
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Alex Banks and Eve Porcello

Learning React
Functional Web Development

with React and Redux

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-95462-1

[LSI]

Learning React
by Alex Banks and Eve Porcello

Copyright © 2017 Alex Banks and Eve Porcello. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Melanie Yarbrough
Copyeditor: Colleen Toporek
Proofreader: Rachel Head

Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2017: First Edition

Revision History for the First Edition
2017-04-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491954621 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning React, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491954621
http://www.allitebooks.org

Table of Contents

Preface. ix

1. Welcome to React. 1
Obstacles and Roadblocks 1

React Is a Library 2
New ECMAScript Syntax 2
Popularity of Functional JavaScript 2
JavaScript Tooling Fatigue 2
Why React Doesn’t Have to Be Hard to Learn 3

React’s Future 3
Keeping Up with the Changes 4
Working with the Files 4

File Repository 4
React Developer Tools 5
Installing Node.js 6

2. Emerging JavaScript. 9
Declaring Variables in ES6 10

const 10
let 10
Template Strings 12
Default Parameters 13

Arrow Functions 14
Transpiling ES6 17
ES6 Objects and Arrays 19

Destructuring Assignment 19
Object Literal Enhancement 20
The Spread Operator 22

iii

www.allitebooks.com

http://www.allitebooks.org

Promises 24
Classes 25
ES6 Modules 27
CommonJS 28

3. Functional Programming with JavaScript. 31
What It Means to Be Functional 32
Imperative Versus Declarative 34
Functional Concepts 36

Immutability 36
Pure Functions 38
Data Transformations 41
Higher-Order Functions 48
Recursion 49
Composition 52
Putting It All Together 54

4. Pure React. 59
Page Setup 59
The Virtual DOM 60
React Elements 62
ReactDOM 64
Children 65
Constructing Elements with Data 67
React Components 68

React.createClass 69
React.Component 72
Stateless Functional Components 73

DOM Rendering 74
Factories 77

5. React with JSX. 81
React Elements as JSX 81

JSX Tips 82
Babel 84
Recipes as JSX 85
Intro to Webpack 93

Webpack Loaders 94
Recipes App with a Webpack Build 94

6. Props, State, and the Component Tree. 109
Property Validation 109

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Validating Props with createClass 110
Default Props 114
Custom Property Validation 115
ES6 Classes and Stateless Functional Components 116

Refs 119
Inverse Data Flow 121
Refs in Stateless Functional Components 123

React State Management 123
Introducing Component State 124
Initializing State from Properties 128

State Within the Component Tree 130
Color Organizer App Overview 130
Passing Properties Down the Component Tree 131
Passing Data Back Up the Component Tree 134

7. Enhancing Components. 141
Component Lifecycles 141

Mounting Lifecycle 142
Updating Lifecycle 146
React.Children 157

JavaScript Library Integration 158
Making Requests with Fetch 159
Incorporating a D3 Timeline 160

Higher-Order Components 166
Managing State Outside of React 172

Rendering a Clock 173
Flux 174

Views 176
Actions and Action Creators 177
Dispatcher 177
Stores 178
Putting It All Together 179
Flux Implementations 180

8. Redux. 183
State 184
Actions 187

Action Payload Data 189
Reducers 190

The Color Reducer 193
The Colors Reducer 195
The Sort Reducer 197

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

The Store 198
Subscribing to Stores 201
Saving to localStorage 202

Action Creators 203
Middleware 206

Applying Middleware to the Store 207

9. React Redux. 211
Explicitly Passing the Store 213
Passing the Store via Context 216
Presentational Versus Container Components 220
The React Redux Provider 223
React Redux connect 224

10. Testing. 229
ESLint 229
Testing Redux 233

Test-Driven Development 233
Testing Reducers 234
Testing the Store 242

Testing React Components 245
Setting Up the Jest Environment 245
Enzyme 247
Mocking Components 249

Snapshot Testing 258
Using Code Coverage 262

11. React Router. 273
Incorporating the Router 274

Router Properties 277
Nesting Routes 279

Using a Page Template 279
Subsections and Submenus 281

Router Parameters 286
Adding Color Details Page 286
Moving Color Sort State to Router 292

12. React and the Server. 297
Isomorphism versus Universalism 297

Server Rendering React 301
Universal Color Organizer 306

Universal Redux 308

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Universal Routing 310
Communicating with the Server 318

Completing Actions on the Server 318
Actions with Redux Thunks 321

Index. 329

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

This book is for developers who want to learn the React library while learning the
latest techniques currently emerging in the JavaScript language. This is an exciting
time to be a JavaScript developer. The ecosystem is exploding with new tools, syntax,
and best practices that promise to solve many of our development problems. Our aim
with this book is to organize these techniques, so you can get to work with React right
away. We’ll get into Redux, React Router, and build tooling, so we promise not to
introduce only the basics and then throw you to the wolves.

This book does not assume any knowledge of React at all. We’ll introduce all of
React’s basics from scratch. Similarly, we won’t assume that you’ve worked with ES6
or any of the latest JavaScript syntax. This will be introduced in Chapter 2 as founda‐
tion for the rest of the chapters.

You’ll be better prepared for the contents of the book if you’re comfortable with
HTML, CSS, and JavaScript. It’s almost always best to be comfortable with these big
three before diving into a JavaScript library.

Along the way, check out the GitHub repository. All of the examples are there and
will allow you to practice with hands-on examples.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

ix

http://github.com/moonhighway/learning-react

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/moonhighway/learning-react.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning React by Alex Banks and
Eve Porcello (O’Reilly). Copyright 2017 Alex Banks, Eve Porcello,
978-1-491-95462-1.”

x | Preface

https://github.com/moonhighway/learning-react

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning-react-2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari
http://bit.ly/learning-react-2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
Our journey with React wouldn’t have started without some good old fashioned luck.
We used YUI when we created the training materials for the full stack JavaScript pro‐
gram that we taught internally at Yahoo. Then in August 2014, development on YUI
ended. We had to change all of our course files, but to what? What were we supposed
to use on the front end now? The answer: React. We didn’t fall in love with React
immediately, it took us couple of hours to get hooked. It looked like React could
potentially change everything. We got in early and got really lucky.

This book would not have been possible without the support of Ally MacDonald who
helped us every step of the way and was monumentally patient with us through sev‐
eral library updates. We’re grateful to Melanie Yarbrough, Colleen Toporek, and
Rachel Head for their amazing attention to detail. Thanks to Sarah Ronau for proof‐
reading this book well before it was ready for human eyes and to Bonnie Eisenman
for her great advice and overall delightfulness. Thanks also to Stoyan Stefanov, who
was nice enough to provide a technical review even though he’s really busy building
cool stuff at Facebook.

There’s also no way this book could have existed without the Sharon Adams and
Marilyn Messineo. They conspired to purchase Alex’s first computer, a Tandy TRS 80
Color Computer. It also wouldn’t have made it to book form without the love, sup‐
port, and encouragement of Jim and Lorri Porcello, and Mike and Sharon Adams.

We’d also like to acknowledge Coffee Connexion in Tahoe City, California for giving
us the coffee we needed to finish this book, and its owner, Robin, who gave us the
timeless advice: “A book on programming? Sounds boring!”

xii | Preface

CHAPTER 1

Welcome to React

React is a popular library used to create user interfaces. It was built at Facebook to
address some of the challenges associated with large-scale, data-driven websites.
When React was released in 2013, the project was initially viewed with some skepti‐
cism because the conventions of React are quite unique.

In an attempt to not intimidate new users, the core React team wrote an article called
“Why React?” that recommended that you “Give It [React] Five Minutes.” They
wanted to encourage people to work with React first before thinking that their
approach was too crazy.

Yes, React is a small library that doesn’t come with everything you might need out of
the box to build your application. Give it five minutes.

Yes, in React, you write code that looks like HTML right in your JavaScript. And yes,
those tags require preprocessing to run in a browser. And you’ll probably need a
build tool like webpack for that. Give it five minutes.

If you read that article—as we did—you may have been dazzled by the promise of a
new JavaScript library—a library that would solve all of our problems with the DOM;
a library that would always be easy to work with and would never hurt us.

Then the questions start to arise: how do I convert this JSX? How do I load data?
Where does the CSS go? What is declarative programming? Every path leads to more
questions about how to incorporate this library in your actual day to day work. Every
conversation introduces new terminology, new techniques, and more questions.

Obstacles and Roadblocks
By taking a few minutes to learn about React components, you’ve opened a door to a
different way of thinking about and approaching web development. However, there

1

are some learning obstacles that you’ll have to overcome to begin writing production
code with React.

React Is a Library
First, the React library is small and it is only used for one part of the job. It doesn’t
ship with all of the tools that you’d expect from a traditional JavaScript framework. A
lot of the decisions about which tools from the ecosystem to use are left up to the
developer. Also, new tools emerge all the time, and old ones are cast aside. There are
so many different library names continually being added to the discussion that it may
feel like it’s impossible to keep up.

New ECMAScript Syntax
React has come of age in an important but chaotic time in the history of JavaScript.
The ECMA used to release specifications infrequently. It would sometimes take up to
10 years to release a spec. This meant that developers wouldn’t need to learn new syn‐
tax very often.

As of 2015, new language features and syntax additions will be released every year.
This replaces a numbered release system (ECMAScript3, ECMAScript 5) with a
yearly one (ECMAScript 2016, ECMAScript 2017). As the language evolves, the early
adopters in the React community tend to use the new syntax. This often means that
documentation assumes knowledge of the latest ECMAScript syntax. If you are not
familiar with the latest spec, looking at React code can be daunting.

Popularity of Functional JavaScript
In addition to the changes emerging at a language level, there is a lot of momentum
around functional JavaScript programming. JavaScript isn’t necessarily a functional
language, but functional techniques can be used in JavaScript code. React emphasizes
functional programming over object-oriented programming. This shift in thinking
can lead to benefits in areas like testability and performance. But when a lot of React
materials assume an understanding of the paradigm, it can be hard to learn so much
at once.

JavaScript Tooling Fatigue
It’s a cliche at this point to talk about JavaScript Fatigue, but the source of this fake
illness can be traced back to the building process. In the past, you just added Java‐
Script files to your page. Now the JavaScript file has to be built, usually with an auto‐
mated continuous delivery process. There’s emerging syntax that has to be transpiled
to work in all browsers. There’s JSX that has to be converted to JavaScript. There’s
SCSS that you might want to preprocess. These components need to be tested, and

2 | Chapter 1: Welcome to React

http://bit.ly/2pSiuE4

they have to pass. You might love React, but now you also need to be a webpack
expert, handling code splitting, compression, testing, and on and on.

Why React Doesn’t Have to Be Hard to Learn
The goal of this book is to avoid confusion in the learning process by putting things
in sequence and building a strong learning foundation. We’ll start with a syntax
upgrade to get you acquainted with the latest JavaScript features, especially the ones
that are frequently used with React. Then we’ll give an introduction to functional
JavaScript so you can apply these techniques immediately and understand the para‐
digm that gave birth to React.

From there, we will cover foundational React knowledge including your first compo‐
nents and how and why we need to transpile our code. With the basics in place, we
will break ground on a new application that allows users to save and organize colors.
We will build this application using React, improve the code with advanced React
techniques, introduce Redux as the client data container, and finish off the app by
incorporating Jest testing and routing with the React Router. In the final chapter, we
will introduce universal and isomorphic code and enhance the color organizer by
rendering it on the server.

We hope to get you up to speed with the React ecosystem faster by approaching it this
way—not just to scratch the surface, but to equip you with the tools and skills neces‐
sary to build real world React applications.

React’s Future
React is still new. It has reached a place where core functionality is fairly stable, but
even that can change. Future versions of React will include Fiber, a reimplementation
of React’s core algorithm which is aimed at increasing rendering speed. It’s a little
early to hypothesize about how this will affect React developers, but it will definitely
affect the speed at which apps are rendered and updated.

Many of these changes have to do with the devices that are being targeted. This book
covers techniques for developing single-page web applications with React, but we
shouldn’t assume that web browsers are the only place that React apps can run. React
Native, released in 2015, allows you to take the benefits of React applications into iOS
and Android native apps. It’s still early, but React VR, a framework for building inter‐
active, virtual reality apps, has emerged as a way to design 360 degree experiences
using React and JavaScript. A command of the React library will set you up to rapidly
develop experiences for a range of screen sizes and types.

We hope to provide you with a strong enough foundation to be able to adapt to the
changing ecosystem and build applications that can run on platforms beyond the web
browser.

React’s Future | 3

Keeping Up with the Changes
As changes are made to React and related tools, sometimes there are breaking
changes. In fact, some of the future versions of these tools may break some of the
example code in this book. You can still follow along with the code samples. We’ll
provide exact version information in the package.json file, so that you can install these
packages at the correct version.

Beyond this book, you can stay on top of changes by following along with the official
React blog. When new versions of React are released, the core team will write a
detailed blog post and changelog about what is new.

There are also a variety of popular React conferences that you can attend for the latest
React information. If you can’t attend these in person, React conferences often release
the talks on YouTube following the events. These include:

React Conf
Facebook-sponsored conference in the Bay Area

React Rally
Community conference in Salt Lake City

ReactiveConf
Community conference in Bratislava, Slovakia

React Amsterdam
Community conference in Amsterdam

Working with the Files
In this section, we will discuss how to work with the files for this book and how to
install some useful React tools.

File Repository
The GitHub repository associated with this book provides all of the code files organ‐
ized by chapter. The repository is a mix of code files and JSBin samples. If you’ve
never used JSBin before, it’s an online code editor similar to CodePen and JSFiddle.

One of the main benefits of JSBin is that you can click the link and immediately start
tinkering with the file. When you create or start editing a JSBin, it will generate a
unique URL for your code sample, as in Figure 1-1.

4 | Chapter 1: Welcome to React

https://facebook.github.io/react/blog/
http://conf.reactjs.com
http://www.reactrally.com
https://reactiveconf.com
http://react.amsterdam
https://github.com/moonhighway/learning-react

Figure 1-1. JSBin URL

The letters that follow jsbin.com represent the unique URL key. After the next slash is
the version number. In the last part of the URL, there will be one of two words: edit
for editing mode or quiet for preview mode.

React Developer Tools
There are several developer tools that can be installed as browser extensions or add-
ons that you may find useful as well:

react-detector
react-detector is a Chrome extension that lets you know which websites are using
React and which are not.

show-me-the-react
This is another tool, available for Firefox and Chrome, that detects React as you
browse the internet.

React Developer Tools (see Figure 1-2)
This is a plugin that can extend the functionality of the browser’s developer tools.
It creates a new tab in the developer tools where you can view React elements.

If you prefer Chrome, you can install it as an extension; you can also install it as
an add-on for Firefox.

Working with the Files | 5

http://bit.ly/2mwcoXR
http://bit.ly/2nvM0il
http://bit.ly/2nvKz3y
http://bit.ly/2nvFKar
http://bit.ly/1O5DTlX
https://mzl.la/2mMVgi5

Figure 1-2. Viewing the React Developer Tools

Any time you see react-detector or show-me-the-react as active, you can open the
developer tools and get an understanding of how React is being used on the site.

Installing Node.js
Node.js is JavaScript without the browser. It is a runtime environment used to build
full-stack JavaScript applications. Node is open source and can be installed on Win‐
dows, macOS, Linux, and other platforms. We will be using Node in Chapter 12 when
we build an Express server.

You do not need to use Node to use React. However, when working with React, you
need to use the Node package manager, npm, to install dependencies. This is auto‐
matically installed with the Node installation.

If you’re not sure if Node.js is installed on your machine, you can open a Terminal or
Command Prompt window and type:

$ node -v

Output: v7.3.0

Ideally, you will have a Node version number of 4 or higher. If you type the command
and see an error message that says “Command not found,” Node.js is not installed.
This can be done directly from the Node.js website. Just go through the automated
steps of the installer, and when you type in the node -v command again, you’ll see
the version number.

6 | Chapter 1: Welcome to React

http://nodejs.org

Dependency Management with Yarn
An optional alternative for npm is Yarn. It was released in 2016 by Facebook, in col‐
laboration with Exponent, Google, and Tilde. The project helps Facebook and other
companies manage their dependencies more reliably, and when using it to install
packages, you’ll likely notice that it’s much faster. You can compare npm and Yarn’s
performance at the Yarn website.

If you’re familiar with the npm workflow, getting up to speed with Yarn is fairly sim‐
ple. First, install Yarn globally with npm.

npm install -g yarn

Then, you are ready to install packages. When installing dependencies from the pack‐
age.json, in place of npm install, you can run yarn.

When installing specific packages, Instead of running npm install --save

[package-name], run:

yarn add [package-name]

To remove a dependency, the command is familiar too:

yarn remove [package-name]

Yarn is used in production by Facebook and is included in projects like React, React
Native, and create-react-app. If you ever find a project that contains a yarn.lock file,
the project uses yarn. Similar to the npm install command, you can install all of the
dependencies of the project by typing yarn install or simply yarn.

Now that you have your environment set up for React development, we are ready to
begin overcoming learning obstacles. In Chapter 2, we will address ECMA, and get
up to speed with the latest JavaScript syntax that is most commonly found in React
code.

Working with the Files | 7

https://yarnpkg.com/en/compare

1 Abel Avram, “ECMAScript 2015 Has Been Approved”, InfoQ, June 17, 2015.

CHAPTER 2

Emerging JavaScript

Since its release in 1995, JavaScript has gone through many changes. At first, it made
adding interactive elements to web pages much simpler. Then it got more robust with
DHTML and AJAX. Now, with Node.js, JavaScript has become a language that is used
to build full-stack applications. The committee that is and has been in charge of shep‐
herding the changes to JavaScript is the European Computer Manufacturers Associa‐
tion (ECMA).

Changes to the language are community-driven. They originate from proposals that
community members write. Anyone can submit a proposal to the ECMA committee.
The responsibility of the ECMA committee is to manage and prioritize these propos‐
als in order to decide what is included in each spec. Proposals are taken through
clearly defined stages, from stage 0, which represents the newest proposals, up
through stage 4, which represents the finished proposals.

The most recent major update to the specification was approved in June 20151 and is
called by many names: ECMAScript 6, ES6, ES2015, and ES6Harmony. Based on cur‐
rent plans, new specs will be released on a yearly cycle. The 2016 release was relatively
small, but it already looks like ES2017 will include quite a few useful features. We’ll be
using many of these new features in the book and will opt to use emerging JavaScript
whenever possible.

Many of these features are already supported by the newest browsers. We will also be
covering how to convert your code from emerging JavaScript syntax to ES5 syntax
that will work today in almost all browsers. The kangax compatibility table is a great
place to stay informed about the latest JavaScript features and their varying degrees of
support by browsers.

9

http://bit.ly/2nvMJjJ
https://tc39.github.io/process-document/
http://kangax.github.io/compat-table/esnext/

In this chapter, we will show you all of the emerging JavaScript that we’ll be using
throughout the book. If you haven’t made the switch to the latest syntax yet, now
would be a good time to get started. If you are already comfortable with ES.Next lan‐
guage features, skip to the next chapter.

Declaring Variables in ES6
Prior to ES6, the only way to declare a variable was with the var keyword. We now
have a few different options that provide improved functionality.

const
A constant is a variable that cannot be changed. Like other languages had done before
it, JavaScript introduced constants with ES6.

Before constants, all we had were variables, and variables could be overwritten:

var pizza = true
pizza = false
console.log(pizza) // false

We cannot reset the value of a constant variable, and it will generate a console error
(Figure 2-1) if we try to overwrite the value:

const pizza = true
pizza = false

Figure 2-1. An attempt at overwriting a constant

let
JavaScript now has lexical variable scoping. In JavaScript, we create code blocks with
curly braces ({}). With functions, these curly braces block off the scope of variables.
On the other hand, think about if/else statements. If you’re coming from other lan‐
guages, you might assume that these blocks would also block variable scope. This is
not the case.

If a variable is created inside of an if/else block, that variable is not scoped to the
block:

var topic = "JavaScript"

if (topic) {
 var topic = "React"
 console.log('block', topic) // block React
}

10 | Chapter 2: Emerging JavaScript

console.log('global', topic) // global React

The topic variable inside the if block resets the value of topic.

With the let keyword, we can scope a variable to any code block. Using let protects
the value of the global variable:

var topic = "JavaScript"

if (topic) {
 let topic = "React"
 console.log('block', topic) // React
}

console.log('global', topic) // JavaScript

The value of topic is not reset outside of the block.

Another area where curly braces don’t block off a variable’s scope is in for loops:

var div,
 container = document.getElementById('container')

for (var i=0; i<5; i++) {
 div = document.createElement('div')
 div.onclick = function() {
 alert('This is box #' + i)
 }
 container.appendChild(div)
}

In this loop, we create five divs to appear within a container. Each div is assigned an
onclick handler that creates an alert box to display the index. Declaring i in the for
loop creates a global variable named i, and then iterates it until its value reaches 5.
When you click on any of these boxes, the alert says that i is equal to 5 for all divs,
because the current value for the global i is 5 (Figure 2-2).

Figure 2-2. i is equal to 5 for each box

Declaring Variables in ES6 | 11

Declaring the loop counter i with let instead of var does block off the scope of i.
Now clicking on any box will display the value for i that was scoped to the loop itera‐
tion (Figure 2-3):

var div, container = document.getElementById('container')
for (let i=0; i<5; i++) {
 div = document.createElement('div')
 div.onclick = function() {
 alert('This is box #: ' + i)
 }
 container.appendChild(div)
}

Figure 2-3. The scope of i is protected with let

Template Strings
Template strings provide us with an alternative to string concatenation. They also
allow us to insert variables into a string.

Traditional string concatenation uses plus signs or commas to compose a string using
variable values and strings:

console.log(lastName + ", " + firstName + " " + middleName)

With a template, we can create one string and insert the variable values by surround‐
ing them with ${ }:

console.log(`${lastName}, ${firstName} ${middleName}`)

Any JavaScript that returns a value can be added to a template string between the $
{ } in a template string.

Template strings honor whitespace, making it easier to draft up email templates, code
examples, or anything else that contains whitespace. Now you can have a string that
spans multiple lines without breaking your code. Example 2-1 illustrates using tabs,
line breaks, spaces, and variable names in an email template.

12 | Chapter 2: Emerging JavaScript

Example 2-1. Template strings honor whitespace

`

 Hello ${firstName},

 Thanks for ordering ${qty} tickets to ${event}.

 Order Details
 ${firstName} ${middleName} ${lastName}
 ${qty} x $${price} = $${qty*price} to ${event}

 You can pick your tickets up at will call 30 minutes before
 the show.

 Thanks,

 ${ticketAgent}

`

Previously, using an HTML string directly in our JavaScript code was not so easy to
do because we’d need to run it together on one line. Now that the whitespace is recog‐
nized as text, you can insert formatted HTML that is easy to understand:

document.body.innerHTML = `
<section>
 <header>
 <h1>The HTML5 Blog</h1>
 </header>
 <article>
 <h2>${article.title}</h2>
 ${article.body}
 </article>
 <footer>
 <p>copyright ${new Date().getYear()} | The HTML5 Blog</p>
 </footer>
</section>
`

Notice that we can include variables for the page title and article text as well.

Default Parameters
Languages including C++ and Python allow developers to declare default values for
function arguments. Default parameters are included in the ES6 spec, so in the event
that a value is not provided for the argument, the default value will be used.

For example, we can set up default strings:

Declaring Variables in ES6 | 13

function logActivity(name="Shane McConkey", activity="skiing") {
 console.log(`${name} loves ${activity}`)
}

If no arguments are provided to the favoriteActivity function, it will run correctly
using the default values. Default arguments can be any type, not just strings:

var defaultPerson = {
 name: {
 first: "Shane",
 last: "McConkey"
 },
 favActivity: "skiing"
}

function logActivity(p=defaultPerson) {
 console.log(`${p.name.first} loves ${p.favActivity}`)
}

Arrow Functions
Arrow functions are a useful new feature of ES6. With arrow functions, you can cre‐
ate functions without using the function keyword. You also often do not have to use
the return keyword. Example 2-2 shows the traditional function syntax.

Example 2-2. As a traditional function

var lordify = function(firstname) {
 return `${firstname} of Canterbury`
}

console.log(lordify("Dale")) // Dale of Canterbury
console.log(lordify("Daryle")) // Daryle of Canterbury

With an arrow function, we can simplify the syntax tremendously, as shown in
Example 2-3.

Example 2-3. As an arrow function

var lordify = firstname => `${firstname} of Canterbury`

Semicolons Throughout This Book

Semicolons are optional in JavaScript. Our philosophy is, why put
in semicolons that aren’t required? This book takes a minimal
approach that excludes unnecessary syntax.

14 | Chapter 2: Emerging JavaScript

With the arrow, we now have an entire function declaration on one line. The func
tion keyword is removed. We also remove return because the arrow points to what
should be returned. Another benefit is that if the function only takes one argument,
we can remove the parentheses around the arguments.

More than one argument should be surrounded by parentheses:

// Old
var lordify = function(firstName, land) {
 return `${firstName} of ${land}`
}

// New
var lordify = (firstName, land) => `${firstName} of ${land}`

console.log(lordify("Dale", "Maryland")) // Dale of Maryland
console.log(lordify("Daryle", "Culpeper")) // Daryle of Culpeper

We can keep this as a one-line function because there is only one statement that needs
to be returned.

More than one line needs to be surrounded with brackets:

// Old
var lordify = function(firstName, land) {

 if (!firstName) {
 throw new Error('A firstName is required to lordify')
 }

 if (!land) {
 throw new Error('A lord must have a land')
 }

 return `${firstName} of ${land}`
}

// New
var _lordify = (firstName, land) => {

 if (!firstName) {
 throw new Error('A firstName is required to lordify')
 }

 if (!land) {
 throw new Error('A lord must have a land')
 }

 return `${firstName} of ${land}`
}

Arrow Functions | 15

console.log(lordify("Kelly", "Sonoma")) // Kelly of Sonoma
console.log(lordify("Dave")) // ! JAVASCRIPT ERROR

These if/else statements are surrounded with brackets but still benefit from the
shorter syntax of the arrow function.

Arrow functions do not block this. For example, this becomes something else in the
setTimeout callback, not the tahoe object:

var tahoe = {
 resorts: ["Kirkwood","Squaw","Alpine","Heavenly","Northstar"],
 print: function(delay=1000) {

 setTimeout(function() {
 console.log(this.resorts.join(","))
 }, delay)

 }
}

tahoe.print() // Cannot read property 'join' of undefined

This error is thrown because it’s trying to use the .join method on what this is. In
this case, it’s the window object. Alternatively, we can use the arrow function syntax
to protect the scope of this:

var tahoe = {
 resorts: ["Kirkwood","Squaw","Alpine","Heavenly","Northstar"],
 print: function(delay=1000) {

 setTimeout(() => {
 console.log(this.resorts.join(","))
 }, delay)

 }
}

tahoe.print() // Kirkwood, Squaw, Alpine, Heavenly, Northstar

This works correctly and we can .join the resorts with a comma. Be careful, though,
that you’re always keeping scope in mind. Arrow functions do not block off the scope
of this:

var tahoe = {
 resorts: ["Kirkwood","Squaw","Alpine","Heavenly","Northstar"],
 print: (delay=1000) => {

 setTimeout(() => {
 console.log(this.resorts.join(","))
 }, delay)

 }

16 | Chapter 2: Emerging JavaScript

www.allitebooks.com

http://www.allitebooks.org

}

tahoe.print() // Cannot read property resorts of undefined

Changing the print function to an arrow function means that this is actually the
window.

To verify, let’s change the console message to evaluate whether this is the window:

var tahoe = {
 resorts: ["Kirkwood","Squaw","Alpine","Heavenly","Northstar"],
 print: (delay=1000)=> {

 setTimeout(() => {
 console.log(this === window)
 }, delay)

 }
}

tahoe.print()

It evaluates as true. To fix this, we can use a regular function:

var tahoe = {
 resorts: ["Kirkwood","Squaw","Alpine","Heavenly","Northstar"],
 print: function(delay=1000) {

 setTimeout(() => {
 console.log(this === window)
 }, delay)

 }
}

tahoe.print() // false

Transpiling ES6
Not all web browsers support ES6, and even those that do don’t support everything.
The only way to be sure that your ES6 code will work is to convert it to ES5 code
before running it in the browser. This process is called transpiling. One of the most
popular tools for transpiling is Babel.

In the past, the only way to use the latest JavaScript features was to wait weeks,
months, or even years until browsers supported them. Now, transpiling has made it
possible to use the latest features of JavaScript right away. The transpiling step makes
JavaScript similar to other languages. Transpiling is not compiling: our code isn’t
compiled to binary. Instead, it’s transpiled into syntax that can be interpreted by a

Transpiling ES6 | 17

http://www.babeljs.io

wider range of browsers. Also, JavaScript now has source code, meaning that there
will be some files that belong to your project that don’t run in the browser.

Example 2-4 shows some ES6 code. We have an arrow function, already covered,
mixed with some default arguments for x and y.

Example 2-4. ES6 code before Babel transpiling

const add = (x=5, y=10) => console.log(x+y);

After we run the transpiler on this code, here is what the output will look like:

"use strict";

var add = function add() {
 var x = arguments.length <= 0 || arguments[0] === undefined ?
 5 : arguments[0];
 var y = arguments.length <= 1 || arguments[1] === undefined ?
 10 : arguments[1];
 return console.log(x + y);
};

The transpiler added a “use strict” declaration to run in strict mode. The variables x
and y are defaulted using the arguments array, a technique you may be familiar with.
The resulting JavaScript is more widely supported.

You can transpile JavaScript directly in the browser using the inline Babel transpiler.
You just include the browser.js file, and any scripts with type="text/babel" will be
converted (even though Babel 6 is the current version of Babel, only the CDN for
Babel 5 will work):

<script
 src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.js">
</script>
<script src="script.js" type="text/babel">
</script>

Transpiling in the Browser

This approach means that the browser does the transpiling at run‐
time. This is not a good idea for production because it will slow
your application down a lot. In Chapter 5, we’ll go over how to do
this in production. For now, the CDN link will allow us to discover
and use ES6 features.

You may be thinking to yourself: “Great! When ES6 is supported by all browsers, we
won’t have to use Babel anymore!” However, by the time this happens, we will want to
use features of the next version of the spec. Unless a tectonic shift occurs, we’ll likely
be using Babel in the foreseeable future.

18 | Chapter 2: Emerging JavaScript

ES6 Objects and Arrays
ES6 gives us new ways for working with objects and arrays and for scoping the vari‐
ables within these datasets. These features include destructuring, object literal
enhancement, and the spread operator.

Destructuring Assignment
The destructuring assignment allows you to locally scope fields within an object and
to declare which values will be used.

Consider this sandwich object. It has four keys, but we only want to use the values of
two. We can scope bread and meat to be used locally:

var sandwich = {
 bread: "dutch crunch",
 meat: "tuna",
 cheese: "swiss",
 toppings: ["lettuce", "tomato", "mustard"]
}

var {bread, meat} = sandwich

console.log(bread, meat) // dutch crunch tuna

The code pulls bread and meat out of the object and creates local variables for them.
Also, the bread and meat variables can be changed:

var {bread, meat} = sandwich

bread = "garlic"
meat = "turkey"

console.log(bread) // garlic
console.log(meat) // turkey

console.log(sandwich.bread, sandwich.meat) // dutch crunch tuna

We can also destructure incoming function arguments. Consider this function that
would log a person’s name as a lord:

var lordify = regularPerson => {
 console.log(`${regularPerson.firstname} of Canterbury`)
}

var regularPerson = {
 firstname: "Bill",
 lastname: "Wilson"
}

lordify(regularPerson) // Bill of Canterbury

ES6 Objects and Arrays | 19

Instead of using dot notation syntax to dig into objects, we can destructure the values
that we need out of regularPerson:

var lordify = ({firstname}) => {
 console.log(`${firstname} of Canterbury`)
}

lordify(regularPerson) // Bill of Canterbury

Destructuring is also more declarative, meaning that our code is more descriptive
about what we are trying to accomplish. By destructuring firstname, we declare that
we will only use the firstname variable. We’ll cover more on declarative program‐
ming in the next chapter.

Values can also be destructured from arrays. Imagine that we wanted to assign the
first value of an array to a variable name:

var [firstResort] = ["Kirkwood", "Squaw", "Alpine"]

console.log(firstResort) // Kirkwood

We can also pass over unnecessary values with list matching using commas. List
matching occurs when commas take the place of elements that should be skipped.
With the same array, we can access the last value by replacing the first two values with
commas:

var [,,thirdResort] = ["Kirkwood", "Squaw", "Alpine"]

console.log(thirdResort) // Alpine

Later in this section, we’ll take this example a step further by combining array
destructuring and the spread operator.

Object Literal Enhancement
Object literal enhancement is the opposite of destructuring. It is the process of restruc‐
turing or putting back together. With object literal enhancement, we can grab vari‐
ables from the global scope and turn them into an object:

var name = "Tallac"
var elevation = 9738

var funHike = {name,elevation}

console.log(funHike) // {name: "Tallac", elevation: 9738}

name and elevation are now keys of the funHike object.

We can also create object methods with object literal enhancement or restructuring:

var name = "Tallac"
var elevation = 9738

20 | Chapter 2: Emerging JavaScript

var print = function() {
 console.log(`Mt. ${this.name} is ${this.elevation} feet tall`)
}

var funHike = {name,elevation,print}

funHike.print() // Mt. Tallac is 9738 feet tall

Notice we use this to access the object keys.

When defining object methods, it is no longer necessary to use the function keyword
(Example 2-5).

Example 2-5. Old versus new: Object syntax

// OLD
var skier = {
 name: name,
 sound: sound,
 powderYell: function() {
 var yell = this.sound.toUpperCase()
 console.log(`${yell} ${yell} ${yell}!!!`)
 },
 speed: function(mph) {
 this.speed = mph
 console.log('speed:', mph)
 }
}

// NEW
const skier = {
 name,
 sound,
 powderYell() {
 let yell = this.sound.toUpperCase()
 console.log(`${yell} ${yell} ${yell}!!!`)
 },
 speed(mph) {
 this.speed = mph
 console.log('speed:', mph)
 }
}

Object literal enhancement allows us to pull global variables into objects and reduces
typing by making the function keyword unnecessary.

ES6 Objects and Arrays | 21

The Spread Operator
The spread operator is three dots (...) that perform several different tasks. First, the
spread operator allows us to combine the contents of arrays. For example, if we had
two arrays, we could make a third array that combines the two arrays into one:

var peaks = ["Tallac", "Ralston", "Rose"]
var canyons = ["Ward", "Blackwood"]
var tahoe = [...peaks, ...canyons]

console.log(tahoe.join(', ')) // Tallac, Ralston, Rose, Ward, Blackwood

All of the items from peaks and canyons are pushed into a new array called tahoe.

Let’s take a look at how the spread operator can help us deal with a problem. Using
the peaks array from the previous sample, let’s imagine that we wanted to grab the
last item from the array rather than the first. We could use the Array.reverse
method to reverse the array in combination with array destructuring:

var peaks = ["Tallac", "Ralston", "Rose"]
var [last] = peaks.reverse()

console.log(last) // Rose
console.log(peaks.join(', ')) // Rose, Ralston, Tallac

See what happened? The reverse function has actually altered or mutated the array.
In a world with the spread operator, we don’t have to mutate the original array; we
can create a copy of the array and then reverse it:

var peaks = ["Tallac", "Ralston", "Rose"]
var [last] = [...peaks].reverse()

console.log(last) // Rose
console.log(peaks.join(', ')) // Tallac, Ralston, Rose

Since we used the spread operator to copy the array, the peaks array is still intact and
can be used later in its original form.

The spread operator can also be used to get some, or the rest, of the items in the
array:

var lakes = ["Donner", "Marlette", "Fallen Leaf", "Cascade"]

var [first, ...rest] = lakes

console.log(rest.join(", ")) // "Marlette, Fallen Leaf, Cascade"

We can also use the spread operator to collect function arguments as an array. Here,
we build a function that takes in n number of arguments using the spread operator,
and then uses those arguments to print some console messages:

22 | Chapter 2: Emerging JavaScript

2 Rest/Spread Properties

function directions(...args) {
 var [start, ...remaining] = args
 var [finish, ...stops] = remaining.reverse()

 console.log(`drive through ${args.length} towns`)
 console.log(`start in ${start}`)
 console.log(`the destination is ${finish}`)
 console.log(`stopping ${stops.length} times in between`)
}

directions(
 "Truckee",
 "Tahoe City",
 "Sunnyside",
 "Homewood",
 "Tahoma"
)

The directions function takes in the arguments using the spread operator. The first
argument is assigned to the start variable. The last argument is assigned to a finish
variable using Array.reverse. We then use the length of the arguments array to dis‐
play how many towns we’re going through. The number of stops is the length of the
arguments array minus the finish stop. This provides incredible flexibility because
we could use the directions function to handle any number of stops.

The spread operator can also be used for objects.2 Using the spread operator with
objects is similar to using it with arrays. In this example, we’ll use it the same way we
combined two arrays into a third array, but instead of arrays, we’ll use objects:

var morning = {
 breakfast: "oatmeal",
 lunch: "peanut butter and jelly"
}

var dinner = "mac and cheese"

var backpackingMeals = {
 ...morning,
 dinner
}

console.log(backpackingMeals) // {breakfast: "oatmeal",
 lunch: "peanut butter and jelly",
 dinner: "mac and cheese"}

ES6 Objects and Arrays | 23

https://github.com/tc39/proposals

Promises
Promises give us a way to make sense out of asynchronous behavior. When making an
asynchronous request, one of two things can happen: everything goes as we hope or
there’s an error. There may be several different types of successful or unsuccessful
requests. For example, we could try several ways to obtain the data to reach success.
We could also receive multiple types of errors. Promises give us a way to simplify
back to a simple pass or fail.

Let’s create an asynchronous promise for loading data from the randomuser.me API.
This API has information like email address, name, phone number, location, and so
on for fake members and is great to use as dummy data.

The getFakeMembers function returns a new promise. The promise makes a request
to the API. If the promise is successful, the data will load. If the promise is unsuccess‐
ful, an error will occur:

const getFakeMembers = count => new Promise((resolves, rejects) => {
 const api = `https://api.randomuser.me/?nat=US&results=${count}`
 const request = new XMLHttpRequest()
 request.open('GET', api)
 request.onload = () =>
 (request.status === 200) ?
 resolves(JSON.parse(request.response).results) :
 reject(Error(request.statusText))
 request.onerror = (err) => rejects(err)
 request.send()
})

With that, the promise has been created, but it hasn’t been used yet. We can use the
promise by calling the getFakeMembers function and passing in the number of mem‐
bers that should be loaded. The then function can be chained on to do something
once the promise has been fulfilled. This is called composition. We’ll also use an addi‐
tional callback that handles errors:

getFakeMembers(5).then(
 members => console.log(members),
 err => console.error(
 new Error("cannot load members from randomuser.me"))
)

Promises make dealing with asynchronous requests easier, which is good, because we
have to deal with a lot of asynchronous data in JavaScript. You’ll also see promises
used heavily in Node.js, so a solid understanding of promises is essential for the
modern JavaScript engineer.

24 | Chapter 2: Emerging JavaScript

Classes
Previously in JavaScript, there were no official classes. Types were defined by func‐
tions. We had to create a function and then define methods on the function object
using the prototype:

function Vacation(destination, length) {
 this.destination = destination
 this.length = length
}

Vacation.prototype.print = function() {
 console.log(this.destination + " | " + this.length + " days")
}

var maui = new Vacation("Maui", 7);

maui.print(); // Maui | 7

If you were used to classical object orientation, this probably made you mad.

ES6 introduces class declaration, but JavaScript still works the same way. Functions
are objects, and inheritance is handled through the prototype, but this syntax makes
more sense if you come from classical object orientation:

class Vacation {

 constructor(destination, length) {
 this.destination = destination
 this.length = length
 }

 print() {
 console.log(`${this.destination} will take ${this.length} days.`)
 }

}

Capitalization Conventions

The rule of thumb with capitalization is that all types should be
capitalized. Due to that, we will capitalize all class names.

Once you’ve created the class, you can create a new instance of the class using the new
keyword. Then you can call the custom method on the class:

const trip = new Vacation("Santiago, Chile", 7);

console.log(trip.print()); // Chile will take 7 days.

Classes | 25

Now that a class object has been created, you can use it as many times as you’d like to
create new vacation instances. Classes can also be extended. When a class is extended,
the subclass inherits the properties and methods of the superclass. These properties
and methods can be manipulated from here, but as a default, all will be inherited.

You can use Vacation as an abstract class to create different types of vacations. For
instance, an Expedition can extend the Vacation class to include gear:

class Expedition extends Vacation {

 constructor(destination, length, gear) {
 super(destination, length)
 this.gear = gear
 }

 print() {
 super.print()
 console.log(`Bring your ${this.gear.join(" and your ")}`)
 }
}

That’s simple inheritance: the subclass inherits the properties of the superclass. By
calling the printDetails method of Vacation, we can append some new content
onto what is printed in the printDetails method of Expedition. Creating a new
instance works the exact same way—create a variable and use the new keyword:

const trip = new Expedition("Mt. Whitney", 3,
 ["sunglasses", "prayer flags", "camera"])

trip.print()

// Mt. Whitney will take 3 days.
// Bring your sunglasses and your prayer flags and your camera

Classes and Prototypal Inheritance

Using a class still means that you are using JavaScript’s prototypal
inheritance. Log Vacation.prototype, and you’ll notice the con‐
structor and printDetails methods on the prototype.

We will use classes a bit in this book, but we’re focusing on the functional paradigm.
Classes have other features, like getters, setters, and static methods, but this book
favors functional techniques over object-oriented techniques. The reason we’re intro‐
ducing these is because we’ll use them later when creating React components.

26 | Chapter 2: Emerging JavaScript

3 Mozilla Developer Network, JavaScript Code Modules
4 Mozilla Developer Network, “Using JavaScript Code Modules”.

ES6 Modules
A JavaScript module is a piece of reusable code that can easily be incorporated into
other JavaScript files. Until recently, the only way to work with modular JavaScript
was to incorporate a library that could handle importing and exporting modules.
Now, with ES6, JavaScript itself supports modules.3

JavaScript modules are stored in separate files, one file per module. There are two
options when creating and exporting a module: you can export multiple JavaScript
objects from a single module, or one JavaScript object per module.

In Example 2-6, text-helpers.js, the module and two functions are exported.

Example 2-6. ./text-helpers.js

export const print(message) => log(message, new Date())

export const log(message, timestamp) =>
 console.log(`${timestamp.toString()}: ${message}`}

export can be used to export any JavaScript type that will be consumed in another
module. In this example the print function and log function are being exported.
Any other variables declared in text-helpers.js will be local to that module.

Sometimes you may want to export only one variable from a module. In these cases
you can use export default (Example 2-7).

Example 2-7. ./mt-freel.js

const freel = new Expedition("Mt. Freel", 2, ["water", "snack"])

export default freel

export default can be used in place of export when you wish to export only one
type. Again, both export and export default can be used on any JavaScript type:
primitives, objects, arrays, and functions.4

Modules can be consumed in other JavaScript files using the import statement. Mod‐
ules with multiple exports can take advantage of object destructuring. Modules that
use export default are imported into a single variable:

import { print, log } from './text-helpers'
import freel from './mt-freel'

ES6 Modules | 27

https://mzl.la/2nvHwIR
https://mzl.la/2nvBS9r

5 Node.js Documentation, “Modules”.
6 For up-to-date compatibility information, see the ES6 compatibility table.

print('printing a message')
log('logging a message')

freel.print()

You can scope module variables locally under different variable names:

import { print as p, log as l } from './text-helpers'

p('printing a message')
l('logging a message')

You can also import everything into a single variable using *:

import * as fns from './text-helpers

ES6 modules are not yet fully supported by all browsers. Babel does support ES6
modules, so we will be using them throughout this book.

CommonJS
CommonJS is the module pattern that is supported by all versions of Node.js.5 You
can still use these modules with Babel and webpack. With CommonJS, JavaScript
objects are exported using module.exports, as in Example 2-8.

Example 2-8. ./txt-helpers.js

const print(message) => log(message, new Date())

const log(message, timestamp) =>
 console.log(`${timestamp.toString()}: ${message}`}

module.exports = {print, log}

CommonJS does not support an import statement. Instead, modules are imported
with the require function:

const { log, print } = require('./txt-helpers')

JavaScript is indeed moving quickly and adapting to the increasing demands that
engineers are placing on the language. Browsers are quickly implementing the fea‐
tures of ES6 and beyond, so it’s a good idea to use these features now without hesita‐
tion.6 Many of the features that are included in the ES6 spec are present because they
support functional programming techniques. In functional JavaScript, we can think

28 | Chapter 2: Emerging JavaScript

https://nodejs.org/docs/latest/api/modules.html
http://kangax.github.io/compat-table/es6/

about our code as being a collection of functions that can be composed into applica‐
tions. In the next chapter, we’ll explore functional techniques in more detail and will
discuss why you might want to use them.

CommonJS | 29

1 Data S. Scott, “λ-Calculus: Then & Now”.

CHAPTER 3

Functional Programming with JavaScript

When you start to explore the world of React programming, you’ll notice that the
topic of functional programming comes up a lot. Functional techniques are being
used more and more in JavaScript projects.

You may have already written functional JavaScript code without thinking about it. If
you’ve mapped or reduced an array, then you’re already on your way to becoming a
functional programmer. React, Flux, and Redux all fit within the functional JavaScript
paradigm. Understanding the basic concepts of functional programming will elevate
your knowledge of structuring React applications.

If you are wondering where this functional trend came from, the answer is the 1930s,
with the invention of lambda calculus, or λ-calculus.1 Functions have been a part of
calculus since it emerged in the 17th century. Functions can be sent to functions as
arguments or returned from functions as results. More complex functions, called
higher-order functions, can manipulate functions and use them as either arguments or
results or both. In the 1930s, Alonzo Church was at Princeton experimenting with
these higher-order functions when he invented lambda calculus.

In the late 1950s, John McCarthy took the concepts derived from λ-calculus and
applied them to a new programming language called Lisp. Lisp implemented the con‐
cept of higher-order functions and functions as first-class members or first-class citi‐
zens. A function is considered a first-class member when it can be declared as a
variable and sent to functions as an argument. These functions can even be returned
from functions.

31

http://turing100.acm.org/lambda_calculus_timeline.pdf

In this chapter, we are going to go over some of the key concepts of functional pro‐
gramming, and we’ll cover how to implement functional techniques with JavaScript.

What It Means to Be Functional
JavaScript supports functional programming because JavaScript functions are first-
class citizens. This means that functions can do the same things that variables can do.
ES6 adds language improvements that can beef up your functional programming
techniques, including arrow functions, promises, and the spread operator (see Chap‐
ter 2).

In JavaScript, functions can represent data in your application. You may have noticed
that you can declare functions with the var keyword the same way you can declare
strings, numbers, or any other variables:

var log = function(message) {
 console.log(message)
};

log("In JavaScript functions are variables")

// In JavaScript, functions are variables

With ES6, we can write the same function using an arrow function. Functional pro‐
grammers write a lot of small functions, and the arrow function syntax makes that
much easier:

const log = message => console.log(message)

Since functions are variables, we can add them to objects:

const obj = {
 message: "They can be added to objects like variables",
 log(message) {
 console.log(message)
 }
}

obj.log(obj.message)

// They can be added to objects like variables

Both of these statements do the same thing: they store a function in a variable called
log. Additionally, the const keyword was used to declare the second function, which
will prevent it from being overwritten.

We can also add functions to arrays in JavaScript:

const messages = [
 "They can be inserted into arrays",
 message => console.log(message),

32 | Chapter 3: Functional Programming with JavaScript

 "like variables",
 message => console.log(message)
]

messages[1](messages[0]) // They can be inserted into arrays
messages[3](messages[2]) // like variables

Functions can be sent to other functions as arguments, just like other variables:

const insideFn = logger =>
 logger("They can be sent to other functions as arguments");

insideFn(message => console.log(message))

// They can be sent to other functions as arguments

They can also be returned from other functions, just like variables:

var createScream = function(logger) {
 return function(message) {
 logger(message.toUpperCase() + "!!!")
 }
}

const scream = createScream(message => console.log(message))

scream('functions can be returned from other functions')
scream('createScream returns a function')
scream('scream invokes that returned function')

// FUNCTIONS CAN BE RETURNED FROM OTHER FUNCTIONS!!!
// CREATESCREAM RETURNS A FUNCTION!!!
// SCREAM INVOKES THAT RETURNED FUNCTION!!!

The last two examples were of higher-order functions, functions that either take or
return other functions. Using ES6 syntax, we could describe the same createScream
higher-order function with arrows:

const createScream = logger => message =>
 logger(message.toUpperCase() + "!!!")

From here on out, we need to pay attention to the number of arrows used during
function declaration. More than one arrow means that we have a higher-order func‐
tion.

We can say that JavaScript is a functional language because its functions are first-class
citizens. This means that functions are data. They can be saved, retrieved, or flow
through your applications just like variables.

What It Means to Be Functional | 33

Imperative Versus Declarative
Functional programming is a part of a larger programming paradigm: declarative pro‐
gramming. Declarative programming is a style of programming where applications
are structured in a way that prioritizes describing what should happen over defining
how it should happen.

In order to understand declarative programming, we’ll contrast it with imperative
programming, or a style of programming that is only concerned with how to achieve
results with code. Let’s consider a common task: making a string URL-friendly. Typi‐
cally, this can be accomplished by replacing all of the spaces in a string with hyphens,
since spaces are not URL-friendly. First, let’s examine an imperative approach to this
task:

var string = "This is the midday show with Cheryl Waters";
var urlFriendly = "";

for (var i=0; i<string.length; i++) {
 if (string[i] === " ") {
 urlFriendly += "-";
 } else {
 urlFriendly += string[i];
 }
}

console.log(urlFriendly);

In this example, we loop through every character in the string, replacing spaces as
they occur. The structure of this program is only concerned with how such a task can
be achieved. We use a for loop and an if statement, and set values with an equality
operator. Just looking at the code alone does not tell us much. Imperative programs
require lots of comments in order to understand what is going on.

Now let’s look at a declarative approach to the same problem:

const string = "This is the mid day show with Cheryl Waters"
const urlFriendly = string.replace(/ /g, "-")

console.log(urlFriendly)

Here we are using string.replace along with a regular expression to replace all
instances of spaces with hyphens. Using string.replace is a way of describing what
is supposed to happen: spaces in the string should be replaced. The details of how
spaces are dealt with are abstracted away inside the replace function. In a declarative
program, the syntax itself describes what should happen and the details of how things
happen are abstracted away.

34 | Chapter 3: Functional Programming with JavaScript

2 Additional details about the declarative programming paradigm can be found at the Declarative Program‐
ming wiki.

Declarative programs are easy to reason about because the code itself describes what
is happening. For example, read the syntax in the following sample—it details what
happens after members are loaded from an API:

const loadAndMapMembers = compose(
 combineWith(sessionStorage, "members"),
 save(sessionStorage, "members"),
 scopeMembers(window),
 logMemberInfoToConsole,
 logFieldsToConsole("name.first"),
 countMembersBy("location.state"),
 prepStatesForMapping,
 save(sessionStorage, "map"),
 renderUSMap
);

getFakeMembers(100).then(loadAndMapMembers);

The declarative approach is more readable and, thus, easier to reason about. The
details of how each of these functions is implemented are abstracted away. Those tiny
functions are named well and combined in a way that describes how member data
goes from being loaded to being saved and printed on a map, and this approach does
not require many comments. Essentially, declarative programming produces applica‐
tions that are easier to reason about, and when it is easier to reason about an applica‐
tion, that application is easier to scale.2

Now, let’s consider the task of building a document object model, or DOM. An
imperative approach would be concerned with how the DOM is constructed:

var target = document.getElementById('target');
var wrapper = document.createElement('div');
var headline = document.createElement('h1');

wrapper.id = "welcome";
headline.innerText = "Hello World";

wrapper.appendChild(headline);
target.appendChild(wrapper);

This code is concerned with creating elements, setting elements, and adding them to
the document. It would be very hard to make changes, add features, or scale 10,000
lines of code where the DOM is constructed imperatively.

Now let’s take a look at how we can construct a DOM declaratively using a React
component:

Imperative Versus Declarative | 35

http://c2.com/cgi/wiki?DeclarativeProgramming
http://c2.com/cgi/wiki?DeclarativeProgramming
https://www.w3.org/DOM/

const { render } = ReactDOM

const Welcome = () => (
 <div id="welcome">
 <h1>Hello World</h1>
 </div>
)

render(
 <Welcome />,
 document.getElementById('target')
)

React is declarative. Here, the Welcome component describes the DOM that should be
rendered. The render function uses the instructions declared in the component to
build the DOM, abstracting away the details of how the DOM is to be rendered. We
can clearly see that we want to render our Welcome component into the element with
the ID of 'target'.

Functional Concepts
Now that you have been introduced to functional programming, and what it means
to be “functional” or “declarative,” we will move on to introducing the core concepts
of functional programming: immutability, purity, data transformation, higher-order
functions, and recursion.

Immutability
To mutate is to change, so to be immutable is to be unchangeable. In a functional pro‐
gram, data is immutable. It never changes.

If you need to share your birth certificate with the public, but want to redact or
remove private information, you essentially have two choices: you can take a big
Sharpie to your original birth certificate and cross out your private data, or you can
find a copy machine. Finding a copy machine, making a copy of your birth certificate,
and writing all over that copy with that big Sharpie would be preferable. This way you
can have a redacted birth certificate to share and your original that is still intact.

This is how immutable data works in an application. Instead of changing the original
data structures, we build changed copies of those data structures and use them
instead.

To understand how immutability works, let’s take a look at what it means to mutate
data. Consider an object that represents the color lawn:

let color_lawn = {
 title: "lawn",
 color: "#00FF00",

36 | Chapter 3: Functional Programming with JavaScript

www.allitebooks.com

http://www.allitebooks.org

 rating: 0
}

We could build a function that would rate colors, and use that function to change the
rating of the color object:

function rateColor(color, rating) {
 color.rating = rating
 return color
}

console.log(rateColor(color_lawn, 5).rating) // 5
console.log(color_lawn.rating) // 5

In JavaScript, function arguments are references to the actual data. Setting the color’s
rating like this is bad because it changes or mutates the original color object. (Imagine
if you tasked a business with redacting and sharing your birth certificate and they
returned your original birth certificate with black marker covering the important
details. You’d hope that a business would have the common sense to make a copy of
your birth certificate and return the original unharmed.) We can rewrite the rate
Color function so that it does not harm the original goods (the color object):

var rateColor = function(color, rating) {
 return Object.assign({}, color, {rating:rating})
}

console.log(rateColor(color_lawn, 5).rating) // 5
console.log(color_lawn.rating) // 4

Here, we used Object.assign to change the color rating. Object.assign is the copy
machine; it takes a blank object, copies the color to that object, and overwrites the
rating on the copy. Now we can have a newly rated color object without having to
change the original.

We can write the same function using an ES6 arrow function along with the ES7
object spread operator. This rateColor function uses the spread operator to copy the
color into a new object and then overwrite its rating:

const rateColor = (color, rating) =>
 ({
 ...color,
 rating
 })

This emerging JavaScript version of the rateColor function is exactly the same as the
previous one. It treats color as an immutable object, does so with less syntax, and
looks a little bit cleaner. Notice that we wrap the returned object in parentheses. With
arrow functions, this is a required step since the arrow can’t just point to an object’s
curly braces.

Let’s consider an array of color names:

Functional Concepts | 37

let list = [
 { title: "Rad Red"},
 { title: "Lawn"},
 { title: "Party Pink"}
]

We could create a function that will add colors to that array using Array.push:

var addColor = function(title, colors) {
 colors.push({ title: title })
 return colors;
}

console.log(addColor("Glam Green", list).length) // 4
console.log(list.length) // 4

However, Array.push is not an immutable function. This addColor function changes
the original array by adding another field to it. In order to keep the colors array
immutable, we must use Array.concat instead:

const addColor = (title, array) => array.concat({title})

console.log(addColor("Glam Green", list).length) // 4
console.log(list.length) // 3

Array.concat concatenates arrays. In this case, it takes a new object, with a new color
title, and adds it to a copy of the original array.

You can also use the ES6 spread operator to concatenate arrays in the same way it can
be used to copy objects. Here is the emerging JavaScript equivalent of the previous
addColor function:

const addColor = (title, list) => [...list, {title}]

This function copies the original list to a new array and then adds a new object con‐
taining the color’s title to that copy. It is immutable.

Pure Functions
A pure function is a function that returns a value that is computed based on its argu‐
ments. Pure functions take at least one argument and always return a value or
another function. They do not cause side effects, set global variables, or change any‐
thing about application state. They treat their arguments as immutable data.

In order to understand pure functions, let’s first take a look at an impure function:

var frederick = {
 name: "Frederick Douglass",
 canRead: false,
 canWrite: false
}

38 | Chapter 3: Functional Programming with JavaScript

function selfEducate() {
 frederick.canRead = true
 frederick.canWrite = true
 return frederick
}

selfEducate()
console.log(frederick)

// {name: "Frederick Douglass", canRead: true, canWrite: true}

The selfEducate function is not a pure function. It does not take any arguments, and
it does not return a value or a function. It also changes a variable outside of its scope:
Frederick. Once the selfEducate function is invoked, something about the “world”
has changed. It causes side effects:

const frederick = {
 name: "Frederick Douglass",
 canRead: false,
 canWrite: false
}

const selfEducate = (person) => {
 person.canRead = true
 person.canWrite = true
 return person
}

console.log(selfEducate(frederick))
console.log(frederick)

// {name: "Frederick Douglass", canRead: true, canWrite: true}
// {name: "Frederick Douglass", canRead: true, canWrite: true}

Pure Functions Are Testable

Pure functions are naturally testable. They do not change anything
about their environment or “world,” and therefore do not require a
complicated test setup or teardown. Everything a pure function
needs to operate it accesses via arguments. When testing a pure
function, you control the arguments, and thus you can estimate the
outcome. You can find more on testing in Chapter 10.

This selfEducate function is also impure: it causes side effects. Invoking this func‐
tion mutates the objects that are sent to it. If we could treat the arguments sent to this
function as immutable data, then we would have a pure function.

Let’s have this function take an argument:

Functional Concepts | 39

const frederick = {
 name: "Frederick Douglass",
 canRead: false,
 canWrite: false
}

const selfEducate = person =>
 ({
 ...person,
 canRead: true,
 canWrite: true
 })

console.log(selfEducate(frederick))
console.log(frederick)

// {name: "Frederick Douglass", canRead: true, canWrite: true}
// {name: "Frederick Douglass", canRead: false, canWrite: false}

Finally, this version of selfEducate is a pure function. It computes a value based on
the argument that was sent to it: the person. It returns a new person object without
mutating the argument sent to it and therefore has no side effects.

Now let’s examine an impure function that mutates the DOM:

function Header(text) {
 let h1 = document.createElement('h1');
 h1.innerText = text;
 document.body.appendChild(h1);
}

Header("Header() caused side effects");

The Header function creates a heading—one element with specific text and adds it to
the DOM. This function is impure. It does not return a function or a value, and it
causes side effects: a changed DOM.

In React, the UI is expressed with pure functions. In the following sample, Header is a
pure function that can be used to create heading—one elements just like in the previ‐
ous example. However, this function on its own does not cause side effects because it
does not mutate the DOM. This function will create a heading-one element, and it is
up to some other part of the application to use that element to change the DOM:

const Header = (props) => <h1>{props.title}</h1>

Pure functions are another core concept of functional programming. They will make
your life much easier because they will not affect your application’s state. When writ‐
ing functions, try to follow these three rules:

1. The function should take in at least one argument.
2. The function should return a value or another function.

40 | Chapter 3: Functional Programming with JavaScript

3. The function should not change or mutate any of its arguments.

Data Transformations
How does anything change in an application if the data is immutable? Functional
programming is all about transforming data from one form to another. We will pro‐
duce transformed copies using functions. These functions make our code less imper‐
ative and thus reduce complexity.

You do not need a special framework to understand how produce one dataset that is
based upon another. JavaScript already has the necessary tools for this task built into
the language. There are two core functions that you must master in order to be profi‐
cient with functional JavaScript: Array.map and Array.reduce.

In this section, we will take a look at how these and some other core functions trans‐
form data from one type to another.

Consider this array of high schools:

const schools = [
 "Yorktown",
 "Washington & Lee",
 "Wakefield"
]

We can get a comma-delimited list of these and some other strings by using the
Array.join function:

console.log(schools.join(", "))

// "Yorktown, Washington & Lee, Wakefield"

join is a built-in JavaScript array method that we can use to extract a delimited string
from our array. The original array is still intact; join simply provides a different take
on it. The details of how this string is produced are abstracted away from the pro‐
grammer.

If we wanted to create a function that creates a new array of the schools that begin
with the letter “W”, we could use the Array.filter method:

const wSchools = schools.filter(school => school[0] === "W")

console.log(wSchools)
// ["Washington & Lee", "Wakefield"]

Array.filter is a built-in JavaScript function that produces a new array from a
source array. This function takes a predicate as its only argument. A predicate is a
function that always returns a Boolean value: true or false. Array.filter invokes
this predicate once for every item in the array. That item is passed to the predicate as

Functional Concepts | 41

an argument and the return value is used to decide if that item shall be added to the
new array. In this case, Array.filter is checking every school to see if its name
begins with a “W”.

When it is time to remove an item from an array we should use Array.filter over
Array.pop or Array.splice because Array.filter is immutable. In this next sample,
the cutSchool function returns new arrays that filter out specific school names:

const cutSchool = (cut, list) =>
 list.filter(school => school !== cut)

console.log(cutSchool("Washington & Lee", schools).join(" * "))

// "Yorktown * Wakefield"

console.log(schools.join("\n"))

// Yorktown
// Washington & Lee
// Wakefield

In this case, the cutSchool function is used to return a new array that does not con‐
tain “Washington & Lee”. Then the join function is used with this new array to create
a star-delimited string out of the remaining two school names. cutSchool is a pure
function. It takes a list of schools and the name of the school that should be removed
and returns a new array without that specific school.

Another array function that is essential to functional programming is Array.map.
Instead of a predicate, the Array.map method takes a function as its argument. This
function will be invoked once for every item in the array, and whatever it returns will
be added to the new array:

const highSchools = schools.map(school => `${school} High School`)

console.log(highSchools.join("\n"))

// Yorktown High School
// Washington & Lee High School
// Wakefield High School

console.log(schools.join("\n"))

// Yorktown
// Washington & Lee
// Wakefield

In this case, the map function was used to append “High School” to each school name.
The schools array is still intact.

42 | Chapter 3: Functional Programming with JavaScript

In the last example, we produced an array of strings from an array of strings. The map
function can produce an array of objects, values, arrays, other functions—any Java‐
Script type. Here is an example of the map function returning an object for every
school:

const highSchools = schools.map(school => ({ name: school }))

console.log(highSchools)

// [
// { name: "Yorktown" },
// { name: "Washington & Lee" },
// { name: "Wakefield" }
//]

An array containing objects was produced from an array that contains strings.

If you need to create a pure function that changes one object in an array of objects,
map can be used for this, too. In the following example, we will change the school with
the name of “Stratford” to “HB Woodlawn” without mutating the schools array:

let schools = [
 { name: "Yorktown"},
 { name: "Stratford" },
 { name: "Washington & Lee"},
 { name: "Wakefield"}
]

let updatedSchools = editName("Stratford", "HB Woodlawn", schools)

console.log(updatedSchools[1]) // { name: "HB Woodlawn" }
console.log(schools[1]) // { name: "Stratford" },

The schools array is an array of objects. The updatedSchools variable calls the edit
Name function and we send it the school we want to update, the new school, and the
schools array. This changes the new array but makes no edits to the original:

const editName = (oldName, name, arr) =>
 arr.map(item => {
 if (item.name === oldName) {
 return {
 ...item,
 name
 }
 } else {
 return item
 }
 })

Within editName, the map function is used to create a new array of objects based upon
the original array. Array.map injects the index of each item into the callback as the

Functional Concepts | 43

second argument, the variable i. When i is not equal to the index of the item we wish
to edit, we simply package the same item into the new array. When i is equal to the
index of the item that we wish to edit, we replace the item at that index in the new
array with a new object.

The editName function can be written entirely in one line. Here’s an example of the
same function using a shorthand if/else statement:

const editName = (oldName, name, arr) =>
 arr.map(item => (item.name === oldName) ?
 ({...item,name}) :
 item
)

If you need to transform an array into an object, you can use Array.map in conjunc‐
tion with Object.keys. Object.keys is a method that can be used to return an array
of keys from an object.

Let’s say we needed to transform schools object into an array of schools:

const schools = {
 "Yorktown": 10,
 "Washington & Lee": 2,
 "Wakefield": 5
}

const schoolArray = Object.keys(schools).map(key =>
 ({
 name: key,
 wins: schools[key]
 })
)

console.log(schoolArray)

// [
// {
// name: "Yorktown",
// wins: 10
// },
// {
// name: "Washington & Lee",
// wins: 2
// },
// {
// name: "Wakefield",
// wins: 5
// }
//]

44 | Chapter 3: Functional Programming with JavaScript

In this example, Object.keys returns an array of school names, and we can use map
on that array to produce a new array of the same length. The name of the new object
will be set using the key, and wins is set equal to the value.

So far we’ve learned that we can transform arrays with Array.map and Array.filter.
We’ve also learned that we can change arrays into objects by combining Object.keys
with Array.map. The final tool that that we need in our functional arsenal is the abil‐
ity to transform arrays into primitives and other objects.

The reduce and reduceRight functions can be used to transform an array into any
value, including a number, string, B Boolean, object, or even a function.

Let’s say we needed to find the maximum number in an array of numbers. We need to
transform an array into a number; therefore, we can use reduce:

const ages = [21,18,42,40,64,63,34];

const maxAge = ages.reduce((max, age) => {
 console.log(`${age} > ${max} = ${age > max}`);
 if (age > max) {
 return age
 } else {
 return max
 }
}, 0)

console.log('maxAge', maxAge);

// 21 > 0 = true
// 18 > 21 = false
// 42 > 21 = true
// 40 > 42 = false
// 64 > 42 = true
// 63 > 64 = false
// 34 > 64 = false
// maxAge 64

The ages array has been reduced into a single value: the maximum age, 64. reduce
takes two arguments: a callback function and an original value. In this case, the origi‐
nal value is 0, which sets the initial maximum value to 0. The callback is invoked once
for every item in the array. The first time this callback is invoked, age is equal to 21,
the first value in the array, and max is equal to 0, the initial value. The callback returns
the greater of the two numbers, 21, and that becomes the max value during the next
iteration. Each iteration compares each age against the max value and returns the
greater of the two. Finally, the last number in the array is compared and returned
from the previous callback.

Functional Concepts | 45

If we remove the console.log statement from the preceding function and use a
shorthand if/else statement, we can calculate the max value in any array of num‐
bers with the following syntax:

const max = ages.reduce(
 (max, value) => (value > max) ? value : max,
 0
)

Array.reduceRight

Array.reduceRight works the same way as Array.reduce; the dif‐
ference is that it starts reducing from the end of the array rather
than the beginning.

Sometimes we need to transform an array into an object. The following example uses
reduce to transform an array that contains colors into a hash:

const colors = [
 {
 id: '-xekare',
 title: "rad red",
 rating: 3
 },
 {
 id: '-jbwsof',
 title: "big blue",
 rating: 2
 },
 {
 id: '-prigbj',
 title: "grizzly grey",
 rating: 5
 },
 {
 id: '-ryhbhsl',
 title: "banana",
 rating: 1
 }
]

const hashColors = colors.reduce(
 (hash, {id, title, rating}) => {
 hash[id] = {title, rating}
 return hash
 },
 {}
)

console.log(hashColors);

46 | Chapter 3: Functional Programming with JavaScript

// {
// "-xekare": {
// title:"rad red",
// rating:3
// },
// "-jbwsof": {
// title:"big blue",
// rating:2
// },
// "-prigbj": {
// title:"grizzly grey",
// rating:5
// },
// "-ryhbhsl": {
// title:"banana",
// rating:1
// }
// }

In this example, the second argument sent to the reduce function is an empty object.
This is our initial value for the hash. During each iteration, the callback function adds
a new key to the hash using bracket notation and sets the value for that key to the id
field of the array. Array.reduce can be used in this way to reduce an array to a single
value—in this case, an object.

We can even transform arrays into completely different arrays using reduce. Con‐
sider reducing an array with multiple instances of the same value to an array of dis‐
tinct values. The reduce method can be used to accomplish this task:

const colors = ["red", "red", "green", "blue", "green"];

const distinctColors = colors.reduce(
 (distinct, color) =>
 (distinct.indexOf(color) !== -1) ?
 distinct :
 [...distinct, color],
 []
)

console.log(distinctColors)

// ["red", "green", "blue"]

In this example, the colors array is reduced to an array of distinct values. The second
argument sent to the reduce function is an empty array. This will be the initial value
for distinct. When the distinct array does not already contain a specific color, it
will be added. Otherwise, it will be skipped, and the current distinct array will be
returned.

Functional Concepts | 47

3 For more on higher-order functions, check out Chapter 5 of Eloquent JavaScript.

map and reduce are the main weapons of any functional programmer, and JavaScript
is no exception. If you want to be a proficient JavaScript engineer, then you must
master these functions. The ability to create one dataset from another is a required
skill and is useful for any type of programming paradigm.

Higher-Order Functions
The use of higher-order functions is also essential to functional programming. We’ve
already mentioned higher-order functions, and we’ve even used a few in this chapter.
Higher-order functions are functions that can manipulate other functions. They can
take functions in as arguments, or return functions, or both.

The first category of higher-order functions are functions that expect other functions
as arguments. Array.map, Array.filter, and Array.reduce all take functions as
arguments. They are higher-order functions.3

Let’s take a look at how we can implement a higher-order function. In the following
example, we create an invokeIf callback function that will test a condition and
invoke on callback function when it is true and another callback function when that
condition is false:

const invokeIf = (condition, fnTrue, fnFalse) =>
 (condition) ? fnTrue() : fnFalse()

const showWelcome = () =>
 console.log("Welcome!!!")

const showUnauthorized = () =>
 console.log("Unauthorized!!!")

invokeIf(true, showWelcome, showUnauthorized) // "Welcome"
invokeIf(false, showWelcome, showUnauthorized) // "Unauthorized"

invokeIf expects two functions: one for true, and one for false. This is demonstrated
by sending both showWelcome and showUnauthorized to invokeIf. When the condi‐
tion is true, showWelcome is invoked. When it is false, showUnauthorized is invoked.

Higher-order functions that return other functions can help us handle the complexi‐
ties associated with asynchronicity in JavaScript. They can help us create functions
that can be used or reused at our convenience.

Currying is a functional technique that involves the use of higher-order functions.
Currying is the practice of holding on to some of the values needed to complete an
operation until the rest can be supplied at a later point in time. This is achieved
through the use of a function that returns another function, the curried function.

48 | Chapter 3: Functional Programming with JavaScript

http://eloquentjavascript.net/05_higher_order.html

The following is an example of currying. The userLogs function hangs on to some
information (the username) and returns a function that can be used and reused when
the rest of the information (the message) is made available. In this example, log mes‐
sages will all be prepended with the associated username. Notice that we’re using the
getFakeMembers function that returns a promise from Chapter 2:

const userLogs = userName => message =>
 console.log(`${userName} -> ${message}`)

const log = userLogs("grandpa23")

log("attempted to load 20 fake members")
getFakeMembers(20).then(
 members => log(`successfully loaded ${members.length} members`),
 error => log("encountered an error loading members")
)

// grandpa23 -> attempted to load 20 fake members
// grandpa23 -> successfully loaded 20 members

// grandpa23 -> attempted to load 20 fake members
// grandpa23 -> encountered an error loading members

userLogs is the higher-order function. The log function is produced from userLogs,
and every time the log function is used, “grandpa23” is prepended to the message.

Recursion
Recursion is a technique that involves creating functions that recall themselves. Often
when faced with a challenge that involves a loop, a recursive function can be used
instead. Consider the task of counting down from 10. We could create a for loop to
solve this problem, or we could alternatively use a recursive function. In this example,
countdown is the recursive function:

const countdown = (value, fn) => {
 fn(value)
 return (value > 0) ? countdown(value-1, fn) : value
}

countdown(10, value => console.log(value));

// 10
// 9
// 8
// 7
// 6
// 5
// 4
// 3
// 2

Functional Concepts | 49

// 1
// 0

countdown expects a number and a function as arguments. In this example, it is
invoked with a value of 10 and a callback function. When countdown is invoked, the
callback is invoked, which logs the current value. Next, countdown checks the value to
see if it is greater than 0. If it is, countdown recalls itself with a decremented value.
Eventually, the value will be 0 and ccountdown will return that value all the way back
up the call stack.

Browser Call Stack Limitations

Recursion should be used over loops wherever possible, but not all
JavaScript engines are optimized for a large amount of recursion.
Too much recursion can cause JavaScript errors. These errors can
be avoided by implementing advanced techniques to clear the call
stack and flatten out recursive calls. Future JavaScript engines plan
to eliminate call stack limitations entirely.

Recursion is another functional technique that works well with asynchronous pro‐
cesses. Functions can recall themselves when they are ready.

The countdown function can be modified to count down with a delay. This modified
version of the countdown function can be used to create a countdown clock:

const countdown = (value, fn, delay=1000) => {
 fn(value)
 return (value > 0) ?
 setTimeout(() => countdown(value-1, fn), delay) :
 value
}

const log = value => console.log(value)
countdown(10, log);

In this example, we create a 10-second countdown by initially invoking countdown
once with the number 10 in a function that logs the countdown. Instead of recalling
itself right away, the countdown function waits one second before recalling itself, thus
creating a clock.

Recursion is a good technique for searching data structures. You can use recursion to
iterate through subfolders until a folder that contains only files is identified. You can
also use recursion to iterate though the HTML DOM until you find an element that
does not contain any children. In the next example, we will use recursion to iterate
deeply into an object to retrieve a nested value:

var dan = {
 type: "person",

50 | Chapter 3: Functional Programming with JavaScript

 data: {
 gender: "male",
 info: {
 id: 22,
 fullname: {
 first: "Dan",
 last: "Deacon"
 }
 }
 }
 }

deepPick("type", dan); // "person"
deepPick("data.info.fullname.first", dan); // "Dan"

deepPick can be used to access Dan’s type, stored immediately in the first object, or to
dig down into nested objects to locate Dan’s first name. Sending a string that uses dot
notation, we can specify where to locate values that are nested deep within an object:

const deepPick = (fields, object={}) => {
 const [first, ...remaining] = fields.split(".")
 return (remaining.length) ?
 deepPick(remaining.join("."), object[first]) :
 object[first]
}

The deepPick function is either going to return a value or recall itself, until it eventu‐
ally returns a value. First, this function splits the dot-notated fields string into an
array and uses array destructuring to separate the first value from the remaining val‐
ues. If there are remaining values, deepPick recalls itself with slightly different data,
allowing it to dig one level deeper.

This function continues to call itself until the fields string no longer contains dots,
meaning that there are no more remaining fields. In this sample, you can see how the
values for first, remaining, and object[first] change as deepPick iterates
through:

deepPick("data.info.fullname.first", dan); // "Deacon"

// First Iteration
// first = "data"
// remaining.join(".") = "info.fullname.first"
// object[first] = { gender: "male", {info} }

// Second Iteration
// first = "info"
// remaining.join(".") = "fullname.first"
// object[first] = {id: 22, {fullname}}

// Third Iteration
// first = "fullname"

Functional Concepts | 51

4 Functional.js Composition

// remaining.join("." = "first"
// object[first] = {first: "Dan", last: "Deacon" }

// Finally...
// first = "first"
// remaining.length = 0
// object[first] = "Deacon"

Recursion is a powerful functional technique that is fun to implement. Use recursion
over looping whenever possible.

Composition
Functional programs break up their logic into small pure functions that are focused
on specific tasks. Eventually, you will need to put these smaller functions together.
Specifically, you may need to combine them, call them in series or parallel, or com‐
pose them into larger functions until you eventually have an application.

When it comes to composition, there are a number of different implementations, pat‐
terns, and techniques. One that you may be familiar with is chaining. In JavaScript,
functions can be chained together using dot notation to act on the return value of the
previous function.

Strings have a replace method. The replace method returns a template string which
also will have a replace method. Therefore, we can chain together replace methods
with dot notation to transform a string.

const template = "hh:mm:ss tt"
const clockTime = template.replace("hh", "03")
 .replace("mm", "33")
 .replace("ss", "33")
 .replace("tt", "PM")

console.log(clockTime)

// "03:33:33 PM"

In this example, the template is a string. By chaining replace methods to the end of
the template string, we can replace hours, minutes, seconds, and time of day in the
string with new values. The template itself remain intact and can be reused to create
more clock time displays.

Chaining is one composition technique, but there are others. The goal of composition
is to “generate a higher order function by combining simpler functions.”4

const both = date => appendAMPM(civilianHours(date))

52 | Chapter 3: Functional Programming with JavaScript

http://functionaljs.com/functions/compose/

5 Another implementation of compose is found in Redux

The both function is one function that pipes a value through two separate functions.
The output of civilian hours becomes the input for appendAMPM, and we can change a
date using both of these functions combined into one. However, this syntax is hard to
comprehend and therefore tough to maintain or scale. What happens when we need
to send a value through 20 different functions?

A more elegant approach is to create a higher order function we can use to compose
functions into larger functions.

const both = compose(
 civilianHours,
 appendAMPM
)

both(new Date())

This approach looks much better. It is easy to scale because we can add more func‐
tions at any point. This approach also makes it easy to change the order of the com‐
posed functions.

The compose function is a higher order function. It takes functions as arguments and
returns a single value.

const compose = (...fns) =>
 (arg) =>
 fns.reduce(
 (composed, f) => f(composed),
 arg
)

Compose takes in functions as arguments and returns a single function. In this
implementation, the spread operator is used to turn those function arguments into an
array called fns. A function is then returned that expects one argument, arg. When
this function is invoked, the fns array is piped starting with the argument we want to
send through the function. The argument becomes the initial value for composed and
then each iteration of the reduced callback returns. Notice that the callback takes two
arguments: composed and a function f. Each function is invoked with compose which
is the result of the previous functions output. Eventually, the last function will be
invoked and the last result returned.

This is a simple example of a compose function designed to illustrate composition
techniques. This function becomes more complex when it is time to handle more
than one argument or deal with arguments that are not functions. Other implementa‐
tions of compose5 may use reduceRight which would compose the functions in
reverse order.

Functional Concepts | 53

http://redux.js.org/docs/api/compose.html

Putting It All Together
Now that we’ve been introduced to the core concepts of functional programming, let’s
put those concepts to work for us and build a small JavaScript application.

Since JavaScript will let you slip away from the functional paradigm, and you do not
have to follow the rules, you will need to stay focused. Following these three simple
rules will help you stay on target.

1. Keep data immutable.
2. Keep functions pure—accept at least one argument, return data or another func‐

tion.
3. Use recursion over looping (wherever possible).

Our challenge is to build a ticking clock. The clock needs to display hours, minutes,
seconds and time of day in civilian time. Each field must always have double digits,
meaning leading zeros need to be applied to single digit values like 1 or 2. The clock
must also tick and change the display every second.

First, let’s review an imperative solution for the clock.

// Log Clock Time every Second
setInterval(logClockTime, 1000);

function logClockTime() {

 // Get Time string as civilian time
 var time = getClockTime();

 // Clear the Console and log the time
 console.clear();
 console.log(time);
}

function getClockTime() {

 // Get the Current Time
 var date = new Date();
 var time = "";

 // Serialize clock time
 var time = {
 hours: date.getHours(),
 minutes: date.getMinutes(),
 seconds: date.getSeconds(),
 ampm: "AM"
 }

 // Convert to civilian time

54 | Chapter 3: Functional Programming with JavaScript

 if (time.hours == 12) {
 time.ampm = "PM";
 } else if (time.hours > 12) {
 time.ampm = "PM";
 time.hours -= 12;
 }

 // Prepend a 0 on the hours to make double digits
 if (time.hours < 10) {
 time.hours = "0" + time.hours;
 }

 // prepend a 0 on the minutes to make double digits
 if (time.minutes < 10) {
 time.minutes = "0" + time.minutes;
 }

 // prepend a 0 on the seconds to make double digits
 if (time.seconds < 10) {
 time.seconds = "0" + time.seconds;
 }

 // Format the clock time as a string "hh:mm:ss tt"
 return time.hours + ":"
 + time.minutes + ":"
 + time.seconds + " "
 + time.ampm;

}

This solution is pretty straight forward. It works, and the comments help us under‐
stand what is happening. However, these functions are large and complicated. Each
function does a lot. They are hard to comprehend, they require comments and they
are tough to maintain. Let’s see how a functional approach can produce a more scala‐
ble application.

Our goal will be to break the application logic up into smaller parts, functions. Each
function will be focused on a single task, and we will compose them into larger func‐
tions that we can use to create the clock.

First, let’s create some functions that give us values and manage the console. We’ll
need a function that gives us one second, a function that gives us the current time,
and a couple of functions that will log messages on a console and clear the console. In
functional programs, we should use functions over values wherever possible. We will
invoke the function to obtain the value when needed.

const oneSecond = () => 1000
const getCurrentTime = () => new Date()
const clear = () => console.clear()
const log = message => console.log(message)

Functional Concepts | 55

Next we will need some functions for transforming data. These three functions will
be used to mutate the Date object into an object that can be used for our clock:

serializeClockTime
Takes a date object and returns a object for clock time that contains hours
minutes and seconds.

civilianHours
Takes the clock time object and returns an object where hours are converted to
civilian time. For example: 1300 becomes 1 o’clock

appendAMPM
Takes the clock time object and appends time of day, AM or PM, to that object.

const serializeClockTime = date =>
 ({
 hours: date.getHours(),
 minutes: date.getMinutes(),
 seconds: date.getSeconds()
 })

const civilianHours = clockTime =>
 ({
 ...clockTime,
 hours: (clockTime.hours > 12) ?
 clockTime.hours - 12 :
 clockTime.hours
 })

const appendAMPM = clockTime =>
 ({
 ...clockTime,
 ampm: (clockTime.hours >= 12) ? "PM" : "AM"
 })

These three functions are used to transform data without changing the original. They
treat their arguments as immutable objects.

Next we’ll need a few higher order functions:

display
Takes a target function and returns a function that will send a time to the target.
In this example the target will be console.log.

formatClock
Takes a template string and uses it to return clock time formatted based upon the
criteria from the string. In this example, the template is “hh:mm:ss tt”. From ther,
formatClock will replaces the placeholders with hours, minutes, seconds, and
time of day.

56 | Chapter 3: Functional Programming with JavaScript

prependZero
Takes an object’s key as an argument and prepends a zero to the value stored
under that objects key. It takes in a key to a specific field and prepends values
with a zero if the value is less than 10.

const display = target => time => target(time)

const formatClock = format =>
 time =>
 format.replace("hh", time.hours)
 .replace("mm", time.minutes)
 .replace("ss", time.seconds)
 .replace("tt", time.ampm)

const prependZero = key => clockTime =>
 ({
 ...clockTime,
 [key]: (clockTime[key] < 10) ?
 "0" + clockTime[key] :
 clockTime[key]
 })

These higher order functions will be invoked to create the functions that will be
reused to format the clock time for every tick. Both format clock and prependZero
will be invoked once, initially setting up the required template or key. The inner func‐
tions that they return will be invoked once every second to format the time for dis‐
play.

Now that we have all of the functions required to build a ticking clock, we will need
to compose them. We will use the compose function that we defined in the last sec‐
tion to handle composition:

convertToCivilianTime
A single function that will take clock time as an argument and transforms it into
civilian time by using both civilian hours.

doubleDigits
A single function that will take civilian clock time and make sure the hours,
minutes, and seconds display double digits by prepending zeros where needed.

startTicking
Starts the clock by setting an interval that will invoke a callback every second.
The callback is composed using all of our functions. Every second the console is
cleared, currentTime obtained, converted, civilianized, formatted, and displayed.

const convertToCivilianTime = clockTime =>
 compose(
 appendAMPM,
 civilianHours
)(clockTime)

Functional Concepts | 57

const doubleDigits = civilianTime =>
 compose(
 prependZero("hours"),
 prependZero("minutes"),
 prependZero("seconds")
)(civilianTime)

const startTicking = () =>
 setInterval(
 compose(
 clear,
 getCurrentTime,
 serializeClockTime,
 convertToCivilianTime,
 doubleDigits,
 formatClock("hh:mm:ss tt"),
 display(log)
),
 oneSecond()
)

startTicking()

This declarative version of the clock achieves the same results as the imperative ver‐
sion. However, there quite a few benefits to this approach. First, all of these functions
are easily testable and reusable. They can be used in future clocks or other digital dis‐
plays. Also, this program is easily scalable. There are no side effects. There are no
global variables outside of functions themselves. There could still be bugs, but they
will be easier to find.

In this chapter, we’ve introduced functional programming principles. Throughout the
book when we discuss best practices in React and Flux, we will continue to demon‐
strate how these libraries are based in functional techniques. In the next chapter, we
will dive into React officially with an improved understanding of the principles that
guided its development.

58 | Chapter 3: Functional Programming with JavaScript

1 Ben Alpert, “React v0.14”, React blog, October 7, 2015.

CHAPTER 4

Pure React

In order to understand how React runs in the browser, we will be working purely
with React in this chapter. We will not introduce JSX, or JavaScript as XML, until the
next chapter. You may have worked with React in the past without ever looking at the
pure React code that is generated when we transpile JSX into React. You can success‐
fully use React without looking at pure React. However, if you take the time to under‐
stand what is going on behind the scenes, you will be more efficient, especially when
it comes time to debug. That is our goal in this chapter: to look under the hood and
understand how React works.

Page Setup
In order to work with React in the browser, we need to include two libraries: React
and ReactDOM. React is the library for creating views. ReactDOM is the library used
to actually render the UI in the browser.

ReactDOM
React and ReactDOM were split into two packages for version 0.14. The release notes
state: “The beauty and the essence of React has nothing to do with browsers or the
DOM... This [splitting into two packages] paves the way to writing components that
can be shared between the web version of React and React Native.”1 Instead of assum‐
ing that React will render only in the browser, future releases will aim to support ren‐
dering for a variety of platforms.

59

http://bit.ly/2nvPHEQ

We also need an HTML element that ReactDOM will use to render the UI. You can
see how the scripts and HTML elements are added in Example 4-1. Both libraries are
available as scripts from the Facebook CDN.

Example 4-1. HTML document setup with React

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Pure React Samples</title>
</head>
<body>

 <!-- Target container -->
 <div class="react-container"></div>

 <!-- React library & ReactDOM-->
 <script src="https://unpkg.com/react@15.4.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.4.2/dist/react-dom.js"></script>

 <script>

 // Pure React and JavaScript code

 </script>

</body>
</html>

These are the minimum requirements for working with React in the browser. You can
place your JavaScript in a separate file, but it must be loaded somewhere in the page
after React has been loaded.

The Virtual DOM
HTML is simply a set of instructions that a browser follows when constructing the
document object model, or DOM. The elements that make up an HTML document
become DOM elements when the browser loads HTML and renders the user inter‐
face.

Let’s say that you have to construct an HTML hierarchy for a recipe. A possible solu‐
tion for such a task might look something like this:

<section id="baked-salmon">
 <h1>Baked Salmon</h1>
 <ul class="ingredients">
 1 lb Salmon
 1 cup Pine Nuts

60 | Chapter 4: Pure React

2 Lindsey Simon, “Minimizing Browser Reflow”.
3 Steven Luscher, “Building User Interfaces with Facebook’s React”, Super VanJS 2013.

 2 cups Butter Lettuce
 1 Yellow Squash
 1/2 cup Olive Oil
 3 cloves of Garlic

 <section class="instructions">
 <h2>Cooking Instructions</h2>
 <p>Preheat the oven to 350 degrees.</p>
 <p>Spread the olive oil around a glass baking dish.</p>
 <p>Add the salmon, garlic, and pine nuts to the dish.</p>
 <p>Bake for 15 minutes.</p>
 <p>Add the yellow squash and put back in the oven for 30 mins.</p>
 <p>Remove from oven and let cool for 15 minutes.
 Add the lettuce and serve.</p>
 </section>
</section>

In HTML, elements relate to each other in a hierarchy that resembles a family tree.
We could say that the root element has three children: a heading, an unordered list of
ingredients, and a section for the instructions.

Traditionally, websites have consisted of independent HTML pages. When the user
navigated these pages, the browser would request and load different HTML docu‐
ments. The invention of AJAX brought us the single-page application, or SPA. Since
browsers could request and load tiny bits of data using AJAX, entire web applications
could now run out of a single page and rely on JavaScript to update the user interface.

In an SPA, the browser initially loads one HTML document. As users navigate
through the site, they actually stay on the same page. JavaScript destroys and creates a
new user interface as the user interacts with the application. It may feel as though you
are jumping from page to page, but you are actually still on the same HTML page and
JavaScript is doing the heavy lifting.

The DOM API is a collection of objects that JavaScript can use to interact with the
browser to modify the DOM. If you have used document.createElement or
document.appendChild, you have worked with the DOM API. Updating or chang‐
ing rendered DOM elements in JavaScript is relatively easy.2 However, the process of
inserting new elements is painfully slow.3 This means if web developers are meticu‐
lous about how they make changes to UI, they can improve the performance of their
applications.

Managing DOM changes with JavaScript efficiently can become very complicated
and time-consuming. From a coding perspective, it is easier to clear all the children
of a particular element and reconstruct them than it would be to leave those child ele‐

The Virtual DOM | 61

http://bit.ly/2m1pa58
http://bit.ly/2m1pEs3
https://en.wikipedia.org/wiki/Single-page_application
https://mzl.la/2m1oQDJ

4 Mark Wilton-Jones, “Efficient JavaScript”, Dev.Opera, November 2, 2006.
5 React Docs, “Refs and the DOM”.

ments in place and attempt to efficiently update them.4 The problem is that we may
not have the time or the advanced knowledge of JavaScript to work efficiently with
the DOM API every time we build a new application. The solution is React.

React is a library that is designed to update the browser DOM for us. We no longer
have to be concerned with the complexities associated with building performant SPAs
because React can do that for us. With React, we do not interact with the DOM API
directly. Instead, we interact with a virtual DOM, or set of instructions that React will
use to construct the UI and interact with the browser.5

The virtual DOM is made up of React elements, which conceptually seem similar to
HTML elements, but are actually JavaScript objects. It is much faster to work directly
with JavaScript objects than it is to work with the DOM API. We make changes to a
JavaScript object, the virtual DOM, and React renders those changes for us using the
DOM API as efficiently as possible.

React Elements
The browser DOM is made up of DOM elements. Similarly, the React DOM is made
up of React elements. DOM elements and React elements may look the same, but
they are actually quite different. A React element is a description of what the actual
DOM element should look like. In other words, React elements are the instructions
for how the browser DOM should be created.

We can create a React element to represent an h1 using React.createElement:

React.createElement("h1", null, "Baked Salmon")

The first argument defines the type of element that we wish to create. In this case, we
want to create a heading-one element. The third argument represents the element’s
children, any nodes that are inserted between the opening and closing tag. The sec‐
ond argument represents the element’s properties. This h1 currently does not have
any properties.

During rendering, React will convert this element to an actual DOM element:

<h1>Baked Salmon</h1>

When an element has attributes, they can be described with properties. Here is a sam‐
ple of an HTML h1 tag that has id and data-type attributes:

React.createElement("h1",
 {id: "recipe-0", 'data-type': "title"},
 "Baked Salmon"

62 | Chapter 4: Pure React

http://opr.as/2m1f5Fr
http://bit.ly/2m1faJf

)

<h1 data-reactroot id="recipe-0" data-type="title">Baked Salmon</h1>

The properties are similarly applied to the new DOM element: the properties are
added to the tag as attributes, and the child text is added as text within the element.
You’ll also notice data-reactroot, which identifies that this is the root element of
your React component (Figure 4-1).

Figure 4-1. Relationship between createElement and the DOM element

data-reactroot

data-reactroot will always appear as an attribute of the root ele‐
ment of your React component. Prior to version 15, React IDs were
added to each node that was a part of your component. This helped
with rendering and keeping track of which elements needed to be
updated. Now, there is only an attribute added to the root, and ren‐
dering is kept track of based on the hierarchy of elements.

So, a React element is just a JavaScript literal that tells React how to construct the
DOM element. Example 4-2 shows the element that createElement call actually cre‐
ates.

Example 4-2. Logging the title element

{
 $$typeof: Symbol(React.element),
 "type": "h1",
 "key": null,
 "ref": null,
 "props": {"children": "Baked Salmon"},
 "_owner": null,
 "_store": {}
}

This is a React element. There are fields that are used by React: _owner, _store,
$$typeof. The key and ref fields are important to React elements, but we’ll intro‐
duce those later, in Chapter 5. For now, let’s take a closer look at the type and props
fields in Example 4-2.

React Elements | 63

The type property of the React element tells React what type of HTML or SVG ele‐
ment to create. The props property represents the data and child elements required to
construct a DOM element. The children property is for displaying other nested ele‐
ments as text.

A Note on Creating Elements

We are taking a peek at the object that React.createElement
returns. There is never a case where you would create elements by
hand-typing literals that look like this. You must always create
React elements with the React.createElement function or facto‐
ries, which are discussed at the end of this chapter.

ReactDOM
ReactDOM contains the tools necessary to render React elements in the browser.
ReactDOM is where we will find the render method as well as the renderToString
and renderToStaticMarkup methods that are used on the server. These will be dis‐
cussed in greater detail in Chapter 12. All the tools necessary to generate HTML from
the virtual DOM are found in this library.

We can render a React element, including its children, to the DOM with
ReactDOM.render. The element that we wish to render is passed as the first argu‐
ment and the second argument is the target node, where we should render the ele‐
ment:

var dish = React.createElement("h1", null, "Baked Salmon")

ReactDOM.render(dish, document.getElementById('react-container'))

Rendering the title element to the DOM would add a heading-one element to the div
with the id of react-container, which we would already have defined in our HTML.
In Example 4-3, we build this div inside the body tag.

Example 4-3. React added the h1 element to the target: react-container

<body>
 <div id="react-container">
 <h1>Baked Salmon</h1>
 </div>
</body>

All of the DOM rendering functionality in React has been moved to ReactDOM
because we can use React to build native applications as well. The browser is just one
target for React.

64 | Chapter 4: Pure React

6 Rendering Elements

That’s all you need to do. You create an element, and then you render it to the DOM.
In the next section, we’ll get an understanding of how to use props.children.

Children
ReactDOM allows you to render a single element to the DOM.6 React tags this as
data-reactroot. All other React elements are composed into a single element using
nesting.

React renders child elements using props.children. In the previous section, we ren‐
dered a text element as a child of the h1 element, and thus props.children was set to
"Baked Salmon". We could render other React elements as children too, creating a
tree of elements. This is why we use the term component tree. The tree has one root
component from which many branches grow.

Let’s consider the unordered list that contains ingredients in Example 4-4.

Example 4-4. Ingredients list

 1 lb Salmon
 1 cup Pine Nuts
 2 cups Butter Lettuce
 1 Yellow Squash
 1/2 cup Olive Oil
 3 cloves of Garlic

In this sample, the unordered list is the root element, and it has six children. We can
represent this ul and its children with React.createElement (Example 4-5).

Example 4-5. Unordered list as React elements

React.createElement(
 "ul",
 null,
 React.createElement("li", null, "1 lb Salmon"),
 React.createElement("li", null, "1 cup Pine Nuts"),
 React.createElement("li", null, "2 cups Butter Lettuce"),
 React.createElement("li", null, "1 Yellow Squash"),
 React.createElement("li", null, "1/2 cup Olive Oil"),
 React.createElement("li", null, "3 cloves of Garlic")
)

Children | 65

http://bit.ly/2nvR2vf

Every additional argument sent to the createElement function is another child ele‐
ment. React creates an array of these child elements and sets the value of
props.children to that array.

If we were to inspect the resulting React element, we would see each list item repre‐
sented by a React element and added to an array called props.children. Let’s do that
now (Example 4-6).

Example 4-6. Resulting React element

{
 "type": "ul",
 "props": {
 "children": [
 { "type": "li", "props": { "children": "1 lb Salmon" } … },
 { "type": "li", "props": { "children": "1 cup Pine Nuts"} … },
 { "type": "li", "props": { "children": "2 cups Butter Lettuce" } … },
 { "type": "li", "props": { "children": "1 Yellow Squash"} … },
 { "type": "li", "props": { "children": "1/2 cup Olive Oil"} … },
 { "type": "li", "props": { "children": "3 cloves of Garlic"} … }
]
 ...
 }
}

We can now see that each list item is a child. Earlier in this chapter, we introduced
HTML for an entire recipe rooted in a section element. To create this using React,
we’ll use a series of createElement calls, as in Example 4-7.

Example 4-7. React Element tree

React.createElement("section", {id: "baked-salmon"},
 React.createElement("h1", null, "Baked Salmon"),
 React.createElement("ul", {"className": "ingredients"},
 React.createElement("li", null, "1 lb Salmon"),
 React.createElement("li", null, "1 cup Pine Nuts"),
 React.createElement("li", null, "2 cups Butter Lettuce"),
 React.createElement("li", null, "1 Yellow Squash"),
 React.createElement("li", null, "1/2 cup Olive Oil"),
 React.createElement("li", null, "3 cloves of Garlic")
),
 React.createElement("section", {"className": "instructions"},
 React.createElement("h2", null, "Cooking Instructions"),
 React.createElement("p", null, "Preheat the oven to 350 degrees."),
 React.createElement("p", null,
 "Spread the olive oil around a glass baking dish."),
 React.createElement("p", null, "Add the salmon, garlic, and pine..."),
 React.createElement("p", null, "Bake for 15 minutes."),
 React.createElement("p", null, "Add the yellow squash and put..."),

66 | Chapter 4: Pure React

 React.createElement("p", null, "Remove from oven and let cool for 15")
)
)

className in React

Any element that has an HTML class attribute is using className
for that property instead of class. Since class is a reserved word
in JavaScript, we have to use className to define the class
attribute of an HTML element.

This sample is what pure React looks like. Pure React is ultimately what runs in the
browser. The virtual DOM is a tree of React elements all stemming from a single root
element. React elements are the instructions that React will use to build a UI in the
browser.

Constructing Elements with Data
The major advantage of using React is its ability to separate data from UI elements.
Since React is just JavaScript, we can add JavaScript logic to help us build the React
component tree. For example, ingredients can be stored in an array, and we can map
that array to the React elements.

Let’s go back and think about the unordered list in Example 4-8 for a moment.

Example 4-8. Unordered list

React.createElement("ul", {"className": "ingredients"},
 React.createElement("li", null, "1 lb Salmon"),
 React.createElement("li", null, "1 cup Pine Nuts"),
 React.createElement("li", null, "2 cups Butter Lettuce"),
 React.createElement("li", null, "1 Yellow Squash"),
 React.createElement("li", null, "1/2 cup Olive Oil"),
 React.createElement("li", null, "3 cloves of Garlic")
);

The data used in this list of ingredients can be easily represented using a JavaScript
array (Example 4-9).

Example 4-9. items array

var items = [
 "1 lb Salmon",
 "1 cup Pine Nuts",
 "2 cups Butter Lettuce",
 "1 Yellow Squash",
 "1/2 cup Olive Oil",

Constructing Elements with Data | 67

 "3 cloves of Garlic"
]

We could construct a virtual DOM around this data using the Array.map function, as
in Example 4-10.

Example 4-10. Mapping an array to li elements

React.createElement(
 "ul",
 { className: "ingredients" },
 items.map(ingredient =>
 React.createElement("li", null, ingredient)
)

This syntax creates a React element for each ingredient in the array. Each string is dis‐
played in the list item’s children as text. The value for each ingredient is displayed as
the list item.

When running this code, you’ll see a console error, as shown in Figure 4-2.

Figure 4-2. Console warning

When we build a list of child elements by iterating through an array, React likes each
of those elements to have a key property. The key property is used by React to help it
update the DOM efficiently. We will be discussing keys and why we need them in
Chapter 5, but for now you can make this warning go away by adding a unique key
property to each of the list item elements (Example 4-11). We can use the array index
for each ingredient as that unique value.

Example 4-11. Adding a key property

React.createElement("ul", {className: "ingredients"},
 items.map((ingredient, i) =>
 React.createElement("li", { key: i }, ingredient)
)

React Components
Every user interface is made up of parts. The recipe example we’ll use here has a few
recipes, each made up of parts (Figure 4-3).

68 | Chapter 4: Pure React

Figure 4-3. Recipes app

In React, we describe each of these parts as a component. Components allow us to
reuse the same DOM structure for different recipes or different sets of data.

When considering a user interface that you want to build with React, look for oppor‐
tunities to break down your elements into reusable pieces. For example, the recipes in
Figure 4-4 each have a title, ingredients list, and instructions. All are part of a larger
recipe or app component. We could create a component for each of the highlighted
parts: ingredients, instructions, and so on.

Figure 4-4. Each component is outlined: App, IngredientsList, Instructions

Think about how scalable this is. If we want to display one recipe, our component
structure will support this. If we want to display 10,000 recipes, we’ll just create new
instances of that component.

Let’s investigate the three different ways to create components: createClass, ES6
classes, and stateless functional components.

React.createClass
When React was first introduced in 2013, there was only one way to create a compo‐
nent: the createClass function.

React Components | 69

New methods of creating components have emerged, but createClass is still used
widely in React projects. The React team has indicated, however, that createClass
may be deprecated in the future.

Let’s consider the list of ingredients that are included in each recipe. As shown in
Example 4-12, we can create a React component using React.createClass that
returns a single unordered list element that contains a child list item for each ingredi‐
ent in an array.

Example 4-12. Ingredients list as a React component

const IngredientsList = React.createClass({
 displayName: "IngredientsList",
 render() {
 return React.createElement("ul", {"className": "ingredients"},
 React.createElement("li", null, "1 lb Salmon"),
 React.createElement("li", null, "1 cup Pine Nuts"),
 React.createElement("li", null, "2 cups Butter Lettuce"),
 React.createElement("li", null, "1 Yellow Squash"),
 React.createElement("li", null, "1/2 cup Olive Oil"),
 React.createElement("li", null, "3 cloves of Garlic")
)
 }
})

const list = React.createElement(IngredientsList, null, null)

ReactDOM.render(
 list,
 document.getElementById('react-container')
)

Components allow us to use data to build a reusable UI. In the render function, we
can use the this keyword to refer to the component instance, and properties can be
accessed on that instance with this.props.

Here, we have created an element using our component and named it Ingredients
List:

<IngredientsList>
 <ul className="ingredients">
 1 lb Salmon
 1 cup Pine Nuts
 2 cups Butter Lettuce
 1 Yellow Squash
 1/2 cup Olive Oil
 3 cloves of Garlic

</IngredientsList>

70 | Chapter 4: Pure React

Data can be passed to React components as properties. We can create a reusable list of
ingredients by passing that data to the list as an array:

const IngredientsList = React.createClass({
 displayName: "IngredientsList",
 render() {
 return React.createElement("ul", {className: "ingredients"},
 this.props.items.map((ingredient, i) =>
 React.createElement("li", { key: i }, ingredient)
)
)
 }
})

const items = [
 "1 lb Salmon",
 "1 cup Pine Nuts",
 "2 cups Butter Lettuce",
 "1 Yellow Squash",
 "1/2 cup Olive Oil",
 "3 cloves of Garlic"
]

ReactDOM.render(
 React.createElement(IngredientsList, {items}, null),
 document.getElementById('react-container')
)

Now, let’s look at ReactDOM. The data property items is an array with six ingredi‐
ents. Because we made the li tags using a loop, we were able to add a unique key
using the index of the loop:

<IngredientsList items=[...]>
 <ul className="ingredients">
 <li key="0">1 lb Salmon
 <li key="1">1 cup Pine Nuts
 <li key="2">2 cups Butter Lettuce
 <li key="3">1 Yellow Squash
 <li key="4">1/2 cup Olive Oil
 <li key="5">3 cloves of Garlic

</IngredientsList>

The components are objects. They can be used to encapsulate code just like classes.
We can create a method that renders a single list item and use that to build out the list
(Example 4-13).

Example 4-13. With a custom method

const IngredientsList = React.createClass({
 displayName: "IngredientsList",

React Components | 71

 renderListItem(ingredient, i) {
 return React.createElement("li", { key: i }, ingredient)
 },
 render() {
 return React.createElement("ul", {className: "ingredients"},
 this.props.items.map(this.renderListItem)
)
 }
})

This is also the idea of views in MVC languages. Everything that is associated with the
UI for IngredientsList is encapsulated into one component; everything we need is
right there.

Now we can create a React element using our component and pass it to the list of
elements as a property. Notice that the element’s type is now a string—it’s the compo‐
nent class directly.

Component Classes as Types

When rendering HTML or SVG elements, we use strings. When
creating elements with components, we use the component class
directly. This is why IngredientsList is not surrounded in quota‐
tion marks; we are passing the class to createElement because it is
a component. React will create an instance of our component with
this class and manage it for us.

Using the IngredientsList component with this data would render the following
unordered list to the DOM:

<ul data-react-root class="ingredients">
 1 lb Salmon
 1 cup Pine Nuts
 2 cups Butter Lettuce
 1 Yellow Squash
 1/2 cup Olive Oil
 3 cloves of Garlic

React.Component
As discussed in Chapter 2, one of the key features included in the ES6 spec is
React.Component, an abstract class that we can use to build new React components.
We can create custom components through inheritance by extending this class with
ES6 syntax. We can create IngredientsList using the same syntax (Example 4-14).

72 | Chapter 4: Pure React

Example 4-14. IngredientsList as an ES6 class

class IngredientsList extends React.Component {

 renderListItem(ingredient, i) {
 return React.createElement("li", { key: i }, ingredient)
 }

 render() {
 return React.createElement("ul", {className: "ingredients"},
 this.props.items.map(this.renderListItem)
)
 }

}

Stateless Functional Components
Stateless functional components are functions, not objects; therefore, they do not
have a “this” scope. Because they are simple, pure functions, we’ll use them as much
as possible in our applications. There may come a point where the stateless functional
component isn’t robust enough and we must fall back to using class or
createClass, but in general the more you can use these, the better.

Stateless functional components are functions that take in properties and return a
DOM element. Stateless functional components are a good way to practice the rules
of functional programming. You should strive to make each stateless functional com‐
ponent a pure function. They should take in props and return a DOM element
without causing side effects. This encourages simplicity and makes the codebase
extremely testable.

Stateless functional components will keep your application architecture simple, and
the React team promises some performance gains by using them. If you need to
encapsulate functionality or have a this scope, however, you can’t use them.

In Example 4-15, we combine the functionality of renderListItem and render into a
single function.

Example 4-15. Creating a stateless functional component

const IngredientsList = props =>
 React.createElement("ul", {className: "ingredients"},
 props.items.map((ingredient, i) =>
 React.createElement("li", { key: i }, ingredient)
)
)

React Components | 73

We would render this component with ReactDOM.render, the exact same way we ren‐
der components created with createClass or ES6 class syntax. This is just a function.
The function collects data through the props arguments and returns an unordered
list for each item that is sent to the props data.

One way we can improve this stateless functional component is through destructur‐
ing the properties argument (Example 4-16). Using ES6 destructuring syntax, we can
scope the list property directly to this function, reducing the repetitive dot syntax.
Now we’d use the IngredientsList the same way we render component classes.

Example 4-16. Destructuring the properties argument

const IngredientsList = ({items}) =>
 React.createElement("ul", {className: "ingredients"},
 items.map((ingredient, i) =>
 React.createElement("li", { key: i }, ingredient)
)
)

const with Stateless Functional Components

Each of these stateless functional components uses const instead of
var when creating a component. This is a common practice but not
a requirement. const declares this function as a constant and pre‐
vents us from redefining that variable later.

Aside from being slightly cleaner syntax, Facebook has hinted that in the future, state‐
less functional components might be faster than createClass or ES6 class syntax.

DOM Rendering
Since we are able to pass data to our components as props, we can separate our appli‐
cation’s data from the logic that is used to create the UI. This gives us an isolated set
of data that is much easier to work with and manipulate than the document object
model. When we change any of the values in this isolated dataset, we change the state
of our application.

Imagine storing all of the data in your application in a single JavaScript object. Every
time you made a change to this object, you could send it to a component as props and
rerender the UI. This means that ReactDOM.render is going to be doing a lot of heavy
lifting.

In order for React to work in a reasonable amount of time, ReactDOM.render has to
work smart, and it does. Instead of emptying and reconstructing the entire DOM,

74 | Chapter 4: Pure React

ReactDOM.render leaves the current DOM in place and only applies the minimal
amount of changes required to mutate the DOM.

Let’s say we had an app that displayed the mood of our five team members using
either a smiley face or a frowny face. We can represent the mood of all five individu‐
als in a single JavaScript array:

["smile", "smile", "frown", "smile", "frown"];

This array of data may be used to construct a UI that looks something like this:

If something breaks and the team has to work all weekend, we can reflect the team’s
new mood simply by changing the data in this array, producing the result shown in
the image that follows:

["frown", "frown", "frown", "frown", "frown"];

How many changes do we have to make to the first array to make it look like the sec‐
ond array of all frowns?

["smile", "smile", "frown", "smile", "frown"];

["frown", "frown", "frown", "frown", "frown"];

We would need to change the first, second, and fourth values from a smile to a frown.

Therefore, we can say that it would take three mutations to change the first array of
data to match the second.

Now consider how we can update the DOM to reflect these changes. One inefficient
solution to applying these changes to the UI is to erase the entire DOM and rebuild it,
as in Example 4-17.

Example 4-17. Start with the current list

 <li class="smile">smile
 <li class="smile">smile
 <li class="frown">frown
 <li class="smile">smile

DOM Rendering | 75

 <li class="frown">frown

This involves the following steps:

1. Empty the current data:

2. Begin looping through data and build the first list item:

 <li class="frown">frown

3. Build and add the second list item:

 <li class="frown">frown
 <li class="frown">frown

4. Build and append the third list item:

 <li class="frown">frown
 <li class="frown">frown
 <li class="frown">frown

5. Build and append the fourth list item:

 <li class="frown">frown
 <li class="frown">frown
 <li class="frown">frown
 <li class="frown">frown

6. Build and append the fifth list item:

 <li class="frown">frown
 <li class="frown">frown
 <li class="frown">frown
 <li class="frown">frown
 <li class="frown">frown

If we change the UI by erasing and rebuilding the DOM, we are creating and insert‐
ing five new DOM elements. Inserting an element into the DOM is one of the most

76 | Chapter 4: Pure React

costly DOM API operations—it’s slow. In contrast, updating DOM elements that are
already in place performs much more quickly than inserting new ones.

ReactDOM.render makes changes by leaving the current DOM in place and simply
updating the DOM elements that need to be updated. In our example, there are only
three mutations, so ReactDOM.render only needs to update three DOM elements (see
Figure 4-5).

Figure 4-5. Three DOM elements are updated

If new DOM elements need to be inserted, ReactDOM will insert them, but it tries to
keep DOM insertions (the most costly operation) to a minimum.

This smart DOM rendering is necessary for React to work in a reasonable amount of
time because our application state changes a lot. Every time we change that state, we
are going to rely on ReactDOM.render to efficiently rerender the UI.

Factories
So far, the only way we have created elements has been with React.createElement.
Another way to create a React element is to use factories. A factory is a special object
that can be used to abstract away the details of instantiating objects. In React, we use
factories to help us create React element instances.

React has built-in factories for all commonly supported HTML and SVG DOM ele‐
ments, and you can use the React.createFactory function to build your own facto‐
ries around specific components.

For example, consider our h1 element from earlier in this chapter:

<h1>Baked Salmon</h1>

Instead of using createElement, we can create a React element with a built-in factory
(Example 4-18).

Example 4-18. Using createFactory to create an h1

React.DOM.h1(null, "Baked Salmon")

Factories | 77

In this case, the first argument is for the properties and the second argument is for
the children. We can also use DOM factories to build an unordered list, as in
Example 4-19.

Example 4-19. Building an unordered list with DOM factories

React.DOM.ul({"className": "ingredients"},
 React.DOM.li(null, "1 lb Salmon"),
 React.DOM.li(null, "1 cup Pine Nuts"),
 React.DOM.li(null, "2 cups Butter Lettuce"),
 React.DOM.li(null, "1 Yellow Squash"),
 React.DOM.li(null, "1/2 cup Olive Oil"),
 React.DOM.li(null, "3 cloves of Garlic")
)

In this case, the first argument is for the properties, where we define the className.
Additional arguments are elements that will be added to the children array of the
unordered list. We can also separate out the ingredient data and improve the preced‐
ing definition using factories (Example 4-20).

Example 4-20. Using map with factories

var items = [
 "1 lb Salmon",
 "1 cup Pine Nuts",
 "2 cups Butter Lettuce",
 "1 Yellow Squash",
 "1/2 cup Olive Oil",
 "3 cloves of Garlic"
]

var list = React.DOM.ul(
 { className: "ingredients" },
 items.map((ingredient, key) =>
 React.DOM.li({key}, ingredient)
)
)

ReactDOM.render(
 list,
 document.getElementById('react-container')
)

Using Factories with Components

If you would like to simplify your code by calling components as functions, you need
to explicitly create a factory (Example 4-21).

78 | Chapter 4: Pure React

Example 4-21. Creating a factory with IngredientsList

const { render } = ReactDOM;

const IngredientsList = ({ list }) =>
 React.createElement('ul', null,
 list.map((ingredient, i) =>
 React.createElement('li', {key: i}, ingredient)
)
)

const Ingredients = React.createFactory(IngredientsList)

const list = [
 "1 lb Salmon",
 "1 cup Pine Nuts",
 "2 cups Butter Lettuce",
 "1 Yellow Squash",
 "1/2 cup Olive Oil",
 "3 cloves of Garlic"
]

render(
 Ingredients({list}),
 document.getElementById('react-container')
)

In this example, we can quickly render a React element with the Ingredients factory.
Ingredients is a function that takes in properties and children as arguments just like
the DOM factories.

If you are not working with JSX, you may find using factories preferable to numerous
React.createElement calls. However, the easiest and most common way to define
React elements is with JSX tags. If you use JSX with React, chances are you will never
use a factory.

Throughout this chapter, we’ve used createElement and createFactory to build
React components. In Chapter 5, we’ll take a look at how to simplify component cre‐
ation by using JSX.

Factories | 79

CHAPTER 5

React with JSX

In the last chapter, we looked at how the virtual DOM is a set of instructions that
React follows when creating and updating a user interface. These instructions are
made up of JavaScript objects called React elements. So far, we’ve learned two ways to
create React elements: using React.createElement and using factories.

An alternative to typing out verbose React.createElement calls is JSX, a JavaScript
extension that allows us to define React elements using syntax that looks similar to
HTML. In this chapter, we are going to discuss how to use JSX to construct a virtual
DOM with React elements.

React Elements as JSX
Facebook’s React team released JSX when they released React to provide a concise
syntax for creating complex DOM trees with attributes. They also hoped to make
React more readable, like HTML and XML.

In JSX, an element’s type is specified with a tag. The tag’s attributes represent the
properties. The element’s children can be added between the opening and closing
tags.

You can also add other JSX elements as children. If you have an unordered list, you
can add child list item elements to it with JSX tags. It looks very similar to HTML (see
Example 5-1).

Example 5-1. JSX for an unordered list

 1 lb Salmon
 1 cup Pine Nuts
 2 cups Butter Lettuce

81

 1 Yellow Squash
 1/2 cup Olive Oil
 3 cloves of Garlic

JSX works with components as well. Simply define the component using the class
name. In Figure 5-1, we pass an array of ingredients to the IngredientsList as a
property with JSX.

Figure 5-1. Creating the IngredientsList with JSX

When we pass the array of ingredients to this component, we need to surround it
with curly braces. This is called a JavaScript expression, and we must use these when
passing JavaScript values to components as properties. Component properties will
take two types: either a string or a JavaScript expression. JavaScript expressions can
include arrays, objects, and even functions. In order to include them, you must sur‐
round them in curly braces.

JSX Tips
JSX might look familiar, and most of the rules result in syntax that is similar to
HTML. However, there are a few considerations that you should understand when
working with JSX.

Nested components

JSX allows you to add components as children of other components. For example,
inside the IngredientsList, we can render another component called Ingredient
multiple times (Example 5-2).

Example 5-2. IngredientsList with three nested Ingredient components

<IngredientsList>
 <Ingredient />
 <Ingredient />
 <Ingredient />
</IngredientsList>

82 | Chapter 5: React with JSX

className

Since class is a reserved word in JavaScript, className is used to define the class
attribute instead:

<h1 className="fancy">Baked Salmon</h1>

JavaScript expressions

JavaScript expressions are wrapped in curly braces and indicate where variables shall
be evaluated and their resulting values returned. For example, if we want to display
the value of the title property in an element, we can insert that value using a Java‐
Script expression. The variable will be evaluated and its value returned:

<h1>{this.props.title}</h1>

Values of types other than string should also appear as JavaScript expressions:

<input type="checkbox" defaultChecked={false} />

Evaluation

The JavaScript that is added in between the curly braces will get evaluated. This
means that operations such as concatenation or addition will occur. This also means
that functions found in JavaScript expressions will be invoked:

<h1>{"Hello" + this.props.title}</h1>

<h1>{this.props.title.toLowerCase().replace}</h1>

function appendTitle({this.props.title}) {
 console.log(`${this.props.title} is great!`)
}

Mapping arrays to JSX

JSX is JavaScript, so you can incorporate JSX directly inside of JavaScript functions.
For example, you can map an array to JSX elements (Example 5-3).

Example 5-3. Array.map() with JSX

 {this.props.ingredients.map((ingredient, i) =>
 <li key={i}>{ingredient}
)}

JSX looks clean and readable, but it can’t be interpreted with a browser. All JSX must
be converted into createElement calls or factories. Luckily, there is an excellent tool
for this task: Babel.

React Elements as JSX | 83

Babel
Most software languages allow you to compile your source code. JavaScript is an
interpreted language: the browser interprets the code as text, so there is no need to
compile JavaScript. However, not all browsers support the latest ES6 and ES7 syntax,
and no browser supports JSX syntax. Since we want to use the latest features of Java‐
Script along with JSX, we are going to need a way to convert our fancy source code
into something that the browser can interpret. This process is called transpiling, and
it is what Babel is designed to do.

The first version of the project was called 6to5, and it was released in September
2014. 6to5 was a tool that could be used to convert ES6 syntax to ES5 syntax, which is
more widely supported by web browsers. As the project grew, it aimed to be a plat‐
form to support all of the latest changes in ECMAScript. It also grew to support tran‐
spiling JSX into pure React. The project was renamed to Babel in February 2015.

Babel is used in production at Facebook, Netflix, PayPal, Airbnb, and more. Previ‐
ously, Facebook had created a JSX transformer that was their standard, but it was
soon retired in favor of Babel.

There are many ways of working with Babel. The easiest way to get started is to
include a link to the babel-core transpiler directly in your HTML, which will tran‐
spile any code in script blocks that have a type of “text/babel”. Babel will transpile the
source code on the client before running it. Although this may not be the best solu‐
tion for production, it is a great way to get started with JSX (see Example 5-4).

Example 5-4. Including babel-core

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>React Examples</title>
 </head>
 <body>
 <div class="react-container"></div>

 <!-- React Library & React DOM -->
 <script src="https://unpkg.com/react@15.4.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.4.2/dist/react-dom.js"></script>
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.29/browser.js">
 </script>

 <script type="text/babel">

 // JSX code here. Or link to separate JavaScript file that contains JSX.

84 | Chapter 5: React with JSX

https://babeljs.io/

 </script>

 </body>
</html>

Babel v5.8 Required

To transpile code in the browser, use Babel v. 5.8. Babel 6.0+ will
not work as an in-browser transformer.

Later in the chapter, we’ll look at how we can use Babel with webpack to transpile our
JavaScript files statically. For now, using the in-browser transpiler will do.

Recipes as JSX
One of the reasons that we have grown to love React is that it allows us to write web
applications with beautiful code. It is extremely rewarding to create beautifully writ‐
ten modules that clearly communicate how the application functions. JSX provides us
with a nice, clean way to express React elements in our code that makes sense to us
and is immediately readable by the engineers that make up our community. The
drawback of JSX is that it is not readable by the browser. Before our code can be
interpreted by the browser, it needs to be converted from JSX into pure React.

The array in Example 5-5 contains two recipes, and they represent our application’s
current state.

Example 5-5. Array of recipes

var data = [
 {
 "name": "Baked Salmon",
 "ingredients": [
 { "name": "Salmon", "amount": 1, "measurement": "l lb" },
 { "name": "Pine Nuts", "amount": 1, "measurement": "cup" },
 { "name": "Butter Lettuce", "amount": 2, "measurement": "cups" },
 { "name": "Yellow Squash", "amount": 1, "measurement": "med" },
 { "name": "Olive Oil", "amount": 0.5, "measurement": "cup" },
 { "name": "Garlic", "amount": 3, "measurement": "cloves" }
],
 "steps": [
 "Preheat the oven to 350 degrees.",
 "Spread the olive oil around a glass baking dish.",
 "Add the salmon, garlic, and pine nuts to the dish.",
 "Bake for 15 minutes.",
 "Add the yellow squash and put back in the oven for 30 mins.",
 "Remove from oven and let cool for 15 minutes. Add the lettuce and serve."
]

Recipes as JSX | 85

 },
 {
 "name": "Fish Tacos",
 "ingredients": [
 { "name": "Whitefish", "amount": 1, "measurement": "l lb" },
 { "name": "Cheese", "amount": 1, "measurement": "cup" },
 { "name": "Iceberg Lettuce", "amount": 2, "measurement": "cups" },
 { "name": "Tomatoes", "amount": 2, "measurement": "large"},
 { "name": "Tortillas", "amount": 3, "measurement": "med" }
],
 "steps": [
 "Cook the fish on the grill until hot.",
 "Place the fish on the 3 tortillas.",
 "Top them with lettuce, tomatoes, and cheese."
]
 }
];

The data is expressed in an array of two JavaScript objects. Each object contains the
name of the recipe, a list of the ingredients required, and a list of steps necessary to
cook the recipe.

We can create a UI for these recipes with two components: a Menu component for list‐
ing the recipes and a Recipe component that describes the UI for each recipe. It’s the
Menu component that we will render to the DOM. We will pass our data to the Menu
component as a property called recipes (Example 5-6).

Example 5-6. Recipe app code structure

// The data, an array of Recipe objects
var data = [...];

// A stateless functional component for an individual Recipe
const Recipe = (props) => (
 ...
)

// A stateless functional component for the Menu of Recipes
const Menu = (props) => (
 ...
)

// A call to ReactDOM.render to render our Menu into the current DOM
ReactDOM.render(
 <Menu recipes={data} title="Delicious Recipes" />,
 document.getElementById("react-container")
)

86 | Chapter 5: React with JSX

www.allitebooks.com

http://www.allitebooks.org

ES6 Support

We will be using ES6 in this file as well. When we transpile our
code from JSX to pure React, Babel will also convert ES6 into com‐
mon ES5 JavaScript that is readable by all browsers. Any ES6 fea‐
tures used have been discussed in Chapter 2.

The React elements within the Menu component are expressed as JSX (Example 5-7).
Everything is contained within an article element. A header element, an h1 ele‐
ment, and a div.recipes element are used to describe the DOM for our menu. The
value for the title property will be displayed as text within the h1.

Example 5-7. Menu component structure

const Menu = (props) =>
 <article>
 <header>
 <h1>{props.title}</h1>
 </header>
 <div className="recipes">
 </div>
 </article>

Inside of the div.recipes element, we add a component for each recipe
(Example 5-8).

Example 5-8. Mapping recipe data

<div className="recipes">
 {props.recipes.map((recipe, i) =>
 <Recipe key={i} name={recipe.name}
 ingredients={recipe.ingredients}
 steps={recipe.steps} />
)}
</div>

In order to list the recipes within the div.recipes element, we use curly braces to
add a JavaScript expression that will return an array of children. We can use the map
function on the props.recipes array to return a component for each object within
the array. As mentioned previously, each recipe contains a name, some ingredients,
and cooking instructions (steps). We will need to pass this data to each Recipe as
props. Also remember that we should use the key property to uniquely identify each
element.

Using the JSX spread operator can improve our code. The JSX spread operator works
like the object spread operator discussed in Chapter 2. It will add each field of the

Recipes as JSX | 87

recipe object as a property of the Recipe component. The syntax in Example 5-9
accomplishes the same results.

Example 5-9. Enhancement: JSX spread operator

{props.recipes.map((recipe, i) =>
 <Recipe key={i} {...recipe} />
)}

Another place we can make an ES6 improvement to our Menu component is where we
take in the props argument. We can use object destructuring to scope the variables to
this function. This allows us to access the title and recipes variables directly, no
longer having to prefix them with props (Example 5-10).

Example 5-10. Refactored Menu component

const Menu = ({ title, recipes }) => (
 <article>
 <header>
 <h1>{title}</h1>
 </header>
 <div className="recipes">
 {recipes.map((recipe, i) =>
 <Recipe key={i} {...recipe} />
)}
 </div>
 </article>
)

Now let’s code the component for each individual recipe (Example 5-11).

Example 5-11. Complete Recipe component

const Recipe = ({ name, ingredients, steps }) =>
 <section id={name.toLowerCase().replace(/ /g, "-")}>
 <h1>{name}</h1>
 <ul className="ingredients">
 {ingredients.map((ingredient, i) =>
 <li key={i}>{ingredient.name}
)}

 <section className="instructions">
 <h2>Cooking Instructions</h2>
 {steps.map((step, i) =>
 <p key={i}>{step}</p>
)}
 </section>
 </section>

88 | Chapter 5: React with JSX

This component is also a stateless functional component. Each recipe has a string for
the name, an array of objects for ingredients, and an array of strings for the steps.
Using ES6 object destructuring, we can tell this component to locally scope those
fields by name so we can access them directly without having to use props.name, or
props.ingredients, props.steps.

The first JavaScript expression that we see is being used to set the id attribute for the
root section element. It is converting the recipe’s name to a lowercase string and
globally replacing spaces with dashes. The result is that “Baked Salmon” will be con‐
verted to “baked-salmon” (and likewise, if we had a recipe with the name “Boston
Baked Beans” it would be converted to “boston-baked-beans”) before it is used as the
id attribute in our UI. The value for name is also being displayed in an h1 as a text
node.

Inside of the unordered list, a JavaScript expression is mapping each ingredient to an
li element that displays the name of the ingredient. Within our instructions section,
we see the same pattern being used to return a paragraph element where each step is
displayed. These map functions are returning arrays of child elements.

The complete code for the application should look like Example 5-12.

Example 5-12. Finished code for recipe app

const data = [
 {
 "name": "Baked Salmon",
 "ingredients": [
 { "name": "Salmon", "amount": 1, "measurement": "l lb" },
 { "name": "Pine Nuts", "amount": 1, "measurement": "cup" },
 { "name": "Butter Lettuce", "amount": 2, "measurement": "cups" },
 { "name": "Yellow Squash", "amount": 1, "measurement": "med" },
 { "name": "Olive Oil", "amount": 0.5, "measurement": "cup" },
 { "name": "Garlic", "amount": 3, "measurement": "cloves" }
],
 "steps": [
 "Preheat the oven to 350 degrees.",
 "Spread the olive oil around a glass baking dish.",
 "Add the salmon, garlic, and pine nuts to the dish.",
 "Bake for 15 minutes.",
 "Add the yellow squash and put back in the oven for 30 mins.",
 "Remove from oven and let cool for 15 minutes. Add the lettuce and serve."
]
 },
 {
 "name": "Fish Tacos",
 "ingredients": [
 { "name": "Whitefish", "amount": 1, "measurement": "l lb" },
 { "name": "Cheese", "amount": 1, "measurement": "cup" },
 { "name": "Iceberg Lettuce", "amount": 2, "measurement": "cups" },

Recipes as JSX | 89

 { "name": "Tomatoes", "amount": 2, "measurement": "large"},
 { "name": "Tortillas", "amount": 3, "measurement": "med" }
],
 "steps": [
 "Cook the fish on the grill until hot.",
 "Place the fish on the 3 tortillas.",
 "Top them with lettuce, tomatoes, and cheese."
]
 }
]

const Recipe = ({ name, ingredients, steps }) =>
 <section id={name.toLowerCase().replace(/ /g, "-")}>
 <h1>{name}</h1>
 <ul className="ingredients">
 {ingredients.map((ingredient, i) =>
 <li key={i}>{ingredient.name}
)}

 <section className="instructions">
 <h2>Cooking Instructions</h2>
 {steps.map((step, i) =>
 <p key={i}>{step}</p>
)}
 </section>
 </section>

const Menu = ({ title, recipes }) =>
 <article>
 <header>
 <h1>{title}</h1>
 </header>
 <div className="recipes">
 {recipes.map((recipe, i) =>
 <Recipe key={i} {...recipe} />
)}
 </div>
 </article>

ReactDOM.render(
 <Menu recipes={data}
 title="Delicious Recipes" />,
 document.getElementById("react-container")
)

When we run this code in the browser, React will construct a UI using our instruc‐
tions with the recipe data as shown in Figure 5-2.

90 | Chapter 5: React with JSX

Figure 5-2. Delicious Recipes output

Recipes as JSX | 91

If you are using Google Chrome and you have the React Developer Tools Extension
installed, you can take a look at the present state of the virtual DOM. To do this, open
the developer tools and select the React tab (Figure 5-3).

Figure 5-3. Resulting virtual DOM in React Developer Tools

Here we can see our Menu and its child elements. The data array contains two objects
for recipes, and we have two Recipe elements. Each Recipe element has properties
for the recipe name, ingredients, and steps.

The virtual DOM is constructed based on the application’s state data being passed to
the Menu component as a property. If we change the recipes array and rerender our
Menu component, React will change this DOM as efficiently as possible.

Babel Presets
Babel 6 breaks possible transformations up into modules called presets. It requires
engineers to explicitly define which transformations should be run by specifying
which presets to use. The goal was to make everything more modular to allow devel‐
opers to decide which syntax should be converted. The plugins fall into a few cate‐
gories, and all are opt-in based on the needs of the application. The presets you’re
most likely to use are:

babel-preset-es2015

Compiles ES2015, or ES6, to ES5.

babel-preset-es2016

Compiles what is in ES2016 to ES2015

92 | Chapter 5: React with JSX

babel-preset-es2017

Compiles what is in ES2017 to ES2017

babel-preset-env

Compiles everything from ES2015, ES2016, ES2017. A catch-all for the previous
three presets

babel-preset-react

Compiles JSX to React.createElement calls.

When a new feature is proposed for inclusion in the ECMAScript spec, it goes
through stages of acceptance from stage 0, Strawman (newly proposed and very
experimental), to stage 4, Finished (accepted as part of the standard). Babel provides
presets for each of these stages, so you can choose which stage you want to allow in
your application:

• babel-preset-stage-0: Strawman
• babel-preset-stage-1: Proposal
• babel-preset-stage-2: Draft
• babel-preset-stage-3: Candidate

Intro to Webpack
Once we start working in production with React, there are a lot of questions to con‐
sider: How do we want to deal with JSX and ES6+ transformation? How can we man‐
age our dependencies? How can we optimize our images and CSS?

Many different tools have emerged to answer these questions, including Browserify,
Gulp, and Grunt. Due to its features and widespread adoption by large companies,
webpack has also emerged as one of the leading tools for bundling CommonJS mod‐
ules (see Chapter 2 for more on CommonJS).

Webpack is billed as a module bundler. A module bundler takes all of our different
files (JavaScript, LESS, CSS, JSX, ES6, and so on) and turns them into a single file.
The two main benefits of modular bundling are modularity and network performance.

Modularity will allow you to break down your source code into parts, or modules,
that are easier to work with, especially in a team environment.

Network performance is gained by only needing to load one dependency in the
browser, the bundle. Each script tag makes an HTTP request, and there is a latency
penalty for each HTTP request. Bundling all of the dependencies into a single file
allows you to load everything with one HTTP request, thereby avoiding additional
latency.

Intro to Webpack | 93

Aside from transpiling, webpack also can handle:

Code splitting
Splits up your code into different chunks that can be loaded when you need
them. Sometimes these are called rollups or layers; the aim is to break up code as
needed for different pages or devices.

Minification
Removes whitespace, line breaks, lengthy variable names, and unnecessary code
to reduce the file size.

Feature flagging
Sends code to one or more—but not all—environments when testing out fea‐
tures.

Hot Module Replacement (HMR)
Watches for changes in source code. Changes only the updated modules immedi‐
ately.

Webpack Loaders
A loader is a function that handles the transformations that we want to put our code
through during the build process. If our application uses ES6, JSX, CoffeeScript, and
other languages that can’t be read natively by the browser, we’ll specify the necessary
loaders in the webpack.config.js file to do the work of converting the code into syntax
that can be read natively by the browser.

Webpack has a huge number of loaders that fall into a few categories. The most com‐
mon use case for loaders is transpiling from one dialect to another. For example, ES6
and React code is transpiled by including the babel-loader. We specify the types of
files that Babel should be run on, then webpack takes care of the rest.

Another popular category of loaders is for styling. The css-loader looks for files
with the .scss extension and compiles them to CSS. The css-loader can be used to
include CSS modules in your bundle. All CSS is bundled as JavaScript and automati‐
cally added when the bundled JavaScript file is included. There’s no need to use link
elements to include stylesheets.

Check out the full list of loaders if you’d like to see all of the different options.

Recipes App with a Webpack Build
The Recipes app that we built earlier in this chapter has some limitations that web‐
pack will help us alleviate. Using a tool like webpack to statically build your client
JavaScript makes it possible for teams to work together on large-scale web applica‐

94 | Chapter 5: React with JSX

https://webpack.js.org/concepts/loaders/

tions. We can also gain the following benefits by incorporating the webpack module
bundler:

Modularity
Using the CommonJS module pattern in order to export modules that will later
be imported or required by another part of the application makes our source
code more approachable. It allows development teams to easily work together by
allowing them to create and work with separate files that will be statically com‐
bined into a single file before sending to production.

Composing
With modules, we can build small, simple, reusable React components that we
can compose efficiently into applications. Smaller components are easier to com‐
prehend, test, and reuse. They are also easier to replace down the line when
enhancing your applications.

Speed
Packaging all of the application’s modules and dependencies into a single client
bundle will reduce the load time of your application because there is latency asso‐
ciated with each HTTP request. Packaging everything together in a single file
means that the client will only need to make a single request. Minifying the code
in the bundle will improve load time as well.

Consistency
Since webpack will transpile JSX into React and ES6 or even ES7 into universal
JavaScript, we can start using tomorrow’s JavaScript syntax today. Babel supports
a wide range of ESNext syntax, which means we do not have to worry about
whether the browser supports our code. It allows developers to consistently use
cutting-edge JavaScript syntax.

Breaking components into modules
Approaching the Recipes app with the ability to use webpack and Babel allows us to
break our code down into modules that use ES6 syntax. Let’s take a look at our state‐
less functional component for recipes (Example 5-13).

Example 5-13. Current Recipe component

const Recipe = ({ name, ingredients, steps }) =>
 <section id="baked-salmon">
 <h1>{name}</h1>
 <ul className="ingredients">
 {ingredients.map((ingredient, i) =>
 <li key={i}>{ingredient.name}
)}

 <section className="instructions">

Intro to Webpack | 95

 <h2>Cooking Instructions</h2>
 {steps.map((step, i) =>
 <p key={i}>{step}</p>
)}
 </section>
 </section>

This component is doing quite a bit. We are displaying the name of the recipe, con‐
structing an unordered list of ingredients, and displaying the instructions, with each
step getting its own paragraph element.

A more functional approach to the Recipe component would be to break it up into
smaller, more focused stateless functional components and compose them together.
We can start by pulling the instructions out into their own stateless functional com‐
ponent and creating a module in a separate file that we can use for any set of instruc‐
tions (Example 5-14).

Example 5-14. Instructions component

const Instructions = ({ title, steps }) =>
 <section className="instructions">
 <h2>{title}</h2>
 {steps.map((s, i) =>
 <p key={i}>{s}</p>
)}
 </section>

export default Instructions

Here we have created a new component called Instructions. We will pass the title of
the instructions and the steps to this component. This way we can reuse this compo‐
nent for “Cooking Instructions,” “Baking Instructions,” “Prep Instructions”, or a “Pre-
cook Checklist”—anything that has steps.

Now think about the ingredients. In the Recipe component, we are only displaying
the ingredient names, but each ingredient in the data for the recipe has an amount
and measurement as well. We could create a stateless functional component to repre‐
sent a single ingredient (Example 5-15).

Example 5-15. Ingredient component

const Ingredient = ({ amount, measurement, name }) =>

 {amount}
 {measurement}
 {name}

96 | Chapter 5: React with JSX

export default Ingredient

Here we assume each ingredient has an amount, a measurement, and a name. We
destructure those values from our props object and display them each in independent
classed span elements.

Using the Ingredient component, we can construct an IngredientsList component
that can be used any time we need to display a list of ingredients (Example 5-16).

Example 5-16. IngredientsList using Ingredient component

import Ingredient from './Ingredient'

const IngredientsList = ({ list }) =>
 <ul className="ingredients">
 {list.map((ingredient, i) =>
 <Ingredient key={i} {...ingredient} />
)}

export default IngredientsList

In this file, we first import the Ingredient component because we are going to use it
for each ingredient. The ingredients are passed to this component as an array in a
property called list. Each ingredient in the list array will be mapped to the
Ingredient component. The JSX spread operator is used to pass all of the data to the
Ingredient component as props.

Using spread operator:

<Ingredient {...ingredient} />

is another way of expressing:

<Ingredient amount={ingredient.amount}
 measurement={ingredient.measurement}
 name={ingredient.name} />

So, given an ingredient with these fields:

let ingredient = {
 amount: 1,
 measurement: 'cup',
 name: 'sugar'
}

we get:

<Ingredient amount={1}
 measurement="cup"
 name="sugar" />

Intro to Webpack | 97

Now that we have components for ingredients and instructions, we can compose rec‐
ipes using these components (Example 5-17).

Example 5-17. Refactored Recipe component

import IngredientsList from './IngredientsList'
import Instructions from './Instructions'

const Recipe = ({ name, ingredients, steps}) =>
 <section id={name.toLowerCase().replace(/ /g, '-')}>
 <h1>{name}</h1>
 <IngredientsList list={ingredients} />
 <Instructions title="Cooking Instructions"
 steps={steps} />
 </section>

export default Recipe

First we import the components that we are going to use, IngredientsList and
Instructions. Now we can use them to create the Recipe component. Instead of a
bunch of complicated code building out the entire recipe in one place, we have
expressed our recipe more declaratively by composing smaller components. Not only
is the code nice and simple, but it also reads well. This shows us that a recipe should
display the name of the recipe, a list of ingredients, and some cooking instructions.
We’ve abstracted away what it means to display ingredients and instructions into
smaller, simple components.

In a modular approach with CommonJS, the Menu component would look pretty sim‐
ilar. The key difference is that it would live in its own file, import the modules that it
needs to use, and export itself (Example 5-18).

Example 5-18. Completed Menu component

import Recipe from './Recipe'

const Menu = ({ recipes }) =>
 <article>
 <header>
 <h1>Delicious Recipes</h1>
 </header>
 <div className="recipes">
 { recipes.map((recipe, i) =>
 <Recipe key={i} {...recipe} />)
 }
 </div>
 </article>

export default Menu

98 | Chapter 5: React with JSX

We still need to use ReactDOM to render the Menu component. We will still have a
index.js file, but it will look much different (Example 5-19).

Example 5-19. Completed index.js file

import React from 'react'
import { render } from 'react-dom'
import Menu from './components/Menu'
import data from './data/recipes'

window.React = React

render(
 <Menu recipes={data} />,
 document.getElementById("react-container")
)

The first four statements import the necessary modules for our app to work. Instead
of loading react and react-dom via the script tag, we import them so webpack can
add them to our bundle. We also need the Menu component, and a sample data array
which has been moved to a separate module. It still contains two recipes: Baked Sal‐
mon and Fish Tacos.

All of our imported variables are local to the index.js file. Setting window.React to
React exposes the React library globally in the browser. This way all calls to
React.createElement are assured to work.

When we render the Menu component, we pass the array of recipe data to this compo‐
nent as a property. This single ReactDOM.render call will mount and render our Menu
component.

Now that we have pulled our code apart into separate modules and files, let’s create a
static build process with webpack that will put everything back together into a single
file.

Installing webpack dependencies
In order to create a static build process with webpack, we’ll need to install a few
things. Everything that we need can be installed with npm. First, we might as well
install webpack globally so we can use the webpack command anywhere:

sudo npm install -g webpack

Webpack is also going to work with Babel to transpile our code from JSX and ES6 to
JavaScript that runs in the browser. We are going to use a few loaders along with a few
presets to accomplish this task:

npm install babel-core babel-loader babel-preset-env babel-preset-react
babel-preset-stage-0 --save-dev

Intro to Webpack | 99

Our application uses React and ReactDOM. We’ve been loading these dependencies
with the script tag. Now we are going to let webpack add them to our bundle. We’ll
need to install the dependencies for React and ReactDOM locally:

npm install react react-dom --save

This adds the necessary scripts for react and react-dom to the ./node_modules folder.
Now we have everything needed to set up a static build process with webpack.

Webpack configuration
For this modular Recipes app to work, we are going to need to tell webpack how to
bundle our source code into a single file. We can do this with configuration files, and
the default webpack configuration file is always webpack.config.js.

The starting file for our Recipes app is index.js. It imports React, ReactDOM, and the
Menu.js file. This is what we want to run in the browser first. Wherever webpack
finds an import statement, it will find the associated module in the filesystem and
include it in the bundle. Index.js imports Menu.js, Menu.js imports Recipe.js, Recipe.js
imports Instructions.js and IngredientsList.js, and IngredientsList.js imports Ingredi‐
ent.js. Webpack will follow this import tree and include all of these necessary modules
in our bundle.

ES6 import Statements

We are using ES6 import statements, which are not presently sup‐
ported by most browsers or by Node.js. The reason ES6 import
statements work is because Babel will convert them into
require('module/path'); statements in our final code. The
require function is how CommonJS modules are typically loaded.

As webpack builds our bundle, we need to tell webpack to transpile JSX to pure React
elements. We also need to convert any ES6 syntax to ES5 syntax. Our build process
will initially have three steps (Figure 5-4).

100 | Chapter 5: React with JSX

Figure 5-4. Recipe app build process

The webpack.config.js file is just another module that exports a JavaScript literal
object that describes the actions that webpack should take. This file (Example 5-20)
should be saved to the root folder of the project, right next to the index.js file.

Example 5-20. webpack.config.js

module.exports = {
 entry: "./src/index.js",
 output: {
 path: "dist/assets",
 filename: "bundle.js"
 },
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /(node_modules)/,
 loader: ['babel-loader'],
 query: {
 presets: ['env', 'stage-0', 'react']
 }
 }
]
 }
}

First, we tell webpack that our client entry file is ./src/index.js. It will automatically
build the dependency tree based upon import statements starting in that file. Next,
we specify that we want to output a bundled JavaScript file to ./dist/assets/bundle.js.
This is where webpack will place the final packaged JavaScript.

The next set of instructions for webpack consists of a list of loaders to run on speci‐
fied modules. The rules field is an array because there are many types of loaders that
you can incorporate with webpack. In this example, we are only incorporating babel.

Intro to Webpack | 101

Each loader is a JavaScript object. The test field is a regular expression that matches
the file path of each module that the loader should operate on. In this case, we are
running the babel-loader on all imported JavaScript files except those found in the
node_modules folder. When the babel-loader runs, it will use presets for ES2015
(ES6) and React to transpile any ES6 or JSX syntax into JavaScript that will run in
most browsers.

Webpack is run statically. Typically bundles are created before the app is deployed to
the server. Since you have installed webpack globally, you can run it from the com‐
mand line:

$ webpack
 Time: 1727ms
 Asset Size Chunks Chunk Names
 bundle.js 693 kB 0 [emitted] main
 + 169 hidden modules

Webpack will either succeed and create a bundle, or fail and show you an error. Most
errors have to do with broken import references. When debugging webpack errors,
look closely at the filenames and file paths used in import statements.

Loading the bundle
We have a bundle, so now what? We exported the bundle to the dist folder. This
folder contains the files that we want to run on the web server. The dist folder is
where the index.html file (Example 5-21) should be placed. This file needs to include
a target div element where the React Menu component will be mounted. It also
requires a single script tag that will load our bundled JavaScript.

Example 5-21. index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>React Recipes App</title>
</head>
<body>
 <div id="react-container"></div>
 <script src="assets/bundle.js"></script>
</body>
</html>

This is the home page for your app. It will load everything it needs from one file, one
HTTP request: bundle.js. You will need to deploy these files to your web server or
build a web server application that will serve these files with something like Node.js
or Ruby on Rails.

102 | Chapter 5: React with JSX

Source mapping
Bundling our code into a single file can cause some setbacks when it comes time to
debug the application in the browser. We can eliminate this problem by providing a
source map. A source map is a file that maps a bundle to the original source files.
With webpack, all we have to do is add a couple of lines to our webpack.config.js file
(Example 5-22).

Example 5-22. webpack.config.js with source mapping

module.exports = {
 entry: "./src/index.js",
 output: {
 path: "dist/assets",
 filename: "bundle.js",
 sourceMapFilename: 'bundle.map'
 },
 devtool: '#source-map',
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /(node_modules)/,
 loader: ['babel-loader'],
 query: {
 presets: ['env', 'stage-0', 'react']
 }
 }
]
 }
}

Setting the devtool property to '#source-map' tells webpack that you want to use
source mapping. A sourceMapFilename is required. It is always a good idea to name
your source map file after the target dependency. Webpack will associate the bundle
with the source map during the export.

The next time you run webpack, you will see that two output files are generated and
added to the assets folder: the original bundle.js and bundle.map.

The source map is going to let us debug using our original source files. In the Sources
tab of your browser’s developer tools, you should find a folder named webpack://.
Inside of this folder, you will see all of the source files in your bundle (Figure 5-5).

Intro to Webpack | 103

Figure 5-5. Sources panel of Chrome Developer Tools

You can debug from these files using the browser’s step-through debugger. Clicking
on any line number adds a breakpoint. Refreshing the browser will pause JavaScript
processing when any breakpoints are reached in your source file. You can inspect
scoped variables in the Scope panel or add variables to Watch in the watch panel.

Optimizing the bundle
The output bundle file is still simply a text file, so reducing the amount of text in this
file will reduce the file size and cause it to load faster over HTTP. Some things that
can be done to reduce the file size include removing all whitespace, reducing variable
names to a single character, and removing any lines of code that the interpreter will
never reach. Reducing the size of your JavaScript file with these tricks is referred to as
minifying or uglifying your code.

Webpack has a built-in plugin that you can use to uglify the bundle. In order to use it,
you will need to install webpack locally:

npm install webpack --save-dev

We can add extra steps to the build process using webpack plugins. In this example,
we are going to add a step to our build process to uglify our output bundle, which will
significantly reduce the file size (Example 5-23).

104 | Chapter 5: React with JSX

Example 5-23. webpack.config.js with Uglify plugin

var webpack = require("webpack");

module.exports = {
 entry: "./src/index.js",
 output: {
 path: "dist/assets",
 filename: "bundle.js",
 sourceMapFilename: 'bundle.map'
 },
 devtool: '#source-map',
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /(node_modules)/,
 loader: ['babel-loader'],
 query: {
 presets: ['env', 'stage-0', 'react']
 }
 }
]
 },
 plugins: [
 new webpack.optimize.UglifyJsPlugin({
 sourceMap: true,
 warnings: false,
 mangle: true
 })
]
}

To use the Uglify plugin, we need to require webpack, which is why we needed to
install webpack locally.

UglifyJsPlugin is a function that gets instructions from its arguments. Once we
uglify our code, it will become unrecognizable. We are going to need a source map,
which is why sourceMap is set to true. Setting warnings to false will remove any
console warnings from the exported bundle. Mangling our code means that we are
going to reduce long variable names like recipes or ingredients to a single letter.

The next time you run webpack, you will see that the size of your bundled output file
has been significantly reduced, and it’s no longer recognizable. Including a source
map will still allow you to debug from your original source even though your bundle
has been minified.

Intro to Webpack | 105

Bundling CSS
Another nice feature of webpack is that it can bundle CSS into the same file as the
bundled JavaScript. This allows your users to download a single file that contains all
of the CSS and JavaScript necessary for your app.

CSS can be included into the bundle with import statements. These statements tell
webpack to bundle up associated CSS files with a JavaScript module:

import Recipe from './Recipe'
import '../../stylesheets/Menu.css'

const Menu = ({ recipes }) =>
 <article>
 <header>
 <h1>Delicious Recipes</h1>
 </header>
 <div className="recipes">
 { recipes.map((recipe, i) =>
 <Recipe key={i} {...recipe} />)
 }
 </div>
 </article>

export default Menu

In order to implement CSS bundling in your webpack configuration, you will need to
install some loaders:

npm install style-loader css-loader postcss-loader --save-dev

Finally, you have to incorporate this loader into your webpack configuration:

rules: [
 {
 test: /\.js$/,
 exclude: /(node_modules)/,
 loader: ['babel-loader'],
 query: {
 presets: ['env', 'stage-0', 'react']
 }
 },
 {
 test: /\.css$/,
 use: ['style-loader','css-loader', {
 loader: 'postcss-loader',
 options: {
 plugins: () => [require('autoprefixer')]
 }}]
 }
]

106 | Chapter 5: React with JSX

1 Dan Abramov, “Create Apps with No Configuration”, React Blog, July 22, 2016.

Bundling up CSS files with webpack will cause your site to load faster by reducing the
number of requests that your browser needs to make for resources.

create-react-app
As the Facebook team mentions in their blog, “the React ecosystem has commonly
become associated with an overwhelming explosion of tools.”1 In response to this, the
React team launched create-react-app a command-line tool that autogenerates a
React project. create-react-app was inspired by the Ember CLI project, and it lets
developers get started with React projects quickly without the manual configuration
of webpack, Babel, ESLint, and associated tools.

To get started with create-react-app, install the package globally:

npm install -g create-react-app

Then, use the command and the name of the folder where you’d like the app to be
created:

create-react-app my-react-project

This will create a React project in that directory with just three dependencies: React,
ReactDOM, and react-scripts. react-scripts was also created by Facebook and is
where the real magic happens. It installs Babel, ESLint, webpack, and more, so that
you don’t have to configure them manually. Within the generated project folder,
you’ll also find a src folder containing an App.js file. Here, you can edit the root com‐
ponent and import other component files.

From within the my-react-project folder, you can run npm start. If you prefer, you
can also run yarn start.

You can run tests with npm test or yarn test. This runs all of the test files in the
project in an interactive mode.

This will start your application on port 3000. You can also run the npm run build
command. Using yarn, run yarn build.

This will create a production-ready bundle that has been transpiled and minified.

create-react-app is a great tool for beginners and experienced React developers
alike. As the tool evolves, more functionality will likely be added, so you can keep an
eye on the changes on GitHub.

Intro to Webpack | 107

http://bit.ly/2ndUXzR
http://bit.ly/2mtQwNC
https://ember-cli.com

CHAPTER 6

Props, State, and the Component Tree

In the last chapter, we talked about how to create components. We primarily focused
on how to build a user interface by composing React components. This chapter is fil‐
led with techniques that you can use to better manage data and reduce time spent
debugging applications.

Data handling within component trees is one of the key advantages of working with
React. There are techniques that you can use when working with data in React com‐
ponents that will make your life much easier in the long run. Our applications will be
easier to reason about and scale if we can manage data from a single location and
construct the UI based on that data.

Property Validation
JavaScript is a loosely typed language, which means that the data type of a variable’s
value can change. For example, you can initially set a JavaScript variable as a string,
then change its value to an array later, and JavaScript will not complain. Managing
our variable types inefficiently can lead to a lot of time spent debugging applications.

React components provide a way to specify and validate property types. Using this
feature will greatly reduce the amount of time spent debugging applications. Supply‐
ing incorrect property types triggers warnings that can help us find bugs that may
have otherwise slipped through the cracks.

React has built-in automatic property validation for the variable types, as shown in
Table 6-1.

109

http://bit.ly/2okjSzJ

Table 6-1. React property validation

Type Validator
Arrays React.PropTypes.array

Boolean React.PropTypes.bool

Functions React.PropTypes.func

Numbers React.PropTypes.number

Objects React.PropTypes.object

Strings React.PropTypes.string

In this section, we will create a Summary component for our recipes. The Summary
component will display the title of the recipe along with counts for both ingredients
and steps (see Figure 6-1).

Figure 6-1. Summary component output for Baked Salmon

In order to display this data, we must supply the Summary component with three
properties: a title, an array of ingredients, and an array of steps. We want to validate
these properties to make sure the first is a string and the others are arrays, and supply
defaults for when they are unavailable. How to implement property validation
depends upon how components are created. Stateless functional components and ES6
classes have different ways of implementing property validation.

First, let’s look at why we should use property validation and how to implement it in
components created with React.createClass.

Validating Props with createClass
We need to understand why it is important to validate component property types.
Consider the following implementation for the Summary component:

const Summary = createClass({
 displayName: "Summary",
 render() {
 const {ingredients, steps, title} = this.props
 return (
 <div className="summary">
 <h1>{title}</h1>
 <p>
 {ingredients.length} Ingredients |
 {steps.length} Steps

110 | Chapter 6: Props, State, and the Component Tree

 </p>
 </div>
)
 }
})

The Summary component destructures ingredients, steps, and title from the prop‐
erties object and then constructs a UI to display that data. Since we expect both ingre
dients and steps to be arrays, we use Array.length to count the array’s items.

What if we rendered this Summary component accidentally using strings?

render(
 <Summary title="Peanut Butter and Jelly"
 ingredients="peanut butter, jelly, bread"
 steps="spread peanut butter and jelly between bread" />,
 document.getElementById('react-container')
)

JavaScript will not complain, but finding the length will count the number of charac‐
ters in each string (Figure 6-2).

Figure 6-2. Summary component output for Peanut Butter and Jelly

The output of this code is odd. No matter how fancy your peanut butter and jelly
might be, it’s doubtful that you are going to have 27 ingredients and 44 steps. Instead
of seeing the correct number of steps and ingredients, we are seeing the length in
characters of each string. A bug like this is easy to miss. If we validated the property
types when we created the Summary component, React could catch this bug for us:

const Summary = createClass({
 displayName: "Summary",
 propTypes: {
 ingredients: PropTypes.array,
 steps: PropTypes.array,
 title: PropTypes.string
 },
 render() {
 const {ingredients, steps, title} = this.props
 return (
 <div className="summary">
 <h1>{title}</h1>
 <p>
 {ingredients.length} Ingredients |
 {steps.length} Steps

Property Validation | 111

 </p>
 </div>
)
 }
})

Using React’s built-in property type validation, we can make sure that both ingredi
ents and steps are arrays. Additionally, we can make sure that the title value is a
string. Now when we pass incorrect property types, we will see an error (Figure 6-3).

Figure 6-3. Property type validation warning

What would happen if we rendered the Summary component without sending it any
properties?

render(
 <Summary />,
 document.getElementById('react-container')
)

Rendering the Summary component without any properties causes a JavaScript error
that takes down the web app (Figure 6-4).

Figure 6-4. Error generated from missing array

This error occurs because the type of the ingredients property is undefined, and
undefined is not an object that has a length property like an array or a string. React
has a way to specify required properties. When those properties are not supplied,
React will trigger a warning in the console:

const Summary = createClass({
 displayName: "Summary",
 propTypes: {
 ingredients: PropTypes.array.isRequired,
 steps: PropTypes.array.isRequired,
 title: PropTypes.string
 },
 render() {
 ...

112 | Chapter 6: Props, State, and the Component Tree

 }
})

Now when we render the Summary component without any properties, React directs
our attention to the problem with a console warning just before the error occurs. This
makes it easier to figure out what went wrong (Figure 6-5).

Figure 6-5. React warnings for missing properties

The Summary component expects an array for ingredients and an array for steps,
but it only uses the length property of each array. This component is designed to dis‐
play counts (numbers) for each of those values. It may make more sense to refactor
our code to expect numbers instead, since the component doesn’t actually need
arrays:

import { createClass, PropTypes } from 'react'

export const Summary = createClass({
 displayName: "Summary",
 propTypes: {
 ingredients: PropTypes.number.isRequired,
 steps: PropTypes.number.isRequired,
 title: PropTypes.string
 },
 render() {
 const {ingredients, steps, title} = this.props
 return (
 <div className="summary">
 <h1>{title}</h1>
 <p>
 {ingredients} Ingredients |
 {steps} Steps
 </p>
 </div>
)
 }
})

Using numbers for this component is a more flexible approach. Now the Summary
component simply displays the UI; it sends the burden of actually counting ingredi‐
ents or steps further up the component tree to a parent or ancestor.

Property Validation | 113

1 React Docs, “Default Prop Values”

Default Props
Another way to improve the quality of components is to assign default values for
properties.1 The validation behavior is similar to what you might expect: the default
values you establish will be used if other values are not provided.

Let’s say we want the Summary component to work even when the properties are not
supplied:

import { render } from 'react-dom'

render(<Summary />, document.getElementById('react-container'))

With createClass, we can add a method called getDefaultProps that returns default
values for properties that are not assigned:

const Summary = createClass({
 displayName: "Summary",
 propTypes: {
 ingredients: PropTypes.number,
 steps: PropTypes.number,
 title: PropTypes.string
 },
 getDefaultProps() {
 return {
 ingredients: 0,
 steps: 0,
 title: "[recipe]"
 }
 },
 render() {
 const {ingredients, steps, title} = this.props
 return (
 <div className="summary">
 <h1>{title}</h1>
 <p>
 {ingredients} Ingredients |
 {steps} Steps
 </p>
 </div>
)
 }
}

Now when we try to render this component without properties, we will see some
default data instead, as in Figure 6-6.

114 | Chapter 6: Props, State, and the Component Tree

http://bit.ly/2oYLr4r

Figure 6-6. Summary component output with default properties

Using default properties can extend the flexibility of your component and prevent
errors from occurring when your users do not explicitly require every property.

Custom Property Validation
React’s built-in validators are great for making sure that your variables are required
and typed correctly. But there are instances that require more robust validation. For
example, you may want to make sure that a number is within a specific range or that a
value contains a specific string. React provides a way to build your own custom vali‐
dation for such cases.

Custom validation in React is implemented with a function. This function should
either return an error when a specific validation requirement is not met or null when
the property is valid.

With basic property type validation, we can only validate a property based on one
condition. The good news is that the custom validator will allow us to test the prop‐
erty in many different ways. In this custom function, we’ll first check that the proper‐
ty’s value is a string. Then we’ll limit its length to 20 characters (Example 6-2).

Example 6-2. Custom prop validation

propTypes: {
 ingredients: PropTypes.number,
 steps: PropTypes.number,
 title: (props, propName) =>
 (typeof props[propName] !== 'string') ?
 new Error("A title must be a string") :
 (props[propName].length > 20) ?
 new Error(`title is over 20 characters`) :
 null
}

All property type validators are functions. To implement our custom validator, we
will set the value of the title property, under the propTypes object, to a callback
function. When rendering the component, React will inject the props object and the
name of the current property into the function as arguments. We can use those argu‐
ments to check the specific value for a specific property.

Property Validation | 115

In this case, we first check the title to make sure it is a string. If the title is not a string,
the validator returns a new error with the message: “A title must be a string.” If the
title is a string, then we check its value to make sure it is not longer than 20 charac‐
ters. If the title is under 20 characters, the validator function returns null. If the title
is over 20 characters, then the validator function returns an error. React will capture
the returned error and display it in the console as a warning.

Custom validators allow you to implement specific validation criteria. A custom vali‐
dator can perform multiple validations and only return errors when specific criteria
are not met. Custom validators are a great way to prevent errors when using and
reusing your components.

ES6 Classes and Stateless Functional Components
In the previous sections, we discovered that property validation and default property
values can be added to our component classes using React.createClass. This type
checking also works for ES6 classes and stateless functional components, but the syn‐
tax is slightly different.

When working with ES6 classes, propTypes and defaultProps declarations are
defined on the class instance, outside of the class body. Once a class is defined, we can
set the propTypes and defaultProps object literals (Example 6-3).

Example 6-3. ES6 class

class Summary extends React.Component {
 render() {
 const {ingredients, steps, title} = this.props
 return (
 <div className="summary">
 <h1>{title}</h1>
 <p>
 {ingredients} Ingredients |
 {steps} Steps
 </p>
 </div>
)
 }
}

Summary.propTypes = {
 ingredients: PropTypes.number,
 steps: PropTypes.number,
 title: (props, propName) =>
 (typeof props[propName] !== 'string') ?
 new Error("A title must be a string") :
 (props[propName].length > 20) ?
 new Error(`title is over 20 characters`) :

116 | Chapter 6: Props, State, and the Component Tree

 null
}

Summary.defaultProps = {
 ingredients: 0,
 steps: 0,
 title: "[recipe]"
}

The propTypes and defaultProps object literals can also be added to stateless func‐
tional components (Example 6-4).

Example 6-4. Stateless functional component

const Summary = ({ ingredients, steps, title }) => {
 return <div>
 <h1>{title}</h1>
 <p>{ingredients} Ingredients | {steps} Steps</p>
 </div>
}

Summary.propTypes = {
 ingredients: React.PropTypes.number.isRequired,
 steps: React.PropTypes.number.isRequired
}

Summary.defaultProps = {
 ingredients: 1,
 steps: 1
}

With a stateless functional component, you also have the option of setting default
properties directly in the function arguments. We can set default values for ingredi
ents, steps, and title when we destructure the properties object in the function
arguments as follows:

const Summary = ({ ingredients=0, steps=0, title='[recipe]' }) => {
 return <div>
 <h1>{title}</h1>
 <p>{ingredients} Ingredients | {steps} Steps</p>
 </div>
}

Property Validation | 117

Class Static Properties
In the previous section, we looked at how defaultProps and propTypes are defined
outside of the class. An alternative to this is emerging in one of the latest proposals to
the ECMAScript spec: Class Fields & Static Properties.

Class static properties allow us to encapsulate propTypes and defaultProps inside of
the class declaration. Property initializers also provide encapsulation and cleaner
syntax:

class Summary extends React.Component {

 static propTypes = {
 ingredients: PropTypes.number,
 steps: PropTypes.number,
 title: (props, propName) =>
 (typeof props[propName] !== 'string') ?
 new Error("A title must be a string") :
 (props[propName].length > 20) ?
 new Error(`title is over 20 characters`) :
 null
 }

 static defaultProps = {
 ingredients: 0,
 steps: 0,
 title: "[recipe]"
 }

 render() {
 const {ingredients, steps, title} = this.props
 return (
 <div className="summary">
 <h1>{title}</h1>
 <p>
 {ingredients} Ingredients |
 {steps} Steps
 </p>
 </div>
)
 }
}

Property validation, custom property validation, and the ability to set default prop‐
erty values should be implemented in every component. This makes the component
easier to reuse because any problems with component properties will show up as con‐
sole warnings.

118 | Chapter 6: Props, State, and the Component Tree

Refs
References, or refs, are a feature that allow React components to interact with child
elements. The most common use case for refs is to interact with UI elements that col‐
lect input from the user. Consider an HTML form element. These elements are ini‐
tially rendered, but the users can interact with them. When they do, the component
should respond appropriately.

For the rest of this chapter, we are going to be working with an application that allows
users to save and manage specific hexadecimal color values. This application, the
color organizer, allows users to add colors to a list. Once a color is in the list, it can be
rated or removed by the user.

We will need a form to collect information about new colors from the user. The user
can supply the color’s title and hex value in the corresponding fields. The AddColor
Form component renders the HTML with a text input and a color input for collecting
hex values from the color wheel (Example 6-5).

Example 6-5. AddColorForm

import { Component } from 'react'

class AddColorForm extends Component {
 render() {
 return (
 <form onSubmit={e=>e.preventDefault()}>
 <input type="text"
 placeholder="color title..." required/>
 <input type="color" required/>
 <button>ADD</button>
 </form>
)
 }
}

The AddColorForm component renders an HTML form that contains three elements:
a text input for the title, a color input for the color’s hex value, and a button to submit
the form. When the form is submitted, a handler function is invoked where the
default form event is ignored. This prevents the form from trying to send a GET
request once submitted.

Once we have the form rendered, we need to provide a way to interact with it. Specifi‐
cally, when the form is first submitted, we need to collect the new color information
and reset the form’s fields so that the user can add more colors. Using refs, we can
refer to the title and color elements and interact with them (Example 6-6).

Refs | 119

Example 6-6. AddColorForm with submit method

import { Component } from 'react'

class AddColorForm extends Component {
 constructor(props) {
 super(props)
 this.submit = this.submit.bind(this)
 }
 submit(e) {
 const { _title, _color } = this.refs
 e.preventDefault();
 alert(`New Color: ${_title.value} ${_color.value}`)
 _title.value = '';
 _color.value = '#000000';
 _title.focus();
 }
 render() {
 return (
 <form onSubmit={this.submit}>
 <input ref="_title"
 type="text"
 placeholder="color title..." required/>
 <input ref="_color"
 type="color" required/>
 <button>ADD</button>
 </form>
)
 }
}

We needed to add a constructor to this ES6 component class because we moved sub
mit to its own function. With ES6 component classes, we must bind the scope of the
component to any methods that need to access that scope with this.

Next, in the render method, we’ve set the form’s onSubmit handler by pointing it to
the component’s submit method. We’ve also added ref fields to the components that
we want to reference. A ref is an identifier that React uses to reference DOM ele‐
ments. Creating _title and _color ref attributes for each input means that we can
access those elements with this.refs_title or this.refs_color.

When the user adds a new title, selects a new color, and submits the form, the compo‐
nent’s submit method will be invoked to handle the event. After we prevent the form’s
default submit behavior, we send the user an alert that echoes back the data collected
via refs. After the user dismisses the alert, refs are used again to reset the form values
and focus on the title field.

120 | Chapter 6: Props, State, and the Component Tree

2 Pete Hunt, “Thinking in React”.

Binding the ‘this’ Scope

When using React.createClass to create your components, there
is no need to bind the this scope to your component methods.
React.createClass automatically binds the this scope for you.

Inverse Data Flow
It’s nice to have a form that echoes back input data in an alert, but there is really no
way to make money with such a product. What we need to do is collect data from the
user and send it somewhere else to be handled. This means that any data collected
may eventually make its way back to the server, which we will cover in Chapter 12.
First, we need to collect the data from the form component and pass it on.

A common solution for collecting data from a React component is inverse data flow.2
It is similar to, and sometimes described as, two-way data binding. It involves sending
a callback function to the component as a property that the component can use to
pass data back as arguments. It’s called inverse data flow because we send the compo‐
nent a function as a property, and the component sends data back as function argu‐
ments.

Let’s say we want to use the color form, but when a user submits a new color we want
to collect that information and log it to the console.

We can create a function called logColor that receives the title and color as argu‐
ments. The values of those arguments can be logged to the console. When we use the
AddColorForm, we simply add a function property for onNewColor and set it to our
logColor function. When the user adds a new color, logColor is invoked, and we’ve
sent a function as a property:

const logColor = (title, color) =>
 console.log(`New Color: ${title} | ${value}`)

<AddColorForm onNewColor={logColor} />

To ensure that data is flowing properly, we will invoke onNewColor from props with
the appropriate data:

submit() {
 const {_title, _color} = this.refs
 this.props.onNewColor(_title.value, _color.value)
 _title.value = ''
 _color.value = '#000000'
 _title.focus()
}

Refs | 121

http://bit.ly/2nvMwgl

In our component, this means that we’ll replace the alert call with a call to
this.props.onNewColor and pass the new title and color values that we have
obtained through refs.

The role of the AddColorForm component is to collect data and pass it on. It is not
concerned with what happens to that data. We can now use this form to collect color
data from users and pass it on to some other component or method to handle the
collected data:

<AddColorForm onNewColor={(title, color) => {
 console.log(`TODO: add new ${title} and ${color} to the list`)
 console.log(`TODO: render UI with new Color`)
}} />

When we are ready, we can collect the information from this component and add the
new color to our list of colors.

Optional Function Properties

In order to make two-way data binding optional, you must first
check to see if the function property exists before trying to invoke
it. In the last example, not supplying an onNewColor function prop‐
erty would lead to a JavaScript error because the component will
try to invoke an undefined value.
This can be avoided by first checking for the existence of the func‐
tion property:

if (this.props.onNewColor) {
 this.props.onNewColor(_title.value, _color.value)
}

A better solution is to define the function property in the compo‐
nent’s propTypes and defaultProps:

AddColorForm.propTypes = {
 onNewColor: PropTypes.func
}

AddColorForm.defaultProps = {
 onNewColor: f=>f
}

Now when the property supplied is some type other than function,
React will complain. If the onNewColor property is not supplied, it
will default to this dummy function, f=>f. This is simply a place‐
holder function that returns the first argument sent to it. Although
this placeholder function doesn’t do anything, it can be invoked by
JavaScript without causing errors.

122 | Chapter 6: Props, State, and the Component Tree

Refs in Stateless Functional Components
Refs can also be used in stateless functional components. These components do not
have this, so it’s not possible to use this.refs. Instead of using string attributes, we
will set the refs using a function. The function will pass us the input instance as an
argument. We can capture that instance and save it to a local variable.

Let’s refactor AddColorForm as a stateless functional component:

const AddColorForm = ({onNewColor=f=>f}) => {
 let _title, _color
 const submit = e => {
 e.preventDefault()
 onNewColor(_title.value, _color.value)
 _title.value = ''
 _color.value = '#000000'
 _title.focus()
 }
 return (
 <form onSubmit={submit}>
 <input ref={input => _title = input}
 type="text"
 placeholder="color title..." required/>
 <input ref={input => _color = input}
 type="color" required/>
 <button>ADD</button>
 </form>
)
}

In this stateless functional component, refs are set with a callback function instead of
a string. The callback function passes the element’s instance as an argument. This
instance can be captured and saved into a local variable like _title or _color. Once
we’ve saved the refs to local variables, they are easily accessed when the form is sub‐
mitted.

React State Management
Thus far we’ve only used properties to handle data in React components. Properties
are immutable. Once rendered, a component’s properties do not change. In order for
our UI to change, we would need some other mechanism that can rerender the com‐
ponent tree with new properties. React state is a built-in option for managing data
that will change within a component. When application state changes, the UI is
rerendered to reflect those changes.

Users interact with applications. They navigate, search, filter, select, add, update, and
delete. When a user interacts with an application, the state of that application
changes, and those changes are reflected back to the user in the UI. Screens and

React State Management | 123

menus appear and disappear. Visible content changes. Indicators light up or are
turned off. In React, the UI is a reflection of application state.

State can be expressed in React components with a single JavaScript object. When the
state of a component changes, the component renders a new UI that reflects those
changes. What can be more functional than that? Given some data, a React compo‐
nent will represent that data as the UI. Given a change to that data, React will update
the UI as efficiently as possible to reflect that change.

Let’s take a look at how we can incorporate state within our React components.

Introducing Component State
State represents data that we may wish to change within a component. To demon‐
strate this, we will take a look at a StarRating component (Figure 6-7).

Figure 6-7. The StarRating component

The StarRating component requires two critical pieces of data: the total number of
stars to display, and the rating, or the number of stars to highlight.

We’ll need a clickable Star component that has a selected property. A stateless func‐
tional component can be used for each star:

const Star = ({ selected=false, onClick=f=>f }) =>
 <div className={(selected) ? "star selected" : "star"}
 onClick={onClick}>
 </div>

Star.propTypes = {
 selected: PropTypes.bool,
 onClick: PropTypes.func
}

Every Star element will consist of a div that includes the class 'star'. If the star is
selected, it will additionally add the class 'selected'. This component also has an
optional onClick property. When a user clicks on any star div, the onClick property
will be invoked. This will tell the parent component, the StarRating, that a Star has
been clicked.

The Star is a stateless functional component. It says it right in the name: you cannot
use state in a stateless functional component. Stateless functional components are

124 | Chapter 6: Props, State, and the Component Tree

meant to be the children of more complex, stateful components. It’s a good idea to try
to keep as many of your components as possible stateless.

The Star Is in the CSS

Our StarRating component uses CSS to construct and display a
star. Specifically, using a clip path, we can clip the area of our div to
look like a star. The clip path is collection of points that make up a
polygon:

.star {
 cursor: pointer;
 height: 25px;
 width: 25px;
 margin: 2px;
 float: left;
 background-color: grey;
 clip-path: polygon(
 50% 0%,
 63% 38%,
 100% 38%,
 69% 59%,
 82% 100%,
 50% 75%,
 18% 100%,
 31% 59%,
 0% 38%,
 37% 38%
);
}

.star.selected {
 background-color: red;
}

A regular star has a background color of grey, but a selected star
will have a background color of red.

Now that we have a Star, we can use it to create a StarRating. StarRating will
obtain the total number of stars to display from the component’s properties. The rat‐
ing, the value that the user can change, will be stored in the state.

First, let’s look at how to incorporate state into a component defined with create
Class:

const StarRating = createClass({
 displayName: 'StarRating',
 propTypes: {
 totalStars: PropTypes.number
 },
 getDefaultProps() {

React State Management | 125

 return {
 totalStars: 5
 }
 },
 getInitialState() {
 return {
 starsSelected: 0
 }
 },
 change(starsSelected) {
 this.setState({starsSelected})
 },
 render() {
 const {totalStars} = this.props
 const {starsSelected} = this.state
 return (
 <div className="star-rating">
 {[...Array(totalStars)].map((n, i) =>
 <Star key={i}
 selected={i<starsSelected}
 onClick={() => this.change(i+1)}
 />
)}
 <p>{starsSelected} of {totalStars} stars</p>
 </div>
)
 }
})

When using createClass, state can be initialized by adding getInitialState to the
component configuration and returning a JavaScript object that initially sets the state
variable, starsSelected to 0.

When the component renders, totalStars is obtained from the component’s proper‐
ties and used to render a specific number of Star elements. Specifically, the spread
operator is used with the Array constructor to initialize a new array of a specific
length that is mapped to Star elements.

The state variable starsSelected is destructured from this.state when the compo‐
nent renders. It is used to display the rating as text in a paragraph element. It is also
used to calculate the number of selected stars to display. Each Star element obtains
its selected property by comparing its index to the number of stars that are selected.
If three stars are selected, the first three Star elements will set their selected prop‐
erty to true and any remaining stars will have a selected property of false.

Finally, when a user clicks a single star, the index of that specific Star element is
incremented and sent to the change function. This value is incremented because it is
assumed that the first star will have a rating of 1 even though it has an index of 0.

126 | Chapter 6: Props, State, and the Component Tree

Initializing state in an ES6 component class is slightly different than using create
Class. In these classes, state can be initialized in the constructor:

class StarRating extends Component {

 constructor(props) {
 super(props)
 this.state = {
 starsSelected: 0
 }
 this.change = this.change.bind(this)
 }

 change(starsSelected) {
 this.setState({starsSelected})
 }

 render() {
 const {totalStars} = this.props
 const {starsSelected} = this.state
 return (
 <div className="star-rating">
 {[...Array(totalStars)].map((n, i) =>
 <Star key={i}
 selected={i<starsSelected}
 onClick={() => this.change(i+1)}
 />
)}
 <p>{starsSelected} of {totalStars} stars</p>
 </div>
)
 }

}

StarRating.propTypes = {
 totalStars: PropTypes.number
}

StarRating.defaultProps = {
 totalStars: 5
}

When an ES6 component is mounted, its constructor is invoked with the properties
injected as the first argument. Those properties are, in turn, sent to the superclass by
invoking super. In this case, the superclass is React.Component. Invoking super initi‐
alizes the component instance, and React.Component decorates that instance with
functionality that includes state management. After invoking super , we can initialize
our component’s state variables.

React State Management | 127

Once the state is initialized, it operates as it does in createClass components. State
can only be changed by calling this.setState, which updates specific parts of the
state object. After every setState call, the render function is called, updating the
state with the new UI.

Initializing State from Properties
We can initialize our state values using incoming properties. There are only a few
necessary cases for this pattern. The most common case for this is when we create a
reusable component that we would like to use across applications in different compo‐
nent trees.

When using createClass, a good way to initialize state variables based on incoming
properties is to add a method called componentWillMount. This method is invoked
once when the component mounts, and you can call this.setState() from this
method. It also has access to this.props, so you can use values from this.props to
help you initialize state:

const StarRating = createClass({
 displayName: 'StarRating',
 propTypes: {
 totalStars: PropTypes.number
 },
 getDefaultProps() {
 return {
 totalStars: 5
 }
 },
 getInitialState() {
 return {
 starsSelected: 0
 }
 },
 componentWillMount() {
 const { starsSelected } = this.props
 if (starsSelected) {
 this.setState({starsSelected})
 }
 },
 change(starsSelected) {
 this.setState({starsSelected})
 },
 render() {
 const {totalStars} = this.props
 const {starsSelected} = this.state
 return (
 <div className="star-rating">
 {[...Array(totalStars)].map((n, i) =>
 <Star key={i}

128 | Chapter 6: Props, State, and the Component Tree

3 React Docs, “Lifting State Up”.

 selected={i<starsSelected}
 onClick={() => this.change(i+1)}
 />
)}
 <p>{starsSelected} of {totalStars} stars</p>
 </div>
)
 }
})

render(
 <StarRating totalStars={7} starsSelected={3} />,
 document.getElementById('react-container')
)

componentWillMount is a part of the component lifecycle. It can be used to help you
initialize state based on property values in components created with createClass or
ES6 class components. We will dive deeper into the component lifecycle in the next
chapter.

There is an easier way to initialize state within an ES6 class component. The con‐
structor receives properties as an argument, so you can simply use the props argu‐
ment passed to the constructor:

constructor(props) {
 super(props)
 this.state = {
 starsSelected: props.starsSelected || 0
 }
 this.change = this.change.bind(this)
}

For the most part, you’ll want to avoid setting state variables from properties. Only
use these patterns when they are absolutely required. You should find this goal easy to
accomplish because when working with React components, you want to limit the
number of components that have state.3

Updating Component Properties

When initializing state variables from component properties, you
may need to reinitialize component state when a parent component
changes those properties. The componentWillRecieveProps lifecy‐
cle method can be used to solve this issue. Chapter 7 goes into
greater detail on this issue and the available methods of the compo‐
nent lifecycle.

React State Management | 129

http://bit.ly/2o6ob0z

4 Paul Hudson, “State and the Single Source of Truth”, Chapter 12 of Hacking with React.

State Within the Component Tree
All of your React components can have their own state, but should they? The joy of
using React does not come from chasing down state variables all over your applica‐
tion. The joy of using React comes from building scalable applications that are easy to
understand. The most important thing that you can do to make your application easy
to understand is limit the number of components that use state as much as possible.

In many React applications, it is possible to group all state data in the root compo‐
nent. State data can be passed down the component tree via properties, and data can
be passed back up the tree to the root via two-way function binding. The result is that
all of the state for your entire application exists in one place. This is often referred to
as having a “single source of truth.”4

Next, we will look at how to architect presentation layers where all of the state is
stored in one place, the root component.

Color Organizer App Overview
The color organizer allows users to add, name, rate, and remove colors in their cus‐
tomized lists. The entire state of the color organizer can be represented with a single
array:

{
 colors: [
 {
 "id": "0175d1f0-a8c6-41bf-8d02-df5734d829a4",
 "title": "ocean at dusk",
 "color": "#00c4e2",
 "rating": 5
 },
 {
 "id": "83c7ba2f-7392-4d7d-9e23-35adbe186046",
 "title": "lawn",
 "color": "#26ac56",
 "rating": 3
 },
 {
 "id": "a11e3995-b0bd-4d58-8c48-5e49ae7f7f23",
 "title": "bright red",
 "color": "#ff0000",
 "rating": 0
 }
]
}

130 | Chapter 6: Props, State, and the Component Tree

http://bit.ly/2ne6BdY

5 Dan Abramov, “Presentational and Container Components”, Medium, March 23, 2015.

The array tells us that we need to display three colors: ocean at dusk, lawn, and bright
red (Figure 6-8). It gives us the colors’ hex values and the current rating for each color
in the display. It also provides a way to uniquely identify each color.

Figure 6-8. Color organizer with three colors in state

This state data will drive our application. It will be used to construct the UI every
time this object changes. When users add or remove colors, they will be added to or
removed from this array. When users rate colors, their ratings will change in the
array.

Passing Properties Down the Component Tree
Earlier in this chapter, we created a StarRating component that saved the rating in
the state. In the color organizer, the rating is stored in each color object. It makes
more sense to treat the StarRating as a presentational component5 and declare it as a
stateless functional component. Presentational components are only concerned with
how things look in the application. They only render DOM elements or other presen‐

State Within the Component Tree | 131

http://bit.ly/2ndQ9u0

tational components. All data is sent to these components via properties and passed
out of these components via callback functions.

In order to make the StarRating component purely presentational, we need to
remove state. Presentational components only use props. Since we are removing state
from this component, when a user changes the rating, that data will be passed out of
this component via a callback function:

const StarRating = ({starsSelected=0, totalStars=5, onRate=f=>f}) =>
 <div className="star-rating">
 {[...Array(totalStars)].map((n, i) =>
 <Star key={i}
 selected={i<starsSelected}
 onClick={() => onRate(i+1)}/>
)}
 <p>{starsSelected} of {totalStars} stars</p>
 </div>

First, starsSelected is no longer a state variable; it is a property. Second, an onRate
callback property has been added to this component. Instead of calling setState
when the user changes the rating, this component now invokes onRate and sends the
rating as an argument.

State in Reusable Components

You may need to create stateful UI components for distribution
and reuse across many different applications. It is not absolutely
required that you remove every last state variable from compo‐
nents that are only used for presentation. It is a good rule to follow,
but sometimes it may make sense to keep state in a presentation
component.

Restricting state to a single location, the root component, means that all of the data
must be passed down to child components as properties (Figure 6-9).

In the color organizer, state consists of an array of colors that is declared in the App
component. Those colors are passed down to the ColorList component as a prop‐
erty:

class App extends Component {

 constructor(props) {
 super(props)
 this.state = {
 colors: []
 }
 }

 render() {

132 | Chapter 6: Props, State, and the Component Tree

 const { colors } = this.state
 return (
 <div className="app">
 <AddColorForm />
 <ColorList colors={colors} />
 </div>
)
 }

}

Figure 6-9. State is passed from the App component to child components as properties

Initially the colors array is empty, so the ColorList component will display a mes‐
sage instead of each color. When there are colors in the array, data for each individual
color is passed to the Color component as properties:

const ColorList = ({ colors=[] }) =>
 <div className="color-list">
 {(colors.length === 0) ?
 <p>No Colors Listed. (Add a Color)</p> :
 colors.map(color =>
 <Color key={color.id} {...color} />
)
 }
 </div>

Now the Color component can display the color’s title and hex value and pass the col‐
or’s rating down to the StarRating component as a property:

State Within the Component Tree | 133

const Color = ({ title, color, rating=0 }) =>
 <section className="color">
 <h1>{title}</h1>
 <div className="color"
 style={{ backgroundColor: color }}>
 </div>
 <div>
 <StarRating starsSelected={rating} />
 </div>
 </section>

The number of starsSelected in the star rating comes from each color’s rating. All
of the state data for every color has been passed down the tree to child components as
properties. When there is a change to the data in the root component, React will
change the UI as efficiently as possible to reflect the new state.

Passing Data Back Up the Component Tree
State in the color organizer can only be updated by calling setState from the App
component. If users initiate any changes from the UI, their input will need to be
passed back up the component tree to the App component in order to update the state
(Figure 6-10). This can be accomplished through the use of callback function proper‐
ties.

Figure 6-10. Passing data back up to the root component when there are UI events

134 | Chapter 6: Props, State, and the Component Tree

In order to add new colors, we need a way to uniquely identify each color. This iden‐
tifier will be used to locate colors within the state array. We can use the uuid library to
create absolutely unique IDs:

npm install uuid --save

All new colors will be added to the color organizer from the AddColorForm compo‐
nent that we constructed in “Refs” on page 119. That component has an optional call‐
back function property called onNewColor. When the user adds a new color and
submits the form, the onNewColor callback function is invoked with the new title and
color hex value obtained from the user:

import { Component } from 'react'
import { v4 } from 'uuid'
import AddColorForm from './AddColorForm'
import ColorList from './ColorList'

export class App extends Component {

 constructor(props) {
 super(props)
 this.state = {
 colors: []
 }
 this.addColor = this.addColor.bind(this)
 }

 addColor(title, color) {
 const colors = [
 ...this.state.colors,
 {
 id: v4(),
 title,
 color,
 rating: 0
 }
]
 this.setState({colors})
 }

 render() {
 const { addColor } = this
 const { colors } = this.state
 return (
 <div className="app">
 <AddColorForm onNewColor={addColor} />
 <ColorList colors={colors} />
 </div>
)
 }

State Within the Component Tree | 135

}

All new colors can be added from the addColor method in the App component. This
function is bound to the component in the constructor, which means that it has
access to this.state and this.setState.

New colors are added by concatenating the current colors array with a new color
object. The ID for the new color object is set using uuid’s v4 function. This creates a
unique identifier for each color. The title and color are passed to the addColor
method from the AddColorForm component. Finally, the initial value for each color’s
rating will be 0.

When the user adds a color with the AddColorForm component, the addColor method
updates the state with a new list of colors. Once the state has been updated, the App
component rerenders the component tree with the new list of colors. The render
method is invoked after every setState call. The new data is passed down the tree as
properties and is used to construct the UI.

If the user wishes to rate or remove a color, we need to collect information about that
color. Each color will have a remove button: if the user clicks the remove button, we’ll
know they wish to remove that color. Also, if the user changes the color’s rating with
the StarRating component, we want to change the rating of that color:

const Color = ({title,color,rating=0,onRemove=f=>f,onRate=f=>f}) =>
 <section className="color">
 <h1>{title}</h1>
 <button onClick={onRemove}>X</button>
 <div className="color"
 style={{ backgroundColor: color }}>
 </div>
 <div>
 <StarRating starsSelected={rating} onRate={onRate} />
 </div>
 </section>

The information that will change in this app is stored in the list of colors. Therefore,
onRemove and onRate callback properties will have to be added to each color to pass
those events back up the tree. The Color component will also have onRate and onRe
move callback function properties. When colors are rated or removed, the ColorList
component will need to notify its parent, the App component, that the color should be
rated or removed:

const ColorList = ({ colors=[], onRate=f=>f, onRemove=f=>f }) =>
 <div className="color-list">
 {(colors.length === 0) ?
 <p>No Colors Listed. (Add a Color)</p> :
 colors.map(color =>
 <Color key={color.id}

136 | Chapter 6: Props, State, and the Component Tree

 {...color}
 onRate={(rating) => onRate(color.id, rating)}
 onRemove={() => onRemove(color.id)} />
)
 }
 </div>

The ColorList component will invoke onRate if any colors are rated and onRemove if
any colors are removed. This component manages the collection of colors by map‐
ping them to individual Color components. When individual colors are rated or
removed the ColorList identifies which color was rated or removed and passes that
info to its parent via callback function properties.

ColorList’s parent is App. In the App component, rateColor and removeColor meth‐
ods can be added and bound to the component instance in the constructor. Any time
a color needs to be rated or removed, these methods will update the state. They are
added to the ColorList component as callback function properties:

class App extends Component {

 constructor(props) {
 super(props)
 this.state = {
 colors: []
 }
 this.addColor = this.addColor.bind(this)
 this.rateColor = this.rateColor.bind(this)
 this.removeColor = this.removeColor.bind(this)
 }

 addColor(title, color) {
 const colors = [
 ...this.state.colors,
 {
 id: v4(),
 title,
 color,
 rating: 0
 }
]
 this.setState({colors})
 }

 rateColor(id, rating) {
 const colors = this.state.colors.map(color =>
 (color.id !== id) ?
 color :
 {
 ...color,
 rating
 }

State Within the Component Tree | 137

)
 this.setState({colors})
 }

 removeColor(id) {
 const colors = this.state.colors.filter(
 color => color.id !== id
)
 this.setState({colors})
 }

 render() {
 const { addColor, rateColor, removeColor } = this
 const { colors } = this.state
 return (
 <div className="app">
 <AddColorForm onNewColor={addColor} />
 <ColorList colors={colors}
 onRate={rateColor}
 onRemove={removeColor} />
 </div>
)
 }

}

Both rateColor and removeColor expect the ID of the color to rate or remove. The
ID is captured in the ColorList component and passed as an argument to rateColor
or removeColor. The rateColor method finds the color to rate and changes its rating
in the state. The removeColor method uses Array.filter to create a new state array
without the removed color.

Once setState is called, the UI is rerendered with the new state data. All data that
changes in this app is managed from a single component, App. This approach makes
it much easier to understand what data the application uses to create state and how
that data will change.

React components are quite robust. They provide us with a clean way to manage and
validate properties, communicate with child elements, and manage state data from
within a component. These features make it possible to construct beautifully scalable
presentation layers.

We have mentioned many times that state is for data that changes. You can also use
state to cache data in your application. For instance, if you had a list of records that
the user could search, the records list could be stored in state until they are searched.

Reducing state to root components is often recommended. You will encounter this
approach in many React applications. Once your application reaches a certain size,
two-way data binding and explicitly passing properties can become quite a nuisance.

138 | Chapter 6: Props, State, and the Component Tree

The Flux design pattern and Flux libraries like Redux can be used to manage state
and reduce boilerplate in these situations.

React is a relatively small library, and thus far we’ve reviewed much of its functional‐
ity. The major features of React components that we have yet to discuss include the
component lifecycle and higher-order components, which we will cover in the next
chapter.

State Within the Component Tree | 139

CHAPTER 7

Enhancing Components

So far we’ve learned how to mount and compose components to create application
presentation layers with React. It is possible to build quite a few applications using
only the React component’s render method. However, the world of JavaScript is com‐
plex. There is asynchronicity everywhere. We have latency to deal with when we load
our data. We have delays to work with when we create animations. It is highly likely
that you have preferred JavaScript libraries to help you navigate the complexity of
real-world JavaScript.

Before we can enhance our applications with third-party JavaScript libraries or back‐
end data requests, we must first understand how to work with the component lifecycle:
a series of methods that can be invoked every time we mount or update a component.

We will start this chapter by exploring the component lifecycle. After we introduce
the lifecycle, we will review how we can use it to load data, incorporate third-party
JavaScript, and even improve our component’s performance. Next, we will explore
how to reuse functionality across our applications with higher-order components. We
will wrap up this chapter by looking at alternative application architectures that man‐
age state entirely outside of React.

Component Lifecycles
The component lifecycle consists of methods that are invoked in series when a com‐
ponent is mounted or updated. These methods are invoked either before or after the
component renders the UI. In fact, the render method itself is a part of the compo‐
nent lifecycle. There are two primary lifecycles: the mounting lifecycle and the updat‐
ing lifecycle.

141

Mounting Lifecycle
The mounting lifecycle consists of methods that are invoked when a component is
mounted or unmounted. In other words, these methods allow you to initially set up
state, make API calls, start and stop timers, manipulate the rendered DOM, initialize
third-party libraries, and more. These methods allow you to incorporate JavaScript to
assist in the initialization and destruction of a component.

The mounting lifecycle is slightly different depending upon whether you use ES6
class syntax or React.createClass to create components. When you use
createClass, getDefaultProps is invoked first to obtain the component’s proper‐
ties. Next, getInitialState is invoked to initialize the state.

ES6 classes do not have these methods. Instead, default props are obtained and sent
to the constructor as an argument. The constructor is where the state is initialized.
Both ES6 class constructors and getInitialState have access to the properties and,
if required, can use them to help define the initial state.

Table 7-1 lists the methods of the component mounting lifecycle.

Table 7-1. The component mounting lifecycle

ES6 class React.createClass()
 getDefaultProps()

constructor(props) getInitialState()

componentWillMount() componentWillMount()

render() render()

componentDidMount() componentDidMount()

componentWillUnmount() componentWillUnmount()

Class Constructors

Technically, the constructor is not a lifecycle method. We include it
because it is used for component initialization (this is where the
state is initialized). Also, the constructor is always the first function
invoked when a component is mounted.

Once the properties are obtained and state is initialized, the componentWillMount
method is invoked. This method is invoked before the DOM is rendered and can be
used to initialize third-party libraries, start animations, request data, or perform any
additional setup that may be required before a component is rendered. It is possible
to invoke setState from this method to change the component state just before the
component is initially rendered.

142 | Chapter 7: Enhancing Components

Let’s use the componentWillMount method to initialize a request for some members.
When we get a successful response, we will update the state. Remember the
getFakeMembers promise that we created in Chapter 2? We will use that to load a
random list of members from randomuser.me:

const getFakeMembers = count => new Promise((resolves, rejects) => {
 const api = `https://api.randomuser.me/?nat=US&results=${count}`
 const request = new XMLHttpRequest()
 request.open('GET', api)
 request.onload = () => (request.status == 200) ?
 resolves(JSON.parse(request.response).results) :
 reject(Error(request.statusText))
 request.onerror = err => rejects(err)
 request.send()
})

We will use this promise in the componentWillMount method in a MemberList com‐
ponent. This component will use a Member component to display each user’s picture,
name, email address, and location:

const Member = ({ email, picture, name, location }) =>
 <div className="member">

 <h1>{name.first} {name.last}</h1>
 <p>{email}</p>
 <p>{location.city}, {location.state}</p>
 </div>

class MemberList extends Component {

 constructor() {
 super()
 this.state = {
 members: [],
 loading: false,
 error: null
 }
 }

 componentWillMount() {
 this.setState({loading: true})
 getFakeMembers(this.props.count).then(
 members => {
 this.setState({members, loading: false})
 },
 error => {
 this.setState({error, loading: false})
 }
)
 }

 componentWillUpdate() {

Component Lifecycles | 143

 console.log('updating lifecycle')
 }

 render() {
 const { members, loading, error } = this.state
 return (
 <div className="member-list">
 {(loading) ?
 Loading Members :
 (members.length) ?
 members.map((user, i) =>
 <Member key={i} {...user} />
) :
 0 members loaded...
 }
 {(error) ? <p>Error Loading Members: error</p> : ""}
 </div>
)
 }
}

Initially, when the component is mounted, MemberList has an empty array for mem
bers and loading is false. In the componentWillMount method, the state is changed
to reflect the fact that a request was made to load some users. Next, while waiting for
the request to complete, the component is rendered. Because loading is now true, a
message will be displayed alerting the user to the latency. When the promise passes or
fails, the loading state is returned to false and either the members have been loaded
or an error has been returned. Calling setState at this point will rerender our UI
with either some members or an error.

Using setState in componentWillMount

Calling setState before the component has rendered will not kick
off the updating lifecycle. Calling setState after the component
has been rendered will kick off the updating lifecycle. If you call
setState inside an asynchronous callback defined within the
componentWillMount method, it will be invoked after the compo‐
nent has rendered and will trigger the updating lifecycle.

The other methods of the component mounting lifecycle include componentDidMount
and componentWillUnmount. componentDidMount is invoked just after the component
has rendered, and componentWillUnmount is invoked just before the component is
unmounted.

componentDidMount is another good place to make API requests. This method is
invoked after the component has rendered, so any setState calls from this method
will kick off the updating lifecycle and rerender the component.

144 | Chapter 7: Enhancing Components

componentDidMount is also a good place to initialize any third-party JavaScript that
requires a DOM. For instance, you may want to incorporate a drag-and-drop library
or a library that handles touch events. Typically, these libraries require a DOM before
they can be initialized.

Another good use for componentDidMount is to start background processes like inter‐
vals or timers. Any processes started in componentDidMount or componentWillMount
can be cleaned up in componentWillUnmount. You don’t want to leave background
processes running when they are not needed.

Components are unmounted when their parents remove them or they have been
unmounted with the unmountComponentAtNode function found in react-dom. This
method is used to unmount the root component. When a root component is
unmounted, its children are unmounted first.

Let’s take a look at a clock example. When the Clock component has mounted, a
timer will be started. When the user clicks on the close button, the clock will be
unmounted with unmountComponentAtNode and the timer stopped:

import React from 'react'
import { render, unmountComponentAtNode } from 'react-dom'
import { getClockTime } from './lib'
const { Component } = React
const target = document.getElementById('react-container')

class Clock extends Component {

 constructor() {
 super()
 this.state = getClockTime()
 }

 componentDidMount() {
 console.log("Starting Clock")
 this.ticking = setInterval(() =>
 this.setState(getClockTime())
 , 1000)
 }

 componentWillUnmount() {
 clearInterval(this.ticking)
 console.log("Stopping Clock")
 }

 render() {
 const { hours, minutes, seconds, timeOfDay } = this.state
 return (
 <div className="clock">
 {hours}
 :

Component Lifecycles | 145

 {minutes}
 :
 {seconds}
 {timeOfDay}
 <button onClick={this.props.onClose}>x</button>
 </div>
)
 }

}

render(
 <Clock onClose={() => unmountComponentAtNode(target) }/>,
 target
)

In Chapter 3, we created a serializeTime function that abstracts civilian time with
leading zeros from the data object. Every time serializeTime is invoked, the current
time is returned in an object that contains hours, minutes, seconds, and the a.m. or
p.m. indicator. Initially, we call serializeTime to get the initial state for our clock.

After the component has mounted, we start an interval called ticking. It invokes set
State with a new time every second. The UI for the clock changes its value to the
updated time every second.

When the close button is clicked, the Clock component is unmounted. Just before the
clock is removed from the DOM, the ticking interval is cleared so that it no longer
runs in the background.

Updating Lifecycle
The updating lifecycle is a series of methods that are invoked when a component’s
state changes or when new properties are received from the parent. This lifecycle can
be used to incorporate JavaScript before the component updates or to interact with
the DOM after the update. Additionally, it can be used to improve the performance of
an application because it gives you the ability to cancel unnecessary updates.

The updating lifecycle kicks off every time setState is called. Calling setState
within the updating lifecycle will cause an infinite recursive loop that results in a
stack overflow error. Therefore, setState can only be called in componentWillRecei
veProps, which allows the component to update state when its properties are upda‐
ted.

The updating lifecycle methods include:

componentWillReceiveProps(nextProps)

Only invoked if new properties have been passed to the component. This is the
only method where setState can be called.

146 | Chapter 7: Enhancing Components

shouldComponentUpdate(nextProps, nextState)

The update lifecycle’s gatekeeper—a predicate that can call off the update. This
method can be used to improve performance by only allowing necessary updates.

componentWillUpdate(nextProps, nextState)

Invoked just before the component updates. Similar to componentWillMount,
only it is invoked before each update occurs.

componentDidUpdate(prevProps, prevState)

Invoked just after the update takes place, after the call to render. Similar to compo
nentDidMount, but it is invoked after each update.

Let’s modify the color organizer application that we created in the last chapter. Specif‐
ically, we’ll add some updating lifecycle functions to the Color component that will
allow us to see how the updating lifecycle works. Let’s assume that we already have
four colors in the state array: Ocean Blue, Tomato, Lawn, and Party Pink. First, we
will use the componentWillMount method to initialize color objects with a style, and
set all four Color elements to have grey backgrounds:

import { Star, StarRating } from '../components'

export class Color extends Component {

 componentWillMount() {
 this.style = { backgroundColor: "#CCC" }
 }

 render() {
 const { title, rating, color, onRate } = this.props
 return
 <section className="color" style={this.style}>
 <h1 ref="title">{title}</h1>
 <div className="color"
 style={{ backgroundColor: color }}>
 </div>
 <StarRating starsSelected={rating}
 onRate={onRate} />
 </section>
 }

}

Color.propTypes = {
 title: PropTypes.string,
 rating: PropTypes.number,
 color: PropTypes.string,
 onRate: PropTypes.func
}

Color.defaultProps = {

Component Lifecycles | 147

 title: undefined,
 rating: 0,
 color: "#000000",
 onRate: f=>f
}

When the color list originally mounts, each color background will be grey
(Figure 7-1).

Figure 7-1. Mounted colors with grey background

We can add componentWillUpdate to the Color component in order to remove the
grey background from each color just before the color updates:

componentWillMount() {
 this.style = { backgroundColor: "#CCC" }
}

componentWillUpdate() {
 this.style = null
}

Adding these lifecycle functions allows us to see when a component has mounted and
when that component is updating. Initially, mounted components will have a grey
background. Once each color is updated, the background will return to white.

148 | Chapter 7: Enhancing Components

If you run this code and rate any color, you will notice that all four colors update even
though you have only changed the rating of a single color (see Figure 7-2).

Figure 7-2. Rating blue triggers update, and all four components update

Here, changing the rating of Ocean Blue from three to four stars caused all four col‐
ors to update because when the parent, the ColorList, updates state, it rerenders each
Color component. Components that are rerendered are not re-mounted; if they are
already there, an update occurs instead. When a component is updated, all of its chil‐
dren are also updated. When a single color is rated, all four colors are updated, all
four StarRating components are updated, and all five stars on each component are
updated.

We can improve the performance of our application by preventing colors from being
updated when their property values have not changed. Adding the lifecycle function
shouldComponentUpdate prevents unnecessary updates from occurring. This method
returns either true or false (true when the component should update and false
when updating should be skipped):

Component Lifecycles | 149

componentWillMount() {
 this.style = { backgroundColor: "#CCC" }
}

shouldComponentUpdate(nextProps) {
 const { rating } = this.props
 return rating !== nextProps.rating
}

componentWillUpdate() {
 this.style = null
}

The shouldComponentUpdate method can compare the new properties with the old
ones. The new properties are passed to this method as an argument, the old proper‐
ties are still the current props, and the component has not updated. If the rating is the
same in the current properties and the new ones, there is no need for the color to
update. If the color does not update, none of its children will update either. When the
rating does not change, the entire component tree under each Color will not update.

This can be demonstrated by running this code and updating any of the colors. The
componentWillUpdate method is only called if the component is going to update. It
comes after shouldComponentUpdate in the lifecycle. The backgrounds will stay grey
until the Color components are updated by changing their ratings (Figure 7-3).

If the shouldComponentUpdate method returns true, the rest of the updating lifecycle
will get to it. The rest of the lifecycle functions also receive the new props and new
state as arguments. (The componentDidUpdate method receives the previous props
and the previous state because once this method is reached, the update already has
occurred and the props have been changed.)

Let’s log a message after the component updates. In the componentDidUpdate func‐
tion, we’ll compare the current properties to the old ones to see if the rating got better
or worse:

componentWillMount() {
 this.style = { backgroundColor: "#CCC" }
}

shouldComponentUpdate(nextProps) {
 const { rating } = this.props
 return rating !== nextProps.rating
}

componentWillUpdate() {
 this.style = null
}

componentDidUpdate(prevProps) {
 const { title, rating } = this.props

150 | Chapter 7: Enhancing Components

 const status = (rating > prevProps.rating) ? 'better' : 'worse'
 console.log(`${title} is getting ${status}`)
}

Figure 7-3. One update at a time with shouldComponentUpdate

The updating lifecycle methods componentWillUpdate and componentDidUpdate are
great places to interact with DOM elements before or after updates. In this next sam‐
ple, the updating process will be paused with an alert in componentWillUpdate:

componentWillMount() {
 this.style = { backgroundColor: "#CCC" }
}

shouldComponentUpdate(nextProps) {
 return this.props.rating !== nextProps.rating
}

componentWillUpdate(nextProps) {
 const { title, rating } = this.props
 this.style = null
 this.refs.title.style.backgroundColor = "red"
 this.refs.title.style.color = "white"
 alert(`${title}: rating ${rating} -> ${nextProps.rating}`)

Component Lifecycles | 151

}

componentDidUpdate(prevProps) {
 const { title, rating } = this.props
 const status = (rating > prevProps.rating) ? 'better' : 'worse'
 this.refs.title.style.backgroundColor = ""
 this.refs.title.style.color = "black"
}

If change the rating of Tomato from two to four stars, the updating process will be
paused by an alert (Figure 7-4). The current DOM element for the color’s title is given
a different background and text color.

Figure 7-4. Updating paused with alert

As soon as we clear the alert, the component updates and componentDidUpdate is
invoked, clearing the title’s background color (Figure 7-5).

152 | Chapter 7: Enhancing Components

Figure 7-5. componentDidUpdate removes the title highlight

Sometimes our components hold state that is originally set based upon properties. We
can set the initial state of our component classes in the constructor or the
componentWillMount lifecycle method. When those properties change, we will need
to update the state using the componentWillReceiveProps method.

In Example 7-1, we have a parent component that holds state, HiddenMessages. This
component holds three messages in state and shows only one message at a time.
When HiddenMessages mounts, an interval is added to cycle through the messages,
only displaying one at a time.

Example 7-1. HiddenMessages component

class HiddenMessages extends Component {

 constructor(props) {
 super(props)
 this.state = {
 messages: [
 "The crow crows after midnight",
 "Bring a watch and dark clothes to the spot",
 "Jericho Jericho Go"
],

Component Lifecycles | 153

 showing: -1
 }
 }

 componentWillMount() {
 this.interval = setInterval(() => {
 let { showing, messages } = this.state
 showing = (++showing >= messages.length) ?
 -1 :
 showing
 this.setState({showing})
 }, 1000)
 }

 componentWillUnmount() {
 clearInterval(this.interval)
 }

 render() {
 const { messages, showing } = this.state
 return (
 <div className="hidden-messages">
 {messages.map((message, i) =>
 <HiddenMessage key={i}
 hide={(i!==showing)}>
 {message}
 </HiddenMessage>
)}
 </div>
)
 }
}

The HiddenMessages component cycles through each of the messages in the state
array and shows one at a time. The logic for this is set up in componentWillMount.
When the component mounts, an interval is added that updates the index for the
message that should be showing. The component renders all of the messages using
the HiddenMessage component and only sets the hide property on one of them to
true on each cycle. The rest of the properties are set to false, and the hidden mes‐
sage changes every second.

Take a look at the HiddenMessage component, the one used for each message
(Example 7-2). When this component is originally mounted, the hide property is
used to determine its state. However, when the parent updates this component’s prop‐
erties, nothing happens. This component will not know about it.

154 | Chapter 7: Enhancing Components

Example 7-2. HiddenMessage component

class HiddenMessage extends Component {

 constructor(props) {
 super(props)
 this.state = {
 hidden: (props.hide) ? props.hide : true
 }
 }

 render() {
 const { children } = this.props
 const { hidden } = this.state
 return (
 <p>
 {(hidden) ?
 children.replace(/[a-zA-Z0-9]/g, "x") :
 children
 }
 </p>
)
 }

}

The problem occurs when the parent component changes the hide property. That
change does not automatically cause the state of HiddenMessage to change.

The componentWillReceiveProps lifecycle method was created for these scenarios. It
will be invoked when the properties have been changed by the parent, and those
changed properties can be used to modify the state internally:

class HiddenMessage extends Component {

 constructor(props) {
 super(props)
 this.state = {
 hidden: (props.hide) ? props.hide : true
 }
 }

 componentWillReceiveProps(nextProps) {
 this.setState({hidden: nextProps.hide})
 }

 render() {
 const { children } = this.props
 const { hidden } = this.state
 return (
 <p>
 {(hidden) ?

Component Lifecycles | 155

 children.replace(/[a-zA-Z0-9]/g, "x") :
 children
 }
 </p>
)
 }

}

When the parent component, HiddenMessages, changes the property for hide,
componentWillReceiveProps allows us to update the state.

Setting State from Props
The previous code sample has been reduced to demonstrate the use of componentWill
ReceiveProps. If this is all we are doing with HiddenMessage, then we should use a
stateless functional component instead. The only reason we would ever add state to a
child component is when we want that component to change things about itself inter‐
nally.

For example, using componentWillReceiveProps to modify state would be warranted
if the component required a setState call:

hide() {
 const hidden = true
 this.setState({hidden})
}

show() {
 const hidden = false
 this.setState({hidden})
}

return
 <p onMouseEnter={this.show}
 onMouseLeave={this.hide}>
 {(hidden) ?
 children.replace(/[a-zA-Z0-9]/g, "x") :
 children
 }
 </p>

In this case, it would be appropriate to store state in the HiddenMessage component.
If the component is not going to change itself, keep it stateless and manage the state
from the parent only.

The component lifecycle methods give us much more control over how a component
should be rendered or updated. They provide hooks for us to add functionality before
or after both mounting and updating have occurred. Next, we will explore how these

156 | Chapter 7: Enhancing Components

lifecycle methods can be used to incorporate third-party JavaScript libraries. First,
however, we’ll take a brief look at the “React.Children” API.

React.Children
React.Children provides a way of working with the children of a particular compo‐
nent. It allows you to count, map, loopover, or convert props.children to an array. It
also allows you to verify that you are displaying a single child with
React.Children.only:

import { Children, PropTypes } from 'react'
import { render } from 'react-dom'

const Display = ({ ifTruthy=true, children }) =>
 (ifTruthy) ?
 Children.only(children) :
 null

const age = 22

render(
 <Display ifTruthy={age >= 21}>
 <h1>You can enter</h1>
 </Display>,
 document.getElementById('react-container')
)

In this example, the Display component will display only a single child, the h1 ele‐
ment. If the Display component contained multiple children, React would throw an
error: “onlyChild must be passed a children with exactly one child.”

We can also use React.Children to convert the children property to an array. This
next sample extends the Display component to additionally handle else cases:

const { Children, PropTypes } = React
const { render } = ReactDOM

const findChild = (children, child) =>
 Children.toArray(children)
 .filter(c => c.type === child)[0]

const WhenTruthy = ({children}) =>
 Children.only(children)

const WhenFalsy = ({children}) =>
 Children.only(children)

const Display = ({ ifTruthy=true, children }) =>
 (ifTruthy) ?
 findChild(children, WhenTruthy) :
 findChild(children, WhenFalsy)

Component Lifecycles | 157

const age = 19

render(
 <Display ifTruthy={age >= 21}>
 <WhenTruthy>
 <h1>You can Enter</h1>
 </WhenTruthy>
 <WhenFalsy>
 <h1>Beat it Kid</h1>
 </WhenFalsy>
 </Display>,
 document.getElementById('react-container')
)

The Display component will display a single child when a condition is true or
another when the condition is false. To accomplish this, we create WhenTruthy and
WhenFalsy components and use them as children in the Display component. The
findChild function uses React.Children to convert the children into an array. We
can filter that array to locate and return an individual child by component type.

JavaScript Library Integration
Frameworks such as Angular and jQuery come with their own tools for accessing
data, rendering the UI, modeling state, handling routing, and more. React, on the
other hand, is simply a library for creating views, so we may need to work with other
JavaScript libraries. If we understand how the lifecycle functions operate, we can
make React play nice with just about any JavaScript library.

React with jQuery

Using jQuery with React is generally frowned upon by the commu‐
nity. It is possible to integrate jQuery and React, and the integration
could be a good choice for learning React or migrating legacy code
to React. However, applications perform much better if we incor‐
porate smaller libraries with React, as opposed to large frameworks.
Additionally, using jQuery to manipulate the DOM directly
bypasses the virtual DOM, which can lead to strange errors.

In this section, we’ll incorporate a couple of different JavaScript libraries into React
components. Specifically, we’ll look at ways to make API calls and visualize data with
the support of other JavaScript libraries.

158 | Chapter 7: Enhancing Components

Making Requests with Fetch
Fetch is a polyfill created by the WHATWG group that allows us to easily make API
calls using promises. In this section we will introduce isomorphic-fetch, a version of
Fetch that works nicely with React. Let’s install isomorphic-fetch:

npm install isomorphic-fetch --save

The component lifecycle functions provide us a place to integrate JavaScript. In this
case, they are where we will make an API call. Components that make API calls have
to handle latency, the delay that the user experiences while waiting for a response. We
can address these issues in our state by including variables that tell the component
whether a request is pending or not.

In the following example, the CountryList component creates an ordered list of
country names. Once mounted, the component makes an API call and changes the
state to reflect that it is loading data. The loading state remains true until there is a
response from this API call:

import { Component } from 'react'
import { render } from 'react-dom'
import fetch from 'isomorphic-fetch'

class CountryList extends Component {

 constructor(props) {
 super(props)
 this.state = {
 countryNames: [],
 loading: false
 }
 }

 componentDidMount() {
 this.setState({loading: true})
 fetch('https://restcountries.eu/rest/v1/all')
 .then(response => response.json())
 .then(json => json.map(country => country.name))
 .then(countryNames =>
 this.setState({countryNames, loading: false})
)
 }

 render() {
 const { countryNames, loading } = this.state
 return (loading) ?
 <div>Loading Country Names...</div> :
 (!countryNames.length) ?
 <div>No country Names</div> :

 {countryNames.map(

JavaScript Library Integration | 159

 (x,i) => <li key={i}>{x}
)}

 }

}

render(
 <CountryList />,
 document.getElementById('react-container')
)

When the component mounts, just before the fetch call, we set the loading state to
true. This tells our component, and ultimately our users, that we are in the process of
retrieving the data. When we get a response from our fetch call, we obtain the JSON
object and map it to an array of country names. Finally, the country names are added
to the state and the DOM updated.

Incorporating a D3 Timeline
Data Driven Documents (D3) is a JavaScript framework that can be used to construct
data visualizations for the browser. D3 provides a rich set of tools that allow us to
scale and interpolate data. Additionally, D3 is functional. You compose D3 applica‐
tions by chaining function calls together to produce a DOM visualization from an
array of data.

A timeline is an example of a data visualization. A timeline takes event dates as data
and represents that information visually with graphics. Historic events that occurred
earlier are represented to the left of those events that occurred later. The space
between each event on a timeline in pixels represents the time that has elapsed
between the events (Figure 7-6).

Figure 7-6. Timeline data visualization

This timeline visualizes almost 100 years’ worth of events in just 500 pixels. The pro‐
cess of converting year values to their corresponding pixel values is called interpola‐

160 | Chapter 7: Enhancing Components

tion. D3 provides all of the tools necessary for interpolating data ranges from one
measurement to another.

Let’s take a look at how to incorporate D3 with React to build this timeline. First, we’ll
need to install D3:

npm install d3 --save

D3 takes data, typically arrays of objects, and develops visualizations based upon that
data. Take a look at the array of historic ski dates. This is the data for our timeline:

const historicDatesForSkiing = [
 {
 year: 1879,
 event: "Ski Manufacturing Begins"
 },
 {
 year: 1882,
 event: "US Ski Club Founded"
 },
 {
 year: 1924,
 event: "First Winter Olympics Held"
 },
 {
 year: 1926,
 event: "First US Ski Shop Opens"
 },
 {
 year: 1932,
 event: "North America's First Rope Tow Spins"
 },
 {
 year: 1936,
 event: "First Chairlift Spins"
 },
 {
 year: 1949,
 event: "Squaw Valley, Mad River Glen Open"
 },
 {
 year: 1958,
 event: "First Gondola Spins"
 },
 {
 year: 1964,
 event: "Plastic Buckle Boots Available"
 }
]

The easiest way to incorporate D3 into a React component is to let React render the
UI, then have D3 create and add the visualization. In the following example, D3 is

JavaScript Library Integration | 161

incorporated into a React component. Once the component renders, D3 builds the
visualization and adds it to the DOM:

import d3 from 'd3'
import { Component } from 'react'
import { render } from 'react-dom'
class Timeline extends Component {

 constructor({data=[]}) {
 const times = d3.extent(data.map(d => d.year))
 const range = [50, 450]
 super({data})
 this.state = {data, times, range}
 }

 componentDidMount() {
 let group
 const { data, times, range } = this.state
 const { target } = this.refs
 const scale = d3.time.scale().domain(times).range(range)

 d3.select(target)
 .append('svg')
 .attr('height', 200)
 .attr('width', 500)

 group = d3.select(target.children[0])
 .selectAll('g')
 .data(data)
 .enter()
 .append('g')
 .attr(
 'transform',
 (d, i) => 'translate(' + scale(d.year) + ', 0)'
)

 group.append('circle')
 .attr('cy', 160)
 .attr('r', 5)
 .style('fill', 'blue')

 group.append('text')
 .text(d => d.year + " - " + d.event)
 .style('font-size', 10)
 .attr('y', 115)
 .attr('x', -95)
 .attr('transform', 'rotate(-45)')
 }

 render() {
 return (
 <div className="timeline">

162 | Chapter 7: Enhancing Components

 <h1>{this.props.name} Timeline</h1>
 <div ref="target"></div>
 </div>
)
 }

}

render(
 <Timeline name="History of Skiing"
 data={historicDatesForSkiing} />,
 document.getElementById('react-container')
)

In this example, some of the D3 setup occurs in the constructor, but most of the
heavy lifting is done by D3 in the componentDidMount function. Once the DOM is
rendered, D3 builds the visualization using Scalable Vector Graphics (SVG). This
approach will work and is a good way to quickly incorporate existing D3 visualiza‐
tions into React components.

We can, however, take this integration one step further by letting React manage the
DOM and D3 do the math. Take a look at these three lines of code:

const times = d3.extent(data.map(d => d.year))
const range = [50, 450]

const scale = d3.time.scale().domain(times).range(range)

Both times and range are set up in the constructor and added to the component
state. times represents our domain. It contains the values for the earliest year and the
latest year. It is calculated by using D3’s extent function to find the minimum and
maximum values in an array of numeric values. range represents the range in pixels
for the timeline. The first date, 1879, will be placed at 0 px on the x-scale and the last
date, 1964, will be placed at 450 px on the x-scale.

The next line creates the scale, which is a function that can be used to interpolate the
pixel value for any year on our time scale. The scale is created by sending the domain
and the range to the D3 time.scale function. The scale function is used in the visu‐
alization to get the x position for every date that falls between 1879 and 1964.

Instead of creating the scale in componentDidMount, we can add it to the component
in the constructor after we have the domain and range. Now the scale can be accessed
anywhere in the component using this.scale(year):

constructor({data=[]}) {
 const times = d3.extent(data.map(d => d.year))
 const range = [50, 450]
 super({data})
 this.scale = d3.time.scale().domain(times).range(range)

JavaScript Library Integration | 163

 this.state = {data, times, range}
}

Within componentDidMount, D3 first creates an SVG element and adds it to the target
ref:

d3.select(target)
 .append('svg')
 .attr('height', 200)
 .attr('width', 500)

Constructing a UI is a task for React. Instead of using D3 for this task, let’s create a
Canvas component that returns an SVG element:

const Canvas = ({children}) =>
 <svg height="200" width="500">
 {children}
 </svg>

Next, D3 selects the svg element, the first child under the target, and adds a group
element for every data point in our timeline array. After it is added, the group ele‐
ment is positioned by transforming the x-axis value using the scale function:

group = d3.select(target.children[0])
 .selectAll('g')
 .data(data)
 .enter()
 .append('g')
 .attr(
 'transform',
 (d, i) => 'translate(' + scale(d.year) + ', 0)'
)

The group element is a DOM element, so we can let React handle this task too. Here
is a TimelineDot component that can be used to set up group elements and position
them along the x-axis:

const TimelineDot = ({position}) =>
 <g transform={`translate(${position},0)`}></g>

Next, D3 adds a circle element and some “style” to the group. The text element gets
its value by concatenating the event year with the event title. It then positions and
rotates that text around the blue circle:

group.append('circle')
 .attr('cy', 160)
 .attr('r', 5)
 .style('fill', 'blue')

group.append('text')
 .text(d => d.year + " - " + d.event)
 .style('font-size', 10)
 .attr('y', 115)

164 | Chapter 7: Enhancing Components

 .attr('x', -95)
 .attr('transform', 'rotate(-45)')

All we need to do is modify our TimelineDot component to include a circle element
and a text element that retrieves the text from the properties:

const TimelineDot = ({position, txt}) =>
 <g transform={`translate(${position},0)`}>

 <circle cy={160}
 r={5}
 style={{fill: 'blue'}} />

 <text y={115}
 x={-95}
 transform="rotate(-45)"
 style={{fontSize: '10px'}}>{txt}</text>

 </g>

React is now responsible for managing the UI using the virtual DOM. The role of D3
has been reduced, but it still provides some essential functionality that React does
not. It helps create the domain and range and constructs a scale function that we can
use to interpolate pixel values from years. This is what our refactored Timeline com‐
ponent might look like:

class Timeline extends Component {

 constructor({data=[]}) {
 const times = d3.extent(data.map(d => d.year))
 const range = [50, 450]
 super({data})
 this.scale = d3.time.scale().domain(times).range(range)
 this.state = {data, times, range}
 }

 render() {
 const { data } = this.state
 const { scale } = this
 return (
 <div className="timeline">
 <h1>{this.props.name} Timeline</h1>
 <Canvas>
 {data.map((d, i) =>
 <TimelineDot position={scale(d.year)}
 txt={`${d.year} - ${d.event}`}
 />
)}
 </Canvas>
 </div>
)
 }

JavaScript Library Integration | 165

}

We can integrate just about any JavaScript library with React. The lifecycle functions
are the place where other JavaScript can pick up where React leaves off. However, we
should avoid adding libraries that manage the UI: that’s React’s job.

Higher-Order Components
A higher-order component, or HOC, is a simply a function that takes a React compo‐
nent as an argument and returns another React component. Typically, HOCs wrap
the incoming component with a class that maintains state or has functionality.
Higher-order components are the best way to reuse functionality across React com‐
ponents.

Mixins Not Supported
Until React v0.13, the best way to incorporate functionality in a React component was
to use a mixin. Mixins can be added directly to components created with create
Class as a configuration property. You can still use mixins with React.createClass,
but they are not supported in ES6 classes or stateless functional components. They
will also not be supported by future versions of React.

An HOC allows us to wrap a component with another component. The parent com‐
ponent can hold state or contain functionality that can be passed down to the com‐
posed component as properties. The composed component does not need to know
anything about the implementation of an HOC other than the names of the proper‐
ties and methods that it makes available.

Take a look at this PeopleList component. It loads random users from an API and
renders a list of member names. While the users are loading, a loading message is dis‐
played. Once they have loaded, they are displayed on the DOM:

import { Component } from 'react'
import { render } from 'react-dom'
import fetch from 'isomorphic-fetch'

class PeopleList extends Component {

 constructor(props) {
 super(props)
 this.state = {
 data: [],
 loaded: false,
 loading: false
 }

166 | Chapter 7: Enhancing Components

 }

 componentWillMount() {
 this.setState({loading:true})
 fetch('https://randomuser.me/api/?results=10')
 .then(response => response.json())
 .then(obj => obj.results)
 .then(data => this.setState({
 loaded: true,
 loading: false,
 data
 }))
 }

 render() {
 const { data, loading, loaded } = this.state
 return (loading) ?
 <div>Loading...</div> :
 <ol className="people-list">
 {data.map((person, i) => {
 const {first, last} = person.name
 return <li key={i}>{first} {last}
 })}

 }
}

render(
 <PeopleList />,
 document.getElementById('react-container')
)

PeopleList incorporates a getJSON call from jQuery to load people from a JSON
API. When the component is rendered, it displays a loading message or renders a list
of names based upon whether or not the loading state is true.

If we harness this loading functionality, we can reuse it across components. We could
create a higher-order component, the DataComponent, that can be used to create
React components that load data. To use the DataComponent, we strip the PeopleList
of state and create a stateless functional component that receives data via props:

import { render } from 'react-dom'

const PeopleList = ({data}) =>
 <ol className="people-list">
 {data.results.map((person, i) => {
 const {first, last} = person.name
 return <li key={i}>{first} {last}
 })}

const RandomMeUsers = DataComponent(

Higher-Order Components | 167

 PeopleList,
 "https://randomuser.me/api/"
)

render(
 <RandomMeUsers count={10} />,
 document.getElementById('react-container')
)

Now we are able to create a RandomMeUsers component that always loads and displays
users from the same source, randomuser.me. All we have to do is provide the count of
how many users we wish to load. The data handling has been moved into the HOC,
and the UI is handled by the PeopleList component. The HOC provides the state for
loading and the mechanism to load data and change its own state. While data is load‐
ing, the HOC displays a loading message. Once the data has loaded, the HOC handles
mounting the PeopleList and passing it people as the data property:

const DataComponent = (ComposedComponent, url) =>
 class DataComponent extends Component {
 constructor(props) {
 super(props)
 this.state = {
 data: [],
 loading: false,
 loaded: false
 }
 }

 componentWillMount() {
 this.setState({loading:true})
 fetch(url)
 .then(response => response.json())
 .then(data => this.setState({
 loaded: true,
 loading: false,
 data
 }))
 }

 render() {
 return (
 <div className="data-component">
 {(this.state.loading) ?
 <div>Loading...</div> :
 <ComposedComponent {...this.state} />}
 </div>
)
 }
 }

168 | Chapter 7: Enhancing Components

Notice that DataComponent is actually a function. All higher-order components are
functions. ComposedComponent is the component that we will wrap. The returned
class, DataComponent, stores and manages the state. When that state changes and the
data has loaded, the ComposedComponent is rendered and that data is passed to it as a
property.

This HOC can be used to create any type of data component. Let’s take a look at how
DataComponent can be reused to create a CountryDropDown that is populated with a
country name for every country in the world delivered from the restcountries.eu API:

import { render } from 'react-dom'

const CountryNames = ({data, selected=""}) =>
 <select className="people-list" defaultValue={selected}>
 {data.map(({name}, i) =>
 <option key={i} value={name}>{name}</option>
)}
 </select>

const CountryDropDown =
 DataComponent(
 CountryNames,
 "https://restcountries.eu/rest/v1/all"
)

render(
 <CountryDropDown selected="United States" />,
 document.getElementById('react-container')
)

The CountryNames component obtains the country names via props. DataComponent
handles loading and passing information about each country.

Notice that the CountryNames component also has a selected property. This prop‐
erty should cause the component to select “United States” by default. However, at
present, it is not working. We did not pass the properties to the composed component
from our HOC.

Let’s modify our HOC to pass any properties that it receives down to the composed
component:

render() {
 return (
 <div className="data-component">
 {(this.state.loading) ?
 <div>Loading...</div> :
 <ComposedComponent {...this.state}
 {...this.props} />
 }
 </div>

Higher-Order Components | 169

)
}

Now the HOC passes state and props down to the composed component. If we run
this code now, we will see that the CountryDropDown preselects “United States”.

Let’s take a look at another HOC. We developed a HiddenMessage component earlier
in this chapter. The ability to show or hide content is something that can be reused. In
this next example, we have an Expandable HOC that functions similarly to the Hid
denMessage component. You can show or hide content based upon the Boolean prop‐
erty collapsed. This HOC also provides a mechanism for toggling the collapsed
property (Example 7-3).

Example 7-3. ./components/hoc/Expandable.js

import { Component } from 'react'

const Expandable = ComposedComponent =>
 class Expandable extends Component {

 constructor(props) {
 super(props)
 const collapsed =
 (props.hidden && props.hidden === true) ?
 true :
 false
 this.state = {collapsed}
 this.expandCollapse = this.expandCollapse.bind(this)
 }

 expandCollapse() {
 let collapsed = !this.state.collapsed
 this.setState({collapsed})
 }

 render() {
 return <ComposedComponent
 expandCollapse={this.expandCollapse}
 {...this.state}
 {...this.props} />
 }
 }

The Expandable HOC takes a ComposedComponent and wraps it with state and func‐
tionality that allows it to show or hide content. Initially, the collapsed state is set using
incoming properties, or it defaults to false. The collapsed state is passed down to the
ComposedComponent as a property.

170 | Chapter 7: Enhancing Components

This component also has a method for toggling the collapsed state called expandCol
lapse. This method is also passed down to the ComposedComponent. Once invoked, it
will change the collapsed state and update the ComposedComponent with the new state.

If the properties of the DataComponent are changed by a parent, the component will
update the collapsed state and pass the new state down to the ComposedComponent as
a property.

Finally, all state and props are passed down to the ComposedComponent. Now we can
use this HOC to create several new components. First, let’s use it to create the Hidden
Message component that we defined earlier in this chapter:

const ShowHideMessage = ({children, collapsed, expandCollapse}) =>
 <p onClick={expandCollapse}>
 {(collapsed) ?
 children.replace(/[a-zA-Z0-9]/g, "x") :
 children}
 </p>

const HiddenMessage = Expandable(ShowHideMessage)

Here we create a HiddenMessage component that will replace every letter or number
in a string with an “x” when the collapsed property is true. When the collapsed
property is false, the message will be shown. Try this HiddenMessage component out
in the HiddenMessages component that we defined earlier in this chapter.

Let’s use this same HOC to create a button that shows and hides hidden content in a
div. In the following example, the MenuButton can be used to create PopUpButton, a
component that toggles content display:

class MenuButton extends Component {

 componentWillReceiveProps(nextProps) {
 const collapsed =
 (nextProps.collapsed && nextProps.collapsed === true) ?
 true :
 false
 this.setState({collapsed})
 }

 render() {
 const {children, collapsed, txt, expandCollapse} = this.props
 return (
 <div className="pop-button">
 <button onClick={expandCollapse}>{txt}</button>
 {(!collapsed) ?
 <div className="pop-up">
 {children}
 </div> :
 ""

Higher-Order Components | 171

 }
 </div>
)
 }
}

const PopUpButton = Expandable(MenuButton)

render(
 <PopUpButton hidden={true} txt="toggle popup">
 <h1>Hidden Content</h1>
 <p>This content will start off hidden</p>
 </PopUpButton>,
 document.getElementById('react-container')
)

The PopUpButton is created with the MenuButton component. It will pass the col‐
lapsed state along with the function to change that state to the MenuButton as proper‐
ties. When users click on the button, it will invoke expandCollapse and toggle the
collapsed state. When the state is collapsed, we only see a button. When it is expan‐
ded we see a button and a div with the hidden content.

Higher-order components are a great way to reuse functionality and abstract away the
details of how component state or lifecycle are managed. They will allow you to pro‐
duce more stateless functional components that are solely responsible for the UI.

Managing State Outside of React
State management in React is great. We could build a lot of applications using React’s
built-in state management system. However, when our applications get larger, state
becomes a little bit harder for us to wrap our heads around. Keeping state in one
place at the root of your component tree will help make this task easier, but even
then, your application may grow to a point where it makes the most sense to isolate
state data in its own layer, independent of the UI.

One of the benefits of managing state outside of React is that it will reduce the need
for many, if any, class components. If you are not using state, it is easier to keep most
of your components stateless. You should only need to create a class when you need
lifecycle functions, and even then you can isolate class functionality to HOCs and
keep components that only contain UI stateless. Stateless functional components are
easier to understand and easier to test. They are pure functions, so they fit into
strictly functional applications quite nicely.

Managing state outside of React could mean a lot of different things. You can use
React with Backbone Models, or with any other MVC library that models state. You
can create your own system for managing state. You can manage state using global

172 | Chapter 7: Enhancing Components

variables or localStorage and plain JavaScript. Managing state outside of React sim‐
ply means not using React state or setState in your applications.

Rendering a Clock
Back in Chapter 3, we created a ticking clock that followed the rules of functional
programming. The entire application consists of functions and higher-order func‐
tions that are composed into larger functions that compose a startTicking function
that starts the clock and displays the time in the console:

const startTicking = () =>
 setInterval(
 compose(
 clear,
 getCurrentTime,
 abstractClockTime,
 convertToCivilianTime,
 doubleDigits,
 formatClock("hh:mm:ss tt"),
 display(log)
),
 oneSecond()
)

startTicking()

But instead of displaying the clock in the console, what if we displayed it in the
browser? We could build a React component to display the clock time in a div:

const AlarmClockDisplay = ({hours, minutes, seconds, ampm}) =>
 <div className="clock">
 {hours}
 :
 {minutes}
 :
 {seconds}
 {ampm}
 </div>

This component takes in properties for hours, minutes, seconds, and time of day. It
then creates a DOM where those properties can be displayed.

We could replace the log method with a render method and send our component to
be used to render the civilian time, with leading zeros added to values less than 10:

const startTicking = () =>
 setInterval(
 compose(
 getCurrentTime,
 abstractClockTime,
 convertToCivilianTime,

Managing State Outside of React | 173

 doubleDigits,
 render(AlarmClockDisplay)
),
 oneSecond()
)

startTicking()

The render method will need to be a higher-order function. It will need to take the
AlarmClockDisplay as a property initially when the startTicking method is com‐
posed and hang on to it. Eventually, it will need to use that component to render the
display with the formatted time every second:

const render = Component => civilianTime =>
 ReactDOM.render(
 <Component {...civilianTime} />,
 document.getElementById('react-container')
)

The higher-order function for render invokes ReactDOM.render every second and
updates the DOM. This approach takes advantage of React’s speedy DOM rendering,
but does not require a component class with state.

The state of this application is managed outside of React. React allowed us to keep
our functional architecture in place by providing our own higher-order function that
renders a component with ReactDOM.render. Managing state outside of React is not a
requirement, it is simply another option. React is a library, and it is up to you to
decide how best to use it in your applications.

Next, we will introduce Flux, a design pattern that was created as an alternative to
state management in React.

Flux
Flux is a design pattern developed at Facebook that was designed to keep data flowing
in one direction. Before Flux was introduced, web development architecture was
dominated by variations of the MVC design pattern. Flux is an alternative to MVC,
an entirely different design pattern that complements the functional approach.

What does React or Flux have to do with functional JavaScript? For starters, a state‐
less functional component is a pure function. It takes in instructions as props and
returns UI elements. A React class uses state or props as input and also will produce
UI elements. React components are composed into a single component. Immutable
data provides the component with input and output as UI elements are returned:

const Countdown = ({count}) => <h1>{count}</h1>

174 | Chapter 7: Enhancing Components

Flux provides us with a way to architect web applications that complements how
React works. Specifically, Flux provides a way to provide the data that React will use
to create the UI.

In Flux, application state data is managed outside of React components in stores.
Stores hold and change the data, and are the only thing that can update a view in
Flux. If a user were to interact with a web page—say, click a button or submit a form
—then an action would be created to represent the user’s request. An action provides
the instructions and data required to make a change. Actions are dispatched using a
central control component called the dispatcher. The dispatcher is designed to queue
up our actions and dispatch them to the appropriate store. Once a store receives an
action, it will use it as instructions to modify state and update the view. Data flows in
one direction: action to a dispatcher to the store and finally to the view (Figure 7-7).

Figure 7-7. Facebook’s Flux Design Pattern

Actions and state data are immutable in Flux. Actions can be dispatched from a view,
or they can come from other sources, typically a web server.

Every change requires an action. Every action provides the instructions to make the
change. Actions also serve as receipts that tell us what has changed, what data was
used to make the change, and where the action originated. This pattern causes no side
effects. The only thing that can make a change is a store. Stores update the data, views
render those updates in the UI, and actions tell us how and why the changes have
occurred.

Restricting the data flow of your application to this design pattern will make your
application much easier to fix and scale. Take a look at the application in Figure 7-8.
We can see that every dispatched action has been logged to the console. These actions
tell us about how we got to the current UI that is displaying a giant number 3.

As we can see, the last state change that occurred was a TICK. It changed the count to
3 from the count before that, which looks to have been a 4. The actions tell us how
the state has been changing. We can trace the actions back to the source to see that
first change was to a 9, so presumably this app is counting down from 10.

Flux | 175

Figure 7-8. Countdown app with Flux

Let’s take a look at how this countdown is constructed using the Flux design pattern.
We will introduce each part of the design pattern and discuss its contribution to the
unidirectional data flow that makes up this countdown.

Views
Let’s begin by looking at the view, a React stateless component. Flux will manage our
application state, so unless you need a lifecycle function you will not need class com‐
ponents.

The countdown view takes in the count to display as a property. It also receives a cou‐
ple of functions, tick and reset:

const Countdown = ({count, tick, reset}) => {

 if (count) {
 setTimeout(() => tick(), 1000)
 }

 return (count) ?
 <h1>{count}</h1> :
 <div onClick={() => reset(10)}>
 CELEBRATE!!!
 (click to start over)
 </div>

}

When this view renders it will display the count, unless the count is 0, in which case it
will display a message instructing the user to “CELEBRATE!!!” If the count is not 0,
then the view sets a timeout, waits for a second, and invokes a TICK.

176 | Chapter 7: Enhancing Components

When the count is 0, this view will not invoke any other action creators until a user
clicks the main div and triggers a reset. This resets the count to 10 and starts the
whole countdown process over again.

State in Components

Using Flux does not mean that you cannot have state in any of your
view components. It means that application state is not managed in
your view components. For example, Flux can manage the dates
and times that make up timelines. It would not be off-limits to use
a timeline component that has internal state to visualize your appli‐
cation’s timelines.
State should be used sparingly—only when needed, from reusable
components that internally manage their own state. The rest of the
application does not need to be “aware” of a child component’s
state.

Actions and Action Creators
Actions provide the instructions and data that the store will use to modify the state.
Action creators are functions that can be used to abstract away the nitty-gritty details
required to build an action. Actions themselves are objects that at minimum contain
a type field. The action type is typically an uppercase string that describes the action.
Additionally, actions may package any data required by the store. For example:

const countdownActions = dispatcher =>
 ({
 tick(currentCount) {
 dispatcher.handleAction({ type: 'TICK' })
 },
 reset(count) {
 dispatcher.handleAction({
 type: 'RESET',
 count
 })
 }
 })

When countdown action creators are loaded, the dispatcher is sent as an argument.
Every time a TICK or a RESET is invoked, the dispatcher’s handleAction method is
invoked, which “dispatches” the action object.

Dispatcher
There is only ever one dispatcher, and it represents the air traffic control part of this
design pattern. The dispatcher takes the action, packages it with some information

Flux | 177

about where the action was generated, and sends it on to the appropriate store or
stores that will handle the action.

Although Flux is not a framework, Facebook does open source a Dispatcher class
that you can use. How dispatchers are implemented is typically standard, so it is bet‐
ter to use Facebook’s dispatcher rather than coding your own:

import Dispatcher from 'flux'

class CountdownDispatcher extends Dispatcher {

 handleAction(action) {
 console.log('dispatching action:', action)
 this.dispatch({
 source: 'VIEW_ACTION',
 action
 })
 }

}

When handleAction is invoked with an action, it is dispatched along with some data
about where the action originated. When a store is created, it is registered with the
dispatcher and starts listening for actions. When an action is dispatched it is handled
in the order that it was received and sent to the appropriate stores.

Stores
Stores are objects that hold the application’s logic and state data. Stores are similar to
models in the MVC pattern, but stores are not restricted to managing data in a single
object. It is possible to build Flux applications that consist of a single store that man‐
ages many different data types.

Current state data can be obtained from a store via properties. Everything a store
needs to change state data is provided in the action. A store will handle actions by
type and change their data accordingly. Once data is changed, the store will emit an
event and notify any views that have subscribed to the store that their data has
changed. Let’s take a look at an example:

import { EventEmitter } from 'events'

class CountdownStore extends EventEmitter {

 constructor(count=5, dispatcher) {
 super()
 this._count = count
 this.dispatcherIndex = dispatcher.register(
 this.dispatch.bind(this)
)
 }

178 | Chapter 7: Enhancing Components

 get count() {
 return this._count
 }

 dispatch(payload) {
 const { type, count } = payload.action
 switch(type) {

 case "TICK":
 this._count = this._count - 1
 this.emit("TICK", this._count)
 return true

 case "RESET":
 this._count = count
 this.emit("RESET", this._count)
 return true

 }
 }

}

This store holds the countdown application’s state, the count. The count can be
accessed through a read-only property. When actions are dispatched, the store uses
them to change the count. A TICK action decrements the count. A RESET action
resets the count entirely with data that is included with the action.

Once the state has changed, the store emits an event to any views that may be listen‐
ing.

Putting It All Together
Now that you understand how data flows through each part of a Flux application, let’s
take a look at how all these parts get connected:

const appDispatcher = new CountdownDispatcher()
const actions = countdownActions(appDispatcher)
const store = new CountdownStore(10, appDispatcher)

const render = count => ReactDOM.render(
 <Countdown count={count} {...actions} />,
 document.getElementById('react-container')
)

store.on("TICK", () => render(store.count))
store.on("RESET", () => render(store.count))
render(store.count)

Flux | 179

First, we create the appDispatcher. Next, we use the appDispatcher to generate our
action creators. Finally, the appDispatcher is registered with our store, and the store
sets the initial count to 10.

The render method is used to render the view with a count that it receives as an argu‐
ment. It also passes the action creators to the view as properties.

Finally, some listeners are added to the store, which completes the circle. When the
store emits a TICK or a RESET, it yields a new count, which is immediately rendered in
the view. After that, the initial view is rendered with the store’s count. Every time the
view emits a TICK or RESET, the action is sent through this circle and eventually
comes back to the view as data that is ready to be rendered.

Flux Implementations
There are different approaches to the implementation of Flux. A few libraries have
been open-sourced based upon specific implementations of this design pattern. Here
are a few approaches to Flux worth mentioning:

Flux
Facebook’s Flux is the design pattern that we just covered. The Flux library
includes an implementation of a dispatcher.

Reflux
A simplified approach to unidirectional data flow that focuses on actions, stores,
and views.

Flummox
A Flux implementation that allows you to build Flux modules through extending
JavaScript classes.

Fluxible
A Flux framework created by Yahoo for working with isomorphic Flux applica‐
tions. Isomorphic applications will be discussed in Chapter 12.

Redux
A Flux-like library that achieves modularity through functions instead of objects.

MobX
A state management library that uses observables to respond to changes in state.

All of these implementations have stores, actions, and a dispatch mechanism, and
favor React components as the view layer. They are all variations of the Flux design
pattern, which at its core is all about unidirectional data flow.

180 | Chapter 7: Enhancing Components

https://facebook.github.io/flux/
https://github.com/reflux/refluxjs
http://acdlite.github.io/flummox
http://fluxible.io
http://redux.js.org
https://mobx.js.org/getting-started.html

Redux has quickly become one of the more popular Flux frameworks. The next chap‐
ter covers how to use Redux to construct functional data architectures for your client
applications.

Flux | 181

1 Flummox documentation

CHAPTER 8

Redux

Redux has emerged as one of the clear winners in the field of Flux or Flux-like libra‐
ries. Redux is based on Flux, and it was designed to tackle the challenge of under‐
standing how data changes flow through your application. Redux was developed by
Dan Abramov and Andrew Clark. Since creating Redux, both have been hired by
Facebook to work on the React team.

Andrew Clark was working on version 4 of Flummox, another Flux-based library,
when he started assisting Dan with the task of completing Redux. The message on the
npm page for Flummox reads:

Eventually 4.x should be the last major release but it never happened. If you want the
latest features, then use Redux instead. It’s really great.1

Redux is surprisingly small, only 99 lines of code.

We have mentioned that Redux is Flux-like, but it is not exactly Flux. It has actions,
action creators, a store, and action objects that are used to change state. Redux sim‐
plifies the concepts of Flux a bit by removing the dispatcher, and representing appli‐
cation state with a single immutable object. Redux also introduces reducers, which are
not a part of the Flux pattern. Reducers are pure functions that return a new state
based on the current state and an action: (state, action) => newState.

183

https://github.com/acdlite/flummox
http://redux.js.org
https://github.com/gaearon
https://www.npmjs.com/package/flummox
http://bit.ly/2nawjzD

2 Redux Docs, “Three Principles”.

State
The idea of storing state in one place isn’t so crazy. In fact, we did it in the last chap‐
ter. We stored it in the root of our application. In pure React or Flux apps, storing
state in as few objects as possible is recommended. In Redux, it’s a rule.2

When you hear that you have to store state in one place, it might seem like an unrea‐
sonable requirement, especially when you have different types of data. Let’s consider
how this can be achieved with an application that has many different types of data.
We’ll look at a social media app that has state spread out across different components
(Figure 8-1). The app itself has user state. All of the messages are stored in state under
that. Each message has its own state, and all of the posts are stored under the posts
component.

Figure 8-1. React app where components hold their own state

184 | Chapter 8: Redux

http://bit.ly/2mJ0U4Y

An app structured like this may work well, but as it grows it may be hard to deter‐
mine the overall state of the application. It may also become cumbersome to under‐
stand where updates are coming from, considering that each component will mutate
its own state with internal setState calls.

What messages are expanded? What posts have been read? In order to figure out
these details, we must dive into the component tree and track down the state inside of
individual components.

Redux simplifies the way we view state in our application by requiring us to store all
state data in a single object. Everything we need to know about the application is in
one place: a single source of truth. We could construct the same application with
Redux by moving all of the state data into a single location (see Figure 8-2).

Figure 8-2. Redux requires that we store all state in a single immutable object

In the social media app, we can see that we are managing the state of the current user,
messages, and posts from the same object: the Redux store. This object even stores
information about the message that is being edited, which messages are expanded,
and which posts have been seen. This information is captured in arrays containing
IDs that reference specific records. All of the messages and posts are cached in this
state object, so that data is there.

With Redux, we pull state management away from React entirely. Redux will manage
the state.

State | 185

In Figure 8-3, we can see the state tree for the social media app. In it, we have the
messages in an array. The same is true for the posts. Everything we need is rooted in
one object: the state tree. Each key in this single object represents a branch of the state
tree.

Figure 8-3. Sample state tree

When building Redux apps, the first thing you need to think about is state. Try to
define it in a single object. It is usually a good idea to draft a JSON sample of your
state tree with some placeholder data.

Let’s go back to our color organizer application. In this application, we’ll have infor‐
mation about each color stored in an array, and information about how the colors
should be sorted. A sample of our state data would look like Example 8-1.

Example 8-1. Color organizer sample application state

{
 colors: [
 {
 "id": "8658c1d0-9eda-4a90-95e1-8001e8eb6036",
 "title": "Ocean Blue",
 "color": "#0070ff",
 "rating": 3,
 "timestamp": "Sat Mar 12 2016 16:12:09 GMT-0800 (PST)"
 },
 {
 "id": "f9005b4e-975e-433d-a646-79df172e1dbb",
 "title": "Tomato",
 "color": "#d10012",
 "rating": 2,
 "timestamp": "Fri Mar 11 2016 12:00:00 GMT-0800 (PST)"
 },

186 | Chapter 8: Redux

3 Redux Docs, “Actions”.

 {
 "id": "58d9caee-6ea6-4d7b-9984-65b145031979",
 "title": "Lawn",
 "color": "#67bf4f",
 "rating": 1,
 "timestamp": "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
 },
 {
 "id": "a5685c39-6bdc-4727-9188-6c9a00bf7f95",
 "title": "Party Pink",
 "color": "#ff00f7",
 "rating": 5,
 "timestamp": "Wed Mar 9 2016 03:26:00 GMT-0800 (PST)"
 }
],
 sort: "SORTED_BY_DATE"
}

Now that we have identified the basic structure of our application’s state, let’s see how
we update and change this state via actions.

Actions
In the last section, we introduced an important Redux rule: application state should
be stored in a single immutable object. Immutable means this state object doesn’t
change. We will eventually update this state object by replacing it entirely. In order to
do this, we will need instructions about what changes. That’s what actions provide:
instructions about what should change in the application state along with the neces‐
sary data to make those changes.3

Actions are the only way to update the state of a Redux application. Actions provide
us with instructions about what should change, but we can also look at them like
receipts about the history of what has changed over time. If users were to remove
three colors, add four colors, and then rate five colors, they would leave a trail of
information, as shown in Figure 8-4.

Actions | 187

http://bit.ly/2m09uit

Figure 8-4. Actions being logged to the console as they are dispatched

Usually, when we sit down to construct an object-oriented application, we start by
identifying the objects, their properties, and how they work together. Our thinking, in
this case, is noun-oriented. When building a Redux application, we want to shift our
thinking into being verb-oriented. How will the actions affect the state data? Once you
identify the actions, you can list them in a file called constants.js (Example 8-2).

Example 8-2. Constants listed in ./constants.js

const constants = {
 SORT_COLORS: "SORT_COLORS",
 ADD_COLOR: "ADD_COLOR",
 RATE_COLOR: "RATE_COLOR",
 REMOVE_COLOR: "REMOVE_COLOR"
}
export default constants

In the case of the color organizer, users will need to be able to add a color, rate a color,
remove a color, or sort the color list. Here we have defined a string value for each of
these action types. An action is a JavaScript object that has at minimum a field for
type:

188 | Chapter 8: Redux

{ type: "ADD_COLOR" }

The action type is a string that defines what should happen. ADD_COLOR is the action
that will add a new color to our list of colors in the application state.

It is pretty easy to make typos when creating actions using strings:

{ type: "ADD_COOLOR" }

This typo would cause a bug in our application. This type of error usually does not
trigger any warnings; you simply will not see the expected change of your state data.
If you make these errors, they can be tough to find. This is where constants can save
you:

import C from "./constants"

{ type: C.ADD_COLOR }

This specifies the same action, but with a JavaScript constant instead of a string. A
typo in a JavaScript variable will cause the browser to throw an error. Defining
actions as constants also lets you tap into the benefits of IntelliSense and code com‐
pletion in your IDE. When you type the first letter or two of a constant, the IDE will
autocomplete it for you. Using constants is not required, but it is not a bad idea to get
into the habit of incorporating them.

Action Type Naming Conventions

Action types, like ADD_COLOR or RATE_COLOR, are just strings, so
technically you could call an action anything. Typically, action
types are capitalized and use underscores instead of spaces. You
should also aim to clearly state the action’s intended purpose.

Action Payload Data
Actions are JavaScript literals that provide the instructions necessary to make a state
change. Most state changes also require some data. Which record should I remove?
What new information should I provide in a new record?

We refer to this data as the action’s payload. For example, when we dispatch an action
like RATE_COLOR, we will need to know what color to rate and what rating to apply to
that color. This information can be passed directly with the action in the same Java‐
Script literal (see Example 8-3).

Example 8-3. RATE_COLOR action

{
 type: "RATE_COLOR",
 id: "a5685c39-6bdc-4727-9188-6c9a00bf7f95",

Actions | 189

4 Redux Docs, “Reducers”.

 rating: 4
}

Example 8-3 contains the action type, RATE_COLOR, and the data necessary to change
the specified color’s rating to 4.

When we add new colors, we will need details about the color to add (Example 8-4).

Example 8-4. ADD_COLOR action

{
 type: "ADD_COLOR",
 color: "#FFFFFF",
 title: "Bright White",
 rating: 0,
 id: "b5685c39-3bdc-4727-9188-6c9a33df7f52",
 timestamp: "Sat Mar 12 2016 16:12:09 GMT-0800 (PST)"
}

This action tells Redux to add a new color called Bright White to the state. All of the
information for the new color is included in the action. Actions are nice little pack‐
ages that tell Redux how state should be changed. They also include any associated
data that Redux will need to make the change.

Reducers
Our entire state tree is stored in a single object. A potential complaint might be that
it’s not modular enough, possibly because you’re considering modularity as describ‐
ing objects. Redux achieves modularity via functions. Functions are used to update
parts of the state tree. These functions are called reducers.4

Reducers are functions that take the current state along with an action as arguments
and use them to create and return a new state. Reducers are designed to update spe‐
cific parts of the state tree, either leaves or branches. We can then compose reducers
into one reducer that can handle updating the entire state of our app given any action.

The color organizer stores all of the state data in a single tree (see Example 8-5). If we
want to use Redux for this app, we can create several reducers that each target specific
leaves and branches on our state tree.

Example 8-5. Color organizer sample application state

{
 colors: [

190 | Chapter 8: Redux

http://redux.js.org/docs/basics/Reducers.html

 {
 "id": "8658c1d0-9eda-4a90-95e1-8001e8eb6036",
 "title": "Ocean Blue",
 "color": "#0070ff",
 "rating": 3,
 "timestamp": "Sat Mar 12 2016 16:12:09 GMT-0800 (PST)"
 },
 {
 "id": "f9005b4e-975e-433d-a646-79df172e1dbb",
 "title": "Tomato",
 "color": "#d10012",
 "rating": 2,
 "timestamp": "Fri Mar 11 2016 12:00:00 GMT-0800 (PST)"
 },
 {
 "id": "58d9caee-6ea6-4d7b-9984-65b145031979",
 "title": "Lawn",
 "color": "#67bf4f",
 "rating": 1,
 "timestamp": "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
 },
 {
 "id": "a5685c39-6bdc-4727-9188-6c9a00bf7f95",
 "title": "Party Pink",
 "color": "#ff00f7",
 "rating": 5,
 "timestamp": "Wed Mar 9 2016 03:26:00 GMT-0800 (PST)"
 }
],
 sort: "SORTED_BY_DATE"
}

This state data has two main branches: colors and sort. The sort branch is a leaf. It
doesn’t contain any child nodes. The colors branch stores multiple colors. Each color
object represents a leaf (Figure 8-5).

Figure 8-5. Color organizer state tree

A separate reducer will be used to handle each part of this state tree. Each reducer is
simply a function, so we can stub them all at once with the code in Example 8-6.

Reducers | 191

Example 8-6. Color organizer stubbed reducers

import C from '../constants'

export const color = (state={}, action) => {
 return {}
}

export const colors = (state=[], action) => {
 return []
}

export const sort = (state="SORTED_BY_DATE", action) => {
 return ""
}

Notice that the color reducer expects state to be an object and returns an object. The
colors reducer takes in state as an array and returns an array. The sort reducer takes
in a string and returns a string. Each function is focused on a specific part of our state
tree. The returned value and initial state for each function correspond to their data
type in the state tree. Colors are being stored in n array. Each color is an object. The
sort property is a string.

Each reducer is designed to handle only the actions necessary to update its part of the
state tree. The color reducer will handle only actions that require a new or changed
color object: ADD_COLOR and RATE_COLOR. The colors reducer will focus on those
actions necessary for managing the colors array: ADD_COLOR, REMOVE_COLOR,
RATE_COLOR. Finally, the sort reducer will handle the SORT_COLORS action.

Each reducer is composed or combined into a single reducer function that will use
the store. The colors reducer is composed with the color reducer to manage individ‐
ual colors within the array. The sort reducer will then be combined with the colors
reducer to create a single reducer function. This can update our entire state tree and
handle any action sent to it (see Figure 8-6).

Figure 8-6. Color organizer reducer tree

192 | Chapter 8: Redux

Both the colors and color reducers will handle ADD_COLOR and RATE_COLOR. But
remember, each reducer focuses on a specific part of the state tree. RATE_COLOR in the
color reducer will handle the task of changing an individual color’s rating value;
RATE_COLOR in the colors reducer will focus on locating the color that needs to be
rated in the array. ADD_COLOR in the color reducer will result in a new color object
with the correct properties; ADD_COLOR in the colors reducer will return an array that
has an additional color object. They are meant to work together. Each reducer focuses
on what a specific action means for its branch in the state tree.

Reducer Composition Is Not Required, Just Recommended

Redux does not require that we create smaller, more focused reduc‐
ers and compose them into a single reducer. We could create one
reducer function to handle every action in our app. In doing so, we
would lose the benefits of modularity and functional program‐
ming.

The Color Reducer
Reducers can be coded in a number of different ways. Switch statements are a popular
choice because they can process the different types of actions that reducers must han‐
dle. The color reducer tests the action.type in a switch statement and then handles
each action type with a switch case:

export const color = (state = {}, action) => {
 switch (action.type) {
 case C.ADD_COLOR:
 return {
 id: action.id,
 title: action.title,
 color: action.color,
 timestamp: action.timestamp,
 rating: 0
 }
 case C.RATE_COLOR:
 return (state.id !== action.id) ?
 state :
 {
 ...state,
 rating: action.rating
 }
 default :
 return state
 }
}

Here are the actions for the color reducer:

Reducers | 193

ADD_COLOR

Returns a new color object constructed from the action’s payload data.

RATE_COLOR

Returns a new color object with the desired rating. The ES7 object spread opera‐
tor allows us to assign the value of the current state to a new object.

Reducers should always return something. If for some reason this reducer is invoked
with an unrecognized action, we will return the current state: the default case.

Now that we have a color reducer, we can use it to return new colors or rate existing
colors. For example:

// Adding a new color

const action = {
 type: "ADD_COLOR",
 id: "4243e1p0-9abl-4e90-95p4-8001l8yf3036",
 color: "#0000FF",
 title: "Big Blue",
 timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
}

console.log(color({}, action))

// Console Output

// {
// id: "4243e1p0-9abl-4e90-95p4-8001l8yf3036",
// color: "#0000FF",
// title: "Big Blue",
// timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)",
// rating: "0"
// }

The new color object is returned with all fields represented, including the default rat‐
ing of 0. To change an existing color, we can send the RATE_COLOR action with the ID
and new rating:

const existingColor = {
 id: "128e1p5-3abl-0e52-33p0-8401l8yf3036",
 title: "Big Blue",
 color: "#0000FF",
 timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)",
 rating: 0
}

const action = {
 type: "RATE_COLOR",
 id: "4243e1p0-9abl-4e90-95p4-8001l8yf3036",
 rating: 4
}

194 | Chapter 8: Redux

console.log(color(existingColor, action))

// Console Output

// {
// id: "4243e1p0-9abl-4e90-95p4-8001l8yf3036",
// title: "Big Blue",
// color: "#0000FF",
// timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)",
// rating: 4
// }

The color reducer is a function that creates a new object or rates an existing one.
You’ll notice that the RATE_COLOR action passes an ID that’s not used by the color
reducer. That’s because the ID of this action is used to locate the color in an entirely
different reducer. One action object can impact several reducers.

The Colors Reducer
The color reducer is designed to manage leaves on the colors branch of our state tree.
The colors reducer will be used to manage the entire colors branch:

export const colors = (state = [], action) => {
 switch (action.type) {
 case C.ADD_COLOR :
 return [
 ...state,
 color({}, action)
]
 case C.RATE_COLOR :
 return state.map(
 c => color(c, action)
)
 case C.REMOVE_COLOR :
 return state.filter(
 c => c.id !== action.id
)
 default:
 return state
 }
}

The colors reducer will handle any actions for adding, rating, and removing colors.

ADD_COLOR

Creates a new array by concatenating all of the values of the existing state array
with a new color object. The new color is created by passing a blank state object
and the action to the color reducer.

Reducers | 195

RATE_COLOR

Returns a new array of colors with the desired color rated. The colors reducer
locates the color to be rated within the current state array. It then uses the color
reducer to obtain the newly rated color object and replaces it in the array.

REMOVE_COLOR

Creates a new array by filtering out the desired color to remove.

The colors reducer is concerned with the array of colors. It uses the color reducer to
focus on the individual color objects.

Treat State as an Immutable Object

In all of these reducers, we need to treat state as an immutable
object. Although it may be tempting to use state.push({}) or
state[index].rating, we should resist the urge to do so.

Now colors can be added, rated, or removed from the colors array with this pure
function:

const currentColors = [
 {
 id: "9813e2p4-3abl-2e44-95p4-8001l8yf3036",
 title: "Berry Blue",
 color: "#000066",
 rating: 0,
 timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
 }
]

const action = {
 type: "ADD_COLOR",
 id: "5523e7p8-3ab2-1e35-95p4-8001l8yf3036",
 title: "Party Pink",
 color: "#F142FF",
 timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
}

console.log(colors(currentColors, action))

// Console Output

// [{
// id: "9813e2p4-3abl-2e44-95p4-8001l8yf3036",
// title: "Berry Blue",
// color: "#000066",
// timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)",
// rating: 0
// },

196 | Chapter 8: Redux

// {
// id: "5523e7p8-3ab2-1e35-95p4-8001l8yf3036",
// title: "Party Pink",
// color: "#F142FF",
// timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)",
// rating: 0
// }]

No Side Effects in Reducers

Reducers should be predictable. They are used to simply manage
the state data. In the previous example, notice that the timestamp
and IDs are generated prior to sending the action to the reducer.
Generating random data, calling APIs, and other asynchronous
processes should be handled outside of reducers. Avoiding state
mutations and side effects is always recommended.

We can also remove a color from state or rate an individual color in state by sending
the appropriate action to the colors reducer.

The Sort Reducer
The sort reducer is an entire function designed to manage one string variable in our
state:

export const sort = (state = "SORTED_BY_DATE", action) => {
 switch (action.type) {
 case C.SORT_COLORS:
 return action.sortBy
 default :
 return state
 }
}

The sort reducer is used to change the sort state variable. It sets the sort state to the
value of the action’s sortBy field (if this is not a state provided, it will return SOR
TED_BY_DATE):

const state = "SORTED_BY_DATE"

const action = {
 type: C.SORT_COLORS,
 sortBy: "SORTED_BY_TITLE"
}

console.log(sort(state, action)) // "SORTED_BY_TITLE"

To recap, state updates are handled by reducers. Reducers are pure functions that take
in state as the first argument and an action as the second argument. Reducers do not
cause side effects and should treat their arguments as immutable data. In Redux,

Reducers | 197

5 Redux Docs, “Store”.

modularity is achieved through reducers. Eventually, reducers are combined into a
single reducer, a function that can update the entire state tree.

In this section, we saw how reducers can be composed. We saw how the colors
reducer uses the color reducer to assist in color management. In the next section, we
will look at how the colors reducer can be combined with the sort reducer to update
state.

The Store
In Redux, the store is what holds the application’s state data and handles all state
updates.5 While the Flux design pattern allows for many stores that each focus on a
specific set of data, Redux only has one store.

The store handles state updates by passing the current state and action through a sin‐
gle reducer. We will create this single reducer by combining and composing all of our
reducers.

If we create a store using the colors reducer, then our state object will be an array—
the array of colors. The getState method of the store will return the present applica‐
tion state. In Example 8-7, we create a store with the color reducer, proving that you
can use any reducer to create a store.

Example 8-7. Store with color reducer

import { createStore } from 'redux'
import { color } from './reducers'

const store = createStore(color)

console.log(store.getState()) // {}

In order to create a single reducer tree that looks like Figure 8-6 from the previous
section, we must combine the colors and sort reducers. Redux has a function for
doing just that, combineReducers, which combines all of the reducers into a single
reducer. These reducers are used to build your state tree. The names of the fields
match the names of the reducers that are passed in.

A store can also be created with initial data. Invoking the colors reducer without state
returns an empty array:

import { createStore, combineReducers } from 'redux'
import { colors, sort } from './reducers'

198 | Chapter 8: Redux

http://bit.ly/2m0iGDG

const store = createStore(
 combineReducers({ colors, sort })
)

console.log(store.getState())

// Console Output

//{
// colors: [],
// sort: "SORTED_BY_DATE"
//}

In Example 8-8, the store was created with three colors and a sort value of SOR
TED_BY_TITLE.

Example 8-8. Initial state data

import { createStore, combineReducers } from 'redux'
import { colors, sort } from './reducers'

const initialState = {
 colors: [
 {
 id: "3315e1p5-3abl-0p523-30e4-8001l8yf3036",
 title: "Rad Red",
 color: "#FF0000",
 rating: 3,
 timestamp: "Sat Mar 12 2016 16:12:09 GMT-0800 (PST)"
 },
 {
 id: "3315e1p5-3abl-0p523-30e4-8001l8yf4457",
 title: "Crazy Green",
 color: "#00FF00",
 rating: 0,
 timestamp: "Fri Mar 11 2016 12:00:00 GMT-0800 (PST)"
 },
 {
 id: "3315e1p5-3abl-0p523-30e4-8001l8yf2412",
 title: "Big Blue",
 color: "#0000FF",
 rating: 5,
 timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
 }
],
 sort: "SORTED_BY_TITLE"
}

const store = createStore(
 combineReducers({ colors, sort }),
 initialState
)

The Store | 199

console.log(store.getState().colors.length) // 3
console.log(store.getState().sort) // "SORTED_BY_TITLE"

The only way to change the state of your application is by dispatching actions
through the store. The store has a dispatch method that is ready to take actions as an
argument. When you dispatch an action through the store, the action is sent through
the reducers and the state is updated:

console.log(
 "Length of colors array before ADD_COLOR",
 store.getState().colors.length
)

// Length of colors array before ADD_COLOR 3

store.dispatch({
 type: "ADD_COLOR",
 id: "2222e1p5-3abl-0p523-30e4-8001l8yf2222",
 title: "Party Pink",
 color: "#F142FF",
 timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
})

console.log(
 "Length of colors array after ADD_COLOR",
 store.getState().colors.length
)

// Length of colors array after ADD_COLOR 4

console.log(
 "Color rating before RATE_COLOR",
 store.getState().colors[3].rating
)

// Color rating before RATE_COLOR 0

store.dispatch({
 type: "RATE_COLOR",
 id: "2222e1p5-3abl-0p523-30e4-8001l8yf2222",
 rating: 5
})

console.log(
 "Color rating after RATE_COLOR",
 store.getState().colors[3].rating
)

// Color rating after RATE_COLOR 5

200 | Chapter 8: Redux

Here, we created a store and dispatched an action that added a new color followed by
an action that changed the color’s rating. The console output shows us that dispatch‐
ing the actions did in fact change our state.

Originally, we had three colors in the array. We added a color, and now there are four.
Our new color had an original rating of zero. Dispatching an action changed it to five.
The only way to change data is to dispatch actions to the store.

Subscribing to Stores
Stores allow you to subscribe handler functions that are invoked every time the store
completes dispatching an action. In the following example, we will log the count of
colors in the state:

store.subscribe(() =>
 console.log('color count:', store.getState().colors.length)
)

store.dispatch({
 type: "ADD_COLOR",
 id: "2222e1p5-3abl-0p523-30e4-8001l8yf2222",
 title: "Party Pink",
 color: "#F142FF",
 timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
})

store.dispatch({
 type: "ADD_COLOR",
 id: "3315e1p5-3abl-0p523-30e4-8001l8yf2412",
 title: "Big Blue",
 color: "#0000FF",
 timestamp: "Thu Mar 10 2016 01:11:12 GMT-0800 (PST)"
})

store.dispatch({
 type: "RATE_COLOR",
 id: "2222e1p5-3abl-0p523-30e4-8001l8yf2222",
 rating: 5
})

store.dispatch({
 type: "REMOVE_COLOR",
 id: "3315e1p5-3abl-0p523-30e4-8001l8yf2412"
})

// Console Output

// color count: 1
// color count: 2
// color count: 2
// color count: 1

The Store | 201

Subscribing this listener to the store will log the color count to the console every time
we submit an action. In the preceding example we see four logs: the first two for
ADD_COLOR, the third for RATE_COLOR, and the fourth for REMOVE_COLOR.

The store’s subscribe method returns a function that you can use later to unsub‐
scribe the listener:

const logState = () => console.log('next state', store.getState())

const unsubscribeLogger = store.subscribe(logState)

// Invoke when ready to unsubscribe the listener
unsubscribeLogger()

Saving to localStorage
Using the store’s subscribe function, we will listen for state changes and save those
changes to localStorage under the key 'redux-store'. When we create the store we
can check to see if any data has been saved under this key and, if so, load that data as
our initial state. With just a few lines of code, we can have persistent state data in the
browser:

const store = createStore(
 combineReducers({ colors, sort }),
 (localStorage['redux-store']) ?
 JSON.parse(localStorage['redux-store']) :
 {}
)

store.subscribe(() => {
 localStorage['redux-store'] = JSON.stringify(store.getState())
})

console.log('current color count', store.getState().colors.length)
console.log('current state', store.getState())

store.dispatch({
 type: "ADD_COLOR",
 id: uuid.v4(),
 title: "Party Pink",
 color: "#F142FF",
 timestamp: new Date().toString()
})

Every time we refresh this code, our colors list gets larger by one color. First, within
the createStore function call, we see if the redux-store key exists. If it exists, we’ll
parse the JSON. If it doesn’t exist, we’ll return an empty object. Next, we subscribe a
listener to the store that saves the store’s state every time an action is dispatched.
Refreshing the page would continue to add the same color.

202 | Chapter 8: Redux

To recap, stores hold and manage state data in Redux applications, and the only way
to change state data is by dispatching actions through the store. The store holds appli‐
cation state as a single object. State mutations are managed through reducers. Stores
are created by supplying a reducer along with optional data for the initial state. Also,
we can subscribe listeners to our store (and unsubscribe them later), and they will be
invoked every time the store finishes dispatching an action.

Action Creators
Action objects are simply JavaScript literals. Action creators are functions that create
and return these literals. Let’s consider the following actions:

{
 type: "REMOVE_COLOR",
 id: "3315e1p5-3abl-0p523-30e4-8001l8yf2412"
}

{
 type: "RATE_COLOR",
 id: "441e0p2-9ab4-0p523-30e4-8001l8yf2412",
 rating: 5
}

We can simplify the logic involved with generating an action by adding an action cre‐
ators for each of these action types:

import C from './constants'

export const removeColor = id =>
 ({
 type: C.REMOVE_COLOR,
 id
 })

export const rateColor = (id, rating) =>
 ({
 type: C.RATE_COLOR,
 id,
 rating
 })

Now whenever we need to dispatch a RATE_COLOR or a REMOVE_COLOR, we can use the
action creator and send the necessary data as function arguments:

store.dispatch(removeColor("3315e1p5-3abl-0p523-30e4-8001l8yf2412"))
store.dispatch(rateColor("441e0p2-9ab4-0p523-30e4-8001l8yf2412", 5))

Action creators simplify the task of dispatching actions; we only need to call a func‐
tion and send it the necessary data. Action creators can abstract away details of how
an action is created, which can greatly simplify the process of creating an action. For

Action Creators | 203

example, if we create an action called sortBy, it can decide the appropriate action to
take:

import C from './constants'

export const sortColors = sortedBy =>
 (sortedBy === "rating") ?
 ({
 type: C.SORT_COLORS,
 sortBy: "SORTED_BY_RATING"
 }) :
 (sortedBy === "title") ?
 ({
 type: C.SORT_COLORS,
 sortBy: "SORTED_BY_TITLE"
 }) :
 ({
 type: C.SORT_COLORS,
 sortBy: "SORTED_BY_DATE"
 })

The sortColors action creator checks sortedBy for "rating", "title", and the
default. Now there is considerably less typing involved whenever you want to dis‐
patch a sortColors action:

store.dispatch(sortColors("title"))

Action creators can have logic. They also can help abstract away unnecessary details
when creating an action. For example, take a look at the action for adding a color:

{
 type: "ADD_COLOR",
 id: uuid.v4(),
 title: "Party Pink",
 color: "#F142FF",
 timestamp: new Date().toString()
}

So far, the IDs and timestamps have been generated when the actions are dispatched.
Moving this logic into an action creator would abstract the details away from the pro‐
cess of dispatching actions:

import C from './constants'
import { v4 } from 'uuid'

export const addColor = (title, color) =>
 ({
 type: C.ADD_COLOR,
 id: v4(),
 title,
 color,
 timestamp: new Date().toString()
 })

204 | Chapter 8: Redux

The addColor action creator will generate a unique ID and will provide a timestamp.
Now it’s much easier to create new colors—we provide a unique ID by creating a vari‐
able that we can increment, and the timestamp is automatically set using the client’s
present time:

store.dispatch(addColor("#F142FF", "Party Pink"))

The really nice thing about action creators is that they provide a place to encapsulate
all of the logic required to successfully create an action. The addColor action creator
handles everything associated with adding new colors, including providing unique
IDs and timestamping the action. It is all in one place, which makes debugging our
application much easier.

Action creators are where we should put any logic for communicating with backend
APIs. With an action creator, we can perform asynchronous logic like requesting data
or making an API call. We will cover this in Chapter 12 when we introduce the server.

compose
Redux also comes with a compose function that you can use to compose several func‐
tions into a single function. It is similar to the compose function that we created in
Chapter 3, but is more robust. It also composes functions from right to left as
opposed to from left to right.

If we just wanted to get a comma-delimited list of color titles, we could use this one
crazy line of code:

console.log(store.getState().colors.map(c=>c.title).join(", "))

A more functional approach would be to break this down into smaller functions and
compose them into a single function:

import { compose } from 'redux'

const print = compose(
 list => console.log(list),
 titles => titles.join(", "),
 map => map(c=>c.title),
 colors => colors.map.bind(colors),
 state => state.colors
)

print(store.getState())

The compose function takes in functions as arguments and invokes the rightmost first.
First it obtains the colors from state, then it returns a bound map function, followed
by an array of color titles, which are joined as a comma-delimited list and finally log‐
ged to the console.

Action Creators | 205

Middleware
If you ever used a server-side framework such as Express, Sinatra, Django, KOA, or
ASP.NET, then you are probably already familiar with the concept of middleware. (In
case you’re not, middleware serves as the glue between two different layers or differ‐
ent pieces of software.)

Redux also has middleware. It acts on the store’s dispatch pipeline. In Redux, middle‐
ware consists of a series of functions that are executed in a row in the process of dis‐
patching an action, as shown in Figure 8-7.

Figure 8-7. HTTP request middleware pipeline

These higher-order functions allow you to insert functionality before or after actions
are dispatched and state is updated. Each middleware function is executed sequen‐
tially (Figure 8-8).

Each piece of middleware is a function that has access to the action, a dispatch func‐
tion, and a function that will call next. next causes the update to occur. Before next is
called, you can modify the action. After next, the state will have changed.

206 | Chapter 8: Redux

Figure 8-8. Middleware functions execute sequentially

Applying Middleware to the Store
In this section, we are going to create a storeFactory. A factory is a function that
manages the process of creating stores. In this case, the factory will create a store that
has middleware for logging and saving data. The storeFactory will be one file that
contains one function that groups everything needed to create the store. Whenever
we need a store, we can invoke this function:

const store = storeFactory(initialData)

When we create the store, we create two pieces of middleware: the logger and the
saver (Example 8-9). The data is saved to localStorage with middleware instead of
the store method.

Example 8-9. storeFactory: ./store/index.js

import { createStore,
 combineReducers,
 applyMiddleware } from 'redux'
import { colors, sort } from './reducers'
import stateData from './initialState'

const logger = store => next => action => {
 let result
 console.groupCollapsed("dispatching", action.type)

Middleware | 207

 console.log('prev state', store.getState())
 console.log('action', action)
 result = next(action)
 console.log('next state', store.getState())
 console.groupEnd()
}

const saver = store => next => action => {
 let result = next(action)
 localStorage['redux-store'] = JSON.stringify(store.getState())
 return result
}

const storeFactory = (initialState=stateData) =>
 applyMiddleware(logger, saver)(createStore)(
 combineReducers({colors, sort}),
 (localStorage['redux-store']) ?
 JSON.parse(localStorage['redux-store']) :
 stateData
)

export default storeFactory

Both the logger and the saver are middleware functions. In Redux, middleware is
defined as a higher-order function: it’s a function that returns a function that returns
a function. The last function returned is invoked every time an action is dispatched.
When this function is invoked, you have access to the action, the store, and the func‐
tion for sending the action to the next middleware.

Instead of exporting the store directly, we export a function, a factory that can be
used to create stores. If this factory is invoked, then it will create and return a store
that incorporates logging and saving.

In the logger, before the action is dispatched, we open a new console group and log
the current state and the current action. Invoking next pipes the action on to the next
piece of middleware and eventually the reducers. The state at this point has been
updated, so we log the changed state and end the console group.

In the saver, we invoke next with the action, which will cause the state to change.
Then we save the new state in localStorage and return the result, as in Example 8-9.

In Example 8-10 we create a store instance using the storeFactory. Since we do not
send any arguments to this store, the initial state will come from state data.

Example 8-10. Creating a store using the factory

import storeFactory from "./store"

const store = storeFactory(true)

208 | Chapter 8: Redux

store.dispatch(addColor("#FFFFFF","Bright White"))
store.dispatch(addColor("#00FF00","Lawn"))
store.dispatch(addColor("#0000FF","Big Blue"))

Every action dispatched from this store will add a new group of logs to the console,
and the new state will be saved in localStorage.

In this chapter, we looked at all of the key features of Redux: state, actions, reducers,
stores, action creators, and middleware. We handled all of the state for our applica‐
tion with Redux, and now we can wire it up to the user interface.

In the next chapter we will take a look at the react-redux framework, a tool used to
efficiently connect our Redux store to the React UI.

Middleware | 209

CHAPTER 9

React Redux

In Chapter 6, we learned how to construct React components. We built the color
organizer app using React’s state management system. In the last chapter, we learned
how to use Redux to manage our application’s state data. We completed building a
store for our color organizer app that is ready to dispatch actions. In this chapter, we
are going to combine the UI that we created in Chapter 6 with the store that we cre‐
ated in the last chapter.

The app that we developed in Chapter 6 stores state in a single object in a single loca‐
tion—the App component.

export default class App extends Component {

 constructor(props) {
 super(props)
 this.state = {
 colors: [
 {
 "id": "8658c1d0-9eda-4a90-95e1-8001e8eb6036",
 "title": "Ocean Blue",
 "color": "#0070ff",
 "rating": 3
 },
 {
 "id": "f9005b4e-975e-433d-a646-79df172e1dbb",
 "title": "Tomato",
 "color": "#d10012",
 "rating": 2
 },
 {
 "id": "58d9caee-6ea6-4d7b-9984-65b145031979",
 "title": "Lawn",
 "color": "#67bf4f",
 "rating": 1

211

 },
 {
 "id": "a5685c39-6bdc-4727-9188-6c9a00bf7f95",
 "title": "Party Pink",
 "color": "#ff00f7",
 "rating": 5
 }
]
 }
 this.addColor = this.addColor.bind(this)
 this.rateColor = this.rateColor.bind(this)
 this.removeColor = this.removeColor.bind(this)
 }

 addColor(title, color) {
 ...
 }

 rateColor(id, rating) {
 ...
 }

 removeColor(id) {
 ...
 }

 render() {
 const { addColor, rateColor, removeColor } = this
 const { colors } = this.state
 return (
 <div className="app">
 <AddColorForm onNewColor={addColor} />
 <ColorList colors={colors}
 onRate={rateColor}
 onRemove={removeColor} />
 </div>
)
 }

}

The App component is the component that holds state. State is passed down to child
components as properties. Specifically, the colors are passed from the App compo‐
nent’s state to the ColorList component as a property. When events occur, data is
passed back up the component tree to the App component via callback function prop‐
erties (Figure 9-1).

212 | Chapter 9: React Redux

Figure 9-1. Data flow through the component tree

The process of passing data all the way down and back up the tree introduces com‐
plexity that libraries like Redux are designed to alleviate. Instead of passing data up
the tree through two-way function binding, we can dispatch actions directly from
child components to update application state.

In this chapter, we’ll take a look at various ways to incorporate the Redux store. We
will first look at how the store can be used without any additional frameworks. After
that, we will explore react-redux, a framework that can be used to integrate a Redux
store with React components.

Explicitly Passing the Store
The first, and most logical, way to incorporate the store into your UI is to pass it
down the component tree explicitly as a property. This approach is simple and works
very well for smaller apps that only have a few nested components.

Let’s take a look at how we can incorporate the store into the color organizer. In the ./
index.js file, we will render an App component and pass it the store:

import React from 'react'
import ReactDOM from 'react-dom'
import App from './components/App'
import storeFactory from './store'

const store = storeFactory()

const render = () =>
 ReactDOM.render(
 <App store={store}/>,

Explicitly Passing the Store | 213

 document.getElementById('react-container')
)

store.subscribe(render)
render()

This is the ./index.js file. In this file, we create the store with the storeFactory and
render the App component into the document. When the App is rendered the store is
passed to it as a property. Every time the store changes, the render function will be
invoked, which efficiently updates the UI with new state data.

Now that we have passed the store to the App, we have to continue to pass it down to
the child components that need it:

import AddColorForm from './AddColorForm'
import SortMenu from './SortMenu'
import ColorList from './ColorList'

const App = ({ store }) =>
 <div className="app">
 <SortMenu store={store} />
 <AddColorForm store={store} />
 <ColorList store={store} />
 </div>

export default App

The App component is our root component. It captures the store from props and
explicitly passes it down to its child components. The store is passed to the SortMenu,
AddColorForm, and ColorList components as a property.

Now that we have passed the store from the App, we can use it inside the child com‐
ponents. Remember we can read state from the store with store.getState, and we
can dispatch actions to the store with store.dispatch.

From the AddColorForm component, we can use the store to dispatch ADD_COLOR
actions. When the user submits the form, we collect the color and the title from refs
and use that data to create and dispatch a new ADD_COLOR action:

import { PropTypes, Component } from 'react'
import { addColor } from '../actions'

const AddColorForm = ({store}) => {

 let _title, _color

 const submit = e => {
 e.preventDefault()
 store.dispatch(addColor(_title.value, _color.value))
 _title.value = ''
 _color.value = '#000000'

214 | Chapter 9: React Redux

 _title.focus()
 }

 return (
 <form className="add-color" onSubmit={submit}>
 <input ref={input => _title = input}
 type="text"
 placeholder="color title..." required/>
 <input ref={input => _color = input}
 type="color" required/>
 <button>ADD</button>
 </form>
)

}

AddColorForm.propTypes = {
 store: PropTypes.object
}

export default AddColorForm

From this component, we import the necessary action creator, addColor. When the
user submits the form, we’ll dispatch a new ADD_COLOR action directly to the store
using this action creator.

The ColorList component can use the store’s getState method to obtain the original
colors and sort them appropriately. It can also dispatch RATE_COLOR and
REMOVE_COLOR actions directly as they occur:

import { PropTypes } from 'react'
import Color from './Color'
import { rateColor, removeColor } from '../actions'
import { sortFunction } from '../lib/array-helpers'

const ColorList = ({ store }) => {
 const { colors, sort } = store.getState()
 const sortedColors = [...colors].sort(sortFunction(sort))
 return (
 <div className="color-list">
 {(colors.length === 0) ?
 <p>No Colors Listed. (Add a Color)</p> :
 sortedColors.map(color =>
 <Color key={color.id}
 {...color}
 onRate={(rating) =>
 store.dispatch(
 rateColor(color.id, rating)
)
 }
 onRemove={() =>
 store.dispatch(

Explicitly Passing the Store | 215

 removeColor(color.id)
)
 } />
)
 }
 </div>
)
}

ColorList.propTypes = {
 store: PropTypes.object
}

export default ColorList

The store has been passed all the way down the component tree to the ColorList
component. This component interacts with the store directly. When colors are rated
or removed, those actions are dispatched to the store.

The store is also used to obtain the original colors. Those colors are duplicated and
sorted according to the store’s sort property and saved as sortedColors.
sortedColors is then used to create the UI.

This approach is great if your component tree is rather small, like this color organizer.
The drawback of using this approach is that we have to explicitly pass the store to
child components, which means slightly more code and slightly more headaches than
with other approaches. Additionally, the SortMenu, AddColorForm, and ColorList
components require this specific store. It would be hard to reuse them in another
application.

In the next couple of sections, we will look at other ways to get the store to the com‐
ponents that need it.

Passing the Store via Context
In the last section, we created a store and passed it all the way down the component
tree from the App component to the ColorList component. This approach required
that we pass the store through every component that comes between the App and the
ColorList.

Let’s say we have some cargo to move from Washington, DC, to San Francisco, CA.
We could use a train, but that would require that we lay tracks through at least nine
states so that our cargo can travel to California. This is like explicitly passing the store
down the component tree from the root to the leaves. You have to “lay tracks”
through every component that comes between the origin and the destination. If using
a train is like explicitly passing the store through props, then implicitly passing the

216 | Chapter 9: React Redux

1 Dan Abramov, “Redux: Extracting Container Components”, Egghead.io.

store via context is like using a jet airliner. When a jet flies from DC to San Francisco,
it flies over at least nine states—no tracks required.

Similarly, we can take advantage of a React feature called context that allows us to pass
variables to components without having to explicitly pass them down through the
tree as properties.1 Any child component can access these context variables.

If we were to pass the store using context in our color organizer app, the first step
would be to refactor the App component to hold context. The App component will also
need to listen to the store so that it can trigger a UI update every time the state
changes:

import { PropTypes, Component } from 'react'
import SortMenu from './SortMenu'
import ColorList from './ColorList'
import AddColorForm from './AddColorForm'
import { sortFunction } from '../lib/array-helpers'

class App extends Component {

 getChildContext() {
 return {
 store: this.props.store
 }
 }

 componentWillMount() {
 this.unsubscribe = store.subscribe(
 () => this.forceUpdate()
)
 }

 componentWillUnmount() {
 this.unsubscribe()
 }

 render() {
 const { colors, sort } = store.getState()
 const sortedColors = [...colors].sort(sortFunction(sort))
 return (
 <div className="app">
 <SortMenu />
 <AddColorForm />
 <ColorList colors={sortedColors} />
 </div>
)
 }

Passing the Store via Context | 217

http://bit.ly/2mJaTr9

}

App.propTypes = {
 store: PropTypes.object.isRequired
}

App.childContextTypes = {
 store: PropTypes.object.isRequired
}

export default App

First, adding context to a component requires that you use the getChildContext life‐
cycle function. It will return the object that defines the context. In this case, we add
the store to the context, which we can access through props.

Next, you will need to specify childContextTypes on the component instance and
define your context object. This is similar to adding propTypes or defaultProps to a
component instance. However, for context to work, you must take this step.

At this point, any children of the App component will have access to the store via the
context. They can invoke store.getState and store.dispatch directly. The final
step is to subscribe to the store and update the component tree every time the store
updates state. This can be achieved with the mounting lifecycle functions (see
“Mounting Lifecycle” on page 142). In componentWillMount, we can subscribe to the
store and use this.forceUpdate to trigger the updating lifecycle, which will re-
render our UI. In componentWillUnmount, we can invoke the unsubscribe function
and stop listening to the store. Because the App component itself triggers the UI
update, there is no longer a need to subscribe to the store from the entry ./index.js
file; we are listening to store changes from the same component that adds the store to
the context, App.

Let’s refactor the AddColorForm component to retrieve the store and dispatch the
ADD_COLOR action directly:

const AddColorForm = (props, { store }) => {

 let _title, _color

 const submit = e => {
 e.preventDefault()
 store.dispatch(addColor(_title.value, _color.value))
 _title.value = ''
 _color.value = '#000000'
 _title.focus()
 }

 return (
 <form className="add-color" onSubmit={submit}>

218 | Chapter 9: React Redux

 <input ref={input => _title = input}
 type="text"
 placeholder="color title..." required/>
 <input ref={input => _color = input}
 type="color" required/>
 <button>ADD</button>
 </form>
)

}

AddColorForm.contextTypes = {
 store: PropTypes.object
}

The context object is passed to stateless functional components as the second argu‐
ment, after props. We can use object destructuring to obtain the store from this object
directly in the arguments. In order to use the store, we must define contextTypes on
the AddColorForm instance. This is where we tell React which context variables this
component will use. This is a required step. Without it, the store cannot be retrieved
from the context.

Let’s take a look at how to use context in a component class. The Color component
can retrieve the store and dispatch RATE_COLOR and REMOVE_COLOR actions directly:

import { PropTypes, Component } from 'react'
import StarRating from './StarRating'
import TimeAgo from './TimeAgo'
import FaTrash from 'react-icons/lib/fa/trash-o'
import { rateColor, removeColor } from '../actions'

class Color extends Component {

 render() {
 const { id, title, color, rating, timestamp } = this.props
 const { store } = this.context
 return (
 <section className="color" style={this.style}>
 <h1 ref="title">{title}</h1>
 <button onClick={() =>
 store.dispatch(
 removeColor(id)
)
 }>
 <FaTrash />
 </button>
 <div className="color"
 style={{ backgroundColor: color }}>
 </div>
 <TimeAgo timestamp={timestamp} />
 <div>

Passing the Store via Context | 219

2 React Docs, “Context”.

 <StarRating starsSelected={rating}
 onRate={rating =>
 store.dispatch(
 rateColor(id, rating)
)
 } />
 </div>
 </section>
)
 }

}

Color.contextTypes = {
 store: PropTypes.object
}

Color.propTypes = {
 id: PropTypes.string.isRequired,
 title: PropTypes.string.isRequired,
 color: PropTypes.string.isRequired,
 rating: PropTypes.number
}

Color.defaultProps = {
 rating: 0
}

export default Color

ColorList is now a component class, and can access context via this.context. Col‐
ors are now read directly from the store via store.getState. The same rules apply
that do for stateless functional components. contextTypes must be defined on the
instance.

Retrieving the store from the context is a nice way to reduce your boilerplate, but this
is not something that is required for every application. Dan Abramov, the creator of
Redux, even suggests that these patterns do not need to be religiously followed:

Separating the container and presentational components is often a good idea, but you
shouldn’t take it as dogma. Only do this when it truly reduces the complexity of your
codebase.2

Presentational Versus Container Components
In the last example, the Color component retrieved the store via context and used it
to dispatch RATE_COLOR and REMOVE_COLOR actions directly. Before that, the Color

220 | Chapter 9: React Redux

https://facebook.github.io/react/docs/context.html

3 Redux Docs, “Presentational and Container Components”.
4 Dan Abramov, “Presentational and Container Components”, Medium, March 23, 2015.

List component retrieved the store via context to read the current list of colors from
state. In both examples, these components rendered UI elements by interacting
directly with the Redux store. We can improve the architecture of our application by
decoupling the store from components that render the UI.3

Presentational components are components that only render UI elements.4 They do
not tightly couple with any data architecture. Instead, they receive data as props and
send data to their parent component via callback function properties. They are purely
concerned with the UI and can be reused across applications that contain different
data. Every component that we created in Chapter 6, with the exception of the App
component, is a presentational component.

Container components are components that connect presentational components to the
data. In our case, container components will retrieve the store via context and man‐
age any interactions with the store. They render presentational components by map‐
ping properties to state and callback function properties to the store’s dispatch
method. Container components are not concerned with UI elements; they are used to
connect presentational components to data.

There are many benefits to this architecture. Presentational components are reusable.
They are easy to swap out and easy to test. They can be composed to create the UI.
Presentational components can be reused across browser applications that may use
different data libraries.

Container components are not concerned with the UI at all. Their main focus is con‐
necting the presentation components to the data architecture. Container components
can be reused across device platforms to connect native presentational components to
the data.

The AddColorForm, ColorList, Color, StarRating, and Star components that we
created in Chapter 6 are examples of presentational components. They receive data
via props, and when events occur, they invoke callback function properties. We are
already pretty familiar with presentation components, so let’s see how we can use
them to create container components.

The App component will mostly remain the same. It still defines the store in the con‐
text so that it can be retrieved by child components. Instead of rendering the Sort
Menu, AddColorForm, and ColorList components, however, it will render containers
for those items. The Menu container will connect the SortMenu, NewColor will connect
the AddColorForm, and Colors will connect the ColorList:

Presentational Versus Container Components | 221

http://bit.ly/2mJ92Co
http://bit.ly/2mJfLw4

render() {
 return (
 <div className="app">
 <Menu />
 <NewColor />
 <Colors />
 </div>
)
}

Any time you want to connect a presentational component to some data, you can
wrap that component in a container that controls the properties and connects them
to data. The NewColor container, Menu container, and Colors container can all be
defined in the same file:

import { PropTypes } from 'react'
import AddColorForm from './ui/AddColorForm'
import SortMenu from './ui/SortMenu'
import ColorList from './ui/ColorList'
import { addColor,
 sortColors,
 rateColor,
 removeColor } from '../actions'
import { sortFunction } from '../lib/array-helpers'

export const NewColor = (props, { store }) =>
 <AddColorForm onNewColor={(title, color) =>
 store.dispatch(addColor(title,color))
 } />

NewColor.contextTypes = {
 store: PropTypes.object
}

export const Menu = (props, { store }) =>
 <SortMenu sort={store.getState().sort}
 onSelect={sortBy =>
 store.dispatch(sortColors(sortBy))
 } />

Menu.contextTypes = {
 store: PropTypes.object
}

export const Colors = (props, { store }) => {
 const { colors, sort } = store.getState()
 const sortedColors = [...colors].sort(sortFunction(sort))
 return (
 <ColorList colors={sortedColors}
 onRemove={id =>
 store.dispatch(removeColor(id))
 }

222 | Chapter 9: React Redux

 onRate={(id, rating) =>
 store.dispatch(rateColor(id, rating))
 }/>
)
}

Colors.contextTypes = {
 store: PropTypes.object
}

The NewColor container does not render UI. Instead, it renders the AddColorForm
component and handles onNewColor events from this component. This container
component retrieves the store from the context and uses it to dispatch ADD_COLOR
actions. It contains the AddColorForm component and connects it to the Redux store.

The Menu container renders the SortMenu component. It passes the current sort
property from the store’s state and dispatches sort actions when the user selects a dif‐
ferent menu item.

The Colors container retrieves the store via context and renders a ColorList compo‐
nent with colors from the store’s current state. It also handles onRate and onRemove
events invoked from the ColorList component. When these events occur, the Colors
container dispatches the appropriate actions.

All of the Redux functionality is connected here in this file. Notice that all of the
action creators are being imported and used in one place. This is the only file that
invokes store.getState or store.dispatch.

This approach of separating UI components from containers that connect them to
data is generally a good approach. However, this could be overkill for a small project,
proof of concept, or prototype.

In the next section, we introduce a new library, React Redux. This library can be used
to quickly add the Redux store to context and create container components.

The React Redux Provider
React Redux is a library that contains some tools to help ease the complexity involved
with implicitly passing the store via context. This library is also brought to you by
Dan Abramov, the creator of Redux. Redux does not require that you use this library.
However, using React Redux reduces your code’s complexity and may help you build
apps a bit faster.

In order to use React Redux, we must first install it. It can be installed via npm:

npm install react-redux --save

The React Redux Provider | 223

https://www.npmjs.com/package/react-redux

react-redux supplies us with a component that we can use to set up our store in the
context, the provider. We can wrap any React element with the provider and that ele‐
ment’s children will have access to the store via context.

Instead of setting up the store as a context variable in the App component, we can
keep the App component stateless:

import { Menu, NewColor, Colors } from './containers'

const App = () =>
 <div className="app">
 <Menu />
 <NewColor />
 <Colors />
 </div>

export default App

The provider adds the store to the context and updates the App component when
actions have been dispatched. The provider expects a single child component:

import React from 'react'
import { render } from 'react-dom'
import { Provider } from 'react-redux'
import App from './components/App'
import storeFactory from './store'

const store = storeFactory()

render(
 <Provider store={store}>
 <App />
 </Provider>,
 document.getElementById('react-container')
)

The provider requires that we pass the store as a property. It adds the store to the
context so that it can be retrieved by any child of the App component. Simply using
the provider can save us some time and simplify our code.

Once we’ve incorporated the provider, we can retrieve the store via context in child
container components. However, React Redux provides us with another way to
quickly create container components that work with the provider: the connect func‐
tion.

React Redux connect
If we keep our UI components purely presentational, we can rely on React Redux to
create the container components. React Redux helps us create container components
through mapping the current state of the Redux store to the properties of a presenta‐

224 | Chapter 9: React Redux

tional component. It also maps the store’s dispatch function to callback properties.
This is all accomplished through a higher-order function called connect.

Let’s create the Colors container component using connect. The Colors container
connects the ColorList component to the store:

import ColorList from './ColorList'

const mapStateToProps = state =>
 ({
 colors: [...state.colors].sort(sortFunction(state.sort))
 })

const mapDispatchToProps = dispatch =>
 ({
 onRemove(id) {
 dispatch(removeColor(id))
 },
 onRate(id, rating) {
 dispatch(rateColor(id, rating))
 }
 })

export const Colors = connect(
 mapStateToProps,
 mapDispatchToProps
)(ColorList)

connect is a higher-order function that returns a function that returns a component.
No, that’s not a typo or a tongue-twister: it’s functional JavaScript. connect expects
two arguments: mapStateToProps and mapDispatchToProps. Both are functions. It
returns a function that expects a presentational component, and wraps it with a con‐
tainer that sends it data via props.

The first function, mapStateToProps, injects state as an argument and returns an
object that will be mapped to props. We set the colors property of the ColorList
component to an array of sorted colors from state.

The second function, mapDispatchToProps, injects the store’s dispatch function as
an argument that can be used when the ColorList component invokes callback func‐
tion properties. When the ColorList raises onRate or onRemove events, data about
the color to rate or remove is obtained and dispatched.

connect works in conjunction with the provider. The provider adds the store to the
context and connect creates components that retrieve the store. When using connect,
you do not have to worry about context.

All of our containers can be created using the React Redux connect function in a sin‐
gle file:

React Redux connect | 225

import { connect } from 'react-redux'
import AddColorForm from './ui/AddColorForm'
import SortMenu from './ui/SortMenu'
import ColorList from './ui/ColorList'
import { addColor,
 sortColors,
 rateColor,
 removeColor } from '../actions'
import { sortFunction } from '../lib/array-helpers'

export const NewColor = connect(
 null,
 dispatch =>
 ({
 onNewColor(title, color) {
 dispatch(addColor(title,color))
 }
 })
)(AddColorForm)

export const Menu = connect(
 state =>
 ({
 sort: state.sort
 }),
 dispatch =>
 ({
 onSelect(sortBy) {
 dispatch(sortColors(sortBy))
 }
 })
)(SortMenu)

export const Colors = connect(
 state =>
 ({
 colors: [...state.colors].sort(sortFunction(state.sort))
 }),
 dispatch =>
 ({
 onRemove(id) {
 dispatch(removeColor(id))
 },
 onRate(id, rating) {
 dispatch(rateColor(id, rating))
 }
 })
)(ColorList)

In this example, each of our containers are defined using React Redux’s connect
function. The connect function connects Redux to purely presentational compo‐
nents. The first argument is a function that maps state variables to properties. The

226 | Chapter 9: React Redux

second argument is a function that dispatches actions when events are raised. If you
only want to map callback function properties to dispatch you can provide null as a
placeholder for the first argument, as we have in the definition of the NewColor con‐
tainer.

In this chapter, we looked at various ways to connect Redux to React. We explicitly
passed the store down the component tree to children as a property. We implicitly
passed the store directly to the components that need to use it via context. We decou‐
pled the store’s functionality from our presentation through the use of container com‐
ponents. And finally, we used react-redux to help us rapidly connect the store to
presentation using context and container components.

At this point we have a working app that uses React and Redux together. In the next
chapter, we will look at how we can write unit tests for all of the various parts of this
application.

React Redux connect | 227

1 For a brief introduction to unit testing, see Martin Fowler’s article, “Unit Testing”.

CHAPTER 10

Testing

In order to keep up with our competitors, we must move quickly while ensuring
quality. One vital tool that allows us to do this is unit testing. Unit testing makes it
possible to verify that every piece, or unit, of our application functions as intended.1

One benefit of practicing functional techniques is that they lend themselves to writ‐
ing testable code. Pure functions are naturally testable. Immutability is easily testable.
Composing applications out of small functions designed for specific tasks produces
testable functions or units of code.

In this section, we will demonstrate techniques that can be used to unit test React
Redux applications. This chapter will not only cover testing, but also tools that can be
used to help evaluate and improve your code and your tests.

ESLint
In most programming languages, code needs to be compiled before you can run any‐
thing. Programming languages have pretty strict rules about coding style and will not
compile until the code is formatted appropriately. JavaScript does not have those rules
and does not come with a compiler. We write code, cross our fingers, and run it in the
browser to see if it works or not. The good news is that there are tools that we can use
to analyze our code and make us stick to specific formatting guidelines.

The process of analyzing JavaScript code is called hinting or linting. JSHint and JSLint
are the original tools used to analyze JavaScript and provide feedback about format‐
ting. ESLint is the latest code linter that supports emerging JavaScript syntax. Addi‐

229

http://martinfowler.com/bliki/UnitTest.html
http://eslint.org

tionally, ESLint is pluggable. This means that we can create and share plugins that can
be added to ESLint configurations to extend its capabilities.

We will be working with a plugin called eslint-plugin-react. This plugin will ana‐
lyze our JSX and React syntax in addition to our JavaScript.

Let’s install eslint globally. You can install eslint with npm:

sudo npm install -g eslint

Before we use ESLint, we’ll need to define some configuration rules that we can agree
to follow. We’ll define these in a configuration file that is located in our project root.
This file can be formatted as JSON or YAML. YAML is a data serialization formation
like JSON but with less syntax, making it a little easier for humans to read.

ESLint comes with a tool that helps us set up configuration. There are several compa‐
nies that have created ESLint config files that we can use as a starting point, or we can
create our own.

We can create an ESLint configuration by running eslint --init and answering
some questions about our coding style:

$ eslint --init

? How would you like to configure ESLint?
Answer questions about your style

? Are you using ECMAScript 6 features? Yes
? Are you using ES6 modules? Yes
? Where will your code run? Browser
? Do you use CommonJS? Yes
? Do you use JSX? Yes
? Do you use React? Yes
? What style of indentation do you use? Spaces
? What quotes do you use for strings? Single
? What line endings do you use? Unix
? Do you require semicolons? No
? What format do you want your config file to be in? YAML

Local ESLint installation not found.
Installing eslint, eslint-plugin-react

After eslint --init runs, three things happen:

1. ESLint and eslint-plugin-react are installed locally to the ./node_modules
folder.

2. These dependencies are automatically added to the package.json file.
3. A configuration file, .eslintrc.yml, is created and added to the root of our project.

Let’s test our ESLint configuration out by creating a sample.js file:

230 | Chapter 10: Testing

http://bit.ly/2kuEylV
http://yaml.org

const gnar ="gnarly";

const info = ({file=__filename, dir=__dirname}) =>
 <p>{dir}: {file}</p>

switch(gnar) {
 default :
 console.log('gnarley')
 break
}

This file has some issues, but nothing that would cause errors in the browser. Techni‐
cally, this code works just fine. Let’s run ESLint on this file and see what feedback we
get based upon our customized rules:

$./node_modules/.bin/eslint sample.js

/Users/alexbanks/Desktop/eslint-learn/sample.js
 1:20 error Strings must use singlequote quotes
 1:28 error Extra semicolon semi
 3:7 error 'info' is defined but never used no-unused-vars
 3:28 error '__filename' is not defined no-undef
 3:44 error '__dirname' is not defined no-undef
 7:5 error Expected indentation of 0 space ch... indent
 8:9 error Expected indentation of 4 space ch... indent
 8:9 error Unexpected console statement no-console
 9:9 error Expected indentation of 4 space ch... indent

✖ 9 problems (9 errors, 0 warnings)

ESLint has analyzed our sample and is reporting some issues based upon our configu‐
ration choices. We see here that ESLint is complaining about the use of double quotes
and a semicolon on line 1 because we have specified single quotes only and no semi‐
colons in our .eslintrc.yml configuration file. Next, ESLint complains about the info
function being defined but never used; ESLint hates that. ESLint also complains about
__filename and __dirname because it does not automatically include Node.js globals.
And finally, ESLint does not like the indentation of our switch statement or the use of
a console statement.

We can modify our ESLint configuration, .eslintrc.yml, to make it less strict:

env:
 browser: true
 commonjs: true
 es6: true
extends: 'eslint:recommended'
parserOptions:
 ecmaFeatures:
 experimentalObjectRestSpread: true
 jsx: true
 sourceType: module

ESLint | 231

plugins:
 - react
rules:
 indent:
 - error
 - 4
 - SwitchCase: 1
 quotes:
 - error
 - single
 semi:
 - error
 - never
 linebreak-style:
 - error
 - unix
 no-console: 0
globals:
 __filename: true
 __dirname: true

Upon opening .eslintrc.yml, you’ll first notice that the file is readable and approacha‐
ble—that is the goal of YAML. Here, we’ve modified the indentation rules to allow for
the indentation of switch statements. Next we’ve added a no-console rule, which will
prevent ESLint from complaining about the console.log statement. Finally, we’ve
added a couple of global variables for ESLint to ignore.

We’ll still need to make a couple of changes to our file in order to follow our style
guide:

const gnar = 'gnarly'

export const info = ({file=__filename, dir=__dirname}) =>
 <p>{dir}: {file}</p>

switch(gnar) {
 default :
 console.log('gnarly')
 break
}

We’ve removed the semicolon and double quotes from line 1. Also, exporting the
info function means ESLint will no longer complain about it being unused. Between
modifying the ESLint configuration and making some changes to our code, we have a
file that passes the code-formatting test.

The command eslint . will lint your entire directory. In order to do this, you will
most likely require that ESLint ignore some JavaScript files. The .eslintignore file is
where you can add files or directories for ESLint to ignore:

232 | Chapter 10: Testing

dist/assets/
sample.js

This .eslintignore file tells ESLint to ignore our new sample.js file, as well as anything
in the dist/assets folder. If we do not ignore the assets folder, ESLint will analyze the
client bundle.js file and it will find a lot to complain about in that file.

Let’s add a script to our package.json file for running lint:

"scripts": {
 "lint": "./node_modules/.bin/eslint ."
}

Now ESLint can be run any time we want with npm run lint, and it will analyze all
of the files in our project except the ones we have ignored.

Testing Redux
Testing is essential for Redux because it only works with data—it does not have a UI.
Redux is naturally testable because its reducers are pure functions, and it is easy to
inject state into a store. Writing a reducer test first makes it easy to understand how
the reducer is supposed to work. And writing tests for your store and your action cre‐
ators will give you confidence that your client data layer is working as intended.

In this section, we will write some unit tests for the Redux components of the color
organizer.

Test-Driven Development
Test-driven development, or TDD, is a practice—not a technology. It does not mean
that you simply have tests for your application. Rather, it is the practice of letting the
tests drive the development process. In order to practice TDD, you must follow these
steps:

Write the tests first
This is the most critical step. You declare what you are building and how it
should work first in a test.

Run the tests and watch them fail (red)
Run your tests and watch them fail before you write the code.

Write the minimal amount of code required to make the tests pass (green)
Now all you have to do is make the tests pass. Focus specifically on making each
test pass; do not add any functionality beyond the scope of the test.

Testing Redux | 233

2 For more on this development pattern, see Jeff McWherter and James Bender, “Red, Green, Refactor”.

Refactor both the code and the tests (gold)
Once the tests pass, it is time to take a closer look at your code and your tests. Try
to express your code as simply and as beautifully as possible.2

TDD is an excellent way to approach a Redux application. It is typically easier to rea‐
son about how a reducer should work before actually writing the reducer. Practicing
TDD will allow you to build and certify the entire data structure for a feature or
application independent of the UI.

TDD and Learning

If you are new to TDD, or new to the language that you are testing,
you may find it challenging to write a test before writing code. This
is to be expected, and it is OK to write the code before the test until
you get the hang of it. Try to work in small batches: a little bit of
code, a few tests, and so on. Once you get the hang of how to write
a test, it will be easier to write the tests first.

For the remainder of this chapter, we will be writing tests for code that already exists.
Technically, we are not practicing TDD. However, in the next section we will pretend
that our code does not already exist so we can get a feel for the TDD workflow.

Testing Reducers
Reducers are pure functions that calculate and return results based upon the input
arguments. In a test, we get to control the input, the current state, and the action.
Given a current state and an action, we should be able to predict a reducer’s output.

Before we can get started writing tests, we will need to install a testing framework.
You can write tests for React and Redux with any JavaScript testing framework. We’ll
use Jest, a JavaScript testing framework that was designed with React in mind:

sudo npm install -g jest

This command installs Jest and the Jest CLI globally. You can now run the jest com‐
mand from any folder to run the tests.

Since we are using emerging JavaScript and React, we will need to transpile our code
and our tests before they can run. Just install the babel-jest package to make that
possible:

npm install --save-dev babel-jest

234 | Chapter 10: Testing

http://bit.ly/2kXvDN3
http://bit.ly/2kuCR82

With babel-jest installed, all of your code and tests will be transpiled with Babel
before the tests run. A .babelrc file is required for this to work, but we should already
have one in the root of our project.

create-react-app

Projects that were initialized with create-react-app already come
with the jest and babel-jest packages installed. They also create
a __tests__ directory in the root of the project.

Jest has two important functions for setting up tests: describe and it. describe is
used to create a suite of tests, and it is used for each test. Both functions expect the
name of the test or suite and a callback function that contains the test or suite of tests.

Let’s create a test file and stub our tests. Create a folder called ./__tests__/store/reduc‐
ers, and in it create a new JavaScript file called color.test.js:

describe("color Reducer", () => {

 it("ADD_COLOR success")

 it("RATE_COLOR success")

})

In this example, we create a suite of tests for the color reducer by stubbing a test for
each action that affects the reducer. Each test is defined with the it function. You can
set up a pending test by only sending a single argument to the it function.

Run this test with the jest command. Jest will run and report that it has skipped our
two pending tests:

$ jest

Test Suites: 1 skipped, 0 of 1 total
Tests: 2 skipped, 2 total
Snapshots: 0 total
Time: 0.863s

Ran all test suites.

Test Files

Jest will run any tests found in the __tests__ directory, and any
JavaScript files in your project whose names end with .test.js. Some
developers prefer to place their tests directly next to the files they
are testing, while others prefer to group their tests in a single folder.

Testing Redux | 235

It is now time to write both of these tests. Since we are testing the color reducer, we
will import that function specifically. The color reducer function is referred to as our
system under test (SUT). We will import this function, send it an action, and verify the
results.

Jest “matchers” are returned by the expect function and used to verify results. To test
the color reducer we will use the .toEqual matcher. This verifies that the resulting
object matches the argument sent to .toEqual:

import C from '../../../src/constants'
import { color } from '../../../src/store/reducers'

describe("color Reducer", () => {

 it("ADD_COLOR success", () => {
 const state = {}
 const action = {
 type: C.ADD_COLOR,
 id: 0,
 title: 'Test Teal',
 color: '#90C3D4',
 timestamp: new Date().toString()
 }
 const results = color(state, action)
 expect(results)
 .toEqual({
 id: 0,
 title: 'Test Teal',
 color: '#90C3D4',
 timestamp: action.timestamp,
 rating: 0
 })
 })

 it("RATE_COLOR success", () => {
 const state = {
 id: 0,
 title: 'Test Teal',
 color: '#90C3D4',
 timestamp: 'Sat Mar 12 2016 16:12:09 GMT-0800 (PST)',
 rating: undefined
 }
 const action = {
 type: C.RATE_COLOR,
 id: 0,
 rating: 3
 }
 const results = color(state, action)
 expect(results)
 .toEqual({
 id: 0,

236 | Chapter 10: Testing

 title: 'Test Teal',
 color: '#90C3D4',
 timestamp: 'Sat Mar 12 2016 16:12:09 GMT-0800 (PST)',
 rating: 3
 })
 })

})

To test a reducer, we need a state and a sample action. We obtain the result by invok‐
ing our SUT, the color function, with these sample objects. Finally, we check the
result to make sure the appropriate state was returned using the .toEqual matcher.

To test ADD_COLOR, the initial state doesn’t matter much. However, when we send the
color reducer an ADD_COLOR action, it should return a new color object.

To test RATE_COLOR, we’ll provide an initial color object with a rating of 0 for the
assumed state. Sending this state object along with a RATE_COLOR action should result
in a color object that has our new rating.

Now that we have written our tests, if we are pretending that we do not already have
the code for the color reducer, we need to stub that function. We can stub the color
reducer by adding a function called color to our /src/store/reducers.js file. This will
allow our tests to find the empty reducer and import it:

import C from '../constants'

export const color = (state={}, action=) => {
 return state
}

Why Stub the Reducer First?

Without a SUT in place, we would get an error in the test:
TypeError: (0 , _reducers.color) is not a function

This error occurs when the function that we are testing, color, is
not defined. Simply adding the definition for the function that you
wish to test will provide more detailed test failure feedback.

Let’s run the tests and watch them fail. Jest will provide specific details on each fail‐
ure, including a stack trace:

$ jest

 FAIL __tests__/store/reducers/color.test.js
 ● color Reducer › ADD_COLOR success

 expect(received).toEqual(expected)

Testing Redux | 237

 Expected value to equal:
 {"color": "#90C3D4", "id": 0, "rating": 0, "timestamp":
 "Mon Mar 13 2017 12:29:12 GMT-0700 (PDT)", "title": "Test Teal"}

 Received:
 {}

 Difference:

 - Expected
 + Received

 @@ -1,7 +1,1 @@
 -Object {
 - "color": "#90C3D4",
 - "id": 0,
 - "rating": 0,
 - "timestamp": "Mon Mar 13 2017 12:29:12 GMT-0700 (PDT)",
 - "title": "Test Teal",
 -}

 +Object {}

 at Object.<anonymous> (__tests__/store/reducers/color.test.js:19:9)
 at process._tickCallback (internal/process/next_tick.js:103:7)

 ● color Reducer › RATE_COLOR success

 expect(received).toEqual(expected)

 Expected value to equal:
 {"color": "#90C3D4", "id": 0, "rating": 3, "timestamp":
 "Sat Mar 12 2016 16:12:09 GMT-0800 (PST)", "title": "Test Teal"}

 Received:
 {"color": "#90C3D4", "id": 0, "rating": undefined, "timestamp":
 "Sat Mar 12 2016 16:12:09 GMT-0800 (PST)", "title": "Test Teal"}

 Difference:

 - Expected
 + Received

 @@ -1,7 +1,7 @@
 Object {
 "color": "#90C3D4",
 "id": 0,
 - "rating": 3,
 + "rating": undefined,
 "timestamp": "Sat Mar 12 2016 16:12:09 GMT-0800 (PST)",
 "title": "Test Teal",
 }

238 | Chapter 10: Testing

 at Object.<anonymous> (__tests__/store/reducers/color.test.js:44:9)
 at process._tickCallback (internal/process/next_tick.js:103:7)

 color Reducer

 ✕ ADD_COLOR success (8ms)
 ✕ RATE_COLOR success (1ms)

Test Suites: 1 failed, 1 total
Tests: 2 failed, 2 total
Snapshots: 0 total
Time: 0.861s, estimated 1s
Ran all test suites.

Taking the time to write the tests and run them to watch them fail shows us that our
tests are working as intended. This failure feedback represents our to-do list. It is our
job to make both of these tests pass.

It’s time to open the /src/store/reducers.js file and write the minimal code required to
make our tests pass:

import C from '../constants'

export const color = (state={}, action=) => {
 switch (action.type) {
 case C.ADD_COLOR:
 return {
 id: action.id,
 title: action.title,
 color: action.color,
 timestamp: action.timestamp,
 rating: 0
 }
 case C.RATE_COLOR:
 state.rating = action.rating
 return state
 default :
 return state
 }
}

The next time we run the jest command our tests should pass:

$ jest

 PASS __tests__/store/reducers/color.test.js
 color Reducer

 ✓ ADD_COLOR success (4ms)
 ✓ RATE_COLOR success

Test Suites: 1 passed, 1 total

Testing Redux | 239

Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 0.513s, estimated 1s

Ran all test suites.

The tests passed, but we are not finished. It is time to refactor both our tests and the
code. Take a look at the RATE_COLOR case in the reducer:

case 'RATE_COLOR':
 state.rating = action.rating
 return state

If you look closely, this code should seem a little off. State is supposed to be immuta‐
ble, yet here we are clearly mutating the state by changing the value for rating in the
state object. Our tests still pass because we are not making sure that our state object is
immutable.

deep-freeze can help us make sure our state and action objects stay immutable by
preventing them from changing:

npm install deep-freeze --save-dev

When invoking the color reducer, we will deep-freeze both the state and the action
object. Both objects should be immutable, and deep-freezing them will cause an error
if any code does try to mutate these objects:

import C from '../../../src/constants'
import { color } from '../../../src/store/reducers'
import deepFreeze from 'deep-freeze'

describe("color Reducer", () => {

 it("ADD_COLOR success", () => {
 const state = {}
 const action = {
 type: C.ADD_COLOR,
 id: 0,
 title: 'Test Teal',
 color: '#90C3D4',
 timestamp: new Date().toString()
 }
 deepFreeze(state)
 deepFreeze(action)
 expect(color(state, action))
 .toEqual({
 id: 0,
 title: 'Test Teal',
 color: '#90C3D4',
 timestamp: action.timestamp,
 rating: 0
 })

240 | Chapter 10: Testing

https://github.com/substack/deep-freeze

 })

 it("RATE_COLOR success", () => {
 const state = {
 id: 0,
 title: 'Test Teal',
 color: '#90C3D4',
 timestamp: 'Sat Mar 12 2016 16:12:09 GMT-0800 (PST)',
 rating: undefined
 }
 const action = {
 type: C.RATE_COLOR,
 id: 0,
 rating: 3
 }
 deepFreeze(state)
 deepFreeze(action)
 expect(color(state, action))
 .toEqual({
 id: 0,
 title: 'Test Teal',
 color: '#90C3D4',
 timestamp: 'Sat Mar 12 2016 16:12:09 GMT-0800 (PST)',
 rating: 3
 })
 })

})

Now we can run our modified test on our current color reducer and watch it fail,
because rating a color mutates the incoming state:

$ jest

 FAIL __tests__/store/reducers/color.test.js
 ● color Reducer › RATE_COLOR success

 TypeError: Cannot assign to read only property 'rating' of object '#<Object>'
 at color (src/store/reducers.js:14:26)
 at Object.<anonymous> (__tests__/store/reducers/color.test.js:43:36)
 at process._tickCallback (internal/process/next_tick.js:103:7)

 color Reducer

 ✓ ADD_COLOR success (3ms)
 ✕ RATE_COLOR success (3ms)

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 passed, 2 total
Snapshots: 0 total
Time: 0.513s, estimated 1s

Ran all test suites.

Testing Redux | 241

Let’s change the color reducer so that this test will pass. We will use the spread opera‐
tor to make a copy of the state object before we overwrite the rating:

case 'RATE_COLOR':
 return {
 ...state,
 rating: action.rating
 }

Now that we are not mutating state, both tests should pass:

$ jest

 PASS __tests__/store/reducers/color.test.js

 color Reducer

 ✓ ADD_COLOR success (3ms)
 ✓ RATE_COLOR success

Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 0.782s, estimated 1s

Ran all test suites.

This process represents a typical TDD cycle. We wrote the tests first, wrote code to
make the tests pass, and refactored both the code and the tests. This approach is very
effective when working with JavaScript, and especially Redux.

Testing the Store
If the store works, there is a good chance that your app is going to work. The process
for testing the store involves creating a store with your reducers, injecting an assumed
state, dispatching actions, and verifying the results.

While testing the store you can integrate your action creators and kill two birds with
one stone, testing the store and the action creators together.

In Chapter 8, we created a storeFactory, a function that we can use to manage the
store creation process in the color organizer app:

import { createStore,
 combineReducers,
 applyMiddleware } from 'redux'
import { colors, sort } from './reducers'
import stateData from '../../data/initialState'

const logger = store => next => action => {
 let result
 console.groupCollapsed("dispatching", action.type)

242 | Chapter 10: Testing

3 See Jay Fields, “Testing: One Assertion per Test”, June 6, 2007.

 console.log('prev state', store.getState())
 console.log('action', action)
 result = next(action)
 console.log('next state', store.getState())
 console.groupEnd()
 return result
}

const saver = store => next => action => {
 let result = next(action)
 localStorage['redux-store'] = JSON.stringify(store.getState())
 return result
}

const storeFactory = (initialState=stateData) =>
 applyMiddleware(logger, saver)(createStore)(
 combineReducers({colors, sort}),
 (localStorage['redux-store']) ?
 JSON.parse(localStorage['redux-store']) :
 initialState
)

export default storeFactory

This module exports a function that we can use to create stores. It abstracts away the
details of creating a store for the color organizer. This file contains the reducers, mid‐
dleware, and default state necessary to create a store for our app. When creating a
store with the storeFactory, we can optionally pass in an initial state for our new
store, which will help us when it is time to test this store.

Jest has setup and teardown features that allow you to execute some code before and
after executing each test or suite. beforeAll and afterAll are invoked before and
after each test suite is executed, respectively. beforeEach and afterEach are invoked
before or after each it statement is executed.

Setup and Teardown

A good practice to follow when writing tests is to allow only one
assertion for each test.3 This means that you want to avoid calling
expect multiple times within a single it statement. This way, each
assertion can be independently verified, making it easier to figure
out what went wrong when tests fail.
Jest’s setup and teardown features can be used to help you follow
this practice. Execute your test code in a beforeAll statement and
verify the results with multiple it statements.

Testing Redux | 243

http://bit.ly/2kuK2Nf

Let’s see how we can test the store while testing the addColor action creator in the
file ./__tests__/actions-spec.js. The following example will test our store by dispatch‐
ing an addColor action creator and verifying the results:

import C from '../src/constants'
import storeFactory from '../src/store'
import { addColor } from '../src/actions'

describe("addColor", () => {

 let store
 const colors = [
 {
 id: "8658c1d0-9eda-4a90-95e1-8001e8eb6036",
 title: "lawn",
 color: "#44ef37",
 timestamp: "Mon Apr 11 2016 12:54:19 GMT-0700 (PDT)",
 rating: 4
 },
 {
 id: "f9005b4e-975e-433d-a646-79df172e1dbb",
 title: "ocean blue",
 color: "#0061ff",
 timestamp: "Mon Apr 11 2016 12:54:31 GMT-0700 (PDT)",
 rating: 2
 },
 {
 id: "58d9caee-6ea6-4d7b-9984-65b145031979",
 title: "tomato",
 color: "#ff4b47",
 timestamp: "Mon Apr 11 2016 12:54:43 GMT-0700 (PDT)",
 rating: 0
 }
]

 beforeAll(() => {
 store = storeFactory({colors})
 store.dispatch(addColor("Dark Blue", "#000033"))
 })

 it("should add a new color", () =>
 expect(store.getState().colors.length).toBe(4))

 it("should add a unique guid id", () =>
 expect(store.getState().colors[3].id.length).toBe(36))

 it("should set the rating to 0", () =>
 expect(store.getState().colors[3].rating).toBe(0))

 it("should set timestamp", () =>
 expect(store.getState().colors[3].timestamp).toBeDefined())

244 | Chapter 10: Testing

})

We set up the test by using the storeFactory to create a new store instance that con‐
tains three sample colors in the state. Next, we dispatch our addColor action creator
to add a fourth color to the state: Dark Blue.

Each test now verifies the results of the dispatched action. They each contain one
expect statement. If any of these tests were to fail, we would know exactly what field
of the new action was causing issues.

This time we used two new matchers: .toBe and .toBeDefined. The .toBe matcher
compares the results using the === operator. This matcher can be used to compare
primitives like numbers or strings, whereas the .toEqual matcher is used to deeply
compare objects. The .toBeDefined matcher can be used to check for the existence of
a variable or a function. In this test, we check for the existence of the timestamp.

These tests verify that our store can successfully add new colors using the action crea‐
tor. This should give us some confidence in our store code: it’s working.

Testing React Components
React components provide instructions for React to follow when creating and manag‐
ing updates to the DOM. We can test these components by rendering them and
checking the resulting DOM.

We are not running our tests in a browser; we are running them in the terminal with
Node.js. Node.js does not have the DOM API that comes standard with each browser.
Jest incorporates an npm package called jsdom that is used to simulate a browser
environment in Node.js, which is essential for testing React components.

Setting Up the Jest Environment
Jest provides us with the ability to run a script before any tests are run where we can
set up additional global variables that can be used in any of our tests.

For example, let’s say we wanted to add React to the global scope along with some
sample colors that can be accessed by any of our tests. We could create a file
called /__tests__/global.js:

import React from 'react'
import deepFreeze from 'deep-freeze'

global.React = React
global._testColors = deepFreeze([
 {
 id: "8658c1d0-9eda-4a90-95e1-8001e8eb6036",
 title: "lawn",

Testing React Components | 245

 color: "#44ef37",
 timestamp: "Sun Apr 10 2016 12:54:19 GMT-0700 (PDT)",
 rating: 4
 },
 {
 id: "f9005b4e-975e-433d-a646-79df172e1dbb",
 title: "ocean blue",
 color: "#0061ff",
 timestamp: "Mon Apr 11 2016 12:54:31 GMT-0700 (PDT)",
 rating: 2
 },
 {
 id: "58d9caee-6ea6-4d7b-9984-65b145031979",
 title: "tomato",
 color: "#ff4b47",
 timestamp: "Fri Apr 15 2016 12:54:43 GMT-0700 (PDT)",
 rating: 0
 }
])

This file adds React and some immutable test colors to the global scope. Next, we
have to tell Jest to run this file before running our tests. We can do this by adding a
setupFiles field to the jest node in package.json:

"jest": {
 "setupFiles": ["./__tests__/global.js"],
 "modulePathIgnorePatterns": ["global.js"]
}

The setupFiles field is used to provide an array of files that Jest should run to set up
the global environment before our tests. The modulePathIgnorePatterns field tells
Jest to ignore the global.js file when running the tests because it does not contain a
test suite; it is a setup file. This field is necessary because we’d prefer to add the
global.js file to the __tests__ folder even though it does not contain any tests.

Ignoring SCSS imports
If you import SCSS (or CSS or SASS) files directly into your components, you will
need to ignore these imports while testing. If you do not ignore them, they will cause
the tests to fail.

These files can be ignored by incorporating a module mapper that returns an empty
string when .css, .scss, or .less files are imported. Let’s install jest-css-modules:

npm install jest-css-modules --save-dev

Now that we have this package installed, we need to tell Jest to use this module in
place of any .scss import. We need to add a moduleNameMapper field to the jest node
in our package.json file:

246 | Chapter 10: Testing

"jest": {
 "setupFiles": ["./__tests__/global.js"],
 "modulePathIgnorePatterns": ["global.js"],
 "moduleNameMapper": {
 "\\.(scss)$": "<rootDir>/node_modules/jest-css-modules"
 }
 }

This tells Jest to use the jest-css-modules module in place of any import that ends
with .scss. Adding these lines of code to your package.json file will prevent your tests
from failing due to .scss imports.

Enzyme
We are almost ready to begin testing our React components. We only have two more
npm modules to install before we begin writing our first component test:

npm install enzyme react-addons-test-utils --save-dev

Enzyme is a testing utility for React components designed at Airbnb. Enzyme
requires react-addons-test-utils, a set of tools that can be used to render and
interact with components during a test. Additionally, react-dom is required, but we’ll
assume that you already have react-dom installed.

Enzyme makes it easier to render a component and traverse the rendered output.
Enzyme is not a testing or assertion framework. It handles the task of rendering React
components for testing and provides the necessary tools for traversing child ele‐
ments, verifying props, verifying state, simulating events, and querying the DOM.

Enzyme has three main methods for rendering:

shallow

shallow renders components one level deep for unit testing.

mount

mount renders components using the browser DOM and is necessary when you
need to test the full component lifecycle and the properties or state of child ele‐
ments.

render

render is used to render static HTML markup with a component. With render,
you can verify that your component returns the appropriate HTML.

Consider the Star component:

const Star = ({ selected=false, onClick=f=>f }) =>
 <div className={(selected) ? "star selected" : "star"}
 onClick={onClick}>
 </div>

Testing React Components | 247

http://airbnb.io/enzyme/

It should render a div element with a className that depends upon the selected
property. It should also respond to click events.

Let’s write a test for the Star component with Enzyme. We will use Enzyme to render
the component and find specific DOM elements within the rendered Star. We can
use the shallow method to render our component one level deep:

import { shallow } from 'enzyme'
import Star from '../../../src/components/ui/Star'

describe("<Star /> UI Component", () => {

 it("renders default star", () =>
 expect(
 shallow(<Star />)
 .find('div.star')
 .length
).toBe(1)
)

 it("renders selected stars", () =>
 expect(
 shallow(<Star selected={true} />)
 .find('div.selected.star')
 .length
).toBe(1)
)

})

Enzyme comes with functions that somewhat resemble jQuery’s. We can use the find
method to query the resulting DOM using selector syntax.

In the first test, a sample Star is rendered and we verify that it results in a DOM that
contains a div element that has the star class. In the second test, a sample selected
Star is rendered and we verify that the resulting DOM contains a div element with
both the star class and the selected class. Checking the length assures us that only
one div was rendered in each test.

Next, we’ll need to test the click event. Enzyme comes with tools that allow us to sim‐
ulate events and verify that those events have occurred. For this test, we need a func‐
tion that we can use to verify that the onClick property is working. We need a mock
function, and Jest has us covered:

it("invokes onClick", () => {

 const _click = jest.fn()

 shallow(<Star onClick={_click} />)
 .find('div.star')

248 | Chapter 10: Testing

4 For a more in-depth look at mocks, see Martin Fowler’s article, “Mocks Aren’t Stubs”.

 .simulate('click')

 expect(_click).toBeCalled()

})

In this test a mock function, _click, is created using jest.fn. When we render the
Star, we send our mock function as the onClick property. Next, we locate the ren‐
dered div element and simulate a click event on that element using Enzyme’s simu
late method. Clicking the Star should invoke the onClick property and, in turn,
invoke our mock function. The .toBeCalled matcher can be used to verify that a
mock function was invoked.

Enzyme can be used to help us render components, find rendered DOM elements or
other components, and interact with them.

Mocking Components
The last test introduced the concept of mocking: we used a mock function to test the
Star component. Jest is full of tools to help us create and inject all sorts of different
mocks that can help us write better tests. Mocking is an important testing technique
that can help focus unit tests. Mocks are objects that are used in place of real objects
for the purposes of testing.4

Mocks are to the test world what stunt doubles are to Hollywood. Both mocks and
stunt doubles are used in place of the real deal (component or movie star). In a film,
the stunt double looks like the real actor. In a test, a mocked object looks like the real
object.

The purpose of mocking is to allow you to focus your tests on the one component or
object that you are trying to test, the SUT. Mocks are used in the place of objects,
components, or functions that your SUT depends on. This allows you to certify that
your SUT is working appropriately without any interference from its dependencies.
Mocking allows you to isolate, build, and test functionality independently of other
components.

Testing HOCs
One place where we will need to use mocks is when we are testing higher-order com‐
ponents. HOCs are responsible for adding functionality to injected components via
properties. We can create a mock component and send it to an HOC to certify that
the HOC adds the appropriate properties to our mock.

Testing React Components | 249

http://bit.ly/2kuR98s

Let’s take a look at a test for Expandable, the HOC that we developed back in Chap‐
ter 7. In order to set up a test for the HOC, we must first create a mock component
and send it to the HOC. The MockComponent will be the stunt double that is used in
place of a real component:

import { mount } from 'enzyme'
import Expandable from '../../../src/components/HOC/Expandable'

describe("Expandable Higher-Order Component", () => {

 let props,
 wrapper,
 ComposedComponent,
 MockComponent = ({collapsed, expandCollapse}) =>
 <div onClick={expandCollapse}>
 {(collapsed) ? 'collapsed' : 'expanded'}
 </div>

 describe("Rendering UI", ...)

 describe("Expand Collapse Functionality", ...)

})

The MockComponent is simply a stateless functional component that we developed on
the fly. It returns a div with an onClick handler that will be used to test the expand
Collapse function. The state, expanded or collapsed, is displayed in the mock com‐
ponent as well. This component will not be used anywhere else but in this test.

The SUT is the Expandable HOC. Before our test, we will invoke the HOC using our
mock and check the returned component to verify that the appropriate properties
have been applied.

The mount function will be used instead of the shallow function so that we can check
the properties and state of the returned component:

describe("Rendering UI", () => {

 beforeAll(() => {
 ComposedComponent = Expandable(MockComponent)
 wrapper = mount(<ComposedComponent foo="foo" gnar="gnar"/>)
 props = wrapper.find(MockComponent).props()
 })

 it("starts off collapsed", () =>
 expect(props.collapsed).toBe(true)
)

 it("passes the expandCollapse function to composed component", () =>
 expect(typeof props.expandCollapse)
 .toBe("function")

250 | Chapter 10: Testing

)

 it("passes additional foo prop to composed component", () =>
 expect(props.foo)
 .toBe("foo")
)

 it("passes additional gnar prop to composed component", () =>
 expect(props.gnar)
 .toBe("gnar")
)

})

Once we create a composed component using our HOC, we can verify that the com‐
posed component has added the appropriate properties to our mock component by
mounting it and checking the properties object directly. This test makes sure that the
HOC has added the collapsed property and the method for changing that property,
expandCollapse. It also verifies that any properties added to the composed compo‐
nent, foo and gnar, make their way to the mock.

Next, let’s verify that we can change the collapsed property of our composed compo‐
nent:

describe("Expand Collapse Functionality", () => {

 let instance

 beforeAll(() => {
 ComposedComponent = Expandable(MockComponent)
 wrapper = mount(<ComposedComponent collapsed={false}/>)
 instance = wrapper.instance()
 })

 it("renders the MockComponent as the root element", () => {
 expect(wrapper.first().is(MockComponent))
 })

 it("starts off expanded", () => {
 expect(instance.state.collapsed).toBe(false)
 })

 it("toggles the collapsed state", () => {
 instance.expandCollapse()
 expect(instance.state.collapsed).toBe(true)
 })

})

Once we mount a component, we can gather information about the rendered
instance with wrapper.instance. In this case, we want the component to start off as

Testing React Components | 251

collapsed. We can check both the properties and state of the instance to assure our‐
selves that it has in fact started off collapsed.

The wrapper also has some methods for traversing the DOM. In the first test case, we
select the first child element using wrapper.first and verify that the element is an
instance of our MockComponent.

HOCs are a great place to get introduced to mocks because the process of injecting
the mock is easy: simply send it to the HOC as an argument. The concept of mocking
private components is the same, but the injection process is a little bit trickier.

Jest mocks
Jest allows us to inject mocks into any of our components, not just HOCs. With Jest,
you can mock any module that your SUT imports. Mocking allows us to focus testing
on the SUT and not other modules that could potentially cause issues.

For example, let’s take a look at the ColorList component, which imports the Color
component:

import { PropTypes } from 'react'
import Color from './Color'
import '../../../stylesheets/ColorList.scss'

const ColorList = ({ colors=[], onRate=f=>f, onRemove=f=>f }) =>
 <div className="color-list">
 {(colors.length === 0) ?
 <p>No Colors Listed. (Add a Color)</p> :
 colors.map(color =>
 <Color key={color.id}
 {...color}
 onRate={(rating) => onRate(color.id, rating)}
 onRemove={() => onRemove(color.id)} />
)
 }
 </div>

ColorList.propTypes = {
 colors: PropTypes.array,
 onRate: PropTypes.func,
 onRemove: PropTypes.func
}

export default ColorList

We want to make sure the ColorList component functions appropriately. We are not
concerned with the Color component; it should have its own unit test. We can write a
test for ColorList that replaces the Color component with a mock:

import { mount } from 'enzyme'
import ColorList from '../../../src/components/ui/ColorList'

252 | Chapter 10: Testing

jest.mock('../../../src/components/ui/Color', () =>
 ({rating, onRate=f=>f}) =>
 <div className="mock-color">
 <button className="rate" onClick={() => onRate(rating)} />
 </div>
)

describe("<ColorList /> UI Component", () => {

 describe("Rating a Color", () => {

 let _rate = jest.fn()

 beforeAll(() =>
 mount(<ColorList colors={_testColors} onRate={_rate} />)
 .find('button.rate')
 .first()
 .simulate('click')
)

 it("invokes onRate Handler", () =>
 expect(_rate).toBeCalled()
)

 it("rates the correct color", () =>
 expect(_rate).toBeCalledWith(
 "8658c1d0-9eda-4a90-95e1-8001e8eb6036",
 4
)
)

 })

})

In this test, we used jest.mock to inject a mock in place of the actual Color compo‐
nent. The first argument sent to jest.mock is the module that we wish to mock, and
the second argument is a function that returns the mocked component. In this case,
the Color mock is a scaled-back version of the Color component. This test is only
concerned with rating the color, so the mock only handles the properties related to
rating a color.

When this test runs, Jest will replace the Color component with our mock. We are
sending the global _testColors that we set up earlier in this chapter when we render
the ColorList. When the ColorList renders each color, our mock will be rendered
instead. When we simulate a click event on the first button, that event will happen on
our first mock.

The rendered DOM for this component would look something like:

Testing React Components | 253

<ColorList>
 <div className="color-list">
 <MockColor onRate={[Function]} rating={4}>
 <div className="mock-color">
 <button id="rate" onClick={[Function]} />
 </div>
 </MockColor>
 <MockColor onRate={[Function]} rating={2}>
 <div className="mock-color">
 <button id="rate" onClick={[Function]} />
 </div>
 </MockColor>
 <MockColor onRate={[Function]} rating={0}>
 <div className="mock-color">
 <button id="rate" onClick={[Function]} />
 </div>
 </MockColor>
 </div>
</ColorList>

The real Color component would pass the selected rating to the ColorList, but our
mock does not use the StarRating component. It doesn’t rate colors; instead, it pre‐
tends to rate the color simply by passing the current rating back to the ColorList. We
do not care about the Color component in this test; we only care about the Color
List. The ColorList behaves as expected. Clicking on the first color passes the cor‐
rect rating to the onRate property.

Manual mocks
Jest allows us to create modules to use for our mocks. Instead of adding the code for
mocks directly to the test, place each mock in its own file in a __mocks__ folder
where Jest will look for them.

Let’s take a look at the /src/components/containers.js file that we created in Chapter 9.
This file contains three containers. For this next test, we will focus on the Colors con‐
tainer:

import ColorList from './ui/ColorList'

export const Colors = connect(
 state =>
 ({
 colors: [...state.colors].sort(sortFunction(state.sort))
 }),
 dispatch =>
 ({
 onRemove(id) {
 dispatch(removeColor(id))
 },
 onRate(id, rating) {

254 | Chapter 10: Testing

 dispatch(rateColor(id, rating))
 }
 })
)(ColorList)

The Colors container is used to connect data from the store to the ColorList com‐
ponent. It sorts the colors found in state and sends them to the ColorList as a prop‐
erty. It also handles the onRate and onRemove function properties found in the
ColorList. Finally, this container depends on the ColorList module.

You create a manual mock by adding a <Module>.js file to a folder called __mocks__.
The __mocks__ folder contains the mocked modules that are used in place of the real
modules during testing.

For example, we will add a ColorList mock to our current project by creating a
__mocks__ folder in the /src/components/ui folder, at the same level as the ColorList
component. We will then place our mock, ColorList.js, in that folder.

Our mock will simply render an empty div element. Take a look at the code for the
ColorList.js mock:

const ColorListMock = () => <div className="color-list-mock"></div>

ColorListMock.displayName = "ColorListMock"

export default ColorListMock

Now, whenever we mock the /src/components/ui/ColorList component with
jest.mock, Jest will obtain the appropriate mock from the __mocks__ folder. We do
not have to define the mock directly in our test.

In addition to manually mocking the ColorList, we will also create a mock for the
store. Stores have three important functions: dispatch, subscribe, and getState.
Our mock store will also have these functions. The getState function provides an
implementation for that mock function that returns a sample state using our global
test colors.

We will use this mock store to test the container. We will render a Provider compo‐
nent with our mock store as the store property. Our container should obtain the col‐
ors from the store, sort them, and send them to our mock:

import { mount, shallow } from 'enzyme'
import { Provider } from 'react-redux'
import { Colors } from '../../../src/components/containers'

jest.mock('../../../src/components/ui/ColorList')

describe("<Colors /> Container ", () => {

 let wrapper

Testing React Components | 255

 const _store = {
 dispatch: jest.fn(),
 subscribe: jest.fn(),
 getState: jest.fn(() =>
 ({
 sort: "SORTED_BY_DATE",
 colors: _testColors
 })
)
 }

 beforeAll(() => wrapper = mount(
 <Provider store={_store}>
 <Colors />
 </Provider>
))

 it("renders three colors", () => {
 expect(wrapper
 .find('ColorListMock')
 .props()
 .colors
 .length
).toBe(3)
 })

 it("sorts the colors by date", () => {
 expect(wrapper
 .find('ColorListMock')
 .props()
 .colors[0]
 .title
).toBe("tomato")
 })

})

In this test we invoke jest.mock to mock the ColorList component, but we only
send it one argument: the path to the module to mock. Jest knows to look in the
__mocks__ folder to find the implementation for that mock. We are no longer using
the real ColorList; we are using our bare-bones mock component. Once rendered,
our DOM should look something like this:

<Provider>
 <Connect(ColorListMock)>
 <ColorListMock colors={[...]}
 onRate={[Function]}
 onRemove={[Function]}>
 <div className="color-list-mock" />
 </ColorListMock>
 </Connect(ColorListMock)>
</Provider>

256 | Chapter 10: Testing

If our container works, it will have sent three colors to our mock. The container
should have sorted those colors by date. We can verify this by checking that “tomato”
is the first color, because of the three colors in _testColors, it has the most recent
timestamp.

Let’s add a few more tests to make sure that onRate and onRemove are working appro‐
priately:

 afterEach(() => jest.resetAllMocks())

 it("dispatches a REMOVE_COLOR action", () => {
 wrapper.find('ColorListMock')
 .props()
 .onRemove('f9005b4e-975e-433d-a646-79df172e1dbb')

 expect(_store.dispatch.mock.calls[0][0])
 .toEqual({
 id: 'f9005b4e-975e-433d-a646-79df172e1dbb',
 type: 'REMOVE_COLOR'
 })
 })

 it("dispatches a RATE_COLOR action", () => {
 wrapper.find('ColorListMock')
 .props()
 .onRate('58d9caee-6ea6-4d7b-9984-65b145031979', 5)

 expect(_store.dispatch.mock.calls[0][0])
 .toEqual({
 id: "58d9caee-6ea6-4d7b-9984-65b145031979",
 type: "RATE_COLOR",
 rating: 5
 })
 })

To test onRate and onRemove, we do not have to actually simulate clicks. All we need
to do is invoke those function properties with some information and verify that the
store’s dispatch method was called with the correct data. Invoking the onRemove
property should cause the store to dispatch a REMOVE_COLOR action. Invoking the
onRate property should cause the store to dispatch a RATE_COLOR action. Addition‐
ally, we need to make sure the dispatch mock has been reset after each test is com‐
plete.

The ability to easily inject mocks into the modules that we want to test is one of Jest’s
most powerful features. Mocking is a very effective technique for focusing your tests
on the SUT.

Testing React Components | 257

Snapshot Testing
Test-driven development is a great way to approach testing helper functions, custom
classes, and datasets. However, when it comes to testing the UI, TDD can be tricky
and often impractical. The UI frequently changes, which makes maintaining UI tests
a time-consuming practice. It is also pretty common to be tasked with the job of writ‐
ing tests for UI components that already exist in production.

Snapshot testing provides us with a way to quickly test UI components to make sure
that we have not caused any unexpected changes. Jest can save a snapshot of the ren‐
dered UI and compare it to the rendered output of future tests. This allows us to ver‐
ify that our updates have not had any unexpected effects while still allowing us to
move quickly and not get too bogged down with the practicalities of testing the UI.
Additionally, snapshots can easily be updated when UI changes are expected.

Let’s see how we can test the Color component with snapshot testing. First, let’s take a
look at the existing code for the Color component:

import { PropTypes, Component } from 'react'
import StarRating from './StarRating'
import TimeAgo from './TimeAgo'
import FaTrash from 'react-icons/lib/fa/trash-o'
import '../../../stylesheets/Color.scss'

class Color extends Component {

 render() {
 const {
 title, color, rating, timestamp, onRemove, onRate
 } = this.props

 return (
 <section className="color" style={this.style}>
 <h1 ref="title">{title}</h1>
 <button onClick={onRemove}>
 <FaTrash />
 </button>
 <div className="color"
 style={{ backgroundColor: color }}>
 </div>
 <TimeAgo timestamp={timestamp} />
 <div>
 <StarRating starsSelected={rating} onRate={onRate}/>
 </div>
 </section>
)
 }

}

258 | Chapter 10: Testing

export default Color

If we render this component with specific properties, we would expect a DOM that
contains specific components based on the properties that we have sent:

shallow(
 <Color title="Test Color"
 color="#F0F0F0"
 rating={3}
 timestamp="Mon Apr 11 2016 12:54:19 GMT-0700 (PDT)"
 />
).html()

The resulting DOM should look something like:

<section class=\"color\">
 <h1>Test Color</h1>
 <button><svg /></button>
 <div class=\"color\" style=\"background-color:#F0F0F0;\"></div>
 <div class=\"time-ago\">4/11/2016</div>
 <div>
 <div class=\"star-rating\">
 <div class=\"star selected\"></div>
 <div class=\"star selected\"></div>
 <div class=\"star selected\"></div>
 <div class=\"star\"></div>
 <div class=\"star\"></div>
 <p>3 of 5 stars</p>
 </div>
 </div>
</section>

Snapshot testing will allow us to save a snapshot of this DOM the very first time we
run the test. Then, we’ll be able to compare future tests to that snapshot to make sure
the resulting output is always the same.

Let’s go ahead and write a snapshot test for the Color component:

import { shallow } from 'enzyme'
import Color from '../../../src/components/ui/Color'

describe("<Color /> UI Component", () => {

 it("Renders correct properties", () =>
 let output = shallow(
 <Color title="Test Color"
 color="#F0F0F0"
 rating={3}
 timestamp="Mon Apr 11 2016 12:54:19 GMT-0700 (PDT)"
 />
).html()

 expect(output).toMatchSnapshot()

Snapshot Testing | 259

)

})

In this test, we use Enzyme to render the component and collect the resulting output
as a string of HTML. .toMatchSnapshot is the Jest matcher used for snapshot testing.
The first time this test is run, Jest will save a copy of the resulting HTML in a snap‐
shot file. This file will be added to a __snapshots__ folder in the same directory as the
test. Currently, the snapshot file would look like:

exports[`<Color /> UI Component Renders correct properties 1`] =
 `"<section class=\"color\"><h1>Test Color</h1><button><svg ...

Every other time the test is run, Jest will compare the output to the same snapshot. If
anything at all is different about the resulting HTML, the test will fail.

Snapshot testing allows us to move quickly, but if we move too fast, we could end up
writing flaky tests, or tests that pass when they should fail. Taking snapshots of HTML
strings will work for testing, but it is hard for us to verify that the snapshot is actually
correct. Let’s improve our snapshot by saving the output as JSX.

For this, we’ll need to install the enzyme-to-json module:

npm install enzyme-to-json --save-dev

This module provides a function that we can use to render Enzyme wrappers as JSX,
which makes it easier to review the snapshot output for correctness.

To render our snapshot using enzyme-to-json, we would first shallow-render the
Color component with Enzyme, then send that result to the toJSON function and the
result of toJSON to the expect function. We may be tempted to write code that looks
like:

expect(
 toJSON(
 shallow(
 <Color title="Test Color"
 color="#F0F0F0"
 rating={3}
 timestamp="Mon Apr 11 2016 12:54:19 GMT-0700 (PDT)"
 />
)
)
).toMatchSnapshot()

But this is a perfect place to use a little composition to improve our code. Remember
composition? Smaller functions can be put together to make larger functions. We can
use the compose function from Redux to make a single larger function out of
shallow, toJSON, and expect:

260 | Chapter 10: Testing

import { shallow } from 'enzyme'
import toJSON from 'enzyme-to-json'
import { compose } from 'redux'
import Color from '../../../src/components/ui/Color'

describe("<Color /> UI Component", () => {

 const shallowExpect = compose(expect,toJSON,shallow)

 it("Renders correct properties", () =>
 shallowExpect(
 <Color title="Test Color"
 color="#F0F0F0"
 rating={3}
 timestamp="Mon Apr 11 2016 12:54:19 GMT-0700 (PDT)"
 />
).toMatchSnapshot()
)

})

The shallowExpect function takes a component and shallow-renders it, converts the
result to JSON, and then sends it to the expect method that returns all of the Jest
matchers.

If we run this test, it should fail because the output is now JSX and not an HTML
string. Our test no longer matches the snapshot. However, snapshots are easy to
update. We can update the snapshot by running the test again with the
updateSnapshot flag:

jest --updateSnapshot

If we run Jest with the watch flag:

jest --watch

Jest will continue to run in the terminal and listen for changes to our source code and
tests. If we make any changes, Jest will rerun our tests. When you are watching tests,
you can easily update the snapshot by pressing the u key:

Snapshot Summary
 › 1 snapshot test failed in 1 test suite. Inspect your code changes or press
 `u` to update them.

Test Suites: 1 failed, 6 passed, 7 total
Tests: 1 failed, 28 passed, 29 total
Snapshots: 1 failed, 1 total
Time: 1.407s
Ran all test suites.

Watch Usage
 › Press u to update failing snapshots.

Snapshot Testing | 261

 › Press p to filter by a filename regex pattern.
 › Press q to quit watch mode.
 › Press Enter to trigger a test run.

Once you update the snapshot, the test will pass. The snapshot file has now changed.
Instead of one long HTML string, the snapshot now looks like:

exports[`<Color /> UI Component Renders correct properties 1`] = `
<section
 className="color">
 <h1>
 Test Color
 </h1>
 <button
 onClick={[Function]}>
 <FaTrashO />
 </button>
 <div
 className="color"
 style={
 Object {
 "backgroundColor": "#F0F0F0",
 }
 } />
 <TimeAgo
 timestamp="Mon Apr 11 2016 12:54:19 GMT-0700 (PDT)" />
 <div>
 <StarRating
 onRate={[Function]}
 starsSelected={3} />
 </div>
</section>
';

This snapshot is much more readable. We can take a quick look at it to verify the
results are correct before moving on to our next test. Snapshot testing can be a very
effective way to quickly add testing to your applications.

Using Code Coverage
Code coverage is the process of reporting on how many lines of code have actually
been tested. It provides a metric that can help you decide when you have written
enough tests.

Jest ships with Istanbul, a JavaScript tool used to review your tests and to generate a
report that describes how many statements, branches, functions, and lines have been
covered.

To run Jest with code coverage, simply add the coverage flag when you run the jest
command:

262 | Chapter 10: Testing

jest --coverage

A report on current code coverage will be generated and displayed in the terminal:

 PASS __tests__/components/ui/ColorList.test.js
 PASS __tests__/components/containers/Colors.test.js
 PASS __tests__/components/ui/Color.test.js
 PASS __tests__/components/ui/Star.test.js
 PASS __tests__/components/HOC/Expandable.test.js
 PASS __tests__/actions.test.js
 PASS __tests__/store/reducers/color.test.js

--------------------|--------|----------|----------|----------|----------------|
File	% Stmts	% Branch	% Funcs	% Lines	Uncov'd Lines
All files | 68.42 | 43.33 | 45.59 | 72.39 | |
 src | 100 | 100 | 100 | 100 | |
 actions.js | 100 | 100 | 100 | 100 | |
 constants.js | 100 | 100 | 100 | 100 | |
 src/components | 58.33 | 100 | 40 | 58.33 | |
 containers.js | 58.33 | 100 | 40 | 58.33 | 11,13,20,24,26 |
 src/components/HOC | 100 | 100 | 100 | 100 | |
 Expandable.js | 100 | 100 | 100 | 100 | |
 src/components/ui | 45.65 | 35.29 | 24 | 50 | |
 AddColorForm.js | 16.67 | 0 | 0 | 18.18 |... 13,16,18,21 |
 Color.js | 66.67 | 100 | 33.33 | 66.67 | 40,41 |
 ColorList.js | 62.5 | 40 | 50 | 83.33 | 13 |
 SortMenu.js | 37.5 | 0 | 0 | 42.86 | 11,14,18,19 |
 Star.js | 100 | 100 | 100 | 100 | |
 StarRating.js | 33.33 | 0 | 0 | 40 | 5,7,9 |
 TimeAgo.js | 50 | 100 | 0 | 50 | 4 |
 src/lib | 58.54 | 15 | 16.67 | 67.65 | |
 array-helpers.js | 60 | 33.33 | 60 | 71.43 | 6,8 |
 time-helpers.js | 58.06 | 0 | 0 | 66.67 |... 43,45,49,54 |
 src/store | 97.14 | 70 | 100 | 96.77 | |
 index.js | 100 | 100 | 100 | 100 | |
 reducers.js | 94.12 | 64.71 | 100 | 94.12 | 21 |
--------------------|--------|----------|----------|----------|----------------|

Test Suites: 7 passed, 7 total
Tests: 29 passed, 29 total
Snapshots: 1 passed, 1 total
Time: 1.691s, estimated 2s

Ran all test suites.

Watch Usage
 › Press p to filter by a filename regex pattern.
 › Press q to quit watch mode.
 › Press Enter to trigger a test run.

This report tells us how much of our code in each file has been executed during the
testing process and reports on all files that have been imported into tests.

Using Code Coverage | 263

Jest also generates a report that you can run in your browser, which provides more
details about what code has been covered by tests. After running Jest with coverage
reporting, you will notice that a coverage folder has been added to the root. In a web
browser, open this file: /coverage/lcov-report/index.html. It will show you your code
coverage in an interactive report (Figure 10-1).

Figure 10-1. Code coverage report

This report tells you how much of the code has been covered, as well as the individual
coverage based upon each subfolder. You can drill down into a subfolder to see how
well the individual files within have been covered. If you select the components/ui
folder, you will see how well your user interface components are covered by testing
(Figure 10-2).

You can see what lines have been covered in an individual file by clicking on the file‐
name. Figure 10-3 shows the lines that have been covered in the ColorList compo‐
nent.

264 | Chapter 10: Testing

Figure 10-2. UI component test coverage

Figure 10-3. ColorList coverage

The ColorList component has been tested pretty well. In the column on the left of
the screen, you can see how many times each line has been executed in a test. The

Using Code Coverage | 265

lines that are highlighted yellow and red have not been executed. In this case, it looks
like we have yet to test the onRemove property. Let’s add a suite to ColorList.test.js to
test the onRemove property and get line 13 covered:

jest.mock('../../../src/components/ui/Color', () =>
 ({rating, onRate=f=>f, onRemove=f=>f}) =>
 <div className="mockColor">
 <button className="rate" onClick={() => onRate(rating)} />
 <button className="remove" onClick={onRemove} />
 </div>
)

..

describe("Removing a Color", () => {

 let _remove = jest.fn()

 beforeAll(() =>
 mount(<ColorList colors={_testColors} onRemove={_remove} />)
 .find('button.remove')
 .last()
 .simulate('click')
)

 it("invokes onRemove Handler", () =>
 expect(_remove).toBeCalled()
)

 it("removes the correct color", () =>
 expect(_remove).toBeCalledWith(
 "58d9caee-6ea6-4d7b-9984-65b145031979"
)
)

})

The onRemove property has been added to the Color mock, as well as a button for
triggering that property. When we render the ColorList, we will test the onRemove
property the exact same way we tested the onRate property. We will render a Color
List with our three test colors, click the last remove button, and make sure the cor‐
rect ID is being passed to the mock function, _remove.

The next time we generate the coverage report we will see an improvement—line 13
is now covered (Figure 10-4).

266 | Chapter 10: Testing

Figure 10-4. Improved coverage by testing onRemove

It looks like line 8 is not being covered either. This is because we’ve never rendered
the ColorList with an empty array of colors. Let’s get line 8 covered by a test:

describe("Rendering UI", () => {

 it("Defaults properties correctly", () =>
 expect(shallow(<ColorList />).find('p').text())
 .toBe('No Colors Listed. (Add a Color)')
)

})

Rendering the Color component without any properties not only covers line 8, it cov‐
ers the default property value that is set in line 1 too (Figure 10-5).

Using Code Coverage | 267

Figure 10-5. Improved code coverage by testing empty colors

We are pretty close to having 100% of the ColorList component tested. The only
things that we have not tested are the default functions for onRate and onRemove. If
we did not provide these functions, these properties would be required. We can
improve our test by rending the ColorList component without properties. We also
want to simulate clicks on the first rating button and the last remove button:

describe("Rendering UI", () => {

 it("Defaults properties correctly", () =>
 expect(shallow(<ColorList />).find('p').text())
 .toBe('No Colors Listed. (Add a Color)')
)

 it("Clicking default rate button does not cause Error", () => {
 mount(<ColorList colors={_testColors} />)
 .find('button.rate')
 .first()
 .simulate('click')
 })

 it("Clicking default remove button does not cause Error", () => {
 mount(<ColorList colors={_testColors} />)
 .find('button.remove')
 .first()
 .simulate('click')
 })

268 | Chapter 10: Testing

})

The next time we run Jest with coverage reporting, we will see that we are now cover‐
ing 100% of the code in the ColorList component (Figure 10-6).

Figure 10-6. 100% coverage for ColorList

But we still have a lot of work to do with the rest of the components in our project, as
we can see in Figure 10-7.

Using Code Coverage | 269

Figure 10-7. UI component test coverage after writing new tests for ColorList

You can use this report to help guide you through the process of improving your tests
by improving the amount of code that is covered by testing.

You can also include coverage options in your package.json file:

"jest": {
 "setupFiles": ["./__tests__/global.js"],
 "modulePathIgnorePatterns": ["global.js"],
 "moduleNameMapper": {
 "\\.(scss)$": "<rootDir>/node_modules/jest-css-modules"
 },
 "verbose": true,
 "collectCoverage": true,
 "notify": true,
 "collectCoverageFrom": ["src/**"],
 "coverageThreshold": {
 "global": {
 "branches": 80,
 "functions": 80,
 "lines": 80,
 "statements": 80
 }
 }
 }

270 | Chapter 10: Testing

The coverageThreshold field defines how much code should be covered before your
testing passes. We have specified that 80% of all branches, functions, lines, and state‐
ments must be covered.

The collectCoverageFrom field is where you can specify which files should be cov‐
ered. It takes an array of glob patterns. We have specified that all of the files in the src
directory and any subdirectory should be covered.

Setting the collectCoverage option to true means that coverage data will be collec‐
ted every time we run the jest command on this project. The notify field displays a
notification box using your operating system. Finally, the verbose option displays a
detailed report of each test every time you run Jest. The verbose report for the “<Col‐
orList /> UI Component” suite looks like:

PASS __tests__/components/ui/ColorList.test.js
 <ColorList /> UI Component
 Rendering UI
 ✓ Defaults Properties correctly (2ms)
 ✓ Clicking default rate button do not cause Error (6ms)
 ✓ Clicking default remove button do not cause Error (4ms)
 Rating a Color
 ✓ invokes onRate Handler
 ✓ rates the correct color (1ms)
 Removing a Color
 ✓ invokes onRemove Handler
 ✓ removes the correct color

It will take more testing to achieve 100% code coverage for the color organizer. The
code found in the GitHub repository for this chapter does achieve 100% code cover‐
age (Figure 10-8).

Using Code Coverage | 271

5 See Martin Fowler’s article “Test-Coverage”.

Figure 10-8. 100% code coverage

Code coverage is a great tool to measure the reach of your tests. It is one benchmark
to help you understand when you have written enough unit tests for your code. It is
not typical to have 100% code coverage in every project. Shooting for anything above
85% is a good target.5

272 | Chapter 10: Testing

http://bit.ly/2kuXEsb

1 Express.js documentation, “Basic Routing”.
2 The project has been starred over 20,000 times on GitHub.
3 See “Sites Using React Router”.

CHAPTER 11

React Router

When the web started, most websites consisted of a series of pages that users could
navigate through by requesting and opening separate files. The location of the current
file or resource was listed in the browser’s location bar. The browser’s forward and
back buttons would work as expected. Bookmarking content deep within a website
would allow users to save a reference to a specific file that could be reloaded at the
user’s request. On a page-based, or server-rendered, website, the browser’s navigation
and history features simply work as expected.

In a single-page app, all of these features become problematic. Remember, in a single-
page app, everything is happening on the same page. JavaScript is loading informa‐
tion and changing the UI. Features like browser history, bookmarks, and forward and
back buttons will not work without a routing solution. Routing is the process of defin‐
ing endpoints for your client’s requests.1 These endpoints work in conjunction with
the browser’s location and history objects. They are used to identify requested content
so that JavaScript can load and render the appropriate user interface.

Unlike Angular, Ember, or Backbone, React doesn’t come with a standard router. Rec‐
ognizing the importance of a routing solution, engineers Michael Jackson and Ryan
Florence created one named simply React Router. The React Router has been adopted
by the community as a popular routing solution for React apps.2 It is used by compa‐
nies including Uber, Zendesk, PayPal, and Vimeo.3

In this chapter, we will introduce the React Router and review how to leverage
the HashRouter component to handle routing on the client.

273

http://bit.ly/2mJlIt5
http://bit.ly/2mJt4gk
http://bit.ly/2mJbN6X

Incorporating the Router
To demonstrate the capabilities of the React Router, we will build a classic starter
website complete with About, Events, Products, and Contact Us sections
(Figure 11-1). Although this website will feel as though it has multiple pages, there is
only one: it is an SPA.

Figure 11-1. Company website home page

The sitemap for this website consists of a home page, a page for each section, and an
error page to handle 404 Not Found errors (see Figure 11-2).

Figure 11-2. Page titles and routes

The router will allow us to set up routes for each section of the website. Each route is
an endpoint that can be entered into the browser’s location bar. When a route is
requested, we can render the appropriate content.

274 | Chapter 11: React Router

HashRouter

react-router-dom provides a couple of options for managing the
navigation history in single-page applications. The HashRouter was
designed for the client. Traditionally, hashes in the location bar
were used to define anchor links. When the # is used in the loca‐
tion bar, the browser does not make a server request. When using
the HashRouter, the # is always required before all routes.
The HashRouter is a nice tool to use for new projects or for small
client sites that do not require a backend. The BrowserRouter is a
preferred solution for most production-ready applications. We will
discuss the BrowserRouter in Chapter 12, when we cover universal
applications.

Let’s install react-router-dom, the package that we need to incorporate the router
into our browser-based application:

npm install react-router-dom --save

We’ll also need a few placeholder components for each section or page in the sitemap.
We can export these components from a single file:

export const Home = () =>
 <section className="home">
 <h1>[Home Page]</h1>
 </section>

export const About = () =>
 <section className="events">
 <h1>[About the Company]</h1>
 </section>

export const Events = () =>
 <section className="events">
 <h1>[Events Calendar]</h1>
 </section>

export const Products = () =>
 <section className="products">
 <h1>[Products Catalog]</h1>
 </section>

export const Contact = () =>
 <section className="contact">
 <h1>[Contact Us]</h1>
 </section>

When the application starts, instead of rendering a single App component, we will
render the HashRouter component:

Incorporating the Router | 275

import React from 'react'
import { render } from 'react-dom'

import {
 HashRouter,
 Route
} from 'react-router-dom'

import {
 Home,
 About,
 Events,
 Products,
 Contact
} from './pages'

window.React = React

render(
 <HashRouter>
 <div className="main">
 <Route exact path="/" component={Home} />
 <Route path="/about" component={About} />
 <Route path="/events" component={Events} />
 <Route path="/products" component={Products} />
 <Route path="/contact" component={Contact} />
 </div>
 </HashRouter>,
 document.getElementById('react-container')
)

The HashRouter component is rendered as the root component for our application.
Each route can be defined within the HashRouter using the Route component.

These routes tell the router which component to render when the window’s location
changes. Each Route component has path and component properties. When the
browser’s location matches the path, the component will be displayed. When the loca‐
tion is /, the router will render the Home component. When the location is /products,
the router will render the Products component.

The first route, the one that displays the Home component, has an exact property.
This means that the Home component will only be displayed when the location exactly
matches the root /.

At this point, we can run the app and physically type the routes into the browser’s
location bar to watch the content change. For example, type http://localhost:3000/#/
about into the location bar and watch the About component render.

276 | Chapter 11: React Router

We do not expect our users to navigate the website by typing routes into the location
bar. The react-router-dom provides a Link component that we can use to create
browser links.

Let’s modify the home page to contain a navigation menu with a link for each route:

import { Link } from 'react-router-dom'

export const Home = () =>
 <div className="home">
 <h1>[Company Website]</h1>
 <nav>
 <Link to="about">[About]</Link>
 <Link to="events">[Events]</Link>
 <Link to="products">[Products]</Link>
 <Link to="contact">[Contact Us]</Link>
 </nav>
 </div>

Now users can access every internal page from the home page by clicking on a link.
The browser’s back button will take them back to the home page.

Router Properties
The React Router passes properties to the components that it renders. For instance,
we can obtain the current location via a property. Let’s use the current location to help
us create a 404 Not Found component:

export const Whoops404 = ({ location }) =>
 <div className="whoops-404">
 <h1>Resource not found at '{location.pathname}'</h1>
 </div>

The Whoops404 component will be rendered by the router when users enter routes
that have not been defined. Once rendered, the router will pass a location object to
this component as a property. We can obtain and use this object to get the current
pathname for the requested route. We will use this pathname to notify the user that
we cannot find the resource that they have requested.

Now let’s add the Whoops404 component to the application using a Route:

import {
 HashRouter,
 Route,
 Switch
} from 'react-router-dom'

...

render(
 <HashRouter>

Incorporating the Router | 277

 <div className="main">
 <Switch>
 <Route exact path="/" component={Home} />
 <Route path="/about" component={About} />
 <Route path="/events" component={Events} />
 <Route path="/products" component={Products} />
 <Route path="/contact" component={Contact} />
 <Route component={Whoops404} />
 </Switch>
 </div>
 </HashRouter>,
 document.getElementById('react-container')
)

Since we only want to display the Whoops404 component when no other Route
matches, we need to use the Switch component. The Switch component only dis‐
plays the first route that matches. This assures that only one of these routes will be
rendered. If none of the locations match a Route, the last route—the one that does
not contain a path property—will be displayed. If you were to enter the route
http://localhost:3000/#/profits, you would see Figure 11-3.

Figure 11-3. 404 error page

278 | Chapter 11: React Router

This section introduced the basics of implementing and working with the React
Router. All Route components need to be wrapped with a router, in this case the Hash
Router, which selects the component to render based on the window’s present loca‐
tion. Link components can be used to facilitate navigation. These basics can get you
pretty far, but they just scratch the surface of the router’s capabilities.

Nesting Routes
Route components are used with content that should be displayed only when specific
URLs are matched. This feature allows us to organize our web apps into eloquent
hierarchies that promote content reuse.

In this section, we will also look at how content can be organized into subsections
that contain submenus.

Using a Page Template
Sometimes, as users navigate our apps, we want some of the UI to stay in place. In the
past, solutions such as page templates and master pages have helped web developers
reuse UI elements. React components can naturally be composed into templates using
the children property.

Let’s consider the simple starter website. Once inside, each section should display the
same main menu. The content on the right side of the screen should change as the
user navigates the website, but the content on the left side of the screen should
remain intact (see Figure 11-4).

Let’s create a reusable PageTemplate component that we can use as a template for
these inside pages. This component will always display the main menu, but it will
render nested content as users navigate the website.

First, we’ll need the MainMenu component:

import HomeIcon from 'react-icons/lib/fa/home'
import { NavLink } from 'react-router-dom'
import './stylesheets/menus.scss'

const selectedStyle = {
 backgroundColor: "white",
 color: "slategray"
}

export const MainMenu = () =>
 <nav className="main-menu">
 <NavLink to="/">
 <HomeIcon/>
 </NavLink>
 <NavLink to="/about" activeStyle={selectedStyle}>

Nesting Routes | 279

 [About]
 </NavLink>
 <NavLink to="/events" activeStyle={selectedStyle}>
 [Events]
 </NavLink>
 <NavLink to="/products" activeStyle={selectedStyle}>
 [Products]
 </NavLink>
 <NavLink to="/contact" activeStyle={selectedStyle}>
 [Contact Us]
 </NavLink>
 </nav>

Figure 11-4. Inside Page: Events

The MainMenu component uses the NavLink component. The NavLink component can
be used to create links that can be styled when they are active. The activeStyle
property can be used to set the CSS to indicate which link is active or currently
selected.

The MainMenu component will be used in the PageTemplate component:

import { MainMenu } from './ui/menus'

...

const PageTemplate = ({children}) =>
 <div className="page">
 <MainMenu />
 {children}
 </div>

280 | Chapter 11: React Router

The children of the PageTemplate component are where each section will be ren‐
dered. Here, we are adding the children just after the MainMenu. Now we can compose
our sections using the PageTemplate:

export const Events = () =>
 <PageTemplate>
 <section className="events">
 <h1>[Event Calendar]</h1>
 </section>
 </PageTemplate>

export const Products = () =>
 <PageTemplate>
 <section className="products">
 <h1>[Product Catalog]</h1>
 </section>
 </PageTemplate>

export const Contact = () =>
 <PageTemplate>
 <section className="contact">
 <h1>[Contact Us]</h1>
 </section>
 </PageTemplate>

export const About = ({ match }) =>
 <PageTemplate>
 <section className="about">
 <h1>About</h1>
 </section>
 </PageTemplate>

If you run the application, you will see that each section now displays the same Main
Menu. The content on the right side of the screen changes as you navigate through the
interior pages of the website.

Subsections and Submenus
Next, we will nest four components under the About section using the Route compo‐
nent (see Figure 11-5).

Nesting Routes | 281

Figure 11-5. Subpages in the About section

We need to add pages for Company, History, Services, and Location. When the user
selects the About section, they should be defaulted to the Company page under that
section. The outline looks like this:

• Home Page
— About the Company

— Company (default)
— History
— Services
— Location

— Events
— Products
— Contact Us

• 404 Error Page

The new routes that we need to create will reflect this hierarchy:

• http://localhost:3000/
— http://localhost:3000/#/about

— http://localhost:3000/#/about

282 | Chapter 11: React Router

— http://localhost:3000/#/about/history
— http://localhost:3000/#/about/services
— http://localhost:3000/#/about/location

— http://localhost:3000/#/events
— http://localhost:3000/#/products
— http://localhost:3000/#/contact

• http://localhost:3000/#/foo-bar

Let’s create a submenu for the About section. We will use NavLink components and
set the activeStyle to the same activeStyle used in the MainMenu:

export const AboutMenu = ({match}) =>
 <div className="about-menu">

 <NavLink to="/about"
 style={match.isExact && selectedStyle}>
 [Company]
 </NavLink>

 <NavLink to="/about/history"
 activeStyle={selectedStyle}>
 [History]
 </NavLink>

 <NavLink to="/about/services"
 activeStyle={selectedStyle}>
 [Services]
 </NavLink>

 <NavLink to="/about/location"
 activeStyle={selectedStyle}>
 [Location]
 </NavLink>

 </div>

The AboutMenu component uses NavLink components to direct users to interior con‐
tent under the About section. This component will be rendered using a Route which
means that it receives routing properties. We will need to use the match property that
is sent to this component from the Route.

All of the NavLink components use the activeStyle property except for the first one.
The activeStyle will set the style property for the link when the location matches to

Nesting Routes | 283

the link’s route. For instance, when the user navigates to http://localhost:3000/
about/services, the Services NavLink will render a white background.

The first NavLink component does not use activeStyle. Instead, the style property is
set to the selectedStyle only when the route matches exactly /about. The
match.isExact property is true when the location is /about and false when the
location is /about/services. Technically the /about route matches for both loca‐
tions, but it is only an exact match when the location is /about.

Placeholder Components

We also need to remember to stub placeholder components for our
new sections: Company, Services, History, and Location. Here is
an example of the Services placeholder. It simply displays some
Lorem Ipsum text:

export const Services = () =>
 <section className="services">
 <h2>Our Services</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetur
 adipiscing elit. Integer nec odio.
 Praesent libero. Sed cursus ante dapibus
 diam. Sed nisi. Nulla quis sem at nibh
 elementum imperdiet. Duis sagittis ipsum.
 Praesent mauris. Fusce nec tellus sed
 augue semper porta. Mauris massa.
 Vestibulum lacinia arcu eget nulla.
 Class aptent taciti sociosqu ad litora
 torquent per conubia nostra, per inceptos
 himenaeos. Curabitur sodales ligula in
 libero.
 </p>
 <p>
 Sed dignissim lacinia nunc. Curabitur
 tortor. Pellentesque nibh. Aenean quam. In
 scelerisque sem at dolor. Maecenas mattis.
 Sed convallis tristique sem. Proin ut
 ligula vel nunc egestas porttitor. Morbi
 lectus risus, iaculis vel, suscipit quis,
 luctus non, massa. Fusce ac turpis quis
 ligula lacinia aliquet. Mauris ipsum.
 Nulla metus metus, ullamcorper vel,
 tincidunt sed, euismod in, nibh. Quisque
 volutpat condimentum velit. Class aptent
 taciti sociosqu ad litora torquent per
 conubia nostra, per inceptos himenaeos.
 </p>
 </section>

284 | Chapter 11: React Router

Now we are ready to add routes to the About component:

export const About = ({ match }) =>
 <PageTemplate>
 <section className="about">
 <Route component={AboutMenu} />
 <Route exact path="/about" component={Company}/>
 <Route path="/about/history" component={History}/>
 <Route path="/about/services" component={Services}/>
 <Route path="/about/location" component={Location}/>
 </section>
 </PageTemplate>

This About component will be reused across the entire section. The location will tell
the app which subsection to render. For example, when the location is http://local
host:300/about/history, the History component will be rendered inside of the
About component.

This time, we are not using a Switch component. Any Route that matches the loca‐
tion will render its associated component. The first Route will always display the
AboutMenu. Additionally, any other Routes that match will render their components
as well.

Using redirects
Sometimes you want to redirect users from one route to another. For instance, we can
make sure that if users try to access content via http://localhost:3000/services,
they get redirected to the correct route: http://localhost:3000/about/services.

Let’s modify our application to include redirects to ensure that our users can access
the correct content:

import {
 HashRouter,
 Route,
 Switch,
 Redirect
} from 'react-router-dom'

...

render(
 <HashRouter>
 <div className="main">
 <Switch>
 <Route exact path="/" component={Home} />
 <Route path="/about" component={About} />
 <Redirect from="/history" to="/about/history" />
 <Redirect from="/services" to="/about/services" />
 <Redirect from="/location" to="/about/location" />
 <Route path="/events" component={Events} />

Nesting Routes | 285

 <Route path="/products" component={Products} />
 <Route path="/contact" component={Contact} />
 <Route component={Whoops404} />
 </Switch>
 </div>
 </HashRouter>,
 document.getElementById('react-container')
)

The Redirect component allows us to redirect the user to a specific route.

When routes are changed in a production application, users will
still try to access old content via old routes. This typically happens
because of bookmarks. The Redirect component provides us with
a way to load the appropriate content for users, even if they are
accessing your site via an old bookmark.

The React Router allows us to compose Route components anywhere within our
application because the HashRouter is our root component. We can now organize our
content in hierarchies that are easy to navigate.

Router Parameters
Another useful feature of the React Router is the ability to set up routing parameters.
Routing parameters are variables that obtain their values from the URL. They are
extremely useful in data-driven web applications for filtering content or managing
display preferences.

Adding Color Details Page
Let’s improve the color organizer by adding the ability to select and display one color
at a time using the React Router. When a user selects a color by clicking on it, the app
should render that color and display its title and hex value (see Figure 11-6).

286 | Chapter 11: React Router

Figure 11-6. Color Details screen

Every color has a unique ID. This ID can be used to find specific colors that are saved
in state. For example, we can create a findById function that will find an object in an
array by the id field:

import { compose } from 'redux'

export const getFirstArrayItem = array => array[0]

export const filterArrayById = (array, id) =>
 array.filter(item => item.id === id)

export const findById = compose(
 getFirstArrayItem,
 filterArrayById
)

This findById function follows the functional programming techniques discussed in
Chapter 2. We can see that the findById method first filters the array by the ID and
then returns the first item found in that filtered array. We can use the findById func‐
tion to locate colors in state by their unique IDs.

Using the router, we can obtain the color ID via the URL. For example, this is the
URL that we will use to display the color “Lawn” because the ID for the color lawn is
being passed within the URL:

http://localhost:3000/#/58d9caee-6ea6-4d7b-9984-65b145031979

Router Parameters | 287

Router parameters allow us to capture this value. They can be defined in routes using
a semicolon. For example, we could capture the unique id and save it in a parameter
named id with the Route:

<Route exact path="/:id" component={UniqueIDHeader} />

The UniqueIDHeader component can obtain the id from the match.params object:

const UniqueIDHeader = ({ match }) => <h1>{match.params.id}</h1>

We can create parameters any time we want to collect data from the URL.

Multiple Parameters
Multiple parameters can be created and accessed on the same parameters object. The
following sample route would create three parameters:

<Route path="/members/:gender/:state/:city"
 component="Member" />

These three parameters can then be initialized via the URL:

http://localhost:3000/members/female/california/truckee

All three values would be passed to the Member component via match.params:

const Member = ({ match }) =>
 <div className="member">

 gender: {match.params.gender}
 state: {match.params.state}
 city: {match.params.city}

 </div>

Lets create a ColorDetails component that will be rendered when the user selects a
single color:

const ColorDetails = ({ title, color }) =>
 <div className="color-details"
 style={{backgroundColor: color}}>
 <h1>{title}</h1>
 <h1>{color}</h1>
 </div>

The ColorDetails component is a presentation component—it expects properties for
the color’s details. Since we are using Redux, we will need to add a new container that
can find the selected color in state using a routing parameter:

export const Color = connect(
 (state, props) => findById(state.colors, props.match.params.id)
)(ColorDetails)

288 | Chapter 11: React Router

The Color container is created using the connect HOC. The first argument is a func‐
tion that is used to set the properties of the ColorDetails based on a single color
from state. Using the findById function that we defined earlier in this section, we will
locate an individual color object in state with an id parameter that is obtained from
the URL. The connect HOC will map the data from the located color object to the
properties of the ColorDetails component.

The connect HOC also maps any properties sent to the Color container to the Color
Details component. This means that all of the router properties will be passed to
ColorDetails as well.

Let’s add some navigation to the ColorDetails component using the router’s history
property:

const ColorDetails = ({ title, color, history }) =>
 <div className="color-details"
 style={{backgroundColor: color}}
 onClick={() => history.goBack()}>
 <h1>{title}</h1>
 <h1>{color}</h1>
 </div>

When users click the div.color-details element, the history.goBack() method
will be invoked. The user will be navigated back to the previous location.

Now that we have a Color container, we need to add it to our app. First, we will need
to wrap the App component with a HashRouter when it is initially rendered:

import { HashRouter } from 'react-router-dom'

...

render(
 <Provider store={store}>
 <HashRouter>
 <App />
 </HashRouter>
 </Provider>,
 document.getElementById('react-container')
)

Now we are ready to configure routes anywhere within our application. Let’s add
some routes to the App component:

import { Route, Switch } from 'react-router-dom'
import Menu from './ui/Menu'
import { Colors, Color, NewColor } from './containers'
import '../stylesheets/APP.scss'

const App = () =>
 <Switch>

Router Parameters | 289

 <Route exact path="/:id" component={Color} />
 <Route path="/"
 component={() => (
 <div className="app">
 <Menu />
 <NewColor />
 <Colors />
 </div>
)} />
 </Switch>

export default App

The Switch component is used to render one of two routes: an individual color, or
the main app components. The first Route renders the Color component when an id
is passed in a URL. For instance, this route will match when the location is:

http://localhost:3000/#/58d9caee-6ea6-4d7b-9984-65b145031979

Any other location will match / and display the main application components. The
second Route groups several components under a new anonymous stateless func‐
tional component. As a result, users will either see an individual color or a list of col‐
ors, depending upon the URL.

At present, we can test our application by adding the id parameter directly to the
browser’s location bar. However, users will need a way to navigate to the details view
as well.

This time, the NavLink component will not be used to handle the navigation from the
list of colors to a color’s details. Instead, we will navigate by directly using the router’s
history object.

Let’s add navigation to the Color component found in the ./ui folder. This component
is rendered by the ColorList. It does not receive routing properties from the Route.
You could explicitly pass those properties all the way down the tree to the Color com‐
ponent, but it’s easier to use the withRouter function. This ships with react-router-
dom. withRouter can be used to add routing properties to any component that is
rendered somewhere under a Route.

Using withRouter, we can obtain the router’s history object as a property. We can
use it to navigate from within the Color component:

import { withRouter } from 'react-router'

...

class Color extends Component {

 render() {

290 | Chapter 11: React Router

 const {
 id,
 title,
 color,
 rating,
 timestamp,
 onRemove,
 onRate,
 history } = this.props

 return (
 <section className="color" style={this.style}>
 <h1 ref="title"
 onClick={() => history.push(`/${id}`)}>
 {title}
 </h1>
 <button onClick={onRemove}>
 <FaTrash />
 </button>
 <div className="color"
 onClick={() => history.push(`/${id}`)}
 style={{ backgroundColor: color }}>
 </div>
 <TimeAgo timestamp={timestamp} />
 <div>
 <StarRating starsSelected={rating}
 onRate={onRate}/>
 </div>
 </section>
)
 }

}

export default withRouter(Color)

withRouter is an HOC. When we export the Color component, we send it to with
Router which wraps it with a component that passes the router properties: match,
history, and location.

Navigation is obtained by using the history object directly. When a user clicks the
color title or the color itself, a new route is pushed into the history object. This new
route is a string that contains the color’s id. Pushing this route into history will cause
the navigation to occur.

Router Parameters | 291

Single Source of Truth?
At present, the state of the color organizer is mostly handled by the Redux store. We
also have some state being handled by the router. Specifically, if the route contains a
color ID, the presentation state of the application is different than when it does not.

Having some state handled by the router may seem contradictory to Redux’s require‐
ment to store state in a single object: a single source of truth. However, you can think
of the router as being the source of truth that interfaces with the browser. It is abso‐
lutely OK to allow the router to handle any state associated with the site map, includ‐
ing the filters required to look up data. Keep the rest of the state in Redux store.

Moving Color Sort State to Router
You do not have to limit the use of Router parameters. They can be more than filters
for looking up specific data in state. They can also be used to obtain information nec‐
essary for rendering the UI.

The Redux store presently contains the information about how the colors should be
sorted in state via the sort property. Would it make sense to move this variable from
the Redux store to a route parameter? The variable itself is not data; it provides info
about how the data should be presented. The sort variable is a string, which also
makes it an ideal candidate for a route parameter. Finally, we want our users to be
able to send the sort state to other users in a link. If they prefer to have the colors
sorted by rating, they can send that info to other users in a link, or bookmark that
content as is in the browser.

Let’s move the sort state of the color wall to a route parameter. These are the routes
that we will use to sort our colors:

/#/ default
Sort by date

/#/sort/title
Sort by title

/#/sort/rating
Sort by rating

First, we need to remove the sort reducer from the ./store/index.js file; we no longer
need it. As a result:

combineReducers({colors, sort})

becomes:

292 | Chapter 11: React Router

combineReducers({colors})

Removing the reducer means that the state variable will no longer be managed by
Redux.

Next, we can also remove the container for the Menu component from ./src/compo‐
nents/containers.js. The container is used to link the state of the Redux store to the
Menu presentation component. Sort is no longer stored in state, so we no longer need
a container.

Additionally, in the containers.js file, we need to change the Colors container. It will
no longer receive the sort value from state. Instead, it will receive sorting instructions
as a route parameter that is passed to the Color component inside of the match prop‐
erty:

export const Colors = connect(
 ({colors}, {match}) =>
 ({
 colors: sortColors(colors, match.params.sort)
 }),
 dispatch =>
 ({
 onRemove(id) {
 dispatch(removeColor(id))
 },
 onRate(id, rating) {
 dispatch(rateColor(id, rating))
 }
 })
)(ColorList)

Now the colors are being sorted via a routing parameter before they are passed to the
ColorList as a property.

Next, we need to replace the Menu component with one that contains links to our new
routes. Much like the About menu that we created earlier in this chapter, the visual
state of the menu will be controlled by setting the activeStyle property of the Nav
Link:

import { NavLink } from 'react-router'

const selectedStyle = { color: 'red' }

const Menu = ({ match }) =>
 <nav className="menu">

 <NavLink to="/" style={match.isExact && selectedStyle}>
 date
 </NavLink>

 <NavLink to="/sort/title" activeStyle={selectedStyle}>

Router Parameters | 293

 title
 </NavLink>

 <NavLink to="/sort/rating" activeStyle={selectedStyle}>
 rating
 </NavLink>

 </nav>

export default Menu

Now users can sort the colors via the URL. When there is not a sort parameter avail‐
able, the colors will be sorted by date. This menu will change the color of the link to
indicate to the user how the data has been sorted.

We need to modify the App component. We need to handle sorting the colors via
routes:

const App = () =>
 <Switch>
 <Route exact path="/:id" component={Color} />
 <Route path="/"component={() => (
 <div className="app">
 <Route component={Menu} />
 <NewColor />
 <Switch>
 <Route exact path="/" component={Colors} />
 <Route path="/sort/:sort" component={Colors} />
 </Switch>
 </div>
)} />
 </Switch>

First, the Menu needs the match property, so we will render the Menu with a Route. The
Menu will always render alongside the NewColor form and the list of colors because the
Route does not have a path.

After the NewColor component, we want to display either the default list of colors,
sorted by default, or the list of colors sorted by a parameter. These routes are wrapped
in the Switch component to ensure that we only render one Colors container.

When users navigate to the home route, http://localhost:3000, the App compo‐
nent is rendered. By default, the Colors container is rendered within the App. The
value of the sort parameter is undefined, so the colors are sorted by default.

If the user navigates to http://localhost:3000/sort/rating, the Colors container
will also be rendered, but this time the sort parameter should have a value, and the
colors should be sorted by that value.

Routing parameters are an ideal tool to obtain data that affects the presentation of
your user interface. However, they should only be used when you want users to cap‐

294 | Chapter 11: React Router

ture these details in a URL. For example, in the case of the color organizer, users can
send other users links to specific colors or all the colors sorted by a specific field.
Users can also bookmark those links to return specific data. If you want your users to
save information about the presentation in a URL, then a routing parameter is your
solution.

In this chapter, we reviewed the basic usage of the React Router. All of the examples
in this chapter incorporated the HashRouter. In the next chapter, we will continue to
use the router both on the client and the server with the BrowserRouter, and we’ll use
the StaticRouter to render the current routing context on the server.

Router Parameters | 295

CHAPTER 12

React and the Server

So far, we have built small applications with React that run entirely in the browser.
They have collected data in the browser and saved the data using browser storage.
This makes sense because React is a view layer. It is intended to render UI. However,
most applications require at least the existence of some sort of a backend, and we will
need to understand how to structure applications with a server in mind.

Even if you have a client application that is relying entirely on cloud services for the
backend, you still need to get and send data to these services. Within the scope of
Flux, there are specific places where these transactions should be made, and libraries
that can help you deal with the latency associated with HTTP requests.

Additionally React can be rendered isomorphically, which means that it can be in
platforms other than the browser. This means we can render our UI on the server
before it ever gets to the browser. Taking advantage of server rendering, we can
improve the performance, portability, and security of our applications.

We start this chapter with a look at the differences between isomorphism and univer‐
salism and how both concepts relate to React. Next, we will look at how to make an
isomorphic application using universal JavaScript. Finally, we will improve the color
organizer by adding a server and rendering the UI on the server first.

Isomorphism versus Universalism
The terms isomorphic and universal are often used to describe applications that work
on both the client and the server. Although these terms are used interchangeably to
describe the same application, there is a subtle difference between them that is worth
investigating. Isomorphic applications are applications that can be rendered on multi‐

297

1 Gert Hengeveld, “Isomorphism vs Universal JavaScript”, Medium.

ple platforms. Universal code means that the exact same code can run in multiple
environments.1

Node.js will allow us to reuse the same code that we’ve written in the browser in other
applications such as servers, CLIs, and even native applications. Let’s take a look at
some universal JavaScript:

var printNames = response => {
 var people = JSON.parse(response).results,
 names = people.map(({name}) => `${name.last}, ${name.first}`)
 console.log(names.join('\n'))
}

The printNames function is universal. The exact same code can be invoked in the
browser or on a server. This means that if we constructed a server with Node.js, we
could potentially reuse a lot of code between the two environments. Universal Java‐
Script is JavaScript that can run on the server or in the browser without error
(Figure 12-1).

Figure 12-1. Client and server domains

The server and the client are completely different domains, so all of your JavaScript
code will not automatically work between them. Let’s take a look at creating an AJAX
request with the browser:

const request = new XMLHttpRequest()
request.open('GET', 'https://api.randomuser.me/?nat=US&results=10')
request.onload = () => printNames(request.response)
request.send()

Here we are requesting 10 user records at random from the randomuser.me API. If we
run this code in the browser and look at the console, we will see 10 random names:

298 | Chapter 12: React and the Server

http://bit.ly/2m0YDEY

ford, brianna
henderson, nellie
lynch, lily
gordon, todd
collins, genesis
roberts, suzanne
dixon, rene
ray, rafael
adams, jamie
bowman, mia

However, if we try to run the exact same code with Node.js, we get an error:

ReferenceError: XMLHttpRequest is not defined
 at Object.<anonymous> (/Users/...)
 at Module._compile (module.js:541:32)
 at Object.Module._extensions..js (module.js:550:10)
 at Module.load (module.js:458:32)
 at tryModuleLoad (module.js:417:12)
 at Function.Module._load (module.js:409:3)
 at Function.Module.runMain (module.js:575:10)
 at startup (node.js:160:18)
 at node.js:449:3

This error occurs because Node.js does not have an XMLHttpRequest object like the
browser does. With Node.js, we can use the http module to make a request:

const https = require('https')
https.get(
 'https://api.randomuser.me/?nat=US&results=10',
 res => {

 let results = ''

 res.setEncoding('utf8')
 res.on('data', chunk => results += chunk)

 res.on('end', () => printNames(results))
 }
)

Loading data from an API with Node.js requires the use of core modules. It requires
different code. In these samples, the printNames function is universal, so the same
function works in both environments.

We could build a module that would print the names to the console in either a
browser or a Node.js application:

var printNames = response => {
 var people = JSON.parse(response).results,
 names = people.map(({name}) => `${name.last}, ${name.first}`)
 console.log(names.join('\n'))
}

Isomorphism versus Universalism | 299

if (typeof window !== 'undefined') {

 const request = new XMLHttpRequest()
 request.open('GET', 'http://api.randomuser.me/?nat=US&results=10')
 request.onload = () => printNames(request.response)
 request.send()

} else {

 const https = require('https')
 https.get(
 'http://api.randomuser.me/?nat=US&results=10',
 res => {
 let results = ''
 res.setEncoding('utf8')
 res.on('data', chunk => results += chunk)
 res.on('end', () => printNames(results))
 }
)

}

This JavaScript file is now isomorphic; it contains universal JavaScript. All of the code
is not universal, but the file itself will work in both environments. It can run it with
Node.js or include it in a <script> tag in the browser.

isomorphic-fetch

We have been using isomorphic-fetch over other implementa‐
tions of the WHATWG fetch function because isomorphic-fetch
works in multiple environments.

Let’s take a look at the Star component. Is this component universal?

const Star = ({ selected=false, onClick=f=>f }) =>
 <div className={(selected) ? "star selected" : "star"}
 onClick={onClick}>
 </div>

Sure it is: remember, the JSX compiles to JavaScript. The Star component is simply a
function:

const Star = ({ selected=false, onClick=f=>f }) =>
 React.createElement(
 "div",
 {
 className: selected ? "star selected" : "star",
 onClick: onClick
 }
)

300 | Chapter 12: React and the Server

We can render this component directly in the browser, or render it in a different envi‐
ronment and capture the HTML output as a string. ReactDOM has a renderToString
method that we can use to render UI to a HTML string:

// Renders html directly in the browser
ReactDOM.render(<Star />)

// Renders html as a string
var html = ReactDOM.renderToString(<Star />)

We can build isomorphic applications that render components on different platforms,
and we can architect these applications in a way that reuses JavaScript code univer‐
sally across multiple environments. Additionally, we can build isomorphic applica‐
tions using other languages such as Go or Python. We are not restricted to Node.js.

Server Rendering React
Using the ReactDOM.renderToString method allows us to render UI on the server.
Servers are powerful; they have access to all kinds of resources that browsers do not.
Servers can be secure, and access secure data. You can use all of these added benefits
to your advantage by rendering initial content on the server.

Let’s build a basic web server using Node.js and Express. Express is a library that we
can use to rapidly develop web servers:

npm install express --save

Let’s take a look at a simple Express app. This code creates a web server that always
serves the message “Hello World”. First, information about each request is logged to
the console. Then the server responds with some HTML. Both of these steps are con‐
tained in their own function and chained together with the .use() method. Express
automatically injects request and response arguments into each of these functions as
arguments.

import express from 'express'

const logger = (req, res, next) => {
 console.log(`${req.method} request for '${req.url}'`)
 next()
}

const sayHello = (req, res) =>
 res.status(200).send("<h1>Hello World</h1>")

const app = express()
 .use(logger)
 .use(sayHello)

app.listen(3000, () =>

Isomorphism versus Universalism | 301

2 Express Documentation, “Using Middleware”.

 console.log(`Recipe app running at 'http://localhost:3000'`)
)

The logger and sayHello functions are middleware. In Express, middleware func‐
tions are chained together into a pipeline with the .use() method.2 When a request
occurs, each middleware function is invoked in order until a response is sent. This
Express app logs details about each request to the console and then sends an HTML
response: <h1>Hello World</h1>. Finally, we start the Express app by telling it to lis‐
ten for incoming requests locally on port 3000.

In Chapter 10 we used the babel-cli to run our tests. Here we will use the babel-
cli to run this Express app because it contains ES6 import statements that are not
supported by the current version of Node.js.

babel-cli is not a great solution for running apps in production,
and we don’t have to use to babel-cli to run every Node.js app
that uses ES6. As of this writing, the current version of Node.js sup‐
ports a lot of ES6 syntax. You could simply choose not to use
import statements. Future versions of Node.js will support import
statements.
Another option is to create a webpack build for your backend code.
webpack can export a JavaScript bundle that can be ran with older
versions of Node.js.

In order to run babel-node, there is a little bit of setup involved. First, we need to
install the babel-cli, babel-loader, babel-preset-es2015, babel-preset-react,
and babel-preset-stage-0:

npm install babel-cli babel-loader babel-preset-env
babel-preset-react babel-preset-stage-0 --save

Next, we need to make sure we add a .babelrc file to the root of our project. When we
run babel-node index-server.js, Babel will look for this file and apply the presets
that we have installed:

{
 "presets": [
 "env",
 "stage-0",
 "react"
]
}

302 | Chapter 12: React and the Server

http://bit.ly/2m0Z2ax

Finally, let’s add a start script to our package.json file. If you do not already have a
package.json file, create one by running npm init:

"scripts": {
 "start": "./node_modules/.bin/babel-node index-server.js"
}

Now we can run our Express server with the command npm start:

npm start

Recipe app running at 'http://localhost:3000'

Once the server is running, you can open a web browser and navigate to http://local‐
host:3000. You will see the message “Hello World” in the page.

ctrl^c will stop this Express server from running.

So far, our Express app responds to all requests with the same string: "<h1>Hello
World</h1>". Instead of rendering this message, let’s render the Recipe app that we
worked with back in Chapters 4 and 5. We can make this modification by rendering
the Menu component with some recipe data using renderToString from ReactDOM:

import React from 'react'
import express from 'express'
import { renderToString } from 'react-dom/server'
import Menu from './components/Menu'
import data from './assets/recipes.json'

global.React = React

const html = renderToString(<Menu recipes={data}/>)

const logger = (req, res, next) => {
 console.log(`${req.method} request for '${req.url}'`)
 next()
}

const sendHTMLPage = (req, res) =>
 res.status(200).send(`
<!DOCTYPE html>
<html>
 <head>
 <title>React Recipes App</title>
 </head>
 <body>
 <div id="react-container">${html}</div>

Isomorphism versus Universalism | 303

 </body>
</html>
 `)

const app = express()
 .use(logger)
 .use(sendHTMLPage)

app.listen(3000, () =>
 console.log(`Recipe app running at 'http://localhost:3000'`)
)

First we import react, the renderToString method, the Menu component, and some
recipes for our initial data. React is exposed globally, so the renderToString method
can work properly.

Next, the HTML is obtained by invoking the renderToString function and sending it
the Menu component.

Finally, we can create a new middleware function, sendHTMLPage, that responds to all
requests with an HTML string. This string wraps the server-rendered HTML in
boilerplate that is necessary for creating a page.

Now when you start this application and navigate to http://localhost:3000 in a
browser, you will see that the recipes have been rendered. We have not included any
JavaScript in this response. The recipes are already on the page as HTML.

So far we have server-rendered the Menu component. Our application is not yet iso‐
morphic, as the components are only rendered on the server. To make it isomorphic
we will add some JavaScript to the response so that the same components can be ren‐
dered in the browser.

Let’s create an index-client.js file that will run in the browser:

import React from 'react'
import { render } from 'react-dom'
import Menu from './components/Menu'

window.React = React

alert('bundle loaded, Rendering in browser')

render(
 <Menu recipes={__DATA__} />,
 document.getElementById("react-container")
)

alert('render complete')

This file will render the same Menu component, with the same recipe data. We know
that the data is the same because it will already be included in our response as a

304 | Chapter 12: React and the Server

string. When the browser loads this script, the __DATA__ will already exist in the
global scope. The alert methods are used to see when the browser renders the UI.

We’ll need to build this client.js file into a bundle that can be used by the browser.
Here, basic webpack configuration will handle the build.

Don’t forget to install webpack; we’ve already installed babel and the necessary pre‐
sets:

npm install webpack --save-dev

Here, basic webpack configuration will handle the build:

var webpack = require("webpack")

module.exports = {
 entry: "./index-client.js",
 output: {
 path: "assets",
 filename: "bundle.js"
 },
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /(node_modules)/,
 loader: 'babel-loader',
 query: {
 presets: ['env', 'stage-0', 'react']
 }
 }
]
 }
}

We want to build the client bundle every time we start our app, so we’ll need to add a
prestart script to the package.json file:

"scripts": {
 "prestart": "./node_modules/.bin/webpack --progress",
 "start": "./node_modules/.bin/babel-node index-server.js"
},

The last step is to modify the server. We need to write the initial __DATA__ to the
response as a string. We also need to include a script tag with a reference to our cli‐
ent bundle. Lastly, we need to make sure our server sends static files from the ./assets/
directory:

const sendHTMLPage = (req, res) =>
 res.status(200).send(`
<!DOCTYPE html>
<html>
 <head>

Isomorphism versus Universalism | 305

3 Andrew H. Farmer, “Should I use React Server-Side Rendering?”

 <title>React Recipes App</title>
 </head>
 <body>
 <div id="react-container">${html}</div>
 <script>
 window.__DATA__ = ${JSON.stringify(data)}
 </script>
 <script src="bundle.js"></script>
 </body>
</html>
 `)

const app = express()
 .use(logger)
 .use(express.static('./assets'))
 .use(sendHTMLPage)

script tags have been added directly to the response. The data is written to the first
script tag and the bundle is loaded in the second one. Additionally, middleware has
been added to our request pipeline. When the /bundle.js file is requested, the
express.static middleware will respond with that file instead of the server-
rendered HTML because it is in the ./assets folder.

Now we are isomorphically rendering the React components, first on the server and
then in the browser. When you run this app, you will see alert pop ups before and
after the components are rendered in the browser. You may notice that before you
clear the first alert, the content is already there. This is because it is initially rendered
on the server.

It may seem silly to render the same content twice, but there are advantages. This
application renders the same content in all browsers, even if JavaScript is turned off.
Because the content is loaded with the initial request, your website will run faster and
deliver necessary content to your mobile users more quickly.3 It will not have to wait
for a mobile processor to render the UI—the UI is already in place. Additionally, this
app gains all of the advantages of an SPA. Isomorphic React applications give you the
best of both worlds.

Universal Color Organizer
In the last five chapters, we have been working on a color organization application.
Thus far, we’ve generated a lot of code base for this application, and it all runs in the
browser. We’ve coded React components, a Redux store, and tons of action creators
and helper functions. We’ve even incorporated the React Router. We already have a
lot of code that can be reused if we were to create a web server.

306 | Chapter 12: React and the Server

http://bit.ly/2m11mOI

Let’s create an Express server for this application and try to reuse as much code as
possible. First, we’ll need a module that configures an Express application instance, so
let’s create ./server/app.js:

import express from 'express'
import path from 'path'
import fs from 'fs'

const fileAssets = express.static(
 path.join(__dirname, '../../dist/assets')
)

const logger = (req, res, next) => {
 console.log(`${req.method} request for '${req.url}'`)
 next()
}

const respond = (req, res) =>
 res.status(200).send(`
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Universal Color Organizer</title>
 </head>
 <body>
 <div id="react-container">ready...</div>
 </body>
</html>
 `)

export default express()
 .use(logger)
 .use(fileAssets)
 .use(respond)

This module is the starting point for our universal application. The Express configu‐
ration uses middleware for logging and file assets, and eventually it responds to every
request with an HTML page.

Since we are serving HTML directly from this file, you’ll need to
remove the ./dist/index.html file. If this file remains in place, it will
be served before the response is reached.

Webpack allows us to import assets like CSS or image files, but Node.js will not know
how to handle those imports. We’ll need to use the ignore-styles library to make
sure that we are ignoring any SCSS import statements. Let’s install ignore-styles:

Universal Color Organizer | 307

npm install ignore-styles --save

In the ./src/server/index.js file, we will consume the Express app instance and start the
server. This file represents the entry point for our Node.js server:

import React from 'react'
import ignoreStyles from 'ignore-styles'
import app from './app'

global.React = React

app.set('port', process.env.PORT || 3000)
 .listen(
 app.get('port'),
 () => console.log('Color Organizer running')
)

This file adds React to the global instance and starts the server. Additionally, we’ve
included the ignore-styles module, which ignores those imports so we can render
components in Node.js without causing errors.

We now have a starting point: a basic Express app configuration. Any time we need to
include new features on the server, they will need to make their way into this app
configuration module.

For the remainder of this chapter, we will iterate on this Express application. We will
use code universally to create an isomorphic/universal version of the color organizer.

Universal Redux
All of the JavaScript in the Redux library is universal. Your reducers are written in
JavaScript and should not contain code that depends upon any environment. Redux
was designed to be used as a state container for browser applications, but it can be
used in all types of Node.js applications, including CLIs, servers, and native applica‐
tions, too.

We already have the code in place for the Redux store. We’ll use this store to save state
changes to a JSON file on the server.

First, we need to modify the storeFactory so that it can work isomorphically. At
present, the storeFactory includes logging middleware that will cause errors in
Node.js because it utilizes the console.groupCollapsed and console.groupEnd
methods. Neither of these methods are available in Node.js. If we create stores on the
server, we’ll need to use a different logger:

import { colors } from './reducers'
import {
 createStore, combineReducers, applyMiddleware
} from 'redux'

308 | Chapter 12: React and the Server

const clientLogger = store => next => action => {
 let result
 console.groupCollapsed("dispatching", action.type)
 console.log('prev state', store.getState())
 console.log('action', action)
 result = next(action)
 console.log('next state', store.getState())
 console.groupEnd()
 return result
}

const serverLogger = store => next => action => {
 console.log('\n dispatching server action\n')
 console.log(action)
 console.log('\n')
 return next(action)
}

const middleware = server =>
 (server) ? serverLogger : clientLogger

const storeFactory = (server = false, initialState = {}) =>
 applyMiddleware(middleware)(createStore)(
 combineReducers({colors}),
 initialState
)

export default storeFactory

Now the storeFactory is isomorphic. We created Redux middleware for logging
actions on the server. When the storeFactory is invoked, we’ll tell it which type of
store we want and the appropriate logger will be added to the new store instance.

Let’s now use this isomorphic storeFactory to create a serverStore instance. At the
top of the Express configuration, we’ll need to import the storeFactory and the ini‐
tial state data. We can use the storeFactory to create a store with initial state from a
JSON file:

import storeFactory from '../store'
import initialState from '../../data/initialState.json'

const serverStore = storeFactory(true, initialState)

Now we have an instance of the store that will run on the server.

Every time an action is dispatched to this instance, we want to make sure the initial‐
State.json file is updated. Using the subscribe method, we can listen for state changes
and save a new JSON file every time the state changes:

serverStore.subscribe(() =>
 fs.writeFile(

Universal Color Organizer | 309

 path.join(__dirname, '../../data/initialState.json'),
 JSON.stringify(serverStore.getState()),
 error => (error) ?
 console.log("Error saving state!", error) :
 null
)
)

As actions are dispatched, the new state is saved to the initialState.json file using the
fs module.

The serverStore is now the main source of truth. Any requests will need to commu‐
nicate with it in order to get the current and most up-to-date list of colors. We’ll add
some middleware that will add the server store to the request pipeline so that it can
be used by other middleware during a request:

const addStoreToRequestPipeline = (req, res, next) => {
 req.store = serverStore
 next()
}

export default express()
 .use(logger)
 .use(fileAssets)
 .use(addStoreToRequestPipeline)
 .use(htmlResponse)

Now any middleware method that comes after addStoreToRequestPipeline will
have access to the store on the request object. We have used Redux universally. The
exact same code for the store, including our reducers, will run in multiple environ‐
ments.

There are complications associated with building web servers for
large applications that are not addressed by this example. Saving
data to a JSON file is a quick solution for data persistence, but pro‐
duction applications use actual databases. Using Redux is a possible
solution that may meet requirements for some applications. How‐
ever, there are complications associated with forking node pro‐
cesses that need to be addressed in larger applications. You can
investigate solutions like Firebase and other cloud providers for
assistance in working with databases that can scale smoothly.

Universal Routing
In the last chapter, we added the react-router-dom to the color organizer. The router
decides which component to render based on the browser’s current location. The
router can be rendered on the server as well—we just need to provide the location or
route.

310 | Chapter 12: React and the Server

So far, we’ve used the HashRouter. The router automatically adds a # before each
route. To use the router isomorphically, we need to replace the HashRouter with the
BrowserRouter, which removes the preceding # from our routes.

When we render our application, we need to replace the HashRouter with the Brows
erRouter:

import { BrowserRouter } from 'react-router-dom'

...

render(
 <Provider store={store}>
 <BrowserRouter>
 <App />
 </BrowserRouter>
 </Provider>,
 document.getElementById('react-container')
)

Now the color organizer is no longer prefacing each route with a hash. At this point,
the organizer still works. Start it up and select one color. The Color container is ren‐
dered, and it changes the background of the entire screen using the ColorDetails
component.

The location bar should now look something like:

http://localhost:3000/8658c1d0-9eda-4a90-95e1-8001e8eb6036

There is no longer a # in front of the route. Now let’s refresh the page in the browser:

Cannot GET /8658c1d0-9eda-4a90-95e1-8001e8eb6036

Refreshing the page causes the browser to send a GET request to the server using the
current route. The # was used to prevent us from sending that GET request. We use
the BrowserRouter because we want the GET request to be sent to the server. In order
to render the router on the server, we need a location—we need the route. This route
will be used on the server to tell the router to render the Color container. The Brows
erRouter is used when you want to render routes isomorphically.

Now that we know what content the user is requesting, let’s use it to render the UI on
the server. In order to render the router on the server, we’ll have to make some signif‐
icant changes to our Express configuration. To start, we’ll need to import a few mod‐
ules:

import { Provider } from 'react-redux'
import { compose } from 'redux'
import { renderToString } from 'react-dom/server'
import { StaticRouter } from 'react-router-dom'

Universal Color Organizer | 311

We need the Provider, a compose function, the renderToString function, and the
StaticRouter. On the server, the StaticRouter is used when we want to render our
component tree to a string.

In order to generate an HTML response, there are three steps:

1. Create a store that runs on the client using the data from the serverStore.
2. Render the component tree as HTML using the StaticRouter.
3. Create the HTML page that will be sent to the client.

We create one function for each of these steps and compose them into a single func‐
tion, the htmlResponse:

const htmlResponse = compose(
 buildHTMLPage, // Step 3
 renderComponentsToHTML, // Step 2
 makeClientStoreFrom(serverStore) // Step 1
)

In this composition, the makeClientStoreFrom(serverStore) is a higher-order func‐
tion. Initially, this function is invoked with the serverStore once. It returns a func‐
tion that will be invoked on every request. The returned function will always have
access to the serverStore.

When htmlResponse is invoked, it expects a single argument: the url that has been
requested by the user. For step one, we will create a higher-order function that pack‐
ages the url with a new client store created using the current state of the server
Store. Both store and url are passed to the next function, step 2, in a single object:

const makeClientStoreFrom = store => url =>
 ({
 store: storeFactory(false, store.getState()),
 url
 })

The output from the makeClientStoreFrom function becomes the input for the ren
derComponentToHTML function. This function expects that the url and store have
been packaged into a single argument:

const renderComponentsToHTML = ({url, store}) =>
 ({
 state: store.getState(),
 html: renderToString(
 <Provider store={store}>
 <StaticRouter location={url} context={{}}>
 <App />
 </StaticRouter>
 </Provider>
)
 })

312 | Chapter 12: React and the Server

The renderComponentsToHTML returns an object with two properties: state and html.
The state is obtained from the new client store and the html is generated by the
renderToString method. Since the app still uses Redux in the browser, the Provider
is rendered as the root component, and the new client store is passed to it as a prop‐
erty.

The StaticRouter component is used to render the UI based upon the location that
is being requested. The StaticRouter requires a location and context. The reques‐
ted url is passed to the location property and an empty object is passed to context.
When these components are rendered to an HTML string, the location will be taken
into account, and the StaticRouter will render the correct routes.

This function returns the two necessary components to build the page: the current
state of the organizer, and the UI rendered to an HTML string.

The state and the html can be used in the last composed function, buildHTMLPage:

const buildHTMLPage = ({html, state}) => `
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Universal Color Organizer</title>
 </head>
 <body>
 <div id="react-container">${html}</div>
 <script>
 window.__INITIAL_STATE__ = ${JSON.stringify(state)}
 </script>
 <script src="/bundle.js"></script>
 </body>
</html>
`

Our color wall is now isomorphic. It will render the UI on the server and send it to
the client as text. It will also embed the initial state of the store directly into the
response.

The browser initially displays the UI obtained in the HTML response. When the bun‐
dle loads, it re-renders the UI and the client takes over from there. From this point
on, all user interactivity including navigation will happen on the client. Our single
page application will function as it always has, unless the browser is refreshed, at
which point the server rendering process starts all over again.

Here is all of the current code from the Express app module, the entire file:

import express from 'express'
import path from 'path'
import fs from 'fs'
import { Provider } from 'react-redux'

Universal Color Organizer | 313

import { compose } from 'redux'
import { StaticRouter } from 'react-router-dom'
import { renderToString } from 'react-dom/server'
import App from '../components/App'
import storeFactory from '../store'
import initialState from '../../data/initialState.json'

const fileAssets = express.static(
 path.join(__dirname, '../../dist/assets')
)

const serverStore = storeFactory(true, initialState)

serverStore.subscribe(() =>
 fs.writeFile(
 path.join(__dirname, '../../data/initialState.json'),
 JSON.stringify(serverStore.getState()),
 error => (error) ?
 console.log("Error saving state!", error) :
 null
)
)

const logger = (req, res, next) => {
 console.log(`${req.method} request for '${req.url}'`)
 next()
}

const addStoreToRequestPipeline = (req, res, next) => {
 req.store = serverStore
 next()
}

const makeClientStoreFrom = store => url =>
 ({
 store: storeFactory(false, store.getState()),
 url
 })

const renderComponentsToHTML = ({url, store}) =>
 ({
 state: store.getState(),
 css: defaultStyles,
 html: renderToString(
 <Provider store={store}>
 <StaticRouter location={url} context={{}}>
 <App />
 </StaticRouter>
 </Provider>
)
 })

314 | Chapter 12: React and the Server

const buildHTMLPage = ({html, state}) => `
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Universal Color Organizer</title>
 </head>
 <body>
 <div id="react-container">${html}</div>
 <script>
 window.__INITIAL_STATE__ = ${JSON.stringify(state)}
 </script>
 <script src="/bundle.js"></script>
 </body>
</html>
`

const htmlResponse = compose(
 buildHTMLPage,
 renderComponentsToHTML,
 makeClientStoreFrom(serverStore)
)

const respond = (req, res) =>
 res.status(200).send(htmlResponse(req.url))

export default express()
 .use(logger)
 .use(fileAssets)
 .use(addStoreToRequestPipeline)
 .use(respond)

Our app now allows users to bookmark URLs and send URLs to other users that will
be rendered isomorphically. The router decides which content to render based upon
the URL. It does so on the server, which means that our users can access our content
rapidly.

Isomorphic applications have the best of both worlds: they can take advantage of the
speediness, control, and security that server rendering provides, while benefiting
from the low bandwidth and speed that is gained from single page applications. An
isomorphic React application is essentially a server-rendered SPA, which lays the
foundation for you to build efficient applications that will be cool but also fast and
efficient.

Incorporating server-rendered styles
At present, we are rendering the HTML on the server, but the CSS does not get ren‐
dered until the bundle is loaded in the browser. The result is a strange flicker. Initially
we will see all of the unstyled content in the browser before the CSS is loaded. When

Universal Color Organizer | 315

JavaScript is turned off in the browser, users will not see any CSS styles at all because
they are embedded in the JavaScript bundle.

The solution is to add the styles directly to the response. To do this, we must first
extract the CSS from the webpack bundle into its own separate file. You will need to
install the extract-text-webpack-plugin:

npm install extract-text-webpack-plugin

You will also need to require this plugin in your webpack configuration:

var webpack = require("webpack")
var ExtractTextPlugin = require("extract-text-webpack-plugin")
var OptimizeCss = require('optimize-css-assets-webpack-plugin')

Also, in the webpack configuration, we need to replace the CSS and SCSS loaders
with loaders that use the ExtractTextPlugin:

{
 test: /\.css$/,
 loader: ExtractTextPlugin.extract({
 fallback: "style-loader",
 use: [
 "style-loader",
 "css-loader",
 {
 loader: "postcss-loader",
 options: {
 plugins: () => [require("autoprefixer")]
 }
 }
]
 })
},
{
 test: /\.scss/,
 loader: ExtractTextPlugin.extract({
 fallback: "style-loader",
 use: [
 "css-loader",
 {
 loader: "postcss-loader",
 options: {
 plugins: () => [require("autoprefixer")]
 }
 },
 "sass-loader"
]
 })
}

And we need to include that plugin in our configuration inside of the plugins array.
Here, when the plugin is included, we specify the filename of the CSS file to extract:

316 | Chapter 12: React and the Server

plugins: [
 new ExtractTextPlugin("bundle.css"),
 new OptimizeCss({
 assetNameRegExp: /\.optimize\.css$/g,
 cssProcessor: require('cssnano'),
 cssProcessorOptions: {
 discardComments: {removeAll: true}
 },
 canPrint: true
 })
]

Now when webpack runs, it will not include the CSS in the JavaScript bundle; it will
instead extract all of the CSS into a separate file, ./assets/bundle.css.

We also need to modify the Express configuration. When the organizer starts, the
CSS is saved as a global string. We can use the filesystem or fs module to read the
contents of a text file into the variable staticCSS:

const staticCSS = fs.readFileSync(
 path.join(__dirname, '../../dist/assets/bundle.css')
)

Now we have to modify the buildHTMLPage function to write the CSS directly to the
response inside of a <style> tag:

const buildHTMLPage = ({html, state}) => `
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Universal Color Organizer</title>
 <style>${staticCSS}</style>
 </head>
 <body>
 <div id="react-container">${html}</div>
 <script>
 window.__INITIAL_STATE__ = ${JSON.stringify(state)}
 </script>
 <script src="/bundle.js"></script>
 </body>
</html>
`

CSS is now directly embedded into our response. There is no longer a strange, style‐
less flicker. When JavaScript is turned off, the styles remain in place.

We now have an isomorphic color organizer that shares a lot of universal JavaScript.
Initially, the color organizer is rendered on the server, but it is also rendered on the
browser after the page is finished loading. When the browser takes over, the color
organizer behaves as a single-page application.

Universal Color Organizer | 317

Communicating with the Server
At present, the color organizer is rendering UI on the server and re-rendering UI in
the browser. Once the browser takes over, the organizer functions as a single-page
application. Users dispatch actions locally, the local state changes, and locally the UI
is updated. Everything is working well in the browser, but the dispatched actions are
not making it back to the server.

In this next section, we will not only make sure that this data gets saved on the server,
we will make sure that the action objects themselves are created on the server and dis‐
patched to both stores.

Completing Actions on the Server
In the color organizer, we will integrate a REST API for handling our data. Actions
will be initiated on the client, completed on the server, and then dispatched to both
stores. The serverStore will save the new state to JSON, and the client store will trig‐
ger a UI update. Both stores will dispatch the same actions universally (#fig1202).

Figure 12-2. Creating a universal action

Let’s take a look at an example of the complete process for dispatching an ADD_COLOR
action in the proposed solution:

318 | Chapter 12: React and the Server

1. Dispatch action creator addColor() with new title and color.
2. Send data to server in new POST request.
3. Create and dispatch the new ADD_COLOR add color action on the server.
4. Send the ADD_COLOR action in the response body.
5. Parse the response body and dispatch the ADD_COLOR action on the client.

The first thing that we need to do is build the REST API. Let’s create a new file
called ./src/server/color-api.js.

Every action created is handled the same way: it is dispatched on the server and then
it is sent to the client. Let’s create a function that dispatches the action to the server
Store and sends the action to the client using the response object:

const dispatchAndRespond = (req, res, action) => {
 req.store.dispatch(action)
 res.status(200).json(action)
}

Once we have an action, we can use this function to dispatch the action and send a
response to the client.

We will need to create some HTTP endpoints using the Express Router that can han‐
dle various HTTP requests. We will create routes to handle GET, POST, PUT, and
DELETE requests on the route /api/colors. The Express Router can be used to create
these routes. Each route will contain the logic to create a different action object and
send it to the dispatchAndRespond function along with the request and response
objects:

import { Router } from 'express'
import { v4 } from 'uuid'

const dispatchAndRespond = (req, res, action) => {
 req.store.dispatch(action)
 res.status(200).json(action)
}

const router = Router()

router.get("/colors", (req, res) =>
 res.status(200).json(req.store.getState().colors)
)

router.post("/colors", (req, res) =>
 dispatchAndRespond(req, res, {
 type: "ADD_COLOR",
 id: v4(),
 title: req.body.title,
 color: req.body.color,

Communicating with the Server | 319

 timestamp: new Date().toString()
 })
)

router.put("/color/:id", (req, res) =>
 dispatchAndRespond(req, res, {
 type: "RATE_COLOR",
 id: req.params.id,
 rating: parseInt(req.body.rating)
 })
)

router.delete("/color/:id", (req, res) =>
 dispatchAndRespond(req, res, {
 type: "REMOVE_COLOR",
 id: req.params.id
 })
)

export default router

Each function added to the router object handles a different request for http://local‐
host:3000/api/{route}:

GET '/colors'

Responds with the current color array from the server’s state. This route is added
just so we can see the listed colors; it is not used by the frontend.

POST '/colors'

Creates a new color action object and sends it to dispatchAndRespond.

PUT '/color/:id'

Changes the rating of a color. The color’s ID is obtained from route paramaters
and used in the new action object.

DELETE '/color/:id'

Removes a color based upon the ID sent in the routing parameters.

Now that we have defined the routes, we need to add them to the Express app config‐
uration. First, we install the Express body-parser:

npm install body-parser --save

The body-parser is used to parse incoming request bodies and obtain any variables
sent to the routes. It is necessary to obtain the new color and rating information from
the client. We’ll need to add this middleware to our Express app configuration. Let’s
import the body-parser and our new routes into the ./server/app.js file:

import bodyParser from 'body-parser'
import api from './color-api'

320 | Chapter 12: React and the Server

Let’s add the bodyParser middleware and the API to our Express app. It is important
to add the bodyParser before the API so that the data can be parsed by the time the
request has been handled by the API:

export default express()
 .use(logger)
 .use(fileAssets)
 .use(bodyParser.json())
 .use(addStoreToRequestPipeline)
 .use('/api', api)
 .use(matchRoutes)

The bodyParser.json() is now parsing incoming request bodies that have been for‐
matted as JSON. Our color-api is added to the pipeline and configured to respond
to any routes that are prefixed with /api. For example, this URL can be used to obtain
the current array of colors as JSON: http://localhost:3000/api/colors.

Now that our Express app has endpoints that can respond to HTTP requests, we are
ready to modify the frontend action creators to communicate with these endpoints.

Actions with Redux Thunks
One problem with client/server communication is latency, or the delay that we expe‐
rience while waiting for a response after sending a request. Our action creators need
to wait for a response before they can dispatch the action, because in our solution the
action itself is being sent to the client from the server. There is middleware for Redux
that can help us with asynchronous actions: it is called redux-thunk.

In this next section, we will rewrite out action creators using redux-thunk. These
action creators, called thunks, will allow us to wait for a server response before dis‐
patching an action locally. Thunks are higher-order functions. Instead of action
objects, they return other functions. Let’s install redux-thunk:

npm install redux-thunk --save

redux-thunk is middleware; it needs to be incorporated into our storeFactory. First,
at the top of ./src/store/index.js, import redux-thunk:

import thunk from 'redux-thunk'

The storeFactory has a function called middleware. It returns the middleware that
should be incorporated to the new store in a single array. We can add any Redux mid‐
dleware to this array. Each item will be spread into the arguments of the applyMiddle
ware function:

const middleware = server => [
 (server) ? serverLogger : clientLogger,
 thunk
]

Communicating with the Server | 321

const storeFactory = (server = false, initialState = {}) =>
 applyMiddleware(...middleware(server))(createStore)(
 combineReducers({colors}),
 initialState
)

export default storeFactory

Let’s take a look at the current action creator for adding colors:

export const addColor = (title, color) =>
 ({
 type: "ADD_COLOR",
 id: v4(),
 title,
 color,
 timestamp: new Date().toString()
 })

...

store.dispatch(addColor("jet", "#000000"))

This action creator returns an object, the addColor action. That object is immediately
dispatched to the store. Now let’s look at the thunk version of addColor:

export const addColor = (title, color) =>
 (dispatch, getState) => {

 setTimeout(() =>
 dispatch({
 type: "ADD_COLOR",
 index: getState().colors.length + 1,
 timestamp: new Date().toString()
 title,
 color
 }),
 2000
)
 }

...

store.dispatch(addColor("jet", "#000000"))

Even though both action creators are dispatched the exact same way, the thunk
returns a function instead of an action. The returned function is a callback that
receives the store’s dispatch and getState methods as arguments. We can dispatch
an action when we are ready. In this example, a setTimeout is used to create a two-
second delay before we dispatch a new color action.

322 | Chapter 12: React and the Server

In addition to dispatch, thunks also have access to the store’s getState method. In
this example, we used it to create an index field based upon the current number of
colors in state. This function can be useful when it is time to create actions that
depend upon data from the store.

Not all of your action creators have to be thunks. The redux-thunk
middleware knows the difference between thunks and action
objects. Action objects are immediately dispatched.

Thunks have another benefit. They can invoke dispatch or getState asynchronously
as many times as they like, and they are not limited to dispatching one type of action.
In this next sample, the thunk immediately dispatches a RANDOM_RATING_STARTED
action and repeatedly dispatches a RATE_COLOR action that rates a specific color at
random:

export const rateColor = id =>
 (dispatch, getState) => {

 dispatch({ type: "RANDOM_RATING_STARTED" })
 setInterval(() =>
 dispatch({
 type: "RATE_COLOR",
 id,
 rating: Math.floor(Math.random()*5)
 }),
 1000
)
 }

...

store.dispatch(
 rateColor("f9005b4e-975e-433d-a646-79df172e1dbb")
)

These thunks are simply samples. Let’s build the real thunks that the color organizer
will use by replacing our current action creators.

First, we’ll create a function called fetchThenDispatch. This function uses
isomorphic-fetch to send a request to a web service and automatically dispatch the
response:

import fetch from 'isomorphic-fetch'

const parseResponse = response => response.json()

const logError = error => console.error(error)

Communicating with the Server | 323

const fetchThenDispatch = (dispatch, url, method, body) =>
 fetch(
 url,
 {
 method,
 body,
 headers: { 'Content-Type': 'application/json' }
 }
).then(parseResponse)
 .then(dispatch)
 .catch(logError)

The fetchThenDispatch function requires the dispatch function, a URL, the HTTP
request method, and the HTTP request body as arguments. This information is then
used in the fetch function. Once a response is received, it will be parsed and then
dispatched. Any errors will be logged to the console.

We’ll use the fetchThenDispatch function to help us construct thunks. Each thunk
will send a request to our API, along with any necessary data. Since our API responds
with action objects, the response can be immediately parsed and dispatched:

export const addColor = (title, color) => dispatch =>
 fetchThenDispatch(
 dispatch,
 '/api/colors',
 'POST',
 JSON.stringify({title, color})
)

export const removeColor = id => dispatch =>
 fetchThenDispatch(
 dispatch,
 `/api/color/${id}`,
 'DELETE'
)

export const rateColor = (id, rating) => dispatch =>
 fetchThenDispatch(
 dispatch,
 `/api/color/${id}`,
 'PUT',
 JSON.stringify({rating})
)

The addColor thunk sends a POST request to http://localhost:3000/api/colors along
with the title and hex value of the new color. An ADD_COLOR action object is returned,
parsed, and dispatched.

324 | Chapter 12: React and the Server

The removeColor thunk sends a DELETE request to the API with the ID of the color
to delete provided in the URL. A REMOVE_COLOR action object is returned, parsed, and
dispatched.

The rateColor thunk sends a PUT request to the API. The ID of the color to rate is
included in the URL as a route parameter, and the new rating is supplied in the body
of the request. A RATE_COLOR action object is returned from the server, parsed as
JSON, and dispatched to the local store.

Now when you run the application, you can see actions being dispatched to both
stores in the console log. The browser console is a part of the developer tools and the
server console is the terminal where the server was started (Figure 12-3).

Figure 12-3. Browser console and server console

Communicating with the Server | 325

Using Thunks with Websockets
The color organizer uses REST to communicate with the server. Thunks can also be
used with websockets to send and receive. Websockets are two-way connections
between the client and the server. Websockets can send data to a server, but they also
allow the server to send data to the client.

One way to work with websockets and thunks is to dispatch a connect action creator.
For example, let’s say we wanted to connect to a message server:

store.dispatch(connectToMessageSocket())

Thunks can invoke dispatch as much as they want. We can create thunks that listen
for incoming messages and dispatch NEW_MESSAGE actions when they are received.
This next sample uses socket.io-client to connect to a socket.io server and listen
for incoming messages:

import io from 'socket.io-client'

const connectToChatSocket = () => dispatch => {

 dispatch({type: "CONNECTING"})

 let socket = io('/message-socket')

 socket.on('connect', () =>
 dispatch({type: "CONNECTED", id: socket.id})
)

 socket.on('message', (message, user) =>
 dispatch({type: "NEW_MESSAGE", message, user})
)

}

export default connectToMessageSocket

As soon as the connectToChatSocket is invoked, a CONNECTING action is dispatched.
We then attempt to connect to the message socket. Once connected, the socket will
respond with a connect event. When this happens, we can dispatch a CONNECTED
action with information about the current socket.

When the server sends new messages, message events are raised on the socket. We
can dispatch NEW_MESSAGE actions locally every time they are sent to this client from
the server.

Thunks can work with any type of asynchronous process, including websockets,
socket-io, Firebase, setTimeouts, transitions, and animations.

326 | Chapter 12: React and the Server

Just about every React application that you build will require the existence of some
type of web server. Sometimes you will only need a web server to host your applica‐
tion. Other situations require communications with web services. And then there are
high-traffic applications that need to work on many platforms that will require differ‐
ent solutions entirely.

Advanced Data Fetching
If you are working on high-traffic applications that share data on multiple platforms,
you may want to look into frameworks like Relay and GraphQL or Falcor. These
frameworks provide more efficient and intelligent solutions for providing applica‐
tions with only the data that they require.

GraphQL is a declarative data querying solution developed at Facebook that can be
used to query data from multiple sources. GraphQL can be used by all types of lan‐
guages and platforms. Relay is a library, also developed at Facebook, that handles data
fetching for client applications by linking GraphQL queries with React or React
Native components. There is a bit of learning curve associated with GraphQL and
Relay, but it is well worth it if you really like declarative programming.

Falcor is a framework developed at Netflix that also addresses issues associated with
fetching and efficiently using data. Like GraphQL, Falcor allows you to query data
from multiple services in a single location. However, Falcor uses JavaScript to query
data, which likely means less of a learning curve for JavaScript developers.

The key to React development is knowing when to use the right tools. You already
have many of the tools needed to build robust applications in your toolbelt. Only use
what is needed. If your application does not depend upon a lot of data, don’t use
Redux. React state is a great solution that is perfect fit for the right size app. Your
application may not require server rendering. Don’t worry about incorporating it
until you have a highly interactive app that has a lot of mobile traffic.

When setting forth to develop your own React applications, we hope that this book
will serve as a reference and a great foundation. Though React and its related libraries
will almost certainly go through changes, these are stable tools that you can feel con‐
fident about using right away. Building apps with React, Redux, and functional,
declarative JavaScript is a lot of fun, and we can’t wait to see what you’ll build.

Communicating with the Server | 327

http://graphql.org
https://facebook.github.io/relay/
https://netflix.github.io/falcor/

Index

A
action creators

Flux, 177
Redux, 203-205
with redux-thunk, 321-327

action type
defined, 189
naming conventions, 189

actions
completing on the server, 318-321
Flux, 177
payload data, 189
Redux, 187-190
with redux-thunk, 321-327

API calls, 159
Array.filter(), 41
Array.join(), 41
Array.map(), 42
Array.reduce(), 47
Array.reduceRight(), 46
arrays

and data transformations, 41-48
mapping to JSX, 83
spread operator and, 22
transforming into an object, 46

arrow functions, 14-17
asynchronous processes, recursion and, 50

B
Babel

for transpiling ES6, 17-18
JSX and, 84
presets, 92
stage presets, 93

browser
call stack limitations, 50
transpiling in, 18

C
call stack limitations, 50
capitalization conventions, 25
child elements, 65-67, 119-123
class constructors, 142
class static properties, 118
classes

capitalization conventions, 25
ES6, 25-26
prototypical inheritance and, 26

className, 67, 83
clock app

Flux for countdown function, 175-180
mounting lifecycle, 145
recursion for countdown function, 50
rendering, 173

code coverage, 262-272
color organizer app

action creators, 203-205
action payload data, 189
actions, 187-190
actions with redux-thunk, 321-327
Color container creation, 225-227
color details page, 286-292
communicating with server, 318-327
completing actions on the server, 318-321
data flow through component tree, 211-213
data transformation, 46
explicitly passing the store, 213-216
immutability and, 36-38

329

initializing state from properties, 128
inverse data flow, 121-122
moving color sort state to router, 292-294
optional function properties, 122
overview, 130-139
passing data up the component tree,

134-138
passing properties down the component

tree, 131-134
passing the store via context, 216-220
presentational vs. container components,

220-223
reducers, 190-198
refs for, 119-123
refs in stateless functional components, 123
saving state changes to localStorage, 202
server for, 306-317
snapshot testing, 258-262
StarRating component, 124-128
state management, 130-139
store, 198-203
store setup with provider, 224
testing code coverage, 262-272
testing components with Jest mocks,

252-254
testing HOCs with mocks, 249-252
testing React components, 245-257
testing reducers, 235-242
testing Star Component with Enzyme,

247-249
testing the store, 242-245
testing with manual mocks, 254-257
universal routing, 310-317
updating lifecycle functions for, 147-156

color reducer, 193-195
colors reducer, 195-197
CommonJS, 28, 93
component classes, as types, 72
component lifecycles, 141-158

mounting lifecycle, 142-146
React.Children and, 157
updating lifecycle, 146-157

component properties, updating, 129
component state management, 124-128
component tree

building, 67
data flow through, 211-213
explicitly passing store down, 213-216
passing data up, 134-138

passing properties down, 131-134
state within, 130-139

componentDidUpdate(), 150-152
components, 68-77

D3 and, 160-166
enhancing, 141-181
Enzyme testing utility, 247-249
Flux and, 174-181
HOCs, 166-172
ignoring SCSS imports when testing, 246
JavaScript library integration, 158-166
Jest environment setup, 245-247
lifecycles (see component lifecycles)
mocking, 249-257
nested, 82
presentational vs. container, 220-223
React.Component, 72
React.createClass(), 69-72
refs and, 119-123
state management outside of React, 172-174
stateless (see stateless functional compo‐

nents)
testing, 245-257
using factories with, 78

componentWillMount(), 144, 147
componentWillReceiveProps(), 153-156
componentWillUpdate(), 148
compose(), 205
conferences, 4
connect(), 224-227
const (constant), 10, 74
container components

defined, 221
presentational components vs., 220-223

context, passing store via, 216-220
countdown clock app (see clock app)
create-react-app, 107
createClass, validating props with, 110-113
CSS

bundling via webpack, 106
clip-path and, 125
ignoring CSS imports when testing, 246
incorporating server-rendered styles, 315

css-loader, 94
currying, 48
custom property validation, 115

D
Data Driven Documents (D3)

330 | Index

installation, 161
timeline with, 160-166

data flow, inverse, 121-122
data transformation

color organizer app, 46
functional programming, 41-48

data-reactroot, 63
declarative programming, 34-36

(see also functional programming)
default parameters, ES6, 13
default properties, 114
destructuring assignment, 19
developer tools, 5
dispatcher, 177
DOM (Document Object Model)

imperative vs. declarative approach to build‐
ing, 35

impure functions and, 40
React elements vs. DOM elements, 62
rendering, 74-77
virtual DOM, 60-62

E
elements

constructing with data, 67
DOM vs. React, 62

Enzyme, 247-249
ES6, 9-29

arrow functions, 14-17
classes, 25-26
CommonJS, 28
declaring variables in, 10-14
default parameters, 13
destructuring assignment, 19
ESLint, 229-233
import statements, 100
modules, 27
objects and arrays, 19-23
objects literal enhancement, 20
promises, 24-24
property validation, 116
spread operator, 22
template strings, 12-13
transpiling, 17-18

ESLint, 229-233
Express server, 306-317

F
factories, 77-79

defined, 207
using with components, 78

Falcor, 327
Fetch, 159
file repository, 4
first-class members, 31
Flux, 174-181

actions/action creators, 177
dispatcher, 177
implementations, 180
Redux and, 183
state in view components, 177
stores, 178
views, 176

functional components, stateless (see stateless
functional components)

functional programming, 31-52
core concepts, 36-52
data transformations, 41-48
defined, 32
higher-order functions, 48
immutability, 36-38
imperative vs. declarative programming,

34-36
pure functions, 38-41
recursion, 49-52
stateless functional components and, 73

functions
as first-class members, 31
pure functions, 38-41
rules for writing, 40

G
GraphQL, 327

H
HashRouter

replacing with BrowserRouter, 311
higher-order components (HOCs), 166-172,

249-252
higher-order function, 31, 48

Connect as, 225
middleware as, 208

hinting, 229
(see also ESLint)

I
immutability

Index | 331

and data transformations, 41-48
defined, 187
in functional programming, 36-38

imperative programming, 34-36
inheritance

classes and prototypical inheritance, 26
ES6, 26

inverse data flow, 121-122
isomorphic-fetch, 159, 300, 323
isomorphism

advantages of isomorphic applications, 315
defined, 297
universalism vs., 297-301

Istanbul, 262

J
JavaScript

D3 and, 160-166
ES6 (see ES6)
Fetch and, 159
functional programming with, 31-52

(see also functional programming)
JSX and, 83
lexical variable scoping, 10
library integration with React, 158-166
modules, 27
semicolons in, 14

Jest
code coverage, 262-272
environment setup, 245-247
manual mocks, 254-257
mocks, 252-254
setup/teardown features, 243

join(), 41
jQuery, 158
JSBin, 4
JSX, 81-107

Babel and, 84
Babel presets, 92
className, 83
evaluation, 83
JavaScript expressions, 83
mapping arrays to, 83
nested components, 82
React elements as, 81-83
recipes and, 85-92
tips for working with, 82
webpack and, 93-107

(see also Webpack)

L
lambda calculus (λ-calculus), 26
latency, 159
let (ES6 keyword), 10-12
lexical variable scoping, 10
lifecycles (see component lifecycles)
linting, 229

(see also ESLint)
Lisp, 31
loaders, webpack, 94
localStorage, 202
loops, recursion vs., 50

M
manual mocks, 254-257
map(), 43
mapping arrays, 83
middleware

applying to store, 207-209
as higher-order functions, 208
Redux, 206-209
redux-thunk, 321-327

minifying code, 104
mixins, 166
mocking, 249-257

HOC testing, 249-252
Jest mocks, 252-254
manual mocks, 254-257

modularity, webpack and, 93
module bundler, 93

(see also webpack)
modules, ES6, 27
mounting lifecycle, 142-146

N
nesting

page templates, 279-281
placeholder components, 284
routes, 279-286
subsections and submenus, 281-286

network performance, webpack and, 93
Node.js

CommonJS and, 28
installing, 6

O
Object.keys(), 44
objects

332 | Index

destructuring assignment, 19
spread operator and, 23

objects literal enhancement, 20
output bundle file, 104

P
page setup, 59
page templates, 279-281
payload of action, 189
placeholders, 284
presentational components, 131

container components vs., 220-223
defined, 221

presets, Babel, 92
promises, 24-24
properties

initializing state values from incoming
properties, 128

passing down the component tree, 131-134
passing store down the component tree as,

213-216
passing with react-router, 277-279
setting state from, 156
updating, 129

property validation, 109-118
class static properties, 118
custom, 115
default props, 114
ES6 classes and stateless functional compo‐

nents, 116-118
optional function properties, 122
validating props with createClass, 110-113

props.children, 65-67
prototypical inheritance, 26
pure functions, 38-41

rules for writing, 40
testability of, 39

pure React, 59-79
child elements, 65-67
constructing elements with data, 67
DOM rendering, 74-77
factories, 77-79
page setup, 59
React components, 68-74
React elements, 62-65
ReactDOM, 64
virtual DOM, 60-62

R
React (general)

conferences, 4
developer tools, 5
file repository, 4
keeping up with changes to, 3
Node.js installation, 6
pure (see pure React)
working with files, 4-6

React component tree, 67
React Developer Tools (plugin), 5
React elements

as JSX, 81-83
DOM elements vs., 62
factories and, 77-79

React Redux
connect function, 224-227
installation, 223
provider, 223

React Router, 273-295
color details page, 286-292
HashRouter, 275
incorporating, 274-279
installation, 275
nesting routes, 279-286
page templates, 279-281
placeholder components, 284
property passing, 277-279
routing parameters, 286-295
subsections and submenus, 281-286
universal routing, 310-317

react-detector, 5
react-scripts, 107
React.Children, 157
React.Component, 72
React.createClass(), 69-72
ReactDOM, 59, 64
ReactDOM.render, 64, 74-74
Recipes app

breaking components into modules, 95-99
constructing elements from data, 67
create-react-app, 107
creating Summary component for, 110-113
default props for Summary component, 114
ES6 classes and stateless functional compo‐

nents, 116-118
factories, 77
installing webpack dependencies, 99
JSX, 85-92

Index | 333

JSX elements, 81-83
loading bundle, 102
optimizing the bundle, 104-107
React components, 68-74
React elements, 62-64
ReactDOM and, 64
rendering child elements, 65-67
source mapping, 103
virtual DOM and, 60
webpack build, 94-107
webpack configuration, 100-102

recursion
functional programming, 49-52
loops vs., 50

reduce(), 45
reduceRight(), 45
reducers, 190-198

color reducer, 193-195
colors reducer, 195-197
defined, 183
sort reducer, 197
testing, 234-242

Redux, 183-209
action creators, 203-205
actions, 187-190
color reducer, 193-195
colors reducer, 195-197
compose function, 205
incorporating into React, 213-227
middleware, 206-209
presentational vs. container components,

220-223
reducer testing, 234-242
reducers, 190-198
sort reducer, 197
state storage, 184-187
store, 198-203
store testing, 242-245
TDD and, 233
testing, 233-245

redux-thunk, 321-327
references (refs), 119-123

inverse data flow, 121-122
stateless functional components, 123

reusable components, state in, 132
routing

universal, 310-317
(see also React Router)

routing parameters, 286-295

color details page, 286-292
moving color sort state to router, 292-294

S
SCSS, 246
semicolons, 14
server

actions with redux-thunk, 321-327
and universal Redux, 308-310
and universal routing, 310-317
communicating with, 318-327
completing actions on the server, 318-321
for color organizer app, 306-317
incorporating server-rendered styles, 315
isomorphism vs. universalism, 297-301
React and, 297-327
rendering React, 301-306

setState, 144
shouldComponentUpdate(), 150
show-me-the-react, 5
single source of truth, 130, 185, 292, 310
snapshot testing, 258-262
sort reducer, 197
source mapping, 103
source of truth (see single source of truth)
SPA (Single Page Application)

and DOM API, 61
and routing, 273

(see also React Router)
spread operator, 22, 97
stage presets, 93
state

in reusable components, 132
Redux and, 184-187
router handling of, 292
saving changes to localStorage, 202
setting from props, 156

state management
color organizer app, 130-138
component state, 124-128
in React, 123-139
initializing state from properties, 128
outside of React, 172-174
rendering a clock, 173
within component tree, 130-139

state tree, 186, 190-198
stateless functional components, 73

advantages of, 172
const with, 74

334 | Index

Flux and, 174-181
property validation, 117
refs in, 123

store, 198-203
applying middleware to, 207-209
Flux, 178
incorporating into React, 213-227
passing explicitly, 213-216
passing via context, 216-220
Redux, 185, 198-203
saving to localStorage, 202
subscribing to, 201
testing, 242-245

storeFactory, 207-209
styling, loaders for, 94
submenus, 281-286
subsections, 281-286
SUT (System Under Test)

Jest mocks, 252
mocking components, 249
reducers, 236

switch statements, 193

T
template strings, 12-13
Test-driven development (TDD), 233

snapshot testing and, 258
steps in, 233

testing, 229-272
code coverage, 262-272
Enzyme and, 247-249
ESLint, 229-233
HOCs, 249-252
ignoring SCSS imports, 246
Jest environment setup, 245-247
Jest mocks, 252-254
manual mocks, 254-257
mocking components, 249-257
React components, 245-257
reducers, 234-242
Redux, 233-245
snapshot, 258-262
store, 242-245
TDD and, 233

thunks (see redux-thunk)
timeline, D3 framework for, 160-166
transpiling, 17-18

(see also Babel)
two-way data binding, 121

(see also inverse data flow)
types

capitalization conventions, 25
component classes as, 72

U
uglifying code, 104
unit testing (see testing)
universal routing, 310-317
universalism

defined, 298
isomorphism vs., 297-301

updating lifecycle, 146-157

V
validation (see property validation)
variables, 10-14

constant, 10
declaring in ES6, 10-14
default parameters, 13
functions as, 32
let keyword, 10-12
property validation, 109-118
template strings and, 12-13

views, 176
virtual DOM, 60-62

W
webpack, 93-107

breaking components into modules, 95-99
configuration, 100-102
create-react-app, 107
CSS bundling, 106
ES6 import statements, 100
extracting CSS for server-rendered styles,

315
installing dependencies, 99
loaders, 94
loading bundle, 102
optimizing the bundle, 104-107
Recipes app with webpack build, 94-107
source mapping, 103

websockets, thunks with, 326
whitespace, template strings and, 12

Index | 335

About the Authors
Alex Banks is a software engineer, instructor, and cofounder of Moon Highway, a
curriculum development company in Northern California. As a software consultant,
he has developed applications for the Chicago Marathon, MSN, and the Department
of Energy. Alex also assisted in the development of the continuous delivery curricu‐
lum that is delivered to every Yahoo new hire. In addition, he’s authored several
classes for Lynda.com.

Eve Porcello is a software architect and cofounder of Moon Highway. Prior to Moon
Highway, Eve worked on software projects for 1-800-Dentist and Microsoft. She is an
active corporate trainer, speaker, and author on Lynda.com.

Colophon
The animal on the cover of Learning React is a wild boar and its babies (Sus scrofa).
The wild boar, also known as wild swine or Eurasian wild pig, is native to Eurasia,
North Africa, and the Greater Sunda Islands. Because of human intervention, they are
one of the widest-ranging mammals in the world.

Wild boars have short thin legs and bulky bodies with short, massive trunks. Their
necks are short and thick, leading to a large head that accounts for up to a third of the
body’s length. Adult sizes and weights vary depending on environmental factors such
as access to food and water. Despite their size, they can run up to 25 mph and jump to
a height of 55–59 inches. In the winter, their coat consists of coarse bristles that over‐
lay short brown downy fur. These bristles are longer along the boar’s back and short‐
est around the face and limbs.

Wild boars have a highly developed sense of smell; they have been used for drug
detection in Germany. It also has an acute sense of hearing, which contrasts with its
weak eyesight and lack of color vision. It is unable to recognize a human standing 30
feet away.

Boars are social animals that live in female-dominated groups. Breeding lasts from
around November to January. Males go through several bodily changes in prepara‐
tion of mating, including the development of a subcutaneous armor that helps con‐
front rivals; they travel long distances, eating very little on the way, to locate a sow.
Average litters contain 4–6 piglets.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Welcome to React
	Obstacles and Roadblocks
	React Is a Library
	New ECMAScript Syntax
	Popularity of Functional JavaScript
	JavaScript Tooling Fatigue
	Why React Doesn’t Have to Be Hard to Learn

	React’s Future
	Keeping Up with the Changes
	Working with the Files
	File Repository
	React Developer Tools
	Installing Node.js

	Chapter 2. Emerging JavaScript
	Declaring Variables in ES6
	const
	let
	Template Strings
	Default Parameters

	Arrow Functions
	Transpiling ES6
	ES6 Objects and Arrays
	Destructuring Assignment
	Object Literal Enhancement
	The Spread Operator

	Promises
	Classes
	ES6 Modules
	CommonJS

	Chapter 3. Functional Programming with JavaScript
	What It Means to Be Functional
	Imperative Versus Declarative
	Functional Concepts
	Immutability
	Pure Functions
	Data Transformations
	Higher-Order Functions
	Recursion
	Composition
	Putting It All Together

	Chapter 4. Pure React
	Page Setup
	The Virtual DOM
	React Elements
	ReactDOM
	Children
	Constructing Elements with Data
	React Components
	React.createClass
	React.Component
	Stateless Functional Components

	DOM Rendering
	Factories

	Chapter 5. React with JSX
	React Elements as JSX
	JSX Tips

	Babel
	Recipes as JSX
	Intro to Webpack
	Webpack Loaders
	Recipes App with a Webpack Build

	Chapter 6. Props, State, and the Component Tree
	Property Validation
	Validating Props with createClass
	Default Props
	Custom Property Validation
	ES6 Classes and Stateless Functional Components

	Refs
	Inverse Data Flow
	Refs in Stateless Functional Components

	React State Management
	Introducing Component State
	Initializing State from Properties

	State Within the Component Tree
	Color Organizer App Overview
	Passing Properties Down the Component Tree
	Passing Data Back Up the Component Tree

	Chapter 7. Enhancing Components
	Component Lifecycles
	Mounting Lifecycle
	Updating Lifecycle
	React.Children

	JavaScript Library Integration
	Making Requests with Fetch
	Incorporating a D3 Timeline

	Higher-Order Components
	Managing State Outside of React
	Rendering a Clock

	Flux
	Views
	Actions and Action Creators
	Dispatcher
	Stores
	Putting It All Together
	Flux Implementations

	Chapter 8. Redux
	State
	Actions
	Action Payload Data

	Reducers
	The Color Reducer
	The Colors Reducer
	The Sort Reducer

	The Store
	Subscribing to Stores
	Saving to localStorage

	Action Creators
	Middleware
	Applying Middleware to the Store

	Chapter 9. React Redux
	Explicitly Passing the Store
	Passing the Store via Context
	Presentational Versus Container Components
	The React Redux Provider
	React Redux connect

	Chapter 10. Testing
	ESLint
	Testing Redux
	Test-Driven Development
	Testing Reducers
	Testing the Store

	Testing React Components
	Setting Up the Jest Environment
	Enzyme
	Mocking Components

	Snapshot Testing
	Using Code Coverage

	Chapter 11. React Router
	Incorporating the Router
	Router Properties

	Nesting Routes
	Using a Page Template
	Subsections and Submenus

	Router Parameters
	Adding Color Details Page
	Moving Color Sort State to Router

	Chapter 12. React and the Server
	Isomorphism versus Universalism
	Server Rendering React

	Universal Color Organizer
	Universal Redux
	Universal Routing

	Communicating with the Server
	Completing Actions on the Server
	Actions with Redux Thunks

	Index
	About the Authors
	Colophon

