
www.allitebooks.com

http://www.allitebooks.org

Managing Software
Development with Trac and
Subversion

Simple project management for software development

David J Murphy

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Managing Software Development with Trac and
Subversion

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2007

Production Reference: 1071207

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847191-66-3

www.packtpub.com

Cover Image by Karl Moore (karl.moore@ukonline.co.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

David J Murphy

Reviewers

Andy Allan

Patrick Ben Koetter

Sarah George

Senior Acquisition Editor

David Barnes

Development Editor

Mithil Kulkarni

Technical Editor

Akshara Aware

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Patricia Weir

Sagara Naik

Indexer

Hemangini Bari

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

David J Murphy has worked in IT since 1996 and has focused on development
since 1998. He works for Canonical Ltd. as a Software Developer, and prior to this
he was a Product Specialist with Computer Sciences Corporation. He is a strong
advocate of free and open-source software, and has contributed to two Linux books.
He has also written several articles for magazines and the Internet.

He lives in Cumbria, UK with his wife, two children, a dog, and numerous cats.

His personal website is http://schwuk.com.

I dedicate this book to my wife Suzanne, and our children Alexandra
and Tristan.

www.allitebooks.com

http://www.allitebooks.org

About One of the Reviewer

Patrick Ben Koetter is the Chief Technologist for state of mind, Partnerschaft
Koetter, Schmidt & Schosser, a systems integrator, and was Information Architect at
the Ludwig-Maximilians Universität in Munich, Germany. He has written articles for
Germany's c't magazine, Linuxmagazin, and other magazines as well. Patrick is
co-author of The Book of Postfix. As a consultant and trainer, Patrick regularly teaches
classes on email, anti-virus, and spam measurements and application-level Web
interfaces. He has given talks at many conferences on these and similiar topics.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Understanding the Problem 5

Task Management 6
Communication 8
Project Management for Software Development 9

Managing Software Development 11
Keep Ourselves Organized 11

Summary 13
Chapter 2: Introducing the Solution 15

An Ensemble Cast 15
Subversion 15
Trac 18

Wiki 19
Tickets 19

Fields 20
Roadmap 20
Subversion Repository Browser 21
Timeline 21

Apache Web Server 21
Authentication 22

WebDAV 22
How It All Fits Together 23
Summary 23

Chapter 3: Laying the Foundations 25
Which Platform? 25

Linux 25
Microsoft Windows 26

Which Version? 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Time to Get Our Hands Dirty 27
Installing the Components 27
Keeping It Organized 27
Customizing trac.cgi 28
Configuring Apache 29

Enabling dav_fs 30
Creating Projects 32

Security 34
Managing Users 34

File Permissions 35
Trac Permissions 36

Summary 36
Chapter 4: Documentation 37

Making Documentation Easy 37
Accessing Trac 38
A Touch of Style 40

Formatting Text 40
Playtime 42

Creating New Pages 43
Going Back in Time 44
Taking It with Us 45

Summary 45
Chapter 5: Tracking Our Tasks 47

Tickets Please 47
Customization 50

Ticket Types 50
Priority 51
Component 52
Milestone 52
Version 53
Customizing Default Values 53

Viewing Tickets 54
Linked Queries 54
Embedded Queries 54

Using Milestones 56
Summary 58

Chapter 6: Version Control 101 59
Check Out, Check In 59
What's the Difference? 65
Easy on the Eyes 67

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Opening a New Branch 68
Summary 71

Chapter 7: Putting It All Together 73
Our Feature Presentation 73
Creepy Crawlies 74

Is There Any Difference? 74
A Common Sequence 74
Adding a Feature 75
Tagging a Release 78
Fixing a Bug 78
Summary 79

Appendix A: Installing Subversion 81
Microsoft Windows 81
Linux 86

Ubuntu and Debian 86
Client 86
Server 87

Appendix B: Installing Apache 89
Microsoft Windows 89
Linux 93

Ubuntu and Debian 93
Appendix C: Installing Trac 95

Microsoft Windows 96
Python 96
Python Subversion Bindings 98
Python SQLite Bindings 99
ClearSilver 100
Trac 100

Linux 101
Ubuntu and Debian 101

Installing the Dependencies 101
Installing Trac 101

Index 103

www.allitebooks.com

http://www.allitebooks.org

Preface
Software development is not just about writing code - we need to manage the
entire process.

This book looks at that process, how it can be managed, and how Trac and
Subversion can help us achieve this. It combines theory with practical knowledge
and experience that most developers will relate to.

Trac is an open-source, web-based project management and bug-tracking tool. Trac
is an enhanced wiki and issue-tracking system for software development projects.
Trac uses a minimalistic approach to web-based software project management. Trac
is written in the Python programming language. In computing, Subversion (SVN) is
a version control system (VCS). It allows users to keep track of changes made to any
type of electronic data, typically source code, web pages, or design documents.

What This Book Covers
Chapter 1 covers the basics of task management and how these apply to software
development. It also looks into another important skill needed for managing
projects—communication—and discusses the problems faced during software
development and how they can be solved.

Chapter 2 introduces the various applications used for implementing the solution
discussed in the chapter. Trac and Subversion are the main parts of the solution, but
by no means the only ones.

Chapter 3 along with the appendices shows how to install these applications on
Microsoft Windows or Linux.

Chapter 4 discusses how to create and use documentation using Trac.

Chapter 5 brings us back to the topic of task management and we again focus on Trac
and how it helps us with this.

Preface

[2]

Chapter 6 explores the basics of using Subversion and looks at how it integrates
with Trac.

Chapter 7 shows how Trac and Subversion can be used together to manage the the
two most frequent events in the development cycle of an application—fixing a bug
and implementing a new feature.

Appendix A covers detailed, step by step instructions for installing Subversion on
your system, and cover Microsoft Windows and Linux.

Appendix B covers detailed, step by step instructions for installing the Apache web
server on your system, and covers Microsoft Windows and Linux

Appendix C covers detailed, step by step instructions for installing the Apache web
server on your system, and covers Microsoft Windows and Linux

Who is This Book for
This book is for developers of all calibres, and particularly those that lead teams or
projects, especially if they have recently moved into the role or are simply looking
for a "better way".

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows:
"The -m "Initial repository structure" specifies a log message for the action(s)
we are performing—creating folders in this fashion is actually checking in the
changes directly on the server."

A block of code will be set as follows:

[ticket]
default_component =
default_milestone =
default_priority = major

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

Password for 'jdoe':
Authentication realm: <http://projects.example.com:80> Subversion
Repositories
Username: user@example.com
Password for 'user@example.com':
Path: sandbox

Any command-line input and output is written as follows:

svn mkdir http://servername/svn/sandbox/trunk

 http://servername/svn/sandbox/tags

 http://servername/svn/sandbox/branches

 -m "Initial repository structure"

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

Preface

[4]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Understanding the Problem
Developing software can be compared to an organic process like planting a garden.
With the right conditions, something will grow, but it may not be what we want or
indeed grow the way we want it. We might end up with a garden of roses or a jungle
of weeds. Any experienced gardener will tell us that what our garden needs most is
planning and tending, and the same is true for software development.

Of course, we can just start writing the code and we will get something—maybe even
something that works!—but if we invest a little time and effort in planning before we
write a single line, and in ensuring we tend the code we write, then we are far more
likely to achieve an end result that bears some resemblance to our initial vision.

We need to manage our software development.

Before we dive deep into knowing what managing software development is, we need
to understand that, in essence, it is just a specific form of 'project management'—two
words that send most developers running for the hills! A lot has been written
about project management and the various styles and techniques thereof, which
to the initiated make it live up to its common portrayal as a highly confusing and
specialized field. The truth is that usable project management is within our grasp, and
we don't need expensive software or a certification to be able to put it into practice.
In essence it exercises two distinct, yet complementary skills—task management
and communication.

Therefore, I would like you to take a lengthy look at project management and in
particular how it applies to software development.

Understanding the Problem

[6]

Task Management
This is one of those things that is easy to say, but not as easy to do—especially for a
novice. While we do need to keep a view of the overall project, a project is nothing
more than a collection of tasks, and it is the management of these tasks that will help
us to successfully complete our project. To help us to understand task management
better we will not look at it as a whole, but rather as the sum of its parts. By looking
at the specific activities involved in managing tasks it will become clear that it is an
iterative process that is driven by logic—something we as developers are meant to be
good at! Demonstrating with the help of an example is the easiest way to learn so let
us consider a hypothetical project to build a wall for our garden.

Wait, we are supposed to be developers. If we are to remain true to our
stereotypes then we would avoid manual labor and possibly even leaving
the office. Instead we would just hire a contractor to build the wall for us
and get back to writing code. However, even if we do take this approach,
does not prevent us from viewing it as a project. Although our contractor
will do most of the work for us, we still need to find good contractors,
hire them, schedule the work, and pay them. Although it is much easier
than the example that follows, we still have a collection of related tasks,
and as such is considered a project.

Having decided to defy convention and build the wall ourselves, let's look at the
activities that allow us to manage our tasks and complete our project:

Task Determination: Obviously we need tasks to manage, and although our
first instinct may be to determine every single possible task at the outset, we
need to remember that this is an iterative process so tasks can (and will) be
added, changed, or removed later on. We will also find that we do not have
to think too hard to determine our tasks—as the saying goes "one thing leads
to another"; likewise as one task comes to mind others will become apparent.
Dependency Management: Some tasks can be completed in isolation; others
may have prerequisites—other tasks that need to be fulfilled before they can
be started. As with determining our tasks, we will find that the dependencies
come naturally.
Resource Management: Resources can cover a number of things; unless we
have a specific requirement to cater for, it is simpler, and therefore easier,
to limit our scope to people. We may only have one resource (ourselves) to
worry about or we may have a team, but as long as we include this activity
when managing our tasks then we will always be prepared if we need to
manage additional resources later.

•

•

•

Chapter 1

[7]

Scheduling: Once these activities have been completed for the first time
(or iteration) we can look at understanding and deciding when a given task
needs to be completed. A simple due date will suffice, although we can
include a start date if we desire.
Task Execution: Getting it done. There is no point managing our tasks and
projects if we never complete them!
Reviewing: As with task execution above, reviewing is an essential part of
task management. Just marking a task as completed is part of the reviewing
process, but when doing so we can take the opportunity to see how our
progress is affecting the list. Are we behind schedule? Has the task we have
just completed brought new tasks or dependencies to mind? Always take
time to review your tasks, even if doing so is a task in itself.

By now project management practitioners will be complaining about the exclusion
of priorities and timescales for tasks, but including these is purely down to your
personal preference.

With regards to priorities, if we choose to incorporate them we need a method of
representing the priority of a given task. While assigning numerical or alphabetical
labels is common practice, it is far easier and more accessible to think of them simply
in terms of low, normal (or medium), and high. As part of task determination and
dependency management activities, it will also be apparent which tasks are of a
higher or lower priority compared to others. A simple rule of thumb would be that if
a task is of high priority then, it will most likely have a number of dependencies and
hence top our task list.

As for timescales, these will either be so fine grained (task a will take x minutes) or
broad (1 week to complete three dependent tasks) that they will just make things
complicated for us. If the due dates we choose during task determination are
insufficient for our planning purposes then we need to understand why that is before
we start incorporating timescales into our task management process.

Getting back to our example of building a wall, let's have a look at the activities
in action.

We know we want to build a wall, which is our project goal. The first obvious
activity is to decide where we want to build the wall, so we have determined the task
of "Choose Location". We also need to prepare the site so "Clear Location" and
"Lay Foundation" can be included. Of course for the foundation we need "Dig
Foundation". For building the wall we need materials—"Buy Materials", which leads
us to "Price Materials" and "Arrange Delivery Date" (if we are not picking them up
ourselves). Our site is prepared, and we have our materials so we can now think
about "Laying Bricks", which leads to both "Mixing Mortar" and "Cleaning Up".

•

•

•

Understanding the Problem

[8]

We have determined ten tasks that need to be completed to achieve our goal from a
simple objective. Next we need to think about dependencies—choosing and clearing
the location can be carried out while we price and buy the materials, but digging the
foundation and mixing the mortar need to be completed before we lay any bricks,
and of course we also need the materials before we mix the mortar or lay the bricks.

Managing resources does not require too much effort for this project as we will
be doing all the work ourselves, but we may choose our partner to take care of
purchasing the materials or a friend may offer to help out with the actual labor, so
we must not skip this step.

Now can we begin to schedule the work. The independent tasks such as choosing
and preparing the location can be scheduled as we desire. For the other tasks though,
we may not be able to make those decisions yet. We may have a rough idea of when
we want the wall completed, and if a friend has offered to help then we will know
when they are available, but until we have arranged the delivery of the materials we
cannot confirm when we will build the wall.

No that we have figured all our tasks, we can focus on task execution—in this case
purchasing the materials and arranging their delivery.

Once these have been completed we can go back and review our tasks. We can now
mark some as complete, while others will now need to be scheduled. We may even
think of more tasks that could be included.

Following this simple example, we can see that with least efforts we now know
exactly what tasks we need to do and when we need to do them, so that we can
concentrate on getting them done.

Communication
A perfectly crafted task list is useless if you don't communicate it. Continuing with
the above example, we need to communicate with the material supplier so that we
can schedule other tasks, and we may need to communicate with our friend so they
know what they are supposed to do and when. We may also need to communicate
with our neighbors so that they are aware of our building work. Communication
naturally involves the review activity, because while talking to our friend we
can adjust our task list if they can't make it on a certain day, or while informing
the neighbors of our plans additional tasks—such as obtaining planning
permission—may become apparent.

Chapter 1

[9]

Exercising task management and communication provides us with enough to
manage most projects, without a Gantt chart in sight!

Project Management for Software
Development
We have seen that effective project management consists of managing tasks and
maintaining communication. We need to apply this fundamental approach to
software development as well. While there are additional considerations, as there
are with any other special field, it is the core capabilities of determining what needs
to be done and communicating with all interested parties (i.e. team members and
customers) that distinguish the successful projects from the unsuccessful ones. The
good news is that due to the nature of software development, and the environment
in which it is performed, both of these will be much easier that the actual
development itself.

The determination of tasks will be as natural a process as it was in our example of
building a wall. There are obvious activities that need to be carried out and they
will have an obvious sequence in which they need to be completed. Unless we are
running an open-source project where developers can come and go, our resources
need to be clearly defined (even if it is just ourselves!). Scheduling will be driven by
the deadlines we have been set, have agreed to, or have set for ourselves.

Since we are working on, and with, computers we have two ready methods of
communication available to us—email and the web browser. The former allows us
to participate in a two way dialog with others, while the latter was designed for
disseminating information—with the right infrastructure of course.

With the basics of project management covered, we need to consider additional
features that benefit software development:

Documentation: For the developers this could take the form of requirements,
best practices, or API documentation. For the users we have installation,
usage, and troubleshooting guides as well as the ever-present Frequently
Asked Questions (FAQ).
Roadmaps: Software development is rarely a single project with a set goal.
More often the software itself goes through a series of versions or releases,
which can be translated to a series of connected projects (for each release)
or an open-ended one. Roadmaps allow us to share—communicate—these
plans with both our developers and users.

•

•

Understanding the Problem

[10]

Error Reports: No software is perfect—no matter how much its developer
likes to claims it is! —and so we need a mechanism for our testers and users
to report faults and errors to us so that they can be managed. Capturing
error reports is not the end result though. We must also ensure that they are
managed so they can be resolved to both our and the reporter's satisfaction.
Requirements: These could come directly from a user in the form of a feature
request, or we could determine that a particular error report requires us to
change our software. Irrespective of how we receive or capture them, they
need to be managed in the same manner as error reports.
Revision Control: Revision control allows us to store all files related to a
particular software development project. In addition to storing the files, it
also stores versions of each file, so that changes can be tracked. This allows us
to see who has done what with each file, and if necessary, roll back (reverse)
those changes. A well-managed software project has the ability to have the
code reviewed at any point during its life cycle. Whether we are checking
for bugs in the currently released version while a new one is being actively
developed, or re-creating a previous version to see why something was
changed, revision control is a mainstay of software development these days,
which no serious project is without, especially when development is handled
by a team, particularly a geographically distributed one.
Releases: To allow our software to be used we need to release it—either as
an installation package or a bundle of files—and we need to provide access to
those releases.

Providing these features is only part of the battle—for them to really add value
to our development process they need to be implemented as a cohesive whole. If
documentation is in one system, error reports are in another, and tasks in yet another
then that solution is unwieldy and we will resist using it. Stick them together in
a system that remains awkward to use and we will still resist using it. Give us a
"development support system" that ties these elements together in an unobtrusive
way that allows us to focus on what we really care about—developing software and
writing code—and we have something that will make our lives easier.

It is not just about providing a solution for the developers though; it is also about the
way that they use it. If the system is used in a prescribed way and consistently by all,
then we have a process for managing software development.

•

•

•

•

Chapter 1

[11]

Managing Software Development
As we have seen, managing software development goes beyond basic project
management, but we can still see the basics: what needs to be done. We have just
looked at the additional requirements for software development, and now we will
see how this book will help us address them.

Keep Ourselves Organized
Things are much easier to find if we know where to look for them, whether we are
talking about car keys or source code. If we lay the foundations, as we did for our
wall, before we write a single line of code, then our project has a better chance of
succeeding. As with task determination we don't need to plan for every eventuality,
we just need to make sure that the obvious basics are covered. We need to consider
things as follows:

How Our Project is Laid Out on the File System
This would include the following:

How we handle third-party code
Coding style
How we are going to name our files
What we are going to store in our revision control
When (or how often) we are going to put our changes into revision control
What we need to be able to develop e.g. compilers, IDEs, etc.

All these need to be documented—another word that can send developers running
for the hills! This may seem like a significant amount of work to do before we even
think about our first line of code, but it will save us time in the long run. In addition,
once we have done this once, we will be able to reuse some or all of these details for
other projects to get a head start next time.

Developers Are Users Too
We need to turn our preparation work into a best-practices guide for our developers.
They are the users of our system, and they need a user guide to allow them to
use it as we intend it to be used. Investing the time in preparing the system and
its documentation means that more time can be spent on actual development.
By providing our developers, or rather users, with clearly defined standards and
practices we remove all ambiguity and reduce friction that could delay our project.

•

•

•

•

•

•

Understanding the Problem

[12]

The principle we applied to task management can also be used here—we don't
need to prepare for and document every eventuality, we just need to provide solid
enough foundations for our developers to build on. We must seek not to weigh our
developers down with unnecessary rules, but rather provide just enough to guide
them to maximal productivity.

We will also apply the review activity from task management to our
documentation—it needs to evolve with our project, not constrain it. As our
developers use our system, things may change to suit the project in question, which
is a good thing. Our documentation needs to be a living thing, not a dusty set of rules
locked away in a library.

We also need to provide documentation of our software to the users, and ideally
this will be written as the software develops. Some projects may be lucky enough
to have a dedicated technical author, but even those will benefit from writing the
documentation alongside the software. If a dedicated resource for documentation is
not available then we will certainly find it easier to write the documentation with the
software, not afterwards.

Everything Is a Task
Every aspect of software development, from writing documentation through
implementing a new feature and fixing bugs to packaging for a release, needs to
be considered as a task. We need to make sure that they are all captured and then
processed as outlined earlier in this chapter. If we use tasks correctly then the
developers will always know what they personally have left to do, and likewise our
project leader will know what is left to be done to reach the next release. By using
the task information to create and update our roadmap—a concept we will look at in
greater detail later—everyone will always be able to determine where we are going.

Sandboxes Aren't Just for Children
Now that our "development support system" is set up, our developers know how
to use it, and our tasks are being managed, we can finally write some code! We can
save ourselves a significant amount of effort by developing in isolation. This means
keeping our work separate from other developers' work until it is ready—features
and bug fixes are developed away from the main code, and only integrated when
complete. This means that:

We are developing against a known base, not a constantly changing one.
We are responsible for making sure our code integrates with the rest; if
another developer integrates their bug fix before we integrate our new
feature, the blame can only lie with ourselves if our code doesn't work or we
break something the other developer fixed.

•

•

Chapter 1

[13]

Isolating code changes can also allow a single developer to tackle multiple
tasks simultaneously.

Small Steps are Better
While we may want to plow through the new feature we are adding in one go, it
is much better to take small steps and implement it piece by piece. It means we are
less likely to introduce bugs by making sweeping changes, and if we are using our
revision control to track every change then we have a much richer history to step
back through when required. As with everything there needs to be balance found,
and a good rule of thumb is to only store a change in our revision control when that
particular change works. Then we can move on to the next change with confidence.

Summary
So far we have seen how project management can be pared down to two main
activities—task management and communication. We also saw how to practice these
in a real situation. Next we looked at the additional requirements that we have for
software development projects. Then finally we had a brief look at some of the ideas
that make managing software development easier. In the next chapter we will be
introduced to software components that we will use to power our "development
support system" and learn how in this case the whole is greater than the sum of
the parts.

Introducing the Solution
Now that we have understood the problems that make managing software
development difficult to the uninitiated, and have discussed the methods we are
going to use to make our lives easier, it is time to meet the software that is going to
enable us to put these methods into practice. In addition to introducing the software
packages we will also look at how they work together to provide the overall solution.

An Ensemble Cast
It should be no surprise (especially considering the title of this book!) that Trac and
Subversion are the key players in our solution, and they provide a good chunk of
the functionality that we need. What may come as a surprise is that for the solution
to really meet our needs there needs to be a third player—the Apache web server.
There is also a fourth part, WebDAV, which we implement via an Apache module,
and hence could be considered to have only a supporting role; but we will see later
that it does contribute to the overall solution.

Now we know who the four players in our solution are, let's learn a bit more about
them before we learn how they fit, and more importantly work, together.

Subversion
Subversion (http://subversion.tigris.org/) is a version control system released
under an Apache/BSD-style open-source license.

Introducing the Solution

[16]

What is version control?
Version control, also referred to as revision control, source control, or
source code management (SCM), is the management of multiple versions
of a single item or collection thereof. Commonly used in documentation,
engineering, and software development processes, particularly where
a team of people are involved, it enables the tracking and retrieval of
changes made to an item. Each revision is assigned a (sequential) number
and normally associated with the person who makes the change. In its
simplest form, each time a document is issued it is assigned the next
number in the sequence starting at 1. At a future date an individual could
obtain copies of the current and original documents and compare the
differences between the two.
Version control systems for the purpose of software development
manage all the details of this process for us, even down to identifying
the differences between versions for us. Version control is considered
essential for modern software development.

Often referred to by the name of its client, svn, Subversion was developed as a
replacement for the venerable Concurrent Versions System (CVS) and the majority
of commands are the same across both systems, which makes migration easier for
existing users.

CVS itself grew from an older versioning system, Revision Control System (RCS).
RCS handled individual files, but not whole projects. Although statistically CVS is
still widely used, the popularity of Subversion is steadily growing and it has been
said that people switch to Subversion just because they want to use Trac! Many
high-profile open-source projects including Mono and Ruby on Rails use Subversion
for their version control requirements, and Sourceforge (http://sourceforge.
net/) provides Subversion in addition to its traditional CVS hosting while Google
Code (http://code.google.com/hosting/) uses Subversion exclusively.

Some of the concepts discussed here may be new to those unfamiliar with revision
control, but they will be explained in Chapter 7.

Subversion's features include:

Feature compatibility with CVS: As it is intended to be an improved CVS,
most of the features are implemented so as to behave similarly to their
CVS equivalents.

•

Chapter 2

[17]

Versioning for folders, renames and properties: All these features are
missing in CVS, which is one of the most common complaints against it.
In addition to files and their contents, Subversion provides versioning
for folders and support for renaming. It also allows arbitrary metadata
("properties") to be versioned along with any file or directory, which amongst
other things provides a mechanism for retaining 'execute' permission flags
on files.
Atomic commits: Committing a change, any change, to the subversion
repository will not take place unless all aspects of the commit are successful.
A given commit may contain changes to multiple files, and revision numbers
and logs are assigned to the commit, not individual files.
Support for hosting via Apache and WebDAV: As we will see later
Subversion can be hosted behind an Apache web server, which provides
additional features like authentication, traffic compression, and basic
repository access through a browser.
Standalone operation: It can alternatively be run by itself with no additional
software, or tunneled over Secure Shell (SSH) for additional security if the
supported basic authentication does not suffice.
'Lightweight' branching and tagging: Actually these are the same thing
under Subversion, yet are considered separately for convention's sake. CVS
treated these actions differently for performance reasons, but Subversion's
efficient copy method removes the need for tagging. Designed to take up a
minimal amount of space and time to create.
Client/server and layered by design: Subversion was designed to be client/
server from the outset, avoiding some of the maintenance problems that have
plagued other systems. From a developer's point of view Subversion is laid
out as a set of connected modules with well-defined interfaces, which allow
other applications to directly hook into core functionality
Bandwidth efficient: By only sending the differences between versions of a
file in both directions whenever possible, bandwidth usage is optimized.
Performance depends on the change, not the size of the project: Making
a small change to a large project should take the same amount of time or
traffic as making the same change to a smaller one. While this is not a feature
exclusive to Subversion, it is not present in all version control systems.
Database or filesystem-based repositories: These can be created using an
embedded database engine (so no separate database server is needed), or as a
normal flat-file back-end, which uses a custom format.

•

•

•

•

•

•

•

•

•

Introducing the Solution

[18]

Symbolic links versioning: UNIX users can place symbolic links under
version control. The links are recreated in UNIX working copies, but not
in Win32 working copies. Handled correctly where supported (UNIX) and
ignored where not (Win32).
Efficient binary file support: Although revision works best with plain text
files, binary files can be stored and even compared at a basic level.
Parseable output: The Subversion client is carefully designed to be human
readable yet facilitate automation.
Localized: Support for displaying error, informational, and help messages
based on the current locale settings.

Subversion is good, but it is not perfect and so may not be suited to every project.
Extremely large projects may suffer performance issues, and Subversion does not
support off-line or disconnected operation. However, its power and flexibility make
it well suited to meet the requirements of most developers.

As was stated in the preface, this book is not intended to be an extensive reference
to Subversion. There are already numerous titles available that look in depth at the
software. However, we shouldn't run off to the bookstore just yet as everything we
need to know to be able to implement and operate the solution presented here is
contained in this book.

Trac
While all the parts of our solution are considered equally important, the truth is that
without Trac this solution, and this book, would not exist!

Trac is an open-source project created and directed by the developers at Edgewall
Software (http://www.edgewall.org). They are a community of software. They are a community of software
developers who collaborate on a number of open-source projects, all of which share
the common theme of being based on the Python programming language (http://
www.python.org/). Trac won the UK Linux & Open Source Award for Best Linux. Trac won the UK Linux & Open Source Award for Best Linux
OSS Developer Tool in 2006.

Perhaps the best way to describe Trac is as a "wiki on steroids"—the developers
themselves describe it as an "enhanced wiki and issue tracking system".

•

•

•

•

Chapter 2

[19]

What on earth is a wiki?
A wiki, originally referred to as a WikiWikiWeb, is a web application that
allows visitors to create and modify its content. The most famous example
of a wiki in action is Wikipedia (http://wikipedia.org), which is a
collaboratively edited encyclopedia.
A wiki enables documents to be written—usually in a markup language
intended to be easier to learn and use than HTML—using a web browser.
Any given page in a wiki is known singularly as a "wiki page", while
the entire body of pages, is "the wiki"; in effect, a wiki is actually a
very simple, easy-to-use user-maintained database for storing and
retrieving information.

One defining characteristic of a wiki is the way individual wiki pages link to each
other, and even to pages that do not (yet) exist. These links are created automatically
by the wiki software dependent on the particular markup for that wiki. The most
common method for indicating a link to another wiki page is to use a CamelCase
word—that is two words mashed together and Title Cased—however, other
methods do exist.

It is, however, more than just a wiki. The following section introduces its
main features.

Wiki
The wiki within Trac is used for all text and documentation throughout the
application, including its own user documentation. Since it is a wiki, no structure
is enforced and we are left to organize (and reorganize) our information as we
see fit. The wiki engine is extensible by way of macros and processors to provide
additional functionality not contained in Trac. Attachments are also supported, but
unfortunately images need to be hosted externally to Trac for the best results. There
are ways around this, but they are not perfect.

The wiki component also has version control built right in—each saved edit of a page
results in a stored copy of that page that we can browse or revert to at any time.

Tickets
The Trac ticket system provides simple but effective issue tracking within our
project. Combined with the roadmap, tickets provide the core project management
elements of Trac, in which tickets are used to track project tasks, feature requests,
bug reports, and software support issues.

www.allitebooks.com

http://www.allitebooks.org

Introducing the Solution

[20]

Each issue is assigned to a person who takes responsibility for either resolving it
or reassigning it to another person. All aspects of the ticket can be edited and/or
amended while it is active, but keeping with the version control theme all changes
are tracked within a ticket so we can see what was changed and by whom.

Fields
Each ticket contains the following properties:

Reporter: The name or (more likely) email address of the person who created
the ticket.
Type: The nature of the ticket (e.g. reporting a defect or requesting
an enhancement).
Component: The project module this ticket concerns.
Version: The version of the project that this ticket is associated with.
Keywords: Keywords that a ticket is marked with. Useful for searching and
report generation.
Priority: The importance of this ticket.
Milestone: The release this ticket needs to be completed for.
Owner: Person responsible for progressing the issue.
Cc: A comma-separated list of other users or email addresses to notify. Note
that this does not imply responsibility or any other policy.
Resolution: Summarizes why ticket was closed.
Status: The current status of the ticket.
Summary: A brief description of the issue.
Description: The body of the ticket, detailing what the ticket has been
created for.

Roadmap
An extension of the tickets module, the roadmap provides a view of the ticket system
that aids in planning and managing the future development of the project. The
roadmap lists future milestones against which tickets can be linked. The roadmap
then provides summaries of tickets and their statuses so that progress can be tracked.

Milestones can also be given descriptions (again using the wiki engine) and
target dates.

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2

[21]

Subversion Repository Browser
The Subversion Repository Browser provides access through our web browser to the
subversion repository and the folders and files contained therein. We can navigate
both through the project file structure and through its revision history. It can also
provide detailed information on revisions as a whole, rather than specific files, and
will display differences between revisions.

Timeline
If the roadmap tells us where we are going and tickets tell us how to get there, then
the timeline tells us where we have been. It provides us with a chronological view of
the activity within the project as a single report. All Trac events that have occurred
are listed in order of occurrence, including a brief description of each event and
where applicable, the person responsible for the change.

The following kinds of events are listed:

Wiki page events: Creation and changes
Ticket events: Creation and resolution/closing (and optionally
other changes)
Source code changes: Repository check-ins
Milestone: Milestone completed

Following the wiki style, each event provides a hyperlink to the specific event
concerned. The report is also available as an RSS feed.

As we can see Trac is a extremely powerful and flexible piece of software, but it is
one that tries hard not to be too constraining so that it can be adapted to the way that
we work rather than forcing us into its way of thinking.

Apache Web Server
The Apache web server (http://httpd.apache.org/) is an open-source web server
that runs on UNIX-style systems, Microsoft Windows, and other operating platforms,
and is released under the Apache license. It is commonly—but incorrectly—referred
to just as Apache, and we will do so here for the sake of brevity. It is by far the most
popular web server on the Internet, and is often the yardstick by which other web
servers are measured.

It provides many, many features, the majority of which we are going to ignore for the
purposes of implementing our solution. However one feature it provides is essential
to our needs.

•

•

•

•

Introducing the Solution

[22]

Authentication
As we are going to be using Apache to provide access to Trac and Subversion,
then it makes sense to centralize our authentication here instead of maintaining
multiple systems.

There are many titles are already dedicated to documenting Apache and its
configuration, so, as for Subversion, this book will only provide us with the
information we need to implement and use it for our needs.

WebDAV
Although the WebDAV implementation we are going to use is provided by
Apache and could have been included in the list above, it is listed separately
because it is not required for core functionality; but we are going to use it to provide
additional features for our solution that we do not get with a straight Trac and
Subversion combo.

WebDAV is an abbreviation of Web-based Distributed Authoring and Versioning,
which refers to both an IETF working group and the set of extensions to the HTTP
protocol that the group defined, which allows users to collaboratively edit and
manage files on remote web servers. Its aim is to provide the functionality to create
and manage documents on a web server. The obvious use for this is for authoring
and publishing the documents that a web server serves, but it can also be utilized
for general web-based file storage that is accessible from anywhere. Support for
WebDAV is provided by most modern operating systems, and with the right client
and a fast network it can be almost as easy to use files on a WebDAV server as those
stored in local directories.

Our use for WebDAV is to:

Provide access to 'publish' releases and supporting files for download
Provide controlled access to non-wiki documents
Provide a publishing mechanism for images to be included in wiki pages
without using attachments

Since we are already using Apache to provide authentication for Trac and
Subversion, we can extend that to provide access control to our WebDAV files
as well.

•

•

•

Chapter 2

[23]

How It All Fits Together
We have our four parts—Trac, Subversion, Apache, and WebDAV. So how do they
fit together?

Although we have four parts, we only end up with a two-tiered system. We will
be using Apache to provide access and authentication to Trac, Subversion, and
WebDAV. This relationship can be seen in the following figure.

Subversion

Apache

Trac WebDAV

Since all these components are linked and we depend on Apache to access them, we
are going to use a single machine to host them all. This will become our server—the
hub of our development process.

Summary
So we have looked at what we are going to use, and discussed why these choices
lend themselves well to our solution for managing software development. We are
using Trac for managing the development process, Subversion to manage our source
code, WebDav for managing access to files, and Apache to tie them all together.

In the next chapter we will see how to install and configure them all on two of the
most popular platforms: Linux and Microsoft Windows.

Laying the Foundations
In this chapter we will cover installing the server components of our framework
on the platform of our choice. Although there are numerous platforms that our
framework will run on, you will find only specific instructions here for Linux and
Microsoft Windows. However, the configuration details can be used on any platform
that can run the components.

Which Platform?
Our choice of platform may be influenced by company policy, personal preference,
or simply what we have to hand in terms of hardware, software, and experience.
Although the installation instructions differ between each platform, there should be
no discernible difference in the end result.

As we will see shortly, there can be a significant discrepancy between the latest
available version of a component and the version available for our platform.
However, our choice of platform should not be made simply because it has the latest
versions available. Unless our server is going to remain completely isolated (highly
unlikely) we need to consider how it will fit with the rest of our network—a decision
we may not have control over. Other considerations include licensing. Although the
components concerned are available under a free (or equivalent) software license, the
underlying operating system may have its own license restrictions.

Linux
If we have the necessary skills available to operate a Linux server (or the desire to
learn), then it provides an almost ideal platform for our server. Because it is free,
both in terms of software and licensing, dependent on distribution, and happy to run
on hardware that other operating systems would shun for being underpowered, we
can re-purpose any machine to become our server for no cost except time.

Laying the Foundations

[26]

Linux comes in many forms, known as distributions, and it would be pointless to
cover them all here, so we will consider two of the few popular ones: Debian and
Ubuntu. Other distributions will perform just as well, so we should not consider this
an exclusive list for our purposes.

Microsoft Windows
Microsoft Windows provides a perfectly good platform for running our server
framework, and our components do not require a server edition of the underlying
OS (although we may still require a server edition for licensing purposes). The
instructions here are for Microsoft Windows Server 2003, but should work equally
well on Microsoft Windows XP Professional Edition.

Which Version?
The following table shows the versions available for Linux and Microsoft Windows.

Subversion Apache Trac
Current 1.4.5 2.2.6 0.10.4
Microsoft Windows 1.4.5 2.0.61 0.10.4
Linux Ubuntu 6.06 LTS 1.3.1 2.0.55 0.9.3
Linux Ubuntu 7.10 1.4.4 2.2.4 0.10.4
Linux Debian 1.4.2 2.2.3 0.10.3

It is obvious from the table above that there is a noticeable disparity in the versions
available for the detailed platforms. Microsoft Windows has more flexibility than
the other platforms in that it can easily run the latest version of all the components;
however, as is apparent in the Appendices that cover installation steps, installation
of the packages is far more easier on the other platforms.

Although we can use the latest/current versions of all the components on Linux,
it is generally good practice to stick with packaged versions of software unless
absolutely necessary. Therefore—with the exception of Trac itself—we will continue
that practice. For Microsoft Windows we have no choice but to use packages directly
from the relevant projects, with the exception of Apache. Since the development of
Trac currently moves quicker than the packaging process on the Linux distributions
concerned we will be manually installing it to ensure we have the most
current version.

Chapter 3

[27]

Time to Get Our Hands Dirty
Once we have chosen our server platform, it is time to get it working.

This chapter mainly concerns configuration of our server machine. For
both brevity and clarity, installation instructions are detailed in the
appendices, to which you will be directed when needed.

Before we go any further, we need our foundations upon which to build. Now is the
time to install the operating system of our choice on our server machine, ensure all
the relevant security patches and updates are applied, and that we can access it from
our client machine(s).

Same destination, different paths
Although our configuration is essentially the same across both platforms,
there can be different methods to achieve the end result, so where
appropriate we will see specific instructions for each platform, and
occasionally for individual Linux distributions.

Installing the Components
Now we should jump ahead to Appendices A, B, and C to follow platform-specific
instructions to install Subversion, Apache, and Trac respectively. If you are using
Microsoft Windows, you will have to install Apache first, then Subversion, and
finally Trac. If Debian or Ubuntu is your preference, then we need to follow the
instructions for Subversion and Trac, as the way in which the software is packaged
on those platforms makes our life easier for us.

Following those instructions gave us our building blocks and now we can put
them together.

Keeping It Organized
To make our lives easier, or for our system administrators, we need to keep the files
for our projects together in a sensible fashion. To do this, we will first create a single
folder—projects—and then create sub-folders for each component—svn, trac,
and files for subversion, Trac, and WebDAV respectively—which will in turn
hold the folders for our individual projects.

Laying the Foundations

[28]

We will be setting up our directory structure based around our tools—each project
will have a subdirectory under a folder for each component. We could approach it
from the opposite direction and have a single directory per project with a folder for
each component underneath, but this would create more administrative work as
both Subversion and Trac can handle multiple projects nested in a single folder, but
require manual configuration for multiple projects in multiple folders.

Before we go any further it is time to create some folders to store our Subversion and
Trac repositories, and check that everything is working as expected. We're going
to keep everything in the projects folder, which we will place in the root of the C:
drive (Microsoft Windows) or the root partition (Linux).

The followings steps should be performed as a user with administrative rights from a
command prompt (Start menu, Run, type cmd and click OK) for Microsoft Windows,
or in a terminal as root, either directly (Debian) or via sudo (Ubuntu) for Linux.

1. For Microsoft Windows only, Type c: and press Enter.
2. Type cd \ (Microsoft Windows) or cd / (Linux) and press Enter.
3. Type mkdir projects and press Enter.
4. Type cd projects and press Enter.
5. Type mkdir svn trac files and press Enter.

Don't be afraid to personalize
Although we are creating our folders on our C: drive (Microsoft
Windows) or in the root partition (Linux), this is only to keep things
straightforward for this title. Feel free to place the projects folder
wherever you feel appropriate on your own systems, but ensure you
reflect such changes in the paths discussed in this chapter and
the Appendices.

We will look at setting the file permissions for these folders correctly later in
this chapter.

Customizing trac.cgi

This section is for Microsoft Windows only. We can safely ignore it if we
are using Linux.

Chapter 3

[29]

For Microsoft Windows we need to create a copy of the main Trac script and tweak it
to use the version of Python we have installed.

1. Open a command prompt (Start menu, Run, type cmd, and click OK).
2. Type copy "C:\Python24\share\trac\cgi-bin" "C:\Projects\" and

press Enter.
3. Type exit and press Enter to close your command prompt.
4. Open C:\Projects\trac.cgi in a text editor.
5. Change the first line to:
 #!C:/Python24/python.exe

6. Save and close the file.

Configuring Apache
Installation of our components is only part of the story, because we need to configure
them to work together. We are using our web server Apache to provide—and
control, as we will discover later—access to our components. At the moment it is
only configured for typical web server activities, so we need to expand on that.

Virtual Hosts
Apache supports hosting multiple hosts or domains on a single server, a
topic which is beyond the scope of this title. However, it may be useful to
be aware that the components and configuration we are using here
will work quite happily in such an environment. In fact such a
configuration may help reduce hardware requirements by making a
server multi-purpose.

Before we delve into configuration details, we need to know where to make our
changes. Apache is controlled through a collection of configuration files that differ
depending on the platform we are using. On Microsoft Windows the only file we
really need to be concerned with is httpd.conf, which can be found in C:\Program
Files\Apache Group\Apache2\conf\. Things are slightly more complicated under
Linux as Debian and Ubuntu are configured to support virtual hosts
out of the box, and configuration for individual hosts and modules is abstracted into
individual files stored in /etc/apache2/sites-available and /etc/apache2/
mods-available respectively. However, the simple presence of a file does not mean
that it is recognized by Apache—they first have to be enabled. Fortunately—unless
we chose to use virtual hosts—we need to enable only a couple of modules, and we
can keep all our configuration in the file for the default host, which is unsurprisingly
called default.

Laying the Foundations

[30]

As already hinted, we need to make a few changes to the default Apache
configuration. First of all we need to enable the dav_fs module, and then we need
to append our configuration for dealing with serving multiple Trac projects and
Subversion repositories, and also our WebDAV folders. Finally we will implement
authentication mechanisms, although we will discuss the details of this later in
this chapter.

Now we can tackle the much bigger task of configuring Apache to our requirements.
Although this could be tackled as a whole, we are going to break it down into pieces
so that we understand what each part does.

First we need to open the configuration file in a text editor ready to configure it. For
Microsoft Windows this file is C:\Program Files\Apache Group\Apache2\conf\
httpd.conf while for Ubuntu and Debian we will be using /etc/apache2/sites-
available/default.

Enabling dav_fs
The instructions will diverge depending on the platform chosen.

For Microsoft Windows we need to edit our configuration file as follows:

1. Remove the leading comment marker (#) from line 164.
2. Save the file.

For Ubuntu and Debian we need to execute the follow command as root:

1. a2enmod dav_fs

Both have the same result of enabling the dav_fs module.

Getting Apache to recognize our configuration changes
Apache reads its configuration files at startup and then ignores them. This
means that we can change configuration settings while it is running, but
we have to force it to use those changes. Although you can get it to reload
the files, if you are making major changes the easiest way is to simply
restart it.

Now we will append a series of sections to our configuration file. We can safely
make all the changes in one go, but we will look at each set of changes individually
so we can understand what they do.

First we will tell Apache that any and all requests for the (virtual) folder projects
should be handled by Trac.

Chapter 3

[31]

For Microsoft Windows:

ScriptAlias /projects C:/Projects/trac.cgi

For Linux:

ScriptAlias /projects /usr/share/trac/cgi-bin/trac.cgi

Next we will specify an environment variable that tells Trac that it is serving
multiple projects and where to find those projects on the filesystem.

<Location "/projects">
 SetEnv TRAC_ENV_PARENT_DIR "/projects/trac"
</Location>

Trac supports two methods of authentication—HTTP and sessions. Authentication
will be covered in more detail later in this chapter, but for now we need to know that
we will be using HTTP authentication so that Apache can handle authentication to
Trac, Subversion, and WebDAV for us.

First we will make sure that anyone accessing the login link within any project
hosted on our server is required to be authenticated by Apache.

<LocationMatch "/projects/[^/]+/login">
 AuthType Basic
 AuthName "Trac Environment"
 AuthUserFile /projects/projects.passwd
 Require valid-user
</LocationMatch>

For Microsoft Windows the line AuthUserFile should be changed to:
C:/Projects/projects.passwd.

Now we will ensure that all access to Subversion via Apache is authenticated.

<Location /svn>
 DAV svn
 SVNParentPath /projects/svn
 AuthType Basic
 AuthName "Subversion Repositories"
 AuthUserFile /projects/projects.passwd
 Require valid-user
</Location>

As before AuthUserFile should be changed for Microsoft Windows. Additionally
SVNParentPath should be changed to C:/Projects/svn.

Laying the Foundations

[32]

Finally we can configure our WebDAV folder. This time we want all access to be
authenticated except the viewing of files contained in either an images or public
folder nested within our WebDAV folder (the method of retrieving a resource is known
as GET in HTTP terms).

Alias /files /projects/files

<Location /files>
 DAV On
 AuthType Basic
 AuthName "Files"
 AuthUserFile /projects/projects.passwd
 Require valid-user
</Location>

<LocationMatch ^/files/[^/]+/(images|public)/>
 <LimitExcept GET OPTIONS>
 Require valid-user
 </LimitExcept>
</LocationMatch>

The same path changes made previously for Microsoft Windows will be needed in
the above excerpt.

Now we can save our configuration file and restart Apache so that our changes will
be recognized.

Creating Projects
Our server is configured to host our projects, but at the moment we don't have any
projects to host! That is easily rectified though, so let's create ourselves a project
to work on.

Every project needs a name, and our case it needs to be file system and URL friendly.
If we stick to alphanumeric (letters—upper or lower case—and numbers) characters,
hyphens, and underscores we should be fine.

For our test project we are going to be imaginative and call it 'sandbox'.

Chapter 3

[33]

The followings steps should be performed as a user with administrative rights from a
command prompt (Start menu, Run, type cmd and click OK) for Microsoft Windows,
or in a terminal as root, either directly (Debian) or via sudo (Ubuntu) for Linux.

1. For Microsoft Windows only, Type c: and press Enter.
2. Type cd \Projects (Microsoft Windows) or cd /projects (Linux) and

press Enter.
From here the commands are mostly the same across platforms. The only thing to
watch out for is that Microsoft Windows expects backslashes in paths, while Linux
expects forward slashes. The commands here—unless Microsoft Windows specific—
will use forward slashes so we need to make sure we get the right type of slash when
we type the commands.

1. Type svnadmin create svn/sandbox –fs-type fsfs and press Enter.
2. Type mkdir -p files/sandbox/public files/sandbox/private files/

sandbox/images and press Enter.
3. Type \Python24\python.exe \Python24\Scripts\trac-admin (Microsoft

Windows) or trac-admin (Linux) followed by trac/sandbox initenv and
press Enter.

4. When prompted for a Project Name type Sandbox and press Enter.
5. When prompted for a Database connection string press Enter to accept

the default.
6. When prompted for a Repository type press Enter to accept the default.
7. When prompted for a Path to repository type C:\Projects\svn\sandbox

(Microsoft Windows) or /projects/svn/sandbox (Linux) and press Enter.
8. When prompted for a Templates directory press Enter to accept the default.

Following those commands will result in the following:

A Subversion repository
A folder structure within our WebDAV folder
A Trac environment (linked to the Subversion repository)

•

•

•

Laying the Foundations

[34]

Now we can open up a web browser and point it to our server to see that everything
is working.

Security
At the moment our server is configured to allow access to certain actions—like
writing to our subversion repository—only to authenticated users. Now we need
to actually allow our users to perform these actions by storing their authentication
details. These are stored in a text file that Apache understands— the projects.
passwd file referred to in the earlier excerpts.

Managing Users
Creating this file is quite simple using the htpasswd tool provided by Apache, which
should be accessible simply by its name on Linux or at C:\Program Files\Apache
Group\Apache2\bin\htpasswd.exe for Microsoft Windows. We need to explicitly tell
it to create a new file the first time, and which file to use for subsequent user additions.

For a first run, we use the following:
$ htpasswd -c /projects/projects.password joe

Chapter 3

[35]

We will be prompted to specify and then confirm the password for our user joe.
Alternatively we can specify the password as part of the command if we use the -b
parameter, although we should be aware that this is not safe since the password will
be stored in the command history of our Operating System.

For subsequent users we simply drop the -c:

$ htpasswd /projects/projects.passwd bob

Again we will have to specify and confirm bob's password. Now we have two users
who can access our server.

Keeping in touch
With a minor configuration change, Trac is capable of sending emails
when tickets are raised/updated. To make the most of this it is
recommended that we use email addresses for our htpasswd usernames,
then we need to do nothing besides enabling email.

See the Notification section of http://trac.edgewall.org/wiki/
TracIni to see how to enable this.

Editing or deleting users is simply a matter of modifying the password file. If we
want to change their password we need to re-run the htpasswd command.

File Permissions
Since everything is running through Apache, we need to ensure it can write to the
files it needs. Since we have put everything under the projects folder, we can set
our permissions there and let them cascade down through the rest.

Linux
Linux file permissions are split into user, group, and other. We will change the group
to the same one used by Apache, allow the group to write to our projects folder
and then make sure the permissions are inherited by anything inside
the folder.

As earlier, the following commands need to be performed by someone with
administrative rights.

1. Type chgrp -R www-data /projects and press Enter.
2. Type chmod -R g+w /projects and press Enter.
3. Type chmod -R g+s /projects and press Enter.

Laying the Foundations

[36]

Trac Permissions
Trac maintains it own set of permissions for each environment we create. The
permissions we are going to create here cover the behavior described in the
following chapters.

The default permissions in Trac allow unauthenticated (or rather anonymous) users
to do anything. We are going to prevent them from editing the wiki—they can still
view it though—and accessing the source code browser. Then we are going to let
authenticated users do both of these as well as access milestones.

The followings steps should be performed as a user with administrative rights from a
command prompt (Start menu, Run, type cmd and click OK) for Microsoft Windows,
or in a terminal as root, either directly (Debian) or via sudo (Ubuntu) for Linux.

1. For Microsoft Windows only, Type c: and press Enter.
2. Type cd \Projects (Microsoft Windows) or cd /projects (Linux) and

press Enter.
3. Type \Python24\python.exe \Python24\Scripts\trac-admin (Microsoft

Windows) or trac-admin (Linux) followed by trac/sandbox and
press Enter.

4. Type permission remove anonymous WIKI_CREATE WIKI_MODIFY
BROWSER_VIEW and press Enter.

22. Type permission add authenticated WIKI_ADMIN BROWSER_VIEW
MILESTONE_ADMIN and press Enter.

23. Type quit and press Enter to leave trac-admin.

Remember, we will need to do this for each Trac environment that we create.

Summary
In this chapter we looked at the various versions of the software available to us and
discussed the choice of Operating System. After we installed and configured the
software we created a home for our projects and created a sandbox environment to
experiment in. We also looked at the various security-related tasks associated with
our projects.

In the next chapter we will look at how to organize the files that we will be storing in
our project.

Documentation
Documentation—if there is one word that instils fear in most developers, it must be
this one. No one in their right mind would argue the value of documentation, but it
is the actual act of writing it that concerns developers so.

As with everything else presented in the book, the secret of creating good
documentation is to make the process of doing so as painless as possible, and if
we are lucky maybe even attractive, to the developers. The only practical way to
achieve that is to reduce friction. The last thing we need when we are in middle of
fixing a bug is to wrestle with our word processor, or even worse try to find the right
document to update.

What's in a name?
Throughout the rest of this chapter, and indeed the rest of this book,
we will refer to various URLs that point to specific areas of our Trac
environment, Subversion repository, or WebDAV folders. Whenever you
see servername, replace it with your own server name.

Making Documentation Easy
One of the reasons Trac works so well for managing software development is
because it is browser based. Apart from our development environment, the browser,
along with our email client, are the next most likely applications we are going to
have installed and running on our computer. If access to our Trac environment is
only a click away, it stands to reason that we are more likely to use it.

In Chapter 2 we referred to Trac as a "wiki on steroids" because of the way the
developers have integrated the typical features of a wiki throughout the whole
product. However, for all the extra features and integration, at its heart Trac is
basically just a wiki and this is the main reason why it so useful in helping smooth
the documentation process. If we again recall Chapter 2, we described a wiki:

Documentation

[38]

A wiki is a web application that allows visitors to create and modify
its content.

Let's expand on that slightly. As well as letting us view content—like a normal
website—a wiki lets us create or edit the content as we desire. This could take the
form of creating new content, or simply touching up the spelling on something that
already exists. While the general idea with a wiki is that anyone can edit them, in
practice this can lead to abuse, vandalism, or spam. The obvious solution to this is
to involve people to authenticate the edit, which we catered for when configuring
our server in Chapter 3. We did this as part of setting the permissions for our Trac
environment so that users are authenticated to carry out some activities, which in
this instance specifically concerns creating and modifying content in our wiki.

Do we really need this security?
Yes. Having these security requirements provides us with accountability.
We will always be able to see when something is done, but by
enforcing security we can see who did it. While this does cause some
administrative overhead to create and maintain authentication details for
anyone involved with our development projects, the benefits outweigh
the costs.

Accessing Trac
Before we look at how to modify and create pages, let's see how our Trac
environment looks to a normal (i.e. unauthenticated) user. To do this we need to
open our web browser and enter the URL http://servername/projects/sandbox
into the address bar and then press the Enter key. This will take us to the default
page (which is actually called WikiStart).

When we access our project as an unauthenticated (or anonymous in Trac parlance)
user, the majority of it will look and act like a normal website and the wiki in
particular seems just like the usual collection of interlinked pages.

Chapter 4

[39]

However, as soon as we authenticate ourselves to Apache (which passes that
information on to Trac), it all changes.

If we click the Login link in the top right of the page now, we will be
presented with our browser's usual authentication dialog box as shown in the
following screenshot.

We need to put in the username and password we created for ourselves in Chapter 3
and click OK. If we enter them correctly we will be taken back to the same page, but
this time there will be two differences.

www.allitebooks.com

http://www.allitebooks.org

Documentation

[40]

Firstly, instead of the login link we will see the text logged in as followed by the
username we used and a Logout link. Secondly, if we scroll to the bottom of the
page there are some buttons that allow us to modify the page in various ways.
Anonymous users have permission to only view wiki pages, while authenticated
users have full control. We should try that out now—click the Logout link and scroll
down again, and you will see that the buttons are absent.

A Touch of Style
Before we start editing the content in our wiki we should take some time to
familiarize ourselves with the basics of the markup used by Trac. Since each Trac
environment we create includes a copy of the Trac documentation in the wiki, this
and other information is easy to find. Once we have logged back in, we need to click
on the WikiFormatting link (or enter http://servername/projects/sandbox/
wiki/WikiFormatting in the address bar of our browser).

The page describes the various ways in which we can format the text on our wiki
pages, and contains both the markup and examples of how the text will be displayed.
There is little need to repeat the whole of the page here, but we can have a look at
some of the basic syntax before we move on.

Need to know basis
Instead of trying to absorb everything in one go, we will only look at the
specific Trac markup when it is relevant to what we are discussing.

Formatting Text
The most commonly used text styles are bold, italics, and underlined. We can easily
use these by wrapping the text we want to modify in specific characters as follows:

Surrounding or 'wrapping', a word with three apostrophes will mark it
as bold.
Wrapping a word with two apostrophes will mark it as italicized.
Wrapping a word with two underscore characters will make
it underlined.

These don't just apply to individual words, we can wrap any amount of text in these
markers or combine them.

•

•

•

Chapter 4

[41]

Another common use of styles is to signify headings and sub-headings. This is done
by wrapping a sentence with equals signs. The level of the heading is derived from
the number of signs that surround the text.

E.g.

= This is the main heading =
This is some text.
== This is the sub-heading ==
=== This is a sub-sub-heading ===
== Another sub-heading ==

As a practical example, the title of this section as entered in a Trac wiki would be
as follows:

== Formatting Text ==

The final important format is how to create links. As previously mentioned any
CamelCase words will be automatically linked (for example the WikiFormatting
link we clicked on the start page), as will raw URLs such as http://example.com.
These types of links may be easy, but they do not look particularly nice. There is an
alternative though. We can specify a link by wrapping two parts in square brackets
([]). The first part is the target for the link, and the second is the text that should be
displayed. E.g.

[http://example.com some website]

We can also use the same format we use for linking to external sites to link pages
within our wiki. We do this by using the wiki: prefix. E.g.

[wiki:SomePage some page]

Trac recognizes a variety of prefixes for linking to its different parts. As we are
introduced to each part we will also learn the prefix we need to create links to it.

Preventing automatic links
Simply prefixing a CamelCased word with an exclamation mark (!) will
prevent Trac from interpreting it as a wiki link. The exclamation mark
will show up when editing and not while viewing the page.

Documentation

[42]

Playtime
It's natural that we may want to try out our new-found knowledge of the wiki
formatting rules and Trac makes that easy for us as well so we need not clutter our
wiki with junk. If we enter http://projects.example.com/projects/sandbox/
wiki/SandBox in our browser's address bar, we will be taken to the SandBox page
within the wiki for our sandbox project (yes, we are being recursive). It is now
different from any other wiki page, but it helps restrict our experiments to a single
location. If we are logged in we should be able to see the Edit this page button. Go
ahead and click it so we can see what it looks like when we edit a page.

Chapter 4

[43]

At the top we can see the formatting buttons that make editing a page more of a
WYSIWYG (What You See Is What You Get) experience, along with a drop-down
box that changes the size of the edit box. Next we have the edit box itself that
contains the text and markup that makes the page we see when viewing it. Below
this we have a comment box where we can provide a comment about the changes
made and finally we have the buttons for submiting, previewing, or canceling our
changes. We should make some changes to the contents of the page like so:

= The Sandbox =
This is just a page to practice and learn WikiFormatting.
Go ahead, edit it freely.
== My Changes ==
Wiki markup is ''so'' easy to '''use!'''
What about ThisPage?

Now if we hit the Preview button, we can see how our changes will be displayed.
If we are not happy with them, we can scroll back up to our edit box and make the
required changes. Now if someone else visits the page we are editing they will see
the original. Only when we click the Submit changes button will the changes
be stored.

Creating New Pages
If you were observant you will have noticed that our ThisPage link doesn't look like
a normal link—it is gray and followed by a question mark (two actually, because we
included one ourselves, but only one is part of the link). This is Trac telling us that
although it recognised a wiki page, the page does not currently exist. However the
link still works.

If we now click it we will be taken to an (almost) empty page with a Create this page
button, which when clicked will take us to the edit view of a new page. Here, there is
no difference between editing a new or an existing page.

Creating a link to a non-existent page is the easiest way to create new pages, but we
can just as easily enter the name of a page in the address bar and get the same effect.

I can't find my page!
If we create a page that is not linked from any other pages, and we have
forgotten what we called it we need not fear. Beneath the main Trac menu
is a series of wiki-specific links. The second of these, Index by Title, will
provide us with a list of all pages contained in the wiki.

Documentation

[44]

Going Back in Time
Remember that we said that Trac has an internal version control system. Now we can
explore to see how it works.

If we go back to the SandBox page, we should be able to see a Last Change link
above the page contents. Clicking this will show us the changes made the last time
the page was edited. We can see exactly what was added, removed, or modified.

We can use the Previous change or Next Change links to navigate through the
history of a page, or the Page History link to view the whole history in one go.

Chapter 4

[45]

Taking It with Us
The final feature of Trac we are going to look at here is exporting. At the bottom
of every page is a Download in other formats section, with links to the formats
available. For the wiki the only (current) format is plain text, which is the raw text
we see when editing a page. At first glance the usefulness of this feature may not be
apparent; however, there is one area that can really benefit.

Most applications ship with some sort of plain text documentation, whether it is
a version history, change log, or a basic 'read me' file. We can store and edit the
contents of these files within our wiki, gaining all the benefits the wiki provides but
we can still save them as plain text files when it is time to release.

Summary
In this chapter we have seen how Trac helps reduce the friction involved in creating
documentation. We discovered the basics of formatting text and looked at how to
edit and create new pages. In the next chapter we will continue our tour of Trac and
in particular will see how to use tickets to track our development tasks.

Tracking Our Tasks
Back in Chapter 1 we looked at the basics of task management and how it could help
us to manage our software development. There are many methods that can help us
track our tasks, but the good news is that what we need for developing software is
built right into Trac in the form of tickets.

Most developers, particularly those familiar with open-source projects, will be
familiar with the concept of bug trackers. Typically, standalone systems allow users
and developers alike to file bugs against the piece of software the tracker was set up
to support. Once a bug has been reported, it needs to be assigned to someone—or
someone takes ownership of it—who will be responsible for fixing it. People who
have an interest in a particular bug can comment on it or subscribe to it so that they
can be informed when it is fixed.

It should be obvious from the summary of bug trackers that they actually describe
a development task; it is just that the scope is limited by the choice of language.
For this reason Trac has tickets, and—by default—these can be categorized as
defects, enhancements, or tasks to describe the different tasks we carry out
during development.

First we will look at the sort of data tickets can contain and then at how we can
customize them to suit our requirements. Next we will look at different ways of
viewing the data collected through tickets. Finally we will look at how they can be
used in conjunction with milestones to help us plan our project.

Tickets Please
The best way to familiarize ourselves with tickets is by creating one. When we set up
our server we left it so that anyone could view, create, or modify tickets. However,
we stay logged in while we create our first one.

Tracking Our Tasks

[48]

To start creating our ticket, we simply need to click the New Ticket link in the main
Trac menu.

Creating a ticket anonymously
Here we are creating a ticket while logged in, but when a ticket is created
by someone who is not authenticated they will see an extra field at the
top of form asking for their email address or username, which defaults
to Anonymous.

The same form is used for creating or editing a ticket. The first field is Short
summary. This is used to give the ticket a meaningful title, which will be useful later
when we will look at ways of viewing tickets. This is followed by the ticket Type.

Next we have the Full description, which should be exactly that!—as much
information as possible about the ticket. This field uses Trac's wiki engine, so we can
use the markup we explored in Chapter 4.

We already know that CamelCased words are automatically turned into
wiki links, and the same will happen here. We can also use the wiki:
SomePage syntax to link to wiki pages from here. Trac will also recognize
links to tickets. #1 will become a link to ticket number one, as will
ticket:1. We can use these links anywhere in Trac that supports wiki
formatting, so wiki pages can link to tickets and vice versa.

Then we have Ticket Properties, which fall into two groups—predetermined values
and free text fields.

The fields that have predetermined values are as follows:

Priority: Used to show the importance level of the ticket.
Component: Used to show the part of the project to which the ticket belongs.
Milestone: Used to show the particular milestone to which the ticket belongs.
Version: Used to show the version of the project to which the ticket belongs

In a later section we will see how to change the values available for these fields.

The free text fields are as follows:

Keywords: Used to make searching easier.
Assign To: Used if the ticket has to be given to anyone in particular.
Cc: Used to inform someone else about the ticket.

•

•

•

•

•

•

•

Chapter 5

[49]

Finally we can indicate if we want to attach files to our ticket, and the ticket actions
of previewing or submitting it. Except Short summary all the fields are optional,
so let's add one now and leave the rest of the fields as they are and then hit
Submit ticket.

Tracking Our Tasks

[50]

After the ticket has been stored we will be taken to the tickets page where we will
be able to see the details we provided (or the default values where applicable) while
creating the ticket. We will also have the option to attach files to our ticket.

The rest of the page is far more interesting though—we can use it to add comments
to our ticket and change its properties. Let's try changing something now, like
lowering the Priority from major to minor, and click Submit changes.

We're back at the same page again, but this time there is a Change History section
that shows the change we made. This allows us to see the entire life cycle of a ticket
at a glance.

The final part of the page is the Action section. This is where we indicate we are
actually working on a ticket. We can choose to leave it in its current state, take
ownership of it, mark it as resolved (with a variety of final statuses), or assign it to
someone else by entering their email address.

Customization
When creating or editing a ticket there are five fields that have pre-determined
values: Type, Priority, Component, Milestone, and Version. The values these fields
can be chosen from can be changed by using the trac-admin tool.

The followings steps should be performed as a user with administrative rights
from a command prompt (Start Menu, Run, type cmd, and click OK) for Microsoft
Windows, or in a terminal as root, either directly (Debian) or via sudo (Ubuntu)
for Linux.

1. Only for Microsoft Windows, Type c: and press Enter.
2. Type cd \Projects (Microsoft Windows) or cd /projects (Linux) and

press Enter.
3. Type \Python24\python.exe \Python24\Scripts\trac-admin (Microsoft

Windows) or trac-admin (Linux) followed by trac/sandbox and
press Enter.

Ticket Types
Trac comes with three pre-defined ticket types. We can see the possible values with:

Trac [/projects/trac/sandbox]> ticket_type list
Possible Values

defect
enhancement
task

Chapter 5

[51]

We can change an existing ticket type with:

ticket_type change <value> <newvalue>

E.g. to change defect to bug we would type:

ticket_type change defect bug

We can add a new type with:

ticket_type add <value>

Replacing add with remove will delete that type from the list.

Finally we can change the order with:

ticket_type order <value> up

This will move the specified value up the list. up can be replaced with down for
obvious results.

Priority

Priority is also known as severity within trac-admin.

Priority is used to indicate how important a ticket is to us. Similar to types, we can
see the possible values with:

Trac [/projects/trac/sandbox]> priority list
Possible Values

blocker
critical
major
minor
trivial

As with types, the list can be edited with change, add, remove, and order commands.

In Chapter 1 we briefly discussed using priorities in task management, where we
said that using them for task management was personal choice. If we choose to
use them in out project, we should modify this list to reflect the priorities we have
decided to use.

Tracking Our Tasks

[52]

Component
Component is used to differentiate between different parts of a project. For example,
we may have client and server components. We should customize the contents of
this field to reflect the structure of our project.

As before, seeing the list of defined components is easy:

Trac [/projects/trac/sandbox]> component list
Name Owner

component1 somebody
component2 somebody

Unlike the last two though, components have an extra field—Owner. If we assign an
owner to a component, and a ticket is marked as relating to that component then that
ticket will be assigned to that person.

Components have the rename, add, remove, and chown commands. The first three
behave similarly to the equivalent commands for the other fields, except that we can
specify an owner when adding a component. The new chown command behaves like
its UNIX namesake—it allows us to change ownership of a component, and takes
two arguments: the name of the component and the new owner.

Milestone
We will look at milestones in more detail shortly, but for now we will see how to
modify them.

Unlike the rest of the fields, milestones can be managed directly
through Trac.

Let's see what is already there:

Trac [/projects/trac/sandbox]> milestone list

Name Due Completed

milestone1
milestone2
milestone3
milestone4

Milestones have a couple of additional attributes: the date they are due and the date
they were completed. These are specified using the format YYYY-MM-DD.

Chapter 5

[53]

As for the others we have the rename, add, and remove commands. When adding
we can specify a due date in addition to the milestone name. There are also two new
commands: due and completed, which allow us to set the respective attributes of a
given milestone.

Version
The version field allows user to identify a particular release of our project. It could
be argued that Version and Milestone provide the same functionality, which to
a degree is true. However the distinction is: we work toward milestones, while a
version marks where we have been. Another way of looking at it is that a given ticket
describes a defect in version x which we are planning to fix in milestone y.

As with components and milestones, the default list is pretty unimaginative:

Trac [/projects/trac/sandbox]> version list

Name Time

2.0
1.0

Like milestones we can assign a date to a version, which we should think of as the
release date.

The usual commands show up here with rename, add, and remove being
supplemented by time, which behaves much like due and completed do
for milestones.

Customizing Default Values
When a ticket is created, most fields have a default value. Like the pre-determined
fields though, we can customize this. Default values are controlled by the file
/projects/trac/<projectname>/conf/trac.ini. In that file there is a ticket
section as follows:

[ticket]
default_component =
default_milestone =
default_priority = major
default_type = defect
default_version =
restrict_owner = false

If we change this section, the next ticket created after we have saved it will reflect
the changes.

Tracking Our Tasks

[54]

Viewing Tickets
Although we have already seen what a ticket looks like when we view it directly,
we are yet to explore the ticket reporting capabilities of Trac. If we click the View
Tickets link in Trac's main menu, we will be taken to the list of default reports.
Clicking on any one of these reports will provide us with the summary information
of each ticket that matches the report's filter.

The list of default reports should suffice for most requirements, but if they do not we
have a custom query builder available so we can write our own. This can be found
just under the main Trac menu when viewing reports. We can use this builder to
create complex queries and view the results on the fly.

At the moment Trac doesn't support saving custom queries, but it does come close.
We can link to queries in two ways from anywhere in Trac that supports wiki
formatting (even other tickets!).

Linked Queries
These use the same formatting as normal links within a wiki, but this time they start
with the query: designator. We can either craft the query link by hand using Trac's
query language, or more easily simply grab the query from the address bar in
our browser.

For example, a query that has the URL of http://projects.example.com/
projects/sandbox/query?type=bug&order=priority can be expressed as linked
query as follows:

query:?type=bug&order=priority

Embedded Queries
By using the TicketQuery macro, we can embed a list of tickets anywhere that
supports wiki formatting.

Chapter 5

[55]

What is a macro?
A macro is a small program or script that, in the case of Trac, alters the
content of the wiki. Examples include automatically creating a table of
contents for a page, inserting a date/time or inserting a list of tickets.
There is a default set of macros distributed with Trac, and we can obtain
more from: http://trac.edgewall.org/wiki/MacroBazaar.

To include the same data as opposite directly in a page, we would use the following:

[[TicketQuery(type=bug&order=priority)]]

When the page is viewed, we would see a list of ticket IDs and their summaries.

Tracking Our Tasks

[56]

Using Milestones
Milestones allow us to group tickets together and then track our progress toward
meeting that milestone based on whether tickets have been resolved or not. When all
tickets associated with a milestone have been resolved, then that milestone should be
considered met.

We have already seen how to create milestones through the admin application, and
we know we can associate tickets with them from a given ticket's page. We access
milestones via the Roadmap view, which is available through the Roadmap button
on the main menu. This will give us an overview of unmet milestones and their
progress. If we are logged in, we will also see the option to add a new milestone.

See Chapter 3 for details on the security we configured in our
Trac instance.

Clicking on the name of a milestone will show us detailed information, including a
breakdown of progress by component or other ticket fields. It will also give us the
option to edit or delete the milestone.

Chapter 5

[57]

When creating or editing a milestone we can specify its name, due and completed
dates, and a description. We currently cannot set the description through the admin
interface, but can only do so through Trac. Hopefully this will be addressed in a
future release. The description supports wiki formatting.

It should come as no surprise now that Trac can link to milestones as
well as queries, tickets, and wiki pages. We need to use the milestone:
prefix to indicate that it is a link to a milestone.

Using milestones to group our tickets together allows us an instant view of progress
and, if we are using components, where to focus our efforts to meet our targets.

Tracking Our Tasks

[58]

Summary
In this chapter we explored the fields that make up tickets in Trac, how to customize
them to suit our needs, and how to report on our tickets so that we can manage them
effectively. Now that we are familiar with tickets, in the next chapter we will take a
look at Subversion—how to use it to separate our development efforts, and finally
how it integrates with Trac through the source code browser.

Version Control 101
Although we will do our planning and project (task) management within Trac, the
title is concerned with managing software development, which actually includes
developing something. We can't (yet) develop software in a wiki—no matter how
good it is! Therefore it's time now to leave the safe—and now hopefully familiar—
confines of Trac and look elsewhere. One of the benefits of Trac is that it doesn't care
what our software is or what we are using to develop it. The only thing that matters
is that the code is stored in a Version Control System—specifically Subversion.

You say to-mato, I say tom-ato...
When reading about Subversion we will see that it is often interchanged
with svn, which is the command we run to use it. We should feel free to
use the pronunciation we are most comfortable with—anyone else who
uses it should recognize and acknowledge both.

We will cover what you need to know for using the system and processes described
in this title and then move on to branching and merging—techniques that allow us to
isolate our changes during development.

Check Out, Check In
In Chapter 3 we set up our Subversion repository. This currently exists only on our
project server. Although we can perform some basic actions directly on this (as we
will see shortly), to actually use Subversion we need to have a working copy of this
on our client machine. We can get this working copy by performing an action known
as checking out. Once we have made some changes to our working copy we will
check them in to the repository. Until we check in our changes they are not a part of
the version history in our repository.

Version Control 101

[60]

Currently our repository is completely empty, and ideally we need to define a
basic structure to keep things organized later. We could make these changes on our
working copy, but instead we'll make them directly in our repository.

First we will ensure that subversion works and we can access our server from
our client.

We need to perform the following steps from a command prompt (Start menu,
Run, type cmd, and click OK) for Microsoft Windows, or in a terminal on our client
machine. No special privileges are required.

1. For Microsoft Windows only, Type c: and press Enter.
2. Type cd \ (Microsoft Windows) or cd (Linux) and press Enter.
3. Type mkdir projects and press Enter.
4. Type cd projects and press Enter.

This is were be will store our working copies once we start using them. Note that on
Microsoft Windows we are creating this folder in the root of the C: drive, while we
are creating it under our home directory on Linux. We can store this folder anywhere
we like on our client machines.

1. Type svn info http://servername/svn/sandbox and press Enter.

We should be prompted for authentication to access our repository—these are the
same details we used to log into Trac. We will first be prompted to authenticate with
our current username. Entering a blank password will result in us being asked for
our username and password. Once we have authenticated with a given repository,
we should not be asked to do so on the same computer as the same user (from an
Operating System perspective). An example of a successful authentication and the
subsequent command output is shown below.

$ svn info http://projects.example.com/svn/sandboxAuthentication
realm: <http://projects.example.com:80> Subversion Repositories
Password for 'jdoe':
Authentication realm: <http://projects.example.com:80> Subversion
Repositories
Username: user@example.com
Password for 'user@example.com':
Path: sandbox
URL: http://projects.example.com/svn/sandbox
Repository Root: http://projects.example.com/svn/sandbox
Repository UUID: 677246c4-9c0b-4019-ac6e-f268985e4c37
Revision: 0
Node Kind: directory
Last Changed Rev: 0
Last Changed Date: 2007-05-13 17:32:38 +0100 (Sun, 13 May 2007)

Chapter 6

[61]

The highlighted lines show where we were prompted to authenticate, and that the
repository has no version information stored in it.

If we run the command again, we should not be prompted for authentication.

Having determined that everything is working, we can now create our initial
repository structure. Best practices within the Subversion community prescribe
that each repository (that hosts a single project, as ours does) have three folders
at its root: trunk, tags, and branches. trunk is considered the mainline of the
development and it is this folder that our working copy will really be of; tags are
used to mark specific moments in time (e.g. milestones and releases), while branches
will be explored later in this chapter. Technically there is no difference between a tag
and branch in Subversion; it is just convention (mainly from its predecessor CVS)
that require these to be separate. Our initial working copy will come from the
trunk folder.

As we have already discussed we could check out our repositories, create the folders,
and commit the changes, and this is a perfectly valid approach. Instead we will
create them directly in the repository and then check out the trunk folder.

2. Type:
 svn mkdir http://servername/svn/sandbox/trunk
 http://servername/svn/sandbox/tags
 http://servername/svn/sandbox/branches
 -m "Initial repository structure"

 and then press Enter.

The -m "Initial repository structure" specifies a log message for the action(s)
we are performing—creating folders in this fashion is actually checking in the
changes directly on the server. Later we will look at manually specifying
these messages.

Before we check out the trunk, let's have another look at the repository information:

$ svn info http://projects.example.com/svn/sandbox
Path: sandbox
URL: http://projects.example.com/svn/sandbox
Repository Root: http://projects.example.com/svn/sandbox
Repository UUID: 677246c4-9c0b-4019-ac6e-f268985e4c37
Revision: 1
Node Kind: directory
Last Changed Author: user@example.com
Last Changed Rev: 1
Last Changed Date: 2007-08-11 14:01:20 +0100 (Sat, 11 Aug 2007)

The highlighted text shows that the Revision number of the repository has increased
by one.

Version Control 101

[62]

Now we can check out a copy of the trunk.

3. Type:
 svn checkout http://servername/svn/sandbox/trunk sandbox
 and press Enter.

This will check out a copy of the trunk into a folder called sandbox (which we are
storing in our local projects folder).

Too much typing
By the end of this chapter we will be sick of typing long Subversion
commands. Fortunately it supports shortcuts for some commands, for
e.g. co for checkout and ci for checkin. Run svn help to see a list of
available commands and their shortcuts (shown in parentheses).

After Subversion has told us which revision we have checked out (Revision 1 in this
case), we can run the information command against our working copy.

4. Type cd sandbox and press Enter.
5. Type svn info and press Enter.

$ svn info
Path: .
URL: http://projects.example.com/svn/sandbox/trunk
Repository Root: http://projects.example.com/svn/sandbox
Repository UUID: 677246c4-9c0b-4019-ac6e-f268985e4c37
Revision: 1
Node Kind: directory
Schedule: normal
Last Changed Author: user@example.com
Last Changed Rev: 1
Last Changed Date: 2007-08-11 14:01:20 +0100 (Sat, 11 Aug 2007)

Notice that we did not have to supply a URL for the information command this time.
This is because Subversion knows when it is in a folder under revision control due
to the hidden .svn folders containing its information. Try it out—run svn info in
another (uncontrolled) folder and see what happens.

Numeric values do not take quotation marks while string values do.
But, when using the map notation, quotation marks are not required for
property names if they are written in camel-cased DOM notation.

Chapter 6

[63]

Now we have our working copy of the trunk, we can make some changes. We
should create a single or several files in our local sandbox folder. In the following
examples some simple Python scripts will be used for our files. When we have done
that, we need to let Subversion know about them—until we do so, they will not be
under version control. To see what has been changed since the last revision, we can
use the status command.

6. Type svn status and press Enter.

 $ svn status
 ? foo.py

The ? indicates that the file is unknown to subversion. To correct this we will add
the file.

7. Type svn add foo.py and press Enter.

 $ svn add foo.py
 A foo.py

Now our file is marked with an A, which tells us the file has been added. Reviewing
the status again will provide the same listing. Subversion uses a number of
character codes to represent a file or folder's status, some of which are shown below.
For more information on the possible codes, run svn help status.

Code Meaning
? Not under version control
A Added, but not yet checked in
M Modified
<blank> Unmodified
I Ignored by Subversion
! Missing

Although we have added our file to Subversion, it is not yet under version control.
So to achieve this we have to check in or commit our changes—that will store them
in our repositories.

8. Type svn commit and press Enter.

Version Control 101

[64]

Since we did not specify a log message (the -m parameter) we will be prompted to
provide one using a temporary file in our default text editor. We need to add our
log entry ("Created sample script.") and save the file. As the Subversion commit
action progresses we will receive details of what is happening.

$ svn commit
Adding foo.py
Transmitting file data .
Committed revision 2.

If we run the info command again on our working copy and the repository we will
see that something is wrong! The repository is indeed on revision 2, but our working
copy is still on revision 1. How did that happen? The reason is that our working
copy is just a copy. commit commands work directly on the repository as we saw
earlier. Resynchronizing our working copy with the repository is easy with the
update command.

9. Type svn update and press Enter.

The next command we will see is very useful, although of course it could be argued
that they are all useful. The command in question is log, which allows us to see the
history of a repository or even a specific file or folder within it.

10. Type svn log and press Enter.

$ svn log
--
r2 | user@example.com | 2007-08-12 14:26:46 +0100 (Sun, 12 Aug 2007) |
3 lines

Created sample script.

--
r1 | user@example.com | 2007-08-11 14:01:20 +0100 (Sat, 11 Aug 2007) |
1 line

Initial repository structure
--

Make another change to the file and check in the changes, then see how the info and
log have changed.

Chapter 6

[65]

What's the Difference?
Apart from allowing us to travel through time for any file under its control,
Subversion can also tell us exactly what changed between versions or the changes
we made to our working copy. If we make some changes to our one-and-only project
file, but don't check them in, we can look at how this works.

First we can see what has changed in our working copy compared to the latest
version (known as 'head').

1. Type svn status and press Enter.

 $ svn status

 M foo.py

From the previous table above we can tell that foo.py has been modified. We can see
what changes have been made to that file with the diff command.

2. Type svn diff foo.py and press Enter.

$ svn diff foo.py
Index: foo.py
===
--- foo.py (revision 3)
+++ foo.py (working copy)
@@ -1,4 +1,3 @@
 #! /usr/bin/python
-print "Hello, world!"
 name = raw_input('What is your name? ')
 print 'Hello, %s' % name

Subversion defaults to displaying its differences using the unified diff format,
which is understood by a wide variety of tools. We can also understand it with a
little practice. The two lines after the header tell us about the files that are being
compared, in this case the head and work copy versions of the file. The symbols
before the filenames describe the prefix the output will use to indicate the file a
particular line belongs to. Lines that are same in both files have no prefix.

Using this basic understanding, we can determine that the line -print "Hello,
world!" is present only in the head copy of the file, meaning we have deleted it from
the working copy.

Version Control 101

[66]

Changing your mind
If you decide the changes made to the working copy are not good and
you want to go back to the previous version, you can achieve it with the
revert command: svn revert foo.py

Spotting lines that have been added or removed is easy, but what about lines that
have been changed?

$ svn diff foo.py
Index: foo.py
===
--- foo.py (revision 3)
+++ foo.py (working copy)
@@ -1,4 +1,4 @@
 #! /usr/bin/python
-print "Hello, world!"
+print "Hello, World!"
 name = raw_input('What is your name? ')
 print 'Hello, %s' % name

In this case we are shown the same line from both the files; we can see the line that
was removed and the line that it was replaced with.

A whole new line?
diff deal with files on a line-by-line basis, so even if only one character
has been changed—as above—it considers that the whole line as
being changed.

We can also perform a diff on different versions of a file in the repository. To see
what changed between the last two revisions of our file perform the following:

3. Type svn diff -r 2:3 foo.py and press Enter.

$ svn diff -r 2:3 foo.py
Index: foo.py
===
--- foo.py (revision 2)
+++ foo.py (revision 3)
@@ -1,2 +1,4 @@
 #! /usr/bin/python
 print "Hello, world!"
+name = raw_input('What is your name? ')
+print 'Hello, %s' % name

Chapter 6

[67]

Easy on the Eyes
Although the log and diff output that Subversion provides is perfectly adequate
for working with it, there is a better way—especially for sharing between team
members. It's time to return to Trac and explore its code browser.

Where is it?
When we set up our security in Chapter 3 we restricted the code browser
to authenticated users, so we need log in (if we are not already logged in)
before we can continue. See Chapter 4 for a refresher on how to do this.

We need to click the Browse Source link in the main Trac menu to see the default
view, which is the latest version of the root of our repository. If we click on trunk we
will see the contents of that folder, and clicking on the file name will show the latest
version of that file along with some of the meta-information Subversion stores. If
instead of clicking on the file name we click on the version number beside it, we will
be shown the Subversion log for that file. Finally by clicking on a Changeset number
within the log we will be able to see what was changed for that revision. If we
just want to see the most recent change, we can click the Last Change link in the
default view.

Linking to code
Like the other features of Trac, we can link to parts of the code browser
in areas that support wiki formatting. We can link to changesets, files,
revisions of files, differences between files, and other views. All the ways
of doing these are detailed in the wiki page TracLinks, which exists in
every Trac environment we configure.

Version Control 101

[68]

Opening a New Branch
We have seen how Subversion allows us to keep our code under control as we
develop; now we will see how we can use it to develop safely.

Consider this series of events: we spend a few days perfecting new reporting
functionality for our application, but it depends on an already existing function.
While we are writing our code another developer changes the way the function
works, which causes our code to break, and checks that in. We then check our code
in, without realizing that it no longer works. The end result? The code in trunk is
broken. This is a situation we should strive to avoid—ideally the code in trunk
should always work (undiscovered/unresolved bugs not withstanding).

So how do we develop things and get the benefits of Subversion if we can't check in
incomplete code? The answer is by using branches.

Chapter 6

[69]

When to check in?
This is purely a personal preference, but most will say that we should
only check in code that works. This can result in large gaps between
checkins, so we can counter that by breaking large changes into smaller
ones. This is not a hard and fast rule though, so be prepared to adapt
when required.

A branch is quite simply a copy of a folder in the repository. We create a branch
for the feature or bug we are working on, checking in as we go. Once we have
completed that section we will then merge our changes back into the trunk. There is
a caveat though—our branch will be based on a moment in time, and the trunk may
change between the creation of our branch and when we merge our changes back in.
We need to take responsibility for ensuring our changes merge cleanly with other
changes that may have been made.

Creating a branch is quite simple, but we need to make the changes in the repository
rather than our working copy.

1. Type:

 svn copy http://servername/svn/sandbox/trunk http://servername

 /svn/sandbox/branches/mybranch -m "Created a branch"

 and press Enter.

As with any other change to the repository, this results in the revision number being
incremented—revisions are repository-wide.

We now have two choices for working with our branch: we can check it out into
another folder, or we can switch our current working copy to use it. Since we
already know how to do the former, we'll try out the latter.

2. Type svn switch http://servername/svn/sandbox/branches/mybranch
and press Enter.

We can confirm the switch has happened by using the info command again. Any
changes we make and commit will now be stored in our branch rather than the
trunk. Go ahead and make some.

Version Control 101

[70]

To switch or check out?
A good approach is to maintain two working copies of a project's trunk,
which we will call stable and unstable. We will never touch the stable
other than to update it or run/test the code. All changes are made in the
unstable copy, which we can either recreate every time we work on a new
branch or use switch to change to the branch we want.
This approach pays dividends when we are working with larger projects
where we may want to branch only a single folder or work with multiple
(non-conflicting) branches.

When we have finished our changes—and checked them in!—we need to merge them
back into the trunk. First we need to switch our working copy back to the trunk.

3. Type svn switch http://servername/svn/sandbox/trunk
and press Enter.

Now we need to determine which revisions we want to merge into the trunk.

4. Type:
 svn log http://servername/svn/sandbox/branches/

 mybranch --stop-on-copy

 and press Enter.

This provides us with the log entries for our branch from the point it was created up
to its latest change.

$ svn log http://projects.example.com/svn/sandbox/branches/mybranch -
-stop-on-copy
--
r5 | user@example.com | 2007-08-22 12:58:33 +0100 (Wed, 22 Aug 2007) |
1 line

Made greeting more polite
--
r4 | user@example.com | 2007-08-22 12:52:57 +0100 (Wed, 22 Aug 2007) |
1 line

Created a branch
--

From this we can see that we want to merge all changes between revision 4 and 5
(not a very complex branch).

5. Type:
 svn merge -r4:5 http://servername/svn/sandbox/branches/mybranch

 and press Enter.

Chapter 6

[71]

We now have the changes from our branch, but we need to check them in.

6. Type svn ci -m "Merged changes from mybranch" and press Enter.

Finally, if we no longer require our branch, we can clean up by deleting our branch.
Don't worry though—we can always get it back later. This is a good habit to get into,
as we will see in the next chapter.

7. Type:
svn delete http://servername/svn/sandbox/branches/mybranch -m
"Removing obsolete branch" and press Enter.

Summary
This brings us to the end of our introduction to the various tools. In the next
chapter we will see how they can be used together to manage various stages in a
project's life cycle.

Putting It All Together
In the last few chapters we looked at various Trac features and learned the basics of
Subversion. We will now put all this together and see how using our solution can
help us manage software development.

We will look at the two specific activities that are repeated most often during the
software development process—implementing a new feature and fixing a bug—and
follow the work flow through each of them.

Our Feature Presentation
One popular way to view an application is as a collection of features. What are
features? Features allow our application to be useful, or may even be its reason for
existing. Consider the ubiquitous text editor—a pretty simple application at first
glance. It not only lets us edit text, but also open, save, and print files. Of course
features can have sub-features; text editing will also include things like cut, copy,
and paste, spell check, formatting, etc.

Thinking of an application in terms of features (sub-features, and sub-sub-features)
allows us to break down our projects into chunks or tasks, which are much easier to
manage. Of course some features will be inter-dependent, but we should consider
them independent and move to the next one only when one has been completed.
If the feature we want to work on depends on another feature, then we need to
complete that feature. Refer back to Chapter 1 and see how thinking in terms of
features fits well into our introduction to task management—tasks and features are
one and the same thing.

Putting It All Together

[74]

Creepy Crawlies
Bugs, (yet another) bane of a developer's life. They can manifest in the strangest
ways that make finding and fixing them extremely hard. Every developer has to deal
with bugs as no code is perfect. Bugs can be caused by the platform rather than the
code written. Like features, bugs should be considered standalone and addressed in
isolation from other changes, unless there are obvious dependencies. This approach
not only brings the obvious task management benefits, but is also less likely to
introduce more bugs if we keep our changes in focus.

Is There Any Difference?
The short answer is no. Besides the obvious difference in how features requests and
bugs are initially reported, the only other significant difference is that features are
generally new code while bugs almost exclusively deal with existing code.

A Common Sequence
As we have just seen, our two sequences are actually quite similar. Both require
something to be reported—either a feature request or a bug, which in Trac
terminology are an enhancement and a defect respectively. However both are types
of ticket, and tickets equate to tasks, which is what we are aiming to manage.

Tasks and tasks
When we first looked at tickets in Chapter 5, we saw that defect,
enhancement, and task were default ticket types. We also use the
term task in relation to project management. Fortunately we can safely
avoid confusing the two—we will not be using the task ticket type in
this chapter.

Once we have our ticket and we have decided that this is something we are going
to tackle, then we move on to the execution of that task, and finally mark the task as
complete by resolving the ticket. Here is the sequence of events, including the steps
required to execute the task:

1. Raise a ticket.
2. Target to a milestone.
3. Assign to a developer.
4. Create a branch.
5. Make the changes.
6. Merge into the trunk.
7. Resolve the ticket.

Chapter 7

[75]

Although we use the same sequence of events for both features and bugs, the details
for each are sufficiently different and we only want to deal with an overview here.

One benefit of using tickets to track tasks is that we get a numerical
reference—the ticket number—which can be used in branch names and
commit logs to keep everything together.

Adding a Feature
Features could come in from many sources, but ideally they should be controlled by
the development team or—if they are lucky enough to have one—their development
manager. Features may be suggested by users, requested by customers, or created by
the developers themselves. Ultimately three decisions need to be made about each
proposed feature: if, when, and who. None of these really need much explanation
beyond what we have already covered in Chapter 1. However, if is worth touching
on again. Not every feature should make the cut when deciding what is going to be
included in our project. There are no absolute rules for this, but if we generally ask
the question whether or not a feature should be included in our application, then the
answer should be no. Of course this does not stop people from requesting features!

By now we should think of tickets and milestones within Trac, but we do not need
a ticket for every feature. Instead, features should start out in the wiki. We need
a page, for e.g. ProposedFeatures, which would lists the proposed features along
with a summary for each and optionally have a separate page for those features
that require more detailed information or discussion. Since it is a wiki page, anyone
with access can modify this list, or features can be fleshed out in their own pages
before they are added to the list. Our development team can then review this list
when planning our next set of milestones and the features we intend to include in
each of them. As features make or miss the cut, they can be amended with links to
the relevant tickets or moved to another page e.g. PlannedFeatures. By using the
wiki and its versioning features we now have no excuse for losing sight of a feature
once it has been proposed. We should also use the same list to keep track of feature
requests that come in via tickets, perhaps using the ticket query macros as shown
in Chapter 5.

Now having decided that we are actually going to implement a particular feature
or not—our if question—it is time to raise a ticket. We may already have one if that
was how the feature was proposed. We won't repeat what we have seen previously,
but we will look at certain aspects of the process. For explicit details for the steps
discussed here, refer to Chapter 5.

Putting It All Together

[76]

The most obvious thing is that feature requests should have the enhancement ticket
type. The description of the ticket can be copied from our features wiki page, or if
the feature has its own page we can link to it. If we have defined components for our
project then we should select the right one either now or in the next step.

Once we have raised our ticket, we need to decide when, and for that we use the
milestone feature of Trac. If we do not have a relevant milestone configured, then we
should do that now. We can then modify our ticket to choose the milestone we
are targeting.

Unfortunately, Trac currently does not have the concept of ticket
dependencies so this is something we need to manage ourselves using the
wiki formatting to provide links between related tickets.

We now have a list of features that need to be implemented, and thanks to our
milestones we know which we should be working on now. We can see these in the
following two ways:

1. Via the Roadmap view, accessed from the Roadmap entry on the menu bar
in Trac.

2. Via the View Tickets entry on the menu bar and then choosing the Active
Tickets by Milestone report.

Having raised our ticket and decided when we are going to do it, we need to decide
who will implement it. We do this by assigning the ticket to someone, who then
becomes responsible for executing any actions required by the ticket, including
closing it when complete. This is also known as resolving the ticket. We do this by
editing the ticket and either accepting it—if we are going to perform the work—or
assigning it to a valid user name of someone in our development team.

Once tickets have been assigned to someone they can easily view their tickets via the
View Tickets entry on the menu bar and then choosing the My Tickets report. Now
our developers have a simple job of working through the open tickets on their list.

Chapter 7

[77]

As already discussed, each ticket should have its own branch. We do this so that
changes made are isolated from the development trunk and from other branches.
This means that we are always developing against a known quantity—the trunk. Our
branches are created exactly as shown in the previous chapter, except that the branch
name and commit log should make a reference to the ticket number, e.g. for ticket
#29 we could call our branch feature-29 or feature-29-add_spell_checking and
our commit log would be something like "Branched to add spell checking. See
ticket #29.". As we are developing something new, our branch should be made
from the HEAD revision of the trunk.

Now we can finally do what we do best—develop—safe in the knowledge that:

1. We know exactly what we are supposed to be doing.
2. What we are doing is not going to affect anyone else until we merge.

Since we are working in our own branch, we can commit our changes as often as we
like and we should take advantage of this. The only rule is that we have to commit
prior to merging the changes back into the trunk. The decision to merge should
be based on one question only: is the feature complete? If the answer is positive, we
should stop coding, commit and merge. We should not be tempted to overdevelop
a feature or re-use a branch—once we have merged into the trunk and committed
the changes, then the branch should be discarded or even deleted. As with the
branch log, the merge log should make reference to the feature ticket number e.g.
"Addresses ticket #29 by implementing spell checking.".

What about code reviews?
Code reviews are a good thing, and if we do not have them in place
already then we should. We should integrate them into the processes
described in this book wherever we feel they are appropriate.

Once our changes have been merged into the trunk, our ticket can be marked as
resolved, and to close the loop within Trac, a comment should be added, which
makes reference to the revision that resulted from the merge. Using comments in
this way means that we can used the interlinking feature of Trac to link our ticket to
the revision in the Subversion that contains the changes. We can view this revision
through the code browser in Trac; and by including the ticket number in our commit
log in Subversion, a link will be created between the revision in the code browser
and the tickets that drove the changes.

Now our code is merged and our ticket resolved. Our feature is now complete and
our milestone is a step closer. Now it's time to start on the next one.

Putting It All Together

[78]

Tagging a Release
When we have completed all the features and bugs for a milestone it is time to
release. This will consist of actions like testing, quality assurance, packaging, and
distribution, but here we are only concerned with one: tagging. This allows us to
capture a snapshot of our Subversion repository at that moment in time that is
subsequently easy to return to. We could just work with revision numbers and
remember each one for future reference, but tags make the process friendly and give
a feeling of accomplishment. Without tags the code will seem in a constant state of
flux, whereas with them we have solid points of reference.

Creating a tag has the same process as branching, which was described in Chapter 6,
except that we place them in the tags path rather than branches. Tag names should
correspond to the milestones we have defined in Trac.

Fixing a Bug
We need to follow a slightly different work flow for fixing a bug. Bugs—or defects
in Trac terminology—should always start with a ticket, even if it is one of the
developers who discovers it. New bugs should be processed on a regular basis—an
activity commonly referred to as triage—with the frequency being anything from
the moment each bug is reported to hourly, daily, or even weekly but we should
not have a processing cycle longer than that. This process aims to answer a few
immediate questions:

Has it been reported before?
Is the report valid?
Is it reproducible?
How severe is it?

Different projects may have different questions, but if we can answer these then we
have a good start. The benefit of asking the first question is obvious: if a ticket for
a similar bug already exists we can resolve this one as a duplicate within Trac and
move on. We should remember, though, to add a comment saying which ticket this
is a duplicate of. If this is genuinely a new bug then we need to establish whether
the ticket contains enough information to proceed or not. If not then we may need
to enter into a dialog with the reporter to obtain more information. Determining
whether a bug is reproducible also saves us time—if the bug only manifests itself
for the reporter then our developer will have a harder time trying to fix it. Lastly
deciding how severe the bug is lets us prioritize our bugs, and again Trac provides a
mechanism for this through the severity field within tickets.

•

•

•

•

Chapter 7

[79]

Once we have a triaged bug then we need to ask the same if, when, and who
questions as we did for a feature. Although we like to fix every single bug, the simple
reality is that we cannot. First we need to decide if we are going to fix it, a decision
most likely based on how severe it is and whether we can reproduce it. Trac provides
us with the wontfix resolution for tickets that we are never going to address. For
the bugs we are going to address, we should now target them to milestones just as
we did for features. Here the secret is to be realistic about the bugs we are going
to address in each milestone—if we assign all to the next milestone we will never
reach it. Severe bugs have a higher priority and so should be targeted earlier, but
we should not just address high priority bugs. Finally we can assign the bug to a
developer to actually fix.

Now our process relates more clearly with the one for features. However, branching
for bugs is slightly different. Since we are dealing with code that already exists we
will probably not want to branch from the HEAD revision of the trunk, but rather an
earlier revision. Finding the right revision can be an issue, but we have already seen
the solution for this—tags. As bugs are generally filed against a particular version or
milestone of our application, then being able to branch from the relevant tag makes
life much easier. As before our branch name and log should reference the ticket
number, e.g. for ticket #51 we could call our branch bug-51 and our commit log
would be something like "Branched to fix ticket #51 – Crashes when saving.".

We can now use our branch to find and fix the bug. Determining exactly how to fix
a bug is not always obvious, and once again Trac helps us with this. Tickets can be
used to track the dialog relating to that ticket, and we can use this along with the
code browser to obtain help from other developers in our team to pinpoint the cause
and find a solution. Once we have fixed it we can merge our changes back into the
trunk—referencing the ticket once more—and then resolve our ticket as before.

Summary
In this chapter we saw how to address the two most common tasks during a
software development project—adding a feature and fixing a bug. We not only saw
the common work flow shared by these two activities but also how they differ. We
looked at how to plan work using milestones and use tags in Subversion to mark
significant moments in time—like the completion of our milestones.

With our knowledge of project management for software development, our project
server using Trac and Subversion, and the skills and processes for using them to add
features and fix bugs, we are now ready to manage our software development.

Installing Subversion
This appendix covers detailed, step-by-step instructions for installing Subversion
on your system, and covers Microsoft Windows and Linux. Unless otherwise noted,
these instructions apply to both Client and Server installations.

Microsoft Windows
If you are configuring a server, you should install Apache (Appendix B)
prior to installing Subversion.

1. Download and run svn-1.4.5-setup.exe from http://subversion.
tigris.org/files/documents/15/39559/svn-1.4.5-setup.exe. You
should observe the following screenshot:

Although this book is using the latest version available at the time of
writing, times do change and software always gets updated. To get the
latest version of Subversion, visit:
http://subversion.tigris.org/servlets/ProjectDocumentL
ist?folderID=91

Installing Subversion

[82]

2. Click Yes and then Next to progress and pass the welcome screen.

3. Select I accept the agreement and click Next.

Appendix A

[83]

4. Click Next.

5. Change the installation path if required (not recommended) and click Next.

Installing Subversion

[84]

6. Change the folder name if required (not recommended) and click Next.

If you have not installed Apache, the final option Install and configure
Subversion modules will not be shown.

7. Deselect the Desktop icons and Quick Launch icons options, but leave the
Apache modules option selected and click Next.

Appendix A

[85]

8. Confirm the details and click Install.
9. Wait while the installation takes place.

10. Click Next.

Installing Subversion

[86]

11. Click Finish.

You can test the installation by opening a command prompt and typing
svn --version then pressing Enter. If everything is working OK we should see a
result similar to the following (most of the output will have flowed off the screen):

Linux
We will discuss Ubuntu and Debian in the following section.

Ubuntu and Debian
Things are much easier under Ubuntu and Debian. To install Subversion simply use
the following instructions.

Client
To install Subversion on your client, use the following command from the console:

$ sudo apt-get install subversion

Answer yes when are asked to confirm the action, and that is it!

Appendix A

[87]

Server
Installing the server components under Linux is significantly easier than on
Microsoft Windows. Use the following command from the console:

$ sudo apt-get install subversion libapache2-svn

Again answer yes when prompted. This will automatically install Subversion,
Apache, and the Apache Subversion module for us all in one go.

Installing Apache
This appendix covers detailed, step-by-step instructions for installing the Apache
web server on your system, and covers Microsoft Windows and Linux. Apache is
needed only on the Server side, not on the Client.

Specific configuration of Apache for the solution described in this book is covered
in Chapter 3.

Microsoft Windows
For Server installations on Microsoft Windows, Apache should be installed
before installing Subversion. Doing so means that the Subversion installs
will detect the presence of Apache and will automatically configure itself
accordingly. In simpler terms, doing it this way means less work.

Although this book is using the latest version available at the time of
writing, times do change and software always gets updated. To get the
latest version of Apache, visit:
http://www.mirrorservice.org/sites/ftp.apache.org/
httpd/binaries/win32/

or
http://httpd.apache.org/download.cgi

www.allitebooks.com

http://www.allitebooks.org

Installing Apache

[90]

1. Download and run apache_2.0.61-win32-x86-no_ssl.msi from
http://www.mirrorservice.org/sites/ftp.apache.org/httpd/
binaries/win32/apache_2.0.61-win32-x86-no_ssl.msi. The following
window will be observed:

2. Click Next.

Appendix B

[91]

3. Select I accept the terms in the license agreement and click Next.
4. Click Next.

5. Change the Network Domain, Server Name, and Administrator's Email
Address as required and click Next.

Installing Apache

[92]

6. Click Next to accept the Typical installation.

7. Change the installation folder if required (not recommended) and click Next.

Appendix B

[93]

8. Click Install to start the installation.
9. Wait while the installation takes place.

10. Click Finish to complete the installation.

Linux
We will discuss Ubuntu and Debian in the following section.

Ubuntu and Debian
Installation of Apache is far easier under Ubuntu and Debian as the package
management software used will handle the dependencies for us.

To install Apache, simply run the following command from a console:

$ sudo apt-get install apache2

Answer yes when prompted.

However this will only install Apache. We need to have Apache and Subversion
installed on our server. See Appendix A for details of installing Subversion.

Installing Trac
This appendix covers detailed, step-by-step instructions for installing Trac and
its dependencies, and covers Microsoft Windows and Linux. Trac needs to
be installed on your server. You will use a web browser to access it from
other machines.

Trac is very easy to install, but has a number of dependencies that must be satisfied
first. As Trac is written in Python, our first requirement is obvious. There are several
versions of Python available, but the recommended version is 2.4. For data storage
Trac can use a variety of databases. SQLite was the only original option, and remains
the most popular, primarily because it is the easiest to configure. For these reasons
the instructions that follow assume you will also use SQLite.

Keeping your options open
Although these instructions cover only SQLite, you can choose a different
database if you wish. Details of using alternatives can be found at:
http://trac.edgewall.org/wiki/DatabaseBackend

SQLite is unusual in that there is no server software to install. Instead databases are
single files, which can be used by any application that uses the SQLite library. This
means that for Trac, we need to have the Python SQLite library installed. In order to
communicate with Subversion, Trac requires the Python Subversion library. Finally
it uses ClearSilver for its template system.

Future Proofing
Although Trac uses ClearSilver in the version covered by this book
(0.10.x), the developers have replaced it with a different system called
Genshi for the version currently in development (0.11). Details on Genshi
can be found at:
http://genshi.edgewall.org/

Installing Trac

[96]

Microsoft Windows
The following section describes the required installations.

Python
1. Download and run python-2.4.4.msi from

http://www.python.org/ftp/python/2.4.4/python-2.4.4.msi. The
following window will be observed.

Although this book is using the latest version available at the time of
writing, times do change and software always gets updated. To get the
latest version of Python 2.4, visit:
http://www.python.org/download/

Appendix C

[97]

2. Leave Install for all users selected and click Next.

3. Click Next to accept the default destination directory.

Installing Trac

[98]

4. Leave all features selected and click Next.
5. Wait while the installation takes place.

6. Click Finish to complete the installation.

Python Subversion Bindings
1. Download and run svn-python-1.4.4.win32-py2.4.exe from

http://subversion.tigris.org/files/documents/15/38214/

svn-python-1.4.4.win32-py2.4.exe.

The latest version of this package can be found at:
http://subversion.tigris.org/servlets/ProjectDocumentL
ist?folderID=91

Appendix C

[99]

2. Click Next to skip the welcome screen.

3. Ensure that Python 2.4 is selected and click Next.

Potential for confusion
It is possible to have multiple versions of Python installed side-by-side. If
this is the case for you, then in the previous step you need to ensure the
correct version (2.4) is chosen.

4. Click Next to start the installation.
5. Click Finish to complete the installation.

Python SQLite Bindings
1. Download and run pysqlite-2.3.5.win32-py2.4.exe from

http://initd.org/pub/software/pysqlite/releases/2.3/2.3.5/
pysqlite-2.3.5.win32-py2.4.exe.

To obtain the latest version (again, making sure it is for Python 2.4) visit:
http://www.initd.org/tracker/pysqlite/wiki/pysqlite

Installing Trac

[100]

2. Click Next to skip past the welcome screen.
3. Ensure Python 2.4 is selected and click Next.
4. Click Next to start the installation.
5. Click Finish to complete the installation.

ClearSilver
1. Download and run clearsilver-0.9.14.win32-py2.4.exe from

http://www.clearsilver.net/downloads/win32/clearsilver-0.9.14.
win32-py2.4.exe.

To obtain the latest version of ClearSilver for Python 2.4, visit:
http://www.clearsilver.net/downloads/

2. Click Next on the welcome screen.
3. Ensure Python 2.4 is selected and click Next.
4. Click Next to start the installation.
5. Click Finish to complete the installation.

Trac
1. Download and run trac-0.10.4.win32.exe from http://ftp.edgewall.com/

pub/trac/trac-0.10.4.win32.exe.

To obtain the latest version of Trac, visit:
http://trac.edgewall.org/wiki/TracDownload

2. Click Next at the welcome screen.
3. Ensure Python 2.4 is selected and click Next.
4. Click Next to start the installation.
5. Click Finish to complete the installation.

Appendix C

[101]

Linux
Installing Trac under Linux requires us to carry out the same two steps as for
Microsoft Windows—installing the dependencies, and installing Trac itself.

Ubuntu and Debian

Installing the Dependencies
These can be installed with the following command:

$ sudo apt-get install python2.4-pysqlite2 python2.4-subversion
 python-clearsilver

Installing Trac
1. Download Trac with:

wget http://ftp.edgewall.com/pub/trac/trac-0.10.4.tar.gz

2. Extract the files with:
tar -xzf trac-0.10.4.tar.gz

3. Change into the extracted folder with:
cd trac-0.10.4

4. Run the installation with:
sudo python setup.py install

Index
A
Apache

installing on Linux 93
installing on Microsoft Windows 90-93

Apache web server
about 21
authentication 22

D
documentation 37

F
features, software development

documentation 9
error reports 10
releases 10
requirements 10
revision control 10
roadmaps 9

L
Linux

about 25
Apache, installing 93
Trac, installing 101
Ubuntu and Debain 86, 101
versions 26

M
Microsoft Windows

about 26
Apache, installing 90-93

ClearSilver, installing 100
Python, installing 96-98
Python SQLite bindings, installing 99, 100
Python Subversion bindings, installing

98, 99
Subversion, installing 81-86
Trac, installing 100
versions 26

O
operating systems

Linux 25
Microsoft Windows 26
selecting 25

P
project management

about 5
communication 8
task management 6

S
security, server

about 34
file permissions 35
Linux file permissions 35
Trac permissions 36
users, managing 34

server
security 34

server platform
Apache, configuring 29, 30
components, installing 27
dav_fs, enabling 30-32

[104]

organizing 27, 28
projects, creating 32
trac.cg, customizing 29
working on 27

software development
bug, fixing 78, 79
bugs 74
feature, adding 75-77
feature, implementing 76
feature, presentation 73
features 9
managing 11
project management 9
release, tagging 78
task, executing steps 74

software development, managing
developers user guide 11
isolation, developing 12
project, laying out on file system 11
small steps, implementing 13
task, managing 12

Subversion
about 15
features 16, 17
installing on Linux 86
installing on Microsoft Windows 81-86
repository 59

Subversion repository
authenticating 60
branch 68, 69
branch, changes merging with trunk 70
branch, creating 69
branch, working ways 69
changes, viewing 65, 66
character codes 63
commit command 64
diff command 65
folders 61
folders, branches 61
folders, tags 61
folders, trunk 61
info command 64
information 61
information command, running 62
initial structure, creating 61
log command 64

status command 63
trunk, checking out copy 62
working copy 59, 60
working copy, resynchronizing 64

T
task management

about 6-8
dependency management 6
resource management 6
reviewing 7
scheduling 7
task determination 6
task execution 7

ticket properties, Trac
component, predetermined values 52
free text fields 48
milestone, predetermined values 52
predetermined values 48, 50
priority, predetermined values 51
ticket types, predetermined values 50, 51
version, predetermined values 53

tickets, Trac
creating 47, 48
customizing 50
default values, customizing 53
milestones, using 56, 57
properties 48
viewing 54
viewing, embedded queries 54
viewing, linked queries 54

Trac
about 18
acessing 38, 40
code browser 67
documentation 37
documentation, simplifying 37
installing on Linux 101
installing on Microsoft Windows 96
roadmap 20
subversion repository browser 21
tickets 19
tickets, fields 20
tickets, properties 20
time 21
wiki 19

[105]

U
Ubuntu and Debain, Linux

Apache, installing 93
dependencies, installing 101
Subversion, installing on client 86
Subversion, installing on server 87
Trac, installing 101

W
WebDAV

about 22
uses 22

wiki, Trac
about 38
content, editing 40
page history 44
plain text files, exporting 45
SandBox, edting 42, 43
text, formatting 40, 41

	Managing Software Development with Trac and Subversion
	Table of Contents
	Preface
	Chapter 1: Understanding the Problem
	Task Management
	Communication
	Project Management for Software Development
	Managing Software Development
	Keep Ourselves Organized

	Summary

	Chapter 2: Introducing the Solution
	An Ensemble Cast
	Subversion
	Trac
	Wiki
	Tickets
	Fields

	Roadmap
	Subversion Repository Browser
	Timeline

	Apache Web Server
	Authentication

	WebDAV
	How It All Fits Together
	Summary

	Chapter 3: Laying the Foundations
	Which Platform?
	Linux
	Microsoft Windows

	Which Version?
	Time to Get Our Hands Dirty
	Installing the Components
	Keeping It Organized
	Customizing trac.cgi
	Configuring Apache
	Enabling dav_fs

	Creating Projects

	Security
	Managing Users
	File Permissions
	Trac Permissions

	Summary

	Chapter 4: Documentation
	Making Documentation Easy
	Accessing Trac
	A Touch of Style
	Formatting Text

	Playtime
	Creating New Pages
	Going Back in Time
	Taking It with Us

	Summary

	Chapter 5: Tracking Our Tasks
	Tickets Please
	Customization
	Ticket Types
	Priority
	Component
	Milestone
	Version
	Customizing Default Values

	Viewing Tickets
	Linked Queries
	Embedded Queries

	Using Milestones
	Summary

	Chapter 6: Version Control 101
	Check Out, Check In
	What's the Difference?
	Easy on the Eyes
	Opening a New Branch
	Summary

	Chapter 7: Putting It All Together
	Our Feature Presentation
	Creepy Crawlies
	Is There Any Difference?

	A Common Sequence
	Adding a Feature
	Tagging a Release
	Fixing a Bug
	Summary

	Appendix A: Installing Subversion
	Microsoft Windows
	Linux
	Ubuntu and Debian
	Client
	Server

	Appendix B: Installing Apache
	Microsoft Windows
	Linux
	Ubuntu and Debian

	Appendix C: Installing Trac
	Microsoft Windows
	Python
	Python Subversion Bindings
	Python SQLite Bindings
	ClearSilver
	Trac

	Linux
	Ubuntu and Debian
	Installing the Dependencies
	Installing Trac

	Index

