
Andreas M. Antonopoulos

Mastering

 Bitcoin
PROGRAMMING THE OPEN BLOCKCHAIN

2nd Edition

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Andreas M. Antonopoulos

Mastering Bitcoin
Programming the Open Blockchain

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-95438-6

[LSI]

Mastering Bitcoin
by Andreas M. Antonopoulos

Copyright © 2017 Andreas M. Antonopoulos, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Tim McGovern
Production Editor: Nicholas Adams
Copyeditor: Kim Cofer
Proofreader: Christina Edwards

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

June 2017: Second Edition

Revision History for the Second Edition
2017-06-01: First Release
2017-07-21: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491954386 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Mastering Bitcoin, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491954386
http://www.allitebooks.org

Dedicated to my mum, Theresa (1946–2017)

She taught me to love books and question authority

Thank you, mum

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface. xiii

Quick Glossary. xxiii

1. Introduction. 1
What Is Bitcoin? 1
History of Bitcoin 4
Bitcoin Uses, Users, and Their Stories 5
Getting Started 6

Choosing a Bitcoin Wallet 6
Quick Start 8
Getting Your First Bitcoin 10
Finding the Current Price of Bitcoin 11
Sending and Receiving Bitcoin 12

2. How Bitcoin Works. 15
Transactions, Blocks, Mining, and the Blockchain 15

Bitcoin Overview 15
Buying a Cup of Coffee 16

Bitcoin Transactions 18
Transaction Inputs and Outputs 18
Transaction Chains 19
Making Change 20
Common Transaction Forms 21

Constructing a Transaction 22
Getting the Right Inputs 22
Creating the Outputs 24
Adding the Transaction to the Ledger 25

Bitcoin Mining 26
Mining Transactions in Blocks 27

v

www.allitebooks.com

http://www.allitebooks.org

Spending the Transaction 29

3. Bitcoin Core: The Reference Implementation. 31
Bitcoin Development Environment 32
Compiling Bitcoin Core from the Source Code 32

Selecting a Bitcoin Core Release 33
Configuring the Bitcoin Core Build 34
Building the Bitcoin Core Executables 37

Running a Bitcoin Core Node 38
Running Bitcoin Core for the First Time 39
Configuring the Bitcoin Core Node 39

Bitcoin Core Application Programming Interface (API) 43
Getting Information on the Bitcoin Core Client Status 44
Exploring and Decoding Transactions 45
Exploring Blocks 47
Using Bitcoin Core’s Programmatic Interface 48

Alternative Clients, Libraries, and Toolkits 51
C/C++ 52
JavaScript 52
Java 52
Python 52
Ruby 53
Go 53
Rust 53
C# 53
Objective-C 53

4. Keys, Addresses. 55
Introduction 55

Public Key Cryptography and Cryptocurrency 56
Private and Public Keys 57
Private Keys 58
Public Keys 60
Elliptic Curve Cryptography Explained 60
Generating a Public Key 63

Bitcoin Addresses 64
Base58 and Base58Check Encoding 66
Key Formats 70

Implementing Keys and Addresses in Python 76
Advanced Keys and Addresses 80

Encrypted Private Keys (BIP-38) 80
Pay-to-Script Hash (P2SH) and Multisig Addresses 81

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Vanity Addresses 82
Paper Wallets 88

5. Wallets. 93
Wallet Technology Overview 93

Nondeterministic (Random) Wallets 94
Deterministic (Seeded) Wallets 95
HD Wallets (BIP-32/BIP-44) 96
Seeds and Mnemonic Codes (BIP-39) 97
Wallet Best Practices 97
Using a Bitcoin Wallet 98

Wallet Technology Details 99
Mnemonic Code Words (BIP-39) 99
Creating an HD Wallet from the Seed 106
Using an Extended Public Key on a Web Store 110

6. Transactions. 117
Introduction 117
Transactions in Detail 117

Transactions—Behind the Scenes 118
Transaction Outputs and Inputs 119

Transaction Outputs 121
Transaction Inputs 123
Transaction Fees 126
Adding Fees to Transactions 129

Transaction Scripts and Script Language 131
Turing Incompleteness 131
Stateless Verification 132
Script Construction (Lock + Unlock) 132
Pay-to-Public-Key-Hash (P2PKH) 136

Digital Signatures (ECDSA) 138
How Digital Signatures Work 139
Verifying the Signature 141
Signature Hash Types (SIGHASH) 141
ECDSA Math 143
The Importance of Randomness in Signatures 145

Bitcoin Addresses, Balances, and Other Abstractions 145

7. Advanced Transactions and Scripting. 149
Introduction 149
Multisignature 149
Pay-to-Script-Hash (P2SH) 151

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

P2SH Addresses 153
Benefits of P2SH 154
Redeem Script and Validation 154

Data Recording Output (RETURN) 155
Timelocks 157

Transaction Locktime (nLocktime) 157
Check Lock Time Verify (CLTV) 158
Relative Timelocks 160
Relative Timelocks with nSequence 160
Relative Timelocks with CSV 162
Median-Time-Past 162
Timelock Defense Against Fee Sniping 163

Scripts with Flow Control (Conditional Clauses) 164
Conditional Clauses with VERIFY Opcodes 165
Using Flow Control in Scripts 166

Complex Script Example 167

8. The Bitcoin Network. 171
Peer-to-Peer Network Architecture 171
Node Types and Roles 172
The Extended Bitcoin Network 173
Bitcoin Relay Networks 176
Network Discovery 176
Full Nodes 180
Exchanging “Inventory” 181
Simplified Payment Verification (SPV) Nodes 183
Bloom Filters 185

How Bloom Filters Work 186
How SPV Nodes Use Bloom Filters 189
SPV Nodes and Privacy 190
Encrypted and Authenticated Connections 191

Tor Transport 191
Peer-to-Peer Authentication and Encryption 191

Transaction Pools 192

9. The Blockchain. 195
Introduction 195
Structure of a Block 196
Block Header 197
Block Identifiers: Block Header Hash and Block Height 197
The Genesis Block 198
Linking Blocks in the Blockchain 200

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Merkle Trees 201
Merkle Trees and Simplified Payment Verification (SPV) 207
Bitcoin’s Test Blockchains 207

Testnet—Bitcoin’s Testing Playground 208
Segnet—The Segregated Witness Testnet 210
Regtest—The Local Blockchain 210

Using Test Blockchains for Development 211

10. Mining and Consensus. 213
Introduction 213

Bitcoin Economics and Currency Creation 215
Decentralized Consensus 217
Independent Verification of Transactions 218
Mining Nodes 219
Aggregating Transactions into Blocks 220

The Coinbase Transaction 221
Coinbase Reward and Fees 223
Structure of the Coinbase Transaction 224
Coinbase Data 225

Constructing the Block Header 227
Mining the Block 228

Proof-of-Work Algorithm 228
Target Representation 235
Retargeting to Adjust Difficulty 235

Successfully Mining the Block 237
Validating a New Block 238
Assembling and Selecting Chains of Blocks 239

Blockchain Forks 240
Mining and the Hashing Race 247

The Extra Nonce Solution 249
Mining Pools 250

Consensus Attacks 253
Changing the Consensus Rules 256

Hard Forks 256
Hard Forks: Software, Network, Mining, and Chain 258
Diverging Miners and Difficulty 259
Contentious Hard Forks 260
Soft Forks 261
Criticisms of Soft Forks 262

Soft Fork Signaling with Block Version 262
BIP-34 Signaling and Activation 263
BIP-9 Signaling and Activation 264

Table of Contents | ix

Consensus Software Development 266

11. Bitcoin Security. 269
Security Principles 269

Developing Bitcoin Systems Securely 270
The Root of Trust 271

User Security Best Practices 272
Physical Bitcoin Storage 273
Hardware Wallets 273
Balancing Risk 273
Diversifying Risk 274
Multisig and Governance 274
Survivability 274

Conclusion 274

12. Blockchain Applications. 275
Introduction 275
Building Blocks (Primitives) 276
Applications from Building Blocks 278
Colored Coins 278

Using Colored Coins 279
Issuing Colored Coins 280
Colored Coins Transactions 280

Counterparty 283
Payment Channels and State Channels 284

State Channels—Basic Concepts and Terminology 285
Simple Payment Channel Example 286
Making Trustless Channels 289
Asymmetric Revocable Commitments 292
Hash Time Lock Contracts (HTLC) 296

Routed Payment Channels (Lightning Network) 297
Basic Lightning Network Example 298
Lightning Network Transport and Routing 301
Lightning Network Benefits 303

Conclusion 304

A. The Bitcoin Whitepaper by Satoshi Nakamoto. 305

x | Table of Contents

B. Transaction Script Language Operators, Constants, and Symbols. 317

C. Bitcoin Improvement Proposals. 323

D. Segregated Witness. 329

E. Bitcore. 343

F. pycoin, ku, and tx. 347

G. Bitcoin Explorer (bx) Commands. 357

Index. 361

Table of Contents | xi

Preface

Writing the Bitcoin Book
I first stumbled upon bitcoin in mid-2011. My immediate reaction was more or less
“Pfft! Nerd money!” and I ignored it for another six months, failing to grasp its
importance. This is a reaction that I have seen repeated among many of the smartest
people I know, which gives me some consolation. The second time I came across bit‐
coin, in a mailing list discussion, I decided to read the whitepaper written by Satoshi
Nakamoto to study the authoritative source and see what it was all about. I still
remember the moment I finished reading those nine pages, when I realized that bit‐
coin was not simply a digital currency, but a network of trust that could also provide
the basis for so much more than just currencies. The realization that “this isn’t money,
it’s a decentralized trust network,” started me on a four-month journey to devour
every scrap of information about bitcoin I could find. I became obsessed and enthral‐
led, spending 12 or more hours each day glued to a screen, reading, writing, coding,
and learning as much as I could. I emerged from this state of fugue, more than 20
pounds lighter from lack of consistent meals, determined to dedicate myself to work‐
ing on bitcoin.

Two years later, after creating a number of small startups to explore various bitcoin-
related services and products, I decided that it was time to write my first book. Bit‐
coin was the topic that had driven me into a frenzy of creativity and consumed my
thoughts; it was the most exciting technology I had encountered since the internet. It
was now time to share my passion about this amazing technology with a broader
audience.

Intended Audience
This book is mostly intended for coders. If you can use a programming language, this
book will teach you how cryptographic currencies work, how to use them, and how
to develop software that works with them. The first few chapters are also suitable as

xiii

an in-depth introduction to bitcoin for noncoders—those trying to understand the
inner workings of bitcoin and cryptocurrencies.

Why Are There Bugs on the Cover?
The leafcutter ant is a species that exhibits highly complex behavior in a colony
super-organism, but each individual ant operates on a set of simple rules driven by
social interaction and the exchange of chemical scents (pheromones). Per Wikipedia:
“Next to humans, leafcutter ants form the largest and most complex animal societies
on Earth.” Leafcutter ants don’t actually eat leaves, but rather use them to farm a fun‐
gus, which is the central food source for the colony. Get that? These ants are farming!

Although ants form a caste-based society and have a queen for producing offspring,
there is no central authority or leader in an ant colony. The highly intelligent and
sophisticated behavior exhibited by a multimillion-member colony is an emergent
property from the interaction of the individuals in a social network.

Nature demonstrates that decentralized systems can be resilient and can produce
emergent complexity and incredible sophistication without the need for a central
authority, hierarchy, or complex parts.

Bitcoin is a highly sophisticated decentralized trust network that can support myriad
financial processes. Yet, each node in the bitcoin network follows a few simple mathe‐
matical rules. The interaction between many nodes is what leads to the emergence of
the sophisticated behavior, not any inherent complexity or trust in any single node.
Like an ant colony, the bitcoin network is a resilient network of simple nodes follow‐
ing simple rules that together can do amazing things without any central coordina‐
tion.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xiv | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip or suggestion.

This icon signifies a general note.

This icon indicates a warning or caution.

Code Examples
The examples are illustrated in Python, C++, and using the command line of a Unix-
like operating system such as Linux or macOS. All code snippets are available in the
Github repository (https://github.com/bitcoinbook/bitcoinbook) in the code subdirec‐
tory of the main repo. Fork the book code, try the code examples, or submit correc‐
tions via GitHub.

All the code snippets can be replicated on most operating systems with a minimal
installation of compilers and interpreters for the corresponding languages. Where
necessary, we provide basic installation instructions and step-by-step examples of the
output of those instructions.

Some of the code snippets and code output have been reformatted for print. In all
such cases, the lines have been split by a backslash (\) character, followed by a newline
character. When transcribing the examples, remove those two characters and join the
lines again and you should see identical results as shown in the example.

All the code snippets use real values and calculations where possible, so that you can
build from example to example and see the same results in any code you write to cal‐
culate the same values. For example, the private keys and corresponding public keys
and addresses are all real. The sample transactions, blocks, and blockchain references
have all been introduced in the actual bitcoin blockchain and are part of the public
ledger, so you can review them on any bitcoin system.

Preface | xv

https://github.com/bitcoinbook/bitcoinbook

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Mastering Bitcoin by Andreas M.
Antonopoulos (O’Reilly). Copyright 2017 Andreas M. Antonopoulos,
978-1-491-95438-6.”

Some editions of this book are offered under an open source license, such as CC-BY-
NC, in which case the terms of that license apply.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Bitcoin Addresses and Transactions in This Book
The bitcoin addresses, transactions, keys, QR codes, and blockchain data used in this
book are, for the most part, real. That means you can browse the blockchain, look at
the transactions offered as examples, retrieve them with your own scripts or pro‐
grams, etc.

However, note that the private keys used to construct addresses are either printed in
this book, or have been “burned.” That means that if you send money to any of these
addresses, the money will either be lost forever, or in some cases everyone who can
read the book can take it using the private keys printed in here.

DO NOT SEND MONEY TO ANY OF THE ADDRESSES IN
THIS BOOK. Your money will be taken by another reader, or lost
forever.

xvi | Preface

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:permissions@oreilly.com

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xvii

http://oreilly.com/safari
http://oreilly.com/safari
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Contacting the Author
You can contact me, Andreas M. Antonopoulos, on my personal site: https://antono
poulos.com/

Information about Mastering Bitcoin as well as the Open Edition and translations are
available on: https://bitcoinbook.info/

Follow me on Facebook: https://facebook.com/AndreasMAntonopoulos

Follow me on Twitter: https://twitter.com/aantonop

Follow me on Linkedin: https://linkedin.com/company/aantonop

Many thanks to all my patrons who support my work through monthly donations.
You can follow my Patreon page here: https://patreon.com/aantonop

Acknowledgments
This book represents the efforts and contributions of many people. I am grateful for
all the help I received from friends, colleagues, and even complete strangers, who
joined me in this effort to write the definitive technical book on cryptocurrencies and
bitcoin.

It is impossible to make a distinction between the bitcoin technology and the bitcoin
community, and this book is as much a product of that community as it is a book on
the technology. My work on this book was encouraged, cheered on, supported, and
rewarded by the entire bitcoin community from the very beginning until the very
end. More than anything, this book has allowed me to be part of a wonderful com‐
munity for two years and I can’t thank you enough for accepting me into this com‐
munity. There are far too many people to mention by name—people I’ve met at
conferences, events, seminars, meetups, pizza gatherings, and small private gather‐
ings, as well as many who communicated with me by Twitter, on reddit, on bitcoin‐
talk.org, and on GitHub who have had an impact on this book. Every idea, analogy,
question, answer, and explanation you find in this book was at some point inspired,
tested, or improved through my interactions with the community. Thank you all for
your support; without you this book would not have happened. I am forever grateful.

The journey to becoming an author starts long before the first book, of course. My
first language (and schooling) was Greek, so I had to take a remedial English writing
course in my first year of university. I owe thanks to Diana Kordas, my English writ‐
ing teacher, who helped me build confidence and skills that year. Later, as a professio‐
nal, I developed my technical writing skills on the topic of data centers, writing for
Network World magazine. I owe thanks to John Dix and John Gallant, who gave me
my first writing job as a columnist at Network World and to my editor Michael Coo‐

xviii | Preface

https://antonopoulos.com/
https://antonopoulos.com/
https://bitcoinbook.info/
https://facebook.com/AndreasMAntonopoulos
https://twitter.com/aantonop
https://linkedin.com/company/aantonop
https://patreon.com/aantonop

ney and my colleague Johna Till Johnson who edited my columns and made them fit
for publication. Writing 500 words a week for four years gave me enough experience
to eventually consider becoming an author.

Thanks also to those who supported me when I submitted my book proposal to
O’Reilly, by providing references and reviewing the proposal. Specifically, thanks to
John Gallant, Gregory Ness, Richard Stiennon, Joel Snyder, Adam B. Levine, Sandra
Gittlen, John Dix, Johna Till Johnson, Roger Ver, and Jon Matonis. Special thanks to
Richard Kagan and Tymon Mattoszko, who reviewed early versions of the proposal
and Matthew Taylor, who copyedited the proposal.

Thanks to Cricket Liu, author of the O’Reilly title DNS and BIND, who introduced
me to O’Reilly. Thanks also to Michael Loukides and Allyson MacDonald at O’Reilly,
who worked for months to help make this book happen. Allyson was especially
patient when deadlines were missed and deliverables delayed as life intervened in our
planned schedule. For the second edition, I thank Timothy McGovern for guiding the
process, Kim Cofer for patiently editing, and Rebecca Panzer for illustrating many
new diagrams.

The first few drafts of the first few chapters were the hardest, because bitcoin is a dif‐
ficult subject to unravel. Every time I pulled on one thread of the bitcoin technology,
I had to pull on the whole thing. I repeatedly got stuck and a bit despondent as I
struggled to make the topic easy to understand and create a narrative around such a
dense technical subject. Eventually, I decided to tell the story of bitcoin through the
stories of the people using bitcoin and the whole book became a lot easier to write. I
owe thanks to my friend and mentor, Richard Kagan, who helped me unravel the
story and get past the moments of writer’s block. I thank Pamela Morgan, who
reviewed early drafts of each chapter in the first and second edition of the book, and
asked the hard questions to make them better. Also, thanks to the developers of the
San Francisco Bitcoin Developers Meetup group as well as Taariq Lewis and Denise
Terry for helping test the early material. Thanks also to Andrew Naugler for info‐
graphic design.

During the development of the book, I made early drafts available on GitHub and
invited public comments. More than a hundred comments, suggestions, corrections,
and contributions were submitted in response. Those contributions are explicitly
acknowledged, with my thanks, in “Early Release Draft (GitHub Contributions)” on
page xx. Most of all, my sincere thanks to my volunteer GitHub editors Ming T.
Nguyen (1st edition) and Will Binns (2nd edition), who worked tirelessly to curate,
manage and resolve pull requests, issue reports, and perform bug fixes on GitHub.

Once the book was drafted, it went through several rounds of technical review.
Thanks to Cricket Liu and Lorne Lantz for their thorough review, comments, and
support.

Preface | xix

Several bitcoin developers contributed code samples, reviews, comments, and
encouragement. Thanks to Amir Taaki and Eric Voskuil for example code snippets
and many great comments; Chris Kleeschulte for contributing the Bitcore appendix;
Vitalik Buterin and Richard Kiss for help with elliptic curve math and code contribu‐
tions; Gavin Andresen for corrections, comments, and encouragement; Michalis Kar‐
gakis for comments, contributions, and btcd writeup; and Robin Inge for errata
submissions improving the second print. In the second edition, I again received a lot
of help from many Bitcoin Core developers, including Eric Lombrozo who demysti‐
fied Segregated Witness, Luke Dashjr who helped improve the chapter on transac‐
tions, Johnson Lau who reviewed Segregated Witness and other chapters, and many
others. I owe thanks to Joseph Poon, Tadge Dryja, and Olaoluwa Osuntokun who
explained Lightning Network, reviewed my writing, and answered questions when I
got stuck.

I owe my love of words and books to my mother, Theresa, who raised me in a house
with books lining every wall. My mother also bought me my first computer in 1982,
despite being a self-described technophobe. My father, Menelaos, a civil engineer who
just published his first book at 80 years old, was the one who taught me logical and
analytical thinking and a love of science and engineering.

Thank you all for supporting me throughout this journey.

Early Release Draft (GitHub Contributions)
Many contributors offered comments, corrections, and additions to the early-release
draft on GitHub. Thank you all for your contributions to this book.

Following is a list of notable GitHub contributors, including their GitHub ID in
parentheses:

• Alex Waters (alexwaters)
• Andrew Donald Kennedy (grkvlt)
• bitcoinctf
• Bryan Gmyrek (physicsdude)
• Casey Flynn (cflynn07)
• Chapman Shoop (belovachap)
• Christie D’Anna (avocadobreath)
• Cody Scott (Siecje)
• coinradar
• Cragin Godley (cgodley)
• dallyshalla

xx | Preface

• Diego Viola (diegoviola)
• Dirk Jäckel (biafra23)
• Dimitris Tsapakidis (dimitris-t)
• Dmitry Marakasov (AMDmi3)
• drstrangeM
• Ed Eykholt (edeykholt)
• Ed Leafe (EdLeafe)
• Edward Posnak (edposnak)
• Elias Rodrigues (elias19r)
• Eric Voskuil (evoskuil)
• Eric Winchell (winchell)
• Erik Wahlström (erikwam)
• effectsToCause (vericoin)
• Esteban Ordano (eordano)
• ethers
• fabienhinault
• Frank Höger (francyi)
• Gaurav Rana (bitcoinsSG)
• genjix
• halseth
• Holger Schinzel (schinzelh)
• Ioannis Cherouvim (cherouvim)
• Ish Ot Jr. (ishotjr)
• James Addison (jayaddison)
• Jameson Lopp (jlopp)
• Jason Bisterfeldt (jbisterfeldt)
• Javier Rojas (fjrojasgarcia)
• Jeremy Bokobza (bokobza)
• JerJohn15
• Joe Bauers (joebauers)
• joflynn
• Johnson Lau (jl2012)

Preface | xxi

• Jonathan Cross (jonathancross)
• Jorgeminator
• Kai Bakker (kaibakker)
• Mai-Hsuan Chia (mhchia)
• Marzig (marzig76)
• Maximilian Reichel (phramz)
• Michalis Kargakis (kargakis)
• Michael C. Ippolito (michaelcippolito)
• Mihail Russu (MihailRussu)
• Minh T. Nguyen (enderminh)
• Nagaraj Hubli (nagarajhubli)
• Nekomata (nekomata-3)
• Robert Furse (Rfurse)
• Richard Kiss (richardkiss)
• Ruben Alexander (hizzvizz)
• Sam Ritchie (sritchie)
• Sergej Kotliar (ziggamon)
• Seiichi Uchida (topecongiro)
• Simon de la Rouviere (simondlr)
• Stephan Oeste (Emzy)
• takaya-imai
• Thiago Arrais (thiagoarrais)
• venzen
• Will Binns (wbnns)
• wintercooled
• wjx
• Wojciech Langiewicz (wlk)
• yurigeorgiev4

xxii | Preface

Quick Glossary

This quick glossary contains many of the terms used in relation to bitcoin. These
terms are used throughout the book, so bookmark this for a quick reference.

address
A bitcoin address looks like 1DSrfJdB2AnWaFNgSbv3MZC2m74996JafV. It consists
of a string of letters and numbers. It’s really an encoded base58check version of a
public key 160-bit hash. Just like you ask others to send an email to your email
address, you would ask others to send you bitcoin to one of your bitcoin
addresses.

bip
Bitcoin Improvement Proposals. A set of proposals that members of the bitcoin
community have submitted to improve bitcoin. For example, BIP-21 is a pro‐
posal to improve the bitcoin uniform resource identifier (URI) scheme.

bitcoin
The name of the currency unit (the coin), the network, and the software.

block
A grouping of transactions, marked with a timestamp, and a fingerprint of the
previous block. The block header is hashed to produce a proof of work, thereby
validating the transactions. Valid blocks are added to the main blockchain by net‐
work consensus.

blockchain
A list of validated blocks, each linking to its predecessor all the way to the genesis
block.

Byzantine Generals Problem
A reliable computer system must be able to cope with the failure of one or more
of its components. A failed component may exhibit a type of behavior that is
often overlooked—namely, sending conflicting information to different parts of

xxiii

the system. The problem of coping with this type of failure is expressed abstractly
as the Byzantine Generals Problem.

coinbase
A special field used as the sole input for coinbase transactions. The coinbase
allows claiming the block reward and provides up to 100 bytes for arbitrary data.
Not to be confused with Coinbase transaction.

coinbase transaction
The first transaction in a block. Always created by a miner, it includes a single
coinbase. Not to be confused with Coinbase.

cold storage
Refers to keeping a reserve of bitcoin offline. Cold storage is achieved when Bit‐
coin private keys are created and stored in a secure offline environment. Cold
storage is important for anyone with bitcoin holdings. Online computers are vul‐
nerable to hackers and should not be used to store a significant amount of bit‐
coin.

colored coins
An open source Bitcoin 2.0 protocol that enables developers to create digital
assets on top of bitcoin blockchain utilizing its functionalities beyond currency.

confirmations
Once a transaction is included in a block, it has one confirmation. As soon as
another block is mined on the same blockchain, the transaction has two confir‐
mations, and so on. Six or more confirmations is considered sufficient proof that
a transaction cannot be reversed.

consensus
When several nodes, usually most nodes on the network, all have the same blocks
in their locally-validated best block chain. Not to be confused with consensus
rules.

consensus rules
The block validation rules that full nodes follow to stay in consensus with other
nodes. Not to be confused with consensus.

difficulty
A network-wide setting that controls how much computation is required to pro‐
duce a proof of work.

difficulty retargeting
A network-wide recalculation of the difficulty that occurs once every 2,016
blocks and considers the hashing power of the previous 2,016 blocks.

xxiv | Quick Glossary

difficulty target
A difficulty at which all the computation in the network will find blocks approxi‐
mately every 10 minutes.

double spending
Double spending is the result of successfully spending some money more than
once. Bitcoin protects against double spending by verifying each transaction
added to the block chain to ensure that the inputs for the transaction had not
previously already been spent.

ECDSA
Elliptic Curve Digital Signature Algorithm or ECDSA is a cryptographic algo‐
rithm used by Bitcoin to ensure that funds can only be spent by their rightful
owners.

extra nonce
As difficulty increased, miners often cycled through all 4 billion values of the
nonce without finding a block. Because the coinbase script can store between 2
and 100 bytes of data, miners started using that space as extra nonce space, allow‐
ing them to explore a much larger range of block header values to find valid
blocks.

fees
The sender of a transaction often includes a fee to the network for processing the
requested transaction. Most transactions require a minimum fee of 0.5 mBTC.

fork
Fork, also known as accidental fork, occurs when two or more blocks have the
same block height, forking the block chain. Typically occurs when two or more
miners find blocks at nearly the same time. Can also happen as part of an attack.

genesis block
The first block in the blockchain, used to initialize the cryptocurrency.

hard fork
Hard fork, also known as Hard-Forking Change, is a permanent divergence in
the blockchain, commonly occurs when non-upgraded nodes can’t validate
blocks created by upgraded nodes that follow newer consensus rules. Not to be
confused with fork, soft fork, software fork or Git fork.

hardware wallet
A hardware wallet is a special type of bitcoin wallet which stores the user’s private
keys in a secure hardware device.

hash
A digital fingerprint of some binary input.

Quick Glossary | xxv

hashlocks
A hashlock is a type of encumbrance that restricts the spending of an output until
a specified piece of data is publicly revealed. Hashlocks have the useful property
that once any hashlock is opened publicly, any other hashlock secured using the
same key can also be opened. This makes it possible to create multiple outputs
that are all encumbered by the same hashlock and which all become spendable at
the same time.

HD protocol
The Hierarchical Deterministic (HD) key creation and transfer protocol (BIP32),
which allows creating child keys from parent keys in a hierarchy.

HD wallet
Wallets using the Hierarchical Deterministic (HD Protocol) key creation and
transfer protocol (BIP32).

HD wallet seed
HD wallet seed or root seed is a potentially-short value used as a seed to generate
the master private key and master chain code for an HD wallet.

HTLC
A Hashed TimeLock Contract or HTLC is a class of payments that use hashlocks
and timelocks to require that the receiver of a payment either acknowledge
receiving the payment prior to a deadline by generating cryptographic proof of
payment or forfeit the ability to claim the payment, returning it to the payer.

KYC
Know your customer (KYC) is the process of a business, identifying and verify‐
ing the identity of its clients. The term is also used to refer to the bank regulation
which governs these activities.

LevelDB
LevelDB is an open source on-disk key-value store. LevelDB is a light-weight,
single-purpose library for persistence with bindings to many platforms.

Lightning Networks
Lightning Network is a proposed implementation of Hashed Timelock Contracts
(HTLCs) with bi-directional payment channels which allows payments to be
securely routed across multiple peer-to-peer payment channels. This allows the
formation of a network where any peer on the network can pay any other peer
even if they don’t directly have a channel open between each other.

Locktime
Locktime, or more technically nLockTime, is the part of a transaction which
indicates the earliest time or earliest block when that transaction may be added to
the block chain.

xxvi | Quick Glossary

mempool
The bitcoin Mempool (memory pool) is a collection of all transaction data in a
block that have been verified by bitcoin nodes, but are not yet confirmed.

merkle root
The root node of a merkle tree, a descendant of all the hashed pairs in the tree.
Block headers must include a valid merkle root descended from all transactions
in that block.

merkle tree
A tree constructed by hashing paired data (the leaves), then pairing and hashing
the results until a single hash remains, the merkle root. In Bitcoin, the leaves are
almost always transactions from a single block.

miner
A network node that finds valid proof of work for new blocks, by repeated hash‐
ing.

multisignature
Multisignature (multisig) refers to requiring more than one key to authorize a
bitcoin transaction.

network
A peer-to-peer network that propagates transactions and blocks to every bitcoin
node on the network.

nonce
The “nonce” in a bitcoin block is a 32-bit (4-byte) field whose value is set so that
the hash of the block will contain a run of leading zeros. The rest of the fields
may not be changed, as they have a defined meaning.

off-chain transactions
An off-chain transaction is the movement of value outside of the block chain.
While an on-chain transaction—usually referred to as simply a transaction—
modifies the blockchain and depends on the blockchain to determine its validity
an off-chain transaction relies on other methods to record and validate the trans‐
action.

opcode
Operation codes from the Bitcoin Script language which push data or perform
functions within a pubkey script or signature script.

Open Assets protocol
The Open Assets Protocol is a simple and powerful protocol built on top of the
bitcoin blockchain. It allows issuance and transfer of user-created assets. The
Open Assets protocol is an evolution of the concept of colored coins.

Quick Glossary | xxvii

OP_RETURN
An opcode used in one of the outputs in an OP_RETURN transaction. Not to be
confused with OP_RETURN transaction.

OP_RETURN transaction
A transaction type relayed and mined by default in Bitcoin Core 0.9.0 and later
that adds arbitrary data to a provably unspendable pubkey script that full nodes
don’t have to store in their UTXO database. Not to be confused with
OP_RETURN opcode.

orphan block
Blocks whose parent block has not been processed by the local node, so they can’t
be fully validated yet.

orphan transactions
Transactions that can’t go into the pool due to one or more missing input trans‐
actions.

output
Output, transaction output, or TxOut is an output in a transaction which con‐
tains two fields: a value field for transferring zero or more satoshis and a pubkey
script for indicating what conditions must be fulfilled for those satoshis to be fur‐
ther spent.

P2PKH
Transactions that pay a bitcoin address contain P2PKH or Pay To PubKey Hash
scripts. An output locked by a P2PKH script can be unlocked (spent) by present‐
ing a public key and a digital signature created by the corresponding private key.

P2SH
P2SH or Pay-to-Script-Hash is a powerful new type of transaction that greatly
simplifies the use of complex transaction scripts. With P2SH the complex script
that details the conditions for spending the output (redeem script) is not presen‐
ted in the locking script. Instead, only a hash of it is in the locking script.

P2SH address
P2SH addresses are Base58Check encodings of the 20-byte hash of a script, P2SH
addresses use the version prefix “5”, which results in Base58Check-encoded
addresses that start with a “3”. P2SH addresses hide all of the complexity, so that
the person making a payment does not see the script.

P2WPKH
The signature of a P2WPKH (Pay-to-Witness-Public-Key-Hash) contains the
same information as a P2PKH spending, but is located in the witness field
instead of the scriptSig field. The scriptPubKey is also modified.

xxviii | Quick Glossary

www.allitebooks.com

http://www.allitebooks.org

P2WSH
The difference between P2SH and P2WSH (Pay-to-Witness-Script-Hash) is
about the cryptographic proof location change from the scriptSig field to the wit‐
ness field and the scriptPubKey that is also modified.

paper wallet
In the most specific sense, a paper wallet is a document containing all of the data
necessary to generate any number of Bitcoin private keys, forming a wallet of
keys. However, people often use the term to mean any way of storing bitcoin off‐
line as a physical document. This second definition also includes paper keys and
redeemable codes.

payment channels
A micropayment channel or payment channel is class of techniques designed to
allow users to make multiple bitcoin transactions without committing all of the
transactions to the bitcoin blockchain. In a typical payment channel, only two
transactions are added to the block chain but an unlimited or nearly unlimited
number of payments can be made between the participants.

pooled mining
Pooled mining is a mining approach where multiple generating clients contribute
to the generation of a block, and then split the block reward according the con‐
tributed processing power.

Proof-of-Stake
Proof-of-Stake (PoS) is a method by which a cryptocurrency blockchain network
aims to achieve distributed consensus. Proof-of-Stake asks users to prove owner‐
ship of a certain amount of currency (their “stake” in the currency).

Proof-of-Work
A piece of data that requires significant computation to find. In bitcoin, miners
must find a numeric solution to the SHA256 algorithm that meets a network-
wide target, the difficulty target.

reward
An amount included in each new block as a reward by the network to the miner
who found the Proof-of-Work solution. It is currently 12.5 BTC per block.

RIPEMD-160
RIPEMD-160 is a 160-bit cryptographic hash function. RIPEMD-160 is a
strengthened version of RIPEMD with a 160-bit hash result, and is expected to be
secure for the next ten years or more.

Quick Glossary | xxix

satoshi
A satoshi is the smallest denomination of bitcoin that can be recorded on the
blockchain. It is the equivalent of 0.00000001 bitcoin and is named after the crea‐
tor of Bitcoin, Satoshi Nakamoto.

Satoshi Nakamoto
Satoshi Nakamoto is the name used by the person or people who designed Bit‐
coin and created its original reference implementation, Bitcoin Core. As a part of
the implementation, they also devised the first blockchain database. In the pro‐
cess they were the first to solve the double spending problem for digital currency.
Their real identity remains unknown.

Script
Bitcoin uses a scripting system for transactions. Forth-like, Script is simple,
stack-based, and processed from left to right. It is purposefully not Turing-
complete, with no loops.

ScriptPubKey (aka pubkey script)
ScriptPubKey or pubkey script, is a script included in outputs which sets the con‐
ditions that must be fulfilled for those satoshis to be spent. Data for fulfilling the
conditions can be provided in a signature script.

ScriptSig (aka signature script)
ScriptSig or signature script, is the data generated by a spender which is almost
always used as variables to satisfy a pubkey script.

secret key (aka private key)
The secret number that unlocks bitcoin sent to the corresponding address.
A secret key looks like the following:

5J76sF8L5jTtzE96r66Sf8cka9y44wdpJjMwCxR3tzLh3ibVPxh

Segregated Witness
Segregated Witness is a proposed upgrade to the Bitcoin protocol which techno‐
logical innovation separates signature data from bitcoin transactions. Segregated
Witness is a proposed soft fork; a change that technically makes Bitcoin’s proto‐
col rules more restrictive.

SHA
The Secure Hash Algorithm or SHA is a family of cryptographic hash functions
published by the National Institute of Standards and Technology (NIST).

simplified payment verification (SPV)
SPV or simplified payment verification is a method for verifying particular trans‐
actions were included in a block without downloading the entire block. The
method is used by some lightweight Bitcoin clients.

xxx | Quick Glossary

soft fork
soft fork or Soft-Forking Change is a temporary fork in the blockchain which
commonly occurs when miners using non-upgraded nodes don’t follow a new
consensus rule their nodes don’t know about. Not to be confused with fork, hard
fork, software fork or Git fork.

stale block
Block which were successfully mined but which isn’t included on the current best
block chain, likely because some other block at the same height had its chain
extended first.

timelocks
A timelock is a type of encumbrance that restricts the spending of some bitcoin
until a specified future time or block height. Timelocks feature prominently in
many Bitcoin contracts, including payment channels and hashed timelock con‐
tracts.

transaction
In simple terms, a transfer of bitcoin from one address to another. More pre‐
cisely, a transaction is a signed data structure expressing a transfer of value.
Transactions are transmitted over the bitcoin network, collected by miners, and
included into blocks, made permanent on the blockchain.

transaction pool
An unordered collection of transactions that are not in blocks in the main chain,
but for which we have input transactions.

Turing completeness
A program language is called “Turing complete,” if that it can run any program
that a Turing machine can run given enough time and memory.

unspent transaction output (UTXO)
UTXO is an unspent transaction output that can be spent as an input in a new
transaction.

wallet
Software that holds all your bitcoin addresses and secret keys. Use it to send,
receive, and store your bitcoin.

Wallet Import Format (WIF)
WIF or Wallet Import Format is a data interchange format designed to allow
exporting and importing a single private key with a flag indicating whether or
not it uses a compressed public key.

Some contributed definitions have been sourced under a CC-BY license from the bit‐
coin Wiki or from other open source documentation sources.

Quick Glossary | xxxi

https://en.bitcoin.it/wiki/Main_Page
https://en.bitcoin.it/wiki/Main_Page

CHAPTER 1

Introduction

What Is Bitcoin?
Bitcoin is a collection of concepts and technologies that form the basis of a digital
money ecosystem. Units of currency called bitcoin are used to store and transmit
value among participants in the bitcoin network. Bitcoin users communicate with
each other using the bitcoin protocol primarily via the internet, although other trans‐
port networks can also be used. The bitcoin protocol stack, available as open source
software, can be run on a wide range of computing devices, including laptops and
smartphones, making the technology easily accessible.

Users can transfer bitcoin over the network to do just about anything that can be
done with conventional currencies, including buy and sell goods, send money to peo‐
ple or organizations, or extend credit. Bitcoin can be purchased, sold, and exchanged
for other currencies at specialized currency exchanges. Bitcoin in a sense is the per‐
fect form of money for the internet because it is fast, secure, and borderless.

Unlike traditional currencies, bitcoin are entirely virtual. There are no physical coins
or even digital coins per se. The coins are implied in transactions that transfer value
from sender to recipient. Users of bitcoin own keys that allow them to prove owner‐
ship of bitcoin in the bitcoin network. With these keys they can sign transactions to
unlock the value and spend it by transferring it to a new owner. Keys are often stored
in a digital wallet on each user’s computer or smartphone. Possession of the key that
can sign a transaction is the only prerequisite to spending bitcoin, putting the control
entirely in the hands of each user.

Bitcoin is a distributed, peer-to-peer system. As such there is no “central” server or
point of control. Bitcoin are created through a process called “mining,” which
involves competing to find solutions to a mathematical problem while processing bit‐
coin transactions. Any participant in the bitcoin network (i.e., anyone using a device

1

running the full bitcoin protocol stack) may operate as a miner, using their comput‐
er’s processing power to verify and record transactions. Every 10 minutes, on average,
a bitcoin miner is able to validate the transactions of the past 10 minutes and is
rewarded with brand new bitcoin. Essentially, bitcoin mining decentralizes the
currency-issuance and clearing functions of a central bank and replaces the need for
any central bank.

The bitcoin protocol includes built-in algorithms that regulate the mining function
across the network. The difficulty of the processing task that miners must perform is
adjusted dynamically so that, on average, someone succeeds every 10 minutes regard‐
less of how many miners (and how much processing) are competing at any moment.
The protocol also halves the rate at which new bitcoin are created every 4 years, and
limits the total number of bitcoin that will be created to a fixed total just below 21
million coins. The result is that the number of bitcoin in circulation closely follows an
easily predictable curve that approaches 21 million by the year 2140. Due to bitcoin’s
diminishing rate of issuance, over the long term, the bitcoin currency is deflationary.
Furthermore, bitcoin cannot be inflated by “printing” new money above and beyond
the expected issuance rate.

Behind the scenes, bitcoin is also the name of the protocol, a peer-to-peer network,
and a distributed computing innovation. The bitcoin currency is really only the first
application of this invention. Bitcoin represents the culmination of decades of
research in cryptography and distributed systems and includes four key innovations
brought together in a unique and powerful combination. Bitcoin consists of:

• A decentralized peer-to-peer network (the bitcoin protocol)
• A public transaction ledger (the blockchain)
• A set of rules for independent transaction validation and currency issuance (con‐

sensus rules)
• A mechanism for reaching global decentralized consensus on the valid block‐

chain (Proof-of-Work algorithm)

As a developer, I see bitcoin as akin to the internet of money, a network for propagat‐
ing value and securing the ownership of digital assets via distributed computation.
There’s a lot more to bitcoin than first meets the eye.

In this chapter we’ll get started by explaining some of the main concepts and terms,
getting the necessary software, and using bitcoin for simple transactions. In following
chapters we’ll start unwrapping the layers of technology that make bitcoin possible
and examine the inner workings of the bitcoin network and protocol.

2 | Chapter 1: Introduction

Digital Currencies Before Bitcoin
The emergence of viable digital money is closely linked to developments in cryptog‐
raphy. This is not surprising when one considers the fundamental challenges involved
with using bits to represent value that can be exchanged for goods and services. Three
basic questions for anyone accepting digital money are:

1. Can I trust that the money is authentic and not counterfeit?
2. Can I trust that the digital money can only be spent once (known as the “double-

spend” problem)?
3. Can I be sure that no one else can claim this money belongs to them and not me?

Issuers of paper money are constantly battling the counterfeiting problem by using
increasingly sophisticated papers and printing technology. Physical money addresses
the double-spend issue easily because the same paper note cannot be in two places at
once. Of course, conventional money is also often stored and transmitted digitally. In
these cases, the counterfeiting and double-spend issues are handled by clearing all
electronic transactions through central authorities that have a global view of the cur‐
rency in circulation. For digital money, which cannot take advantage of esoteric inks
or holographic strips, cryptography provides the basis for trusting the legitimacy of a
user’s claim to value. Specifically, cryptographic digital signatures enable a user to
sign a digital asset or transaction proving the ownership of that asset. With the appro‐
priate architecture, digital signatures also can be used to address the double-spend
issue.

When cryptography started becoming more broadly available and understood in the
late 1980s, many researchers began trying to use cryptography to build digital curren‐
cies. These early digital currency projects issued digital money, usually backed by a
national currency or precious metal such as gold.

Although these earlier digital currencies worked, they were centralized and, as a
result, were easy to attack by governments and hackers. Early digital currencies used a
central clearinghouse to settle all transactions at regular intervals, just like a tradi‐
tional banking system. Unfortunately, in most cases these nascent digital currencies
were targeted by worried governments and eventually litigated out of existence. Some
failed in spectacular crashes when the parent company liquidated abruptly. To be
robust against intervention by antagonists, whether legitimate governments or crimi‐
nal elements, a decentralized digital currency was needed to avoid a single point of
attack. Bitcoin is such a system, decentralized by design, and free of any central
authority or point of control that can be attacked or corrupted.

What Is Bitcoin? | 3

1 “Bitcoin: A Peer-to-Peer Electronic Cash System,” Satoshi Nakamoto (https://bitcoin.org/bitcoin.pdf).

History of Bitcoin
Bitcoin was invented in 2008 with the publication of a paper titled “Bitcoin: A Peer-
to-Peer Electronic Cash System,”1 written under the alias of Satoshi Nakamoto (see
Appendix A). Nakamoto combined several prior inventions such as b-money and
HashCash to create a completely decentralized electronic cash system that does not
rely on a central authority for currency issuance or settlement and validation of trans‐
actions. The key innovation was to use a distributed computation system (called a
“Proof-of-Work” algorithm) to conduct a global “election” every 10 minutes, allowing
the decentralized network to arrive at consensus about the state of transactions. This
elegantly solves the issue of double-spend where a single currency unit can be spent
twice. Previously, the double-spend problem was a weakness of digital currency and
was addressed by clearing all transactions through a central clearinghouse.

The bitcoin network started in 2009, based on a reference implementation published
by Nakamoto and since revised by many other programmers. The implementation of
the Proof-of-Work algorithm (mining) that provides security and resilience for bit‐
coin has increased in power exponentially, and now exceeds the combined processing
power of the world’s top supercomputers. Bitcoin’s total market value has at times
exceeded $35 billion US dollars, depending on the bitcoin-to-dollar exchange rate.
The largest transaction processed so far by the network was $150 million US dollars,
transmitted instantly and processed without any fees.

Satoshi Nakamoto withdrew from the public in April 2011, leaving the responsibility
of developing the code and network to a thriving group of volunteers. The identity of
the person or people behind bitcoin is still unknown. However, neither Satoshi Naka‐
moto nor anyone else exerts individual control over the bitcoin system, which oper‐
ates based on fully transparent mathematical principles, open source code, and
consensus among participants. The invention itself is groundbreaking and has
already spawned new science in the fields of distributed computing, economics, and
econometrics.

A Solution to a Distributed Computing Problem
Satoshi Nakamoto’s invention is also a practical and novel solution to a problem in
distributed computing, known as the “Byzantine Generals’ Problem.” Briefly, the
problem consists of trying to agree on a course of action or the state of a system by
exchanging information over an unreliable and potentially compromised network.
Satoshi Nakamoto’s solution, which uses the concept of Proof-of-Work to achieve
consensus without a central trusted authority, represents a breakthrough in dis‐
tributed computing and has wide applicability beyond currency. It can be used to ach‐

4 | Chapter 1: Introduction

https://bitcoin.org/bitcoin.pdf

ieve consensus on decentralized networks to prove the fairness of elections, lotteries,
asset registries, digital notarization, and more.

Bitcoin Uses, Users, and Their Stories
Bitcoin is an innovation in the ancient technology of money. At its core, money sim‐
ply facilitates the exchange of value between people. Therefore, in order to fully
understand bitcoin and its uses, we’ll examine it from the perspective of people using
it. Each of the people and their stories, as listed here, illustrates one or more specific
use cases. We’ll be seeing them throughout the book:

North American low-value retail
Alice lives in Northern California’s Bay Area. She has heard about bitcoin from
her techie friends and wants to start using it. We will follow her story as she
learns about bitcoin, acquires some, and then spends some of her bitcoin to buy a
cup of coffee at Bob’s Cafe in Palo Alto. This story will introduce us to the soft‐
ware, the exchanges, and basic transactions from the perspective of a retail con‐
sumer.

North American high-value retail
Carol is an art gallery owner in San Francisco. She sells expensive paintings for
bitcoin. This story will introduce the risks of a “51%” consensus attack for retail‐
ers of high-value items.

Offshore contract services
Bob, the cafe owner in Palo Alto, is building a new website. He has contracted
with an Indian web developer, Gopesh, who lives in Bangalore, India. Gopesh has
agreed to be paid in bitcoin. This story will examine the use of bitcoin for out‐
sourcing, contract services, and international wire transfers.

Web store
Gabriel is an enterprising young teenager in Rio de Janeiro, running a small web
store that sells bitcoin-branded t-shirts, coffee mugs, and stickers. Gabriel is too
young to have a bank account, but his parents are encouraging his entrepreneu‐
rial spirit.

Charitable donations
Eugenia is the director of a children’s charity in the Philippines. Recently she has
discovered bitcoin and wants to use it to reach a whole new group of foreign and
domestic donors to fundraise for her charity. She’s also investigating ways to use
bitcoin to distribute funds quickly to areas of need. This story will show the use
of bitcoin for global fundraising across currencies and borders and the use of an
open ledger for transparency in charitable organizations.

Bitcoin Uses, Users, and Their Stories | 5

Import/export
Mohammed is an electronics importer in Dubai. He’s trying to use bitcoin to buy
electronics from the United States and China for import into the UAE to acceler‐
ate the process of payments for imports. This story will show how bitcoin can be
used for large business-to-business international payments tied to physical goods.

Mining for bitcoin
Jing is a computer engineering student in Shanghai. He has built a “mining” rig
to mine for bitcoin using his engineering skills to supplement his income. This
story will examine the “industrial” base of bitcoin: the specialized equipment
used to secure the bitcoin network and issue new currency.

Each of these stories is based on the real people and real industries currently using
bitcoin to create new markets, new industries, and innovative solutions to global eco‐
nomic issues.

Getting Started
Bitcoin is a protocol that can be accessed using a client application that speaks the
protocol. A “bitcoin wallet” is the most common user interface to the bitcoin system,
just like a web browser is the most common user interface for the HTTP protocol.
There are many implementations and brands of bitcoin wallets, just like there are
many brands of web browsers (e.g., Chrome, Safari, Firefox, and Internet Explorer).
And just like we all have our favorite browsers (Mozilla Firefox, Yay!) and our villains
(Internet Explorer, Yuck!), bitcoin wallets vary in quality, performance, security, pri‐
vacy, and reliability. There is also a reference implementation of the bitcoin protocol
that includes a wallet, known as the “Satoshi Client” or “Bitcoin Core,” which is
derived from the original implementation written by Satoshi Nakamoto.

Choosing a Bitcoin Wallet
Bitcoin wallets are one of the most actively developed applications in the bitcoin eco‐
system. There is intense competition, and while a new wallet is probably being devel‐
oped right now, several wallets from last year are no longer actively maintained. Many
wallets focus on specific platforms or specific uses and some are more suitable for
beginners while others are filled with features for advanced users. Choosing a wallet
is highly subjective and depends on the use and user expertise. It is therefore impossi‐
ble to recommend a specific brand or project of wallet. However, we can categorize
bitcoin wallets according to their platform and function and provide some clarity
about all the different types of wallets that exist. Better yet, moving money between
bitcoin wallets is easy, cheap, and fast, so it is worth trying out several different wal‐
lets until you find one that fits your needs.

6 | Chapter 1: Introduction

Bitcoin wallets can be categorized as follows, according to the platform:

Desktop wallet
A desktop wallet was the first type of bitcoin wallet created as a reference imple‐
mentation and many users run desktop wallets for the features, autonomy, and
control they offer. Running on general-use operating systems such as Windows
and Mac OS has certain security disadvantages however, as these platforms are
often insecure and poorly configured.

Mobile wallet
A mobile wallet is the most common type of bitcoin wallet. Running on smart-
phone operating systems such as Apple iOS and Android, these wallets are often
a great choice for new users. Many are designed for simplicity and ease-of-use,
but there are also fully featured mobile wallets for power users.

Web wallet
Web wallets are accessed through a web browser and store the user’s wallet on a
server owned by a third party. This is similar to webmail in that it relies entirely
on a third-party server. Some of these services operate using client-side code run‐
ning in the user’s browser, which keeps control of the bitcoin keys in the hands of
the user. Most, however, present a compromise by taking control of the bitcoin
keys from users in exchange for ease-of-use. It is inadvisable to store large
amounts of bitcoin on third-party systems.

Hardware wallet
Hardware wallets are devices that operate a secure self-contained bitcoin wallet
on special-purpose hardware. They are operated via USB with a desktop web
browser or via near-field-communication (NFC) on a mobile device. By handling
all bitcoin-related operations on the specialized hardware, these wallets are con‐
sidered very secure and suitable for storing large amounts of bitcoin.

Paper wallet
The keys controlling bitcoin can also be printed for long-term storage. These are
known as paper wallets even though other materials (wood, metal, etc.) can be
used. Paper wallets offer a low-tech but highly secure means of storing bitcoin
long term. Offline storage is also often referred to as cold storage.

Another way to categorize bitcoin wallets is by their degree of autonomy and how
they interact with the bitcoin network:

Full-node client
A full client, or “full node,” is a client that stores the entire history of bitcoin
transactions (every transaction by every user, ever), manages users’ wallets, and
can initiate transactions directly on the bitcoin network. A full node handles all
aspects of the protocol and can independently validate the entire blockchain and

Getting Started | 7

any transaction. A full-node client consumes substantial computer resources
(e.g., more than 125 GB of disk, 2 GB of RAM) but offers complete autonomy
and independent transaction verification.

Lightweight client
A lightweight client, also known as a simple-payment-verification (SPV) client,
connects to bitcoin full nodes (mentioned previously) for access to the bitcoin
transaction information, but stores the user wallet locally and independently cre‐
ates, validates, and transmits transactions. Lightweight clients interact directly
with the bitcoin network, without an intermediary.

Third-party API client
A third-party API client is one that interacts with bitcoin through a third-party
system of application programming interfaces (APIs), rather than by connecting
to the bitcoin network directly. The wallet may be stored by the user or by third-
party servers, but all transactions go through a third party.

Combining these categorizations, many bitcoin wallets fall into a few groups, with the
three most common being desktop full client, mobile lightweight wallet, and web
third-party wallet. The lines between different categories are often blurry, as many
wallets run on multiple platforms and can interact with the network in different ways.

For the purposes of this book, we will be demonstrating the use of a variety of down‐
loadable bitcoin clients, from the reference implementation (Bitcoin Core) to mobile
and web wallets. Some of the examples will require the use of Bitcoin Core, which, in
addition to being a full client, also exposes APIs to the wallet, network, and transac‐
tion services. If you are planning to explore the programmatic interfaces into the bit‐
coin system, you will need to run Bitcoin Core, or one of the alternative clients (see
“Alternative Clients, Libraries, and Toolkits” on page 51).

Quick Start
Alice, who we introduced in “Bitcoin Uses, Users, and Their Stories” on page 5, is not
a technical user and only recently heard about bitcoin from her friend Joe. While at a
party, Joe is once again enthusiastically explaining bitcoin to all around him and is
offering a demonstration. Intrigued, Alice asks how she can get started with bitcoin.
Joe says that a mobile wallet is best for new users and he recommends a few of his
favorite wallets. Alice downloads “Mycelium” for Android and installs it on her
phone.

When Alice runs Mycelium for the first time, as with many bitcoin wallets, the appli‐
cation automatically creates a new wallet for her. Alice sees the wallet on her screen,
as shown in Figure 1-1 (note: do not send bitcoin to this sample address, it will be lost
forever).

8 | Chapter 1: Introduction

Figure 1-1. The Mycelium Mobile Wallet

The most important part of this screen is Alice’s bitcoin address. On the screen it
appears as a long string of letters and numbers: 1Cdid9KFAaatwczBwBttQcw

XYCpvK8h7FK. Next to the wallet’s bitcoin address is a QR code, a form of barcode that
contains the same information in a format that can be scanned by a smartphone cam‐
era. The QR code is the square with a pattern of black and white dots. Alice can copy
the bitcoin address or the QR code onto her clipboard by tapping the QR code, or the
Receive button. In most wallets, tapping the QR code will also magnify it, so that it
can be more easily scanned by a smartphone camera.

Getting Started | 9

Bitcoin addresses start with a 1 or 3. Like email addresses, they can
be shared with other bitcoin users who can use them to send bit‐
coin directly to your wallet. There is nothing sensitive, from a secu‐
rity perspective, about the bitcoin address. It can be posted
anywhere without risking the security of the account. Unlike email
addresses, you can create new addresses as often as you like, all of
which will direct funds to your wallet. In fact, many modern wal‐
lets automatically create a new address for every transaction to
maximize privacy. A wallet is simply a collection of addresses and
the keys that unlock the funds within.

Alice is now ready to receive funds. Her wallet application randomly generated a pri‐
vate key (described in more detail in “Private Keys” on page 58) together with its cor‐
responding bitcoin address. At this point, her bitcoin address is not known to the
bitcoin network or “registered” with any part of the bitcoin system. Her bitcoin
address is simply a number that corresponds to a key that she can use to control
access to the funds. It was generated independently by her wallet without reference or
registration with any service. In fact, in most wallets, there is no association between
the bitcoin address and any externally identifiable information including the user’s
identity. Until the moment this address is referenced as the recipient of value in a
transaction posted on the bitcoin ledger, the bitcoin address is simply part of the vast
number of possible addresses that are valid in bitcoin. Only once it has been associ‐
ated with a transaction does it become part of the known addresses in the network.

Alice is now ready to start using her new bitcoin wallet.

Getting Your First Bitcoin
The first and often most difficult task for new users is to acquire some bitcoin. Unlike
other foreign currencies, you cannot yet buy bitcoin at a bank or foreign exchange
kiosk.

Bitcoin transactions are irreversible. Most electronic payment networks such as credit
cards, debit cards, PayPal, and bank account transfers are reversible. For someone
selling bitcoin, this difference introduces a very high risk that the buyer will reverse
the electronic payment after they have received bitcoin, in effect defrauding the seller.
To mitigate this risk, companies accepting traditional electronic payments in return
for bitcoin usually require buyers to undergo identity verification and credit-
worthiness checks, which may take several days or weeks. As a new user, this means
you cannot buy bitcoin instantly with a credit card. With a bit of patience and crea‐
tive thinking, however, you won’t need to.

10 | Chapter 1: Introduction

Here are some methods for getting bitcoin as a new user:

• Find a friend who has bitcoin and buy some from him or her directly. Many bit‐
coin users start this way. This method is the least complicated. One way to meet
people with bitcoin is to attend a local bitcoin meetup listed at Meetup.com.

• Use a classified service such as localbitcoins.com to find a seller in your area to
buy bitcoin for cash in an in-person transaction.

• Earn bitcoin by selling a product or service for bitcoin. If you are a programmer,
sell your programming skills. If you’re a hairdresser, cut hair for bitcoin.

• Use a bitcoin ATM in your city. A bitcoin ATM is a machine that accepts cash
and sends bitcoin to your smartphone bitcoin wallet. Find a bitcoin ATM close to
you using an online map from Coin ATM Radar.

• Use a bitcoin currency exchange linked to your bank account. Many countries
now have currency exchanges that offer a market for buyers and sellers to swap
bitcoin with local currency. Exchange-rate listing services, such as BitcoinAver‐
age, often show a list of bitcoin exchanges for each currency.

One of the advantages of bitcoin over other payment systems is
that, when used correctly, it affords users much more privacy.
Acquiring, holding, and spending bitcoin does not require you to
divulge sensitive and personally identifiable information to third
parties. However, where bitcoin touches traditional systems, such
as currency exchanges, national and international regulations often
apply. In order to exchange bitcoin for your national currency, you
will often be required to provide proof of identity and banking
information. Users should be aware that once a bitcoin address is
attached to an identity, all associated bitcoin transactions are also
easy to identify and track. This is one reason many users choose to
maintain dedicated exchange accounts unlinked to their wallets.

Alice was introduced to bitcoin by a friend so she has an easy way to acquire her first
bitcoin. Next, we will look at how she buys bitcoin from her friend Joe and how Joe
sends the bitcoin to her wallet.

Finding the Current Price of Bitcoin
Before Alice can buy bitcoin from Joe, they have to agree on the exchange rate
between bitcoin and US dollars. This brings up a common question for those new to
bitcoin: “Who sets the bitcoin price?” The short answer is that the price is set by mar‐
kets.

Getting Started | 11

https://meetup.com
https://localbitcoins.com/
http://coinatmradar.com
https://bitcoinaverage.com
https://bitcoinaverage.com

Bitcoin, like most other currencies, has a floating exchange rate. That means that the
value of bitcoin vis-a-vis any other currency fluctuates according to supply and
demand in the various markets where it is traded. For example, the “price” of bitcoin
in US dollars is calculated in each market based on the most recent trade of bitcoin
and US dollars. As such, the price tends to fluctuate minutely several times per sec‐
ond. A pricing service will aggregate the prices from several markets and calculate a
volume-weighted average representing the broad market exchange rate of a currency
pair (e.g., BTC/USD).

There are hundreds of applications and websites that can provide the current market
rate. Here are some of the most popular:

Bitcoin Average
A site that provides a simple view of the volume-weighted-average for each cur‐
rency.

CoinCap
A service listing the market capitalization and exchange rates of hundreds of
crypto-currencies, including bitcoin.

Chicago Mercantile Exchange Bitcoin Reference Rate
A reference rate that can be used for institutional and contractual reference, pro‐
vided as part of investment data feeds by the CME.

In addition to these various sites and applications, most bitcoin wallets will automati‐
cally convert amounts between bitcoin and other currencies. Joe will use his wallet to
convert the price automatically before sending bitcoin to Alice.

Sending and Receiving Bitcoin
Alice has decided to exchange $10 US dollars for bitcoin, so as not to risk too much
money on this new technology. She gives Joe $10 in cash, opens her Mycelium wallet
application, and selects Receive. This displays a QR code with Alice’s first bitcoin
address.

Joe then selects Send on his smartphone wallet and is presented with a screen con‐
taining two inputs:

• A destination bitcoin address
• The amount to send, in bitcoin (BTC) or his local currency (USD)

In the input field for the bitcoin address, there is a small icon that looks like a QR
code. This allows Joe to scan the barcode with his smartphone camera so that he
doesn’t have to type in Alice’s bitcoin address, which is quite long and difficult to
type. Joe taps the QR code icon and activates the smartphone camera, scanning the
QR code displayed on Alice’s smartphone.

12 | Chapter 1: Introduction

http://bitcoinaverage.com/
http://coincap.io/
http://bit.ly/cmebrr

Joe now has Alice’s bitcoin address set as the recipient. Joe enters the amount as $10
US dollars and his wallet converts it by accessing the most recent exchange rate from
an online service. The exchange rate at the time is $100 US dollars per bitcoin, so $10
US dollars is worth 0.10 bitcoin (BTC), or 100 millibitcoin (mBTC) as shown in the
screenshot from Joe’s wallet (see Figure 1-2).

Figure 1-2. Airbitz mobile bitcoin wallet send screen

Joe then carefully checks to make sure he has entered the correct amount, because he
is about to transmit money and mistakes are irreversible. After double-checking the
address and amount, he presses Send to transmit the transaction. Joe’s mobile bitcoin
wallet constructs a transaction that assigns 0.10 BTC to the address provided by
Alice, sourcing the funds from Joe’s wallet and signing the transaction with Joe’s pri‐
vate keys. This tells the bitcoin network that Joe has authorized a transfer of value to
Alice’s new address. As the transaction is transmitted via the peer-to-peer protocol, it
quickly propagates across the bitcoin network. In less than a second, most of the well-
connected nodes in the network receive the transaction and see Alice’s address for the
first time.

Meanwhile, Alice’s wallet is constantly “listening” to published transactions on the
bitcoin network, looking for any that match the addresses in her wallets. A few sec‐

Getting Started | 13

onds after Joe’s wallet transmits the transaction, Alice’s wallet will indicate that it is
receiving 0.10 BTC.

Confirmations
At first, Alice’s address will show the transaction from Joe as “Unconfirmed.” This
means that the transaction has been propagated to the network but has not yet been
recorded in the bitcoin transaction ledger, known as the blockchain. To be confirmed,
a transaction must be included in a block and added to the blockchain, which hap‐
pens every 10 minutes, on average. In traditional financial terms this is known as
clearing. For more details on propagation, validation, and clearing (confirmation) of
bitcoin transactions, see Chapter 10.

Alice is now the proud owner of 0.10 BTC that she can spend. In the next chapter we
will look at her first purchase with bitcoin, and examine the underlying transaction
and propagation technologies in more detail.

14 | Chapter 1: Introduction

CHAPTER 2

How Bitcoin Works

Transactions, Blocks, Mining, and the Blockchain
The bitcoin system, unlike traditional banking and payment systems, is based on
decentralized trust. Instead of a central trusted authority, in bitcoin, trust is achieved
as an emergent property from the interactions of different participants in the bitcoin
system. In this chapter, we will examine bitcoin from a high level by tracking a single
transaction through the bitcoin system and watch as it becomes “trusted” and
accepted by the bitcoin mechanism of distributed consensus and is finally recorded
on the blockchain, the distributed ledger of all transactions. Subsequent chapters will
delve into the technology behind transactions, the network, and mining.

Bitcoin Overview
In the overview diagram shown in Figure 2-1, we see that the bitcoin system consists
of users with wallets containing keys, transactions that are propagated across the net‐
work, and miners who produce (through competitive computation) the consensus
blockchain, which is the authoritative ledger of all transactions.

Each example in this chapter is based on an actual transaction made on the bitcoin
network, simulating the interactions between the users (Joe, Alice, Bob, and Gopesh)
by sending funds from one wallet to another. While tracking a transaction through
the bitcoin network to the blockchain, we will use a blockchain explorer site to visual‐
ize each step. A blockchain explorer is a web application that operates as a bitcoin
search engine, in that it allows you to search for addresses, transactions, and blocks
and see the relationships and flows between them.

15

Figure 2-1. Bitcoin overview

Popular blockchain explorers include:

• Bitcoin Block Explorer
• BlockCypher Explorer
• blockchain.info
• BitPay Insight

Each of these has a search function that can take a bitcoin address, transaction hash,
block number, or block hash and retrieve corresponding information from the bit‐
coin network. With each transaction or block example, we will provide a URL so you
can look it up yourself and study it in detail.

Buying a Cup of Coffee
Alice, introduced in the previous chapter, is a new user who has just acquired her first
bitcoin. In “Getting Your First Bitcoin” on page 10, Alice met with her friend Joe to
exchange some cash for bitcoin. The transaction created by Joe funded Alice’s wallet
with 0.10 BTC. Now Alice will make her first retail transaction, buying a cup of coffee
at Bob’s coffee shop in Palo Alto, California.

Bob’s Cafe recently started accepting bitcoin payments by adding a bitcoin option to
its point-of-sale system. The prices at Bob’s Cafe are listed in the local currency (US
dollars), but at the register, customers have the option of paying in either dollars or
bitcoin. Alice places her order for a cup of coffee and Bob enters it into the register, as

16 | Chapter 2: How Bitcoin Works

www.allitebooks.com

https://blockexplorer.com
https://live.blockcypher.com
https://blockchain.info
https://insight.bitpay.com
http://www.allitebooks.org

he does for all transactions. The point-of-sale system automatically converts the total
price from US dollars to bitcoin at the prevailing market rate and displays the price in
both currencies:

Total:
$1.50 USD
0.015 BTC

Bob says, “That’s one-dollar-fifty, or fifteen millibits.”

Bob’s point-of-sale system will also automatically create a special QR code containing
a payment request (see Figure 2-2).

Unlike a QR code that simply contains a destination bitcoin address, a payment
request is a QR-encoded URL that contains a destination address, a payment amount,
and a generic description such as “Bob’s Cafe.” This allows a bitcoin wallet application
to prefill the information used to send the payment while showing a human-readable
description to the user. You can scan the QR code with a bitcoin wallet application to
see what Alice would see.

Figure 2-2. Payment request QR code

Try to scan this with your wallet to see the address and amount but
DO NOT SEND MONEY.

bitcoin:1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA?
amount=0.015&
label=Bob%27s%20Cafe&
message=Purchase%20at%20Bob%27s%20Cafe

Components of the URL

A bitcoin address: "1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA"
The payment amount: "0.015"
A label for the recipient address: "Bob's Cafe"
A description for the payment: "Purchase at Bob's Cafe"

Transactions, Blocks, Mining, and the Blockchain | 17

Alice uses her smartphone to scan the barcode on display. Her smartphone shows a
payment of 0.0150 BTC to Bob’s Cafe and she selects Send to authorize the payment.
Within a few seconds (about the same amount of time as a credit card authorization),
Bob sees the transaction on the register, completing the transaction.

In the following sections we will examine this transaction in more detail. We’ll see
how Alice’s wallet constructed it, how it was propagated across the network, how it
was verified, and finally, how Bob can spend that amount in subsequent transactions.

The bitcoin network can transact in fractional values, e.g., from
millibitcoin (1/1000th of a bitcoin) down to 1/100,000,000th of a
bitcoin, which is known as a satoshi. Throughout this book we’ll
use the term “bitcoin” to refer to any quantity of bitcoin currency,
from the smallest unit (1 satoshi) to the total number (21,000,000)
of all bitcoin that will ever be mined.

You can examine Alice’s transaction to Bob’s Cafe on the blockchain using a block
explorer site (Example 2-1):

Example 2-1. View Alice’s transaction on blockexplorer.com

https://blockexplorer.com/tx/
0627052b6f28912f2703066a912ea577f2ce4da4caa5a5fbd8a57286c345c2f2

Bitcoin Transactions
In simple terms, a transaction tells the network that the owner of some bitcoin value
has authorized the transfer of that value to another owner. The new owner can now
spend the bitcoin by creating another transaction that authorizes transfer to another
owner, and so on, in a chain of ownership.

Transaction Inputs and Outputs
Transactions are like lines in a double-entry bookkeeping ledger. Each transaction
contains one or more “inputs,” which are like debits against a bitcoin account. On the
other side of the transaction, there are one or more “outputs,” which are like credits
added to a bitcoin account. The inputs and outputs (debits and credits) do not neces‐
sarily add up to the same amount. Instead, outputs add up to slightly less than inputs
and the difference represents an implied transaction fee, which is a small payment col‐
lected by the miner who includes the transaction in the ledger. A bitcoin transaction
is shown as a bookkeeping ledger entry in Figure 2-3.

The transaction also contains proof of ownership for each amount of bitcoin (inputs)
whose value is being spent, in the form of a digital signature from the owner, which

18 | Chapter 2: How Bitcoin Works

https://blockexplorer.com/tx/0627052b6f28912f2703066a912ea577f2ce4da4caa5a5fbd8a57286c345c2f2

can be independently validated by anyone. In bitcoin terms, “spending” is signing a
transaction that transfers value from a previous transaction over to a new owner
identified by a bitcoin address.

Figure 2-3. Transaction as double-entry bookkeeping

Transaction Chains
Alice’s payment to Bob’s Cafe uses a previous transaction’s output as its input. In the
previous chapter, Alice received bitcoin from her friend Joe in return for cash. That
transaction created a bitcoin value locked by Alice’s key. Her new transaction to Bob’s
Cafe references the previous transaction as an input and creates new outputs to pay
for the cup of coffee and receive change. The transactions form a chain, where the
inputs from the latest transaction correspond to outputs from previous transactions.
Alice’s key provides the signature that unlocks those previous transaction outputs,
thereby proving to the bitcoin network that she owns the funds. She attaches the pay‐
ment for coffee to Bob’s address, thereby “encumbering” that output with the require‐
ment that Bob produces a signature in order to spend that amount. This represents a
transfer of value between Alice and Bob. This chain of transactions, from Joe to Alice
to Bob, is illustrated in Figure 2-4.

Bitcoin Transactions | 19

Figure 2-4. A chain of transactions, where the output of one transaction is the input of
the next transaction

Making Change
Many bitcoin transactions will include outputs that reference both an address of the
new owner and an address of the current owner, called the change address. This is
because transaction inputs, like currency notes, cannot be divided. If you purchase a
$5 US dollar item in a store but use a $20 US dollar bill to pay for the item, you expect
to receive $15 US dollars in change. The same concept applies with bitcoin transac‐
tion inputs. If you purchased an item that costs 5 bitcoin but only had a 20 bitcoin
input to use, you would send one output of 5 bitcoin to the store owner and one out‐
put of 15 bitcoin back to yourself as change (less any applicable transaction fee).
Importantly, the change address does not have to be the same address as that of the
input and for privacy reasons is often a new address from the owner’s wallet.

Different wallets may use different strategies when aggregating inputs to make a pay‐
ment requested by the user. They might aggregate many small inputs, or use one that
is equal to or larger than the desired payment. Unless the wallet can aggregate inputs
in such a way to exactly match the desired payment plus transaction fees, the wallet
will need to generate some change. This is very similar to how people handle cash. If
you always use the largest bill in your pocket, you will end up with a pocket full of
loose change. If you only use the loose change, you’ll always have only big bills. Peo‐
ple subconsciously find a balance between these two extremes, and bitcoin wallet
developers strive to program this balance.

20 | Chapter 2: How Bitcoin Works

In summary, transactions move value from transaction inputs to transaction outputs.
An input is a reference to a previous transaction’s output, showing where the value is
coming from. A transaction output directs a specific value to a new owner’s bitcoin
address and can include a change output back to the original owner. Outputs from
one transaction can be used as inputs in a new transaction, thus creating a chain of
ownership as the value is moved from owner to owner (see Figure 2-4).

Common Transaction Forms
The most common form of transaction is a simple payment from one address to
another, which often includes some “change” returned to the original owner. This
type of transaction has one input and two outputs and is shown in Figure 2-5.

Figure 2-5. Most common transaction

Another common form of transaction is one that aggregates several inputs into a sin‐
gle output (see Figure 2-6). This represents the real-world equivalent of exchanging a
pile of coins and currency notes for a single larger note. Transactions like these are
sometimes generated by wallet applications to clean up lots of smaller amounts that
were received as change for payments.

Figure 2-6. Transaction aggregating funds

Bitcoin Transactions | 21

Finally, another transaction form that is seen often on the bitcoin ledger is a transac‐
tion that distributes one input to multiple outputs representing multiple recipients
(see Figure 2-7). This type of transaction is sometimes used by commercial entities to
distribute funds, such as when processing payroll payments to multiple employees.

Figure 2-7. Transaction distributing funds

Constructing a Transaction
Alice’s wallet application contains all the logic for selecting appropriate inputs and
outputs to build a transaction to Alice’s specification. Alice only needs to specify a
destination and an amount, and the rest happens in the wallet application without her
seeing the details. Importantly, a wallet application can construct transactions even if
it is completely offline. Like writing a check at home and later sending it to the bank
in an envelope, the transaction does not need to be constructed and signed while con‐
nected to the bitcoin network.

Getting the Right Inputs
Alice’s wallet application will first have to find inputs that can pay for the amount she
wants to send to Bob. Most wallets keep track of all the available outputs belonging to
addresses in the wallet. Therefore, Alice’s wallet would contain a copy of the transac‐
tion output from Joe’s transaction, which was created in exchange for cash (see “Get‐
ting Your First Bitcoin” on page 10). A bitcoin wallet application that runs as a full-
node client actually contains a copy of every unspent output from every transaction
in the blockchain. This allows a wallet to construct transaction inputs as well as
quickly verify incoming transactions as having correct inputs. However, because a
full-node client takes up a lot of disk space, most user wallets run “lightweight” clients
that track only the user’s own unspent outputs.

If the wallet application does not maintain a copy of unspent transaction outputs, it
can query the bitcoin network to retrieve this information using a variety of APIs
available by different providers or by asking a full-node using an application pro‐

22 | Chapter 2: How Bitcoin Works

gramming interface (API) call. Example 2-2 shows a API request, constructed as an
HTTP GET command to a specific URL. This URL will return all the unspent trans‐
action outputs for an address, giving any application the information it needs to con‐
struct transaction inputs for spending. We use the simple command-line HTTP client
cURL to retrieve the response.

Example 2-2. Look up all the unspent outputs for Alice’s bitcoin address

$ curl https://blockchain.info/unspent?active=1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK

{

 "unspent_outputs":[

 {
 "tx_hash":"186f9f998a5...2836dd734d2804fe65fa35779",
 "tx_index":104810202,
 "tx_output_n": 0,

"script":"76a9147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac",
 "value": 10000000,
 "value_hex": "00989680",
 "confirmations":0
 }

]
}

The response in Example 2-2 shows one unspent output (one that has not been
redeemed yet) under the ownership of Alice’s address 1Cdid9KFAaatwczBwBttQcw
XYCpvK8h7FK. The response includes the reference to the transaction in which this
unspent output is contained (the payment from Joe) and its value in satoshis, at 10
million, equivalent to 0.10 bitcoin. With this information, Alice’s wallet application
can construct a transaction to transfer that value to new owner addresses.

View the transaction from Joe to Alice.

As you can see, Alice’s wallet contains enough bitcoin in a single unspent output to
pay for the cup of coffee. Had this not been the case, Alice’s wallet application might
have to “rummage” through a pile of smaller unspent outputs, like picking coins from
a purse until it could find enough to pay for the coffee. In both cases, there might be a
need to get some change back, which we will see in the next section, as the wallet
application creates the transaction outputs (payments).

Constructing a Transaction | 23

http://bit.ly/1tAeeGr

Creating the Outputs
A transaction output is created in the form of a script that creates an encumbrance on
the value and can only be redeemed by the introduction of a solution to the script. In
simpler terms, Alice’s transaction output will contain a script that says something like,
“This output is payable to whoever can present a signature from the key correspond‐
ing to Bob’s public address.” Because only Bob has the wallet with the keys corre‐
sponding to that address, only Bob’s wallet can present such a signature to redeem
this output. Alice will therefore “encumber” the output value with a demand for a sig‐
nature from Bob.

This transaction will also include a second output, because Alice’s funds are in the
form of a 0.10 BTC output, too much money for the 0.015 BTC cup of coffee. Alice
will need 0.085 BTC in change. Alice’s change payment is created by Alice’s wallet as
an output in the very same transaction as the payment to Bob. Essentially, Alice’s wal‐
let breaks her funds into two payments: one to Bob and one back to herself. She can
then use (spend) the change output in a subsequent transaction.

Finally, for the transaction to be processed by the network in a timely fashion, Alice’s
wallet application will add a small fee. This is not explicit in the transaction; it is
implied by the difference between inputs and outputs. If instead of taking 0.085 in
change, Alice creates only 0.0845 as the second output, there will be 0.0005 BTC (half
a millibitcoin) left over. The input’s 0.10 BTC is not fully spent with the two outputs,
because they will add up to less than 0.10. The resulting difference is the transaction
fee that is collected by the miner as a fee for validating and including the transaction
in a block to be recorded on the blockchain.

The resulting transaction can be seen using a blockchain explorer web application, as
shown in Figure 2-8.

Figure 2-8. Alice’s transaction to Bob’s Cafe

24 | Chapter 2: How Bitcoin Works

View the transaction from Alice to Bob’s Cafe.

Adding the Transaction to the Ledger
The transaction created by Alice’s wallet application is 258 bytes long and contains
everything necessary to confirm ownership of the funds and assign new owners.
Now, the transaction must be transmitted to the bitcoin network where it will become
part of the blockchain. In the next section we will see how a transaction becomes part
of a new block and how the block is “mined.” Finally, we will see how the new block,
once added to the blockchain, is increasingly trusted by the network as more blocks
are added.

Transmitting the transaction
Because the transaction contains all the information necessary to process, it does not
matter how or where it is transmitted to the bitcoin network. The bitcoin network is a
peer-to-peer network, with each bitcoin client participating by connecting to several
other bitcoin clients. The purpose of the bitcoin network is to propagate transactions
and blocks to all participants.

How it propagates
Any system, such as a server, desktop application, or wallet, that participates in the
bitcoin network by “speaking” the bitcoin protocol is called a bitcoin node. Alice’s wal‐
let application can send the new transaction to any bitcoin node it is connected to
over any type of connection: wired, WiFi, mobile, etc. Her bitcoin wallet does not
have to be connected to Bob’s bitcoin wallet directly and she does not have to use the
internet connection offered by the cafe, though both those options are possible, too.
Any bitcoin node that receives a valid transaction it has not seen before will immedi‐
ately forward it to all other nodes to which it is connected, a propagation technique
known as flooding. Thus, the transaction rapidly propagates out across the peer-to-
peer network, reaching a large percentage of the nodes within a few seconds.

Bob’s view
If Bob’s bitcoin wallet application is directly connected to Alice’s wallet application,
Bob’s wallet application might be the first node to receive the transaction. However,
even if Alice’s wallet sends the transaction through other nodes, it will reach Bob’s
wallet within a few seconds. Bob’s wallet will immediately identify Alice’s transaction
as an incoming payment because it contains outputs redeemable by Bob’s keys. Bob’s
wallet application can also independently verify that the transaction is well formed,

Constructing a Transaction | 25

http://bit.ly/1u0FIGs

uses previously unspent inputs, and contains sufficient transaction fees to be included
in the next block. At this point Bob can assume, with little risk, that the transaction
will shortly be included in a block and confirmed.

A common misconception about bitcoin transactions is that they
must be “confirmed” by waiting 10 minutes for a new block, or up
to 60 minutes for a full six confirmations. Although confirmations
ensure the transaction has been accepted by the whole network,
such a delay is unnecessary for small-value items such as a cup of
coffee. A merchant may accept a valid small-value transaction with
no confirmations, with no more risk than a credit card payment
made without an ID or a signature, as merchants routinely accept
today.

Bitcoin Mining
Alice’s transaction is now propagated on the bitcoin network. It does not become part
of the blockchain until it is verified and included in a block by a process called mining.
See Chapter 10 for a detailed explanation.

The bitcoin system of trust is based on computation. Transactions are bundled into
blocks, which require an enormous amount of computation to prove, but only a small
amount of computation to verify as proven. The mining process serves two purposes
in bitcoin:

• Mining nodes validate all transactions by reference to bitcoin’s consensus rules.
Therefore, mining provides security for bitcoin transactions by rejecting invalid
or malformed transactions.

• Mining creates new bitcoin in each block, almost like a central bank printing new
money. The amount of bitcoin created per block is limited and diminishes with
time, following a fixed issuance schedule.

Mining achieves a fine balance between cost and reward. Mining uses electricity to
solve a mathematical problem. A successful miner will collect a reward in the form of
new bitcoin and transaction fees. However, the reward will only be collected if the
miner has correctly validated all the transactions, to the satisfaction of the rules of
consensus. This delicate balance provides security for bitcoin without a central
authority.

A good way to describe mining is like a giant competitive game of sudoku that resets
every time someone finds a solution and whose difficulty automatically adjusts so
that it takes approximately 10 minutes to find a solution. Imagine a giant sudoku puz‐
zle, several thousand rows and columns in size. If I show you a completed puzzle you
can verify it quite quickly. However, if the puzzle has a few squares filled and the rest

26 | Chapter 2: How Bitcoin Works

are empty, it takes a lot of work to solve! The difficulty of the sudoku can be adjusted
by changing its size (more or fewer rows and columns), but it can still be verified
quite easily even if it is very large. The “puzzle” used in bitcoin is based on a crypto‐
graphic hash and exhibits similar characteristics: it is asymmetrically hard to solve
but easy to verify, and its difficulty can be adjusted.

In “Bitcoin Uses, Users, and Their Stories” on page 5, we introduced Jing, an entre‐
preneur in Shanghai. Jing runs a mining farm, which is a business that runs thousands
of specialized mining computers, competing for the reward. Every 10 minutes or so,
Jing’s mining computers compete against thousands of similar systems in a global
race to find a solution to a block of transactions. Finding such a solution, the so-
called Proof-of-Work (PoW), requires quadrillions of hashing operations per second
across the entire bitcoin network. The algorithm for Proof-of-Work involves repeat‐
edly hashing the header of the block and a random number with the SHA256 crypto‐
graphic algorithm until a solution matching a predetermined pattern emerges. The
first miner to find such a solution wins the round of competition and publishes that
block into the blockchain.

Jing started mining in 2010 using a very fast desktop computer to find a suitable
Proof-of-Work for new blocks. As more miners started joining the bitcoin network,
the difficulty of the problem increased rapidly. Soon, Jing and other miners upgraded
to more specialized hardware, such as high-end dedicated graphical processing units
(GPUs) cards such as those used in gaming desktops or consoles. At the time of this
writing, the difficulty is so high that it is profitable only to mine with application-
specific integrated circuits (ASIC), essentially hundreds of mining algorithms printed
in hardware, running in parallel on a single silicon chip. Jing’s company also partici‐
pates in a mining pool, which much like a lottery pool allows several participants to
share their efforts and rewards. Jing’s company now runs a warehouse containing
thousands of ASIC miners to mine for bitcoin 24 hours a day. The company pays its
electricity costs by selling the bitcoin it is able to generate from mining, creating some
income from the profits.

Mining Transactions in Blocks
New transactions are constantly flowing into the network from user wallets and other
applications. As these are seen by the bitcoin network nodes, they get added to a tem‐
porary pool of unverified transactions maintained by each node. As miners construct
a new block, they add unverified transactions from this pool to the new block and
then attempt to prove the validity of that new block, with the mining algorithm
(Proof-of-Work). The process of mining is explained in detail in Chapter 10.

Transactions are added to the new block, prioritized by the highest-fee transactions
first and a few other criteria. Each miner starts the process of mining a new block of
transactions as soon as he receives the previous block from the network, knowing he

Mining Transactions in Blocks | 27

has lost that previous round of competition. He immediately creates a new block, fills
it with transactions and the fingerprint of the previous block, and starts calculating
the Proof-of-Work for the new block. Each miner includes a special transaction in his
block, one that pays his own bitcoin address the block reward (currently 12.5 newly
created bitcoin) plus the sum of transaction fees from all the transactions included in
the block. If he finds a solution that makes that block valid, he “wins” this reward
because his successful block is added to the global blockchain and the reward transac‐
tion he included becomes spendable. Jing, who participates in a mining pool, has set
up his software to create new blocks that assign the reward to a pool address. From
there, a share of the reward is distributed to Jing and other miners in proportion to
the amount of work they contributed in the last round.

Alice’s transaction was picked up by the network and included in the pool of unveri‐
fied transactions. Once validated by the mining software it was included in a new
block, called a candidate block, generated by Jing’s mining pool. All the miners partici‐
pating in that mining pool immediately start computing Proof-of-Work for the can‐
didate block. Approximately five minutes after the transaction was first transmitted
by Alice’s wallet, one of Jing’s ASIC miners found a solution for the candidate block
and announced it to the network. Once other miners validated the winning block
they started the race to generate the next block.

Jing’s winning block became part of the blockchain as block #277316, containing 420
transactions, including Alice’s transaction. The block containing Alice’s transaction is
counted as one “confirmation” of that transaction.

You can see the block that includes Alice’s transaction.

Approximately 19 minutes later, a new block, #277317, is mined by another miner.
Because this new block is built on top of block #277316 that contained Alice’s transac‐
tion, it added even more computation to the blockchain, thereby strengthening the
trust in those transactions. Each block mined on top of the one containing the trans‐
action counts as an additional confirmation for Alice’s transaction. As the blocks pile
on top of each other, it becomes exponentially harder to reverse the transaction,
thereby making it more and more trusted by the network.

In the diagram in Figure 2-9, we can see block #277316, which contains Alice’s trans‐
action. Below it are 277,316 blocks (including block #0), linked to each other in a
chain of blocks (blockchain) all the way back to block #0, known as the genesis block.
Over time, as the “height” in blocks increases, so does the computation difficulty for
each block and the chain as a whole. The blocks mined after the one that contains

28 | Chapter 2: How Bitcoin Works

https://blockchain.info/block-height/277316

Alice’s transaction act as further assurance, as they pile on more computation in a
longer and longer chain. By convention, any block with more than six confirmations
is considered irrevocable, because it would require an immense amount of computa‐
tion to invalidate and recalculate six blocks. We will examine the process of mining
and the way it builds trust in more detail in Chapter 10.

Figure 2-9. Alice’s transaction included in block #277316

Spending the Transaction
Now that Alice’s transaction has been embedded in the blockchain as part of a block,
it is part of the distributed ledger of bitcoin and visible to all bitcoin applications.
Each bitcoin client can independently verify the transaction as valid and spendable.
Full-node clients can track the source of the funds from the moment the bitcoin were
first generated in a block, incrementally from transaction to transaction, until they
reach Bob’s address. Lightweight clients can do what is called a simplified payment
verification (see “Simplified Payment Verification (SPV) Nodes” on page 183) by con‐
firming that the transaction is in the blockchain and has several blocks mined after it,
thus providing assurance that the miners accepted it as valid.

Bob can now spend the output from this and other transactions. For example, Bob
can pay a contractor or supplier by transferring value from Alice’s coffee cup payment
to these new owners. Most likely, Bob’s bitcoin software will aggregate many small
payments into a larger payment, perhaps concentrating all the day’s bitcoin revenue
into a single transaction. This would aggregate the various payments into a single

Spending the Transaction | 29

output (and a single address). For a diagram of an aggregating transaction, see
Figure 2-6.

As Bob spends the payments received from Alice and other customers, he extends the
chain of transactions. Let’s assume that Bob pays his web designer Gopesh in Banga‐
lore for a new website page. Now the chain of transactions will look like Figure 2-10.

Figure 2-10. Alice’s transaction as part of a transaction chain from Joe to Gopesh

In this chapter, we saw how transactions build a chain that moves value from owner
to owner. We also tracked Alice’s transaction, from the moment it was created in her
wallet, through the bitcoin network and to the miners who recorded it on the block‐
chain. In the rest of this book we will examine the specific technologies behind wal‐
lets, addresses, signatures, transactions, the network, and finally mining.

30 | Chapter 2: How Bitcoin Works

CHAPTER 3

Bitcoin Core: The Reference
Implementation

Bitcoin is an open source project and the source code is available under an open
(MIT) license, free to download and use for any purpose. Open source means more
than simply free to use. It also means that bitcoin is developed by an open commu‐
nity of volunteers. At first, that community consisted of only Satoshi Nakamoto. By
2016, bitcoin’s source code had more than 400 contributors with about a dozen devel‐
opers working on the code almost full-time and several dozen more on a part-time
basis. Anyone can contribute to the code—including you!

When bitcoin was created by Satoshi Nakamoto, the software was actually completed
before the whitepaper reproduced in Appendix A was written. Satoshi wanted to
make sure it worked before writing about it. That first implementation, then simply
known as “Bitcoin” or “Satoshi client,” has been heavily modified and improved. It has
evolved into what is known as Bitcoin Core, to differentiate it from other compatible
implementations. Bitcoin Core is the reference implementation of the bitcoin system,
meaning that it is the authoritative reference on how each part of the technology
should be implemented. Bitcoin Core implements all aspects of bitcoin, including
wallets, a transaction and block validation engine, and a full network node in the
peer-to-peer bitcoin network.

Even though Bitcoin Core includes a reference implementation of a
wallet, this is not intended to be used as a production wallet for
users or for applications. Application developers are advised to
build wallets using modern standards such as BIP-39 and BIP-32
(see “Mnemonic Code Words (BIP-39)” on page 99 and “HD Wal‐
lets (BIP-32/BIP-44)” on page 96). BIP stands for Bitcoin Improve‐
ment Proposal.

31

Figure 3-1 shows the architecture of Bitcoin Core.

Figure 3-1. Bitcoin Core architecture (Source: Eric Lombrozo)

Bitcoin Development Environment
If you’re a developer, you will want to set up a development environment with all the
tools, libraries, and support software for writing bitcoin applications. In this highly
technical chapter, we’ll walk through that process step-by-step. If the material
becomes too dense (and you’re not actually setting up a development environment)
feel free to skip to the next chapter, which is less technical.

Compiling Bitcoin Core from the Source Code
Bitcoin Core’s source code can be downloaded as a ZIP archive or by cloning the
authoritative source repository from GitHub. On the GitHub bitcoin page, select

32 | Chapter 3: Bitcoin Core: The Reference Implementation

https://github.com/bitcoin/bitcoin

Download ZIP from the sidebar. Alternatively, use the git command line to create a
local copy of the source code on your system.

In many of the examples in this chapter we will be using the oper‐
ating system’s command-line interface (also known as a “shell”),
accessed via a “terminal” application. The shell will display a
prompt; you type a command; and the shell responds with some
text and a new prompt for your next command. The prompt may
look different on your system, but in the following examples it is
denoted by a $ symbol. In the examples, when you see text after a $
symbol, don’t type the $ symbol but type the command immedi‐
ately following it, then press Enter to execute the command. In the
examples, the lines below each command are the operating system’s
responses to that command. When you see the next $ prefix, you’ll
know it’s a new command and you should repeat the process.

In this example, we are using the git command to create a local copy (“clone”) of the
source code:

$ git clone https://github.com/bitcoin/bitcoin.git
Cloning into 'bitcoin'...
remote: Counting objects: 66193, done.
remote: Total 66193 (delta 0), reused 0 (delta 0), pack-reused 66193
Receiving objects: 100% (66193/66193), 63.39 MiB | 574.00 KiB/s, done.
Resolving deltas: 100% (48395/48395), done.
Checking connectivity... done.
$

Git is the most widely used distributed version control system, an
essential part of any software developer’s toolkit. You may need to
install the git command, or a graphical user interface for git, on
your operating system if you do not have it already.

When the git cloning operation has completed, you will have a complete local copy of
the source code repository in the directory bitcoin. Change to this directory by typing
cd bitcoin at the prompt:

$ cd bitcoin

Selecting a Bitcoin Core Release
By default, the local copy will be synchronized with the most recent code, which
might be an unstable or beta version of bitcoin. Before compiling the code, select a
specific version by checking out a release tag. This will synchronize the local copy
with a specific snapshot of the code repository identified by a keyword tag. Tags are

Compiling Bitcoin Core from the Source Code | 33

used by the developers to mark specific releases of the code by version number. First,
to find the available tags, we use the git tag command:

$ git tag
v0.1.5
v0.1.6test1
v0.10.0
...
v0.11.2
v0.11.2rc1
v0.12.0rc1
v0.12.0rc2
...

The list of tags shows all the released versions of bitcoin. By convention, release candi‐
dates, which are intended for testing, have the suffix “rc.” Stable releases that can be
run on production systems have no suffix. From the preceding list, select the highest
version release, which at the time of writing was v0.11.2. To synchronize the local
code with this version, use the git checkout command:

$ git checkout v0.11.2
HEAD is now at 7e27892... Merge pull request #6975

You can confirm you have the desired version “checked out” by issuing the command
git status:

$ git status
HEAD detached at v0.11.2
nothing to commit, working directory clean

Configuring the Bitcoin Core Build
The source code includes documentation, which can be found in a number of files.
Review the main documentation located in README.md in the bitcoin directory by
typing more README.md at the prompt and using the spacebar to progress to the next
page. In this chapter, we will build the command-line bitcoin client, also known as
bitcoind on Linux. Review the instructions for compiling the bitcoind command-
line client on your platform by typing more doc/build-unix.md. Alternative instruc‐
tions for macOS and Windows can be found in the doc directory, as build-osx.md or
build-windows.md, respectively.

Carefully review the build prerequisites, which are in the first part of the build docu‐
mentation. These are libraries that must be present on your system before you can
begin to compile bitcoin. If these prerequisites are missing, the build process will fail
with an error. If this happens because you missed a prerequisite, you can install it and
then resume the build process from where you left off. Assuming the prerequisites
are installed, you start the build process by generating a set of build scripts using the
autogen.sh script.

34 | Chapter 3: Bitcoin Core: The Reference Implementation

The Bitcoin Core build process was changed to use the autogen/
configure/make system starting with version 0.9. Older versions
use a simple Makefile and work slightly differently from the follow‐
ing example. Follow the instructions for the version you want to
compile. The autogen/configure/make introduced in 0.9 is likely to
be the build system used for all future versions of the code and is
the system demonstrated in the following examples.

$./autogen.sh
...
glibtoolize: copying file 'build-aux/m4/libtool.m4'
glibtoolize: copying file 'build-aux/m4/ltoptions.m4'
glibtoolize: copying file 'build-aux/m4/ltsugar.m4'
glibtoolize: copying file 'build-aux/m4/ltversion.m4'
...
configure.ac:10: installing 'build-aux/compile'
configure.ac:5: installing 'build-aux/config.guess'
configure.ac:5: installing 'build-aux/config.sub'
configure.ac:9: installing 'build-aux/install-sh'
configure.ac:9: installing 'build-aux/missing'
Makefile.am: installing 'build-aux/depcomp'
...

The autogen.sh script creates a set of automatic configuration scripts that will inter‐
rogate your system to discover the correct settings and ensure you have all the neces‐
sary libraries to compile the code. The most important of these is the configure
script that offers a number of different options to customize the build process.
Type ./configure --help to see the various options:

$./configure --help
`configure' configures Bitcoin Core 0.11.2 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

...
Optional Features:
 --disable-option-checking ignore unrecognized --enable/--with options
 --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)
 --enable-FEATURE[=ARG] include FEATURE [ARG=yes]

 --enable-wallet enable wallet (default is yes)

 --with-gui[=no|qt4|qt5|auto]
...

The configure script allows you to enable or disable certain features of bitcoind
through the use of the --enable-FEATURE and --disable-FEATURE flags, where
FEATURE is replaced by the feature name, as listed in the help output. In this chapter,
we will build the bitcoind client with all the default features. We won’t be using the

Compiling Bitcoin Core from the Source Code | 35

configuration flags, but you should review them to understand what optional features
are part of the client. If you are in an academic setting, computer lab restrictions may
require you to install applications in your home directory (e.g., using --prefix=
$HOME).

Here are some useful options that override the default behavior of the configure
script:

--prefix=$HOME

This overrides the default installation location (which is /usr/local/) for the
resulting executable. Use $HOME to put everything in your home directory, or a
different path.

--disable-wallet

This is used to disable the reference wallet implementation.

--with-incompatible-bdb

If you are building a wallet, allow the use of an incompatible version of the
Berkeley DB library.

--with-gui=no

Don’t build the graphical user interface, which requires the Qt library. This builds
server and command-line bitcoin only.

Next, run the configure script to automatically discover all the necessary libraries
and create a customized build script for your system:

$./configure
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
...
[many pages of configuration tests follow]
...
$

If all went well, the configure command will end by creating the customized build
scripts that will allow us to compile bitcoind. If there are any missing libraries or
errors, the configure command will terminate with an error instead of creating the
build scripts. If an error occurs, it is most likely because of a missing or incompatible
library. Review the build documentation again and make sure you install the missing
prerequisites. Then run configure again and see if that fixes the error.

36 | Chapter 3: Bitcoin Core: The Reference Implementation

Building the Bitcoin Core Executables
Next, you will compile the source code, a process that can take up to an hour to com‐
plete, depending on the speed of your CPU and available memory. During the compi‐
lation process you should see output every few seconds or every few minutes, or an
error if something goes wrong. If an error occurs, or the compilation process is inter‐
rupted, it can be resumed any time by typing make again. Type make to start compiling
the executable application:

$ make
Making all in src
 CXX crypto/libbitcoinconsensus_la-hmac_sha512.lo
 CXX crypto/libbitcoinconsensus_la-ripemd160.lo
 CXX crypto/libbitcoinconsensus_la-sha1.lo
 CXX crypto/libbitcoinconsensus_la-sha256.lo
 CXX crypto/libbitcoinconsensus_la-sha512.lo
 CXX libbitcoinconsensus_la-hash.lo
 CXX primitives/libbitcoinconsensus_la-transaction.lo
 CXX libbitcoinconsensus_la-pubkey.lo
 CXX script/libbitcoinconsensus_la-bitcoinconsensus.lo
 CXX script/libbitcoinconsensus_la-interpreter.lo

[... many more compilation messages follow ...]

$

If all goes well, Bitcoin Core is now compiled. The final step is to install the various
executables on your system using the sudo make install command. You may be
prompted for your user password, because this step requires administrative privi‐
leges:

$ sudo make install
Password:
Making install in src
 ../build-aux/install-sh -c -d '/usr/local/lib'
libtool: install: /usr/bin/install -c bitcoind /usr/local/bin/bitcoind
libtool: install: /usr/bin/install -c bitcoin-cli /usr/local/bin/bitcoin-cli
libtool: install: /usr/bin/install -c bitcoin-tx /usr/local/bin/bitcoin-tx
...
$

The default installation of bitcoind puts it in /usr/local/bin. You can confirm that Bit‐
coin Core is correctly installed by asking the system for the path of the executables, as
follows:

$ which bitcoind
/usr/local/bin/bitcoind

$ which bitcoin-cli
/usr/local/bin/bitcoin-cli

Compiling Bitcoin Core from the Source Code | 37

Running a Bitcoin Core Node
Bitcoin’s peer-to-peer network is composed of network “nodes,” run mostly by volun‐
teers and some of the businesses that build bitcoin applications. Those running bit‐
coin nodes have a direct and authoritative view of the bitcoin blockchain, with a local
copy of all the transactions, independently validated by their own system. By running
a node, you don’t have to rely on any third party to validate a transaction. Moreover,
by running a bitcoin node you contribute to the bitcoin network by making it more
robust.

Running a node, however, requires a permanently connected system with enough
resources to process all bitcoin transactions. Depending on whether you choose to
index all transactions and keep a full copy of the blockchain, you may also need a lot
of disk space and RAM. As of late 2016, a full-index node needs 2 GB of RAM and
125 GB of disk space so that it has room to grow. Bitcoin nodes also transmit and
receive bitcoin transactions and blocks, consuming internet bandwidth. If your inter‐
net connection is limited, has a low data cap, or is metered (charged by the gigabit),
you should probably not run a bitcoin node on it, or run it in a way that constrains its
bandwidth (see Example 3-2).

Bitcoin Core keeps a full copy of the blockchain by default, with
every transaction that has ever occurred on the bitcoin network
since its inception in 2009. This dataset is dozens of gigabytes in
size and is downloaded incrementally over several days or weeks,
depending on the speed of your CPU and internet connection. Bit‐
coin Core will not be able to process transactions or update
account balances until the full blockchain dataset is downloaded.
Make sure you have enough disk space, bandwidth, and time to
complete the initial synchronization. You can configure Bitcoin
Core to reduce the size of the blockchain by discarding old blocks
(see Example 3-2), but it will still download the entire dataset
before discarding data.

Despite these resource requirements, thousands of volunteers run bitcoin nodes.
Some are running on systems as simple as a Raspberry Pi (a $35 USD computer the
size of a pack of cards). Many volunteers also run bitcoin nodes on rented servers,
usually some variant of Linux. A Virtual Private Server (VPS) or Cloud Computing
Server instance can be used to run a bitcoin node. Such servers can be rented for $25
to $50 USD per month from a variety of providers.

Why would you want to run a node? Here are some of the most common reasons:

• If you are developing bitcoin software and need to rely on a bitcoin node for pro‐
grammable (API) access to the network and blockchain.

38 | Chapter 3: Bitcoin Core: The Reference Implementation

• If you are building applications that must validate transactions according to bit‐
coin’s consensus rules. Typically, bitcoin software companies run several nodes.

• If you want to support bitcoin. Running a node makes the network more robust
and able to serve more wallets, more users, and more transactions.

• If you do not want to rely on any third party to process or validate your transac‐
tions.

If you’re reading this book and interested in developing bitcoin software, you should
be running your own node.

Running Bitcoin Core for the First Time
When you first run bitcoind, it will remind you to create a configuration file with a
strong password for the JSON-RPC interface. This password controls access to the
application programming interface (API) offered by Bitcoin Core.

Run bitcoind by typing bitcoind into the terminal:

$ bitcoind
Error: To use the "-server" option, you must set a rpcpassword in the configura-
tion file:
/home/ubuntu/.bitcoin/bitcoin.conf
It is recommended you use the following random password:
rpcuser=bitcoinrpc
rpcpassword=2XA4DuKNCbtZXsBQRRNDEwEY2nM6M4H9Tx5dFjoAVVbK
(you do not need to remember this password)
The username and password MUST NOT be the same.
If the file does not exist, create it with owner-readable-only file permissions.
It is also recommended to set alertnotify so you are notified of problems;
for example: alertnotify=echo %s | mail -s "Bitcoin Alert" admin@foo.com

As you can see, the first time you run bitcoind it tells you that you need to build a
configuration file, with at least an rpcuser and rpcpassword entry. Additionally, it is
recommended that you set up the alerting mechanism. In the next section we will
examine the various configuration options and set up a configuration file.

Configuring the Bitcoin Core Node
Edit the configuration file in your preferred editor and set the parameters, replacing
the password with a strong password as recommended by bitcoind. Do not use the
password shown in the book. Create a file inside the .bitcoin directory (under your
user’s home directory) so that it is named .bitcoin/bitcoin.conf and provide a user‐
name and password:

rpcuser=bitcoinrpc
rpcpassword=CHANGE_THIS

Running a Bitcoin Core Node | 39

In addition to the rpcuser and rpcpassword options, Bitcoin Core offers more than
100 configuration options that modify the behavior of the network node, the storage
of the blockchain, and many other aspects of its operation. To see a listing of these
options, run bitcoind --help:

 bitcoind --help
Bitcoin Core Daemon version v0.11.2

Usage:
 bitcoind [options] Start Bitcoin Core Daemon

Options:

 -?
 This help message

 -alerts
 Receive and display P2P network alerts (default: 1)

 -alertnotify=<cmd>
 Execute command when a relevant alert is received or we see a really
 long fork (%s in cmd is replaced by message)
...
[many more options]
...

 -rpcsslciphers=<ciphers>
 Acceptable ciphers (default:
 TLSv1.2+HIGH:TLSv1+HIGH:!SSLv2:!aNULL:!eNULL:!3DES:@STRENGTH)

Here are some of the most important options that you can set in the configuration
file, or as command-line parameters to bitcoind:

alertnotify
Run a specified command or script to send emergency alerts to the owner of this
node, usually by email.

conf
An alternative location for the configuration file. This only makes sense as a
command-line parameter to bitcoind, as it can’t be inside the configuration file
it refers to.

datadir
Select the directory and filesystem in which to put all the blockchain data. By
default this is the .bitcoin subdirectory of your home directory. Make sure this
filesystem has several gigabytes of free space.

40 | Chapter 3: Bitcoin Core: The Reference Implementation

prune
Reduce the disk space requirements to this many megabytes, by deleting old
blocks. Use this on a resource-constrained node that can’t fit the full blockchain.

txindex
Maintain an index of all transactions. This means a complete copy of the block‐
chain that allows you to programmatically retrieve any transaction by ID.

maxconnections
Set the maximum number of nodes from which to accept connections. Reducing
this from the default will reduce your bandwidth consumption. Use if you have a
data cap or pay by the gigabyte.

maxmempool
Limit the transaction memory pool to this many megabytes. Use it to reduce
memory use of the node.

maxreceivebuffer/maxsendbuffer
Limit per-connection memory buffer to this many multiples of 1000 bytes. Use
on memory-constrained nodes.

minrelaytxfee
Set the minimum fee transaction you will relay. Below this value, the transaction
is treated as zero fee. Use this on memory-constrained nodes to reduce the size of
the in-memory transaction pool.

Transaction Database Index and txindex Option
By default, Bitcoin Core builds a database containing only the transactions related to
the user’s wallet. If you want to be able to access any transaction with commands like
getrawtransaction (see “Exploring and Decoding Transactions” on page 45), you
need to configure Bitcoin Core to build a complete transaction index, which can be
achieved with the txindex option. Set txindex=1 in the Bitcoin Core configuration
file. If you don’t set this option at first and later set it to full indexing, you need to
restart bitcoind with the -reindex option and wait for it to rebuild the index.

Example 3-1 shows how you might combine the preceding options, with a fully
indexed node, running as an API backend for a bitcoin application.

Example 3-1. Sample configuration of a full-index node

alertnotify=myemailscript.sh "Alert: %s"
datadir=/lotsofspace/bitcoin
txindex=1

Running a Bitcoin Core Node | 41

rpcuser=bitcoinrpc
rpcpassword=CHANGE_THIS

Example 3-2 shows a resource-constrained node running on a smaller server.

Example 3-2. Sample configuration of a resource-constrained system

alertnotify=myemailscript.sh "Alert: %s"
maxconnections=15
prune=5000
minrelaytxfee=0.0001
maxmempool=200
maxreceivebuffer=2500
maxsendbuffer=500
rpcuser=bitcoinrpc
rpcpassword=CHANGE_THIS

Once you’ve edited the configuration file and set the options that best represent your
needs, you can test bitcoind with this configuration. Run Bitcoin Core with the
option printtoconsole to run in the foreground with output to the console:

$ bitcoind -printtoconsole

Bitcoin version v0.11.20.0
Using OpenSSL version OpenSSL 1.0.2e 3 Dec 2015
Startup time: 2015-01-02 19:56:17
Using data directory /tmp/bitcoin
Using config file /tmp/bitcoin/bitcoin.conf
Using at most 125 connections (275 file descriptors available)
Using 2 threads for script verification
scheduler thread start
HTTP: creating work queue of depth 16
No rpcpassword set - using random cookie authentication
Generated RPC authentication cookie /tmp/bitcoin/.cookie
HTTP: starting 4 worker threads
Bound to [::]:8333
Bound to 0.0.0.0:8333
Cache configuration:
* Using 2.0MiB for block index database
* Using 32.5MiB for chain state database
* Using 65.5MiB for in-memory UTXO set
init message: Loading block index...
Opening LevelDB in /tmp/bitcoin/blocks/index
Opened LevelDB successfully

[... more startup messages ...]

You can hit Ctrl-C to interrupt the process once you are satisfied that it is loading the
correct settings and running as you expect.

42 | Chapter 3: Bitcoin Core: The Reference Implementation

To run Bitcoin Core in the background as a process, start it with the daemon option,
as bitcoind -daemon.

To monitor the progress and runtime status of your bitcoin node, use the command
bitcoin-cli getinfo:

$ bitcoin-cli getinfo

{
 "version" : 110200,
 "protocolversion" : 70002,
 "blocks" : 396328,
 "timeoffset" : 0,
 "connections" : 15,
 "proxy" : "",
 "difficulty" : 120033340651.23696899,
 "testnet" : false,
 "relayfee" : 0.00010000,
 "errors" : ""
}

This shows a node running Bitcoin Core version 0.11.2, with a blockchain height of
396328 blocks and 15 active network connections.

Once you are happy with the configuration options you have selected, you should add
bitcoin to the startup scripts in your operating system, so that it runs continuously
and restarts when the operating system restarts. You will find a number of example
startup scripts for various operating systems in bitcoin’s source directory under con‐
trib/init and a README.md file showing which system uses which script.

Bitcoin Core Application Programming Interface (API)
The Bitcoin Core client implements a JSON-RPC interface that can also be accessed
using the command-line helper bitcoin-cli. The command line allows us to experi‐
ment interactively with the capabilities that are also available programmatically via
the API. To start, invoke the help command to see a list of the available bitcoin RPC
commands:

$ bitcoin-cli help
addmultisigaddress nrequired ["key",...] ("account")
addnode "node" "add|remove|onetry"
backupwallet "destination"
createmultisig nrequired ["key",...]
createrawtransaction [{"txid":"id","vout":n},...] {"address":amount,...}
decoderawtransaction "hexstring"
...
...
verifymessage "bitcoinaddress" "signature" "message"
walletlock

Bitcoin Core Application Programming Interface (API) | 43

walletpassphrase "passphrase" timeout
walletpassphrasechange "oldpassphrase" "newpassphrase"

Each of these commands may take a number of parameters. To get additional help, a
detailed description, and information on the parameters, add the command name
after help. For example, to see help on the getblockhash RPC command:

$ bitcoin-cli help getblockhash
getblockhash index

Returns hash of block in best-block-chain at index provided.

Arguments:
1. index (numeric, required) The block index

Result:
"hash" (string) The block hash

Examples:
> bitcoin-cli getblockhash 1000
> curl --user myusername --data-binary '{"jsonrpc": "1.0", "id":"curltest",
"method": "getblockhash", "params": [1000] }' -H 'content-type: text/plain;'
http://127.0.0.1:8332/

At the end of the help information you will see two examples of the RPC command,
using the bitcoin-cli helper or the HTTP client curl. These examples demonstrate
how you might call the command. Copy the first example and see the result:

$ bitcoin-cli getblockhash 1000
00000000c937983704a73af28acdec37b049d214adbda81d7e2a3dd146f6ed09

The result is a block hash, which is described in more detail in the following chapters.
But for now, this command should return the same result on your system, demon‐
strating that your Bitcoin Core node is running, is accepting commands, and has
information about block 1000 to return to you.

In the next sections we will demonstrate some very useful RPC commands and their
expected output.

Getting Information on the Bitcoin Core Client Status
Command: getinfo

Bitcoin’s getinfo RPC command displays basic information about the status of the
bitcoin network node, the wallet, and the blockchain database. Use bitcoin-cli to
run it:

$ bitcoin-cli getinfo

{
 "version" : 110200,
 "protocolversion" : 70002,

44 | Chapter 3: Bitcoin Core: The Reference Implementation

 "blocks" : 396367,
 "timeoffset" : 0,
 "connections" : 15,
 "proxy" : "",
 "difficulty" : 120033340651.23696899,
 "testnet" : false,
 "relayfee" : 0.00010000,
 "errors" : ""
}

The data is returned in JavaScript Object Notation (JSON), a format that can easily be
“consumed” by all programming languages but is also quite human-readable. Among
this data we see the version numbers for the bitcoin software client (110200) and bit‐
coin protocol (70002). We see the current block height, showing us how many blocks
are known to this client (396367). We also see various statistics about the bitcoin net‐
work and the settings related to this client.

It will take some time, perhaps more than a day, for the bitcoind
client to “catch up” to the current blockchain height as it down‐
loads blocks from other bitcoin clients. You can check its progress
using getinfo to see the number of known blocks.

Exploring and Decoding Transactions
Commands: getrawtransaction, decoderawtransaction

In “Buying a Cup of Coffee” on page 16, Alice bought a cup of coffee from Bob’s Cafe.
Her transaction was recorded on the blockchain with transaction ID (txid)
0627052b6f28912f2703066a912ea577f2ce4da4caa5a5fbd8a57286c345c2f2. Let’s use
the API to retrieve and examine that transaction by passing the transaction ID as a
parameter:

$ bitcoin-cli getrawtransaction 0627052b6f28912f2703066a912ea577f2ce4da4caa5a↵
5fbd8a57286c345c2f2

0100000001186f9f998a5aa6f048e51dd8419a14d8a0f1a8a2836dd734d2804fe65fa35779000↵
000008b483045022100884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4↵
ae24cb02204b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813014↵
10484ecc0d46f1918b30928fa0e4ed99f16a0fb4fde0735e7ade8416ab9fe423cc54123363767↵
89d172787ec3457eee41c04f4938de5cc17b4a10fa336a8d752adfffffffff0260e3160000000↵
0001976a914ab68025513c3dbd2f7b92a94e0581f5d50f654e788acd0ef8000000000001976a9↵
147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac00000000

Bitcoin Core Application Programming Interface (API) | 45

A transaction ID is not authoritative until a transaction has been
confirmed. Absence of a transaction hash in the blockchain does
not mean the transaction was not processed. This is known as
“transaction malleability,” because transaction hashes can be modi‐
fied prior to confirmation in a block. After confirmation, the txid is
immutable and authoritative.

The command getrawtransaction returns a serialized transaction in hexadecimal
notation. To decode that, we use the decoderawtransaction command, passing the
hex data as a parameter. You can copy the hex returned by getrawtransaction and
paste it as a parameter to decoderawtransaction:

$ bitcoin-cli decoderawtransaction 0100000001186f9f998a5aa6f048e51dd8419a14d8↵
a0f1a8a2836dd734d2804fe65fa35779000000008b483045022100884d142d86652a3f47ba474↵
6ec719bbfbd040a570b1deccbb6498c75c4ae24cb02204b9f039ff08df09cbe9f6addac960298↵
cad530a863ea8f53982c09db8f6e381301410484ecc0d46f1918b30928fa0e4ed99f16a0fb4fd↵
e0735e7ade8416ab9fe423cc5412336376789d172787ec3457eee41c04f4938de5cc17b4a10fa↵
336a8d752adfffffffff0260e31600000000001976a914ab68025513c3dbd2f7b92a94e0581f5↵
d50f654e788acd0ef8000000000001976a9147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8↵
88ac00000000

{
 "txid": "0627052b6f28912f2703066a912ea577f2ce4da4caa5a5fbd8a57286c345c2f2",
 "size": 258,
 "version": 1,
 "locktime": 0,
 "vin": [
 {
 "txid": "7957a35fe64f80d234d76d83a2...8149a41d81de548f0a65a8a999f6f18",
 "vout": 0,
 "scriptSig": {
 "asm":"3045022100884d142d86652a3f47ba4746ec719bbfbd040a570b1decc...",
 "hex":"483045022100884d142d86652a3f47ba4746ec719bbfbd040a570b1de..."
 },
 "sequence": 4294967295
 }
],
 "vout": [
 {
 "value": 0.01500000,
 "n": 0,
 "scriptPubKey": {
 "asm": "OP_DUP OP_HASH160 ab68...5f654e7 OP_EQUALVERIFY OP_CHECKSIG",
 "hex": "76a914ab68025513c3dbd2f7b92a94e0581f5d50f654e788ac",
 "reqSigs": 1,
 "type": "pubkeyhash",
 "addresses": [
 "1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA"
]
 }

46 | Chapter 3: Bitcoin Core: The Reference Implementation

 },
 {
 "value": 0.08450000,
 "n": 1,
 "scriptPubKey": {
 "asm": "OP_DUP OP_HASH160 7f9b1a...025a8 OP_EQUALVERIFY OP_CHECKSIG",
 "hex": "76a9147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac",
 "reqSigs": 1,
 "type": "pubkeyhash",
 "addresses": [
 "1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK"
]
 }
 }
]
}

The transaction decode shows all the components of this transaction, including the
transaction inputs and outputs. In this case we see that the transaction that credited
our new address with 15 millibits used one input and generated two outputs. The
input to this transaction was the output from a previously confirmed transaction
(shown as the vin txid starting with 7957a35fe). The two outputs correspond to the
15 millibit credit and an output with change back to the sender.

We can further explore the blockchain by examining the previous transaction refer‐
enced by its txid in this transaction using the same commands (e.g., getrawtransac
tion). Jumping from transaction to transaction we can follow a chain of transactions
back as the coins are transmitted from owner address to owner address.

Exploring Blocks
Commands: getblock, getblockhash

Exploring blocks is similar to exploring transactions. However, blocks can be refer‐
enced either by the block height or by the block hash. First, let’s find a block by its
height. In “Buying a Cup of Coffee” on page 16, we saw that Alice’s transaction was
included in block 277316.

We use the getblockhash command, which takes the block height as the parameter
and returns the block hash for that block:

$ bitcoin-cli getblockhash 277316
0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4

Now that we know which block Alice’s transaction was included in, we can query that
block. We use the getblock command with the block hash as the parameter:

$ bitcoin-cli getblock 0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b3↵
1b2cc7bdc4

Bitcoin Core Application Programming Interface (API) | 47

{
 "hash": "0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4",
 "confirmations": 37371,
 "size": 218629,
 "height": 277316,
 "version": 2,
 "merkleroot":
"c91c008c26e50763e9f548bb8b2fc323735f73577effbc55502c51eb4cc7cf2e",
 "tx": [
 "d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f",
 "b268b45c59b39d759614757718b9918caf0ba9d97c56f3b91956ff877c503fbe",
 "04905ff987ddd4cfe603b03cfb7ca50ee81d89d1f8f5f265c38f763eea4a21fd",
 "32467aab5d04f51940075055c2f20bbd1195727c961431bf0aff8443f9710f81",
 "561c5216944e21fa29dd12aaa1a45e3397f9c0d888359cb05e1f79fe73da37bd",
[... hundreds of transactions ...]
 "78b300b2a1d2d9449b58db7bc71c3884d6e0579617e0da4991b9734cef7ab23a",
 "6c87130ec283ab4c2c493b190c20de4b28ff3caf72d16ffa1ce3e96f2069aca9",
 "6f423dbc3636ef193fd8898dfdf7621dcade1bbe509e963ffbff91f696d81a62",
 "802ba8b2adabc5796a9471f25b02ae6aeee2439c679a5c33c4bbcee97e081196",
 "eaaf6a048588d9ad4d1c092539bd571dd8af30635c152a3b0e8b611e67d1a1af",
 "e67abc6bd5e2cac169821afc51b207127f42b92a841e976f9b752157879ba8bd",
 "d38985a6a1bfd35037cb7776b2dc86797abbb7a06630f5d03df2785d50d5a2ac",
 "45ea0a3f6016d2bb90ab92c34a7aac9767671a8a84b9bcce6c019e60197c134b",
 "c098445d748ced5f178ef2ff96f2758cbec9eb32cb0fc65db313bcac1d3bc98f"
],
 "time": 1388185914,
 "mediantime": 1388183675,
 "nonce": 924591752,
 "bits": "1903a30c",
 "difficulty": 1180923195.258026,
 "chainwork":
"000934695e92aaf53afa1a",
 "previousblockhash":
"0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569",
 "nextblockhash":
"000000000000000010236c269dd6ed714dd5db39d36b33959079d78dfd431ba7"
}

The block contains 419 transactions and the 64th transaction listed (0627052b…) is
Alice’s coffee payment. The height entry tells us this is the 277316th block in the
blockchain.

Using Bitcoin Core’s Programmatic Interface
The bitcoin-cli helper is very useful for exploring the Bitcoin Core API and testing
functions. But the whole point of an application programming interface is to access
functions programmatically. In this section we will demonstrate accessing Bitcoin
Core from another program.

Bitcoin Core’s API is a JSON-RPC interface. JSON stands for JavaScript Object Nota‐
tion and it is a very convenient way to present data that both humans and programs

48 | Chapter 3: Bitcoin Core: The Reference Implementation

can easily read. RPC stands for Remote Procedure Call, which means that we are call‐
ing procedures (functions) that are remote (on the Bitcoin Core node) via a network
protocol. In this case, the network protocol is HTTP, or HTTPS (for encrypted con‐
nections).

When we used the bitcoin-cli command to get help on a command, it showed us
an example of using curl, the versatile command-line HTTP client to construct one
of these JSON-RPC calls:

$ curl --user myusername --data-binary '{"jsonrpc": "1.0", "id":"curltest",
"method": "getinfo", "params": [] }' -H 'content-type: text/plain;' http://
127.0.0.1:8332/

This command shows that curl submits an HTTP request to the local host
(127.0.0.1), connecting to the default bitcoin port (8332), and submitting a jsonrpc
request for the getinfo method using text/plain encoding.

If you’re implementing a JSON-RPC call in your own program, you can use a generic
HTTP library to construct the call, similar to what is shown in the preceding curl
example.

However, there are libraries in most every programming language that “wrap” the
Bitcoin Core API in a way that makes this a lot simpler. We will use the python-
bitcoinlib library to simplify API access. Remember, this requires you to have a
running Bitcoin Core instance, which will be used to make JSON-RPC calls.

The Python script in Example 3-3 makes a simple getinfo call and prints the block
parameter from the data returned by Bitcoin Core.

Example 3-3. Running getinfo via Bitcoin Core’s JSON-RPC API

from bitcoin.rpc import RawProxy

Create a connection to local Bitcoin Core node
p = RawProxy()

Run the getinfo command, store the resulting data in info
info = p.getinfo()

Retrieve the 'blocks' element from the info
print(info['blocks'])

Running it gives us the following result:

$ python rpc_example.py
394075

Bitcoin Core Application Programming Interface (API) | 49

It tells us that our local Bitcoin Core node has 394075 blocks in its blockchain. Not a
spectacular result, but it demonstrates the basic use of the library as a simplified
interface to Bitcoin Core’s JSON-RPC API.

Next, let’s use the getrawtransaction and decodetransaction calls to retrieve the
details of Alice’s coffee payment. In Example 3-4, we retrieve Alice’s transaction and
list the transaction’s outputs. For each output, we show the recipient address and
value. As a reminder, Alice’s transaction had one output paying Bob’s Cafe and one
output for change back to Alice.

Example 3-4. Retrieving a transaction and iterating its outputs

from bitcoin.rpc import RawProxy

p = RawProxy()

Alice's transaction ID
txid = "0627052b6f28912f2703066a912ea577f2ce4da4caa5a5fbd8a57286c345c2f2"

First, retrieve the raw transaction in hex
raw_tx = p.getrawtransaction(txid)

Decode the transaction hex into a JSON object
decoded_tx = p.decoderawtransaction(raw_tx)

Retrieve each of the outputs from the transaction
for output in decoded_tx['vout']:
 print(output['scriptPubKey']['addresses'], output['value'])

Running this code, we get:

$ python rpc_transaction.py
([u'1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA'], Decimal('0.01500000'))
([u'1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK'], Decimal('0.08450000'))

Both of the preceding examples are rather simple. You don’t really need a program to
run them; you could just as easily use the bitcoin-cli helper. The next example,
however, requires several hundred RPC calls and more clearly demonstrates the use
of a programmatic interface.

In Example 3-5, we first retrieve block 277316, then retrieve each of the 419 transac‐
tions within by reference to each transaction ID. Next, we iterate through each of the
transaction’s outputs and add up the value.

Example 3-5. Retrieving a block and adding all the transaction outputs

from bitcoin.rpc import RawProxy

p = RawProxy()

50 | Chapter 3: Bitcoin Core: The Reference Implementation

The block height where Alice's transaction was recorded
blockheight = 277316

Get the block hash of block with height 277316
blockhash = p.getblockhash(blockheight)

Retrieve the block by its hash
block = p.getblock(blockhash)

Element tx contains the list of all transaction IDs in the block
transactions = block['tx']

block_value = 0

Iterate through each transaction ID in the block
for txid in transactions:
 tx_value = 0
 # Retrieve the raw transaction by ID
 raw_tx = p.getrawtransaction(txid)
 # Decode the transaction
 decoded_tx = p.decoderawtransaction(raw_tx)
 # Iterate through each output in the transaction
 for output in decoded_tx['vout']:
 # Add up the value of each output
 tx_value = tx_value + output['value']

 # Add the value of this transaction to the total
 block_value = block_value + tx_value

print("Total value in block: ", block_value)

Running this code, we get:

$ python rpc_block.py

('Total value in block: ', Decimal('10322.07722534'))

Our example code calculates that the total value transacted in this block is
10,322.07722534 BTC (including 25 BTC reward and 0.0909 BTC in fees). Compare
that to the amount reported by a block explorer site by searching for the block hash
or height. Some block explorers report the total value excluding the reward and
excluding the fees. See if you can spot the difference.

Alternative Clients, Libraries, and Toolkits
There are many alternative clients, libraries, toolkits, and even full-node implementa‐
tions in the bitcoin ecosystem. These are implemented in a variety of programming
languages, offering programmers native interfaces in their preferred language.

Alternative Clients, Libraries, and Toolkits | 51

The following sections list some of the best libraries, clients, and toolkits, organized
by programming languages.

C/C++
Bitcoin Core

The reference implementation of bitcoin

libbitcoin
Cross-platform C++ development toolkit, node, and consensus library

bitcoin explorer
Libbitcoin’s command-line tool

picocoin
A C language lightweight client library for bitcoin by Jeff Garzik

JavaScript
bcoin

A modular and scalable full-node implementation with API

Bitcore
Full node, API, and library by Bitpay

BitcoinJS
A pure JavaScript Bitcoin library for node.js and browsers

Java
bitcoinj

A Java full-node client library

Bits of Proof (BOP)
A Java enterprise-class implementation of bitcoin

Python
python-bitcoinlib

A Python bitcoin library, consensus library, and node by Peter Todd

pycoin
A Python bitcoin library by Richard Kiss

pybitcointools
A Python bitcoin library by Vitalik Buterin

52 | Chapter 3: Bitcoin Core: The Reference Implementation

https://github.com/bitcoin/bitcoin
https://github.com/libbitcoin/libbitcoin
https://github.com/libbitcoin/libbitcoin-explorer
https://github.com/jgarzik/picocoin
http://bcoin.io/
https://bitcore.io/
https://github.com/bitcoinjs/bitcoinjs-lib
https://bitcoinj.github.io
https://bitsofproof.com
https://github.com/petertodd/python-bitcoinlib
https://github.com/richardkiss/pycoin
https://github.com/vbuterin/pybitcointools

Ruby
bitcoin-client

A Ruby library wrapper for the JSON-RPC API

Go
btcd

A Go language full-node bitcoin client

Rust
rust-bitcoin

Rust bitcoin library for serialization, parsing, and API calls

C#
NBitcoin

Comprehensive bitcoin library for the .NET framework

Objective-C
CoreBitcoin

Bitcoin toolkit for ObjC and Swift

Many more libraries exist in a variety of other programming languages and more are
created all the time.

Alternative Clients, Libraries, and Toolkits | 53

https://github.com/sinisterchipmunk/bitcoin-client
https://github.com/btcsuite/btcd
https://github.com/apoelstra/rust-bitcoin
https://github.com/MetacoSA/NBitcoin
https://github.com/oleganza/CoreBitcoin

CHAPTER 4

Keys, Addresses

You may have heard that bitcoin is based on cryptography, which is a branch of math‐
ematics used extensively in computer security. Cryptography means “secret writing”
in Greek, but the science of cryptography encompasses more than just secret writing,
which is referred to as encryption. Cryptography can also be used to prove knowl‐
edge of a secret without revealing that secret (digital signature), or prove the authen‐
ticity of data (digital fingerprint). These types of cryptographic proofs are the
mathematical tools critical to bitcoin and used extensively in bitcoin applications.
Ironically, encryption is not an important part of bitcoin, as its communications and
transaction data are not encrypted and do not need to be encrypted to protect the
funds. In this chapter we will introduce some of the cryptography used in bitcoin to
control ownership of funds, in the form of keys, addresses, and wallets.

Introduction
Ownership of bitcoin is established through digital keys, bitcoin addresses, and digital
signatures. The digital keys are not actually stored in the network, but are instead cre‐
ated and stored by users in a file, or simple database, called a wallet. The digital keys
in a user’s wallet are completely independent of the bitcoin protocol and can be gen‐
erated and managed by the user’s wallet software without reference to the blockchain
or access to the internet. Keys enable many of the interesting properties of bitcoin,
including decentralized trust and control, ownership attestation, and the
cryptographic-proof security model.

Most bitcoin transactions requires a valid digital signature to be included in the
blockchain, which can only be generated with a secret key; therefore, anyone with a
copy of that key has control of the bitcoin. The digital signature used to spend funds
is also referred to as a witness, a term used in cryptography. The witness data in a bit‐
coin transaction testifies to the true ownership of the funds being spent.

55

Keys come in pairs consisting of a private (secret) key and a public key. Think of the
public key as similar to a bank account number and the private key as similar to the
secret PIN, or signature on a check, that provides control over the account. These
digital keys are very rarely seen by the users of bitcoin. For the most part, they are
stored inside the wallet file and managed by the bitcoin wallet software.

In the payment portion of a bitcoin transaction, the recipient’s public key is repre‐
sented by its digital fingerprint, called a bitcoin address, which is used in the same way
as the beneficiary name on a check (i.e., “Pay to the order of ”). In most cases, a bit‐
coin address is generated from and corresponds to a public key. However, not all bit‐
coin addresses represent public keys; they can also represent other beneficiaries such
as scripts, as we will see later in this chapter. This way, bitcoin addresses abstract the
recipient of funds, making transaction destinations flexible, similar to paper checks: a
single payment instrument that can be used to pay into people’s accounts, pay into
company accounts, pay for bills, or pay to cash. The bitcoin address is the only repre‐
sentation of the keys that users will routinely see, because this is the part they need to
share with the world.

First, we will introduce cryptography and explain the mathematics used in bitcoin.
Next, we will look at how keys are generated, stored, and managed. We will review the
various encoding formats used to represent private and public keys, addresses, and
script addresses. Finally, we will look at advanced use of keys and addresses: vanity,
multisignature, and script addresses and paper wallets.

Public Key Cryptography and Cryptocurrency
Public key cryptography was invented in the 1970s and is a mathematical foundation
for computer and information security.

Since the invention of public key cryptography, several suitable mathematical func‐
tions, such as prime number exponentiation and elliptic curve multiplication, have
been discovered. These mathematical functions are practically irreversible, meaning
that they are easy to calculate in one direction and infeasible to calculate in the oppo‐
site direction. Based on these mathematical functions, cryptography enables the cre‐
ation of digital secrets and unforgeable digital signatures. Bitcoin uses elliptic curve
multiplication as the basis for its cryptography.

In bitcoin, we use public key cryptography to create a key pair that controls access to
bitcoin. The key pair consists of a private key and—derived from it—a unique public
key. The public key is used to receive funds, and the private key is used to sign trans‐
actions to spend the funds.

There is a mathematical relationship between the public and the private key that
allows the private key to be used to generate signatures on messages. This signature
can be validated against the public key without revealing the private key.

56 | Chapter 4: Keys, Addresses

When spending bitcoin, the current bitcoin owner presents her public key and a sig‐
nature (different each time, but created from the same private key) in a transaction to
spend those bitcoin. Through the presentation of the public key and signature, every‐
one in the bitcoin network can verify and accept the transaction as valid, confirming
that the person transferring the bitcoin owned them at the time of the transfer.

In most wallet implementations, the private and public keys are
stored together as a key pair for convenience. However, the public
key can be calculated from the private key, so storing only the pri‐
vate key is also possible.

Private and Public Keys
A bitcoin wallet contains a collection of key pairs, each consisting of a private key and
a public key. The private key (k) is a number, usually picked at random. From the pri‐
vate key, we use elliptic curve multiplication, a one-way cryptographic function, to
generate a public key (K). From the public key (K), we use a one-way cryptographic
hash function to generate a bitcoin address (A). In this section, we will start with gen‐
erating the private key, look at the elliptic curve math that is used to turn that into a
public key, and finally, generate a bitcoin address from the public key. The relation‐
ship between private key, public key, and bitcoin address is shown in Figure 4-1.

Figure 4-1. Private key, public key, and bitcoin address

Why Use Asymmetric Cryptography (Public/Private Keys)?
Why is asymmetric cryptography used in bitcoin? It’s not used to “encrypt” (make
secret) the transactions. Rather, the useful property of asymmetric cryptography is the
ability to generate digital signatures. A private key can be applied to the digital finger‐
print of a transaction to produce a numerical signature. This signature can only be
produced by someone with knowledge of the private key. However, anyone with
access to the public key and the transaction fingerprint can use them to verify the sig‐
nature. This useful property of asymmetric cryptography makes it possible for anyone
to verify every signature on every transaction, while ensuring that only the owners of
private keys can produce valid signatures.

Introduction | 57

Private Keys
A private key is simply a number, picked at random. Ownership and control over the
private key is the root of user control over all funds associated with the corresponding
bitcoin address. The private key is used to create signatures that are required to spend
bitcoin by proving ownership of funds used in a transaction. The private key must
remain secret at all times, because revealing it to third parties is equivalent to giving
them control over the bitcoin secured by that key. The private key must also be
backed up and protected from accidental loss, because if it’s lost it cannot be recov‐
ered and the funds secured by it are forever lost, too.

The bitcoin private key is just a number. You can pick your private
keys randomly using just a coin, pencil, and paper: toss a coin 256
times and you have the binary digits of a random private key you
can use in a bitcoin wallet. The public key can then be generated
from the private key.

Generating a private key from a random number
The first and most important step in generating keys is to find a secure source of
entropy, or randomness. Creating a bitcoin key is essentially the same as “Pick a num‐
ber between 1 and 2256.” The exact method you use to pick that number does not mat‐
ter as long as it is not predictable or repeatable. Bitcoin software uses the underlying
operating system’s random number generators to produce 256 bits of entropy (ran‐
domness). Usually, the OS random number generator is initialized by a human source
of randomness, which is why you may be asked to wiggle your mouse around for a
few seconds.

More precisely, the private key can be any number between 1 and n - 1, where n is a
constant (n = 1.158 * 1077, slightly less than 2256) defined as the order of the elliptic
curve used in bitcoin (see “Elliptic Curve Cryptography Explained” on page 60). To
create such a key, we randomly pick a 256-bit number and check that it is less than n
- 1. In programming terms, this is usually achieved by feeding a larger string of ran‐
dom bits, collected from a cryptographically secure source of randomness, into the
SHA256 hash algorithm, which will conveniently produce a 256-bit number. If the
result is less than n - 1, we have a suitable private key. Otherwise, we simply try
again with another random number.

58 | Chapter 4: Keys, Addresses

Do not write your own code to create a random number or use a
“simple” random number generator offered by your programming
language. Use a cryptographically secure pseudorandom number
generator (CSPRNG) with a seed from a source of sufficient
entropy. Study the documentation of the random number genera‐
tor library you choose to make sure it is cryptographically secure.
Correct implementation of the CSPRNG is critical to the security
of the keys.

The following is a randomly generated private key (k) shown in hexadecimal format
(256 bits shown as 64 hexadecimal digits, each 4 bits):

1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD

The size of bitcoin’s private key space, (2256) is an unfathomably
large number. It is approximately 1077 in decimal. For comparison,
the visible universe is estimated to contain 1080 atoms.

To generate a new key with the Bitcoin Core client (see Chapter 3), use the getnewad
dress command. For security reasons it displays the public key only, not the private
key. To ask bitcoind to expose the private key, use the dumpprivkey command. The
dumpprivkey command shows the private key in a Base58 checksum-encoded format
called the Wallet Import Format (WIF), which we will examine in more detail in “Pri‐
vate key formats” on page 70. Here’s an example of generating and displaying a pri‐
vate key using these two commands:

$ bitcoin-cli getnewaddress
1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy
$ bitcoin-cli dumpprivkey 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy
KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

The dumpprivkey command opens the wallet and extracts the private key that was
generated by the getnewaddress command. It is not possible for bitcoind to know
the private key from the public key unless they are both stored in the wallet.

The dumpprivkey command does not generate a private key from a
public key, as this is impossible. The command simply reveals the
private key that is already known to the wallet and which was gen‐
erated by the getnewaddress command.

Introduction | 59

You can also use the Bitcoin Explorer command-line tool (see Appendix G) to gener‐
ate and display private keys with the commands seed, ec-new, and ec-to-wif:

$ bx seed | bx ec-new | bx ec-to-wif
5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Public Keys
The public key is calculated from the private key using elliptic curve multiplication,
which is irreversible: K = k * G, where k is the private key, G is a constant point called
the generator point, and K is the resulting public key. The reverse operation, known as
“finding the discrete logarithm”—calculating k if you know K—is as difficult as trying
all possible values of k, i.e., a brute-force search. Before we demonstrate how to gen‐
erate a public key from a private key, let’s look at elliptic curve cryptography in a bit
more detail.

Elliptic curve multiplication is a type of function that cryptogra‐
phers call a “trap door” function: it is easy to do in one direction
(multiplication) and impossible to do in the reverse direction (divi‐
sion). The owner of the private key can easily create the public key
and then share it with the world knowing that no one can reverse
the function and calculate the private key from the public key. This
mathematical trick becomes the basis for unforgeable and secure
digital signatures that prove ownership of bitcoin funds.

Elliptic Curve Cryptography Explained
Elliptic curve cryptography is a type of asymmetric or public key cryptography based
on the discrete logarithm problem as expressed by addition and multiplication on the
points of an elliptic curve.

Figure 4-2 is an example of an elliptic curve, similar to that used by bitcoin.

Figure 4-2. An elliptic curve

60 | Chapter 4: Keys, Addresses

Bitcoin uses a specific elliptic curve and set of mathematical constants, as defined in a
standard called secp256k1, established by the National Institute of Standards and
Technology (NIST). The secp256k1 curve is defined by the following function, which
produces an elliptic curve:

y2 = x3 + 7 over �p

or

y2 mod p = x3 + 7 mod p

The mod p (modulo prime number p) indicates that this curve is over a finite field of
prime order p, also written as �p, where p = 2256 – 232 – 29 – 28 – 27 – 26 – 24 – 1, a very
large prime number.

Because this curve is defined over a finite field of prime order instead of over the real
numbers, it looks like a pattern of dots scattered in two dimensions, which makes it
difficult to visualize. However, the math is identical to that of an elliptic curve over
real numbers. As an example, Figure 4-3 shows the same elliptic curve over a much
smaller finite field of prime order 17, showing a pattern of dots on a grid. The
secp256k1 bitcoin elliptic curve can be thought of as a much more complex pattern
of dots on a unfathomably large grid.

Figure 4-3. Elliptic curve cryptography: visualizing an elliptic curve over F(p), with p=17

Introduction | 61

So, for example, the following is a point P with coordinates (x,y) that is a point on the
secp256k1 curve:

P =
(55066263022277343669578718895168534326250603453777594175500187360389116729240,
32670510020758816978083085130507043184471273380659243275938904335757337482424)

Example 4-1 shows how you can check this yourself using Python:

Example 4-1. Using Python to confirm that this point is on the elliptic curve

Python 3.4.0 (default, Mar 30 2014, 19:23:13)
[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.38)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> p =
115792089237316195423570985008687907853269984665640564039457584007908834671663
>>> x =
55066263022277343669578718895168534326250603453777594175500187360389116729240
>>> y =
32670510020758816978083085130507043184471273380659243275938904335757337482424
>>> (x ** 3 + 7 - y**2) % p
0

In elliptic curve math, there is a point called the “point at infinity,” which roughly cor‐
responds to the role of zero in addition. On computers, it’s sometimes represented by
x = y = 0 (which doesn’t satisfy the elliptic curve equation, but it’s an easy separate
case that can be checked).

There is also a + operator, called “addition,” which has some properties similar to the
traditional addition of real numbers that gradeschool children learn. Given two
points P1 and P2 on the elliptic curve, there is a third point P3 = P1 + P2, also on the
elliptic curve.

Geometrically, this third point P3 is calculated by drawing a line between P1 and P2.
This line will intersect the elliptic curve in exactly one additional place. Call this point
P3' = (x, y). Then reflect in the x-axis to get P3 = (x, –y).

There are a couple of special cases that explain the need for the “point at infinity.”

If P1 and P2 are the same point, the line “between” P1 and P2 should extend to be the
tangent on the curve at this point P1. This tangent will intersect the curve in exactly
one new point. You can use techniques from calculus to determine the slope of the
tangent line. These techniques curiously work, even though we are restricting our
interest to points on the curve with two integer coordinates!

In some cases (i.e., if P1 and P2 have the same x values but different y values), the tan‐
gent line will be exactly vertical, in which case P3 = “point at infinity.”

62 | Chapter 4: Keys, Addresses

If P1 is the “point at infinity,” then P1 + P2 = P2. Similarly, if P2 is the point at infinity,
then P1 + P2 = P1. This shows how the point at infinity plays the role of zero.

It turns out that + is associative, which means that (A + B) + C = A + (B + C). That
means we can write A + B + C without parentheses and without ambiguity.

Now that we have defined addition, we can define multiplication in the standard way
that extends addition. For a point P on the elliptic curve, if k is a whole number, then
kP = P + P + P + … + P (k times). Note that k is sometimes confusingly called an
“exponent” in this case.

Generating a Public Key
Starting with a private key in the form of a randomly generated number k, we multi‐
ply it by a predetermined point on the curve called the generator point G to produce
another point somewhere else on the curve, which is the corresponding public key K.
The generator point is specified as part of the secp256k1 standard and is always the
same for all keys in bitcoin:

K = k * G

where k is the private key, G is the generator point, and K is the resulting public key, a
point on the curve. Because the generator point is always the same for all bitcoin
users, a private key k multiplied with G will always result in the same public key K.
The relationship between k and K is fixed, but can only be calculated in one direction,
from k to K. That’s why a bitcoin address (derived from K) can be shared with anyone
and does not reveal the user’s private key (k).

A private key can be converted into a public key, but a public key
cannot be converted back into a private key because the math only
works one way.

Implementing the elliptic curve multiplication, we take the private key k generated
previously and multiply it with the generator point G to find the public key K:

K = 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD * G

Public key K is defined as a point K = (x,y):

K = (x, y)

where,

x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Introduction | 63

To visualize multiplication of a point with an integer, we will use the simpler elliptic
curve over real numbers—remember, the math is the same. Our goal is to find the
multiple kG of the generator point G, which is the same as adding G to itself, k times
in a row. In elliptic curves, adding a point to itself is the equivalent of drawing a tan‐
gent line on the point and finding where it intersects the curve again, then reflecting
that point on the x-axis.

Figure 4-4 shows the process for deriving G, 2G, 4G, as a geometric operation on the
curve.

Most bitcoin implementations use the OpenSSL cryptographic
library to do the elliptic curve math. For example, to derive the
public key, the function EC_POINT_mul() is used.

Figure 4-4. Elliptic curve cryptography: visualizing the multiplication of a point G by an
integer k on an elliptic curve

Bitcoin Addresses
A bitcoin address is a string of digits and characters that can be shared with anyone
who wants to send you money. Addresses produced from public keys consist of a
string of numbers and letters, beginning with the digit “1.” Here’s an example of a bit‐
coin address:

64 | Chapter 4: Keys, Addresses

http://bit.ly/1ql7bn8
http://bit.ly/1ql7bn8

1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy

The bitcoin address is what appears most commonly in a transaction as the “recipi‐
ent” of the funds. If we compare a bitcoin transaction to a paper check, the bitcoin
address is the beneficiary, which is what we write on the line after “Pay to the order
of.” On a paper check, that beneficiary can sometimes be the name of a bank account
holder, but can also include corporations, institutions, or even cash. Because paper
checks do not need to specify an account, but rather use an abstract name as the
recipient of funds, they are very flexible payment instruments. Bitcoin transactions
use a similar abstraction, the bitcoin address, to make them very flexible. A bitcoin
address can represent the owner of a private/public key pair, or it can represent some‐
thing else, such as a payment script, as we will see in “Pay-to-Script-Hash (P2SH)” on
page 151. For now, let’s examine the simple case, a bitcoin address that represents,
and is derived from, a public key.

The bitcoin address is derived from the public key through the use of one-way cryp‐
tographic hashing. A “hashing algorithm” or simply “hash algorithm” is a one-way
function that produces a fingerprint or “hash” of an arbitrary-sized input. Crypto‐
graphic hash functions are used extensively in bitcoin: in bitcoin addresses, in script
addresses, and in the mining Proof-of-Work algorithm. The algorithms used to make
a bitcoin address from a public key are the Secure Hash Algorithm (SHA) and the
RACE Integrity Primitives Evaluation Message Digest (RIPEMD), specifically
SHA256 and RIPEMD160.

Starting with the public key K, we compute the SHA256 hash and then compute the
RIPEMD160 hash of the result, producing a 160-bit (20-byte) number:

A = RIPEMD160 SHA256 K

where K is the public key and A is the resulting bitcoin address.

A bitcoin address is not the same as a public key. Bitcoin addresses
are derived from a public key using a one-way function.

Bitcoin addresses are almost always encoded as “Base58Check” (see “Base58 and
Base58Check Encoding” on page 66), which uses 58 characters (a Base58 number sys‐
tem) and a checksum to help human readability, avoid ambiguity, and protect against
errors in address transcription and entry. Base58Check is also used in many other
ways in bitcoin, whenever there is a need for a user to read and correctly transcribe a
number, such as a bitcoin address, a private key, an encrypted key, or a script hash. In
the next section we will examine the mechanics of Base58Check encoding and decod‐

Bitcoin Addresses | 65

ing and the resulting representations. Figure 4-5 illustrates the conversion of a public
key into a bitcoin address.

Figure 4-5. Public key to bitcoin address: conversion of a public key into a bitcoin
address

Base58 and Base58Check Encoding
In order to represent long numbers in a compact way, using fewer symbols, many
computer systems use mixed-alphanumeric representations with a base (or radix)
higher than 10. For example, whereas the traditional decimal system uses the 10
numerals 0 through 9, the hexadecimal system uses 16, with the letters A through F as
the six additional symbols. A number represented in hexadecimal format is shorter
than the equivalent decimal representation. Even more compact, Base64 representa‐
tion uses 26 lowercase letters, 26 capital letters, 10 numerals, and 2 more characters

66 | Chapter 4: Keys, Addresses

www.allitebooks.com

http://www.allitebooks.org

such as “+” and “/” to transmit binary data over text-based media such as email.
Base64 is most commonly used to add binary attachments to email. Base58 is a text-
based binary-encoding format developed for use in bitcoin and used in many other
cryptocurrencies. It offers a balance between compact representation, readability, and
error detection and prevention. Base58 is a subset of Base64, using upper- and lower‐
case letters and numbers, but omitting some characters that are frequently mistaken
for one another and can appear identical when displayed in certain fonts. Specifically,
Base58 is Base64 without the 0 (number zero), O (capital o), l (lower L), I (capital i),
and the symbols “+” and “/”. Or, more simply, it is a set of lowercase and capital letters
and numbers without the four (0, O, l, I) just mentioned. Example 4-2 shows the full
Base58 alphabet.

Example 4-2. Bitcoin’s Base58 alphabet

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

To add extra security against typos or transcription errors, Base58Check is a Base58
encoding format, frequently used in bitcoin, which has a built-in error-checking
code. The checksum is an additional four bytes added to the end of the data that is
being encoded. The checksum is derived from the hash of the encoded data and can
therefore be used to detect and prevent transcription and typing errors. When pre‐
sented with Base58Check code, the decoding software will calculate the checksum of
the data and compare it to the checksum included in the code. If the two do not
match, an error has been introduced and the Base58Check data is invalid. This pre‐
vents a mistyped bitcoin address from being accepted by the wallet software as a valid
destination, an error that would otherwise result in loss of funds.

To convert data (a number) into a Base58Check format, we first add a prefix to the
data, called the “version byte,” which serves to easily identify the type of data that is
encoded. For example, in the case of a bitcoin address the prefix is zero (0x00 in hex),
whereas the prefix used when encoding a private key is 128 (0x80 in hex). A list of
common version prefixes is shown in Table 4-1.

Next, we compute the “double-SHA” checksum, meaning we apply the SHA256 hash-
algorithm twice on the previous result (prefix and data):

checksum = SHA256(SHA256(prefix+data))

From the resulting 32-byte hash (hash-of-a-hash), we take only the first four bytes.
These four bytes serve as the error-checking code, or checksum. The checksum is
concatenated (appended) to the end.

The result is composed of three items: a prefix, the data, and a checksum. This result
is encoded using the Base58 alphabet described previously. Figure 4-6 illustrates the
Base58Check encoding process.

Bitcoin Addresses | 67

Figure 4-6. Base58Check encoding: a Base58, versioned, and checksummed format for
unambiguously encoding bitcoin data

In bitcoin, most of the data presented to the user is Base58Check-encoded to make it
compact, easy to read, and easy to detect errors. The version prefix in Base58Check
encoding is used to create easily distinguishable formats, which when encoded in
Base58 contain specific characters at the beginning of the Base58Check-encoded pay‐
load. These characters make it easy for humans to identify the type of data that is
encoded and how to use it. This is what differentiates, for example, a Base58Check-
encoded bitcoin address that starts with a 1 from a Base58Check-encoded private key
WIF that starts with a 5. Some example version prefixes and the resulting Base58
characters are shown in Table 4-1.

Table 4-1. Base58Check version prefix and encoded result examples

Type Version prefix (hex) Base58 result prefix
Bitcoin Address 0x00 1

Pay-to-Script-Hash Address 0x05 3

Bitcoin Testnet Address 0x6F m or n

68 | Chapter 4: Keys, Addresses

Type Version prefix (hex) Base58 result prefix
Private Key WIF 0x80 5, K, or L

BIP-38 Encrypted Private Key 0x0142 6P

BIP-32 Extended Public Key 0x0488B21E xpub

Let’s look at the complete process of creating a bitcoin address, from a private key, to
a public key (a point on the elliptic curve), to a double-hashed address, and finally,
the Base58Check encoding. The C++ code in Example 4-3 shows the complete step-
by-step process, from private key to Base58Check-encoded bitcoin address. The code
example uses the libbitcoin library introduced in “Alternative Clients, Libraries, and
Toolkits” on page 51 for some helper functions.

Example 4-3. Creating a Base58Check-encoded bitcoin address from a private key

#include <bitcoin/bitcoin.hpp>

int main()
{
 // Private secret key string as base16
 bc::ec_secret decoded;
 bc::decode_base16(decoded,
 "038109007313a5807b2eccc082c8c3fbb988a973cacf1a7df9ce725c31b14776");

 bc::wallet::ec_private secret(
 decoded, bc::wallet::ec_private::mainnet_p2kh);

 // Get public key.
 bc::wallet::ec_public public_key(secret);
 std::cout << "Public key: " << public_key.encoded() << std::endl;

 // Create Bitcoin address.
 // Normally you can use:
 // bc::wallet::payment_address payaddr =
 // public_key.to_payment_address(
 // bc::wallet::ec_public::mainnet_p2kh);
 // const std::string address = payaddr.encoded();

 // Compute hash of public key for P2PKH address.
 bc::data_chunk public_key_data;
 public_key.to_data(public_key_data);
 const auto hash = bc::bitcoin_short_hash(public_key_data);

 bc::data_chunk unencoded_address;
 // Reserve 25 bytes
 // [version:1]
 // [hash:20]
 // [checksum:4]
 unencoded_address.reserve(25);
 // Version byte, 0 is normal BTC address (P2PKH).
 unencoded_address.push_back(0);
 // Hash data
 bc::extend_data(unencoded_address, hash);

Bitcoin Addresses | 69

 // Checksum is computed by hashing data, and adding 4 bytes from hash.
 bc::append_checksum(unencoded_address);
 // Finally we must encode the result in Bitcoin's base58 encoding.
 assert(unencoded_address.size() == 25);
 const std::string address = bc::encode_base58(unencoded_address);

 std::cout << "Address: " << address << std::endl;
 return 0;
}

The code uses a predefined private key to produce the same bitcoin address every
time it is run, as shown in Example 4-4.

Example 4-4. Compiling and running the addr code

Compile the addr.cpp code
$ g++ -o addr addr.cpp $(pkg-config --cflags --libs libbitcoin)
Run the addr executable
$./addr
Public key: 0202a406624211f2abbdc68da3df929f938c3399dd79fac1b51b0e4ad1d26a47aa
Address: 1PRTTaJesdNovgne6Ehcdu1fpEdX7913CK

Key Formats
Both private and public keys can be represented in a number of different formats.
These representations all encode the same number, even though they look different.
These formats are primarily used to make it easy for people to read and transcribe
keys without introducing errors.

Private key formats
The private key can be represented in a number of different formats, all of which cor‐
respond to the same 256-bit number. Table 4-2 shows three common formats used to
represent private keys. Different formats are used in different circumstances. Hexa‐
decimal and raw binary formats are used internally in software and rarely shown to
users. The WIF is used for import/export of keys between wallets and often used in
QR code (barcode) representations of private keys.

Table 4-2. Private key representations (encoding formats)

Type Prefix Description
Raw None 32 bytes

Hex None 64 hexadecimal digits

WIF 5 Base58Check encoding: Base58 with version prefix of 128- and 32-bit checksum

WIF-compressed K or L As above, with added suffix 0x01 before encoding

Table 4-3 shows the private key generated in these three formats.

70 | Chapter 4: Keys, Addresses

Table 4-3. Example: Same key, different formats

Format Private key
Hex 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

WIF-compressed KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

All of these representations are different ways of showing the same number, the same
private key. They look different, but any one format can easily be converted to any
other format. Note that the “raw binary” is not shown in Table 4-3 as any encoding
for display here would, by definition, not be raw binary data.

We use the wif-to-ec command from Bitcoin Explorer (see Appendix G) to show
that both WIF keys represent the same private key:

$ bx wif-to-ec 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

$ bx wif-to-ec KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

Decode from Base58Check
The Bitcoin Explorer commands (see Appendix G) make it easy to write shell scripts
and command-line “pipes” that manipulate bitcoin keys, addresses, and transactions.
You can use Bitcoin Explorer to decode the Base58Check format on the command
line.

We use the base58check-decode command to decode the uncompressed key:

$ bx base58check-decode 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
wrapper
{
 checksum 4286807748
 payload 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd
 version 128
}

The result contains the key as payload, the WIF version prefix 128, and a checksum.

Notice that the “payload” of the compressed key is appended with the suffix 01, sig‐
nalling that the derived public key is to be compressed:

$ bx base58check-decode KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ
wrapper
{
 checksum 2339607926
 payload 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd01
 version 128
}

Bitcoin Addresses | 71

Encode from hex to Base58Check
To encode into Base58Check (the opposite of the previous command), we use the
base58check-encode command from Bitcoin Explorer (see Appendix G) and provide
the hex private key, followed by the WIF version prefix 128:

bx base58check-encode
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd --version 128
5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Encode from hex (compressed key) to Base58Check
To encode into Base58Check as a “compressed” private key (see “Compressed private
keys” on page 75), we append the suffix 01 to the hex key and then encode as in the
preceding section:

$ bx base58check-encode
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd01 --version 128
KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

The resulting WIF-compressed format starts with a “K.” This denotes that the private
key within has a suffix of “01” and will be used to produce compressed public keys
only (see “Compressed public keys” on page 73).

Public key formats
Public keys are also presented in different ways, usually as either compressed or
uncompressed public keys.

As we saw previously, the public key is a point on the elliptic curve consisting of a
pair of coordinates (x,y). It is usually presented with the prefix 04 followed by two
256-bit numbers: one for the x coordinate of the point, the other for the y coordinate.
The prefix 04 is used to distinguish uncompressed public keys from compressed pub‐
lic keys that begin with a 02 or a 03.

Here’s the public key generated by the private key we created earlier, shown as the
coordinates x and y:

x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Here’s the same public key shown as a 520-bit number (130 hex digits) with the prefix
04 followed by x and then y coordinates, as 04 x y:

K = 04F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A↵
07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

72 | Chapter 4: Keys, Addresses

Compressed public keys
Compressed public keys were introduced to bitcoin to reduce the size of transactions
and conserve disk space on nodes that store the bitcoin blockchain database. Most
transactions include the public key, which is required to validate the owner’s creden‐
tials and spend the bitcoin. Each public key requires 520 bits (prefix + x + y), which
when multiplied by several hundred transactions per block, or tens of thousands of
transactions per day, adds a significant amount of data to the blockchain.

As we saw in the section “Public Keys” on page 60, a public key is a point (x,y) on an
elliptic curve. Because the curve expresses a mathematical function, a point on the
curve represents a solution to the equation and, therefore, if we know the x coordi‐
nate we can calculate the y coordinate by solving the equation y2 mod p = (x3 + 7)
mod p. That allows us to store only the x coordinate of the public key point, omitting
the y coordinate and reducing the size of the key and the space required to store it by
256 bits. An almost 50% reduction in size in every transaction adds up to a lot of data
saved over time!

Whereas uncompressed public keys have a prefix of 04, compressed public keys start
with either a 02 or a 03 prefix. Let’s look at why there are two possible prefixes:
because the left side of the equation is y2, the solution for y is a square root, which can
have a positive or negative value. Visually, this means that the resulting y coordinate
can be above or below the x-axis. As you can see from the graph of the elliptic curve
in Figure 4-2, the curve is symmetric, meaning it is reflected like a mirror by the x-
axis. So, while we can omit the y coordinate we have to store the sign of y (positive or
negative); or in other words, we have to remember if it was above or below the x-axis
because each of those options represents a different point and a different public key.
When calculating the elliptic curve in binary arithmetic on the finite field of prime
order p, the y coordinate is either even or odd, which corresponds to the positive/
negative sign as explained earlier. Therefore, to distinguish between the two possible
values of y, we store a compressed public key with the prefix 02 if the y is even, and 03
if it is odd, allowing the software to correctly deduce the y coordinate from the x
coordinate and uncompress the public key to the full coordinates of the point. Public
key compression is illustrated in Figure 4-7.

Bitcoin Addresses | 73

Figure 4-7. Public key compression

Here’s the same public key generated previously, shown as a compressed public key
stored in 264 bits (66 hex digits) with the prefix 03 indicating the y coordinate is odd:

K = 03F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A

This compressed public key corresponds to the same private key, meaning it is gener‐
ated from the same private key. However, it looks different from the uncompressed
public key. More importantly, if we convert this compressed public key to a bitcoin
address using the double-hash function (RIPEMD160(SHA256(K))) it will produce a
different bitcoin address. This can be confusing, because it means that a single private
key can produce a public key expressed in two different formats (compressed and
uncompressed) that produce two different bitcoin addresses. However, the private
key is identical for both bitcoin addresses.

Compressed public keys are gradually becoming the default across bitcoin clients,
which is having a significant impact on reducing the size of transactions and there‐
fore the blockchain. However, not all clients support compressed public keys yet.

74 | Chapter 4: Keys, Addresses

Newer clients that support compressed public keys have to account for transactions
from older clients that do not support compressed public keys. This is especially
important when a wallet application is importing private keys from another bitcoin
wallet application, because the new wallet needs to scan the blockchain to find trans‐
actions corresponding to these imported keys. Which bitcoin addresses should the
bitcoin wallet scan for? The bitcoin addresses produced by uncompressed public
keys, or the bitcoin addresses produced by compressed public keys? Both are valid
bitcoin addresses, and can be signed for by the private key, but they are different
addresses!

To resolve this issue, when private keys are exported from a wallet, the WIF that is
used to represent them is implemented differently in newer bitcoin wallets, to indi‐
cate that these private keys have been used to produce compressed public keys and
therefore compressed bitcoin addresses. This allows the importing wallet to distin‐
guish between private keys originating from older or newer wallets and search the
blockchain for transactions with bitcoin addresses corresponding to the uncom‐
pressed, or the compressed, public keys, respectively. Let’s look at how this works in
more detail, in the next section.

Compressed private keys
Ironically, the term “compressed private key” is a misnomer, because when a private
key is exported as WIF-compressed it is actually one byte longer than an “uncom‐
pressed” private key. That is because the private key has an added one-byte suffix
(shown as 01 in hex in Table 4-4), which signifies that the private key is from a newer
wallet and should only be used to produce compressed public keys. Private keys are
not themselves compressed and cannot be compressed. The term “compressed private
key” really means “private key from which only compressed public keys should be
derived,” whereas “uncompressed private key” really means “private key from which
only uncompressed public keys should be derived.” You should only refer to the
export format as “WIF-compressed” or “WIF” and not refer to the private key itself as
“compressed” to avoid further confusion

Table 4-4 shows the same key, encoded in WIF and WIF-compressed formats.

Table 4-4. Example: Same key, different formats

Format Private key
Hex 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD

WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Hex-compressed 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD01

WIF-compressed KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

Bitcoin Addresses | 75

Notice that the hex-compressed private key format has one extra byte at the end (01
in hex). While the Base58 encoding version prefix is the same (0x80) for both WIF
and WIF-compressed formats, the addition of one byte on the end of the number
causes the first character of the Base58 encoding to change from a 5 to either a K or L.
Think of this as the Base58 equivalent of the decimal encoding difference between the
number 100 and the number 99. While 100 is one digit longer than 99, it also has a
prefix of 1 instead of a prefix of 9. As the length changes, it affects the prefix. In
Base58, the prefix 5 changes to a K or L as the length of the number increases by one
byte.

Remember, these formats are not used interchangeably. In a newer wallet that imple‐
ments compressed public keys, the private keys will only ever be exported as WIF-
compressed (with a K or L prefix). If the wallet is an older implementation and does
not use compressed public keys, the private keys will only ever be exported as WIF
(with a 5 prefix). The goal here is to signal to the wallet importing these private keys
whether it must search the blockchain for compressed or uncompressed public keys
and addresses.

If a bitcoin wallet is able to implement compressed public keys, it will use those in all
transactions. The private keys in the wallet will be used to derive the public key points
on the curve, which will be compressed. The compressed public keys will be used to
produce bitcoin addresses and those will be used in transactions. When exporting
private keys from a new wallet that implements compressed public keys, the WIF is
modified, with the addition of a one-byte suffix 01 to the private key. The resulting
Base58Check-encoded private key is called a “compressed WIF” and starts with the
letter K or L, instead of starting with “5” as is the case with WIF-encoded (noncom‐
pressed) keys from older wallets.

“Compressed private keys” is a misnomer! They are not com‐
pressed; rather, WIF-compressed signifies that the keys should only
be used to derive compressed public keys and their corresponding
bitcoin addresses. Ironically, a “WIF-compressed” encoded private
key is one byte longer because it has the added 01 suffix to distin‐
guish it from an “uncompressed” one.

Implementing Keys and Addresses in Python
The most comprehensive bitcoin library in Python is pybitcointools by Vitalik
Buterin. In Example 4-5, we use the pybitcointools library (imported as “bitcoin”) to
generate and display keys and addresses in various formats.

76 | Chapter 4: Keys, Addresses

https://github.com/vbuterin/pybitcointools

Example 4-5. Key and address generation and formatting with the pybitcointools library

import bitcoin

Generate a random private key
valid_private_key = False
while not valid_private_key:
 private_key = bitcoin.random_key()
 decoded_private_key = bitcoin.decode_privkey(private_key, 'hex')
 valid_private_key = 0 < decoded_private_key < bitcoin.N

print "Private Key (hex) is: ", private_key
print "Private Key (decimal) is: ", decoded_private_key

Convert private key to WIF format
wif_encoded_private_key = bitcoin.encode_privkey(decoded_private_key, 'wif')
print "Private Key (WIF) is: ", wif_encoded_private_key

Add suffix "01" to indicate a compressed private key
compressed_private_key = private_key + '01'
print "Private Key Compressed (hex) is: ", compressed_private_key

Generate a WIF format from the compressed private key (WIF-compressed)
wif_compressed_private_key = bitcoin.encode_privkey(
 bitcoin.decode_privkey(compressed_private_key, 'hex'), 'wif')
print "Private Key (WIF-Compressed) is: ", wif_compressed_private_key

Multiply the EC generator point G with the private key to get a public key point
public_key = bitcoin.fast_multiply(bitcoin.G, decoded_private_key)
print "Public Key (x,y) coordinates is:", public_key

Encode as hex, prefix 04
hex_encoded_public_key = bitcoin.encode_pubkey(public_key,'hex')
print "Public Key (hex) is:", hex_encoded_public_key

Compress public key, adjust prefix depending on whether y is even or odd
(public_key_x, public_key_y) = public_key
if (public_key_y % 2) == 0:
 compressed_prefix = '02'
else:
 compressed_prefix = '03'
hex_compressed_public_key = compressed_prefix + bitcoin.encode(public_key_x, 16)
print "Compressed Public Key (hex) is:", hex_compressed_public_key

Generate bitcoin address from public key
print "Bitcoin Address (b58check) is:", bitcoin.pubkey_to_address(public_key)

Generate compressed bitcoin address from compressed public key
print "Compressed Bitcoin Address (b58check) is:", \
 bitcoin.pubkey_to_address(hex_compressed_public_key)

Example 4-6 shows the output from running this code.

Implementing Keys and Addresses in Python | 77

Example 4-6. Running key-to-address-ecc-example.py

$ python key-to-address-ecc-example.py
Private Key (hex) is:
 3aba4162c7251c891207b747840551a71939b0de081f85c4e44cf7c13e41daa6
Private Key (decimal) is:
 26563230048437957592232553826663696440606756685920117476832299673293013768870
Private Key (WIF) is:
 5JG9hT3beGTJuUAmCQEmNaxAuMacCTfXuw1R3FCXig23RQHMr4K
Private Key Compressed (hex) is:
 3aba4162c7251c891207b747840551a71939b0de081f85c4e44cf7c13e41daa601
Private Key (WIF-Compressed) is:
 KyBsPXxTuVD82av65KZkrGrWi5qLMah5SdNq6uftawDbgKa2wv6S
Public Key (x,y) coordinates is:
 (41637322786646325214887832269588396900663353932545912953362782457239403430124L,
 16388935128781238405526710466724741593761085120864331449066658622400339362166L)
Public Key (hex) is:
 045c0de3b9c8ab18dd04e3511243ec2952002dbfadc864b9628910169d9b9b00ec↵
243bcefdd4347074d44bd7356d6a53c495737dd96295e2a9374bf5f02ebfc176
Compressed Public Key (hex) is:
 025c0de3b9c8ab18dd04e3511243ec2952002dbfadc864b9628910169d9b9b00ec
Bitcoin Address (b58check) is:
 1thMirt546nngXqyPEz532S8fLwbozud8
Compressed Bitcoin Address (b58check) is:
 14cxpo3MBCYYWCgF74SWTdcmxipnGUsPw3

Example 4-7 is another example, using the Python ECDSA library for the elliptic
curve math and without using any specialized bitcoin libraries.

Example 4-7. A script demonstrating elliptic curve math used for bitcoin keys

import ecdsa
import os
from ecdsa.util import string_to_number, number_to_string

secp256k1, http://www.oid-info.com/get/1.3.132.0.10
_p = 0xFFFEFFFFFC2FL
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
_b = 0x0007L
_a = 0x00L
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
curve_secp256k1 = ecdsa.ellipticcurve.CurveFp(_p, _a, _b)
generator_secp256k1 = ecdsa.ellipticcurve.Point(curve_secp256k1, _Gx, _Gy, _r)
oid_secp256k1 = (1, 3, 132, 0, 10)
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1,
oid_secp256k1)
ec_order = _r

curve = curve_secp256k1
generator = generator_secp256k1

78 | Chapter 4: Keys, Addresses

def random_secret():
 convert_to_int = lambda array: int("".join(array).encode("hex"), 16)

 # Collect 256 bits of random data from the OS's cryptographically secure random
generator
 byte_array = os.urandom(32)

 return convert_to_int(byte_array)

def get_point_pubkey(point):
 if point.y() & 1:
 key = '03' + '%064x' % point.x()
 else:
 key = '02' + '%064x' % point.x()
 return key.decode('hex')

def get_point_pubkey_uncompressed(point):
 key = '04' + \
 '%064x' % point.x() + \
 '%064x' % point.y()
 return key.decode('hex')

Generate a new private key.
secret = random_secret()
print "Secret: ", secret

Get the public key point.
point = secret * generator
print "EC point:", point

print "BTC public key:", get_point_pubkey(point).encode("hex")

Given the point (x, y) we can create the object using:
point1 = ecdsa.ellipticcurve.Point(curve, point.x(), point.y(), ec_order)
assert point1 == point

Example 4-8 shows the output produced by running this script.

Example 4-7 uses os.urandom, which reflects a cryptographically
secure random number generator (CSRNG) provided by the
underlying operating system. In the case of a Unix-like operating
system such as Linux, it draws from /dev/urandom; and in the case
of Windows, it calls CryptGenRandom(). If a suitable randomness
source is not found, NotImplementedError will be raised. While
the random number generator used here is for demonstration pur‐
poses, it is not appropriate for generating production-quality bit‐
coin keys as it is not implemented with sufficient security.

Implementing Keys and Addresses in Python | 79

Example 4-8. Installing the Python ECDSA library and running the ec_math.py script

$ # Install Python PIP package manager
$ sudo apt-get install python-pip
$ # Install the Python ECDSA library
$ sudo pip install ecdsa
$ # Run the script
$ python ec-math.py
Secret:
38090835015954358862481132628887443905906204995912378278060168703580660294000
EC point:
(70048853531867179489857750497606966272382583471322935454624595540007269312627,
105262206478686743191060800263479589329920209527285803935736021686045542353380)
BTC public key: 029ade3effb0a67d5c8609850d797366af428f4a0d5194cb221d807770a1522873

Advanced Keys and Addresses
In the following sections we will look at advanced forms of keys and addresses, such
as encrypted private keys, script and multisignature addresses, vanity addresses, and
paper wallets.

Encrypted Private Keys (BIP-38)
Private keys must remain secret. The need for confidentiality of the private keys is a
truism that is quite difficult to achieve in practice, because it conflicts with the equally
important security objective of availability. Keeping the private key private is much
harder when you need to store backups of the private key to avoid losing it. A private
key stored in a wallet that is encrypted by a password might be secure, but that wallet
needs to be backed up. At times, users need to move keys from one wallet to another
—to upgrade or replace the wallet software, for example. Private key backups might
also be stored on paper (see “Paper Wallets” on page 88) or on external storage media,
such as a USB flash drive. But what if the backup itself is stolen or lost? These con‐
flicting security goals led to the introduction of a portable and convenient standard
for encrypting private keys in a way that can be understood by many different wallets
and bitcoin clients, standardized by BIP-38 (see Appendix C).

BIP-38 proposes a common standard for encrypting private keys with a passphrase
and encoding them with Base58Check so that they can be stored securely on backup
media, transported securely between wallets, or kept in any other conditions where
the key might be exposed. The standard for encryption uses the Advanced Encryp‐
tion Standard (AES), a standard established by the NIST and used broadly in data
encryption implementations for commercial and military applications.

A BIP-38 encryption scheme takes as input a bitcoin private key, usually encoded in
the WIF, as a Base58Check string with the prefix of “5.” Additionally, the BIP-38
encryption scheme takes a passphrase—a long password—usually composed of sev‐

80 | Chapter 4: Keys, Addresses

eral words or a complex string of alphanumeric characters. The result of the BIP-38
encryption scheme is a Base58Check-encoded encrypted private key that begins with
the prefix 6P. If you see a key that starts with 6P, it is encrypted and requires a pass‐
phrase in order to convert (decrypt) it back into a WIF-formatted private key (prefix
5) that can be used in any wallet. Many wallet applications now recognize BIP-38-
encrypted private keys and will prompt the user for a passphrase to decrypt and
import the key. Third-party applications, such as the incredibly useful browser-based
Bit Address (Wallet Details tab), can be used to decrypt BIP-38 keys.

The most common use case for BIP-38 encrypted keys is for paper wallets that can be
used to back up private keys on a piece of paper. As long as the user selects a strong
passphrase, a paper wallet with BIP-38 encrypted private keys is incredibly secure and
a great way to create offline bitcoin storage (also known as “cold storage”).

Test the encrypted keys in Table 4-5 using bitaddress.org to see how you can get the
decrypted key by entering the passphrase.

Table 4-5. Example of BIP-38 encrypted private key
Private Key (WIF) 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Passphrase MyTestPassphrase

Encrypted Key (BIP-38) 6PRTHL6mWa48xSopbU1cKrVjpKbBZxcLRRCdctLJ3z5yxE87MobKoXdTsJ

Pay-to-Script Hash (P2SH) and Multisig Addresses
As we know, traditional bitcoin addresses begin with the number “1” and are derived
from the public key, which is derived from the private key. Although anyone can send
bitcoin to a “1” address, that bitcoin can only be spent by presenting the correspond‐
ing private key signature and public key hash.

Bitcoin addresses that begin with the number “3” are pay-to-script hash (P2SH)
addresses, sometimes erroneously called multisignature or multisig addresses. They
designate the beneficiary of a bitcoin transaction as the hash of a script, instead of the
owner of a public key. The feature was introduced in January 2012 with BIP-16 (see
Appendix C), and is being widely adopted because it provides the opportunity to add
functionality to the address itself. Unlike transactions that “send” funds to traditional
“1” bitcoin addresses, also known as a pay-to-public-key-hash (P2PKH), funds sent
to “3” addresses require something more than the presentation of one public key hash
and one private key signature as proof of ownership. The requirements are designated
at the time the address is created, within the script, and all inputs to this address will
be encumbered with the same requirements.

A P2SH address is created from a transaction script, which defines who can spend a
transaction output (for more details, see “Pay-to-Script-Hash (P2SH)” on page 151).

Advanced Keys and Addresses | 81

http://bitaddress.org

Encoding a P2SH address involves using the same double-hash function as used dur‐
ing creation of a bitcoin address, only applied on the script instead of the public key:

script hash = RIPEMD160(SHA256(script))

The resulting “script hash” is encoded with Base58Check with a version prefix of 5,
which results in an encoded address starting with a 3. An example of a P2SH address
is 3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM, which can be derived using the Bitcoin
Explorer commands script-encode, sha256, ripemd160, and base58check-encode
(see Appendix G) as follows:

$ echo dup hash160 [89abcdefabbaabbaabbaabbaabbaabbaabbaabba] equalverify
checksig > script
$ bx script-encode < script | bx sha256 | bx ripemd160 | bx base58check-encode
--version 5
3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM

P2SH is not necessarily the same as a multisignature standard
transaction. A P2SH address most often represents a multi-
signature script, but it might also represent a script encoding other
types of transactions.

Multisignature addresses and P2SH
Currently, the most common implementation of the P2SH function is the multi-
signature address script. As the name implies, the underlying script requires more
than one signature to prove ownership and therefore spend funds. The bitcoin multi-
signature feature is designed to require M signatures (also known as the “threshold”)
from a total of N keys, known as an M-of-N multisig, where M is equal to or less than
N. For example, Bob the coffee shop owner from Chapter 1 could use a multisigna‐
ture address requiring 1-of-2 signatures from a key belonging to him and a key
belonging to his spouse, ensuring either of them could sign to spend a transaction
output locked to this address. This would be similar to a “joint account” as imple‐
mented in traditional banking where either spouse can spend with a single signature.
Or Gopesh, the web designer paid by Bob to create a website, might have a 2-of-3
multisignature address for his business that ensures that no funds can be spent unless
at least two of the business partners sign a transaction.

We will explore how to create transactions that spend funds from P2SH (and multi-
signature) addresses in Chapter 6.

Vanity Addresses
Vanity addresses are valid bitcoin addresses that contain human-readable messages.
For example, 1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33 is a valid address that contains
the letters forming the word “Love” as the first four Base-58 letters. Vanity addresses

82 | Chapter 4: Keys, Addresses

require generating and testing billions of candidate private keys, until a bitcoin
address with the desired pattern is found. Although there are some optimizations in
the vanity generation algorithm, the process essentially involves picking a private key
at random, deriving the public key, deriving the bitcoin address, and checking to see
if it matches the desired vanity pattern, repeating billions of times until a match is
found.

Once a vanity address matching the desired pattern is found, the private key from
which it was derived can be used by the owner to spend bitcoin in exactly the same
way as any other address. Vanity addresses are no less or more secure than any other
address. They depend on the same Elliptic Curve Cryptography (ECC) and SHA as
any other address. You can no more easily find the private key of an address starting
with a vanity pattern than you can any other address.

In Chapter 1, we introduced Eugenia, a children’s charity director operating in the
Philippines. Let’s say that Eugenia is organizing a bitcoin fundraising drive and wants
to use a vanity bitcoin address to publicize the fundraising. Eugenia will create a van‐
ity address that starts with “1Kids” to promote the children’s charity fundraiser. Let’s
see how this vanity address will be created and what it means for the security of Euge‐
nia’s charity.

Generating vanity addresses
It’s important to realize that a bitcoin address is simply a number represented by sym‐
bols in the Base58 alphabet. The search for a pattern like “1Kids” can be seen as
searching for an address in the range from 1Kids11111111111111111111111111111
to 1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz. There are approximately 5829 (approxi‐
mately 1.4 * 1051) addresses in that range, all starting with “1Kids.” Table 4-6 shows
the range of addresses that have the prefix 1Kids.

Table 4-6. The range of vanity addresses starting with “1Kids”
From 1Kids11111111111111111111111111111

1Kids11111111111111111111111111112

1Kids11111111111111111111111111113

…

To 1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Let’s look at the pattern “1Kids” as a number and see how frequently we might find
this pattern in a bitcoin address (see Table 4-7). An average desktop computer PC,
without any specialized hardware, can search approximately 100,000 keys per second.

Advanced Keys and Addresses | 83

Table 4-7. The frequency of a vanity pattern (1KidsCharity) and average search time on a
desktop PC

Length Pattern Frequency Average search time
1 1K 1 in 58 keys < 1 milliseconds

2 1Ki 1 in 3,364 50 milliseconds

3 1Kid 1 in 195,000 < 2 seconds

4 1Kids 1 in 11 million 1 minute

5 1KidsC 1 in 656 million 1 hour

6 1KidsCh 1 in 38 billion 2 days

7 1KidsCha 1 in 2.2 trillion 3–4 months

8 1KidsChar 1 in 128 trillion 13–18 years

9 1KidsChari 1 in 7 quadrillion 800 years

10 1KidsCharit 1 in 400 quadrillion 46,000 years

11 1KidsCharity 1 in 23 quintillion 2.5 million years

As you can see, Eugenia won’t be creating the vanity address “1KidsCharity” anytime
soon, even if she had access to several thousand computers. Each additional character
increases the difficulty by a factor of 58. Patterns with more than seven characters are
usually found by specialized hardware, such as custom-built desktops with multiple
GPUs. These are often repurposed bitcoin mining “rigs” that are no longer profitable
for bitcoin mining but can be used to find vanity addresses. Vanity searches on GPU
systems are many orders of magnitude faster than on a general-purpose CPU.

Another way to find a vanity address is to outsource the work to a pool of vanity min‐
ers, such as the pool at Vanity Pool. A pool is a service that allows those with GPU
hardware to earn bitcoin searching for vanity addresses for others. For a small pay‐
ment (0.01 bitcoin or approximately $5 at the time of this writing), Eugenia can out‐
source the search for a seven-character pattern vanity address and get results in a few
hours instead of having to run a CPU search for months.

Generating a vanity address is a brute-force exercise: try a random key, check the
resulting address to see if it matches the desired pattern, repeat until successful.
Example 4-9 shows an example of a “vanity miner,” a program designed to find vanity
addresses, written in C++. The example uses the libbitcoin library, which we intro‐
duced in “Alternative Clients, Libraries, and Toolkits” on page 51.

Example 4-9. Vanity address miner

#include <random>
#include <bitcoin/bitcoin.hpp>

// The string we are searching for
const std::string search = "1kid";

84 | Chapter 4: Keys, Addresses

http://vanitypool.appspot.com

// Generate a random secret key. A random 32 bytes.
bc::ec_secret random_secret(std::default_random_engine& engine);
// Extract the Bitcoin address from an EC secret.
std::string bitcoin_address(const bc::ec_secret& secret);
// Case insensitive comparison with the search string.
bool match_found(const std::string& address);

int main()
{
 // random_device on Linux uses "/dev/urandom"
 // CAUTION: Depending on implementation this RNG may not be secure enough!
 // Do not use vanity keys generated by this example in production
 std::random_device random;
 std::default_random_engine engine(random());

 // Loop continuously...
 while (true)
 {
 // Generate a random secret.
 bc::ec_secret secret = random_secret(engine);
 // Get the address.
 std::string address = bitcoin_address(secret);
 // Does it match our search string? (1kid)
 if (match_found(address))
 {
 // Success!
 std::cout << "Found vanity address! " << address << std::endl;
 std::cout << "Secret: " << bc::encode_base16(secret) << std::endl;
 return 0;
 }
 }
 // Should never reach here!
 return 0;
}

bc::ec_secret random_secret(std::default_random_engine& engine)
{
 // Create new secret...
 bc::ec_secret secret;
 // Iterate through every byte setting a random value...
 for (uint8_t& byte: secret)
 byte = engine() % std::numeric_limits<uint8_t>::max();
 // Return result.
 return secret;
}

std::string bitcoin_address(const bc::ec_secret& secret)
{
 // Convert secret to payment address
 bc::wallet::ec_private private_key(secret);
 bc::wallet::payment_address payaddr(private_key);

Advanced Keys and Addresses | 85

 // Return encoded form.
 return payaddr.encoded();
}

bool match_found(const std::string& address)
{
 auto addr_it = address.begin();
 // Loop through the search string comparing it to the lower case
 // character of the supplied address.
 for (auto it = search.begin(); it != search.end(); ++it, ++addr_it)
 if (*it != std::tolower(*addr_it))
 return false;
 // Reached end of search string, so address matches.
 return true;
}

Example 4-10 uses std::random_device. Depending on the imple‐
mentation it may reflect a CSRNG provided by the underlying
operating system. In the case of a Unix-like operating system such
as Linux, it draws from /dev/urandom. The random number gener‐
ator used here is for demonstration purposes, and it is not appro‐
priate for generating production-quality bitcoin keys as it is not
implemented with sufficient security.

The example code must be compiled using a C++ compiler and linked against the lib‐
bitcoin library (which must be first installed on that system). To run the example, run
the vanity-miner executable with no parameters (see Example 4-10) and it will
attempt to find a vanity address starting with “1kid.”

Example 4-10. Compiling and running the vanity-miner example

$ # Compile the code with g++
$ g++ -o vanity-miner vanity-miner.cpp $(pkg-config --cflags --libs libbitcoin)
$ # Run the example
$./vanity-miner
Found vanity address! 1KiDzkG4MxmovZryZRj8tK81oQRhbZ46YT
Secret: 57cc268a05f83a23ac9d930bc8565bac4e277055f4794cbd1a39e5e71c038f3f
$ # Run it again for a different result
$./vanity-miner
Found vanity address! 1Kidxr3wsmMzzouwXibKfwTYs5Pau8TUFn
Secret: 7f65bbbbe6d8caae74a0c6a0d2d7b5c6663d71b60337299a1a2cf34c04b2a623
Use "time" to see how long it takes to find a result
$ time ./vanity-miner
Found vanity address! 1KidPWhKgGRQWD5PP5TAnGfDyfWp5yceXM
Secret: 2a802e7a53d8aa237cd059377b616d2bfcfa4b0140bc85fa008f2d3d4b225349

real 0m8.868s
user 0m8.828s
sys 0m0.035s

86 | Chapter 4: Keys, Addresses

The example code will take a few seconds to find a match for the three-character pat‐
tern “kid,” as we can see when we use the time Unix command to measure the execu‐
tion time. Change the search pattern in the source code and see how much longer it
takes for four- or five-character patterns!

Vanity address security
Vanity addresses can be used to enhance and to defeat security measures; they are
truly a double-edged sword. Used to improve security, a distinctive address makes it
harder for adversaries to substitute their own address and fool your customers into
paying them instead of you. Unfortunately, vanity addresses also make it possible for
anyone to create an address that resembles any random address, or even another van‐
ity address, thereby fooling your customers.

Eugenia could advertise a randomly generated address (e.g., 1J7mdg5rbQyUHE
NYdx39WVWK7fsLpEoXZy) to which people can send their donations. Or, she could
generate a vanity address that starts with 1Kids, to make it more distinctive.

In both cases, one of the risks of using a single fixed address (rather than a separate
dynamic address per donor) is that a thief might be able to infiltrate your website and
replace it with his own address, thereby diverting donations to himself. If you have
advertised your donation address in a number of different places, your users may vis‐
ually inspect the address before making a payment to ensure it is the same one they
saw on your website, on your email, and on your flyer. In the case of a random
address like 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy, the average user will perhaps
inspect the first few characters “1J7mdg” and be satisfied that the address matches.
Using a vanity address generator, someone with the intent to steal by substituting a
similar-looking address can quickly generate addresses that match the first few char‐
acters, as shown in Table 4-8.

Table 4-8. Generating vanity addresses to match a random address
Original Random Address 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy

Vanity (4-character match) 1J7md1QqU4LpctBetHS2ZoyLV5d6dShhEy

Vanity (5-character match) 1J7mdgYqyNd4ya3UEcq31Q7sqRMXw2XZ6n

Vanity (6-character match) 1J7mdg5WxGENmwyJP9xuGhG5KRzu99BBCX

So does a vanity address increase security? If Eugenia generates the vanity address
1Kids33q44erFfpeXrmDSz7zEqG2FesZEN, users are likely to look at the vanity pattern
word and a few characters beyond, for example noticing the “1Kids33” part of the
address. That would force an attacker to generate a vanity address matching at least
six characters (two more), expending an effort that is 3,364 times (58 × 58) higher
than the effort Eugenia expended for her 4-character vanity. Essentially, the effort
Eugenia expends (or pays a vanity pool for) “pushes” the attacker into having to pro‐

Advanced Keys and Addresses | 87

duce a longer pattern vanity. If Eugenia pays a pool to generate an 8-character vanity
address, the attacker would be pushed into the realm of 10 characters, which is infea‐
sible on a personal computer and expensive even with a custom vanity-mining rig or
vanity pool. What is affordable for Eugenia becomes unaffordable for the attacker,
especially if the potential reward of fraud is not high enough to cover the cost of the
vanity address generation.

Paper Wallets
Paper wallets are bitcoin private keys printed on paper. Often the paper wallet also
includes the corresponding bitcoin address for convenience, but this is not necessary
because it can be derived from the private key. Paper wallets are a very effective way
to create backups or offline bitcoin storage, also known as “cold storage.” As a backup
mechanism, a paper wallet can provide security against the loss of key due to a com‐
puter mishap such as a hard-drive failure, theft, or accidental deletion. As a “cold
storage” mechanism, if the paper wallet keys are generated offline and never stored
on a computer system, they are much more secure against hackers, keyloggers, and
other online computer threats.

Paper wallets come in many shapes, sizes, and designs, but at a very basic level are
just a key and an address printed on paper. Table 4-9 shows the simplest form of a
paper wallet.

Table 4-9. Simplest form of a paper wallet—a printout of the bitcoin address and private key

Public address Private key (WIF)
1424C2F4bC9JidNjjTUZCbUxv6Sa1Mt62x 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Paper wallets can be generated easily using a tool such as the client-side JavaScript
generator at bitaddress.org. This page contains all the code necessary to generate keys
and paper wallets, even while completely disconnected from the internet. To use it,
save the HTML page on your local drive or on an external USB flash drive. Discon‐
nect from the internet and open the file in a browser. Even better, boot your com‐
puter using a pristine operating system, such as a CD-ROM bootable Linux OS. Any
keys generated with this tool while offline can be printed on a local printer over a
USB cable (not wirelessly), thereby creating paper wallets whose keys exist only on
the paper and have never been stored on any online system. Put these paper wallets in
a fireproof safe and “send” bitcoin to their bitcoin address, to implement a simple yet
highly effective “cold storage” solution. Figure 4-8 shows a paper wallet generated
from the bitaddress.org site.

88 | Chapter 4: Keys, Addresses

Figure 4-8. An example of a simple paper wallet from bitaddress.org

The disadvantage of a simple paper wallet system is that the printed keys are vulnera‐
ble to theft. A thief who is able to gain access to the paper can either steal it or photo‐
graph the keys and take control of the bitcoin locked with those keys. A more
sophisticated paper wallet storage system uses BIP-38 encrypted private keys. The
keys printed on the paper wallet are protected by a passphrase that the owner has
memorized. Without the passphrase, the encrypted keys are useless. Yet, they still are
superior to a passphrase-protected wallet because the keys have never been online
and must be physically retrieved from a safe or other physically secured storage.
Figure 4-9 shows a paper wallet with an encrypted private key (BIP-38) created on the
bitaddress.org site.

Figure 4-9. An example of an encrypted paper wallet from bitaddress.org. The pass‐
phrase is “test.”

Advanced Keys and Addresses | 89

Although you can deposit funds into a paper wallet several times,
you should withdraw all funds only once, spending everything.
This is because in the process of unlocking and spending funds
some wallets might generate a change address if you spend less
than the whole amount. Additionally, if the computer you use to
sign the transaction is compromised, you risk exposing the private
key. By spending the entire balance of a paper wallet only once, you
reduce the risk of key compromise. If you need only a small
amount, send any remaining funds to a new paper wallet in the
same transaction.

Paper wallets come in many designs and sizes, with many different features. Some are
intended to be given as gifts and have seasonal themes, such as Christmas and New
Year’s themes. Others are designed for storage in a bank vault or safe with the private
key hidden in some way, either with opaque scratch-off stickers, or folded and sealed
with tamper-proof adhesive foil. Figures 4-10 through 4-12 show various examples of
paper wallets with security and backup features.

Figure 4-10. An example of a paper wallet from bitcoinpaperwallet.com with the private
key on a folding flap

Figure 4-11. The bitcoinpaperwallet.com paper wallet with the private key concealed

90 | Chapter 4: Keys, Addresses

Other designs feature additional copies of the key and address, in the form of detach‐
able stubs similar to ticket stubs, allowing you to store multiple copies to protect
against fire, flood, or other natural disasters.

Figure 4-12. An example of a paper wallet with additional copies of the keys on a backup
“stub”

Advanced Keys and Addresses | 91

CHAPTER 5

Wallets

The word “wallet” is used to describe a few different things in bitcoin.

At a high level, a wallet is an application that serves as the primary user interface. The
wallet controls access to a user’s money, managing keys and addresses, tracking the
balance, and creating and signing transactions.

More narrowly, from a programmer’s perspective, the word “wallet” refers to the data
structure used to store and manage a user’s keys.

In this chapter we will look at the second meaning, where wallets are containers for
private keys, usually implemented as structured files or simple databases.

Wallet Technology Overview
In this section we summarize the various technologies used to construct user-
friendly, secure, and flexible bitcoin wallets.

A common misconception about bitcoin is that bitcoin wallets contain bitcoin. In
fact, the wallet contains only keys. The “coins” are recorded in the blockchain on the
bitcoin network. Users control the coins on the network by signing transactions with
the keys in their wallets. In a sense, a bitcoin wallet is a keychain.

Bitcoin wallets contain keys, not coins. Each user has a wallet con‐
taining keys. Wallets are really keychains containing pairs of pri‐
vate/public keys (see “Private and Public Keys” on page 57). Users
sign transactions with the keys, thereby proving they own the
transaction outputs (their coins). The coins are stored on the
blockchain in the form of transaction outputs (often noted as vout
or txout).

93

There are two primary types of wallets, distinguished by whether the keys they con‐
tain are related to each other or not.

The first type is a nondeterministic wallet, where each key is independently generated
from a random number. The keys are not related to each other. This type of wallet is
also known as a JBOK wallet from the phrase “Just a Bunch Of Keys.”

The second type of wallet is a deterministic wallet, where all the keys are derived from
a single master key, known as the seed. All the keys in this type of wallet are related to
each other and can be generated again if one has the original seed. There are a num‐
ber of different key derivation methods used in deterministic wallets. The most com‐
monly used derivation method uses a tree-like structure and is known as a
hierarchical deterministic or HD wallet.

Deterministic wallets are initialized from a seed. To make these easier to use, seeds
are encoded as English words, also known as mnemonic code words.

The next few sections introduce each of these technologies at a high level.

Nondeterministic (Random) Wallets
In the first bitcoin wallet (now called Bitcoin Core), wallets were collections of ran‐
domly generated private keys. For example, the original Bitcoin Core client pregener‐
ates 100 random private keys when first started and generates more keys as needed,
using each key only once. Such wallets are being replaced with deterministic wallets
because they are cumbersome to manage, back up, and import. The disadvantage of
random keys is that if you generate many of them you must keep copies of all of
them, meaning that the wallet must be backed up frequently. Each key must be
backed up, or the funds it controls are irrevocably lost if the wallet becomes inaccessi‐
ble. This conflicts directly with the principle of avoiding address reuse, by using each
bitcoin address for only one transaction. Address reuse reduces privacy by associating
multiple transactions and addresses with each other. A Type-0 nondeterministic wal‐
let is a poor choice of wallet, especially if you want to avoid address reuse because it
means managing many keys, which creates the need for frequent backups. Although
the Bitcoin Core client includes a Type-0 wallet, using this wallet is discouraged by
developers of Bitcoin Core. Figure 5-1 shows a nondeterministic wallet, containing a
loose collection of random keys.

The use of nondeterministic wallets is discouraged for anything
other than simple tests. They are simply too cumbersome to back
up and use. Instead, use an industry-standard–based HD wallet
with a mnemonic seed for backup.

94 | Chapter 5: Wallets

Figure 5-1. Type-0 nondeterministic (random) wallet: a collection of randomly generated
keys

Deterministic (Seeded) Wallets
Deterministic, or “seeded,” wallets are wallets that contain private keys that are all
derived from a common seed, through the use of a one-way hash function. The seed
is a randomly generated number that is combined with other data, such as an index
number or “chain code” (see “HD Wallets (BIP-32/BIP-44)” on page 96) to derive the
private keys. In a deterministic wallet, the seed is sufficient to recover all the derived
keys, and therefore a single backup at creation time is sufficient. The seed is also suffi‐
cient for a wallet export or import, allowing for easy migration of all the user’s keys
between different wallet implementations. Figure 5-2 shows a logical diagram of a
deterministic wallet.

Figure 5-2. Type-1 deterministic (seeded) wallet: a deterministic sequence of keys derived
from a seed

Wallet Technology Overview | 95

HD Wallets (BIP-32/BIP-44)
Deterministic wallets were developed to make it easy to derive many keys from a sin‐
gle “seed.” The most advanced form of deterministic wallets is the HD wallet defined
by the BIP-32 standard. HD wallets contain keys derived in a tree structure, such that
a parent key can derive a sequence of children keys, each of which can derive a
sequence of grandchildren keys, and so on, to an infinite depth. This tree structure is
illustrated in Figure 5-3.

Figure 5-3. Type-2 HD wallet: a tree of keys generated from a single seed

HD wallets offer two major advantages over random (nondeterministic) keys. First,
the tree structure can be used to express additional organizational meaning, such as
when a specific branch of subkeys is used to receive incoming payments and a differ‐
ent branch is used to receive change from outgoing payments. Branches of keys can
also be used in corporate settings, allocating different branches to departments, sub‐
sidiaries, specific functions, or accounting categories.

The second advantage of HD wallets is that users can create a sequence of public keys
without having access to the corresponding private keys. This allows HD wallets to be
used on an insecure server or in a receive-only capacity, issuing a different public key
for each transaction. The public keys do not need to be preloaded or derived in
advance, yet the server doesn’t have the private keys that can spend the funds.

96 | Chapter 5: Wallets

Seeds and Mnemonic Codes (BIP-39)
HD wallets are a very powerful mechanism for managing many keys and addresses.
They are even more useful if they are combined with a standardized way of creating
seeds from a sequence of English words that are easy to transcribe, export, and
import across wallets. This is known as a mnemonic and the standard is defined by
BIP-39. Today, most bitcoin wallets (as well as wallets for other cryptocurrencies) use
this standard and can import and export seeds for backup and recovery using intero‐
perable mnemonics.

Let’s look at this from a practical perspective. Which of the following seeds is easier to
transcribe, record on paper, read without error, export, and import into another wal‐
let?

0C1E24E5917779D297E14D45F14E1A1A

army van defense carry jealous true
garbage claim echo media make crunch

Wallet Best Practices
As bitcoin wallet technology has matured, certain common industry standards have
emerged that make bitcoin wallets broadly interoperable, easy to use, secure, and flex‐
ible. These common standards are:

• Mnemonic code words, based on BIP-39
• HD wallets, based on BIP-32
• Multipurpose HD wallet structure, based on BIP-43
• Multicurrency and multiaccount wallets, based on BIP-44

These standards may change or may become obsolete by future developments, but for
now they form a set of interlocking technologies that have become the de facto wallet
standard for bitcoin.

The standards have been adopted by a broad range of software and hardware bitcoin
wallets, making all these wallets interoperable. A user can export a mnemonic gener‐
ated on one of these wallets and import it in another wallet, recovering all transac‐
tions, keys, and addresses.

Some example of software wallets supporting these standards include (listed alpha‐
betically) Breadwallet, Copay, Multibit HD, and Mycelium. Examples of hardware
wallets supporting these standards include (listed alphabetically) Keepkey, Ledger,
and Trezor.

The following sections examine each of these technologies in detail.

Wallet Technology Overview | 97

If you are implementing a bitcoin wallet, it should be built as a HD
wallet, with a seed encoded as mnemonic code for backup, follow‐
ing the BIP-32, BIP-39, BIP-43, and BIP-44 standards, as described
in the following sections.

Using a Bitcoin Wallet
In “Bitcoin Uses, Users, and Their Stories” on page 5 we introduced Gabriel, an enter‐
prising young teenager in Rio de Janeiro, who is running a simple web store that sells
bitcoin-branded t-shirts, coffee mugs, and stickers.

Gabriel uses a Trezor bitcoin hardware wallet (Figure 5-4) to securely manage his bit‐
coin. The Trezor is a simple USB device with two buttons that stores keys (in the
form of an HD wallet) and signs transactions. Trezor wallets implement all the indus‐
try standards discussed in this chapter, so Gabriel is not reliant on any proprietary
technology or single vendor solution.

Figure 5-4. A Trezor device: a bitcoin HD wallet in hardware

When Gabriel used the Trezor for the first time, the device generated a mnemonic
and seed from a built-in hardware random number generator. During this initializa‐
tion phase, the wallet displayed a numbered sequence of words, one by one, on the
screen (see Figure 5-5).

Figure 5-5. Trezor displaying one of the mnemonic words

By writing down this mnemonic, Gabriel created a backup (see Table 5-1) that can be
used for recovery in the case of loss or damage to the Trezor device. This mnemonic
can be used for recovery in a new Trezor or in any one of the many compatible soft‐
ware or hardware wallets. Note that the sequence of words is important, so

98 | Chapter 5: Wallets

mnemonic paper backups have numbered spaces for each word. Gabriel had to care‐
fully record each word in the numbered space to preserve the correct sequence.

Table 5-1. Gabriel’s paper backup of the mnemonic
1. army 7. garbage

2. van 8. claim

3. defense 9. echo

4. carry 10. media

5. jealous 11. make

6. true 12. crunch

A 12-word mnemonic is shown in Table 5-1, for simplicity. In fact,
most hardware wallets generate a more secure 24-word mnemonic.
The mnemonic is used in exactly the same way, regardless of
length.

For the first implementation of his web store, Gabriel uses a single bitcoin address,
generated on his Trezor device. This single address is used by all customers for all
orders. As we will see, this approach has some drawbacks and can be improved upon
with an HD wallet.

Wallet Technology Details
Let’s now examine each of the important industry standards that are used by many
bitcoin wallets in detail.

Mnemonic Code Words (BIP-39)
Mnemonic code words are word sequences that represent (encode) a random num‐
ber used as a seed to derive a deterministic wallet. The sequence of words is sufficient
to re-create the seed and from there re-create the wallet and all the derived keys. A
wallet application that implements deterministic wallets with mnemonic words will
show the user a sequence of 12 to 24 words when first creating a wallet. That
sequence of words is the wallet backup and can be used to recover and re-create all
the keys in the same or any compatible wallet application. Mnemonic words make it
easier for users to back up wallets because they are easy to read and correctly tran‐
scribe, as compared to a random sequence of numbers.

Wallet Technology Details | 99

Mnemonic words are often confused with “brainwallets.” They are
not the same. The primary difference is that a brainwallet consists
of words chosen by the user, whereas mnemonic words are created
randomly by the wallet and presented to the user. This important
difference makes mnemonic words much more secure, because
humans are very poor sources of randomness.

Mnemonic codes are defined in BIP-39 (see Appendix C). Note that BIP-39 is one
implementation of a mnemonic code standard. There is a different standard, with a
different set of words, used by the Electrum wallet and predating BIP-39. BIP-39 was
proposed by the company behind the Trezor hardware wallet and is incompatible
with Electrum’s implementation. However, BIP-39 has now achieved broad industry
support across dozens of interoperable implementations and should be considered
the de facto industry standard.

BIP-39 defines the creation of a mnemonic code and seed, which we describe here in
nine steps. For clarity, the process is split into two parts: steps 1 through 6 are shown
in “Generating mnemonic words” on page 100 and steps 7 through 9 are shown in
“From mnemonic to seed” on page 101.

Generating mnemonic words
Mnemonic words are generated automatically by the wallet using the standardized
process defined in BIP-39. The wallet starts from a source of entropy, adds a check‐
sum, and then maps the entropy to a word list:

1. Create a random sequence (entropy) of 128 to 256 bits.
2. Create a checksum of the random sequence by taking the first (entropy-

length/32) bits of its SHA256 hash.
3. Add the checksum to the end of the random sequence.
4. Divide the sequence into sections of 11 bits.
5. Map each 11-bit value to a word from the predefined dictionary of 2048 words.
6. The mnemonic code is the sequence of words.

Figure 5-6 shows how entropy is used to generate mnemonic words.

100 | Chapter 5: Wallets

Figure 5-6. Generating entropy and encoding as mnemonic words

Table 5-2 shows the relationship between the size of the entropy data and the length
of mnemonic codes in words.

Table 5-2. Mnemonic codes: entropy and word length

Entropy (bits) Checksum (bits) Entropy + checksum (bits) Mnemonic length (words)
128 4 132 12

160 5 165 15

192 6 198 18

224 7 231 21

256 8 264 24

From mnemonic to seed
The mnemonic words represent entropy with a length of 128 to 256 bits. The entropy
is then used to derive a longer (512-bit) seed through the use of the key-stretching
function PBKDF2. The seed produced is then used to build a deterministic wallet and
derive its keys.

Wallet Technology Details | 101

The key-stretching function takes two parameters: the mnemonic and a salt. The pur‐
pose of a salt in a key-stretching function is to make it difficult to build a lookup table
enabling a brute-force attack. In the BIP-39 standard, the salt has another purpose—it
allows the introduction of a passphrase that serves as an additional security factor
protecting the seed, as we will describe in more detail in “Optional passphrase in
BIP-39” on page 104.

The process described in steps 7 through 9 continues from the process described pre‐
viously in “Generating mnemonic words” on page 100:

7. The first parameter to the PBKDF2 key-stretching function is the mnemonic pro‐
duced from step 6.

8. The second parameter to the PBKDF2 key-stretching function is a salt. The salt is
composed of the string constant "mnemonic" concatenated with an optional user-
supplied passphrase string.

9. PBKDF2 stretches the mnemonic and salt parameters using 2048 rounds of hash‐
ing with the HMAC-SHA512 algorithm, producing a 512-bit value as its final
output. That 512-bit value is the seed.

Figure 5-7 shows how a mnemonic is used to generate a seed.

Figure 5-7. From mnemonic to seed

102 | Chapter 5: Wallets

The key-stretching function, with its 2048 rounds of hashing, is a
very effective protection against brute-force attacks against the
mnemonic or the passphrase. It makes it extremely costly (in com‐
putation) to try more than a few thousand passphrase and
mnemonic combinations, while the number of possible derived
seeds is vast (2512).

Tables 5-3, 5-4, and 5-5 show some examples of mnemonic codes and the seeds they
produce (without any passphrase).

Table 5-3. 128-bit entropy mnemonic code, no passphrase, resulting seed
Entropy input (128 bits)

0c1e24e5917779d297e14d45f14e1a1a

Mnemonic (12 words)

army van defense carry jealous true garbage claim echo media make crunch

Passphrase

(none)

Seed (512 bits)

5b56c417303faa3fcba7e57400e120a0ca83ec5a4fc9ffba757fbe63fbd77a89a1a3be4c67196f57c39
a88b76373733891bfaba16ed27a813ceed498804c0570

Table 5-4. 128-bit entropy mnemonic code, with passphrase, resulting seed
Entropy input (128 bits)

0c1e24e5917779d297e14d45f14e1a1a

Mnemonic (12 words)

army van defense carry jealous true garbage claim echo media make crunch

Passphrase

SuperDuperSecret

Seed (512 bits)

3b5df16df2157104cfdd22830162a5e170c0161653e3afe6c88defeefb0818c793dbb28ab3ab091897d0
715861dc8a18358f80b79d49acf64142ae57037d1d54

Table 5-5. 256-bit entropy mnemonic code, no passphrase, resulting seed
Entropy input (256 bits)

2041546864449caff939d32d574753fe684d3c947c3346713dd8423e74abcf8c

Mnemonic (24 words)

cake apple borrow silk endorse fitness top denial coil riot stay wolf
luggage oxygen faint major edit measure invite love trap field dilemma oblige

Passphrase

(none)

Wallet Technology Details | 103

Seed (512 bits)

3269bce2674acbd188d4f120072b13b088a0ecf87c6e4cae41657a0bb78f5315b33b3a04356e53d062e5
5f1e0deaa082df8d487381379df848a6ad7e98798404

Optional passphrase in BIP-39
The BIP-39 standard allows the use of an optional passphrase in the derivation of the
seed. If no passphrase is used, the mnemonic is stretched with a salt consisting of the
constant string "mnemonic", producing a specific 512-bit seed from any given
mnemonic. If a passphrase is used, the stretching function produces a different seed
from that same mnemonic. In fact, given a single mnemonic, every possible pass‐
phrase leads to a different seed. Essentially, there is no “wrong” passphrase. All pass‐
phrases are valid and they all lead to different seeds, forming a vast set of possible
uninitialized wallets. The set of possible wallets is so large (2512) that there is no prac‐
tical possibility of brute-forcing or accidentally guessing one that is in use.

There are no “wrong” passphrases in BIP-39. Every passphrase
leads to some wallet, which unless previously used will be empty.

The optional passphrase creates two important features:

• A second factor (something memorized) that makes a mnemonic useless on its
own, protecting mnemonic backups from compromise by a thief.

• A form of plausible deniability or “duress wallet,” where a chosen passphrase
leads to a wallet with a small amount of funds used to distract an attacker from
the “real” wallet that contains the majority of funds.

However, it is important to note that the use of a passphrase also introduces the risk
of loss:

• If the wallet owner is incapacitated or dead and no one else knows the pass‐
phrase, the seed is useless and all the funds stored in the wallet are lost forever.

• Conversely, if the owner backs up the passphrase in the same place as the seed, it
defeats the purpose of a second factor.

While passphrases are very useful, they should only be used in combination with a
carefully planned process for backup and recovery, considering the possibility of sur‐
viving the owner and allowing his or her family to recover the cryptocurrency estate.

104 | Chapter 5: Wallets

Working with mnemonic codes
BIP-39 is implemented as a library in many different programming languages:

python-mnemonic
The reference implementation of the standard by the SatoshiLabs team that pro‐
posed BIP-39, in Python

bitcoinjs/bip39
An implementation of BIP-39, as part of the popular bitcoinJS framework, in
JavaScript

libbitcoin/mnemonic
An implementation of BIP-39, as part of the popular Libbitcoin framework, in
C++

There is also a BIP-39 generator implemented in a standalone webpage, which is
extremely useful for testing and experimentation. Figure 5-8 shows a standalone web
page that generates mnemonics, seeds, and extended private keys.

Figure 5-8. A BIP-39 generator as a standalone web page

The page (https://iancoleman.github.io/bip39/) can be used offline in a browser, or
accessed online.

Wallet Technology Details | 105

https://github.com/trezor/python-mnemonic
https://github.com/bitcoinjs/bip39
https://github.com/libbitcoin/libbitcoin/blob/master/src/wallet/mnemonic.cpp
https://iancoleman.github.io/bip39/

Creating an HD Wallet from the Seed
HD wallets are created from a single root seed, which is a 128-, 256-, or 512-bit ran‐
dom number. Most commonly, this seed is generated from a mnemonic as detailed in
the previous section.

Every key in the HD wallet is deterministically derived from this root seed, which
makes it possible to re-create the entire HD wallet from that seed in any compatible
HD wallet. This makes it easy to back up, restore, export, and import HD wallets con‐
taining thousands or even millions of keys by simply transferring only the mnemonic
that the root seed is derived from.

The process of creating the master keys and master chain code for an HD wallet is
shown in Figure 5-9.

Figure 5-9. Creating master keys and chain code from a root seed

The root seed is input into the HMAC-SHA512 algorithm and the resulting hash is
used to create a master private key (m) and a master chain code (c).

The master private key (m) then generates a corresponding master public key (M)
using the normal elliptic curve multiplication process m * G that we saw in “Public
Keys” on page 60.

The chain code (c) is used to introduce entropy in the function that creates child keys
from parent keys, as we will see in the next section.

Private child key derivation
HD wallets use a child key derivation (CKD) function to derive child keys from parent
keys.

106 | Chapter 5: Wallets

The child key derivation functions are based on a one-way hash function that com‐
bines:

• A parent private or public key (ECDSA uncompressed key)
• A seed called a chain code (256 bits)
• An index number (32 bits)

The chain code is used to introduce deterministic random data to the process, so that
knowing the index and a child key is not sufficient to derive other child keys. Know‐
ing a child key does not make it possible to find its siblings, unless you also have the
chain code. The initial chain code seed (at the root of the tree) is made from the seed,
while subsequent child chain codes are derived from each parent chain code.

These three items (parent key, chain code, and index) are combined and hashed to
generate children keys, as follows.

The parent public key, chain code, and the index number are combined and hashed
with the HMAC-SHA512 algorithm to produce a 512-bit hash. This 512-bit hash is
split into two 256-bit halves. The right-half 256 bits of the hash output become the
chain code for the child. The left-half 256 bits of the hash are added to the parent
private key to produce the child private key. In Figure 5-10, we see this illustrated
with the index set to 0 to produce the “zero” (first by index) child of the parent.

Figure 5-10. Extending a parent private key to create a child private key

Changing the index allows us to extend the parent and create the other children in
the sequence, e.g., Child 0, Child 1, Child 2, etc. Each parent key can have

Wallet Technology Details | 107

2,147,483,647 (231) children (231 is half of the entire 232 range available because the
other half is reserved for a special type of derivation we will talk about later in this
chapter).

Repeating the process one level down the tree, each child can in turn become a parent
and create its own children, in an infinite number of generations.

Using derived child keys
Child private keys are indistinguishable from nondeterministic (random) keys.
Because the derivation function is a one-way function, the child key cannot be used
to find the parent key. The child key also cannot be used to find any siblings. If you
have the nth child, you cannot find its siblings, such as the n–1 child or the n+1 child,
or any other children that are part of the sequence. Only the parent key and chain
code can derive all the children. Without the child chain code, the child key cannot
be used to derive any grandchildren either. You need both the child private key and
the child chain code to start a new branch and derive grandchildren.

So what can the child private key be used for on its own? It can be used to make a
public key and a bitcoin address. Then, it can be used to sign transactions to spend
anything paid to that address.

A child private key, the corresponding public key, and the bitcoin
address are all indistinguishable from keys and addresses created
randomly. The fact that they are part of a sequence is not visible
outside of the HD wallet function that created them. Once created,
they operate exactly as “normal” keys.

Extended keys
As we saw earlier, the key derivation function can be used to create children at any
level of the tree, based on the three inputs: a key, a chain code, and the index of the
desired child. The two essential ingredients are the key and chain code, and com‐
bined these are called an extended key. The term “extended key” could also be thought
of as “extensible key” because such a key can be used to derive children.

Extended keys are stored and represented simply as the concatenation of the 256-bit
key and 256-bit chain code into a 512-bit sequence. There are two types of extended
keys. An extended private key is the combination of a private key and chain code and
can be used to derive child private keys (and from them, child public keys). An exten‐
ded public key is a public key and chain code, which can be used to create child pub‐
lic keys (public only), as described in “Generating a Public Key” on page 63.

Think of an extended key as the root of a branch in the tree structure of the HD wal‐
let. With the root of the branch, you can derive the rest of the branch. The extended

108 | Chapter 5: Wallets

private key can create a complete branch, whereas the extended public key can only
create a branch of public keys.

An extended key consists of a private or public key and chain code.
An extended key can create children, generating its own branch in
the tree structure. Sharing an extended key gives access to the
entire branch.

Extended keys are encoded using Base58Check, to easily export and import between
different BIP-32–compatible wallets. The Base58Check coding for extended keys uses
a special version number that results in the prefix “xprv” and “xpub” when encoded
in Base58 characters to make them easily recognizable. Because the extended key is
512 or 513 bits, it is also much longer than other Base58Check-encoded strings we
have seen previously.

Here’s an example of an extended private key, encoded in Base58Check:

xprv9tyUQV64JT5qs3RSTJkXCWKMyU-
goQp7F3hA1xzG6ZGu6u6Q9VMNjGr67Lctvy5P8oyaYAL9CAWrUE9i6GoNM-
KUga5biW6Hx4tws2six3b9c

Here’s the corresponding extended public key, encoded in Base58Check:

xpub67xpozcx8pe95XVuZLHXZeG6XWXHpGq6Qv5cmNfi7cS5mtjJ2tgy-
peQbBs2UAR6KECeeMVKZBPLrtJunSDMstweyLXhRgPxdp14sk9tJPW9

Public child key derivation
As mentioned previously, a very useful characteristic of HD wallets is the ability to
derive public child keys from public parent keys, without having the private keys.
This gives us two ways to derive a child public key: either from the child private key,
or directly from the parent public key.

An extended public key can be used, therefore, to derive all of the public keys (and
only the public keys) in that branch of the HD wallet structure.

This shortcut can be used to create very secure public key–only deployments where a
server or application has a copy of an extended public key and no private keys what‐
soever. That kind of deployment can produce an infinite number of public keys and
bitcoin addresses, but cannot spend any of the money sent to those addresses. Mean‐
while, on another, more secure server, the extended private key can derive all the cor‐
responding private keys to sign transactions and spend the money.

One common application of this solution is to install an extended public key on a
web server that serves an ecommerce application. The web server can use the public
key derivation function to create a new bitcoin address for every transaction (e.g., for
a customer shopping cart). The web server will not have any private keys that would

Wallet Technology Details | 109

be vulnerable to theft. Without HD wallets, the only way to do this is to generate
thousands of bitcoin addresses on a separate secure server and then preload them on
the ecommerce server. That approach is cumbersome and requires constant mainte‐
nance to ensure that the ecommerce server doesn’t “run out” of keys.

Another common application of this solution is for cold-storage or hardware wallets.
In that scenario, the extended private key can be stored on a paper wallet or hardware
device (such as a Trezor hardware wallet), while the extended public key can be kept
online. The user can create “receive” addresses at will, while the private keys are safely
stored offline. To spend the funds, the user can use the extended private key on an
offline signing bitcoin client or sign transactions on the hardware wallet device (e.g.,
Trezor). Figure 5-11 illustrates the mechanism for extending a parent public key to
derive child public keys.

Figure 5-11. Extending a parent public key to create a child public key

Using an Extended Public Key on a Web Store
Let’s see how HD wallets are used by continuing our story with Gabriel’s web store.

Gabriel first set up his web store as a hobby, based on a simple hosted Wordpress
page. His store was quite basic with only a few pages and an order form with a single
bitcoin address.

Gabriel used the first bitcoin address generated by his Trezor device as the main bit‐
coin address for his store. This way, all incoming payments would be paid to an
address controlled by his Trezor hardware wallet.

Customers would submit an order using the form and send payment to Gabriel’s
published bitcoin address, triggering an email with the order details for Gabriel to
process. With just a few orders each week, this system worked well enough.

110 | Chapter 5: Wallets

However, the little web store became quite successful and attracted many orders from
the local community. Soon, Gabriel was overwhelmed. With all the orders paying the
same address, it became difficult to correctly match orders and transactions, espe‐
cially when multiple orders for the same amount came in close together.

Gabriel’s HD wallet offers a much better solution through the ability to derive public
child keys without knowing the private keys. Gabriel can load an extended public key
(xpub) on his website, which can be used to derive a unique address for every cus‐
tomer order. Gabriel can spend the funds from his Trezor, but the xpub loaded on the
website can only generate addresses and receive funds. This feature of HD wallets is a
great security feature. Gabriel’s website does not contain any private keys and there‐
fore does not need high levels of security.

To export the xpub, Gabriel uses the web-based software in conjunction with the Tre‐
zor hardware wallet. The Trezor device must be plugged in for the public keys to be
exported. Note that hardware wallets will never export private keys—those always
remain on the device. Figure 5-12 shows the web interface Gabriel uses to export the
xpub.

Figure 5-12. Exporting an xpub from a Trezor hardware wallet

Gabriel copies the xpub to his web store’s bitcoin shop software. He uses Mycelium
Gear, which is an open source web-store plugin for a variety of web hosting and con‐

Wallet Technology Details | 111

tent platforms. Mycelium Gear uses the xpub to generate a unique address for every
purchase.

Hardened child key derivation
The ability to derive a branch of public keys from an xpub is very useful, but it comes
with a potential risk. Access to an xpub does not give access to child private keys.
However, because the xpub contains the chain code, if a child private key is known, or
somehow leaked, it can be used with the chain code to derive all the other child pri‐
vate keys. A single leaked child private key, together with a parent chain code, reveals
all the private keys of all the children. Worse, the child private key together with a
parent chain code can be used to deduce the parent private key.

To counter this risk, HD wallets use an alternative derivation function called hard‐
ened derivation, which “breaks” the relationship between parent public key and child
chain code. The hardened derivation function uses the parent private key to derive
the child chain code, instead of the parent public key. This creates a “firewall” in the
parent/child sequence, with a chain code that cannot be used to compromise a parent
or sibling private key. The hardened derivation function looks almost identical to the
normal child private key derivation, except that the parent private key is used as input
to the hash function, instead of the parent public key, as shown in the diagram in
Figure 5-13.

Figure 5-13. Hardened derivation of a child key; omits the parent public key

112 | Chapter 5: Wallets

When the hardened private derivation function is used, the resulting child private key
and chain code are completely different from what would result from the normal der‐
ivation function. The resulting “branch” of keys can be used to produce extended
public keys that are not vulnerable, because the chain code they contain cannot be
exploited to reveal any private keys. Hardened derivation is therefore used to create a
“gap” in the tree above the level where extended public keys are used.

In simple terms, if you want to use the convenience of an xpub to derive branches of
public keys, without exposing yourself to the risk of a leaked chain code, you should
derive it from a hardened parent, rather than a normal parent. As a best practice, the
level-1 children of the master keys are always derived through the hardened deriva‐
tion, to prevent compromise of the master keys.

Index numbers for normal and hardened derivation
The index number used in the derivation function is a 32-bit integer. To easily distin‐
guish between keys derived through the normal derivation function versus keys
derived through hardened derivation, this index number is split into two ranges.
Index numbers between 0 and 231–1 (0x0 to 0x7FFFFFFF) are used only for normal
derivation. Index numbers between 231 and 232–1 (0x80000000 to 0xFFFFFFFF) are
used only for hardened derivation. Therefore, if the index number is less than 231, the
child is normal, whereas if the index number is equal or above 231, the child is hard‐
ened.

To make the index number easier to read and display, the index number for hardened
children is displayed starting from zero, but with a prime symbol. The first normal
child key is therefore displayed as 0, whereas the first hardened child (index
0x80000000) is displayed as 0'. In sequence then, the second hardened key would
have index 0x80000001 and would be displayed as 1', and so on. When you see an
HD wallet index i', that means 231+i.

HD wallet key identifier (path)
Keys in an HD wallet are identified using a “path” naming convention, with each level
of the tree separated by a slash (/) character (see Table 5-6). Private keys derived from
the master private key start with “m.” Public keys derived from the master public key
start with “M.” Therefore, the first child private key of the master private key is m/0.
The first child public key is M/0. The second grandchild of the first child is m/0/1,
and so on.

The “ancestry” of a key is read from right to left, until you reach the master key from
which it was derived. For example, identifier m/x/y/z describes the key that is the z-th
child of key m/x/y, which is the y-th child of key m/x, which is the x-th child of m.

Wallet Technology Details | 113

Table 5-6. HD wallet path examples

HD path Key described
m/0 The first (0) child private key from the master private key (m)

m/0/0 The first grandchild private key of the first child (m/0)

m/0'/0 The first normal grandchild of the first hardened child (m/0')

m/1/0 The first grandchild private key of the second child (m/1)

M/23/17/0/0 The first great-great-grandchild public key of the first great-grandchild of the 18th grandchild of the 24th
child

Navigating the HD wallet tree structure
The HD wallet tree structure offers tremendous flexibility. Each parent extended key
can have 4 billion children: 2 billion normal children and 2 billion hardened children.
Each of those children can have another 4 billion children, and so on. The tree can be
as deep as you want, with an infinite number of generations. With all that flexibility,
however, it becomes quite difficult to navigate this infinite tree. It is especially diffi‐
cult to transfer HD wallets between implementations, because the possibilities for
internal organization into branches and subbranches are endless.

Two BIPs offer a solution to this complexity by creating some proposed standards for
the structure of HD wallet trees. BIP-43 proposes the use of the first hardened child
index as a special identifier that signifies the “purpose” of the tree structure. Based on
BIP-43, an HD wallet should use only one level-1 branch of the tree, with the index
number identifying the structure and namespace of the rest of the tree by defining its
purpose. For example, an HD wallet using only branch m/i'/ is intended to signify a
specific purpose and that purpose is identified by index number “i.”

Extending that specification, BIP-44 proposes a multiaccount structure as “purpose”
number 44' under BIP-43. All HD wallets following the BIP-44 structure are identi‐
fied by the fact that they only used one branch of the tree: m/44'/.

BIP-44 specifies the structure as consisting of five predefined tree levels:

m / purpose' / coin_type' / account' / change / address_index

The first-level “purpose” is always set to 44'. The second-level “coin_type” specifies
the type of cryptocurrency coin, allowing for multicurrency HD wallets where each
currency has its own subtree under the second level. There are three currencies
defined for now: Bitcoin is m/44'/0', Bitcoin Testnet is m/44'/1', and Litecoin is
m/44'/2'.

The third level of the tree is “account,” which allows users to subdivide their wallets
into separate logical subaccounts, for accounting or organizational purposes. For
example, an HD wallet might contain two bitcoin “accounts”: m/44'/0'/0' and
m/44'/0'/1'. Each account is the root of its own subtree.

114 | Chapter 5: Wallets

On the fourth level, “change,” an HD wallet has two subtrees, one for creating receiv‐
ing addresses and one for creating change addresses. Note that whereas the previous
levels used hardened derivation, this level uses normal derivation. This is to allow this
level of the tree to export extended public keys for use in a nonsecured environment.
Usable addresses are derived by the HD wallet as children of the fourth level, making
the fifth level of the tree the “address_index.” For example, the third receiving address
for bitcoin payments in the primary account would be M/44'/0'/0'/0/2. Table 5-7
shows a few more examples.

Table 5-7. BIP-44 HD wallet structure examples

HD path Key described

M/44'/0'/0'/0/2 The third receiving public key for the primary bitcoin account

M/44'/0'/3'/1/14 The fifteenth change-address public key for the fourth bitcoin account

m/44'/2'/0'/0/1 The second private key in the Litecoin main account, for signing transactions

Wallet Technology Details | 115

CHAPTER 6

Transactions

Introduction
Transactions are the most important part of the bitcoin system. Everything else in bit‐
coin is designed to ensure that transactions can be created, propagated on the net‐
work, validated, and finally added to the global ledger of transactions (the
blockchain). Transactions are data structures that encode the transfer of value
between participants in the bitcoin system. Each transaction is a public entry in bit‐
coin’s blockchain, the global double-entry bookkeeping ledger.

In this chapter we will examine all the various forms of transactions, what they con‐
tain, how to create them, how they are verified, and how they become part of the per‐
manent record of all transactions. When we use the term “wallet” in this chapter, we
are referring to the software that constructs transactions, not just the database of
keys.

Transactions in Detail
In Chapter 2, we looked at the transaction Alice used to pay for coffee at Bob’s coffee
shop using a block explorer (Figure 6-1).

The block explorer application shows a transaction from Alice’s “address” to Bob’s
“address.” This is a much simplified view of what is contained in a transaction. In fact,
as we will see in this chapter, much of the information shown is constructed by the
block explorer and is not actually in the transaction.

117

Figure 6-1. Alice’s transaction to Bob’s Cafe

Transactions—Behind the Scenes
Behind the scenes, an actual transaction looks very different from a transaction pro‐
vided by a typical block explorer. In fact, most of the high-level constructs we see in
the various bitcoin application user interfaces do not actually exist in the bitcoin sys‐
tem.

We can use Bitcoin Core’s command-line interface (getrawtransaction and decoder
awtransaction) to retrieve Alice’s “raw” transaction, decode it, and see what it con‐
tains. The result looks like this:

{
 "version": 1,
 "locktime": 0,
 "vin": [
 {
 "txid":
"7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",
 "vout": 0,
 "scriptSig" :
"3045022100884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb02204
b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813[ALL]
0484ecc0d46f1918b30928fa0e4ed99f16a0fb4fde0735e7ade8416ab9fe423cc5412336376789d1
72787ec3457eee41c04f4938de5cc17b4a10fa336a8d752adf",
 "sequence": 4294967295
 }
],
 "vout": [

118 | Chapter 6: Transactions

 {
 "value": 0.01500000,
 "scriptPubKey": "OP_DUP OP_HASH160
ab68025513c3dbd2f7b92a94e0581f5d50f654e7 OP_EQUALVERIFY OP_CHECKSIG"
 },
 {
 "value": 0.08450000,
 "scriptPubKey": "OP_DUP OP_HASH160
7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8 OP_EQUALVERIFY OP_CHECKSIG",
 }
]
}

You may notice a few things about this transaction, mostly the things that are miss‐
ing! Where is Alice’s address? Where is Bob’s address? Where is the 0.1 input “sent”
by Alice? In bitcoin, there are no coins, no senders, no recipients, no balances, no
accounts, and no addresses. All those things are constructed at a higher level for the
benefit of the user, to make things easier to understand.

You may also notice a lot of strange and indecipherable fields and hexadecimal
strings. Don’t worry, we will explain each field shown here in detail in this chapter.

Transaction Outputs and Inputs
The fundamental building block of a bitcoin transaction is a transaction output.
Transaction outputs are indivisible chunks of bitcoin currency, recorded on the
blockchain, and recognized as valid by the entire network. Bitcoin full nodes track all
available and spendable outputs, known as unspent transaction outputs, or UTXO.
The collection of all UTXO is known as the UTXO set and currently numbers in the
millions of UTXO. The UTXO set grows as new UTXO is created and shrinks when
UTXO is consumed. Every transaction represents a change (state transition) in the
UTXO set.

When we say that a user’s wallet has “received” bitcoin, what we mean is that the wal‐
let has detected a UTXO that can be spent with one of the keys controlled by that
wallet. Thus, a user’s bitcoin “balance” is the sum of all UTXO that user’s wallet can
spend and which may be scattered among hundreds of transactions and hundreds of
blocks. The concept of a balance is created by the wallet application. The wallet calcu‐
lates the user’s balance by scanning the blockchain and aggregating the value of any
UTXO the wallet can spend with the keys it controls. Most wallets maintain a data‐
base or use a database service to store a quick reference set of all the UTXO they can
spend with the keys they control.

A transaction output can have an arbitrary (integer) value denominated as a multiple
of satoshis. Just like dollars can be divided down to two decimal places as cents, bit‐
coin can be divided down to eight decimal places as satoshis. Although an output can
have any arbitrary value, once created it is indivisible. This is an important character‐

Transaction Outputs and Inputs | 119

istic of outputs that needs to be emphasized: outputs are discrete and indivisible units
of value, denominated in integer satoshis. An unspent output can only be consumed
in its entirety by a transaction.

If an UTXO is larger than the desired value of a transaction, it must still be consumed
in its entirety and change must be generated in the transaction. In other words, if you
have a UTXO worth 20 bitcoin and want to pay only 1 bitcoin, your transaction must
consume the entire 20-bitcoin UTXO and produce two outputs: one paying 1 bitcoin
to your desired recipient and another paying 19 bitcoin in change back to your wallet.
As a result of the indivisible nature of transaction outputs, most bitcoin transactions
will have to generate change.

Imagine a shopper buying a $1.50 beverage, reaching into her wallet and trying to
find a combination of coins and bank notes to cover the $1.50 cost. The shopper will
choose exact change if available e.g. a dollar bill and two quarters (a quarter is $0.25),
or a combination of smaller denominations (six quarters), or if necessary, a larger
unit such as a $5 note. If she hands too much money, say $5, to the shop owner, she
will expect $3.50 change, which she will return to her wallet and have available for
future transactions.

Similarly, a bitcoin transaction must be created from a user’s UTXO in whatever
denominations that user has available. Users cannot cut an UTXO in half any more
than they can cut a dollar bill in half and use it as currency. The user’s wallet applica‐
tion will typically select from the user’s available UTXO to compose an amount
greater than or equal to the desired transaction amount.

As with real life, the bitcoin application can use several strategies to satisfy the pur‐
chase amount: combining several smaller units, finding exact change, or using a sin‐
gle unit larger than the transaction value and making change. All of this complex
assembly of spendable UTXO is done by the user’s wallet automatically and is invisi‐
ble to users. It is only relevant if you are programmatically constructing raw transac‐
tions from UTXO.

A transaction consumes previously recorded unspent transaction outputs and creates
new transaction outputs that can be consumed by a future transaction. This way,
chunks of bitcoin value move forward from owner to owner in a chain of transac‐
tions consuming and creating UTXO.

The exception to the output and input chain is a special type of transaction called the
coinbase transaction, which is the first transaction in each block. This transaction is
placed there by the “winning” miner and creates brand-new bitcoin payable to that
miner as a reward for mining. This special coinbase transaction does not consume
UTXO; instead, it has a special type of input called the “coinbase.” This is how bit‐
coin’s money supply is created during the mining process, as we will see in Chap‐
ter 10.

120 | Chapter 6: Transactions

What comes first? Inputs or outputs, the chicken or the egg?
Strictly speaking, outputs come first because coinbase transactions,
which generate new bitcoin, have no inputs and create outputs
from nothing.

Transaction Outputs
Every bitcoin transaction creates outputs, which are recorded on the bitcoin ledger.
Almost all of these outputs, with one exception (see “Data Recording Output
(RETURN)” on page 155) create spendable chunks of bitcoin called UTXO, which are
then recognized by the whole network and available for the owner to spend in a
future transaction.

UTXO are tracked by every full-node bitcoin client in the UTXO set. New transac‐
tions consume (spend) one or more of these outputs from the UTXO set.

Transaction outputs consist of two parts:

• An amount of bitcoin, denominated in satoshis, the smallest bitcoin unit
• A cryptographic puzzle that determines the conditions required to spend the

output

The cryptographic puzzle is also known as a locking script, a witness script, or a
scriptPubKey.

The transaction scripting language, used in the locking script mentioned previously,
is discussed in detail in “Transaction Scripts and Script Language” on page 131.

Now, let’s look at Alice’s transaction (shown previously in “Transactions—Behind the
Scenes” on page 118) and see if we can identify the outputs. In the JSON encoding,
the outputs are in an array (list) named vout:

"vout": [
 {
 "value": 0.01500000,
 "scriptPubKey": "OP_DUP OP_HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7
OP_EQUALVERIFY
 OP_CHECKSIG"
 },
 {
 "value": 0.08450000,
 "scriptPubKey": "OP_DUP OP_HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8
OP_EQUALVERIFY OP_CHECKSIG",
 }
]

As you can see, the transaction contains two outputs. Each output is defined by a
value and a cryptographic puzzle. In the encoding shown by Bitcoin Core, the value is

Transaction Outputs and Inputs | 121

shown in bitcoin, but in the transaction itself it is recorded as an integer denominated
in satoshis. The second part of each output is the cryptographic puzzle that sets the
conditions for spending. Bitcoin Core shows this as scriptPubKey and shows us a
human-readable representation of the script.

The topic of locking and unlocking UTXO will be discussed later, in “Script Con‐
struction (Lock + Unlock)” on page 132. The scripting language that is used for the
script in scriptPubKey is discussed in “Transaction Scripts and Script Language” on
page 131. But before we delve into those topics, we need to understand the overall
structure of transaction inputs and outputs.

Transaction serialization—outputs
When transactions are transmitted over the network or exchanged between applica‐
tions, they are serialized. Serialization is the process of converting the internal repre‐
sentation of a data structure into a format that can be transmitted one byte at a time,
also known as a byte stream. Serialization is most commonly used for encoding data
structures for transmission over a network or for storage in a file. The serialization
format of a transaction output is shown in Table 6-1.

Table 6-1. Transaction output serialization

Size Field Description
8 bytes (little-endian) Amount Bitcoin value in satoshis (10-8 bitcoin)

1–9 bytes (VarInt) Locking-Script Size Locking-Script length in bytes, to follow

Variable Locking-Script A script defining the conditions needed to spend the output

Most bitcoin libraries and frameworks do not store transactions internally as byte-
streams, as that would require complex parsing every time you needed to access a sin‐
gle field. For convenience and readability, bitcoin libraries store transactions
internally in data structures (usually object-oriented structures).

The process of converting from the byte-stream representation of a transaction to a
library’s internal representation data structure is called deserialization or transaction
parsing. The process of converting back to a byte-stream for transmission over the
network, for hashing, or for storage on disk is called serialization. Most bitcoin libra‐
ries have built-in functions for transaction serialization and deserialization.

See if you can manually decode Alice’s transaction from the serialized hexadecimal
form, finding some of the elements we saw previously. The section containing the two
outputs is highlighted in Example 6-1 to help you:

122 | Chapter 6: Transactions

Example 6-1. Alice’s transaction, serialized and presented in hexadecimal notation

0100000001186f9f998a5aa6f048e51dd8419a14d8a0f1a8a2836dd73

4d2804fe65fa35779000000008b483045022100884d142d86652a3f47

ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb02204b9f039

ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813

01410484ecc0d46f1918b30928fa0e4ed99f16a0fb4fde0735e7ade84

16ab9fe423cc5412336376789d172787ec3457eee41c04f4938de5cc1

7b4a10fa336a8d752adfffffffff0260e31600000000001976a914ab6

8025513c3dbd2f7b92a94e0581f5d50f654e788acd0ef800000000000

1976a9147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac 00000000

Here are some hints:

• There are two outputs in the highlighted section, each serialized as shown in
Table 6-1.

• The value of 0.015 bitcoin is 1,500,000 satoshis. That’s 16 e3 60 in hexadecimal.
• In the serialized transaction, the value 16 e3 60 is encoded in little-endian

(least-significant-byte-first) byte order, so it looks like 60 e3 16.
• The scriptPubKey length is 25 bytes, which is 19 in hexadecimal.

Transaction Inputs
Transaction inputs identify (by reference) which UTXO will be consumed and pro‐
vide proof of ownership through an unlocking script.

To build a transaction, a wallet selects from the UTXO it controls, UTXO with
enough value to make the requested payment. Sometimes one UTXO is enough,
other times more than one is needed. For each UTXO that will be consumed to make
this payment, the wallet creates one input pointing to the UTXO and unlocks it with
an unlocking script.

Let’s look at the components of an input in greater detail. The first part of an input is
a pointer to an UTXO by reference to the transaction hash and sequence number
where the UTXO is recorded in the blockchain. The second part is an unlocking
script, which the wallet constructs in order to satisfy the spending conditions set in
the UTXO. Most often, the unlocking script is a digital signature and public key prov‐
ing ownership of the bitcoin. However, not all unlocking scripts contain signatures.
The third part is a sequence number, which will be discussed later.

Consider our example in “Transactions—Behind the Scenes” on page 118. The trans‐
action inputs are an array (list) called vin:

Transaction Outputs and Inputs | 123

"vin": [
 {
 "txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",
 "vout": 0,
 "scriptSig" :
"3045022100884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb02204
b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813[ALL]
0484ecc0d46f1918b30928fa0e4ed99f16a0fb4fde0735e7ade8416ab9fe423cc5412336376789d1
72787ec3457eee41c04f4938de5cc17b4a10fa336a8d752adf",
 "sequence": 4294967295
 }
]

As you can see, there is only one input in the list (because one UTXO contained suffi‐
cient value to make this payment). The input contains four elements:

• A transaction ID, referencing the transaction that contains the UTXO being
spent

• An output index (vout), identifying which UTXO from that transaction is refer‐
enced (first one is zero)

• A scriptSig, which satisfies the conditions placed on the UTXO, unlocking it
for spending

• A sequence number (to be discussed later)

In Alice’s transaction, the input points to the transaction ID:

7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18

and output index 0 (i.e., the first UTXO created by that transaction). The unlocking
script is constructed by Alice’s wallet by first retrieving the referenced UTXO, exam‐
ining its locking script, and then using it to build the necessary unlocking script to
satisfy it.

Looking just at the input you may have noticed that we don’t know anything about
this UTXO, other than a reference to the transaction containing it. We don’t know its
value (amount in satoshi), and we don’t know the locking script that sets the condi‐
tions for spending it. To find this information, we must retrieve the referenced UTXO
by retrieving the underlying transaction. Notice that because the value of the input is
not explicitly stated, we must also use the referenced UTXO in order to calculate the
fees that will be paid in this transaction (see “Transaction Fees” on page 126).

It’s not just Alice’s wallet that needs to retrieve UTXO referenced in the inputs. Once
this transaction is broadcast to the network, every validating node will also need to
retrieve the UTXO referenced in the transaction inputs in order to validate the trans‐
action.

124 | Chapter 6: Transactions

Transactions on their own seem incomplete because they lack context. They reference
UTXO in their inputs but without retrieving that UTXO we cannot know the value of
the inputs or their locking conditions. When writing bitcoin software, anytime you
decode a transaction with the intent of validating it or counting the fees or checking
the unlocking script, your code will first have to retrieve the referenced UTXO from
the blockchain in order to build the context implied but not present in the UTXO
references of the inputs. For example, to calculate the amount paid in fees, you must
know the sum of the values of inputs and outputs. But without retrieving the UTXO
referenced in the inputs, you do not know their value. So a seemingly simple opera‐
tion like counting fees in a single transaction in fact involves multiple steps and data
from multiple transactions.

We can use the same sequence of commands with Bitcoin Core as we used when
retrieving Alice’s transaction (getrawtransaction and decoderawtransaction).
With that we can get the UTXO referenced in the preceding input and take a look:

"vout": [
 {
 "value": 0.10000000,
 "scriptPubKey": "OP_DUP OP_HASH160
7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8 OP_EQUALVERIFY OP_CHECKSIG"
 }
]

We see that this UTXO has a value of 0.1 BTC and that it has a locking script (script
PubKey) that contains “OP_DUP OP_HASH160…”.

To fully understand Alice’s transaction we had to retrieve the previ‐
ous transaction(s) referenced as inputs. A function that retrieves
previous transactions and unspent transaction outputs is very com‐
mon and exists in almost every bitcoin library and API.

Transaction serialization—inputs
When transactions are serialized for transmission on the network, their inputs are
encoded into a byte stream as shown in Table 6-2.

Table 6-2. Transaction input serialization

Size Field Description
32 bytes Transaction Hash Pointer to the transaction containing the UTXO to be spent

4 bytes Output Index The index number of the UTXO to be spent; first one is 0

1–9 bytes (VarInt) Unlocking-Script Size Unlocking-Script length in bytes, to follow

Variable Unlocking-Script A script that fulfills the conditions of the UTXO locking script

4 bytes Sequence Number Used for locktime or disabled (0xFFFFFFFF)

Transaction Outputs and Inputs | 125

As with the outputs, let’s see if we can find the inputs from Alice’s transaction in the
serialized format. First, the inputs decoded:

"vin": [
 {
 "txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",
 "vout": 0,
 "scriptSig" :
"3045022100884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb02204
b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813[ALL]
0484ecc0d46f1918b30928fa0e4ed99f16a0fb4fde0735e7ade8416ab9fe423cc5412336376789d1
72787ec3457eee41c04f4938de5cc17b4a10fa336a8d752adf",
 "sequence": 4294967295
 }
],

Now, let’s see if we can identify these fields in the serialized hex encoding in
Example 6-2:

Example 6-2. Alice’s transaction, serialized and presented in hexadecimal notation

0100000001186f9f998a5aa6f048e51dd8419a14d8a0f1a8a2836dd73

4d2804fe65fa35779000000008b483045022100884d142d86652a3f47

ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb02204b9f039

ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813

01410484ecc0d46f1918b30928fa0e4ed99f16a0fb4fde0735e7ade84

16ab9fe423cc5412336376789d172787ec3457eee41c04f4938de5cc1

7b4a10fa336a8d752adfffffffff0260e31600000000001976a914ab6

8025513c3dbd2f7b92a94e0581f5d50f654e788acd0ef800000000000

1976a9147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac00000 000

Hints:

• The transaction ID is serialized in reversed byte order, so it starts with (hex) 18
and ends with 79

• The output index is a 4-byte group of zeros, easy to identify
• The length of the scriptSig is 139 bytes, or 8b in hex
• The sequence number is set to FFFFFFFF, again easy to identify

Transaction Fees
Most transactions include transaction fees, which compensate the bitcoin miners for
securing the network. Fees also serve as a security mechanism themselves, by making
it economically infeasible for attackers to flood the network with transactions. Min‐

126 | Chapter 6: Transactions

ing and the fees and rewards collected by miners are discussed in more detail in
Chapter 10.

This section examines how transaction fees are included in a typical transaction.
Most wallets calculate and include transaction fees automatically. However, if you are
constructing transactions programmatically, or using a command-line interface, you
must manually account for and include these fees.

Transaction fees serve as an incentive to include (mine) a transaction into the next
block and also as a disincentive against abuse of the system by imposing a small cost
on every transaction. Transaction fees are collected by the miner who mines the block
that records the transaction on the blockchain.

Transaction fees are calculated based on the size of the transaction in kilobytes, not
the value of the transaction in bitcoin. Overall, transaction fees are set based on mar‐
ket forces within the bitcoin network. Miners prioritize transactions based on many
different criteria, including fees, and might even process transactions for free under
certain circumstances. Transaction fees affect the processing priority, meaning that a
transaction with sufficient fees is likely to be included in the next block mined,
whereas a transaction with insufficient or no fees might be delayed, processed on a
best-effort basis after a few blocks, or not processed at all. Transaction fees are not
mandatory, and transactions without fees might be processed eventually; however,
including transaction fees encourages priority processing.

Over time, the way transaction fees are calculated and the effect they have on transac‐
tion prioritization has evolved. At first, transaction fees were fixed and constant
across the network. Gradually, the fee structure relaxed and may be influenced by
market forces, based on network capacity and transaction volume. Since at least the
beginning of 2016, capacity limits in bitcoin have created competition between trans‐
actions, resulting in higher fees and effectively making free transactions a thing of the
past. Zero fee or very low fee transactions rarely get mined and sometimes will not
even be propagated across the network.

In Bitcoin Core, fee relay policies are set by the minrelaytxfee option. The current
default minrelaytxfee is 0.00001 bitcoin or a hundredth of a millibitcoin per kilo‐
byte. Therefore, by default, transactions with a fee less than 0.0001 bitcoin are treated
as free and are only relayed if there is space in the mempool; otherwise, they are
dropped. Bitcoin nodes can override the default fee relay policy by adjusting the value
of minrelaytxfee.

Any bitcoin service that creates transactions, including wallets, exchanges, retail
applications, etc., must implement dynamic fees. Dynamic fees can be implemented
through a third-party fee estimation service or with a built-in fee estimation algo‐
rithm. If you’re unsure, begin with a third-party service and as you gain experience

Transaction Outputs and Inputs | 127

design and implement your own algorithm if you wish to remove the third-party
dependency.

Fee estimation algorithms calculate the appropriate fee, based on capacity and the
fees offered by “competing” transactions. These algorithms range from simplistic
(average or median fee in the last block) to sophisticated (statistical analysis). They
estimate the necessary fee (in satoshis per byte) that will give a transaction a high
probability of being selected and included within a certain number of blocks. Most
services offer users the option of choosing high, medium, or low priority fees. High
priority means users pay higher fees but the transaction is likely to be included in the
next block. Medium and low priority means users pay lower transaction fees but the
transactions may take much longer to confirm.

Many wallet applications use third-party services for fee calculations. One popular
service is http://bitcoinfees.21.co, which provides an API and a visual chart showing
the fee in satoshi/byte for different priorities.

Static fees are no longer viable on the bitcoin network. Wallets that
set static fees will produce a poor user experience as transactions
will often get “stuck” and remain unconfirmed. Users who don’t
understand bitcoin transactions and fees are dismayed by “stuck”
transactions because they think they’ve lost their money.

The chart in Figure 6-2 shows the real-time estimate of fees in 10 satoshi/byte incre‐
ments and the expected confirmation time (in minutes and number of blocks) for
transactions with fees in each range. For each fee range (e.g., 61–70 satoshi/byte), two
horizontal bars show the number of unconfirmed transactions (1405) and total num‐
ber of transactions in the past 24 hours (102,975), with fees in that range. Based on
the graph, the recommended high-priority fee at this time was 80 satoshi/byte, a fee
likely to result in the transaction being mined in the very next block (zero block
delay). For perspective, the median transaction size is 226 bytes, so the recommended
fee for a transaction size would be 18,080 satoshis (0.00018080 BTC).

The fee estimation data can be retrieved via a simple HTTP REST API, at https://
bitcoinfees.21.co/api/v1/fees/recommended. For example, on the command line using
the curl command:

$ curl https://bitcoinfees.21.co/api/v1/fees/recommended

{"fastestFee":80,"halfHourFee":80,"hourFee":60}

The API returns a JSON object with the current fee estimate for fastest confirmation
(fastestFee), confirmation within three blocks (halfHourFee) and six blocks (hour
Fee), in satoshi per byte.

128 | Chapter 6: Transactions

http://bitcoinfees.21.co/
https://bitcoinfees.21.co/api/v1/fees/recommended
https://bitcoinfees.21.co/api/v1/fees/recommended

Figure 6-2. Fee estimation service bitcoinfees.21.co

Adding Fees to Transactions
The data structure of transactions does not have a field for fees. Instead, fees are
implied as the difference between the sum of inputs and the sum of outputs. Any
excess amount that remains after all outputs have been deducted from all inputs is the
fee that is collected by the miners:

Fees = Sum(Inputs) – Sum(Outputs)

This is a somewhat confusing element of transactions and an important point to
understand, because if you are constructing your own transactions you must ensure
you do not inadvertently include a very large fee by underspending the inputs. That
means that you must account for all inputs, if necessary by creating change, or you
will end up giving the miners a very big tip!

For example, if you consume a 20-bitcoin UTXO to make a 1-bitcoin payment, you
must include a 19-bitcoin change output back to your wallet. Otherwise, the 19-
bitcoin “leftover” will be counted as a transaction fee and will be collected by the

Transaction Outputs and Inputs | 129

miner who mines your transaction in a block. Although you will receive priority pro‐
cessing and make a miner very happy, this is probably not what you intended.

If you forget to add a change output in a manually constructed
transaction, you will be paying the change as a transaction fee.
“Keep the change!” might not be what you intended.

Let’s see how this works in practice, by looking at Alice’s coffee purchase again. Alice
wants to spend 0.015 bitcoin to pay for coffee. To ensure this transaction is processed
promptly, she will want to include a transaction fee, say 0.001. That will mean that the
total cost of the transaction will be 0.016. Her wallet must therefore source a set of
UTXO that adds up to 0.016 bitcoin or more and, if necessary, create change. Let’s say
her wallet has a 0.2-bitcoin UTXO available. It will therefore need to consume this
UTXO, create one output to Bob’s Cafe for 0.015, and a second output with 0.184 bit‐
coin in change back to her own wallet, leaving 0.001 bitcoin unallocated, as an
implicit fee for the transaction.

Now let’s look at a different scenario. Eugenia, our children’s charity director in the
Philippines, has completed a fundraiser to purchase schoolbooks for the children. She
received several thousand small donations from people all around the world, totaling
50 bitcoin, so her wallet is full of very small payments (UTXO). Now she wants to
purchase hundreds of schoolbooks from a local publisher, paying in bitcoin.

As Eugenia’s wallet application tries to construct a single larger payment transaction,
it must source from the available UTXO set, which is composed of many smaller
amounts. That means that the resulting transaction will source from more than a
hundred small-value UTXO as inputs and only one output, paying the book pub‐
lisher. A transaction with that many inputs will be larger than one kilobyte, perhaps a
kilobyte or several kilobytes in size. As a result, it will require a much higher fee than
the median-sized transaction.

Eugenia’s wallet application will calculate the appropriate fee by measuring the size of
the transaction and multiplying that by the per-kilobyte fee. Many wallets will over‐
pay fees for larger transactions to ensure the transaction is processed promptly. The
higher fee is not because Eugenia is spending more money, but because her transac‐
tion is more complex and larger in size—the fee is independent of the transaction’s
bitcoin value.

130 | Chapter 6: Transactions

Transaction Scripts and Script Language
The bitcoin transaction script language, called Script, is a Forth-like reverse-polish
notation stack-based execution language. If that sounds like gibberish, you probably
haven’t studied 1960s programming languages, but that’s ok—we will explain it all in
this chapter. Both the locking script placed on a UTXO and the unlocking script are
written in this scripting language. When a transaction is validated, the unlocking
script in each input is executed alongside the corresponding locking script to see if it
satisfies the spending condition.

Script is a very simple language that was designed to be limited in scope and exe‐
cutable on a range of hardware, perhaps as simple as an embedded device. It requires
minimal processing and cannot do many of the fancy things modern programming
languages can do. For its use in validating programmable money, this is a deliberate
security feature.

Today, most transactions processed through the bitcoin network have the form “Pay‐
ment to Bob’s bitcoin address” and are based on a script called a Pay-to-Public-Key-
Hash script. However, bitcoin transactions are not limited to the “Payment to Bob’s
bitcoin address” script. In fact, locking scripts can be written to express a vast variety
of complex conditions. In order to understand these more complex scripts, we must
first understand the basics of transaction scripts and script language.

In this section, we will demonstrate the basic components of the bitcoin transaction
scripting language and show how it can be used to express simple conditions for
spending and how those conditions can be satisfied by unlocking scripts.

Bitcoin transaction validation is not based on a static pattern, but
instead is achieved through the execution of a scripting language.
This language allows for a nearly infinite variety of conditions to be
expressed. This is how bitcoin gets the power of “programmable
money.”

Turing Incompleteness
The bitcoin transaction script language contains many operators, but is deliberately
limited in one important way—there are no loops or complex flow control capabili‐
ties other than conditional flow control. This ensures that the language is not Turing
Complete, meaning that scripts have limited complexity and predictable execution
times. Script is not a general-purpose language. These limitations ensure that the lan‐
guage cannot be used to create an infinite loop or other form of “logic bomb” that
could be embedded in a transaction in a way that causes a denial-of-service attack
against the bitcoin network. Remember, every transaction is validated by every full

Transaction Scripts and Script Language | 131

node on the bitcoin network. A limited language prevents the transaction validation
mechanism from being used as a vulnerability.

Stateless Verification
The bitcoin transaction script language is stateless, in that there is no state prior to
execution of the script, or state saved after execution of the script. Therefore, all the
information needed to execute a script is contained within the script. A script will
predictably execute the same way on any system. If your system verifies a script, you
can be sure that every other system in the bitcoin network will also verify the script,
meaning that a valid transaction is valid for everyone and everyone knows this. This
predictability of outcomes is an essential benefit of the bitcoin system.

Script Construction (Lock + Unlock)
Bitcoin’s transaction validation engine relies on two types of scripts to validate trans‐
actions: a locking script and an unlocking script.

A locking script is a spending condition placed on an output: it specifies the condi‐
tions that must be met to spend the output in the future. Historically, the locking
script was called a scriptPubKey, because it usually contained a public key or bitcoin
address (public key hash). In this book we refer to it as a “locking script” to acknowl‐
edge the much broader range of possibilities of this scripting technology. In most bit‐
coin applications, what we refer to as a locking script will appear in the source code as
scriptPubKey. You will also see the locking script referred to as a witness script (see
Appendix D) or more generally as a cryptographic puzzle. These terms all mean the
same thing, at different levels of abstraction.

An unlocking script is a script that “solves,” or satisfies, the conditions placed on an
output by a locking script and allows the output to be spent. Unlocking scripts are
part of every transaction input. Most of the time they contain a digital signature pro‐
duced by the user’s wallet from his or her private key. Historically, the unlocking
script was called scriptSig, because it usually contained a digital signature. In most bit‐
coin applications, the source code refers to the unlocking script as scriptSig. You
will also see the unlocking script referred to as a witness (see Appendix D). In this
book, we refer to it as an “unlocking script” to acknowledge the much broader range
of locking script requirements, because not all unlocking scripts must contain signa‐
tures.

Every bitcoin validating node will validate transactions by executing the locking and
unlocking scripts together. Each input contains an unlocking script and refers to a
previously existing UTXO. The validation software will copy the unlocking script,
retrieve the UTXO referenced by the input, and copy the locking script from that
UTXO. The unlocking and locking script are then executed in sequence. The input is
valid if the unlocking script satisfies the locking script conditions (see “Separate exe‐

132 | Chapter 6: Transactions

cution of unlocking and locking scripts” on page 136). All the inputs are validated
independently, as part of the overall validation of the transaction.

Note that the UTXO is permanently recorded in the blockchain, and therefore is
invariable and is unaffected by failed attempts to spend it by reference in a new trans‐
action. Only a valid transaction that correctly satisfies the conditions of the output
results in the output being considered as “spent” and removed from the set of
unspent transaction outputs (UTXO set).

Figure 6-3 is an example of the unlocking and locking scripts for the most common
type of bitcoin transaction (a payment to a public key hash), showing the combined
script resulting from the concatenation of the unlocking and locking scripts prior to
script validation.

Figure 6-3. Combining scriptSig and scriptPubKey to evaluate a transaction script

The script execution stack
Bitcoin’s scripting language is called a stack-based language because it uses a data
structure called a stack. A stack is a very simple data structure that can be visualized
as a stack of cards. A stack allows two operations: push and pop. Push adds an item
on top of the stack. Pop removes the top item from the stack. Operations on a stack
can only act on the topmost item on the stack. A stack data structure is also called a
Last-In-First-Out, or “LIFO” queue.

The scripting language executes the script by processing each item from left to right.
Numbers (data constants) are pushed onto the stack. Operators push or pop one or
more parameters from the stack, act on them, and might push a result onto the stack.
For example, OP_ADD will pop two items from the stack, add them, and push the
resulting sum onto the stack.

Conditional operators evaluate a condition, producing a boolean result of TRUE or
FALSE. For example, OP_EQUAL pops two items from the stack and pushes TRUE
(TRUE is represented by the number 1) if they are equal or FALSE (represented by
zero) if they are not equal. Bitcoin transaction scripts usually contain a conditional
operator, so that they can produce the TRUE result that signifies a valid transaction.

Transaction Scripts and Script Language | 133

A simple script
Now let’s apply what we’ve learned about scripts and stacks to some simple examples.

In Figure 6-4, the script 2 3 OP_ADD 5 OP_EQUAL demonstrates the arithmetic addi‐
tion operator OP_ADD, adding two numbers and putting the result on the stack, fol‐
lowed by the conditional operator OP_EQUAL, which checks that the resulting sum is
equal to 5. For brevity, the OP_ prefix is omitted in the step-by-step example. For
more details on the available script operators and functions, see Appendix B.

Although most locking scripts refer to a public key hash (essentially, a bitcoin
address), thereby requiring proof of ownership to spend the funds, the script does not
have to be that complex. Any combination of locking and unlocking scripts that
results in a TRUE value is valid. The simple arithmetic we used as an example of the
scripting language is also a valid locking script that can be used to lock a transaction
output.

Use part of the arithmetic example script as the locking script:

3 OP_ADD 5 OP_EQUAL

which can be satisfied by a transaction containing an input with the unlocking script:

2

The validation software combines the locking and unlocking scripts and the resulting
script is:

2 3 OP_ADD 5 OP_EQUAL

As we saw in the step-by-step example in Figure 6-4, when this script is executed, the
result is OP_TRUE, making the transaction valid. Not only is this a valid transaction
output locking script, but the resulting UTXO could be spent by anyone with the
arithmetic skills to know that the number 2 satisfies the script.

Transactions are valid if the top result on the stack is TRUE (noted
as {0x01}), any other nonzero value, or if the stack is empty after
script execution. Transactions are invalid if the top value on the
stack is FALSE (a zero-length empty value, noted as {}) or if script
execution is halted explicitly by an operator, such as OP_VERIFY,
OP_RETURN, or a conditional terminator such as OP_ENDIF. See
Appendix B for details.

134 | Chapter 6: Transactions

Figure 6-4. Bitcoin’s script validation doing simple math

Transaction Scripts and Script Language | 135

The following is a slightly more complex script, which calculates 2 + 7 — 3 + 1.
Notice that when the script contains several operators in a row, the stack allows the
results of one operator to be acted upon by the next operator:

2 7 OP_ADD 3 OP_SUB 1 OP_ADD 7 OP_EQUAL

Try validating the preceding script yourself using pencil and paper. When the script
execution ends, you should be left with the value TRUE on the stack.

Separate execution of unlocking and locking scripts
In the original bitcoin client, the unlocking and locking scripts were concatenated
and executed in sequence. For security reasons, this was changed in 2010, because of
a vulnerability that allowed a malformed unlocking script to push data onto the stack
and corrupt the locking script. In the current implementation, the scripts are exe‐
cuted separately with the stack transferred between the two executions, as described
next.

First, the unlocking script is executed, using the stack execution engine. If the
unlocking script is executed without errors (e.g., it has no “dangling” operators left
over), the main stack (not the alternate stack) is copied and the locking script is exe‐
cuted. If the result of executing the locking script with the stack data copied from the
unlocking script is “TRUE,” the unlocking script has succeeded in resolving the con‐
ditions imposed by the locking script and, therefore, the input is a valid authorization
to spend the UTXO. If any result other than “TRUE” remains after execution of the
combined script, the input is invalid because it has failed to satisfy the spending con‐
ditions placed on the UTXO.

Pay-to-Public-Key-Hash (P2PKH)
The vast majority of transactions processed on the bitcoin network spend outputs
locked with a Pay-to-Public-Key-Hash or “P2PKH” script. These outputs contain a
locking script that locks the output to a public key hash, more commonly known as a
bitcoin address. An output locked by a P2PKH script can be unlocked (spent) by pre‐
senting a public key and a digital signature created by the corresponding private key
(see “Digital Signatures (ECDSA)” on page 138).

For example, let’s look at Alice’s payment to Bob’s Cafe again. Alice made a payment
of 0.015 bitcoin to the cafe’s bitcoin address. That transaction output would have a
locking script of the form:

OP_DUP OP_HASH160 <Cafe Public Key Hash> OP_EQUALVERIFY OP_CHECKSIG

The Cafe Public Key Hash is equivalent to the bitcoin address of the cafe, without
the Base58Check encoding. Most applications would show the public key hash in hex‐
adecimal encoding and not the familiar bitcoin address Base58Check format that
begins with a “1.”

136 | Chapter 6: Transactions

The preceding locking script can be satisfied with an unlocking script of the form:

<Cafe Signature> <Cafe Public Key>

The two scripts together would form the following combined validation script:

<Cafe Signature> <Cafe Public Key> OP_DUP OP_HASH160
<Cafe Public Key Hash> OP_EQUALVERIFY OP_CHECKSIG

When executed, this combined script will evaluate to TRUE if, and only if, the
unlocking script matches the conditions set by the locking script. In other words, the
result will be TRUE if the unlocking script has a valid signature from the cafe’s private
key that corresponds to the public key hash set as an encumbrance.

Figures 6-5 and 6-6 show (in two parts) a step-by-step execution of the combined
script, which will prove this is a valid transaction.

Figure 6-5. Evaluating a script for a P2PKH transaction (part 1 of 2)

Transaction Scripts and Script Language | 137

Figure 6-6. Evaluating a script for a P2PKH transaction (part 2 of 2)

Digital Signatures (ECDSA)
So far, we have not delved into any detail about “digital signatures.” In this section we
look at how digital signatures work and how they can present proof of ownership of a
private key without revealing that private key.

The digital signature algorithm used in bitcoin is the Elliptic Curve Digital Signature
Algorithm, or ECDSA. ECDSA is the algorithm used for digital signatures based on
elliptic curve private/public key pairs, as described in “Elliptic Curve Cryptography
Explained” on page 60. ECDSA is used by the script functions OP_CHECKSIG,
OP_CHECKSIGVERIFY, OP_CHECKMULTISIG, and OP_CHECKMULTISIGVERIFY. Any time

138 | Chapter 6: Transactions

you see those in a locking script, the unlocking script must contain an ECDSA signa‐
ture.

A digital signature serves three purposes in bitcoin (see the following sidebar). First,
the signature proves that the owner of the private key, who is by implication the
owner of the funds, has authorized the spending of those funds. Secondly, the proof
of authorization is undeniable (nonrepudiation). Thirdly, the signature proves that
the transaction (or specific parts of the transaction) have not and cannot be modified
by anyone after it has been signed.

Note that each transaction input is signed independently. This is critical, as neither
the signatures nor the inputs have to belong to or be applied by the same “owners.” In
fact, a specific transaction scheme called “CoinJoin” uses this fact to create multi-
party transactions for privacy.

Each transaction input and any signature it may contain is com‐
pletely independent of any other input or signature. Multiple par‐
ties can collaborate to construct transactions and sign only one
input each.

Wikipedia’s Definition of a “Digital Signature”
A digital signature is a mathematical scheme for demonstrating the authenticity of a
digital message or documents. A valid digital signature gives a recipient reason to
believe that the message was created by a known sender (authentication), that the
sender cannot deny having sent the message (nonrepudiation), and that the message
was not altered in transit (integrity).

Source: https://en.wikipedia.org/wiki/Digital_signature

How Digital Signatures Work
A digital signature is a mathematical scheme that consists of two parts. The first part is
an algorithm for creating a signature, using a private key (the signing key), from a
message (the transaction). The second part is an algorithm that allows anyone to ver‐
ify the signature, given also the message and a public key.

Creating a digital signature
In bitcoin’s implementation of the ECDSA algorithm, the “message” being signed is
the transaction, or more accurately a hash of a specific subset of the data in the trans‐
action (see “Signature Hash Types (SIGHASH)” on page 141). The signing key is the
user’s private key. The result is the signature:

Digital Signatures (ECDSA) | 139

https://en.wikipedia.org/wiki/Digital_signature

Sig = Fsig Fhash m , dA

where:

• dA is the signing private key
• m is the transaction (or parts of it)
• Fhash is the hashing function
• Fsig is the signing algorithm
• Sig is the resulting signature

More details on the mathematics of ECDSA can be found in “ECDSA Math” on page
143.

The function Fsig produces a signature Sig that is composed of two values, commonly
referred to as R and S:

Sig = (R, S)

Now that the two values R and S have been calculated, they are serialized into a byte-
stream using an international standard encoding scheme called the Distinguished
Encoding Rules, or DER.

Serialization of signatures (DER)
Let’s look at the transaction Alice created again. In the transaction input there is an
unlocking script that contains the following DER-encoded signature from Alice’s wal‐
let:

3045022100884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb02204b
9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e381301

That signature is a serialized byte-stream of the R and S values produced by Alice’s
wallet to prove she owns the private key authorized to spend that output. The seriali‐
zation format consists of nine elements as follows:

• 0x30—indicating the start of a DER sequence
• 0x45—the length of the sequence (69 bytes)
• 0x02—an integer value follows
• 0x21—the length of the integer (33 bytes)
• R—
00884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb

• 0x02—another integer follows
• 0x20—the length of the integer (32 bytes)

140 | Chapter 6: Transactions

• S—4b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813

• A suffix (0x01) indicating the type of hash used (SIGHASH_ALL)

See if you can decode Alice’s serialized (DER-encoded) signature using this list. The
important numbers are R and S; the rest of the data is part of the DER encoding
scheme.

Verifying the Signature
To verify the signature, one must have the signature (R and S), the serialized transac‐
tion, and the public key (that corresponds to the private key used to create the signa‐
ture). Essentially, verification of a signature means “Only the owner of the private key
that generated this public key could have produced this signature on this transaction.”

The signature verification algorithm takes the message (a hash of the transaction or
parts of it), the signer’s public key and the signature (R and S values), and returns
TRUE if the signature is valid for this message and public key.

Signature Hash Types (SIGHASH)
Digital signatures are applied to messages, which in the case of bitcoin, are the trans‐
actions themselves. The signature implies a commitment by the signer to specific
transaction data. In the simplest form, the signature applies to the entire transaction,
thereby committing all the inputs, outputs, and other transaction fields. However, a
signature can commit to only a subset of the data in a transaction, which is useful for
a number of scenarios as we will see in this section.

Bitcoin signatures have a way of indicating which part of a transaction’s data is
included in the hash signed by the private key using a SIGHASH flag. The SIGHASH flag
is a single byte that is appended to the signature. Every signature has a SIGHASH flag
and the flag can be different from to input to input. A transaction with three signed
inputs may have three signatures with different SIGHASH flags, each signature signing
(committing) different parts of the transaction.

Remember, each input may contain a signature in its unlocking script. As a result, a
transaction that contains several inputs may have signatures with different SIGHASH
flags that commit different parts of the transaction in each of the inputs. Note also
that bitcoin transactions may contain inputs from different “owners,” who may sign
only one input in a partially constructed (and invalid) transaction, collaborating with
others to gather all the necessary signatures to make a valid transaction. Many of the
SIGHASH flag types only make sense if you think of multiple participants collaborating
outside the bitcoin network and updating a partially signed transaction.

Digital Signatures (ECDSA) | 141

There are three SIGHASH flags: ALL, NONE, and SINGLE, as shown in Table 6-3.

Table 6-3. SIGHASH types and their meanings

SIGHASH flag Value Description

ALL 0x01 Signature applies to all inputs and outputs

NONE 0x02 Signature applies to all inputs, none of the outputs

SINGLE 0x03 Signature applies to all inputs but only the one output with the same index number as the signed
input

In addition, there is a modifier flag SIGHASH_ANYONECANPAY, which can be combined
with each of the preceding flags. When ANYONECANPAY is set, only one input is signed,
leaving the rest (and their sequence numbers) open for modification. The ANYONECAN
PAY has the value 0x80 and is applied by bitwise OR, resulting in the combined flags
as shown in Table 6-4.

Table 6-4. SIGHASH types with modifiers and their meanings

SIGHASH flag Value Description
ALL|ANYONECANPAY 0x81 Signature applies to one inputs and all outputs

NONE|ANYONECANPAY 0x82 Signature applies to one inputs, none of the outputs

SINGLE|ANYONECANPAY 0x83 Signature applies to one input and the output with the same index number

The way SIGHASH flags are applied during signing and verification is that a copy of the
transaction is made and certain fields within are truncated (set to zero length and
emptied). The resulting transaction is serialized. The SIGHASH flag is added to the end
of the serialized transaction and the result is hashed. The hash itself is the “message”
that is signed. Depending on which SIGHASH flag is used, different parts of the trans‐
action are truncated. The resulting hash depends on different subsets of the data in
the transaction. By including the SIGHASH as the last step before hashing, the signa‐
ture commits the SIGHASH type as well, so it can’t be changed (e.g., by a miner).

All SIGHASH types sign the transaction nLocktime field (see “Trans‐
action Locktime (nLocktime)” on page 157). In addition, the SIGH
ASH type itself is appended to the transaction before it is signed, so
that it can’t be modified once signed.

In the example of Alice’s transaction (see the list in “Serialization of signatures
(DER)” on page 140), we saw that the last part of the DER-encoded signature was 01,
which is the SIGHASH_ALL flag. This locks the transaction data, so Alice’s signature is
committing the state of all inputs and outputs. This is the most common signature
form.

142 | Chapter 6: Transactions

Let’s look at some of the other SIGHASH types and how they can be used in practice:

ALL|ANYONECANPAY

This construction can be used to make a “crowdfunding”-style transaction.
Someone attempting to raise funds can construct a transaction with a single out‐
put. The single output pays the “goal” amount to the fundraiser. Such a transac‐
tion is obviously not valid, as it has no inputs. However, others can now amend it
by adding an input of their own, as a donation. They sign their own input with
ALL|ANYONECANPAY. Unless enough inputs are gathered to reach the value of the
output, the transaction is invalid. Each donation is a “pledge,” which cannot be
collected by the fundraiser until the entire goal amount is raised.

NONE

This construction can be used to create a “bearer check” or “blank check” of a
specific amount. It commits to the input, but allows the output locking script to
be changed. Anyone can write their own bitcoin address into the output locking
script and redeem the transaction. However, the output value itself is locked by
the signature.

NONE|ANYONECANPAY

This construction can be used to build a “dust collector.” Users who have tiny
UTXO in their wallets can’t spend these without the cost in fees exceeding the
value of the dust. With this type of signature, the dust UTXO can be donated for
anyone to aggregate and spend whenever they want.

There are some proposals to modify or expand the SIGHASH system. One such pro‐
posal is Bitmask Sighash Modes by Blockstream’s Glenn Willen, as part of the Ele‐
ments project. This aims to create a flexible replacement for SIGHASH types that allows
“arbitrary, miner-rewritable bitmasks of inputs and outputs” that can express “more
complex contractual precommitment schemes, such as signed offers with change in a
distributed asset exchange.”

You will not see SIGHASH flags presented as an option in a user’s
wallet application. With few exceptions, wallets construct P2PKH
scripts and sign with SIGHASH_ALL flags. To use a different SIGHASH
flag, you would have to write software to construct and sign trans‐
actions. More importantly, SIGHASH flags can be used by special-
purpose bitcoin applications that enable novel uses.

ECDSA Math
As mentioned previously, signatures are created by a mathematical function Fsig that
produces a signature composed of two values R and S. In this section we look at the
function Fsig in more detail.

Digital Signatures (ECDSA) | 143

The signature algorithm first generates an ephemeral (temporary) private public key
pair. This temporary key pair is used in the calculation of the R and S values, after a
transformation involving the signing private key and the transaction hash.

The temporary key pair is based on a random number k, which is used as the tempo‐
rary private key. From k, we generate the corresponding temporary public key P (cal‐
culated as P = k*G, in the same way bitcoin public keys are derived; see “Public Keys”
on page 60). The R value of the digital signature is then the x coordinate of the
ephemeral public key P.

From there, the algorithm calculates the S value of the signature, such that:

S = k-1 (Hash(m) + dA * R) mod p

where:

• k is the ephemeral private key
• R is the x coordinate of the ephemeral public key
• dA is the signing private key
• m is the transaction data
• p is the prime order of the elliptic curve

Verification is the inverse of the signature generation function, using the R, S values
and the public key to calculate a value P, which is a point on the elliptic curve (the
ephemeral public key used in signature creation):

P = S-1 * Hash(m) * G + S-1 * R * Qa

where:

• R and S are the signature values
• Qa is Alice’s public key
• m is the transaction data that was signed
• G is the elliptic curve generator point

If the x coordinate of the calculated point P is equal to R, then the verifier can con‐
clude that the signature is valid.

Note that in verifying the signature, the private key is neither known nor revealed.

The math of ECDSA is complex and difficult to understand. There
are a number of great guides online that might help. Search for
“ECDSA explained” or try this one: http://bit.ly/2r0HhGB.

144 | Chapter 6: Transactions

http://bit.ly/2r0HhGB

The Importance of Randomness in Signatures
As we saw in “ECDSA Math” on page 143, the signature generation algorithm uses a
random key k, as the basis for an ephemeral private/public key pair. The value of k is
not important, as long as it is random. If the same value k is used to produce two sig‐
natures on different messages (transactions), then the signing private key can be cal‐
culated by anyone. Reuse of the same value for k in a signature algorithm leads to
exposure of the private key!

If the same value k is used in the signing algorithm on two different
transactions, the private key can be calculated and exposed to the
world!

This is not just a theoretical possibility. We have seen this issue lead to exposure of
private keys in a few different implementations of transaction-signing algorithms in
bitcoin. People have had funds stolen because of inadvertent reuse of a k value. The
most common reason for reuse of a k value is an improperly initialized random-
number generator.

To avoid this vulnerability, the industry best practice is to not generate k with a
random-number generator seeded with entropy, but instead to use a deterministic-
random process seeded with the transaction data itself. This ensures that each trans‐
action produces a different k. The industry-standard algorithm for deterministic
initialization of k is defined in RFC 6979, published by the Internet Engineering Task
Force.

If you are implementing an algorithm to sign transactions in bitcoin, you must use
RFC 6979 or a similarly deterministic-random algorithm to ensure you generate a
different k for each transaction.

Bitcoin Addresses, Balances, and Other Abstractions
We began this chapter with the discovery that transactions look very different
“behind the scenes” than how they are presented in wallets, blockchain explorers, and
other user-facing applications. Many of the simplistic and familiar concepts from the
earlier chapters, such as bitcoin addresses and balances, seem to be absent from the
transaction structure. We saw that transactions don’t contain bitcoin addresses, per
se, but instead operate through scripts that lock and unlock discrete values of bitcoin.
Balances are not present anywhere in this system and yet every wallet application
prominently displays the balance of the user’s wallet.

Bitcoin Addresses, Balances, and Other Abstractions | 145

https://tools.ietf.org/html/rfc6979

Now that we have explored what is actually included in a bitcoin transaction, we can
examine how the higher-level abstractions are derived from the seemingly primitive
components of the transaction.

Let’s look again at how Alice’s transaction was presented on a popular block explorer
(Figure 6-7).

Figure 6-7. Alice’s transaction to Bob’s Cafe

On the left side of the transaction, the blockchain explorer shows Alice’s bitcoin
address as the “sender.” In fact, this information is not in the transaction itself. When
the blockchain explorer retrieved the transaction it also retrieved the previous trans‐
action referenced in the input and extracted the first output from that older transac‐
tion. Within that output is a locking script that locks the UTXO to Alice’s public key
hash (a P2PKH script). The blockchain explorer extracted the public key hash and
encoded it using Base58Check encoding to produce and display the bitcoin address
that represents that public key.

Similarly, on the right side, the blockchain explorer shows the two outputs; the first to
Bob’s bitcoin address and the second to Alice’s bitcoin address (as change). Once
again, to create these bitcoin addresses, the blockchain explorer extracted the locking
script from each output, recognized it as a P2PKH script, and extracted the public-
key-hash from within. Finally, the blockchain explorer reencoded that public key
hash with Base58Check to produce and display the bitcoin addresses.

If you were to click on Bob’s bitcoin address, the blockchain explorer would show you
the view in Figure 6-8.

146 | Chapter 6: Transactions

Figure 6-8. The balance of Bob’s bitcoin address

The blockchain explorer displays the balance of Bob’s bitcoin address. But nowhere in
the bitcoin system is there a concept of a “balance.” Rather, the values displayed here
are constructed by the blockchain explorer as follows.

To construct the “Total Received” amount, the blockchain explorer first will decode
the Base58Check encoding of the bitcoin address to retrieve the 160-bit hash of Bob’s
public key that is encoded within the address. Then, the blockchain explorer will
search through the database of transactions, looking for outputs with P2PKH locking
scripts that contain Bob’s public key hash. By summing up the value of all the outputs,
the blockchain explorer can produce the total value received.

Constructing the current balance (displayed as “Final Balance”) requires a bit more
work. The blockchain explorer keeps a separate database of the outputs that are cur‐
rently unspent, the UTXO set. To maintain this database, the blockchain explorer
must monitor the bitcoin network, add newly created UTXO, and remove spent
UTXO, in real time, as they appear in unconfirmed transactions. This is a compli‐
cated process that depends on keeping track of transactions as they propagate, as well
as maintaining consensus with the bitcoin network to ensure that the correct chain is
followed. Sometimes, the blockchain explorer goes out of sync and its perspective of
the UTXO set is incomplete or incorrect.

From the UTXO set, the blockchain explorer sums up the value of all unspent out‐
puts referencing Bob’s public key hash and produces the “Final Balance” number
shown to the user.

In order to produce this one image, with these two “balances,” the blockchain
explorer has to index and search through dozens, hundreds, or even hundreds of
thousands of transactions.

In summary, the information presented to users through wallet applications, block‐
chain explorers, and other bitcoin user interfaces is often composed of higher-level
abstractions that are derived by searching many different transactions, inspecting
their content, and manipulating the data contained within them. By presenting this
simplistic view of bitcoin transactions that resemble bank checks from one sender to
one recipient, these applications have to abstract a lot of underlying detail. They

Bitcoin Addresses, Balances, and Other Abstractions | 147

mostly focus on the common types of transactions: P2PKH with SIGHASH_ALL sig‐
natures on every input. Thus, while bitcoin applications can present more than 80%
of all transactions in an easy-to-read manner, they are sometimes stumped by trans‐
actions that deviate from the norm. Transactions that contain more complex locking
scripts, or different SIGHASH flags, or many inputs and outputs, demonstrate the
simplicity and weakness of these abstractions.

Every day, hundreds of transactions that do not contain P2PKH outputs are con‐
firmed on the blockchain. The blockchain explorers often present these with red
warning messages saying they cannot decode an address. The following link contains
the most recent “strange transactions” that were not fully decoded: https://block
chain.info/strange-transactions.

As we will see in the next chapter, these are not necessarily strange transactions. They
are transactions that contain more complex locking scripts than the common
P2PKH. We will learn how to decode and understand more complex scripts and the
applications they support next.

148 | Chapter 6: Transactions

https://blockchain.info/strange-transactions
https://blockchain.info/strange-transactions

CHAPTER 7

Advanced Transactions and Scripting

Introduction
In the previous chapter, we introduced the basic elements of bitcoin transactions and
looked at the most common type of transaction script, the P2PKH script. In this
chapter we will look at more advanced scripting and how we can use it to build trans‐
actions with complex conditions.

First, we will look at multisignature scripts. Next, we will examine the second most
common transaction script, Pay-to-Script-Hash, which opens up a whole world of
complex scripts. Then, we will examine new script operators that add a time dimen‐
sion to bitcoin, through timelocks.

Multisignature
Multisignature scripts set a condition where N public keys are recorded in the script
and at least M of those must provide signatures to unlock the funds. This is also
known as an M-of-N scheme, where N is the total number of keys and M is the thres‐
hold of signatures required for validation. For example, a 2-of-3 multisignature is one
where three public keys are listed as potential signers and at least two of those must
be used to create signatures for a valid transaction to spend the funds. At this time,
standard multisignature scripts are limited to at most 15 listed public keys, meaning
you can do anything from a 1-of-1 to a 15-of-15 multisignature or any combination
within that range. The limitation to 15 listed keys might be lifted by the time this
book is published, so check the isStandard() function to see what is currently
accepted by the network.

The general form of a locking script setting an M-of-N multisignature condition is:

M <Public Key 1> <Public Key 2> ... <Public Key N> N CHECKMULTISIG

149

where N is the total number of listed public keys and M is the threshold of required
signatures to spend the output.

A locking script setting a 2-of-3 multisignature condition looks like this:

2 <Public Key A> <Public Key B> <Public Key C> 3 CHECKMULTISIG

The preceding locking script can be satisfied with an unlocking script containing
pairs of signatures and public keys:

<Signature B> <Signature C>

or any combination of two signatures from the private keys corresponding to the
three listed public keys.

The two scripts together would form the combined validation script:

<Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3
CHECKMULTISIG

When executed, this combined script will evaluate to TRUE if, and only if, the
unlocking script matches the conditions set by the locking script. In this case, the
condition is whether the unlocking script has a valid signature from the two private
keys that correspond to two of the three public keys set as an encumbrance.

A bug in CHECKMULTISIG execution

There is a bug in CHECKMULTISIG’s execution that requires a slight workaround. When
CHECKMULTISIG executes, it should consume M+N+2 items on the stack as parame‐
ters. However, due to the bug, CHECKMULTISIG will pop an extra value or one value
more than expected.

Let’s look at this in greater detail using the previous validation example:

<Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3
CHECKMULTISIG

First, CHECKMULTISIG pops the top item, which is N (in this example “3”). Then it pops
N items, which are the public keys that can sign. In this example, public keys A, B, and
C. Then, it pops one item, which is M, the quorum (how many signatures are needed).
Here M = 2. At this point, CHECKMULTISIG should pop the final M items, which are the
signatures, and see if they are valid. However, unfortunately, a bug in the implemen‐
tation causes CHECKMULTISIG to pop one more item (M+1 total) than it should. The
extra item is disregarded when checking the signatures so it has no direct effect on
CHECKMULTISIG itself. However, an extra value must be present because if it is not
present, when CHECKMULTISIG attempts to pop on an empty stack, it will cause a stack
error and script failure (marking the transaction as invalid). Because the extra item is
disregarded it can be anything, but customarily 0 is used.

150 | Chapter 7: Advanced Transactions and Scripting

Because this bug became part of the consensus rules, it must now be replicated for‐
ever. Therefore the correct script validation would look like this:

0 <Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3
CHECKMULTISIG

Thus the unlocking script actually used in multisig is not:

<Signature B> <Signature C>

but instead it is:

0 <Signature B> <Signature C>

From now on, if you see a multisig unlocking script, you should expect to see an extra
0 in the beginning, whose only purpose is as a workaround to a bug that accidentally
became a consensus rule.

Pay-to-Script-Hash (P2SH)
Pay-to-Script-Hash (P2SH) was introduced in 2012 as a powerful new type of trans‐
action that greatly simplifies the use of complex transaction scripts. To explain the
need for P2SH, let’s look at a practical example.

In Chapter 1 we introduced Mohammed, an electronics importer based in Dubai.
Mohammed’s company uses bitcoin’s multisignature feature extensively for its corpo‐
rate accounts. Multisignature scripts are one of the most common uses of bitcoin’s
advanced scripting capabilities and are a very powerful feature. Mohammed’s com‐
pany uses a multisignature script for all customer payments, known in accounting
terms as “accounts receivable,” or AR. With the multisignature scheme, any payments
made by customers are locked in such a way that they require at least two signatures
to release, from Mohammed and one of his partners or from his attorney who has a
backup key. A multisignature scheme like that offers corporate governance controls
and protects against theft, embezzlement, or loss.

The resulting script is quite long and looks like this:

2 <Mohammed's Public Key> <Partner1 Public Key> <Partner2 Public Key> <Partner3
Public Key> <Attorney Public Key> 5 CHECKMULTISIG

Although multisignature scripts are a powerful feature, they are cumbersome to use.
Given the preceding script, Mohammed would have to communicate this script to
every customer prior to payment. Each customer would have to use special bitcoin
wallet software with the ability to create custom transaction scripts, and each cus‐
tomer would have to understand how to create a transaction using custom scripts.
Furthermore, the resulting transaction would be about five times larger than a simple
payment transaction, because this script contains very long public keys. The burden
of that extra-large transaction would be borne by the customer in the form of fees.
Finally, a large transaction script like this would be carried in the UTXO set in RAM

Pay-to-Script-Hash (P2SH) | 151

in every full node, until it was spent. All of these issues make using complex locking
scripts difficult in practice.

P2SH was developed to resolve these practical difficulties and to make the use of
complex scripts as easy as a payment to a bitcoin address. With P2SH payments, the
complex locking script is replaced with its digital fingerprint, a cryptographic hash.
When a transaction attempting to spend the UTXO is presented later, it must contain
the script that matches the hash, in addition to the unlocking script. In simple terms,
P2SH means “pay to a script matching this hash, a script that will be presented later
when this output is spent.”

In P2SH transactions, the locking script that is replaced by a hash is referred to as the
redeem script because it is presented to the system at redemption time rather than as a
locking script. Table 7-1 shows the script without P2SH and Table 7-2 shows the same
script encoded with P2SH.

Table 7-1. Complex script without P2SH
Locking Script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5 CHECKMULTISIG

Unlocking Script Sig1 Sig2

Table 7-2. Complex script as P2SH
Redeem Script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5 CHECKMULTISIG

Locking Script HASH160 <20-byte hash of redeem script> EQUAL

Unlocking Script Sig1 Sig2 <redeem script>

As you can see from the tables, with P2SH the complex script that details the condi‐
tions for spending the output (redeem script) is not presented in the locking script.
Instead, only a hash of it is in the locking script and the redeem script itself is presen‐
ted later, as part of the unlocking script when the output is spent. This shifts the bur‐
den in fees and complexity from the sender to the recipient (spender) of the
transaction.

Let’s look at Mohammed’s company, the complex multisignature script, and the
resulting P2SH scripts.

First, the multisignature script that Mohammed’s company uses for all incoming pay‐
ments from customers:

2 <Mohammed's Public Key> <Partner1 Public Key> <Partner2 Public Key> <Partner3
Public Key> <Attorney Public Key> 5 CHECKMULTISIG

If the placeholders are replaced by actual public keys (shown here as 520-bit numbers
starting with 04) you can see that this script becomes very long:

152 | Chapter 7: Advanced Transactions and Scripting

2
04C16B8698A9ABF84250A7C3EA7EEDEF9897D1C8C6ADF47F06CF73370D74DCCA01CDCA79DCC5C395
D7EEC6984D83F1F50C900A24DD47F569FD4193AF5DE762C58704A2192968D8655D6A935BEAF2CA23
E3FB87A3495E7AF308EDF08DAC3C1FCBFC2C75B4B0F4D0B1B70CD2423657738C0C2B1D5CE65C97D7
8D0E34224858008E8B49047E63248B75DB7379BE9CDA8CE5751D16485F431E46117B9D0C1837C9D5
737812F393DA7D4420D7E1A9162F0279CFC10F1E8E8F3020DECDBC3C0DD389D99779650421D65CBD
7149B255382ED7F78E946580657EE6FDA162A187543A9D85BAAA93A4AB3A8F044DADA618D0872274
40645ABE8A35DA8C5B73997AD343BE5C2AFD94A5043752580AFA1ECED3C68D446BCAB69AC0BA7DF5
0D56231BE0AABF1FDEEC78A6A45E394BA29A1EDF518C022DD618DA774D207D137AAB59E0B000EB7E
D238F4D800 5 CHECKMULTISIG

This entire script can instead be represented by a 20-byte cryptographic hash, by first
applying the SHA256 hashing algorithm and then applying the RIPEMD160 algo‐
rithm on the result. The 20-byte hash of the preceding script is:

54c557e07dde5bb6cb791c7a540e0a4796f5e97e

A P2SH transaction locks the output to this hash instead of the longer script, using
the locking script:

HASH160 54c557e07dde5bb6cb791c7a540e0a4796f5e97e EQUAL

which, as you can see, is much shorter. Instead of “pay to this 5-key multisignature
script,” the P2SH equivalent transaction is “pay to a script with this hash.” A customer
making a payment to Mohammed’s company need only include this much shorter
locking script in his payment. When Mohammed and his partners want to spend this
UTXO, they must present the original redeem script (the one whose hash locked the
UTXO) and the signatures necessary to unlock it, like this:

<Sig1> <Sig2> <2 PK1 PK2 PK3 PK4 PK5 5 CHECKMULTISIG>

The two scripts are combined in two stages. First, the redeem script is checked
against the locking script to make sure the hash matches:

<2 PK1 PK2 PK3 PK4 PK5 5 CHECKMULTISIG> HASH160 <redeem scriptHash> EQUAL

If the redeem script hash matches, the unlocking script is executed on its own, to
unlock the redeem script:

<Sig1> <Sig2> 2 PK1 PK2 PK3 PK4 PK5 5 CHECKMULTISIG

Almost all the scripts described in this chapter can only be implemented as P2SH
scripts. They cannot be used directly in the locking script of a UTXO.

P2SH Addresses
Another important part of the P2SH feature is the ability to encode a script hash as an
address, as defined in BIP-13. P2SH addresses are Base58Check encodings of the 20-
byte hash of a script, just like bitcoin addresses are Base58Check encodings of the 20-
byte hash of a public key. P2SH addresses use the version prefix “5,” which results in
Base58Check-encoded addresses that start with a “3.” For example, Mohammed’s

Pay-to-Script-Hash (P2SH) | 153

complex script, hashed and Base58Check-encoded as a P2SH address, becomes
39RF6JqABiHdYHkfChV6USGMe6Nsr66Gzw. Now, Mohammed can give this “address” to
his customers and they can use almost any bitcoin wallet to make a simple payment,
as if it were a bitcoin address. The 3 prefix gives them a hint that this is a special type
of address, one corresponding to a script instead of a public key, but otherwise it
works in exactly the same way as a payment to a bitcoin address.

P2SH addresses hide all of the complexity, so that the person making a payment does
not see the script.

Benefits of P2SH
The P2SH feature offers the following benefits compared to the direct use of complex
scripts in locking outputs:

• Complex scripts are replaced by shorter fingerprints in the transaction output,
making the transaction smaller.

• Scripts can be coded as an address, so the sender and the sender’s wallet don’t
need complex engineering to implement P2SH.

• P2SH shifts the burden of constructing the script to the recipient, not the sender.
• P2SH shifts the burden in data storage for the long script from the output (which

is in the UTXO set) to the input (stored on the blockchain).
• P2SH shifts the burden in data storage for the long script from the present time

(payment) to a future time (when it is spent).
• P2SH shifts the transaction fee cost of a long script from the sender to the recipi‐

ent, who has to include the long redeem script to spend it.

Redeem Script and Validation
Prior to version 0.9.2 of the Bitcoin Core client, Pay-to-Script-Hash was limited to the
standard types of bitcoin transaction scripts, by the isStandard() function. That
means that the redeem script presented in the spending transaction could only be one
of the standard types: P2PK, P2PKH, or multisig nature, excluding RETURN and P2SH
itself.

As of version 0.9.2 of the Bitcoin Core client, P2SH transactions can contain any valid
script, making the P2SH standard much more flexible and allowing for experimenta‐
tion with many novel and complex types of transactions.

Note that you are not able to put a P2SH inside a P2SH redeem script, because the
P2SH specification is not recursive. While it is technically possible to include RETURN
in a redeem script, as nothing in the rules prevents you from doing so, it is of no

154 | Chapter 7: Advanced Transactions and Scripting

practical use because executing RETURN during validation will cause the transaction to
be marked invalid.

Note that because the redeem script is not presented to the network until you attempt
to spend a P2SH output, if you lock an output with the hash of an invalid redeem
script it will be processed regardless. The UTXO will be successfully locked. However,
you will not be able to spend it because the spending transaction, which includes the
redeem script, will not be accepted because it is an invalid script. This creates a risk,
because you can lock bitcoin in a P2SH that cannot be spent later. The network will
accept the P2SH locking script even if it corresponds to an invalid redeem script,
because the script hash gives no indication of the script it represents.

P2SH locking scripts contain the hash of a redeem script, which
gives no clues as to the content of the redeem script itself. The
P2SH transaction will be considered valid and accepted even if the
redeem script is invalid. You might accidentally lock bitcoin in such
a way that it cannot later be spent.

Data Recording Output (RETURN)
Bitcoin’s distributed and timestamped ledger, the blockchain, has potential uses far
beyond payments. Many developers have tried to use the transaction scripting lan‐
guage to take advantage of the security and resilience of the system for applications
such as digital notary services, stock certificates, and smart contracts. Early attempts
to use bitcoin’s script language for these purposes involved creating transaction out‐
puts that recorded data on the blockchain; for example, to record a digital fingerprint
of a file in such a way that anyone could establish proof-of-existence of that file on a
specific date by reference to that transaction.

The use of bitcoin’s blockchain to store data unrelated to bitcoin payments is a con‐
troversial subject. Many developers consider such use abusive and want to discourage
it. Others view it as a demonstration of the powerful capabilities of blockchain tech‐
nology and want to encourage such experimentation. Those who object to the inclu‐
sion of nonpayment data argue that it causes “blockchain bloat,” burdening those
running full bitcoin nodes with carrying the cost of disk storage for data that the
blockchain was not intended to carry. Moreover, such transactions create UTXO that
cannot be spent, using the destination bitcoin address as a freeform 20-byte field.
Because the address is used for data, it doesn’t correspond to a private key and the
resulting UTXO can never be spent; it’s a fake payment. These transactions that can
never be spent are therefore never removed from the UTXO set and cause the size of
the UTXO database to forever increase, or “bloat.”

In version 0.9 of the Bitcoin Core client, a compromise was reached with the intro‐
duction of the RETURN operator. RETURN allows developers to add 80 bytes of nonpay‐

Data Recording Output (RETURN) | 155

ment data to a transaction output. However, unlike the use of “fake” UTXO, the
RETURN operator creates an explicitly provably unspendable output, which does not
need to be stored in the UTXO set. RETURN outputs are recorded on the blockchain,
so they consume disk space and contribute to the increase in the blockchain’s size, but
they are not stored in the UTXO set and therefore do not bloat the UTXO memory
pool and burden full nodes with the cost of more expensive RAM.

RETURN scripts look like this:

RETURN <data>

The data portion is limited to 80 bytes and most often represents a hash, such as the
output from the SHA256 algorithm (32 bytes). Many applications put a prefix in front
of the data to help identify the application. For example, the Proof of Existence digital
notarization service uses the 8-byte prefix DOCPROOF, which is ASCII encoded as 44
4f 43 50 52 4f 4f 46 in hexadecimal.

Keep in mind that there is no “unlocking script” that corresponds to RETURN that
could possibly be used to “spend” a RETURN output. The whole point of RETURN is that
you can’t spend the money locked in that output, and therefore it does not need to be
held in the UTXO set as potentially spendable—RETURN is provably unspendable.
RETURN is usually an output with a zero bitcoin amount, because any bitcoin assigned
to such an output is effectively lost forever. If a RETURN is referenced as an input in a
transaction, the script validation engine will halt the execution of the validation script
and mark the transaction as invalid. The execution of RETURN essentially causes the
script to “RETURN” with a FALSE and halt. Thus, if you accidentally reference a
RETURN output as an input in a transaction, that transaction is invalid.

A standard transaction (one that conforms to the isStandard() checks) can have
only one RETURN output. However, a single RETURN output can be combined in a
transaction with outputs of any other type.

Two new command-line options have been added in Bitcoin Core as of version 0.10.
The option datacarrier controls relay and mining of RETURN transactions, with the
default set to “1” to allow them. The option datacarriersize takes a numeric argu‐
ment specifying the maximum size in bytes of the RETURN script, 83 bytes by default,
which, allows for a maximum of 80 bytes of RETURN data plus one byte of RETURN
opcode and two bytes of PUSHDATA opcode.

RETURN was initially proposed with a limit of 80 bytes, but the limit
was reduced to 40 bytes when the feature was released. In February
2015, in version 0.10 of Bitcoin Core, the limit was raised back to
80 bytes. Nodes may choose not to relay or mine RETURN, or only
relay and mine RETURN containing less than 80 bytes of data.

156 | Chapter 7: Advanced Transactions and Scripting

http://proofofexistence.com

Timelocks
Timelocks are restrictions on transactions or outputs that only allow spending after a
point in time. Bitcoin has had a transaction-level timelock feature from the begin‐
ning. It is implemented by the nLocktime field in a transaction. Two new timelock
features were introduced in late 2015 and mid-2016 that offer UTXO-level timelocks.
These are CHECKLOCKTIMEVERIFY and CHECKSEQUENCEVERIFY.

Timelocks are useful for postdating transactions and locking funds to a date in the
future. More importantly, timelocks extend bitcoin scripting into the dimension of
time, opening the door for complex multistep smart contracts.

Transaction Locktime (nLocktime)
From the beginning, bitcoin has had a transaction-level timelock feature. Transaction
locktime is a transaction-level setting (a field in the transaction data structure) that
defines the earliest time that a transaction is valid and can be relayed on the network
or added to the blockchain. Locktime is also known as nLocktime from the variable
name used in the Bitcoin Core codebase. It is set to zero in most transactions to indi‐
cate immediate propagation and execution. If nLocktime is nonzero and below 500
million, it is interpreted as a block height, meaning the transaction is not valid and is
not relayed or included in the blockchain prior to the specified block height. If it is
above 500 million, it is interpreted as a Unix Epoch timestamp (seconds since
Jan-1-1970) and the transaction is not valid prior to the specified time. Transactions
with nLocktime specifying a future block or time must be held by the originating sys‐
tem and transmitted to the bitcoin network only after they become valid. If a transac‐
tion is transmitted to the network before the specified nLocktime, the transaction will
be rejected by the first node as invalid and will not be relayed to other nodes. The use
of nLocktime is equivalent to postdating a paper check.

Transaction locktime limitations

nLocktime has the limitation that while it makes it possible to spend some outputs in
the future, it does not make it impossible to spend them until that time. Let’s explain
that with the following example.

Alice signs a transaction spending one of her outputs to Bob’s address, and sets the
transaction nLocktime to 3 months in the future. Alice sends that transaction to Bob
to hold. With this transaction Alice and Bob know that:

• Bob cannot transmit the transaction to redeem the funds until 3 months have
elapsed.

• Bob may transmit the transaction after 3 months.

Timelocks | 157

However:

• Alice can create another transaction, double-spending the same inputs without a
locktime. Thus, Alice can spend the same UTXO before the 3 months have
elapsed.

• Bob has no guarantee that Alice won’t do that.

It is important to understand the limitations of transaction nLocktime. The only
guarantee is that Bob will not be able to redeem it before 3 months have elapsed.
There is no guarantee that Bob will get the funds. To achieve such a guarantee, the
timelock restriction must be placed on the UTXO itself and be part of the locking
script, rather than on the transaction. This is achieved by the next form of timelock,
called Check Lock Time Verify.

Check Lock Time Verify (CLTV)
In December 2015, a new form of timelock was introduced to bitcoin as a soft fork
upgrade. Based on a specifications in BIP-65, a new script operator called CHECK‐
LOCKTIMEVERIFY (CLTV) was added to the scripting language. CLTV is a per-
output timelock, rather than a per-transaction timelock as is the case with nLocktime.
This allows for much greater flexibility in the way timelocks are applied.

In simple terms, by adding the CLTV opcode in the redeem script of an output it
restricts the output, so that it can only be spent after the specified time has elapsed.

While nLocktime is a transaction-level timelock, CLTV is an output-
based timelock.

CLTV doesn’t replace nLocktime, but rather restricts specific UTXO such that they can
only be spent in a future transaction with nLocktime set to a greater or equal value.

The CLTV opcode takes one parameter as input, expressed as a number in the same
format as nLocktime (either a block height or Unix epoch time). As indicated by the
VERIFY suffix, CLTV is the type of opcode that halts execution of the script if the out‐
come is FALSE. If it results in TRUE, execution continues.

In order to lock an output with CLTV, you insert it into the redeem script of the out‐
put in the transaction that creates the output. For example, if Alice is paying Bob’s
address, the output would normally contain a P2PKH script like this:

DUP HASH160 <Bob's Public Key Hash> EQUALVERIFY CHECKSIG

158 | Chapter 7: Advanced Transactions and Scripting

To lock it to a time, say 3 months from now, the transaction would be a P2SH trans‐
action with a redeem script like this:

<now + 3 months> CHECKLOCKTIMEVERIFY DROP DUP HASH160 <Bob's Public Key Hash>
EQUALVERIFY CHECKSIG

where <now + 3 months> is a block height or time value estimated 3 months from the
time the transaction is mined: current block height + 12,960 (blocks) or current Unix
epoch time + 7,760,000 (seconds). For now, don’t worry about the DROP opcode that
follows CHECKLOCKTIMEVERIFY; it will be explained shortly.

When Bob tries to spend this UTXO, he constructs a transaction that references the
UTXO as an input. He uses his signature and public key in the unlocking script of
that input and sets the transaction nLocktime to be equal or greater to the timelock in
the CHECKLOCKTIMEVERIFY Alice set. Bob then broadcasts the transaction on the bit‐
coin network.

Bob’s transaction is evaluated as follows. If the CHECKLOCKTIMEVERIFY parameter Alice
set is less than or equal the spending transaction’s nLocktime, script execution contin‐
ues (acts as if a “no operation” or NOP opcode was executed). Otherwise, script exe‐
cution halts and the transaction is deemed invalid.

More precisely, CHECKLOCKTIMEVERIFY fails and halts execution, marking the transac‐
tion invalid if (source: BIP-65):

1. the stack is empty; or
2. the top item on the stack is less than 0; or
3. the lock-time type (height versus timestamp) of the top stack item and the nLock

time field are not the same; or
4. the top stack item is greater than the transaction’s nLocktime field; or
5. the nSequence field of the input is 0xffffffff.

CLTV and nLocktime use the same format to describe timelocks,
either a block height or the time elapsed in seconds since Unix
epoch. Critically, when used together, the format of nLocktime
must match that of CLTV in the inputs—they must both reference
either block height or time in seconds.

After execution, if CLTV is satisfied, the time parameter that preceded it remains as the
top item on the stack and may need to be dropped, with DROP, for correct execution
of subsequent script opcodes. You will often see CHECKLOCKTIMEVERIFY followed by
DROP in scripts for this reason.

Timelocks | 159

By using nLocktime in conjunction with CLTV, the scenario described in “Transaction
locktime limitations” on page 157 changes. Because Alice locked the UTXO itself, it is
now impossible for either Bob or Alice to spend it before the 3-month locktime has
expired.

By introducing timelock functionality directly into the scripting language, CLTV
allows us to develop some very interesting complex scripts.

The standard is defined in BIP-65 (CHECKLOCKTIMEVERIFY).

Relative Timelocks
nLocktime and CLTV are both absolute timelocks in that they specify an absolute point
in time. The next two timelock features we will examine are relative timelocks in that
they specify, as a condition of spending an output, an elapsed time from the confir‐
mation of the output in the blockchain.

Relative timelocks are useful because they allow a chain of two or more interdepend‐
ent transactions to be held off chain, while imposing a time constraint on one trans‐
action that is dependent on the elapsed time from the confirmation of a previous
transaction. In other words, the clock doesn’t start counting until the UTXO is recor‐
ded on the blockchain. This functionality is especially useful in bidirectional state
channels and Lightning Networks, as we will see in “Payment Channels and State
Channels” on page 284.

Relative timelocks, like absolute timelocks, are implemented with both a transaction-
level feature and a script-level opcode. The transaction-level relative timelock is
implemented as a consensus rule on the value of nSequence, a transaction field that is
set in every transaction input. Script-level relative timelocks are implemented with
the CHECKSEQUENCEVERIFY (CSV) opcode.

Relative timelocks are implemented according to the specifications in BIP-68, Rela‐
tive lock-time using consensus-enforced sequence numbers and BIP-112, CHECKSE‐
QUENCEVERIFY.

BIP-68 and BIP-112 were activated in May 2016 as a soft fork upgrade to the consen‐
sus rules.

Relative Timelocks with nSequence
Relative timelocks can be set on each input of a transaction, by setting the nSequence
field in each input.

Original meaning of nSequence

The nSequence field was originally intended (but never properly implemented) to
allow modification of transactions in the mempool. In that use, a transaction contain‐

160 | Chapter 7: Advanced Transactions and Scripting

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki

ing inputs with nSequence value below 232 (0xFFFFFFFF) indicated a transaction that
was not yet “finalized.” Such a transaction would be held in the mempool until it was
replaced by another transaction spending the same inputs with a higher nSequence
value. Once a transaction was received whose inputs had an nSequence value of 232 it
would be considered “finalized” and mined.

The original meaning of nSequence was never properly implemented and the value of
nSequence is customarily set to 232 in transactions that do not utilize timelocks. For
transactions with nLocktime or CHECKLOCKTIMEVERIFY, the nSequence value must be
set to less than 232 for the timelock guards to have effect. Customarily, it is set to
232 – 1 (0xFFFFFFFE).

nSequence as a consensus-enforced relative timelock
Since the activation of BIP-68, new consensus rules apply for any transaction contain‐
ing an input whose nSequence value is less than 231 (bit 1<<31 is not set). Program‐
matically, that means that if the most significant (bit 1<<31) is not set, it is a flag that
means “relative locktime.” Otherwise (bit 1<<31 set), the nSequence value is reserved
for other uses such as enabling CHECKLOCKTIMEVERIFY, nLocktime, Opt-In-Replace-
By-Fee, and other future developments.

Transaction inputs with nSequence values less than 231 are interpreted as having a rel‐
ative timelock. Such a transaction is only valid once the input has aged by the relative
timelock amount. For example, a transaction with one input with an nSequence rela‐
tive timelock of 30 blocks is only valid when at least 30 blocks have elapsed from the
time the UTXO referenced in the input was mined. Since nSequence is a per-input
field, a transaction may contain any number of timelocked inputs, all of which must
have sufficiently aged for the transaction to be valid. A transaction can include both
timelocked inputs (nSequence < 231) and inputs without a relative timelock (nSe
quence >= 231).

The nSequence value is specified in either blocks or seconds, but in a slightly different
format than we saw used in nLocktime. A type-flag is used to differentiate between
values counting blocks and values counting time in seconds. The type-flag is set in
the 23rd least-significant bit (i.e., value 1<<22). If the type-flag is set, then the nSe
quence value is interpreted as a multiple of 512 seconds. If the type-flag is not set, the
nSequence value is interpreted as a number of blocks.

When interpreting nSequence as a relative timelock, only the 16 least significant bits
are considered. Once the flags (bits 32 and 23) are evaluated, the nSequence value is
usually “masked” with a 16-bit mask (e.g., nSequence & 0x0000FFFF).

Figure 7-1 shows the binary layout of the nSequence value, as defined by BIP-68.

Timelocks | 161

Figure 7-1. BIP-68 definition of nSequence encoding (Source: BIP-68)

Relative timelocks based on consensus enforcement of the nSequence value are
defined in BIP-68.

The standard is defined in BIP-68, Relative lock-time using consensus-enforced
sequence numbers.

Relative Timelocks with CSV
Just like CLTV and nLocktime, there is a script opcode for relative timelocks that lev‐
erages the nSequence value in scripts. That opcode is CHECKSEQUENCEVERIFY, com‐
monly referred to as CSV for short.

The CSV opcode when evaluated in a UTXO’s redeem script allows spending only in a
transaction whose input nSequence value is greater than or equal to the CSV parame‐
ter. Essentially, this restricts spending the UTXO until a certain number of blocks or
seconds have elapsed relative to the time the UTXO was mined.

As with CLTV, the value in CSV must match the format in the corresponding nSe
quence value. If CSV is specified in terms of blocks, then so must nSequence. If CSV is
specified in terms of seconds, then so must nSequence.

Relative timelocks with CSV are especially useful when several (chained) transactions
are created and signed, but not propagated, when they’re kept “off-chain.” A child
transaction cannot be used until the parent transaction has been propagated, mined,
and aged by the time specified in the relative timelock. One application of this use
case can be seen in “Payment Channels and State Channels” on page 284 and “Routed
Payment Channels (Lightning Network)” on page 297.

CSV is defined in detail in BIP-112, CHECKSEQUENCEVERIFY.

Median-Time-Past
As part of the activation of relative timelocks, there was also a change in the way
“time” is calculated for timelocks (both absolute and relative). In bitcoin there is a
subtle, but very significant, difference between wall time and consensus time. Bitcoin

162 | Chapter 7: Advanced Transactions and Scripting

https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki

is a decentralized network, which means that each participant has his or her own per‐
spective of time. Events on the network do not occur instantaneously everywhere.
Network latency must be factored into the perspective of each node. Eventually
everything is synchronized to create a common ledger. Bitcoin reaches consensus
every 10 minutes about the state of the ledger as it existed in the past.

The timestamps set in block headers are set by the miners. There is a certain degree of
latitude allowed by the consensus rules to account for differences in clock accuracy
between decentralized nodes. However, this creates an unfortunate incentive for min‐
ers to lie about the time in a block so as to earn extra fees by including timelocked
transactions that are not yet mature. See the following section for more information.

To remove the incentive to lie and strengthen the security of timelocks, a BIP was
proposed and activated at the same time as the BIPs for relative timelocks. This is
BIP-113, which defines a new consensus measurement of time called Median-Time-
Past.

Median-Time-Past is calculated by taking the timestamps of the last 11 blocks and
finding the median. That median time then becomes consensus time and is used for
all timelock calculations. By taking the midpoint from approximately two hours in
the past, the influence of any one block’s timestamp is reduced. By incorporating 11
blocks, no single miner can influence the timestamps in order to gain fees from trans‐
actions with a timelock that hasn’t yet matured.

Median-Time-Past changes the implementation of time calculations for nLocktime,
CLTV, nSequence, and CSV. The consensus time calculated by Median-Time-Past is
always approximately one hour behind wall clock time. If you create timelock trans‐
actions, you should account for it when estimating the desired value to encode in
nLocktime, nSequence, CLTV, and CSV.

Median-Time-Past is specified in BIP-113.

Timelock Defense Against Fee Sniping
Fee-sniping is a theoretical attack scenario, where miners attempting to rewrite past
blocks “snipe” higher-fee transactions from future blocks to maximize their profita‐
bility.

For example, let’s say the highest block in existence is block #100,000. If instead of
attempting to mine block #100,001 to extend the chain, some miners attempt to
remine #100,000. These miners can choose to include any valid transaction (that
hasn’t been mined yet) in their candidate block #100,000. They don’t have to remine
the block with the same transactions. In fact, they have the incentive to select the
most profitable (highest fee per kB) transactions to include in their block. They can
include any transactions that were in the “old” block #100,000, as well as any transac‐

Timelocks | 163

https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki

tions from the current mempool. Essentially they have the option to pull transactions
from the “present” into the rewritten “past” when they re-create block #100,000.

Today, this attack is not very lucrative, because block reward is much higher than
total fees per block. But at some point in the future, transaction fees will be the
majority of the reward (or even the entirety of the reward). At that time, this scenario
becomes inevitable.

To prevent “fee sniping,” when Bitcoin Core creates transactions, it uses nLocktime to
limit them to the “next block,” by default. In our scenario, Bitcoin Core would set
nLocktime to 100,001 on any transaction it created. Under normal circumstances,
this nLocktime has no effect—the transactions could only be included in block
#100,001 anyway; it’s the next block.

But under a blockchain fork attack, the miners would not be able to pull high-fee
transactions from the mempool, because all those transactions would be timelocked
to block #100,001. They can only remine #100,000 with whatever transactions were
valid at that time, essentially gaining no new fees.

To achieve this, Bitcoin Core sets the nLocktime on all new transactions to <current
block # + 1> and sets the nSequence on all the inputs to 0xFFFFFFFE to enable nLock
time.

Scripts with Flow Control (Conditional Clauses)
One of the more powerful features of Bitcoin Script is flow control, also known as
conditional clauses. You are probably familiar with flow control in various program‐
ming languages that use the construct IF…THEN…ELSE. Bitcoin conditional clauses look
a bit different, but are essentially the same construct.

At a basic level, bitcoin conditional opcodes allow us to construct a redeem script that
has two ways of being unlocked, depending on a TRUE/FALSE outcome of evaluating a
logical condition. For example, if x is TRUE, the redeem script is A and the ELSE
redeem script is B.

Additionally, bitcoin conditional expressions can be “nested” indefinitely, meaning
that a conditional clause can contain another within it, which contains another, etc.
Bitcoin Script flow control can be used to construct very complex scripts with hun‐
dreds or even thousands of possible execution paths. There is no limit to nesting, but
consensus rules impose a limit on the maximum size, in bytes, of a script.

Bitcoin implements flow control using the IF, ELSE, ENDIF, and NOTIF opcodes. Addi‐
tionally, conditional expressions can contain boolean operators such as BOOLAND,
BOOLOR, and NOT.

164 | Chapter 7: Advanced Transactions and Scripting

At first glance, you may find the bitcoin’s flow control scripts confusing. That is
because Bitcoin Script is a stack language. The same way that 1 + 1 looks “backward”
when expressed as 1 1 ADD, flow control clauses in bitcoin also look “backward.”

In most traditional (procedural) programming languages, flow control looks like this:

if (condition):
 code to run when condition is true
else:
 code to run when condition is false
code to run in either case

In a stack-based language like Bitcoin Script, the logical condition comes before the
IF, which makes it look “backward,” like this:

condition
IF
 code to run when condition is true
ELSE
 code to run when condition is false
ENDIF
code to run in either case

When reading Bitcoin Script, remember that the condition being evaluated comes
before the IF opcode.

Conditional Clauses with VERIFY Opcodes
Another form of conditional in Bitcoin Script is any opcode that ends in VERIFY. The
VERIFY suffix means that if the condition evaluated is not TRUE, execution of the
script terminates immediately and the transaction is deemed invalid.

Unlike an IF clause, which offers alternative execution paths, the VERIFY suffix acts as
a guard clause, continuing only if a precondition is met.

For example, the following script requires Bob’s signature and a pre-image (secret)
that produces a specific hash. Both conditions must be satisfied to unlock:

HASH160 <expected hash> EQUALVERIFY <Bob's Pubkey> CHECKSIG

To redeem this, Bob must construct an unlocking script that presents a valid pre-
image and a signature:

<Bob's Sig> <hash pre-image>

Without presenting the pre-image, Bob can’t get to the part of the script that checks
for his signature.

This script can be written with an IF instead:

HASH160 <expected hash> EQUAL
IF

Scripts with Flow Control (Conditional Clauses) | 165

 <Bob's Pubkey> CHECKSIG
ENDIF

Bob’s unlocking script is identical:

<Bob's Sig> <hash pre-image>

The script with IF does the same thing as using an opcode with a VERIFY suffix; they
both operate as guard clauses. However, the VERIFY construction is more efficient,
using one fewer opcode.

So, when do we use VERIFY and when do we use IF? If all we are trying to do is to
attach a precondition (guard clause), then VERIFY is better. If, however, we want to
have more than one execution path (flow control), then we need an IF…ELSE flow
control clause.

An opcode such as EQUAL will push the result (TRUE/FALSE) onto
the stack, leaving it there for evaluation by subsequent opcodes. In
contrast, the opcode EQUALVERIFY suffix does not leave anything on
the stack. Opcodes that end in VERIFY do not leave the result on the
stack.

Using Flow Control in Scripts
A very common use for flow control in Bitcoin Script is to construct a redeem script
that offers multiple execution paths, each a different way of redeeming the UTXO.

Let’s look at a simple example, where we have two signers, Alice and Bob, and either
one is able to redeem. With multisig, this would be expressed as a 1-of-2 multisig
script. For the sake of demonstration, we will do the same thing with an IF clause:

IF
 <Alice's Pubkey> CHECKSIG
ELSE
 <Bob's Pubkey> CHECKSIG
ENDIF

Looking at this redeem script, you may be wondering: “Where is the condition?
There is nothing preceding the IF clause!”

The condition is not part of the redeem script. Instead, the condition will be offered
in the unlocking script, allowing Alice and Bob to “choose” which execution path they
want.

Alice redeems this with the unlocking script:

<Alice's Sig> 1

The 1 at the end serves as the condition (TRUE) that will make the IF clause execute
the first redemption path for which Alice has a signature.

166 | Chapter 7: Advanced Transactions and Scripting

For Bob to redeem this, he would have to choose the second execution path by giving
a FALSE value to the IF clause:

<Bob's Sig> 0

Bob’s unlocking script puts a 0 on the stack, causing the IF clause to execute the sec‐
ond (ELSE) script, which requires Bob’s signature.

Since IF clauses can be nested, we can create a “maze” of execution paths. The
unlocking script can provide a “map” selecting which execution path is actually exe‐
cuted:

IF
 script A
ELSE
 IF
 script B
 ELSE
 script C
 ENDIF
ENDIF

In this scenario, there are three execution paths (script A, script B, and script C).
The unlocking script provides a path in the form of a sequence of TRUE or FALSE val‐
ues. To select path script B, for example, the unlocking script must end in 1 0
(TRUE, FALSE). These values will be pushed onto the stack, so that the second value
(FALSE) ends up at the top of the stack. The outer IF clause pops the FALSE value and
executes the first ELSE clause. Then the TRUE value moves to the top of the stack and
is evaluated by the inner (nested) IF, selecting the B execution path.

Using this construct, we can build redeem scripts with tens or hundreds of execution
paths, each offering a different way to redeem the UTXO. To spend, we construct an
unlocking script that navigates the execution path by putting the appropriate TRUE
and FALSE values on the stack at each flow control point.

Complex Script Example
In this section we combine many of the concepts from this chapter into a single
example.

Our example uses the story of Mohammed, the company owner in Dubai who is
operating an import/export business.

In this example, Mohammed wishes to construct a company capital account with
flexible rules. The scheme he creates requires different levels of authorization depend‐
ing on timelocks. The participants in the multisig scheme are Mohammed, his two
partners Saeed and Zaira, and their company lawyer Abdul. The three partners make
decisions based on a majority rule, so two of the three must agree. However, in the

Complex Script Example | 167

case of a problem with their keys, they want their lawyer to be able to recover the
funds with one of the three partner signatures. Finally, if all partners are unavailable
or incapacitated for a while, they want the lawyer to be able to manage the account
directly.

Here’s the script that Mohammed designs to achieve this:

IF
 IF
 2
 ELSE
 <30 days> CHECKSEQUENCEVERIFY DROP
 <Abdul the Lawyer's Pubkey> CHECKSIGVERIFY
 1
 ENDIF
 <Mohammed's Pubkey> <Saeed's Pubkey> <Zaira's Pubkey> 3 CHECKMULTISIG
ELSE
 <90 days> CHECKSEQUENCEVERIFY DROP
 <Abdul the Lawyer's Pubkey> CHECKSIG
ENDIF

Mohammed’s script implements three execution paths using nested IF…ELSE flow
control clauses.

In the first execution path, this script operates as a simple 2-of-3 multisig with the
three partners. This execution path consists of lines 3 and 9. Line 3 sets the quorum
of the multisig to 2 (2-of-3). This execution path can be selected by putting TRUE
TRUE at the end of the unlocking script:

0 <Mohammed's Sig> <Zaira's Sig> TRUE TRUE

The 0 at the beginning of this unlocking script is because of a bug
in CHECKMULTISIG that pops an extra value from the stack. The
extra value is disregarded by the CHECKMULTISIG, but it must be
present or the script fails. Pushing 0 (customarily) is a workaround
to the bug, as described in “A bug in CHECKMULTISIG execution”
on page 150.

The second execution path can only be used after 30 days have elapsed from the cre‐
ation of the UTXO. At that time, it requires the signature of Abdul the lawyer and one
of the three partners (a 1-of-3 multisig). This is achieved by line 7, which sets the
quorum for the multisig to 1. To select this execution path, the unlocking script
would end in FALSE TRUE:

0 <Saeed's Sig> <Abdul's Sig> FALSE TRUE

168 | Chapter 7: Advanced Transactions and Scripting

Why FALSE TRUE? Isn’t that backward? Because the two values are
pushed on to the stack, with FALSE pushed first, then TRUE pushed
second. TRUE is therefore popped first by the first IF opcode.

Finally, the third execution path allows Abdul the lawyer to spend the funds alone,
but only after 90 days. To select this execution path, the unlocking script has to end in
FALSE:

<Abdul's Sig> FALSE

Try running the script on paper to see how it behaves on the stack.

A few more things to consider when reading this example. See if you can find the
answers:

• Why can’t the lawyer redeem the third execution path at any time by selecting it
with FALSE on the unlocking script?

• How many execution paths can be used 5, 35, and 105 days, respectively, after the
UTXO is mined?

• Are the funds lost if the lawyer loses his key? Does your answer change if 91 days
have elapsed?

• How do the partners “reset” the clock every 29 or 89 days to prevent the lawyer
from accessing the funds?

• Why do some CHECKSIG opcodes in this script have the VERIFY suffix while others
don’t?

Complex Script Example | 169

CHAPTER 8

The Bitcoin Network

Peer-to-Peer Network Architecture
Bitcoin is structured as a peer-to-peer network architecture on top of the internet.
The term peer-to-peer, or P2P, means that the computers that participate in the net‐
work are peers to each other, that they are all equal, that there are no “special” nodes,
and that all nodes share the burden of providing network services. The network
nodes interconnect in a mesh network with a “flat” topology. There is no server, no
centralized service, and no hierarchy within the network. Nodes in a P2P network
both provide and consume services at the same time with reciprocity acting as the
incentive for participation. P2P networks are inherently resilient, decentralized, and
open. A preeminent example of a P2P network architecture was the early internet
itself, where nodes on the IP network were equal. Today’s internet architecture is
more hierarchical, but the Internet Protocol still retains its flat-topology essence.
Beyond bitcoin, the largest and most successful application of P2P technologies is file
sharing, with Napster as the pioneer and BitTorrent as the most recent evolution of
the architecture.

Bitcoin’s P2P network architecture is much more than a topology choice. Bitcoin is a
P2P digital cash system by design, and the network architecture is both a reflection
and a foundation of that core characteristic. Decentralization of control is a core
design principle that can only be achieved and maintained by a flat, decentralized P2P
consensus network.

The term “bitcoin network” refers to the collection of nodes running the bitcoin P2P
protocol. In addition to the bitcoin P2P protocol, there are other protocols such as
Stratum that are used for mining and lightweight or mobile wallets. These additional
protocols are provided by gateway routing servers that access the bitcoin network
using the bitcoin P2P protocol and then extend that network to nodes running other

171

protocols. For example, Stratum servers connect Stratum mining nodes via the Stra‐
tum protocol to the main bitcoin network and bridge the Stratum protocol to the bit‐
coin P2P protocol. We use the term “extended bitcoin network” to refer to the overall
network that includes the bitcoin P2P protocol, pool-mining protocols, the Stratum
protocol, and any other related protocols connecting the components of the bitcoin
system.

Node Types and Roles
Although nodes in the bitcoin P2P network are equal, they may take on different
roles depending on the functionality they are supporting. A bitcoin node is a collec‐
tion of functions: routing, the blockchain database, mining, and wallet services. A full
node with all four of these functions is shown in Figure 8-1.

Figure 8-1. A bitcoin network node with all four functions: wallet, miner, full blockchain
database, and network routing

All nodes include the routing function to participate in the network and might
include other functionality. All nodes validate and propagate transactions and blocks,
and discover and maintain connections to peers. In the full-node example in
Figure 8-1, the routing function is indicated by an orange circle named “Network
Routing Node” or with the letter “N.”

Some nodes, called full nodes, also maintain a complete and up-to-date copy of the
blockchain. Full nodes can autonomously and authoritatively verify any transaction
without external reference. Some nodes maintain only a subset of the blockchain and
verify transactions using a method called simplified payment verification, or SPV.
These nodes are known as SPV nodes or lightweight nodes. In the full-node example
in the figure, the full-node blockchain database function is indicated by a blue circle

172 | Chapter 8: The Bitcoin Network

called “Full Blockchain” or the letter “B.” In Figure 8-3, SPV nodes are drawn without
the blue circle, showing that they do not have a full copy of the blockchain.

Mining nodes compete to create new blocks by running specialized hardware to solve
the Proof-of-Work algorithm. Some mining nodes are also full nodes, maintaining a
full copy of the blockchain, while others are lightweight nodes participating in pool
mining and depending on a pool server to maintain a full node. The mining function
is shown in the full node as a black circle called “Miner” or the letter “M.”

User wallets might be part of a full node, as is usually the case with desktop bitcoin
clients. Increasingly, many user wallets, especially those running on resource-
constrained devices such as smartphones, are SPV nodes. The wallet function is
shown in Figure 8-1 as a green circle called “Wallet” or the letter “W.”

In addition to the main node types on the bitcoin P2P protocol, there are servers and
nodes running other protocols, such as specialized mining pool protocols and light‐
weight client-access protocols.

Figure 8-2 shows the most common node types on the extended bitcoin network.

The Extended Bitcoin Network
The main bitcoin network, running the bitcoin P2P protocol, consists of between
5,000 and 8,000 listening nodes running various versions of the bitcoin reference cli‐
ent (Bitcoin Core) and a few hundred nodes running various other implementations
of the bitcoin P2P protocol, such as Bitcoin Classic, Bitcoin Unlimited, BitcoinJ, Lib‐
bitcoin, btcd, and bcoin. A small percentage of the nodes on the bitcoin P2P network
are also mining nodes, competing in the mining process, validating transactions, and
creating new blocks. Various large companies interface with the bitcoin network by
running full-node clients based on the Bitcoin Core client, with full copies of the
blockchain and a network node, but without mining or wallet functions. These nodes
act as network edge routers, allowing various other services (exchanges, wallets, block
explorers, merchant payment processing) to be built on top.

The extended bitcoin network includes the network running the bitcoin P2P proto‐
col, described earlier, as well as nodes running specialized protocols. Attached to the
main bitcoin P2P network are a number of pool servers and protocol gateways that
connect nodes running other protocols. These other protocol nodes are mostly pool
mining nodes (see Chapter 10) and lightweight wallet clients, which do not carry a
full copy of the blockchain.

Figure 8-3 shows the extended bitcoin network with the various types of nodes, gate‐
way servers, edge routers, and wallet clients and the various protocols they use to
connect to each other.

The Extended Bitcoin Network | 173

Figure 8-2. Different types of nodes on the extended bitcoin network

174 | Chapter 8: The Bitcoin Network

Figure 8-3. The extended bitcoin network showing various node types, gateways, and
protocols

The Extended Bitcoin Network | 175

Bitcoin Relay Networks
While the bitcoin P2P network serves the general needs of a broad variety of node
types, it exhibits too high network latency for the specialized needs of bitcoin mining
nodes.

Bitcoin miners are engaged in a time-sensitive competition to solve the Proof-of-
Work problem and extend the blockchain (see Chapter 10). While participating in
this competition, bitcoin miners must minimize the time between the propagation of
a winning block and the beginning of the next round of competition. In mining, net‐
work latency is directly related to profit margins.

A Bitcoin Relay Network is a network that attempts to minimize the latency in the
transmission of blocks between miners. The original Bitcoin Relay Network was cre‐
ated by core developer Matt Corallo in 2015 to enable fast synchronization of blocks
between miners with very low latency. The network consisted of several specialized
nodes hosted on the Amazon Web Services infrastructure around the world and
served to connect the majority of miners and mining pools.

The original Bitcoin Relay Network was replaced in 2016 with the introduction of the
Fast Internet Bitcoin Relay Engine or FIBRE, also created by core developer Matt Cor‐
allo. FIBRE is a UDP-based relay network that relays blocks within a network of
nodes. FIBRE implements compact block optimization to further reduce the amount
of data transmitted and the network latency.

Another relay network (still in the proposal phase) is Falcon, based on research at
Cornell University. Falcon uses “cut-through-routing” instead of “store-and-forward”
to reduce latency by propagating parts of blocks as they are received rather than wait‐
ing until a complete block is received.

Relay networks are not replacements for bitcoin’s P2P network. Instead they are over‐
lay networks that provide additional connectivity between nodes with specialized
needs. Like freeways are not replacements for rural roads, but rather shortcuts
between two points with heavy traffic, you still need small roads to connect to the
freeways.

Network Discovery
When a new node boots up, it must discover other bitcoin nodes on the network in
order to participate. To start this process, a new node must discover at least one exist‐
ing node on the network and connect to it. The geographic location of other nodes is
irrelevant; the bitcoin network topology is not geographically defined. Therefore, any
existing bitcoin nodes can be selected at random.

176 | Chapter 8: The Bitcoin Network

http://www.bitcoinrelaynetwork.org
http://bitcoinfibre.org
http://www.falcon-net.org/about

To connect to a known peer, nodes establish a TCP connection, usually to port 8333
(the port generally known as the one used by bitcoin), or an alternative port if one is
provided. Upon establishing a connection, the node will start a “handshake” (see
Figure 8-4) by transmitting a version message, which contains basic identifying
information, including:

nVersion

The bitcoin P2P protocol version the client “speaks” (e.g., 70002)

nLocalServices

A list of local services supported by the node, currently just NODE_NETWORK

nTime

The current time

addrYou

The IP address of the remote node as seen from this node

addrMe

The IP address of the local node, as discovered by the local node

subver

A sub-version showing the type of software running on this node
(e.g., /Satoshi:0.9.2.1/)

BestHeight

The block height of this node’s blockchain

(See GitHub for an example of the version network message.)

The version message is always the first message sent by any peer to another peer. The
local peer receiving a version message will examine the remote peer’s reported nVer
sion and decide if the remote peer is compatible. If the remote peer is compatible, the
local peer will acknowledge the version message and establish a connection by send‐
ing a verack.

How does a new node find peers? The first method is to query DNS using a number
of “DNS seeds,” which are DNS servers that provide a list of IP addresses of bitcoin
nodes. Some of those DNS seeds provide a static list of IP addresses of stable bitcoin
listening nodes. Some of the DNS seeds are custom implementations of BIND
(Berkeley Internet Name Daemon) that return a random subset from a list of bitcoin
node addresses collected by a crawler or a long-running bitcoin node. The Bitcoin
Core client contains the names of five different DNS seeds. The diversity of owner‐
ship and diversity of implementation of the different DNS seeds offers a high level of
reliability for the initial bootstrapping process. In the Bitcoin Core client, the option

Network Discovery | 177

http://bit.ly/1qlsC7w

to use the DNS seeds is controlled by the option switch -dnsseed (set to 1 by default,
to use the DNS seed).

Alternatively, a bootstrapping node that knows nothing of the network must be given
the IP address of at least one bitcoin node, after which it can establish connections
through further introductions. The command-line argument -seednode can be used
to connect to one node just for introductions using it as a seed. After the initial seed
node is used to form introductions, the client will disconnect from it and use the
newly discovered peers.

Figure 8-4. The initial handshake between peers

Once one or more connections are established, the new node will send an addr mes‐
sage containing its own IP address to its neighbors. The neighbors will, in turn, for‐
ward the addr message to their neighbors, ensuring that the newly connected node
becomes well known and better connected. Additionally, the newly connected node
can send getaddr to the neighbors, asking them to return a list of IP addresses of
other peers. That way, a node can find peers to connect to and advertise its existence
on the network for other nodes to find it. Figure 8-5 shows the address discovery pro‐
tocol.

178 | Chapter 8: The Bitcoin Network

Figure 8-5. Address propagation and discovery

A node must connect to a few different peers in order to establish diverse paths into
the bitcoin network. Paths are not reliable—nodes come and go—and so the node
must continue to discover new nodes as it loses old connections as well as assist other
nodes when they bootstrap. Only one connection is needed to bootstrap, because the
first node can offer introductions to its peer nodes and those peers can offer further
introductions. It’s also unnecessary and wasteful of network resources to connect to
more than a handful of nodes. After bootstrapping, a node will remember its most
recent successful peer connections, so that if it is rebooted it can quickly reestablish
connections with its former peer network. If none of the former peers respond to its
connection request, the node can use the seed nodes to bootstrap again.

On a node running the Bitcoin Core client, you can list the peer connections with the
command getpeerinfo:

$ bitcoin-cli getpeerinfo

[
 {
 "addr" : "85.213.199.39:8333",
 "services" : "00000001",
 "lastsend" : 1405634126,
 "lastrecv" : 1405634127,
 "bytessent" : 23487651,
 "bytesrecv" : 138679099,
 "conntime" : 1405021768,
 "pingtime" : 0.00000000,
 "version" : 70002,
 "subver" : "/Satoshi:0.9.2.1/",

Network Discovery | 179

 "inbound" : false,
 "startingheight" : 310131,
 "banscore" : 0,
 "syncnode" : true
 },
 {
 "addr" : "58.23.244.20:8333",
 "services" : "00000001",
 "lastsend" : 1405634127,
 "lastrecv" : 1405634124,
 "bytessent" : 4460918,
 "bytesrecv" : 8903575,
 "conntime" : 1405559628,
 "pingtime" : 0.00000000,
 "version" : 70001,
 "subver" : "/Satoshi:0.8.6/",
 "inbound" : false,
 "startingheight" : 311074,
 "banscore" : 0,
 "syncnode" : false
 }
]

To override the automatic management of peers and to specify a list of IP addresses,
users can provide the option -connect=<IPAddress> and specify one or more IP
addresses. If this option is used, the node will only connect to the selected IP
addresses, instead of discovering and maintaining the peer connections automatically.

If there is no traffic on a connection, nodes will periodically send a message to main‐
tain the connection. If a node has not communicated on a connection for more than
90 minutes, it is assumed to be disconnected and a new peer will be sought. Thus, the
network dynamically adjusts to transient nodes and network problems, and can
organically grow and shrink as needed without any central control.

Full Nodes
Full nodes are nodes that maintain a full blockchain with all transactions. More accu‐
rately, they probably should be called “full blockchain nodes.” In the early years of bit‐
coin, all nodes were full nodes and currently the Bitcoin Core client is a full
blockchain node. In the past two years, however, new forms of bitcoin clients have
been introduced that do not maintain a full blockchain but run as lightweight clients.
We’ll examine these in more detail in the next section.

Full blockchain nodes maintain a complete and up-to-date copy of the bitcoin block‐
chain with all the transactions, which they independently build and verify, starting
with the very first block (genesis block) and building up to the latest known block in
the network. A full blockchain node can independently and authoritatively verify any
transaction without recourse or reliance on any other node or source of information.

180 | Chapter 8: The Bitcoin Network

The full blockchain node relies on the network to receive updates about new blocks
of transactions, which it then verifies and incorporates into its local copy of the
blockchain.

Running a full blockchain node gives you the pure bitcoin experience: independent
verification of all transactions without the need to rely on, or trust, any other systems.
It’s easy to tell if you’re running a full node because it requires more than one hun‐
dred gigabytes of persistent storage (disk space) to store the full blockchain. If you
need a lot of disk and it takes two to three days to sync to the network, you are run‐
ning a full node. That is the price of complete independence and freedom from cen‐
tral authority.

There are a few alternative implementations of full blockchain bitcoin clients, built
using different programming languages and software architectures. However, the
most common implementation is the reference client Bitcoin Core, also known as the
Satoshi client. More than 75% of the nodes on the bitcoin network run various ver‐
sions of Bitcoin Core. It is identified as “Satoshi” in the sub-version string sent in the
version message and shown by the command getpeerinfo as we saw earlier; for
example, /Satoshi:0.8.6/.

Exchanging “Inventory”
The first thing a full node will do once it connects to peers is try to construct a com‐
plete blockchain. If it is a brand-new node and has no blockchain at all, it only knows
one block, the genesis block, which is statically embedded in the client software.
Starting with block #0 (the genesis block), the new node will have to download hun‐
dreds of thousands of blocks to synchronize with the network and reestablish the full
blockchain.

The process of syncing the blockchain starts with the version message, because that
contains BestHeight, a node’s current blockchain height (number of blocks). A node
will see the version messages from its peers, know how many blocks they each have,
and be able to compare to how many blocks it has in its own blockchain. Peered
nodes will exchange a getblocks message that contains the hash (fingerprint) of the
top block on their local blockchain. One of the peers will be able to identify the
received hash as belonging to a block that is not at the top, but rather belongs to an
older block, thus deducing that its own local blockchain is longer than its peer’s.

The peer that has the longer blockchain has more blocks than the other node and can
identify which blocks the other node needs in order to “catch up.” It will identify the
first 500 blocks to share and transmit their hashes using an inv (inventory) message.
The node missing these blocks will then retrieve them, by issuing a series of getdata
messages requesting the full block data and identifying the requested blocks using the
hashes from the inv message.

Exchanging “Inventory” | 181

Let’s assume, for example, that a node only has the genesis block. It will then receive
an inv message from its peers containing the hashes of the next 500 blocks in the
chain. It will start requesting blocks from all of its connected peers, spreading the
load and ensuring that it doesn’t overwhelm any peer with requests. The node keeps
track of how many blocks are “in transit” per peer connection, meaning blocks that it
has requested but not received, checking that it does not exceed a limit
(MAX_BLOCKS_IN_TRANSIT_PER_PEER). This way, if it needs a lot of blocks, it will only
request new ones as previous requests are fulfilled, allowing the peers to control the
pace of updates and not overwhelm the network. As each block is received, it is added
to the blockchain, as we will see in Chapter 9. As the local blockchain is gradually
built up, more blocks are requested and received, and the process continues until the
node catches up to the rest of the network.

This process of comparing the local blockchain with the peers and retrieving any
missing blocks happens any time a node goes offline for any period of time. Whether
a node has been offline for a few minutes and is missing a few blocks, or a month and
is missing a few thousand blocks, it starts by sending getblocks, gets an inv
response, and starts downloading the missing blocks. Figure 8-6 shows the inventory
and block propagation protocol.

Figure 8-6. Node synchronizing the blockchain by retrieving blocks from a peer

182 | Chapter 8: The Bitcoin Network

Simplified Payment Verification (SPV) Nodes
Not all nodes have the ability to store the full blockchain. Many bitcoin clients are
designed to run on space- and power-constrained devices, such as smartphones, tab‐
lets, or embedded systems. For such devices, a simplified payment verification (SPV)
method is used to allow them to operate without storing the full blockchain. These
types of clients are called SPV clients or lightweight clients. As bitcoin adoption
surges, the SPV node is becoming the most common form of bitcoin node, especially
for bitcoin wallets.

SPV nodes download only the block headers and do not download the transactions
included in each block. The resulting chain of blocks, without transactions, is 1,000
times smaller than the full blockchain. SPV nodes cannot construct a full picture of
all the UTXOs that are available for spending because they do not know about all the
transactions on the network. SPV nodes verify transactions using a slightly different
methodology that relies on peers to provide partial views of relevant parts of the
blockchain on demand.

As an analogy, a full node is like a tourist in a strange city, equipped with a detailed
map of every street and every address. By comparison, an SPV node is like a tourist in
a strange city asking random strangers for turn-by-turn directions while knowing
only one main avenue. Although both tourists can verify the existence of a street by
visiting it, the tourist without a map doesn’t know what lies down any of the side
streets and doesn’t know what other streets exist. Positioned in front of 23 Church
Street, the tourist without a map cannot know if there are a dozen other “23 Church
Street” addresses in the city and whether this is the right one. The mapless tourist’s
best chance is to ask enough people and hope some of them are not trying to mug
him.

SPV verifies transactions by reference to their depth in the blockchain instead of their
height. Whereas a full blockchain node will construct a fully verified chain of thou‐
sands of blocks and transactions reaching down the blockchain (back in time) all the
way to the genesis block, an SPV node will verify the chain of all blocks (but not all
transactions) and link that chain to the transaction of interest.

For example, when examining a transaction in block 300,000, a full node links all
300,000 blocks down to the genesis block and builds a full database of UTXO, estab‐
lishing the validity of the transaction by confirming that the UTXO remains unspent.
An SPV node cannot validate whether the UTXO is unspent. Instead, the SPV node
will establish a link between the transaction and the block that contains it, using a
merkle path (see “Merkle Trees” on page 201). Then, the SPV node waits until it sees
the six blocks 300,001 through 300,006 piled on top of the block containing the trans‐
action and verifies it by establishing its depth under blocks 300,006 to 300,001. The
fact that other nodes on the network accepted block 300,000 and then did the neces‐

Simplified Payment Verification (SPV) Nodes | 183

sary work to produce six more blocks on top of it is proof, by proxy, that the transac‐
tion was not a double-spend.

An SPV node cannot be persuaded that a transaction exists in a block when the trans‐
action does not in fact exist. The SPV node establishes the existence of a transaction
in a block by requesting a merkle path proof and by validating the Proof-of-Work in
the chain of blocks. However, a transaction’s existence can be “hidden” from an SPV
node. An SPV node can definitely prove that a transaction exists but cannot verify
that a transaction, such as a double-spend of the same UTXO, doesn’t exist because it
doesn’t have a record of all transactions. This vulnerability can be used in a denial-of-
service attack or for a double-spending attack against SPV nodes. To defend against
this, an SPV node needs to connect randomly to several nodes, to increase the proba‐
bility that it is in contact with at least one honest node. This need to randomly con‐
nect means that SPV nodes also are vulnerable to network partitioning attacks or
Sybil attacks, where they are connected to fake nodes or fake networks and do not
have access to honest nodes or the real bitcoin network.

For most practical purposes, well-connected SPV nodes are secure enough, striking a
balance between resource needs, practicality, and security. For infallible security,
however, nothing beats running a full blockchain node.

A full blockchain node verifies a transaction by checking the entire
chain of thousands of blocks below it in order to guarantee that the
UTXO is not spent, whereas an SPV node checks how deep the
block is buried by a handful of blocks above it.

To get the block headers, SPV nodes use a getheaders message instead of getblocks.
The responding peer will send up to 2,000 block headers using a single headers mes‐
sage. The process is otherwise the same as that used by a full node to retrieve full
blocks. SPV nodes also set a filter on the connection to peers, to filter the stream of
future blocks and transactions sent by the peers. Any transactions of interest are
retrieved using a getdata request. The peer generates a tx message containing the
transactions, in response. Figure 8-7 shows the synchronization of block headers.

Because SPV nodes need to retrieve specific transactions in order to selectively verify
them, they also create a privacy risk. Unlike full blockchain nodes, which collect all
transactions within each block, the SPV node’s requests for specific data can inadver‐
tently reveal the addresses in their wallet. For example, a third party monitoring a
network could keep track of all the transactions requested by a wallet on an SPV node
and use those to associate bitcoin addresses with the user of that wallet, destroying
the user’s privacy.

184 | Chapter 8: The Bitcoin Network

Figure 8-7. SPV node synchronizing the block headers

Shortly after the introduction of SPV/lightweight nodes, bitcoin developers added a
feature called bloom filters to address the privacy risks of SPV nodes. Bloom filters
allow SPV nodes to receive a subset of the transactions without revealing precisely
which addresses they are interested in, through a filtering mechanism that uses prob‐
abilities rather than fixed patterns.

Bloom Filters
A bloom filter is a probabilistic search filter, a way to describe a desired pattern
without specifying it exactly. Bloom filters offer an efficient way to express a search
pattern while protecting privacy. They are used by SPV nodes to ask their peers for
transactions matching a specific pattern, without revealing exactly which addresses,
keys, or transactions they are searching for.

In our previous analogy, a tourist without a map is asking for directions to a specific
address, “23 Church St.” If she asks strangers for directions to this street, she inadver‐
tently reveals her destination. A bloom filter is like asking, “Are there any streets in
this neighborhood whose name ends in R-C-H?” A question like that reveals slightly
less about the desired destination than asking for “23 Church St.” Using this techni‐
que, a tourist could specify the desired address in more detail such as “ending in U-R-
C-H” or less detail as “ending in H.” By varying the precision of the search, the tourist

Bloom Filters | 185

reveals more or less information, at the expense of getting more or less specific
results. If she asks a less specific pattern, she gets a lot more possible addresses and
better privacy, but many of the results are irrelevant. If she asks for a very specific
pattern, she gets fewer results but loses privacy.

Bloom filters serve this function by allowing an SPV node to specify a search pattern
for transactions that can be tuned toward precision or privacy. A more specific bloom
filter will produce accurate results, but at the expense of revealing what patterns the
SPV node is interested in, thus revealing the addresses owned by the user’s wallet. A
less specific bloom filter will produce more data about more transactions, many irrel‐
evant to the node, but will allow the node to maintain better privacy.

How Bloom Filters Work
Bloom filters are implemented as a variable-size array of N binary digits (a bit field)
and a variable number of M hash functions. The hash functions are designed to
always produce an output that is between 1 and N, corresponding to the array of
binary digits. The hash functions are generated deterministically, so that any node
implementing a bloom filter will always use the same hash functions and get the same
results for a specific input. By choosing different length (N) bloom filters and a differ‐
ent number (M) of hash functions, the bloom filter can be tuned, varying the level of
accuracy and therefore privacy.

In Figure 8-8, we use a very small array of 16 bits and a set of three hash functions to
demonstrate how bloom filters work.

Figure 8-8. An example of a simplistic bloom filter, with a 16-bit field and three hash
functions

The bloom filter is initialized so that the array of bits is all zeros. To add a pattern to
the bloom filter, the pattern is hashed by each hash function in turn. Applying the
first hash function to the input results in a number between 1 and N. The corre‐

186 | Chapter 8: The Bitcoin Network

sponding bit in the array (indexed from 1 to N) is found and set to 1, thereby record‐
ing the output of the hash function. Then, the next hash function is used to set
another bit and so on. Once all M hash functions have been applied, the search pat‐
tern will be “recorded” in the bloom filter as M bits that have been changed from 0 to
1.

Figure 8-9 is an example of adding a pattern “A” to the simple bloom filter shown in
Figure 8-8.

Adding a second pattern is as simple as repeating this process. The pattern is hashed
by each hash function in turn and the result is recorded by setting the bits to 1. Note
that as a bloom filter is filled with more patterns, a hash function result might coin‐
cide with a bit that is already set to 1, in which case the bit is not changed. In essence,
as more patterns record on overlapping bits, the bloom filter starts to become satura‐
ted with more bits set to 1 and the accuracy of the filter decreases. This is why the
filter is a probabilistic data structure—it gets less accurate as more patterns are added.
The accuracy depends on the number of patterns added versus the size of the bit
array (N) and number of hash functions (M). A larger bit array and more hash func‐
tions can record more patterns with higher accuracy. A smaller bit array or fewer
hash functions will record fewer patterns and produce less accuracy.

Figure 8-9. Adding a pattern “A” to our simple bloom filter

Figure 8-10 is an example of adding a second pattern “B” to the simple bloom filter.

Bloom Filters | 187

Figure 8-10. Adding a second pattern “B” to our simple bloom filter

To test if a pattern is part of a bloom filter, the pattern is hashed by each hash func‐
tion and the resulting bit pattern is tested against the bit array. If all the bits indexed
by the hash functions are set to 1, then the pattern is probably recorded in the bloom
filter. Because the bits may be set because of overlap from multiple patterns, the
answer is not certain, but is rather probabilistic. In simple terms, a bloom filter posi‐
tive match is a “Maybe, Yes.”

Figure 8-11 is an example of testing the existence of pattern “X” in the simple bloom
filter. The corresponding bits are set to 1, so the pattern is probably a match.

Figure 8-11. Testing the existence of pattern “X” in the bloom filter. The result is a proba‐
bilistic positive match, meaning “Maybe.”

188 | Chapter 8: The Bitcoin Network

On the contrary, if a pattern is tested against the bloom filter and any one of the bits
is set to 0, this proves that the pattern was not recorded in the bloom filter. A negative
result is not a probability, it is a certainty. In simple terms, a negative match on a
bloom filter is a “Definitely Not!”

Figure 8-12 is an example of testing the existence of pattern “Y” in the simple bloom
filter. One of the corresponding bits is set to 0, so the pattern is definitely not a match.

Figure 8-12. Testing the existence of pattern “Y” in the bloom filter. The result is a defini‐
tive negative match, meaning “Definitely Not!”

How SPV Nodes Use Bloom Filters
Bloom filters are used to filter the transactions (and blocks containing them) that an
SPV node receives from its peers, selecting only transactions of interest to the SPV
node without revealing which addresses or keys it is interested in.

An SPV node will initialize a bloom filter as “empty”; in that state the bloom filter will
not match any patterns. The SPV node will then make a list of all the addresses, keys,
and hashes that it is interested in. It will do this by extracting the public key hash and
script hash and transaction IDs from any UTXO controlled by its wallet. The SPV
node then adds each of these to the bloom filter, so that the bloom filter will “match”
if these patterns are present in a transaction, without revealing the patterns them‐
selves.

The SPV node will then send a filterload message to the peer, containing the
bloom filter to use on the connection. On the peer, bloom filters are checked against

How SPV Nodes Use Bloom Filters | 189

each incoming transaction. The full node checks several parts of the transaction
against the bloom filter, looking for a match including:

• The transaction ID
• The data components from the locking scripts of each of the transaction outputs

(every key and hash in the script)
• Each of the transaction inputs
• Each of the input signature data components (or witness scripts)

By checking against all these components, bloom filters can be used to match public
key hashes, scripts, OP_RETURN values, public keys in signatures, or any future compo‐
nent of a smart contract or complex script.

After a filter is established, the peer will then test each transaction’s outputs against
the bloom filter. Only transactions that match the filter are sent to the node.

In response to a getdata message from the node, peers will send a merkleblock mes‐
sage that contains only block headers for blocks matching the filter and a merkle path
(see “Merkle Trees” on page 201) for each matching transaction. The peer will then
also send tx messages containing the transactions matched by the filter.

As the full node sends transactions to the SPV node, the SPV node discards any false
positives and uses the correctly matched transactions to update its UTXO set and
wallet balance. As it updates its own view of the UTXO set, it also modifies the bloom
filter to match any future transactions referencing the UTXO it just found. The full
node then uses the new bloom filter to match new transactions and the whole process
repeats.

The node setting the bloom filter can interactively add patterns to the filter by send‐
ing a filteradd message. To clear the bloom filter, the node can send a filterclear
message. Because it is not possible to remove a pattern from a bloom filter, a node has
to clear and resend a new bloom filter if a pattern is no longer desired.

The network protocol and bloom filter mechanism for SPV nodes is defined in
BIP-37 (Peer Services).

SPV Nodes and Privacy
Nodes that implement SPV have weaker privacy than a full node. A full node receives
all transactions and therefore reveals no information about whether it is using some
address in its wallet. An SPV node receives a filtered list of transactions related to the
addresses that are in its wallet. As a result, it reduces the privacy of the owner.

Bloom filters are a way to reduce the loss of privacy. Without them, an SPV node
would have to explicitly list the addresses it was interested in, creating a serious

190 | Chapter 8: The Bitcoin Network

http://bit.ly/1x6qCiO

breach of privacy. However, even with bloom filters, an adversary monitoring the
traffic of an SPV client or connected to it directly as a node in the P2P network can
collect enough information over time to learn the addresses in the wallet of the SPV
client.

Encrypted and Authenticated Connections
Most new users of bitcoin assume that the network communications of a bitcoin
node are encrypted. In fact, the original implementation of bitcoin communicates
entirely in the clear. While this is not a major privacy concern for full nodes, it is a big
problem for SPV nodes.

As a way to increase the privacy and security of the bitcoin P2P network, there are
two solutions that provide encryption of the communications: Tor Transport and P2P
Authentication and Encryption with BIP-150/151.

Tor Transport
Tor, which stands for The Onion Routing network, is a software project and network
that offers encryption and encapsulation of data through randomized network paths
that offer anonymity, untraceability and privacy.

Bitcoin Core offers several configuration options that allow you to run a bitcoin node
with its traffic transported over the Tor network. In addition, Bitcoin Core can also
offer a Tor hidden service allowing other Tor nodes to connect to your node directly
over Tor.

As of Bitcoin Core version 0.12, a node will offer a hidden Tor service automatically if
it is able to connect to a local Tor service. If you have Tor installed and the Bitcoin
Core process runs as a user with adequate permissions to access the Tor authentica‐
tion cookie, it should work automatically. Use the debug flag to turn on Bitcoin Core’s
debugging for the Tor service like this:

$ bitcoind --daemon --debug=tor

You should see “tor: ADD_ONION successful” in the logs, indicating that Bitcoin
Core has added a hidden service to the Tor network.

You can find more instructions on running Bitcoin Core as a Tor hidden service in
the Bitcoin Core documentation (docs/tor.md) and various online tutorials.

Peer-to-Peer Authentication and Encryption
Two Bitcoin Improvement Proposals, BIP-150 and BIP-151, add support for P2P
authentication and encryption in the bitcoin P2P network. These two BIPs define
optional services that may be offered by compatible bitcoin nodes. BIP-151 enables

Encrypted and Authenticated Connections | 191

negotiated encryption for all communications between two nodes that support
BIP-151. BIP-150 offers optional peer authentication that allows nodes to authenticate
each other’s identity using ECDSA and private keys. BIP-150 requires that prior to
authentication the two nodes have established encrypted communications as per
BIP-151.

As of January 2017, BIP-150 and BIP-151 are not implemented in Bitcoin Core. How‐
ever, the two proposals have been implemented by at least one alternative bitcoin cli‐
ent named bcoin.

BIP-150 and BIP-151 allow users to run SPV clients that connect to a trusted full
node, using encryption and authentication to protect the privacy of the SPV client.

Additionally, authentication can be used to create networks of trusted bitcoin nodes
and prevent Man-in-the-Middle attacks. Finally, P2P encryption, if deployed broadly,
would strengthen the resistance of bitcoin to traffic analysis and privacy-eroding sur‐
veillance, especially in totalitarian countries where internet use is heavily controlled
and monitored.

The standard is defined in BIP-150 (Peer Authentication) and BIP-151 (Peer-to-Peer
Communication Encryption).

Transaction Pools
Almost every node on the bitcoin network maintains a temporary list of unconfirmed
transactions called the memory pool, mempool, or transaction pool. Nodes use this
pool to keep track of transactions that are known to the network but are not yet
included in the blockchain. For example, a wallet node will use the transaction pool
to track incoming payments to the user’s wallet that have been received on the net‐
work but are not yet confirmed.

As transactions are received and verified, they are added to the transaction pool and
relayed to the neighboring nodes to propagate on the network.

Some node implementations also maintain a separate pool of orphaned transactions.
If a transaction’s inputs refer to a transaction that is not yet known, such as a missing
parent, the orphan transaction will be stored temporarily in the orphan pool until the
parent transaction arrives.

When a transaction is added to the transaction pool, the orphan pool is checked for
any orphans that reference this transaction’s outputs (its children). Any matching
orphans are then validated. If valid, they are removed from the orphan pool and
added to the transaction pool, completing the chain that started with the parent
transaction. In light of the newly added transaction, which is no longer an orphan,
the process is repeated recursively looking for any further descendants, until no more
descendants are found. Through this process, the arrival of a parent transaction trig‐

192 | Chapter 8: The Bitcoin Network

https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki

gers a cascade reconstruction of an entire chain of interdependent transactions by re-
uniting the orphans with their parents all the way down the chain.

Both the transaction pool and orphan pool (where implemented) are stored in local
memory and are not saved on persistent storage; rather, they are dynamically popula‐
ted from incoming network messages. When a node starts, both pools are empty and
are gradually populated with new transactions received on the network.

Some implementations of the bitcoin client also maintain a UTXO database or pool,
which is the set of all unspent outputs on the blockchain. Although the name “UTXO
pool” sounds similar to the transaction pool, it represents a different set of data.
Unlike the transaction and orphan pools, the UTXO pool is not initialized empty but
instead contains millions of entries of unspent transaction outputs, everything that is
unspent from all the way back to the genesis block. The UTXO pool may be housed
in local memory or as an indexed database table on persistent storage.

Whereas the transaction and orphan pools represent a single node’s local perspective
and might vary significantly from node to node depending upon when the node was
started or restarted, the UTXO pool represents the emergent consensus of the net‐
work and therefore will vary little between nodes. Furthermore, the transaction and
orphan pools only contain unconfirmed transactions, while the UTXO pool only
contains confirmed outputs.

Transaction Pools | 193

CHAPTER 9

The Blockchain

Introduction
The blockchain data structure is an ordered, back-linked list of blocks of transactions.
The blockchain can be stored as a flat file, or in a simple database. The Bitcoin Core
client stores the blockchain metadata using Google’s LevelDB database. Blocks are
linked “back,” each referring to the previous block in the chain. The blockchain is
often visualized as a vertical stack, with blocks layered on top of each other and the
first block serving as the foundation of the stack. The visualization of blocks stacked
on top of each other results in the use of terms such as “height” to refer to the dis‐
tance from the first block, and “top” or “tip” to refer to the most recently added block.

Each block within the blockchain is identified by a hash, generated using the SHA256
cryptographic hash algorithm on the header of the block. Each block also references a
previous block, known as the parent block, through the “previous block hash” field in
the block header. In other words, each block contains the hash of its parent inside its
own header. The sequence of hashes linking each block to its parent creates a chain
going back all the way to the first block ever created, known as the genesis block.

Although a block has just one parent, it can temporarily have multiple children. Each
of the children refers to the same block as its parent and contains the same (parent)
hash in the “previous block hash” field. Multiple children arise during a blockchain
“fork,” a temporary situation that occurs when different blocks are discovered almost
simultaneously by different miners (see “Blockchain Forks” on page 240). Eventually,
only one child block becomes part of the blockchain and the “fork” is resolved. Even
though a block may have more than one child, each block can have only one parent.
This is because a block has one single “previous block hash” field referencing its single
parent.

195

The “previous block hash” field is inside the block header and thereby affects the cur‐
rent block’s hash. The child’s own identity changes if the parent’s identity changes.
When the parent is modified in any way, the parent’s hash changes. The parent’s
changed hash necessitates a change in the “previous block hash” pointer of the child.
This in turn causes the child’s hash to change, which requires a change in the pointer
of the grandchild, which in turn changes the grandchild, and so on. This cascade
effect ensures that once a block has many generations following it, it cannot be
changed without forcing a recalculation of all subsequent blocks. Because such a
recalculation would require enormous computation (and therefore energy consump‐
tion), the existence of a long chain of blocks makes the blockchain’s deep history
immutable, which is a key feature of bitcoin’s security.

One way to think about the blockchain is like layers in a geological formation, or gla‐
cier core sample. The surface layers might change with the seasons, or even be blown
away before they have time to settle. But once you go a few inches deep, geological
layers become more and more stable. By the time you look a few hundred feet down,
you are looking at a snapshot of the past that has remained undisturbed for millions
of years. In the blockchain, the most recent few blocks might be revised if there is a
chain recalculation due to a fork. The top six blocks are like a few inches of topsoil.
But once you go more deeply into the blockchain, beyond six blocks, blocks are less
and less likely to change. After 100 blocks back there is so much stability that the
coinbase transaction—the transaction containing newly mined bitcoin—can be spent.
A few thousand blocks back (a month) and the blockchain is settled history, for all
practical purposes. While the protocol always allows a chain to be undone by a longer
chain and while the possibility of any block being reversed always exists, the probabil‐
ity of such an event decreases as time passes until it becomes infinitesimal.

Structure of a Block
A block is a container data structure that aggregates transactions for inclusion in the
public ledger, the blockchain. The block is made of a header, containing metadata,
followed by a long list of transactions that make up the bulk of its size. The block
header is 80 bytes, whereas the average transaction is at least 250 bytes and the aver‐
age block contains more than 500 transactions. A complete block, with all transac‐
tions, is therefore 1,000 times larger than the block header. Table 9-1 describes the
structure of a block.

196 | Chapter 9: The Blockchain

Table 9-1. The structure of a block

Size Field Description
4 bytes Block Size The size of the block, in bytes, following this field

80 bytes Block Header Several fields form the block header

1–9 bytes (VarInt) Transaction Counter How many transactions follow

Variable Transactions The transactions recorded in this block

Block Header
The block header consists of three sets of block metadata. First, there is a reference to
a previous block hash, which connects this block to the previous block in the block‐
chain. The second set of metadata, namely the difficulty, timestamp, and nonce, relate
to the mining competition, as detailed in Chapter 10. The third piece of metadata is
the merkle tree root, a data structure used to efficiently summarize all the transac‐
tions in the block. Table 9-2 describes the structure of a block header.

Table 9-2. The structure of the block header

Size Field Description
4 bytes Version A version number to track software/protocol upgrades

32 bytes Previous Block Hash A reference to the hash of the previous (parent) block in the chain

32 bytes Merkle Root A hash of the root of the merkle tree of this block’s transactions

4 bytes Timestamp The approximate creation time of this block (seconds from Unix Epoch)

4 bytes Difficulty Target The Proof-of-Work algorithm difficulty target for this block

4 bytes Nonce A counter used for the Proof-of-Work algorithm

The nonce, difficulty target, and timestamp are used in the mining process and will
be discussed in more detail in Chapter 10.

Block Identifiers: Block Header Hash and Block Height
The primary identifier of a block is its cryptographic hash, a digital fingerprint, made
by hashing the block header twice through the SHA256 algorithm. The resulting 32-
byte hash is called the block hash but is more accurately the block header hash,
because only the block header is used to compute it. For example,
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f is the
block hash of the first bitcoin block ever created. The block hash identifies a block
uniquely and unambiguously and can be independently derived by any node by sim‐
ply hashing the block header.

Block Header | 197

Note that the block hash is not actually included inside the block’s data structure, nei‐
ther when the block is transmitted on the network, nor when it is stored on a node’s
persistence storage as part of the blockchain. Instead, the block’s hash is computed by
each node as the block is received from the network. The block hash might be stored
in a separate database table as part of the block’s metadata, to facilitate indexing and
faster retrieval of blocks from disk.

A second way to identify a block is by its position in the blockchain, called the block
height. The first block ever created is at block height 0 (zero) and is the same block
that was previously referenced by the following block hash
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f. A block
can thus be identified two ways: by referencing the block hash or by referencing the
block height. Each subsequent block added “on top” of that first block is one position
“higher” in the blockchain, like boxes stacked one on top of the other. The block
height on January 1, 2017 was approximately 446,000, meaning there were 446,000
blocks stacked on top of the first block created in January 2009.

Unlike the block hash, the block height is not a unique identifier. Although a single
block will always have a specific and invariant block height, the reverse is not true—
the block height does not always identify a single block. Two or more blocks might
have the same block height, competing for the same position in the blockchain. This
scenario is discussed in detail in the section “Blockchain Forks” on page 240. The
block height is also not a part of the block’s data structure; it is not stored within the
block. Each node dynamically identifies a block’s position (height) in the blockchain
when it is received from the bitcoin network. The block height might also be stored as
metadata in an indexed database table for faster retrieval.

A block’s block hash always identifies a single block uniquely. A
block also always has a specific block height. However, it is not
always the case that a specific block height can identify a single
block. Rather, two or more blocks might compete for a single posi‐
tion in the blockchain.

The Genesis Block
The first block in the blockchain is called the genesis block and was created in 2009. It
is the common ancestor of all the blocks in the blockchain, meaning that if you start
at any block and follow the chain backward in time, you will eventually arrive at the
genesis block.

Every node always starts with a blockchain of at least one block because the genesis
block is statically encoded within the bitcoin client software, such that it cannot be
altered. Every node always “knows” the genesis block’s hash and structure, the fixed
time it was created, and even the single transaction within. Thus, every node has the

198 | Chapter 9: The Blockchain

starting point for the blockchain, a secure “root” from which to build a trusted block‐
chain.

See the statically encoded genesis block inside the Bitcoin Core client, in chainpar‐
ams.cpp.

The following identifier hash belongs to the genesis block:

000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

You can search for that block hash in any block explorer website, such as block‐
chain.info, and you will find a page describing the contents of this block, with a URL
containing that hash:

https://blockchain.info/block/
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

https://blockexplorer.com/block/
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

Using the Bitcoin Core reference client on the command line:

$ bitcoin-cli getblock
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

{
 "hash" : "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",
 "confirmations" : 308321,
 "size" : 285,
 "height" : 0,
 "version" : 1,
 "merkleroot" :
"4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b",
 "tx" : [
 "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"
],
 "time" : 1231006505,
 "nonce" : 2083236893,
 "bits" : "1d00ffff",
 "difficulty" : 1.00000000,
 "nextblockhash" :
"00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048"
}

The genesis block contains a hidden message within it. The coinbase transaction
input contains the text “The Times 03/Jan/2009 Chancellor on brink of second bail‐
out for banks.” This message was intended to offer proof of the earliest date this block
was created, by referencing the headline of the British newspaper The Times. It also
serves as a tongue-in-cheek reminder of the importance of an independent monetary
system, with bitcoin’s launch occurring at the same time as an unprecedented world‐
wide monetary crisis. The message was embedded in the first block by Satoshi Naka‐
moto, bitcoin’s creator.

The Genesis Block | 199

http://bit.ly/1x6rcwP
http://bit.ly/1x6rcwP
https://blockchain.info/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://blockchain.info/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://blockexplorer.com/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://blockexplorer.com/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

Linking Blocks in the Blockchain
Bitcoin full nodes maintain a local copy of the blockchain, starting at the genesis
block. The local copy of the blockchain is constantly updated as new blocks are found
and used to extend the chain. As a node receives incoming blocks from the network,
it will validate these blocks and then link them to the existing blockchain. To establish
a link, a node will examine the incoming block header and look for the “previous
block hash.”

Let’s assume, for example, that a node has 277,314 blocks in the local copy of the
blockchain. The last block the node knows about is block 277,314, with a block
header hash of:

00000000000000027e7ba6fe7bad39faf3b5a83daed765f05f7d1b71a1632249

The bitcoin node then receives a new block from the network, which it parses as fol‐
lows:

{
 "size" : 43560,
 "version" : 2,
 "previousblockhash" :
 "00000000000000027e7ba6fe7bad39faf3b5a83daed765f05f7d1b71a1632249",
 "merkleroot" :
 "5e049f4030e0ab2debb92378f53c0a6e09548aea083f3ab25e1d94ea1155e29d",
 "time" : 1388185038,
 "difficulty" : 1180923195.25802612,
 "nonce" : 4215469401,
 "tx" : [
 "257e7497fb8bc68421eb2c7b699dbab234831600e7352f0d9e6522c7cf3f6c77",

 #[... many more transactions omitted ...]

 "05cfd38f6ae6aa83674cc99e4d75a1458c165b7ab84725eda41d018a09176634"
]
}

Looking at this new block, the node finds the previousblockhash field, which con‐
tains the hash of its parent block. It is a hash known to the node, that of the last block
on the chain at height 277,314. Therefore, this new block is a child of the last block on
the chain and extends the existing blockchain. The node adds this new block to the
end of the chain, making the blockchain longer with a new height of 277,315.
Figure 9-1 shows the chain of three blocks, linked by references in the previousblock
hash field.

200 | Chapter 9: The Blockchain

Merkle Trees
Each block in the bitcoin blockchain contains a summary of all the transactions in the
block using a merkle tree.

A merkle tree, also known as a binary hash tree, is a data structure used for efficiently
summarizing and verifying the integrity of large sets of data. Merkle trees are binary
trees containing cryptographic hashes. The term “tree” is used in computer science to
describe a branching data structure, but these trees are usually displayed upside down
with the “root” at the top and the “leaves” at the bottom of a diagram, as you will see
in the examples that follow.

Figure 9-1. Blocks linked in a chain by reference to the previous block header hash

Merkle Trees | 201

Merkle trees are used in bitcoin to summarize all the transactions in a block, produc‐
ing an overall digital fingerprint of the entire set of transactions, providing a very effi‐
cient process to verify whether a transaction is included in a block. A merkle tree is
constructed by recursively hashing pairs of nodes until there is only one hash, called
the root, or merkle root. The cryptographic hash algorithm used in bitcoin’s merkle
trees is SHA256 applied twice, also known as double-SHA256.

When N data elements are hashed and summarized in a merkle tree, you can check to
see if any one data element is included in the tree with at most 2*log2(N) calcula‐
tions, making this a very efficient data structure.

The merkle tree is constructed bottom-up. In the following example, we start with
four transactions, A, B, C, and D, which form the leaves of the merkle tree, as shown
in Figure 9-2. The transactions are not stored in the merkle tree; rather, their data is
hashed and the resulting hash is stored in each leaf node as HA, HB, HC, and HD:

HA = SHA256(SHA256(Transaction A))

Consecutive pairs of leaf nodes are then summarized in a parent node, by concatenat‐
ing the two hashes and hashing them together. For example, to construct the parent
node HAB, the two 32-byte hashes of the children are concatenated to create a 64-byte
string. That string is then double-hashed to produce the parent node’s hash:

HAB = SHA256(SHA256(HA + HB))

The process continues until there is only one node at the top, the node known as the
merkle root. That 32-byte hash is stored in the block header and summarizes all the
data in all four transactions. Figure 9-2 shows how the root is calculated by pair-wise
hashes of the nodes.

Figure 9-2. Calculating the nodes in a merkle tree

202 | Chapter 9: The Blockchain

Because the merkle tree is a binary tree, it needs an even number of leaf nodes. If
there is an odd number of transactions to summarize, the last transaction hash will be
duplicated to create an even number of leaf nodes, also known as a balanced tree. This
is shown in Figure 9-3, where transaction C is duplicated.

Figure 9-3. Duplicating one data element achieves an even number of data elements

The same method for constructing a tree from four transactions can be generalized to
construct trees of any size. In bitcoin it is common to have several hundred to more
than a thousand transactions in a single block, which are summarized in exactly the
same way, producing just 32 bytes of data as the single merkle root. In Figure 9-4, you
will see a tree built from 16 transactions. Note that although the root looks bigger
than the leaf nodes in the diagram, it is the exact same size, just 32 bytes. Whether
there is one transaction or a hundred thousand transactions in the block, the merkle
root always summarizes them into 32 bytes.

To prove that a specific transaction is included in a block, a node only needs to pro‐
duce log2(N) 32-byte hashes, constituting an authentication path or merkle path con‐
necting the specific transaction to the root of the tree. This is especially important as
the number of transactions increases, because the base-2 logarithm of the number of
transactions increases much more slowly. This allows bitcoin nodes to efficiently pro‐
duce paths of 10 or 12 hashes (320–384 bytes), which can provide proof of a single
transaction out of more than a thousand transactions in a megabyte-sized block.

Merkle Trees | 203

Figure 9-4. A merkle tree summarizing many data elements

In Figure 9-5, a node can prove that a transaction K is included in the block by pro‐
ducing a merkle path that is only four 32-byte hashes long (128 bytes total). The path
consists of the four hashes (shown with a shaded background in Figure 9-5) HL, HIJ,
HMNOP, and HABCDEFGH. With those four hashes provided as an authentication path,
any node can prove that HK (with a black background at the bottom of the diagram)
is included in the merkle root by computing four additional pair-wise hashes HKL,
HIJKL, HIJKLMNOP, and the merkle tree root (outlined in a dashed line in the diagram).

Figure 9-5. A merkle path used to prove inclusion of a data element

The code in Example 9-1 demonstrates the process of creating a merkle tree from the
leaf-node hashes up to the root, using the libbitcoin library for some helper func‐
tions.

204 | Chapter 9: The Blockchain

Example 9-1. Building a merkle tree

#include <bitcoin/bitcoin.hpp>

bc::hash_digest create_merkle(bc::hash_list& merkle)
{
 // Stop if hash list is empty.
 if (merkle.empty())
 return bc::null_hash;
 else if (merkle.size() == 1)
 return merkle[0];

 // While there is more than 1 hash in the list, keep looping...
 while (merkle.size() > 1)
 {
 // If number of hashes is odd, duplicate last hash in the list.
 if (merkle.size() % 2 != 0)
 merkle.push_back(merkle.back());
 // List size is now even.
 assert(merkle.size() % 2 == 0);

 // New hash list.
 bc::hash_list new_merkle;
 // Loop through hashes 2 at a time.
 for (auto it = merkle.begin(); it != merkle.end(); it += 2)
 {
 // Join both current hashes together (concatenate).
 bc::data_chunk concat_data(bc::hash_size * 2);
 auto concat = bc::serializer<
 decltype(concat_data.begin())>(concat_data.begin());
 concat.write_hash(*it);
 concat.write_hash(*(it + 1));
 // Hash both of the hashes.
 bc::hash_digest new_root = bc::bitcoin_hash(concat_data);
 // Add this to the new list.
 new_merkle.push_back(new_root);
 }
 // This is the new list.
 merkle = new_merkle;

 // DEBUG output -------------------------------------
 std::cout << "Current merkle hash list:" << std::endl;
 for (const auto& hash: merkle)
 std::cout << " " << bc::encode_base16(hash) << std::endl;
 std::cout << std::endl;
 // --
 }
 // Finally we end up with a single item.
 return merkle[0];
}

Merkle Trees | 205

int main()
{
 // Replace these hashes with ones from a block to reproduce the same merkle
root.
 bc::hash_list tx_hashes{{
 bc::hash_lit
eral("00"),
 bc::hash_lit
eral("0011"),
 bc::hash_lit
eral("0022"),
 }};
 const bc::hash_digest merkle_root = create_merkle(tx_hashes);
 std::cout << "Result: " << bc::encode_base16(merkle_root) << std::endl;
 return 0;
}

Example 9-2 shows the result of compiling and running the merkle code.

Example 9-2. Compiling and running the merkle example code

$ # Compile the merkle.cpp code
$ g++ -o merkle merkle.cpp $(pkg-config --cflags --libs libbitcoin)
$ # Run the merkle executable
$./merkle
Current merkle hash list:
 32650049a0418e4380db0af81788635d8b65424d397170b8499cdc28c4d27006
 30861db96905c8dc8b99398ca1cd5bd5b84ac3264a4e1b3e65afa1bcee7540c4

Current merkle hash list:
 d47780c084bad3830bcdaf6eace035e4c6cbf646d103795d22104fb105014ba3

Result: d47780c084bad3830bcdaf6eace035e4c6cbf646d103795d22104fb105014ba3

The efficiency of merkle trees becomes obvious as the scale increases. Table 9-3 shows
the amount of data that needs to be exchanged as a merkle path to prove that a trans‐
action is part of a block.

Table 9-3. Merkle tree efficiency

Number of transactions Approx. size of block Path size (hashes) Path size (bytes)
16 transactions 4 kilobytes 4 hashes 128 bytes

512 transactions 128 kilobytes 9 hashes 288 bytes

2048 transactions 512 kilobytes 11 hashes 352 bytes

65,535 transactions 16 megabytes 16 hashes 512 bytes

As you can see from the table, while the block size increases rapidly, from 4 KB with
16 transactions to a block size of 16 MB to fit 65,535 transactions, the merkle path

206 | Chapter 9: The Blockchain

required to prove the inclusion of a transaction increases much more slowly, from
128 bytes to only 512 bytes. With merkle trees, a node can download just the block
headers (80 bytes per block) and still be able to identify a transaction’s inclusion in a
block by retrieving a small merkle path from a full node, without storing or transmit‐
ting the vast majority of the blockchain, which might be several gigabytes in size.
Nodes that do not maintain a full blockchain, called simplified payment verification
(SPV) nodes, use merkle paths to verify transactions without downloading full
blocks.

Merkle Trees and Simplified Payment Verification (SPV)
Merkle trees are used extensively by SPV nodes. SPV nodes don’t have all transactions
and do not download full blocks, just block headers. In order to verify that a transac‐
tion is included in a block, without having to download all the transactions in the
block, they use an authentication path, or merkle path.

Consider, for example, an SPV node that is interested in incoming payments to an
address contained in its wallet. The SPV node will establish a bloom filter (see
“Bloom Filters” on page 185) on its connections to peers to limit the transactions
received to only those containing addresses of interest. When a peer sees a transac‐
tion that matches the bloom filter, it will send that block using a merkleblock mes‐
sage. The merkleblock message contains the block header as well as a merkle path
that links the transaction of interest to the merkle root in the block. The SPV node
can use this merkle path to connect the transaction to the block and verify that the
transaction is included in the block. The SPV node also uses the block header to link
the block to the rest of the blockchain. The combination of these two links, between
the transaction and block, and between the block and blockchain, proves that the
transaction is recorded in the blockchain. All in all, the SPV node will have received
less than a kilobyte of data for the block header and merkle path, an amount of data
that is more than a thousand times less than a full block (about 1 megabyte cur‐
rently).

Bitcoin’s Test Blockchains
You might be surprised to learn that there is more than one bitcoin blockchain. The
“main” bitcoin blockchain, the one created by Satoshi Nakamoto on January 3rd,
2009, the one with the genesis block we studied in this chapter, is called mainnet.
There are other bitcoin blockchains that are used for testing purposes: at this time
testnet, segnet, and regtest. Let’s look at each in turn.

Merkle Trees and Simplified Payment Verification (SPV) | 207

Testnet—Bitcoin’s Testing Playground
Testnet is the name of the test blockchain, network, and currency that is used for test‐
ing purposes. The testnet is a fully featured live P2P network, with wallets, test bit‐
coins (testnet coins), mining, and all the other features of mainnet. There are really
only two differences: testnet coins are meant to be worthless and mining difficulty
should be low enough that anyone can mine testnet coins relatively easily (keeping
them worthless).

Any software development that is intended for production use on bitcoin’s mainnet
should first be tested on testnet with test coins. This protects both the developers
from monetary losses due to bugs and the network from unintended behavior due to
bugs.

Keeping the coins worthless and the mining easy, however, is not easy. Despite pleas
from developers, some people use advanced mining equipment (GPUs and ASICs) to
mine on testnet. This increases the difficulty, makes it impossible to mine with a
CPU, and eventually makes it difficult enough to get test coins that people start valu‐
ing them, so they’re not worthless. As a result, every now and then, the testnet has to
be scrapped and restarted from a new genesis block, resetting the difficulty.

The current testnet is called testnet3, the third iteration of testnet, restarted in Febru‐
ary 2011 to reset the difficulty from the previous testnet.

Keep in mind that testnet3 is a large blockchain, in excess of 20 GB in early 2017. It
will take a day or so to sync fully and use up resources on your computer. Not as
much as mainnet, but not exactly “lightweight” either. One good way to run a testnet
node is as a virtual machine image (e.g., VirtualBox, Docker, Cloud Server, etc.) dedi‐
cated for that purpose.

Using testnet
Bitcoin Core, like almost all other bitcoin software, has full support for operation on
testnet instead of mainnet, but also allows you to mine testnet coins and operate a full
testnet node.

To start Bitcoin Core on testnet instead of mainnet you use the testnet switch:

$ bitcoind -testnet

In the logs you should see that bitcoind is building a new blockchain in the testnet3
subdirectory of the default bitcoind directory:

bitcoind: Using data directory /home/username/.bitcoin/testnet3

To connect to bitcoind, you use the bitcoin-cli command-line tool, but you must
also switch it to testnet mode:

208 | Chapter 9: The Blockchain

$ bitcoin-cli -testnet getinfo
{
 "version": 130200,
 "protocolversion": 70015,
 "walletversion": 130000,
 "balance": 0.00000000,
 "blocks": 416,
 "timeoffset": 0,
 "connections": 3,
 "proxy": "",
 "difficulty": 1,
 "testnet": true,
 "keypoololdest": 1484801486,
 "keypoolsize": 100,
 "paytxfee": 0.00000000,
 "relayfee": 0.00001000,
 "errors": ""
}

You can also use the getblockchaininfo command to confirm the details of the test‐
net3 blockchain and your sync progress:

$ bitcoin-cli -testnet getblockchaininfo
{
 "chain": "test",
 "blocks": 1088,
 "headers": 139999,
 "bestblockhash":
"0000000063d29909d475a1c4ba26da64b368e56cce5d925097bf3a2084370128",
 "difficulty": 1,
 "mediantime": 1337966158,
 "verificationprogress": 0.001644065914099759,
 "chainwork":
"00044104410441",
 "pruned": false,
 "softforks": [

 [...]

You can also run on testnet3 with other full-node implementations, such as btcd
(written in Go) and bcoin (written in JavaScript), to experiment and learn in other
programming languages and frameworks.

In early 2017, testnet3 supports all the features of mainnet, in addition to Segregated
Witness (see Appendix D), which has yet to activate on mainnet. Therefore, testnet3
can also be used to test Segregated Witness features.

Bitcoin’s Test Blockchains | 209

Segnet—The Segregated Witness Testnet
In 2016, a special-purpose testnet was launched to aid in development and testing of
Segregated Witness (aka segwit; see Appendix D). This test blockchain is called seg
net and can be joined by running a special version (branch) of Bitcoin Core.

Since segwit was added to testnet3, it is no longer necessary to use segnet for testing
of segwit features.

In the future it is likely we will see other testnet blockchains that are specifically
designed to test a single feature or major architectural change, like segnet.

Regtest—The Local Blockchain
Regtest, which stands for “Regression Testing,” is a Bitcoin Core feature that allows
you to create a local blockchain for testing purposes. Unlike testnet3, which is a pub‐
lic and shared test blockchain, the regtest blockchains are intended to be run as
closed systems for local testing. You launch a regtest blockchain from scratch, creat‐
ing a local genesis block. You may add other nodes to the network, or run it with a
single node only to test the Bitcoin Core software.

To start Bitcoin Core in regtest mode, you use the regtest flag:

$ bitcoind -regtest

Just like with testnet, Bitcoin Core will initialize a new blockchain under the regtest
subdirectory of your bitcoind default directory:

bitcoind: Using data directory /home/username/.bitcoin/regtest

To use the command-line tool, you need to specify the regtest flag too. Let’s try the
getblockchaininfo command to inspect the regtest blockchain:

$ bitcoin-cli -regtest getblockchaininfo
{
 "chain": "regtest",
 "blocks": 0,
 "headers": 0,
 "bestblockhash":
"0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206",
 "difficulty": 4.656542373906925e-10,
 "mediantime": 1296688602,
 "verificationprogress": 1,
 "chainwork":
"0002",
 "pruned": false,
 [...]

As you can see, there are no blocks yet. Let’s mine some (500 blocks) and earn the
reward:

210 | Chapter 9: The Blockchain

$ bitcoin-cli -regtest generate 500
[
 "7afed70259f22c2bf11e406cb12ed5c0657b6e16a6477a9f8b28e2046b5ba1ca",
 "1aca2f154a80a9863a9aac4c72047a6d3f385c4eec5441a4aafa6acaa1dada14",
 "4334ecf6fb022f30fbd764c3ee778fabbd53b4a4d1950eae8a91f1f5158ed2d1",
 "5f951d34065efeaf64e54e91d00b260294fcdfc7f05dbb5599aec84b957a7766",
 "43744b5e77c1dfece9d05ab5f0e6796ebe627303163547e69e27f55d0f2b9353",
 [...]
 "6c31585a48d4fc2b3fd25521f4515b18aefb59d0def82bd9c2185c4ecb754327"
]

It will only take a few seconds to mine all these blocks, which certainly makes it easy
for testing. If you check your wallet balance, you will see that you earned reward for
the first 400 blocks (coinbase rewards must be 100 blocks deep before you can spend
them):

$ bitcoin-cli -regtest getbalance
12462.50000000

Using Test Blockchains for Development
Bitcoin’s various blockchains (regtest, segnet, testnet3, mainnet) offer a range of
testing environments for bitcoin development. Use the test blockchains whether you
are developing for Bitcoin Core, or another full-node consensus client; an application
such as a wallet, exchange, ecommerce site; or even developing novel smart contracts
and complex scripts.

You can use the test blockchains to establish a development pipeline. Test your code
locally on a regtest as you develop it. Once you are ready to try it on a public net‐
work, switch to testnet to expose your code to a more dynamic environment with
more diversity of code and applications. Finally, once you are confident your code
works as expected, switch to mainnet to deploy it in production. As you make
changes, improvements, bug fixes, etc., start the pipeline again, deploying each
change first on regtest, then on testnet, and finally into production.

Using Test Blockchains for Development | 211

CHAPTER 10

Mining and Consensus

Introduction
The word “mining” is somewhat misleading. By evoking the extraction of precious
metals, it focuses our attention on the reward for mining, the new bitcoin created in
each block. Although mining is incentivized by this reward, the primary purpose of
mining is not the reward or the generation of new coins. If you view mining only as
the process by which coins are created, you are mistaking the means (incentives) as
the goal of the process. Mining is the mechanism that underpins the decentralized
clearinghouse, by which transactions are validated and cleared. Mining is the inven‐
tion that makes bitcoin special, a decentralized security mechanism that is the basis
for P2P digital cash.

Mining secures the bitcoin system and enables the emergence of network-wide consen‐
sus without a central authority. The reward of newly minted coins and transaction
fees is an incentive scheme that aligns the actions of miners with the security of the
network, while simultaneously implementing the monetary supply.

The purpose of mining is not the creation of new bitcoin. That’s the
incentive system. Mining is the mechanism by which bitcoin’s secu‐
rity is decentralized.

Miners validate new transactions and record them on the global ledger. A new block,
containing transactions that occurred since the last block, is “mined” every 10
minutes on average, thereby adding those transactions to the blockchain. Transac‐
tions that become part of a block and added to the blockchain are considered “con‐

213

firmed,” which allows the new owners of bitcoin to spend the bitcoin they received in
those transactions.

Miners receive two types of rewards in return for the security provided by mining:
new coins created with each new block, and transaction fees from all the transactions
included in the block. To earn this reward, miners compete to solve a difficult mathe‐
matical problem based on a cryptographic hash algorithm. The solution to the prob‐
lem, called the Proof-of-Work, is included in the new block and acts as proof that the
miner expended significant computing effort. The competition to solve the Proof-of-
Work algorithm to earn the reward and the right to record transactions on the block‐
chain is the basis for bitcoin’s security model.

The process is called mining because the reward (new coin generation) is designed to
simulate diminishing returns, just like mining for precious metals. Bitcoin’s money
supply is created through mining, similar to how a central bank issues new money by
printing bank notes. The maximum amount of newly created bitcoin a miner can add
to a block decreases approximately every four years (or precisely every 210,000
blocks). It started at 50 bitcoin per block in January of 2009 and halved to 25 bitcoin
per block in November of 2012. It halved again to 12.5 bitcoin in July 2016. Based on
this formula, bitcoin mining rewards decrease exponentially until approximately the
year 2140, when all bitcoin (20.99999998 million) will have been issued. After 2140,
no new bitcoin will be issued.

Bitcoin miners also earn fees from transactions. Every transaction may include a
transaction fee, in the form of a surplus of bitcoin between the transaction’s inputs
and outputs. The winning bitcoin miner gets to “keep the change” on the transactions
included in the winning block. Today, the fees represent 0.5% or less of a bitcoin min‐
er’s income, the vast majority coming from the newly minted bitcoin. However, as the
reward decreases over time and the number of transactions per block increases, a
greater proportion of bitcoin mining earnings will come from fees. Gradually, the
mining reward will be dominated by transaction fees, which will form the primary
incentive for miners. After 2140, the amount of new bitcoin in each block drops to
zero and bitcoin mining will be incentivized only by transaction fees.

In this chapter, we will first examine mining as a monetary supply mechanism and
then look at the most important function of mining: the decentralized consensus
mechanism that underpins bitcoin’s security.

To understand mining and consensus, we will follow Alice’s transaction as it is
received and added to a block by Jing’s mining equipment. Then we will follow the
block as it is mined, added to the blockchain, and accepted by the bitcoin network
through the process of emergent consensus.

214 | Chapter 10: Mining and Consensus

Bitcoin Economics and Currency Creation
Bitcoin are “minted” during the creation of each block at a fixed and diminishing
rate. Each block, generated on average every 10 minutes, contains entirely new bit‐
coin, created from nothing. Every 210,000 blocks, or approximately every four years,
the currency issuance rate is decreased by 50%. For the first four years of operation of
the network, each block contained 50 new bitcoin.

In November 2012, the new bitcoin issuance rate was decreased to 25 bitcoin per
block. In July of 2016 it was decreased again to 12.5 bitcoin per block. It will halve
again to 6.25 bitcoin at block 630,000, which will be mined sometime in 2020. The
rate of new coins decreases like this exponentially over 32 “halvings” until block
6,720,000 (mined approximately in year 2137), when it reaches the minimum cur‐
rency unit of 1 satoshi. Finally, after 6.93 million blocks, in approximately 2140,
almost 2,099,999,997,690,000 satoshis, or almost 21 million bitcoin, will be issued.
Thereafter, blocks will contain no new bitcoin, and miners will be rewarded solely
through the transaction fees. Figure 10-1 shows the total bitcoin in circulation over
time, as the issuance of currency decreases.

Figure 10-1. Supply of bitcoin currency over time based on a geometrically decreasing
issuance rate

The maximum number of coins mined is the upper limit of possible
mining rewards for bitcoin. In practice, a miner may intentionally
mine a block taking less than the full reward. Such blocks have
already been mined and more may be mined in the future, result‐
ing in a lower total issuance of the currency.

In the example code in Example 10-1, we calculate the total amount of bitcoin that
will be issued.

Introduction | 215

Example 10-1. A script for calculating how much total bitcoin will be issued

Original block reward for miners was 50 BTC
start_block_reward = 50
210000 is around every 4 years with a 10 minute block interval
reward_interval = 210000

def max_money():
 # 50 BTC = 50 0000 0000 Satoshis
 current_reward = 50 * 10**8
 total = 0
 while current_reward > 0:
 total += reward_interval * current_reward
 current_reward /= 2
 return total

print "Total BTC to ever be created:", max_money(), "Satoshis"

Example 10-2 shows the output produced by running this script.

Example 10-2. Running the max_money.py script

$ python max_money.py
Total BTC to ever be created: 2099999997690000 Satoshis

The finite and diminishing issuance creates a fixed monetary supply that resists infla‐
tion. Unlike a fiat currency, which can be printed in infinite numbers by a central
bank, bitcoin can never be inflated by printing.

Deflationary Money
The most important and debated consequence of fixed and diminishing monetary
issuance is that the currency tends to be inherently deflationary. Deflation is the phe‐
nomenon of appreciation of value due to a mismatch in supply and demand that
drives up the value (and exchange rate) of a currency. The opposite of inflation, price
deflation, means that the money has more purchasing power over time.

Many economists argue that a deflationary economy is a disaster that should be avoi‐
ded at all costs. That is because in a period of rapid deflation, people tend to hoard
money instead of spending it, hoping that prices will fall. Such a phenomenon unfol‐
ded during Japan’s “Lost Decade,” when a complete collapse of demand pushed the
currency into a deflationary spiral.

Bitcoin experts argue that deflation is not bad per se. Rather, deflation is associated
with a collapse in demand because that is the only example of deflation we have to
study. In a fiat currency with the possibility of unlimited printing, it is very difficult to
enter a deflationary spiral unless there is a complete collapse in demand and an

216 | Chapter 10: Mining and Consensus

unwillingness to print money. Deflation in bitcoin is not caused by a collapse in
demand, but by a predictably constrained supply.

The positive aspect of deflation, of course, is that it is the opposite of inflation. Infla‐
tion causes a slow but inevitable debasement of currency, resulting in a form of hid‐
den taxation that punishes savers in order to bail out debtors (including the biggest
debtors, governments themselves). Currencies under government control suffer from
the moral hazard of easy debt issuance that can later be erased through debasement at
the expense of savers.

It remains to be seen whether the deflationary aspect of the currency is a problem
when it is not driven by rapid economic retraction, or an advantage because the pro‐
tection from inflation and debasement far outweighs the risks of deflation.

Decentralized Consensus
In the previous chapter we looked at the blockchain, the global public ledger (list) of
all transactions, which everyone in the bitcoin network accepts as the authoritative
record of ownership.

But how can everyone in the network agree on a single universal “truth” about who
owns what, without having to trust anyone? All traditional payment systems depend
on a trust model that has a central authority providing a clearinghouse service, basi‐
cally verifying and clearing all transactions. Bitcoin has no central authority, yet
somehow every full node has a complete copy of a public ledger that it can trust as
the authoritative record. The blockchain is not created by a central authority, but is
assembled independently by every node in the network. Somehow, every node in the
network, acting on information transmitted across insecure network connections,
can arrive at the same conclusion and assemble a copy of the same public ledger as
everyone else. This chapter examines the process by which the bitcoin network ach‐
ieves global consensus without central authority.

Satoshi Nakamoto’s main invention is the decentralized mechanism for emergent con‐
sensus. Emergent, because consensus is not achieved explicitly—there is no election
or fixed moment when consensus occurs. Instead, consensus is an emergent artifact
of the asynchronous interaction of thousands of independent nodes, all following
simple rules. All the properties of bitcoin, including currency, transactions, payments,
and the security model that does not depend on central authority or trust, derive
from this invention.

Bitcoin’s decentralized consensus emerges from the interplay of four processes that
occur independently on nodes across the network:

Decentralized Consensus | 217

• Independent verification of each transaction, by every full node, based on a com‐
prehensive list of criteria

• Independent aggregation of those transactions into new blocks by mining nodes,
coupled with demonstrated computation through a Proof-of-Work algorithm

• Independent verification of the new blocks by every node and assembly into a
chain

• Independent selection, by every node, of the chain with the most cumulative
computation demonstrated through Proof-of-Work

In the next few sections we will examine these processes and how they interact to cre‐
ate the emergent property of network-wide consensus that allows any bitcoin node to
assemble its own copy of the authoritative, trusted, public, global ledger.

Independent Verification of Transactions
In Chapter 6, we saw how wallet software creates transactions by collecting UTXO,
providing the appropriate unlocking scripts, and then constructing new outputs
assigned to a new owner. The resulting transaction is then sent to the neighboring
nodes in the bitcoin network so that it can be propagated across the entire bitcoin
network.

However, before forwarding transactions to its neighbors, every bitcoin node that
receives a transaction will first verify the transaction. This ensures that only valid
transactions are propagated across the network, while invalid transactions are dis‐
carded at the first node that encounters them.

Each node verifies every transaction against a long checklist of criteria:

• The transaction’s syntax and data structure must be correct.
• Neither lists of inputs or outputs are empty.
• The transaction size in bytes is less than MAX_BLOCK_SIZE.
• Each output value, as well as the total, must be within the allowed range of values

(less than 21m coins, more than the dust threshold).
• None of the inputs have hash=0, N=–1 (coinbase transactions should not be

relayed).
• nLocktime is equal to INT_MAX, or nLocktime and nSequence values are satisfied

according to MedianTimePast.
• The transaction size in bytes is greater than or equal to 100.
• The number of signature operations (SIGOPS) contained in the transaction is

less than the signature operation limit.

218 | Chapter 10: Mining and Consensus

• The unlocking script (scriptSig) can only push numbers on the stack, and the
locking script (scriptPubkey) must match isStandard forms (this rejects “non‐
standard” transactions).

• A matching transaction in the pool, or in a block in the main branch, must exist.
• For each input, if the referenced output exists in any other transaction in the

pool, the transaction must be rejected.
• For each input, look in the main branch and the transaction pool to find the ref‐

erenced output transaction. If the output transaction is missing for any input,
this will be an orphan transaction. Add to the orphan transactions pool, if a
matching transaction is not already in the pool.

• For each input, if the referenced output transaction is a coinbase output, it must
have at least COINBASE_MATURITY (100) confirmations.

• For each input, the referenced output must exist and cannot already be spent.
• Using the referenced output transactions to get input values, check that each

input value, as well as the sum, are in the allowed range of values (less than 21m
coins, more than 0).

• Reject if the sum of input values is less than sum of output values.
• Reject if transaction fee would be too low (minRelayTxFee) to get into an empty

block.
• The unlocking scripts for each input must validate against the corresponding

output locking scripts.

These conditions can be seen in detail in the functions AcceptToMemoryPool, Check
Transaction, and CheckInputs in Bitcoin Core. Note that the conditions change over
time, to address new types of denial-of-service attacks or sometimes to relax the rules
so as to include more types of transactions.

By independently verifying each transaction as it is received and before propagating
it, every node builds a pool of valid (but unconfirmed) transactions known as the
transaction pool, memory pool, or mempool.

Mining Nodes
Some of the nodes on the bitcoin network are specialized nodes called miners. In
Chapter 1 we introduced Jing, a computer engineering student in Shanghai, China,
who is a bitcoin miner. Jing earns bitcoin by running a “mining rig,” which is a speci‐
alized computer-hardware system designed to mine bitcoin. Jing’s specialized mining
hardware is connected to a server running a full bitcoin node. Unlike Jing, some min‐
ers mine without a full node, as we will see in “Mining Pools” on page 250. Like every
other full node, Jing’s node receives and propagates unconfirmed transactions on the

Mining Nodes | 219

bitcoin network. Jing’s node, however, also aggregates these transactions into new
blocks.

Jing’s node is listening for new blocks, propagated on the bitcoin network, as do all
nodes. However, the arrival of a new block has special significance for a mining node.
The competition among miners effectively ends with the propagation of a new block
that acts as an announcement of a winner. To miners, receiving a valid new block
means someone else won the competition and they lost. However, the end of one
round of a competition is also the beginning of the next round. The new block is not
just a checkered flag, marking the end of the race; it is also the starting pistol in the
race for the next block.

Aggregating Transactions into Blocks
After validating transactions, a bitcoin node will add them to the memory pool, or
transaction pool, where transactions await until they can be included (mined) into a
block. Jing’s node collects, validates, and relays new transactions just like any other
node. Unlike other nodes, however, Jing’s node will then aggregate these transactions
into a candidate block.

Let’s follow the blocks that were created during the time Alice bought a cup of coffee
from Bob’s Cafe (see “Buying a Cup of Coffee” on page 16). Alice’s transaction was
included in block 277,316. For the purpose of demonstrating the concepts in this
chapter, let’s assume that block was mined by Jing’s mining system and follows Alice’s
transaction as it becomes part of this new block.

Jing’s mining node maintains a local copy of the blockchain. By the time Alice buys
the cup of coffee, Jing’s node has assembled a chain up to block 277,314. Jing’s node is
listening for transactions, trying to mine a new block and also listening for blocks
discovered by other nodes. As Jing’s node is mining, it receives block 277,315 through
the bitcoin network. The arrival of this block signifies the end of the competition for
block 277,315 and the beginning of the competition to create block 277,316.

During the previous 10 minutes, while Jing’s node was searching for a solution to
block 277,315, it was also collecting transactions in preparation for the next block. By
now it has collected a few hundred transactions in the memory pool. Upon receiving
block 277,315 and validating it, Jing’s node will also compare it against all the transac‐
tions in the memory pool and remove any that were included in block 277,315.
Whatever transactions remain in the memory pool are unconfirmed and are waiting
to be recorded in a new block.

Jing’s node immediately constructs a new empty block, a candidate for block 277,316.
This block is called a candidate block because it is not yet a valid block, as it does not
contain a valid Proof-of-Work. The block becomes valid only if the miner succeeds in
finding a solution to the Proof-of-Work algorithm.

220 | Chapter 10: Mining and Consensus

When Jing’s node aggregates all the transactions from the memory pool, the new can‐
didate block has 418 transactions with total transaction fees of 0.09094928 bitcoin.
You can see this block in the blockchain using the Bitcoin Core client command-line
interface, as shown in Example 10-3.

Example 10-3. Using the command line to retrieve block 277,316

$ bitcoin-cli getblockhash 277316

0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4

$ bitcoin-cli getblock 0000000000000001b6b9a13b095e96db41c4a928b97ef2d9\
44a9b31b2cc7bdc4

{
 "hash" : "0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4",
 "confirmations" : 35561,
 "size" : 218629,
 "height" : 277316,
 "version" : 2,
 "merkleroot" :
"c91c008c26e50763e9f548bb8b2fc323735f73577effbc55502c51eb4cc7cf2e",
 "tx" : [
 "d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f",
 "b268b45c59b39d759614757718b9918caf0ba9d97c56f3b91956ff877c503fbe",

 ... 417 more transactions ...

],
 "time" : 1388185914,
 "nonce" : 924591752,
 "bits" : "1903a30c",
 "difficulty" : 1180923195.25802612,
 "chainwork" :
"000934695e92aaf53afa1a",
 "previousblockhash" :
"0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569"
}

The Coinbase Transaction
The first transaction in any block is a special transaction, called a coinbase transac‐
tion. This transaction is constructed by Jing’s node and contains his reward for the
mining effort.

When block 277,316 was mined, the reward was 25 bitcoin per
block. Since then, one “halving” period has elapsed. The block
reward changed to 12.5 bitcoin in July 2016. It will be halved again
in 210,000 blocks, in the year 2020.

Aggregating Transactions into Blocks | 221

Jing’s node creates the coinbase transaction as a payment to his own wallet: “Pay Jing’s
address 25.09094928 bitcoin.” The total amount of reward that Jing collects for min‐
ing a block is the sum of the coinbase reward (25 new bitcoin) and the transaction
fees (0.09094928) from all the transactions included in the block as shown in
Example 10-4.

Example 10-4. Coinbase transaction

$ bitcoin-cli getrawtransaction
d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f 1

{
 "hex" :
"010000000100ffffffff0
f03443b0403858402062f503253482fffffffff0110c08d9500000000232102aa970c592640d19de03ff
6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21ac00000000",
 "txid" : "d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f",
 "version" : 1,
 "locktime" : 0,
 "vin" : [
 {
 "coinbase" : "03443b0403858402062f503253482f",
 "sequence" : 4294967295
 }
],
 "vout" : [
 {
 "value" : 25.09094928,
 "n" : 0,
 "scriptPubKey" : {
 "asm" :
"02aa970c592640d19de03ff6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21OP_CHECKSIG",
 "hex" :
"2102aa970c592640d19de03ff6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21ac",
 "reqSigs" : 1,
 "type" : "pubkey",
 "addresses" : [
 "1MxTkeEP2PmHSMze5tUZ1hAV3YTKu2Gh1N"
]
 }
 }
]
}

Unlike regular transactions, the coinbase transaction does not consume (spend)
UTXO as inputs. Instead, it has only one input, called the coinbase, which creates bit‐
coin from nothing. The coinbase transaction has one output, payable to the miner’s
own bitcoin address. The output of the coinbase transaction sends the value of
25.09094928 bitcoin to the miner’s bitcoin address; in this case it is
1MxTkeEP2PmHSMze5tUZ1hAV3YTKu2Gh1N.

222 | Chapter 10: Mining and Consensus

Coinbase Reward and Fees
To construct the coinbase transaction, Jing’s node first calculates the total amount of
transaction fees by adding all the inputs and outputs of the 418 transactions that were
added to the block. The fees are calculated as:

Total Fees = Sum(Inputs) - Sum(Outputs)

In block 277,316, the total transaction fees are 0.09094928 bitcoin.

Next, Jing’s node calculates the correct reward for the new block. The reward is calcu‐
lated based on the block height, starting at 50 bitcoin per block and reduced by half
every 210,000 blocks. Because this block is at height 277,316, the correct reward is 25
bitcoin.

The calculation can be seen in function GetBlockSubsidy in the Bitcoin Core client,
as shown in Example 10-5.

Example 10-5. Calculating the block reward—Function GetBlockSubsidy, Bitcoin Core
Client, main.cpp

CAmount GetBlockSubsidy(int nHeight, const Consensus::Params& consensusParams)
{
 int halvings = nHeight / consensusParams.nSubsidyHalvingInterval;
 // Force block reward to zero when right shift is undefined.
 if (halvings >= 64)
 return 0;

 CAmount nSubsidy = 50 * COIN;
 // Subsidy is cut in half every 210,000 blocks which will occur approximately
every 4 years.
 nSubsidy >>= halvings;
 return nSubsidy;
}

The initial subsidy is calculated in satoshis by multiplying 50 with the COIN constant
(100,000,000 satoshis). This sets the initial reward (nSubsidy) at 5 billion satoshis.

Next, the function calculates the number of halvings that have occurred by dividing
the current block height by the halving interval (SubsidyHalvingInterval). In the
case of block 277,316, with a halving interval every 210,000 blocks, the result is 1
halving.

The maximum number of halvings allowed is 64, so the code imposes a zero reward
(returns only the fees) if the 64 halvings is exceeded.

Next, the function uses the binary-right-shift operator to divide the reward (nSub
sidy) by two for each round of halving. In the case of block 277,316, this would
binary-right-shift the reward of 5 billion satoshis once (one halving) and result in 2.5
billion satoshis, or 25 bitcoins. The binary-right-shift operator is used because it is

Aggregating Transactions into Blocks | 223

more efficient than multiple repeated divisions. To avoid a potential bug, the shift
operation is skipped after 63 halvings, and the subsidy is set to 0.

Finally, the coinbase reward (nSubsidy) is added to the transaction fees (nFees), and
the sum is returned.

If Jing’s mining node writes the coinbase transaction, what stops
Jing from “rewarding” himself 100 or 1000 bitcoin? The answer is
that an incorrect reward would result in the block being deemed
invalid by everyone else, wasting Jing’s electricity used for Proof-of-
Work. Jing only gets to spend the reward if the block is accepted by
everyone.

Structure of the Coinbase Transaction
With these calculations, Jing’s node then constructs the coinbase transaction to pay
himself 25.09094928 bitcoin.

As you can see in Example 10-4, the coinbase transaction has a special format.
Instead of a transaction input specifying a previous UTXO to spend, it has a “coin‐
base” input. We examined transaction inputs in Table 6-2. Let’s compare a regular
transaction input with a coinbase transaction input. Table 10-1 shows the structure of
a regular transaction, while Table 10-2 shows the structure of the coinbase transac‐
tion’s input.

Table 10-1. The structure of a “normal” transaction input

Size Field Description
32 bytes Transaction Hash Pointer to the transaction containing the UTXO to be spent

4 bytes Output Index The index number of the UTXO to be spent, first one is 0

1–9 bytes (VarInt) Unlocking-Script Size Unlocking-Script length in bytes, to follow

Variable Unlocking-Script A script that fulfills the conditions of the UTXO locking script

4 bytes Sequence Number Currently disabled Tx-replacement feature, set to 0xFFFFFFFF

Table 10-2. The structure of a coinbase transaction input

Size Field Description
32 bytes Transaction Hash All bits are zero: Not a transaction hash reference

4 bytes Output Index All bits are ones: 0xFFFFFFFF

1–9 bytes (VarInt) Coinbase Data Size Length of the coinbase data, from 2 to 100 bytes

Variable Coinbase Data Arbitrary data used for extra nonce and mining tags. In v2 blocks; must begin with
block height

4 bytes Sequence Number Set to 0xFFFFFFFF

224 | Chapter 10: Mining and Consensus

In a coinbase transaction, the first two fields are set to values that do not represent a
UTXO reference. Instead of a “transaction hash,” the first field is filled with 32 bytes
all set to zero. The “output index” is filled with 4 bytes all set to 0xFF (255 decimal).
The “Unlocking Script” (scriptSig) is replaced by coinbase data, a data field used by
the miners, as we will see next.

Coinbase Data
Coinbase transactions do not have an unlocking script (aka, scriptSig) field.
Instead, this field is replaced by coinbase data, which must be between 2 and 100
bytes. Except for the first few bytes, the rest of the coinbase data can be used by min‐
ers in any way they want; it is arbitrary data.

In the genesis block, for example, Satoshi Nakamoto added the text “The Times
03/Jan/2009 Chancellor on brink of second bailout for banks” in the coinbase data,
using it as a proof of the date and to convey a message. Currently, miners use the
coinbase data to include extra nonce values and strings identifying the mining pool.

The first few bytes of the coinbase used to be arbitrary, but that is no longer the case.
As per BIP-34, version-2 blocks (blocks with the version field set to 2) must contain
the block height index as a script “push” operation in the beginning of the coinbase
field.

In block 277,316 we see that the coinbase (see Example 10-4), which is in the unlock‐
ing script or scriptSig field of the transaction input, contains the hexadecimal value
03443b0403858402062f503253482f. Let’s decode this value.

The first byte, 03, instructs the script execution engine to push the next three bytes
onto the script stack (see Table B-1). The next three bytes, 0x443b04, are the block
height encoded in little-endian format (backward, least-significant byte first). Reverse
the order of the bytes and the result is 0x043b44, which is 277,316 in decimal.

The next few hexadecimal digits (0385840206) are used to encode an extra nonce (see
“The Extra Nonce Solution” on page 249), or random value, used to find a suitable
Proof-of-Work solution.

The final part of the coinbase data (2f503253482f) is the ASCII-encoded
string /P2SH/, which indicates that the mining node that mined this block supports
the P2SH improvement defined in BIP-16. The introduction of the P2SH capability
required signaling by miners to endorse either BIP-16 or BIP-17. Those endorsing the
BIP-16 implementation were to include /P2SH/ in their coinbase data. Those endors‐
ing the BIP-17 implementation of P2SH were to include the string p2sh/CHV in their
coinbase data. The BIP-16 was elected as the winner, and many miners continued
including the string /P2SH/ in their coinbase to indicate support for this feature.

Aggregating Transactions into Blocks | 225

Example 10-6 uses the libbitcoin library introduced in “Alternative Clients, Libraries,
and Toolkits” on page 51 to extract the coinbase data from the genesis block, display‐
ing Satoshi’s message. Note that the libbitcoin library contains a static copy of the
genesis block, so the example code can retrieve the genesis block directly from the
library.

Example 10-6. Extract the coinbase data from the genesis block

/*
 Display the genesis block message by Satoshi.
*/
#include <iostream>
#include <bitcoin/bitcoin.hpp>

int main()
{
 // Create genesis block.
 bc::chain::block block = bc::chain::block::genesis_mainnet();
 // Genesis block contains a single coinbase transaction.
 assert(block.transactions().size() == 1);
 // Get first transaction in block (coinbase).
 const bc::chain::transaction& coinbase_tx = block.transactions()[0];
 // Coinbase tx has a single input.
 assert(coinbase_tx.inputs().size() == 1);
 const bc::chain::input& coinbase_input = coinbase_tx.inputs()[0];
 // Convert the input script to its raw format.
 const auto prefix = false;
 const bc::data_chunk& raw_message = coinbase_input.script().to_data(prefix);
 // Convert this to a std::string.
 std::string message(raw_message.begin(), raw_message.end());
 // Display the genesis block message.
 std::cout << message << std::endl;
 return 0;
}

We compile the code with the GNU C++ compiler and run the resulting executable,
as shown in Example 10-7.

Example 10-7. Compiling and running the satoshi-words example code

$ # Compile the code
$ g++ -o satoshi-words satoshi-words.cpp $(pkg-config --cflags --libs libbitcoin)
$ # Run the executable
$./satoshi-words
^D��<GS>^A^DEThe Times 03/Jan/2009 Chancellor on brink of second bailout for banks

226 | Chapter 10: Mining and Consensus

Constructing the Block Header
To construct the block header, the mining node needs to fill in six fields, as listed in
Table 10-3.

Table 10-3. The structure of the block header

Size Field Description
4 bytes Version A version number to track software/protocol upgrades

32 bytes Previous Block Hash A reference to the hash of the previous (parent) block in the chain

32 bytes Merkle Root A hash of the root of the merkle tree of this block’s transactions

4 bytes Timestamp The approximate creation time of this block (seconds from Unix Epoch)

4 bytes Target The Proof-of-Work algorithm target for this block

4 bytes Nonce A counter used for the Proof-of-Work algorithm

At the time that block 277,316 was mined, the version number describing the block
structure is version 2, which is encoded in little-endian format in 4 bytes as
0x02000000.

Next, the mining node needs to add the “Previous Block Hash” (also known as pre
vhash). That is the hash of the block header of block 277,315, the previous block
received from the network, which Jing’s node has accepted and selected as the parent
of the candidate block 277,316. The block header hash for block 277,315 is:

0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569

By selecting the specific parent block, indicated by the Previous
Block Hash field in the candidate block header, Jing is committing
his mining power to extending the chain that ends in that specific
block. In essence, this is how Jing “votes” with his mining power
for the longest-difficulty valid chain.

The next step is to summarize all the transactions with a merkle tree, in order to add
the merkle root to the block header. The coinbase transaction is listed as the first
transaction in the block. Then, 418 more transactions are added after it, for a total of
419 transactions in the block. As we saw in the “Merkle Trees” on page 201, there
must be an even number of “leaf ” nodes in the tree, so the last transaction is duplica‐
ted, creating 420 nodes, each containing the hash of one transaction. The transaction
hashes are then combined, in pairs, creating each level of the tree, until all the trans‐
actions are summarized into one node at the “root” of the tree. The root of the merkle
tree summarizes all the transactions into a single 32-byte value, which you can see
listed as “merkle root” in Example 10-3, and here:

c91c008c26e50763e9f548bb8b2fc323735f73577effbc55502c51eb4cc7cf2e

Constructing the Block Header | 227

Jing’s mining node will then add a 4-byte timestamp, encoded as a Unix “epoch” time‐
stamp, which is based on the number of seconds elapsed from January 1, 1970, mid‐
night UTC/GMT. The time 1388185914 is equal to Friday, 27 Dec 2013, 23:11:54
UTC/GMT.

Jing’s node then fills in the target, which defines the required Proof-of-Work to make
this a valid block. The target is stored in the block as a “target bits” metric, which is a
mantissa-exponent encoding of the target. The encoding has a 1-byte exponent, fol‐
lowed by a 3-byte mantissa (coefficient). In block 277,316, for example, the target bits
value is 0x1903a30c. The first part 0x19 is a hexadecimal exponent, while the next
part, 0x03a30c, is the coefficient. The concept of a target is explained in “Retargeting
to Adjust Difficulty” on page 235 and the “target bits” representation is explained in
“Target Representation” on page 235.

The final field is the nonce, which is initialized to zero.

With all the other fields filled, the block header is now complete and the process of
mining can begin. The goal is now to find a value for the nonce that results in a block
header hash that is less than the target. The mining node will need to test billions or
trillions of nonce values before a nonce is found that satisfies the requirement.

Mining the Block
Now that a candidate block has been constructed by Jing’s node, it is time for Jing’s
hardware mining rig to “mine” the block, to find a solution to the Proof-of-Work
algorithm that makes the block valid. Throughout this book we have studied crypto‐
graphic hash functions as used in various aspects of the bitcoin system. The hash
function SHA256 is the function used in bitcoin’s mining process.

In the simplest terms, mining is the process of hashing the block header repeatedly,
changing one parameter, until the resulting hash matches a specific target. The hash
function’s result cannot be determined in advance, nor can a pattern be created that
will produce a specific hash value. This feature of hash functions means that the only
way to produce a hash result matching a specific target is to try again and again, ran‐
domly modifying the input until the desired hash result appears by chance.

Proof-of-Work Algorithm
A hash algorithm takes an arbitrary-length data input and produces a fixed-length
deterministic result, a digital fingerprint of the input. For any specific input, the
resulting hash will always be the same and can be easily calculated and verified by
anyone implementing the same hash algorithm. The key characteristic of a crypto‐
graphic hash algorithm is that it is computationally infeasible to find two different
inputs that produce the same fingerprint (known as a collision). As a corollary, it is

228 | Chapter 10: Mining and Consensus

also virtually impossible to select an input in such a way as to produce a desired fin‐
gerprint, other than trying random inputs.

With SHA256, the output is always 256 bits long, regardless of the size of the input. In
Example 10-8, we will use the Python interpreter to calculate the SHA256 hash of the
phrase, “I am Satoshi Nakamoto.”

Example 10-8. SHA256 example

$ python

Python 2.7.1
>>> import hashlib
>>> print hashlib.sha256("I am Satoshi Nakamoto").hexdigest()
5d7c7ba21cbbcd75d14800b100252d5b428e5b1213d27c385bc141ca6b47989e

Example 10-8 shows the result of calculating the hash of "I am Satoshi Nakamoto":
5d7c7ba21cbbcd75d14800b100252d5b428e5b1213d27c385bc141ca6b47989e. This
256-bit number is the hash or digest of the phrase and depends on every part of the
phrase. Adding a single letter, punctuation mark, or any other character will produce
a different hash.

Now, if we change the phrase, we should expect to see completely different hashes.
Let’s try that by adding a number to the end of our phrase, using the simple Python
scripting in Example 10-9.

Example 10-9. SHA256 script for generating many hashes by iterating on a nonce

example of iterating a nonce in a hashing algorithm's input

import hashlib

text = "I am Satoshi Nakamoto"

iterate nonce from 0 to 19
for nonce in xrange(20):

 # add the nonce to the end of the text
 input = text + str(nonce)

 # calculate the SHA-256 hash of the input (text+nonce)
 hash = hashlib.sha256(input).hexdigest()

 # show the input and hash result
 print input, '=>', hash

Running this will produce the hashes of several phrases, made different by adding a
number at the end of the text. By incrementing the number, we can get different
hashes, as shown in Example 10-10.

Mining the Block | 229

Example 10-10. SHA256 output of a script for generating many hashes by iterating on a
nonce

$ python hash_example.py

I am Satoshi Nakamoto0 => a80a81401765c8eddee25df36728d732...
I am Satoshi Nakamoto1 => f7bc9a6304a4647bb41241a677b5345f...
I am Satoshi Nakamoto2 => ea758a8134b115298a1583ffb80ae629...
I am Satoshi Nakamoto3 => bfa9779618ff072c903d773de30c99bd...
I am Satoshi Nakamoto4 => bce8564de9a83c18c31944a66bde992f...
I am Satoshi Nakamoto5 => eb362c3cf3479be0a97a20163589038e...
I am Satoshi Nakamoto6 => 4a2fd48e3be420d0d28e202360cfbaba...
I am Satoshi Nakamoto7 => 790b5a1349a5f2b909bf74d0d166b17a...
I am Satoshi Nakamoto8 => 702c45e5b15aa54b625d68dd947f1597...
I am Satoshi Nakamoto9 => 7007cf7dd40f5e933cd89fff5b791ff0...
I am Satoshi Nakamoto10 => c2f38c81992f4614206a21537bd634a...
I am Satoshi Nakamoto11 => 7045da6ed8a914690f087690e1e8d66...
I am Satoshi Nakamoto12 => 60f01db30c1a0d4cbce2b4b22e88b9b...
I am Satoshi Nakamoto13 => 0ebc56d59a34f5082aaef3d66b37a66...
I am Satoshi Nakamoto14 => 27ead1ca85da66981fd9da01a8c6816...
I am Satoshi Nakamoto15 => 394809fb809c5f83ce97ab554a2812c...
I am Satoshi Nakamoto16 => 8fa4992219df33f50834465d3047429...
I am Satoshi Nakamoto17 => dca9b8b4f8d8e1521fa4eaa46f4f0cd...
I am Satoshi Nakamoto18 => 9989a401b2a3a318b01e9ca9a22b0f3...
I am Satoshi Nakamoto19 => cda56022ecb5b67b2bc93a2d764e75f...

Each phrase produces a completely different hash result. They seem completely ran‐
dom, but you can reproduce the exact results in this example on any computer with
Python and see the same exact hashes.

The number used as a variable in such a scenario is called a nonce. The nonce is used
to vary the output of a cryptographic function, in this case to vary the SHA256 fin‐
gerprint of the phrase.

To make a challenge out of this algorithm, let’s set a target: find a phrase that pro‐
duces a hexadecimal hash that starts with a zero. Fortunately, this isn’t difficult!
Example 10-10 shows that the phrase “I am Satoshi Nakamoto13” produces the hash
0ebc56d59a34f5082aaef3d66b37a661696c2b618e62432727216ba9531041a5, which
fits our criteria. It took 13 attempts to find it. In terms of probabilities, if the output of
the hash function is evenly distributed we would expect to find a result with a 0 as the
hexadecimal prefix once every 16 hashes (one out of 16 hexadecimal digits 0 through
F). In numerical terms, that means finding a hash value that is less than
0x1000. We
call this threshold the target and the goal is to find a hash that is numerically less than
the target. If we decrease the target, the task of finding a hash that is less than the
target becomes more and more difficult.

To give a simple analogy, imagine a game where players throw a pair of dice repeat‐
edly, trying to throw less than a specified target. In the first round, the target is 12.

230 | Chapter 10: Mining and Consensus

Unless you throw double-six, you win. In the next round the target is 11. Players
must throw 10 or less to win, again an easy task. Let’s say a few rounds later the target
is down to 5. Now, more than half the dice throws will exceed the target and therefore
be invalid. It takes exponentially more dice throws to win, the lower the target gets.
Eventually, when the target is 2 (the minimum possible), only one throw out of every
36, or 2% of them, will produce a winning result.

From the perspective of an observer who knows that the target of the dice game is 2,
if someone has succeeded in casting a winning throw it can be assumed that they
attempted, on average, 36 throws. In other words, one can estimate the amount of
work it takes to succeed from the difficulty imposed by the target. When the algo‐
rithm is a based on a deterministic function such as SHA256, the input itself consti‐
tutes proof that a certain amount of work was done to produce a result below the
target. Hence, Proof-of-Work.

Even though each attempt produces a random outcome, the proba‐
bility of any possible outcome can be calculated in advance. There‐
fore, an outcome of specified difficulty constitutes proof of a
specific amount of work.

In Example 10-10, the winning “nonce” is 13 and this result can be confirmed by any‐
one independently. Anyone can add the number 13 as a suffix to the phrase “I am
Satoshi Nakamoto” and compute the hash, verifying that it is less than the target. The
successful result is also Proof-of-Work, because it proves we did the work to find that
nonce. While it only takes one hash computation to verify, it took us 13 hash compu‐
tations to find a nonce that worked. If we had a lower target (higher difficulty) it
would take many more hash computations to find a suitable nonce, but only one hash
computation for anyone to verify. Furthermore, by knowing the target, anyone can
estimate the difficulty using statistics and therefore know how much work was
needed to find such a nonce.

The Proof-of-Work must produce a hash that is less than the target.
A higher target means it is less difficult to find a hash that is below
the target. A lower target means it is more difficult to find a hash
below the target. The target and difficulty are inversely related.

Bitcoin’s Proof-of-Work is very similar to the challenge shown in Example 10-10. The
miner constructs a candidate block filled with transactions. Next, the miner calculates
the hash of this block’s header and sees if it is smaller than the current target. If the
hash is not less than the target, the miner will modify the nonce (usually just incre‐
menting it by one) and try again. At the current difficulty in the bitcoin network,

Mining the Block | 231

miners have to try quadrillions of times before finding a nonce that results in a low
enough block header hash.

A very simplified Proof-of-Work algorithm is implemented in Python in
Example 10-11.

Example 10-11. Simplified Proof-of-Work implementation

#!/usr/bin/env python
example of proof-of-work algorithm

import hashlib
import time

max_nonce = 2 ** 32 # 4 billion

def proof_of_work(header, difficulty_bits):

 # calculate the difficulty target
 target = 2 ** (256-difficulty_bits)

 for nonce in xrange(max_nonce):
 hash_result = hashlib.sha256(str(header)+str(nonce)).hexdigest()

 # check if this is a valid result, below the target
 if long(hash_result, 16) < target:
 print "Success with nonce %d" % nonce
 print "Hash is %s" % hash_result
 return (hash_result,nonce)

 print "Failed after %d (max_nonce) tries" % nonce
 return nonce

if __name__ == '__main__':

 nonce = 0
 hash_result = ''

 # difficulty from 0 to 31 bits
 for difficulty_bits in xrange(32):

 difficulty = 2 ** difficulty_bits
 print "Difficulty: %ld (%d bits)" % (difficulty, difficulty_bits)

 print "Starting search..."

 # checkpoint the current time
 start_time = time.time()

 # make a new block which includes the hash from the previous block

232 | Chapter 10: Mining and Consensus

 # we fake a block of transactions - just a string
 new_block = 'test block with transactions' + hash_result

 # find a valid nonce for the new block
 (hash_result, nonce) = proof_of_work(new_block, difficulty_bits)

 # checkpoint how long it took to find a result
 end_time = time.time()

 elapsed_time = end_time - start_time
 print "Elapsed Time: %.4f seconds" % elapsed_time

 if elapsed_time > 0:

 # estimate the hashes per second
 hash_power = float(long(nonce)/elapsed_time)
 print "Hashing Power: %ld hashes per second" % hash_power

Running this code, you can set the desired difficulty (in bits, how many of the leading
bits must be zero) and see how long it takes for your computer to find a solution. In
Example 10-12, you can see how it works on an average laptop.

Example 10-12. Running the Proof-of-Work example for various difficulties

$ python proof-of-work-example.py*

Difficulty: 1 (0 bits)

[...]

Difficulty: 8 (3 bits)
Starting search...
Success with nonce 9
Hash is 1c1c105e65b47142f028a8f93ddf3dabb9260491bc64474738133ce5256cb3c1
Elapsed Time: 0.0004 seconds
Hashing Power: 25065 hashes per second
Difficulty: 16 (4 bits)
Starting search...
Success with nonce 25
Hash is 0f7becfd3bcd1a82e06663c97176add89e7cae0268de46f94e7e11bc3863e148
Elapsed Time: 0.0005 seconds
Hashing Power: 52507 hashes per second
Difficulty: 32 (5 bits)
Starting search...
Success with nonce 36
Hash is 029ae6e5004302a120630adcbb808452346ab1cf0b94c5189ba8bac1d47e7903
Elapsed Time: 0.0006 seconds
Hashing Power: 58164 hashes per second

[...]

Mining the Block | 233

Difficulty: 4194304 (22 bits)
Starting search...
Success with nonce 1759164
Hash is 0000008bb8f0e731f0496b8e530da984e85fb3cd2bd81882fe8ba3610b6cefc3
Elapsed Time: 13.3201 seconds
Hashing Power: 132068 hashes per second
Difficulty: 8388608 (23 bits)
Starting search...
Success with nonce 14214729
Hash is 000001408cf12dbd20fcba6372a223e098d58786c6ff93488a9f74f5df4df0a3
Elapsed Time: 110.1507 seconds
Hashing Power: 129048 hashes per second
Difficulty: 16777216 (24 bits)
Starting search...
Success with nonce 24586379
Hash is 0000002c3d6b370fccd699708d1b7cb4a94388595171366b944d68b2acce8b95
Elapsed Time: 195.2991 seconds
Hashing Power: 125890 hashes per second

[...]

Difficulty: 67108864 (26 bits)
Starting search...
Success with nonce 84561291
Hash is 0000001f0ea21e676b6dde5ad429b9d131a9f2b000802ab2f169cbca22b1e21a
Elapsed Time: 665.0949 seconds
Hashing Power: 127141 hashes per second

As you can see, increasing the difficulty by 1 bit causes a doubling in the time it takes
to find a solution. If you think of the entire 256-bit number space, each time you con‐
strain one more bit to zero, you decrease the search space by half. In Example 10-12,
it takes 84 million hash attempts to find a nonce that produces a hash with 26 leading
bits as zero. Even at a speed of more than 120,000 hashes per second, it still requires
10 minutes on a laptop to find this solution.

At the time of writing, the network is attempting to find a block whose header hash is
less than:

0000000000000000029AB900

As you can see, there are a lot of zeros at the beginning of that target, meaning that
the acceptable range of hashes is much smaller, hence it’s more difficult to find a valid
hash. It will take on average more than 1.8 septa-hashes (thousand billion billion
hashes) per second for the network to discover the next block. That seems like an
impossible task, but fortunately the network is bringing 3 exa-hashes per second (EH/
sec) of processing power to bear, which will be able to find a block in about 10
minutes on average.

234 | Chapter 10: Mining and Consensus

Target Representation
In Example 10-3, we saw that the block contains the target, in a notation called “target
bits” or just “bits,” which in block 277,316 has the value of 0x1903a30c. This notation
expresses the Proof-of-Work target as a coefficient/exponent format, with the first
two hexadecimal digits for the exponent and the next six hex digits as the coefficient.
In this block, therefore, the exponent is 0x19 and the coefficient is 0x03a30c.

The formula to calculate the difficulty target from this representation is:

target = coefficient * 2^(8 * (exponent – 3))

Using that formula, and the difficulty bits value 0x1903a30c, we get:

target = 0x03a30c * 2^(0x08 * (0x19 - 0x03))^

=> target = 0x03a30c * 2^(0x08 * 0x16)^

=> target = 0x03a30c * 2^0xB0^

which in decimal is:

=> target = 238,348 * 2^176^

=> target =
22,829,202,948,393,929,850,749,706,076,701,368,331,072,452,018,388,575,715,328

switching back to hexadecimal:

=> target = 0x0000000000000003A30C00

This means that a valid block for height 277,316 is one that has a block header hash
that is less than the target. In binary that number must have more than 60 leading bits
set to zero. With this level of difficulty, a single miner processing 1 trillion hashes per
second (1 terahash per second or 1 TH/sec) would only find a solution once every
8,496 blocks or once every 59 days, on average.

Retargeting to Adjust Difficulty
As we saw, the target determines the difficulty and therefore affects how long it takes
to find a solution to the Proof-of-Work algorithm. This leads to the obvious ques‐
tions: Why is the difficulty adjustable, who adjusts it, and how?

Bitcoin’s blocks are generated every 10 minutes, on average. This is bitcoin’s heartbeat
and underpins the frequency of currency issuance and the speed of transaction settle‐
ment. It has to remain constant not just over the short term, but over a period of
many decades. Over this time, it is expected that computer power will continue to
increase at a rapid pace. Furthermore, the number of participants in mining and the
computers they use will also constantly change. To keep the block generation time at
10 minutes, the difficulty of mining must be adjusted to account for these changes. In

Mining the Block | 235

fact, the Proof-of-Work target is a dynamic parameter that is periodically adjusted to
meet a 10-minute block interval goal. In simple terms, the target is set so that the cur‐
rent mining power will result in a 10-minute block interval.

How, then, is such an adjustment made in a completely decentralized network? Retar‐
geting occurs automatically and on every node independently. Every 2,016 blocks, all
nodes retarget the Proof-of-Work. The equation for retargeting measures the time it
took to find the last 2,016 blocks and compares that to the expected time of 20,160
minutes (2,016 blocks times the desired 10-minute block interval). The ratio between
the actual timespan and desired timespan is calculated and a proportionate adjust‐
ment (up or down) is made to the target. In simple terms: If the network is finding
blocks faster than every 10 minutes, the difficulty increases (target decreases). If block
discovery is slower than expected, the difficulty decreases (target increases).

The equation can be summarized as:

New Target = Old Target * (Actual Time of Last 2016 Blocks / 20160 minutes)

Example 10-13 shows the code used in the Bitcoin Core client.

Example 10-13. Retargeting the Proof-of-Work—CalculateNextWorkRequired() in
pow.cpp

 // Limit adjustment step
 int64_t nActualTimespan = pindexLast->GetBlockTime() - nFirstBlockTime;
 LogPrintf(" nActualTimespan = %d before bounds\n", nActualTimespan);
 if (nActualTimespan < params.nPowTargetTimespan/4)
 nActualTimespan = params.nPowTargetTimespan/4;
 if (nActualTimespan > params.nPowTargetTimespan*4)
 nActualTimespan = params.nPowTargetTimespan*4;

 // Retarget
 const arith_uint256 bnPowLimit = UintToArith256(params.powLimit);
 arith_uint256 bnNew;
 arith_uint256 bnOld;
 bnNew.SetCompact(pindexLast->nBits);
 bnOld = bnNew;
 bnNew *= nActualTimespan;
 bnNew /= params.nPowTargetTimespan;

 if (bnNew > bnPowLimit)
 bnNew = bnPowLimit;

While the target calibration happens every 2,016 blocks, because of
an off-by-one error in the original Bitcoin Core client it is based on
the total time of the previous 2,015 blocks (not 2,016 as it should
be), resulting in a retargeting bias toward higher difficulty by
0.05%.

236 | Chapter 10: Mining and Consensus

The parameters Interval (2,016 blocks) and TargetTimespan (two weeks as
1,209,600 seconds) are defined in chainparams.cpp.

To avoid extreme volatility in the difficulty, the retargeting adjustment must be less
than a factor of four (4) per cycle. If the required target adjustment is greater than a
factor of four, it will be adjusted by a factor of 4 and not more. Any further adjust‐
ment will be accomplished in the next retargeting period because the imbalance will
persist through the next 2,016 blocks. Therefore, large discrepancies between hashing
power and difficulty might take several 2,016 block cycles to balance out.

The difficulty of mining a bitcoin block is approximately 10
minutes of processing for the entire network, based on the time it
took to mine the previous 2,016 blocks, adjusted every 2,016
blocks. This is achieved by lowering or raising the target.

Note that the target is independent of the number of transactions or the value of
transactions. This means that the amount of hashing power and therefore electricity
expended to secure bitcoin is also entirely independent of the number of transactions.
Bitcoin can scale up, achieve broader adoption, and remain secure without any
increase in hashing power from today’s level. The increase in hashing power repre‐
sents market forces as new miners enter the market to compete for the reward. As
long as enough hashing power is under the control of miners acting honestly in pur‐
suit of the reward, it is enough to prevent “takeover” attacks and, therefore, it is
enough to secure bitcoin.

The difficulty of mining is closely related to the cost of electricity and the exchange
rate of bitcoin vis-a-vis the currency used to pay for electricity. High-performance
mining systems are about as efficient as possible with the current generation of sili‐
con fabrication, converting electricity into hashing computation at the highest rate
possible. The primary influence on the mining market is the price of one kilowatt-
hour of electricity in bitcoin, because that determines the profitability of mining and
therefore the incentives to enter or exit the mining market.

Successfully Mining the Block
As we saw earlier, Jing’s node has constructed a candidate block and prepared it for
mining. Jing has several hardware mining rigs with application-specific integrated
circuits, where hundreds of thousands of integrated circuits run the SHA256 algo‐
rithm in parallel at incredible speeds. Many of these specialized machines are connec‐
ted to his mining node over USB or a local area network. Next, the mining node
running on Jing’s desktop transmits the block header to his mining hardware, which
starts testing trillions of nonces per second.

Successfully Mining the Block | 237

Almost 11 minutes after starting to mine block 277,316, one of the hardware mining
machines finds a solution and sends it back to the mining node. When inserted into
the block header, the nonce 924,591,752 produces a block hash of:

0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4

which is less than the target:

0000000000000003A30C00

Immediately, Jing’s mining node transmits the block to all its peers. They receive, vali‐
date, and then propagate the new block. As the block ripples out across the network,
each node adds it to its own copy of the blockchain, extending it to a new height of
277,316 blocks. As mining nodes receive and validate the block, they abandon their
efforts to find a block at the same height and immediately start computing the next
block in the chain, using Jing’s block as the “parent.” By building on top of Jing’s
newly discovered block, the other miners are essentially “voting” with their mining
power and endorsing Jing’s block and the chain it extends.

In the next section, we’ll look at the process each node uses to validate a block and
select the longest chain, creating the consensus that forms the decentralized block‐
chain.

Validating a New Block
The third step in bitcoin’s consensus mechanism is independent validation of each
new block by every node on the network. As the newly solved block moves across the
network, each node performs a series of tests to validate it before propagating it to its
peers. This ensures that only valid blocks are propagated on the network. The inde‐
pendent validation also ensures that miners who act honestly get their blocks incor‐
porated in the blockchain, thus earning the reward. Those miners who act
dishonestly have their blocks rejected and not only lose the reward, but also waste the
effort expended to find a Proof-of-Work solution, thus incurring the cost of electric‐
ity without compensation.

When a node receives a new block, it will validate the block by checking it against a
long list of criteria that must all be met; otherwise, the block is rejected. These criteria
can be seen in the Bitcoin Core client in the functions CheckBlock and CheckBlock
Header and include:

• The block data structure is syntactically valid
• The block header hash is less than the target (enforces the Proof-of-Work)
• The block timestamp is less than two hours in the future (allowing for time

errors)
• The block size is within acceptable limits

238 | Chapter 10: Mining and Consensus

• The first transaction (and only the first) is a coinbase transaction
• All transactions within the block are valid using the transaction checklist dis‐

cussed in “Independent Verification of Transactions” on page 218

The independent validation of each new block by every node on the network ensures
that the miners cannot cheat. In previous sections we saw how miners get to write a
transaction that awards them the new bitcoin created within the block and claim the
transaction fees. Why don’t miners write themselves a transaction for a thousand bit‐
coin instead of the correct reward? Because every node validates blocks according to
the same rules. An invalid coinbase transaction would make the entire block invalid,
which would result in the block being rejected and, therefore, that transaction would
never become part of the ledger. The miners have to construct a perfect block, based
on the shared rules that all nodes follow, and mine it with a correct solution to the
Proof-of-Work. To do so, they expend a lot of electricity in mining, and if they cheat,
all the electricity and effort is wasted. This is why independent validation is a key
component of decentralized consensus.

Assembling and Selecting Chains of Blocks
The final step in bitcoin’s decentralized consensus mechanism is the assembly of
blocks into chains and the selection of the chain with the most Proof-of-Work. Once
a node has validated a new block, it will then attempt to assemble a chain by connect‐
ing the block to the existing blockchain.

Nodes maintain three sets of blocks: those connected to the main blockchain, those
that form branches off the main blockchain (secondary chains), and finally, blocks
that do not have a known parent in the known chains (orphans). Invalid blocks are
rejected as soon as any one of the validation criteria fails and are therefore not
included in any chain.

The “main chain” at any time is whichever valid chain of blocks has the most cumula‐
tive Proof-of-Work associated with it. Under most circumstances this is also the chain
with the most blocks in it, unless there are two equal-length chains and one has more
Proof-of-Work. The main chain will also have branches with blocks that are “siblings”
to the blocks on the main chain. These blocks are valid but not part of the main
chain. They are kept for future reference, in case one of those chains is extended to
exceed the main chain in work. In the next section (“Blockchain Forks” on page 240),
we will see how secondary chains occur as a result of an almost simultaneous mining
of blocks at the same height.

When a new block is received, a node will try to slot it into the existing blockchain.
The node will look at the block’s “previous block hash” field, which is the reference to
the block’s parent. Then, the node will attempt to find that parent in the existing
blockchain. Most of the time, the parent will be the “tip” of the main chain, meaning

Assembling and Selecting Chains of Blocks | 239

this new block extends the main chain. For example, the new block 277,316 has a ref‐
erence to the hash of its parent block 277,315. Most nodes that receive 277,316 will
already have block 277,315 as the tip of their main chain and will therefore link the
new block and extend that chain.

Sometimes, as we will see in “Blockchain Forks” on page 240, the new block extends a
chain that is not the main chain. In that case, the node will attach the new block to
the secondary chain it extends and then compare the work of the secondary chain to
the main chain. If the secondary chain has more cumulative work than the main
chain, the node will reconverge on the secondary chain, meaning it will select the sec‐
ondary chain as its new main chain, making the old main chain a secondary chain. If
the node is a miner, it will now construct a block extending this new, longer, chain.

If a valid block is received and no parent is found in the existing chains, that block is
considered an “orphan.” Orphan blocks are saved in the orphan block pool where
they will stay until their parent is received. Once the parent is received and linked
into the existing chains, the orphan can be pulled out of the orphan pool and linked
to the parent, making it part of a chain. Orphan blocks usually occur when two
blocks that were mined within a short time of each other are received in reverse order
(child before parent).

By selecting the greatest-cumulative-work valid chain, all nodes eventually achieve
network-wide consensus. Temporary discrepancies between chains are resolved even‐
tually as more work is added, extending one of the possible chains. Mining nodes
“vote” with their mining power by choosing which chain to extend by mining the
next block. When they mine a new block and extend the chain, the new block itself
represents their vote.

In the next section we will look at how discrepancies between competing chains
(forks) are resolved by the independent selection of the greatest-cumulative-work
chain.

Blockchain Forks
Because the blockchain is a decentralized data structure, different copies of it are not
always consistent. Blocks might arrive at different nodes at different times, causing
the nodes to have different perspectives of the blockchain. To resolve this, each node
always selects and attempts to extend the chain of blocks that represents the most
Proof-of-Work, also known as the longest chain or greatest cumulative work chain.
By summing the work recorded in each block in a chain, a node can calculate the
total amount of work that has been expended to create that chain. As long as all nodes
select the greatest-cumulative-work chain, the global bitcoin network eventually con‐
verges to a consistent state. Forks occur as temporary inconsistencies between ver‐
sions of the blockchain, which are resolved by eventual reconvergence as more blocks
are added to one of the forks.

240 | Chapter 10: Mining and Consensus

The blockchain forks described in this section occur naturally as a
result of transmission delays in the global network. We will also
look at deliberately induced forks later in this chapter.

In the next few diagrams, we follow the progress of a “fork” event across the network.
The diagram is a simplified representation of the bitcoin network. For illustration
purposes, different blocks are shown as different shapes (star, triangle, upside-down
triangle, rhombus), spreading across the network. Each node in the network is repre‐
sented as a circle.

Each node has its own perspective of the global blockchain. As each node receives
blocks from its neighbors, it updates its own copy of the blockchain, selecting the
greatest-cumulative-work chain. For illustration purposes, each node contains a
shape that represents the block that it believes is currently the tip of the main chain.
So, if you see a star shape in the node, that means that the star block is the tip of the
main chain, as far as that node is concerned.

In the first diagram (Figure 10-2), the network has a unified perspective of the block‐
chain, with the star block as the tip of the main chain.

Figure 10-2. Before the fork—all nodes have the same perspective

Assembling and Selecting Chains of Blocks | 241

A “fork” occurs whenever there are two candidate blocks competing to form the
longest blockchain. This occurs under normal conditions whenever two miners solve
the Proof-of-Work algorithm within a short period of time from each other. As both
miners discover a solution for their respective candidate blocks, they immediately
broadcast their own “winning” block to their immediate neighbors who begin propa‐
gating the block across the network. Each node that receives a valid block will incor‐
porate it into its blockchain, extending the blockchain by one block. If that node later
sees another candidate block extending the same parent, it connects the second can‐
didate on a secondary chain. As a result, some nodes will “see” one candidate block
first, while other nodes will see the other candidate block and two competing versions
of the blockchain will emerge.

In Figure 10-3, we see two miners (Node X and Node Y) who mine two different
blocks almost simultaneously. Both of these blocks are children of the star block, and
extend the chain by building on top of the star block. To help us track it, one is visual‐
ized as a triangle block originating from Node X, and the other is shown as an upside-
down triangle block originating from Node Y.

Figure 10-3. Visualization of a blockchain fork event: two blocks found simultaneously

242 | Chapter 10: Mining and Consensus

Let’s assume, for example, that a miner Node X finds a Proof-of-Work solution for a
block “triangle” that extends the blockchain, building on top of the parent block
“star.” Almost simultaneously, the miner Node Y who was also extending the chain
from block “star” finds a solution for block “upside-down triangle,” his candidate
block. Now, there are two possible blocks; one we call “triangle,” originating in Node
X; and one we call “upside-down triangle,” originating in Node Y. Both blocks are
valid, both blocks contain a valid solution to the Proof-of-Work, and both blocks
extend the same parent (block “star”). Both blocks likely contain most of the same
transactions, with only perhaps a few differences in the order of transactions.

As the two blocks propagate, some nodes receive block “triangle” first and some
receive block “upside-down triangle” first. As shown in Figure 10-4, the network
splits into two different perspectives of the blockchain; one side topped with a trian‐
gle block, the other with the upside-down-triangle block.

Figure 10-4. Visualization of a blockchain fork event: two blocks propagate, splitting the
network

In the diagram, a randomly chosen “Node X” received the triangle block first and
extended the star chain with it. Node X selected the chain with “triangle” block as the
main chain. Later, Node X also received the “upside-down triangle” block. Since it
was received second, it is assumed to have “lost” the race. Yet, the “upside-down tri‐

Assembling and Selecting Chains of Blocks | 243

angle” block is not discarded. It is linked to the “star” block parent and forms a secon‐
dary chain. While Node X assumes it has correctly selected the winning chain, it
keeps the “losing” chain so that it has the information needed to reconverge if the
“losing” chain ends up “winning.”

On the other side of the network, Node Y constructs a blockchain based on its own
perspective of the sequence of events. It received “upside-down triangle” first and
elected that chain as the “winner.” When it later received “triangle” block, it connec‐
ted it to the “star” block parent as a secondary chain.

Neither side is “correct,” or “incorrect.” Both are valid perspectives of the blockchain.
Only in hindsight will one prevail, based on how these two competing chains are
extended by additional work.

Mining nodes whose perspective resembles Node X will immediately begin mining a
candidate block that extends the chain with “triangle” as its tip. By linking “triangle”
as the parent of their candidate block, they are voting with their hashing power. Their
vote supports the chain that they have elected as the main chain.

Any mining node whose perspective resembles Node Y will start building a candidate
node with “upside-down triangle” as its parent, extending the chain that they believe
is the main chain. And so, the race begins again.

Forks are almost always resolved within one block. While part of the network’s hash‐
ing power is dedicated to building on top of “triangle” as the parent, another part of
the hashing power is focused on building on top of “upside-down triangle.” Even if
the hashing power is almost evenly split, it is likely that one set of miners will find a
solution and propagate it before the other set of miners have found any solutions.
Let’s say, for example, that the miners building on top of “triangle” find a new block
“rhombus” that extends the chain (e.g., star-triangle-rhombus). They immediately
propagate this new block and the entire network sees it as a valid solution as shown
in Figure 10-5.

All nodes that had chosen “triangle” as the winner in the previous round will simply
extend the chain one more block. The nodes that chose “upside-down triangle” as the
winner, however, will now see two chains: star-triangle-rhombus and star-upside-
down-triangle. The chain star-triangle-rhombus is now longer (more cumulative
work) than the other chain. As a result, those nodes will set the chain star-triangle-
rhombus as the main chain and change the star-upside-down-triangle chain to a sec‐
ondary chain, as shown in Figure 10-6. This is a chain reconvergence, because those
nodes are forced to revise their view of the blockchain to incorporate the new evi‐
dence of a longer chain. Any miners working on extending the chain star-upside-
down-triangle will now stop that work because their candidate block is an “orphan,”
as its parent “upside-down-triangle” is no longer on the longest chain. The transac‐
tions within “upside-down-triangle” are re-inserted in the mempool for inclusion in

244 | Chapter 10: Mining and Consensus

the next block, because the block they were in is no longer in the main chain. The
entire network reconverges on a single blockchain star-triangle-rhombus, with
“rhombus” as the last block in the chain. All miners immediately start working on
candidate blocks that reference “rhombus” as their parent to extend the star-triangle-
rhombus chain.

Figure 10-5. Visualization of a blockchain fork event: a new block extends one fork,
reconverging the network

Assembling and Selecting Chains of Blocks | 245

Figure 10-6. Visualization of a blockchain fork event: the network reconverges on a new
longest chain

It is theoretically possible for a fork to extend to two blocks, if two blocks are found
almost simultaneously by miners on opposite “sides” of a previous fork. However, the
chance of that happening is very low. Whereas a one-block fork might occur every
day, a two-block fork occurs at most once every few weeks.

246 | Chapter 10: Mining and Consensus

Bitcoin’s block interval of 10 minutes is a design compromise between fast confirma‐
tion times (settlement of transactions) and the probability of a fork. A faster block
time would make transactions clear faster but lead to more frequent blockchain forks,
whereas a slower block time would decrease the number of forks but make settlement
slower.

Mining and the Hashing Race
Bitcoin mining is an extremely competitive industry. The hashing power has
increased exponentially every year of bitcoin’s existence. Some years the growth has
reflected a complete change of technology, such as in 2010 and 2011 when many min‐
ers switched from using CPU mining to GPU mining and field programmable gate
array (FPGA) mining. In 2013 the introduction of ASIC mining lead to another giant
leap in mining power, by placing the SHA256 function directly on silicon chips speci‐
alized for the purpose of mining. The first such chips could deliver more mining
power in a single box than the entire bitcoin network in 2010.

The following list shows the total hashing power of the bitcoin network, over the first
eight years of operation:

2009
0.5 MH/sec–8 MH/sec (16× growth)

2010
8 MH/sec–116 GH/sec (14,500× growth)

2011
16 GH/sec–9 TH/sec (562× growth)

2012
9 TH/sec–23 TH/sec (2.5× growth)

2013
23 TH/sec–10 PH/sec (450× growth)

2014
10 PH/sec–300 PH/sec (3000× growth)

2015
300 PH/sec-800 PH/sec (266× growth)

2016
800 PH/sec-2.5 EH/sec (312× growth))

In the chart in Figure 10-7, we can see that bitcoin network’s hashing power increased
over the past two years. As you can see, the competition between miners and the

Mining and the Hashing Race | 247

growth of bitcoin has resulted in an exponential increase in the hashing power (total
hashes per second across the network).

Figure 10-7. Total hashing power, terahashes per second (TH/sec)

As the amount of hashing power applied to mining bitcoin has exploded, the diffi‐
culty has risen to match it. The difficulty metric in the chart shown in Figure 10-8 is
measured as a ratio of current difficulty over minimum difficulty (the difficulty of the
first block).

Figure 10-8. Bitcoin’s mining difficulty metric

248 | Chapter 10: Mining and Consensus

In the last two years, the ASIC mining chips have become increasingly denser,
approaching the cutting edge of silicon fabrication with a feature size (resolution) of
16 nanometers (nm). Currently, ASIC manufacturers are aiming to overtake general-
purpose CPU chip manufacturers, designing chips with a feature size of 14 nm,
because the profitability of mining is driving this industry even faster than general
computing. There are no more giant leaps left in bitcoin mining, because the industry
has reached the forefront of Moore’s Law, which stipulates that computing density
will double approximately every 18 months. Still, the mining power of the network
continues to advance at an exponential pace as the race for higher density chips is
matched with a race for higher density data centers where thousands of these chips
can be deployed. It’s no longer about how much mining can be done with one chip,
but how many chips can be squeezed into a building, while still dissipating the heat
and providing adequate power.

The Extra Nonce Solution
Since 2012, bitcoin mining has evolved to resolve a fundamental limitation in the
structure of the block header. In the early days of bitcoin, a miner could find a block
by iterating through the nonce until the resulting hash was below the target. As diffi‐
culty increased, miners often cycled through all 4 billion values of the nonce without
finding a block. However, this was easily resolved by updating the block timestamp to
account for the elapsed time. Because the timestamp is part of the header, the change
would allow miners to iterate through the values of the nonce again with different
results. Once mining hardware exceeded 4 GH/sec, however, this approach became
increasingly difficult because the nonce values were exhausted in less than a second.
As ASIC mining equipment started pushing and then exceeding the TH/sec hash
rate, the mining software needed more space for nonce values in order to find valid
blocks. The timestamp could be stretched a bit, but moving it too far into the future
would cause the block to become invalid. A new source of “change” was needed in the
block header. The solution was to use the coinbase transaction as a source of extra
nonce values. Because the coinbase script can store between 2 and 100 bytes of data,
miners started using that space as extra nonce space, allowing them to explore a
much larger range of block header values to find valid blocks. The coinbase transac‐
tion is included in the merkle tree, which means that any change in the coinbase
script causes the merkle root to change. Eight bytes of extra nonce, plus the 4 bytes of
“standard” nonce allow miners to explore a total 296 (8 followed by 28 zeros) possibili‐
ties per second without having to modify the timestamp. If, in the future, miners
could run through all these possibilities, they could then modify the timestamp.
There is also more space in the coinbase script for future expansion of the extra
nonce space.

Mining and the Hashing Race | 249

Mining Pools
In this highly competitive environment, individual miners working alone (also
known as solo miners) don’t stand a chance. The likelihood of them finding a block
to offset their electricity and hardware costs is so low that it represents a gamble, like
playing the lottery. Even the fastest consumer ASIC mining system cannot keep up
with commercial systems that stack tens of thousands of these chips in giant ware‐
houses near hydroelectric powerstations. Miners now collaborate to form mining
pools, pooling their hashing power and sharing the reward among thousands of par‐
ticipants. By participating in a pool, miners get a smaller share of the overall reward,
but typically get rewarded every day, reducing uncertainty.

Let’s look at a specific example. Assume a miner has purchased mining hardware with
a combined hashing rate of 14,000 gigahashes per second (GH/s), or 14 TH/s. In 2017
this equipment costs approximately $2,500 USD. The hardware consumes 1375 watts
(1.3 kW) of electricity when running, 32 kW-hours a day, at a cost of $1 to $2 per day
at very low electricity rates. At current bitcoin difficulty, the miner will be able to solo
mine a block approximately once every 4 years. If the miner does find a single block
in that timeframe, the payout of 12.5 bitcoin, at approximately $1,000 per bitcoin, will
result in a single payout of $12,500, which will not even cover the entire cost of the
hardware and the electricity consumed over the time period, leaving a net loss of
approximately $1,000. However, the chance of finding a block in a 4-year period
depends on the miner’s luck. He might find two blocks in 4 years and make a very
large profit. Or he might not find a block for 5 years and suffer a bigger financial loss.
Even worse, the difficulty of the bitcoin Proof-of-Work algorithm is likely to go up
significantly over that period, at the current rate of growth of hashing power, mean‐
ing the miner has, at most, one year to break even before the hardware is effectively
obsolete and must be replaced by more powerful mining hardware. If this miner par‐
ticipates in a mining pool, instead of waiting for a once-in-four-years $12,500 wind‐
fall, he will be able to earn approximately $50 to $60 per week. The regular payouts
from a mining pool will help him amortize the cost of hardware and electricity over
time without taking an enormous risk. The hardware will still be obsolete in one or
two years and the risk is still high, but the revenue is at least regular and reliable over
that period. Financially this only makes sense at very low electricity cost (less than 1
cent per kW-hour) and only at very large scale.

Mining pools coordinate many hundreds or thousands of miners, over specialized
pool-mining protocols. The individual miners configure their mining equipment to
connect to a pool server, after creating an account with the pool. Their mining hard‐
ware remains connected to the pool server while mining, synchronizing their efforts
with the other miners. Thus, the pool miners share the effort to mine a block and
then share in the rewards.

250 | Chapter 10: Mining and Consensus

Successful blocks pay the reward to a pool bitcoin address, rather than individual
miners. The pool server will periodically make payments to the miners’ bitcoin
addresses, once their share of the rewards has reached a certain threshold. Typically,
the pool server charges a percentage fee of the rewards for providing the pool-mining
service.

Miners participating in a pool split the work of searching for a solution to a candidate
block, earning “shares” for their mining contribution. The mining pool sets a higher
target (lower difficulty) for earning a share, typically more than 1,000 times easier
than the bitcoin network’s target. When someone in the pool successfully mines a
block, the reward is earned by the pool and then shared with all miners in proportion
to the number of shares they contributed to the effort.

Pools are open to any miner, big or small, professional or amateur. A pool will there‐
fore have some participants with a single small mining machine, and others with a
garage full of high-end mining hardware. Some will be mining with a few tens of a
kilowatt of electricity, others will be running a data center consuming a megawatt of
power. How does a mining pool measure the individual contributions, so as to fairly
distribute the rewards, without the possibility of cheating? The answer is to use bit‐
coin’s Proof-of-Work algorithm to measure each pool miner’s contribution, but set at
a lower difficulty so that even the smallest pool miners win a share frequently enough
to make it worthwhile to contribute to the pool. By setting a lower difficulty for earn‐
ing shares, the pool measures the amount of work done by each miner. Each time a
pool miner finds a block header hash that is less than the pool target, she proves she
has done the hashing work to find that result. More importantly, the work to find
shares contributes, in a statistically measurable way, to the overall effort to find a hash
lower than the bitcoin network’s target. Thousands of miners trying to find low-value
hashes will eventually find one low enough to satisfy the bitcoin network target.

Let’s return to the analogy of a dice game. If the dice players are throwing dice with a
goal of throwing less than four (the overall network difficulty), a pool would set an
easier target, counting how many times the pool players managed to throw less than
eight. When pool players throw less than eight (the pool share target), they earn
shares, but they don’t win the game because they don’t achieve the game target (less
than four). The pool players will achieve the easier pool target much more often,
earning them shares very regularly, even when they don’t achieve the harder target of
winning the game. Every now and then, one of the pool players will throw a com‐
bined dice throw of less than four and the pool wins. Then, the earnings can be dis‐
tributed to the pool players based on the shares they earned. Even though the target
of eight-or-less wasn’t winning, it was a fair way to measure dice throws for the play‐
ers, and it occasionally produces a less-than-four throw.

Similarly, a mining pool will set a (higher and easier) pool target that will ensure that
an individual pool miner can find block header hashes that are less than the pool tar‐

Mining and the Hashing Race | 251

get often, earning shares. Every now and then, one of these attempts will produce a
block header hash that is less than the bitcoin network target, making it a valid block
and the whole pool wins.

Managed pools
Most mining pools are “managed,” meaning that there is a company or individual
running a pool server. The owner of the pool server is called the pool operator, and he
charges pool miners a percentage fee of the earnings.

The pool server runs specialized software and a pool-mining protocol that coordinate
the activities of the pool miners. The pool server is also connected to one or more full
bitcoin nodes and has direct access to a full copy of the blockchain database. This
allows the pool server to validate blocks and transactions on behalf of the pool min‐
ers, relieving them of the burden of running a full node. For pool miners, this is an
important consideration, because a full node requires a dedicated computer with at
least 100 to 150 GB of persistent storage (disk) and at least 2 to 4 GB of memory
(RAM). Furthermore, the bitcoin software running on the full node needs to be
monitored, maintained, and upgraded frequently. Any downtime caused by a lack of
maintenance or lack of resources will hurt the miner’s profitability. For many miners,
the ability to mine without running a full node is another big benefit of joining a
managed pool.

Pool miners connect to the pool server using a mining protocol such as Stratum
(STM) or GetBlockTemplate (GBT). An older standard called GetWork (GWK) has
been mostly obsolete since late 2012, because it does not easily support mining at
hash rates above 4 GH/s. Both the STM and GBT protocols create block templates
that contain a template of a candidate block header. The pool server constructs a can‐
didate block by aggregating transactions, adding a coinbase transaction (with extra
nonce space), calculating the merkle root, and linking to the previous block hash. The
header of the candidate block is then sent to each of the pool miners as a template.
Each pool miner then mines using the block template, at a higher (easier) target than
the bitcoin network target, and sends any successful results back to the pool server to
earn shares.

Peer-to-peer mining pool (P2Pool)
Managed pools create the possibility of cheating by the pool operator, who might
direct the pool effort to double-spend transactions or invalidate blocks (see “Consen‐
sus Attacks” on page 253). Furthermore, centralized pool servers represent a single-
point-of-failure. If the pool server is down or is slowed by a denial-of-service attack,
the pool miners cannot mine. In 2011, to resolve these issues of centralization, a new
pool mining method was proposed and implemented: P2Pool, a peer-to-peer mining
pool without a central operator.

252 | Chapter 10: Mining and Consensus

P2Pool works by decentralizing the functions of the pool server, implementing a par‐
allel blockchain-like system called a share chain. A share chain is a blockchain run‐
ning at a lower difficulty than the bitcoin blockchain. The share chain allows pool
miners to collaborate in a decentralized pool by mining shares on the share chain at a
rate of one share block every 30 seconds. Each of the blocks on the share chain
records a proportionate share reward for the pool miners who contribute work, car‐
rying the shares forward from the previous share block. When one of the share
blocks also achieves the bitcoin network target, it is propagated and included on the
bitcoin blockchain, rewarding all the pool miners who contributed to all the shares
that preceded the winning share block. Essentially, instead of a pool server keeping
track of pool miner shares and rewards, the share chain allows all pool miners to keep
track of all shares using a decentralized consensus mechanism like bitcoin’s block‐
chain consensus mechanism.

P2Pool mining is more complex than pool mining because it requires that the pool
miners run a dedicated computer with enough disk space, memory, and internet
bandwidth to support a full bitcoin node and the P2Pool node software. P2Pool min‐
ers connect their mining hardware to their local P2Pool node, which simulates the
functions of a pool server by sending block templates to the mining hardware. On
P2Pool, individual pool miners construct their own candidate blocks, aggregating
transactions much like solo miners, but then mine collaboratively on the share chain.
P2Pool is a hybrid approach that has the advantage of much more granular payouts
than solo mining, but without giving too much control to a pool operator like man‐
aged pools.

Even though P2Pool reduces the concentration of power by mining pool operators, it
is conceivably vulnerable to 51% attacks against the share chain itself. A much
broader adoption of P2Pool does not solve the 51% attack problem for bitcoin itself.
Rather, P2Pool makes bitcoin more robust overall, as part of a diversified mining eco‐
system.

Consensus Attacks
Bitcoin’s consensus mechanism is, at least theoretically, vulnerable to attack by miners
(or pools) that attempt to use their hashing power to dishonest or destructive ends.
As we saw, the consensus mechanism depends on having a majority of the miners
acting honestly out of self-interest. However, if a miner or group of miners can ach‐
ieve a significant share of the mining power, they can attack the consensus mecha‐
nism so as to disrupt the security and availability of the bitcoin network.

It is important to note that consensus attacks can only affect future consensus, or at
best, the most recent past (tens of blocks). Bitcoin’s ledger becomes more and more
immutable as time passes. While in theory, a fork can be achieved at any depth, in
practice, the computing power needed to force a very deep fork is immense, making

Consensus Attacks | 253

old blocks practically immutable. Consensus attacks also do not affect the security of
the private keys and signing algorithm (ECDSA). A consensus attack cannot steal bit‐
coin, spend bitcoin without signatures, redirect bitcoin, or otherwise change past
transactions or ownership records. Consensus attacks can only affect the most recent
blocks and cause denial-of-service disruptions on the creation of future blocks.

One attack scenario against the consensus mechanism is called the “51% attack.” In
this scenario a group of miners, controlling a majority (51%) of the total network’s
hashing power, collude to attack bitcoin. With the ability to mine the majority of the
blocks, the attacking miners can cause deliberate “forks” in the blockchain and
double-spend transactions or execute denial-of-service attacks against specific trans‐
actions or addresses. A fork/double-spend attack is where the attacker causes previ‐
ously confirmed blocks to be invalidated by forking below them and re-converging
on an alternate chain. With sufficient power, an attacker can invalidate six or more
blocks in a row, causing transactions that were considered immutable (six confirma‐
tions) to be invalidated. Note that a double-spend can only be done on the attacker’s
own transactions, for which the attacker can produce a valid signature. Double-
spending one’s own transactions is profitable if by invalidating a transaction the
attacker can get an irreversible exchange payment or product without paying for it.

Let’s examine a practical example of a 51% attack. In the first chapter, we looked at a
transaction between Alice and Bob for a cup of coffee. Bob, the cafe owner, is willing
to accept payment for cups of coffee without waiting for confirmation (mining in a
block), because the risk of a double-spend on a cup of coffee is low in comparison to
the convenience of rapid customer service. This is similar to the practice of coffee
shops that accept credit card payments without a signature for amounts below $25,
because the risk of a credit-card chargeback is low while the cost of delaying the
transaction to obtain a signature is comparatively larger. In contrast, selling a more
expensive item for bitcoin runs the risk of a double-spend attack, where the buyer
broadcasts a competing transaction that spends the same inputs (UTXO) and cancels
the payment to the merchant. A double-spend attack can happen in two ways: either
before a transaction is confirmed, or if the attacker takes advantage of a blockchain
fork to undo several blocks. A 51% attack allows attackers to double-spend their own
transactions in the new chain, thus undoing the corresponding transaction in the old
chain.

In our example, malicious attacker Mallory goes to Carol’s gallery and purchases a
beautiful triptych painting depicting Satoshi Nakamoto as Prometheus. Carol sells
“The Great Fire” paintings for $250,000 in bitcoin to Mallory. Instead of waiting for
six or more confirmations on the transaction, Carol wraps and hands the paintings to
Mallory after only one confirmation. Mallory works with an accomplice, Paul, who
operates a large mining pool, and the accomplice launches a 51% attack as soon as
Mallory’s transaction is included in a block. Paul directs the mining pool to remine
the same block height as the block containing Mallory’s transaction, replacing Mal‐

254 | Chapter 10: Mining and Consensus

lory’s payment to Carol with a transaction that double-spends the same input as Mal‐
lory’s payment. The double-spend transaction consumes the same UTXO and pays it
back to Mallory’s wallet, instead of paying it to Carol, essentially allowing Mallory to
keep the bitcoin. Paul then directs the mining pool to mine an additional block, so as
to make the chain containing the double-spend transaction longer than the original
chain (causing a fork below the block containing Mallory’s transaction). When the
blockchain fork resolves in favor of the new (longer) chain, the double-spent transac‐
tion replaces the original payment to Carol. Carol is now missing the three paintings
and also has no bitcoin payment. Throughout all this activity, Paul’s mining pool par‐
ticipants might remain blissfully unaware of the double-spend attempt, because they
mine with automated miners and cannot monitor every transaction or block.

To protect against this kind of attack, a merchant selling large-value items must wait
at least six confirmations before giving the product to the buyer. Alternatively, the
merchant should use an escrow multisignature account, again waiting for several
confirmations after the escrow account is funded. The more confirmations elapse, the
harder it becomes to invalidate a transaction with a 51% attack. For high-value items,
payment by bitcoin will still be convenient and efficient even if the buyer has to wait
24 hours for delivery, which would correspond to approximately 144 confirmations.

In addition to a double-spend attack, the other scenario for a consensus attack is to
deny service to specific bitcoin participants (specific bitcoin addresses). An attacker
with a majority of the mining power can simply ignore specific transactions. If they
are included in a block mined by another miner, the attacker can deliberately fork
and remine that block, again excluding the specific transactions. This type of attack
can result in a sustained denial-of-service against a specific address or set of addresses
for as long as the attacker controls the majority of the mining power.

Despite its name, the 51% attack scenario doesn’t actually require 51% of the hashing
power. In fact, such an attack can be attempted with a smaller percentage of the hash‐
ing power. The 51% threshold is simply the level at which such an attack is almost
guaranteed to succeed. A consensus attack is essentially a tug-of-war for the next
block and the “stronger” group is more likely to win. With less hashing power, the
probability of success is reduced, because other miners control the generation of
some blocks with their “honest” mining power. One way to look at it is that the more
hashing power an attacker has, the longer the fork he can deliberately create, the
more blocks in the recent past he can invalidate, or the more blocks in the future he
can control. Security research groups have used statistical modeling to claim that var‐
ious types of consensus attacks are possible with as little as 30% of the hashing power.

The massive increase of total hashing power has arguably made bitcoin impervious to
attacks by a single miner. There is no possible way for a solo miner to control more
than a small percentage of the total mining power. However, the centralization of
control caused by mining pools has introduced the risk of for-profit attacks by a min‐

Consensus Attacks | 255

ing pool operator. The pool operator in a managed pool controls the construction of
candidate blocks and also controls which transactions are included. This gives the
pool operator the power to exclude transactions or introduce double-spend transac‐
tions. If such abuse of power is done in a limited and subtle way, a pool operator
could conceivably profit from a consensus attack without being noticed.

Not all attackers will be motivated by profit, however. One potential attack scenario is
where an attacker intends to disrupt the bitcoin network without the possibility of
profiting from such disruption. A malicious attack aimed at crippling bitcoin would
require enormous investment and covert planning, but could conceivably be
launched by a well-funded, most likely state-sponsored, attacker. Alternatively, a well-
funded attacker could attack bitcoin’s consensus by simultaneously amassing mining
hardware, compromising pool operators, and attacking other pools with denial-of-
service. All of these scenarios are theoretically possible, but increasingly impractical
as the bitcoin network’s overall hashing power continues to grow exponentially.

Undoubtedly, a serious consensus attack would erode confidence in bitcoin in the
short term, possibly causing a significant price decline. However, the bitcoin network
and software are constantly evolving, so consensus attacks would be met with imme‐
diate countermeasures by the bitcoin community, making bitcoin hardier, stealthier,
and more robust than ever.

Changing the Consensus Rules
The rules of consensus determine the validity of transactions and blocks. These rules
are the basis for collaboration between all bitcoin nodes and are responsible for the
convergence of all local perspectives into a single consistent blockchain across the
entire network.

While the consensus rules are invariable in the short term and must be consistent
across all nodes, they are not invariable in the long term. In order to evolve and
develop the bitcoin system, the rules have to change from time to time to accommo‐
date new features, improvements, or bug fixes. Unlike traditional software develop‐
ment, however, upgrades to a consensus system are much more difficult and require
coordination between all the participants.

Hard Forks
In “Blockchain Forks” on page 240 we looked at how the bitcoin network may briefly
diverge, with two parts of the network following two different branches of the block‐
chain for a short time. We saw how this process occurs naturally, as part of the nor‐
mal operation of the network and how the network reconverges on a common
blockchain after one or more blocks are mined.

256 | Chapter 10: Mining and Consensus

There is another scenario in which the network may diverge into following two
chains: a change in the consensus rules. This type of fork is called a hard fork, because
after the fork the network does not reconverge onto a single chain. Instead, the two
chains evolve independently. Hard forks occur when part of the network is operating
under a different set of consensus rules than the rest of the network. This may occur
because of a bug or because of a deliberate change in the implementation of the con‐
sensus rules.

Hard forks can be used to change the rules of consensus, but they require coordina‐
tion between all participants in the system. Any nodes that do not upgrade to the new
consensus rules are unable to participate in the consensus mechanism and are forced
onto a separate chain at the moment of the hard fork. Thus, a change introduced by a
hard fork can be thought of as not “forward compatible,” in that nonupgraded sys‐
tems can no longer process the new consensus rules.

Let’s examine the mechanics of a hard fork with a specific example.

Figure 10-9 shows a blockchain with two forks. At block height 4, a one-block fork
occurs. This is the type of spontaneous fork we saw in “Blockchain Forks” on page
240. With the mining of block 5, the network reconverges on one chain and the fork
is resolved.

Figure 10-9. A blockchain with forks

Later, however, at block height 6, a hard fork occurs. Let’s assume that a new imple‐
mentation of the client is released with a change in the consensus rules. Starting on
block height 7, miners running this new implementation will accept a new type of
digital signature, let’s call it a “Smores” signature, that is not ECDSA based. Immedi‐
ately after, a node running the new implementation creates a transaction that contains
a Smores signature and a miner with the updated software mines block 7b containing
this transaction.

Any node or miner that has not upgraded the software to validate Smores signatures
is now unable to process block 7b. From their perspective, both the transaction that
contained a Smores signature and block 7b that contained that transaction are inva‐
lid, because they are evaluating them based upon the old consensus rules. These
nodes will reject the transaction and the block and will not propagate them. Any min‐
ers that are using the old rules will not accept block 7b and will continue to mine a

Changing the Consensus Rules | 257

candidate block whose parent is block 6. In fact, miners using the old rules may not
even receive block 7b if all the nodes they are connected to are also obeying the old
rules and therefore not propagating the block. Eventually, they will be able to mine
block 7a, which is valid under the old rules and does not contain any transactions
with Smores signatures.

The two chains continue to diverge from this point. Miners on the “b” chain will con‐
tinue to accept and mine transactions containing Smores signatures, while miners on
the “a” chain will continue to ignore these transactions. Even if block 8b does not con‐
tain any Smores-signed transactions, the miners on the “a” chain cannot process it. To
them it appears to be an orphan block, as its parent “7b” is not recognized as a valid
block.

Hard Forks: Software, Network, Mining, and Chain
For software developers, the term “fork” has another meaning, adding confusion to
the term “hard fork.” In open source software, a fork occurs when a group of develop‐
ers choose to follow a different software roadmap and start a competing implementa‐
tion of an open source project. We’ve already discussed two circumstances that will
lead to a hard fork: a bug in the consensus rules and a deliberate modification of the
consensus rules. In the case of a deliberate change to the consensus rules, a software
fork precedes the hard fork. However, for this type of hard fork to occur, a new soft‐
ware implementation of the consensus rules must be developed, adopted, and
launched.

Examples of software forks that have attempted to change consensus rules include
Bitcoin XT, Bitcoin Classic, and most recently Bitcoin Unlimited. However, none of
these software forks have resulted in a hard fork. While a software fork is a necessary
precondition, it is not in itself sufficient for a hard fork to occur. For a hard fork to
occur, the competing implementation must be adopted and the new rules activated,
by miners, wallets, and intermediary nodes. Conversely, there are numerous alterna‐
tive implementations of Bitcoin Core, and even software forks, that do not change the
consensus rules and barring a bug, can coexist on the network and interoperate
without causing a hard fork.

Consensus rules may differ in obvious and explicit ways, in the validation of transac‐
tions or blocks. The rules may also differ in more subtle ways, in the implementation
of the consensus rules as they apply to bitcoin scripts or cryptographic primitives
such as digital signatures. Finally, the consensus rules may differ in unanticipated
ways because of implicit consensus constraints imposed by system limitations or
implementation details. An example of the latter was seen in the unanticipated hard
fork during the upgrade of Bitcoin Core 0.7 to 0.8, which was caused by a limitation
in the Berkley DB implementation used to store blocks.

258 | Chapter 10: Mining and Consensus

Conceptually, we can think of a hard fork as developing in four stages: a software
fork, a network fork, a mining fork, and a chain fork.

The process begins when an alternative implementation of the client, with modified
consensus rules, is created by developers.

When this forked implementation is deployed in the network, a certain percentage of
miners, wallet users, and intermediate nodes may adopt and run this implementation.
A resulting fork will depend upon whether the new consensus rules apply to blocks,
transactions, or some other aspect of the system. If the new consensus rules pertain to
transactions, then a wallet creating a transaction under the new rules may precipitate
a network fork, followed by a hard fork when the transaction is mined into a block. If
the new rules pertain to blocks, then the hard fork process will begin when a block is
mined under the new rules.

First, the network will fork. Nodes based on the original implementation of the con‐
sensus rules will reject any transactions and blocks that are created under the new
rules. Furthermore, the nodes following the original consensus rules will temporarily
ban and disconnect from any nodes that are sending them these invalid transactions
and blocks. As a result, the network will partition into two: old nodes will only
remain connected to old nodes and new nodes will only be connected to new nodes.
A single transaction or block based on the new rules will ripple through the network
and result in the partition into two networks.

Once a miner using the new rules mines a block, the mining power and chain will
also fork. New miners will mine on top of the new block, while old miners will mine a
separate chain based on the old rules. The partitioned network will make it so that the
miners operating on separate consensus rules won’t likely receive each other’s blocks,
as they are connected to two separate networks.

Diverging Miners and Difficulty
As miners diverge into mining two different chains, the hashing power is split
between the chains. The mining power can be split in any proportion between the
two chains. The new rules may only be followed by a minority, or by the vast majority
of the mining power.

Let’s assume, for example, an 80%–20% split, with the majority of the mining power
using the new consensus rules. Let’s also assume that the fork occurs immediately
after a retargeting period.

The two chains would each inherit the difficulty from the retargeting period. The new
consensus rules would have 80% of the previously available mining power committed
to them. From the perspective of this chain, the mining power has suddenly declined
by 20% vis-a-vis the previous period. Blocks will be found on average every 12
minutes, representing the 20% decline in mining power available to extend this chain.

Changing the Consensus Rules | 259

This rate of block issuance will continue (barring any changes in hashing power) until
2016 blocks are mined, which will take approximately 24,192 minutes (at 12 minutes
per block), or 16.8 days. After 16.8 days, a retarget will occur and the difficulty will
adjust (reduced by 20%) to produce 10-minute blocks again, based on the reduced
amount of hashing power in this chain.

The minority chain, mining under the old rules with only 20% of the hashing power,
will face a much more difficult task. On this chain, blocks will now be mined every 50
minutes on average. The difficulty will not be adjusted for 2016 blocks, which will
take 100,800 minutes, or approximately 10 weeks to mine. Assuming a fixed capacity
per block, this will also result in a reduction of transaction capacity by a factor of 5, as
there are fewer blocks per hour available to record transactions.

Contentious Hard Forks
This is the dawn of consensus software development. Just as open source develop‐
ment changed both the methods and products of software and created new method‐
ologies, new tools, and new communities in its wake, consensus software
development also represents a new frontier in computer science. Out of the debates,
experiments, and tribulations of the bitcoin development roadmap, we will see new
development tools, practices, methodologies, and communities emerge.

Hard forks are seen as risky because they force a minority to either upgrade or
remain on a minority chain. The risk of splitting the entire system into two compet‐
ing systems is seen by many as an unacceptable risk. As a result, many developers are
reluctant to use the hard fork mechanism to implement upgrades to the consensus
rules, unless there is near-unanimous support from the entire network. Any hard fork
proposals that do not have near-unanimous support are considered too “contentious”
to attempt without risking a partition of the system.

The issue of hard forks is highly controversial in the bitcoin development commu‐
nity, especially as it relates to any proposed changes to the consensus rules controlling
the maximum block size limit. Some developers are opposed to any form of hard
fork, seeing it as too risky. Others see the mechanism of hard fork as an essential tool
for upgrading the consensus rules in a way that avoids “technical debt” and provides a
clean break with the past. Finally, some developers see hard forks as a mechanism
that should be used rarely, with a lot of advance planning and only under near-
unanimous consensus.

Already we have seen the emergence of new methodologies to address the risks of
hard forks. In the next section, we will look at soft forks, and the BIP-34 and BIP-9
methods for signaling and activation of consensus modifications.

260 | Chapter 10: Mining and Consensus

Soft Forks
Not all consensus rule changes cause a hard fork. Only consensus changes that are
forward-incompatible cause a fork. If the change is implemented in such a way that
an unmodified client still sees the transaction or block as valid under the previous
rules, the change can happen without a fork.

The term soft fork was introduced to distinguish this upgrade method from a “hard
fork.” In practice, a soft fork is not a fork at all. A soft fork is a forward-compatible
change to the consensus rules that allows unupgraded clients to continue to operate
in consensus with the new rules.

One aspect of soft forks that is not immediately obvious is that soft fork upgrades can
only be used to constrain the consensus rules, not to expand them. In order to be for‐
ward compatible, transactions and blocks created under the new rules must be valid
under the old rules too, but not vice versa. The new rules can only limit what is valid;
otherwise, they will trigger a hard fork when rejected under the old rules.

Soft forks can be implemented in a number of ways—the term does not define a sin‐
gle method, rather a set of methods that all have one thing in common: they don’t
require all nodes to upgrade or force nonupgraded nodes out of consensus.

Soft forks redefining NOP opcodes
A number of soft forks have been implemented in bitcoin, based on the re-
interpretation of NOP opcodes. Bitcoin Script had ten opcodes reserved for future
use, NOP1 through NOP10. Under the consensus rules, the presence of these
opcodes in a script is interpreted as a null-potent operator, meaning they have no
effect. Execution continues after the NOP opcode as if it wasn’t there.

A soft fork therefore can modify the semantics of a NOP code to give it new meaning.
For example, BIP-65 (CHECKLOCKTIMEVERIFY) reinterpreted the NOP2 opcode. Clients
implementing BIP-65 interpret NOP2 as OP_CHECKLOCKTIMEVERIFY and impose an
absolute locktime consensus rule on UTXO that contain this opcode in their locking
scripts. This change is a soft fork because a transaction that is valid under BIP-65 is
also valid on any client that is not implementing (ignorant of) BIP-65. To the old cli‐
ents, the script contains an NOP code, which is ignored.

Other ways to soft fork upgrade
The reinterpretation of NOP opcodes was both planned for and an obvious mecha‐
nism for consensus upgrades. Recently, however, another soft fork mechanism was
introduced that does not rely on NOP opcodes for a very specific type of consensus
change. This is examined in more detail in Appendix D. Segwit is an architectural
change to the structure of a transaction, which moves the unlocking script (witness)
from inside the transaction to an external data structure (segregating it). Segwit was

Changing the Consensus Rules | 261

initially envisioned as a hard fork upgrade, as it modified a fundamental structure
(transaction). In November 2015, a developer working on Bitcoin Core proposed a
mechanism by which segwit could be introduced as a soft fork. The mechanism used
for this is a modification of the locking script of UTXO created under segwit rules,
such that unmodified clients see the locking script as redeemable with any unlocking
script whatsoever. As a result, segwit can be introduced without requiring every node
to upgrade or split from the chain: a soft fork.

It is likely that there are other, yet to be discovered, mechanisms by which upgrades
can be made in a forward-compatible way as a soft fork.

Criticisms of Soft Forks
Soft forks based on the NOP opcodes are relatively uncontroversial. The NOP
opcodes were placed in Bitcoin Script with the explicit goal of allowing non-
disruptive upgrades.

However, many developers are concerned that other methods of soft fork upgrades
make unacceptable tradeoffs. Common criticisms of soft fork changes include:

Technical debt
Because soft forks are more technically complex than a hard fork upgrade, they
introduce technical debt, a term that refers to increasing the future cost of code
maintenance because of design tradeoffs made in the past. Code complexity in
turn increases the likelihood of bugs and security vulnerabilities.

Validation relaxation
Unmodified clients see transactions as valid, without evaluating the modified
consensus rules. In effect, the unmodified clients are not validating using the full
range of consensus rules, as they are blind to the new rules. This applies to NOP-
based upgrades, as well as other soft fork upgrades.

Irreversible upgrades
Because soft forks create transactions with additional consensus constraints, they
become irreversible upgrades in practice. If a soft fork upgrade were to be
reversed after being activated, any transactions created under the new rules could
result in a loss of funds under the old rules. For example, if a CLTV transaction is
evaluated under the old rules, there is no timelock constraint and it can be spent
whenever. Therefore, critics contend that a failed soft fork that had to be reversed
because of a bug would almost certainly lead to loss of funds.

Soft Fork Signaling with Block Version
Since soft forks allow unmodified clients to continue to operate within consensus, the
mechanism for “activating” a soft fork is through miners signaling readiness: a major‐

262 | Chapter 10: Mining and Consensus

ity of miners must agree that they are ready and willing to enforce the new consensus
rules. To coordinate their actions, there is a signaling mechanism that allows them to
show their support for a consensus rule change. This mechanism was introduced
with the activation of BIP-34 in March 2013 and replaced by the activation of BIP-9
in July 2016.

BIP-34 Signaling and Activation
The first implementation, in BIP-34, used the block version field to allow miners to
signal readiness for a specific consensus rule change. Prior to BIP-34, the block ver‐
sion was set to “1” by convention not enforced by consensus.

BIP-34 defined a consensus rule change that required the coinbase field (input) of the
coinbase transaction to contain the block height. Prior to BIP-34, the coinbase could
contain any arbitrary data the miners chose to include. After activation of BIP-34,
valid blocks had to contain a specific block-height at the beginning of the coinbase
and be identified with a version number greater than or equal to “2.”

To signal the change and activation of BIP-34, miners set the block version to “2,”
instead of “1.” This did not immediately make version “1” blocks invalid. Once activa‐
ted, version “1” blocks would become invalid and all version “2” blocks would be
required to contain the block height in the coinbase to be valid.

BIP-34 defined a two-step activation mechanism, based on a rolling window of 1000
blocks. A miner would signal his or her individual readiness for BIP-34 by construct‐
ing blocks with “2” as the version number. Strictly speaking, these blocks did not yet
have to comply with the new consensus rule of including the block-height in the
coinbase transaction because the consensus rule had not yet been activated. The con‐
sensus rules activated in two steps:

• If 75% (750 of the most recent 1000 blocks) are marked with version “2,” then
version “2” blocks must contain block height in the coinbase transaction or they
are rejected as invalid. Version “1” blocks are still accepted by the network and
do not need to contain block-height. The old and new consensus rules coexist
during this period.

• When 95% (950 of the most recent 1000 blocks) are version “2,” version “1”
blocks are no longer considered valid. Version “2” blocks are valid only if they
contain the block-height in the coinbase (as per the previous threshold). There‐
after, all blocks must comply with the new consensus rules, and all valid blocks
must contain block-height in the coinbase transaction.

After successful signaling and activation under the BIP-34 rules, this mechanism was
used twice more to activate soft forks:

Soft Fork Signaling with Block Version | 263

• BIP-66 Strict DER Encoding of Signatures was activated by BIP-34 style signaling
with a block version “3” and invalidating version “2” blocks.

• BIP-65 CHECKLOCKTIMEVERIFY was activated by BIP-34 style signaling with a
block version “4” and invalidating version “3” blocks.

After the activation of BIP-65, the signaling and activation mechanism of BIP-34 was
retired and replaced with the BIP-9 signaling mechanism described next.

The standard is defined in BIP-34 (Block v2, Height in Coinbase).

BIP-9 Signaling and Activation
The mechanism used by BIP-34, BIP-66, and BIP-65 was successful in activating three
soft forks. However, it was replaced because it had several limitations:

• By using the integer value of the block version, only one soft fork could be activa‐
ted at a time, so it required coordination between soft fork proposals and agree‐
ment on their prioritization and sequencing.

• Furthermore, because the block version was incremented, the mechanism didn’t
offer a straightforward way to reject a change and then propose a different one. If
old clients were still running, they could mistake signaling for a new change as
signaling for the previously rejected change.

• Each new change irrevocably reduced the available block versions for future
changes.

BIP-9 was proposed to overcome these challenges and improve the rate and ease of
implementing future changes.

BIP-9 interprets the block version as a bit field instead of an integer. Because the
block version was originally used as an integer, versions 1 through 4, only 29 bits
remain available to be used as a bit field. This leaves 29 bits that can be used to inde‐
pendently and simultaneously signal readiness on 29 different proposals.

BIP-9 also sets a maximum time for signaling and activation. This way miners don’t
need to signal forever. If a proposal is not activated within the TIMEOUT period
(defined in the proposal), the proposal is considered rejected. The proposal may be
resubmitted for signaling with a different bit, renewing the activation period.

Furthermore, after the TIMEOUT has passed and a feature has been activated or rejec‐
ted, the signaling bit can be reused for another feature without confusion. Therefore,
up to 29 changes can be signaled in parallel and after TIMEOUT the bits can be “recy‐
cled” to propose new changes.

264 | Chapter 10: Mining and Consensus

https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki

While signaling bits can be reused or recycled, as long as the voting
period does not overlap, the authors of BIP-9 recommend that bits
are reused only when necessary; unexpected behavior could occur
due to bugs in older software. In short, we should not expect to see
reuse until all 29 bits have been used once.

Proposed changes are identified by a data structure that contains the following fields:

name
A short description used to distinguish between proposals. Most often the BIP
describing the proposal, as “bipN,” where N is the BIP number.

bit
0 through 28, the bit in the block version that miners use to signal approval for
this proposal.

starttime
The time (based on Median Time Past, or MTP) that signaling starts after which
the bit’s value is interpreted as signaling readiness for the proposal.

endtime
The time (based on MTP) after which the change is considered rejected if it has
not reached the activation threshold.

Unlike BIP-34, BIP-9 counts activation signaling in whole intervals based on the diffi‐
culty retarget period of 2016 blocks. For every retarget period, if the sum of blocks
signaling for a proposal exceeds 95% (1916 of 2016), the proposal will be activated
one retarget period later.

BIP-9 offers a proposal state diagram to illustrate the various stages and transitions
for a proposal, as shown in Figure 10-10.

Proposals start in the DEFINED state, once their parameters are known (defined) in the
bitcoin software. For blocks with MTP after the start time, the proposal state transi‐
tions to STARTED. If the voting threshold is exceeded within a retarget period and the
timeout has not been exceeded, the proposal state transitions to LOCKED_IN. One
retarget period later, the proposal becomes ACTIVE. Proposals remain in the ACTIVE
state perpetually once they reach that state. If the timeout is elapsed before the voting
threshold has been reached, the proposal state changes to FAILED, indicating a rejec‐
ted proposal. REJECTED proposals remain in that state perpetually.

Soft Fork Signaling with Block Version | 265

Figure 10-10. BIP-9 state transition diagram

BIP-9 was first implemented for the activation of CHECKSEQUENCEVERIFY and associ‐
ated BIPs (68, 112, 113). The proposal named “csv” was activated successfully in July
of 2016.

The standard is defined in BIP-9 (Version bits with timeout and delay).

Consensus Software Development
Consensus software development continues to evolve and there is much discussion
on the various mechanisms for changing the consensus rules. By its very nature, bit‐
coin sets a very high bar on coordination and consensus for changes. As a decentral‐
ized system, it has no “authority” that can impose its will on the participants of the
network. Power is diffused between multiple constituencies such as miners, core
developers, wallet developers, exchanges, merchants, and end users. Decisions cannot
be made unilaterally by any of these constituencies. For example, while miners can
theoretically change the rules by simple majority (51%), they are constrained by the
consent of the other constituencies. If they act unilaterally, the rest of the participants
may simply refuse to follow them, keeping the economic activity on a minority chain.
Without economic activity (transactions, merchants, wallets, exchanges), the miners
will be mining a worthless coin with empty blocks. This diffusion of power means
that all the participants must coordinate, or no changes can be made. Status quo is the

266 | Chapter 10: Mining and Consensus

https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki

stable state of this system with only a few changes possible if there is strong consen‐
sus by a very large majority. The 95% threshold for soft forks is reflective of this real‐
ity.

It is important to recognize that there is no perfect solution for consensus develop‐
ment. Both hard forks and soft forks involve tradeoffs. For some types of changes,
soft forks may be a better choice; for others, hard forks may be a better choice. There
is no perfect choice; both carry risks. The one constant characteristic of consensus
software development is that change is difficult and consensus forces compromise.

Some see this as a weakness of consensus systems. In time, you may come to see it as
I do, as the system’s greatest strength.

Consensus Software Development | 267

CHAPTER 11

Bitcoin Security

Securing bitcoin is challenging because bitcoin is not an abstract reference to value,
like a balance in a bank account. Bitcoin is very much like digital cash or gold. You’ve
probably heard the expression, “Possession is nine-tenths of the law.” Well, in bitcoin,
possession is ten-tenths of the law. Possession of the keys to unlock the bitcoin is
equivalent to possession of cash or a chunk of precious metal. You can lose it, mis‐
place it, have it stolen, or accidentally give the wrong amount to someone. In every
one of these cases, users have no recourse, just as if they dropped cash on a public
sidewalk.

However, bitcoin has capabilities that cash, gold, and bank accounts do not. A bitcoin
wallet, containing your keys, can be backed up like any file. It can be stored in multi‐
ple copies, even printed on paper for hard-copy backup. You can’t “back up” cash,
gold, or bank accounts. Bitcoin is different enough from anything that has come
before that we need to think about bitcoin security in a novel way too.

Security Principles
The core principle in bitcoin is decentralization and it has important implications for
security. A centralized model, such as a traditional bank or payment network,
depends on access control and vetting to keep bad actors out of the system. By com‐
parison, a decentralized system like bitcoin pushes the responsibility and control to
the users. Because security of the network is based on Proof-of-Work, not access con‐
trol, the network can be open and no encryption is required for bitcoin traffic.

On a traditional payment network, such as a credit card system, the payment is open-
ended because it contains the user’s private identifier (the credit card number). After
the initial charge, anyone with access to the identifier can “pull” funds and charge the
owner again and again. Thus, the payment network has to be secured end-to-end

269

with encryption and must ensure that no eavesdroppers or intermediaries can com‐
promise the payment traffic, in transit or when it is stored (at rest). If a bad actor
gains access to the system, he can compromise current transactions and payment
tokens that can be used to create new transactions. Worse, when customer data is
compromised, the customers are exposed to identity theft and must take action to
prevent fraudulent use of the compromised accounts.

Bitcoin is dramatically different. A bitcoin transaction authorizes only a specific value
to a specific recipient and cannot be forged or modified. It does not reveal any private
information, such as the identities of the parties, and cannot be used to authorize
additional payments. Therefore, a bitcoin payment network does not need to be
encrypted or protected from eavesdropping. In fact, you can broadcast bitcoin trans‐
actions over an open public channel, such as unsecured WiFi or Bluetooth, with no
loss of security.

Bitcoin’s decentralized security model puts a lot of power in the hands of the users.
With that power comes responsibility for maintaining the secrecy of the keys. For
most users that is not easy to do, especially on general-purpose computing devices
such as internet-connected smartphones or laptops. Although bitcoin’s decentralized
model prevents the type of mass compromise seen with credit cards, many users are
not able to adequately secure their keys and get hacked, one by one.

Developing Bitcoin Systems Securely
The most important principle for bitcoin developers is decentralization. Most devel‐
opers will be familiar with centralized security models and might be tempted to apply
these models to their bitcoin applications, with disastrous results.

Bitcoin’s security relies on decentralized control over keys and on independent trans‐
action validation by miners. If you want to leverage bitcoin’s security, you need to
ensure that you remain within the bitcoin security model. In simple terms: don’t take
control of keys away from users and don’t take transactions off the blockchain.

For example, many early bitcoin exchanges concentrated all user funds in a single
“hot” wallet with keys stored on a single server. Such a design removes control from
users and centralizes control over keys in a single system. Many such systems have
been hacked, with disastrous consequences for their customers.

Another common mistake is to take transactions “off blockchain” in a misguided
effort to reduce transaction fees or accelerate transaction processing. An “off block‐
chain” system will record transactions on an internal, centralized ledger and only
occasionally synchronize them to the bitcoin blockchain. This practice, again, substi‐
tutes decentralized bitcoin security with a proprietary and centralized approach.
When transactions are off blockchain, improperly secured centralized ledgers can be
falsified, diverting funds and depleting reserves, unnoticed.

270 | Chapter 11: Bitcoin Security

Unless you are prepared to invest heavily in operational security, multiple layers of
access control, and audits (as the traditional banks do) you should think very care‐
fully before taking funds outside of bitcoin’s decentralized security context. Even if
you have the funds and discipline to implement a robust security model, such a
design merely replicates the fragile model of traditional financial networks, plagued
by identity theft, corruption, and embezzlement. To take advantage of bitcoin’s
unique decentralized security model, you have to avoid the temptation of centralized
architectures that might feel familiar but ultimately subvert bitcoin’s security.

The Root of Trust
Traditional security architecture is based upon a concept called the root of trust,
which is a trusted core used as the foundation for the security of the overall system or
application. Security architecture is developed around the root of trust as a series of
concentric circles, like layers in an onion, extending trust outward from the center.
Each layer builds upon the more-trusted inner layer using access controls, digital sig‐
natures, encryption, and other security primitives. As software systems become more
complex, they are more likely to contain bugs, which make them vulnerable to secu‐
rity compromise. As a result, the more complex a software system becomes, the
harder it is to secure. The root of trust concept ensures that most of the trust is placed
within the least complex part of the system, and therefore least vulnerable, parts of
the system, while more complex software is layered around it. This security architec‐
ture is repeated at different scales, first establishing a root of trust within the hard‐
ware of a single system, then extending that root of trust through the operating
system to higher-level system services, and finally across many servers layered in con‐
centric circles of diminishing trust.

Bitcoin security architecture is different. In bitcoin, the consensus system creates a
trusted public ledger that is completely decentralized. A correctly validated block‐
chain uses the genesis block as the root of trust, building a chain of trust up to the
current block. Bitcoin systems can and should use the blockchain as their root of
trust. When designing a complex bitcoin application that consists of services on
many different systems, you should carefully examine the security architecture in
order to ascertain where trust is being placed. Ultimately, the only thing that should
be explicitly trusted is a fully validated blockchain. If your application explicitly or
implicitly vests trust in anything but the blockchain, that should be a source of con‐
cern because it introduces vulnerability. A good method to evaluate the security
architecture of your application is to consider each individual component and evalu‐
ate a hypothetical scenario where that component is completely compromised and
under the control of a malicious actor. Take each component of your application, in
turn, and assess the impacts on the overall security if that component is compro‐
mised. If your application is no longer secure when components are compromised,
that shows you have misplaced trust in those components. A bitcoin application

Security Principles | 271

without vulnerabilities should be vulnerable only to a compromise of the bitcoin con‐
sensus mechanism, meaning that its root of trust is based on the strongest part of the
bitcoin security architecture.

The numerous examples of hacked bitcoin exchanges serve to underscore this point
because their security architecture and design fails even under the most casual scru‐
tiny. These centralized implementations had invested trust explicitly in numerous
components outside the bitcoin blockchain, such as hot wallets, centralized ledger
databases, vulnerable encryption keys, and similar schemes.

User Security Best Practices
Humans have used physical security controls for thousands of years. By comparison,
our experience with digital security is less than 50 years old. Modern general-purpose
operating systems are not very secure and not particularly suited to storing digital
money. Our computers are constantly exposed to external threats via always-on inter‐
net connections. They run thousands of software components from hundreds of
authors, often with unconstrained access to the user’s files. A single piece of rogue
software, among the many thousands installed on your computer, can compromise
your keyboard and files, stealing any bitcoin stored in wallet applications. The level of
computer maintenance required to keep a computer virus-free and trojan-free is
beyond the skill level of all but a tiny minority of computer users.

Despite decades of research and advancements in information security, digital assets
are still woefully vulnerable to a determined adversary. Even the most highly pro‐
tected and restricted systems, in financial services companies, intelligence agencies,
and defense contractors, are frequently breached. Bitcoin creates digital assets that
have intrinsic value and can be stolen and diverted to new owners instantly and irrev‐
ocably. This creates a massive incentive for hackers. Until now, hackers had to convert
identity information or account tokens—such as credit cards and bank accounts—
into value after compromising them. Despite the difficulty of fencing and laundering
financial information, we have seen ever-escalating thefts. Bitcoin escalates this prob‐
lem because it doesn’t need to be fenced or laundered; it is intrinsic value within a
digital asset.

Fortunately, bitcoin also creates the incentives to improve computer security.
Whereas previously the risk of computer compromise was vague and indirect, bitcoin
makes these risks clear and obvious. Holding bitcoin on a computer serves to focus
the user’s mind on the need for improved computer security. As a direct result of the
proliferation and increased adoption of bitcoin and other digital currencies, we have
seen an escalation in both hacking techniques and security solutions. In simple terms,
hackers now have a very juicy target and users have a clear incentive to defend them‐
selves.

272 | Chapter 11: Bitcoin Security

Over the past three years, as a direct result of bitcoin adoption, we have seen tremen‐
dous innovation in the realm of information security in the form of hardware encryp‐
tion, key storage and hardware wallets, multisignature technology, and digital escrow.
In the following sections we will examine various best practices for practical user
security.

Physical Bitcoin Storage
Because most users are far more comfortable with physical security than information
security, a very effective method for protecting bitcoin is to convert them into physi‐
cal form. Bitcoin keys are nothing more than long numbers. This means that they can
be stored in a physical form, such as printed on paper or etched on a metal coin.
Securing the keys then becomes as simple as physically securing the printed copy of
the bitcoin keys. A set of bitcoin keys that is printed on paper is called a “paper wal‐
let,” and there are many free tools that can be used to create them. I personally keep
the vast majority of my bitcoin (99% or more) stored on paper wallets, encrypted
with BIP-38, with multiple copies locked in safes. Keeping bitcoin offline is called cold
storage and it is one of the most effective security techniques. A cold storage system is
one where the keys are generated on an offline system (one never connected to the
internet) and stored offline either on paper or on digital media, such as a USB mem‐
ory stick.

Hardware Wallets
In the long term, bitcoin security increasingly will take the form of hardware tamper-
proof wallets. Unlike a smartphone or desktop computer, a bitcoin hardware wallet
has just one purpose: to hold bitcoin securely. Without general-purpose software to
compromise and with limited interfaces, hardware wallets can deliver an almost fool‐
proof level of security to nonexpert users. I expect to see hardware wallets become the
predominant method of bitcoin storage. For an example of such a hardware wallet,
see the Trezor.

Balancing Risk
Although most users are rightly concerned about bitcoin theft, there is an even bigger
risk. Data files get lost all the time. If they contain bitcoin, the loss is much more
painful. In the effort to secure their bitcoin wallets, users must be very careful not to
go too far and end up losing the bitcoin. In July 2011, a well-known bitcoin awareness
and education project lost almost 7,000 bitcoin. In their effort to prevent theft, the
owners had implemented a complex series of encrypted backups. In the end they
accidentally lost the encryption keys, making the backups worthless and losing a for‐
tune. Like hiding money by burying it in the desert, if you secure your bitcoin too
well you might not be able to find it again.

User Security Best Practices | 273

https://trezor.io/

Diversifying Risk
Would you carry your entire net worth in cash in your wallet? Most people would
consider that reckless, yet bitcoin users often keep all their bitcoin in a single wallet.
Instead, users should spread the risk among multiple and diverse bitcoin wallets. Pru‐
dent users will keep only a small fraction, perhaps less than 5%, of their bitcoin in an
online or mobile wallet as “pocket change.” The rest should be split between a few dif‐
ferent storage mechanisms, such as a desktop wallet and offline (cold storage).

Multisig and Governance
Whenever a company or individual stores large amounts of bitcoin, they should con‐
sider using a multisignature bitcoin address. Multisignature addresses secure funds
by requiring more than one signature to make a payment. The signing keys should be
stored in a number of different locations and under the control of different people. In
a corporate environment, for example, the keys should be generated independently
and held by several company executives, to ensure no single person can compromise
the funds. Multisignature addresses can also offer redundancy, where a single person
holds several keys that are stored in different locations.

Survivability
One important security consideration that is often overlooked is availability, espe‐
cially in the context of incapacity or death of the key holder. Bitcoin users are told to
use complex passwords and keep their keys secure and private, not sharing them with
anyone. Unfortunately, that practice makes it almost impossible for the user’s family
to recover any funds if the user is not available to unlock them. In most cases, in fact,
the families of bitcoin users might be completely unaware of the existence of the bit‐
coin funds.

If you have a lot of bitcoin, you should consider sharing access details with a trusted
relative or lawyer. A more complex survivability scheme can be set up with multi-
signature access and estate planning through a lawyer specialized as a “digital asset
executor.”

Conclusion
Bitcoin is a completely new, unprecedented, and complex technology. Over time we
will develop better security tools and practices that are easier to use by nonexperts.
For now, bitcoin users can use many of the tips discussed here to enjoy a secure and
trouble-free bitcoin experience.

274 | Chapter 11: Bitcoin Security

CHAPTER 12

Blockchain Applications

Let’s now build on our understanding of bitcoin by looking at it as an application plat‐
form. Nowadays, many people use the term “blockchain” to refer to any application
platform that shares the design principles of bitcoin. The term is often misused and
applied to many things that fail to deliver the primary features that bitcoin’s block‐
chain delivers.

In this chapter we will look at the features offered by the bitcoin blockchain, as an
application platform. We will consider the application building primitives, which
form the building blocks of any blockchain application. We will look at several impor‐
tant applications that use these primitives, such as colored coins, payment (state)
channels, and routed payment channels (Lightning Network).

Introduction
The bitcoin system was designed as a decentralized currency and payment system.
However, most of its functionality is derived from much lower-level constructs that
can be used for much broader applications. Bitcoin wasn’t built with components
such as accounts, users, balances, and payments. Instead, it uses a transactional
scripting language with low-level cryptographic functions, as we saw in Chapter 6.
Just like the higher-level concepts of accounts, balances, and payments can be derived
from these basic primitives, so can many other complex applications. Thus, the bit‐
coin blockchain can become an application platform offering trust services to appli‐
cations, such as smart contracts, far surpassing the original purpose of digital
currency and payments.

275

Building Blocks (Primitives)
When operating correctly and over the long term, the bitcoin system offers certain
guarantees, which can be used as building blocks to create applications. These
include:

No Double-Spend
The most fundamental guarantee of bitcoin’s decentralized consensus algorithm
ensures that no UTXO can be spent twice.

Immutability
Once a transaction is recorded in the blockchain and sufficient work has been
added with subsequent blocks, the transaction’s data becomes immutable.
Immutability is underwritten by energy, as rewriting the blockchain requires the
expenditure of energy to produce Proof-of-Work. The energy required and
therefore the degree of immutability increases with the amount of work commit‐
ted on top of the block containing a transaction.

Neutrality
The decentralized bitcoin network propagates valid transactions regardless of the
origin or content of those transactions. This means that anyone can create a valid
transaction with sufficient fees and trust they will be able to transmit that trans‐
action and have it included in the blockchain at anytime.

Secure Timestamping
The consensus rules reject any block whose timestamp is too far in the past or
future. This ensures that timestamps on blocks can be trusted. The timestamp on
a block implies an unspent-before guarantee for the inputs of all included trans‐
actions.

Authorization
Digital signatures, validated in a decentralized network, offer authorization guar‐
antees. Scripts that contain a requirement for a digital signature cannot be exe‐
cuted without authorization by the holder of the private key implied in the script.

Auditability
All transactions are public and can be audited. All transactions and blocks can be
linked back in an unbroken chain to the genesis block.

Accounting
In any transaction (except the coinbase transaction) the value of inputs is equal
to the value of outputs plus fees. It is not possible to create or destroy bitcoin
value in a transaction. The outputs cannot exceed the inputs.

276 | Chapter 12: Blockchain Applications

Nonexpiration
A valid transaction does not expire. If it is valid today, it will be valid in the near
future, as long as the inputs remain unspent and the consensus rules do not
change.

Integrity
A bitcoin transaction signed with SIGHASH_ALL or parts of a transaction signed
by another SIGHASH type cannot be modified without invalidating the signature,
thus invalidating the transaction itself.

Transaction Atomicity
Bitcoin transactions are atomic. They are either valid and confirmed (mined) or
not. Partial transactions cannot be mined and there is no interim state for a
transaction. At any point in time a transaction is either mined, or not.

Discrete (Indivisible) Units of Value
Transaction outputs are discrete and indivisible units of value. They can either be
spent or unspent, in full. They cannot be divided or partially spent.

Quorum of Control
Multisignature constraints in scripts impose a quorum of authorization, prede‐
fined in the multisignature scheme. The M-of-N requirement is enforced by the
consensus rules.

Timelock/Aging
Any script clause containing a relative or absolute timelock can only be executed
after its age exceeds the time specified.

Replication
The decentralized storage of the blockchain ensures that when a transaction is
mined, after sufficient confirmations, it is replicated across the network and
becomes durable and resilient to power loss, data loss, etc.

Forgery Protection
A transaction can only spend existing, validated outputs. It is not possible to cre‐
ate or counterfeit value.

Consistency
In the absence of miner partitions, blocks that are recorded in the blockchain are
subject to reorganization or disagreement with exponentially decreasing likeli‐
hood, based on the depth at which they are recorded. Once deeply recorded, the
computation and energy required to change makes change practically infeasible.

Recording External State
A transaction can commit a data value, via OP_RETURN, representing a state transi‐
tion in an external state machine.

Building Blocks (Primitives) | 277

Predictable Issuance
Less than 21 million bitcoin will be issued, at a predictable rate.

The list of building blocks is not complete and more are added with each new feature
introduced into bitcoin.

Applications from Building Blocks
The building blocks offered by bitcoin are elements of a trust platform that can be
used to compose applications. Here are some examples of applications that exist
today and the building blocks they use:

Proof-of-Existence (Digital Notary)
Immutability + Timestamp + Durability. A digital fingerprint can be committed
with a transaction to the blockchain, proving that a document existed (Time‐
stamp) at the time it was recorded. The fingerprint cannot be modified ex-post-
facto (Immutability) and the proof will be stored permanently (Durability).

Kickstarter (Lighthouse)
Consistency + Atomicity + Integrity. If you sign one input and the output (Integ‐
rity) of a fundraiser transaction, others can contribute to the fundraiser but it
cannot be spent (Atomicity) until the goal (output value) is funded (Consis‐
tency).

Payment Channels
Quorum of Control + Timelock + No Double Spend + Nonexpiration + Censor‐
ship Resistance + Authorization. A multisig 2-of-2 (Quorum) with a timelock
(Timelock) used as the “settlement” transaction of a payment channel can be held
(Nonexpiration) and spent whenever (Censorship Resistance) by either party
(Authorization). The two parties can then create commitment transactions that
double-spend (No Double-Spend) the settlement on a shorter timelock (Time‐
lock).

Colored Coins
The first blockchain application we will discuss is colored coins.

Colored coins refers to a set of similar technologies that use bitcoin transactions to
record the creation, ownership, and transfer of extrinsic assets other than bitcoin. By
“extrinsic” we mean assets that are not stored directly on the bitcoin blockchain, as
opposed to bitcoin itself, which is an asset intrinsic to the blockchain.

Colored coins are used to track digital assets as well as physical assets held by third
parties and traded through colored coins certificates of ownership. Digital asset col‐
ored coins can represent intangible assets such as a stock certificate, license, virtual

278 | Chapter 12: Blockchain Applications

property (game items), or most any form of licensed intellectual property (trade‐
marks, copyrights, etc.). Tangible asset colored coins can represent certificates of
ownership of commodities (gold, silver, oil), land title, automobiles, boats, aircraft,
etc.

The term derives from the idea of “coloring” or marking a nominal amount of bit‐
coin, for example, a single satoshi, to represent something other than the bitcoin
value itself. As an analogy, consider stamping a $1 note with a message saying, “this is
a stock certificate of ACME” or “this note can be redeemed for 1 oz of silver” and
then trading the $1 note as a certificate of ownership of this other asset. The first
implementation of colored coins, named Enhanced Padded-Order-Based Coloring or
EPOBC, assigned extrinsic assets to a 1-satoshi output. In this way, it was a true “col‐
ored coin,” as each asset was added as an attribute (color) of a single satoshi.

More recent implementations of colored coins use the OP_RETURN script opcode to
store metadata in a transaction, in conjunction with external data stores that associate
the metadata to specific assets.

The two most prominent implementations of colored coins today are Open Assets and
Colored Coins by Colu. These two systems use different approaches to colored coins
and are not compatible. Colored coins created in one system cannot be seen or used
in the other system.

Using Colored Coins
Colored coins are created, transferred, and generally viewed in special wallets that
can interpret the colored coins protocol metadata attached to bitcoin transactions.
Special care must be taken to avoid using a colored-coin–related key in a regular bit‐
coin wallet, as the regular wallet may destroy the metadata. Similarly, colored coins
should not be sent to addresses managed by regular wallets, but only to addresses that
are managed by wallets that are colored-coin-aware. Both Colu and Open Assets sys‐
tems use special colored-coin addresses to mitigate this risk and to ensure that col‐
ored coins are not sent to unaware wallets.

Colored coins are also not visible to most general-purpose blockchain explorers.
Instead, you must use a colored-coins explorer to interpret the metadata of a colored
coins transaction.

An Open Assets-compatible wallet application and blockchain explorer can be found
at coinprism.

A Colu Colored Coins-compatible wallet application and blockchain explorer can be
found at Blockchain Explorer.

A Copay wallet plug-in can be found at Colored Coins Copay Addon.

Colored Coins | 279

http://www.openassets.org/
http://coloredcoins.org
https://www.coinprism.info
http://coloredcoins.org/explorer/
http://coloredcoins.org/colored-coins-copay-addon/

Issuing Colored Coins
Each of the colored coins implementations has a different way of creating colored
coins, but they all provide similar functionality. The process of creating a colored
coin asset is called issuance. An initial transaction, the issuance transaction registers
the asset on the bitcoin blockchain and creates an asset ID that is used to reference
the asset. Once issued, assets can be transferred between addresses using transfer
transactions.

Assets issued as colored coins can have multiple properties. They can be divisible or
indivisible, meaning that the amount of asset in a transfer can be an integer (e.g., 5) or
have decimal subdivision (e.g., 4.321). Assets can also have fixed issuance, meaning a
certain amount are issued only once, or can be reissued, meaning that new units of
the asset can be issued by the original issuer after the initial issuance.

Finally, some colored coins enable dividends, allowing the distribution of bitcoin pay‐
ments to the owners of a colored coin asset in proportion to their ownership.

Colored Coins Transactions
The metadata that gives meaning to a colored coin transaction is usually stored in
one of the outputs using the OP_RETURN opcode. Different colored coins protocols use
different encodings for the content of the OP_RETURN data. The output containing the
OP_RETURN is called the marker output.

The order of the outputs and position of the marker output may have special mean‐
ing in the colored coins protocol. In Open Assets, for example, any outputs before the
marker output represent asset issuance. Any outputs after the marker represent asset
transfer. The marker output assigns specific values and colors to the other outputs by
referencing their order in the transaction.

In Colored Coins (Colu), by comparison, the marker output encodes an opcode that
determines how the metadata is interpreted. Opcodes 0x01 through 0x0F indicate an
issuance transaction. An issuance opcode is usually followed by an asset ID or other
identifier that can be used to retrieve the asset information from an external source
(e.g., bittorrent). Opcodes 0x10 through 0x1F represent a transfer transaction. Trans‐
fer transaction metadata contain simple scripts that transfer specific amounts of
assets from inputs to outputs, by reference to their index. Ordering of inputs and out‐
puts is therefore important in the interpretation of the script.

If the metadata is too long to fit in OP_RETURN, the colored coins protocol may use
other “tricks” to store metadata in a transaction. Examples include putting metadata
in a redeem script, followed by OP_DROP opcodes to ensure the script ignores the
metadata. Another mechanism used is a 1-of-N multisig script where only the first

280 | Chapter 12: Blockchain Applications

public key is a real public key that can spend the output and subsequent “keys” are
replaced by encoded metadata.

In order to correctly interpret the metadata in a colored coins transaction you must
use a compatible wallet or block explorer. Otherwise, the transaction looks like a
“normal” bitcoin transaction with an OP_RETURN output.

As an example, I created and issued a MasterBTC asset using colored coins. The Mas‐
terBTC asset represents a voucher for a free copy of this book. These vouchers can be
transferred, traded, and redeemed using a colored coins-compatible wallet.

For this particular example, I used the wallet and explorer at https://coinprism.info,
which uses the Open Assets colored coins protocol.

Figure 12-1 shows the issuance transaction using the Coinprism block explorer:

https://www.coinprism.info/tx/
10d7c4e022f35288779be6713471151ede967caaa39eecd35296aa36d9c109ec)

Figure 12-1. The issuance transaction as viewed on coinprism.info

As you can see, coinprism shows the issuance of 20 units of “Free copy of Mastering
Bitcoin,” the MasterBTC asset, to a special colored coin address:

akTnsDt5uzpioRST76VFRQM8q8sBFnQiwcx

Any funds or colored assets sent to this address will be lost forever.
Do not send value to this example address!

Colored Coins | 281

http://coinprism.info/
https://www.coinprism.info/tx/10d7c4e022f35288779be6713471151ede967caaa39eecd35296aa36d9c109ec
https://www.coinprism.info/tx/10d7c4e022f35288779be6713471151ede967caaa39eecd35296aa36d9c109ec

The transaction ID of the issuance transaction is a “normal” bitcoin transaction ID.
Figure 12-2 shows that same transaction in a block explorer that doesn’t decode col‐
ored coins. We’ll use blockchain.info:

https://blockchain.info/tx/
10d7c4e022f35288779be6713471151ede967caaa39eecd35296aa36d9c109ec

Figure 12-2. The issuance transaction on a block explorer that doesn’t decode colored
coins

As you can see, blockchain.info doesn’t recognize this as a colored coins transaction.
In fact, it marks the second output with “Unable to decode output address” in red let‐
ters.

If you select “Show scripts & coinbase” on that screen, you can see more detail about
the transaction (Figure 12-3).

Figure 12-3. The scripts in the issuance transaction

Once again, blockchain.info doesn’t understand the second output. It marks it with
“Strange” in red letters. However, we can see that some of the metadata in the marker
output is human-readable:

OP_RETURN 4f41010001141b753d68747470733a2f2f6370722e736d2f466f796b777248365559
(decoded) "OA____u=https://cpr.sm/FoykwrH6UY

Let’s retrieve the transaction using bitcoin-cli:

$ bitcoin-cli decoderawtransaction `bitcoin-cli getrawtransaction
10d7c4e022f35288779be6713471151ede967caaa39eecd35296aa36d9c109ec`

Stripping out the rest of the transaction, the second output looks like this:

282 | Chapter 12: Blockchain Applications

https://blockchain.info/tx/10d7c4e022f35288779be6713471151ede967caaa39eecd35296aa36d9c109ec
https://blockchain.info/tx/10d7c4e022f35288779be6713471151ede967caaa39eecd35296aa36d9c109ec

{
 "value": 0.00000000,
 "n": 1,
 "scriptPubKey": "OP_RETURN
4f41010001141b753d68747470733a2f2f6370722e736d2f466f796b777248365559"

}

The prefix 4F41 represents the letters “OA”, which stands for “Open Assets” and helps
us identify that what follows is metadata defined by the Open Assets protocol. The
ASCII-encoded string that follows is a link to an asset definition:

u=https://cpr.sm/FoykwrH6UY

If we retrieve this URL, we get a JSON-encoded asset definition, as shown here:

{
 "asset_ids": [
 "AcuRVsoa81hoLHmVTNXrRD8KpTqUXeqwgH"
],
 "contract_url": null,
 "name_short": "MasterBTC",
 "name": "Free copy of \"Mastering Bitcoin\"",
 "issuer": "Andreas M. Antonopoulos",
 "description": "This token is redeemable for a free copy of the book \"Master
ing Bitcoin\"",
 "description_mime": "text/x-markdown; charset=UTF-8",
 "type": "Other",
 "divisibility": 0,
 "link_to_website": false,
 "icon_url": null,
 "image_url": null,
 "version": "1.0"
}

Counterparty
Counterparty is a protocol layer built on top of bitcoin. The Counterparty protocol,
similar to colored coins, offers the ability to create and trade virtual assets and tokens.
In addition, Counterparty offers a decentralized exchange for assets. Counterparty is
also implementing smart contracts, based on the Ethereum Virtual Machine (EVM).

Like the colored coins protocols, Counterparty embeds metadata in bitcoin transac‐
tions, using the OP_RETURN opcode or 1-of-N multisignature addresses that encode
metadata in the place of public keys. Using these mechanisms, Counterparty imple‐
ments a protocol layer encoded in bitcoin transactions. The additional protocol layer
can be interpreted by applications that are Counterparty-aware, such as wallets and
blockchain explorers, or any application built using the Counterparty libraries.

Counterparty | 283

Counterparty can be used as a platform for other applications and services, in turn.
For example, Tokenly is a platform built on top of Counterparty that allows content
creators, artists, and companies to issue tokens that express digital ownership and can
be used to rent, access, trade, or shop for content, products, and services. Other appli‐
cations leveraging Counterparty include games (Spells of Genesis) and grid comput‐
ing projects (Folding Coin).

More details about Counterparty can be found at https://counterparty.io. The open
source project can be found at https://github.com/CounterpartyXCP.

Payment Channels and State Channels
Payment channels are a trustless mechanism for exchanging bitcoin transactions
between two parties, outside of the bitcoin blockchain. These transactions, which
would be valid if settled on the bitcoin blockchain, are held off-chain instead, acting
as promissory notes for eventual batch settlement. Because the transactions are not
settled, they can be exchanged without the usual settlement latency, allowing
extremely high transaction throughput, low (submillisecond) latency, and fine
(satoshi-level) granularity.

Actually, the term channel is a metaphor. State channels are virtual constructs repre‐
sented by the exchange of state between two parties, outside of the blockchain. There
are no “channels” per se and the underlying data transport mechanism is not the
channel. We use the term channel to represent the relationship and shared state
between two parties, outside of the blockchain.

To further explain this concept, think of a TCP stream. From the perspective of
higher-level protocols it is a “socket” connecting two applications across the internet.
But if you look at the network traffic, a TCP stream is just a virtual channel over IP
packets. Each endpoint of the TCP stream sequences and assembles IP packets to cre‐
ate the illusion of a stream of bytes. Underneath, it’s all disconnected packets. Simi‐
larly, a payment channel is just a series of transactions. If properly sequenced and
connected, they create redeemable obligations that you can trust even though you
don’t trust the other side of the channel.

In this section we will look at various forms of payment channels. First, we will exam‐
ine the mechanisms used to construct a one-way (unidirectional) payment channel
for a metered micropayment service, such as streaming video. Then, we will expand
on this mechanism and introduce bidirectional payment channels. Finally, we will
look at how bidirectional channels can be connected end-to-end to form multihop
channels in a routed network, first proposed under the name Lightning Network.

Payment channels are part of the broader concept of a state channel, which represents
an off-chain alteration of state, secured by eventual settlement in a blockchain. A pay‐

284 | Chapter 12: Blockchain Applications

https://counterparty.io
https://github.com/CounterpartyXCP

ment channel is a state channel where the state being altered is the balance of a virtual
currency.

State Channels—Basic Concepts and Terminology
A state channel is established between two parties, through a transaction that locks a
shared state on the blockchain. This is called the funding transaction or anchor trans‐
action. This single transaction must be transmitted to the network and mined to
establish the channel. In the example of a payment channel, the locked state is the
initial balance (in currency) of the channel.

The two parties then exchange signed transactions, called commitment transactions,
that alter the initial state. These transactions are valid transactions in that they could
be submitted for settlement by either party, but instead are held off-chain by each
party pending the channel closure. State updates can be created as fast as each party
can create, sign, and transmit a transaction to the other party. In practice this means
that thousands of transactions per second can be exchanged.

When exchanging commitment transactions the two parties also invalidate the previ‐
ous states, so that the most up-to-date commitment transaction is always the only one
that can be redeemed. This prevents either party from cheating by unilaterally closing
the channel with an expired prior state that is more favorable to them than the cur‐
rent state. We will examine the various mechanisms that can be used to invalidate
prior state in the rest of this chapter.

Finally, the channel can be closed either cooperatively, by submitting a final settle‐
ment transaction to the blockchain, or unilaterally, by either party submitting the last
commitment transaction to the blockchain. A unilateral close option is needed in
case one of the parties unexpectedly disconnects. The settlement transaction repre‐
sents the final state of the channel and is settled on the blockchain.

In the entire lifetime of the channel, only two transactions need to be submitted for
mining on the blockchain: the funding and settlement transactions. In between these
two states, the two parties can exchange any number of commitment transactions
that are never seen by anyone else, nor submitted to the blockchain.

Figure 12-4 illustrates a payment channel between Bob and Alice, showing the fund‐
ing, commitment, and settlement transactions.

Payment Channels and State Channels | 285

Figure 12-4. A payment channel between Bob and Alice, showing the funding, commit‐
ment, and settlement transactions

Simple Payment Channel Example
To explain state channels, we have to start with a very simple example. We demon‐
strate a one-way channel, meaning that value is flowing in one direction only. We will
also start with the naive assumption that no one is trying to cheat, to keep things sim‐
ple. Once we have the basic channel idea explained, we will then look at what it takes
to make it trustless so that neither party can cheat, even if they are trying to.

286 | Chapter 12: Blockchain Applications

For this example we will assume two participants: Emma and Fabian. Fabian offers a
video streaming service that is billed by the second using a micropayment channel.
Fabian charges 0.01 millibit (0.00001 BTC) per second of video, equivalent to 36 mil‐
libits (0.036 BTC) per hour of video. Emma is a user who purchases this streaming
video service from Fabian. Figure 12-5 shows Emma buying the video streaming ser‐
vice from Fabian using a payment channel.

Figure 12-5. Emma purchases streaming video from Fabian with a payment channel,
paying for each second of video

In this example, Fabian and Emma are using special software that handles both the
payment channel and the video streaming. Emma is running the software in her
browser, Fabian is running it on a server. The software includes basic bitcoin wallet
functionality and can create and sign bitcoin transactions. Both the concept and the
term “payment channel” are completely hidden from the users. What they see is video
that is paid for by the second.

To set up the payment channel, Emma and Fabian establish a 2-of-2 multisignature
address, with each of them holding one of the keys. From Emma’s perspective, the
software in her browser presents a QR code with a P2SH address (starting with “3”),
and asks her to submit a “deposit” for up to 1 hour of video. The address is then fun‐
ded by Emma. Emma’s transaction, paying to the multisignature address, is the fund‐
ing or anchor transaction for the payment channel.

For this example, let’s say that Emma funds the channel with 36 millibits (0.036 BTC).
This will allow Emma to consume up to 1 hour of streaming video. The funding
transaction in this case sets the maximum amount that can be transmitted in this
channel, setting the channel capacity.

The funding transaction consumes one or more inputs from Emma’s wallet, sourcing
the funds. It creates one output with a value of 36 millibits paid to the multisignature

Payment Channels and State Channels | 287

2-of-2 address controlled jointly between Emma and Fabian. It may have additional
outputs for change back to Emma’s wallet.

Once the funding transaction is confirmed, Emma can start streaming video. Emma’s
software creates and signs a commitment transaction that changes the channel bal‐
ance to credit 0.01 millibit to Fabian’s address and refund 35.99 millibits back to
Emma. The transaction signed by Emma consumes the 36 millibits output created by
the funding transaction and creates two outputs: one for her refund, the other for
Fabian’s payment. The transaction is only partially signed—it requires two signatures
(2-of-2), but only has Emma’s signature. When Fabian’s server receives this transac‐
tion, it adds the second signature (for the 2-of-2 input) and returns it to Emma
together with 1 second worth of video. Now both parties have a fully signed commit‐
ment transaction that either can redeem, representing the correct up-to-date balance
of the channel. Neither party broadcasts this transaction to the network.

In the next round, Emma’s software creates and signs another commitment transac‐
tion (commitment #2) that consumes the same 2-of-2 output from the funding trans‐
action. The second commitment transaction allocates one output of 0.2 millibits to
Fabian’s address and one output of 35.98 millibits back to Emma’s address. This new
transaction is payment for two cumulative seconds of video. Fabian’s software signs
and returns the second commitment transaction, together with the another second of
video.

In this way, Emma’s software continues to send commitment transactions to Fabian’s
server in exchange for streaming video. The balance of the channel gradually accu‐
mulates in favor of Fabian, as Emma consumes more seconds of video. Let’s say
Emma watches 600 seconds (10 minutes) of video, creating and signing 600 commit‐
ment transactions. The last commitment transaction (#600) will have two outputs,
splitting the balance of the channel, 6 millibits to Fabian and 30 millibits to Emma.

Finally, Emma clicks “Stop” to stop streaming video. Either Fabian or Emma can now
transmit the final state transaction for settlement. This last transaction is the settle‐
ment transaction and pays Fabian for all the video Emma consumed, refunding the
remainder of the funding transaction to Emma.

Figure 12-6 shows the channel between Emma and Fabian and the commitment
transactions that update the balance of the channel.

In the end, only two transactions are recorded on the blockchain: the funding trans‐
action that established the channel and a settlement transaction that allocated the
final balance correctly between the two participants.

288 | Chapter 12: Blockchain Applications

Figure 12-6. Emma’s payment channel with Fabian, showing the commitment transac‐
tions that update the balance of the channel

Making Trustless Channels
The channel we just described works, but only if both parties cooperate, without any
failures or attempts to cheat. Let’s look at some of the scenarios that break this chan‐
nel and see what is needed to fix those:

• Once the funding transaction happens, Emma needs Fabian’s signature to get any
money back. If Fabian disappears, Emma’s funds are locked in a 2-of-2 and effec‐
tively lost. This channel, as constructed, leads to a loss of funds if one of the par‐
ties disconnects before there is at least one commitment transaction signed by
both parties.

• While the channel is running, Emma can take any of the commitment transac‐
tions Fabian has countersigned and transmit one to the blockchain. Why pay for

Payment Channels and State Channels | 289

600 seconds of video, if she can transmit commitment transaction #1 and only
pay for 1 second of video? The channel fails because Emma can cheat by broad‐
casting a prior commitment that is in her favor.

Both of these problems can be solved with timelocks—let’s look at how we could use
transaction-level timelocks (nLocktime).

Emma cannot risk funding a 2-of-2 multisig unless she has a guaranteed refund. To
solve this problem, Emma constructs the funding and refund transaction at the same
time. She signs the funding transaction but doesn’t transmit it to anyone. Emma
transmits only the refund transaction to Fabian and obtains his signature.

The refund transaction acts as the first commitment transaction and its timelock
establishes the upper bound for the channel’s life. In this case, Emma could set the
nLocktime to 30 days or 4320 blocks into the future. All subsequent commitment
transactions must have a shorter timelock, so that they can be redeemed before the
refund transaction.

Now that Emma has a fully signed refund transaction, she can confidently transmit
the signed funding transaction knowing that she can eventually, after the timelock
expires, redeem the refund transaction even if Fabian disappears.

Every commitment transaction the parties exchange during the life of the channel
will be timelocked into the future. But the delay will be slightly shorter for each com‐
mitment so the most recent commitment can be redeemed before the prior commit‐
ment it invalidates. Because of the nLockTime, neither party can successfully
propagate any of the commitment transactions until their timelock expires. If all goes
well, they will cooperate and close the channel gracefully with a settlement transac‐
tion, making it unnecessary to transmit an intermediate commitment transaction. If
not, the most recent commitment transaction can be propagated to settle the account
and invalidate all prior commitment transactions.

For example, if commitment transaction #1 is timelocked to 4320 blocks in the
future, then commitment transaction #2 is timelocked to 4319 blocks in the future.
Commitment transaction #600 can be spent 600 blocks before commitment transac‐
tion #1 becomes valid.

Figure 12-7 shows each commitment transaction setting a shorter timelock, allowing
it to be spent before the previous commitments become valid.

290 | Chapter 12: Blockchain Applications

Figure 12-7. Each commitment sets a shorter timelock, allowing it to be spent before the
previous commitments become valid

Each subsequent commitment transaction must have a shorter timelock so that it
may be broadcast before its predecessors and before the refund transaction. The abil‐
ity to broadcast a commitment earlier ensures it will be able to spend the funding
output and preclude any other commitment transaction from being redeemed by
spending the output. The guarantees offered by the bitcoin blockchain, preventing
double-spends and enforcing timelocks, effectively allow each commitment transac‐
tion to invalidate its predecessors.

State channels use timelocks to enforce smart contracts across a time dimension. In
this example we saw how the time dimension guarantees that the most recent com‐
mitment transaction becomes valid before any earlier commitments. Thus, the most
recent commitment transaction can be transmitted, spending the inputs and invalid‐
ating prior commitment transactions. The enforcement of smart contracts with abso‐
lute timelocks protects against cheating by one of the parties. This implementation
needs nothing more than absolute transaction-level timelocks (nLocktime). Next, we
will see how script-level timelocks, CHECKLOCKTIMEVERIFY and CHECKSEQUENCEVER
IFY, can be used to construct more flexible, useful, and sophisticated state channels.

The first form of unidirectional payment channel was demonstrated as a prototype
video streaming application in 2015 by an Argentinian team of developers. You can
still see it at streamium.io.

Timelocks are not the only way to invalidate prior commitment transactions. In the
next sections we will see how a revocation key can be used to achieve the same result.
Timelocks are effective but they have two distinct disadvantages. By establishing a
maximum timelock when the channel is first opened, they limit the lifetime of the
channel. Worse, they force channel implementations to strike a balance between
allowing long-lived channels and forcing one of the participants to wait a very long
time for a refund in case of premature closure. For example, if you allow the channel
to remain open for 30 days, by setting the refund timelock to 30 days, if one of the

Payment Channels and State Channels | 291

https://streamium.io/

parties disappears immediately the other party must wait 30 days for a refund. The
more distant the endpoint, the more distant the refund.

The second problem is that since each subsequent commitment transaction must
decrement the timelock, there is an explicit limit on the number of commitment
transactions that can be exchanged between the parties. For example, a 30-day chan‐
nel, setting a timelock of 4320 blocks into the future, can only accommodate 4320
intermediate commitment transactions before it must be closed. There is a danger in
setting the timelock commitment transaction interval at 1 block. By setting the time‐
lock interval between commitment transactions to 1 block, a developer is creating a
very high burden for the channel participants who have to be vigilant, remain online
and watching, and be ready to transmit the right commitment transaction at anytime.

Now that we understand how timelocks can be used to invalidate prior commitments,
we can see the difference between closing the channel cooperatively and closing it
unilaterally by broadcasting a commitment transaction. All commitment transactions
are timelocked, therefore broadcasting a commitment transaction will always involve
waiting until the timelock has expired. But if the two parties agree on what the final
balance is and know they both hold commitment transactions that will eventually
make that balance a reality, they can construct a settlement transaction without a
timelock representing that same balance. In a cooperative close, either party takes the
most recent commitment transaction and builds a settlement transaction that is iden‐
tical in every way except that it omits the timelock. Both parties can sign this settle‐
ment transaction knowing there is no way to cheat and get a more favorable balance.
By cooperatively signing and transmitting the settlement transaction they can close
the channel and redeem their balance immediately. Worst case, one of the parties can
be petty, refuse to cooperate, and force the other party to do a unilateral close with
the most recent commitment transaction. But if they do that, they have to wait for
their funds too.

Asymmetric Revocable Commitments
A better way to handle the prior commitment states is to explicitly revoke them.
However, this is not easy to achieve. A key characteristic of bitcoin is that once a
transaction is valid, it remains valid and does not expire. The only way to cancel a
transaction is by double-spending its inputs with another transaction before it is
mined. That’s why we used timelocks in the simple payment channel example above
to ensure that more recent commitments could be spent before older commitments
were valid. However, sequencing commitments in time creates a number of con‐
straints that make payment channels difficult to use.

Even though a transaction cannot be canceled, it can be constructed in such a way as
to make it undesirable to use. The way we do that is by giving each party a revocation
key that can be used to punish the other party if they try to cheat. This mechanism for

292 | Chapter 12: Blockchain Applications

revoking prior commitment transactions was first proposed as part of the Lightning
Network.

To explain revocation keys, we will construct a more complex payment channel
between two exchanges run by Hitesh and Irene. Hitesh and Irene run bitcoin
exchanges in India and the USA, respectively. Customers of Hitesh’s Indian exchange
often send payments to customers of Irene’s USA exchange and vice versa. Currently,
these transactions occur on the bitcoin blockchain, but this means paying fees and
waiting several blocks for confirmations. Setting up a payment channel between the
exchanges will significantly reduce the cost and accelerate the transaction flow.

Hitesh and Irene start the channel by collaboratively constructing a funding transac‐
tion, each funding the channel with 5 bitcoin. The initial balance is 5 bitcoin for
Hitesh and 5 bitcoin for Irene. The funding transaction locks the channel state in a 2-
of-2 multisig, just like in the example of a simple channel.

The funding transaction may have one or more inputs from Hitesh (adding up to 5
bitcoin or more), and one or more inputs from Irene (adding up to 5 bitcoin or
more). The inputs have to slightly exceed the channel capacity in order to cover the
transaction fees. The transaction has one output that locks the 10 total bitcoin to a 2-
of-2 multisig address controlled by both Hitesh and Irene. The funding transaction
may also have one or more outputs returning change to Hitesh and Irene if their
inputs exceeded their intended channel contribution. This is a single transaction with
inputs offered and signed by two parties. It has to be constructed in collaboration and
signed by each party before it is transmitted.

Now, instead of creating a single commitment transaction that both parties sign,
Hitesh and Irene create two different commitment transactions that are asymmetric.

Hitesh has a commitment transaction with two outputs. The first output pays Irene
the 5 bitcoin she is owed immediately. The second output pays Hitesh the 5 bitcoin he
is owed, but only after a timelock of 1000 blocks. The transaction outputs look like
this:

Input: 2-of-2 funding output, signed by Irene

Output 0 <5 bitcoin>:
 <Irene's Public Key> CHECKSIG

Output 1:
 <1000 blocks>
 CHECKSEQUENCEVERIFY
 DROP
 <Hitesh's Public Key> CHECKSIG

Irene has a different commitment transaction with two outputs. The first output pays
Hitesh the 5 bitcoin he is owed immediately. The second output pays Irene the 5 bit‐

Payment Channels and State Channels | 293

coin she is owed but only after a timelock of 1000 blocks. The commitment transac‐
tion Irene holds (signed by Hitesh) looks like this:

Input: 2-of-2 funding output, signed by Hitesh

Output 0 <5 bitcoin>:
 <Hitesh's Public Key> CHECKSIG

Output 1:
 <1000 blocks>
 CHECKSEQUENCEVERIFY
 DROP
 <Irene's Public Key> CHECKSIG

This way, each party has a commitment transaction, spending the 2-of-2 funding out‐
put. This input is signed by the other party. At any time the party holding the transac‐
tion can also sign (completing the 2-of-2) and broadcast. However, if they broadcast
the commitment transaction, it pays the other party immediately whereas they have
to wait for a short timelock to expire. By imposing a delay on the redemption of one
of the outputs, we put each party at a slight disadvantage when they choose to unilat‐
erally broadcast a commitment transaction. But a time delay alone isn’t enough to
encourage fair conduct.

Figure 12-8 shows two asymmetric commitment transactions, where the output pay‐
ing the holder of the commitment is delayed.

Figure 12-8. Two asymmetric commitment transactions with delayed payment for the
party holding the transaction

Now we introduce the final element of this scheme: a revocation key that allows a
wronged party to punish a cheater by taking the entire balance of the channel.

294 | Chapter 12: Blockchain Applications

Each of the commitment transactions has a “delayed” output. The redemption script
for that output allows one party to redeem it after 1000 blocks or the other party to
redeem it if they have a revocation key. So when Hitesh creates a commitment trans‐
action for Irene to sign, he makes the second output payable to himself after 1000
blocks, or to whoever can present a revocation key. Hitesh constructs this transaction
and creates a revocation key that he keeps secret. He will only reveal it to Irene when
he is ready to move to a new channel state and wants to revoke this commitment. The
second output’s script looks like this:

Output 0 <5 bitcoin>:
 <Irene's Public Key> CHECKSIG

Output 1 <5 bitcoin>:
IF
 # Revocation penalty output
 <Revocation Public Key>
ELSE
 <1000 blocks>
 CHECKSEQUENCEVERIFY
 DROP
 <Hitesh's Public Key>
ENDIF
CHECKSIG

Irene can confidently sign this transaction, since if transmitted it will immediately
pay her what she is owed. Hitesh holds the transaction, but knows that if he transmits
it in a unilateral channel closing, he will have to wait 1000 blocks to get paid.

When the channel is advanced to the next state, Hitesh has to revoke this commit‐
ment transaction before Irene agrees to sign the next commitment transaction. To do
that, all he has to do is send the revocation key to Irene. Once Irene has the revocation
key for this commitment, she can sign the next commitment with confidence. She
knows that if Hitesh tries to cheat by publishing the prior commitment, she can use
the revocation key to redeem Hitesh’s delayed output. If Hitesh cheats, Irene gets
BOTH outputs.

The revocation protocol is bilateral, meaning that in each round, as the channel state
is advanced, the two parties exchange new commitments, exchange revocation keys
for the previous commitment, and sign each other’s commitment transactions. As
they accept a new state, they make the prior state impossible to use, by giving each
other the necessary revocation keys to punish any cheating.

Let’s look at an example of how it works. One of Irene’s customers wants to send 2
bitcoin to one of Hitesh’s customers. To transmit 2 bitcoin across the channel, Hitesh
and Irene must advance the channel state to reflect the new balance. They will com‐
mit to a new state (state number 2) where the channel’s 10 bitcoin are split, 7 bitcoin
to Hitesh and 3 bitcoin to Irene. To advance the state of the channel, they will each
create new commitment transactions reflecting the new channel balance.

Payment Channels and State Channels | 295

As before, these commitment transactions are asymmetric so that the commitment
transaction each party holds forces them to wait if they redeem it. Crucially, before
signing new commitment transactions, they must first exchange revocation keys to
invalidate the prior commitment. In this particular case, Hitesh’s interests are aligned
with the real state of the channel and therefore he has no reason to broadcast a prior
state. However, for Irene, state number 1 leaves her with a higher balance than state 2.
When Irene gives Hitesh the revocation key for her prior commitment transaction
(state number 1) she is effectively revoking her ability to profit from regressing the
channel to a prior state because with the revocation key, Hitesh can redeem both out‐
puts of the prior commitment transaction without delay. Meaning if Irene broadcasts
the prior state, Hitesh can exercise his right to take all of the outputs.

Importantly, the revocation doesn’t happen automatically. While Hitesh has the abil‐
ity to punish Irene for cheating, he has to watch the blockchain diligently for signs of
cheating. If he sees a prior commitment transaction broadcast, he has 1000 blocks to
take action and use the revocation key to thwart Irene’s cheating and punish her by
taking the entire balance, all 10 bitcoin.

Asymmetric revocable commitments with relative time locks (CSV) are a much better
way to implement payment channels and a very significant innovation in this tech‐
nology. With this construct, the channel can remain open indefinitely and can have
billions of intermediate commitment transactions. In prototype implementations of
Lightning Network, the commitment state is identified by a 48-bit index, allowing
more than 281 trillion (2.8 x 1014) state transitions in any single channel!

Hash Time Lock Contracts (HTLC)
Payment channels can be further extended with a special type of smart contract that
allows the participants to commit funds to a redeemable secret, with an expiration
time. This feature is called a Hash Time Lock Contract, or HTLC, and is used in both
bidirectional and routed payment channels.

Let’s first explain the “hash” part of the HTLC. To create an HTLC, the intended
recipient of the payment will first create a secret R. They then calculate the hash of
this secret H:

H = Hash(R)

This produces a hash H that can be included in an output’s locking script. Whoever
knows the secret can use it to redeem the output. The secret R is also referred to as a
preimage to the hash function. The preimage is just the data that is used as input to a
hash function.

The second part of an HTLC is the “time lock” component. If the secret is not
revealed, the payer of the HTLC can get a “refund” after some time. This is achieved
with an absolute time lock using CHECKLOCKTIMEVERIFY.

296 | Chapter 12: Blockchain Applications

The script implementing an HTLC might look like this:

IF
 # Payment if you have the secret R
 HASH160 <H> EQUALVERIFY
ELSE
 # Refund after timeout.
 <locktime> CHECKLOCKTIMEVERIFY DROP
 <Payee Pubic Key> CHECKSIG
ENDIF

Anyone who knows the secret R, which when hashed equals to H, can redeem this out‐
put by exercising the first clause of the IF flow.

If the secret is not revealed and the HTLC claimed, after a certain number of blocks
the payee can claim a refund using the second clause in the IF flow.

This is a basic implementation of an HTLC. This type of HTLC can be redeemed by
anyone who has the secret R. An HTLC can take many different forms with slight var‐
iations to the script. For example, adding a CHECKSIG operator and a public key in the
first clause restricts redemption of the hash to a named recipient, who must also
know the secret R.

Routed Payment Channels (Lightning Network)
The Lightning Network is a proposed routed network of bidirectional payment chan‐
nels connected end-to-end. A network like this can allow any participant to route a
payment from channel to channel without trusting any of the intermediaries. The
Lightning Network was first described by Joseph Poon and Thadeus Dryja in Febru‐
ary 2015, building on the concept of payment channels as proposed and elaborated
upon by many others.

“Lightning Network” refers to a specific design for a routed payment channel net‐
work, which has now been implemented by at least five different open source teams.
The independent implementations are coordinated by a set of interoperability stand‐
ards described in the Basics of Lightning Technology (BOLT) paper.

Prototype implementations of the Lightning Network have been released by several
teams. For now, these implementations can only be run on testnet because they use
segwit, which is not activated on the main bitcoin blockchain (mainnet).

The Lightning Network is one possible way of implementing routed payment chan‐
nels. There are several other designs that aim to achieve similar goals, such as Tee‐
chan and Tumblebit.

Routed Payment Channels (Lightning Network) | 297

https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://bit.ly/2rBHeoL

Basic Lightning Network Example
Let’s see how this works.

In this example, we have five participants: Alice, Bob, Carol, Diana, and Eric. These
five participants have opened payment channels with each other, in pairs. Alice has a
payment channel with Bob. Bob is connected to Carol, Carol to Diana, and Diana to
Eric. For simplicity let’s assume each channel is funded with 2 bitcoin by each partici‐
pant, for a total capacity of 4 bitcoin in each channel.

Figure 12-9 shows five participants in a Lightning Network, connected by bidirec‐
tional payment channels that can be linked to make a payment from Alice to Eric
(“Routed Payment Channels (Lightning Network)” on page 297).

Figure 12-9. A series of bidirectional payment channels linked to form a Lightning Net‐
work that can route a payment from Alice to Eric

Alice wants to pay Eric 1 bitcoin. However, Alice is not connected to Eric by a pay‐
ment channel. Creating a payment channel requires a funding transaction, which
must be committed to the bitcoin blockchain. Alice does not want to open a new pay‐
ment channel and commit more of her funds. Is there a way to pay Eric, indirectly?

Figure 12-10 shows the step-by-step process of routing a payment from Alice to Eric,
through a series of HTLC commitments on the payment channels connecting the
participants.

298 | Chapter 12: Blockchain Applications

Figure 12-10. Step-by-step payment routing through a Lightning Network

Alice is running a Lightning Network (LN) node that is keeping track of her payment
channel to Bob and has the ability to discover routes between payment channels. Ali‐
ce’s LN node also has the ability to connect over the internet to Eric’s LN node. Eric’s
LN node creates a secret R using a random number generator. Eric’s node does not
reveal this secret to anyone. Instead, Eric’s node calculates a hash H of the secret R and
transmits this hash to Alice’s node (see Figure 12-10 step 1).

Now Alice’s LN node constructs a route between Alice’s LN node and Eric’s LN node.
The routing algorithm used will be examined in more detail later, but for now let’s
assume that Alice’s node can find an efficient route.

Alice’s node then constructs an HTLC, payable to the hash H, with a 10-block refund
timeout (current block + 10), for an amount of 1.003 bitcoin (see Figure 12-10 step
2). The extra 0.003 will be used to compensate the intermediate nodes for their partic‐
ipation in this payment route. Alice offers this HTLC to Bob, deducting 1.003 bitcoin
from her channel balance with Bob and committing it to the HTLC. The HTLC has
the following meaning: “Alice is committing 1.003 of her channel balance to be paid to
Bob if Bob knows the secret, or refunded back to Alice’s balance if 10 blocks elapse.” The
channel balance between Alice and Bob is now expressed by commitment transac‐
tions with three outputs: 2 bitcoin balance to Bob, 0.997 bitcoin balance to Alice,

Routed Payment Channels (Lightning Network) | 299

1.003 bitcoin committed in Alice’s HTLC. Alice’s balance is reduced by the amount
committed to the HTLC.

Bob now has a commitment that if he is able to get the secret R within the next 10
blocks, he can claim the 1.003 locked by Alice. With this commitment in hand, Bob’s
node constructs an HTLC on his payment channel with Carol. Bob’s HTLC commits
1.002 bitcoin to hash H for 9 blocks, which Carol can redeem if she has secret R (see
Figure 12-10 step 3). Bob knows that if Carol can claim his HTLC, she has to produce
R. If Bob has R in nine blocks, he can use it to claim Alice’s HTLC to him. He also
makes 0.001 bitcoin for committing his channel balance for nine blocks. If Carol is
unable to claim his HTLC and he is unable to claim Alice’s HTLC, everything reverts
back to the prior channel balances and no one is at a loss. The channel balance
between Bob and Carol is now: 2 to Carol, 0.998 to Bob, 1.002 committed by Bob to
the HTLC.

Carol now has a commitment that if she gets R within the next nine blocks, she can
claim 1.002 bitcoin locked by Bob. Now she can make an HTLC commitment on her
channel with Diana. She commits an HTLC of 1.001 bitcoin to hash H, for eight
blocks, which Diana can redeem if she has secret R (see Figure 12-10 step 4). From
Carol’s perspective, if this works she is 0.001 bitcoin better off and if it doesn’t she
loses nothing. Her HTLC to Diana is only viable if R is revealed, at which point she
can claim the HTLC from Bob. The channel balance between Carol and Diana is
now: 2 to Diana, 0.999 to Carol, 1.001 committed by Carol to the HTLC.

Finally, Diana can offer an HTLC to Eric, committing 1 bitcoin for seven blocks to
hash H (see Figure 12-10 step 5). The channel balance between Diana and Eric is now:
2 to Eric, 1 to Diana, 1 committed by Diana to the HTLC.

However, at this hop in the route, Eric has secret R. He can therefore claim the HTLC
offered by Diana. He sends R to Diana and claims the 1 bitcoin, adding it to his chan‐
nel balance (see Figure 12-10 step 6). The channel balance is now: 1 to Diana, 3 to
Eric.

Now, Diana has secret R. Therefore, she can now claim the HTLC from Carol. Diana
transmits R to Carol and adds the 1.001 bitcoin to her channel balance (see
Figure 12-10 step 7). Now the channel balance between Carol and Diana is: 0.999 to
Carol, 3.001 to Diana. Diana has “earned” 0.001 for participating in this payment
route.

Flowing back through the route, the secret R allows each participant to claim the out‐
standing HTLCs. Carol claims 1.002 from Bob, setting the balance on their channel
to: 0.998 to Bob, 3.002 to Carol (see Figure 12-10 step 8). Finally, Bob claims the
HTLC from Alice (see Figure 12-10 step 9). Their channel balance is updated as:
0.997 to Alice, 3.003 to Bob.

300 | Chapter 12: Blockchain Applications

Alice has paid Eric 1 bitcoin without opening a channel to Eric. None of the inter‐
mediate parties in the payment route had to trust each other. For the short-term com‐
mitment of their funds in the channel they are able to earn a small fee, with the only
risk being a small delay in refund if the channel was closed or the routed payment
failed.

Lightning Network Transport and Routing
All communications between LN nodes are encrypted point-to-point. In addition,
nodes have a long-term public key that they use as an identifier and to authenticate
each other.

Whenever a node wishes to send a payment to another node, it must first construct a
path through the network by connecting payment channels with sufficient capacity.
Nodes advertise routing information, including what channels they have open, how
much capacity each channel has, and what fees they charge to route payments. The
routing information can be shared in a variety of ways and different routing protocols
are likely to emerge as Lightning Network technology advances. Some Lightning Net‐
work implementations use the IRC protocol as a convenient mechanism for nodes to
announce routing information. Another implementation of route discovery uses a
P2P model where nodes propagate channel announcements to their peers, in a
“flooding” model, similar to how bitcoin propagates transactions. Future plans
include a proposal called Flare, which is a hybrid routing model with local node
“neighborhoods” and longer-range beacon nodes.

In our previous example, Alice’s node uses one of these route discovery mechanisms
to find one or more paths connecting her node to Eric’s node. Once Alice’s node has
constructed a path, she will initialize that path through the network, by propagating a
series of encrypted and nested instructions to connect each of the adjacent payment
channels.

Importantly, this path is only known to Alice’s node. All other participants in the pay‐
ment route see only the adjacent nodes. From Carol’s perspective, this looks like a
payment from Bob to Diana. Carol does not know that Bob is actually relaying a pay‐
ment from Alice. She also doesn’t know that Diana will be relaying a payment to Eric.

This is a critical feature of the Lightning Network, because it ensures privacy of pay‐
ments and makes it very difficult to apply surveillance, censorship, or blacklists. But
how does Alice establish this payment path, without revealing anything to the inter‐
mediary nodes?

The Lightning Network implements an onion-routed protocol based on a scheme
called Sphinx. This routing protocol ensures that a payment sender can construct and
communicate a path through the Lightning Network such that:

Routed Payment Channels (Lightning Network) | 301

http://bit.ly/2r5TACm
http://bit.ly/2r5TACm
http://bit.ly/2r5TACm
http://bit.ly/2q6ZDrP

• Intermediate nodes can verify and decrypt their portion of route information
and find the next hop.

• Other than the previous and next hops, they cannot learn about any other nodes
that are part of the path.

• They cannot identify the length of the payment path, or their own position in
that path.

• Each part of the path is encrypted in such a way that a network-level attacker
cannot associate the packets from different parts of the path to each other.

• Unlike Tor (an onion-routed anonymization protocol on the internet), there are
no “exit nodes” that can be placed under surveillance. The payments do not need
to be transmitted to the bitcoin blockchain; the nodes just update channel balan‐
ces.

Using this onion-routed protocol, Alice wraps each element of the path in a layer of
encryption, starting with the end and working backward. She encrypts a message to
Eric with Eric’s public key. This message is wrapped in a message encrypted to Diana,
identifying Eric as the next recipient. The message to Diana is wrapped in a message
encrypted to Carol’s public key and identifying Diana as the next recipient. The mes‐
sage to Carol is encrypted to Bob’s key. Thus, Alice has constructed this encrypted
multilayer “onion” of messages. She sends this to Bob, who can only decrypt and
unwrap the outer layer. Inside, Bob finds a message addressed to Carol that he can
forward to Carol but cannot decipher himself. Following the path, the messages get
forwarded, decrypted, forwarded, etc., all the way to Eric. Each participant knows
only the previous and next node in each hop.

Each element of the path contains information on the HTLC that must be extended
to the next hop, the amount that is being sent, the fee to include, and the CLTV lock‐
time (in blocks) expiration of the HTLC. As the route information propagates, the
nodes make HTLC commitments forward to the next hop.

At this point, you might be wondering how it is possible that the nodes do not know
the length of the path and their position in that path. After all, they receive a message
and forward it to the next hop. Doesn’t it get shorter, allowing them to deduce the
path size and their position? To prevent this, the path is always fixed at 20 hops and
padded with random data. Each node sees the next hop and a fixed-length encrypted
message to forward. Only the final recipient sees that there is no next hop. To every‐
one else it seems as if there are always 20 more hops to go.

302 | Chapter 12: Blockchain Applications

Lightning Network Benefits
A Lightning Network is a second-layer routing technology. It can be applied to any
blockchain that supports some basic capabilities, such as multisignature transactions,
timelocks, and basic smart contracts.

If a Lightning Network is layered on top of the bitcoin network, the bitcoin network
can gain a significant increase in capacity, privacy, granularity, and speed, without
sacrificing the principles of trustless operation without intermediaries:

Privacy
Lightning Network payments are much more private than payments on the bit‐
coin blockchain, as they are not public. While participants in a route can see pay‐
ments propagated across their channels, they do not know the sender or
recipient.

Fungibility
A Lightning Network makes it much more difficult to apply surveillance and
blacklists on bitcoin, increasing the fungibility of the currency.

Speed
Bitcoin transactions using Lightning Network are settled in milliseconds, rather
than minutes, as HTLCs are cleared without committing transactions to a block.

Granularity
A Lightning Network can enable payments at least as small as the bitcoin “dust”
limit, perhaps even smaller. Some proposals allow for subsatoshi increments.

Capacity
A Lightning Network increases the capacity of the bitcoin system by several
orders of magnitude. There is no practical upper bound to the number of pay‐
ments per second that can be routed over a Lightning Network, as it depends
only on the capacity and speed of each node.

Trustless Operation
A Lightning Network uses bitcoin transactions between nodes that operate as
peers without trusting each other. Thus, a Lightning Network preserves the prin‐
ciples of the bitcoin system, while expanding its operating parameters signifi‐
cantly.

Of course, as mentioned previously, the Lightning Network protocol is not the only
way to implement routed payment channels. Other proposed systems include Tum‐
blebit and Teechan. At this time, however, the Lightning Network has already been
deployed on testnet. Several different teams have developed competing implementa‐
tions of LN and are working toward a common interoperability standard (called

Routed Payment Channels (Lightning Network) | 303

BOLT). It is likely that Lightning Network will be the first routed payment channel
network to be deployed in production.

Conclusion
We have examined just a few of the emerging applications that can be built using the
bitcoin blockchain as a trust platform. These applications expand the scope of bitcoin
beyond payments and beyond financial instruments, to encompass many other appli‐
cations where trust is critical. By decentralizing the basis of trust, the bitcoin block‐
chain is a platform that will spawn many revolutionary applications in a wide variety
of industries.

304 | Chapter 12: Blockchain Applications

APPENDIX A

The Bitcoin Whitepaper by Satoshi
Nakamoto

This is the original whitepaper, reproduced in its entirety exactly as
it was published by Satoshi Nakamoto in October 2008.

Bitcoin - A Peer-to-Peer Electronic Cash System
Satoshi Nakamoto

satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online pay‐
ments to be sent directly from one party to another without going through a financial
institution. Digital signatures provide part of the solution, but the main benefits are
lost if a trusted third party is still required to prevent double-spending. We propose a
solution to the double-spending problem using a peer-to-peer network. The network
timestamps transactions by hashing them into an ongoing chain of hash-based proof-
of-work, forming a record that cannot be changed without redoing the proof-of-
work. The longest chain not only serves as proof of the sequence of events witnessed,
but proof that it came from the largest pool of CPU power. As long as a majority of
CPU power is controlled by nodes that are not cooperating to attack the network,
they’ll generate the longest chain and outpace attackers. The network itself requires
minimal structure. Messages are broadcast on a best effort basis, and nodes can leave
and rejoin the network at will, accepting the longest proof-of-work chain as proof of
what happened while they were gone.

305

https://bitcoin.org/en/

Introduction
Commerce on the Internet has come to rely almost exclusively on financial institu‐
tions serving as trusted third parties to process electronic payments. While the sys‐
tem works well enough for most transactions, it still suffers from the inherent
weaknesses of the trust based model. Completely non-reversible transactions are not
really possible, since financial institutions cannot avoid mediating disputes. The cost
of mediation increases transaction costs, limiting the minimum practical transaction
size and cutting off the possibility for small casual transactions, and there is a broader
cost in the loss of ability to make non-reversible payments for nonreversible services.
With the possibility of reversal, the need for trust spreads. Merchants must be wary of
their customers, hassling them for more information than they would otherwise
need. A certain percentage of fraud is accepted as unavoidable. These costs and pay‐
ment uncertainties can be avoided in person by using physical currency, but no
mechanism exists to make payments over a communications channel without a trus‐
ted party.

What is needed is an electronic payment system based on cryptographic proof
instead of trust, allowing any two willing parties to transact directly with each other
without the need for a trusted third party. Transactions that are computationally
impractical to reverse would protect sellers from fraud, and routine escrow mecha‐
nisms could easily be implemented to protect buyers. In this paper, we propose a sol‐
ution to the double-spending problem using a peer-to-peer distributed timestamp
server to generate computational proof of the chronological order of transactions.
The system is secure as long as honest nodes collectively control more CPU power
than any cooperating group of attacker nodes.

Transactions
We define an electronic coin as a chain of digital signatures. Each owner transfers the
coin to the next by digitally signing a hash of the previous transaction and the public
key of the next owner and adding these to the end of the coin. A payee can verify the
signatures to verify the chain of ownership.

306 | Appendix A: The Bitcoin Whitepaper by Satoshi Nakamoto

The problem of course is the payee can’t verify that one of the owners did not double-
spend the coin. A common solution is to introduce a trusted central authority, or
mint, that checks every transaction for double spending. After each transaction, the
coin must be returned to the mint to issue a new coin, and only coins issued directly
from the mint are trusted not to be double-spent. The problem with this solution is
that the fate of the entire money system depends on the company running the mint,
with every transaction having to go through them, just like a bank.

We need a way for the payee to know that the previous owners did not sign any ear‐
lier transactions. For our purposes, the earliest transaction is the one that counts, so
we don’t care about later attempts to double-spend. The only way to confirm the
absence of a transaction is to be aware of all transactions. In the mint based model,
the mint was aware of all transactions and decided which arrived first. To accomplish
this without a trusted party, transactions must be publicly announced [1], and we
need a system for participants to agree on a single history of the order in which they
were received. The payee needs proof that at the time of each transaction, the major‐
ity of nodes agreed it was the first received.

Timestamp Server
The solution we propose begins with a timestamp server. A timestamp server works
by taking a hash of a block of items to be timestamped and widely publishing the
hash, such as in a newspaper or Usenet post [2-5]. The timestamp proves that the
data must have existed at the time, obviously, in order to get into the hash. Each time‐
stamp includes the previous timestamp in its hash, forming a chain, with each addi‐
tional timestamp reinforcing the ones before it.

The Bitcoin Whitepaper by Satoshi Nakamoto | 307

Proof-of-Work
To implement a distributed timestamp server on a peer-to-peer basis, we will need to
use a proof-of-work system similar to Adam Back’s Hashcash [6], rather than news‐
paper or Usenet posts. The proof-of-work involves scanning for a value that when
hashed, such as with SHA-256, the hash begins with a number of zero bits. The aver‐
age work required is exponential in the number of zero bits required and can be veri‐
fied by executing a single hash. For our timestamp network, we implement the proof-
of-work by incrementing a nonce in the block until a value is found that gives the
block’s hash the required zero bits. Once the CPU effort has been expended to make it
satisfy the proof-of-work, the block cannot be changed without redoing the work. As
later blocks are chained after it, the work to change the block would include redoing
all the blocks after it.

The proof-of-work also solves the problem of determining representation in majority
decision making. If the majority were based on one-IP-address-one-vote, it could be
subverted by anyone able to allocate many IPs. Proof-of-work is essentially one-CPU-
one-vote. The majority decision is represented by the longest chain, which has the
greatest proof-of-work effort invested in it. If a majority of CPU power is controlled
by honest nodes, the honest chain will grow the fastest and outpace any competing
chains. To modify a past block, an attacker would have to redo the proof-of-work of
the block and all blocks after it and then catch up with and surpass the work of the
honest nodes. We will show later that the probability of a slower attacker catching up
diminishes exponentially as subsequent blocks are added.

To compensate for increasing hardware speed and varying interest in running nodes
over time, the proof-of-work difficulty is determined by a moving average targeting
an average number of blocks per hour. If they’re generated too fast, the difficulty
increases.

308 | Appendix A: The Bitcoin Whitepaper by Satoshi Nakamoto

Network
The steps to run the network are as follows:

1. New transactions are broadcast to all nodes.
2. Each node collects new transactions into a block.
3. Each node works on finding a difficult proof-of-work for its block.
4. When a node finds a proof-of-work, it broadcasts the block to all nodes.
5. Nodes accept the block only if all transactions in it are valid and not already

spent.
6. Nodes express their acceptance of the block by working on creating the next

block in the chain, using the hash of the accepted block as the previous hash.

Nodes always consider the longest chain to be the correct one and will keep working
on extending it. If two nodes broadcast different versions of the next block simultane‐
ously, some nodes may receive one or the other first. In that case, they work on the
first one they received, but save the other branch in case it becomes longer. The tie
will be broken when the next proof-of-work is found and one branch becomes
longer; the nodes that were working on the other branch will then switch to the
longer one.

New transaction broadcasts do not necessarily need to reach all nodes. As long as
they reach many nodes, they will get into a block before long. Block broadcasts are
also tolerant of dropped messages. If a node does not receive a block, it will request it
when it receives the next block and realizes it missed one.

Incentive
By convention, the first transaction in a block is a special transaction that starts a new
coin owned by the creator of the block. This adds an incentive for nodes to support
the network, and provides a way to initially distribute coins into circulation, since
there is no central authority to issue them. The steady addition of a constant of
amount of new coins is analogous to gold miners expending resources to add gold to
circulation. In our case, it is CPU time and electricity that is expended.

The incentive can also be funded with transaction fees. If the output value of a trans‐
action is less than its input value, the difference is a transaction fee that is added to
the incentive value of the block containing the transaction. Once a predetermined
number of coins have entered circulation, the incentive can transition entirely to
transaction fees and be completely inflation free.

The incentive may help encourage nodes to stay honest. If a greedy attacker is able to
assemble more CPU power than all the honest nodes, he would have to choose

The Bitcoin Whitepaper by Satoshi Nakamoto | 309

between using it to defraud people by stealing back his payments, or using it to gener‐
ate new coins. He ought to find it more profitable to play by the rules, such rules that
favour him with more new coins than everyone else combined, than to undermine
the system and the validity of his own wealth.

Reclaiming Disk Space
Once the latest transaction in a coin is buried under enough blocks, the spent trans‐
actions before it can be discarded to save disk space. To facilitate this without break‐
ing the block’s hash, transactions are hashed in a Merkle Tree [7] [2] [5], with only the
root included in the block’s hash. Old blocks can then be compacted by stubbing off
branches of the tree. The interior hashes do not need to be stored.

A block header with no transactions would be about 80 bytes. If we suppose blocks
are generated every 10 minutes, 80 bytes * 6 * 24 * 365 == 4.2MB per year. With
computer systems typically selling with 2GB of RAM as of 2008, and Moore’s Law
predicting current growth of 1.2GB per year, storage should not be a problem even if
the block headers must be kept in memory.

Simplified Payment Verification
It is possible to verify payments without running a full network node. A user only
needs to keep a copy of the block headers of the longest proof-of-work chain, which
he can get by querying network nodes until he’s convinced he has the longest chain,
and obtain the Merkle branch linking the transaction to the block it’s timestamped in.
He can’t check the transaction for himself, but by linking it to a place in the chain, he
can see that a network node has accepted it, and blocks added after it further confirm
the network has accepted it.

310 | Appendix A: The Bitcoin Whitepaper by Satoshi Nakamoto

As such, the verification is reliable as long as honest nodes control the network, but is
more vulnerable if the network is overpowered by an attacker. While network nodes
can verify transactions for themselves, the simplified method can be fooled by an
attacker’s fabricated transactions for as long as the attacker can continue to over‐
power the network. One strategy to protect against this would be to accept alerts
from network nodes when they detect an invalid block, prompting the user’s software
to download the full block and alerted transactions to confirm the inconsistency.
Businesses that receive frequent payments will probably still want to run their own
nodes for more independent security and quicker verification.

Combining and Splitting Value
Although it would be possible to handle coins individually, it would be unwieldy to
make a separate transaction for every cent in a transfer. To allow value to be split and
combined, transactions contain multiple inputs and outputs. Normally there will be
either a single input from a larger previous transaction or multiple inputs combining
smaller amounts, and at most two outputs: one for the payment, and one returning
the change, if any, back to the sender.

It should be noted that fan-out, where a transaction depends on several transactions,
and those transactions depend on many more, is not a problem here. There is never
the need to extract a complete standalone copy of a transaction’s history.

The Bitcoin Whitepaper by Satoshi Nakamoto | 311

Privacy
The traditional banking model achieves a level of privacy by limiting access to infor‐
mation to the parties involved and the trusted third party. The necessity to announce
all transactions publicly precludes this method, but privacy can still be maintained by
breaking the flow of information in another place: by keeping public keys anony‐
mous. The public can see that someone is sending an amount to someone else, but
without information linking the transaction to anyone. This is similar to the level of
information released by stock exchanges, where the time and size of individual
trades, the “tape”, is made public, but without telling who the parties were.

As an additional firewall, a new key pair should be used for each transaction to keep
them from being linked to a common owner. Some linking is still unavoidable with
multi-input transactions, which necessarily reveal that their inputs were owned by the
same owner. The risk is that if the owner of a key is revealed, linking could reveal
other transactions that belonged to the same owner.

Calculations
We consider the scenario of an attacker trying to generate an alternate chain faster
than the honest chain. Even if this is accomplished, it does not throw the system open
to arbitrary changes, such as creating value out of thin air or taking money that never
belonged to the attacker. Nodes are not going to accept an invalid transaction as pay‐
ment, and honest nodes will never accept a block containing them. An attacker can
only try to change one of his own transactions to take back money he recently spent.

The race between the honest chain and an attacker chain can be characterized as a
Binomial Random Walk. The success event is the honest chain being extended by one
block, increasing its lead by +1, and the failure event is the attacker’s chain being
extended by one block, reducing the gap by -1.

The probability of an attacker catching up from a given deficit is analogous to a
Gambler’s Ruin problem. Suppose a gambler with unlimited credit starts at a deficit
and plays potentially an infinite number of trials to try to reach breakeven. We can

312 | Appendix A: The Bitcoin Whitepaper by Satoshi Nakamoto

calculate the probability he ever reaches breakeven, or that an attacker ever catches
up with the honest chain, as follows [8]:

p == probability an honest node finds the next block

q == probability the attacker finds the next block

qz == probability the attacker will ever catch up from z blocks behind

Given our assumption that p > q, the probability drops exponentially as the number
of blocks the attacker has to catch up with increases. With the odds against him, if he
doesn’t make a lucky lunge forward early on, his chances become vanishingly small as
he falls further behind.

We now consider how long the recipient of a new transaction needs to wait before
being sufficiently certain the sender can’t change the transaction. We assume the
sender is an attacker who wants to make the recipient believe he paid him for a while,
then switch it to pay back to himself after some time has passed. The receiver will be
alerted when that happens, but the sender hopes it will be too late.

The receiver generates a new key pair and gives the public key to the sender shortly
before signing. This prevents the sender from preparing a chain of blocks ahead of
time by working on it continuously until he is lucky enough to get far enough ahead,
then executing the transaction at that moment. Once the transaction is sent, the dis‐
honest sender starts working in secret on a parallel chain containing an alternate ver‐
sion of his transaction.

The recipient waits until the transaction has been added to a block and z blocks have
been linked after it. He doesn’t know the exact amount of progress the attacker has
made, but assuming the honest blocks took the average expected time per block, the
attacker’s potential progress will be a Poisson distribution with expected value:

To get the probability the attacker could still catch up now, we multiply the Poisson
density for each amount of progress he could have made by the probability he could
catch up from that point:

The Bitcoin Whitepaper by Satoshi Nakamoto | 313

Rearranging to avoid summing the infinite tail of the distribution…

Converting to C code…

#include <math.h>
double AttackerSuccessProbability(double q, int z)
{
 double p == 1.0 - q;
 double lambda == z * (q / p);
 double sum == 1.0;
 int i, k;
 for (k == 0; k <== z; k++)
 {
 double poisson == exp(-lambda);
 for (i == 1; i <== k; i++)
 poisson *== lambda / i;
 sum -== poisson * (1 - pow(q / p, z - k));
 }
 return sum;
}

Running some results, we can see the probability drop off exponentially with z.

q=0.1
z=0 P=1.0000000
z=1 P=0.2045873
z=2 P=0.0509779
z=3 P=0.0131722
z=4 P=0.0034552
z=5 P=0.0009137
z=6 P=0.0002428
z=7 P=0.0000647
z=8 P=0.0000173
z=9 P=0.0000046
z=10 P=0.0000012

q=0.3
z=0 P=1.0000000
z=5 P=0.1773523
z=10 P=0.0416605
z=15 P=0.0101008
z=20 P=0.0024804
z=25 P=0.0006132

314 | Appendix A: The Bitcoin Whitepaper by Satoshi Nakamoto

z=30 P=0.0001522
z=35 P=0.0000379
z=40 P=0.0000095
z=45 P=0.0000024
z=50 P=0.0000006

Solving for P less than 0.1%…

P < 0.001
q=0.10 z=5
q=0.15 z=8
q=0.20 z=11
q=0.25 z=15
q=0.30 z=24
q=0.35 z=41
q=0.40 z=89
q=0.45 z=340

Conclusion
We have proposed a system for electronic transactions without relying on trust. We
started with the usual framework of coins made from digital signatures, which pro‐
vides strong control of ownership, but is incomplete without a way to prevent double-
spending. To solve this, we proposed a peer-to-peer network using proof-of-work to
record a public history of transactions that quickly becomes computationally imprac‐
tical for an attacker to change if honest nodes control a majority of CPU power. The
network is robust in its unstructured simplicity. Nodes work all at once with little
coordination. They do not need to be identified, since messages are not routed to any
particular place and only need to be delivered on a best effort basis. Nodes can leave
and rejoin the network at will, accepting the proof-of-work chain as proof of what
happened while they were gone. They vote with their CPU power, expressing their
acceptance of valid blocks by working on extending them and rejecting invalid blocks
by refusing to work on them. Any needed rules and incentives can be enforced with
this consensus mechanism.

References
[1] W. Dai, “b-money,” http://www.weidai.com/bmoney.txt, 1998.

[2] H. Massias, X.S. Avila, and J.-J. Quisquater, “Design of a secure timestamping ser‐
vice with minimal trust requirements,” In 20th Symposium on Information Theory in
the Benelux, May 1999.

[3] S. Haber, W.S. Stornetta, “How to time-stamp a digital document,” In Journal of
Cryptology, vol 3, no 2, pages 99-111, 1991.

The Bitcoin Whitepaper by Satoshi Nakamoto | 315

http://www.weidai.com/bmoney.txt

[4] D. Bayer, S. Haber, W.S. Stornetta, “Improving the efficiency and reliability of dig‐
ital time-stamping,” In Sequences II: Methods in Communication, Security and Com‐
puter Science, pages 329-334, 1993.

[5] S. Haber, W.S. Stornetta, “Secure names for bit-strings,” In Proceedings of the 4th
ACM Conference on Computer and Communications Security, pages 28-35, April
1997.

[6] A. Back, “Hashcash - a denial of service counter-measure,” http://www.hash‐
cash.org/papers/hashcash.pdf, 2002.

[7] R.C. Merkle, “Protocols for public key cryptosystems,” In Proc. 1980 Symposium
on Security and Privacy, IEEE Computer Society, pages 122-133, April 1980.

[8] W. Feller, “An introduction to probability theory and its applications,” 1957.

License
This whitepaper was published in October 2008 by Satoshi Nakamoto. It was later
(2009) added as supporting documentation to the bitcoin software and carries the
same MIT license. It has been reproduced in this book, without modification other
than formatting, under the terms of the MIT license:

The MIT License (MIT) Copyright (c) 2008 Satoshi Nakamoto

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to per‐
mit persons to whom the Software is furnished to do so, subject to the following con‐
ditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN‐
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

316 | Appendix A: The Bitcoin Whitepaper by Satoshi Nakamoto

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf

APPENDIX B

Transaction Script Language Operators,
Constants, and Symbols

Tables and descriptions sourced from https://en.bitcoin.it/wiki/
Script.

Table B-1 shows operators for pushing values onto the stack.

Table B-1. Push value onto stack

Symbol Value (hex) Description
OP_0 or OP_FALSE 0x00 An empty array is pushed onto the stack

1-75 0x01-0x4b Push the next N bytes onto the stack, where N is 1 to 75 bytes

OP_PUSHDATA1 0x4c The next script byte contains N, push the following N bytes onto the stack

OP_PUSHDATA2 0x4d The next two script bytes contain N, push the following N bytes onto the stack

OP_PUSHDATA4 0x4e The next four script bytes contain N, push the following N bytes onto the stack

OP_1NEGATE 0x4f Push the value “–1” onto the stack

OP_RESERVED 0x50 Halt - Invalid transaction unless found in an unexecuted OP_IF clause

OP_1 or OP_TRUE 0x51 Push the value “1” onto the stack

OP_2 to OP_16 0x52 to 0x60 For OP_N, push the value “N” onto the stack, e.g., OP_2 pushes “2”

317

https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Script

Table B-2 shows conditional flow control operators.

Table B-2. Conditional flow control

Symbol Value (hex) Description
OP_NOP 0x61 Do nothing

OP_VER 0x62 Halt—Invalid transaction unless found in an unexecuted OP_IF clause

OP_IF 0x63 Execute the statements following if top of stack is not 0

OP_NOTIF 0x64 Execute the statements following if top of stack is 0

OP_VERIF 0x65 Halt—Invalid transaction

OP_VERNOTIF 0x66 Halt—Invalid transaction

OP_ELSE 0x67 Execute only if the previous statements were not executed

OP_ENDIF 0x68 End the OP_IF, OP_NOTIF, OP_ELSE block

OP_VERIFY 0x69 Check the top of the stack, halt and invalidate transaction if not TRUE

OP_RETURN 0x6a Halt and invalidate transaction

Table B-3 shows operators used for timelocks.

Table B-3. Timelock operations

Symbol Value
(hex)

Description

OP_CHECKLOCKTIMEVERIFY
(previously OP_NOP2)

0xb1 Marks transaction as invalid if the top stack item is greater than the transaction’s
nLockTime field, otherwise script evaluation continues as though an OP_NOP was
executed. Transaction is also invalid if 1. the stack is empty; or 2. the top stack
item is negative; or 3. the top stack item is greater than or equal to 500000000
while the transaction’s nLockTime field is less than 500000000, or vice versa; or 4.
the input’s nSequence field is equal to 0xffffffff. The precise semantics are
described in BIP-65

OP_CHECKSEQUENCEVERIFY
(previously OP_NOP3)

0xb2 Marks transaction as invalid if the relative lock time of the input (enforced by BIP
0068 with nSequence) is not equal to or longer than the value of the top stack
item. The precise semantics are described in BIP-112

Table B-4 shows operators used to manipulate the stack.

Table B-4. Stack operations

Symbol Value (hex) Description
OP_TOALTSTACK 0x6b Pop top item from stack and push to alternative stack

OP_FROMALTSTACK 0x6c Pop top item from alternative stack and push to stack

OP_2DROP 0x6d Pop top two stack items

OP_2DUP 0x6e Duplicate top two stack items

OP_3DUP 0x6f Duplicate top three stack items

OP_2OVER 0x70 Copy the third and fourth items in the stack to the top

318 | Appendix B: Transaction Script Language Operators, Constants, and Symbols

Symbol Value (hex) Description
OP_2ROT 0x71 Move the fifth and sixth items in the stack to the top

OP_2SWAP 0x72 Swap the two top pairs of items in the stack

OP_IFDUP 0x73 Duplicate the top item in the stack if it is not 0

OP_DEPTH 0x74 Count the items on the stack and push the resulting count

OP_DROP 0x75 Pop the top item in the stack

OP_DUP 0x76 Duplicate the top item in the stack

OP_NIP 0x77 Pop the second item in the stack

OP_OVER 0x78 Copy the second item in the stack and push it onto the top

OP_PICK 0x79 Pop value N from top, then copy the Nth item to the top of the stack

OP_ROLL 0x7a Pop value N from top, then move the Nth item to the top of the stack

OP_ROT 0x7b Rotate the top three items in the stack

OP_SWAP 0x7c Swap the top three items in the stack

OP_TUCK 0x7d Copy the top item and insert it between the top and second item.

Table B-5 shows string operators.

Table B-5. String splice operations

Symbol Value (hex) Description
OP_CAT 0x7e Disabled (concatenates top two items)

OP_SUBSTR 0x7f Disabled (returns substring)

OP_LEFT 0x80 Disabled (returns left substring)

OP_RIGHT 0x81 Disabled (returns right substring)

OP_SIZE 0x82 Calculate string length of top item and push the result

Table B-6 shows binary arithmetic and boolean logic operators.

Table B-6. Binary arithmetic and conditionals

Symbol Value (hex) Description
OP_INVERT 0x83 Disabled (Flip the bits of the top item)

OP_AND 0x84 Disabled (Boolean AND of two top items)

OP_OR 0x85 Disabled (Boolean OR of two top items)

OP_XOR 0x86 Disabled (Boolean XOR of two top items)

OP_EQUAL 0x87 Push TRUE (1) if top two items are exactly equal, push FALSE (0) otherwise

OP_EQUALVERIFY 0x88 Same as OP_EQUAL, but run OP_VERIFY after to halt if not TRUE

OP_RESERVED1 0x89 Halt - Invalid transaction unless found in an unexecuted OP_IF clause

OP_RESERVED2 0x8a Halt - Invalid transaction unless found in an unexecuted OP_IF clause

Transaction Script Language Operators, Constants, and Symbols | 319

Table B-7 shows numeric (arithmetic) operators.

Table B-7. Numeric operators

Symbol Value
(hex)

Description

OP_1ADD 0x8b Add 1 to the top item

OP_1SUB 0x8c Subtract 1 from the top item

OP_2MUL 0x8d Disabled (multiply top item by 2)

OP_2DIV 0x8e Disabled (divide top item by 2)

OP_NEGATE 0x8f Flip the sign of top item

OP_ABS 0x90 Change the sign of the top item to positive

OP_NOT 0x91 If top item is 0 or 1 Boolean flip it, otherwise return 0

OP_0NOTEQUAL 0x92 If top item is 0 return 0, otherwise return 1

OP_ADD 0x93 Pop top two items, add them and push result

OP_SUB 0x94 Pop top two items, subtract first from second, push result

OP_MUL 0x95 Disabled (multiply top two items)

OP_DIV 0x96 Disabled (divide second item by first item)

OP_MOD 0x97 Disabled (remainder divide second item by first item)

OP_LSHIFT 0x98 Disabled (shift second item left by first item number of bits)

OP_RSHIFT 0x99 Disabled (shift second item right by first item number of bits)

OP_BOOLAND 0x9a Boolean AND of top two items

OP_BOOLOR 0x9b Boolean OR of top two items

OP_NUMEQUAL 0x9c Return TRUE if top two items are equal numbers

OP_NUMEQUALVERIFY 0x9d Same as NUMEQUAL, then OP_VERIFY to halt if not TRUE

OP_NUMNOTEQUAL 0x9e Return TRUE if top two items are not equal numbers

OP_LESSTHAN 0x9f Return TRUE if second item is less than top item

OP_GREATERTHAN 0xa0 Return TRUE if second item is greater than top item

OP_LESSTHANOREQUAL 0xa1 Return TRUE if second item is less than or equal to top item

OP_GREATERTHANOREQUAL 0xa2 Return TRUE if second item is great than or equal to top item

OP_MIN 0xa3 Return the smaller of the two top items

OP_MAX 0xa4 Return the larger of the two top items

OP_WITHIN 0xa5 Return TRUE if the third item is between the second item (or equal) and first item

320 | Appendix B: Transaction Script Language Operators, Constants, and Symbols

Table B-8 shows cryptographic function operators.

Table B-8. Cryptographic and hashing operations

Symbol Value
(hex)

Description

OP_RIPEMD160 0xa6 Return RIPEMD160 hash of top item

OP_SHA1 0xa7 Return SHA1 hash of top item

OP_SHA256 0xa8 Return SHA256 hash of top item

OP_HASH160 0xa9 Return RIPEMD160(SHA256(x)) hash of top item

OP_HASH256 0xaa Return SHA256(SHA256(x)) hash of top item

OP_CODESEPARATOR 0xab Mark the beginning of signature-checked data

OP_CHECKSIG 0xac Pop a public key and signature and validate the signature for the transaction’s
hashed data, return TRUE if matching

OP_CHECKSIGVERIFY 0xad Same as CHECKSIG, then OP_VERIFY to halt if not TRUE

OP_CHECKMULTISIG 0xae Run CHECKSIG for each pair of signature and public key provided. All must match.
Bug in implementation pops an extra value, prefix with OP_NOP as workaround

OP_CHECKMULTISIGVERIFY 0xaf Same as CHECKMULTISIG, then OP_VERIFY to halt if not TRUE

Table B-9 shows nonoperator symbols.

Table B-9. Nonoperators

Symbol Value (hex) Description
OP_NOP1-OP_NOP10 0xb0-0xb9 Does nothing, ignored

Table B-10 shows operator codes reserved for use by the internal script parser.

Table B-10. Reserved OP codes for internal use by the parser

Symbol Value (hex) Description
OP_SMALLDATA 0xf9 Represents small data field

OP_SMALLINTEGER 0xfa Represents small integer data field

OP_PUBKEYS 0xfb Represents public key fields

OP_PUBKEYHASH 0xfd Represents a public key hash field

OP_PUBKEY 0xfe Represents a public key field

OP_INVALIDOPCODE 0xff Represents any OP code not currently assigned

Transaction Script Language Operators, Constants, and Symbols | 321

APPENDIX C

Bitcoin Improvement Proposals

Bitcoin Improvement Proposals are design documents providing information to the
bitcoin community, or for describing a new feature for bitcoin or its processes or
environment.

As per BIP-01 BIP Purpose and Guidelines, there are three kinds of BIPs:

Standard BIP
Describes any change that affects most or all bitcoin implementations, such as a
change to the network protocol, a change in block or transaction validity rules, or
any change or addition that affects the interoperability of applications using bit‐
coin.

Informational BIP
Describes a bitcoin design issue, or provides general guidelines or information to
the bitcoin community, but does not propose a new feature. Informational BIPs
do not necessarily represent a bitcoin community consensus or recommendation,
so users and implementors may ignore informational BIPs or follow their advice.

Process BIP
Describes a bitcoin process, or proposes a change to (or an event in) a process.
Process BIPs are like standard BIPs but apply to areas other than the bitcoin pro‐
tocol itself. They might propose an implementation, but not to bitcoin’s codebase;
they often require community consensus; and unlike informational BIPs, they are
more than recommendations, and users are typically not free to ignore them.
Examples include procedures, guidelines, changes to the decision-making pro‐
cess, and changes to the tools or environment used in bitcoin development. Any
meta-BIP is also considered a process BIP.

323

BIPs are recorded in a versioned repository on GitHub: https://github.com/bitcoin/
bips. Table C-1 shows a snapshot of the BIPs in April 2017. Consult the authoritative
repository for up-to-date information on existing BIPs and their contents.

Table C-1. Snapshot of BIPs

BIP# Title Owner Type Status
BIP-1 BIP Purpose and Guidelines Amir Taaki Process Replaced

BIP-2 BIP process, revised Luke Dashjr Process Active

BIP-8 Version bits with guaranteed lock-in Shaolin Fry Informational Draft

BIP-9 Version bits with timeout and delay Pieter Wuille, Peter Todd,
Greg Maxwell, Rusty
Russell

Informational Final

BIP-10 Multi-Sig Transaction Distribution Alan Reiner Informational Withdrawn

BIP-11 M-of-N Standard Transactions Gavin Andresen Standard Final

BIP-12 OP_EVAL Gavin Andresen Standard Withdrawn

BIP-13 Address Format for pay-to-script-hash Gavin Andresen Standard Final

BIP-14 Protocol Version and User Agent Amir Taaki, Patrick
Strateman

Standard Final

BIP-15 Aliases Amir Taaki Standard Deferred

BIP-16 Pay to Script Hash Gavin Andresen Standard Final

BIP-17 OP_CHECKHASHVERIFY (CHV) Luke Dashjr Standard Withdrawn

BIP-18 hashScriptCheck Luke Dashjr Standard Proposed

BIP-19 M-of-N Standard Transactions (Low SigOp) Luke Dashjr Standard Draft

BIP-20 URI Scheme Luke Dashjr Standard Replaced

BIP-21 URI Scheme Nils Schneider, Matt
Corallo

Standard Final

BIP-22 getblocktemplate - Fundamentals Luke Dashjr Standard Final

BIP-23 getblocktemplate - Pooled Mining Luke Dashjr Standard Final

BIP-30 Duplicate transactions Pieter Wuille Standard Final

BIP-31 Pong message Mike Hearn Standard Final

BIP-32 Hierarchical Deterministic Wallets Pieter Wuille Informational Final

BIP-33 Stratized Nodes Amir Taaki Standard Draft

BIP-34 Block v2, Height in Coinbase Gavin Andresen Standard Final

BIP-35 mempool message Jeff Garzik Standard Final

BIP-36 Custom Services Stefan Thomas Standard Draft

BIP-37 Connection Bloom filtering Mike Hearn, Matt Corallo Standard Final

BIP-38 Passphrase-protected private key Mike Caldwell, Aaron
Voisine

Standard Draft

BIP-39 Mnemonic code for generating deterministic keys Marek Palatinus, Pavol
Rusnak, Aaron Voisine,
Sean Bowe

Standard Proposed

324 | Appendix C: Bitcoin Improvement Proposals

https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips/blob/master/bip-0001.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0002.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0008.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0010.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0012.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0015.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0017.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0018.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0019.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0020.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0022.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0023.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0033.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0035.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0036.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0038.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

BIP# Title Owner Type Status
BIP-40 Stratum wire protocol Marek Palatinus Standard BIP number

allocated

BIP-41 Stratum mining protocol Marek Palatinus Standard BIP number
allocated

BIP-42 A finite monetary supply for Bitcoin Pieter Wuille Standard Draft

BIP-43 Purpose Field for Deterministic Wallets Marek Palatinus, Pavol
Rusnak

Informational Draft

BIP-44 Multi-Account Hierarchy for Deterministic Wallets Marek Palatinus, Pavol
Rusnak

Standard Proposed

BIP-45 Structure for Deterministic P2SH Multisignature
Wallets

Manuel Araoz, Ryan X.
Charles, Matias Alejo Garcia

Standard Proposed

BIP-47 Reusable Payment Codes for Hierarchical
Deterministic Wallets

Justus Ranvier Informational Draft

BIP-49 Derivation scheme for P2WPKH-nested-in-P2SH
based accounts

Daniel Weigl Informational Draft

BIP-50 March 2013 Chain Fork Post-Mortem Gavin Andresen Informational Final

BIP-60 Fixed Length “version” Message (Relay-Transactions
Field)

Amir Taaki Standard Draft

BIP-61 Reject P2P message Gavin Andresen Standard Final

BIP-62 Dealing with malleability Pieter Wuille Standard Withdrawn

BIP-63 Stealth Addresses Peter Todd Standard BIP number
allocated

BIP-64 getutxo message Mike Hearn Standard Draft

BIP-65 OP_CHECKLOCKTIMEVERIFY Peter Todd Standard Final

BIP-66 Strict DER signatures Pieter Wuille Standard Final

BIP-67 Deterministic Pay-to-script-hash multi-signature
addresses through public key sorting

Thomas Kerin, Jean-Pierre
Rupp, Ruben de Vries

Standard Proposed

BIP-68 Relative lock-time using consensus-enforced
sequence numbers

Mark Friedenbach, BtcDrak,
Nicolas Dorier,
kinoshitajona

Standard Final

BIP-69 Lexicographical Indexing of Transaction Inputs and
Outputs

Kristov Atlas Informational Proposed

BIP-70 Payment Protocol Gavin Andresen, Mike
Hearn

Standard Final

BIP-71 Payment Protocol MIME types Gavin Andresen Standard Final

BIP-72 bitcoin: uri extensions for Payment Protocol Gavin Andresen Standard Final

BIP-73 Use “Accept” header for response type negotiation
with Payment Request URLs

Stephen Pair Standard Final

BIP-74 Allow zero value OP_RETURN in Payment Protocol Toby Padilla Standard Draft

BIP-75 Out of Band Address Exchange using Payment
Protocol Encryption

Justin Newton, Matt David,
Aaron Voisine, James
MacWhyte

Standard Draft

Bitcoin Improvement Proposals | 325

https://github.com/bitcoin/bips/blob/master/bip-0040.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0041.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0042.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0043.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0045.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0047.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0049.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0060.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0061.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0063.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0064.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0067.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0069.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0071.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0073.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0074.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0075.mediawiki

BIP# Title Owner Type Status
BIP-80 Hierarchy for Non-Colored Voting Pool Deterministic

Multisig Wallets
Justus Ranvier, Jimmy
Song

Informational Deferred

BIP-81 Hierarchy for Colored Voting Pool Deterministic
Multisig Wallets

Justus Ranvier, Jimmy
Song

Informational Deferred

BIP-83 Dynamic Hierarchical Deterministic Key Trees Eric Lombrozo Standard Draft

BIP-90 Buried Deployments Suhas Daftuar Informational Draft

BIP-99 Motivation and deployment of consensus rule
changes ([soft/hard]forks)

Jorge Timón Informational Draft

BIP-101 Increase maximum block size Gavin Andresen Standard Withdrawn

BIP-102 Block size increase to 2MB Jeff Garzik Standard Draft

BIP-103 Block size following technological growth Pieter Wuille Standard Draft

BIP-104 Block75 - Max block size like difficulty t.khan Standard Draft

BIP-105 Consensus based block size retargeting algorithm BtcDrak Standard Draft

BIP-106 Dynamically Controlled Bitcoin Block Size Max Cap Upal Chakraborty Standard Draft

BIP-107 Dynamic limit on the block size Washington Y. Sanchez Standard Draft

BIP-109 Two million byte size limit with sigop and sighash
limits

Gavin Andresen Standard Rejected

BIP-111 NODE_BLOOM service bit Matt Corallo, Peter Todd Standard Proposed

BIP-112 CHECKSEQUENCEVERIFY BtcDrak, Mark Friedenbach,
Eric Lombrozo

Standard Final

BIP-113 Median time-past as endpoint for lock-time
calculations

Thomas Kerin, Mark
Friedenbach

Standard Final

BIP-114 Merkelized Abstract Syntax Tree Johnson Lau Standard Draft

BIP-120 Proof of Payment Kalle Rosenbaum Standard Draft

BIP-121 Proof of Payment URI scheme Kalle Rosenbaum Standard Draft

BIP-122 URI scheme for Blockchain references / exploration Marco Pontello Standard Draft

BIP-123 BIP Classification Eric Lombrozo Process Active

BIP-124 Hierarchical Deterministic Script Templates Eric Lombrozo, William
Swanson

Informational Draft

BIP-125 Opt-in Full Replace-by-Fee Signaling David A. Harding, Peter
Todd

Standard Proposed

BIP-126 Best Practices for Heterogeneous Input Script
Transactions

Kristov Atlas Informational Draft

BIP-130 sendheaders message Suhas Daftuar Standard Proposed

BIP-131 “Coalescing Transaction” Specification (wildcard
inputs)

Chris Priest Standard Draft

BIP-132 Committee-based BIP Acceptance Process Andy Chase Process Withdrawn

BIP-133 feefilter message Alex Morcos Standard Draft

BIP-134 Flexible Transactions Tom Zander Standard Draft

BIP-140 Normalized TXID Christian Decker Standard Draft

326 | Appendix C: Bitcoin Improvement Proposals

https://github.com/bitcoin/bips/blob/master/bip-0080.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0081.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0083.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0090.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0099.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0103.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0104.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0105.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0106.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0107.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0109.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0114.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0120.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0121.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0123.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0124.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0126.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0131.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0132.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0133.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0134.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0140.mediawiki

BIP# Title Owner Type Status
BIP-141 Segregated Witness (Consensus layer) Eric Lombrozo, Johnson

Lau, Pieter Wuille
Standard Draft

BIP-142 Address Format for Segregated Witness Johnson Lau Standard Deferred

BIP-143 Transaction Signature Verification for Version 0
Witness Program

Johnson Lau, Pieter Wuille Standard Draft

BIP-144 Segregated Witness (Peer Services) Eric Lombrozo, Pieter
Wuille

Standard Draft

BIP-145 getblocktemplate Updates for Segregated Witness Luke Dashjr Standard Draft

BIP-146 Dealing with signature encoding malleability Johnson Lau, Pieter Wuille Standard Draft

BIP-147 Dealing with dummy stack element malleability Johnson Lau Standard Draft

BIP-148 Mandatory activation of segwit deployment Shaolin Fry Standard Draft

BIP-150 Peer Authentication Jonas Schnelli Standard Draft

BIP-151 Peer-to-Peer Communication Encryption Jonas Schnelli Standard Draft

BIP-152 Compact Block Relay Matt Corallo Standard Draft

BIP-171 Currency/exchange rate information API Luke Dashjr Standard Draft

BIP-180 Block size/weight fraud proof Luke Dashjr Standard Draft

BIP-199 Hashed Time-Locked Contract transactions Sean Bowe, Daira
Hopwood

Standard Draft

Bitcoin Improvement Proposals | 327

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0142.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0145.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0148.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0171.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0180.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki

APPENDIX D

Segregated Witness

Segregated Witness (segwit) is an upgrade to the bitcoin consensus rules and network
protocol, proposed and implemented as a BIP-9 soft-fork that is currently (mid-2017)
pending activation.

In cryptography, the term “witness” is used to describe a solution to a cryptographic
puzzle. In bitcoin terms, the witness satisfies a cryptographic condition placed on a
unspent transaction output (UTXO).

In the context of bitcoin, a digital signature is one type of witness, but a witness is
more broadly any solution that can satisfy the conditions imposed on an UTXO and
unlock that UTXO for spending. The term “witness” is a more general term for an
“unlocking script” or “scriptSig.”

Before segwit’s introduction, every input in a transaction was followed by the witness
data that unlocked it. The witness data was embedded in the transaction as part of
each input. The term segregated witness, or segwit for short, simply means separating
the signature or unlocking script of a specific output. Think “separate scriptSig,” or
“separate signature” in the simplest form.

Segregated Witness therefore is an architectural change to bitcoin that aims to move
the witness data from the scriptSig (unlocking script) field of a transaction into a
separate witness data structure that accompanies a transaction. Clients may request
transaction data with or without the accompanying witness data.

In this section we will look at some of the benefits of Segregated Witness, describe the
mechanism used to deploy and implement this architecture change, and demonstrate
the use of Segregated Witness in transactions and addresses.

329

Segregated Witness is defined by the following BIPs:

BIP-141
The main definition of Segregated Witness.

BIP-143
Transaction Signature Verification for Version 0 Witness Program

BIP-144
Peer Services—New network messages and serialization formats

BIP-145
getblocktemplate Updates for Segregated Witness (for mining)

Why Segregated Witness?
Segregated Witness is an architectural change that has several effects on the scalabil‐
ity, security, economic incentives, and performance of bitcoin:

Transaction Malleability
By moving the witness outside the transaction, the transaction hash used as an
identifier no longer includes the witness data. Since the witness data is the only
part of the transaction that can be modified by a third party (see “Transaction
identifiers” on page 338), removing it also removes the opportunity for transac‐
tion malleability attacks. With Segregated Witness, transaction hashes become
immutable by anyone other than the creator of the transaction, which greatly
improves the implementation of many other protocols that rely on advanced bit‐
coin transaction construction, such as payment channels, chained transactions,
and lightning networks.

Script Versioning
With the introduction of Segregated Witness scripts, every locking script is pre‐
ceded by a script version number, similar to how transactions and blocks have
version numbers. The addition of a script version number allows the scripting
language to be upgraded in a backward-compatible way (i.e., using soft fork
upgrades) to introduce new script operands, syntax, or semantics. The ability to
upgrade the scripting language in a nondisruptive way will greatly accelerate the
rate of innovation in bitcoin.

Network and Storage Scaling
The witness data is often a big contributor to the total size of a transaction. More
complex scripts such as those used for multisig or payment channels are very
large. In some cases these scripts account for the majority (more than 75%) of the
data in a transaction. By moving the witness data outside the transaction, Segre‐
gated Witness improves bitcoin’s scalability. Nodes can prune the witness data
after validating the signatures, or ignore it altogether when doing simplified pay‐

330 | Appendix D: Segregated Witness

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0145.mediawiki

ment verification. The witness data doesn’t need to be transmitted to all nodes
and does not need to be stored on disk by all nodes.

Signature Verification Optimization
Segregated Witness upgrades the signature functions (CHECKSIG, CHECKMULTISIG,
etc.) to reduce the algorithm’s computational complexity. Before segwit, the algo‐
rithm used to produce a signature required a number of hash operations that was
proportional to the size of the transaction. Data-hashing computations increased
in O(n2) with respect to the number of signature operations, introducing a sub‐
stantial computational burden on all nodes verifying the signature. With segwit,
the algorithm is changed to reduce the complexity to O(n).

Offline Signing Improvement
Segregated Witness signatures incorporate the value (amount) referenced by each
input in the hash that is signed. Previously, an offline signing device, such as a
hardware wallet, would have to verify the amount of each input before signing a
transaction. This was usually accomplished by streaming a large amount of data
about the previous transactions referenced as inputs. Since the amount is now
part of the commitment hash that is signed, an offline device does not need the
previous transactions. If the amounts do not match (are misrepresented by a
compromised online system), the signature will be invalid.

How Segregated Witness Works
At first glance, Segregated Witness appears to be a change to how transactions are
constructed and therefore a transaction-level feature, but it is not. In fact, Segregated
Witness is also a change to how individual UTXO are spent and therefore is a per-
output feature.

A transaction can spend Segregated Witness outputs or traditional (inline-witness)
outputs or both. Therefore, it does not make much sense to refer to a transaction as a
“Segregated Witness transaction.” Rather we should refer to specific transaction
inputs as “Segregated Witness inputs.”

When a transaction spends an UTXO, it must provide a witness. In a traditional
UTXO, the locking script requires that witness data be provided inline in the input
part of the transaction that spends the UTXO. A Segregated Witness UTXO, however,
specifies a locking script that can be satisfied with witness data outside of the input
(segregated).

Soft Fork (Backward Compatibility)
Segregated Witness is a significant change to the way outputs and transactions are
architected. Such a change would normally require a simultaneous change in every
bitcoin node and wallet to change the consensus rules—what is known as a hard fork.

Segregated Witness | 331

Instead, segregated witness is introduced with a much less disruptive change, which is
backward compatible, known as a soft fork. This type of upgrade allows nonupgraded
software to ignore the changes and continue to operate without any disruption.

Segregated Witness outputs are constructed so that older systems that are not segwit-
aware can still validate them. To an old wallet or node, a Segregated Witness output
looks like an output that anyone can spend. Such outputs can be spent with an empty
signature, therefore the fact that there is no signature inside the transaction (it is seg‐
regated) does not invalidate the transaction. Newer wallets and mining nodes, how‐
ever, see the Segregated Witness output and expect to find a valid witness for it in the
transaction’s witness data.

Segregated Witness Output and Transaction Examples
Let’s look at some of our example transactions and see how they would change with
Segregated Witness. We’ll first look at how a Pay-to-Public-Key-Hash (P2PKH) pay‐
ment is transformed with the Segregated Witness program. Then, we’ll look at the
Segregated Witness equivalent for Pay-to-Script-Hash (P2SH) scripts. Finally, we’ll
look at how both of the preceding Segregated Witness programs can be embedded
inside a P2SH script.

Pay-to-Witness-Public-Key-Hash (P2WPKH)
In “Buying a Cup of Coffee” on page 16, Alice created a transaction to pay Bob for a
cup of coffee. That transaction created a P2PKH output with a value of 0.015 BTC
that was spendable by Bob. The output’s script looks like this:

DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7 EQUALVERIFY CHECKSIG

With Segregated Witness, Alice would create a Pay-to-Witness-Public-Key-Hash
(P2WPKH) script, which looks like this:

0 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

As you can see, a Segregated Witness output’s locking script is much simpler than a
traditional output. It consists of two values that are pushed on to the script evaluation
stack. To an old (nonsegwit-aware) bitcoin client, the two pushes would look like an
output that anyone can spend and does not require a signature (or rather, can be
spent with an empty signature). To a newer, segwit-aware client, the first number (0)
is interpreted as a version number (the witness version) and the second part (20 bytes)
is the equivalent of a locking script known as a witness program. The 20-byte witness
program is simply the hash of the public key, as in a P2PKH script

Now, let’s look at the corresponding transaction that Bob uses to spend this output.
For the original script (nonsegwit), Bob’s transaction would have to include a signa‐
ture within the transaction input:

332 | Appendix D: Segregated Witness

[...]
“Vin” : [
"txid": "0627052b6f28912f2703066a912ea577f2ce4da4caa5a5fbd8a57286c345c2f2",
"vout": 0,
 "scriptSig": “<Bob’s scriptSig>”,
]
[...]

However, to spend the Segregated Witness output, the transaction has no signature
on that input. Instead, Bob’s transaction has an empty scriptSig and includes a Seg‐
regated Witness, outside the transaction itself:

[...]
“Vin” : [
"txid": "0627052b6f28912f2703066a912ea577f2ce4da4caa5a5fbd8a57286c345c2f2",
"vout": 0,
 "scriptSig": “”,
]
[...]
“witness”: “<Bob’s witness data>”
[...]

Wallet construction of P2WPKH
It is extremely important to note that P2WPKH should only be created by the payee
(recipient) and not converted by the sender from a known public key, P2PKH script,
or address. The sender has no way of knowing if the recipient’s wallet has the ability
to construct segwit transactions and spend P2WPKH outputs.

Additionally, P2WPKH outputs must be constructed from the hash of a compressed
public key. Uncompressed public keys are nonstandard in segwit and may be explic‐
itly disabled by a future soft fork. If the hash used in the P2WPKH came from an
uncompressed public key, it may be unspendable and you may lose funds. P2WPKH
outputs should be created by the payee’s wallet by deriving a compressed public key
from their private key.

P2WPKH should be constructed by the payee (recipient) by con‐
verting a compressed public key to a P2WPKH hash. You should
never transform a P2PKH script, bitcoin address, or uncompressed
public key to a P2WPKH witness script.

Pay-to-Witness-Script-Hash (P2WSH)
The second type of witness program corresponds to a Pay-to-Script-Hash (P2SH)
script. We saw this type of script in “Pay-to-Script-Hash (P2SH)” on page 151. In that
example, P2SH was used by Mohammed’s company to express a multisignature
script. Payments to Mohammed’s company were encoded with a locking script like
this:

Segregated Witness | 333

HASH160 54c557e07dde5bb6cb791c7a540e0a4796f5e97e EQUAL

This P2SH script references the hash of a redeem script that defines a 2-of-3 multi‐
signature requirement to spend funds. To spend this output, Mohammed’s company
would present the redeem script (whose hash matches the script hash in the P2SH
output) and the signatures necessary to satisfy that redeem script, all inside the trans‐
action input:

[...]
“Vin” : [
"txid": "abcdef12345...",
"vout": 0,
 "scriptSig": “<SigA> <SigB> <2 PubA PubB PubC PubD PubE 5 CHECKMULTI-
SIG>”,
]

Now, let’s look at how this entire example would be upgraded to segwit. If Moham‐
med’s customers were using a segwit-compatible wallet, they would make a payment,
creating a Pay-to-Witness-Script-Hash (P2WSH) output that would look like this:

0 9592d601848d04b172905e0ddb0adde59f1590f1e553ffc81ddc4b0ed927dd73

Again, as with the example of P2WPKH, you can see that the Segregated Witness
equivalent script is a lot simpler and omits the various script operands that you see in
P2SH scripts. Instead, the Segregated Witness program consists of two values pushed
to the stack: a witness version (0) and the 32-byte SHA256 hash of the redeem script.

While P2SH uses the 20-byte RIPEMD160(SHA256(script)) hash,
the P2WSH witness program uses a 32-byte SHA256(script) hash.
This difference in the selection of the hashing algorithm is deliber‐
ate and is used to differentiate between the two types of witness
programs (P2WPKH and P2WSH) by the length of the hash and to
provide stronger security to P2WSH (128 bits versus 80 bits of
P2SH).

Mohammed’s company can spend outputs the P2WSH output by presenting the cor‐
rect redeem script and sufficient signatures to satisfy it. Both the redeem script and
the signatures would be segregated outside the spending transaction as part of the
witness data. Within the transaction input, Mohammed’s wallet would put an empty
scriptSig:

[...]
“Vin” : [
"txid": "abcdef12345...",
"vout": 0,
 "scriptSig": “”,
]
[...]

334 | Appendix D: Segregated Witness

“witness”: “<SigA> <SigB> <2 PubA PubB PubC PubD PubE 5 CHECKMULTISIG>”
[...]

Differentiating between P2WPKH and P2WSH
In the previous two sections, we demonstrated two types of witness programs: “Pay-
to-Witness-Public-Key-Hash (P2WPKH)” on page 332 and “Pay-to-Witness-Script-
Hash (P2WSH)” on page 333. Both types of witness programs consist of a single byte
version number followed by a longer hash. They look very similar, but are interpreted
very differently: one is interpreted as a public key hash, which is satisfied by a signa‐
ture and the other as a script hash, which is satisfied by a redeem script. The critical
difference between them is the length of the hash:

• The public key hash in P2WPKH is 20 bytes
• The script hash in P2WSH is 32 bytes

This is the one difference that allows a wallet to differentiate between the two types of
witness programs. By looking at the length of the hash, a wallet can determine what
type of witness program it is, P2WPKH or P2WSH.

Upgrading to Segregated Witness
As we can see from the previous examples, upgrading to Segregated Witness is a two-
step process. First, wallets must create special segwit type outputs. Then, these out‐
puts can be spent by wallets that know how to construct Segregated Witness
transactions. In the examples, Alice’s wallet was segwit-aware and able to create spe‐
cial outputs with Segregated Witness scripts. Bob’s wallet is also segwit-aware and
able to spend those outputs. What may not be obvious from the example is that in
practice, Alice’s wallet needs to know that Bob uses a segwit-aware wallet and can
spend these outputs. Otherwise, if Bob’s wallet is not upgraded and Alice tries to
make segwit payments to Bob, Bob’s wallet will not be able to detect these payments.

For P2WPKH and P2WSH payment types, both the sender and the
recipient wallets need to be upgraded to be able to use segwit. Fur‐
thermore, the sender’s wallet needs to know that the recipient’s wal‐
let is segwit-aware.

Segregated Witness will not be implemented simultaneously across the entire net‐
work. Rather, Segregated Witness is implemented as a backward-compatible upgrade,
where old and new clients can coexist. Wallet developers will independently upgrade
wallet software to add segwit capabilities. The P2WPKH and P2WSH payment types
are used when both sender and recipient are segwit-aware. The traditional P2PKH

Segregated Witness | 335

and P2SH will continue to work for nonupgraded wallets. That leaves two important
scenarios, which are addressed in the next section:

• Ability of a sender’s wallet that is not segwit-aware to make a payment to a recipi‐
ent’s wallet that can process segwit transactions

• Ability of a sender’s wallet that is segwit-aware to recognize and distinguish
between recipients that are segwit-aware and ones that are not, by their addresses

Embedding Segregated Witness inside P2SH
Let’s assume, for example, that Alice’s wallet is not upgraded to segwit, but Bob’s wal‐
let is upgraded and can handle segwit transactions. Alice and Bob can use “old” non-
segwit transactions. But Bob would likely want to use segwit to reduce transaction
fees, taking advantage of the discount that applies to witness data.

In this case Bob’s wallet can construct a P2SH address that contains a segwit script
inside it. Alice’s wallet sees this as a “normal” P2SH address and can make payments
to it without any knowledge of segwit. Bob’s wallet can then spend this payment with
a segwit transaction, taking full advantage of segwit and reducing transaction fees.

Both forms of witness scripts, P2WPKH and P2WSH, can be embedded in a P2SH
address. The first is noted as P2SH(P2WPKH) and the second is noted as
P2SH(P2WSH).

Pay-to-Witness-Public-Key-Hash inside Pay-to-Script-Hash
The first form of witness script we will examine is P2SH(P2WPKH). This is a Pay-to-
Witness-Public-Key-Hash witness program, embedded inside a Pay-to-Script-Hash
script, so that it can be used by a wallet that is not aware of segwit.

Bob’s wallet constructs a P2WPKH witness program with Bob’s public key. This wit‐
ness program is then hashed and the resulting hash is encoded as a P2SH script. The
P2SH script is converted to a bitcoin address, one that starts with a “3,” as we saw in
the “Pay-to-Script-Hash (P2SH)” on page 151 section.

Bob’s wallet starts with the P2WPKH witness program we saw earlier:

0 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

The P2WPKH witness program consists of the witness version and Bob’s 20-byte
public key hash.

Bob’s wallet then hashes the preceding witness program, first with SHA256, then with
RIPEMD160, producing another 20-byte hash:

3e0547268b3b19288b3adef9719ec8659f4b2b0b

336 | Appendix D: Segregated Witness

The hash of the witness program is then embedded in a P2SH script:

HASH160 3e0547268b3b19288b3adef9719ec8659f4b2b0b EQUAL

Finally, the P2SH script is converted to a P2SH bitcoin address:

37Lx99uaGn5avKBxiW26HjedQE3LrDCZru

Now, Bob can display this address for customers to pay for their coffee. Alice’s wallet
can make a payment to 37Lx99uaGn5avKBxiW26HjedQE3LrDCZru, just as it would to
any other bitcoin address. Even though Alice’s wallet has no support for segwit, the
payment it creates can be spent by Bob with a segwit transaction.

Pay-to-Witness-Script-Hash inside Pay-to-Script-Hash
Similarly, a P2WSH witness program for a multisig script or other complicated script
can be embedded inside a P2SH script and address, making it possible for any wallet
to make payments that are segwit compatible.

As we saw in “Pay-to-Witness-Script-Hash (P2WSH)” on page 333, Mohammed’s
company is using Segregated Witness payments to multisignature scripts. To make it
possible for any client to pay his company, regardless of whether their wallets are
upgraded for segwit, Mohammed’s wallet can embed the P2WSH witness program
inside a P2SH script.

First, Mohammed’s wallet creates the P2WSH witness program that corresponds to
the multisignature script, hashed with SHA256:

0 9592d601848d04b172905e0ddb0adde59f1590f1e553ffc81ddc4b0ed927dd73

Then, the witness program itself is hashed with SHA256 and RIPEMD160, producing
a new 20-byte hash, as used in traditional P2SH:

86762607e8fe87c0c37740cddee880988b9455b2

Next, Mohammed’s wallet puts the hash into a P2SH script:

HASH160 86762607e8fe87c0c37740cddee880988b9455b2 EQUAL

Finally, the wallet constructs a bitcoin address from this script:

3Dwz1MXhM6EfFoJChHCxh1jWHb8GQqRenG

Now, Mohammed’s clients can make payments to this address without any need to
support segwit. Mohammed’s company can then construct segwit transactions to
spend these payments, taking advantage of segwit features including lower transac‐
tion fees.

Segregated Witness | 337

Segregated Witness addresses
After segwit is deployed on the bitcoin network, it will take some time until wallets
are upgraded. It is quite likely therefore that segwit will mostly be used embedded in
P2SH, as we saw in the previous section, at least for several months.

Eventually, however, almost all wallets will be able to support segwit payments. At
that time it will no longer be necessary to embed segwit in P2SH. It is therefore likely
that a new form of bitcoin address will be created, one that indicates the recipient is
segwit-aware and that directly encodes a witness program. There have been a number
of proposals for a Segregated Witness address scheme, but none have been actively
pursued.

Transaction identifiers
One of the greatest benefits of Segregated Witness is that it eliminates third-party
transaction malleability.

Before segwit, transactions could have their signatures subtly modified by third par‐
ties, changing their transaction ID (hash) without changing any fundamental proper‐
ties (inputs, outputs, amounts). This created opportunities for denial-of-service
attacks as well as attacks against poorly written wallet software that assumed uncon‐
firmed transaction hashes were immutable.

With the introduction of Segregated Witness, transactions have two identifiers, txid
and wtxid. The traditional transaction ID txid is the double-SHA256 hash of the
serialized transaction, without the witness data. A transaction wtxid is the double-
SHA256 hash of the new serialization format of the transaction with witness data.

The traditional txid is calculated in exactly the same way as with a nonsegwit trans‐
action. However, since the segwit transaction has empty scriptSigs in every input,
there is no part of the transaction that can be modified by a third party. Therefore, in
a segwit transaction, the txid is immutable by a third party, even when the transac‐
tion is unconfirmed.

The wtxid is like an “extended” ID, in that the hash also incorporates the witness
data. If a transaction is transmitted without witness data, then the wtxid and txid are
identical. Note than since the wtxid includes witness data (signatures) and since wit‐
ness data may be malleable, the wtxid should be considered malleable until the trans‐
action is confirmed. Only the txid of a segwit transaction can be considered
immutable by third parties and only if all the inputs of the transaction are segwit
inputs.

338 | Appendix D: Segregated Witness

Segregated Witness transactions have two IDs: txid and wtxid.
The txid is the hash of the transaction without the witness data
and the wtxid is the hash inclusive of witness data. The txid of a
transaction where all inputs are segwit inputs is not susceptible to
third-party transaction malleability.

Segregated Witness’ New Signing Algorithm
Segregated Witness modifies the semantics of the four signature verification func‐
tions (CHECKSIG, CHECKSIGVERIFY, CHECKMULTISIG, and CHECKMULTISIGVERIFY),
changing the way a transaction commitment hash is calculated.

Signatures in bitcoin transactions are applied on a commitment hash, which is calcu‐
lated from the transaction data, locking specific parts of the data indicating the sign‐
er’s commitment to those values. For example, in a simple SIGHASH_ALL type
signature, the commitment hash includes all inputs and outputs.

Unfortunately, the way the commitment hash was calculated introduced the possibil‐
ity that a node verifying the signature can be forced to perform a significant number
of hash computations. Specifically, the hash operations increase in O(n2) with respect
to the number of signature operations in the transaction. An attacker could therefore
create a transaction with a very large number of signature operations, causing the
entire bitcoin network to have to perform hundreds or thousands of hash operations
to verify the transaction.

Segwit represented an opportunity to address this problem by changing the way the
commitment hash is calculated. For segwit version 0 witness programs, signature ver‐
ification occurs using an improved commitment hash algorithm as specified in
BIP-143.

The new algorithm achieves two important goals. Firstly, the number of hash opera‐
tions increases by a much more gradual O(n) to the number of signature operations,
reducing the opportunity to create denial-of-service attacks with overly complex
transactions. Secondly, the commitment hash now also includes the value (amounts)
of each input as part of the commitment. This means that a signer can commit to a
specific input value without needing to “fetch” and check the previous transaction
referenced by the input. In the case of offline devices, such as hardware wallets, this
greatly simplifies the communication between the host and the hardware wallet,
removing the need to stream previous transactions for validation. A hardware wallet
can accept the input value “as stated” by an untrusted host. Since the signature is
invalid if that input value is not correct, the hardware wallet doesn’t need to validate
the value before signing the input.

Segregated Witness | 339

Economic Incentives for Segregated Witness
Bitcoin mining nodes and full nodes incur costs for the resources used to support the
bitcoin network and the blockchain. As the volume of bitcoin transactions increases,
so does the cost of resources (CPU, network bandwidth, disk space, memory). Miners
are compensated for these costs through fees that are proportional to the size (in
bytes) of each transaction. Nonmining full nodes are not compensated, so they incur
these costs because they have a need to run an authoritative fully validating full-index
node, perhaps because they use the node to operate a bitcoin business.

Without transaction fees, the growth in bitcoin data would arguably increase dramat‐
ically. Fees are intended to align the needs of bitcoin users with the burden their
transactions impose on the network, through a market-based price discovery mecha‐
nism.

The calculation of fees based on transaction size treats all the data in the transaction
as equal in cost. But from the perspective of full nodes and miners, some parts of a
transaction carry much higher costs. Every transaction added to the bitcoin network
affects the consumption of four resources on nodes:

Disk Space
Every transaction is stored in the blockchain, adding to the total size of the
blockchain. The blockchain is stored on disk, but the storage can be optimized by
“pruning” older transactions.

CPU
Every transaction must be validated, which requires CPU time.

Bandwidth
Every transaction is transmitted (through flood propagation) across the network
at least once. Without any optimization in the block propagation protocol, trans‐
actions are transmitted again as part of a block, doubling the impact on network
capacity.

Memory
Nodes that validate transactions keep the UTXO index or the entire UTXO set in
memory to speed up validation. Because memory is at least one order of magni‐
tude more expensive than disk, growth of the UTXO set contributes dispropor‐
tionately to the cost of running a node.

As you can see from the list, not every part of a transaction has an equal impact on
the cost of running a node or on the ability of bitcoin to scale to support more trans‐
actions. The most expensive part of a transaction are the newly created outputs, as
they are added to the in-memory UTXO set. By comparison, signatures (aka witness
data) add the least burden to the network and the cost of running a node, because
witness data are only validated once and then never used again. Furthermore, imme‐

340 | Appendix D: Segregated Witness

diately after receiving a new transaction and validating witness data, nodes can dis‐
card that witness data. If fees are calculated on transaction size, without
discriminating between these two types of data, then the market incentives of fees are
not aligned with the actual costs imposed by a transaction. In fact, the current fee
structure actually encourages the opposite behavior, because witness data is the larg‐
est part of a transaction.

The incentives created by fees matter because they affect the behavior of wallets. All
wallets must implement some strategy for assembling transactions that takes into
consideration a number of factors, such as privacy (reducing address reuse), frag‐
mentation (making lots of loose change), and fees. If the fees are overwhelmingly
motivating wallets to use as few inputs as possible in transactions, this can lead to
UTXO picking and change address strategies that inadvertently bloat the UTXO set.

Transactions consume UTXO in their inputs and create new UTXO with their out‐
puts. A transaction, therefore, that has more inputs than outputs will result in a
decrease in the UTXO set, whereas a transaction that has more outputs than inputs
will result in an increase in the UTXO set. Let’s consider the difference between inputs
and outputs and call that the “Net-new-UTXO.” That’s an important metric, as it tells
us what impact a transaction will have on the most expensive network-wide resource,
the in-memory UTXO set. A transaction with positive Net-new-UTXO adds to that
burden. A transaction with a negative Net-new-UTXO reduces the burden. We would
therefore want to encourage transactions that are either negative Net-new-UTXO or
neutral with zero Net-new-UTXO.

Let’s look at an example of what incentives are created by the transaction fee calcula‐
tion, with and without Segregated Witness. We will look at two different transactions.
Transaction A is a 3-input, 2-output transaction, which has a Net-new-UTXO metric
of –1, meaning it consumes one more UTXO than it creates, reducing the UTXO set
by one. Transaction B is a 2-input, 3-output transaction, which has a Net-new-UTXO
metric of 1, meaning it adds one UTXO to the UTXO set, imposing additional cost
on the entire bitcoin network. Both transactions use multisignature (2-of-3) scripts to
demonstrate how complex scripts increase the impact of segregated witness on fees.
Let’s assume a transaction fee of 30 satoshi per byte and a 75% fee discount on witness
data:

Without Segregated Witness
Transaction A fee: 25,710 satoshi

Transaction B fee: 18,990 satoshi

With Segregated Witness
Transaction A fee: 8,130 satoshi

Transaction B fee: 12,045 satoshi

Segregated Witness | 341

Both transactions are less expensive when segregated witness is implemented. But
comparing the costs between the two transactions, we see that before Segregated Wit‐
ness, the fee is higher for the transaction that has a negative Net-new-UTXO. After
Segregated Witness, the transaction fees align with the incentive to minimize new
UTXO creation by not inadvertently penalizing transactions with many inputs.

Segregated Witness therefore has two main effects on the fees paid by bitcoin users.
Firstly, segwit reduces the overall cost of transactions by discounting witness data and
increasing the capacity of the bitcoin blockchain. Secondly, segwit’s discount on wit‐
ness data corrects a misalignment of incentives that may have inadvertently created
more bloat in the UTXO set.

342 | Appendix D: Segregated Witness

APPENDIX E

Bitcore

Bitcore is a suite of tools provided by BitPay. Its goal is to provide easy-to-use tools
for Bitcoin developers. Almost all of Bitcore’s code is written in JavaScript. There are
some modules written specifically for NodeJS. Finally, the “node” module of Bitcore
includes Bitcoin Core’s C++ code. Please see https://bitcore.io for more information.

Bitcore’s Feature List
• Bitcoin full node (bitcore-node)
• Block explorer (insight)
• Block, transaction, and wallet utilities (bitcore-lib)
• Communicating directly with Bitcoin’s P2P network (bitcore-p2p)
• Seed entropy mnemonic generation (bitcore-mnemonic)
• Payment protocol (bitcore-payment-protocol)
• Message verification and signing (bitcore-message)
• Elliptic curve Integrated Encryption Scheme (bitcore-ecies)
• Wallet service (bitcore-wallet-service)
• Wallet client (bitcore-wallet-client)
• Playground (bitcore-playground)
• Integrating services directly with Bitcoin Core (bitcore-node)

343

https://bitcore.io

Bitcore Library Examples
Prerequisities

• NodeJS >= 4.x or use our hosted online playground

If using NodeJS and the node REPL:

$ npm install -g bitcore-lib bitcore-p2p
$ NODE_PATH=$(npm list -g | head -1)/node_modules node

Wallet Examples using bitcore-lib
Creating a new bitcoin address with associated private key:

> bitcore = require('bitcore-lib')
> privateKey = new bitcore.PrivateKey()
> address = privateKey.toAddress().toString()

Creating a hierarchical deterministic private key and address:

> hdPrivateKey = bitcore.HDPrivateKey()
> hdPublicKey = bitcore.HDPublicKey(hdPrivateKey)
> hdAddress = new bitcore.Address(hdPublicKey.publicKey).toString()

Creating and signing a transaction from a UTXO:

> utxo = {
 txId: transaction id containing an unspent output,
 outputIndex: output indexi e.g. 0,
 address: addressOfUtxo,
 script: bitcore.Script.buildPublicKeyHashOut(addressOfUtxo).toString(),
 satoshis: amount sent to the address
}
> fee = 3000 //set appropriately for conditions on the network
> tx = new bitcore.Transaction()
 .from(utxo)
 .to(address, 35000)
 .fee(fee)
 .enableRBF()
 .sign(privateKeyOfUtxo)

Replace the last transaction in the mempool (replace-by-fee):

> rbfTx = new Transaction()
 .from(utxo)
 .to(address, 35000)
 .fee(fee*2)
 .enableRBF()
 .sign(privateKeyOfUtxo);
> tx.serialize();
> rbfTx.serialize();

344 | Appendix E: Bitcore

https://bitcore.io/playground

Broadcasting a transaction to the Bitcoin network (note: broadcast valid transactions
only; refer to https://bitnodes.21.co/nodes for peer hosts):

1. Copy the code below into a file called broadcast.js.
2. The tx and rbfTx variables are the output of tx.serialize() and rbfTx.serial

ize(), respectively.
3. In order to replace-by-fee, the peer must support bitcoind option mempoolre

place and have it set to 1.
4. Run the file node broadcast.js:

var p2p = require('bitcore-p2p');
var bitcore = require('bitcore-lib');
var tx = new bitcore.Transaction('output from serialize function');
var rbfTx = new bitcore.Transaction('output from serialize function');
var host = 'ip address'; //use valid peer listening on tcp 8333
var peer = new p2p.Peer({host: host});
var messages = new p2p.Messages();
peer.on('ready', function() {
 var txs = [messages.Transaction(tx), messages.Transaction(rbfTx)];
 var index = 0;
 var interval = setInterval(function() {
 peer.sendMessage(txs[index++]);
 console.log('tx: ' + index + ' sent');
 if (index === txs.length) {
 clearInterval(interval);
 console.log('disconnecting from peer: ' + host);
 peer.disconnect();
 }
 }, 2000);
});
peer.connect();

Bitcore | 345

https://bitnodes.21.co/nodes

APPENDIX F

pycoin, ku, and tx

The Python library pycoin, originally written and maintained by Richard Kiss, is a
Python-based library that supports manipulation of bitcoin keys and transactions,
even supporting the scripting language enough to properly deal with nonstandard
transactions.

The pycoin library supports both Python 2 (2.7.x) and Python 3 (after 3.3) and comes
with some handy command-line utilities, ku and tx.

Key Utility (KU)
The command-line utility ku (“key utility”) is a Swiss Army knife for manipulating
keys. It supports BIP-32 keys, WIF, and addresses (bitcoin and alt coins). Following
are some examples.

Create a BIP-32 key using the default entropy sources of GPG and /dev/random:

$ ku create

input : create
network : Bitcoin
wallet key : xprv9s21ZrQH143K3LU5ctPZTBnb9kTjA5Su9DcWHvXJe-
miJBsY7VqXUG7hipgdWaU
 m2nhnzdvxJf5KJo9vjP2nABX65c5sFsWsV8oXcbpehtJi
public version : xpub661MyMwAqRbcFpYYiuvZpKjKhnJD-
ZYAkWSY76JvvD7FH4fsG3Nqiov2CfxzxY8
 DGcpfT56AMFeo8M8KPkFMfLUtvwjwb6WPv8rY65L2q8Hz
tree depth : 0
fingerprint : 9d9c6092
parent f'print : 00000000
child index : 0
chain code :
80574fb260edaa4905bc86c9a47d30c697c50047ed466c0d4a5167f6821e8f3c

347

http://github.com/richardkiss/pycoin

private key : yes
secret exponent :
112471538590155650688604752840386134637231974546906847202389294096567806844862
 hex :
f8a8a28b28a916e1043cc0aca52033a18a13cab1638d544006469bc171fddfbe
wif : L5Z54xi6qJusQT42JHA44mfPVZGjyb4XBRWfxAzUWwRiGx1kV4sP
 uncompressed : 5KhoEavGNNH4GHKoy2Ptu4KfdNp4r56L5B5un8FP6RZnbsz5Nmb
public pair x :
76460638240546478364843397478278468101877117767873462127021560368290114016034
public pair y :
59807879657469774102040120298272207730921291736633247737077406753676825777701
 x as hex :
a90b3008792432060fa04365941e09a8e4adf928bdbdb9dad41131274e379322
 y as hex :
843a0f6ed9c0eb1962c74533795406914fe3f1957c5238951f4fe245a4fcd625
y parity : odd
key pair as sec :
03a90b3008792432060fa04365941e09a8e4adf928bdbdb9dad41131274e379322
 uncompressed :
04a90b3008792432060fa04365941e09a8e4adf928bdbdb9dad41131274e379322

843a0f6ed9c0eb1962c74533795406914fe3f1957c5238951f4fe245a4fcd625
hash160 : 9d9c609247174ae323acfc96c852753fe3c8819d
 uncompressed : 8870d869800c9b91ce1eb460f4c60540f87c15d7
Bitcoin address : 1FNNRQ5fSv1wBi5gyfVBs2rkNheMGt86sp
 uncompressed : 1DSS5isnH4FsVaLVjeVXewVSpfqktdiQAM

Create a BIP-32 key from a passphrase:

The passphrase in this example is way too easy to guess.

$ ku P:foo

input : P:foo
network : Bitcoin
wallet key :
xprv9s21ZrQH143K31AgNK5pyVvW23gHnkBq2wh5aEk6g1s496M8ZMjxncCKZKgb5j
 ZoY5eSJMJ2Vbyvi2hbmQnCuHBujZ2WXGTux1X2k9Krdtq
public version : xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWo-
QayvtS
 VYFvXz2vPPpbXE1qpjoUFidhjFj82pVShWu9curWmb2zy
tree depth : 0
fingerprint : 5d353a2e
parent f'print : 00000000
child index : 0
chain code :
5eeb1023fd6dd1ae52a005ce0e73420821e1d90e08be980a85e9111fd7646bbc
private key : yes

348 | Appendix F: pycoin, ku, and tx

secret exponent :
65825730547097305716057160437970790220123864299761908948746835886007793998275
 hex :
91880b0e3017ba586b735fe7d04f1790f3c46b818a2151fb2def5f14dd2fd9c3
wif : L26c3H6jEPVSqAr1usXUp9qtQJw6NHgApq6Ls4ncyqtsvcq2MwKH
 uncompressed : 5JvNzA5vXDoKYJdw8SwwLHxUxaWvn9mDea6k1vRPCX7KLUVWa7W
public pair x :
81821982719381104061777349269130419024493616650993589394553404347774393168191
public pair y :
58994218069605424278320703250689780154785099509277691723126325051200459038290
 x as hex :
b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f
 y as hex :
826d8b4d3010aea16ff4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52
y parity : even
key pair as sec :
02b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f
 uncompressed :
04b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f

826d8b4d3010aea16ff4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52
hash160 : 5d353a2ecdb262477172852d57a3f11de0c19286
 uncompressed : e5bd3a7e6cb62b4c820e51200fb1c148d79e67da
Bitcoin address : 19Vqc8uLTfUonmxUEZac7fz1M5c5ZZbAii
 uncompressed : 1MwkRkogzBRMehBntgcq2aJhXCXStJTXHT

Get info as JSON:

$ ku P:foo -P -j

{
 "y_parity": "even",
 "public_pair_y_hex":
"826d8b4d3010aea16ff4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52",
 "private_key": "no",
 "parent_fingerprint": "00000000",
 "tree_depth": "0",
 "network": "Bitcoin",
 "btc_address_uncompressed": "1MwkRkogzBRMehBntgcq2aJhXCXStJTXHT",
 "key_pair_as_sec_uncompressed":
"04b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f826d8b4d3010a
ea16ff4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52",
 "public_pair_x_hex":
"b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f",
 "wallet_key": "xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWo
QayvtSVYFvXz2vPPpbXE1qpjoUFidhjFj82pVShWu9curWmb2zy",
 "chain_code":
"5eeb1023fd6dd1ae52a005ce0e73420821e1d90e08be980a85e9111fd7646bbc",
 "child_index": "0",
 "hash160_uncompressed": "e5bd3a7e6cb62b4c820e51200fb1c148d79e67da",
 "btc_address": "19Vqc8uLTfUonmxUEZac7fz1M5c5ZZbAii",
 "fingerprint": "5d353a2e",
 "hash160": "5d353a2ecdb262477172852d57a3f11de0c19286",

pycoin, ku, and tx | 349

 "input": "P:foo",
 "public_pair_x":
"81821982719381104061777349269130419024493616650993589394553404347774393168191",
 "public_pair_y":
"58994218069605424278320703250689780154785099509277691723126325051200459038290",
 "key_pair_as_sec":
"02b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f"
}

Public BIP32 key:

$ ku -w -P P:foo
xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWoQayvtS-
VYFvXz2vPPpbXE1qpjoUFidhjFj82pVShWu9curWmb2zy

Generate a subkey:

$ ku -w -s3/2 P:foo
xprv9wTErTSkjVyJa1v4cUTFMFkWMe5eu8ErbQcs9xajn-
sUzCBT7ykHAwdrxvG3g3f6BFk7ms5hHBvmbdutNmyg6iogWKxx6mefEw4M8EroLgKj

Hardened subkey:

$ ku -w -s3/2H P:foo
xprv9wTErTSu5AWGk-
DeUPmqBcbZWX1xq85ZNX9iQRQW9DXwygFp7iRGJo79dsVctcsCHsnZ3XU3DhsuaGZbDh8iDkBN45k67U
KsJUXM1JfRCdn1

WIF:

$ ku -W P:foo
L26c3H6jEPVSqAr1usXUp9qtQJw6NHgApq6Ls4ncyqtsvcq2MwKH

Address:

$ ku -a P:foo
19Vqc8uLTfUonmxUEZac7fz1M5c5ZZbAii

Generate a bunch of subkeys:

$ ku P:foo -s 0/0-5 -w
xprv9xWkBDfyBXmZjBG9EiXBpy67KK72fphUp9utJokEBFtjsjiuKUUDF5V3TU8U8cDzytqYn-
Sekc8bYuJS8G3bhXxKWB89Ggn2dzLcoJsuEdRK
xprv9xWkBDfyBXmZnzKf3bAGifK593gT7WJZPnYAmvc77gUQ-
Vej5QHckc5Adtwxa28ACmANi9XhCrRvtFqQcUxt8rUgFz3souMiDdWxJDZnQxzx
xprv9xWkBDfyBXmZqdXA8y4SWqfBdy71gSW9sjx9JpCiJEiBwSMQyRxan6srXUPBtj3PTxQFkZJAi-
woUpmvtrxKZu4zfsnr3pqyy2vthpkwuoVq
xprv9xWkBDfyBXmZsA85GyWj9uYPyoQv826YAadKWMaaEosNrFBKgj2TqWuiWY3zuq-
xYGpHfv9cnGj5P7e8EskpzKL1Y8Gk9aX6QbryA5raK73p
xprv9xWkBDfyBXmZv2q3N66hhZ8DAcEnQDnXML1J62krJAcf7Xb1HJwuW2VMJQrCofY2jtFXdiEY8UsR
NJfqK6DAdyZXoMvtaLHyWQx3FS4A9zw
xprv9xWkBDfyBXmZw4jEYXU-
HYc9fT25k9irP87n2RqfJ5bqbjKdT84Mm7Wtc2xmzFuKg7iYf7XFHKkSsaYKWKJbR54bnyAD9GzjUY-
bAYTtN4ruo

350 | Appendix F: pycoin, ku, and tx

Generate the corresponding addresses:

$ ku P:foo -s 0/0-5 -a
1MrjE78H1R1rqdFrmkjdHnPUdLCJALbv3x
1AnYyVEcuqeoVzH96zj1eYKwoWfwte2pxu
1GXr1kZfxE1FcK6ZRD5sqqqs5YfvuzA1Lb
116AXZc4bDVQrqmcinzu4aaPdrYqvuiBEK
1Cz2rTLjRM6pMnxPNrRKp9ZSvRtj5dDUML
1WstdwPnU6HEUPme1DQayN9nm6j7nDVEM

Generate the corresponding WIFs:

$ ku P:foo -s 0/0-5 -W
L5a4iE5k9gcJKGqX3FWmxzBYQc29PvZ6pgBaePLVqT5YByEnBomx
Kyjgne6GZwPGB6G6kJEhoPbmyjMP7D5d3zRbHVjwcq4iQXD9QqKQ
L4B3ygQxK6zH2NQGxLDee2H9v4Lvwg14cLJW7QwWPzCtKHdWMaQz
L2L2PZdorybUqkPjrmhem4Ax5EJvP7ijmxbNoQKnmTDMrqemY8UF
L2oD6vA4TUyqPF8QG4vhUFSgwCyuuvFZ3v8SKHYFDwkbM765Nrfd
KzChTbc3kZFxUSJ3Kt54cxsogeFAD9CCM4zGB22si8nfKcThQn8C

Check that it works by choosing a BIP32 string (the one corresponding to subkey
0/3):

$ ku -W xprv9xWkBDfyBXmZsA85GyWj9uYPyoQv826YAadKWMaaEosNrFBKgj2TqWuiWY3zuq-
xYGpHfv9cnGj5P7e8EskpzKL1Y8Gk9aX6QbryA5raK73p
L2L2PZdorybUqkPjrmhem4Ax5EJvP7ijmxbNoQKnmTDMrqemY8UF
$ ku -a xprv9xWkBDfyBXmZsA85GyWj9uYPyoQv826YAadKWMaaEosNrFBKgj2TqWuiWY3zuq-
xYGpHfv9cnGj5P7e8EskpzKL1Y8Gk9aX6QbryA5raK73p
116AXZc4bDVQrqmcinzu4aaPdrYqvuiBEK

Yep, looks familiar.

From secret exponent:

$ ku 1

input : 1
network : Bitcoin
secret exponent : 1
 hex : 1
wif : KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU73sVHnoWn
 uncompressed : 5HpHagT65TZzG1PH3CSu63k8DbpvD8s5ip4nEB3kEsreAnchuDf
public pair x :
55066263022277343669578718895168534326250603453777594175500187360389116729240
public pair y :
32670510020758816978083085130507043184471273380659243275938904335757337482424
 x as hex :
79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 y as hex :
483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
y parity : even
key pair as sec :
0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 uncompressed :

pycoin, ku, and tx | 351

0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798

483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
hash160 : 751e76e8199196d454941c45d1b3a323f1433bd6
 uncompressed : 91b24bf9f5288532960ac687abb035127b1d28a5
Bitcoin address : 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH
 uncompressed : 1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm

Litecoin version:

$ ku -nL 1

input : 1
network : Litecoin
secret exponent : 1
 hex : 1
wif : T33ydQRKp4FCW5LCLLUB7deioUMoveiwekdwUwyfRDeGZm76aUjV
 uncompressed : 6u823ozcyt2rjPH8Z2ErsSXJB5PPQwK7VVTwwN4mxLBFrao69XQ
public pair x :
55066263022277343669578718895168534326250603453777594175500187360389116729240
public pair y :
32670510020758816978083085130507043184471273380659243275938904335757337482424
 x as hex :
79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 y as hex :
483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
y parity : even
key pair as sec :
0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 uncompressed :
0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798

483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
hash160 : 751e76e8199196d454941c45d1b3a323f1433bd6
 uncompressed : 91b24bf9f5288532960ac687abb035127b1d28a5
Litecoin address : LVuDpNCSSj6pQ7t9Pv6d6sUkLKoqDEVUnJ
 uncompressed : LYWKqJhtPeGyBAw7WC8R3F7ovxtzAiubdM

Dogecoin WIF:

$ ku -nD -W 1
QNcdLVw8fHkixm6NNyN6nVwxKek4u7qrioRbQmjxac5TVoTtZuot

From public pair (on Testnet):

$ ku -nT
55066263022277343669578718895168534326250603453777594175500187360389116729240,ev
en

input :
550662630222773436695787188951685343262506034537775941755001873603
 89116729240,even
network : Bitcoin testnet
public pair x :

352 | Appendix F: pycoin, ku, and tx

55066263022277343669578718895168534326250603453777594175500187360389116729240
public pair y :
32670510020758816978083085130507043184471273380659243275938904335757337482424
 x as hex :
79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 y as hex :
483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
y parity : even
key pair as sec :
0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 uncompressed :
0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798

483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
hash160 : 751e76e8199196d454941c45d1b3a323f1433bd6
 uncompressed : 91b24bf9f5288532960ac687abb035127b1d28a5
Bitcoin testnet address : mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r
 uncompressed : mtoKs9V381UAhUia3d7Vb9GNak8Qvmcsme

From hash160:

$ ku 751e76e8199196d454941c45d1b3a323f1433bd6

input : 751e76e8199196d454941c45d1b3a323f1433bd6
network : Bitcoin
hash160 : 751e76e8199196d454941c45d1b3a323f1433bd6
Bitcoin address : 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH

As a Dogecoin address:

$ ku -nD 751e76e8199196d454941c45d1b3a323f1433bd6

input : 751e76e8199196d454941c45d1b3a323f1433bd6
network : Dogecoin
hash160 : 751e76e8199196d454941c45d1b3a323f1433bd6
Dogecoin address : DFpN6QqFfUm3gKNaxN6tNcab1FArL9cZLE

Transaction Utility (TX)
The command-line utility tx will display transactions in human-readable form, fetch
base transactions from pycoin’s transaction cache or from web services (block‐
chain.info, blockcypher.com, blockr.io and chain.so are currently supported), merge
transactions, add or delete inputs or outputs, and sign transactions.

Following are some examples.

View the famous “pizza” transaction:

$ tx 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
warning: consider setting environment variable PYCOIN_CACHE_DIR=~/.pycoin_cache
to cache transactions fetched via web services
warning: no service providers found for get_tx; consider setting environment
variable PYCOIN_BTC_PROVIDERS

pycoin, ku, and tx | 353

usage: tx [-h] [-t TRANSACTION_VERSION] [-l LOCK_TIME] [-n NETWORK] [-a]
 [-i address] [-f path-to-private-keys] [-g GPG_ARGUMENT]
 [--remove-tx-in tx_in_index_to_delete]
 [--remove-tx-out tx_out_index_to_delete] [-F transaction-fee] [-u]
 [-b BITCOIND_URL] [-o path-to-output-file]
 argument [argument ...]
tx: error: can't find Tx with id
49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a

Oops! We don’t have web services set up. Let’s do that now:

$ PYCOIN_CACHE_DIR=~/.pycoin_cache
$ PYCOIN_BTC_PROVIDERS="block.io blockchain.info blockexplorer.com"
$ export PYCOIN_CACHE_DIR PYCOIN_BTC_PROVIDERS

It’s not done automatically so a command-line tool won’t leak potentially private
information about what transactions you’re interested in to a third-party website. If
you don’t care, you could put these lines into your .profile.

Let’s try again:

$ tx 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
Version: 1 tx hash
49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a 159 bytes
TxIn count: 1; TxOut count: 1
Lock time: 0 (valid anytime)
Input:
 0: (unknown) from
1e133f7de73ac7d074e2746a3d6717dfc99ecaa8e9f9fade2cb8b0b20a5e0441:0
Output:
 0: 1CZDM6oTttND6WPdt3D6bydo7DYKzd9Qik receives 10000000.00000 mBTC
Total output 10000000.00000 mBTC
including unspents in hex dump since transaction not fully signed
010000000141045e0ab2b0b82cde-
faf9e9a8ca9ec9df17673d6a74e274d0c73ae77d3f131e000000004a493046022100a7f26eda8749
31999c90f87f01ff1ffc76bcd058fe16137e0e63fdb6a35c2d78022100a61e9199238eb73f07c8f2
09504c84b80f03e30ed8169edd44f80ed17ddf451901ffffffff010010a5d4e80000001976a9147e
c1003336542cae8bded8909cdd6b5e48ba0ab688ac00000000

** can't validate transaction as source transactions missing

The final line appears because to validate the transactions’ signatures, you technically
need the source transactions. So let’s add -a to augment the transactions with source
information:

$ tx -a 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
warning: transaction fees recommendations casually calculated and estimates may
be incorrect
warning: transaction fee lower than (casually calculated) expected value of 0.1
mBTC, transaction might not propogate
Version: 1 tx hash
49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a 159 bytes
TxIn count: 1; TxOut count: 1

354 | Appendix F: pycoin, ku, and tx

Lock time: 0 (valid anytime)
Input:
 0: 17WFx2GQZUmh6Up2NDNCEDk3deYomdNCfk from
1e133f7de73ac7d074e2746a3d6717dfc99ecaa8e9f9fade2cb8b0b20a5e0441:0
10000000.00000 mBTC sig ok
Output:
 0: 1CZDM6oTttND6WPdt3D6bydo7DYKzd9Qik receives 10000000.00000 mBTC
Total input 10000000.00000 mBTC
Total output 10000000.00000 mBTC
Total fees 0.00000 mBTC

010000000141045e0ab2b0b82cde-
faf9e9a8ca9ec9df17673d6a74e274d0c73ae77d3f131e000000004a493046022100a7f26eda8749
31999c90f87f01ff1ffc76bcd058fe16137e0e63fdb6a35c2d78022100a61e9199238eb73f07c8f2
09504c84b80f03e30ed8169edd44f80ed17ddf451901ffffffff010010a5d4e80000001976a9147e
c1003336542cae8bded8909cdd6b5e48ba0ab688ac00000000

all incoming transaction values validated

Now, let’s look at unspent outputs for a specific address (UTXO). In block #1, we see a
coinbase transaction to 12c6DSiU4Rq3P4ZxziKxzrL5LmMBrzjrJX. Let’s use
fetch_unspent to find all coins in this address:

$ fetch_unspent 12c6DSiU4Rq3P4ZxziKxzrL5LmMBrzjrJX
a3a6f902a51a2cbebede144e48a88c05e608c2cce28024041a5b9874013a1e2a/
0/76a914119b098e2e980a229e139a9ed01a469e518e6f2688ac/333000
cea36d008badf5c7866894b191d3239de9582d89b6b452b596f1f1b76347f8cb/
31/76a914119b098e2e980a229e139a9ed01a469e518e6f2688ac/10000
065ef6b1463f552f675622a5d1fd2c08d6324b4402049f68e767a719e2049e8d/
86/76a914119b098e2e980a229e139a9ed01a469e518e6f2688ac/10000
a66dddd42f9f2491d3c336ce5527d45cc5c2163aaed3158f81dc054447f447a2/0/76a914119b098
e2e980a229e139a9ed01a469e518e6f2688ac/10000
ffd901679de65d4398de90cefe68d2c3ef073c41f7e8dbec2fb5cd75fe71dfe7/0/76a914119b098
e2e980a229e139a9ed01a469e518e6f2688ac/100
d658ab87cc053b8dbcfd4aa2717fd23cc3edfe90ec75351fadd6a0f7993b461d/
5/76a914119b098e2e980a229e139a9ed01a469e518e6f2688ac/911
36ebe0ca3237002acb12e1474a3859bde0ac84b419ec4ae373e63363ebef731c/
1/76a914119b098e2e980a229e139a9ed01a469e518e6f2688ac/100000
fd87f9adebb17f4ebb1673da76ff48ad29e64b7afa02fda0f2c14e43d220fe24/0/76a914119b098
e2e980a229e139a9ed01a469e518e6f2688ac/1
dfdf0b375a987f17056e5e919ee6eadd87dad36c09c4016d4a03cea15e5c05e3/1/76a914119b098
e2e980a229e139a9ed01a469e518e6f2688ac/1337
cb2679bfd0a557b2dc0d8a6116822f3fcbe281ca3f3e18d3855aa7ea378fa373/0/76a914119b098
e2e980a229e139a9ed01a469e518e6f2688ac/1337
d6be34ccf6edddc3cf69842dce99fe503bf632ba2c2adb0f95c63f6706ae0c52/1/76a914119b098
e2e980a229e139a9ed01a469e518e6f2688ac/2000000

0e3e2357e806b6cdb1f70b54c3a3a17b6714ee1f0e68bebb44a74b1efd512098/0/410496b538e85
3519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52da7589379515d4e0a604f8141
781e62294721166bf621e73a82cbf2342c858eeac/5000000000

pycoin, ku, and tx | 355

APPENDIX G

Bitcoin Explorer (bx) Commands

Bitcoin Explorer (bx) is a command-line tool that offers a variety of commands for
key management and transaction construction. It is part of the libbitcoin bitcoin
library.

Usage: bx COMMAND [--help]

Info: The bx commands are:

address-decode
address-embed
address-encode
address-validate
base16-decode
base16-encode
base58-decode
base58-encode
base58check-decode
base58check-encode
base64-decode
base64-encode
bitcoin160
bitcoin256
btc-to-satoshi
ec-add
ec-add-secrets
ec-multiply
ec-multiply-secrets
ec-new
ec-to-address
ec-to-public
ec-to-wif
fetch-balance
fetch-header
fetch-height

357

fetch-history
fetch-stealth
fetch-tx
fetch-tx-index
hd-new
hd-private
hd-public
hd-to-address
hd-to-ec
hd-to-public
hd-to-wif
help
input-set
input-sign
input-validate
message-sign
message-validate
mnemonic-decode
mnemonic-encode
ripemd160
satoshi-to-btc
script-decode
script-encode
script-to-address
seed
send-tx
send-tx-node
send-tx-p2p
settings
sha160
sha256
sha512
stealth-decode
stealth-encode
stealth-public
stealth-secret
stealth-shared
tx-decode
tx-encode
uri-decode
uri-encode
validate-tx
watch-address
wif-to-ec
wif-to-public
wrap-decode
wrap-encode

For more information, see the Bitcoin Explorer homepage and Bitcoin Explorer user
documentation.

358 | Appendix G: Bitcoin Explorer (bx) Commands

https://github.com/libbitcoin/libbitcoin-explorer
https://github.com/libbitcoin/libbitcoin-explorer/wiki
https://github.com/libbitcoin/libbitcoin-explorer/wiki

Examples of bx Command Use
Let’s look at some examples of using Bitcoin Explorer commands to experiment with
keys and addresses.

Generate a random “seed” value using the seed command, which uses the operating
system’s random number generator. Pass the seed to the ec-new command to generate
a new private key. We save the standard output into the file private_key:

$ bx seed | bx ec-new > private_key
$ cat private_key
73096ed11ab9f1db6135857958ece7d73ea7c30862145bcc4bbc7649075de474

Now, generate the public key from that private key using the ec-to-public com‐
mand. We pass the private_key file into the standard input and save the standard out‐
put of the command into a new file public_key:

$ bx ec-to-public < private_key > public_key
$ cat public_key
02fca46a6006a62dfdd2dbb2149359d0d97a04f430f12a7626dd409256c12be500

We can reformat the public_key as an address using the ec-to-address command.
We pass the public_key into standard input:

$ bx ec-to-address < public_key
17re1S4Q8ZHyCP8Kw7xQad1Lr6XUzWUnkG

Keys generated in this manner produce a type-0 nondeterministic wallet. That means
that each key is generated from an independent seed. Bitcoin Explorer commands
can also generate keys deterministically, in accordance with BIP-32. In this case, a
“master” key is created from a seed and then extended deterministically to produce a
tree of subkeys, resulting in a type-2 deterministic wallet.

First, we use the seed and hd-new commands to generate a master key that will be
used as the basis to derive a hierarchy of keys:

$ bx seed > seed
$ cat seed
eb68ee9f3df6bd4441a9feadec179ff1

$ bx hd-new < seed > master
$ cat master
xprv9s21ZrQH143K2BEhMYpNQoUvAgiEjArAVaZaCTgsaGe6LsAnwu-
beiTcDzd23mAoyizm9cApe51gNfLMkBqkYoWWMCRwzfuJk8RwF1SVEpAQ

We now use the hd-private command to generate a hardened “account” key and a
sequence of two private keys within the account:

$ bx hd-private --hard < master > account
$ cat account
xprv9vkDLt81dTKjwHB8fsVB5QK8cGnzveChzSrtCfvu3aMWvQaThp59ueu-
fuyQ8Qi3qpjk4aKsbmbfxwcgS8PYbgoR2NWHeLyvg4DhoEE68A1n

Bitcoin Explorer (bx) Commands | 359

$ bx hd-private --index 0 < account
xprv9xHfb6w1vX9xgZyPNXVgAhPxSsEkeRcPHEUV5iJcVEsuUEACvR3NRY3fpGhcnBiDbvG4LgndirD-
sia1e9F3DWPkX7Tp1V1u97HKG1FJwUpU

$ bx hd-private --index 1 < account
xprv9xHfb6w1vX9xjc8XbN4GN86jzNAZ6xHEqYxzbLB4fzHFd6VqCLPGRZFsdjsuMVERadbgDb-
ziCRJru9n6tzEWrASVpEdrZrFidt1RDfn4yA3

Next, we use the hd-public command to generate the corresponding sequence of two
public keys:

$ bx hd-public --index 0 < account
xpub6BH1zcTuk-
tiFu43rUZ2gXqLgzu5F3tLEeTQ5t6iE3aQtM2VMTxMcyLN9fYHiGhGpQe9QQYmqL2eYPFJ3vezHz5wza
SW4FiGrseNDR4LKqTy

$ bx hd-public --index 1 < account
xpub6BH1zcTuktiFx6CzhPbGjG3UYQ13WR16CmtbPiagEKpEVtpyjshWy-
MaMV1cn7nUPUkgQHPVXJVqsrA8xWbGQDhohEcDFTEYMvYzwRD7Juf8

The public keys can also be derived from their corresponding private keys using the
hd-to-public command:

$ bx hd-private --index 0 < account | bx hd-to-public
xpub6BH1zcTuk-
tiFu43rUZ2gXqLgzu5F3tLEeTQ5t6iE3aQtM2VMTxMcyLN9fYHiGhGpQe9QQYmqL2eYPFJ3vezHz5wza
SW4FiGrseNDR4LKqTy

$ bx hd-private --index 1 < account | bx hd-to-public
xpub6BH1zcTuktiFx6CzhPbGjG3UYQ13WR16CmtbPiagEKpEVtpyjshWy-
MaMV1cn7nUPUkgQHPVXJVqsrA8xWbGQDhohEcDFTEYMvYzwRD7Juf8

We can generate a practically limitless number of keys in a deterministic chain, all
derived from a single seed. This technique is used in many wallet applications to gen‐
erate keys that can be backed up and restored with a single seed value. This is easier
than having to back up the wallet with all its randomly generated keys every time a
new key is created.

The seed can be encoded using the mnemonic-encode command:

$ bx hd-mnemonic < seed > words
adore repeat vision worst especially veil inch woman cast recall dwell appreci-
ate

The seed can then be decoded using the mnemonic-decode command:

$ bx mnemonic-decode < words
eb68ee9f3df6bd4441a9feadec179ff1

Mnemonic encoding can make the seed easier to record and even remember.

360 | Appendix G: Bitcoin Explorer (bx) Commands

Index

Symbols
$ symbol, 33

A
accounts receivable (AR), 151
acknowledgments, xviii-xxii
addresses (see also keys and addresses)

algorithms used to create, 65
Base58 and Base58check encoding, 66-70
bitcoin wallet quick start example, 9
change addresses, 20
multisig addresses, 81, 274
security of, 10
vanity addresses, 82-88

application-specific integrated circuits (ASIC),
27

asymmetric cryptography, 57
ATMs, locating, 11
attribution, xvi
authentication, 191
authentication paths, 203
autogen/configure/make system, 35

(see also Bitcoin Core)

B
balanced trees, 203
balances, 119
Base58 and Base58check encoding, 66-70
Basics of Lightning Technology (BOLT), 297
binary hash trees (see merkle trees)
bitcoin

benefits of, xiii-xiv, 11
defined, 1-2
getting started, 6-14

history of, 4
overview of, 15-30
use cases, 5-6

Bitcoin Block Explorer, 16
Bitcoin Core

alternatives to, 51-53
architecture, 32
Bitcoin Core API, 43-51

exploring and decoding transactions, 45
exploring blocks, 47
RPC commands, 43
status information, 44
using programmatic interface, 48

compiling from source code, 32-37
build configuration, 34
core executables, 37
downloading, 32
version selection, 33

reference implementation, 31
running core nodes, 38-43

configuring, 39
database options, 41
first run, 39

Bitcoin Explorer (bx) commands, 357-360
bitcoin improvement proposals

Address Format for P2SH (BIP-13), 153
Block v2, Height in Coinbase (BIP-34), 263
CHECKHASHVERIFY (BIP-17), 225
CHECKLOCKTIMEVERIFY (BIP-65), 158,

264
CHECKSEQUENCEVERIFY (BIP-112),

160
Encrypted Private Keys (BIP-38), 80, 89

361

Hierarchical Deterministic Wallets (BIP-32/
BIP-44), 31, 96

Mnemonic Code Words (BIP-39), 31, 97,
99-105

Multipurpose HD Wallet Structure
(BIP-43), 97

Pay to Script Hash (BIP-16), 81, 225
Peer Authentication (BIP-150), 191
Peer-to-Peer Communication Encryption

(BIP-151), 191
Relative lock-time using consensus-

enforced sequence numbers (BIP-68),
160

repository of, 324
snapshot of, 324-327
Strict DER signatures (BIP-66), 264
types of, 323
Version bits with timeout and delay (BIP-9),

264
bitcoin network

Bitcoin Relay Networks, 176
bloom filters, 185-190
defined, 171
encrypted connections, 191
extended network activities, 173
extended network discovery, 176-180
full nodes, 180
node types and roles, 172-173
peer-to-peer architecture, 171
SPV nodes, 183-185
syncing the blockchain, 181
transaction pools, 192

bitcoin nodes
defined, 25
full nodes, 181, 189
mining nodes, 173, 219
network discovery, 176-180
running core nodes, 38-43
SPV nodes, 183-192, 207
types and roles, 172-173

bitcoin whitepaper, 31, 305-316
BitcoinAverage, 12
bitcoinfees (third-party service), 128
Bitcore, 343-345
Bitmask Sighash Modes, 143
BitPay Insight, 16
bloat, 155
blockchain (the)

block headers, 197, 227

block identifiers, 197
block structure, 196
blockchain forks, 240-247
full blockchain nodes, 180
genesis block, 28, 180, 198, 225
linking blocks in the blockchain, 200
merkle trees, 201-207, 227
nonpayment data recording, 155
overview of, 195
overview of mining, 26-29
syncing the blockchain, 181
test blockchains, 207-211

blockchain applications
benefits of bitcoin system, 275
building blocks for (primitives), 276
colored coins, 278-283
Counterparty, 283
examples of, 278
payment (state) channels, 284-297
routed payment channels, 297-304

(see also Lightning Network)
warnings and cautions, xvi

blockchain bloat, 155
blockchain explorer sites, 15
blockchain.info, 16
BlockCypher Explorer, 16
blocks

aggregating transactions into, 220-226
assembling and selecting chains of, 239-247
block hash, 47, 195, 197
block height, 47, 195, 197
candidate blocks, 28, 220
exploring with Bitcoin Core API, 47
genesis block, 28, 180, 195, 198, 225
headers, 197, 227
linking blocks in the blockchain, 200
mining transactions in, 27
new block validation, 238
parent blocks, 195, 227
structure of, 196

bloom filters, 185-190
brainwallets, 100
build documentation, 34

(see also Bitcoin Core)
Byzantine Generals' Problem, 4

C
candidate blocks, 28, 220
central trusted authority, 4, 15, 213

362 | Index

chain of transactions, 19
change addresses, 20
change, making, 20, 120
charitable donations, 5, 130, 143
Check Lock Time Verify (CLTV), 158-160
CHECKHASHVERIFY (CHV), 225
CHECKMULTISIG bug workaround, 150
CHECKSEQUENCEVERIFY (CSV), 162
child key derivation (CKD), 106
clearing, 14

(see also confirmations)
clients, libraries, and toolkits, 51-53
cloning source code, 33
code examples, obtaining and using, xv-xvi, 32
Coin ATM Radar, 11
coinbase transactions, 120, 196, 221-226

coinbase data, 225
rewards and fees, 223
structure of, 224

cold storage, 7, 110, 273
(see also storage)

collisions, 228
colored coins, 278-283
comments and questions, xvii
commitment, 141
Compact Block optimization, 176
conditional clauses, 164-167
configuration options, 40

(see also Bitcoin Core)
confirmations (see also mining and consensus;

transactions)
bitcoin wallet quick start example, 14
of large-value transactions, 255
role in transactions, 28
of small-value transactions, 26

consensus (see mining and consensus)
contact information, xvii
core executables, 37

(see also Bitcoin Core)
Counterparty, 283
cryptographic puzzles, 132
cryptography (see also keys and addresses)

asymmetric, 57
defined, 55
elliptic curve cryptography, 57, 60-63

currency creation, 215
currency exchanges, 11

D
data recording (nonpayment data), 155
decentralized systems

benefits of, xiv
bitcoin as, xiii, 270
bitcoin mining and, 213
bitcoin overview, 15-30
vs. centralized, 3
consensus in, 4, 217
in nature, xiv
security of, 269

deflationary money, 216
denial-of-service attacks, 131, 254 (see also

security)
deserialization, 122
deterministic initialization, 145
deterministic wallets, 94

(see also wallets)
development environment

consensus software development, 266
setup (see Bitcoin Core)
test blockchains and, 211

digital asset executors, 274
digital asset management, 278
digital currencies

benefits of bitcoin, 11
bitcoin vs. others, xiii
cryptocurrency, 56
currency exchanges, 11
prior to bitcoin, 3

digital keys (see keys and addresses)
digital notary services, 155, 278
digital ownership, 284
digital signatures

algorithm used, 138
asymmetric cryptography and, 57
defined, 139
how they work, 139
purpose of, 55
purposes of, 139
randomness in, 145
signature hash types, 141
verifying, 141

Distinguished Encoding Rules (DER), 140
distributed computing, 4
distributed version control systems, 33
DOCPROOF prefix, 156
documentation, 34
double-spend problem, 4

Index | 363

dumpprivkey command, 59
dynamic fees, 127

E
Electrum wallet, 100

(see also wallets)
elliptic curve cryptography, 57, 60-63
Elliptic Curve Digital Signature Algorithm

(ECDSA), 138, 143
emergent consensus, 217
encryption, 55, 191 (see also keys and

addresses)
Enhanced Padded-Order-Based Coloring

(EPOBC), 279
entropy

os.urandom (see random numbers)
random number generation, 59, 79, 145

EQUAL opcode, 166
EQUALVERIFY opcode, 166
Ethereum Virtual Machine (EVM), 283
exchange rates

determining, 11, 16
floating, 12
listing services, 11

extended keys, 108
extrinsic asset management, 278, 283

F
Falcon Relay Network, 176
Fast Internet Bitcoin Relay Engine (FIBRE), 176
fees

dynamic fees, 127
fee relay policies, 127
fee sniping, 163
mining rewards, 214
static fees, 128
transaction fees, 18, 126, 213, 223

floating exchange rate, 12
flooding technique, 25
flow control, 164-167
forks

blockchain fork events, 240-247
changing consensus rules, 256-266

contentious hard forks, 260
diverging miners and difficulty, 259
hard forks, 256
soft fork activation, 262
soft fork drawbacks, 262
soft forks, 261

software forks, 258
fractional values, 18
full indexing option, 41
full-node clients, 7, 172, 180

G
generator point, 60, 63
genesis block, 28, 180, 195, 225
getting started

acquiring bitcoin, 10
confirmations, 14
exchange rates, 11
quick start example, 8-10
sending and receiving bitcoin, 12
wallet selection, 6-8
warnings and cautions, xvi

GitHub bitcoin page, 32
guard clauses, 165

H
halvings, 223
hard forks, 260, 267
hardened derivation, 112
hardware wallets, 97, 110, 273 (see also wallets)
Hash Time Lock Contracts (HTLC), 296
headers, 197, 227
hierarchical deterministic (HD) wallets, 94, 96,

106, 113
(see also wallets)

I
IF clauses, 165
inputs (see outputs and inputs)
intended audience, xiii
issuance rate, 215

J
JBOK wallets, 94

(see also wallets)

K
key derivation methods, 94
key utility (ku), 347
key-stretching function, 101
keychains, 93
keys and addresses (see also public and private

keys)
advanced forms, 80-91

364 | Index

encrypted private keys, 80
paper wallets, 88
pay-to-script hash and multisig

addresses, 81
vanity addresses, 82

bitcoin addresses, 64-76
Base58 and Base58check encoding, 66
key formats, 70

implementing in Python, 76-79
overview of, 55-64

elliptic curve cryptography, 60
key pairs, 57
private and public key pairs, 57
private key generation, 58
public key calculation, 60
public key cryptography, 56
public key generation, 63

warnings and cautions, xvi

L
libraries, clients, and toolkits, 51-53
Lightning Network

basic example, 298
benefits of, 303
defined, 297
transport and routing, 301

lightweight clients, 8, 172
locking scripts, 121, 132

M
mainnet, 207

(see also blockchain (the))
malleability, 46
Median-Tme-Past, 162
memory pools (mempools), 192, 220
merkle trees, 201-207, 227
milli-bitcoin, 18
millibits, 17
mining and consensus

aggregating transactions into blocks,
220-226

assembling and selecting chains of blocks,
239-247
blockchain forks, 240

bitcoin economics and currency creation,
215

coinbase transactions, 120
consensus attacks, 253-256
consensus rules

changing, 256-262
satisfying, 2
security provided by, 26

consensus software development, 266
constructing block headers, 227
decentralized consensus, 213, 217
defined, 228
emergent consensus, 217
hashing power race, 247-253
independent transaction verification, 218
mining farms and pools, 27
mining nodes, 173, 219
mining rewards and fees, 214
mining the block, 228-238

retargeting to adjust difficulty, 235
successful completion, 237
target representation, 235

new block validation, 238
overview of, 26-29
Proof-of-Work algorithm, 4, 27, 173, 214,

220, 228-234
purpose of, 213
rewards and fees, 126, 223
security and consensus, 271

mining pools, 250-253
benefits of, 250
defined, 27
managed pools, 252
operation of, 28, 251
peer-to-peer pools (P2Pool), 252

minrelaytxfee option, 127
mnemonic code words, 94, 97, 99-105
money supply, 215
multisig addresses, 81, 274
multisignature scripts, 149, 167

N
Nakamoto, Satoshi, 4, 31, 305-316
nLocktime field, 157
nodes (see bitcoin nodes)
nonce values, 225, 249
nondeterministic wallets, 94

(see also wallets)
nonpayment data, 155
nSequence field, 160

O
off-blockchain transactions, 270
offshore contract services, 5

Index | 365

opcodes
EQUAL, 166
EQUALVERIFY, 166
redefinition by soft forks, 261
VERIFY, 165

Open Assets, 279
open source licenses, xvi, 4, 31, 316
OpenSSL cryptographic library, 64
orphan pools, 192
outputs and inputs

basics of, 18
creating outputs, 24
defined, 21
input components, 123
input serialization, 125
locating and tracking inputs, 22
output characteristics, 119
output parts, 121
outputs defined, 119
structure of, 122

P
paper wallets, 88-91, 273 (see also wallets)
parent blocks, 195, 227
parsing, 122
passphrases, 102, 104
passwords

core node first run, 39
creating, 39
encrypted private keys, 80
survivability and, 274

Pay-to-Public-Key-Hash (P2PKH), 131, 136
Pay-to-Script-Hash (P2SH)

addresses, 153
benefits of, 154
coinbase data, 225
import/export example, 151
multisig addresses and, 81
redeem scripts and validation, 154

payment (state) channels
asymmetric revocable commitments,

292-296
building blocks (primitives) used in, 278
concept of, 284
defined, 284
example of, 286-288
Hash Time Lock Contracts (HTLC), 296
making trustless channels, 289-292
terminology, 285

payment requests, 17
PBKDF2 function, 101
peer-to-peer (P2P), 171
Peer-to-Peer authentication and encryption,

191
peer-to-peer pools (P2Pool), 252
pool operators, 252

(see also mining pools)
primitives, 276
privacy, maintaining, 11, 185-192
programmable money, 131
programmatic interface, 48-51
Proof of Existence, 156, 278
Proof-of-Work algorithm, 4, 27, 173, 214, 220,

228-234
propagation

address propagation and discovery, 178
flooding technique, 25
process of, 25
relay networks and, 176

public and private keys (see also keys and
addresses)
child key derivation (CKD), 106
compressed private keys, 75
compressed public keys, 73
encrypted private keys, 80
extended keys, 108
hardened child key derivation, 112
key pairs, 56

ephemeral, 144
private key formats, 70
public child key derivation, 109
public key formats, 72

pybitcointools, 76
pycoin library, 347

Q
QR codes

bitcoin wallet quick start example, 9
payment requests, 17
warnings and cautions, xvi, 17

R
random numbers

os.urandom (see entropy)
random number generation, 59, 79, 145

redeem scripts, 152, 154
reference implementation (see Bitcoin Core)
regtest (Regression Testing), 210

366 | Index

relative timelocks, 160-162
relay networks, 176
resource requirements, 38
RETURN operator, 155
risk, balancing and diversifying, 273

(see also security)
root of trust concept, 271
root seeds, 106
routed payment channels (see Lightning Net‐

work)

S
salts, 102
satoshi, xxx
Satoshi client, 31, 181
satoshis, 18, 119
scripting

complex script example, 167-169
data recording output, 155
flow control scripts, 164-167
locking scripts, 121, 132
multisignature scripts, 149-151

CHECKMULTISIG bug, 150
import/export example, 167

Pay-to-Script-Hash, 151-155
addresses, 153
benefits of, 154
import/export example, 151
redeem scripts and validation, 154

redeem scripts, 152
Script language operators, constants, and

symbols, 317-321
timelocks, 157-164

Check Lock Time Verify (CLTV), 158
defense against fee-sniping, 163
Median-Tme-Past, 162
nLocktime, 157
relative timelocks, 160
relative timelocks with CHECKSE‐

QUENCEVERIFY, 162
relative timelocks with nSequence, 160
uses for, 157

transactions and, 131-137
scriptPubKey, 121, 132
scriptSig, 132
security (see also warnings and cautions)

bitcoin addresses, 10
consensus attacks, 253-256
defense against fee-sniping, 163

denial-of-service attacks, 131, 254
locking and unlocking scripts, 136
maintaining privacy, 11, 185-192
passwords, 39, 80, 274
security principles, 269-272
user security best practices, 272-274
vanity addresses, 87
wallet selection, 6

segnet, 210
segwit (Segregated Witness), 210, 329-342
serialization

inputs, 125
outputs, 122

shell commands, 33
SIGHASH flags, 141
simple-payment-verification (SPV), 8, 29, 172,

183-185, 207
smart contracts, 283
sniping, 163
soft forks

activation, 262
defined, 261
drawbacks of, 262
redefinition of NOP codes, 261

source code, cloning, 33
(see also Bitcoin Core)

spending bitcoin (see also transactions)
bitcoin wallet quick start example, 12
defined, 19
double-spend problem, 4
simple-payment-verification (SPV), 29

stateless verification, 132
static fees, 128
storage

cold storage, 7, 110, 273
physical bitcoin storage, 273

survivability, 274
syncing, 181

T
targets, 231, 235-237
terminal applications, 33
testnet, 207-209
The Onion Routing network (Tor), 191
third-party API clients, 8, 51-53
timelocks

Check Lock Time Verify (CLTV), 158
defense against fee-sniping, 163
Median-Tme-Past, 162

Index | 367

nLocktime, 157
relative timelocks, 160-162
uses for, 157

toolkits, libraries, and clients, 51-53
Tor network, 191
transaction IDs (txd), 46, 124
transaction IDs (txid), 189, 282, 338
transaction pools, 192, 220
transaction utility (TX), 353-355
transactions

advanced, 149-169
data recording output, 155
example, 167
flow control scripts, 164
multisignature scripts, 149, 167
Pay-to-Script-Hash, 151
timelocks, 157

aggregating into blocks, 220-226
behind the scenes details of, 118
coinbase transactions, 120, 196, 221-226
constructing, 22-26
database configuration options, 41
defined, 18, 21, 117
digital signatures and, 138-145
exploring with Bitcoin Core API, 45
higher-level abstractions, 145-148
independent verification of, 218
off blockchain, 270
orphaned, 192
outputs and inputs, 119-130

input components, 123
input serialization, 125
output characteristics, 119
output components, 121
structure of, 122
transaction fees, 126

overview of, 18-22
parsing, 122
scripts and Script language, 131-137,

317-321
valid and invalid, 134
warnings and cautions, xvi, 17

Turing incompleteness, 131
txindex option, 41
typographical conventions, xiv

U
unlocking scripts, 132

unspent transaction outputs (UTXO), 119, 123,
155

use cases
buying coffee, 8-14, 16-30, 45-50, 117-126,

130, 136, 140-148, 157-160, 166, 220,
254, 332-337

charitable donations, 5, 130, 143
import/export, 6, 151-153, 167-169,

333-334, 337
mining for bitcoin, 6, 27, 219-228, 237-238
offshore contract services, 5, 30, 82
retail sales, 5, 254-255
user security best practices, 272-274
web store, 5, 98-99, 110-112

UTXO sets, 119, 123, 155

V
validation, 154, 238
vanity addresses, 82-88
VERIFY opcodes, 165
virtual asset management, 283

W
wallets

best practices for, 31, 97
constructing transactions, 22
contents of, 93
defined, 93
quick start example, 8-10
selecting, 6-8
technology of

creating HD wallets from root seed, 106
mnemonic code words, 99
seeds and mnemonic codes, 97
using extended public keys on web

stores, 110
types of

deterministic (seeded) wallets, 95
hardware wallets, 98, 273
hierarchical deterministic (HD) wallets,

96
JBOK wallets, 94
nondeterministic (random) wallets, 94
paper wallets, 88-91, 273
primary distinctions, 94

using bitcoin wallets, 98
warnings and cautions (see also security)

accidental bitcoin locking, 155

368 | Index

avoid sending money to addresses appear‐
ing in book, xvi, 17

change outputs, 130
core node resource requirements, 38
digital signatures, 145

password creation, 39
private key protection, 58

whitepaper, 305-316
witnesses, 55, 121, 132

Index | 369

About the Author
Andreas M. Antonopoulos is a noted technologist and serial entrepreneur who has
become one of the most well-known and well-respected figures in bitcoin. As an
engaging public speaker, teacher, and writer, Andreas makes complex subjects acces‐
sible and easy to understand. As an advisor, he helps startups recognize, evaluate, and
navigate security and business risks.

Andreas grew up with the internet, starting his first company, an early BBS and
proto-ISP, as a teenager in his home in Greece. He earned degrees in computer sci‐
ence, data communications, and distributed systems from University College London
(UCL)—recently ranked among the world’s top 10 universities. After moving to the
United States, Andreas cofounded and managed a successful technology research
company, and in that role advised dozens of Fortune 500 company executives on net‐
working, security, data centers, and cloud computing. More than 200 of his articles on
security, cloud computing, and data centers have been published in print and syndi‐
cated worldwide. He holds two patents in networking and security.

In 1990, Andreas started teaching various IT topics in private, professional, and aca‐
demic environments. He honed his speaking skills in front of audiences ranging in
size from five executives in a boardroom to thousands of people in large conferences.
With more than 400 speaking engagements under his belt he is considered a world-
class and charismatic public speaker and teacher. In 2014, he was appointed as a
teaching fellow with the University of Nicosia, the first university in the world to offer
a masters degree in digital currency. In this role, he helped develop the curriculum
and cotaught the Introduction to Digital Currencies course, offered as a massive open
online course (MOOC) through the university.

As a bitcoin entrepreneur, Andreas has founded a number of bitcoin businesses and
launched several community open source projects. He serves as an advisor to several
bitcoin and cryptocurrency companies. He is a widely published author of articles
and blog posts on bitcoin, a permanent host on the popular Let’s Talk Bitcoin pod‐
cast, and a frequent speaker at technology and security conferences worldwide.

Colophon
The animal on the cover of Mastering Bitcoin is a leafcutter ant (Atta colombica). The
leafcutter ant (a nongeneric name) is a tropical, fungus-growing ant endemic to
South and Central America, Mexico, and southern United States. Aside from
humans, leafcutter ants form the largest and most complex animal societies on the
planet. They are named for the way they chew leaves, which serve as nutrition for
their fungal garden.

Winged ants, both male and female, take part in a mass exit of their nest known as
the revoada, or a nuptial flight. Females mate with multiple males to collect the 300
million sperm necessary to set up a colony. Females also store bits of the parental fun‐
gus garden mycelium in the infrabuccal pocket located in their oral cavity; they will
use this to start their own fungal gardens. Once grounded, the female loses its wings
and sets up an underground lair for her colony. The success rate for new queens is
low: 2.5% establish a long-lived colony.

Once a colony has matured, ants are divided into castes based on size, with each caste
performing various functions. There are usually four castes: minims, the smallest
workers that tend to the young and fungus gardens; minors, slightly larger than min‐
ima, are the first line of defense for the colony and patrol the surrounding terrain and
attack enemies; mediae, the general foragers that cut leaves and bring back leaf frag‐
ments to the nest; and majors, the largest worker ants that act as soldiers, defending
the nest from intruders. Recent research has shown that majors also clear main forag‐
ing trails and carry bulky items back to the nest.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Insects Abroad. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Writing the Bitcoin Book
	Intended Audience
	Why Are There Bugs on the Cover?
	Conventions Used in This Book
	Code Examples
	Using Code Examples
	Bitcoin Addresses and Transactions in This Book
	O’Reilly Safari
	How to Contact Us
	Contacting the Author
	Acknowledgments
	Early Release Draft (GitHub Contributions)

	Quick Glossary
	Chapter 1. Introduction
	What Is Bitcoin?
	History of Bitcoin
	Bitcoin Uses, Users, and Their Stories
	Getting Started
	Choosing a Bitcoin Wallet
	Quick Start
	Getting Your First Bitcoin
	Finding the Current Price of Bitcoin
	Sending and Receiving Bitcoin

	Chapter 2. How Bitcoin Works
	Transactions, Blocks, Mining, and the Blockchain
	Bitcoin Overview
	Buying a Cup of Coffee

	Bitcoin Transactions
	Transaction Inputs and Outputs
	Transaction Chains
	Making Change
	Common Transaction Forms

	Constructing a Transaction
	Getting the Right Inputs
	Creating the Outputs
	Adding the Transaction to the Ledger

	Bitcoin Mining
	Mining Transactions in Blocks
	Spending the Transaction

	Chapter 3. Bitcoin Core: The Reference Implementation
	Bitcoin Development Environment
	Compiling Bitcoin Core from the Source Code
	Selecting a Bitcoin Core Release
	Configuring the Bitcoin Core Build
	Building the Bitcoin Core Executables

	Running a Bitcoin Core Node
	Running Bitcoin Core for the First Time
	Configuring the Bitcoin Core Node

	Bitcoin Core Application Programming Interface (API)
	Getting Information on the Bitcoin Core Client Status
	Exploring and Decoding Transactions
	Exploring Blocks
	Using Bitcoin Core’s Programmatic Interface

	Alternative Clients, Libraries, and Toolkits
	C/C++
	JavaScript
	Java
	Python
	Ruby
	Go
	Rust
	C#
	Objective-C

	Chapter 4. Keys, Addresses
	Introduction
	Public Key Cryptography and Cryptocurrency
	Private and Public Keys
	Private Keys
	Public Keys
	Elliptic Curve Cryptography Explained
	Generating a Public Key

	Bitcoin Addresses
	Base58 and Base58Check Encoding
	Key Formats

	Implementing Keys and Addresses in Python
	Advanced Keys and Addresses
	Encrypted Private Keys (BIP-38)
	Pay-to-Script Hash (P2SH) and Multisig Addresses
	Vanity Addresses
	Paper Wallets

	Chapter 5. Wallets
	Wallet Technology Overview
	Nondeterministic (Random) Wallets
	Deterministic (Seeded) Wallets
	HD Wallets (BIP-32/BIP-44)
	Seeds and Mnemonic Codes (BIP-39)
	Wallet Best Practices
	Using a Bitcoin Wallet

	Wallet Technology Details
	Mnemonic Code Words (BIP-39)
	Creating an HD Wallet from the Seed
	Using an Extended Public Key on a Web Store

	Chapter 6. Transactions
	Introduction
	Transactions in Detail
	Transactions—Behind the Scenes

	Transaction Outputs and Inputs
	Transaction Outputs
	Transaction Inputs
	Transaction Fees
	Adding Fees to Transactions

	Transaction Scripts and Script Language
	Turing Incompleteness
	Stateless Verification
	Script Construction (Lock + Unlock)
	Pay-to-Public-Key-Hash (P2PKH)

	Digital Signatures (ECDSA)
	How Digital Signatures Work
	Verifying the Signature
	Signature Hash Types (SIGHASH)
	ECDSA Math
	The Importance of Randomness in Signatures

	Bitcoin Addresses, Balances, and Other Abstractions

	Chapter 7. Advanced Transactions and Scripting
	Introduction
	Multisignature
	Pay-to-Script-Hash (P2SH)
	P2SH Addresses
	Benefits of P2SH
	Redeem Script and Validation

	Data Recording Output (RETURN)
	Timelocks
	Transaction Locktime (nLocktime)
	Check Lock Time Verify (CLTV)
	Relative Timelocks
	Relative Timelocks with nSequence
	Relative Timelocks with CSV
	Median-Time-Past
	Timelock Defense Against Fee Sniping

	Scripts with Flow Control (Conditional Clauses)
	Conditional Clauses with VERIFY Opcodes
	Using Flow Control in Scripts

	Complex Script Example

	Chapter 8. The Bitcoin Network
	Peer-to-Peer Network Architecture
	Node Types and Roles
	The Extended Bitcoin Network
	Bitcoin Relay Networks
	Network Discovery
	Full Nodes
	Exchanging “Inventory”
	Simplified Payment Verification (SPV) Nodes
	Bloom Filters
	How Bloom Filters Work

	How SPV Nodes Use Bloom Filters
	SPV Nodes and Privacy
	Encrypted and Authenticated Connections
	Tor Transport
	Peer-to-Peer Authentication and Encryption

	Transaction Pools

	Chapter 9. The Blockchain
	Introduction
	Structure of a Block
	Block Header
	Block Identifiers: Block Header Hash and Block Height
	The Genesis Block
	Linking Blocks in the Blockchain
	Merkle Trees
	Merkle Trees and Simplified Payment Verification (SPV)
	Bitcoin’s Test Blockchains
	Testnet—Bitcoin’s Testing Playground
	Segnet—The Segregated Witness Testnet
	Regtest—The Local Blockchain

	Using Test Blockchains for Development

	Chapter 10. Mining and Consensus
	Introduction
	Bitcoin Economics and Currency Creation

	Decentralized Consensus
	Independent Verification of Transactions
	Mining Nodes
	Aggregating Transactions into Blocks
	The Coinbase Transaction
	Coinbase Reward and Fees
	Structure of the Coinbase Transaction
	Coinbase Data

	Constructing the Block Header
	Mining the Block
	Proof-of-Work Algorithm
	Target Representation
	Retargeting to Adjust Difficulty

	Successfully Mining the Block
	Validating a New Block
	Assembling and Selecting Chains of Blocks
	Blockchain Forks

	Mining and the Hashing Race
	The Extra Nonce Solution
	Mining Pools

	Consensus Attacks
	Changing the Consensus Rules
	Hard Forks
	Hard Forks: Software, Network, Mining, and Chain
	Diverging Miners and Difficulty
	Contentious Hard Forks
	Soft Forks
	Criticisms of Soft Forks

	Soft Fork Signaling with Block Version
	BIP-34 Signaling and Activation
	BIP-9 Signaling and Activation

	Consensus Software Development

	Chapter 11. Bitcoin Security
	Security Principles
	Developing Bitcoin Systems Securely
	The Root of Trust

	User Security Best Practices
	Physical Bitcoin Storage
	Hardware Wallets
	Balancing Risk
	Diversifying Risk
	Multisig and Governance
	Survivability

	Conclusion

	Chapter 12. Blockchain Applications
	Introduction
	Building Blocks (Primitives)
	Applications from Building Blocks
	Colored Coins
	Using Colored Coins
	Issuing Colored Coins
	Colored Coins Transactions

	Counterparty
	Payment Channels and State Channels
	State Channels—Basic Concepts and Terminology
	Simple Payment Channel Example
	Making Trustless Channels
	Asymmetric Revocable Commitments
	Hash Time Lock Contracts (HTLC)

	Routed Payment Channels (Lightning Network)
	Basic Lightning Network Example
	Lightning Network Transport and Routing
	Lightning Network Benefits

	Conclusion

	Appendix A. The Bitcoin Whitepaper by Satoshi Nakamoto
	Bitcoin - A Peer-to-Peer Electronic Cash System
	Introduction
	Transactions
	Timestamp Server
	Proof-of-Work
	Network
	Incentive
	Reclaiming Disk Space
	Simplified Payment Verification
	Combining and Splitting Value
	Privacy
	Calculations
	Conclusion
	References

	License

	Appendix B. Transaction Script Language Operators, Constants, and Symbols
	Appendix C. Bitcoin Improvement Proposals
	Appendix D. Segregated Witness
	Appendix E. Bitcore
	Bitcore’s Feature List
	Bitcore Library Examples
	Prerequisities
	Wallet Examples using bitcore-lib

	Appendix F. pycoin, ku, and tx
	Key Utility (KU)
	Transaction Utility (TX)

	Appendix G. Bitcoin Explorer (bx) Commands
	Examples of bx Command Use

	Index
	About the Author
	Colophon

