
 "db": {
 "user": "Luke",
 "password": "Skywalker"
 }
}

In order to use this configuration, let's add the following code into your
init.php file.

$config = new Config();
$dbConfig = $config->get('db');
var_dump($dbConfig);

Creating Clean Code with OOP

[126]

That seems a very good way to read configuration, right? But pay attention to the
highlighted line. We instantiate the Config object, hence, we read a file, transform
its contents from JSON to array, and store it. What if the file contains hundreds
of lines instead of just six? You should notice then that instantiating this class is
very expensive.

You do not want to read the files and transform them into arrays each time you ask
for some data from your configuration. That is way too expensive! But, for sure, you
will need the configuration array in very different places of your code, and you cannot
carry this array everywhere you go. If you understood static properties and methods,
you could argue that implementing a static array inside the object should fix the
problem. You instantiate it once, and then just call a static method that will access an
already populated static property. Theoretically, we skip the instantiation, right?

<?php

namespace Bookstore\Utils;

use Bookstore\Exceptions\NotFoundException;

class Config {
 private static $data;

 public function __construct() {
 $json = file_get_contents(__DIR__ . '/../config/app.json');
 self::$data = json_decode($json, true);
 }

 public static function get($key) {
 if (!isset(self::$data[$key])) {
 throw new NotFoundException("Key $key not in config.");
 }
 return self::$data[$key];
 }
}

This seems to be a good idea, but it is highly dangerous. How can you be absolutely
sure that the array has already been populated? And how can you be sure that, even
using a static context, the user will not keep instantiating this class again and again?
That is where singletons come in handy.

Chapter 4

[127]

Implementing a singleton implies the following points:

1. Make the constructor of the class private, so absolutely no one from outside
the class can ever instantiate that class.

2. Create a static property named $instance, which will contain an instance of
itself—that is, in our Config class, the $instance property will contain an
instance of the class Config.

3. Create a static method, getInstance, which will check if $instance is null,
and if it is, it will create a new instance using the private constructor. Either
way, it will return the $instance property.

Let's see what the singleton class would look like:

<?php

namespace Bookstore\Utils;

use Bookstore\Exceptions\NotFoundException;

class Config {
 private $data;
 private static $instance;

 private function __construct() {
 $json = file_get_contents(__DIR__ . '/../config/app.json');
 $this->data = json_decode($json, true);
 }

 public static function getInstance(){
 if (self::$instance == null) {
 self::$instance = new Config();
 }
 return self::$instance;
 }

 public function get($key) {
 if (!isset($this->data[$key])) {
 throw new NotFoundException("Key $key not in config.");
 }
 return $this->data[$key];
 }
}

Creating Clean Code with OOP

[128]

If you run this code right now, it will throw you an error, as the constructor of this
class is private. First achievement unlocked! Let's use this class properly:

$config = Config::getInstance();
$dbConfig = $config->get('db');
var_dump($dbConfig);

Does it convince you? It proves to be very handy indeed. But I cannot emphasize this
enough: be careful when you use this design pattern, as it has very, very, specific use
cases. Avoid falling into the trap of implementing it everywhere!

Anonymous functions
Anonymous functions, or lambda functions, are functions without a name. As they
do not have a name, in order to be able to invoke them, we need to store them as
variables. It might be strange at the beginning, but the idea is quite simple. At this
point of time, we do not really need any anonymous function, so let's just add the
code into init.php, and then remove it:

$addTaxes = function (array &$book, $index, $percentage) {
 $book['price'] += round($percentage * $book['price'], 2);
};

This preceding anonymous function gets assigned to the variable $addTaxes. It
expects three arguments: $book (an array as a reference), $index (not used), and
$percentage. The function adds taxes to the price key of the book, rounded to 2
decimal places (round is a native PHP function). Do not mind the argument $index,
it is not used in this function, but forced by how we will use it, as you will see.

You could instantiate a list of books as an array, iterate them, and then call this
function each time. An example could be as follows:

$books = [
 ['title' => '1984', 'price' => 8.15],
 ['title' => 'Don Quijote', 'price' => 12.00],
 ['title' => 'Odyssey', 'price' => 3.55]
];
foreach ($books as $index => $book) {
 $addTaxes($book, $index, 0.16);
}
var_dump($books);

Chapter 4

[129]

In order to use the function, you just invoke it as if $addTaxes contained the name
of the function to be invoked. The rest of the function works as if it was a normal
function: it receives arguments, it can return a value, and it has a scope. What is
the benefit of defining it in this way? One possible application would be to use it as
a callable. A callable is a variable type that identifies a function that PHP can call.
You send this callable variable as an argument, and the function that receives it can
invoke it. Take the PHP native function, array_walk. It gets an array, a callable, and
some extra arguments. PHP will iterate the array, and for each element, it will invoke
the callable function (just like the foreach loop). So, you can replace the whole loop
by just the following:

array_walk($books, $addTaxes, 0.16);

The callable that array_walk receives needs to take at least two arguments: the value
and the index of the current element of the array, and thus, the $index argument
that we were forced to implement previously. It can optionally take extra arguments,
which will be the extra arguments sent to array_walk—in this case, the 0.16 as
$percentage.

Actually, anonymous functions are not the only callable in PHP. You can send
normal functions and even class methods. Let's see how:

function addTaxes(array &$book, $index, $percentage) {
 if (isset($book['price'])) {
 $book['price'] += round($percentage * $book['price'], 2);
 }
}

class Taxes {
 public static function add(array &$book, $index, $percentage)
 {
 if (isset($book['price'])) {
 $book['price'] += round($percentage * $book['price'], 2);
 }
 }
 public function addTaxes(array &$book, $index, $percentage)
 {
 if (isset($book['price'])) {
 $book['price'] += round($percentage * $book['price'], 2);
 }
 }
}

// using normal function
array_walk($books, 'addTaxes', 0.16);

Creating Clean Code with OOP

[130]

var_dump($books);

// using static class method
array_walk($books, ['Taxes', 'add'], 0.16);
var_dump($books);

// using class method
array_walk($books, [new Taxes(), 'addTaxes'], 0.16);
var_dump($books);

In the preceding example, you can see how we can use each case as a callable. For
normal methods, just send the name of the method as a string. For static methods
of a class, send an array with the name of the class in a way that PHP understands
(either the full name including namespace, or adding the use keyword beforehand),
and the name of the method, both as strings. To use a normal method of a class, you
need to send an array with an instance of that class and the method name as a string.

OK, so anonymous functions can be used as callable, just as any other function or
method can. So what is so special about them? One of the things is that anonymous
functions are variables, and so they have all the advantages—or disadvantages—that
a variable has. That includes scope—that is, the function is defined inside a scope,
and as soon as this scope ends, the function will no longer be accessible. That can be
useful if your function is extremely specific to that bit of code, and there is no way
you will want to reuse it somewhere else. Moreover, as it is nameless, you will not
have conflicts with any other existing function.

There is another benefit in using anonymous functions: inheriting variables from
the parent scope. When you define an anonymous function, you can specify some
variable from the scope where it is defined with the keyword use, and use it inside
the function. The value of the variable will be the one it had at the moment of
declaring the function, even if it is updated later. Let's see an example:

$percentage = 0.16;
$addTaxes = function (array &$book, $index) use ($percentage) {
 if (isset($book['price'])) {
 $book['price'] += round($percentage * $book['price'], 2);
 }
};
$percentage = 100000;
array_walk($books, $addTaxes);
var_dump($books);

Chapter 4

[131]

The preceding example shows you how to use the keyword use. Even when we
update $percentage after defining the function, the result shows you that the taxes
were only 16%. This is useful, as it liberates you from having to send $percentage
everywhere you want to use the function $addTaxes. If there is a scenario where you
really need to have the updated value of the used variables, you can declare them as
a reference as you would with a normal function's argument:

$percentage = 0.16;
$addTaxes = function (array &$book, $index) use (&$percentage) {
 if (isset($book['price'])) {
 $book['price'] += round($percentage * $book['price'], 2);
 }
};

array_walk($books, $addTaxes, 0.16);
var_dump($books);

$percentage = 100000;
array_walk($books, $addTaxes, 0.16);
var_dump($books);

In this last example, the first array_walk used the original value 0.16, as that was
still the value of the variable. But on the second call, $percentage had already
changed, and it affected the result of the anonymous function.

Summary
In this chapter, you have learned what object-oriented programming is, and how to
apply it to our web application for creating a clean code, which is easy to maintain.
You also know how to manage exceptions properly, the design patterns that are used
the most, and how to use anonymous functions when necessary.

In the next chapter, we will explain how to manage the data of your application
using databases so that you can completely separate data from code.

[133]

Using Databases
Data is probably the cornerstone of most web applications. Sure, your application
has to be pretty, fast, error-free, and so on, but if something is essential to users,
it is what data you can manage for them. From this, we can extract that managing
data is one of the most important things you have to consider when designing
your application.

Managing data implies not only storing read-only files and reading them when
needed, as we were doing so far, but also adding, fetching, updating, and removing
individual pieces of information. For this, we need a tool that categorizes our data
and makes these tasks easier for us, and this is when databases come into play.

In this chapter, you will learn about:

• Schemas and tables
• Manipulating and querying data
• Using PDO to connect your database with PHP
• Indexing your data
• Constructing complex queries in joining tables

Introducing databases
Databases are tools to manage data. The basic functions of a database are inserting,
searching, updating, and deleting data, even though most database systems do more
than this. Databases are classified into two different categories depending on how
they store data: relational and nonrelational databases.

Using Databases

[134]

Relational databases structure data in a very detailed way, forcing the user to use a
defined format and allowing the creation of connections—that is, relations—between
different pieces of information. Nonrelational databases are systems that store data
in a more relaxed way, as though there were no apparent structure. Even though
with these very vague definitions you could assume that everybody would like to
use relational databases, both systems are very useful; it just depends on how you
want to use them.

In this book, we will focus on relational databases as they are widely used in small
web applications, in which there are not huge amounts of data. The reason is that
usually the application contains data that is interrelated; for example, our application
could store sales, which are composed of customers and books.

MySQL
MySQL has been the favorite choice of PHP developers for quite a long time. It is a
relational database system that uses SQL as the language to communicate with the
system. SQL is used in quite a few other systems, which makes things easier in case
you need to switch databases or just need to understand an application with a different
database than the one you are used to. The rest of the chapter will be focused on
MySQL, but it will be helpful for you even if you choose a different SQL system.

In order to use MySQL, you need to install two applications: the server and the client.
You might remember server-client applications from Chapter 2, Web Applications with
PHP. The MySQL server is a program that listens for instructions or queries from
clients, executes them, and returns a result. You need to start the server in order to
access the database; take a look at Chapter 1, Setting Up the Environment, on how to do
this. The client is an application that allows you to construct instructions and send
them to the server, and it is the one that you will use.

GUI versus command line
The Graphical User Interface (GUI) is very common when using a
database. It helps you in constructing instructions, and you can even
manage data without them using just visual tables. On the other hand,
command-line clients force you to write all the commands by hand, but
they are lighter than GUIs, faster to start, and force you to remember how
to write SQL, which you need when you write your applications in PHP.
Also, in general, almost any machine with a database will have a MySQL
client but might not have a graphical application.
You can choose the one that you are more comfortable with as you will
usually work with your own machine. However, keep in mind that a basic
knowledge of the command line will save your life on several occasions.

Chapter 5

[135]

In order to connect the client with a server, you need to provide some information on
where to connect and the credentials for the user to use. If you do not customize your
MySQL installation, you should at least have a root user with no password, which
is the one we will use. You could think that this seems to be a horrible security hole,
and it might be so, but you should not be able to connect using this user if you do not
connect from the same machine on which the server is. The most common arguments
that you can use to provide information when starting the client are:

• -u <name>: This specifies the user—in our case, root.
• -p<password>: Without a space, this specifies the password. As we do not

have a password for our user, we do not need to provide this.
• -h <host>: This specifies where to connect. By default, the client connects

to the same machine. As this is our case, there is no need to specify any.
If you had to, you could specify either an IP address or a hostname.

• <schema name>: This specifies the name of the schema to use. We will
explain in a bit what this means.

With these rules, you should be able to connect to your database with the mysql -u
root command. You should get an output very similar to the following one:

$ mysql -u root

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 2

Server version: 5.1.73 Source distribution

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights
reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql>

Using Databases

[136]

The terminal will show you the version of the server and some useful information
about how to use the client. From now on, the command line will start with mysql>
instead of your normal prompt, showing you that you are using the MySQL client. In
order to execute queries, just type the query, end it with a semicolon, and press Enter.
The client will send the query to the server and will show the result of it. To exit the
client, you can either type \q and press Enter or press Ctrl + D, even though this last
option will depend on your operating system.

Schemas and tables
Relational database systems usually have the same structure. They store data in
different databases or schemas, which separate the data from different applications.
These schemas are just collections of tables. Tables are definitions of specific data
structures and are composed of fields. A field is a basic data type that defines the
smallest component of information as though they were the atoms of the data.
So, schemas are group of tables that are composed of fields. Let's look at each
of these elements.

Understanding schemas
As defined before, schemas or databases— in MySQL, they are synonyms—are
collections of tables with a common context, usually belonging to the same application.
Actually, there are no restrictions around this, and you could have several schemas
belonging to the same application if needed. However, for small web applications,
as it is our case, we will have just one schema.

Your server probably already has some schemas. They usually contain the metadata
needed for MySQL in order to operate, and we highly recommend that you do not
modify them. Instead, let's just create our own schema. Schemas are quite simple
elements, and they only have a mandatory name and an optional charset. The name
identifies the schema, and the charset defines which type of codification or "alphabet"
the strings should follow. As the default charset is latin1, if you do not need to
change it, you do not need to specify it.

Use CREATE SCHEMA followed by the name of the schema in order to create the
schema that we will use for our bookstore. The name has to be representative,
so let's name it bookstore. Remember to end your line with a semicolon.
Take a look at the following:

mysql> CREATE SCHEMA bookstore;

Query OK, 1 row affected (0.00 sec)

Chapter 5

[137]

If you need to remember how a schema was created, you can use SHOW CREATE
SCHEMA to see its description, as follows:

mysql> SHOW CREATE SCHEMA bookstore \G

*************************** 1. row ***************************

 Database: bookstore

Create Database: CREATE DATABASE `bookstore` /*!40100 DEFAULT CHARACTER
SET latin1 */

1 row in set (0.00 sec)

As you can see, we ended the query with \G instead of a semicolon. This tells the
client to format the response in a different way than the semicolon does. When using
a command of the SHOW CREATE family, we recommend that you end it with \G to
get a better understanding.

Should you use uppercase or lowercase?
When writing queries, you might note that we used uppercase for
keywords and lowercase for identifiers, such as names of schemas.
This is just a convention widely used in order to make it clear what is
part of SQL and what is your data. However, MySQL keywords are
case-insensitive, so you could use any case indistinctively.

All data must belong to a schema. There cannot be data floating around outside
all schemas. This way, you cannot do anything unless you specify the schema you
want to use. In order to do this, just after starting your client, use the USE keyword
followed by the name of the schema. Optionally, you could tell the client which
schema to use when connecting to it, as follows:

mysql> USE bookstore;

Database changed

If you do not remember what the name of your schema is or want to check which
other schemas are in your server, you can run the SHOW SCHEMAS; command to get a
list of them, as follows:

mysql> SHOW SCHEMAS;

+--------------------+

| Database |

+--------------------+

| information_schema |

| bookstore |

Using Databases

[138]

| mysql |

| test |

+--------------------+

4 rows in set (0.00 sec)

Database data types
As in PHP, MySQL also has data types. They are used to define which kind of data a
field can contain. As in PHP, MySQL is quite flexible with data types, transforming
them from one type to the other if needed. There are quite a few of them, but we will
explain the most important ones. We highly recommend that you visit the official
documentation related to data types at http://dev.mysql.com/doc/refman/5.7/
en/data-types.html if you want to build applications with more complex data
structures.

Numeric data types
Numeric data can be categorized as integers or decimal numbers. For integers,
MySQL uses the INT data type even though there are versions to store smaller
numbers, such as TINYINT, SMALLINT, or MEDIUMINT, or bigger numbers, such as
BIGINT. The following table shows what the sizes of the different numeric types are,
so you can choose which one to use depending on your situation:

Type Size/precision
TINYINT -128 to 127
SMALLINT -32,768 to 32,767
MEDIUMINT -8,388,608 to 8,388,607
INT -2,147,483,648 to 2,147,483,647
BIGINT -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Numeric types can be defined as signed by default or unsigned; that is, you can
allow or not allow them to contain negative values. If a numeric type is defined as
UNSIGNED, the range of numbers that it can take is doubled as it does not need to save
space for negative numbers.

For decimal numbers we have two types: approximate values, which are faster to
process but are not exact sometimes, and exact values that give you exact precision
on the decimal value. For approximate values or the floating-point type, we have
FLOAT and DOUBLE. For exact values or the fixed-point type we have DECIMAL.

http://dev.mysql.com/doc/refman/5.7/en/data-types.html
http://dev.mysql.com/doc/refman/5.7/en/data-types.html

Chapter 5

[139]

MySQL allows you to specify the number of digits and decimal positions that the
number can take. For example, to specify a number that can contains five digits
and up to two of them can be decimal, we will use the FLOAT(5,2) notation.
This is useful as a constraint, as you will note when we create tables with prices.

String data types
Even though there are several data types that allow you to store from single
characters to big chunks of text or binary code, it is outside the scope of this chapter.
In this section, we will introduce you to three types: CHAR, VARCHAR, and TEXT.

CHAR is a data type that allows you to store an exact number of characters. You
need to specify how long the string will be once you define the field, and from this
point on, all values for this field have to be of this length. One possible usage in our
applications could be when storing the ISBN of the book as we know it is always 13
characters long.

VARCHAR or variable char is a data type that allows you to store strings up to 65,535
characters long. You do not need to specify how long they need to be, and you can
insert strings of different lengths without an issue. Of course, the fact that this type
is dynamic makes it slower to process compared with the previous one, but after a
few times you know how long a string will always be. You could tell MySQL that
even if you want to insert strings of different lengths, the maximum length will be
a determined number. This will help its performance. For example, names are of
different lengths, but you can safely assume that no name will be longer than 64
characters, so your field could be defined as VARCHAR(64).

Finally, TEXT is a data type for really big strings. You could use it if you want to
store long comments from users, articles, and so on. As with INT, there are different
versions of this data type: TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. Even if they
are very important in almost any web application with user interaction, we will not
use them in ours.

List of values
In MySQL, you can force a field to have a set of valid values. There are two types
of them: ENUM, which allows exactly one of the possible predefined values, and SET,
which allows any number of the predefined values.

For example, in our application, we have two types of customers: basic and
premium. If we want to store our customers in a database, there is a chance that
one of the fields will be the type of customer. As a customer has to be either basic or
premium, a good solution would be to define the field as an enum as ENUM("basic",
"premium"). In this way, we will make sure that all customers stored in our database
will be of a correct type.

Using Databases

[140]

Although enums are quite common to use, the use of sets is less widespread. It is
usually a better idea to use an extra table to define the values of the list, as you will
note when we talk about foreign keys in this chapter.

Date and time data types
Date and time types are the most complex data types in MySQL. Even though the
idea is simple, there are several functions and edge cases around these types. We
cannot go through all of them, so we will just explain the most common uses, which
are the ones we will need for our application.

DATE stores dates—that is, a combination of day, month, and year. TIME stores
times—that is, a combination of hour, minute, and second. DATETIME are data types
for both date and time. For any of these data types, you can provide just a string
specifying what the value is, but you need to be careful with the format that you use.
Even though you can always specify the format that you are entering the data in, you
can just enter the dates or times in the default format—for example, 2014-12-31 for
dates, 14:34:50 for time, and 2014-12-31 14:34:50 for the date and time.

A fourth type is TIMESTAMP. This type stores an integer, which is the representation
of the seconds from January 1, 1970, which is also known as the Unix timestamp.
This is a very useful type as in PHP, it is really easy to get the current Unix
timestamp with the now() function, and the format for this data type is always the
same, so it is safer to work with it. The downside is that the range of dates that it can
represent is limited as compared to other types.

There are some functions that help you manage these types. These functions extract
specific parts of the whole value, return the value with a different format, add or
subtract dates, and so on. Let's take a look at a short list of them:

Function name Description
DAY(), MONTH(), and YEAR() Extracts the specific value for the day, month, or

year from the DATE or DATETIME provided value.
HOUR(), MINUTE(), and SECOND() Extracts the specific value for the hour, minute,

or second from the TIME or DATETIME provided
value.

CURRENT_DATE() and CURRENT_
TIME()

Returns the current date or current time.

NOW() Returns the current date and time.
DATE_FORMAT() Returns the DATE, TIME or DATETIME value with

the specified format.
DATE_ADD() Adds the specified interval of time to a given date

or time type.

Chapter 5

[141]

Do not worry if you are confused on how to use any of these functions; we will use
them during the rest of the book as part of our application. Also, an extensive list of
all the types can be found at http://dev.mysql.com/doc/refman/5.7/en/date-
and-time-functions.html.

Managing tables
Now that you understand the different types of data that fields can take, it is time to
introduce tables. As defined in the Schemas and tables section, a table is a collection of
fields that defines a type of information. You could compare it with OOP and think
of tables as classes, fields being their properties. Each instance of the class would be a
row on the table.

When defining a table, you have to declare the list of fields that the table contains.
For each field, you need to specify its name, its type, and some extra information
depending on the type of the field. The most common are:

• NOT NULL: This is used if the field cannot be null—that is, if it needs a
concrete valid value for each row. By default, a field can be null.

• UNSIGNED: As mentioned earlier, this is used to forbid the use of negative
numbers in this field. By default, a numeric field accepts negative numbers.

• DEFAULT <value>: This defines a default value in case the user does not
provide any. Usually, the default value is null if this clause is not specified.

Table definitions also need a name, as with schemas, and some optional attributes.
You can define the charset of the table or its engine. Engines can be a quite large
topic to cover, but for the scope of this chapter, let's just note that we should use the
InnoDB engine if we need strong relationships between tables. For more advanced
readers, you can read more about MySQL engines at https://dev.mysql.com/doc/
refman/5.0/en/storage-engines.html.

Knowing this, let's try to create a table that will keep our books. The name of the
table should be book, as each row will define a book. The fields could have the same
properties the Book class has. Let's take a look at how the query to construct the table
would look:

mysql> CREATE TABLE book(

 -> isbn CHAR(13) NOT NULL,

 -> title VARCHAR(255) NOT NULL,

 -> author VARCHAR(255) NOT NULL,

 -> stock SMALLINT UNSIGNED NOT NULL DEFAULT 0,

 -> price FLOAT UNSIGNED

 ->) ENGINE=InnoDb;

Query OK, 0 rows affected (0.01 sec)

http://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html
https://dev.mysql.com/doc/refman/5.0/en/storage-engines.html
https://dev.mysql.com/doc/refman/5.0/en/storage-engines.html

Using Databases

[142]

As you can note, we can add more new lines until we end the query with a
semicolon. With this, we can format the query in a way that looks more readable.
MySQL will let us know that we are still writing the same query showing the ->
prompt. As this table contains five fields, it is very likely that we will need to refresh
our minds from time to time as we will forget them. In order to display the structure
of the table, you could use the DESC command, as follows:

mysql> DESC book;

+--------+----------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+----------------------+------+-----+---------+-------+

| isbn | char(13) | NO | | NULL | |

| title | varchar(255) | NO | | NULL | |

| author | varchar(255) | NO | | NULL | |

| stock | smallint(5) unsigned | NO | | 0 | |

| price | float unsigned | YES | | NULL | |

+--------+----------------------+------+-----+---------+-------+

5 rows in set (0.00 sec)

We used SMALLINT for stock as it is very unlikely that we will have more than
thousands of copies of the same book. As we know that ISBN is 13 characters
long, we enforced this when defining the field. Finally, both stock and price are
unsigned as negative values do not make sense. Let's now create our customer table
via the following script:

mysql> CREATE TABLE customer(

 -> id INT UNSIGNED NOT NULL,

 -> firstname VARCHAR(255) NOT NULL,

 -> surname VARCHAR(255) NOT NULL,

 -> email VARCHAR(255) NOT NULL,

 -> type ENUM('basic', 'premium')

 ->) ENGINE=InnoDb;

Query OK, 0 rows affected (0.00 sec)

We already anticipated the use of enum for the field type as when designing classes,
we could draw a diagram identifying the content of our database. On this, we could
show the tables and their fields. Let's take a look at how the diagram of tables would
look so far:

Chapter 5

[143]

Note that even if we create tables similar to our classes, we will not create a table
for Person. The reason is that databases store data, and there isn't any data that we
could store for this class as the customer table already contains everything we need.
Also, sometimes, we may create tables that do not exist as classes on our code, so the
class-table relationship is a very flexible one.

Keys and constraints
Now that we have our main tables defined, let's try to think about how the data
inside would look. Each row inside a table would describe an object, which may be
either a book or a customer. What would happen if our application has a bug and
allows us to create books or customers with the same data? How will the database
differentiate them? In theory, we will assign IDs to customers in order to avoid these
scenarios, but how do we enforce that the ID not be repeated?

MySQL has a mechanism that allows you to enforce certain restrictions on your data.
Other than attributes such as NOT NULL or UNSIGNED that you already saw, you can
tell MySQL that certain fields are more special than others and instruct it to add
some behavior to them. These mechanisms are called keys, and there are four types:
primary key, unique key, foreign key, and index. Let's take a closer look at them.

Primary keys
Primary keys are fields that identify a unique row from a table. There cannot be
two of the same value in the same table, and they cannot be null. Adding a primary
key to a table that defines objects is almost a must as it will assure you that you will
always be able to differentiate two rows by this field.

Using Databases

[144]

Another part that makes primary keys so attractive is their ability to set the primary
key as an autoincremental numeric value; that is, you do not have to assign a value
to the ID, and MySQL will just pick up the latest inserted ID and increment it by
1, as we did with our Unique trait. Of course, for this to happen, your field has to
be an integer data type. In fact, we highly recommend that you always define your
primary key as an integer, even if the real-life object does not really have this ID at
all. The reason is that you should search a row by this numeric ID, which is unique,
and MySQL will add some performance improvements that come by setting the field
as a key.

Then, let's add an ID to our book table. In order to add a new field, we need to
alter our table. There is a command that allows you to do this: ALTER TABLE. With
this command, you can modify the definition of any existing field, add new ones,
or remove existing ones. As we add the field that will be our primary key and be
autoincremental, we can add all these modifiers to the field definition. Execute the
following code:

mysql> ALTER TABLE book

 -> ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT

 -> PRIMARY KEY FIRST;

Query OK, 0 rows affected (0.02 sec)

Records: 0 Duplicates: 0 Warnings: 0

Note FIRST at the end of the command. When adding new fields, if you want them
to appear on a different position than at the end of the table, you need to specify the
position. It could be either FIRST or AFTER <other field>. For convenience, the
primary key of a table is the first of its fields.

As the table customer already has an ID field, we do not have to add it again but
rather modify it. In order to do this, we will just use the ALTER TABLE command
with the MODIFY option, specifying the new definition of an already existing field,
as follows:

mysql> ALTER TABLE customer

 -> MODIFY id INT UNSIGNED NOT NULL

 -> AUTO_INCREMENT PRIMARY KEY;

Query OK, 0 rows affected (0.00 sec)

Records: 0 Duplicates: 0 Warnings: 0

Chapter 5

[145]

Foreign keys
Let's imagine that we need to keep track of the borrowed books. The table should
contain the borrowed book, who borrowed it, and when it was borrowed. So, what
kind of data would you use to identify the book or the customer? Would you use
the title or the name? Well, we should use something that identifies a unique row
from these tables, and this "something" is the primary key. With this action, we will
eliminate the change of using a reference that can potentially point to two or more
rows at the same time.

We could then create a table that contains book_id and customer_id as numeric
fields, containing the IDs that reference these two tables. As the first approach, it
makes sense, but we can find some weaknesses. For example, what happens if we
insert wrong IDs and they do not exist in book or customer? We could have some
code in our PHP side to make sure that when fetching information from borrowed_
books, we only displayed the information that is correct. We could even have a
routine that periodically checks for wrong rows and removes them, solving the issue
of having wrong data wasting space in the disk. However, as with the Unique trait
versus adding primary keys in MySQL, it is usually better to allow the database
system to manage these things as the performance will usually be better, and you do
not need to write extra code.

MySQL allows you to create keys that enforce references to other tables. These are
called foreign keys, and they are the primary reason for which we were forced to use
the InnoDB table engine instead of any other. A foreign key defines and enforces a
reference between this field and another row of a different table. If the ID supplied
for the field with a foreign key does not exist in the referenced table, the query will
fail. Furthermore, if you have a valid borrowed_books row pointing to an existing
book and you remove the entry from the book table, MySQL will complain about
it—even though you will be able to customize this behavior soon—as this action
would leave wrong data in the system. As you can note, this is way more useful
than having to write code to manage these cases.

Let's create the borrowed_books table with the book, customer references, and
dates. Note that we have to define the foreign keys after the definition of the fields
as opposed to when we defined primary keys, as follows:

mysql> CREATE TABLE borrowed_books(

 -> book_id INT UNSIGNED NOT NULL,

 -> customer_id INT UNSIGNED NOT NULL,

 -> start DATETIME NOT NULL,

 -> end DATETIME DEFAULT NULL,

 -> FOREIGN KEY (book_id) REFERENCES book(id),

Using Databases

[146]

 -> FOREIGN KEY (customer_id) REFERENCES customer(id)

 ->) ENGINE=InnoDb;

Query OK, 0 rows affected (0.00 sec)

As with SHOW CREATE SCHEMA, you can also check how the table looks. This command
will also show you information about the keys as opposed to the DESC command. Let's
take a look at how it would work:

mysql> SHOW CREATE TABLE borrowed_books \G

*************************** 1. row ***************************

 Table: borrowed_books

Create Table: CREATE TABLE `borrowed_books` (

 `book_id` int(10) unsigned NOT NULL,

 `customer_id` int(10) unsigned NOT NULL,

 `start` datetime NOT NULL,

 `end` datetime DEFAULT NULL,

 KEY `book_id` (`book_id`),

 KEY `customer_id` (`customer_id`),

 CONSTRAINT `borrowed_books_ibfk_1` FOREIGN KEY (`book_id`) REFERENCES
`book` (`id`),

 CONSTRAINT `borrowed_books_ibfk_2` FOREIGN KEY (`customer_id`)
REFERENCES `customer` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

1 row in set (0.00 sec)

Note two important things here. On one hand, we have two extra keys that we did
not define. The reason is that when defining a foreign key, MySQL also defines the
field as a key that will be used to improve performance on the table; we will look into
this in a moment. The other element to note is the fact that MySQL defines names to
the keys by itself. This is necessary as we need to be able to reference them in case
we want to change or remove this key. You can let MySQL name the keys for you,
or you can specify the names you prefer when creating them.

We are running a bookstore, and even if we allow customers to borrow books, we
want to be able to sell them. A sale is a very important element that we need to track
down as customers may want to review them, or you may just need to provide this
information for taxation purposes. As opposed to borrowing, in which knowing the
book, customer, and date was more than enough, here, we need to set IDs to the sales
in order to identify them to the customers.

Chapter 5

[147]

However, this table is more difficult to design than the other ones and not just
because of the ID. Think about it: do customers buy books one by one? Or do they
rather buy any number of books at once? Thus, we need to allow the table to contain
an undefined amount of books. With PHP, this is easy as we would just use an array,
but we do not have arrays in MySQL. There are two options to this problem.

One solution could be to set the ID of the sale as a normal integer field and not as a
primary key. In this way, we would be able to insert several rows to the sales table,
one for each borrowed book. However, this solution is less than ideal as we miss the
opportunity of defining a very good primary key because it has the sales ID. Also,
we are duplicating the data about the customer and date since they will always be
the same.

The second solution, the one that we will implement, is the creation of a separated
table that acts as a "list". We will still have our sales table, which will contain the
ID of the sale as a primary key, the customer ID as a foreign key, and the dates.
However, we will create a second table that we could name sale_book, and we
will define there the ID of the sale, the ID of the book, and the amount of books
of the same copy that the customer bought. In this way, we will have at once the
information about the customer and date, and we will be able to insert as many rows
as needed in our sale_book list-table without duplicating any data. Let's take a look
at how we would create these:

mysql> CREATE TABLE sale(

 -> id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 -> customer_id INT UNSIGNED NOT NULL,

 -> date DATETIME NOT NULL,

 -> FOREIGN KEY (customer_id) REFERENCES customer(id)

 ->) ENGINE=InnoDb;

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE sale_book(

 -> sale_id INT UNSIGNED NOT NULL,

 -> book_id INT UNSIGNED NOT NULL,

 -> amount SMALLINT UNSIGNED NOT NULL DEFAULT 1,

 -> FOREIGN KEY (sale_id) REFERENCES sale(id),

 -> FOREIGN KEY (book_id) REFERENCES book(id)

 ->) ENGINE=InnoDb;

Query OK, 0 rows affected (0.00 sec)

Using Databases

[148]

Keep in mind that you should always create the sales table first because if you
create the sale_book table with a foreign key first, referencing a table that does not
exist yet, MySQL will complain.

We created three new tables in this section, and they are interrelated. It is a good
time to update the diagram of tables. Note that we link the fields with the tables
when there is a foreign key defined. Take a look:

Unique keys
As you know, primary keys are extremely useful as they provide several features
with them. One of these is that the field has to be unique. However, you can define
only one primary key per table, even though you might have several fields that
are unique. In order to amend this limitation, MySQL incorporates unique keys.
Their job is to make sure that the field is not repeated in multiple rows, but they
do not come with the rest of the functionalities of primary keys, such as being
autoincremental. Also, unique keys can be null.

Our book and customer tables contain good candidates for unique keys. Books can
potentially have the same title, and surely, there will be more than one book by the
same author. However, they also have an ISBN which is unique; two different books
should not have the same ISBN. In the same way, even if two customers were to have
the same name, their e-mail addresses will be always different. Let's add the two
keys with the ALTER TABLE command, though you can also add them when creating
the table as we did with foreign keys, as follows:

Chapter 5

[149]

mysql> ALTER TABLE book ADD UNIQUE KEY (isbn);

Query OK, 0 rows affected (0.01 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE customer ADD UNIQUE KEY (email);

Query OK, 0 rows affected (0.01 sec)

Records: 0 Duplicates: 0 Warnings: 0

Indexes
Indexes, which are a synonym for keys, are fields that do not need any special
behavior as do the rest of the keys but they are important enough in our queries.
So, we will ask MySQL to do some work with them in order to perform better when
querying by this field. Do you remember when adding a foreign key that MySQL
added extra keys to the table? Those were indexes too.

Think about how the application will use the database. We want to show the catalog
of books to our customers, but we cannot show all of them at once for sure. The
customer will want to filter the results, and one of the most common ways of filtering
is by specifying the title of the book that they are looking for. From this, we can
extract that the title will be used to filter books quite often, so we want to add an
index to this field. Let's add the index via the following code:

mysql> ALTER TABLE book ADD INDEX (title);

Query OK, 0 rows affected (0.01 sec)

Records: 0 Duplicates: 0 Warnings: 0

Remember that all other keys also provide indexing. IDs of books, customers and
sales, ISBNs, and e-mails are already indexed, so there is no need to add another
index here. Also, try not to add indexes to every single field as in doing so you will
be overindexing, which would make some types of queries even slower than if they
were without indexes!

Inserting data
We have created the perfect tables to hold our data, but so far they are empty. It is
time that we populate them. We delayed this moment as altering tables with data is
more difficult than when they are empty.

Using Databases

[150]

In order to insert this data, we will use the INSERT INTO command. This command
will take the name of the table, the fields that you want to populate, and the data for
each field. Note that you can choose not to specify the value for a field, and there are
different reasons to do this, which are as follows:

• The field has a default value, and we are happy using it for this specific row

• Even though the field does not have an explicit default value, the field can
take null values; so, by not specifying the field, MySQL will automatically
insert a null here

• The field is a primary key and is autoincremental, and we want to let MySQL
take the next ID for us

There are different reasons that can cause an INSERT INTO command to fail:

• If you do not specify the value of a field and MySQL cannot provide a valid
default value

• If the value provided is not of the type of the field and MySQL fails to find
a valid conversion

• If you specify that you want to set the value for a field but you fail to provide
a value

• If you provide a foreign key with an ID but the ID does not exist in the
referenced table

Let's take a look at how to add rows. Let's start with our customer table, adding one
basic and one premium, as follows:

mysql> INSERT INTO customer (firstname, surname, email, type)

 -> VALUES ("Han", "Solo", "han@tatooine.com", "premium");

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO customer (firstname, surname, email, type)

 -> VALUES ("James", "Kirk", "enter@prise", "basic");

Query OK, 1 row affected (0.00 sec)

Note that MySQL shows you some return information; in this case, it shows that
there was one row affected, which is the row that we inserted. We did not provide
an ID, so MySQL just added the next ones in the list. As it is the first time that we are
adding data, MySQL used the IDs 1 and 2.

Chapter 5

[151]

Let's try to trick MySQL and add another customer, repeating the e-mail address
field that we set as unique in the previous section:

mysql> INSERT INTO customer (firstname, surname, email, type)

 -> VALUES ("Mr", "Spock", "enter@prise", "basic");

ERROR 1062 (23000): Duplicate entry 'enter@prise' for key 'email'

An error is returned with an error code and an error message, and the row was
not inserted, of course. The error message usually contains enough information in
order to understand the issue and how to fix it. If this is not the case, we can always
try to search on the Internet using the error code and note what either the official
documentation or other users have to say about it.

In case you need to introduce multiple rows to the same table and they contain the
same fields, there is a shorter version of the command, in which you can specify the
fields and then provide the groups of values for each row. Let's take a look at how to
use it when adding books to our book table, as follows:

mysql> INSERT INTO book (isbn,title,author,stock,price) VALUES

 -> ("9780882339726","1984","George Orwell",12,7.50),

 -> ("9789724621081","1Q84","Haruki Murakami",9,9.75),

 -> ("9780736692427","Animal Farm","George Orwell",8,3.50),

 -> ("9780307350169","Dracula","Bram Stoker",30,10.15),

 -> ("9780753179246","19 minutes","Jodi Picoult",0,10);

Query OK, 5 rows affected (0.01 sec)

Records: 5 Duplicates: 0 Warnings: 0

As with customers, we will not specify the ID and let MySQL choose the appropriate
one. Note also that now the amount of affected rows is 5 as we inserted five rows.

How can we take advantage of the explicit defaults that we defined in our tables?
Well, we can do this in the same way as we did with the primary keys: do not specify
them in the fields list or in the values list, and MySQL will just use the default value.
For example, we defined a default value of 1 for our book.stock field, which is a
useful notation for the book table and the stock field. Let's add another row using
this default, as follows:

mysql> INSERT INTO book (isbn,title,author,price) VALUES

 -> ("9781416500360", "Odyssey", "Homer", 4.23);

Query OK, 1 row affected (0.00 sec)

Using Databases

[152]

Now that we have books and customers, let's add some historic data about customers
borrowing books. For this, use the numeric IDs from book and customer, as in the
following code:

mysql> INSERT INTO borrowed_books(book_id,customer_id,start,end)

 -> VALUES

 -> (1, 1, "2014-12-12", "2014-12-28"),

 -> (4, 1, "2015-01-10", "2015-01-13"),

 -> (4, 2, "2015-02-01", "2015-02-10"),

 -> (1, 2, "2015-03-12", NULL);

Query OK, 3 rows affected (0.00 sec)

Records: 3 Duplicates: 0 Warnings: 0

Querying data
It took quite a lot of time, but we are finally in the most exciting—and useful—section
related to databases: querying data. Querying data refers to asking MySQL to return
rows from the specified table and optionally filtering these results by a set of rules. You
can also choose to get specific fields instead of the whole row. In order to query data,
we will use the SELECT command, as follows:

mysql> SELECT firstname, surname, type FROM customer;

+-----------+---------+---------+

| firstname | surname | type |

+-----------+---------+---------+

| Han | Solo | premium |

| James | Kirk | basic |

+-----------+---------+---------+

2 rows in set (0.00 sec)

One of the simplest ways to query data is to specify the fields of interest after SELECT
and specify the table with the FROM keyword. As we did not add any filters—mostly
known as conditions—to the query, we got all the rows there. Sometimes, this is the
desired behavior, but the most common thing to do is to add conditions to the query
to retrieve only the rows that we need. Use the WHERE keyword to achieve this.

mysql> SELECT firstname, surname, type FROM customer

 -> WHERE id = 1;

+-----------+---------+---------+

| firstname | surname | type |

Chapter 5

[153]

+-----------+---------+---------+

| Han | Solo | premium |

+-----------+---------+---------+

1 row in set (0.00 sec)

Adding conditions is very similar to when we created Boolean expressions in PHP.
We will specify the name of the field, an operator, and a value, and MySQL will
retrieve only the rows that return true to this expression. In this case, we asked for
the customers that had the ID 1, and MySQL returned one row: the one that had an
ID of exactly 1.

A common query would be to get the books that start with some text. We cannot
construct this expression with any comparison operand that you know, such
as = and < or >, since we want to match only a part of the string. For this, MySQL
has the LIKE operator, which takes a string that can contain wildcards. A wildcard
is a character that represents a rule, matching any number of characters that follows
the rule. For example, the % wildcard represents any number of characters, so using
the 1% string would match any string that starts with 1 and is followed by any
number or characters, matching strings such as 1984 or 1Q84. Let's consider the
following example:

mysql> SELECT title, author, price FROM book

 -> WHERE title LIKE "1%";

+------------+-----------------+-------+

| title | author | price |

+------------+-----------------+-------+

| 1984 | George Orwell | 7.5 |

| 1Q84 | Haruki Murakami | 9.75 |

| 19 minutes | Jodi Picoult | 10 |

+------------+-----------------+-------+

3 rows in set (0.00 sec)

We asked for all the books whose title starts with 1, and we got three rows. You can
imagine how useful this operator is, especially when we implement a search utility
in our application.

Using Databases

[154]

As in PHP, MySQL also allows you to add logical operators—that is, operators that
take operands and perform a logical operation, returning Boolean values as a result.
The most common logical operators are, as in PHP, AND and OR. AND returns true if
both the expressions are true and OR returns true if either of the operands is true.
Let's consider an example, as follows:

mysql> SELECT title, author, price FROM book

 -> WHERE title LIKE "1%" AND stock > 0;

+------------+-----------------+-------+

| title | author | price |

+------------+-----------------+-------+

| 1984 | George Orwell | 7.5 |

| 1Q84 | Haruki Murakami | 9.75 |

+------------+-----------------+-------+

2 rows in set (0.00 sec)

This example is very similar to the previous one, but we added an extra condition.
We asked for all titles starting with 1 and whether there is stock available. This is
why one of the books does not show as it does not satisfy both conditions. You can
add as many conditions as you need with logical operators but bear in mind that AND
operators take precedence over OR. If you want to change this precedence, you can
always wrap expressions with a parenthesis, as in PHP.

So far, we have retrieved specific fields when querying for data, but we could ask for
all the fields in a given table. To do this, we will just use the * wildcard in SELECT.
Let's select all the fields for the customers via the following code:

mysql> SELECT * FROM customer \G

*************************** 1. row ***************************

 id: 1

firstname: Han

 surname: Solo

 email: han@tatooine.com

 type: premium

*************************** 2. row ***************************

 id: 2

firstname: James

 surname: Kirk

 email: enter@prise

 type: basic

2 rows in set (0.00 sec)

Chapter 5

[155]

You can retrieve more information than just fields. For example, you can use COUNT
to retrieve the amount of rows that satisfy the given conditions instead of retrieving
all the columns. This way is faster than retrieving all the columns and then counting
them because you save time in reducing the size of the response. Let's consider how
it would look:

mysql> SELECT COUNT(*) FROM borrowed_books

 -> WHERE customer_id = 1 AND end IS NOT NULL;

+----------+

| COUNT(*) |

+----------+

| 1 |

+----------+

1 row in set (0.00 sec)

As you can note, the response says 1, which means that there is only one borrowed
book that satisfies the conditions. However, check the conditions; you will note that
we used another familiar logical operator: NOT. NOT negates the expression, as ! does
in PHP. Note also that we do not use the equal sign to compare with null values. In
MySQL, you have to use IS instead of the equals sign in order to compare with NULL.
So, the second condition would be satisfied when a borrowed book has an end date
that is not null.

Let's finish this section by adding two more features when querying data. The first
one is the ability to specify in what order the rows should be returned. To do this,
just use the keyword ORDER BY followed by the name of the field that you want to
order by. You could also specify whether you want to order in ascending mode,
which is by default, or in the descending mode, which can be done by appending
DESC. The other feature is the ability to limit the amount of rows to return using
LIMIT and the amount of rows to retrieve. Now, run the following:

mysql> SELECT id, title, author, isbn FROM book

 -> ORDER BY title LIMIT 4;

+----+-------------+-----------------+---------------+

| id | title | author | isbn |

+----+-------------+-----------------+---------------+

| 5 | 19 minutes | Jodi Picoult | 9780753179246 |

| 1 | 1984 | George Orwell | 9780882339726 |

| 2 | 1Q84 | Haruki Murakami | 9789724621081 |

| 3 | Animal Farm | George Orwell | 9780736692427 |

+----+-------------+-----------------+---------------+

4 rows in set (0.00 sec)

Using Databases

[156]

Using PDO
So far, we have worked with MySQL, and you already have a good idea of what you
can do with it. However, connecting to the client and performing queries manually
is not our goal. What we want to achieve is that our application can take advantage
of the database in an automatic way. In order to do this, we will use a set of classes
that comes with PHP and allows you to connect to the database and perform queries
from the code.

PHP Data Objects (PDO) is the class that connects to the database and allows you to
interact with it. This is the popular way to work with databases for PHP developers,
even though there are other ways that we will not discuss here. PDO allows you
to work with different database systems, so you are not tied to MySQL only. In the
following sections, we will consider how to connect to a database, insert data, and
retrieve it using this class.

Connecting to the database
In order to connect to the database, it is good practice to keep the credentials—that
is, the user and password—separated from the code in a configuration file. We
already have this file as config/app.json from when we worked with the Config
class. Let's add the correct credentials for our database. If you have the configuration
by default, the configuration file should look similar to this:

{
 "db": {
 "user": "root",
 "password": ""
 }
}

Developers usually specify other information related to the connection, such as
the host, port, or name of the database. This will depend on how your application
is installed, whether MySQL is running on a different server, and so on, and it
is up to you how much information you want to keep on your code and in your
configuration files.

In order to connect to the database, we need to instantiate an object from the PDO
class. The constructor of this class expects three arguments: Data Source Name
(DSN), which is a string that represents the type of database to use; the name of
the user; and the password. We already have the username and password from the
Config class, but we still need to build DSN.

Chapter 5

[157]

One of the formats for MySQL databases is <database type>:host=<host>;dbname
=<schema name>. As our database system is MySQL, it runs on the same server, and
the schema name is bookstore, DSN will be mysql:host=127.0.0.1;dbname=book
store. Let's take a look at how we will put everything together:

$dbConfig = Config::getInstance()->get('db');
$db = new PDO(
 'mysql:host=127.0.0.1;dbname=bookstore',
 $dbConfig['user'],
 $dbConfig['password']
);
$db->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_ASSOC);

Note also that we will invoke the setAttribute method from the PDO instance.
This method allows you to set some options to the connection; in this case, it sets
the format of the results coming from MySQL. This option forces MySQL to return
the arrays whose keys are the names of the fields, which is way more useful than
the default one, returning numeric keys based on the order of the fields. Setting this
option now will affect all the queries performed with the $db instance, rather than
setting the option each time we perform a query.

Performing queries
The easiest way to retrieve data from your database is to use the query method.
This method accepts the query as a string and returns a list of rows as arrays.
Let's consider an example: write the following after the initialization of the
database connection—for example, in the init.php file:

$rows = $db->query('SELECT * FROM book ORDER BY title');
foreach ($rows as $row) {
 var_dump($row);
}

This query tries to get all the books in the database, ordering them by the title.
This could be the content of a function such as getAllBooks, which is used when
we display our catalog. Each row is an array that contains all the fields as keys and
the data as values.

Using Databases

[158]

If you run the application on your browser, you will get the following result:

The query function is useful when we want to retrieve data, but in order to execute
queries that insert rows, PDO provides the exec function. This function also expects
the first parameter as a string, defining the query to execute, but it returns a Boolean
specifying whether the execution was successful or not. A good example would be to
try to insert books. Type the following:

$query = <<<SQL
INSERT INTO book (isbn, title, author, price)
VALUES ("9788187981954", "Peter Pan", "J. M. Barrie", 2.34)
SQL;
$result = $db->exec($query);
var_dump($result); // true

This code also uses a new way of representing strings: heredoc. We will enclose
the string between <<<SQL and SQL;, both in different lines, instead of quotes. The
benefit of this is the ability to write strings in multiple lines with tabulations or any
other blank space, and PHP will respect it. We can construct queries that are easy to
read rather than writing them on a single line or having to concatenate the different
strings. Note that SQL is a token to represent the start and end of the string, but you
could use any text that you consider.

Chapter 5

[159]

The first time you run the application with this code, the query will be executed
successfully, and thus, the result will be the Boolean true. However, if you run it
again, it will return false as the ISBN that we inserted is the same but we set its
restriction to be unique.

It is useful to know that a query failed, but it is better if we know why. The PDO
instance has the errorInfo method that returns an array with the information of the
last error. The key 2 contains the description, so it is probably the one that we will
use more often. Update the previous code with the following:

$query = <<<SQL
INSERT INTO book (isbn, title, author, price)
VALUES ("9788187981954", "Peter Pan", "J. M. Barrie", 2.34)
SQL;
$result = $db->exec($query);
var_dump($result); // false
$error = $db->errorInfo()[2];
var_dump($error); // Duplicate entry '9788187981954' for key 'isbn'

The result is that the query failed because the ISBN entry was duplicated. Now, we
can build more meaningful error messages for our customers or just for debugging
purposes.

Prepared statements
The previous two functions are very useful when you need to run quick queries
that are always the same. However, in the second example you might note that the
string of the query is not very useful as it always inserts the same book. Although it
is true that you could just replace the values by variables, it is not good practice as
these variables usually come from the user side and can contain malicious code. It is
always better to first sanitize these values.

PDO provides the ability to prepare a statement—that is, a query that is
parameterized. You can specify parameters for the fields that will change in the
query and then assign values to these parameters. Let's consider first an example,
as follows:

$query = 'SELECT * FROM book WHERE author = :author';
$statement = $db->prepare($query);
$statement->bindValue('author', 'George Orwell');
$statement->execute();
$rows = $statement->fetchAll();
var_dump($rows);

Using Databases

[160]

The query is a normal one except that it has :author instead of the string of the
author that we want to find. This is a parameter, and we will identify them using
the prefix :. The prepare method gets the query as an argument and returns a
PDOStatement instance. This class contains several methods to bind values, execute
statements, fetch results, and more. In this piece of code, we use only three of them,
as follows:

• bindValue: This takes two arguments: the name of the parameter as
described in the query and the value to assign. If you provide a parameter
name that is not in the query, this will throw an exception.

• execute: This will send the query to MySQL with the replacement of the
parameters by the provided values. If there is any parameter that is not
assigned to a value, the method will throw an exception. As its brother exec,
execute will return a Boolean, specifying whether the query was executed
successfully or not.

• fetchAll: This will retrieve the data from MySQL in case it was a SELECT
query. As a query, fetchAll will return a list of all rows as arrays.

If you try this code, you will note that the result is very similar to when using query;
however, this time, the code is much more dynamic as you can reuse it for any
author that you need.

Chapter 5

[161]

There is another way to bind values to parameters of a query than using the
bindValue method. You could prepare an array where the key is the name of the
parameter and the value is the value you want to assign to it, and then you can send
it as the first argument of the execute method. This way is quite useful as usually
you already have this array prepared and do not need to call bindValue several
times with its content. Add this code in order to test it:

$query = <<<SQL
INSERT INTO book (isbn, title, author, price)
VALUES (:isbn, :title, :author, :price)
SQL;
$statement = $db->prepare($query);
$params = [
 'isbn' => '9781412108614',
 'title' => 'Iliad',
 'author' => 'Homer',
 'price' => 9.25
];
$statement->execute($params);
echo $db->lastInsertId(); // 8

In this last example, we created a new book with almost all the parameters, but we
did not specify the ID, which is the desired behavior as we want MySQL to choose a
valid one for us. However, what happens if you want to know the ID of the inserted
row? Well, you could query MySQL for the book with the same ISBN and the
returned row would contain the ID, but this seems like a lot of work. Instead, PDO
has the lastInsertId method, which returns the last ID inserted by a primary key,
saving us from one extra query.

Joining tables
Even though querying MySQL is quite fast, especially if it is in the same server as
our PHP application, we should try to reduce the number of queries that we will
execute to improve the performance of our application. So far, we have queried
data from just one table, but this is rarely the case. Imagine that you want to retrieve
information about borrowed books: the table contains only IDs and dates, so if you
query it, you will not get very meaningful data, right? One approach would be to
query the data in borrowed_books, and based on the returning IDs, query the book
and customer tables by filtering by the IDs we are interested in. However, this
approach consists of at least three queries to MySQL and a lot of work with arrays in
PHP. It seems as though there should be a better option!

Using Databases

[162]

In SQL, you can execute join queries. A join query is a query that joins two or more
tables through a common field and, thus, allows you to retrieve data from these tables,
reducing the amount of queries needed. Of course, the performance of a join query is
not as good as the performance of a normal query, but if you have the correct keys and
relationships defined, this option is way better than querying separately.

In order to join tables, you need to link them using a common field. Foreign keys are
very useful in this matter as you know that both the fields are the same. Let's take a
look at how we would query for all the important info related to the borrowed books:

mysql> SELECT CONCAT(c.firstname, ' ', c.surname) AS name,

 -> b.title,

 -> b.author,

 -> DATE_FORMAT(bb.start, '%d-%m-%y') AS start,

 -> DATE_FORMAT(bb.end, '%d-%m-%y') AS end

 -> FROM borrowed_books bb

 -> LEFT JOIN customer c ON bb.customer_id = c.id

 -> LEFT JOIN book b ON b.id = bb.book_id

 -> WHERE bb.start >= "2015-01-01";

+------------+---------+---------------+----------+----------+

| name | title | author | start | end |

+------------+---------+---------------+----------+----------+

| Han Solo | Dracula | Bram Stoker | 10-01-15 | 13-01-15 |

| James Kirk | Dracula | Bram Stoker | 01-02-15 | 10-02-15 |

| James Kirk | 1984 | George Orwell | 12-03-15 | NULL |

+------------+---------+---------------+----------+----------+

3 rows in set (0.00 sec)

There are several new concepts introduced in this last query. Especially with joining
queries, as we joined the fields of different tables, it might occur that two tables have
the same field name, and MySQL needs us to differentiate them. The way we will
differentiate two fields of two different tables is by prepending the name of the table.
Imagine that we want to differentiate the ID of a customer from the ID of the book;
we should use them as customer.id and book.id. However, writing the name of
the table each time would make our queries endless.

Chapter 5

[163]

MySQL has the ability to add an alias to a table by just writing next to the table's real
name, as we did in borrowed_books (bb), customer (c) or book (b). Once you add
an alias, you can use it to reference this table, allowing us to write things such as
bb.customer_id instead of borrowed_books.customer_id. It is also good practice
to write the table of the field even if the field is not duplicated anywhere else as
joining tables makes it a bit confusing to know where each field comes from.

When joining tables, you need to write them in the FROM clause using LEFT JOIN,
followed by the name of the table, an optional alias, and the fields that connect both
tables. There are different joining types, but let's focus on the most useful for our
purposes. Left joins take each row from the first table—the one on the left-hand side
of the definition—and search for the equivalent field in the right-hand side table.
Once it finds it, it will concatenate both rows as if they were one. For example, when
joining borrowed_books with customer for each borrowed_books row, MySQL will
search for an ID in customer that matches the current customer_id, and then it will
add all the information of this row in our current row in borrowed_books as if they
were only one big table. As customer_id is a foreign key, we are certain that there
will always be a customer to match.

You can join several tables, and MySQL will just resolve them from left to right; that
is, it will first join the two first tables as one, then try to join this resulting one with
the third table, and so on. This is, in fact, what we did in our example: we first joined
borrowed_books with customer and then joined these two with book.

As you can note, there are also aliases for fields. Sometimes, we do more than just
getting a field; an example was when we got how many rows a query matched with
COUNT(*). However, the title of the column when retrieving this information was
also COUNT(*), which is not always useful. At other times, we used two tables with
colliding field names, and it makes everything confusing. When this happens, just
add an alias to the field in the same way we did with table names; AS is optional, but
it helps to understand what you are doing.

Let's move now to the usage of dates in this query. On one hand, we will use
DATE_FORMAT for the first time. It accepts the date/time/datetime value and
the string with the format. In this case, we used %d-%m-%y, which means
day-month-year, but we could use %h-%i-%s to specify hours-minutes-seconds
or any other combination.

Note also how we compared dates in the WHERE clause. Given two dates or time
values of the same type, you can use the comparison operators as if they were
numbers. In this case, we will do bb.start >= "2015-01-01", which will give us
the borrowed books from January 1, 2015, onward.

Using Databases

[164]

The final thing to note about this complex query is the use of the CONCAT function.
Instead of returning two fields, one for the name and one for the surname, we want
to get the full name. To do this, we will concatenate the fields using this function,
sending as many strings as we want as arguments of the function and getting
back the concatenated string. As you can see, you can send both fields and strings
enclosed by single quotes.

Well, if you fully understood this query, you should feel satisfied with yourself; this
was the most complex query we will see in this chapter. We hope you can get a sense
of how powerful a database system can be and that from now on, you will try to
process the data as much as you can on the database side instead of the PHP side.
If you set the correct indexes, it will perform better.

Grouping queries
The last feature that we will discuss about querying is the GROUP BY clause. This
clause allows you to group rows of the same table with a common field. For example,
let's say we want to know how many books each author has in just one query. Try
the following:

mysql> SELECT

 -> author,

 -> COUNT(*) AS amount,

 -> GROUP_CONCAT(title SEPARATOR ', ') AS titles

 -> FROM book

 -> GROUP BY author

 -> ORDER BY amount DESC, author;

+-----------------+--------+-------------------+

| author | amount | titles |

+-----------------+--------+-------------------+

| George Orwell | 2 | 1984, Animal Farm |

| Homer | 2 | Odyssey, Iliad |

| Bram Stoker | 1 | Dracula |

| Haruki Murakami | 1 | 1Q84 |

| J. M. Barrie | 1 | Peter Pan |

| Jodi Picoult | 1 | 19 minutes |

+-----------------+--------+-------------------+

5 rows in set (0.00 sec)

Chapter 5

[165]

The GROUP BY clause, always after the WHERE clause, gets a field—or many, separated
by a coma—and treats all the rows with the same value for this field, as though they
were just one. Thus, selecting by author will group all the rows that contain the same
author. The feature might not seem very useful, but there are several functions in
MySQL that take advantage of it. In this example:

• COUNT(*) is used in queries with GROUP BY and shows how many rows
this field groups. In this case, we will use it to know how many books each
author has. In fact, it always works like this; however, for queries without
GROUP BY, MySQL treats the whole set of rows as one group.

• GROUP_CONCAT is similar to CONCAT, which we discussed earlier. The only
difference is that this time the function will concatenate the fields of all the
rows of a group. If you do not specify SEPARATOR, MySQL will use a single
coma. However, in our case, we needed a coma and a space to make it
readable, so we added SEPARATOR ', ' at the end. Note that you can add
as many things to concatenate as you need in CONCAT, the separator will just
separate the concatenations by rows.

Even though it is not about grouping, note the ORDER clause that we added.
We ordered by two fields instead of one. This means that MySQL will order all the
rows by the amount field; note that this is an alias, but you can use it here as well.
Then, MySQL will order each group of rows with the same amount value by the
title field.

There is one last thing to remember as we already presented all the important
clauses that a SELECT query can contain: MySQL expects the clauses of the query
to be always in the same order. If you write the same query but change this order,
you will get an error. The order is as follows:

1. SELECT

2. FROM

3. WHERE

4. GROUP BY

5. ORDER BY

Updating and deleting data
We already know quite a lot about inserting and retrieving data, but if applications
could only do this, they would be quite static. Editing this data as we need is what
makes an application dynamic and what gives to the user some value. In MySQL,
and in most database systems, you have two commands to change data: UPDATE and
DELETE. Let's discuss them in detail.

Using Databases

[166]

Updating data
When updating data in MySQL, the most important thing is to have a unique
reference of the row that you want to update. For this, primary keys are very useful;
however, if you have a table with no primary keys, which should not be the case
most of the time, you can still update the rows based on other fields. Other than the
reference, you will need the new value and, of course, the table name and field to
update. Let's take a look at a very simple example:

mysql> UPDATE book SET price = 12.75 WHERE id = 2;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

In this UPDATE query, we set the price of the book with the ID 2 to 12.75. The SET
clause does not need to specify only one change; you can specify several changes on
the same row as soon as you separate them by commas—for example, SET price =
12.75, stock = 14. Also, note the WHERE clause, in which we specify which rows
we want to change. MySQL gets all the rows of this table based on these conditions
as though it were a SELECT query and apply the change to this set of rows.

What MySQL will return is very important: the number of rows matched and
the number of rows changed. The first one is the number of rows that match the
conditions in the WHERE clause. The second one specifies the amount of rows that can
be changed. There are different reasons not to change a row—for example when the
row already has the same value. To see this, let's run the same query again:

mysql> UPDATE book SET price = 12.75 WHERE id = 2;

Query OK, 0 rows affected (0.00 sec)

Rows matched: 1 Changed: 0 Warnings: 0

The same row now says that there was 1 row matched, as expected, but 0 rows were
changed. The reason is that we already set the price of this book to 12.75, so MySQL
does not need to do anything about this now.

As mentioned before, the WHERE clause is the most important bit in this query. Way
too many times, we find developers that run a priori innocent UPDATE queries end
up changing the whole table because they miss the WHERE clause; thus, MySQL
matches the whole table as valid rows to update. This is usually not the intention
of the developer, and it is something not very pleasant, so try to make sure you
always provide a valid set of conditions. It is good practice to first write down the
SELECT query that returns the rows you need to edit, and once you are sure that the
conditions match the desired set of rows, you can write the UPDATE query.

Chapter 5

[167]

However, sometimes, affecting multiple rows is the intended scenario. Imagine that
we are going through tough times and need to increase the price of all our books. We
decide that we want to increase the price by 16%, which is the same as the current
price times 1.16. We can run the following query to perform these changes:

mysql> UPDATE book SET price = price * 1.16;

Query OK, 8 rows affected (0.00 sec)

Rows matched: 8 Changed: 8 Warnings: 0

This query does not contain any WHERE clause as we want to match all our books.
Also note that the SET clause uses the price field to get the current value for the
price, which is perfectly valid. Finally, note the number of rows matched and
changed, which is 8—the whole set of rows for this table.

To finish with this subsection, let's consider how we can use UPDATE queries from
PHP through PDO. One very common scenario is when we want to add copies of the
already existing books to our inventory. Given a book ID and an optional amount of
books—by default, this value will be 1—we will increase the stock value of this book
by these many copies. Write this function in your init.php file:

function addBook(int $id, int $amount = 1): void {
 $db = new PDO(
 'mysql:host=127.0.0.1;dbname=bookstore',
 'root',
 ''
);

 $query = 'UPDATE book SET stock = stock + :n WHERE id = :id';
 $statement = $db->prepare($query);
 $statement->bindValue('id', $id);
 $statement->bindValue('n', $amount);

 if (!$statement->execute()) {
 throw new Exception($statement->errorInfo()[2]);
 }
}

There are two arguments: $id and $amount. The first one will always be mandatory,
whereas the second one can be omitted, and the default value will be 1. The function
first prepares a query similar to the first one of this section, in which we increased
the amount of stock of a given book, then binds both parameters to the statement,
and finally executes the query. If something happens and execute returns false,
we will throw an exception with the content of the error message from MySQL.

Using Databases

[168]

This function is very useful when we either buy more stock or a customer returns
a book. We could even use it to remove books by providing a negative value to
$amount, but this is very bad practice. The reason is that even if we forced the stock
field to be unsigned, setting it to a negative value will not trigger any error, only a
warning. MySQL will not set the row to a negative value, but the execute invocation
will return true, and we will not know about it. It is better to just create a second
method, removeBook, and verify first that the amount of books to remove is lower
than or equal to the current stock.

Foreign key behaviors
One tricky thing to manage when updating or deleting rows is when the row that we
update is part of a foreign key somewhere else. For example, our borrowed_books
table contains the IDs of customers and books, and as you already know, MySQL
enforces that these IDs are always valid and exist on these respective tables. What
would happen, then, if we changed the ID of the book itself on the book table? Or
even worse, what would happen if we removed one of the books from book, and
there is a row in borrowed_books that references this ID?

MySQL allows you to set the desired reaction when one of these scenarios takes
place. It has to be defined when adding the foreign key; so, in our case, we will need
to first remove the existing ones and then add them again. To remove or drop a key,
you need to know the name of this key, which we can find using the SHOW CREATE
TABLE command, as follows:

mysql> SHOW CREATE TABLE borrowed_books \G

*************************** 1. row ***************************

 Table: borrowed_books

Create Table: CREATE TABLE `borrowed_books` (

 `book_id` int(10) unsigned NOT NULL,

 `customer_id` int(10) unsigned NOT NULL,

 `start` datetime NOT NULL,

 `end` datetime DEFAULT NULL,

 KEY `book_id` (`book_id`),

 KEY `customer_id` (`customer_id`),

 CONSTRAINT `borrowed_books_ibfk_1` FOREIGN KEY (`book_id`) REFERENCES
`book` (`id`),

 CONSTRAINT `borrowed_books_ibfk_2` FOREIGN KEY (`customer_id`)
REFERENCES `customer` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

1 row in set (0.00 sec)

Chapter 5

[169]

The two foreign keys that we want to remove are borrowed_books_ibfk_1 and
borrowed_books_ibfk_2. Let's remove them using the ALTER TABLE command,
as we did before:

mysql> ALTER TABLE borrowed_books

 -> DROP FOREIGN KEY borrowed_books_ibfk_1;

Query OK, 4 rows affected (0.02 sec)

Records: 4 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE borrowed_books

 -> DROP FOREIGN KEY borrowed_books_ibfk_2;

Query OK, 4 rows affected (0.01 sec)

Records: 4 Duplicates: 0 Warnings: 0

Now, we need to add the foreign keys again. The format of the command will be
the same as when we added them, but appending the new desired behavior. In our
case, if we remove a customer or book from our tables, we want to remove the rows
referencing these books and customers from borrowed_books; so, we need to use the
CASCADE option. Let's consider what they would look like:

mysql> ALTER TABLE borrowed_books

 -> ADD FOREIGN KEY (book_id) REFERENCES book (id)

 -> ON DELETE CASCADE ON UPDATE CASCADE,

 -> ADD FOREIGN KEY (customer_id) REFERENCES customer (id)

 -> ON DELETE CASCADE ON UPDATE CASCADE;

Query OK, 4 rows affected (0.01 sec)

Records: 4 Duplicates: 0 Warnings: 0

Note that we can define the CASCADE behavior for both actions: when updating and
when deleting rows. There are other options instead of CASCADE—for example SET
NULL, which sets the foreign keys columns to NULL and allows the original row to be
deleted, or the default one, RESTRICT, which rejects the update/delete commands.

Deleting data
Deleting data is almost the same as updating it. You need to provide a WHERE clause
that will match the rows that you want to delete. Also, as with when updating data,
it is highly recommended to first build the SELECT query that will retrieve the rows
that you want to delete before performing the DELETE command. Do not think that
you are wasting time with this methodology; as the saying goes, measure twice, cut
once. Not always is it possible to recover data after deleting rows!

Using Databases

[170]

Let's try to delete a book by observing how the CASCADE option we set earlier behaves.
For this, let's first query for the existing borrowed books list via the following:

mysql> SELECT book_id, customer_id FROM borrowed_books;

+---------+-------------+

| book_id | customer_id |

+---------+-------------+

| 1 | 1 |

| 4 | 1 |

| 4 | 2 |

| 1 | 2 |

+---------+-------------+

4 rows in set (0.00 sec)

There are two different books, 1 and 4, with each of them borrowed twice. Let's try
to delete the book with the ID 4. First, build a query such as SELECT * FROM book
WHERE id = 4 to make sure that the condition in the WHERE clause is the appropriate
one. Once you are sure, perform the following query:

mysql> DELETE FROM book WHERE id = 4;

Query OK, 1 row affected (0.02 sec)

As you can note, we only specified the DELETE FROM command followed by the name
of the table and the WHERE clause. MySQL tells us that there was 1 row affected, which
makes sense, given the previous SELECT statement we made.

If we go back to our borrowed_books table and query for the existing ones, we will
note that all the rows referencing the book with the ID 4 are gone. This is because
when deleting them from the book table, MySQL noticed the foreign key reference,
checked what it needed to do while deleting—in this case, CASCADE—and deleted
also the rows in borrowed_books. Take a look at the following:

mysql> SELECT book_id, customer_id FROM borrowed_books;

+---------+-------------+

| book_id | customer_id |

+---------+-------------+

| 1 | 1 |

| 1 | 2 |

+---------+-------------+

2 rows in set (0.00 sec)

Chapter 5

[171]

Working with transactions
In the previous section, we reiterated how important it is to make sure that an
update or delete query contain the desirable matching set of rows. Even though this
will always apply, there is a way to revert the changes that you just made, which is
working with transactions.

A transaction is a state where MySQL keeps track of all the changes that you make
in your data in order to be able to revert all of them if needed. You need to explicitly
start a transaction, and before you close the connection to the server, you need to
commit your changes. This means that MySQL does not really perform these changes
until you tell it to do so. If during a transaction you want to revert the changes, you
should roll back instead of making a commit.

PDO allows you to do this with three functions:

• beginTransaction: This will start the transaction.
• commit: This will commit your changes. Keep in mind that if you do not

commit and the PHP script finishes or you close the connection explicitly,
MySQL will reject all the changes you made during this transaction.

• rollBack: This will roll back all the changes that were made during this
transaction.

One possible use of transactions in your application is when you need to perform
multiple queries and all of them have to be successful and the whole set of queries
should not be performed otherwise. This would be the case when adding a sale into
the database. Remember that our sales are stored in two tables: one for the sale itself
and one for the list of books related to this sale. When adding a new one, you need
to make sure that all the books are added to this database; otherwise, the sale will be
corrupted. What you should do is execute all the queries, checking for their returning
values. If any of them returns false, the whole sale should be rolled back.

Let's create an addSale function in your init.php file in order to emulate this
behavior. The content should be as follows:

function addSale(int $userId, array $bookIds): void {
 $db = new PDO(
 'mysql:host=127.0.0.1;dbname=bookstore',
 'root',
 ''
);

 $db->beginTransaction();
 try {
 $query = 'INSERT INTO sale (customer_id, date) '

Using Databases

[172]

 . 'VALUES(:id, NOW())';
 $statement = $db->prepare($query);
 if (!$statement->execute(['id' => $userId])) {
 throw new Exception($statement->errorInfo()[2]);
 }
 $saleId = $db->lastInsertId();

 $query = 'INSERT INTO sale_book (book_id, sale_id) '
 . 'VALUES(:book, :sale)';
 $statement = $db->prepare($query);
 $statement->bindValue('sale', $saleId);
 foreach ($bookIds as $bookId) {
 $statement->bindValue('book', $bookId);
 if (!$statement->execute()) {
 throw new Exception($statement->errorInfo()[2]);
 }
 }

 $db->commit();
 } catch (Exception $e) {
 $db->rollBack();
 throw $e;
 }
}

This function is quite complex. It gets as arguments the ID of the customer and the
list of books as we assume that the date of the sale is the current date. The first thing
we will do is connect to the database, instantiating the PDO class. Right after this, we
will begin our transaction, which will last only during the course of this function.
Once we begin the transaction, we will open a try…catch block that will enclose
the rest of the code of the function. The reason is that if we throw an exception,
the catch block will capture it, rolling back the transaction and propagating the
exception. The code inside the try block just adds first the sale and then iterates the
list of books, inserting them into the database too. At all times, we will check the
response of the execute function, and if it's false, we will throw an exception with
the information of the error.

Let's try to use this function. Write the following code that tries to add a sale for three
books; however, one of them does not exist, which is the one with the ID 200:

try {
 addSale(1, [1, 2, 200]);
} catch (Exception $e) {
 echo 'Error adding sale: ' . $e->getMessage();
}

Chapter 5

[173]

This code will echo the error message, complaining about the nonexistent book.
If you check in MySQL, there will be no rows in the sales table as the function
rolled back when the exception was thrown.

Finally, let's try the following code instead. This one will add three valid books so
that the queries are always successful and the try block can go until the end, where
we will commit the changes:

try {
 addSale(1, [1, 2, 3]);
} catch (Exception $e) {
 echo 'Error adding sale: ' . $e->getMessage();
}

Test it, and you will see how there is no message printed on your browser.
Then, go to your database to make sure that there is a new sales row and there
are three books linked to it.

Summary
In this chapter, we learned the importance of databases and how to use them from our
web application: from setting up the connection using PDO and creating and fetching
data on demand to constructing more complex queries that fulfill our needs. With all
of this, our application looks way more useful now than when it was completely static.

In the next chapter, we will discover how to apply the most important design patterns
for web applications through Model View Controller (MVC). You will gain a sense of
clarity in your code when you organize your application in this way.

[175]

Adapting to MVC
Web applications are more complex than what we have built so far. The more
functionality you add, the more difficult the code is to maintain and understand.
It is for this reason that structuring your code in an organized way is crucial. You
could design your own structure, but as with OOP, there already exist some design
patterns that try to solve this problem.

MVC (model-view-controller) has been the favorite pattern for web developers. It
helps us separate the different parts of a web application, leaving the code easy to
understand even for beginners. We will try to refactor our bookstore example to use
the MVC pattern, and you will realize how quickly you can add new functionality
after that.

In this chapter, you will learn the following:

• Using Composer to manage dependencies
• Designing a router for your application
• Organizing your code into models, views, and controllers
• Twig as the template engine
• Dependency injection

The MVC pattern
So far, each time we have had to add a feature, we added a new PHP file with a
mixture of PHP and HTML for that specific page. For chunks of code with a single
purpose, and which we have to reuse, we created functions and added them to
the functions file. Even for very small web applications like ours, the code starts
becoming very confusing, and the ability to reuse code is not as helpful as it could
be. Now imagine an application with a large number of features: that would be
pretty much chaos itself.

Adapting to MVC

[176]

The problems do not stop here. In our code, we have mixed HTML and PHP code in
a single file. That will give us a lot of trouble when trying to change the design of the
web application, or even if we want to perform a very small change across all pages,
such as changing the menu or footer of the page. The more complex the application,
the more problems we will encounter.

MVC came up as a pattern to help us divide the different parts of the application.
These parts are known as models, views, and controllers. Models manage the
data and/or the business logic, views contain the templates for our responses (for
example, HTML pages), and controllers orchestrate requests, deciding what data to
use and how to render the appropriate template. We will go through them in later
sections of this chapter.

Using Composer
Even though this is not a necessary component when implementing the MVC
pattern, Composer has been an indispensable tool for any PHP web application over
the last few years. The main goal of this tool is to help you manage the dependencies
of your application, that is, the third-party libraries (of code) that we need to use in
our application. We can achieve that by just creating a configuration file that lists
them, and by running a command in your command line.

You need to install Composer on your development machine (see Chapter 1, Setting Up
the Environment). Make sure that you have it by executing the following command:

$ composer –version

This should return the version of your Composer installation. If it does not, return to
the installation section to fix the problem.

Managing dependencies
As we stated earlier, the main goal of Composer is to manage dependencies. For
example, we've already implemented our configuration reader, the Config class,
but if we knew of someone that implemented a better version of it, we could just use
theirs instead of reinventing the wheel; just make sure that they allow you to do so!

Chapter 6

[177]

Open source
Open source refers to the code that developers write and share with
the community in order to be used by others without restrictions.
There are actually different types of licenses, and some give you
more flexibility than others, but the basic idea is that we can reuse the
libraries that other developers have written in our applications. That
helps the community to grow in knowledge, as we can learn what
others have done, improve it, and share it afterwards.

We've already implemented a decent configuration reader, but there are other
elements of our application that need to be done. Let's take advantage of Composer to
reuse someone else's libraries. There are a couple of ways of adding a dependency to
our project: executing a command in our command line, or editing the configuration
file manually. As we still do not have Composer's configuration file, let's use the first
option. Execute the following command in the root directory of your application:

$ composer require monolog/monolog

This command will show the following result:

Using version ^1.17 for monolog/monolog

./composer.json has been created

Loading composer repositories with package information

Updating dependencies (including require-dev)

 - Installing psr/log (1.0.0)

 Downloading: 100%

 - Installing monolog/monolog (1.17.2)

 Downloading: 100%

...

Writing lock file

Generating autoload files

With this command, we asked Composer to add the library monolog/monolog as a
dependency of our application. Having executed that, we can now see some changes
in our directory:

• We have a new file named composer.json. This is the configuration file
where we can add our dependencies.

• We have a new file named composer.lock. This is a file that Composer uses
in order to track the dependencies that have already been installed and their
versions.

Adapting to MVC

[178]

• We have a new directory named vendor. This directory contains the code of
the dependencies that Composer downloaded.

The output of the command also shows us some extra information. In this case,
it says that it downloaded two libraries or packages, even though we asked for
only one. The reason is that the package that we needed also contained other
dependencies that were resolved by Composer. Also note the version that Composer
downloaded; as we did not specify any version, Composer took the most recent one
available, but you can always try to write the specific version that you need.

We will need another library, in this case twig/twig. Let's add it to our
dependencies list with the following command:

$ composer require twig/twig

This command will show the following result:

Using version ^1.23 for twig/twig

./composer.json has been updated

Loading composer repositories with package information

Updating dependencies (including require-dev)

 - Installing twig/twig (v1.23.1)

 Downloading: 100%

Writing lock file

Generating autoload files

If we check the composer.json file, we will see the following content:

{
 "require": {
 "monolog/monolog": "^1.17",
 "twig/twig": "^1.23"
 }
}

The file is just a JSON map that contains the configuration of our application; in
this case, the list of the two dependencies that we installed. As you can see, the
dependencies' name follows a pattern: two words separated by a slash. The first
of the words refers to the vendor that developed the library. The second of them
is the name of the library itself. The dependency has a version, which could be the
exact version number—as in this case—or it could contain wildcard characters
or tag names. You can read more about this at https://getcomposer.org/doc/
articles/aliases.md.

https://getcomposer.org/doc/articles/aliases.md
https://getcomposer.org/doc/articles/aliases.md

Chapter 6

[179]

Finally, if you would like to add another dependency, or edit the composer.json
file in any other way, you should run composer update in your command line,
or wherever the composer.json file is, in order to update the dependencies.

Autoloader with PSR-4
In the previous chapters, we also added an autoloader to our application. As we
are now using someone else's code, we need to know how to load their classes too.
Soon, developers realized that this scenario without a standard would be virtually
impossible to manage, and they came out with some standards that most developers
follow. You can find a lot of information on this topic at http://www.php-fig.org.

Nowadays, PHP has two main standards for autoloading: PSR-0 and PSR-4. They
are very similar, but we will be implementing the latter, as it is the most recent
standard published. This standard basically follows what we've already introduced
when talking about namespaces: the namespace of a class must be the same as
the directory where it is, and the name of the class should be the name of the file,
followed by the extension .php. For example, the file in src/Domain/Book.php
contains the class Book inside the namespace Bookstore\Domain.

Applications using Composer should follow one of those standards, and they should
note in their respective composer.json file which one they are using. This means
that Composer knows how to autoload its own application files, so we will not need
to take care of it when we download external libraries. To specify that, we edit our
composer.json file, and add the following content:

{
 "require": {
 "monolog/monolog": "^1.17",
 "twig/twig": "^1.23"
 },
 "autoload": {
 "psr-4": {
 "Bookstore\\": "src"
 }
 }
}

The preceding code means that we will use PSR-4 in our application, and that all the
namespaces that start with Bookstore should be found inside the src/ directory.
This is exactly what our autoloader was doing already, but reduced to a couple of
lines in a configuration file. We can safely remove our autoloader and any reference
to it now.

http://www.php-fig.org

Adapting to MVC

[180]

Composer generates some mappings that help to speed up the loading of classes. In
order to update those maps with the new information added to the configuration file,
we need to run the composer update command that we ran earlier. This time, the
output will tell us that there is no package to update, but the autoload files will be
generated again:

$ composer update

Loading composer repositories with package information

Updating dependencies (including require-dev)

Nothing to install or update

Writing lock file

Generating autoload files

Adding metadata
In order to know where to find the libraries that you define as dependencies,
Composer keeps a repository of packages and versions, known as Packagist. This
repository keeps a lot of useful information for developers, such as all the versions
available for a given package, the authors, some description of what the package does
(or a website pointing to that information), and the dependencies that this package
will download. You can also browse the packages, searching by name or categories.

But how does Packagist know about this? It is all thanks to the composer.json file
itself. In there, you can define all the metadata of your application in a format that
Composer understands. Let's see an example. Add the following content to your
composer.json file:

{
 "name": "picahielos/bookstore",
 "description": "Manages an online bookstore.",
 "minimum-stability": "stable",
 "license": "Apache-2.0",
 "type": "project",
 "authors": [
 {
 "name": "Antonio Lopez",
 "email": "antonio.lopez.zapata@gmail.com"
 }
],
 // ...
}

Chapter 6

[181]

The configuration file now contains the name of the package following the Composer
convention: vendor name, slash, and the package name—in this case, picahielos/
bookstore. We also add a description, license, authors, and other metadata. If you
have your code in a pubic repository such as GitHub, adding this composer.json
file will allow you to go to Packagist and insert the URL of your repository. Packagist
will add your code as a new package, extracting the info from your composer.json
file. It will show the available versions based on your tags or branches. In order to
learn more about it, we encourage you to visit the official documentation at
https://getcomposer.org/doc/04-schema.md.

The index.php file
In MVC applications, we usually have one file that gets all the requests, and routes
them to the specific controller depending on the URL. This logic can generally be
found in the index.php file in our root directory. We already have one, but as we are
adapting our features to the MVC pattern, we will not need the current index.php
anymore. Hence, you can safely replace it with the following:

<?php

require_once __DIR__ . '/vendor/autoload.php';

The only thing that this file will do now is include the file that handles all the
autoloading from the Composer code. Later, we will initialize everything here,
such as database connections, configuration readers, and so on, but right now,
let's leave it empty.

Working with requests
As you might recall from previous chapters, the main purpose of a web application
is to process HTTP requests coming from the client and return a response. If that is
the main goal of your application, managing requests and responses should be an
important part of your code.

PHP is a language that can be used for scripts, but its main usage is in web
applications. Due to this, the language comes ready with a lot of helpers for managing
requests and responses. Still, the native way is not ideal, and as good OOP developers,
we should come up with a set of classes that help with that. The main elements for this
small project—still inside your application—are the request and the router. Let's start!

https://getcomposer.org/doc/04-schema.md

Adapting to MVC

[182]

The request object
As we start our mini framework, we need to change our directory structure a bit.
We will create the src/Core directory for all the classes related to the framework.
As the configuration reader from the previous chapters is also part of the framework
(rather than functionality for the user), we should move the Config.php file to this
directory too.

The first thing to consider is what a request looks like. If you remember Chapter 2,
Web Applications with PHP, a request is basically a message that goes to a URL, and
has a method—GET or POST for now. The URL is at the same time composed of two
parts: the domain of the web application, that is, the name of your server, and the path
of the request inside the server. For example, if you try to access http://bookstore.
com/my-books, the first part, http://bookstore.com, would be the domain and /my-
books would be the path. In fact, http would not be part of the domain, but we do not
need that level of granularity for our application. You can get this information from the
global array $_SERVER that PHP populates for each request.

Our Request class should have a property for each of those three elements, followed
by a set of getters and some other helpers that will be useful for the user. Also, we
should initialize all the properties from $_SERVER in the constructor. Let's see what it
would look like:

<?php

namespace Bookstore\Core;

class Request {
 const GET = 'GET';
 const POST = 'POST';

 private $domain;
 private $path;
 private $method;

 public function __construct() {
 $this->domain = $_SERVER['HTTP_HOST'];
 $this->path = $_SERVER['REQUEST_URI'];
 $this->method = $_SERVER['REQUEST_METHOD'];
 }

 public function getUrl(): string {
 return $this->domain . $this->path;
 }

Chapter 6

[183]

 public function getDomain(): string {
 return $this->domain;
 }

 public function getPath(): string {
 return $this->path;
 }

 public function getMethod(): string {
 return $this->method;
 }

 public function isPost(): bool {
 return $this->method === self::POST;
 }

 public function isGet(): bool {
 return $this->method === self::GET;
 }
}

We can see in the preceding code that other than the getters for each property,
we added the methods getUrl, isPost, and isGet. The user could find the same
information using the already existing getters, but as they will be needed a lot, it is
always good to make it easier for the user. Also note that the properties are coming
from the values of the $_SERVER array: HTTP_HOST, REQUEST_URI, and REQUEST_
METHOD.

Filtering parameters from requests
Another important part of a request is the information that comes from the user, that
is, the GET and POST parameters, and the cookies. As with the $_SERVER global array,
this information comes from $_POST, $_GET, and $_COOKIE, but it is always good to
avoid using them directly, without filtering, as the user could send malicious code.

We will now implement a class that will represent a map—key-value pairs—that
can be filtered. We will call it FilteredMap, and will include it in our namespace,
Bookstore\Core. We will use it to contain the parameters GET and POST and the
cookies as two new properties in our Request class. The map will contain only one
property, the array of data, and will have some methods to fetch information from
it. To construct the object, we need to send the array of data as an argument to the
constructor:

<?php

namespace Bookstore\Core;

Adapting to MVC

[184]

class FilteredMap {
 private $map;

 public function __construct(array $baseMap) {
 $this->map = $baseMap;
 }

 public function has(string $name): bool {
 return isset($this->map[$name]);
 }

 public function get(string $name) {
 return $this->map[$name] ?? null;
 }
}

This class does not do much so far. We could have the same functionality with
a normal array. The utility of this class comes when we add filters while fetching
data. We will implement three filters, but you can add as many as you need:

public function getInt(string $name) {
 return (int) $this->get($name);
}

public function getNumber(string $name) {
 return (float) $this->get($name);
}

public function getString(string $name, bool $filter = true) {
 $value = (string) $this->get($name);
 return $filter ? addslashes($value) : $value;
}

These three methods in the preceding code allow the user to get parameters of a
specific type. Let's say that the developer needs to get the ID of the book from the
request. The best option is to use the getInt method to make sure that the returned
value is a valid integer, and not some malicious code that can mess up our database.
Also note the function getString, where we use the addSlashed method. This
method adds slashes to some of the suspicious characters, such as slashes or quotes,
trying to prevent malicious code with it.

Chapter 6

[185]

Now we are ready to get the GET and POST parameters as well as the cookies from
our Request class using our FilteredMap. The new code would look like
the following:

<?php

namespace Bookstore\Core;

class Request {
 // ...
 private $params;
 private $cookies;

 public function __construct() {
 $this->domain = $_SERVER['HTTP_HOST'];
 $this->path = explode('?', $_SERVER['REQUEST_URI'])[0];
 $this->method = $_SERVER['REQUEST_METHOD'];
 $this->params = new FilteredMap(
 array_merge($_POST, $_GET)
);
 $this->cookies = new FilteredMap($_COOKIE);
 }

 // ...

 public function getParams(): FilteredMap {
 return $this->params;
 }

 public function getCookies(): FilteredMap {
 return $this->cookies;
 }
}

With this new addition, a developer could get the POST parameter price with the
following line of code:

$price = $request->getParams()->getNumber('price');

This is way safer than the usual call to the global array:

$price = $_POST['price'];

Adapting to MVC

[186]

Mapping routes to controllers
If you can recall from any URL that you use daily, you will probably not see any
PHP file as part of the path, like we have with http://localhost:8000/init.
php. Websites try to format their URLs to make them easier to remember instead
of depending on the file that should handle that request. Also, as we've already
mentioned, all our requests go through the same file, index.php, regardless of their
path. Because of this, we need to keep a map of the URL paths, and who should
handle them.

Sometimes, we have URLs that contain parameters as part of their path, which is
different from when they contain the GET or POST parameters. For example, to get
the page that shows a specific book, we might include the ID of the book as part of
the URL, such as /book/12 or /book/3. The ID will change for each different book,
but the same controller should handle all of these requests. To achieve this, we say
that the URL contains an argument, and we could represent it by /book/:id, where
id is the argument that identifies the ID of the book. Optionally, we could specify the
kind of value this argument can take, for example, number, string, and so on.

Controllers, the ones in charge of processing requests, are defined by a method's
class. This method takes as arguments all the arguments that the URL's path defines,
such as the ID of the book. We group controllers by their functionality, that is, a
BookController class will contain the methods related to requests about books.

Having defined all the elements of a route—a URL-controller relationship—we are
ready to create our routes.json file, a configuration file that will keep this map.
Each entry of this file should contain a route, the key being the URL, and the value,
a map of information about the controller. Let's see an example:

{
 "books/:page": {
 "controller": "Book",
 "method": "getAllWithPage",
 "params": {
 "page": "number"
 }
 }
}

The route in the preceding example refers to all the URLs that follow the pattern /
books/:page, with page being any number. Thus, this route will match URLs such
as /books/23 or /books/2, but it should not match /books/one or /books. The
controller that will handle this request should be the getAllWithPage method from
BookController; we will append Controller to all the class names. Given the
parameters that we defined, the definition of the method should be something like
the following:

Chapter 6

[187]

public function getAllWithPage(int $page): string {
 //...
}

There is one last thing we should consider when defining a route. For some endpoints,
we should enforce the user to be authenticated, such as when the user is trying to
access their own sales. We could define this rule in several ways, but we chose to
do it as part of the route, adding the entry "login": true as part of the controller's
information. With that in mind, let's add the rest of the routes that define all the views
that we expect to have:

{
//...
 "books": {
 "controller": "Book",
 "method": "getAll"
 },
 "book/:id": {
 "controller": "Book",
 "method": "get",
 "params": {
 "id": "number"
 }
 },
 "books/search": {
 "controller": "Book",
 "method": "search"
 },
 "login": {
 "controller": "Customer",
 "method": "login"
 },
 "sales": {
 "controller": "Sales",
 "method": "getByUser" ,
 "login": true
 },
 "sales/:id": {
 "controller": "Sales",
 "method": "get",
 "login": true,
 "params": {
 "id": "number"
 }
 },

Adapting to MVC

[188]

 "my-books": {
 "controller": "Book",
 "method": "getByUser",
 "login": true
 }
}

These routes define all the pages we need; we can get all the books in a paginated
way or specific books by their ID, we can search books, list the sales of the user,
show a specific sale by its ID, and list all the books that a certain user has borrowed.
However, we are still lacking some of the endpoints that our application should
be able to handle. For all those actions that are trying to modify data rather than
requesting it, that is, borrowing a book or buying it, we need to add endpoints too.
Add the following to your routes.json file:

{
 // ...
 "book/:id/buy": {
 "controller": "Sales",
 "method": "add",
 "login": true
 "params": {
 "id": "number"
 }
 },
 "book/:id/borrow": {
 "controller": "Book",
 "method": "borrow",
 "login": true
 "params": {
 "id": "number"
 }
 },
 "book/:id/return": {
 "controller": "Book",
 "method": "returnBook",
 "login": true
 "params": {
 "id": "number"
 }
 }
}

Chapter 6

[189]

The router
The router will be by far the most complicated piece of code in our application.
The main goal is to receive a Request object, decide which controller should
handle it, invoke it with the necessary parameters, and return the response from
that controller. The main goal of this section is to understand the importance of the
router rather than its detailed implementation, but we will try to describe each of its
parts. Copy the following content as your src/Core/Router.php file:

<?php

namespace Bookstore\Core;

use Bookstore\Controllers\ErrorController;
use Bookstore\Controllers\CustomerController;

class Router {
 private $routeMap;
 private static $regexPatters = [
 'number' => '\d+',
 'string' => '\w'
];

 public function __construct() {
 $json = file_get_contents(
 __DIR__ . '/../../config/routes.json'
);
 $this->routeMap = json_decode($json, true);
 }

 public function route(Request $request): string {
 $path = $request->getPath();

 foreach ($this->routeMap as $route => $info) {
 $regexRoute = $this->getRegexRoute($route, $info);
 if (preg_match("@^/$regexRoute$@", $path)) {
 return $this->executeController(
 $route, $path, $info, $request
);
 }
 }

 $errorController = new ErrorController($request);
 return $errorController->notFound();
 }
}

Adapting to MVC

[190]

The constructor of this class reads from the routes.json file, and stores the content
as an array. Its main method, route, takes a Request object and returns a string,
which is what we will send as output to the client. This method iterates all the routes
from the array, trying to match each with the path of the given request. Once it finds
one, it tries to execute the controller related to that route. If none of the routes are
a good match to the request, the router will execute the notFound method of the
ErrorController, which will then return an error page.

URLs matching with regular expressions
While matching a URL with the route, we need to take care of the arguments
for dynamic URLs, as they do not let us perform a simple string comparison.
PHP—and other languages—has a very strong tool for performing string
comparisons with dynamic content: regular expressions. Being an expert in regular
expressions takes time, and it is outside the scope of this book, but we will give you
a brief introduction to them.

A regular expression is a string that contains some wildcard characters that will
match the dynamic content. Some of the most important ones are as follows:

• ^: This is used to specify that the matching part should be the start of the
whole string

• $: This is used to specify that the matching part should be the end of the
whole string

• \d: This is used to match a digit
• \w: This is used to match a word
• +: This is used for following a character or expression, to let that character or

expression to appear at least once or many times
• *: This is used for following a character or expression, to let that character or

expression to appear zero or many times
• .: This is used to match any single character

Let's see some examples:

• The pattern .* will match anything, even an empty string
• The pattern .+ will match anything that contains at least one character
• The pattern ^\d+$ will match any number that has at least one digit

Chapter 6

[191]

In PHP, we have different functions to work with regular expressions. The easiest
of them, and the one that we will use, is pregmatch. This function takes a pattern as
its first argument (delimited by two characters, usually @ or /), the string that we are
trying to match as the second argument, and optionally, an array where PHP stores
the occurrences found. The function returns a Boolean value, being true if there was
a match, false otherwise. We use it as follows in our Route class:

preg_match("@^/$regexRoute$@", $path)

The $path variable contains the path of the request, for example, /books/2.
We match using a pattern that is delimited by @, has the ^ and $ wildcards to force
the pattern to match the whole string, and contains the concatenation of / and the
variable $regexRoute. The content of this variable is given by the following method;
add this as well to your Router class:

private function getRegexRoute(
 string $route,
 array $info
): string {
 if (isset($info['params'])) {
 foreach ($info['params'] as $name => $type) {
 $route = str_replace(
 ':' . $name, self::$regexPatters[$type], $route
);
 }
 }

 return $route;
}

The preceding method iterates the parameters list coming from the information of
the route. For each parameter, the function replaces the name of the parameter inside
the route by the wildcard character corresponding to the type of parameter—check
the static array, $regexPatterns. To illustrate the usage of this function, let's see
some examples:

• The route /books will be returned without a change, as it does not contain
any argument

• The route books/:id/borrow will be changed to books/\d+/borrow, as the
URL argument, id, is a number

Adapting to MVC

[192]

Extracting the arguments of the URL
In order to execute the controller, we need three pieces of data: the name of the class
to instantiate, the name of the method to execute, and the arguments that the method
needs to receive. We already have the first two as part of the route $info array, so
let's focus our efforts on finding the third one. Add the following method to the
Router class:

private function extractParams(
 string $route,
 string $path
): array {
 $params = [];

 $pathParts = explode('/', $path);
 $routeParts = explode('/', $route);

 foreach ($routeParts as $key => $routePart) {
 if (strpos($routePart, ':') === 0) {
 $name = substr($routePart, 1);
 $params[$name] = $pathParts[$key+1];
 }
 }

 return $params;
}

This last method expects that both the path of the request and the URL of the route
follow the same pattern. With the explode method, we get two arrays that should
match each of their entries. We iterate them, and for each entry in the route array
that looks like a parameter, we fetch its value in the URL. For example, if we had
the route /books/:id/borrow and the path /books/12/borrow, the result of this
method would be the array ['id' => 12].

Executing the controller
We end this section by implementing the method that executes the controller in
charge of a given route. We already have the name of the class, the method, and the
arguments that the method needs, so we could make use of the call_user_func_
array native function that, given an object, a method name, and the arguments for
the method, invokes the method of the object passing the arguments. We have to
make use of it as the number of arguments is not fixed, and we cannot perform a
normal invocation.

Chapter 6

[193]

But we are still missing a behavior introduced when creating our routes.json file.
There are some routes that force the user to be logged in, which, in our case, means
that the user has a cookie with the user ID. Given a route that enforces authorization,
we will check whether our request contains the cookie, in which case we will
set it to the controller class through setCustomerId. If the user does not have a
cookie, instead of executing the controller for the current route, we will execute
the showLogin method of the CustomerController class, which will render the
template for the login form. Let's see how everything would look on adding the last
method of our Router class:

private function executeController(
 string $route,
 string $path,
 array $info,
 Request $request
): string {
 $controllerName = '\Bookstore\Controllers\\'
 . $info['controller'] . 'Controller';
 $controller = new $controllerName($request);

 if (isset($info['login']) && $info['login']) {
 if ($request->getCookies()->has('user')) {
 $customerId = $request->getCookies()->get('user');
 $controller->setCustomerId($customerId);
 } else {
 $errorController = new CustomerController($request);
 return $errorController->login();
 }
 }

 $params = $this->extractParams($route, $path);
 return call_user_func_array(
 [$controller, $info['method']], $params
);
}

We have already warned you about the lack of security in our application, as this
is just a project with didactic purposes. So, avoid copying the authorization system
implemented here.

Adapting to MVC

[194]

M for model
Imagine for a moment that our bookstore website is quite successful, so we think of
building a mobile app to increase our market. Of course, we would want to use the
same database that we use for our website, as we need to sync the books that people
borrow or buy from both apps. We do not want to be in a position where two people
buy the same last copy of a book!

Not only the database, but the queries used to get books, update them, and so on,
have to be the same too, otherwise we would end up with unexpected behavior.
Of course, one apparently easy option would be to replicate the queries in both
codebases, but that has a huge maintainability problem. What if we change one
single field of our database? We need to apply the same change to at least two
different codebases. That does not seem to be useful at all.

Business logic plays an important role here too. Think of it as decisions you need to
take that affect your business. In our case, that a premium customer is able to borrow
10 books and a normal one only 3, is business logic. This logic should be put in a
common place too, because, if we want to change it, we will have the same problems
as with our database queries.

We hope that by now we've convinced you that data and business logic should
be separated from the rest of the code in order to make it reusable. Do not worry
if it is hard for you to define what should go as part of the model or as part of the
controller; a lot of people struggle with this distinction. As our application is very
simple, and it does not have a lot of business logic, we will just focus on adding all
the code related to MySQL queries.

As you can imagine, for an application integrated with MySQL, or any other database
system, the database connection is an important element of a model. We chose to use
PDO in order to interact with MySQL, and as you might remember, instantiating that
class was a bit of a pain. Let's create a singleton class that returns an instance of PDO to
make things easier. Add this code to src/Core/Db.php:

<?php

namespace Bookstore\Core;

use PDO;

class Db {
 private static $instance;

 private static function connect(): PDO {
 $dbConfig = Config::getInstance()->get('db');

Chapter 6

[195]

 return new PDO(
 'mysql:host=127.0.0.1;dbname=bookstore',
 $dbConfig['user'],
 $dbConfig['password']
);
 }

 public static function getInstance(){
 if (self::$instance == null) {
 self::$instance = self::connect();
 }
 return self::$instance;
 }
}

This class, defined in the preceding code snippet, just implements the singleton
pattern and wraps the creation of a PDO instance. From now on, in order to get a
database connection, we just need to write Db::getInstance().

Although it might not be true for all models, in our application, they will always
have to access the database. We could create an abstract class where all models
extend. This class could contain a $db protected property that will be set on the
constructor. With this, we avoid duplicating the same constructor and property
definition across all our models. Copy the following class into src/Models/
AbstractModel.php:

<?php

namespace Bookstore\Models;

use PDO;

abstract class AbstractModel {
 private $db;

 public function __construct(PDO $db) {
 $this->db = $db;
 }
}

Adapting to MVC

[196]

Finally, to finish the setup of the models, we could create a new exception (as we did
with the NotFoundException class) that represents an error from the database.
It will not contain any code, but we will be able to differentiate where an exception is
coming from. We will save it in src/Exceptions/DbException.php:

<?php

namespace Bookstore\Exceptions;

use Exception;

class DbException extends Exception {
}

Now that we've set the ground, we can start writing our models. It is up to you to
organize your models, but it is a good idea to mimic the domain objects structure.
In this case, we would have three models: CustomerModel, BookModel, and
SalesModel. In the following sections, we will explain the contents of each of them.

The customer model
Let's start with the easiest one. As our application is still very primitive, we will
not allow the creation of new costumers, and work with the ones we inserted
manually into the database instead. That means that the only thing we need to do
with customers is to query them. Let's create a CustomerModel class in src/Models/
CustomerModel.php with the following content:

<?php

namespace Bookstore\Models;

use Bookstore\Domain\Customer;
use Bookstore\Domain\Customer\CustomerFactory;
use Bookstore\Exceptions\NotFoundException;

class CustomerModel extends AbstractModel {
 public function get(int $userId): Customer {
 $query = 'SELECT * FROM customer WHERE customer_id = :user';
 $sth = $this->db->prepare($query);
 $sth->execute(['user' => $userId]);

 $row = $sth->fetch();

 if (empty($row)) {

Chapter 6

[197]

 throw new NotFoundException();
 }

 return CustomerFactory::factory(
 $row['type'],
 $row['id'],
 $row['firstname'],
 $row['surname'],
 $row['email']
);
 }

 public function getByEmail(string $email): Customer {
 $query = 'SELECT * FROM customer WHERE email = :user';
 $sth = $this->db->prepare($query);
 $sth->execute(['user' => $email]);

 $row = $sth->fetch();

 if (empty($row)) {
 throw new NotFoundException();
 }

 return CustomerFactory::factory(
 $row['type'],
 $row['id'],
 $row['firstname'],
 $row['surname'],
 $row['email']
);
 }
}

The CustomerModel class, which extends from the AbstractModel class, contains
two methods; both of them return a Customer instance, one of them when providing
the ID of the customer, and the other one when providing the e-mail. As we already
have the database connection as the $db property, we just need to prepare the
statement with the given query, execute the statement with the arguments, and fetch
the result. As we expect to get a customer, if the user provided an ID or an e-mail
that does not belong to any customer, we will need to throw an exception—in this
case, a NotFoundException is just fine. If we find a customer, we use our factory to
create the object and return it.

Adapting to MVC

[198]

The book model
Our BookModel class gives us a bit more of work. Customers had a factory, but it is
not worth having one for books. What we use for creating them from MySQL rows is
not the constructor, but a fetch mode that PDO has, and that allows us to map a row
into an object. To do so, we need to adapt the Book domain object a bit:

• The names of the properties have to be the same as the names of the fields
in the database

• There is no need for a constructor or setters, unless we need them for
other purposes

• To go with encapsulation, properties should be private, so we will need
getters for all of them

The new Book class should look like the following:

<?php

namespace Bookstore\Domain;

class Book {
 private $id;
 private $isbn;
 private $title;
 private $author;
 private $stock;
 private $price;

 public function getId(): int {
 return $this->id;
 }

 public function getIsbn(): string {
 return $this->isbn;
 }

 public function getTitle(): string {
 return $this->title;
 }

 public function getAuthor(): string {
 return $this->author;
 }

Chapter 6

[199]

 public function getStock(): int {
 return $this->stock;
 }

 public function getCopy(): bool {
 if ($this->stock < 1) {
 return false;
 } else {
 $this->stock--;
 return true;
 }
 }

 public function addCopy() {
 $this->stock++;
 }

 public function getPrice(): float {
 return $this->price;
 }
}

We retained the getCopy and addCopy methods even though they are not getters, as
we will need them later. Now, when fetching a group of rows from MySQL with the
fetchAll method, we can send two parameters: the constant PDO::FETCH_CLASS that
tells PDO to map rows to a class, and the name of the class that we want to map to.
Let's create the BookModel class with a simple get method that fetches a book from
the database with a given ID. This method will return either a Book object or throw
an exception in case the ID does not exist. Save it as src/Models/BookModel.php:

<?php

namespace Bookstore\Models;

use Bookstore\Domain\Book;
use Bookstore\Exceptions\DbException;
use Bookstore\Exceptions\NotFoundException;
use PDO;

class BookModel extends AbstractModel {
 const CLASSNAME = '\Bookstore\Domain\Book';

 public function get(int $bookId): Book {
 $query = 'SELECT * FROM book WHERE id = :id';
 $sth = $this->db->prepare($query);

Adapting to MVC

[200]

 $sth->execute(['id' => $bookId]);

 $books = $sth->fetchAll(
 PDO::FETCH_CLASS, self::CLASSNAME
);
 if (empty($books)) {
 throw new NotFoundException();
 }

 return $books[0];
 }
}

There are advantages and disadvantages of using this fetch mode. On one hand,
we avoid a lot of dull code when creating objects from rows. Usually, we either just
send all the elements of the row array to the constructor of the class, or use setters
for all its properties. If we add more fields to the MySQL table, we just need to
add the properties to our domain class, instead of changing everywhere where we
were instantiating the objects. On the other hand, you are forced to use the same
names for the fields in both the table's as well as the class' properties, which means
high coupling (always a bad idea). This also causes some conflicts when following
conventions, because in MySQL, it is common to use book_id, but in PHP, the
property is $bookId.

Now that we know how this fetch mode works, let's add three other methods that
fetch data from MySQL. Add the following code to your model:

public function getAll(int $page, int $pageLength): array {
 $start = $pageLength * ($page - 1);

 $query = 'SELECT * FROM book LIMIT :page, :length';
 $sth = $this->db->prepare($query);
 $sth->bindParam('page', $start, PDO::PARAM_INT);
 $sth->bindParam('length', $pageLength, PDO::PARAM_INT);
 $sth->execute();

 return $sth->fetchAll(PDO::FETCH_CLASS, self::CLASSNAME);
}

public function getByUser(int $userId): array {
 $query = <<<SQL
SELECT b.*
FROM borrowed_books bb LEFT JOIN book b ON bb.book_id = b.id
WHERE bb.customer_id = :id
SQL;

Chapter 6

[201]

 $sth = $this->db->prepare($query);
 $sth->execute(['id' => $userId]);

 return $sth->fetchAll(PDO::FETCH_CLASS, self::CLASSNAME);
}

public function search(string $title, string $author): array {
 $query = <<<SQL
SELECT * FROM book
WHERE title LIKE :title AND author LIKE :author
SQL;
 $sth = $this->db->prepare($query);
 $sth->bindValue('title', "%$title%");
 $sth->bindValue('author', "%$author%");
 $sth->execute();

 return $sth->fetchAll(PDO::FETCH_CLASS, self::CLASSNAME);
}

The methods added are as follows:

• getAll returns an array of all the books for a given page. Remember that
LIMIT allows you to return a specific number of rows with an offset, which
can work as a paginator.

• getByUser returns all the books that a given customer has borrowed—we
will need to use a join query for this. Note that we return b.*, that is, only
the fields of the book table, skipping the rest of the fields.

• Finally, there is a method to search by either title or author, or both. We can
do that using the operator LIKE and enclosing the patterns with %. If we do
not specify one of the parameters, we will try to match the field with %%,
which matches everything.

So far, we have been adding methods to fetch data. Let's add methods that will allow
us to modify the data in our database. For the book model, we will need to be able to
borrow books and return them. Here is the code for those two actions:

public function borrow(Book $book, int $userId) {
 $query = <<<SQL
INSERT INTO borrowed_books (book_id, customer_id, start)
VALUES(:book, :user, NOW())
SQL;
 $sth = $this->db->prepare($query);
 $sth->bindValue('book', $book->getId());
 $sth->bindValue('user', $userId);

Adapting to MVC

[202]

 if (!$sth->execute()) {
 throw new DbException($sth->errorInfo()[2]);
 }

 $this->updateBookStock($book);
}

public function returnBook(Book $book, int $userId) {
 $query = <<<SQL
UPDATE borrowed_books SET end = NOW()
WHERE book_id = :book AND customer_id = :user AND end IS NULL
SQL;
 $sth = $this->db->prepare($query);
 $sth->bindValue('book', $book->getId());
 $sth->bindValue('user', $userId);
 if (!$sth->execute()) {
 throw new DbException($sth->errorInfo()[2]);
 }

 $this->updateBookStock($book);
}

private function updateBookStock(Book $book) {
 $query = 'UPDATE book SET stock = :stock WHERE id = :id';
 $sth = $this->db->prepare($query);
 $sth->bindValue('id', $book->getId());
 $sth->bindValue('stock', $book->getStock());
 if (!$sth->execute()) {
 throw new DbException($sth->errorInfo()[2]);
 }
}

When borrowing a book, you are adding a row to the borrower_books table. When
returning books, you do not want to remove that row, but rather to set the end date
in order to keep a history of the books that a user has been borrowing. Both methods
need to change the stock of the borrowed book: when borrowing it, reducing the
stock by one, and when returning it, increasing the stock. That is why, in the last
code snippet, we created a private method to update the stock of a given book,
which will be used from both the borrow and returnBook methods.

Chapter 6

[203]

The sales model
Now we need to add the last model to our application: the SalesModel. Using the
same fetch mode that we used with books, we need to adapt the domain class as
well. We need to think a bit more in this case, as we will be doing more than just
fetching. Our application has to be able to create new sales on demand, containing
the ID of the customer and the books. We can already add books with the current
implementation, but we need to add a setter for the customer ID. The ID of the sale
will be given by the autoincrement ID in MySQL, so there is no need to add a setter
for it. The final implementation would look as follows:

<?php

namespace Bookstore\Domain;

class Sale {
 private $id;
 private $customer_id;
 private $books;
 private $date;

 public function setCustomerId(int $customerId) {
 $this->customer_id = $customerId;
 }

 public function getId(): int {
 return $this->id;
 }

 public function getCustomerId(): int {
 return $this->customer_id;
 }

 public function getBooks(): array {
 return $this->books;
 }

 public function getDate(): string {
 return $this->date;
 }

 public function addBook(int $bookId, int $amount = 1) {
 if (!isset($this->books[$bookId])) {
 $this->books[$bookId] = 0;

Adapting to MVC

[204]

 }
 $this->books[$bookId] += $amount;
 }

 public function setBooks(array $books) {
 $this->books = $books;
 }
}

The SalesModel will be the most difficult one to write. The problem with this model
is that it includes manipulating different tables: sale and sale_book. For example,
when getting the information of a sale, we need to get the information from the
sale table, and then the information of all the books in the sale_book table. You
could argue about whether to have one unique method that fetches all the necessary
information related to a sale, or to have two different methods, one to fetch the sale
and the other to fetch the books, and let the controller to decide which one to use.

This actually starts a very interesting discussion. On one hand, we want to make
things easier for the controller—having one unique method to fetch the entire
Sale object. This makes sense as the controller does not need to know about the
internal implementation of the Sale object, which lowers coupling. On the other
hand, forcing the model to always fetch the whole object, even if we only need the
information in the sale table, is a bad idea. Imagine if the sale contains a lot of
books; fetching them from MySQL will decrease performance unnecessarily.

You should think how your controllers need to manage sales. If you will always
need the entire object, you can have one method without being concerned about
performance. If you only need to fetch the entire object sometimes, maybe you could
add both methods. For our application, we will have one method to rule them all,
since that is what we will always need.

Lazy loading
As with any other design challenge, other developers have already
given a lot of thought to this problem. They came up with a design
pattern named lazy load. This pattern basically lets the controller think
that there is only one method to fetch the whole domain object, but we
will actually be fetching only what we need from database.
The model fetches the most used information for the object and leaves
the rest of the properties that need extra database queries empty. Once
the controller uses a getter of a property that is empty, the model
automatically fetches that data from the database. We get the best of
both worlds: there is simplicity for the controller, but we do not spend
more time than necessary querying unused data.

Chapter 6

[205]

Add the following as your src/Models/SaleModel.php file:

<?php
namespace Bookstore\Models;

use Bookstore\Domain\Sale;
use Bookstore\Exceptions\DbException;
use PDO;

class SaleModel extends AbstractModel {
 const CLASSNAME = '\Bookstore\Domain\Sale';

 public function getByUser(int $userId): array {
 $query = 'SELECT * FROM sale WHERE s.customer_id = :user';
 $sth = $this->db->prepare($query);
 $sth->execute(['user' => $userId]);

 return $sth->fetchAll(PDO::FETCH_CLASS, self::CLASSNAME);
 }

 public function get(int $saleId): Sale {
 $query = 'SELECT * FROM sale WHERE id = :id';
 $sth = $this->db->prepare($query);
 $sth->execute(['id' => $saleId]);
 $sales = $sth->fetchAll(PDO::FETCH_CLASS, self::CLASSNAME);

 if (empty($sales)) {
 throw new NotFoundException('Sale not found.');
 }
 $sale = array_pop($sales);

 $query = <<<SQL
SELECT b.id, b.title, b.author, b.price, sb.amount as stock, b.isbn
FROM sale s
LEFT JOIN sale_book sb ON s.id = sb.sale_id
LEFT JOIN book b ON sb.book_id = b.id
WHERE s.id = :id
SQL;
 $sth = $this->db->prepare($query);
 $sth->execute(['id' => $saleId]);
 $books = $sth->fetchAll(
 PDO::FETCH_CLASS, BookModel::CLASSNAME
);

 $sale->setBooks($books);
 return $sale;
 }
}

Adapting to MVC

[206]

Another tricky method in this model is the one that takes care of creating a sale in the
database. This method has to create a sale in the sale table, and then add all the books
for that sale to the sale_book table. What would happen if we have a problem when
adding one of the books? We would leave a corrupted sale in the database. To avoid
that, we need to use transactions, starting with one at the beginning of the model's or
the controller's method, and either rolling back in case of error, or committing it at the
end of the method.

In the same method, we also need to take care of the ID of the sale. We do not set the
ID of the sale when creating the sale object, because we rely on the autoincremental
field in the database. But when inserting the books into sale_book, we do need the
ID of the sale. For that, we need to request the PDO for the last inserted ID with the
lastInsertId method. Let's add then the create method into your SaleModel:

public function create(Sale $sale) {
 $this->db->beginTransaction();

 $query = <<<SQL
INSERT INTO sale(customer_id, date)
VALUES(:id, NOW())
SQL;
 $sth = $this->db->prepare($query);
 if (!$sth->execute(['id' => $sale->getCustomerId()])) {
 $this->db->rollBack();
 throw new DbException($sth->errorInfo()[2]);
 }

 $saleId = $this->db->lastInsertId();
 $query = <<<SQL
INSERT INTO sale_book(sale_id, book_id, amount)
VALUES(:sale, :book, :amount)
SQL;
 $sth = $this->db->prepare($query);
 $sth->bindValue('sale', $saleId);
 foreach ($sale->getBooks() as $bookId => $amount) {
 $sth->bindValue('book', $bookId);
 $sth->bindValue('amount', $amount);
 if (!$sth->execute()) {
 $this->db->rollBack();
 throw new DbException($sth->errorInfo()[2]);
 }
 }

 $this->db->commit();
}

Chapter 6

[207]

One last thing to note from this method is that we prepare a statement, bind a value
to it (the sale ID), and then bind and execute the same statement as many times as
the books in the array. Once you have a statement, you can bind the values as many
times as you want. Also, you can execute the same statement as many times as you
want, and the values stay the same.

V for view
The view is the layer that takes care of the… view. In this layer, you find all the
templates that render the HTML that the user gets. Although the separation between
views and the rest of the application is easy to see, that does not make views an
easy part. In fact, you will have to learn a new technology in order to write views
properly. Let's get into the details.

Introduction to Twig
In our first attempt at writing views, we mixed up PHP and HTML code. We already
know that the logic should not be mixed in the same place as HTML, but that is not the
end of the story. When rendering HTML, we need some logic there too. For example,
if we want to print a list of books, we need to repeat a certain block of HTML for each
book. And since a priori we do not know the number of books to print, the best option
would be a foreach loop.

One option that a lot of people take is minimizing the amount of logic that you can
include in a view. You could set some rules, such as we should only include conditionals
and loops, which is a reasonable amount of logic needed to render basic views. The
problem is that there is not a way of enforcing this kind of rule, and other developers
can easily start adding heavy logic in there. While some people are OK with that,
assuming that no one will do it, others prefer to implement more restrictive systems.
That was the beginning of template engines.

You could think of a template engine as another language that you need to learn.
Why would you do that? Because this new "language" is more limited than PHP.
These languages usually allow you to perform conditionals and simple loops, and
that is it. The developer is not able to add PHP to that file, since the template engine
will not treat it as PHP code. Instead, it will just print the code to the output—the
response' body—as if it was plain text. Also, as it is specially oriented to write
templates, the syntax is usually easier to read when mixed with HTML. Almost
everything is an advantage.

Adapting to MVC

[208]

The inconvenience of using a template engine is that it takes some time to translate
the new language to PHP, and then to HTML. This can be quite time consuming, so
it is very important that you choose a good template engine. Most of them also allow
you to cache templates, improving the performance. Our choice is a quite light and
widely used one: Twig. As we've already added the dependency in our Composer
file, we can use it straight away.

Setting up Twig is quite easy. On the PHP side, you just need to specify the location
of the templates. A common convention is to use the views directory for that. Create
the directory, and add the following two lines into your index.php:

$loader = new Twig_Loader_Filesystem(__DIR__ . '/views');
$twig = new Twig_Environment($loader);

The book view
In these sections, as we work with templates, it would be nice to see the result of
your work. We have not yet implemented any controllers, so we will force our
index.php to render a specific template, regardless of the request. We can start
rendering the view of a single book. For that, let's add the following code at the
end of your index.php, after creating your twig object:

$bookModel = new BookModel(Db::getInstance());
$book = $bookModel->get(1);

$params = ['book' => $book];
echo $twig->loadTemplate('book.twig')->render($params);

In the preceding code, we request the book with ID 1 to the BookModel, get the book
object, and create an array where the book key has the value of the book object. After
that, we tell Twig to load the template book.twig and to render it by sending the
array. This takes the template and injects the $book object, so that you are able to use
it inside the template.

Let's now create our first template. Write the following code into view/book.twig.
By convention, all Twig templates should have the .twig extension:

<h2>{{ book.title }}</h2>
<h3>{{ book.author }}</h3>

<hr>

<p>
 ISBN {{ book.isbn }}
</p>

Chapter 6

[209]

<p>
 Stock {{ book.stock }}
</p>
<p>
 Price {{ book.price|number_format(2) }} €
</p>

<hr>

<h3>Actions</h3>

<form method="post" action="/book/{{ book.id }}/borrow">
 <input type="submit" value="Borrow">
</form>

<form method="post" action="/book/{{ book.id }}/buy">
 <input type="submit" value="Buy">
</form>

Since this is your first Twig template, let's go step by step. You can see that most of
the content is HTML: some headers, a couple of paragraphs, and two forms with
two buttons. You can recognize the Twig part, since it is enclosed by {{ }}. In Twig,
everything that is between those curly brackets will be printed out. The first one that
we find contains book.title. Do you remember that we injected the book object
when rendering the template? We can access it here, just not with the usual PHP
syntax. To access an object's property, use . instead of ->. So, this book.title will
return the value of the title property of the book object, and the {{ }} will make
Twig print it out. The same applies to the rest of the template.

There is one that does a bit more than just access an object's property. The book.
price|number_format(2) gets the price of the book and sends it as an argument
(using the pipe symbol) to the function number_format, which has already got 2 as
another argument. This bit of code basically formats the price to two digital figures.
In Twig, you also have some functions, but they are mostly reduced to formatting the
output, which is an acceptable amount of logic.

Are you convinced now about how clean it is to use a template engine for your
views? You can try it in your browser: accessing any path, your web server should
execute the index.php file, forcing the template book.twig to be rendered.

Adapting to MVC

[210]

Layouts and blocks
When you design your web application, usually you would want to share a common
layout across most of your views. In our case, we want to always have a menu at the
top of the view that allows us to go to the different sections of the website, or even
to search books from wherever the user is. As with models, we want to avoid code
duplication, since if we were to copy and paste the layout everywhere, updating it
would be a nightmare. Instead, Twig comes with the ability to define layouts.

A layout in Twig is just another template file. Its content is just the common HTML
code that we want to display across all views (in our case, the menu and search bar),
and contains some tagged gaps (blocks in Twig's world), where you will be able to
inject the specific HTML of each view. You can define one of those blocks with the
tag {% block %}. Let's see what our views/layout.twig file would look like:

<html>
<head>
 <title>{% block title %}{% endblock %}</title>
</head>
<body>
 <div style="border: solid 1px">
 Books
 My Sales
 My Books
 <hr>
 <form action="/books/search" method="get">
 <label>Title</label>
 <input type="text" name="title">
 <label>Author</label>
 <input type="text" name="author">
 <input type="submit" value="Search">
 </form>
 </div>
 {% block content %}{% endblock %}
</body>
</html>

As you can see in the preceding code, blocks have a name so that templates using the
layout can refer to them. In our layout, we defined two blocks: one for the title of the
view and the other for the content itself. When a template uses the layout, we just
need to write the HTML code for each of the blocks defined in the layout, and Twig
will do the rest. Also, to let Twig know that our template wants to use the layout, we
use the tag {% extends %} with the layout filename. Let's update views/book.twig
to use our new layout:

Chapter 6

[211]

{% extends 'layout.twig' %}

{% block title %}
 {{ book.title }}
{% endblock %}

{% block content %}
<h2>{{ book.title }}</h2>
//...
</form>
{% endblock %}

At the top of the file, we add the layout that we need to use. Then, we open a block
tag with the reference name, and we write inside it the HTML that we want to use.
You can use anything valid inside a block, either Twig code or plain HTML. In our
template, we used the title of the book as the title block, which refers to the title
of the view, and we put all the previous HTML inside the content block. Note that
everything in the file is inside a block now. Try it in your browser now to see
the changes.

Paginated book list
Let's add another view, this time for a paginated list of books. In order to see the
result of your work, update the content of index.php, replacing the code of the
previous section with the following:

$bookModel = new BookModel(Db::getInstance());
$books = $bookModel->getAll(1, 3);

$params = ['books' => $books, 'currentPage' => 2];
echo $twig->loadTemplate('books.twig')->render($params);

In the preceding snippet, we force the application to render the books.twig
template, sending an array of books from page number 1, and showing 3 books per
page. This array, though, might not always return 3 books, maybe because there are
only 2 books in the database. We should then use a loop to iterate the list instead
of assuming the size of the array. In Twig, you can emulate a foreach loop using
{% for <element> in <array> %} in order to iterate an array. Let's use it for your
views/books.twig:

{% extends 'layout.twig' %}

{% block title %}
 Books
{% endblock %}

Adapting to MVC

[212]

{% block content %}
<table>
 <thead>
 <th>Title</th>
 <th>Author</th>
 <th></th>
 </thead>
{% for book in books %}
 <tr>
 <td>{{ book.title }}</td>
 <td>{{ book.author }}</td>
 <td>View</td>
 </tr>
{% endfor %}
</table>
{% endblock %}

We can also use conditionals in a Twig template, which work the same as the
conditionals in PHP. The syntax is {% if <boolean expression> %}. Let's use it to
decide if we should show the previous and/or following links on our page. Add the
following code at the end of the content block:

{% if currentPage != 1 %}
 Previous
{% endif %}
{% if not lastPage %}
 Next
{% endif %}

The last thing to note from this template is that we are not restricted to using
only variables when printing out content with {{ }}. We can add any valid Twig
expression that returns a value, as we did with {{ currentPage + 1 }}.

The sales view
We have already shown you everything that you will need for using templates, and
now we just have to finish adding all of them. The next one in the list is the template
that shows the list of sales for a given user. Update your index.php file with the
following hack:

$saleModel = new SaleModel(Db::getInstance());
$sales = $saleModel->getByUser(1);

$params = ['sales' => $sales];
echo $twig->loadTemplate('sales.twig')->render($params);

Chapter 6

[213]

The template for this view will be very similar to the one listing the books: a table
populated with the content of an array. The following is the content of views/
sales.twig:

{% extends 'layout.twig' %}

{% block title %}
 My sales
{% endblock %}

{% block content %}
<table>
 <thead>
 <th>Id</th>
 <th>Date</th>
 </thead>
{% for sale in sales %}
 <tr>
 <td>{{ sale.id}}</td>
 <td>{{ sale.date }}</td>
 <td>View</td>
 </tr>
{% endfor %}
</table>
{% endblock %}

The other view related to sales is where we want to display all the content of a
specific one. This sale, again, will be similar to the books list, as we will be listing
the books related to that sale. The hack to force the rendering of this template is
as follows:

$saleModel = new SaleModel(Db::getInstance());
$sale = $saleModel->get(1);

$params = ['sale' => $sale];
echo $twig->loadTemplate('sale.twig')->render($params);

And the Twig template should be placed in views/sale.twig:

{% extends 'layout.twig' %}

{% block title %}
 Sale {{ sale.id }}
{% endblock %}

{% block content %}

Adapting to MVC

[214]

<table>
 <thead>
 <th>Title</th>
 <th>Author</th>
 <th>Amount</th>
 <th>Price</th>
 <th></th>
 </thead>
 {% for book in sale.books %}
 <tr>
 <td>{{ book.title }}</td>
 <td>{{ book.author }}</td>
 <td>{{ book.stock }}</td>
 <td>{{ (book.price * book.stock)|number_format(2) }} €</
td>
 <td>View</td>
 </tr>
 {% endfor %}
</table>
{% endblock %}

The error template
We should add a very simple template that will be shown to the user when there is
an error in our application, rather than showing a PHP error message. This template
will just expect the errorMessage variable, and it could look like the following. Save
it as views/error.twig:

{% extends 'layout.twig' %}

{% block title %}
 Error
{% endblock %}

{% block content %}
 <h2>Error: {{ errorMessage }}</h2>
{% endblock %}

Note that even the error page extends from the layout, as we want the user to be able
to do something else when this happens.

Chapter 6

[215]

The login template
Our last template will be the one that allows the user to log in. This template is a
bit different from the others, as it will be used in two different scenarios. In the first
one, the user accesses the login view for the first time, so we need to show the form.
In the second one, the user has already tried to log in, and there was an error when
doing so, that is, the e-mail address was not found. In this case, we will add an extra
variable to the template, errorMessage, and we will add a conditional to show its
contents only when this variable is defined. You can use the operator is defined to
check that. Add the following template as views/login.twig:

{% extends 'layout.twig' %}

{% block title %}
 Login
{% endblock %}

{% block content %}
 {% if errorMessage is defined %}
 {{ errorMessage }}
 {% endif %}
 <form action="/login" method="post">
 <label>Email</label>
 <input type="text" name="email">
 <input type="submit">
 </form>
{% endblock %}

C for controller
It is finally time for the director of the orchestra. Controllers represent the layer
in our application that, given a request, talks to the models and builds the views.
They act like the manager of a team: they decide what resources to use depending
on the situation.

As we stated when explaining models, it is sometimes difficult to decide if some piece
of logic should go into the controller or the model. At the end of the day, MVC is a
pattern, like a recipe that guides you, rather than an exact algorithm that you need to
follow step by step. There will be scenarios where the answer is not straightforward,
so it will be up to you; in these cases, just try to be consistent. The following are some
common scenarios that might be difficult to localize:

• The request points to a path that we do not support. This scenario is already
covered in our application, and it is the router that should take care of it, not
the controller.

Adapting to MVC

[216]

• The request tries to access an element that does not exist, for example, a book
ID that is not in the database. In this case, the controller should ask the model
if the book exists, and depending on the response, render a template with the
book's contents, or another with a "Not found" message.

• The user tries to perform an action, such as buying a book, but the parameters
coming from the request are not valid. This is a tricky one. One option is to
get all the parameters from the request without checking them, sending them
straight to the model, and leaving the task of sanitizing the information to
the model. Another option is that the controller checks that the parameters
provided make sense, and then gives them to the model. There are other
solutions, like building a class that checks if the parameters are valid, which
can be reused in different controllers. In this case, it will depend on the amount
of parameters and logic involved in the sanitization. For requests receiving a
lot of data, the third option looks like the best of them, as we will be able to
reuse the code in different endpoints, and we are not writing controllers that
are too long. But in requests where the user sends one or two parameters,
sanitizing them in the controller might be good enough.

Now that we've set the ground, let's prepare our application to use controllers. The
first thing to do is to update our index.php, which has been forcing the application
to always render the same template. Instead, we should be giving this task to the
router, which will return the response as a string that we can just print with echo.
Update your index.php file with the following content:

<?php

use Bookstore\Core\Router;
use Bookstore\Core\Request;

require_once __DIR__ . '/vendor/autoload.php';

$router = new Router();
$response = $router->route(new Request());
echo $response;

As you might remember, the router instantiates a controller class, sending the
request object to the constructor. But controllers have other dependencies as well,
such as the template engine, the database connection, or the configuration reader.
Even though this is not the best solution (you will improve it once we cover
dependency injection in the next section), we could create an AbstractController
that would be the parent of all controllers, and will set those dependencies. Copy the
following as src/Controllers/AbstractController.php:

Chapter 6

[217]

<?php

namespace Bookstore\Controllers;

use Bookstore\Core\Config;
use Bookstore\Core\Db;
use Bookstore\Core\Request;
use Monolog\Logger;
use Twig_Environment;
use Twig_Loader_Filesystem;
use Monolog\Handler\StreamHandler;

abstract class AbstractController {
 protected $request;
 protected $db;
 protected $config;
 protected $view;
 protected $log;

 public function __construct(Request $request) {
 $this->request = $request;
 $this->db = Db::getInstance();
 $this->config = Config::getInstance();

 $loader = new Twig_Loader_Filesystem(
 __DIR__ . '/../../views'
);
 $this->view = new Twig_Environment($loader);

 $this->log = new Logger('bookstore');
 $logFile = $this->config->get('log');
 $this->log->pushHandler(
 new StreamHandler($logFile, Logger::DEBUG)
);
 }

 public function setCustomerId(int $customerId) {
 $this->customerId = $customerId;
 }
}

Adapting to MVC

[218]

When instantiating a controller, we will set some properties that will be useful when
handling requests. We already know how to instantiate the database connection, the
configuration reader, and the template engine. The fourth property, $log, will allow
the developer to write logs to a given file when necessary. We will use the Monolog
library for that, but there are many other options. Notice that in order to instantiate
the logger, we get the value of log from the configuration, which should be the path
to the log file. The convention is to use the /var/log/ directory, so create the /var/
log/bookstore.log file, and add "log": "/var/log/bookstore.log" to your
configuration file.

Another thing that is useful to some controllers—but not all of them—is the
information about the user performing the action. As this is only going to be
available for certain routes, we should not set it when constructing the controller.
Instead, we have a setter for the router to set the customer ID when available; in fact,
the router does that already.

Finally, a handy helper method that we could use is one that renders a given template
with parameters, as all the controllers will end up rendering one template or the other.
Let's add the following protected method to the AbstractController class:

protected function render(string $template, array $params): string {
 return $this->view->loadTemplate($template)->render($params);
}

The error controller
Let's start by creating the easiest of the controllers: the ErrorController. This
controller does not do much; it just renders the error.twig template sending the
"Page not found!" message. As you might remember, the router uses this controller
when it cannot match the request to any of the other defined routes. Save the
following class in src/Controllers/ErrorController.php:

<?php

namespace Bookstore\Controllers;

class ErrorController extends AbstractController {
 public function notFound(): string {
 $properties = ['errorMessage' => 'Page not found!'];
 return $this->render('error.twig', $properties);
 }
}

Chapter 6

[219]

The login controller
The second controller that we have to add is the one that manages the login of the
customers. If we think about the flow when a user wants to authenticate, we have the
following scenarios:

• The user wants to get the login form in order to submit the necessary
information and log in.

• The user tries to submit the form, but we could not get the e-mail address.
We should render the form again, letting them know about the problem.

• The user submits the form with an e-mail, but it is not a valid one. In this
case, we should show the login form again with an error message explaining
the situation.

• The user submits a valid e-mail, we set the cookie, and we show the list of
books so the user can start searching. This is absolutely arbitrary; you could
choose to send them to their borrowed books page, their sales, and so on.
The important thing here is to notice that we will be redirecting the request
to another controller.

There are up to four possible paths. We will use the request object to decide which
of them to use in each case, returning the corresponding response. Let's create, then,
the CustomerController class in src/Controllers/CustomerController.php
with the login method, as follows:

<?php

namespace Bookstore\Controllers;

use Bookstore\Exceptions\NotFoundException;
use Bookstore\Models\CustomerModel;

class CustomerController extends AbstractController {
 public function login(string $email): string {
 if (!$this->request->isPost()) {
 return $this->render('login.twig', []);
 }

 $params = $this->request->getParams();

 if (!$params->has('email')) {
 $params = ['errorMessage' => 'No info provided.'];
 return $this->render('login.twig', $params);
 }

 $email = $params->getString('email');

Adapting to MVC

[220]

 $customerModel = new CustomerModel($this->db);

 try {
 $customer = $customerModel->getByEmail($email);
 } catch (NotFoundException $e) {
 $this->log->warn('Customer email not found: ' . $email);
 $params = ['errorMessage' => 'Email not found.'];
 return $this->render('login.twig', $params);
 }

 setcookie('user', $customer->getId());

 $newController = new BookController($this->request);
 return $newController->getAll();
 }
}

As you can see, there are four different returns for the four different cases. The
controller itself does not do anything, but orchestrates the rest of the components,
and makes decisions. First, we check if the request is a POST, and if it is not, we will
assume that the user wants to get the form. If it is, we will check for the e-mail in the
parameters, returning an error if the e-mail is not there. If it is, we will try to find the
customer with that e-mail, using our model. If we get an exception saying that there
is no such customer, we will render the form with a "Not found" error message. If
the login is successful, we will set the cookie with the ID of the customer, and will
execute the getAll method of BookController (still to be written), returning the list
of books.

At this point, you should be able to test the login feature of your application end to
end with the browser. Try to access http://localhost:8000/login to see the form,
adding random e-mails to get the error message, and adding a valid e-mail (check
your customer table in MySQL) to log in successfully. After this, you should see the
cookie with the customer ID.

The book controller
The BookController class will be the largest of our controllers, as most of the
application relies on it. Let's start by adding the easiest methods, the ones that
just retrieve information from the database. Save this as src/Controllers/
BookController.php:

<?php

namespace Bookstore\Controllers;

use Bookstore\Models\BookModel;

Chapter 6

[221]

class BookController extends AbstractController {
 const PAGE_LENGTH = 10;

 public function getAllWithPage($page): string {
 $page = (int)$page;
 $bookModel = new BookModel($this->db);

 $books = $bookModel->getAll($page, self::PAGE_LENGTH);

 $properties = [
 'books' => $books,
 'currentPage' => $page,
 'lastPage' => count($books) < self::PAGE_LENGTH
];
 return $this->render('books.twig', $properties);
 }

 public function getAll(): string {
 return $this->getAllWithPage(1);
 }

 public function get(int $bookId): string {
 $bookModel = new BookModel($this->db);

 try {
 $book = $bookModel->get($bookId);
 } catch (\Exception $e) {
 $this->log->error(
 'Error getting book: ' . $e->getMessage()
);
 $properties = ['errorMessage' => 'Book not found!'];
 return $this->render('error.twig', $properties);
 }

 $properties = ['book' => $book];
 return $this->render('book.twig', $properties);
 }

 public function getByUser(): string {
 $bookModel = new BookModel($this->db);

 $books = $bookModel->getByUser($this->customerId);

Adapting to MVC

[222]

 $properties = [
 'books' => $books,
 'currentPage' => 1,
 'lastPage' => true
];
 return $this->render('books.twig', $properties);
 }
}

There's nothing too special in this preceding code so far. The getAllWithPage and
getAll methods do the same thing, one with the page number given by the user
as a URL argument, and the other setting the page number as 1—the default case.
They ask the model for the list of books to be displayed and passed to the view. The
information of the current page—and whether or not we are on the last page—is also
sent to the template in order to add the "previous" and "next" page links.

The get method will get the ID of the book that the customer is interested in. It will
try to fetch it using the model. If the model throws an exception, we will render the
error template with a "Book not found" message. Instead, if the book ID is valid, we
will render the book template as expected.

The getByUser method will return all the books that the authenticated customer has
borrowed. We will make use of the customerId property that we set from the router.
There is no sanity check here, since we are not trying to get a specific book, but rather
a list, which could be empty if the user has not borrowed any books yet—but that is
not an issue.

Another getter controller is the one that searches for a book by its title and/or
author. This method will be triggered when the user submits the form in the layout
template. The form sends both the title and the author fields, so the controller will
ask for both. The model is ready to use the arguments that are empty, so we will not
perform any extra checking here. Add the method to the BookController class:

public function search(): string {
 $title = $this->request->getParams()->getString('title');
 $author = $this->request->getParams()->getString('author');

 $bookModel = new BookModel($this->db);
 $books = $bookModel->search($title, $author);

 $properties = [
 'books' => $books,
 'currentPage' => 1,
 'lastPage' => true
];
 return $this->render('books.twig', $properties);
}

Chapter 6

[223]

Your application cannot perform any actions, but at least you can finally browse
the list of books, and click on any of them to view the details. We are finally getting
something here!

Borrowing books
Borrowing and returning books are probably the actions that involve the most logic,
together with buying a book, which will be covered by a different controller. This
is a good place to start logging the user's actions, since it will be useful later for
debugging purposes. Let's see the code first, and then discuss it briefly. Add the
following two methods to your BookController class:

public function borrow(int $bookId): string {
 $bookModel = new BookModel($this->db);

 try {
 $book = $bookModel->get($bookId);
 } catch (NotFoundException $e) {
 $this->log->warn('Book not found: ' . $bookId);
 $params = ['errorMessage' => 'Book not found.'];
 return $this->render('error.twig', $params);
 }

 if (!$book->getCopy()) {
 $params = [
 'errorMessage' => 'There are no copies left.'
];
 return $this->render('error.twig', $params);
 }

 try {
 $bookModel->borrow($book, $this->customerId);
 } catch (DbException $e) {
 $this->log->error(
 'Error borrowing book: ' . $e->getMessage()
);
 $params = ['errorMessage' => 'Error borrowing book.'];
 return $this->render('error.twig', $params);
 }

 return $this->getByUser();
}

public function returnBook(int $bookId): string {

Adapting to MVC

[224]

 $bookModel = new BookModel($this->db);

 try {
 $book = $bookModel->get($bookId);
 } catch (NotFoundException $e) {
 $this->log->warn('Book not found: ' . $bookId);
 $params = ['errorMessage' => 'Book not found.'];
 return $this->render('error.twig', $params);
 }

 $book->addCopy();

 try {
 $bookModel->returnBook($book, $this->customerId);
 } catch (DbException $e) {
 $this->log->error(
 'Error returning book: ' . $e->getMessage()
);
 $params = ['errorMessage' => 'Error returning book.'];
 return $this->render('error.twig', $params);
 }

 return $this->getByUser();
}

As we mentioned earlier, one of the new things here is that we are logging user
actions, like when trying to borrow or return a book that is not valid. Monolog
allows you to write logs with different priority levels: error, warning, and notices.
You can invoke methods such as error, warn, or notice to refer to each of them.
We use warnings when something unexpected, yet not critical, happens, for example,
trying to borrow a book that is not there. Errors are used when there is an unknown
problem from which we cannot recover, like an error from the database.

The modus operandi of these two methods is as follows: we get the book object from
the 3database with the given book ID. As usual, if there is no such book, we return
an error page. Once we have the book domain object, we make use of the helpers
addCopy and getCopy in order to update the stock of the book, and send it to the
model, together with the customer ID, to store the information in the database. There
is also a sanity check when borrowing a book, just in case there are no more books
available. In both cases, we return the list of books that the user has borrowed as the
response of the controller.

Chapter 6

[225]

The sales controller
We arrive at the last of our controllers: the SalesController. With a different
model, it will end up doing pretty much the same as the methods related to
borrowed books. But we need to create the sale domain object in the controller
instead of getting it from the model. Let's add the following code, which contains
a method for buying a book, add, and two getters: one that gets all the sales of
a given user and one that gets the info of a specific sale, that is, getByUser and
get respectively. Following the convention, the file will be src/Controllers/
SalesController.php:

<?php

namespace Bookstore\Controllers;

use Bookstore\Domain\Sale;
use Bookstore\Models\SaleModel;

class SalesController extends AbstractController {
 public function add($id): string {
 $bookId = (int)$id;
 $salesModel = new SaleModel($this->db);

 $sale = new Sale();
 $sale->setCustomerId($this->customerId);
 $sale->addBook($bookId);

 try {
 $salesModel->create($sale);
 } catch (\Exception $e) {
 $properties = [
 'errorMessage' => 'Error buying the book.'
];
 $this->log->error(
 'Error buying book: ' . $e->getMessage()
);
 return $this->render('error.twig', $properties);
 }

 return $this->getByUser();
 }

 public function getByUser(): string {

Adapting to MVC

[226]

 $salesModel = new SaleModel($this->db);

 $sales = $salesModel->getByUser($this->customerId);

 $properties = ['sales' => $sales];
 return $this->render('sales.twig', $properties);
 }

 public function get($saleId): string {
 $salesModel = new SaleModel($this->db);

 $sale = $salesModel->get($saleId);

 $properties = ['sale' => $sale];
 return $this->render('sale.twig', $properties);
 }
}

Dependency injection
At the end of the chapter, we will cover one of the most interesting and controversial of
the topics that come with, not only the MVC pattern, but OOP in general: dependency
injection. We will show you why it is so important, and how to implement a solution
that suits our specific application, even though there are quite a few different
implementations that can cover different necessities.

Why is dependency injection necessary?
We still need to cover the way to unit test your code, hence you have not experienced
it by yourself yet. But one of the signs of a potential source of problems is when
you use the new statement in your code to create an instance of a class that does
not belong to your code base—also known as a dependency. Using new to create
a domain object like Book or Sale is fine. Using it to instantiate models is also
acceptable. But manually instantiating, which something else, such as the template
engine, the database connection, or the logger, is something that you should avoid.
There are different reasons that support this idea:

• If you want to use a controller from two different places, and each of these
places needs a different database connection or log file, instantiating those
dependencies inside the controller will not allow us to do that. The same
controller will always use the same dependency.

Chapter 6

[227]

• Instantiating the dependencies inside the controller means that the controller
is fully aware of the concrete implementation of each of its dependencies,
that is, the controller knows that we are using PDO with the MySQL driver
and the location of the credentials for the connection. This means a high level
of coupling in your application—so, bad news.

• Replacing one dependency with another that implements the same interface
is not easy if you are instantiating the dependency explicitly everywhere,
as you will have to search all these places, and change the instantiation
manually.

For all these reasons, and more, it is always good to provide the dependencies that a
class such as a controller needs instead of letting it create its own. This is something
that everybody agrees with. The problem comes when implementing a solution.
There are different options:

• We have a constructor that expects (through arguments) all the dependencies
that the controller, or any other class, needs. The constructor will assign each
of the arguments to the properties of the class.

• We have an empty constructor, and instead, we add as many setter methods
as the dependencies of the class.

• A hybrid of both, where we set the main dependencies through a constructor,
and set the rest of the dependencies via setters.

• Sending an object that contains all the dependencies as a unique argument
for the constructor, and the controller gets the dependencies that it needs
from that container.

Each solution has its pros and cons. If we have a class with a lot of dependencies,
injecting all of them via the constructor would make it counterintuitive, so it
would be better if we inject them using setters, even though a class with a lot of
dependencies looks like bad design. If we have just one or two dependencies, using
the constructor could be acceptable, and we will write less code. For classes with
several dependencies, but not all of them mandatory, using the hybrid version
could be a good solution. The fourth option makes it easier when injecting the
dependencies as we do not need to know what each object expects. The problem is
that each class should know how to fetch its dependency, that is, the dependency
name, which is not ideal.

Adapting to MVC

[228]

Implementing our own dependency injector
Open source solutions for dependency injectors are already available, but we think
that it would be a good experience to implement a simple one by yourself. The idea
of our dependency injector is a class that contains instances of the dependencies
that your code needs. This class, which is basically a map of dependency names to
dependency instances, will have two methods: a getter and a setter of dependencies.
We do not want to use a static property for the dependencies array, as one of the
goals is to be able to have more than one dependency injector with a different set of
dependencies. Add the following class to src/Utils/DependencyInjector.php:

<?php

namespace Bookstore\Utils;

use Bookstore\Exceptions\NotFoundException;

class DependencyInjector {
 private $dependencies = [];

 public function set(string $name, $object) {
 $this->dependencies[$name] = $object;
 }

 public function get(string $name) {
 if (isset($this->dependencies[$name])) {
 return $this->dependencies[$name];
 }
 throw new NotFoundException(
 $name . ' dependency not found.'
);
 }
}

Having a dependency injector means that we will always use the same instance of a
given class every time we ask for it, instead of creating one each time. That means that
singleton implementations are not needed anymore; in fact, as mentioned in Chapter 4,
Creating Clean Code with OOP, it is preferable to avoid them. Let's get rid of them, then.
One of the places where we were using it was in our configuration reader. Replace the
existing code with the following in the src/Core/Config.php file:

<?php

namespace Bookstore\Core;

use Bookstore\Exceptions\NotFoundException;

Chapter 6

[229]

class Config {
 private $data;

 public function __construct() {
 $json = file_get_contents(
 __DIR__ . '/../../config/app.json'
);
 $this->data = json_decode($json, true);
 }

 public function get($key) {
 if (!isset($this->data[$key])) {
 throw new NotFoundException("Key $key not in config.");
 }
 return $this->data[$key];
 }
}

The other place where we were making use of the singleton pattern was in the DB
class. In fact, the purpose of the class was only to have a singleton for our database
connection, but if we are not making use of it, we can remove the entire class. So,
delete your src/Core/DB.php file.

Now we need to define all these dependencies and add them to our dependency
injector. The index.php file is a good place to have the dependency injector before we
route the request. Add the following code just before instantiating the Router class:

$config = new Config();

$dbConfig = $config->get('db');
$db = new PDO(
 'mysql:host=127.0.0.1;dbname=bookstore',
 $dbConfig['user'],
 $dbConfig['password']
);

$loader = new Twig_Loader_Filesystem(__DIR__ . '/../../views');
$view = new Twig_Environment($loader);

$log = new Logger('bookstore');
$logFile = $config->get('log');
$log->pushHandler(new StreamHandler($logFile, Logger::DEBUG));

$di = new DependencyInjector();
$di->set('PDO', $db);

Adapting to MVC

[230]

$di->set('Utils\Config', $config);
$di->set('Twig_Environment', $view);
$di->set('Logger', $log);

$router = new Router($di);
//...

There are a few changes that we need to make now. The most important of them
refers to the AbstractController, the class that will make heavy use of the
dependency injector. Add a property named $di to that class, and replace the
constructor with the following:

public function __construct(
 DependencyInjector $di,
 Request $request
) {
 $this->request = $request;
 $this->di = $di;

 $this->db = $di->get('PDO');
 $this->log = $di->get('Logger');
 $this->view = $di->get('Twig_Environment');
 $this->config = $di->get('Utils\Config');

 $this->customerId = $_COOKIE['id'];
}

The other changes refer to the Router class, as we are sending it now as part of the
constructor, and we need to inject it to the controllers that we create. Add a $di
property to that class as well, and change the constructor to the following one:

public function __construct(DependencyInjector $di) {
 $this->di = $di;

 $json = file_get_contents(__DIR__ . '/../../config/routes.json');
 $this->routeMap = json_decode($json, true);
}

Also change the content of the executeController and route methods:

public function route(Request $request): string {
 $path = $request->getPath();

 foreach ($this->routeMap as $route => $info) {
 $regexRoute = $this->getRegexRoute($route, $info);
 if (preg_match("@^/$regexRoute$@", $path)) {

Chapter 6

[231]

 return $this->executeController(
 $route, $path, $info, $request
);
 }
 }

 $errorController = new ErrorController(
 $this->di,
 $request
);
 return $errorController->notFound();
}

private function executeController(
 string $route,
 string $path,
 array $info,
 Request $request
): string {
 $controllerName = '\Bookstore\Controllers\\'
 . $info['controller'] . 'Controller';
 $controller = new $controllerName($this->di, $request);

 if (isset($info['login']) && $info['login']) {
 if ($request->getCookies()->has('user')) {
 $customerId = $request->getCookies()->get('user');
 $controller->setCustomerId($customerId);
 } else {
 $errorController = new CustomerController(
 $this->di,
 $request
);
 return $errorController->login();
 }
 }

 $params = $this->extractParams($route, $path);
 return call_user_func_array(
 [$controller, $info['method']], $params
);
}

Adapting to MVC

[232]

There is one last place that you need to change. The login method of
CustomerController was instantiating a controller too, so we need to inject
the dependency injector there as well:

$newController = new BookController($this->di, $this->request);

Summary
In this chapter, you learned what MVC is, and how to write an application that
follows that pattern. You also know how to use a router to route requests to
controllers, Twig to write templates, and Composer to manage your dependencies
and autoloader. You were introduced to dependency injection, and you even built
your own implementation, even though it is a very controversial topic with many
different points of view.

In the next chapter, we will go through one of the most important parts needed
when writing good code and good applications: unit testing your code to get quick
feedback from it.

[233]

Testing Web Applications
We are pretty sure you have heard the term "bug" when speaking about applications.
Sentences such as "We found a bug in the application that…" followed by some very
undesirable behavior are more common than you think. Writing code is not the only
task of a developer; testing it is crucial too. You should not release a version of your
application that has not been tested. However, could you imagine having to test your
entire application every time you change a line? It would be a nightmare!

Well, we are not the first ones to have this issue, so, luckily enough, developers have
already found a pretty good solution to this problem. In fact, they found more than
one solution, turning testing into a very hot topic of discussion. Even being a test
developer has become quite a common role. In this chapter, we will introduce you
to one of the approaches of testing your code: unit tests.

In this chapter, you will learn about:

• How unit tests work
• Configuring PHPUnit to test your code
• Writing tests with assertions, data providers, and mocks
• Good and bad practices when writing unit tests

The necessity for tests
When you work on a project, chances are that you are not the only developer who
will work with this code. Even in the case where you are the only one who will
ever change it, if you do this a few weeks after creating it, you will probably not
remember all the places that this piece of code is affected. Okay, let's assume that
you are the only developer and your memory is beyond limits; would you be able to
verify that a change on a frequently used object, such as a request, will always work
as expected? More importantly, would you like to do it every single time you make a
tiny change?

Testing Web Applications

[234]

Types of tests
While writing your application, making changes to the existing code, or adding
new features, it is very important to get good feedback. How do you know that the
feedback you get is good enough? It should accomplish the AEIOU principles:

• Automatic: Getting the feedback should be as painless as possible. Getting
it by running just one command is always preferable to having to test your
application manually.

• Extensive: We should be able to cover as many use cases as possible,
including edge cases that are difficult to foresee when writing code.

• Immediate: You should get it as soon as possible. This means that the
feedback that you get just after introducing a change is way better than the
feedback that you get after your code is in production.

• Open: The results should be transparent, and also, the tests should give us
insight to other developers as to how to integrate or operate with the code.

• Useful: It should answer questions such as "Will this change work?", "Will it
break the application unexpectedly?", or "Is there any edge case that does not
work properly?".

So, even though the concept is quite weird at the beginning, the best way to test
your code is… with more code. Exactly! We will write code with the goal of testing
the code of our application. Why? Well, it is the best way we know to satisfy all the
AEIU principles, and it has the following advantages:

• We can execute the tests by just running one command from our command
line or even from our favorite IDE. There is no need to manually test your
application via a browser continually.

• We need to write the test just once. At the beginning, it may be a bit painful,
but once the code is written, you will not need to repeat it again and again.
This means that after some work, we will be able to test every single case
effortlessly. If we had to test it manually, along with all the use cases and
edge cases, it would be a nightmare.

• You do not need to have the whole application working in order to know
whether your code works. Imagine that you are writing your router: in order
to know whether it works, you will have to wait until your application works
in a browser. Instead, you can write your tests and run them as soon as you
finish your class.

Chapter 7

[235]

• When writing your tests, you will be provided with feedback on what is
failing. This is very useful to know when a specific function of the router
does not work and the reason for the failure, which is better than getting a
500 error on our browser.

We hope that by now we have sold you on the idea that writing tests is
indispensable. This was the easy part, though. The problem is that we know several
different approaches. Do we write tests that test the entire application or tests that
test specific parts? Do we isolate the tested area from the rest? Do we want to interact
with the database or with other external resources while testing? Depending on your
answers, you will decide on which type of tests you want to write. Let's discuss the
three main approaches that developers agree with:

• Unit tests: These are tests that have a very focused scope. Their aim is to
test a single class or method, isolating them from the rest of code. Take your
Sale domain class as an example: it has some logic regarding the addition
of books, right? A unit test might just instantiate a new sale, add books to
the object, and verify that the array of books is valid. Unit tests are super fast
due to their reduced scope, so you can have several different scenarios of the
same functionality easily, covering all the edge cases you can imagine. They
are also isolated, which means that we will not care too much about how all
the pieces of our application are integrated. Instead, we will make sure that
each piece works perfectly fine.

• Integration tests: These are tests with a wider scope. Their aim is to verify
that all the pieces of your application work together, so their scope is not
limited to a class or function but rather includes a set of classes or the whole
application. There is still some isolation in case we do not want to use a real
database or depend on some other external web service. An example in our
application would be to simulate a Request object, send it to the router, and
verify that the response is as expected.

• Acceptance tests: These are tests with an even wider scope. They try to test
a whole functionality from the user's point of view. In web applications, this
means that we can launch a browser and simulate the clicks that the user
would make, asserting the response in the browser each time. And yes,
all of this through code! These tests are slower to run, as you can imagine,
because their scope is larger and working with a browser slows them
down quite a lot too.

Testing Web Applications

[236]

So, with all these types of tests, which one should you write? The answer is all of
them. The trick is to know when and how many of each type you should write. One
good approach is to write a lot of unit tests, covering absolutely everything in your
code, then writing fewer integration tests to make sure that all the components of
your application work together, and finally writing acceptance tests but testing only
the main flows of your application. The following test pyramid represents this idea:

The reason is simple: your real feedback will come from your unit tests. They will
tell you if you messed up something with your changes as soon as you finish writing
them because executing unit tests is easy and fast. Once you know that all your classes
and functions behave as expected, you need to verify that they can work together.
However, for this, you do not need to test all the edge cases again; you already did
this when writing unit tests. Here, you need to write just a few integration tests that
confirm that all the pieces communicate properly. Finally, to make sure that not only
that the code works but also the user experience is the desired one, we will write
acceptance tests that emulate a user going through the different views. Here, tests are
very slow and only possible once the flow is complete, so the feedback comes later. We
will add acceptance tests to make sure that the main flows work, but we do not need to
test every single scenario as we already did this with integration and unit tests.

Unit tests and code coverage
Now that you know what tests are, why we need them, and which types of tests we
have, we will focus the rest of the chapter on writing good unit tests as they will be
the ones that will occupy most of your time.

As we explained before, the idea of a unit test is to make sure that a piece of code,
usually a class or method, works as expected. As the amount of code that a method
contains should be small, running the test should take almost no time. Taking
advantage of this, we will run several tests, trying to cover as many use cases
as possible.

Chapter 7

[237]

If this is not the first time you've heard about unit tests, you might know the concept
of code coverage. This concept refers to the amount of code that our tests execute,
that is, the percentage of tested code. For example, if your application has 10,000
lines and your tests test a total of 7,500 lines, your code coverage is 75%. There are
tools that show marks on your code to indicate whether a certain line is tested or
not, which is very useful in order to identify which parts of your application are not
tested and thus warn you that it is more dangerous to change them.

However, code coverage is a double-edge sword. Why is this so? This is because
developers tend to get obsessed with code coverage, aiming for a 100% coverage.
However, you should be aware that code coverage is just a consequence, not your
goal. Your goal is to write unit tests that verify all the use cases of certain pieces of
code in order to make you feel safer each time that you have to change this code.
This means that for a given method, it might not be enough to write one test because
the same line with different input values may behave differently. However, if your
focus was on code coverage, writing one test would satisfy it, and you might not
need to write any more tests.

Integrating PHPUnit
Writing tests is a task that you could do by yourself; you just need to write code that
throws exceptions when conditions are not met and then run the script any time
you need. Luckily, other developers were not satisfied with this manual process, so
they implemented tools to help us automate this process and get good feedback. The
most used in PHP is PHPUnit. PHPUnit is a framework that provides a set of tools
to write tests in an easier manner, gives us the ability to run tests automatically, and
delivers useful feedback to the developer.

In order to use PHPUnit, traditionally, we installed it on our laptop. In doing so,
we added the classes of the framework to include the path of PHP and also the
executable to run the tests. This was less than ideal as we forced developers to install
one more tool on their development machine. Nowadays, Composer (refer to Chapter
6, Adapting to MVC, in order to refresh your memory) helps us in including PHPUnit
as a dependency of the project. This means that running Composer, which you will
do for sure in order to get the rest of the dependencies, will get PHPUnit too. Add,
then, the following into composer.json:

{
//...
 "require": {
 "monolog/monolog": "^1.17",
 "twig/twig": "^1.23"
 },

Testing Web Applications

[238]

 "require-dev": {
 "phpunit/phpunit": "5.1.3"
 },
 "autoload": {
 "psr-4": {
 "Bookstore\\": "src"
 }
 }
}

Note that this dependency is added as require-dev. This means that the dependency
will be downloaded only when we are on a development environment, but it will not
be part of the application that we will deploy on production as we do not need to run
tests there. To get the dependency, as always, run composer update.

A different approach is to install PHPUnit globally so that all the projects on your
development environment can use it instead of installing it locally each time. You
can read about how to install tools globally with Composer at https://akrabat.
com/global-installation-of-php-tools-with-composer/.

The phpunit.xml file
PHPUnit needs a phpunit.xml file in order to define the way we want to run the
tests. This file defines a set of rules like where the tests are, what code are the tests
testing, and so on. Add the following file in your root directory:

<?xml version="1.0" encoding="UTF-8"?>

<phpunit backupGlobals="false"
 backupStaticAttributes="false"
 colors="true"
 convertErrorsToExceptions="true"
 convertNoticesToExceptions="true"
 convertWarningsToExceptions="true"
 processIsolation="false"
 stopOnFailure="false"
 syntaxCheck="false"
 bootstrap="vendor/autoload.php"
>
<testsuites>
<testsuite name="Bookstore Test Suite">
<directory>./tests/</directory>
</testsuite>
</testsuites>

https://akrabat.com/global-installation-of-php-tools-with-composer/
https://akrabat.com/global-installation-of-php-tools-with-composer/

Chapter 7

[239]

<filter>
<whitelist>
<directory>./src</directory>
</whitelist>
</filter>
</phpunit>

This file defines quite a lot of things. The most important are explained as follows:

• Setting convertErrorsToExceptions, convertNoticesToExceptions, and
convertWarningsToExceptions to true will make your tests fail if there
is a PHP error, warning, or notice. The goal is to make sure that your code
does not contain minor errors on edge cases, which are always the source of
potential problems.

• The stopOnFailure tells PHPUnit whether it should continue executing the
rest of tests or not when there is a failed test. In this case, we want to run all
of them to know how many tests are failing and why.

• The bootstrap defines which file we should execute before starting to run
the tests. The most common usage is to include the autoloader, but you could
also include a file that initializes some dependencies, such as databases or
configuration readers.

• The testsuites defines the directories where PHPUnit will look for tests.
In our case, we defined ./tests, but we could add more if we had them in
different directories.

• The whitelist defines the list of directories that contain the code that we are
testing. This can be useful to generate output related to the code coverage.

When running the tests with PHPUnit, just make sure that you run the command
from the same directory where the phpunit.xml file is. We will show you how in the
next section.

Your first test
Right, that's enough preparations and theory; let's write some code. We will write
tests for the basic customer, which is a domain object with little logic. First of all,
we need to refactor the Unique trait as it still contains some unnecessary code after
integrating our application with MySQL. We are talking about the ability to assign
the next available ID, which is now handled by the autoincremental field. Remove it,
leaving the code as follows:

<?php

namespace Bookstore\Utils;

trait Unique {

Testing Web Applications

[240]

 protected $id;

 public function setId(int $id) {
 $this->id = $id;
 }

 public function getId(): int {
 return $this->id;
 }
}

The tests will be inside the tests/ directory. The structure of directories should be
the same as in the src/ directory so that it is easier to identify where each test should
be. The file and the class names need to end with Test so that PHPUnit knows that
a file contains tests. Knowing this, our test should be in tests/Domain/Customer/
BasicTest.php, as follows:

<?php

namespace Bookstore\Tests\Domain\Customer;

use Bookstore\Domain\Customer\Basic;
use PHPUnit_Framework_TestCase;

class BasicTest extends PHPUnit_Framework_TestCase {
 public function testAmountToBorrow() {
 $customer = new Basic(1, 'han', 'solo', 'han@solo.com');

 $this->assertSame(
 3,
 $customer->getAmountToBorrow(),
 'Basic customer should borrow up to 3 books.'
);
 }
}

As you can note, the BasicTest class extends from PHPUnit_Framework_TestCase.
All test classes have to extend from this class. This class comes with a set of methods
that allow you to make assertions. An assertion in PHPUnit is just a check performed
on a value. Assertions can be comparisons to other values, a verification of some
attributes of the values, and so on. If an assertion is not true, the test will be marked
as failed, outputting the proper error message to the developer. The example
shows an assertion using the assertSame method, which will compare two values,
expecting that both of them are exactly the same. The third argument is an error
message that the assertion will show in case it fails.

Chapter 7

[241]

Also, note that the function names that start with test are the ones executed with
PHPUnit. In this example, we have one unique test named testAmountToBorrow
that instantiates a basic customer and verifies that the amount of books that the
customer can borrow is 3. In the next section, we will show you how to run this test
and get feedback from it.

Optionally, you could use any function name if you add the @test annotation in the
method's DocBlock, as follows:

/**
 * @test
 */
public function thisIsATestToo() {
 //...
}

Running tests
In order to run the tests you wrote, you need to execute the script that Composer
generated in vendor/bin. Remember always to run from the root directory of the
project so that PHPUnit can find your phpunit.xml configuration file. Then,
type ./vendor/bin/phpunit.

When executing this program, we will get the feedback given by the tests. The
output shows us that there is one test (one method) and one assertion and whether
these were satisfactory. This output is what you would like to see every time you run
your tests, but you will get more failed tests than you would like. Let's take a look at
them by adding the following test:

public function testFail() {
 $customer = new Basic(1, 'han', 'solo', 'han@solo.com');

 $this->assertSame(
 4,

Testing Web Applications

[242]

 $customer->getAmountToBorrow(),
 'Basic customer should borrow up to 3 books.'
);
}

This test will fail as we are checking whether getAmountToBorrow returns 4, but you
know that it always returns 3. Let's run the tests and take a look at what kind
of output we get.

We can quickly note that the output is not good due to the red color. It shows us
that there is a failure, pointing to the class and test method that failed. The feedback
points out the type of failure (as 3 is not identical to 4) and optionally, the error
message we added when invoking the assert method.

Writing unit tests
Let's start digging into all the features that PHPUnit offers us in order to write tests.
We will divide these features in different subsections: setting up a test, assertions,
exceptions, and data providers. Of course, you do not need to use all of these tools
each time you write a test.

Chapter 7

[243]

The start and end of a test
PHPUnit gives you the opportunity to set up a common scenario for each test in a
class. For this, you need to use the setUp method, which, if present, is executed each
time that a test of this class is executed. The instance of the class that invokes the
setUp and test methods is the same, so you can use the properties of the class to
save the context. One common use would be to create the object that we will use for
our tests in case this is always the same. For an example, write the following code in
tests/Domain/Customer/BasicTest.php:

<?php

namespace Bookstore\Tests\Domain\Customer;

use Bookstore\Domain\Customer\Basic;
use PHPUnit_Framework_TestCase;

class BasicTest extends PHPUnit_Framework_TestCase {
 private $customer;

 public function setUp() {
 $this->customer = new Basic(
 1, 'han', 'solo', 'han@solo.com'
);
 }

 public function testAmountToBorrow() {
 $this->assertSame(
 3,
 $this->customer->getAmountToBorrow(),
 'Basic customer should borrow up to 3 books.'
);
 }
}

When testAmountToBorrow is invoked, the $customer property is already initialized
through the execution of the setUp method. If the class had more than one test, the
setUp method would be executed each time.

Even though it is less common to use, there is another method used to clean up the
scenario after the test is executed: tearDown. This works in the same way, but it is
executed after each test of this class is executed. Possible uses would be to clean up
database data, close connections, delete files, and so on.

Testing Web Applications

[244]

Assertions
You have already been introduced to the concept of assertions, so let's just list the
most common ones in this section. For the full list, we recommend you to visit the
official documentation at https://phpunit.de/manual/current/en/appendixes.
assertions.html as it is quite extensive; however, to be honest, you will probably
not use many of them.

The first type of assertion that we will see is the Boolean assertion, that is, the
one that checks whether a value is true or false. The methods are as simple as
assertTrue and assertFalse, and they expect one parameter, which is the value
to assert, and optionally, a text to display in case of failure. In the same BasicTest
class, add the following test:

public function testIsExemptOfTaxes() {
 $this->assertFalse(
 $this->customer->isExemptOfTaxes(),
 'Basic customer should be exempt of taxes.'
);
}

This test makes sure that a basic customer is never exempt of taxes. Note that we
could do the same assertion by writing the following:

$this->assertSame(
 $this->customer->isExemptOfTaxes(),
 false,
 'Basic customer should be exempt of taxes.'
);

A second group of assertions would be the comparison assertions. The most famous
ones are assertSame and assertEquals. You have already used the first one, but
are you sure of its meaning? Let's add another test and run it:

public function testGetMonthlyFee() {
 $this->assertSame(
 5,
 $this->customer->getMonthlyFee(),
 'Basic customer should pay 5 a month.'
);
}

https://phpunit.de/manual/current/en/appendixes.assertions.html
https://phpunit.de/manual/current/en/appendixes.assertions.html

Chapter 7

[245]

The result of the test is shown in the following screenshot:

The test failed! The reason is that assertSame is the equivalent to comparing using
identity, that is, without using type juggling. The result of the getMonthlyFee
method is always a float, and we will compare it with an integer, so it will never be
the same, as the error message tells us. Change the assertion to assertEquals, which
compares using equality, and the test will pass now.

When working with objects, we can use an assertion to check whether a given object
is an instance of the expected class or not. When doing so, remember to send the full
name of the class as this is a quite common mistake. Even better, you could get the
class name using ::class, for example, Basic::class. Add the following test in
tests/Domain/Customer/CustomerFactoryTest.php:

<?php

namespace Bookstore\Tests\Domain\Customer;

use Bookstore\Domain\Customer\CustomerFactory;
use PHPUnit_Framework_TestCase;

class CustomerFactoryTest extends PHPUnit_Framework_TestCase {
 public function testFactoryBasic() {
 $customer = CustomerFactory::factory(
 'basic', 1, 'han', 'solo', 'han@solo.com'
);

Testing Web Applications

[246]

 $this->assertInstanceOf(
Basic::class,
 $customer,
 'basic should create a Customer\Basic object.'
);
 }
}

This test creates a customer using the customer factory. As the type of customer was
basic, the result should be an instance of Basic, which is what we are testing with
assertInstanceOf. The first argument is the expected class, the second is the object
that we are testing, and the third is the error message. This test also helps us to note
the behavior of comparison assertions with objects. Let's create a basic customer
object as expected and compare it with the result of the factory. Then, run the test,
as follows:

$expectedBasicCustomer = new Basic(1, 'han', 'solo', 'han@solo.com');

$this->assertSame(
 $customer,
 $expectedBasicCustomer,
 'Customer object is not as expected.'
);

The result of this test is shown in the following screenshot:

Chapter 7

[247]

The test failed because when you compare two objects with identity comparison,
you comparing the object reference, and it will only be the same if the two objects are
exactly the same instance. If you create two objects with the same properties, they
will be equal but never identical. To fix the test, change the assertion as follows:

$expectedBasicCustomer = new Basic(1, 'han', 'solo', 'han@solo.com');

$this->assertEquals(
 $customer,
 $expectedBasicCustomer,
 'Customer object is not as expected.'
);

Let's now write the tests for the sale domain object at tests/Domain/SaleTest.php.
This class is very easy to test and allows us to use some new assertions, as follows:

<?php

namespace Bookstore\Tests\Domain\Customer;

use Bookstore\Domain\Sale;
use PHPUnit_Framework_TestCase;

class SaleTest extends PHPUnit_Framework_TestCase {
 public function testNewSaleHasNoBooks() {
 $sale = new Sale();

 $this->assertEmpty(
 $sale->getBooks(),
 'When new, sale should have no books.'
);
 }

 public function testAddNewBook() {
 $sale = new Sale();
 $sale->addBook(123);

 $this->assertCount(
 1,
 $sale->getBooks(),
 'Number of books not valid.'
);
 $this->assertArrayHasKey(
 123,

Testing Web Applications

[248]

 $sale->getBooks(),
 'Book id could not be found in array.'
);
 $this->assertSame(
 $sale->getBooks()[123],
 1,
 'When not specified, amount of books is 1.'
);
 }
}

We added two tests here: one makes sure that for a new sale instance, the list of
books associated with it is empty. For this, we used the assertEmpty method, which
takes an array as an argument and will assert that it is empty. The second test is
adding a book to the sale and then making sure that the list of books has the correct
content. For this, we will use the assertCount method, which verifies that the array,
that is, the second argument, has as many elements as the first argument provided.
In this case, we expect that the list of books has only one entry. The second assertion
of this test is verifying that the array of books contains a specific key, which is the ID
of the book, with the assertArrayHasKey method, in which the first argument is the
key, and the second one is the array. Finally, we will check with the already known
assertSame method that the amount of books inserted is 1.

Even though these two new assertion methods are useful sometimes, all the three
assertions of the last test can be replaced by just an assertSame method, comparing
the whole array of books with the expected one, as follows:

$this->assertSame(
 [123 => 1],
 $sale->getBooks(),
 'Books array does not match.'
);

The suite of tests for the sale domain object would not be enough if we were not
testing how the class behaves when adding multiple books. In this case, using
assertCount and assertArrayHasKey would make the test unnecessarily long,
so let's just compare the array with an expected one via the following code:

public function testAddMultipleBooks() {
 $sale = new Sale();
 $sale->addBook(123, 4);
 $sale->addBook(456, 2);
 $sale->addBook(456, 8);

 $this->assertSame(

Chapter 7

[249]

 [123 => 4, 456 => 10],
 $sale->getBooks(),
 'Books are not as expected.'
);
}

Expecting exceptions
Sometimes, a method is expected to throw an exception for certain unexpected
use cases. When this happens, you could try to capture this exception inside the
test or take advantage of another tool that PHPUnit offers: expecting exceptions.
To mark a test to expect a given exception, just add the @expectedException
annotation followed by the exception's class full name. Optionally, you can use
@expectedExceptionMessage to assert the message of the exception. Let's add the
following tests to our CustomerFactoryTest class:

/**
 * @expectedException \InvalidArgumentException
 * @expectedExceptionMessage Wrong type.
 */
public function testCreatingWrongTypeOfCustomer() {
 $customer = CustomerFactory::factory(
 'deluxe', 1, 'han', 'solo', 'han@solo.com'

);
}

In this test we will try to create a deluxe customer with our factory, but as this
type of customer does not exist, we will get an exception. The type of the expected
exception is InvalidArgumentException, and the error message is "Wrong type".
If you run the tests, you will see that they pass.

If we defined an expected exception and the exception is never thrown, the test
will fail; expecting exceptions is just another type of assertion. To see this happen,
add the following to your test and run it; you will get a failure, and PHPUnit will
complain saying that it expected the exception, but it was never thrown:

/**
 * @expectedException \InvalidArgumentException
 */
public function testCreatingCorrectCustomer() {
 $customer = CustomerFactory::factory(
 'basic', 1, 'han', 'solo', 'han@solo.com'
);
}

Testing Web Applications

[250]

Data providers
If you think about the flow of a test, most of the time, we invoke a method with an
input and expect an output. In order to cover all the edge cases, it is natural that we
will repeat the same action with a set of inputs and expected outputs. PHPUnit gives
us the ability to do so, thus removing a lot of duplicated code. This feature is called
data providing.

A data provider is a public method defined in the test class that returns an array
with a specific schema. Each entry of the array represents a test in which the key is
the name of the test—optionally, you could use numeric keys—and the value is the
parameter that the test needs. A test will declare that it needs a data provider with
the @dataProvider annotation, and when executing tests, the data provider injects
the arguments that the test method needs. Let's consider an example to make it
easier. Write the following two methods in your CustomerFactoryTest class:

public function providerFactoryValidCustomerTypes() {
 return [
 'Basic customer, lowercase' => [
 'type' => 'basic',
 'expectedType' => '\Bookstore\Domain\Customer\Basic'
],
 'Basic customer, uppercase' => [
 'type' => 'BASIC',
 'expectedType' => '\Bookstore\Domain\Customer\Basic'
],
 'Premium customer, lowercase' => [
 'type' => 'premium',
 'expectedType' => '\Bookstore\Domain\Customer\Premium'
],
 'Premium customer, uppercase' => [
 'type' => 'PREMIUM',
 'expectedType' => '\Bookstore\Domain\Customer\Premium'
]
];
}

/**
 * @dataProvider providerFactoryValidCustomerTypes
 * @param string $type
 * @param string $expectedType
 */
public function testFactoryValidCustomerTypes(
 string $type,
 string $expectedType

Chapter 7

[251]

) {
 $customer = CustomerFactory::factory(
 $type, 1, 'han', 'solo', 'han@solo.com'
);
 $this->assertInstanceOf(
 $expectedType,
 $customer,
 'Factory created the wrong type of customer.'
);
}

The test here is testFactoryValidCustomerTypes, which expects two arguments:
$type and $expectedType. The test uses them to create a customer with the factory
and verify the type of the result, which we already did by hardcoding the types.
The test also declares that it needs the providerFactoryValidCustomerTypes data
provider. This data provider returns an array of four entries, which means that the
test will be executed four times with four different sets of arguments. The name of
each test is the key of each entry—for example, "Basic customer, lowercase". This
is very useful in case a test fails because it will be displayed as part of the error
messages. Each entry is a map with two values, type and expectedType, which are
the names of the arguments of the test method. The values of these entries are the
values that the test method will get.

The bottom line is that the code we wrote would be the same as if we wrote
testFactoryValidCustomerTypes four times, hardcoding $type and $expectedType
each time. Imagine now that the test method contains tens of lines of code or we want
to repeat the same test with tens of datasets; do you see how powerful it is?

Testing with doubles
So far, we tested classes that are quite isolated; that is, they do not have much
interaction with other classes. Nevertheless, we have classes that use several classes,
such as controllers. What can we do with these interactions? The idea of unit tests is
to test a specific method and not the whole code base, right?

PHPUnit allows you to mock these dependencies; that is, you can provide fake objects
that look similar to the dependencies that the tested class needs, but they do not use
code from those classes. The goal of this is to provide a dummy instance that the class
can use and invoke its methods without the side effect of what these invocations might
have. Imagine as an example the case of the models: if the controller uses a real model,
then when invoking methods from it, the model would access the database each time,
making the tests quite unpredictable.

Testing Web Applications

[252]

If we use a mock as the model instead, the controller can invoke its methods as many
times as needed without any side effect. Even better, we can make assertions of the
arguments that the mock received or force it to return specific values. Let's take a
look at how to use them.

Injecting models with DI
The first thing we need to understand is that if we create objects using new inside the
controller, we will not be able to mock them. This means that we need to inject all the
dependencies—for example, using a dependency injector. We will do this for all of
the dependencies but one: the models. In this section, we will test the borrow method
of the BookController class, so we will show the changes that this method needs.
Of course, if you want to test the rest of the code, you should apply these same
changes to the rest of the controllers.

The first thing to do is to add the BookModel instance to the dependency injector
in our index.php file. As this class also has a dependency, PDO, use the same
dependency injector to get an instance of it, as follows:

$di->set('BookModel', new BookModel($di->get('PDO')));

Now, in the borrow method of the BookController class, we will change the new
instantiation of the model to the following:

public function borrow(int $bookId): string {
 $bookModel = $this->di->get('BookModel');

 try {
//...

Customizing TestCase
When writing your unit test's suite, it is quite common to have a customized
TestCase class from which all tests extend. This class always extends from
PHPUnit_Framework_TestCase, so we still get all the assertions and other
methods. As all tests have to import this class, let's change our autoloader so that
it can recognize namespaces from the tests directory. After this, run composer
update, as follows:

"autoload": {
 "psr-4": {
 "Bookstore\\Tests\\": "tests",
 "Bookstore\\": "src"
 }
}

Chapter 7

[253]

With this change, we will tell Composer that all the namespaces starting with
Bookstore\Tests will be located under the tests directory, and the rest will
follow the previous rules.

Let's add now our customized TestCase class. The only helper method we need
right now is one to create mocks. It is not really necessary, but it makes things
cleaner. Add the following class in tests/AbstractTestClase.php:

<?php

namespace Bookstore\Tests;

use PHPUnit_Framework_TestCase;
use InvalidArgumentException;

abstract class AbstractTestCase extends PHPUnit_Framework_TestCase {
 protected function mock(string $className) {
 if (strpos($className, '\\') !== 0) {
 $className = '\\' . $className;
 }

 if (!class_exists($className)) {
 $className = '\Bookstore\\' . trim($className, '\\');

 if (!class_exists($className)) {
 throw new InvalidArgumentException(
 "Class $className not found."
);
 }
 }

 return $this->getMockBuilder($className)
 ->disableOriginalConstructor()
 ->getMock();
 }
}

This method takes the name of a class and tries to figure out whether the class is part
of the Bookstore namespace or not. This will be handy when mocking objects of our
own codebase as we will not have to write Bookstore each time. After figuring out
what the real full class name is, it uses the mock builder from PHPUnit to create one
and then returns it.

Testing Web Applications

[254]

More helpers! This time, they are for controllers. Every single controller will always
need the same dependencies: logger, database connection, template engine, and
configuration reader. Knowing this, let's create a ControllerTestCase class from
where all the tests covering controllers will extend. This class will contain a setUp
method that creates all the common mocks and sets them in the dependency injector.
Add it as your tests/ControllerTestCase.php file, as follows:

<?php

namespace Bookstore\Tests;

use Bookstore\Utils\DependencyInjector;
use Bookstore\Core\Config;
use Monolog\Logger;
use Twig_Environment;
use PDO;

abstract class ControllerTestCase extends AbstractTestCase {
 protected $di;

 public function setUp() {
 $this->di = new DependencyInjector();
 $this->di->set('PDO', $this->mock(PDO::class));
 $this->di->set('Utils\Config', $this->mock(Config::class));
 $this->di->set(
 'Twig_Environment',
 $this->mock(Twig_Environment::class)
);
 $this->di->set('Logger', $this->mock(Logger::class));
 }
}

Using mocks
Well, we've had enough of the helpers; let's start with the tests. The difficult part here
is how to play with mocks. When you create one, you can add some expectations and
return values. The methods are:

• expects: This specifies the amount of times the mock's method is invoked.
You can send $this->never(), $this->once(), or $this->any() as an
argument to specify 0, 1, or any invocations.

• method: This is used to specify the method we are talking about.
The argument that it expects is just the name of the method.

Chapter 7

[255]

• with: This is a method used to set the expectations of the arguments that the
mock will receive when it is invoked. For example, if the mocked method is
expected to get basic as the first argument and 123 as the second, the with
method will be invoked as with("basic", 123). This method is optional,
but if we set it, PHPUnit will throw an error in case the mocked method does
not get the expected arguments, so it works as an assertion.

• will: This is used to define what the mock will return. The two
most common usages are $this->returnValue($value) or $this-
>throwException($exception). This method is also optional, and if not
invoked, the mock will always return null.

Let's add the first test to see how it would work. Add the following code to the
tests/Controllers/BookControllerTest.php file:

<?php

namespace Bookstore\Tests\Controllers;

use Bookstore\Controllers\BookController;
use Bookstore\Core\Request;
use Bookstore\Exceptions\NotFoundException;
use Bookstore\Models\BookModel;
use Bookstore\Tests\ControllerTestCase;
use Twig_Template;

class BookControllerTest extends ControllerTestCase {
 private function getController(
 Request $request = null
): BookController {
 if ($request === null) {
 $request = $this->mock('Core\Request');
 }
 return new BookController($this->di, $request);
 }

 public function testBookNotFound() {
 $bookModel = $this->mock(BookModel::class);
 $bookModel
 ->expects($this->once())
 ->method('get')
 ->with(123)
 ->will(
 $this->throwException(
 new NotFoundException()

Testing Web Applications

[256]

)
);
 $this->di->set('BookModel', $bookModel);

 $response = "Rendered template";
 $template = $this->mock(Twig_Template::class);
 $template
 ->expects($this->once())
 ->method('render')
 ->with(['errorMessage' => 'Book not found.'])
 ->will($this->returnValue($response));
 $this->di->get('Twig_Environment')
 ->expects($this->once())
 ->method('loadTemplate')
 ->with('error.twig')
 ->will($this->returnValue($template));

 $result = $this->getController()->borrow(123);

 $this->assertSame(
 $result,
 $response,
 'Response object is not the expected one.'
);
 }
}

The first thing the test does is to create a mock of the BookModel class. Then, it adds an
expectation that goes like this: the get method will be called once with one argument,
123, and it will throw NotFoundException. This makes sense as the test tries to
emulate a scenario in which we cannot find the book in the database.

The second part of the test consists of adding the expectations of the template engine.
This is a bit more complex as there are two mocks involved. The loadTemplate
method of Twig_Environment is expected to be called once with the error.twig
argument as the template name. This mock should return Twig_Template, which is
another mock. The render method of this second mock is expected to be called once
with the correct error message, returning the response, which is a hardcoded string.
After all the dependencies are defined, we just need to invoke the borrow method of
the controller and expect a response.

Remember that this test does not have only one assertion, but four: the assertSame
method and the three mock expectations. If any of them are not accomplished, the
test will fail, so we can say that this method is quite robust.

Chapter 7

[257]

With our first test, we verified that the scenario in which the book is not found
works. There are two more scenarios that fail as well: when there are not enough
copies of the book to borrow and when there is a database error when trying to
save the borrowed book. However, you can see now that all of them share a piece
of code that mocks the template. Let's extract this code to a protected method that
generates the mocks when it is given the template name, the parameters are sent to
the template, and the expected response is received. Run the following:

protected function mockTemplate(
 string $templateName,
 array $params,
 $response
) {
 $template = $this->mock(Twig_Template::class);
 $template
 ->expects($this->once())
 ->method('render')
 ->with($params)
 ->will($this->returnValue($response));
 $this->di->get('Twig_Environment')
 ->expects($this->once())
 ->method('loadTemplate')
 ->with($templateName)
 ->will($this->returnValue($template));
}

public function testNotEnoughCopies() {
 $bookModel = $this->mock(BookModel::class);
 $bookModel
 ->expects($this->once())
 ->method('get')
 ->with(123)
 ->will($this->returnValue(new Book()));
 $bookModel
 ->expects($this->never())
 ->method('borrow');
 $this->di->set('BookModel', $bookModel);

 $response = "Rendered template";
 $this->mockTemplate(
 'error.twig',
 ['errorMessage' => 'There are no copies left.'],
 $response
);

Testing Web Applications

[258]

 $result = $this->getController()->borrow(123);

 $this->assertSame(
 $result,
 $response,
 'Response object is not the expected one.'
);
}

public function testErrorSaving() {
 $controller = $this->getController();
 $controller->setCustomerId(9);

 $book = new Book();
 $book->addCopy();
 $bookModel = $this->mock(BookModel::class);
 $bookModel
 ->expects($this->once())
 ->method('get')
 ->with(123)
 ->will($this->returnValue($book));
 $bookModel
 ->expects($this->once())
 ->method('borrow')
 ->with(new Book(), 9)
 ->will($this->throwException(new DbException()));
 $this->di->set('BookModel', $bookModel);

 $response = "Rendered template";
 $this->mockTemplate(
 'error.twig',
 ['errorMessage' => 'Error borrowing book.'],
 $response
);

 $result = $controller->borrow(123);

 $this->assertSame(
 $result,
 $response,
 'Response object is not the expected one.'
);
}

Chapter 7

[259]

The only novelty here is when we expect that the borrow method is never invoked.
As we do not expect it to be invoked, there is no reason to use the with nor will
method. If the code actually invokes this method, PHPUnit will mark the test as failed.

We already tested and found that all the scenarios that can fail have failed. Let's add
a test now where a user can successfully borrow a book, which means that we will
return valid books and customers from the database, the save method will be invoked
correctly, and the template will get all the correct parameters. The test looks as follows:

public function testBorrowingBook() {
 $controller = $this->getController();
 $controller->setCustomerId(9);

 $book = new Book();
 $book->addCopy();
 $bookModel = $this->mock(BookModel::class);
 $bookModel
 ->expects($this->once())
 ->method('get')
 ->with(123)
 ->will($this->returnValue($book));
 $bookModel
 ->expects($this->once())
 ->method('borrow')
 ->with(new Book(), 9);
 $bookModel
 ->expects($this->once())
 ->method('getByUser')
 ->with(9)
 ->will($this->returnValue(['book1', 'book2']));
 $this->di->set('BookModel', $bookModel);

 $response = "Rendered template";
 $this->mockTemplate(
 'books.twig',
 [
 'books' => ['book1', 'book2'],
 'currentPage' => 1,
 'lastPage' => true
],
 $response
);

 $result = $controller->borrow(123);

 $this->assertSame(
 $result,

Testing Web Applications

[260]

 $response,
 'Response object is not the expected one.'
);
}

So this is it. You have written one of the most complex tests you will need to write
during this book. What do you think of it? Well, as you do not have much experience
with tests, you might be quite satisfied with the result, but let's try to analyze it a
bit further.

Database testing
This will be the most controversial of the sections of this chapter by far. When it
comes to database testing, there are different schools of thought. Should we use the
database or not? Should we use our development database or one in memory? It is
quite out of the scope of the book to explain how to mock the database or prepare a
fresh one for each test, but we will try to summarize some of the techniques here:

• We will mock the database connection and write expectations to all the
interactions between the model and the database. In our case, this would
mean that we would inject a mock of the PDO object. As we will write the
queries manually, chances are that we might introduce a wrong query.
Mocking the connection would not help us detect this error. This solution
would be good if we used ORM instead of writing the queries manually,
but we will leave this topic out of the book.

• For each test, we will create a brand new database in which we add the data
we would like to have for the specific test. This approach might take a lot
of time, but it assures you that you will be testing against a real database
and that there is no unexpected data that might make our tests fail; that is,
the tests are fully isolated. In most of the cases, this would be the preferable
approach, even though it might not be the one that performs faster. To solve
this inconvenience, we will create in-memory databases.

• Tests run against an already existing database. Usually, at the beginning of
the test we start a transaction that we roll back at the end of the test, leaving
the database without any change. This approach emulates a real scenario, in
which we can find all sorts of data and our code should always behave as
expected. However, using a shared database always has some side effects;
for example, if we want to introduce changes to the database schema, we
will have to apply them to the database before running the tests, but the rest
of the applications or developers that use the database are not yet ready for
these changes.

Chapter 7

[261]

In order to keep things small, we will try to implement a mixture of the second and
third options. We will use our existing database, but after starting the transaction
of each test, we will clean all the tables involved with the test. This looks as
though we need a ModelTestCase to handle this. Add the following into
tests/ModelTestCase.php:

<?php

namespace Bookstore\Tests;

use Bookstore\Core\Config;
use PDO;

abstract class ModelTestCase extends AbstractTestCase {
 protected $db;
 protected $tables = [];

 public function setUp() {
 $config = new Config();

 $dbConfig = $config->get('db');
 $this->db = new PDO(
 'mysql:host=127.0.0.1;dbname=bookstore',
 $dbConfig['user'],
 $dbConfig['password']
);
 $this->db->beginTransaction();
 $this->cleanAllTables();
 }

 public function tearDown() {
 $this->db->rollBack();
 }

 protected function cleanAllTables() {
 foreach ($this->tables as $table) {
 $this->db->exec("delete from $table");
 }
 }
}

Testing Web Applications

[262]

The setUp method creates a database connection with the same credentials found
in the config/app.yml file. Then, we will start a transaction and invoke the
cleanAllTables method, which iterates the tables in the $tables property and
deletes all the content from them. The tearDown method rolls back the transaction.

Extending from ModelTestCase
If you write a test extending from this class that needs to implement
either the setUp or tearDown method, always remember to invoke
the ones from the parent.

Let's write tests for the borrow method of the BookModel class. This method uses
books and customers, so we would like to clean the tables that contain them. Create
the test class and save it in tests/Models/BookModelTest.php:

<?php

namespace Bookstore\Tests\Models;

use Bookstore\Models\BookModel;
use Bookstore\Tests\ModelTestCase;

class BookModelTest extends ModelTestCase {
 protected $tables = [
 'borrowed_books',
 'customer',
 'book'
];
 protected $model;

 public function setUp() {
 parent::setUp();

 $this->model = new BookModel($this->db);
 }
}

Note how we also overrode the setUp method, invoking the one in the parent and
creating the model instance that all tests will use, which is safe to do as we will not
keep any context on this object. Before adding the tests though, let's add some more
helpers to ModelTestCase: one to create book objects given an array of parameters
and two to save books and customers in the database. Run the following code:

protected function buildBook(array $properties): Book {
 $book = new Book();
 $reflectionClass = new ReflectionClass(Book::class);

 foreach ($properties as $key => $value) {

Chapter 7

[263]

 $property = $reflectionClass->getProperty($key);
 $property->setAccessible(true);
 $property->setValue($book, $value);
 }

 return $book;
}

protected function addBook(array $params) {
 $default = [
 'id' => null,
 'isbn' => 'isbn',
 'title' => 'title',
 'author' => 'author',
 'stock' => 1,
 'price' => 10.0,
];
 $params = array_merge($default, $params);

 $query = <<<SQL
insert into book (id, isbn, title, author, stock, price)
values(:id, :isbn, :title, :author, :stock, :price)
SQL;
 $this->db->prepare($query)->execute($params);
}

protected function addCustomer(array $params) {
 $default = [
 'id' => null,
 'firstname' => 'firstname',
 'surname' => 'surname',
 'email' => 'email',
 'type' => 'basic'
];
 $params = array_merge($default, $params);

 $query = <<<SQL
insert into customer (id, firstname, surname, email, type)
values(:id, :firstname, :surname, :email, :type)
SQL;
 $this->db->prepare($query)->execute($params);
}

Testing Web Applications

[264]

As you can note, we added default values for all the fields, so we are not forced to
define the whole book/customer each time we want to save one. Instead, we just
sent the relevant fields and merged them to the default ones.

Also, note that the buildBook method used a new concept, reflection, to access the
private properties of an instance. This is way beyond the scope of the book, but
if you are interested, you can read more at http://php.net/manual/en/book.
reflection.php.

We are now ready to start writing tests. With all these helpers, adding tests will be
very easy and clean. The borrow method has different use cases: trying to borrow
a book that is not in the database, trying to use a customer not registered, and
borrowing a book successfully. Let's add them as follows:

/**
 * @expectedException \Bookstore\Exceptions\DbException
 */
public function testBorrowBookNotFound() {
 $book = $this->buildBook(['id' => 123]);
 $this->model->borrow($book, 123);
}

/**
 * @expectedException \Bookstore\Exceptions\DbException
 */
public function testBorrowCustomerNotFound() {
 $book = $this->buildBook(['id' => 123]);
 $this->addBook(['id' => 123]);

 $this->model->borrow($book, 123);
}

public function testBorrow() {
 $book = $this->buildBook(['id' => 123, 'stock' => 12]);
 $this->addBook(['id' => 123, 'stock' => 12]);
 $this->addCustomer(['id' => 123]);

 $this->model->borrow($book, 123);
}

Impressed? Compared to the controller tests, these tests are way simpler, mainly
because their code performs only one action, but also thanks to all the methods
added to ModelTestCase. Once you need to work with other objects, such as sales,
you can add addSale or buildSale to this same class to make things cleaner.

http://php.net/manual/en/book.reflection.php
http://php.net/manual/en/book.reflection.php

Chapter 7

[265]

Test-driven development
You might realize already that there is no unique way to do things when talking
about developing an application. It is out of the scope of this book to show you all of
them—and by the time you are done reading these lines, more techniques will have
been incorporated already—but there is one approach that is very useful when it
comes to writing good, testable code: test-driven development (TDD).

This methodology consists of writing the unit tests before writing the code itself. The
idea, though, is not to write all the tests at once and then write the class or method
but rather to do it in a progressive way. Let's consider an example to make it easier.
Imagine that your Sale class is yet to be implemented and the only thing we know is
that we have to be able to add books. Rename your src/Domain/Sale.php file to src/
Domain/Sale2.php or just delete it so that the application does not know about it.

Is all this verbosity necessary?
You will note in this example that we will perform an excessive
amount of steps to come up with a very simple piece of code. Indeed,
they are too many for this example, but there will be times when this
amount is just fine. Finding these moments comes with experience, so
we recommend you to practice first with simple examples. Eventually,
it will come naturally to you.

The mechanics of TDD consist of four steps, as follows:

1. Write a test for some functionality that is not yet implemented.
2. Run the unit tests, and they should fail. If they do not, either your test is

wrong, or your code already implements this functionality.
3. Write the minimum amount of code to make the tests pass.
4. Run the unit tests again. This time, they should pass.

We do not have the sale domain object, so the first thing, as we should start from
small things and then move on to bigger things, is to assure that we can instantiate the
sale object. Write the following unit test in tests/Domain/SaleTest.php as we will
write all the existing tests, but using TDD; you can remove the existing tests in this file.

<?php

namespace Bookstore\Tests\Domain;

use Bookstore\Domain\Sale;
use PHPUnit_Framework_TestCase;

Testing Web Applications

[266]

class SaleTest extends PHPUnit_Framework_TestCase {
 public function testCanCreate() {
 $sale = new Sale();
 }
}

Run the tests to make sure that they are failing. In order to run one specific test, you
can mention the file of the test when running PHPUnit, as shown in the following
script:

Good, they are failing. That means that PHP cannot find the object to instantiate it.
Let's now write the minimum amount of code required to make this test pass. In this
case, creating the class would be enough, and you can do this through the following
lines of code:

<?php

namespace Bookstore\Domain;

class Sale {
}

Chapter 7

[267]

Now, run the tests to make sure that there are no errors.

This is easy, right? So, what we need to do is repeat this process, adding more
functionality each time. Let's focus on the books that a sale holds; when created,
the book's list should be empty, as follows:

public function testWhenCreatedBookListIsEmpty() {
 $sale = new Sale();

 $this->assertEmpty($sale->getBooks());
}

Run the tests to make sure that they fail—they do. Now, write the following method
in the class:

public function getBooks(): array {
return [];
}

Now, if you run... wait, what? We are forcing the getBooks method to return an empty
array always? This is not the implementation that we need—nor the one we deserve—
so why do we do it? The reason is the wording of step 3: "Write the minimum amount
of code to make the tests pass.". Our test suite should be extensive enough to detect this
kind of problem, and this is our way to make sure it does. This time, we will write bad
code on purpose, but next time, we might introduce a bug unintentionally, and our
unit tests should be able to detect it as soon as possible. Run the tests; they will pass.

Now, let's discuss the next functionality. When adding a book to the list, we should
see this book with amount 1. The test should be as follows:

public function testWhenAddingABookIGetOneBook() {
 $sale = new Sale();
 $sale->addBook(123);

Testing Web Applications

[268]

 $this->assertSame(
 $sale->getBooks(),
 [123 => 1]
);
}

This test is very useful. Not only does it force us to implement the addBook method,
but also it helps us fix the getBooks method—as it is hardcoded right now—to always
return an empty array. As the getBooks method now expects two different results, we
cannot trick the tests any more. The new code for the class should be as follows:

class Sale {
 private $books = [];

 public function getBooks(): array {
 return $this->books;
 }

 public function addBook(int $bookId) {
 $this->books[123] = 1;
 }
}

A new test we can write is the one that allows you to add more than one book at
a time, sending the amount as the second argument. The test would look similar
to the following:

public function testSpecifyAmountBooks() {
 $sale = new Sale();
 $sale->addBook(123, 5);

 $this->assertSame(
 $sale->getBooks(),
 [123 => 5]
);
}

Now, the tests do not pass, so we need to fix them. Let's refactor addBook so that it
can accept a second argument as the amount :

public function addBook(int $bookId, int $amount = 1) {
 $this->books[123] = $amount;
}

Chapter 7

[269]

The next functionality we would like to add is the same book invoking the method
several times, keeping track of the total amount of books added. The test could be
as follows:

public function testAddMultipleTimesSameBook() {
 $sale = new Sale();
 $sale->addBook(123, 5);
 $sale->addBook(123);
 $sale->addBook(123, 5);

 $this->assertSame(
 $sale->getBooks(),
 [123 => 11]
);
}

This test will fail as the current execution will not add all the amounts but will
instead keep the last one. Let's fix it by executing the following code:

public function addBook(int $bookId, int $amount = 1) {
 if (!isset($this->books[123])) {
 $this->books[123] = 0;
 }
 $this->books[123] += $amount;
}

Well, we are almost there. There is one last test we should add, which is the ability
to add more than one different book. The test is as follows:

public function testAddDifferentBooks() {
 $sale = new Sale();
 $sale->addBook(123, 5);
 $sale->addBook(456, 2);
 $sale->addBook(789, 5);

 $this->assertSame(
 $sale->getBooks(),
 [123 => 5, 456 => 2, 789 => 5]
);
}

Testing Web Applications

[270]

This test fails due to the hardcoded book ID in our implementation. If we did not do
this, the test would have already passed. Let's fix it then; run the following:

public function addBook(int $bookId, int $amount = 1) {
 if (!isset($this->books[$bookId])) {
 $this->books[$bookId] = 0;
 }
 $this->books[$bookId] += $amount;
}

We are done! Does it look familiar? It is the same code we wrote on our first
implementation except for the rest of the properties. You can now replace the sale
domain object with the previous one, so you have all the functionalities needed.

Theory versus practice
As mentioned before, this is a quite long and verbose process that very few
experienced developers follow from start to end but one that most of them encourage
people to follow. Why is this so? When you write all your code first and leave the
unit tests for the end, there are two problems:

• Firstly, in too many cases developers are lazy enough to skip tests, telling
themselves that the code already works, so there is no need to write the tests.
You already know that one of the goals of tests is to make sure that future
changes do not break the current features, so this is not a valid reason.

• Secondly, the tests written after the code usually test the code rather than the
functionality. Imagine that you have a method that was initially meant to
perform an action. After writing the method, we will not perform the action
perfectly due to a bug or bad design; instead, we will either do too much
or leave some edge cases untreated. When we write the test after writing
the code, we will test what we see in the method, not what the original
functionality was!

If you instead force yourself to write the tests first and then the code, you make sure
that you always have tests and that they test what the code is meant to do, leading
to a code that performs as expected and is fully covered. Also, by doing it in small
intervals, you get quick feedback and don't have to wait for hours to know whether
all the tests and code you wrote make sense at all. Even though this idea is quite
simple and makes a lot of sense, many novice developers find it hard to implement.

Chapter 7

[271]

Experienced developers have written code for several years, so they have already
internalized all of this. This is the reason why some of them prefer to either write
several tests before starting with the code or the other way around, that is, writing
code and then testing it as they are more productive this way. However, if there is
something that all of them have in common it is that their applications will always be
full of tests.

Summary
In this chapter, you learned the importance of testing your code using unit tests.
You now know how to configure PHPUnit on your application so that you can not
only run your tests but also get good feedback. You got a good introduction on how
to write unit tests properly, and now, it is safer for you to introduce changes in
your application.

In the next chapter, we will study some existing frameworks, which you can use
instead of writing your own every time you start an application. In this way, not only
will you save time and effort, but also other developers will be able to join you and
understand your code easily.

[273]

Using Existing PHP
Frameworks

In the same way that you wrote your framework with PHP, other people did it too.
It did not take long for people to realize that entire frameworks were reusable too. Of
course, one man's meat is another man's poison, and as with many other examples in
the IT world, loads of frameworks started to appear. You will never hear about most
of them, but a handful of these frameworks got quite a lot of users.

As we write, there are four or five main frameworks that most PHP developers
know of: Symfony and Zend Framework were the main characters of this last PHP
generation, but Laravel is also there, providing a lightweight and fast framework for
those who need fewer features. Due to the nature of this book, we will focus on the
latest ones, Silex and Laravel, as they are quick enough to learn in a chapter—or at
least their basics are.

In this chapter, you will learn about:

• The importance of frameworks
• Other features of frameworks
• Working with Laravel
• Writing applications with Silex

Reviewing frameworks
In Chapter 6, Adapting to MVC, we barely introduced the idea of frameworks using
the MVC design pattern. In fact, we did not explain what a framework is; we
just developed a very simple one. If you are looking for a definition, here it is: a
framework is the structure that you choose to build your program on. Let's discuss
this in more detail.

Using Existing PHP Frameworks

[274]

The purpose of frameworks
When you write an application, you need to add your models, views, and controllers
if you use the MVC design pattern, which we really encourage you to do. These three
elements, together with the JavaScript and CSS files that complete your views, are
the ones that differentiate your application from others. There is no way you can skip
on writing them.

On the other hand, there is a set of classes that, even though you need them for the
correct functioning of your application, they are common to all other applications, or
at least, they are very similar. Examples of these classes are the ones we have in the
src/Core directory, such as the router, the configuration reader, and so on.

The purpose of frameworks is clear and necessary: they add some structure to
your application and connect the different elements of it. In our example, it helped
us route the HTTP requests to the correct controller, connect to the database, and
generate dynamic HTML as the response. However, the idea that has to strive is the
reusability of frameworks. If you had to write the framework each time you start an
application, would that be okay?

So, in order for a framework to be useful, it must be easy to reuse in different
environments. This means that the framework has to be downloaded from a source,
and it has to be easy to install. Download and install a dependency? It seems
Composer is going to be useful again! Even though this was quite different some
years ago, nowadays, all the main frameworks can be installed using Composer.
We will show you how to in a bit.

The main parts of a framework
If we open source our framework so that other developers can make use of it, we
need to structure our code in a way that is intuitive. We need to reduce the learning
curve as much as we can; nobody wants to spend weeks on learning how to work
with a framework.

As MVC is the de facto web design pattern used in web applications, most
frameworks will separate the three layers, model, view, and controller, in three
different directories. Depending on the framework, they will be under a src/
directory, even though it is quite common to find the views outside of this directory,
as we did with our own. Nevertheless, most frameworks will give you enough
flexibility to decide where to place each of the layers.

Chapter 8

[275]

The rest of the classes that complete the frameworks used to be all grouped in a
separate directory—for example, src/Core. It is important to separate these elements
from yours so that you do not mix the code and modify a core class unintentionally,
thus messing up the whole framework. Even better, this last generation of PHP
frameworks used to incorporate the core components as independent modules,
which will be required via Composer. In doing so, the framework's composer.json
file will require all the different components, such as routers, configuration, database
connections, loggers, template engine, and so on, and Composer will download them
in the vendor/ directory, making them available with the autogenerated autoloader.

Separating the different components in different codebases has many benefits.
First of all, it allows different teams of developers to work in an isolated way with
the different components. Maintaining them is also easier as the code is separated
enough not to affect each other. Finally, it allows the end user to choose which
components to get for his application in an attempt to customize the framework,
leaving out those heavy components that are not used.

Either the framework is organized in independent modules or everything is together;
however, there are always the same common components, which are:

• The router: This is the class that, given an HTTP request, finds the correct
controller, instantiates it, and executes it, returning the HTTP response.

• The request: This contains a handful of methods that allows you to access
parameters, cookies, headers, and so on. This is mostly used by the router
and sent to the controller.

• The configuration handler: This allows you to get the correct configuration
file, read it, and use its contents to configure the rest of the components.

• The template engine: This merges HTML with content from the controller in
order to render the template with the response.

• The logger: This adds entries to a log file with the errors or other messages
that we consider important.

• The dependency injector: This manages all the dependencies that your
classes need. Maybe the framework does not have a dependency injector,
but it has something similar—that is, a service locator—which tries to help
you in a similar way.

• The way you can write and run your unit tests: Most of the time, the
frameworks include PHPUnit, but there are more options in the community.

Using Existing PHP Frameworks

[276]

Other features of frameworks
Most frameworks have more than just the features that we described in the previous
section, even though these are enough to build simple applications as you already
did by yourself. Still, most web applications have a lot more common features, so the
frameworks tried to implement generic solutions to each of them. Thanks to this, we
do not have to reinvent the wheel with features that virtually all medium and big
web applications need to implement. We will try to describe some of the most useful
ones so that you have a better idea when choosing a framework.

Authentication and roles
Most websites enforce users to authenticate in order to perform some action. The
reason for this is to let the system know whether the user trying to perform certain
action has the right to do so. Therefore, managing users and their roles is something
that you will probably end up implementing in all your web applications. The
problem comes when way too many people try to attack your system in order to get
the information of other users or performing actions authenticated as someone else,
which is called impersonification. It is for this reason that your authentication and
authorization systems should be as secure as possible—a task that is never easy.

Several frameworks include a pretty secure way of managing users, permissions,
and sessions. Most of the time, you can manage this through a configuration file
probably by pointing the credentials to a database where the framework can add the
user data, your customized roles, and some other customizations. The downside is
that each framework has its own way of configuring it, so you will have to dig into
the documentation of the framework you are using at this time. Still, it will save you
more time than if you had to implement it by yourself.

ORM
Object-relational mapping (ORM) is a technique that converts data from a database
or any other data storage into objects. The main goal is to separate the business logic
as much as possible from the structure of the database and to reduce the complexity
of your code. When using ORM, you will probably never write a query in MySQL;
instead, you will use a chain of methods. Behind the scenes, ORM will write the
query with each method invocation.

Chapter 8

[277]

There are good and bad things when using ORM. On one hand, you do not have to
remember all the SQL syntax all the time and only the correct methods to invoke,
which can be easier if you work with an IDE that can autocomplete methods. It
is also good to abstract your code from the type of storage system, because even
though it is not very common, you might want to change it later. If you use ORM,
you probably have to change only the type of connection, but if you were writing
raw queries, you would have a lot of work to do in order to migrate your code.

The arguable downside of using ORM could be that it may be quite difficult to
write complicated queries using method chains, and you will end up writing them
manually. You are also at the mercy of ORM in order to speed up the performance of
your queries, whereas when writing them manually, it is you who can choose better
what and how to use when querying. Finally, something that OOP purists complain
about quite a lot is that using ORM fills your code with a large amount of dummy
objects, similar to the domain objects that you already know.

As you can see, using ORM is not always an easy decision, but just in case you choose
to use it, most of the big frameworks include one. Take your time in deciding whether
or not to use one in your applications; in case you do, choose wisely which one. You
might end up requiring an ORM different from the one that the framework provides.

Cache
The bookstore is a pretty good example that may help in describing the cache
feature. It has a database of books that is queried every time that someone either lists
all the books or asks for the details of a specific one. Most of the time the information
related to books will be the same; the only change would be the stock of the books
from time to time. We could say that our system has way more reads than writes,
where reads means querying for data and writes means updating it. In this kind of
system, it seems like a waste of time and resources to access the database each time,
knowing that most of the time, we will get the same results. This feeling increases if
we do some expensive transformation to the data that we retrieve.

A cache layer allows the application to store temporary data in a storage system
faster than our database, usually in memory rather than disk. Even though cache
systems are getting more complex, they usually allow you to store data by key-value
pairs, as in an array.

Using Existing PHP Frameworks

[278]

The idea is not to access the database for data that we know is the same as the last
time we accessed it in order to save time and resources. Implementations can vary
quite a lot, but the main flow is as follows:

1. You try to access a certain piece of data for the first time. We ask the cache
whether a certain key is there, which it is not.

2. You query the database, getting back the result. After processing it—and
maybe transforming it to your domain objects—you store the result in the
cache. The key would be the same you used in step 1, and the value would be
the object/array/JSON that you generated.

3. You try to access the same piece of data again. You ask the cache whether the
key is there; here, it is, so you do not need to access the database at all.

It seems easy, right? The main problem with caches comes when we need to
invalidate a certain key. How and when should we do it? There are a couple of
approaches that are worth mentioning:

• You will set an expiration time to the key-value pair in the cache. After this
time passes, the cache will remove the key-value pair automatically, so you
will have to query the database again. Even though this system might work
for some applications, it does not for ours. If the stock changes to 0 before the
cache expires, the user will see books that they cannot borrow or buy.

• The data never expires, but each time we make a change in the database, we
will identify which keys in the cache are affected by this change and then
purge them. This is ideal since the data will be in the cache until it is no longer
valid, whether this is 2 seconds or 3 weeks. The downside is that identifying
these keys could be a hard task depending on your data structure. If you miss
deleting some of them, you will have corrupted data in your cache, which is
quite difficult to debug and detect.

You can see that cache is a double-edged sword, so we would recommend you to only
use it when necessary and not just because your framework comes with it. As with
ORM, if you are not convinced by the cache system that your framework provides,
using a different one should not be difficult. In fact, your code should not be aware of
which cache system you are using except when creating the connection object.

Chapter 8

[279]

Internationalization
English is not the only language out there, and you would like to make your website
as accessible as possible. Depending on your target, it would be a good idea to have
your website translated to other languages too, but how do you do this? We hope
that by now you did not answer: "Copy-pasting all the templates and translating
them". This is way too inefficient; when making a little change in a template, you
need to replicate the change everywhere.

There are tools that can be integrated with either controllers and/or template
engines in order to translate strings. You usually keep a file for each language that
you have, in which you will add all the strings that need to be translated plus their
translation. One of the most common formats for this is PO files, in which you have
a map of key-value pairs with originally translated pairs. Later on, you will invoke
a translate method sending the original string, which will return the translated
string depending on the language you selected.

When writing templates, it might be tiring to invoke the translation each time you
want to display a string, but you will end up with only one template, which is much
easier to maintain than any other option.

Usually, internationalization is very much tied to the framework that you use;
however, if you have the opportunity to use the system of your choice, pay special
attention to its performance, the translation files it uses, and how it manages strings
with parameters—that is, how we can ask the system to translate messages such as
"Hello %s, who are you?" in which "%s" needs to be injected each time.

Types of frameworks
Now that you know quite a lot about what a framework can offer you, you are in a
position to decide what kind of framework you would like to use. In order to make
this decision, it might be useful to know what kinds of frameworks are available.
This categorization is nothing official, just some guidelines that we offer you to make
your choice easier.

Complete and robust frameworks
This type of framework comes with the whole package. It contains all the features
that we discussed earlier, so it will allow you to develop very complete applications.
Usually, these frameworks allow you to create applications very easily with just a
few configuration files that define things such as how to connect to a database, what
kind of roles you need, or whether you want to use a cache. Other than this, you will
just have to add your controllers, views, and models, which saves you a lot of time.

Using Existing PHP Frameworks

[280]

The problem with these frameworks is the learning curve. Given all the features they
contain, you need to spend quite a lot of time on learning how to use each one, which
is usually not very pleasant. In fact, most companies looking for web developers
require that you have experience with the framework they use; otherwise, it will be a
bad investment for them.

Another thing you should consider when choosing these frameworks is whether they
are structured in modules or come as a huge monolith. In the first case, you will be
able to choose which modules to use that add a lot of flexibility. On the other hand,
if you have to stick with all of them, it might make your application slow even if you
do not use all of the features.

Lightweight and flexible frameworks
Even when working on a small application, you would like to use a framework
to save you a lot of time and pain, but you should avoid using one of the larger
frameworks as they will be too much to handle for what you really need. In this case,
you should choose a lightweight framework, one that contains very few features,
similar to what we implemented in previous chapters.

The benefit of these frameworks is that even though you get the basic features such
as routing, you are completely free to implement the login system, cache layer, or
internationalization system that suits your specific application better. In fact, you
could build a more complete framework using this one as the base and then adding
all the complements you need, making it completely customized.

As you can note, both types have their pros and cons. It will be up to you to choose
the correct one each time, depending on your needs, the time that you can spend,
and the experience that you have with each one.

An overview of famous frameworks
You already have a good idea about what a framework can offer and what types
there are. Now, it is time to review some of the most important ones out there so
that you get an idea of where to start looking for your next PHP web application.
Note that with the release of PHP 7, there will be quite a lot of new or improved PHP
frameworks. Try to always be in the loop!

Chapter 8

[281]

Symfony 2
Symfony has been one of the most favorite frameworks of developers during the last
10 years. After reinventing itself for its version 2, Symfony entered the generation
of frameworks by modules. In fact, it is quite common to find other projects using
Symfony 2 components mixed up with some other framework as you just need to
add the name of the module in your Composer file to use it.

You can start applications with Symfony 2 by just executing a command. Symfony
2 creates all the directories, empty configuration files, and so on ready for you. You
can also add empty controllers from the command line. They use Doctrine 2 as ORM,
which is probably one of the most reliable ORMs that PHP can offer nowadays. For
the template engine, you will find Twig, which is the same as what we used in our
framework.

In general, this is a very attractive framework with a huge community behind
it giving support; plus, a lot of companies also use it. It is always worth at least
checking the list of modules in case you do not want to use the whole framework
but want to take advantage of some bits of it.

Zend Framework 2
The second big PHP framework, at least since last year, is Zend Framework 2. As
with Symfony, it has been out there for quite a long time too. Also, as with any other
modern framework, it is built in an OOP way, trying to implement all the good
design patterns used for web applications. It is composed of multiple components
that you can reuse in other projects, such as their well-known authentication system.
It lacks some elements, such as a template engine—usually they mix PHP and
HTML—and ORM, but you can easily integrate the ones that you prefer.

There is a lot of work going on in order to release Zend Framework 3, which will
come with support for PHP 7, performance improvements, and some other new
components. We recommend you to keep an eye on it; it could be a good candidate.

Other frameworks
Even though Symfony and Zend Framework are the two big players, more and more
PHP frameworks have appeared in these last years, evolving quite fast and bringing
to the game more interesting features. Names such as CodeIgniter, Yii, PHPCake,
and others will start to sound familiar as soon as you start browsing PHP projects.
As some of them came into play later than Symfony and Zend Framework, they
implement some new features that the others do not have, such as components
related to JavaScript and jQuery, integration with Selenium for UI testing, and others.

Using Existing PHP Frameworks

[282]

Even though it is always a good thing to have diversification simply because you will
probably get exactly what you need from one or the other, be smart when choosing
your framework. The community plays an important role here because if you have
any problem, it will help you to fix it or you can just help evolve the framework with
each new PHP release.

The Laravel framework
Even though Symfony and Zend Framework have been the big players for quite a
long time, during this last couple of years, a third framework came into play that
has grown in popularity so much that nowadays it is the favorite framework among
developers. Simplicity, elegant code, and high speed of development are the trump
cards of this "framework for artisans". In this section, you will have a glance at what
Laravel can do, taking the first steps to create a very simple application.

Installation
Laravel comes with a set of command-line tools that will make your life easier.
Because of this, it is recommended to install it globally instead of per project—that is,
to have Laravel as another program in your environment. You can still do this with
Composer by running the following command:

$ composer global require "laravel/installer"

This command should download the Laravel installer to ~/.composer/vendor.
In order to be able to use the executable from the command line, you will need
to run something similar to this:

$ sudo ln -s ~/.composer/vendor/bin/laravel /usr/bin/laravel

Now, you are able to use the laravel command. To ensure that everything went
all right, just run the following:

$ laravel –version

If everything went OK, this should output the version installed.

Project setup
Yes, we know. Every single tutorial starts by creating a blog. However, we are
building web applications, and this is the easiest approach we can take that adds
some value to you. Let's start then; execute the following command wherever you
want to add your application:

$ laravel new php-blog

Chapter 8

[283]

This command will output something similar to what Composer does, simply because
it fetches dependencies using Composer. After a few seconds, the application will
hopefully tell you that everything was installed successfully and that you are ready
to go.

Laravel created a new php-blog directory with quite a lot of content. You should
have something similar to the directory structure shown in the following screenshot:

Let's set up the database. The first thing you should do is update the .env file with
the correct database credentials. Update the DB_DATABASE values with your own;
here's an example:

DB_HOST=localhost
DB_DATABASE=php_blog
DB_USERNAME=root
DB_PASSWORD=

Using Existing PHP Frameworks

[284]

You will also need to create the php_blog database. Do it with just one command,
as follows:

$ mysql -u root -e "CREATE SCHEMA php_blog"

With Laravel, you have a migrations system; that is, you keep all the database
schema changes under database/migrations so that anyone else using your code
can quickly set up their database. The first step is to run the following command,
which will create a migrations file for the blogs table:

$ php artisan make:migration create_posts_table --create=posts

Open the generated file, which should be something similar to database/
migrations/<date>_create_posts_table.php. The up method defines the table
blogs with an autoincremental ID and timestamp field. We would like to add a title,
the content of the post, and the user ID that created it. Replace the up method with
the following:

public function up()
{
 Schema::create('posts', function (Blueprint $table) {
 $table->increments('id');
 $table->timestamps();
 $table->string('title');
 $table->text('content');
 $table->integer('user_id')->unsigned();
 $table->foreign('user_id')
 ->references('id')->on('users');
 });
}

Here, the title will be a string, whereas the content is a text. The difference is in the
length of these fields, string being a simple VARCHAR and text a TEXT data type. For
the user ID we defined INT UNSIGNED, which references the id field of the users
table. Laravel already defined the users table when creating the project, so you do
not have to worry about it. If you are interested in how it looks, check the database/
migrations/2014_10_12_000000_create_users_table.php file. You will note
that a user is composed by an ID, a name, the unique e-mail, and the password.

So far, we have just written the migration files. In order to apply them, you need to
run the following command:

$ php artisan migrate

Chapter 8

[285]

If everything went as expected, you should have a blogs table now similar to
the following:

To finish with all the preparations, we need to create a model for our blogs table.
This model will extend from Illuminate\Database\Eloquent\Model, which is the
ORM that Laravel uses. To generate this model automatically, run the following
command:

$ php artisan make:model Post

The name of the model should be the same as that of the database table but in singular.
After running this command, you can find the empty model in app/Post.php.

Adding the first endpoint
Let's add a quick endpoint just to understand how routes work and how to link
controllers with templates. In order to avoid database access, let's build the add new
post view, which will display a form that allows the user to add a new post with a
title and text. Let's start by adding the route and controller. Open the app/Http/
routes.php file and add the following:

Route::group(['middleware' => ['web']], function () {
 Route::get('/new', function () {
 return view('new');
 });
});

These three very simple lines say that for the /new endpoint, we want to reply with
the new view. Later on, we will complicate things here in the controller, but for now,
let's focus on the views.

Using Existing PHP Frameworks

[286]

Laravel uses Blade as the template engine instead of Twig, but the way they work is
quite similar. They can also define layouts from where other templates can extend.
The place for your layouts is in resources/views/layouts. Create an app.blade.
php file with the following content inside this directory, as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>PHP Blog</title>
 <link rel="stylesheet" href="{{ URL::asset('css/layout.css') }}"
type="text/css">
 @yield('css')
</head>
<body>
<div class="navbar">

 New article
 Articles

</div>
<div class="content">
@yield('content')
</div>
</body>
</html>

This is just a normal layout with a title, some CSS, and an ul list of sections in the
body, which will be used as the navigation bar. There are two important elements
to note here other than the HTML code that should already sound familiar:

• To define a block, Blade uses the @yield annotation followed by the name of
the block. In our layout, we defined two blocks: css and content.

• There is a feature that allows you to build URLs in templates. We want to
include the CSS file in public/css/layout.css, so we will use URL::asset
to build this URL. It is also helpful to include JS files.

As you saw, we included a layout.css file. CSS and JS files are stored under the
public directory. Create yours in public/css/layout.css with the following code:

.content {
 position: fixed;
 top: 50px;
 width: 100%
}
.navbar ul {

Chapter 8

[287]

 position: fixed;
 top: 0;
 width: 100%;
 list-style-type: none;
 margin: 0;
 padding: 0;
 overflow: hidden;
 background-color: #333;
}
.navbar li {
 float: left;
 border-right: 1px solid #bbb;
}
.navbar li:last-child {
 border-right: none;
}
.navbar li a {
 display: block;
 color: white;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
}
.navbar li a:hover {
 background-color: #111;
}

Now, we can focus on our view. Templates are stored in resources/views, and,
as with layouts, they need the .blade.php file extension. Create your view in
resources/views/new.blade.php with the following content:

@extends('layouts.app')

@section('css')
 <link rel="stylesheet" href="{{ URL::asset('css/new.css') }}"
type="text/css">
@endsection

@section('content')
 <h2>Add new post</h2>
 <form method="post" action="/new">
 <div class="component">
 <label for="title">Title</label>
 <input type="text" name="title"/>
 </div>

Using Existing PHP Frameworks

[288]

 <div class="component">
 <label>Text</label>
 <textarea rows="20" name="content"></textarea>
 </div>
 <div class="component">
 <button type="submit">Save</button>
 </div>
 </form>
@endsection

The syntax is quite intuitive. This template extends from the layouts' one and defines
two sections or blocks: css and content. The CSS file included follows the same
format as the previous one. You can create it in public/css/new.css with content
similar to the following:

label {
 display: block;
}
input {
 width: 80%;
}
button {
 font-size: 30px;
 float: right;
 margin-right: 20%;
}
textarea {
 width: 80%;
}
.component {
 padding: 10px;
}

The rest of the template just defines the POST form pointing to the same URL with
title and text fields. Everything is ready to test it in your browser! Try accessing
http://localhost:8080/new or the port number of your choice. You should see
something similar to the following screenshot:

Chapter 8

[289]

Managing users
As explained before, user authentication and authorization is one of the features that
most frameworks contain. Laravel makes our lives very easy by providing the user
model and the registration and authentication controllers. It is quite easy to make use
of them: you just need to add the routes pointing to the already existing controllers
and add the views. Let's begin.

There are five routes that you need to consider here. There are two that belong to
the registration step, one to get the form and another one for the form to submit the
information provided by the user. The other three are related to the authentication
part: one to get the form, one to post the form, and one for the logout. All five of
them are included in the Auth\AuthController class. Add to your routes.php file
the following routes:

// Registration routes...
Route::get('auth/register', 'Auth\AuthController@getRegister');
Route::post('auth/register', 'Auth\AuthController@postRegister');

// Authentication routes...
Route::get('/login', 'Auth\AuthController@getLogin');
Route::post('login', 'Auth\AuthController@postLogin');
Route::get('logout', 'Auth\AuthController@getLogout');

Using Existing PHP Frameworks

[290]

Note how we defined these routes. As opposed to the one that we created
previously, the second argument of these is a string with the concatenation of the
controller's class name and method. This is a better way to create routes because it
separates the logic to a different class that can later be reused and/or unit tested.

If you are interested, you can browse the code for this controller. You will
find a complex design, where the functions the routes will invoke are actually
part of two traits that the AuthController class uses: RegistersUsers and
AuthenticatesUsers. Checking these methods will enable you to understand what
goes on behind the scenes.

Each get route expects a view to render. For the user's registration, we need to create
a template in resources/views/auth/register.blade.php, and for the login view,
we need a template in resources/views/auth/login.blade.php. As soon as we
send the correct POST parameters to the correct URL, we can add any content that
we think necessary.

User registration
Let's start with the registration form; this form needs four POST parameters: name,
e-mail, password, and password confirmation, and as the route says, we need to
submit it to /auth/register. The template could look similar to the following:

@extends('layouts.app')

@section('css')
 <link rel="stylesheet" href="{{ URL::asset('css/register.css') }}"
type="text/css">
@endsection

@section('content')
 <h2>Account registration</h2>

 <form method="post" action="/auth/register">
 {{ csrf_field() }}
 <div class="component">
 <label for="name">Name</label>
 <input type="text" name="name"
 value="{{ old('name') }}" />
 </div>
 <div class="component">
 <label>Email</label>
 <input type="email" name="email"
 value="{{ old('email') }}"/>
 </div>

Chapter 8

[291]

 <div class="component">
 <label>Password</label>
 <input type="password" name="password" />
 </div>
 <div class="component">
 <label>Password confirmation</label>
 <input type="password" name="password_confirmation" />
 </div>
 <div class="component">
 <button type="submit">Create</button>
 </div>
 </form>
@endsection

This template is quite similar to the form for new posts: it extends the layout, adds a
CSS file, and populates the content section with a form. The new addition here is the
use of the old function that retrieves the value submitted on the previous request in
case that the form was not valid and we showed it back to the user.

Before we try it, we need to add a register.css file with the styles for this form.
A simple one could be as follows:

div.content {
 text-align: center;
}
label {
 display: block;
}
input {
 width: 250px;
}
button {
 font-size: 20px;
}
.component {
 padding: 10px;
}

Finally, we should edit the layout in order to add a link on the menu pointing to the
registration and login pages. This is as simple as adding the following li elements at
the end of the ul tag:

<li class="right">Sign up
<li class="right">Sign in

Using Existing PHP Frameworks

[292]

Add also the style for the right class at the end of layout.css:

div.alert {
 color: red;
}

To make things even more useful, we could add the information for what went
wrong when submitting the form. Laravel flashes the errors into the session, and
they can be accessed via the errors template variable. As this is common to all forms
and not only to the registration one, we could add it to the app.blade.php layout,
as follows:

<div class="content">
 @if (count($errors) > 0)
 <div class="alert">
 Whoops! Something went wrong!
 @foreach ($errors->all() as $error)
 <p>{{ $error }}</p>
 @endforeach
 </div>
 @endif
@yield('content')

In this piece of code, we will use Blade's @if conditional and @foreach loop.
The syntax is the same as PHP; the only difference is the @ prefix.

Now, we are ready to go. Launch your application and click on the registration link
on the right-hand side of the menu. Attempt to submit the form, but leave some
fields blank so that we can note how the errors are displayed. The result should be
something similar to this:

Chapter 8

[293]

One thing that we should customize is where the user will be redirected once the
registration is successful. In this case, we can redirect them to the login page. In
order to achieve this, you need to change the value of the $redirectTo property of
AuthController. So far, we only have the new post page, but later, you could add
any path that you want via the following:

protected $redirectPath= '/new;

User login
The user's login has a few more changes other than the registration. We not only
need to add the login view, we should also modify the menu in the layout in order
to acknowledge the authenticated user, remove the register link, and add a logout
one. The template, as mentioned earlier, has to be saved in resources/views/
auth/login.blade.php. The form needs an e-mail and password and optionally a
checkbox for the remember me functionality. An example could be the following:

@extends('layouts.app')

@section('css')
 <link rel="stylesheet" href="{{ URL::asset('css/register.css') }}"
type="text/css">
@endsection

@section('content')

Using Existing PHP Frameworks

[294]

 <h2>Login</h2>

 <form method="POST" action="/login">
 {!! csrf_field() !!}
 <div class="component">
 <label>Email</label>
 <input type="email" name="email"
 value="{{ old('email') }}">
 </div>
 <div class="component">
 <label>Password</label>
 <input type="password" name="password">
 </div>
 <div class="component">
 <input class="checkbox" type="checkbox" name="remember">
 Remember Me
 </div>
 <div class="component">
 <button type="submit">Login</button>
 </div>
 </form>
@endsection

The layout has to be changed slightly. Where we displayed the links to register and
log in users, now we need to check whether there is a user already authenticated;
if so, we should rather show a logout link. You can get the authenticated user
through the Auth::user() method even from the view. If the result is not empty, it
means that the user was authenticated successfully. Change the two links using the
following code:

 New article
 Articles
 @if (Auth::user() !== null)
 <li class="right">
 Logout

 @else
 <li class="right">
 Sign up

 <li class="right">
 Sign in

 @endif

Chapter 8

[295]

Protected routes
This last part of the user management session is probably the most important one.
One of the main goals when authenticating users is to authorize them to certain
content—that is, to allow them to visit certain pages that unauthenticated users
cannot. In Laravel, you can define which routes are protected in this way by just
adding the auth middleware. Update the new post route with the following code:

Route::get('/new', ['middleware' => 'auth', function () {
 return view('new');
}]);

Everything is ready! Try to access the new post page after logging out; you will be
redirected automatically to the login page. Can you feel how powerful a framework
can be?

Setting up relationships in models
As we mentioned before, Laravel comes with an ORM, Eloquent ORM, which makes
dealing with models a very easy task. In our simple database, we defined one table
for posts, and we already had another one for users. Posts contain the ID of the user
that owns it—that is, user_id. It is good practice to use the singular of the name of
the table followed by _id so that Eloquent will know where to look. This was all we
did regarding the foreign key.

We should also mention this relationship on the model side. Depending on the type
of the relationship (one to one, one to many, or many to many), the code will be
slightly different. In our case, we have a one-to-many relationship because one user
can have many posts. To say so in Laravel, we need to update both the Post and the
User models. The User model needs to specify that it has many posts, so you need to
add a posts method with the following content:

public function posts() {
 return $this->hasMany('App\Post');
}

This method says that the model for users has many posts. The other change that
needs to be made in Post is similar: we need to add a user method that defines the
relationship. The method should be similar to this one:

public function user() {
 return $this->belongsTo('App\User');
}

Using Existing PHP Frameworks

[296]

It looks like very little, but this is the whole configuration that we need. In the next
section, you will see how easy it is to save and query using these two models.

Creating complex controllers
Even though the title of this section mentions complex controllers, you will note that
we can create complete and powerful controllers with very little code. Let's start by
adding the code that will manage the creation of posts. This controller needs to be
linked to the following route:

Route::post('/new', 'Post\PostController@createPost');

As you can imagine, now, we need to create the Post\PostController class
with the createPost method in it. Controllers should be stored in app/Http/
Controllers, and if they can be organized in folders, it would be even better.
Save the following class in app/Http/Controllers/Post/PostController.php:

<?php

namespace App\Http\Controllers\Post;

use App\Http\Controllers\Controller;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\Auth;
use Illuminate\Support\Facades\Validator;
use App\Post;

class PostController extends Controller {

 public function createPost(Request $request) {

 }
}

So far, the only two things we can note from this class are:

• Controllers extend from the App\Http\Controllers\Controller class,
which contains some general helpers for all the controllers.

• Methods of controllers can get the Illuminate\Http\Request argument
as the user's request. This object will contain elements such as the posted
parameters, cookies, and so on. This is very similar to the one we created
in our own application.

Chapter 8

[297]

The first thing we need to do in this kind of controller is check whether the
parameters posted are correct. For this, we will use the following code:

public function createPost(Request $request) {
 $validator = Validator::make($request->all(), [
 'title' => 'required|max:255',
 'content' => 'required|min:20',
]);

 if ($validator->fails()) {
 return redirect()->back()
 ->withInput()
 ->withErrors($validator);
 }
}

The first thing we did is create a validator. For this, we used the Validator::make
function and sent two arguments: the first one contains all the parameters from the
request, and the second one is an array with the expected fields and their constraints.
Note that we expect two required fields: title and content. Here, the first one can be
up to 255 characters long, and the second one needs to be at least 20 characters long.

Once the validator object is created, we can check whether the data posted by
the user matches the requirements with the fails method. If it returns true—that
is, the validation fails—we will redirect the user back to the previous page with
redirect()->back(). To perform this invocation, we will add two more method
calls: withInput will send the submitted values so that we can display them again,
and withErrors will send the errors the same way AuthController did.

At this point, it would be helpful to the user if we show the previously submitted
title and text in case the post is not valid. For this, use the already known old method
in the view:

{{--...--}}
 <input type="text" name="title"
 value="{{ old('title') }}"/>
</div>
<div class="component">
 <label>Text</label>
 <textarea rows="20" name="content">
 {{ old('content') }}
 </textarea>
{{--...--}}

Using Existing PHP Frameworks

[298]

At this point, we can already test how the controller behaves when the post does
not match the required validations. If you miss any of the parameters or they do not
have correct lengths, you will get an error page similar to the following one:

Let's now add the logic to save the post in case it is valid. If you remember the
interaction with the models from our previous application, you will be gladly
surprised at how easy it is to work with them here. Take a look at the following:

public function createPost(Request $request) {
 $validator = Validator::make($request->all(), [
 'title' => 'required|max:255',
 'content' => 'required|min:20',
]);

 if ($validator->fails()) {
 return redirect()->back()
 ->withInput()
 ->withErrors($validator);
 }

 $post = new Post();

Chapter 8

[299]

 $post->title = $request->title;
 $post->content = $request->content;

 Auth::user()->posts()->save($post);

 return redirect('/new');
}

The first thing we will do is create a post object setting the title and content from
the request values. Then, given the result of Auth::user(), which gives us the
instance of the currently authenticated user model, we will save the post that we just
created through posts()->save($post). If we wanted to save the post without the
information of the user, we could use $post->save(). Really, that is all.

Let's quickly add another endpoint to retrieve the list of posts for a given user
so that we can take a look at how Eloquent ORM allows us to fetch data easily.
Add the following route:

Route::get('/', ['middleware' => 'auth', function () {
 $posts = Auth::user()
 ->posts()
 ->orderBy('created_at')
 ->get();
 return view('posts', ['posts' => $posts]);
}]);

The way we retrieve data is very similar to how we save it. We need the instance of
a model—in this case, the authenticated user—and we will add a concatenation of
method invocations that will internally generate the query to execute. In this case,
we will ask for the posts ordered by the creation date. In order to send information
to the view, we need to pass a second argument, which will be an array of parameter
names and values.

Add the following template as resources/views/posts.blade.php, which will
display the list of posts for the authenticated user as a table. Note how we will use
the $post object, which is an instance of the model, in the following code:

@extends('layouts.app')

@section('css')
 <link rel="stylesheet" href="{{ URL::asset('css/posts.css') }}"
type="text/css">
@endsection

@section('content')

Using Existing PHP Frameworks

[300]

 <h2>Your posts</h2>

 <table>
 @foreach ($posts as $post)
 <tr>
 <td>{{ $post->title }}</td>
 <td>{{ $post->created_at }}</td>
 <td>{{ str_limit($post->content, 100) }}</td>
 </tr>
 @endforeach
 </table>
@endsection

The lists of posts are finally displayed. The result should be something similar to the
following screenshot:

Adding tests
In a very short time, we created an application that allows you to register, log in,
and create and list posts from scratch. We will end this section by talking about
how to test your Laravel application with PHPUnit.

It is extremely easy to write tests in Laravel as it has a very nice integration with
PHPUnit. There is already a phpunit.xml file, a customized TestCase class,
customized assertions, and plenty of helpers in order to test with the database.
It also allows you to test routes, emulating the HTTP request instead of testing the
controllers. We will visit all these features while testing the creation of new posts.

First of all, we need to remove tests/ExampleTest.php because it tested the home
page, and as we modified it, it will fail. Do not worry; this is an example test that
helps developers to start testing, and making it fail is not a problem at all.

Chapter 8

[301]

Now, we need to create our new test. To do this, we can either add the file manually
or use the command line and run the following command:

$ php artisan make:test NewPostTest

This command creates the tests/NewPostTest.php file, which extends from
TestCase. If you open it, you will note that there is already a dummy test, which you
can also remove. Either way, you can run PHPUnit to make sure everything passes.
You can do it in the same way we did previously, as follows:

$./vendor/bin/phpunit

The first test we can add is one where we try to add a new post but the data passed
by the POST parameters is not valid. In this case, we should expect that the response
contains errors and old data, so the user can edit it instead of rewriting everything
again. Add the following test to the NewPostTest class:

<?php

class NewPostTest extends TestCase
{
 public function testWrongParams() {
 $user = factory(App\User::class)
 ->make(['email' => 'test@user.laravel']);

 $this->be($user);

 $this->call(
 'POST',
 '/new',
 ['title' => 'the title', 'content' => 'ojhkjhg']
);

 $this->assertSessionHasErrors('content');
 $this->assertHasOldInput();
 }
}

The first thing we can note in the test is the creation of a user instance using a
factory. You can pass an array with any parameter that you want to set to the make
invocation; otherwise, defaults will be used. After we get the user instance, we
will send it to the be method to let Laravel know that we want that user to be the
authorized one for this test.

Using Existing PHP Frameworks

[302]

Once we set the grounds for the test, we will use the call helper that will emulate
a real HTTP request. To this method, we have to send the HTTP method (in this
case, POST), the route to request, and optionally the parameters. Note that the call
method returns the response object in case you need it.

We will send a title and the content, but this second one is not long enough, so we
will expect some errors. Laravel comes with several customized assertions, especially
when testing these kinds of responses. In this case, we could use two of them:
assertSessionHasErrors, which checks whether there are any flash errors in the
session (in particular, the ones for the content parameter), and assertHasOldInput,
which checks whether the response contains old data in order to show it back to
the user.

The second test that we would like to add is the case where the user posts valid data
so that we can save the post in the database. This test is trickier as we need to interact
with the database, which is usually a not a very pleasant experience. However,
Laravel gives us enough tools to help us in this task. The first and most important is
to let PHPUnit know that we want to use database transactions for each test. Then,
we need to persist the authenticated user in the database as the post has a foreign
key pointing to it. Finally, we should assert that the post is saved in the database
correctly. Add the following code to the NewPostTest class:

use DatabaseTransactions;

//...

public function testNewPost() {
 $postParams = [
 'title' => 'the title',
 'content' => 'In a place far far away.'
];

 $user = factory(App\User::class)
 ->make(['email' => 'test@user.laravel']);
 $user->save();

 $this->be($user);

 $this->call('POST', '/new', $postParams);

 $this->assertRedirectedTo('http://localhost/new');
 $this->seeInDatabase('posts', $postParams);
}

Chapter 8

[303]

The DatabaseTransactions trait will make the test to start a transaction at the
beginning and then roll it back once the test is done, so we will not leave the
database with data from tests. Saving the authenticated user in the database is also
an easy task as the result of the factory is an instance of the user's model, and we can
just invoke the save method on it.

The assertRedirectedTo assertion will make sure that the response contains the valid
headers that redirect the user to the specified URL. More interestingly, seeInDatabase
will verify that there is an entity in the posts table, which is the first argument, with
the data provided in the array, which is the second argument.

There are quite a lot of assertions, but as you can note, they are extremely useful,
reducing what could be a long test to a very few lines. We recommend you to visit
the official documentation for the full list.

The Silex microframework
After a taste of what Laravel can offer you, you most likely do not want to hear
about minimalist microframeworks. Still, we think it is good to know more than
one framework. You can get to know different approaches, be more versatile, and
everyone will want you in their team.

We chose Silex because it is a microframework, which is very different from Laravel,
and also because it is part of the Symfony family. With this introduction to Silex,
you will learn how to use your second framework, which is of a totally different
type, and you will be one step closer to knowing Symfony as well, which is one
of the big players.

What is the benefit of microframeworks? Well, they provide the very basics—that is,
a router, a simple dependency injector, request helpers, and so on, but this is the end
of it. You have plenty of room to choose and build what you really need, including
external libraries or even your own ones. This means that you can have a framework
specially customized for each different project. In fact, Silex provides a handful of
built-in service providers that you can integrate very easily, from template engines to
logging or security.

Installation
There's no news here. Composer does everything for you, as it does with Laravel.
Execute the following command on your command line at the root of your new
project in order to include Silex in your composer.json file:

$ composer require silex/silex

You may require more dependencies, but let's add them when we need them.

Using Existing PHP Frameworks

[304]

Project setup
Silex's most important class is Silex\Application. This class, which extends from
Pimple (a lightweight dependency injector), manages almost anything. You can use
it as an array as it implements the ArrayAccess interface, or you could invoke its
methods to add dependencies, register services, and so on. The first thing to do is to
instantiate it in your public/index.php file, as follows:

<?php

use Silex\Application;

require_once __DIR__ . '/../vendor/autoload.php';

$app = new Application();

Managing configuration
One of the first things we like to do is load the configuration. We could do something
very simple, such as including a file with PHP or JSON content, but let's make use of
one of the service providers, ConfigServiceProvider. Let's add it with Composer
via the following line:

$ composer require igorw/config-service-provider

This service allows us to have multiple configuration files, one for each environment
we need. Imagining that we want to have two environments, prod and dev, this
means we need two files: one in config/prod.json and one in config/dev.json.
The config/dev.json file would look similar to this:

{
 "debug": true,
 "cache": false,
 "database": {
 "user": "dev",
 "password": ""
 }
}

The config/prod.json file would look similar to this:

{
 "debug": false,
 "cache": true,
 "database ": {

Chapter 8

[305]

 "user": "root",
 "password": "fsd98na9nc"
 }
}

In order to work in a development environment, you will need to set the correct
value to the environment variable by running the following command:

export APP_ENV=dev

The APP_ENV environment variable will be the one telling us which environment we
are in. Now, it is time to use this service provider. In order to register it by reading
from the configuration file of the current environment, add the following lines to
your index.php file:

$env = getenv('APP_ENV') ?: 'prod';
$app->register(
 new Igorw\Silex\ConfigServiceProvider(
 __DIR__ . "/../config/$env.json"
)
);

The first thing we did here is to get the environment from the environment variable.
By default, we set it to prod. Then, we invoked register from the $app object to
add an instance of ConfigServiceProvider by passing the correct configuration file
path. From now on, the $app "array" will contain three entries: debug, cache, and db
with the content of the configuration files. We will be able to access them whenever
we have access to $app, which will be mostly everywhere.

Setting the template engine
Another of the handy service providers is Twig. As you might remember, Twig is the
template engine that we used in our own framework, and it is, in fact, from the same
people that developed Symfony and Silex. You also already know how to add the
dependency with Composer; simply run the following:

$ composer require twig/twig

To register the service, we will need to add the following lines in our public/index.
php file:

$app->register(
 new Silex\Provider\TwigServiceProvider(),
 ['twig.path' => __DIR__ . '/../views']
);

Also, create the views/ directory where we will later store our templates. Now, you
have the Twig_Environment instance available by just accessing $app['twig'].

Using Existing PHP Frameworks

[306]

Adding a logger
The last one of the service providers that we will register for now is the logger.
This time, the library to use is Monolog, and you can include this via the following:
$ composer require monolog/monolog

The quickest way to register a service is by just providing the path of the log file,
which can be done as follows:

$app->register(
 new Silex\Provider\MonologServiceProvider(),
 ['monolog.logfile' => __DIR__ . '/../app.log']
);

If you would like to add more information to this service provider, such as
what level of logs you want to save, the name of the log, and so on, you can add
them to the array together with the log file. Take a look at the documentation at
http://silex.sensiolabs.org/doc/providers/monolog.html for the full list
of parameters available.

As with the template engine, from now on, you can access the Monolog\Logger
instance from the Application object by accessing $app['monolog'].

Adding the first endpoint
It is time to see how the router works in Silex. We would like to add a simple endpoint
for the home page. As we already mentioned, the $app instance can manage almost
anything, including routes. Add the following code at the end of the public/index.
php file:

$app->get('/', function(Application $app) {
 return $app['twig']->render('home.twig');
});

This is a similar way of adding routes to the one that Laravel follows. We invoked
the get method as it is a GET endpoint, and we passed the route string and the
Application instance. As we mentioned here, $app also acts as a dependency
injector—in fact, it extends from one: Pimple—so you will notice the Application
instance almost everywhere. The result of the anonymous function will be the
response that we will send to the user—in this case, a rendered Twig template.

Right now, this will not do the trick. In order to let Silex know that you are done
setting up your application, you need to invoke the run method at the very end of
the public/index.php file. Remember that if you need to add anything else to this
file, it has to be before this line:

$app->run();

http://silex.sensiolabs.org/doc/providers/monolog.html

Chapter 8

[307]

You have already worked with Twig, so we will not spend too much time on this.
The first thing to add is the views/home.twig template:

{% extends "layout.twig" %}

{% block content %}
 <h1>Hi visitor!</h1>
{% endblock %}

Now, as you might have already guessed, we will add the views/layout.twig
template, as follows:

<html>
<head>
 <title>Silex Example</title>
</head>
<body>
{% block content %}
{% endblock %}
</body>
</html>

Try accessing the home page of your application; you should get the following result:

Accessing the database
For this section, we will write an endpoint that will create recipes for our cookbook.
Run the following MySQL queries in order to set up the cookbook database and
create the empty recipes table:

mysql> CREATE SCHEMA cookbook;

Query OK, 1 row affected (0.00 sec)

mysql> USE cookbook;

Using Existing PHP Frameworks

[308]

Database changed

mysql> CREATE TABLE recipes(

 -> id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 -> name VARCHAR(255) NOT NULL,

 -> ingredients TEXT NOT NULL,

 -> instructions TEXT NOT NULL,

 -> time INT UNSIGNED NOT NULL);

Query OK, 0 rows affected (0.01 sec)

Silex does not come with any ORM integration, so you will need to write your SQL
queries by hand. However, there is a Doctrine service provider that gives you a
simpler interface than the one PDO offers, so let's try to integrate it. To install this,
run the following command:

$ composer require "doctrine/dbal:~2.2"

Now, we are ready to register the service provider. As with the rest of services,
add the following code to your public/index.php before the route definitions:

$app->register(new Silex\Provider\DoctrineServiceProvider(), [
 'dbs.options' => [
 [
 'driver' => 'pdo_mysql',
 'host' => '127.0.0.1',
 'dbname' => 'cookbook',
 'user' => $app['database']['user'],
 'password' => $app['database']['password']
]
]
]);

When registering, you need to provide the options for the database connection. Some
of them will be the same regardless of the environment, such as the driver or even
the host, but some will come from the configuration file, such as $app['database']
['user']. From now on, you can access the database connection via $app['db'].

With the database set up, let's add the routes that will allow us to add and fetch
recipes. As with Laravel, you can specify either the anonymous function, as we
already did, or a controller and method to execute. Replace the current route with
the following three routes:

$app->get(
 '/',
 'CookBook\\Controllers\\RecipesController::getAll'
);
$app->post(

Chapter 8

[309]

 '/recipes',
 'CookBook\\Controllers\\RecipesController::create'
);
$app->get(
 '/recipes',
 'CookBook\\Controllers\\RecipesController::getNewForm'
);

As you can observe, there will be a new controller, CookBook\Controllers\
RecipesController, which will be placed in src/Controllers/
RecipesController.php. This means that you need to change the autoloader in
Composer. Edit your composer.json file with the following:

"autoload": {
 "psr-4": {"CookBook\\": "src/"}
}

Now, let's add the controller class, as follows:

<?php

namespace CookBook\Controllers;

class Recipes {

}

The first method we will add is the getNewForm method, which will just render the
add a new recipe page. The method looks similar to this:

public function getNewForm(Application $app): string {
 return $app['twig']->render('new_recipe.twig');
}

The method will just render new_recipe.twig. An example of this template could
be as follows:

{% extends "layout.twig" %}

{% block content %}
 <h1>Add recipe</h1>
 <form method="post">
 <div>
 <label for="name">Name</label>
 <input type="text" name="name"
 value="{{ name is defined ? name : "" }}" />
 </div>
 <div>

Using Existing PHP Frameworks

[310]

 <label for="ingredients">Ingredients</label>
 <textarea name="ingredients">
 {{ ingredients is defined ? ingredients : "" }}
 </textarea>
 </div>
 <div>
 <label for="instructions">Instructions</label>
 <textarea name="instructions">
 {{ instructions is defined ? instructions : "" }}
 </textarea>
 </div>
 <div>
 <label for="time">Time (minutes)</label>
 <input type="number" name="time"
 value="{{ time is defined ? time : "" }}" />
 </div>
 <div>
 <button type="submit">Save</button>
 </div>
 </form>
{% endblock %}

This template sends the name, ingredients, instructions, and the time that it takes
to prepare the dish. The endpoint that will get this form needs to get the response
object in order to extract this information. In the same way that we could get the
Application instance as an argument, we can get the Request one too if we specify
it in the method definition. Accessing the POST parameters is as easy as invoking the
get method by sending the name of the parameter or calling $request->request-
>all() to get all of them as an array. Add the following method that checks whether
all the data is valid and renders the form again if it is not, sending the submitted data
and errors:

public function create(Application $app, Request $request): string {
 $params = $request->request->all();
 $errors = [];

 if (empty($params['name'])) {
 $errors[] = 'Name cannot be empty.';
 }
 if (empty($params['ingredients'])) {
 $errors[] = 'Ingredients cannot be empty.';
 }
 if (empty($params['instructions'])) {
 $errors[] = 'Instructions cannot be empty.';
 }
 if ($params['time'] <= 0) {
 $errors[] = 'Time has to be a positive number.';
 }

Chapter 8

[311]

 if (!empty($errors)) {
 $params = array_merge($params, ['errors' => $errors]);
 return $app['twig']->render('new_recipe.twig', $params);
 }
}

The layout.twig template needs to be edited too in order to show the errors
returned. We can do this by executing the following:

{# ... #}
{% if errors is defined %}
 <p>Something went wrong!</p>

 {% for error in errors %}
 {{ error }}
 {% endfor %}

{% endif %}
{% block content %}
{# ... #}

At this point, you can already try to access http://localhost/recipes, fill the
form leaving something empty, submitting, and getting the form back with the
errors. It should look something similar to this (with some extra CSS styles):

Using Existing PHP Frameworks

[312]

The continuation of the controller should allow us to store the correct data as a new
recipe in the database. To do so, it would be a good idea to create a separate class,
such as CookBook\Models\RecipeModel; however, to speed things up, let's add the
following few lines that would go into the model to the controller. Remember that
we have the Doctrine service provider, so there is no need to use PDO directly:

$sql = 'INSERT INTO recipes (name, ingredients, instructions, time) '
 . 'VALUES(:name, :ingredients, :instructions, :time)';
$result = $app['db']->executeUpdate($sql, $params);

if (!$result) {
 $params = array_merge($params, ['errors' => $errors]);
 return $app['twig']->render('new_recipe.twig', $params);
}

return $app['twig']->render('home.twig');

Doctrine also helps when fetching data. To see it working, check the third and final
method, in which we will fetch all the recipes in order to show the user:

public function getAll(Application $app): string {
 $recipes = $app['db']->fetchAll('SELECT * FROM recipes');
 return $app['twig']->render(
 'home.twig',
 ['recipes' => $recipes]
);
}

With only one line, we performed a query. It is not as clean as the Eloquent ORM
of Laravel, but at least it is much less verbose than using raw PDO. Finally, you can
update your home.twig template with the following content in order to display the
recipes that we just fetched from the database:

{% extends "layout.twig" %}

{% block content %}
 <h1>Hi visitor!</h1>
 <p>Check our recipes!</p>
 <table>
 <th>Name</th>
 <th>Time</th>
 <th>Ingredients</th>
 <th>Instructions</th>
 {% for recipe in recipes %}
 <tr>

Chapter 8

[313]

 <td>{{ recipe.name }}</td>
 <td>{{ recipe.time }}</td>
 <td>{{ recipe.ingredients }}</td>
 <td>{{ recipe.instructions }}</td>
 </tr>
 {% endfor %}
 </table>
{% endblock %}

Silex versus Laravel
Even though we did some similar comparison before starting the chapter, it is time to
recapitulate what we said and compare it with what you noted by yourself. Laravel
belongs to the type of framework that allows you to create great things with very
little work. It contains all the components that you, as a web developer, will ever
need. There has to be some good reason for how fast it became the most popular
framework of the year!

On the other hand, Silex is a microframework, which by itself does very little. It
is just the skeleton on which you can build the framework that you exactly need.
It already provides quite a lot of service providers, and we did not discuss even
half of them; we recommend you to visit http://silex.sensiolabs.org/doc/
providers.html for the full list. However, if you prefer, you can always add other
dependencies with Composer and use them. If, for some reason, you stop liking the
ORM or the template engine that you use, or it just happens that a new and better
one appears in the community, switching them should be easy. On the other hand,
when working with Laravel, you will probably stick to what it comes with it.

There is always an occasion for each framework, and we would like to encourage
you to be open to all the possibilities that there are out there, keep up to date, and
explore new frameworks or technologies from time to time.

Summary
In this chapter, you learned how important it is to know some of the most important
frameworks. You also learned the basics of two famous ones: Laravel and Silex.
Now, you are ready to either use your framework or to use these two for your
next application. With this, you also have the capacity to take any other similar
framework and understand it easily.

In the next chapter, we will study what REST APIs are and how to write one with
Laravel. This will expand your set of skills and give you more flexibility for when
you need to decide which approach to take when designing and writing applications.

http://silex.sensiolabs.org/doc/providers.html
http://silex.sensiolabs.org/doc/providers.html

[315]

Building REST APIs
Most non-developers probably think that creating applications means building either
software for your PC or Mac, games, or web pages, because that is what they can
see and use. But once you join the developers' community, either by your own or
professionally, you will eventually realize how much work is done for applications
and tools that do not have a user interface.

Have you ever wondered how someone's website can access your Facebook profile,
and later on, post an automatic message on your wall? Or how websites manage
to send/receive information in order to update the content of the page, without
refreshing or submitting any form? All of these features, and many more interesting
ones, are possible thanks to the integration of applications working "behind the
scenes". Knowing how to use them will open the doors for creating more interesting
and useful web applications.

In this chapter, you will learn the following:

• Introduction to APIs and REST APIs, and their use
• The foundation of REST APIs
• Using third-party APIs
• Tools for REST API developers
• Designing and writing REST APIs with Laravel
• Different ways of testing your REST APIs

Building REST APIs

[316]

Introducing APIs
API stands for Application Program Interface. Its goal is to provide an interface so
that other programs can send commands that will trigger some process inside the
application, possibly returning some output. The concept might seem a bit abstract,
but in fact, there are APIs virtually in everything which is somehow related to
computers. Let's see some real life examples:

• Operating systems or OS, like Windows or Linux, are the programs that
allow you to use computers. When you use any application from your
computer, it most probably needs to talk to the OS in one way or another, for
example by requesting a certain file, sending some audio to the speakers, and
so on. All these interactions between the application and the OS are possible
thanks to the APIs that the OS provides. In this way, the application need not
interact with the hardware straight away, which is a very tiring task.

• To interact with the user, a mobile application provides a GUI. The interface
captures all the events that the user triggers, like clicking or typing, in order
to send them to the server. The GUI communicates with the server using an
API in the same way the program communicates with the OS as explained
earlier.

• When you create a website that needs to display tweets from the user's Twitter
account, you need to communicate with Twitter. They provide an API that
can be accessed via HTTP. Once authenticated, by sending the correct HTTP
requests, you can update and/or retrieve data from their application.

As you can see, there are different places where APIs are useful. In general, when
you have a system that should be accessed externally, you need to provide potential
users an API. When we say externally, we mean from another application or library,
but it can very well be inside the same machine.

Introducing REST APIs
REST APIs are a specific type of APIs. They use HTTP as the protocol to
communicate with them, so you can imagine that they will be the most used ones by
web applications. In fact, they are not very different from the websites that you've
already built, since the client sends an HTTP request, and the server replies with
an HTTP response. The difference here is that REST APIs make heavy use of HTTP
status codes to understand what the response is, and instead of returning HTML
resources with CSS and JS, the response uses JSON, XML, or any other document
format with just information, and not a graphic user interface.

Chapter 9

[317]

Let's take an example. The Twitter API, once authenticated, allows developers to
get the tweets of a given user by sending an HTTP GET request to https://api.
twitter.com/1.1/statuses/user_timeline.json. The response to this request is
an HTTP message with a JSON map of tweets as the body and the status code 200.
We've already mentioned status code in Chapter 2, Web Applications with PHP, but we
will review them shortly.

The REST API also allows developers to post tweets on behalf of the user. If you
were already authenticated, as in the previous example, you just need to send a
POST request to https://api.twitter.com/1.1/statuses/update.json with
the appropriate POST parameters in the body, like the text that you want to tweet.
Even though this request is not a GET, and thus, you are not requesting data but
rather sending it, the response of this request is quite important too. The server will
use the status codes of the response to let the requester know if the tweet was posted
successfully, or if they could not understand the request, there was an internal server
error, the authentication was not valid, and so on. Each of these scenarios has a
different status code, which is the same across all applications. This makes it very
easy to communicate with different APIs, since you will not need to learn a new list
of status code each time. The server can also add some extra information to the body
in order to throw some light on why the error happened, but that will depend on
the application.

You can imagine that these REST APIs are provided to developers so they
can integrate them with their applications. They are not user-friendly, but
HTTP-friendly.

The foundations of REST APIs
Even though REST APIs do not have an official standard, most developers agree on
the same foundation. It helps that HTTP, which is the protocol that this technology
uses to communicate, does have a standard. In this section, we will try to describe
how REST APIs should work.

HTTP request methods
We've already introduced the idea of HTTP methods in Chapter 2, Web Applications with
PHP. We explained that an HTTP method is just the verb of the request, which defines
what kind of action it is trying to perform. We've already defined this method when
working with HTML forms: the form tag can get an optional attribute, method, which
will make the form submit with that specific HTTP method.

Building REST APIs

[318]

You will not use forms when working with REST APIs, but you can still specify the
method of the request. In fact, two requests can go to the same endpoint with the
same parameters, headers, and so on, and yet have completely different behaviors
due to their methods, which makes them a very important part of the request.

As we are giving so much importance to HTTP methods in order to identify what a
request is trying to do, it is natural that we will need a handful of them. So far, we
have introduced GET and POST, but there are actually eight different methods: GET,
POST, PUT, DELETE, OPTIONS, HEAD, TRACE, and CONNECT. You will usually
work with just four of them. Let's look at them in detail.

GET
When a request uses the GET method, it means that it is requesting for information
about a given entity. The endpoint should contain information of what that entity is,
like the ID of a book. GET can also be used to query for a list of objects, either all of
them, filtered, or paginated.

GET requests can add extra information to the request when needed. For example,
if we are try to retrieve all the books that contain the string "rings", or if we want the
page number 2 of the full list of books. As you already know, this extra information
is added to the query string as GET parameters, which is a list of key-value pairs
concatenated by an ampersand (&). So, that means that the request for http://
bookstore.com/books?year=2001&page3 is probably used for getting the second
page of the list of books published during 2001.

REST APIs have extensive documentation on the available endpoints and
parameters, so it should be easy for you to learn to query properly. Still, even though
it will be documented, you should expect parameters with intuitive names, like the
ones in the example.

POST and PUT
POST is the second type of HTTP method that you already know about. You used it
in forms with the intention of "posting" data, that is, trying to update a resource on
the server side. When you wanted to add or update a new book, you sent a POST
request with the data of the book as the POST parameters.

POST parameters are sent in a format similar to the GET parameters, but instead of
being part of the query string, they are included as part of the request's body. Forms
in HTML are already doing that for you, but when you need to talk to a REST API,
you should know how to do this by yourself. In the next section, we will show you
how to perform POST using tools other than forms. Also note that you can add any
data to the body of the request; it is quite common to send JSON in the body instead
of POST parameters.

Chapter 9

[319]

The PUT method is quite similar to the POST method. This too tries to add or update
data on the server side, and for this purpose, it also adds extra information on the
body of the request. Why should we have two different methods that do the same
thing? There are actually two main differences between these methods:

• PUT requests either create a resource or update it, but the affected resource
is the one defined by the endpoint and nothing else. That means that if we
want to update a book, the endpoint should state that the resource is a book,
and specify it, for example, http://bookstore.com/books/8734. On the
other hand, if you do not identify the resource to be created or updated in
the endpoint, or you affect other resources at the same time, you should use
POST requests.

• Idempotent is a complicated word for a simple concept. An idempotent
HTTP method is one that can be called many times, and the result will
always be the same. For example, if you are trying to update the title of a
book to "Don Quixote", it does not matter how many times you call it, the
result will always be the same: the resource will have the title "Don Quixote".
On the other hand, non-idempotent methods might return different results
when executing the same request. An example could be an endpoint that
increases the stock of some book. Each time you call it, you will increase the
stock more and more, and thus, the result is not the same. PUT requests are
idempotent, whereas POST requests are not.

Even with this explanation in mind, misusing POST and PUT is quite a common
mistake among developers, especially when they lack enough experience in
developing REST APIs. Since forms in HTML only send data with POST and
not PUT, the first one is more popular. You might find REST APIs where all the
endpoints that update data are POST, even though some of them should be PUT.

DELETE
The DELETE HTTP method is quite self-explanatory. It is used when you want to
delete a resource on the server. As with PUT requests, DELETE endpoints should
identify the specific resource to be deleted. An example would be when we want
to remove one book from our database. We could send a DELETE request to an
endpoint similar to http://bookstore.com/books/23942.

DELETE requests just delete resources, and they are already determined by the URL.
Still, if you need to send extra information to the server, you could use the body of
the request as you do with POST or PUT. In fact, you can always send information
within the body of the request, including GET requests, but that does not mean it is a
good practice to do so.

Building REST APIs

[320]

Status codes in responses
If HTTP methods are very important for requests, status codes are almost
indispensable for responses. With just one number, the client will know what
happened with the request. This is especially useful when you know that status
codes are a standard, and they are extensively documented on the Internet.

We've already described the most important ones in Chapter 2, Web Applications with
PHP, but let's list them again, adding a few more that are important for REST APIs.
For the full list of status codes, you can visit https://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html.

2xx – success
All the status codes that start with 2 are used for responses where the request was
processed successfully, regardless of whether it was a GET or POST. Some of the
most commonly used ones in this category are as follows:

• 200 OK: It is the generic "everything was OK" response. If you were asking
for a resource, you will get it in the body of the response, and if you were
updating a resource, this will mean that the new data has been successfully
saved.

• 201 created: It is the response used when resources are created successfully
with POST or PUT.

• 202 accepted: This response means that the request has been accepted, but
it has not been processed yet. This might be useful when the client needs a
straightforward response for a very heavy operation: the server sends the
accepted response, and then starts processing it.

3xx – redirection
Even though you might think there is only one type of redirection, there are
a few refinements:

• 301 moved permanently: This means that the resource has been moved to a
different URL, so from then on, you should try to access it through the URL
provided in the body of the response.

• 303 see other: This means that the request has been processed but, in order
to see the response, you need to access the URL provided in the body of
the response.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Chapter 9

[321]

4xx – client error
This category has status codes describing what went wrong due to the client's request:

• 400 bad request: This is a generic response to a malformed request, that is,
there is a syntax error in the endpoint, or some of the expected parameters
were not provided.

• 401 unauthorized: This means the client has not been authenticated
successfully yet, and the resource that it is trying to access needs this
authentication.

• 403 forbidden: This error message means that even though the client has
been authenticated, it does not have enough permissions to access that
resource.

• 404 not found: The specific resource has not been found.
• 405 method not allowed: This means that the endpoint exists, but it does not

accept the HTTP method used on the request, for example, we were trying to
use PUT, but the endpoint only accepts POST requests.

5xx – server error
There are up to 11 different errors on the server side, but we are only interested in
one: the 500 internal server error. You could use this status code when something
unexpected, like a database error, happens while processing the request.

REST API security
REST APIs are a powerful tool since they allow developers to retrieve and/or
update data from the server. But with great power comes great responsibility, and
when designing a REST API, you should think about making your data as secure as
possible. Imagine— anyone could post tweets on your behalf with a simple HTTP
request!

Similar to using web applications, there are two concepts here: authentication
and authorization. Authenticating someone is identifying who he or she is, that is,
linking his or her request to a user in the database. On the other hand, authorizing
someone is to allow that specific user to perform certain actions. You could think of
authentication as the login of the user, and authorization as giving permissions.

REST APIs need to manage these two concepts very carefully. Just because a
developer has been authenticated does not mean he can access all the data on the
server. Sometimes, users can access only their own data, whereas sometimes you
would like to implement a roles system where each role has different access levels.
It always depends on the type of application you are building.

Building REST APIs

[322]

Although authorization happens on the server side, that is, it's the server's
database that will decide whether a given user can access a certain resource or not,
authentications have to be triggered by the client. This means that the client has to
know what authentication system the REST API is using in order to proceed with the
authentication. Each REST API will implement its own authentication system, but
there are some well known implementations.

Basic access authentication
Basic access authentication—BA for short—is, as its name suggests, basic. The client
adds the information about the user in the headers of each request, that is, username
and password. The problem is that this information is only encoded using BASE64
but not encrypted, making it extremely easy for an intruder to decode the header and
obtain the password in plain text. If you ever have to use it, since, to be honest, it is a
very easy way of implementing some sort of authentication, we would recommend
you to use it with HTTPS.

In order to use this method, you need to concatenate the username and password
like username:password, encode the resultant string using Base64, and add the
authorization header as:

Authorization: Basic <encoded-string>

OAuth 2.0
If basic authentication was very simple, and insecure, OAuth 2.0 is the most
secure system that REST APIs use in order to authenticate, and so was the previous
OAuth 1.0. There are actually different versions of this standard, but all of them
work on the same foundation:

1. There are no usernames and passwords. Instead, the provider of the REST
API assigns a pair of credentials—a token and the secret—to the developer.

2. In order to authenticate, the developer needs to send a POST request to the
"token" endpoint, which is different in each REST API but has the same
concept. This request has to include the encoded developer credentials.

3. The server replies to the previous request with a session token. This (and not
the credentials mentioned in the first step) is to be included in each request
that you make to the REST API. The session token expires for security
reasons, so you will have to repeat the second step again when that happens.

Even though this standard is kind of recent (2012 onwards), several big companies
like Google or Facebook have already implemented it for their REST APIs. It might
look a bit overcomplicated, but you will soon get to use it, and even implement it.

Chapter 9

[323]

Using third-party APIs
That was enough theory about REST APIs; it is time to dive into a real world
example. In this section, we will write a small PHP application that interacts with
Twitter's REST API; that includes requesting developer credentials, authenticating,
and sending requests. The goal is to give you your first experience in working with
REST APIs, and showing you that it is easier than you could expect. It will also help
you to understand better how they work, so it will be easier to build your own later.

Getting the application's credentials
REST APIs usually have the concept of application. An application is like an account
on their development site that identifies who uses the API. The credentials that you
will use to access the API will be linked to this application, which means that you
can have multiple applications linked to the same account.

Assuming that you have a Twitter account, go to https://apps.twitter.com in
order to create a new application. Click on the Create New App button in order to
access the form for application details. The fields are very self-explanatory—just a
name for the application, the description, and the website URL. The callback URL is
not necessary here, since that will be used only for applications that require access to
someone else's account. Agree with the terms and conditions in order to proceed.

Once you have been redirected to your application's page, you will see all sort of
information that you can edit. Since this is just an example, let's go straight to what
matters: the credentials. Click on the Keys and Access Tokens tab to see the values
of Consumer key (API key) and Consumer Secret (API secret). There is nothing
else that we need from here. You can save them on your filesystem, as ~/.twitter_
php7.json, for example:

{
 "key": "iTh4Mzl0EAPn9HAm98hEhAmVEXS",
 "secret": "PfoWM9yq4Bh6rGbzzJhr893j4r4sMIAeVRaPMYbkDer5N6F"
}

https://apps.twitter.com

Building REST APIs

[324]

Securing your credentials
Securing your REST API credentials should be taken seriously. In fact,
you should take care of all kinds of credentials, like the database ones. But
the difference is that you will usually host your database in your server,
which makes things slightly more difficult to whoever wants to attack. On
the other hand, the third-party REST API is not part of your system, and
someone with your credentials can use your account freely on your behalf.
Never include your credentials in your code base, especially if you have
your code in GitHub or some other repository. One solution would be to
have a file in your server, outside your code, with the credentials; if that
file is encrypted, that is even better. And try to refresh your credentials
regularly, which you can probably do on the provider's website.

Setting up the application
Our application will be extremely simple. It will consist of one class that will allow
us to fetch tweets. This will be managed by our app.php script.

As we have to make HTTP requests, we can either write our own functions that use
cURL (a set of PHP native functions), or make use of the famous PHP library, Guzzle.
This library can be found in Packagist, so we will use Composer to include it:

$ composer require guzzlehttp/guzzle

We will have a Twitter class, which will get the credentials from the constructor,
and one public method: fetchTwits. For now, just create the skeleton so that we can
work with it; we will implement such methods in later sections. Add the following
code to src/Twitter.php:

<?php

namespace TwitterApp;

class Twitter {

 private $key;
 private $secret;

 public function __construct(String $key, String $secret) {
 $this->key = $key;
 $this->secret = $secret;
 }

 public function fetchTwits(string name, int $count): array {
 return [];
 }
}

Chapter 9

[325]

Since we set the namespace TwitterApp, we need to update our composer.json
file with the following addition. Remember to run composer update to update
the autoloader.

"autoload": {
 "psr-4": {"TwitterApp\\": "src"}
}

Finally, we will create a basic app.php file, which includes the Composer autoloader,
reads the credentials file, and creates a Twitter instance:

<?php

use TwitterApp\Twitter;

require __DIR__ . '/vendor/autoload.php';

$path = $_SERVER['HOME'] . '/.twitter_php7.json';
$jsonCredentials = file_get_contents($path);
$credentials = json_decode($jsonCredentials, true);

$twitter = new Twitter($credentials['key'], $credentials['secret']);

Requesting an access token
In a real world application, you would probably want to separate the code related to
authentication from the one that deals with operations like fetching or posting data.
To keep things simple here, we will let the Twitter class know how to authenticate
by itself.

Let's start by adding a $client property to the class which will contain an instance
of Guzzle's Client class. This instance will contain the base URI of the Twitter API,
which we can have as the constant TWITTER_API_BASE_URI. Instantiate this property
in the constructor so that the rest of the methods can make use of it. You can also
add an $accessToken property which will contain the access token returned by the
Twitter API when authenticating. All these changes are highlighted here:

<?php

namespace TwitterApp;

use Exception;
use GuzzleHttp\Client;

Building REST APIs

[326]

class Twitter {

 const TWITTER_API_BASE_URI = 'https://api.twitter.com';

 private $key;
 private $secret;
 private $accessToken;
 private $client;

 public function __construct(String $key, String $secret) {
 $this->key = $key;
 $this->secret = $secret;

 $this->client = new Client(
 ['base_uri' => self::TWITTER_API_BASE_URI]
);
 }

 //...
}

The next step would be to write a method that, given the key and secret are
provided, requests an access token to the provider. More specifically:

• Concatenate the key and the secret with a :. Encode the result using Base64.
• Send a POST request to /oauth2/token with the encoded credentials as the

Authorization header. Also include a Content-Type header and a body
(check the code for more information).

We now invoke the post method of Guzzle's client instance sending two arguments:
the endpoint string (/oauth2/token) and an array with options. These options include
the headers and the body of the request, as you will see shortly. The response of this
invocation is an object that identifies the HTTP response. You can extract the content
(body) of the response with getBody. Twitter's API response is a JSON with some
arguments. The one that you care about the most is the access_token, the token that
you will need to include in each subsequent request to the API. Extract it and save it.
The full method looks as follows:

private function requestAccessToken() {
 $encodedString = base64_encode(
 $this->key . ':' . $this->secret
);
 $headers = [
 'Authorization' => 'Basic ' . $encodedString,

Chapter 9

[327]

 'Content-Type' => 'application/x-www-form-
urlencoded;charset=UTF-8'
];
 $options = [
 'headers' => $headers,
 'body' => 'grant_type=client_credentials'
];

 $response = $this->client->post(self:: OAUTH_ENDPOINT, $options);
 $body = json_decode($response->getBody(), true);

 $this->accessToken = $body['access_token'];
}

You can already try this code by adding these two lines at the end of the constructor:

$this->requestAccessToken();
var_dump($this->accessToken);

Run the application in order to see the access token given by the provider using
the following command. Remember to remove the preceding two lines in order to
proceed with the section.

$ php app.php

Keep in mind that, even though having a key and secret and getting an access
token is the same across all OAuth authentications, the specific way of encoding,
the endpoint used, and the response received from the provider are exclusive from
Twitter's API. It could be that several others are exactly the same, but always check
the documentation for each one.

Fetching tweets
We finally arrive to the section where we actually make use of the API. We will
implement the fetchTwits method in order to get a list of the last N number of tweets
for a given user. In order to perform requests, we need to add the Authorization
header to each one, this time with the access token. Since we want to make this class as
reusable as possible, let's extract this to a private method:

private function getAccessTokenHeaders(): array {
 if (empty($this->accessToken)) {
 $this->requestAccessToken();
 }

 return ['Authorization' => 'Bearer ' . $this->accessToken];
}

Building REST APIs

[328]

As you can see, the preceding method also allows us to fetch the access token from
the provider. This is useful, since if we make more than one request, we will just
request the access token once, and we have one unique place to do so. Add now the
following method implementation:

const GET_TWITS = '/1.1/statuses/user_timeline.json';
//...
public function fetchTwits(string $name, int $count): array {
 $options = [
 'headers' => $this->getAccessTokenHeaders(),
 'query' => [
 'count' => $count,
 'screen_name' => $name
]
];

 $response = $this->client->get(self::GET_TWITS, $options);
 $responseTwits = json_decode($response->getBody(), true);

 $twits = [];
 foreach ($responseTwits as $twit) {
 $twits[] = [
 'created_at' => $twit['created_at'],
 'text' => $twit['text'],
 'user' => $twit['user']['name']
];
 }

 return $twits;
}

The first part of the preceding method builds the options array with the access
token headers and the query string arguments—in this case, with the number of
tweets to retrieve and the user. We perform the GET request and decode the JSON
response into an array. This array contains a lot of information that we might not
need, so we iterate it in order to extract those fields that we really want—in this
example, the date, the text, and the user.

In order to test the application, just invoke the fetchTwits method at the end
of the app.php file, specifying the Twitter ID of one of the people you are following,
or yourself.

$twits = $twitter->fetchTwits('neiltyson', 10);
var_dump($twits);

Chapter 9

[329]

You should get a response similar to ours, shown in the following screenshot:

One thing to keep in mind is that access tokens expire after some time, returning an
HTTP response with a 4xx status code (usually, 401 unauthorized). Guzzle throws
an exception when the status code is either 4xx or 5xx, so it is easy manage these
scenarios. You could add this code when performing the GET request:

try {
 $response = $this->client->get(self::GET_TWITS, $options);
} catch (ClientException $e) {
 if ($e->getCode() == 401) {
 $this->requestAccessToken();
 $response = $this->client->get(self::GET_TWITS, $options);
 } else {
 throw $e;
 }
}

Building REST APIs

[330]

The toolkit of the REST API developer
While you are developing your own REST API, or writing an integration for a
third-party one, you might want to test it before you start writing your code.
There are a handful of tools that will help you with this task, whether you want
to use your browser, or you are a fan of the command line.

Testing APIs with browsers
There are actually several add-ons that allow you to perform HTTP requests from
browsers, depending on which one you use. Some famous names are Advanced Rest
Client for Chrome and RESTClient for Firefox. At the end of the day, all those clients
allow you to perform the same HTTP requests, where you can specify the URL, the
method, the headers, the body, and so on. These clients will also show you all the
details you can imagine from the response, including the status code, the time spent,
and the body. The following screenshot displays an example of a request using
Chrome's Advanced Rest Client:

Chapter 9

[331]

If you want to test GET requests with your own API, and all that you need is the
URL, that is, you do not need to send any headers, you can just use your browser as
if you were trying to access any other website. If you do so, and if you are working
with JSON responses, you can install another add-on to your browser that will help
you in viewing your JSON in a more "beautiful" way. Look for JSONView on any
browser for a really handy one.

Testing APIs using the command line
Some people feel more comfortable using the command line; so luckily, for them
there are tools that allow them to perform any HTTP request from their consoles.
We will give a brief introduction to one of the most famous ones: cURL. This tool has
quite a lot of features, but we will focus only on the ones that you will be using more
often: the HTTP method, post parameters, and headers:

• -X <method>: This specifies the HTTP method to use
• --data: This adds the parameters specified, which can be added as key-value

pairs, JSON, plain text, and so on
• --header: This adds a header to the request

The following is an example of the way to send a POST request with cURL:

curl -X POST --data "text=This is sparta!" \

> --header "Authorization: Bearer 8s8d7bf8asdbf8sbdf8bsa" \

> https://api.twitter.com/1.1/statuses/update.json

{"errors":[{"code":89,"message":"Invalid or expired token."}]}

If you are using a Unix system, you will probably be able to format the resulting
JSON by appending | python -m json.tool so that it gets easier to read:

$ curl -X POST --data "text=This is sparta!" \

> --header "Authorization: Bearer 8s8d7bf8asdbf8sbdf8bsa" \

> https://api.twitter.com/1.1/statuses/update.json \

> | python -m json.tool

{

 "errors": [

 {

 "code": 89,

 "message": "Invalid or expired token."

 }

]

}

Building REST APIs

[332]

cURL is quite a powerful tool that lets you do quite a few tricks. If you are interested,
go ahead and check the documentation or some tutorial on how to use all its features.

Best practices with REST APIs
We've already gone through some of the best practices when writing REST APIs,
like using HTTP methods properly, or choosing the correct status code for your
responses. We also described two of the most used authentication systems. But there
is still a lot to learn about creating proper REST APIs. Remember that they are meant
to be used by developers like yourself, so they will always be grateful if you do
things properly, and make their lives easier. Ready?

Consistency in your endpoints
When deciding how to name your endpoints, try keeping them consistent.
Even though you are free to choose, there is a set of spoken rules that will make
your endpoints more intuitive and easy to understand. Let's list some of them:

• For starters, an endpoint should point to a specific resource (for example,
books or tweets), and you should make that clear in your endpoint. If you
have an endpoint that returns the list of all books, do not name it /library,
as it is not obvious what it will be returning. Instead, name it /books or /
books/all.

• The name of the resource can be either plural or singular, but make it
consistent. If sometimes you use /books and sometimes /user, it might be
confusing, and people will probably make mistakes. We personally prefer to
use the plural form, but that is totally up to you.

• When you want to retrieve a specific resource, do it by specifying the ID
whenever possible. IDs must be unique in your system, and any other
parameter might point to two different entities. Specify the ID next to the
name of the resource, such as /books/249234-234-23-42.

• If you can understand what an endpoint does by just the HTTP method, there
is no need to add this information as part of the endpoint. For example, if
you want to get a book, or you want to delete it, /books/249234-234-23-42
along with the HTTP methods GET and DELETE are more than enough.
If it is not obvious, state it as a verb at the end of the endpoint, like /
employee/9218379182/promote.

Chapter 9

[333]

Document as much as you can
The title says everything. You are probably not going to be the one using the REST
API, others will. Obviously, even if you design a very intuitive set of endpoints,
developers will still need to know the whole set of available endpoints, what each of
them does, what optional parameters are available, and so on.

Write as much documentation as possible, and keep it up to date. Take a look at other
documented APIs to gather ideas on how to display the information. There are plenty
of templates and tools that will help you deliver a well-presented documentation, but
you are the one that has to be consistent and methodical. Developers have a special
hate towards documenting anything, but we also like to find clear and beautifully
presented documentation when we need to use someone else's APIs.

Filters and pagination
One of the common usages of an API is to list resources and filter them by some
criteria. We already saw an example when we were building our own bookstore; we
wanted to get the list of books that contained a certain string in their titles or authors.

Some developers try to have beautiful endpoints, which a priori is a good thing to
do. Imagine that you want to filter just by title, you might end up having an endpoint
like /books/title/<string>. We add also the ability to filter by author, and we
now get two more endpoints: /books/title/<string>/author/<string> and
/books/author/<string>. Now let's add the description too—do you see where
we are going?

Even though some developers do not like to use query strings as arguments, there
is nothing wrong with it. In fact, if you use them properly, you will end up with
cleaner endpoints. You want to get books? Fine, just use /books, and add whichever
filter you need using the query string.

Pagination occurs when you have way too many resources of the same type to
retrieve all at once. You should think of pagination as another optional filter to be
specified as a GET parameter. You should have pages with a default size, let's say 10
books, but it is a good idea to give the developers the ability to define their own size.
In this case, developers can specify the length and the number of pages to retrieve.

API versioning
Your API is a reflection of what your application can do. Chances are that your code
will evolve, improving the already existing features or adding new ones. Your API
should be updated too, exposing those new features, updating existing endpoints,
or even removing some of them.

Building REST APIs

[334]

Imagine now that someone else is using your REST API, and their whole website
relies on it. If you change your existing endpoints, their website will stop working!
They will not be happy at all, and will try to find someone else that can do what you
were doing. Not a good scenario, but then, how do you improve your API?

The solution is to use versioning. When you release a new version of the API, do not
nuke down the existing one; you should give some time to the users to upgrade their
integrations. And how can two different versions of the API coexist? You already
saw one of the options—the one that we recommend you: by specifying the version
of the API to use as part of the endpoint. Do you remember the endpoint of the
Twitter API /1.1/statuses/user_timeline.json? The 1.1 refers to the version
that we want to use.

Using HTTP cache
If the main feature of REST APIs is that they make heavy use of HTTP, why not take
advantage of HTTP cache? Well, there are actual reasons for not using it, but most
of them are due to a lack of knowledge about using it properly. It is out of the scope
of this book to explain every single detail of its implementation, but let's try to give
a short introduction to the topic. Plenty of resources on the Internet can help you to
understand the parts that you are more interested in.

HTTP responses can be divided as public and private. Public responses are shared
between all users of the API, whereas the private ones are meant to be unique for
each user. You can specify which type of response is yours using the Cache-Control
header, allowing the response to be cached if the method of the request was a GET.
This header can also expose the expiration of the cache, that is, you can specify the
duration for which your response will remain the same, and thus, can be cached.

Other systems rely on generating a hash of the representation of a resource, and add
it as the ETag (Entity tag) header in order to know if the resource has changed or not.
In a similar way, you can set the Last-Modified header to let the client know when
was the last time that the given resource changed. The idea behind those systems is
to identify when the client already contains valid data. If so, the provider does not
process the request, but returns an empty response with the status code 304 (not
modified) instead. When the client gets that response, it uses its cached content.

Creating a REST API with Laravel
In this section, we will build a REST API with Laravel from scratch. This REST
API will allow you to manage different clients at your bookstore, not only via the
browser, but via the UI as well. You will be able to perform pretty much the same
actions as before, that is, listing books, buying them, borrowing for free, and so on.

Chapter 9

[335]

Once the REST API is done, you should remove all the business logic from the
bookstore that you built during the previous chapters. The reason is that you
should have one unique place where you can actually manipulate your databases
and the REST API, and the rest of the applications, like the web one, should able to
communicate with the REST API for managing data. In doing so, you will be able to
create other applications for different platforms, like mobile apps, that will use the
REST API too, and both the website and the mobile app will always be synchronized,
since they will be using the same sources.

As with our previous Laravel example, in order to create a new project, you just need
to run the following command:

$ laravel new bookstore_api

Setting OAuth2 authentication
The first thing that we are going to implement is the authentication layer. We will
use OAuth2 in order to make our application more secure than basic authentication.
Laravel does not provide support for OAuth2 out of the box, but there is a service
provider which does that for us.

Installing OAuth2Server
To install OAuth2, add it as a dependency to your project using Composer:

$ composer require "lucadegasperi/oauth2-server-laravel:5.1.*"

This service provider needs quite a few changes. We will go through them without
going into too much detail on how things work exactly. If you are more interested
in the topic, or if you want to create your own service providers for Laravel, we
recommend you to go though the extensive official documentation.

To start with, we need to add the new OAuth2Server service provider to the array
of providers in the config/app.php file. Add the following lines at the end of the
providers array:

/*
 * OAuth2 Server Service Providers...
 */
 LucaDegasperi\OAuth2Server\Storage\FluentStorageServiceProvid
er::class, LucaDegasperi\OAuth2Server\OAuth2ServerServiceProvid
er::class,

Building REST APIs

[336]

In the same way, you need to add a new alias to the aliases array in the same file:

'Authorizer' => LucaDegasperi\OAuth2Server\Facades\Authorizer::class,

Let's move to the app/Http/Kernel.php file, where we need to make some changes
too. Add the following entry to the $middleware array property of the Kernel class:

\LucaDegasperi\OAuth2Server\Middleware\OAuthExceptionHandlerMiddlewar
e::class,

Add the following key-value pairs to the $routeMiddleware array property of the
same class:

'oauth' => \LucaDegasperi\OAuth2Server\Middleware\
OAuthMiddleware::class,
'oauth-user' => \LucaDegasperi\OAuth2Server\Middleware\OAuthUserOwnerM
iddleware::class,
'oauth-client' => \LucaDegasperi\OAuth2Server\Middleware\OAuthClientOw
nerMiddleware::class,
'check-authorization-params' => \LucaDegasperi\OAuth2Server\
Middleware\CheckAuthCodeRequestMiddleware::class,
'csrf' => \App\Http\Middleware\VerifyCsrfToken::class,

We added a CSRF token verifier to the $routeMiddleware, so we need to remove
the one already defined in $middlewareGroups, since they are incompatible. Use the
following line to do so:

\App\Http\Middleware\VerifyCsrfToken::class,

Setting up the database
Let's set up the database now. In this section, we will assume that you already
have the bookstore database in your environment. If you do not have it, go back
to Chapter 5, Using Databases, to create it in order to proceed with this setup.

The first thing to do is to update the database credentials in the .env file. They should
look something similar to the following lines, but with your username and password:

DB_HOST=localhost
DB_DATABASE=bookstore
DB_USERNAME=root
DB_PASSWORD=

In order to prepare the configuration and database migration files from the
OAuth2Server service provider, we need to publish it. In Laravel, you do it by
executing the following command:

$ php artisan vendor:publish

Chapter 9

[337]

Now the database/migrations directory contains all the necessary migration files
that will create the necessary tables related to OAuth2 in our database. To execute
them, we run the following command:

$ php artisan migrate

We need to add at least one client to the oauth_clients table, which is the table that
stores the key and secrets for all clients that want to connect to our REST API. This new
client will be the one that you will use during the development process in order to test
what you have done. We can set a random ID—the key—and the secret as follows:

mysql> INSERT INTO oauth_clients(id, secret, name)

 -> VALUES('iTh4Mzl0EAPn90sK4EhAmVEXS',

 -> 'PfoWM9yq4Bh6rGbzzJhr8oDDsNZwGlsMIAeVRaPM',

 -> 'Toni');

Query OK, 1 row affected, 1 warning (0.00 sec)

Enabling client-credentials authentication
Since we published the plugins in vendor in the previous step, now we have the
configuration files for the OAuth2Server. This plugin allows us different authentication
systems (all of them with OAuth2), depending on our necessities. The one that we are
interested in for our project is the client_credentials type. To let Laravel know,
add the following lines at the end of the array in the config/oauth2.php file:

'grant_types' => [
 'client_credentials' => [
 'class' =>
 '\League\OAuth2\Server\Grant\ClientCredentialsGrant',
 'access_token_ttl' => 3600
]
]

These preceding lines grant access to the client_credentials type, which are
managed by the ClientCredentialsGrant class. The access_token_ttl value
refers to the time period of the access token, that is, for how long someone can use it.
In this case, it is set to 1 hour, that is, 3,600 seconds.

Finally, we need to enable a route so we can post our credentials in exchange for an
access token. Add the following route to the routes file in app/Http/routes.php:

Route::post('oauth/access_token', function() {
 return Response::json(Authorizer::issueAccessToken());
});

Building REST APIs

[338]

Requesting an access token
It is time to test what we have done so far. To do so, we need to send a POST request
to the /oauth/access_token endpoint that we enabled just now. This request needs
the following POST parameters:

• client_id with the key from the database
• client_secret with the secret from the database
• grant_type to specify the type of authentication that we are trying to

perform, in this case client_credentials

The request issued using the Advanced REST Client add-on from Chrome looks
as follows:

The response that you should get should have the same format as this one:

{
 "access_token": "MPCovQda354d10zzUXpZVOFzqe491E7ZHQAhSAax"
 "token_type": "Bearer"
 "expires_in": 3600
}

Note that this is a different way of requesting for an access token than what the
Twitter API does, but the idea is still the same: given a key and a secret, the provider
gives us an access token that will allow us to use the API for some time.

Chapter 9

[339]

Preparing the database
Even though we've already done the same in the previous chapter, you might think:
"Why do we start by preparing the database?". We could argue that you first need
to know the kind of endpoints you want to expose in your REST API, and only then
you can start thinking about what your database should look like. But you could
also think that, since we are working with an API, each endpoint should manage one
resource, so first you need to define the resources you are dealing with. This code first
versus database/model first is an ongoing war on the Internet. But whichever way you
think is better, the fact is that we already know what the users will need to do with
our REST API, since we already built the UI previously; so it does not really matter.

We need to create four tables: books, sales, sales_books, and borrowed_books.
Remember that Laravel already provides a users table, which we can use as our
customers. Run the following four commands to create the migrations files:

$ php artisan make:migration create_books_table --create=books

$ php artisan make:migration create_sales_table --create=sales

$ php artisan make:migration create_borrowed_books_table \

--create=borrowed_books

$ php artisan make:migration create_sales_books_table \

--create=sales_books

Now we have to go file by file to define what each table should look like. We will try
to replicate the data structure from Chapter 5, Using Databases, as much as possible.
Remember that the migration files can be found inside the database/migrations
directory. The first file that we can edit is the create_books_table.php. Replace the
existing empty up method by the following one:

public function up()
{
 Schema::create('books', function (Blueprint $table) {
 $table->increments('id');
 $table->string('isbn')->unique();
 $table->string('title');
 $table->string('author');
 $table->smallInteger('stock')->unsigned();
 $table->float('price')->unsigned();
 });
}

Building REST APIs

[340]

The next one in the list is create_sales_table.php. Remember that this
one has a foreign key pointing to the users table. You can use references
(field)->on(tablename) to define this constraint.

public function up()
{
 Schema::create('sales', function (Blueprint $table) {
 $table->increments('id');
 $table->string('user_id')->references('id')->on('users');
 $table->timestamps();
 });
}

The create_sales_books_table.php file contains two foreign keys: one pointing to
the ID of the sale, and one to the ID of the book. Replace the existing up method by
the following one:

public function up()
{
 Schema::create('sales_books', function (Blueprint $table) {
 $table->increments('id');
 $table->integer('sale_id')->references('id')->on('sales');
 $table->integer('book_id')->references('id')->on('books');
 $table->smallInteger('amount')->unsigned();
 });
}

Finally, edit the create_borrowed_books_table.php file, which has the book_id
foreign key and the start and end timestamps:

public function up()
{
 Schema::create('borrowed_books', function (Blueprint $table) {
 $table->increments('id');
 $table->integer('book_id')->references('id')->on('books');
 $table->string('user_id')->references('id')->on('users');
 $table->timestamp('start');
 $table->timestamp('end');
 });
}

The migration files are ready so we just need to migrate them in order to create the
database tables. Run the following command:

$ php artisan migrate

Chapter 9

[341]

Also, add some books to the database manually so that you can test later.
For example:

mysql> INSERT INTO books (isbn,title,author,stock,price) VALUES

 -> ("9780882339726","1984","George Orwell",12,7.50),

 -> ("9789724621081","1Q84","Haruki Murakami",9,9.75),

 -> ("9780736692427","Animal Farm","George Orwell",8,3.50),

 -> ("9780307350169","Dracula","Bram Stoker",30,10.15),

 -> ("9780753179246","19 minutes","Jodi Picoult",0,10);

Query OK, 5 rows affected (0.01 sec)

Records: 5 Duplicates: 0 Warnings: 0

Setting up the models
The next thing to do on the list is to add the relationships that our data has, that is,
to translate the foreign keys from the database to the models. First of all, we need to
create those models, and for that we just run the following commands:

$ php artisan make:model Book

$ php artisan make:model Sale

$ php artisan make:model BorrowedBook

$ php artisan make:model SalesBook

Now we have to go model by model, and add the one to one and one to many
relationships as we did in the previous chapter. For BookModel, we will only specify
that the model does not have timestamps, since they come by default. To do so, add
the following highlighted line to your app/Book.php file:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Book extends Model
{
 public $timestamps = false;
}

Building REST APIs

[342]

For the BorrowedBook model, we need to specify that it has one book, and it belongs
to a user. We also need to specify the fields we will fill once we need to create the
object—in this case, book_id and start. Add the following two methods in app/
BorrowedBook.php:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class BorrowedBook extends Model
{
 protected $fillable = ['user_id', 'book_id', 'start'];
 public $timestamps = false;

 public function user() {
 return $this->belongsTo('App\User');
 }

 public function book() {
 return $this->hasOne('App\Book');
 }
}

Sales can have many "sale books" (we know it might sound a little awkward),
and they also belong to just one user. Add the following to your app/Sale.php:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Sale extends Model
{
 protected $fillable = ['user_id'];

 public function books() {
 return $this->hasMany('App\SalesBook');
 }

 public function user() {
 return $this->belongsTo('App\User');
 }
}

Chapter 9

[343]

Like borrowed books, sale books can have one book and belong to one sale instead
of to one user. The following lines should be added to app/SalesBook.php:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class SaleBook extends Model
{
 public $timestamps = false;
 protected $fillable = ['book_id', 'sale_id', 'amount'];

 public function sale() {
 return $this->belongsTo('App\Sale');
 }

 public function books() {
 return $this->hasOne('App\Book');
 }
}

Finally, the last model that we need to update is the User model. We need to add
the opposite relationship to the belongs we used earlier in Sale and BorrowedBook.
Add these two functions, and leave the rest of the class intact:

<?php

namespace App;

use Illuminate\Foundation\Auth\User as Authenticatable;

class User extends Authenticatable
{
 //...

 public function sales() {
 return $this->hasMany('App\Sale');
 }

 public function borrowedBooks() {
 return $this->hasMany('App\BorrowedBook');
 }
}

Building REST APIs

[344]

Designing endpoints
In this section, we need to come up with the list of endpoints that we want to expose
to the REST API clients. Keep in mind the "rules" explained in the Best practices with
REST APIs section. In short, keep the following rules in mind:

• One endpoint interacts with one resource
• A possible schema could be <API version>/<resource name>/<optional

id>/<optional action>

• Use GET parameters for filtering and pagination

So what will the user need to do? We already have a good idea about that, since we
created the UI. A brief summary would be as follows:

• List all the available books with some filtering (by title and author), and
paginated when necessary. Also retrieve the information on a specific book,
given the ID.

• Allow the user to borrow a specific book if available. In the same way, the
user should be able to return books, and list the history of borrowed books
too (filtered by date and paginated).

• Allow the user to buy a list of books. This could be improved, but for now
let's force the user to buy books with just one request, including the full list of
books in the body. Also, list the sales of the user following the same rules as
that with borrowed books.

We will start straightaway with our list of endpoints, specifying the path, the HTTP
method, and the optional parameters. It will also give you an idea on how to document
your REST APIs.

• GET /books
 ° title: Optional and filters by title
 ° author: Optional and filters by author
 ° page: Optional, default is 1, and specifies the page to return
 ° page-size: Optional, default is 50, and specifies the page size

to return

• GET /books/<book id>
• POST /borrowed-books

 ° book-id: Mandatory and specifies the ID of the book to borrow

Chapter 9

[345]

• GET /borrowed-books
 ° from: Optional and returns borrowed books from the specified date
 ° page: Optional, default is 1, and specifies the page to return
 ° page-size: Optional, default is 50, and specifies the number of

borrowed books per page

• PUT /borrowed-books/<borrowed book id>/return
• POST /sales

 ° books: Mandatory and it is an array listing the book IDs to buy and
their amounts, that is, {"book-id-1": amount, "book-id-2": amount, ...}

• GET /sales
 ° from: Optional and returns borrowed books from the specified date
 ° page: Optional, default is 1, and specifies the page to return
 ° page-size: Optional, default is 50, and specifies the number of sales

per page

• GET /sales/<sales id>

We use POST requests when creating sales and borrowed books, since we do not
know the ID of the resource that we want to create a priori, and posting the same
request will create multiple resources. On the other hand, when returning a book, we
do know the ID of the borrowed book, and sending the same request multiple times
will leave the database in the same state. Let's translate these endpoints to routes in
app/Http/routes.php:

/*
 * Books endpoints.
 */
Route::get('books', ['middleware' => 'oauth',
 'uses' => 'BookController@getAll']);
Route::get('books/{id}', ['middleware' => 'oauth',
 'uses' => 'BookController@get']);
/*
 * Borrowed books endpoints.
 */
Route::post('borrowed-books', ['middleware' => 'oauth',
 'uses' => 'BorrowedBookController@borrow']);
Route::get('borrowed-books', ['middleware' => 'oauth',
 'uses' => 'BorrowedBookController@get']);
Route::put('borrowed-books/{id}/return', ['middleware' => 'oauth',
 'uses' => 'BorrowedBookController@returnBook']);

Building REST APIs

[346]

/*
 * Sales endpoints.
 */
Route::post('sales', ['middleware' => 'oauth',
 'uses' => 'SalesController@buy]);
Route::get('sales', ['middleware' => 'oauth',
 'uses' => 'SalesController@getAll']);
Route::get('sales/{id}', ['middleware' => 'oauth',
 'uses' => 'SalesController@get']);

In the preceding code, note how we added the middleware oauth to all the endpoints.
This will require the user to provide a valid access token in order to access them.

Adding the controllers
From the previous section, you can imagine that we need to create three controllers:
BookController, BorrowedBookController, and SalesController. Let's start
with the easiest one: returning the information of a book given the ID. Create the
file app/Http/Controllers/BookController.php, and add the following code:

<?php

namespace App\Http\Controllers;

use App\Book;
use Illuminate\Http\JsonResponse;
use Illuminate\Http\Response;

class BookController extends Controller {

 public function get(string $id): JsonResponse {
 $book = Book::find($id);

 if (empty($book)) {
 return new JsonResponse (
 null,
 JsonResponse::HTTP_NOT_FOUND
);
 }

 return response()->json(['book' => $book]);
 }
}

Chapter 9

[347]

Even though this preceding example is quite easy, it contains most of what we will
need for the rest of the endpoints. We try to fetch a book given the ID from the URL,
and when not found, we reply with a 404 (not found) empty response—the constant
Response::HTTP_NOT_FOUND is 404. In case we have the book, we return it as JSON
with response->json(). Note how we add the seemingly unnecessary key book; it
is true that we do not return anything else and, since we ask for the book, the user
will know what we are talking about, but as it does not really hurt, it is good to be as
explicit as possible.

Let's test it! You already know how to get an access token—check the Requesting an
access token section. So get one, and try to access the following URLs:

• http://localhost/books/0?access_token=12345

• http://localhost/books/1?access_token=12345

Assuming that 12345 is your access token, that you have a book in the database
with ID 1, and you do not have a book with ID 0, the first URL should return a 404
response, and the second one, a response something similar to the following:

{
 "book": {
 "id": 1
 "isbn": "9780882339726"
 "title": "1984"
 "author": "George Orwell"
 "stock": 12
 "price": 7.5
 }
}

Let's now add the method to get all the books with filters and pagination. It looks
quite verbose, but the logic that we use is quite simple:

public function getAll(Request $request): JsonResponse {
 $title = $request->get('title', '');
 $author = $request->get('author', '');
 $page = $request->get('page', 1);
 $pageSize = $request->get('page-size', 50);

 $books = Book::where('title', 'like', "%$title%")
 ->where('author', 'like', "%$author%")
 ->take($pageSize)
 ->skip(($page - 1) * $pageSize)
 ->get();

 return response()->json(['books' => $books]);
}

Building REST APIs

[348]

We get all the parameters that can come from the request, and set the default values
of each one in case the user does not include them (since they are optional). Then, we
use the Eloquent ORM to filter by title and author using where(), and limiting the
results with take()->skip(). We return the JSON in the same way we did with the
previous method. In this one though, we do not need any extra check; if the query
does not return any book, it is not really a problem.

You can now play with your REST API, sending different requests with different
filters. The following are some examples:

• http://localhost/books?access_token=12345

• http://localhost/books?access_token=12345&title=19&page-size=1

• http://localhost/books?access_token=12345&page=2

The next controller in the list is BorrowedBookController. We need to add three
methods: borrow, get, and returnBook. As you already know how to work with
requests, responses, status codes, and the Eloquent ORM, we will write the entire
class straightaway:

<?php

namespace App\Http\Controllers;

use App\Book;
use App\BorrowedBook;
use Illuminate\Http\JsonResponse;
use Illuminate\Http\Request;
use LucaDegasperi\OAuth2Server\Facades\Authorizer;

class BorrowedBookController extends Controller {

 public function get(): JsonResponse {
 $borrowedBooks = BorrowedBook::where(
 'user_id', '=', Authorizer::getResourceOwnerId()
)->get();

 return response()->json(
 ['borrowed-books' => $borrowedBooks]
);
 }

 public function borrow(Request $request): JsonResponse {
 $id = $request->get('book-id');

Chapter 9

[349]

 if (empty($id)) {
 return new JsonResponse(
 ['error' => 'Expecting book-id parameter.'],
 JsonResponse::HTTP_BAD_REQUEST
);
 }

 $book = Book::find($id);

 if (empty($book)) {
 return new JsonResponse(
 ['error' => 'Book not found.'],
 JsonResponse::HTTP_BAD_REQUEST
);
 } else if ($book->stock < 1) {
 return new JsonResponse(
 ['error' => 'Not enough stock.'],
 JsonResponse::HTTP_BAD_REQUEST
);
 }

 $book->stock--;
 $book->save();

 $borrowedBook = BorrowedBook::create(
 [
 'book_id' => $book->id,
 'start' => date('Y-m-d H:i:s'),
 'user_id' => Authorizer::getResourceOwnerId()
]
);

 return response()->json(['borrowed-book' => $borrowedBook]);
 }

 public function returnBook(string $id): JsonResponse {
 $borrowedBook = BorrowedBook::find($id);

 if (empty($borrowedBook)) {
 return new JsonResponse(
 ['error' => 'Borrowed book not found.'],
 JsonResponse::HTTP_BAD_REQUEST
);

Building REST APIs

[350]

 }

 $book = Book::find($borrowedBook->book_id);
 $book->stock++;
 $book->save();

 $borrowedBook->end = date('Y-m-d H:m:s');
 $borrowedBook->save();

 return response()->json(['borrowed-book' => $borrowedBook]);
 }
}

The only thing to note in the preceding code is how we also update the stock of the
book by increasing or decreasing the stock, and invoke the save method to save the
changes in the database. We also return the borrowed book object as the response
when borrowing a book so that the user can know the borrowed book ID, and use it
when querying or returning the book.

You can test how this set of endpoints works with the following use cases:

• Borrow a book. Check that you get a valid response.
• Get the list of borrowed books. The one that you just created should be there

with a valid starting date and an empty end date.
• Get the information of the book you borrowed. The stock should be one less.
• Return the book. Fetch the list of borrowed books to check the end date and

the returned book to check the stock.

Of course, you can always try to trick the API and ask for books without stock,
non-existing borrowed books, and the like. All these edge cases should respond
with the correct status codes and error messages.

We finish this section, and the REST API, by creating the SalesController. This
controller is the one that contains more logic, since creating a sale implies adding
entries to the sales books table, prior to checking for enough stock for each one.
Add the following code to app/Html/SalesController.php:

<?php

namespace App\Http\Controllers;

use App\Book;
use App\Sale;
use App\SalesBook;

Chapter 9

[351]

use Illuminate\Http\JsonResponse;
use Illuminate\Http\Request;
use LucaDegasperi\OAuth2Server\Facades\Authorizer;

class SalesController extends Controller {

 public function get(string $id): JsonResponse {
 $sale = Sale::find($id);

 if (empty($sale)) {
 return new JsonResponse(
 null,
 JsonResponse::HTTP_NOT_FOUND
);
 }

 $sale->books = $sale->books()->getResults();
 return response()->json(['sale' => $sale]);
 }

 public function buy(Request $request): JsonResponse {
 $books = json_decode($request->get('books'), true);

 if (empty($books) || !is_array($books)) {
 return new JsonResponse(
 ['error' => 'Books array is malformed.'],
 JsonResponse::HTTP_BAD_REQUEST
);
 }

 $saleBooks = [];
 $bookObjects = [];
 foreach ($books as $bookId => $amount) {
 $book = Book::find($bookId);
 if (empty($book) || $book->stock < $amount) {
 return new JsonResponse(
 ['error' => "Book $bookId not valid."],
 JsonResponse::HTTP_BAD_REQUEST
);
 }

 $bookObjects[] = $book;
 $saleBooks[] = [
 'book_id' => $bookId,

Building REST APIs

[352]

 'amount' => $amount
];
 }

 $sale = Sale::create(
 ['user_id' => Authorizer::getResourceOwnerId()]
);
 foreach ($bookObjects as $key => $book) {
 $book->stock -= $saleBooks[$key]['amount'];

 $saleBooks[$key]['sale_id'] = $sale->id;
 SalesBook::create($saleBooks[$key]);
 }

 $sale->books = $sale->books()->getResults();
 return response()->json(['sale' => $sale]);
 }

 public function getAll(Request $request): JsonResponse {
 $page = $request->get('page', 1);
 $pageSize = $request->get('page-size', 50);

 $sales = Sale::where(
 'user_id', '=', Authorizer::getResourceOwnerId()
)
 ->take($pageSize)
 ->skip(($page - 1) * $pageSize)
 ->get();

 foreach ($sales as $sale) {
 $sale->books = $sale->books()->getResults();
 }

 return response()->json(['sales' => $sales]);
 }
}

In the preceding code, note how we first check the availability of all the books before
creating the sales entry. This way, we make sure that we do not leave any unfinished
sale in the database when returning an error to the user. You could change this, and
use transactions instead, and if a book is not valid, just roll back the transaction.

In order to test this, we can follow similar steps as we did with borrowed books.
Just remember that the books parameter, when posting a sale, is a JSON map; for
example, {"1": 2, "4": 1} means that I am trying to buy two books with ID 1
and one book with ID 4.

Chapter 9

[353]

Testing your REST APIs
You have already been testing your REST API after finishing each controller by
making some request and expecting a response. As you might imagine, this can be
handy sometimes, but it is for sure not the way to go. Testing should be automatic,
and should cover as much as possible. We will have to think of a solution similar to
unit testing.

In Chapter 10, Behavioral Testing, you will learn more methodologies and tools for
testing an application end to end, and that will include REST APIs. However, due
to the simplicity of our REST API, we can add some pretty good tests with what
Laravel provides us as well. Actually, the idea is very similar to the tests that we
wrote in Chapter 8, Using Existing PHP Frameworks, where we made a request to
some endpoint, and expected a response. The only difference will be in the kind of
assertions that we use (which can check if a JSON response is OK), and the way we
perform requests.

Let's add some tests to the set of endpoints related to books. We need some books
in the database in order to query them, so we will have to populate the database
before each test, that is, use the setUp method. Remember that in order to leave the
database clean of test data, we need to use the trait DatabaseTransactions. Add the
following code to tests/BooksTest.php:

<?php

use Illuminate\Foundation\Testing\DatabaseTransactions;
use App\Book;

class BooksTest extends TestCase {

 use DatabaseTransactions;

 private $books = [];

 public function setUp() {
 parent::setUp();

 $this->addBooks();
 }

 private function addBooks() {
 $this->books[0] = Book::create(
 [
 'isbn' => '293842983648273',
 'title' => 'Iliad',
 'author' => 'Homer',
 'stock' => 12,

Building REST APIs

[354]

 'price' => 7.40
]
);
 $this->books[0]->save();
 $this->books[0] = $this->books[0]->fresh();

 $this->books[1] = Book::create(
 [
 'isbn' => '9879287342342',
 'title' => 'Odyssey',
 'author' => 'Homer',
 'stock' => 8,
 'price' => 10.60
]
);
 $this->books[1]->save();
 $this->books[1] = $this->books[1]->fresh();

 $this->books[2] = Book::create(
 [
 'isbn' => '312312314235324',
 'title' => 'The Illuminati',
 'author' => 'Larry Burkett',
 'stock' => 22,
 'price' => 5.10
]
);
 $this->books[2]->save();
 $this->books[2] = $this->books[2]->fresh();
 }
}

As you can see in the preceding code, we add three books to the database, and to
the class property $books too. We will need them when we want to assert that a
response is valid. Also note the use of the fresh method; this method synchronizes
the model that we have with the content in the database. We need to do this in order
to get the ID inserted in the database, since we do not know it a priori.

There is another thing we need to do before we run each test: authenticating our client.
We will need to make a POST request to the access token generation endpoint sending
valid credentials, and storing the access token that we receive so that it can be used in
the remaining requests. You are free to choose how to provide the credentials, since
there are different ways to do it. In our case, we just provide the credentials of a client
test that we know exists in the database, but you might prefer to insert that client into
the database each time. Update the test with the following code:

<?php

use Illuminate\Foundation\Testing\DatabaseTransactions;

Chapter 9

[355]

use App\Book;

class BooksTest extends TestCase {

 use DatabaseTransactions;

 private $books = [];
 private $accessToken;

 public function setUp() {
 parent::setUp();

 $this->addBooks();
 $this->authenticate();
 }

 //...

 private function authenticate() {
 $this->post(
 'oauth/access_token',
 [
 'client_id' => 'iTh4Mzl0EAPn90sK4EhAmVEXS',
 'client_secret' => 'PfoWM9yq4Bh6rhr8oDDsNZM',
 'grant_type' => 'client_credentials'
]
);
 $response = json_decode(
 $this->response->getContent(), true
);
 $this->accessToken = $response['access_token'];
 }
}

In the preceding code, we use the post method in order to send a POST request.
This method accepts a string with the endpoint, and an array with the parameters
to be included. After making a request, Laravel saves the response object into the
$response property. We can JSON-decode it, and extract the access token that
we need.

It is time to add some tests. Let's start with an easy one: requesting a book given an
ID. The ID is used to make the GET requests with the ID of the book (do not forget the
access token), and check if the response matches the expected one. Remember that we
have the $books array already, so it will be pretty easy to perform these checks.

Building REST APIs

[356]

We will be using two assertions: seeJson, which compares the received JSON
response with the one that we provide, and assertResponseOk, which you already
know from previous tests—it just checks that the response has a 200 status code.
Add this test to the class:

public function testGetBook() {
 $expectedResponse = [
 'book' => json_decode($this->books[1], true)
];
 $url = 'books/' . $this->books[1]->id
 . '?' . $this->getCredentials();

 $this->get($url)
 ->seeJson($expectedResponse)
 ->assertResponseOk();
}

private function getCredentials(): string {
 return 'grant_access=client_credentials&access_token='
 . $this->accessToken;
}

We use the get method instead of post, since this is a GET request. Also note that
we use the getCredentials helper, since we will have to use it in each test. To see
another example, let's add a test that checks the response when requesting the books
that contain the given title:

public function testGetBooksByTitle() {
 $expectedResponse = [
 'books' => [
 json_decode($this->books[0], true),
 json_decode($this->books[2], true)
]
];

 $url = 'books/?title=Il&' . $this->getCredentials();
 $this->get($url)
 ->seeJson($expectedResponse)
 ->assertResponseOk();
}

Chapter 9

[357]

The preceding test is pretty much the same as the previous one, isn't it? The only
changes are the endpoint and the expected response. Well, the remaining tests will
all follow the same pattern, since so far, we can only fetch books and filter them.

To see something different, let's check how to test an endpoint that creates resources.
There are different options, one of them being to first make the request, and then
going to the database to check that the resource has been created. Another option,
the one that we prefer, is to first send the request that creates the resource, and
then, with the information in the response, send a request to fetch the newly created
resource. This is preferable, since we are testing only the REST API, and we do not
need to know the specific schema that the database is using. Also, if the REST API
changes its database, the tests will keep passing—and they should—since we test
through the interface only.

One good example could be borrowing a book. The test should first send a POST
in order to borrow the book, specifying the book ID, then extract the borrowed
book ID from the response, and finally send a GET request asking for that borrowed
book. To save time, you can add the following test to the already existing
tests/BooksTest.php:

public function testBorrowBook() {
 $params = ['book-id' => $this->books[1]->id];
 $params = array_merge($params, $this->postCredentials());

 $this->post('borrowed-books', $params)
 ->seeJsonContains(['book_id' => $this->books[1]->id])
 ->assertResponseOk();

 $response = json_decode($this->response->getContent(), true);

 $url = 'borrowed-books' . '?' . $this->getCredentials();
 $this->get($url)
 ->seeJsonContains(['id' => $response['borrowed-book']['id']])
 ->assertResponseOk();
}

private function postCredentials(): array {
 return [
 'grant_access' => 'client_credentials',
 'access_token' => $this->accessToken
];
}

Building REST APIs

[358]

Summary
In this chapter, you learned the importance of REST APIs in the web world. Now you
are able not only to use them, but also write your own REST APIs, which has turned
you into a more resourceful developer. You can also integrate your applications with
third-party APIs to give more features to your users, and for making your websites
more interesting and useful.

In the next and last chapter, we will end this book discovering a type of testing other
than unit testing: behavioral testing, which improves the quality and reliability of
your web applications.

[359]

Behavioral Testing
In Chapter 7, Testing Web Applications, you learned how to write unit tests in order
to test small pieces of code in an isolated way. Even though this is a must, it is not
enough alone to make sure your application works as it should. The scope of your
test could be so small that even though the algorithm that you test makes sense, it
would not be what the business asked you to create.

Acceptance tests were born in order to add this level of security to the business side,
complementing the already existing unit tests. In the same way, BDD originated
from TDD in order to write code based on these acceptance tests in an attempt to
involve business and managers in the development process. As PHP is one of the
favorite languages of web developers, it is just natural to find powerful tools to
implement BDD in your projects. You will be positively surprised by what you can
do with Behat and Mink, the two most popular BDD frameworks at the moment.

In this chapter, you will learn about:

• Acceptance tests and BDD
• Writing features with Gherkin
• Implementing and running tests with Behat
• Writing tests against browsers with Mink

Behavior-driven development
We already exposed in Chapter 7, Testing Web Applications, the different tools we
can use in order to make our applications bug-free, such as automated tests. We
described what unit tests are and how they can help us achieve our goals, but this is
far from enough. In this section, we will describe the process of creating a real-world
application, how unit tests are not enough, and what other techniques we can include
in this life cycle in order to succeed in our task—in this case, behavioral tests.

Behavioral Testing

[360]

Introducing continuous integration
There is a huge difference between developing a small web application by yourself
and being part of a big team of developers, managers, marketing people, and so on,
that works around the same big web application. Working on an application used
by thousands or millions of users has a clear risk: if you mess it up, there will be a
huge number of unhappy affected users, which may translate into sales going down,
partnerships terminated, and so on.

From this scenario, you can imagine that people would be scared when they have to
change anything in production. Before doing so, they will make sure that everything
works perfectly fine. For this reason, there is always a heavy process around all the
changes affecting a web application in production, including loads of tests of all kinds.

Some think that by reducing the number of times they deploy to production, they
can reduce the risk of failure, which ends up with them having releases every several
months with an uncountable number of changes.

Now, imagine releasing the result of two or three months of code changes at once
and something mysteriously fails in production: do you know where to even start
looking for the cause of the problem? What if your team is good enough to make
perfect releases, but the end result is not what the market needs? You might end up
wasting months of work!

Even though there are different approaches and not all companies use them, let's
try to describe one of the most famous ones from the last few years: continuous
integration (CI). The idea is to integrate small pieces of work often rather than big
ones every once in a while. Of course, releasing is still a constraint in your system,
which means that it takes a lot of time and resources. CI tries to automatize this
process as much as possible, reducing the amount of time and resources that you
need to invest. There are huge benefits with this approach, which are as follows:

• Releases do not take forever to be done, and there isn't an entire team
focused on releasing as this is done automatically.

• You can release changes one by one as they come. If something fails, you
know exactly what the change was and where to start looking for the error.
You can even revert the changes easily if you need to.

• As you release so often, you can get quick feedback from everyone. You will
be able to change your plans in time if you need to instead of waiting for
months to get any feedback and wasting all the effort you put on this release.

Chapter 10

[361]

The idea seems perfect, but how do we implement it? First, let's focus on the manual
part of the process: developing the features using a version control system (VCS).
The following diagram shows a very common approach:

As we already mentioned, a VCS allows developers to work on the same codebase,
tracking all the changes that everyone makes and helping on the resolution of
conflicts. A VCS usually allows you to have different branches; that is, you can
diverge from the main line of development and continue to do work without
messing with it. The previous graph shows you how to use branches to write new
features and can be explained as follows:

• A: A team needs to start working on feature A. They create a new branch
from the master, in which they will add all the changes for this feature.

• B: A different team also needs to start working on a feature. They create a
new branch from master, same as before. At this point, they are not aware
of what the first team is doing as they do it on their own branch.

• C: The second team finishes their job. No one else changed master, so they
can merge their changes straight away. At this point, the CI process will start
the release process.

• D: The first team finishes the feature. In order to merge it to master, they
need to first rebase their branch with the new changes of master and solve
any conflicts that might take place. The older the branch is the more chances
of getting conflicts you will have, so you can imagine that smaller and faster
features are preferred.

Behavioral Testing

[362]

Now, let's take a look at how the automated side of the process looks. The following
graph shows you all the steps from the merging into master to production deployment:

Until you merge your code into master, you are in the development environment.
The CI tool will listen to all the changes on the master branch of your project, and
for each of them, it will trigger a job. This job will take care of building the project
if necessary and then run all the tests. If there is any error or test failure, it will let
everyone now, and the team that triggered this job should take care of fixing it.
The master branch is considered unstable at this point.

If all tests pass, the CI tool will deploy your code into staging. Staging is an
environment that emulates production as much as possible; that is, it has the same
server configuration, database structure, and so on. Once the application is here, you
can run all the tests that you need until you are confident to continue the deployment
to production. As you make small changes, you do not need to manually test
absolutely everything. Instead, you can test your changes and the main use cases of
your application.

Unit tests versus acceptance tests
We said that the goal of CI is to have a process as automatized as possible. However,
we still need to manually test the application in staging, right? Acceptance tests to
the rescue!

Writing unit tests is nice and a must, but they test only small pieces of code in an
isolated way. Even if your entire unit tests suite passes, you cannot be sure that your
application works at all as you might not integrate all the parts properly because
you are missing functionalities or the functionalities that you built were not what the
business needed. Acceptance tests test the entire flow of a specific use case.

Chapter 10

[363]

If your application is a website, acceptance tests will probably launch a browser and
emulate user actions, such as clicking and typing, in order to assert that the page
returns what is expected. Yes, from a few lines of code, you can execute all the tests
that were previously manual in an automated way.

Now, imagine that you wrote acceptance tests for all the features of your application.
Once the code is in staging, the CI tool can automatically run all of these tests and
make sure that the new code does not break any existing functionality. You can
even run them using as many different browsers as you need to make sure that
your application works fine in all of them. If a test fails, the CI tool will notify the
team responsible, and they will have to fix it. If all the tests pass, the CI tool can
automatically deploy your code into production.

Why do we need to write unit tests then, if acceptance tests test what the business
really cares about? There are several reasons to keep both acceptance and unit tests;
in fact, you should have way more unit tests than acceptance tests.

• Unit tests check small pieces of code, which make them orders-of-magnitude
faster than acceptance tests, which test the whole flow against a browser.
That means that you can run all your unit tests in a few seconds or minutes,
but it will take much longer to run all your acceptance tests.

• Writing acceptance tests that cover absolutely all the possible combinations
of use cases is virtually impossible. Writing unit tests that cover a high
percentage of use cases for a given method or piece of code is rather easy.
You should have loads of unit tests testing as many edge cases as possible
but only some acceptance tests testing the main use cases.

When should you run each type of test then? As unit tests are faster, they should be
executed during the first stages of deployment. Only once we know that they all have
passed do we want to spend time deploying to staging and running acceptance tests.

TDD versus BDD
In Chapter 7, Testing Web Applications, you learned that TDD or test-driven
development is the practice of writing first the unit tests and then the code in an
attempt to write testable and cleaner code and to make sure that your test suite is
always up to date. With the appearance of acceptance tests, TDD evolved to BDD
or behavior-driven development.

Behavioral Testing

[364]

BDD is quite similar to TDD, in that you should write the tests first and then the code
that makes these tests pass. The only difference is that with BDD, we write tests that
specify the desired behavior of the code, which can be translated to acceptance tests.
Even though it will always depend on the situation, you should write acceptance
tests that test a very specific part of the application rather than long use cases that
contain several steps. With BDD, as with TDD, you want to get quick feedback, and
if you write a broad test, you will have to write a lot of code in order to make it pass,
which is not the goal that BDD wants to achieve.

Business writing tests
The whole point of acceptance tests and BDD is to make sure that your application
works as expected, not only your code. Acceptance tests, then, should not be written
by developers but by the business itself. Of course, you cannot expect that managers
and executives will learn how to code in order to create acceptance tests, but there is
a bunch of tools that allow you to translate plain English instructions or behavioral
specifications into acceptance tests' code. Of course, these instructions have to follow
some patterns. Behavioral specifications have the following parts:

• A title, which describes briefly, but in a very clear way, what use case the
behavioral specification covers.

• A narrative, which specifies who performs the test, what the business value
is, and what the expected outcome is. Usually the format of the narrative is
the following:
In order to <business value>
As a <stakeholder>
I want to <expected outcome>

• A set of scenarios, which is a description and a set of steps of each specific
use case that we want to cover. Each scenario has a description and a list of
instructions in the Given-When-Then format; we will discuss more on this in
the next section. A common patterns is:
Scenario: <short description>
Given <set up scenario>
When <steps to take>
Then <expected outcome>

In the next two sections, we will discover two tools in PHP that you can use in order
to understand behavioral scenarios and run them as acceptance tests.

Chapter 10

[365]

BDD with Behat
The first of the tools we will introduce is Behat. Behat is a PHP framework that can
transform behavioral scenarios into acceptance tests and then run them, providing
feedback similar to PHPUnit. The idea is to match each of the steps in English with
the scenarios in a PHP function that performs some action or asserts some results.

In this section, we will try to add some acceptance tests to our application. The
application will be a simple database migration script that will allow us to keep
track of the changes that we will add to our schema. The idea is that each time that
you want to change your database, you will write the changes on a migration file
and then execute the script. The application will check what was the last migration
executed and will perform new ones. We will first write the acceptance tests and then
introduce the code progressively as BDD suggests.

In order to install Behat on your development environment, you can use Composer.
The command is as follows:

$ composer require behat/behat

Behat actually does not come with any set of assertion functions, so you will have to
either implement your own by writing conditionals and throwing exceptions or you
could integrate any library that provides them. Developers usually choose PHPUnit
for this as they are already used to its assertions. Add it, then, to your project via
the following:

$ composer require phpunit/phpunit

As with PHPUnit, Behat needs to know where your test suite is located. You can
either have a configuration file stating this and other configuration options, which is
similar to the phpunit.xml configuration file for PHPUnit, or you could follow the
conventions that Behat sets and skip the configuration step. If you choose the second
option, you can let Behat create the folder structure and PHP test class for you with
the following command:

$./vendor/bin/behat --init

After running this command, you should have a features/bootstrap/
FeatureContext.php file, which is where you need to add the steps of the PHP
functions' matching scenarios. More on this shortly, but first, let's find out how to
write behavioral specifications so that Behat can understand them.

Behavioral Testing

[366]

Introducing the Gherkin language
Gherkin is the language, or rather the format, that behavioral specifications have to
follow. Using Gherkin naming, each behavioral specification is a feature. Each feature
is added to the features directory and should have the .feature extension. Feature
files should start with the Feature keyword followed by the title and the narrative in
the same format that we already mentioned before—that is, the In order to–As a–I need
to structure. In fact, Gherkin will only print these lines, but keeping it consistent will
help your developers and business know what they are trying to achieve.

Our application will have two features: one for the setup of our database to allow
the migrations tool to work, and the other one for the correct behavior when adding
migrations to the database. Add the following content to the features/setup.
feature file:

Feature: Setup
 In order to run database migrations
 As a developer
 I need to be able to create the empty schema and migrations table.

Then, add the following feature definition to the features/migrations.feature file:

Feature: Migrations
 In order to add changes to my database schema
 As a developer
 I need to be able to run the migrations script

Defining scenarios
The title and narrative of features does not really do anything more than give
information to the person who runs the tests. The real work is done in scenarios,
which are specific use cases with a set of steps to take and some assertions. You can
add as many scenarios as you need to each feature file as long as they represent
different use cases of the same feature. For example, for setup.feature, we can
add a couple of scenarios: one where it is the first time that the user runs the script,
so the application will have to set up the database, and one where the user already
executed the script previously, so the application does not need to go through the
setup process.

As Behat needs to be able to translate the scenarios written in plain English to
PHP functions, you will have to follow some conventions. In fact, you will see
that they are very similar to the ones that we already mentioned in the behavioral
specifications section.

Chapter 10

[367]

Writing Given-When-Then test cases
A scenario must start with the Scenario keyword followed by a short description
of what use case the scenario covers. Then, you need to add the list of steps and
assertions. Gherkin allows you to use four keywords for this: Given, When, Then, and
And. In fact, they all have the same meaning when it comes to code, but they add a
lot of semantic value to your scenarios. Let's consider an example; add the following
scenario at the end of your setup.feature file:

Scenario: Schema does not exist and I do not have migrations
 Given I do not have the "bdd_db_test" schema
 And I do not have migration files
 When I run the migrations script
 Then I should have an empty migrations table
 And I should get:
 """
 Latest version applied is 0.
 """

This scenario tests what happens when we do not have any schema information
and run the migrations script. First, it describes the state of the scenario: Given I do
not have the bdd_db_test schema And I do not have migration files. These two lines will
be translated to one method each, which will remove the schema and all migration
files. Then, the scenario describes what the user will do: When I run the migrations
script. Finally, we set the expectations for this scenario: Then I should have an empty
migrations table And I should get Latest version applied is 0..

In general, the same step will always start by the same keyword—that is, I run the
migrations script will always be preceded by When. The And keyword is a special one
as it matches all the three keywords; its only purpose is to have steps as English-
friendly as possible; although if you prefer, you could write Given I do not have
migration files.

Another thing to note in this example is the use of arguments as part of the step. The
line And I should get is followed by a string enclosed by """. The PHP function will
get this string as an argument, so you can have one unique step definition—that is,
the function—for a wide variety of situations just using different strings.

Reusing parts of scenarios
It is quite common that for a given feature, you always start from the same scenario.
For example, setup.feature has a scenario in which we can run the migrations for
the first time without any migration file, but we will also add another scenario in
which we want to run the migrations script for the first time with some migration
files to make sure that it will apply all of them. Both scenarios have in common one
thing: they do not have the database set up.

Behavioral Testing

[368]

Gherkin allows you to define some steps that will be applied to all the scenarios of
the feature. You can use the Background keyword and a list of steps, usually Given.
Add these two lines between the feature narrative and scenario definition:

Background:
 Given I do not have the "bdd_db_test" schema

Now, you can remove the first step from the existing scenario as Background will
take care of it.

Writing step definitions
So far, we have written features using the Gherkin language, but we still have not
considered how any of the steps in each scenario is translated to actual code. The
easiest way to note this is by asking Behat to run the acceptance tests; as the steps are
not defined anywhere, Behat will print out all the functions that you need to add to
your FeatureContext class. To run the tests, just execute the following command:

$./vendor/bin/behat

The following screenshot shows the output that you should get if you have no
step definitions:

Chapter 10

[369]

As you can note, Behat complained about some missing steps and then printed in
yellow the methods that you could use in order to implement them. Copy and paste
them into your autogenerated features/bootstrap/FeatureContext.php file.
The following FeatureContext class has already implemented all of them:

<?php

use Behat\Behat\Context\Context;
use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\Gherkin\Node\PyStringNode;

require_once __DIR__ . '/../../vendor/phpunit/phpunit/src/Framework/
Assert/Functions.php';

class FeatureContext implements Context, SnippetAcceptingContext
{
 private $db;
 private $config;
 private $output;

 public function __construct() {
 $configFileContent = file_get_contents(
 __DIR__ . '/../../config/app.json'
);
 $this->config = json_decode($configFileContent, true);
 }

 private function getDb(): PDO {
 if ($this->db === null) {
 $this->db = new PDO(
 "mysql:host={$this->config['host']}; "
 . "dbname=bdd_db_test",
 $this->config['user'],
 $this->config['password']
);
 }

 return $this->db;
 }

 /**
 * @Given I do not have the "bdd_db_test" schema
 */
 public function iDoNotHaveTheSchema()

Behavioral Testing

[370]

 {
 $this->executeQuery('DROP SCHEMA IF EXISTS bdd_db_test');
 }

 /**
 * @Given I do not have migration files
 */
 public function iDoNotHaveMigrationFiles()
 {
 exec('rm db/migrations/*.sql > /dev/null 2>&1');
 }

 /**
 * @When I run the migrations script
 */
 public function iRunTheMigrationsScript()
 {
 exec('php migrate.php', $this->output);
 }

 /**
 * @Then I should have an empty migrations table
 */
 public function iShouldHaveAnEmptyMigrationsTable()
 {
 $migrations = $this->getDb()
 ->query('SELECT * FROM migrations')
 ->fetch();
 assertEmpty($migrations);
 }

 private function executeQuery(string $query)
 {
 $removeSchemaCommand = sprintf(
 'mysql -u %s %s -h %s -e "%s"',
 $this->config['user'],
 empty($this->config['password'])
 ? '' : "-p{$this->config['password']}",
 $this->config['host'],
 $query
);

 exec($removeSchemaCommand);
 }
}

Chapter 10

[371]

As you can note, we read the configuration from the config/app.json file. This is
the same configuration file that the application will use, and it contains the database's
credentials. We also instantiated a PDO object to access the database so that we could
add or remove tables or take a look at what the script did.

Step definitions are a set of methods with a comment on each of them. This comment
is an annotation as it starts with @ and is basically a regular expression matching the
plain English step defined in the feature. Each of them has its implementation: either
removing a database or migration files, executing the migrations script, or checking
what the migrations table contains.

The parameterization of steps
In the previous FeatureContext class, we intentionally missed the iShouldGet
method. As you might recall, this step has a string argument identified by a string
enclosed between """. The implementation for this method looks as follows:

/**
 * @Then I should get:
 */
public function iShouldGet(PyStringNode $string)
{
 assertEquals(implode("\n", $this->output), $string);
}

Note how the regular expression does not contain the string. This happens when
using long strings with """. Also, the argument is an instance of PyStringNode,
which is a bit more complex than a normal string. However, fear not; when you
compare it with a string, PHP will look for the __toString method, which just
prints the content of the string.

Running feature tests
In the previous sections, we wrote acceptance tests using Behat, but we have not
written a single line of code yet. Before running them, though, add the config/
app.json configuration file with the credentials of your database user so that the
FeatureContext constructor can find it, as follows:

{
 "host": "127.0.0.1",
 "schema": "bdd_db_test",
 "user": "root",
 "password": ""
}

Behavioral Testing

[372]

Now, let's run the acceptance tests, expecting them to fail; otherwise, our tests will
not be valid at all. The output should be something similar to this:

As expected, the Then steps failed. Let's implement the minimum code necessary in
order to make the tests pass. For starters, add the autoloader into your composer.
json file and run composer update:

"autoload": {
 "psr-4": {
 "Migrations\\": "src/"
 }
}

We would like to implement a Schema class that contains the helpers necessary to set
up a database, run migrations, and so on. Right now, the feature is only concerned
about the setup of the database—that is, creating the database, adding the empty
migrations table to keep track of all the migrations added, and the ability to get the
latest migration registered as successful. Add the following code as src/Schema.php:

<?php

namespace Migrations;

use Exception;
use PDO;

Chapter 10

[373]

class Schema {

 const SETUP_FILE = __DIR__ . '/../db/setup.sql';
 const MIGRATIONS_DIR = __DIR__ . '/../db/migrations/';

 private $config;
 private $connection;

 public function __construct(array $config)
 {
 $this->config = $config;
 }

 private function getConnection(): PDO
 {
 if ($this->connection === null) {
 $this->connection = new PDO(
 "mysql:host={$this->config['host']};"
 . "dbname={$this->config['schema']}",
 $this->config['user'],
 $this->config['password']
);
 }

 return $this->connection;
 }
}

Even though the focus of this chapter is to write acceptance tests, let's go through the
different implemented methods:

• The constructor and getConnection just read the configuration file in
config/app.json and instantiated the PDO object.

• The createSchema executed CREATE SCHEMA IF NOT EXISTS, so if the
schema already exists, it will do nothing. We executed the command with
exec instead of PDO as PDO always needs to use an existing database.

• The getLatestMigration will first check whether the migrations table
exists; if not, we will create it using setup.sql and then fetch the last
successful migration.

Behavioral Testing

[374]

We also need to add the migrations/setup.sql file with the query to create the
migrations table, as follows:

CREATE TABLE IF NOT EXISTS migrations(
 version INT UNSIGNED NOT NULL,
 `time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 status ENUM('success', 'error'),
 PRIMARY KEY (version, status)
);

Finally, we need to add the migrate.php file, which is the one that the user will
execute. This file will get the configuration, instantiate the Schema class, set up the
database, and retrieve the last migration applied. Run the following code:

<?php

require_once __DIR__ . '/vendor/autoload.php';

$configFileContent = file_get_contents(__DIR__ . '/config/app.json');
$config = json_decode($configFileContent, true);

$schema = new Migrations\Schema($config);

$schema->createSchema();

$version = $schema->getLatestMigration();
echo "Latest version applied is $version.\n";

You are now good to run the tests again. This time, the output should be similar to
this screenshot, where all the steps are in green:

Chapter 10

[375]

Now that our acceptance test is passing, we need to add the rest of the tests. To make
things quicker, we will add all the scenarios, and then we will implement the necessary
code to make them pass, but it would be better if you add one scenario at a time. The
second scenario of setup.feature could look as follows (remember that the feature
contains a Background section, in which we clean the database):

Scenario: Schema does not exists and I have migrations
 Given I have migration file 1:
 """
 CREATE TABLE test1(id INT);
 """
 And I have migration file 2:
 """
 CREATE TABLE test2(id INT);
 """
 When I run the migrations script
 Then I should only have the following tables:
 | migrations |
 | test1 |
 | test2 |
 And I should have the following migrations:
 | 1 | success |
 | 2 | success |
 And I should get:
 """
 Latest version applied is 0.
 Applied migration 1 successfully.
 Applied migration 2 successfully.
 """

This scenario is important as it used parameters inside the step definitions.
For example, the I have migration file step is presented twice, each time with a
different migration file number. The implementation of this step is as follows:

/**
 * @Given I have migration file :version:
 */
public function iHaveMigrationFile(
 string $version,
 PyStringNode $file
) {
 $filePath = __DIR__ . "/../../db/migrations/$version.sql";
 file_put_contents($filePath, $file->getRaw());
}

Behavioral Testing

[376]

The annotation of this method, which is a regular expression, used :version as a
wildcard. Any step that starts with Given I have migration file followed by something
else will match this step definition, and the "something else" bit will be received as
the $version argument as a string.

Here, we introduced yet another type of argument: tables. The Then I should only have
the following tables step defined a table of two rows of one column each, and the Then
I should have the following migrations bit sent a table of two rows of two columns each.
The implementation for the new steps is as follows:

/**
 * @Then I should only have the following tables:
 */
public function iShouldOnlyHaveTheFollowingTables(TableNode $tables) {
 $tablesInDb = $this->getDb()
 ->query('SHOW TABLES')
 ->fetchAll(PDO::FETCH_NUM);

 assertEquals($tablesInDb, array_values($tables->getRows()));
}

/**
 * @Then I should have the following migrations:
 */
public function iShouldHaveTheFollowingMigrations(
 TableNode $migrations
) {
 $query = 'SELECT version, status FROM migrations';
 $migrationsInDb = $this->getDb()
 ->query($query)
 ->fetchAll(PDO::FETCH_NUM);

 assertEquals($migrations->getRows(), $migrationsInDb);
}

The tables are received as TableNode arguments. This class contains a getRows
method that returns an array with the rows defined in the feature file.

The other feature that we would like to add is features/migrations.feature.
This feature will assume that the user already has the database set up, so we will
add a Background section with this step. We will add one scenario in which the
migration file numbers are not consecutive, in which case the application should
stop at the last consecutive migration file. The other scenario will make sure that
when there is an error, the application does not continue the migration process.
The feature should look similar to the following:

Chapter 10

[377]

Feature: Migrations
 In order to add changes to my database schema
 As a developer
 I need to be able to run the migrations script

 Background:
 Given I have the bdd_db_test

 Scenario: Migrations are not consecutive
 Given I have migration 3
 And I have migration file 4:
 """
 CREATE TABLE test4(id INT);
 """
 And I have migration file 6:
 """
 CREATE TABLE test6(id INT);
 """
 When I run the migrations script
 Then I should only have the following tables:
 | migrations |
 | test4 |
 And I should have the following migrations:
 | 3 | success |
 | 4 | success |
 And I should get:
 """
 Latest version applied is 3.
 Applied migration 4 successfully.
 """

 Scenario: A migration throws an error
 Given I have migration file 1:
 """
 CREATE TABLE test1(id INT);
 """
 And I have migration file 2:
 """
 CREATE TABLE test1(id INT);
 """
 And I have migration file 3:
 """
 CREATE TABLE test3(id INT);
 """

Behavioral Testing

[378]

 When I run the migrations script
 Then I should only have the following tables:
 | migrations |
 | test1 |
 And I should have the following migrations:
 | 1 | success |
 | 2 | error |
 And I should get:
 """
 Latest version applied is 0.
 Applied migration 1 successfully.
 Error applying migration 2: Table 'test1' already exists.
 """

There aren't any new Gherkin features. The two new step implementations look
as follows:

/**
* @Given I have the bdd_db_test
*/
public function iHaveTheBddDbTest()
{
 $this->executeQuery('CREATE SCHEMA bdd_db_test');
}

/**
 * @Given I have migration :version
 */
public function iHaveMigration(string $version)
{
 $this->getDb()->exec(
 file_get_contents(__DIR__ . '/../../db/setup.sql')
);

 $query = <<<SQL
INSERT INTO migrations (version, status)
VALUES(:version, 'success')
SQL;
 $this->getDb()
 ->prepare($query)
 ->execute(['version' => $version]);
}

Chapter 10

[379]

Now, it is time to add the needed implementation to make the tests pass. There are
only two changes needed. The first one is an applyMigrationsFrom method in the
Schema class that, given a version number, will try to apply the migration file for this
number. If the migration is successful, it will add a row in the migrations table, with
the new version added successfully. If the migration failed, we would add the record
in the migrations table as a failure and then throw an exception so that the script is
aware of it. Finally, if the migration file does not exist, the returning value will be
false. Add this code to the Schema class:

public function applyMigrationsFrom(int $version): bool
{
 $filePath = self::MIGRATIONS_DIR . "$version.sql";

 if (!file_exists($filePath)) {
 return false;
 }

 $connection = $this->getConnection();
 if ($connection->exec(file_get_contents($filePath)) === false) {
 $error = $connection->errorInfo()[2];
 $this->registerMigration($version, 'error');
 throw new Exception($error);
 }

 $this->registerMigration($version, 'success');
 return true;
}

private function registerMigration(int $version, string $status)
{
 $query = <<<SQL
INSERT INTO migrations (version, status)
VALUES(:version, :status)
SQL;
 $params = ['version' => $version, 'status' => $status];

 $this->getConnection()->prepare($query)->execute($params);
}

Behavioral Testing

[380]

The other bit missing is in the migrate.php script. We need to call the newly created
applyMigrationsFrom method with consecutive versions starting from the latest
one, until we get either a false value or an exception. We also want to print out
information about what is going on so that the user is aware of what migrations
were added. Add the following code at the end of the migrate.php script:

do {
 $version++;

 try {
 $result = $schema->applyMigrationsFrom($version);
 if ($result) {
 echo "Applied migration $version successfully.\n";
 }
 } catch (Exception $e) {
 $error = $e->getMessage();
 echo "Error applying migration $version: $error.\n";
 exit(1);
 }
} while ($result);

Now, run the tests and voilà! They all pass. You now have a library that manages
database migrations, and you are 100% sure that it works thanks to your acceptance
tests.

Testing with a browser using Mink
So far, we have been able to write acceptance tests for a script, but most of you are
reading this book in order to write nice and shiny web applications. How can you
take advantage of acceptance tests then? It is time to introduce the second PHP tool
of this chapter: Mink.

Mink is actually an extension of Behat, which adds implementations of several steps
related to web browser testing. For example, if you add Mink to your application,
you will be able to add scenarios where Mink will launch a browser and click or type
as requested, saving you a lot of time and effort in manual testing. However, first,
let's take a look at how Mink can achieve this.

Chapter 10

[381]

Types of web drivers
Mink makes use of web drivers—that is, libraries that have an API that allows you
to interact with a browser. You can send commands, such as go to this page, click on
this link, fill this input field with this text, and so on, and the web driver will translate
this into the correct instruction for your browser. There are several web drivers,
each of them implemented following a different approach. It is for this reason that
depending on the web driver, you will have some features or others.

Web drivers can be divided into two groups depending on how they work:

• Headless browsers: These drivers do not really launch a browser; they only
try to emulate one. They actually request for the web page and render the
HTML and JavaScript code, so they are aware of how the page looks, but
they do not display it. They have a huge benefit: they are easy to install and
manage, and as they do not have to build the graphical representation, they
are extremely fast. The disadvantage is that they have severe restrictions in
terms of CSS and some JavaScript functionalities, especially AJAX.

• Web drivers that launch real browsers like a user would do: These web
drivers can do almost anything and are way more powerful than headless
browsers. The problem is that they can be a bit tricky to install and are very,
very slow—as slow as a real user trying to go through the scenarios.

So, which one should you choose? As always, it will depend on what your
application is. If you have an application that does not make heavy use of CSS and
JavaScript and it is not critical for your business, you could use headless browsers.
Instead, if the application is the cornerstone of your business and you need to be
absolutely certain that all the UI features work as expected, you might want to go for
web drivers that launch browsers.

Installing Mink with Goutte
In this chapter, we will use Goutte, a headless web driver written by the same guys
that worked on Symfony, to add some acceptance tests to the repositories page
of GitHub. The required components of your project will be Behat, Mink, and the
Goutte driver. Add them with Composer via the following commands:

$ composer require behat/behat

$ composer require behat/mink-extension

$ composer require behat/mink-goutte-driver

Now, execute the following line to ask Behat to create the basic directory structure:

$./vendor/bin/behat –init

Behavioral Testing

[382]

The only change we will add to the FeatureContext class is where it extends from.
This time, we will use MinkContext in order to get all the step definitions related to
web testing. The FeatureContext class should look similar to this:

<?php

use Behat\MinkExtension\Context\MinkContext;

require __DIR__ . '/../../vendor/autoload.php';

class FeatureContext extends MinkContext {
}

Mink also needs some configuration in order to let Behat know which web driver we
want to use or what the base URL for our tests is. Add the following information to
behat.yml:

default:
 extensions:
 Behat\MinkExtension:
 base_url: "https://github.com"
 sessions:
 default_session:
 goutte: ~

With this configuration, we let Behat know that we are using the Mink extension,
that Mink will use Goutte in all the sessions (you could actually define different
sessions with different web drivers if necessary), and that the base URL for these
tests is the GitHub one. Behat is already instructed to look for the behat.yml file in
the same directory that we executed it in, so there is nothing else that we need to do.

Interaction with the browser
Now, let's look at the magic. If you know the steps to use, writing acceptance tests
with Mink will be like a game. First, add the following feature in feature/search.
feature:

Feature: Search
 In order to find repositories
 As a website user
 I need to be able to search repositories by name

 Background:
 Given I am on "/picahielos"

Chapter 10

[383]

 And I follow "Repositories"

 Scenario: Searching existing repository
 When I fill in "zap" for "q"
 And I press "Search"
 Then I should see "picahielos/zap"

 Scenario: Searching non-existing repository
 When I fill in "yolo" for "q"
 And I press "Search"
 Then I should not see "picahielos/yolo"

The first thing to note is that we have a Background section. This section assumes
that the user visited the https://github.com/picahielos page and clicked on the
Repositories link. Using I follow with some string is the equivalent of trying to find a
link with this string and clicking on it.

The first scenario used the When I fill <field> with <value> step, which basically tries to
find the input field on the page (you can either specify the ID or name), and types the
value for you. In this case, the q field was the search bar, and we typed zap. Then,
similar to when clicking on the links, the I press <button> line will try to find the
button by name, ID, or value, and will click on it. Finally, Then I should see followed
by a string will assert that the given string could be found on the page. In short, the
test launched a browser, going to the specified URL, clicking on the Repositories
link, searching for the zap repository, and asserting that it could find it. In a similar
way, the second scenario tried to find a repository that does not exist.

If you run the tests, they should pass, but you will not see any browser. Remember
that Goutte is a headless browser web driver. However, check how fast these tests
are executed; in my laptop, it took less than 3 seconds! Can you imagine anyone
performing these two tests manually in less than this time?

One last thing: having a cheat sheet of predefined Mink steps is one of the handiest
things to have near your desk; you can find one at http://blog.lepine.pro/
images/2012-03-behat-cheat-sheet-en.pdf. As you can see, we did not write
a single line of code, and we still have two tests making sure that the website
works as expected. Also, if you need to add a fancier step, do not worry; you can
still implement your step definitions as we did in Behat previously while taking
advantage of the web driver's interface that Mink provides. We recommend you to
go through the official documentation in order to take a look at the complete list of
things that you can do with Mink.

https://github.com/picahielos
http://blog.lepine.pro/images/2012-03-behat-cheat-sheet-en.pdf
http://blog.lepine.pro/images/2012-03-behat-cheat-sheet-en.pdf

Behavioral Testing

[384]

Summary
In this concluding chapter, you learned how important it is to coordinate the
business with the application. For this, you saw what BDD is and how to implement
it with your PHP web applications using Behat and Mink. This also gives you the
ability to test the UI with web drivers, which you could not do it with unit tests and
PHPUnit. Now, you can make sure that not only is your application bug-free and
secure, but also that it does what the business needs it to do.

Congratulations on reaching the end of the book! You started as an inexperienced
developer, but now you are able to write simple and complex websites and REST
APIs with PHP and have an extensive knowledge of good test practices. You have
even worked with a couple of famous PHP frameworks, so you are ready to either
start a new project with them or join a team that uses one of them.

Now, you might be wondering: what do I do next? You already know the theory—
well, some of it—so we would recommend that you practice a lot. There are several
ways you can do this: by creating your own application, joining a team working on
open source projects, or working for a company. Try to keep up to date with new
releases of the language or the tools and frameworks, discover a new framework
from time to time, and never stop reading. Expanding your set of skills is always a
great idea!

If you run out of ideas on what to read next, here are some hints. We did not go
through the frontend part too much, so you might be interested in reading about
CSS and specially JavaScript. JavaScript has become the main character in these last
few years, so do not miss it out. If you are rather interested in the backend side and
how to manage applications properly, try discovering new technologies, such as
continuous integration tools similar to Jenkins. Finally, if you prefer to focus on the
theory and "science" side, you can read about how to write quality code with Code
Complete, Steve McConnell, or how to make good use of design patterns with Design
Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, John Vlissides,
Ralph Johnson, and Richard Helm, a gang of four.

Always enjoy and have fun when developing. Always!

[385]

Index
Symbols
2xx - success status codes

200 OK 320
201 created 320
202 accepted 320

3xx - redirection status codes
301 moved permanently 320
303 see other 320

4xx - client error status codes
400 bad request 321
401 unauthorized 321
403 forbidden 321
404 not found 321
405 method not allowed 321

5xx - server error 321
500 internal server error 321
__autoload function

using 90, 91

A
abstract classes 97-100
acceptance tests

about 235
versus unit tests 362, 363

aliases
URL 178

anonymous functions 128-131
Apache

reference link 26
Application Program Interface (API)

about 316
testing, with browsers 330, 331
testing, with command line 331

arguments by value
versus arguments by reference 65

arithmetic operators 34
array functions 48, 49
arrays

about 40
accessing 43
elements, searching in 45
empty function 44
initializing 41, 42
isset function 44
ordering 45, 46
populating 42, 43

assertions
about 244-248
reference 244

assignment operators 34
authentication, OAuth2

access token, requesting 338
client-credentials authentication,

enabling 337
database, setting up 336

authorization 321
autoloader 90

B
BDD

versus TDD 363
Behat, using 365

Behat 359, 365
behavioral specifications 364
behavior-driven development 359

[386]

best practices, REST APIs
about 332
API versioning 333
consistency, in endpoints 332
documenting 333
filters 333
HTTP cache, using 334
pagination 333

browsers
APIs, testing with 330, 331

business writing tests 364

C
cache layer 277
callable 129
casting

about 50
versus type juggling 50

class
about 76
autoloading 90
constructors 79, 80
conventions 83
methods 77, 78
properties 76, 77

code coverage 237
command line

APIs, testing with 331
comparison operators 35, 36
components, frameworks

configuration handler 275
dependency injector 275
logger 275
request 275
router 275
template engine 275

Composer
autoloader, with PSR-4 179
dependencies, managing 176-178
index.php file 181
metadata, adding 180
using 176

conditionals 54-57
constraints 143

continuous integration (CI) 360-362
controller

about 176
book controller 220-223
books, borrowing 223, 224
defining 215-218
error controller 218
login controller 219, 220
sales controller 225

control structures
about 54
conditionals 54-57
loops 59

cookies
data, persisting with 52, 53

CSS 22, 24
cURL 324

D
data

deleting 169, 170
inserting 149-152
persisting, with cookies 52, 53
querying 152-155
updating 165-168

databases
about 133, 134, 138
date and time data types 140
list of values 139
numeric data types 138
MySQL 134, 135
string data types 139
testing 260-264
versus files 72

data providers 250, 251
data providing 250
Data Source Name (DSN) 156
data types

about 32, 33
Booleans 32
floats 32
integers 32
strings 32

[387]

date and time data types
about 140
reference link 141

decrementing operators 36
DELETE method 319
dependency injection

about 226
defining 226
need for 226, 227

dependency injector
implementing 228-232

design patterns
about 121
factory 121, 123
singleton 124-128

DesignPatternsPHP
reference link 121

DI
models, injecting with 252

doubles
testing with 251

do…while loop 60

E
elements

searching, in array 45
Eloquent JavaScript

reference link 23
empty function 44
encapsulation 83-86
environment

setting up, with Vagrant 1
environment setup, on OS X

about 5
Composer, installing 9
MySQL, installing 7, 8
Nginx, installing 9
PHP, installing 5-7

environment setup, on Ubuntu
about 13
MySQL, installing 14
Nginx, installing 14
PHP, installing 14

environment setup, on Windows
about 9
Composer, installing 13
MySQL, installing 10-12
Nginx, installing 12, 13
PHP, installing 10

escape characters 40
exceptions

catching 117-120
handling 112
handling, finally block used 115-11
handling, try catch block 113, 114

exit condition 61
expecting exceptions 249
expression 34

F
factory design pattern 121, 123
feature 366
features, frameworks

about 276
authentication 276
cache 277, 278
internationalization 279
object-relational mapping (ORM) 276, 277
roles 276

feature tests
running 371-380

fetch mode
advantages 200
disadvantages 200

files
reading 68, 69
versus databases 72
writing 70, 71

filesystem
about 68
functions 73

finally block 115-117
foreach loop 61-63
foreign keys

about 145-148
behaviors 168, 169

[388]

for loop 60, 61
foundations, REST APIs

HTTP request methods 317
REST API security 321
status codes, in responses 320

frameworks
components 275
features 276
overview 280
parts 274, 275
purpose 274
reviewing 273
Symfony 2 281
Zend Framework 2 281

framework, types
about 279
complete 279
flexible 280
lightweight 280
robust 279

functions
about 63
arguments 64, 65
declaring 63

functions, date and time data types
CURRENT_DATE() 140
CURRENT_TIME() 140
DATE_ADD() 140
DATE_FORMAT() 140
DAY() 140
HOUR() 140
MINUTE() 140
MONTH() 140
NOW() 140
SECOND() 140
YEAR() 140

functions, PDO
beginTransaction 171
commit 171
rollBack 171

functions, PHP files
include 30
include_once 30
require 30
require_once 30

functions, strings
strlen 39
strpos 39
str_replace 39
strtolower 39
strtoupper 39
substr 39
trim 39

G
GET method 318
getter 84
Gherkin language 366
Given-When-Then test cases

writing 367
Goutte

Mink, installing with 381, 382
Graphical User Interface (GUI) 134
Guzzle 324

H
HTML 22, 24
HTML forms 51, 52
HTTP message, components

about 18
body 19
headers 19, 20
HTTP method 19
status code 20
URI 18, 19

HTTP protocol
about 17
complex example 20, 21
interchange of messages, example 18

HTTP request methods
about 317
DELETE 319
GET 318
POST 318, 319
PUT 318, 319

HyperText Transfer Protocol (HTTP)
methods

about 17-19
DELETE 19

[389]

GET 19
OPTION 19
POST 19
PUT 19

I
impersonification 276
incrementing operators 36
indexes 149
infinite loops 59
information hiding 83
inheritance

about 92-95
abstract classes 97-100
methods, overriding 96

installation
Mink, with Goutte 381, 382
Vagrant 2

integration tests 235
interface 100-104
internationalization 279
isset function 44

J
JavaScript 22-24
join queries 162

K
keys

about 143
foreign keys 145-148
primary keys 143, 144
unique keys 148

L
lambda functions 128
Laravel

about 273
versus Silex 313

Laravel framework
about 282
complex controllers, creating 296-300

first endpoint, adding 285-288
installation 282
project setup 282-285
relationships, setting up in models 295, 296
tests, adding 300-303
users, managing 289, 290

layout 210
lazy load 204
left joins 163
list of values 139
lists 40
logical operators 36
loops

about 54, 59
do…while loop 60
foreach 61-63
for loop 60, 61
while loop 59

M
magic methods 80
maps 40
methods

overriding 96, 97
visibility 81

model
about 176
book model 198-202
customer model 196, 197
defining 194-196
injecting, with DI 252
sales model 203-207

Mink
about 359
browser interaction 382, 383
installing, with Goutte 381, 382
used, for testing with browser 380

mocks
using 254-259

Monolog
about 306
reference link 306

[390]

MVC (model-view-controller) pattern
about 175
defining 175, 176

MySQL 134, 136
MySQL server installer

reference link 7
MySQL Workbench

reference link 8

N
namespaces 88, 90
Nginx

reference link 26
numeric data types 138

O
OAuth 2.0 322
OAuth2Server

installing 335, 336
object-relational mapping (ORM) 276, 277
objects 76
operator precedence 37, 38
operators

about 33
arithmetic operators 34
assignment operators 34
comparison operators 35, 36
decrementing operators 36
incrementing operators 36
logical operators 36

optional arguments 64
overindexing 149
overloaded functions 64

P
Packagist

about 180, 324
reference links 181

PDO
connecting, to database 156
prepared statements 159-161
queries, performing 157, 158
using 156

PHP
and HTML, mixing 57
built-in server 25, 26
reference link 179

PHP Data Objects. See PDO
PHP files

about 29-31
functions 30

PHP functions, filesystem
file_exists 73
is_writable 73
reference link 73

PHP, in web applications
about 49
data, persisting with cookies 52
HTML forms 51, 52
information, obtaining from user 49, 50

PHPUnit
about 237
integrating 237, 238

phpunit.xml file 238, 239
Pimple 304
polymorphism 105, 106
POST method 318, 319
prepared statements 159-61
primary keys 143, 144
production web servers 26
project setup, Silex microframework

about 304
configuration, managing 304, 305
logger, adding 306
template engine, setting 305

property visibility 81
PUT method 319

Q
queries

grouping 164, 165

R
receiver 18
reflection

about 264
reference link 264

[391]

requests
parameters, filtering from 183-185
request object 182, 183
router 189, 190
routes, mapping to controllers 186-188
working with 181

REST API, creating with Laravel
about 334
controllers, adding 346-352
database, preparing 339, 340
endpoints, designing 344, 345
models, setting up 341-343
OAuth2 authentication, setting 335

REST API developer
toolkit 330

REST APIs
about 316, 317
best practices 332
foundations 317
testing 353-357

REST API security
about 321
basic access authentication 322
OAuth 2.0 322

return statement 66
return type 66-68
router

about 189, 190
arguments, extracting of URL 192
controller, executing 192, 193
URLs matching, with regular

expressions 190, 191

S
scenarios

defining 366
Given-When-Then test cases, writing 367
parts, reusing of 367

schemas 136, 137
sender 18
setter 84

Silex
about 273
reference link 313
versus Laravel 313

Silex microframework
about 303
database, accessing 307-312
first endpoint, adding 306, 307
installation 303
project setup 304

singleton design pattern 124-128
spl_autoload_register function

using 92
standards, PHP

PSR-0 179
PSR-4 179

static methods 87
static properties 87
status codes

about 20
reference 320

status codes, in responses
2xx - success 320
3xx - redirection 320
4xx - client error 321
5xx - server error 321
about 320

step
definitions, writing 368-371
parameterization 371

strings
working with 38, 39

superglobals
about 53
reference 54

Symfony 273, 381
Symfony 2 281

T
tables

about 136
fields 141
joining 161-163
managing 141-143

[392]

TestCase
customizing 252, 253

test-driven development (TDD)
about 265-270
theory, versus practice 270, 271
versus BDD 363

tests
about 239-241
acceptance tests 235
integration tests 235
need for 233
running 241, 242
types 234-236
unit tests 235

third-party APIs
access token, requesting 325-327
application's credentials, obtaining 323, 324
application, setting up 324, 325
tweets, fetching 327-329
using 323

timestamps 52
tools installation, with Composer

reference link 238
traits 106-112
transactions

working with 171-173
try catch block 113, 114
Twig 208
Twitter

reference link 323
type hinting 66-68
type juggling

about 33
versus casting 50

U
unique keys 148
unit tests

about 235, 236
end 243
start 243
versus acceptance tests 362, 363
writing 242

user management, Laravel framework
about 289, 290
protected routes 295
user login 293, 294
user registration 290-293

V
Vagrant

about 2
download page link 2
environment, setting up with 1
installing 2
using 2-5

variables
about 31, 32
expanding 40
scope 64

version control systems (VCS) 361
view

about 176
blocks 210, 211
book view 208, 209
defining 207
error template 214
layouts 210, 211
login template 215
paginated book list 211, 212
sales view 212, 213
Twig, defining 207, 208

visibility
about 81
private 81
protected 81
public 81
working 82, 83

W
web applications 21
web drivers

types 381
web forms

submitting 21

[393]

web page 21
web servers

about 24
working 24, 25

website 21
while loop 59

Z
Zend Framework 273
Zend Framework 2 281
ZIP file, Nginx

reference link 12

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up the Environment
	Setting up the environment with Vagrant
	Introducing Vagrant
	Installing Vagrant
	Using Vagrant

	Setting up the environment on OS X
	Installing PHP
	Installing MySQL
	Installing Nginx
	Installing Composer

	Setting up the environment on Windows
	Installing PHP
	Installing MySQL
	Installing Nginx
	Installing Composer

	Setting up the environment on Ubuntu
	Installing PHP
	Installing MySQL
	Installing Nginx

	Summary

	Chapter 2: Web Applications with PHP
	The HTTP protocol
	A simple example
	Parts of the message
	URL
	The HTTP method
	Body
	Headers
	The status code

	A more complex example

	Web applications
	HTML, CSS, and JavaScript

	Web servers
	How they work
	The PHP built-in server
	Putting things together

	Summary

	Chapter 3: Understanding PHP Basics
	PHP files
	Variables
	Data types

	Operators
	Arithmetic operators
	Assignment operators
	Comparison operators
	Logical operators
	Incrementing and decrementing operators
	Operator precedence

	Working with strings
	Arrays
	Initializing arrays
	Populating arrays
	Accessing arrays
	The empty and isset functions
	Searching for elements in an array
	Ordering arrays
	Other array functions

	PHP in web applications
	Getting information from the user
	HTML forms
	Persisting data with cookies
	Other superglobals

	Control structures
	Conditionals
	Switch…case
	Loops
	While
	Do…while
	For
	Foreach

	Functions
	Function declaration
	Function arguments
	The return statement
	Type hinting and return types

	The filesystem
	Reading files
	Writing files
	Other filesystem functions

	Summary

	Chapter 4: Creating Clean Code with OOP
	Classes and objects
	Class properties
	Class methods
	Class constructors
	Magic methods

	Properties and methods visibility
	Encapsulation

	Static properties and methods
	Namespaces
	Autoloading classes
	Using the __autoload function
	Using the spl_autoload_register function

	Inheritance
	Introducing inheritance
	Overriding methods
	Abstract classes

	Interfaces
	Polymorphism

	Traits
	Handling exceptions
	The try…catch block
	The finally block
	Catching different types of exceptions

	Design patterns
	Factory
	Singleton

	Anonymous functions
	Summary

	Chapter 5: Using Databases
	Introducing databases
	MySQL

	Schemas and tables
	Understanding schemas
	Database data types
	Numeric data types
	String data types
	List of values
	Date and time data types

	Managing tables

	Keys and constraints
	Primary keys
	Foreign keys
	Unique keys
	Indexes

	Inserting data
	Querying data
	Using PDO
	Connecting to the database
	Performing queries
	Prepared statements

	Joining tables
	Grouping queries
	Updating and deleting data
	Updating data
	Foreign key behaviors
	Deleting data

	Working with transactions
	Summary

	Chapter 6: Adapting to MVC
	The MVC pattern
	Using Composer
	Managing dependencies
	Autoloader with PSR-4
	Adding metadata
	The index.php file

	Working with requests
	The request object
	Filtering parameters from requests
	Mapping routes to controllers
	The router
	URLs matching with regular expressions
	Extracting the arguments of the URL
	Executing the controller

	M for model
	The customer model
	The book model
	The sales model

	V for view
	Introduction to Twig
	The book view
	Layouts and blocks
	Paginated book list
	The sales view
	The error template
	The login template

	C for controller
	The error controller
	The login controller
	The book controller
	Borrowing books
	The sales controller

	Dependency injection
	Why is dependency injection necessary?
	Implementing our own dependency injector

	Summary

	Chapter 7: Testing Web Applications
	The necessity for tests
	Types of tests
	Unit tests and code coverage

	Integrating PHPUnit
	The phpunit.xml file
	Your first test
	Running tests

	Writing unit tests
	The start and end of a test
	Assertions
	Expecting exceptions
	Data providers

	Testing with doubles
	Injecting models with DI
	Customizing TestCase
	Using mocks

	Database testing
	Test-driven development
	Theory versus practice

	Summary

	Chapter 8: Using Existing PHP Frameworks
	Reviewing frameworks
	The purpose of frameworks
	The main parts of a framework

	Other features of frameworks
	Authentication and roles
	ORM
	Cache
	Internationalization

	Types of frameworks
	Complete and robust frameworks
	Lightweight and flexible frameworks

	An overview of famous frameworks
	Symfony 2
	Zend Framework 2
	Other frameworks

	The Laravel framework
	Installation
	Project setup
	Adding the first endpoint
	Managing users
	User registration
	User login
	Protected routes

	Setting up relationships in models
	Creating complex controllers
	Adding tests

	The Silex microframework
	Installation
	Project setup
	Managing configuration
	Setting the template engine
	Adding a logger

	Adding the first endpoint
	Accessing the database

	Silex versus Laravel
	Summary

	Chapter 9: Building REST APIs
	Introducing APIs
	Introducing REST APIs
	The foundations of REST APIs
	HTTP request methods
	GET
	POST and PUT
	DELETE

	Status codes in responses
	2xx – success
	3xx – redirection
	4xx – client error
	5xx – server error

	REST API security
	Basic access authentication
	OAuth 2.0

	Using third-party APIs
	Getting the application's credentials
	Setting up the application
	Requesting an access token
	Fetching tweets

	The toolkit of the REST API developer
	Testing APIs with browsers
	Testing APIs using the command line

	Best practices with REST APIs
	Consistency in your endpoints
	Document as much as you can
	Filters and pagination
	API versioning
	Using HTTP cache

	Creating a REST API with Laravel
	Setting OAuth2 authentication
	Installing OAuth2Server
	Setting up the database
	Enabling client-credentials authentication
	Requesting an access token

	Preparing the database
	Setting up the models
	Designing endpoints
	Adding the controllers

	Testing your REST APIs
	Summary

	Chapter 10: Behavioral Testing
	Behavior-driven development
	Introducing continuous integration
	Unit tests versus acceptance tests
	TDD versus BDD
	Business writing tests

	BDD with Behat
	Introducing the Gherkin language
	Defining scenarios
	Writing Given-When-Then test cases
	Reusing parts of scenarios

	Writing step definitions
	The parameterization of steps

	Running feature tests

	Testing with a browser using Mink
	Types of web drivers
	Installing Mink with Goutte
	Interaction with the browser

	Summary

	Index

