
www.allitebooks.com

http://www.allitebooks.org

Mastering Chef Provisioning

Learn Chef Provisioning like a boss and finally own
your infrastructure

Earl Waud

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Chef Provisioning

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1230616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-891-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Earl Waud

Reviewer
Federico Gimenez

Commissioning Editor
Sarah Crofton

Acquisition Editor
Rahul Nair

Content Development Editor
Mamata Walker

Technical Editor
Pramod Kumavat

Copy Editor
Dipti Mankame

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

First and foremost, if you have this book in your hands, congratulations! You are
part of the top talent pool in the IT industry, focusing on systems management and
provisioning at scale using powerful automation tools.

I have been in the industry for more than 12 years, implementing and leading
next generation platform architecture and engineering efforts in world-class
enterprise data centers hosting tens of thousands of servers. Throughout my
professional journey, I've had a chance to be part of many paradigm shifts, including
virtualization, the cloud era, software-defined data centers, and the latest but not the
least, infrastructure as a code.

It was during one of these paradigm shifts when I met the author of this book, Earl
Waud. Shortly after meeting, and after spilling a cup of coffee on his notebook, we
became very close both professionally and as friends.

Earl has always impressed me with how he cares about people, how he values
relationships, while still being very professional, methodical, and self-driven to
achieve any goal. Additionally, Earl is not short of innovations, driving them all the
way from the back of a napkin into highly available multi-data center production
deployments that successfully address today's biggest IT challenges. When you
combine these traits with his tremendous experience, it becomes a very effective
recipe for success both personally and professionally. Mastering Chef Provisioning is
the latest example of that success.

In today's IT world, we are experiencing another paradigm shift. In order to
support ever-evolving business needs, traditional IT must adopt critical skillsets
around infrastructure automation and orchestration. Although there are numerous
automation tools available, many professionals have chosen to use Chef because it is
one of the most effective platforms to successfully implement provisioning system
automation and orchestration.

www.allitebooks.com

http://www.allitebooks.org

One of the fundamentally critical and most repeated functions of IT in mission-
critical environments is provisioning compute systems. Because of this, provisioning
is one of the major targets of automation in IT. In Mastering Chef Provisioning by Earl
Waud, the author clearly depicts how you can strategize, design, and implement
provisioning automation with Chef across all major hosting platforms anywhere
from your own data center all the way out to Amazon Web Services Public Cloud.
With the skillset that you will gain from this book, you will be able to implement
your own custom provisioning automation to deliver systems rapidly and accurately
for all your business needs.

Considering that we are in the middle of another paradigm shift, Mastering Chef
Provisioning is one of the most important references that you can have in your
library. As a matter of fact, I have already begun using it as a guideline to aid our
provisioning automation efforts in delivering thousands of systems in a very short
period of time.

I am very confident that you will enjoy this book, and by mastering the techniques
within its pages, you will learn how to provision systems effectively with Chef,
saving you tremendous amounts of time in your day-to-day operations and
reaffirming your position as part of top talent pool in the IT industry.

I would like to conclude by saying thank you to the author of this book, Earl
Waud, for leading the way by setting an example for the rest of the world, both
at a professional level and a personal level. "We always win!" my friend.

Mert Cubukcuoglu
Senior Manager, Intuit Inc.

www.allitebooks.com

http://www.allitebooks.org

About the Author

Earl Waud is a virtualization development professional with more than
10 years of focused industry experience, creating innovative solutions for hypervisor
provisioning, management, and automation. He is an expert in aligning engineering
strategy with organizational vision and goals, and delivering highly scalable and
user friendly virtualization environments.

With more than 20 years of experience developing customer-facing and corporate IT
software solutions, he has a proven track record of delivering high-caliber and on-
time technology solutions that significantly impact business results.

Earl lives in San Diego, California. He is blessed with a beautiful wife, Patti, and
three amazing daughters, Alexis, Daniella, and Madison.

Currently, Earl is a senior software engineer with Intuit Inc., a company that creates
business and financial management solutions that simplify the business of life for
small businesses, consumers, and accounting professionals.

Earl can be found online at http://sandiegoearl.com.

www.allitebooks.com

http://sandiegoearl.com
http://www.allitebooks.org

Acknowledgments

Creating this book was a much larger undertaking than I imagined, and as a result,
I owe a debt of gratitude to many.

Thank you to my Heavenly Father. Thank you for my days and for my many
blessings. Thank you for this book. Thank you for the opportunity to learn and grow
as I created its content. Thank you for allowing me to get it right. And thank you for
blessing all who read it so that they can find the solutions they need. I love Thee very
much. Thank you.

Thank you to my amazing wife Patti. Thank you, honey, for your patience with me
and for being okay with all the time I had to invest to create this book. You carried
a lot of the weight of our household, so I could research, write, and revise the
information within these pages, and without your support, this book would
not exist. Thank you for your confidence in me, which helped me get through
some moments of self-doubt. And thank you for loving me. I love you very much.
Thank you.

Thank you to my daughter Madison. Thank you, Madison, for your light and for
your faith in me. Thank you for seeing me the way that you do. Thank you for being
willing to give up a lot of our father-daughter time over the past few months. I know
how precious that time is, and I hope we can catch up on some of it before you go off
to college. I love you very much. Thank you.

Thank you to my daughter Alexis. Thank you, Lexi, for believing in me. And thank
you for the confidence and pride you have for me. Thank you for having faith in my
ability to be a writer. I love you very much. Thank you.

Thank you to my daughter Daniella. Thank you, Dani, for your energy and unique
perspective. Thank you for your support and your belief in me and my ability to
write this book. I love you very much. Thank you.

www.allitebooks.com

http://www.allitebooks.org

Thank you to my friend Mert Cubukcuoglu. Thank you, Mert, for your friendship
and trust. Thank you for your confidence in me and my ability to write a book about
Chef provisioning. And thank you for writing the book's Foreword. Thank you.

Thank you to my friends at work. Thank you Ray Eivaz, Barry Ruffner, Wayne
Chatham, Achal Shah, Amy Tam, Angela Bouchard, Mai Lubega, Thy Guintivano,
Mike Sharp, and the many others at Intuit that I work with every day. Thank you for
your excitement about and interest in my book. Thank you for expressing your belief
that I could do it. And thank you for your eagerness to read it when it comes out.
Thank you Jay Grissom for being one for the first to preorder your copy. Thank you
Michel Cole for being the first to request that I write a second book. Thank you.

Thank you to my friend Tom "Big Al" Schreiter. Thank you, Tom, for suggesting that
I start writing books and for being such a great example by taking your own advice
and creating a fantastic set of training books. And thank you for your excitement
about my book. Thank you.

Thank you to my reviewer Federico Gimenez. Thank you, Federico, for poring over
the chapters of this book and making sure I've presented the most accurate content
and examples possible. Thank you.

Thank you to my Packt Publishing team. Thank you Mamata Walkar, Rahul Nair,
Pramod Kumavat, Sachin Karnani, and Kinjal Bari. Without you, this book would
never have happened. Thanks for allowing me to officially become an author and for
making sure that my book is a good as it can be. Thank you.

"I can no other answer make, but, thanks, and thanks."

 – William Shakespeare

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Federico Gimenez works currently as a software quality engineer for Canonical
in the Snappy team. He has an extensive background supporting agile teams in all
the product delivery steps, focusing on applying software engineering solutions to
multidisciplinary problems. For the past 7 years, he has also contributed to several
open source projects, including Docker, Kubernetes, OpenStack, Ceph, and Debian.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface ix
Chapter 1: Setting Up a Development Environment on
Your Workstation 1

Re-introducing Chef 2
What version of the Chef tools do I use? 2
References 3

Filling in the gaps in your Chef knowledge base 3
Major pieces of a Chef puzzle 3
The Chef client 4
The Ohai Chef tool 5
Recipes and cookbooks 5
Chef run lists 5
Chef roles 6
Chef resources 6
More things to consider 6
Data bags 7
Environments 7
The Chef supermarket 8
Chef Development Kit 8
Setting up an on-premise (private) Chef Server 8
References 12

Exploring the Chef Development Kit 13
The Chef Knife 13
Community tools 13
References 14

Table of Contents

[ii]

Installing Chef Development Kit 14
Downloading ChefDK 14
Installing ChefDK 15
Verifying ChefDK 16
References 20

Setting up a standard Chef repo 20
Using the Chef tool for Chef repo 21
The repo starter kit 22
Files for your .chef folder – a safer way 23
Growing your own tree 24
Self-signed certificates 25
References 27

What else do you need? 27
Using your favorite editor 27
Version control systems 29
Virtualization hypervisor 30
Vagrant 30
References 31

What is chef-apply? 31
Why is that useful? 31
References 32

Summary 33
Chapter 2: Knife Tooling and Plugins 35

Knife help 35
References 37

Knife subcommands 37
Knife Bootstrap 37
Knife Node 39
Knife Diff 39
Knife Exec 40
Knife SSH 41
Knife Search 41
References 43

Knife to editor integration 43
Using the "wait" option 43
Does my editor require the wait option? 44
References 44

Table of Contents

[iii]

Knife Windows plugin 45
Installing the Knife Windows plugin 45
Bootstrapping a Windows node 45
Searching for Windows node data 46
References 46

Knife EC2 plugin 47
Installing the Knife EC2 plugin 47
Creating an EC2 instance 48
Bootstrapping an existing EC2 instance 49
Deleting EC2 instances 50
References 50

Creating new Knife plugins 51
The basic plugin file format 51
Example – A simpler EC2 Create Server plugin 52
References 53

Summary 53
Chapter 3: Leveraging Roles, Environments, and Policies 55

Using Chef roles 55
How to create a role 56
Using per-environment run-lists in roles 58
Using nested roles 60
There is a downside to roles 61
References 61

Using Chef environments 62
The _default environment 62
Creating environments 62
Specifying cookbook versions in environments 63
References 64

Using Chef organizations 64
Creating organizations 64
Access control 65
References 65

Learning the attribute precedence hierarchy 66
Understanding attribute precedence factors 66
Resulting precedence hierarchy 68

Table of Contents

[iv]

Exploring policies 69
What exactly is a policy? 69
Why would I use a policy? 70
How do I use a policy? 70
Another example 72
How to specify the source options for cookbooks 75
What are the "Gotchas"? 76
References 77

Summary 77
Chapter 4: Custom Resources 79

Out with the old (LWRPs), in with the new (Custom Resources) 79
What is the difference between the old way and the new way
of defining resources? 80
What is a Custom Resource? 81
References 81

Creating an example use case 82
What is the goal? 82
Creating the cookbook 82
Creating the default recipe 83
The recipe worked, but what is missing? 87
References 87

Creating and using a Custom Resource 87
What makes up a Custom Resource? 88
Creating the "website" Custom Resource 88
Using our Custom Resource 91
References 93

Making a Custom Resource more reusable 93
Making a Custom Resource-only cookbook 94
Reuse the code from the "mywebapp" example 94
Using the reusable Custom Resource-only cookbook 94
Handling idempotence 95
References 97

Subclassing a Custom Resource 97
Convert our resource into a library module 97
Subclassing the library module Custom Resource 99
References 101

Summary 102

Table of Contents

[v]

Chapter 5: Provisioning in the Traditional Data Center 103
VMware provisioning 103

Installing the knife-vsphere plugin 105
Provisioning VMs using the knife-vsphere plugin 107
Cleaning up our vSphere and Chef environments 110
Using Chef with VMware and Vagrant 111
References 114

OpenStack provisioning 115
Setting up a DevStack OpenStack all-in-one environment 116
Deploying the DevStack Host VM 116
Downloading and installing DevStack 119
Downloading the demo project rc file and applying it 123
Adding the security rules to allow ping and ssh traffic 123
Installing the knife OpenStack plugin 127
Setting up the DevStack public key 127
Allocating some floating IP addresses to the project 128
Configuring the knife-openstack plugin knife settings 129
Adding a CentOS instance image to provision 132
Provisioning a new instance 133
References 137

Network automation 137
Automating juniper devices 138
Automating Cisco systems 141
Automating F5 LTMs 144
References 147

Summary 148
Chapter 6: Provisioning in the Cloud 149

Provisioning AWS EC2 instances 150
Understanding EC2 authentication 150
Creating key pairs 150
Creating security groups 152
Installing Chef Server into an EC2 instance 154
References 158

Provisioning Microsoft Azure instances 159
Installing the knife-azure plugin 160
Configuring the plugin 161

Table of Contents

[vi]

Verifying the configuration 162
Generating public/private key pairs 163
Provisioning virtual machines 164
Provisioning a new Chef server into Azure 166
References 168

Provisioning in the Google Cloud platform 169
Installing and configuring the knife-google plugin 169
Creating and registering your key pairs 171
Provisioning virtual machines with the GCE 172
Deploying Chef server into a GCE instance 175
References 178

Looking at an honorable mention – Linode 178
References 179

Provisioning containers in Docker 180
Setting up a Docker server to host our containers 180
Installing and using Docker on our Chef Workstation 183
Using the knife-docker plugin 184
References 185

Summary 186
Chapter 7: Test-Driven Development 187

Analyzing cookbooks with RuboCop 188
Using RuboCop 188
Examining the RuboCop output 189
Customizing RuboCop 190
References 191

Analyzing cookbooks with Foodcritic 192
Using Foodcritic 192
Examining the Foodcritic output 193
Customizing Foodcritic 194
References 194

Unit testing with ChefSpec 195
Using ChefSpec 195
Expanding our tests 199
References 202

Integration testing with Kitchen and ServerSpec 202
Preparing our tests 203
Kitchen create 206
Kitchen converge 207
Kitchen verify 208
References 211

Summary 212

Table of Contents

[vii]

Chapter 8: Using Chef Provisioning 213
What is Chef provisioning? 214

It's highly idempotent 214
A hypothetical example 214
References 215

How to use Chef Provisioning 215
Chef Provisioning resources 216
A Vagrant example 216
A cloud example with AWS 220
A Docker example 223
References 227

Summary 228
Index 229

[ix]

Preface
Today, the DevOps Engineer is responsible for delivering infrastructure that is rock
solid and consistently configured every time. What's more, these superheroes need
to supply the infrastructure rapidly and at scale, often to the tune of dozens or even
hundreds of identically configured systems.

The days of doing this superhero work manually are long gone. Now the only
question is "which superpower will best serve our heroes in their time of greatest
need?" The answer is the power that can transform their infrastructure into code so
that it can be managed the same way as any other source code-based project. Chef is
that superpower.

And Mastering Chef Provisioning is your secret decoder ring for learning how to
use that power to provision containers, servers, and networking devices across the
universe of hosting targets, including your local workstation, the traditional data
center, and in the clouds.

In this book, you will learn the secrets of how to automate and document every
aspect of your infrastructure. You will find the best practices for describing your
infrastructure as code. You will learn to automate the provisioning of everything
from the smallest container deployed to your local workstation to the biggest
distributed application clusters deployed to the cloud, all in a single bound.

This book will help you, the DevOps superhero, to create a perfect model system
where everything is represented as code beneath your fingertips. You will be able
to make the best possible use of your resources, avoid redundancy, and always be
ready to scale—faster than a speeding bullet. And you don't have to leave your home
planet, get bitten by a radioactive spider, or fall in a vat of toxic waste to do it.

But as the great Stan Lee wrote, "With great power …".

Preface

[x]

What this book covers
Chapter 1, Setting Up a Development Environment on Your Workstation, reviews
Chef basics and covers the installation of our Chef workstation and an on-premise
Chef Server.

Chapter 2, Knife Tooling and Plugins, shows how to get all the help you need with
knife, explores using both common and uncommon knife subcommands, and
teaches you how to create your own custom knife plugins.

Chapter 3, Leveraging Roles, Environments, and Policies, examines Chef roles,
environments, and organizations, covers the attribute precedence hierarchy,
and investigates the exciting new Chef policy feature.

Chapter 4, Custom Resources, introduces the custom resource, explores how the
custom resource has improved upon LWRPs and HWRPs, and shows how to
create and use your own custom resources.

Chapter 5, Provisioning in the Traditional Data Center, presents provisioning in the
traditional data center, covering provisioning to VMware vSphere, OpenStack,
VMware's desktop hypervisors, and common network devices, and teaches how
to deploy your own development OpenStack environment.

Chapter 6, Provisioning in the Cloud, presents provisioning in the cloud, covering
provisioning to Amazon AWS, Microsoft Azure, Google Compute Platform, and
Linode, and shows how to provision containers in Docker.

Chapter 7, Test-Driven Development, teaches how to use several of the tools available
to implement a test-driven development cycle for infrastructure code development,
including RuboCop, Foodcritic, ChefSpec, and Test Kitchen.

Chapter 8, Using Chef Provisioning, reveals how to use the ChefDK feature known as
Chef provisioning, providing examples for Vagrant, AWS, and Docker.

What you need for this book
The examples in this book were written with the ChefDK version 0.12.0. Examples
were tested primarily on Mac OS X and Ubuntu workstations, although all examples
should work equally well on other flavors of Linux as well as on Microsoft Windows.

Preface

[xi]

Who this book is for
This book is for software engineers, system administrators, and DevOps Engineers
who need to quickly deliver reliably consistent infrastructure at scale. You are
expected to have intermediate experience with Chef and Ruby and will be reading
this book to advance your knowledge and take your skillset to the next level.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "What this
error message is probably indicating is that there is no valid host entry in the
/etc/hosts file."

A block of code is set as follows:

add a rule for ssh
neutron security-group-rule-create $ID \
 --direction ingress --ethertype IPv4 \
 --protocol tcp --port-range-min 22 --port-range-max 22 \
 --remote-ip-prefix 0.0.0.0/0

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

add a rule for ssh
neutron security-group-rule-create $ID \
 --direction ingress --ethertype IPv4 \
 --protocol tcp --port-range-min 22 --port-range-max 22 \
 --remote-ip-prefix 0.0.0.0/0

Any command-line input or output is written as follows:

$ sudo knife openstack image list

Name ID Snapshot

cirros-0.3.4-x86_64-uec 84dff654-7f0d-45c8-a20b-b08c0ef39fd1 no

Preface

[xii]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this:
"Click on the Continue button to advance the installation."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Chef-Provisioning. We also have other code
bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Chef-Provisioning
https://github.com/PacktPublishing/Chef-Provisioning
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiv]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Setting Up a Development
Environment on Your

Workstation
In today's fast-paced IT world, it is a requirement to deliver infrastructure at
warp speed. There's really only one way to achieve this requirement, and that
is through automation.

One of the best paths to infrastructure automation is via Chef. Using Chef, you can
turn your infrastructure into code. With infrastructure as code, you can automate
the way you build, deploy, and manage all of it. Using Chef, your infrastructure
becomes very consistent, very duplicable, and version-controlled. Using Chef, you
can easily test your infrastructure setup and configuration. With Chef, you can
become an IT superhero!

In this chapter, we're going to detail the setup and configuration of a complete
development system or workstation. The main focus will be centered on deploying
the Chef Development Kit (ChefDK) and preparing the various components of a
development environment. The chapter also includes suggestions for additional tools
to round out the DevOps toolbox. However, before we dive into ChefDK, we will fly
through a high-level review of the what-and-how of Chef so that we are all on the
same page.

"If you wish to make an apple pie truly from scratch, you must first invent the
universe." – Carl Sagan

Setting Up a Development Environment on Your Workstation

[2]

Here is what you will find in this chapter:

• Filling in the gaps in your Chef knowledge base
• Exploring ChefDK
• Installing ChefDK
• Setting up a standard Chef repo
• What else do you need?
• Using chef-apply

Re-introducing Chef
If you are reading this book, then you've probably been working with Chef for some
time now, and you know the many benefits it brings. You may also know that, in the
past, it was a somewhat daunting task to set up a new Chef workstation. You had to
download and install Chef, then download and install a variety of community tools,
and make sure that all the versions were compatible and configured correctly.

Today, a lot of the work is done for you via the ChefDK. Once you install it, you
have a basic workstation setup and are ready to create, modify, and test Chef code.

What version of the Chef tools do I use?
To make it easy to follow along with the contents, let's go over the versions of the
tools that will be used throughout this book.

In March 2016, chef.io announced the release of ChefDK 0.12.0, which includes Chef
client 12.8.1. As this is the latest version at the time of writing, I will be using it as the
version for this book. All of the examples shown will be based on this version of the
ChefDK and Chef client. This is very exciting because a lot of really exciting changes
are in this release, including Policies and the transition from Resource Providers to
Custom Resources.

Currently, there are ChefDK installers available for Mac OS, Windows OS, and Linux
OS (RHEL, Debian, and Ubuntu). In the examples within this book, the workstation
used will be Mac OS X, so the ChefDK version will be the Mac OS version.

Chapter 1

[3]

With the many choices available to use for your Chef Server mode, including Hosted
Chef Server, Private Chef Server, Open Source Chef Server, and Chef-Solo, it would
be difficult to show examples for each mode. Therefore, the majority of examples
you'll see in this book will be based on using the Hosted Chef Server mode. Later in
this chapter, I will briefly review the installation and setup of a Private Chef Server
onto an Ubuntu server, for readers who want to use Chef Server on-premise.

Which OS do I use for my workstation? Everyone has their own, nearly religious,
choice for the best workstation platform. However, it would make this book way too
long to provide examples for the major OSes alone. Therefore, to keep the focus on
Chef content and not on the differences between workstation implementations, I will
be using a Mac OS X (Yosemite version 10.10) workstation for the examples. I may
at times show additional examples on a Windows or Ubuntu workstation where the
differences are significant and worth the extra detail. And for the nodes used in the
examples, a variety of OSes will be represented in the hope of having some overlap
with the reader's real environment.

References
• IT infrastructure automation begins at https://www.chef.io/
• Additional opportunities to learn Chef can be found at https://learn.

chef.io/

Filling in the gaps in your Chef
knowledge base
First things first. Let's have a quick, high-level review of Chef. A Chef 101 class, if
you will. The plan here is to make sure that all readers are on the same page with
me so that the rest of the book will be easier to follow and benefit from. If you are
already a Chef ninja, you can probably skip right on past this section and start
exploring the ChefDK in the next section. Otherwise, let's audit our 101 class now.

Major pieces of a Chef puzzle
Chef is a ruby framework, and its main purpose is to facilitate the automation,
reuse, and documentation of server configurations. Chef allows you to treat
server configuration just like any other type of software code.

www.allitebooks.com

https://www.chef.io/
https://learn.chef.io/
https://learn.chef.io/
http://www.allitebooks.org

Setting Up a Development Environment on Your Workstation

[4]

There are three major components of this framework for almost all corporate-level
Chef deployments—the workstation, the Chef Server, and the nodes. Let's talk a little
about each of these components:

• Workstations: The Chef workstation is, as the name would suggest,
where the real "work" is done. This is where developers will create their
infrastructure code. It's also where they will test their creations. The
workstation is where developers will interact with their source code control
systems. It is where genius is born. It is where the "desired state" of nodes is
defined via code.

• Chef servers: The Chef server is a database-backed web API server with a
browsable user interface. It is like the matrix housing the hive mind of the
Chef universe. The "work" created in the workstation is uploaded into the
Chef server so that it can be used to automate the configuration of the many
nodes. It stands ready to provide the desired state information to the Chef
client on a node so that it can bring that node into alignment or convergence
with the desired state of configuration.

• Nodes: Nodes are the ultimate targets of the "work" that's been created
on the workstation and uploaded to the Chef server. A node is where the
automation occurs via the Chef client. Nodes are transformed into the
desired state configuration. Commonly, nodes are servers, either virtual or
physical, but a node can be anything that needs to be configured, such as a
Docker container, or a network device such as a switch or router. Every node
has a unique name, such as the FQDN of a server.

The Chef client
The Chef client is the tool that is deployed to all nodes and used to configure
or reconfigure the node to its desired state. The Chef client is what executes the
automation. It is the magician that, through the magic of Chef, transforms an
ordinary server into the desired state node that the developer defined back on
his workstation.

Chapter 1

[5]

The Ohai Chef tool
Ohai is the tool that gathers information about a node. Information such as platform
details, operating system data, and processor information is made available to the
Chef client so that the latter can have the know-how to bring the node to the desired
state. Ohai is executed at the beginning of a Chef client run to gather the state of
the node. At the end of a Chef client run, all of the data gathered by Ohai (usually)
is shared as node data with the Chef server, and the shared data is available for
searches done against the Chef server. Ohai can be extended via plugins, and we'll
take a look at that in a later chapter.

Recipes and cookbooks
Recipes are the building blocks used to define the desired states. Recipes are files of
ruby code that define the commands to be run on nodes. They are like blueprints
used to "build" a node. Recipes are collections of Chef resources. We will explain
more about Chef resources shortly.

Cookbooks are collections of related recipes, templates, files, and custom resources.
They provide organization and versioning for recipes. Each unique version of a
cookbook represents unique sets of functionality, such as bug fixes or added features.

Cookbooks define a scenario, such as everything needed to install and configure
apt-docker or Sublime text, and they contain all the elements needed to support the
defined scenario.

Recipes and cookbooks provide modularity and let you easily reuse code.

Chef run lists
A "run list" is, as the name would suggest, a list of, and the sequence for, the recipes,
cookbooks, and policies (spoiler alert!) to be applied to a node. A run list contains
all of the information required to configure a node to a desired state. That is, a Chef
run list describes the desired final state of the node. It is important to note that, if
the node's state already matches what the resources in the run list describe, then no
action will be taken to change the node's state.

Setting Up a Development Environment on Your Workstation

[6]

Chef roles
Roles are functional groupings of recipes and cookbooks used to describe the
full blueprint needed for a node to become everything it is intended to be. Roles
are reusable configurations, and they can be applied to multiple nodes to make
functionally identical servers, such as a farm of web servers.

Chef resources
Chef resources are statements of configuration policy. They are defined in recipes
and take actions through the Chef client to put the node into the desired state. Chef
resources have some types: Package, Template, Service, and so on. They have a name
and parameters. Also, Chef resources can send notifications to other resources.

Chef resources define what we want to happen to a node. They don't say how to
do it. The how to do it is left to the providers which are platform-specific. That is to
say, the way you install a package will be different depending on the OS, and the
provider determines the correct way to do it—the "how". The Chef resource simply
defines the "what," such as "install ntp".

• Package: This contains software or applications, such as apache, ntp, and
cron, and the action to be performed on that software or application, such
as "install".

• Template: These are files with place-holders for attributes that are
transformed into configuration files for package installation and execution.

• Service: This is the installed executable of the package and the actions that
the executable can perform, such as start, stop, or restart. Service also defines
whether the software or application is launched at node startup.

More things to consider
Apart from the three types of Chef resources we saw earlier, let's look at some other
important aspects of recipes and cookbooks.

• Attributes: These are variables used in recipes and templates. Generally
speaking, a recipe will represent the pattern used in configuration. The
attributes provide the specific details for the recipes. For example, the
recipe will say "configure the port" and the attribute will say "which port?".
Attributes can be provided in a large variety of places, such as cookbooks,
roles, and environments. As such, there is a necessity for an order of
precedence. There is a complete description of attribute precedence on the
chef.io site. You can find it at https://docs.chef.io/attributes.html.

https://docs.chef.io/attributes.html

Chapter 1

[7]

• Order matters: When creating recipes, the resources need to be listed in
order. First, the package, then the template, and finally the service; when
creating run lists, the order of policies, roles, cookbooks, and recipes is the
order in which they are evaluated. Any recipe that appears in a run list (or
as a dependency of a policy, role, or cookbook) more than once will only be
evaluated the first time.

• Convergence and idempotence: A Chef client run converges the node into
the desired state. What this means is that only things that do not equal the
desired state on the node are modified during the Chef client run. If, for
example, the recipe says that the desired state of the node is to have the ntp
demon running, the ntp package is already installed on the node, and the ntp
demon is already running, then Chef client will take no action to install or
start ntp.

Chef resources are idempotent. That is, applying them more than once results in the
same outcome every time. If no inputs related to the resource have changed, then
applying that resource won't change anything after the first application. In fact, if
none of the inputs have changed, the corresponding commands don't even get run.

This is actually one of the most important concepts and features of Chef.

Data bags
Data bags are containers for information that is not tied to a specific node. Data bags
are the global variables of a Chef server. They can be used in recipes and can be
searched like node data via the Chef server. One common use case for data bags is
for user and group information. Items in a data bag can be encrypted. This allows
secret information to be stored in them, for example, passwords.

Environments
Environments allow you to define specific cookbook versions that are applied to
a given set of nodes. They permit you to model the stages of your infrastructure
workflow, that is, Development, Test, Stage, and Production. By identifying
specific nodes as Development, and other nodes as Production, for example,
you can apply different versions of your cookbooks to the nodes based on their
environment membership.

Setting Up a Development Environment on Your Workstation

[8]

The Chef supermarket
The supermarket is a site that provides shared cookbooks. There is a public
supermarket that contains community-created and -maintained cookbooks. This site
is hosted by Chef and is available at https://supermarket.chef.io. In addition
to the public supermarket, anyone can create and manage a private supermarket
that can host cookbooks intended for the private consumption of you and
your organization.

It is always best practice to do a thorough code review of any cookbooks
obtained from the public community supermarket before using them in
your production environments.

Chef Development Kit
The ChefDK contains everything you need to start working with Chef on a
workstation. It provides all the tools that a developer needs to create and modify
cookbooks and upload them to a Chef server. We are going to go into a lot of detail
regarding the ChefDK later in this chapter.

You can jump ahead to the ChefDK sections now, or you can read on and learn how
to set up your very own private Chef server.

Setting up an on-premise (private) Chef
Server
Many companies will have strong reasons to keep their infrastructure configuration
data within the firewalls of their datacenters, and Chef server has a mode for that. It's
called on-premise or private Chef server.

There are some real benefits to using an in-house solution, including control. With a
private installation, you have full control of your system, and for some that reason
is enough. But there are additional considerations such as performance. Since a
private Chef server will likely be physically closer to the node's network, Chef client
runs will be faster. For example, if Chef is used in a load-based on-demand server
deployment solution, then the extra speed the private Chef server can provide when
converging your new Nodes can make all the difference in meeting the load demand
in time.

With all the reasons to use an on-premise Chef server, there is a downside: you
are responsible for the deployment, configuration, and maintenance of your
Chef servers.

https://supermarket.chef.io

Chapter 1

[9]

To get you started, let's take a look at the deployment and initial configuration of a
standalone private Chef server now. We'll go through the steps to get a new Chef
server set up on an Ubuntu 14.04 server.

The first step is downloading the required Chef server installer version. Visit the
Chef server page at this link https://downloads.chef.io/chef-server/ to find
and download the version you will use for your installation.

Next, you will want to transfer the downloaded installer package to your soon to be
Chef server.

Once the installer is available on your server, you will want to install the package.
The command to do this is:

sudo dpkg -i chef-server-core_12.2.0-1_amd64.deb

Once the Chef server package has been installed onto your server, the first thing to
do is start the Chef server services. The command to do this is:

sudo chef-server-ctl reconfigure

The Chef server startup does a lot of work and as such you will see a lot of activity
displayed as the setup progresses. When the startup command finally finishes
successfully (a few minutes later; you might want to get a cup of coffee), the result
will be a running Chef server.

https://downloads.chef.io/chef-server/

Setting Up a Development Environment on Your Workstation

[10]

Do you get an error in the nginx.rb file during the reconfigure?
The private Chef server has a dependency on the nginx cookbook, and
in some cases you may experience an error when this dependency is
resolved. The error may look something like this:
"common_name nil currently does not overwrite the value of common_
name."
What this error message is probably indicating is that there is no valid
host entry in the /etc/hosts file. You should check that file, and if there
isn't a valid entry, create one.

Are we there yet? Well, we do have a Chef server up-and-running, but it is not
much good to us yet. If you browse to your new Chef server, you will see something
like this:

That is a good start, but there is still work to be done. Next up is creating your first
Chef user on the Chef server with the user-create command. That user will be the
initial Chef admin for the server. The format of the user-create command is:

sudo chef-server-ctl user-create user_name first_name last_name email
password --filename FILE_NAME

Here is an example of what that command might look like:

sudo chef-server-ctl user-create earlwaud Earl Waud earl@sandiegoearl.com
MyPassword99 --filename /home/earlwaud/earlwaud.pem

Chapter 1

[11]

Here is what it looks like when you issue the command on your Chef server
(along with the user-show command):

The filename parameter used in the user-create command provides the location at
which to store the user's private key. The contents of this key file should be securely
stored so that they can be provided to the user whose account has been created.

The next step is to create the first organization in your Chef server. The format of that
command is as follows:

sudo chef-server-ctl org-create short_name "full_organization_name"
--association_user user_name --filename ORGANIZATION-validator.pem

Here is the command I used to create the organization on my example Chef server:

sudo chef-server-ctl org-create sdearl "San Diego Earl" --association_
user earlwaud --filename /home/earlwaud/sdearl-validator.pem

You can see that, in the example, the key file was saved at /home/earlwaud/sdearl-
validator.pem.

If the filename parameter is not provided in the org-create command, the validator
key will be displayed to stdout.

Either way, it is vital that the key information be captured and securely stored since
it is not saved in the Chef server database and cannot be recovered if lost. The only
option available when an organization's private key is completely lost is to reset the
validation key.

Setting Up a Development Environment on Your Workstation

[12]

Next, we need to install a package that will allow management of the Chef server via
a web interface. The package is named opscode-manage. The command to install the
package is:

sudo chef-server-ctl install opscode-manage

Now we need to restart the Chef server services by issuing the reconfigure
command again:

sudo chef-server-ctl reconfigure

And finally, we need to start the opscode-manage services. This is done by issuing
the command:

sudo opscode-manage-ctl reconfigure

If everything went as planned, you should now be able to browse to the new Chef
server, and log in with your newly created admin user. Of course, there is still more
work to do, such as integrating your new Chef server with your corporate domain to
allow domain user access control. Still, this is a good start, right?

References
• Explore the Chef community Supermarket at this link:

https://supermarket.chef.io

• Download Chef server from https://downloads.chef.io/chef-server/

https://supermarket.chef.io
https://downloads.chef.io/chef-server/

Chapter 1

[13]

• Learn more about installing Chef server at https://docs.chef.io/
release/server_12-2/install_server.html

• Learn more about attributes and attribute precedence at https://docs.
chef.io/attributes.html

• Read more about the "common name" error at https://github.com/chef-
cookbooks/chef-server/issues/108

Exploring the Chef Development Kit
The Chef Development Kit, or ChefDK, is the omnibus installer used to set up a
Chef development environment on a workstation. It includes the Chef client itself,
an early version of the new Chef tool, an embedded version of Ruby, RubyGems,
OpenSSL, and command-line utilities such as Knife, Ohai, and Chef Zero. It also
includes community tools, such as Test Kitchen, Foodcritic, Berkshelf, Chef Vault,
Rubocop, and ChefSpec.

Included in the ChefDK installer is the new Chef command-line tool. It is the new
go-to way to generate cookbooks, recipes, templates, custom resources, and more.
It also downloads RubyGems for the chef-client environment, and it will verify the
ChefDK installation and configuration.

The Chef client is a key component of everything Chef. The Chef client is not only
used on nodes for converging configuration data, but it is also used on workstations
and the Chef server.

The Chef Knife
Knife is a command-line tool that supplies the interface between your chef-repo
and your Chef server. It allows developers to upload their work on the workstation
to the Chef server, from where it can be distributed to the nodes during their Chef
client runs. Knife also allows you to obtain cookbooks from the supermarket, and it
provides a mechanism to bootstrap nodes.

Community tools
Some of the most commonly used community tools are installed as part of the
ChefDK. Test Kitchen is installed, so you can test the results of your recipes and
cookbook development on deployed test nodes. Berkshelf is installed to manage
your cookbooks and their dependencies. Foodcritic is included in the ChefDK
installation. Foodcritic will help you check your cookbooks for common errors
and omissions.

https://docs.chef.io/release/server_12-2/install_server.html
https://docs.chef.io/release/server_12-2/install_server.html
https://docs.chef.io/attributes.html
https://docs.chef.io/attributes.html
https://github.com/chef-cookbooks/chef-server/issues/108
https://github.com/chef-cookbooks/chef-server/issues/108

Setting Up a Development Environment on Your Workstation

[14]

Another valuable community tool installed with the ChefDK is Rubocop. You can
use it to give you cookbooks some "style" and make sure that you're following the
same conventions used by other developers in your organization. There is also
ChefSpec, which is based on the ruby tool RSpec. ChefSpec will allow you to unit-
test your cookbooks and recipes. We will have to exercise a lot of these community
tools in later chapters, so please stay tuned.

References
• Learn more about the Chef Development Kit at https://docs.chef.io/

chef_dk.html

• Learn more about Berkshelf in this video-recorded interview at https://
www.chef.io/blog/chefconf-talks/the-berkshelf-way-jamie-winsor/

• Learn more about Foodcritic at this link http://www.foodcritic.io/
• Learn about the Knife command line tool at this link: https://docs.chef.

io/knife.html

• And download an excellent printable Knife reference guide at this link
https://github.com/chef/quick-reference/blob/master/qr_knife_
web.png

Installing Chef Development Kit
In this section, you will learn how easy it is to get your workstation up and running
using the Chef Development Kit. First, you will download ChefDK. Next, you will
install ChefDK; and finally, you will validate the installation with some quick version
checks.

Downloading ChefDK
You are going to download Chef Development Kit by opening your favorite
browser and visiting the Chef.io ChefDK downloads page found at this URL:
https://downloads.chef.io/chef-dk/.

1. Select the platform you are going to install the Chef Development Kit on
and then click on the download button that corresponds to the OS Version
you are using. In my case, I am selecting the Mac OS X 10.10 version of the
ChefDK installer.

2. As expected, clicking on the download button will transfer the ChefDK
installer to your local workstation.

https://docs.chef.io/chef_dk.html
https://docs.chef.io/chef_dk.html
https://www.chef.io/blog/chefconf-talks/the-berkshelf-way-jamie-winsor/
https://www.chef.io/blog/chefconf-talks/the-berkshelf-way-jamie-winsor/
http://www.foodcritic.io/
https://docs.chef.io/knife.html
https://docs.chef.io/knife.html
https://github.com/chef/quick-reference/blob/master/qr_knife_web.png
https://github.com/chef/quick-reference/blob/master/qr_knife_web.png
https://downloads.chef.io/chef-dk/

Chapter 1

[15]

3. Expand the Downloads folder and click on the ChefDK disk image file to
mount the image on your desktop.

Installing ChefDK
To initiate the installer for the Chef Development Kit, double-click on the mounted
ChefDK image icon.

1. The ChefDK image will open, exposing the chefdk package. Double-click on
the package icon to begin the installation process.

2. You will see the Chef Development Kit installer introduction screen. Click on
the Continue button to advance the installation.

3. You will be presented with license information for the Chef Development
Kit, which is the commonly used Apache License. I would suggest that you
read through the entire license document and perhaps even consult with
your lawyer to make sure that you are able to accept this license agreement.
Then, click on the Continue button to advance the installation.

4. Once you've carefully read and understood the license agreement, click on
the Agree button to advance the installation.

5. At this point, you can begin to customize the installation. The options
available here are to install for all users or only the currently logged in user.
In the example, I am installing for all users of this computer (even though I
am the only user).

6. Next, you can choose the install location. For consistency with regard to the
examples in this book, I have left the install location at the default. Click on
the Install button when you are ready to begin the actual installation.

7. As always, you will have to provide credentials to allow the system to install
new software. Enter your username and password and click on the Install
Software button to continue.

The installer will now go about its business of installing the super fantastic Chef
Development Kit, including the corresponding versions of community tools such
as Test Kitchen, Food Critic, and Rubocup.

Finally, you will get the installation summary screen congratulating you on your
successful installation and keen DevOps Kung-Fu.

Setting Up a Development Environment on Your Workstation

[16]

The captain has turned off the seat-belt sign, so it is now OK to unmount the ChefDK
image, and move about the installation.

Installing ChefDK on Ubuntu
It is even easier to install the ChefDK on an Ubuntu system. Once you
have downloaded the installer, you simply issue a dpkg command as
follows:
sudo dpkg -i ~/Downloads/chefdk_0.12.0-1_amd64.deb

That's it. You should see the "Thank you for installing Chef Development
Kit" message.

Verifying ChefDK
The ChefDK installer is a superhero for DevOps aficionados, saving them time
and energy by installing the major necessities for a Chef workstation. Still, let's
double-check the work done by the installer to make sure that we are really
ready to go.

First, let's just try a simple command to see if things look right. Open a terminal
window and issue the command chef --help. If the install was successful, you
should see information about using Chef.

Next, let's use the new Chef tool to do a deeper validation of the install. Issue the
following command in your terminal session:

chef verify

You should see the Chef tool validate each of the major packages installed during the
ChefDK installation. Note that, depending on the state of your (OS X) workstation
at the time you run this command, you may receive an error message regarding the
need to install the command-line tools for gcc. It may look something like this:

Chapter 1

[17]

If you get a message such as the preceding one, go ahead and install the command-
line tools and then run the chef verify command again. This time, you should get
a clean run of the command, and the output should be very similar to that shown in
the preceding screenshot.

Now, at this point, things are looking pretty good, and you should be feeling fine.
So, let's do one last validation check just to be 100% certain. Let's check the versions
of some of the expected tools installed via the ChefDK installer.

Issue the following commands:

chef --version

ohai --version

foodcritic --version

rubocop --version

rspec --version

Setting Up a Development Environment on Your Workstation

[18]

Your results should look something like this:

Hey wait… what happened to rspec? The Version 0.12 ChefDK installer does
not seem to have successfully installed rspec, which is a requirement for the
Chef-specific tool ChefSpec. That's not good. What went wrong? Everything
seemed to have been installed based on the verify command we just used.
What gives?

Well, rspec is installed, there is just one more step that we need to do. By the way,
I think this is something that should be done by the ChefDK installer, but for
whatever reason it's not, and it falls on our shoulders to handle it.

So what do we have to do? We need to set up the environment used in our terminal
window for our Chef workstation development. How do we do that?

Fortunately, Chef has a command for that. It is the chef shell-init command.
You can run this command interactively every time you open a new terminal
window, or you can update your profile so that it is run automatically. I would
recommend updating your profile, but let me show you both ways so you can
make the call.

To make the interactive change, you would issue a command in the
following format:

eval "$(chef shell-init SHELL_NAME)"

Chapter 1

[19]

The actual call will be the following for the bash shell:

eval "$(chef shell-init bash)"

If you want to make the change more permanent, then you need to issue a command
in the following format:

echo 'eval "$(chef shell-init SHELL_NAME)"' >> ~/.YOUR_SHELL_RC_FILE

If you are using Mac, the commands will be:

echo 'eval "$(chef shell-init bash)"' >> ~/.bash_profile

source ~/.bash_profile

If you are using Ubuntu, the commands will be:

echo 'eval "$(chef shell-init bash)"' >> ~/.bashrc

source ~/.bashrc

This echo command will add the eval command to your bash startup so that each
run of your bash session will already have the desired environment ready to go for
your Chef development work.

It should look something like this:

By the way, when you install the ChefDK onto a Windows system, the installation
creates a Chef Development Kit icon on your desktop. When you execute from icon,
a Chef-specific PowerShell session is launched. It will automatically run the chef
shell-init command and set up the full environment needed for Chef. So there is
no need to do this last step on a Windows workstation.

Setting Up a Development Environment on Your Workstation

[20]

Chef Development Kit on a Windows workstation
When you launch Chef Development Kit from your Windows
workstation, remember to right-click the icon and choose "Run as
administrator." This allows PowerShell to use the correct permissions to
set up the Chef environment.

Well, there you have it: the successful installation of the ChefDK. Your workstation is
ready to do some real Chef work now. You should feel pretty awesome!

References
• Visit this link to download the installer for the ChefDK or Chef server at

https://www.chef.io/chef/get-chef/.
• Here is Chef.io's information on installing the Chef Development Kit:

https://docs.chef.io/install_dk.html. The Chef DK change log can be
found at https://github.com/chef/chef-dk/blob/master/CHANGELOG.
md.

Setting up a standard Chef repo
Ever Chef workstation has at least one Chef repository. The Chef repo is where all
working copies of the cookbooks, recipes, templates, and so on live. It is where you
do your development work. It is from where you check your work into your source
code repository, and it is from where you upload your work to the Chef server.

Let's take a look at how to set up a new empty Chef repo on your new ChefDK-
installed workstation.

https://www.chef.io/chef/get-chef/
https://docs.chef.io/install_dk.html
https://github.com/chef/chef-dk/blob/master/CHANGELOG.md
https://github.com/chef/chef-dk/blob/master/CHANGELOG.md

Chapter 1

[21]

Using the Chef tool for Chef repo
Another benefit of the new Chef command-line tool is that it will create a standard
chef repo for you. You no longer need to download or clone a starter repo from
GitHub. You can use the chef generate command to create your new repo.
Let's take a look at the chef generate repo command's help:

chef generate repo -help

Based on the description of the default values for the chef generate repo command,
we can simply issue the following command on our workstation:

chef generate repo ~/chef-repo

That was easy! So what do we get? Well, let's have a look:

tree -a chef-repo
chef-repo
├── .chef-repo.txt
├── .git
│ ├── HEAD
│ ├── branches
│ ├── config
│ ├── description
│ ├── hooks
│ │ ├── applypatch-msg.sample
│ │ ├── commit-msg.sample
│ │ ├── post-update.sample
│ │ ├── pre-applypatch.sample
│ │ ├── pre-commit.sample
│ │ ├── pre-push.sample
│ │ ├── pre-rebase.sample
│ │ ├── prepare-commit-msg.sample
│ │ └── update.sample
│ ├── info
│ │ └── exclude
│ ├── objects
│ │ ├── info
│ │ └── pack
│ └── refs
│ ├── heads
│ └── tags
├── .gitignore

Setting Up a Development Environment on Your Workstation

[22]

├── LICENSE
├── README.md
├── chefignore
├── cookbooks
│ ├── README.md
│ └── example
│ ├── README.md
│ ├── attributes
│ │ └── default.rb
│ ├── metadata.rb
│ └── recipes
│ └── default.rb
├── data_bags
│ ├── README.md
│ └── example
│ └── example_item.json
├── environments
│ ├── README.md
│ └── example.json
└── roles
 ├── README.md
 └── example.json

This list of files looks pretty good but, as you may have noted, an essential folder
is missing: the .chef folder, which needs to contain the private key files and the
knife.rb file, used to communicate with the Chef server. Let's take a look at creating
or obtaining these files. One way is to use the starter kit. It is an OK way if this is a
new Chef server. But, if it's not, be sure to read the following Starter Kit info; it could
save your job!

The repo starter kit
You still need the .chef files for your new workstation to securely communicate
with your Chef server. These files are your user private key file, the organization's
validator private key file, and the knife.rb file. These files need to be placed in a
.chef folder in your chef-repo.

When setting up a new organization in your Chef server, there is an easy way to get
the files: with the repo starter kit.

Warning!!! Only download the starter kit if you are the Chef server admin and
are the first (or only) person setting up your repo for a brand new organization.
Currently, the act of downloading the starter kit will reset both your user private
key and the organization validator key.

Chapter 1

[23]

Let me say this again. Downloading the Starter Kit will reset the private
key values for both your user and your organization.

Downloading the starter kit on a mature organization will essentially break
the Internet.

With this warning, if you are still going to use the starter kit, proceed at your
own risk.

To get the starter kit, you will want to browse to your Chef server and log in. Once
there, click on Administration and then select your Organization. Now click on
Starter Kit and you will see the Download Starter Kit button. When you click the
button, you will get the warning shown earlier. Click on the Proceed button to
transfer a zip archive to your workstation, then unzip it into your chef-repo folder,
and you're done.

Files for your .chef folder – a safer way
Really, the only files you need from the starter kit are the .chef folder files:

• The organization's validator private key file
• Your user private key file
• A knife.rb file

The organization's key file can be provided by an administrator of the Chef server.
The organization's validator key is generated when the organization is created.
When the command-line tool is used to create the org, the location of the validator
key file may be provided in the command. Otherwise, it will be displayed to stdout.
The Chef server admin will have captured the validator key info and will be able to
provide it to you now.

www.allitebooks.com

http://www.allitebooks.org

Setting Up a Development Environment on Your Workstation

[24]

The user private key is much like the organization's private key in that it is created
when the user is created and must be captured and securely stored at that time as it
is not saved to the Chef server database. A user can reset their private key through
the use of the Reset Key feature available when viewing the user profile on a Chef
server. A user resetting their private key will have no negative impact on other users
or the organization, so it is relatively safe to do.

Finally, you need the knife.rb file. This file is the easy one. It can be downloaded
from the Chef server any time by logging in and browsing to the organization. From
there, you can click on any of the Generate Knife Config links in the UI. This will
create the knife.rb file and download it to your workstation. Another option is to
use the knife configure command. This will prompt you through the process of
creating your knife.rb file.

Put all three of these files into the .chef folder of your new chef-repo. Make sure
that you save the two key files using the names in the knife.rb file (or conversely,
update the contents of the knife.rb file to match the file names used to save your
key files).

Growing your own tree
OS X doesn't come with a version of the tree command installed so, if you like that
tool and use a Mac, I've found a clever way to have your cake and eat it too by
creating your own tree script. This script was used to create the "tree" output shown
in the preceding screenshot. This idea was shared by users Ahmed Masud and
JakeGould on http://superuser.com. It goes like this:

http://superuser.com

Chapter 1

[25]

Self-signed certificates
When you are using an On Premise Chef server, you need to do one more thing
to finish setting up your chef-repo. If the Chef server you are connecting to has a
self-signed certificate, then you will need to add the server's certificate to your
chef-repo to allow your workstation to trust your Chef server. An easy way to
check if this applies to you is to run the ssl check command. It goes like this:

knife ssl check

Setting Up a Development Environment on Your Workstation

[26]

If the Chef Server you are communicating with has a self-signed certificate, you will
see a message like this:

As you can see in the error message generated by the ssl check command, the Chef
server's certificate needs to be obtained and placed into a trusted_certs folder in
your chef-repo/.chef folder. Again, you will need to contact your Chef server
administrator to get a copy of the certificate file. Once you have it, just place it in the
trusted certs folder; when you run your ssl check command again, you should
get a message back that says something like:

knife ssl check

Connecting to host chefserver:443

Successfully verified certificates from 'chefserver'

With that successful knife command completed, you have verified that you have
successfully set up your chef-repo and are ready to start creating your infrastructure
as code.

Chapter 1

[27]

References
• Learn about setting up your Chef repo at the link https://docs.chef.io/

chef_repo.html.
• Learn more about setting up a chef-repo at the link https://learn.chef.

io/manage-a-web-app/ubuntu/get-set-up/.
• OS X doesn't come with a version of tree installed so, if you like that tool and

use Mac, there is a clever way to have your cake and eat it too by creating
your own a tree script. You can find an example shared by Ahmed Masud
and JakeGould at the link http://superuser.com/questions/359723/
mac-os-x-equivalent-of-the-ubuntu-tree-command.

• Keep up-to-date on the Starter Kit resetting the organization's validator key
at the link https://feedback.chef.io/forums/301644-chef-product-
feedback/suggestions/9618459-starter-kit-should-not-reset-
validator-and-user-ke.

What else do you need?
You will need just a few more things to round out your workstation toolbox. First,
you will want to make sure that you have your favorite text editor and have it
configured to integrate with Chef. Next, since you are creating infrastructure code,
you really must use a source code control system. I don't want to give anything away
on that topic yet but … Git Git Git! Then, you will want to add a hypervisor to your
workstation to deploy test nodes. Finally, you'll want to add Vagrant to manage
those test nodes. So, let's take a look at these finishing touches for your workstation.

Using your favorite editor
Everyone has their favorite text editor. For a lot of people that editor is Sublime Text,
but there are many other choices available. A lot of old schoolers still prefer to use
a flavor of the vi editor. Many OS X users swear by Mac-only TextMate. And now
there's a new kid on the block from the makers of GitHub: Atom 1.0. Sublime Text
and Atom are both available for multiple platforms, so whatever OS is your poison,
they have a version for you.

I would recommend that, if you don't already use an editor that has a
"project space" feature,you switch to one that does. This feature allows
you to quickly and easily switch to and edit different files within a project
without the delay of the "save current then open new" workflow needed
in an editor that does not have the project space feature.

https://docs.chef.io/chef_repo.html
https://docs.chef.io/chef_repo.html
https://learn.chef.io/manage-a-web-app/ubuntu/get-set-up/
https://learn.chef.io/manage-a-web-app/ubuntu/get-set-up/
http://superuser.com/questions/359723/mac-os-x-equivalent-of-the-ubuntu-tree-command
http://superuser.com/questions/359723/mac-os-x-equivalent-of-the-ubuntu-tree-command
https://feedback.chef.io/forums/301644-chef-product-feedback/suggestions/9618459-starter-kit-should-not-reset-validator-and-user-ke
https://feedback.chef.io/forums/301644-chef-product-feedback/suggestions/9618459-starter-kit-should-not-reset-validator-and-user-ke
https://feedback.chef.io/forums/301644-chef-product-feedback/suggestions/9618459-starter-kit-should-not-reset-validator-and-user-ke

Setting Up a Development Environment on Your Workstation

[28]

The project space feature is one of the many reasons I usually recommend Sublime
Text, but this feature is also present in other editors such as the new Atom 1.0.

To keep things current, I will use the Atom 1.0 editor in the remainder of this
book's examples.

Once you have decided on the editor you plan to use for your Chef workstation and
have that editor installed and working, there is one more step. You will need to set
the configuration to allow you to integrate your editor with the Chef command-line
tools. The best way to do that is to edit your .chef/knife.rb file and add a line to
set the editor you want to use with your knife commands. (You could also add an
export EDITOR= command to your shell's .bashrc or .bash_profile file.)

Here are some sample knife.rb entries:

Sublime Text:

knife[:editor] = '/Applications/Sublime\ Text.app/Contents/
SharedSupport/bin/subl -w'

Atom:

knife[:editor] = '/Applications/Atom.app/Contents/MacOS/Atom -w'

On Mac, the Atom editor has a built-in feature to create symbolic links in the /usr/
local/bin folder. With the Atom editor running, open the Atom menu and select
Install Shell Commands from the submenu. This will create two new links for you.
If you do this before updating your knife.rb file, the knife[:editor] entry simply
becomes this:

knife[:editor] = 'atom -w'

Chapter 1

[29]

When you're using a Windows OS for your workstation, you will have to take
greater care in formatting your knife[:editor] line to escape the slash characters
in the path. A convenient way to do that is to use single quotes around the full
value and use double quotes for the path. For Sublime Text, it might look something
like this:

knife[:editor] = '"C:\Program Files\Sublime Text 2\sublime_text.exe"
--wait'

You can test your editor setting by issuing a knife command that requires using the
editor. For example, try the command:

knife client create editor-tester

If your editor integration is configured correctly, you will see your editor open up
and show you some code. Save the code and exit the editor, and you should see the
private key value print out. (This key is not important at this time because we are
just testing the editor, and will immediately delete the client.)

If your editor opens, you are done. If you get an error that says Please set EDITOR
environment variable, then your knife[:editor] value is incorrect. There is probably a
typo in the path or some other error. Double-check the value and try again until you
successfully launch the editor with your knife client create command.

Once you have validated the integration with your editor, you can delete the test
client with the following command:

knife client delete editor-tester

Now you are ready to edit your infrastructure code! When you are creating amazing
infrastructure code, you are going to want to make sure that it gets preserved and to
ensure that happens you going to want to use a source control tool. Say hello to my
little friend, Git.

Version control systems
Git, initially designed and developed by Linus Torvalds for Linux kernel
development back in 2005, is now the most widely used version control system for
developers everywhere. It's the number-one choice due to its speed, data integrity,
and its distributed workflow model. Git is certainly the primary choice as the version
control system to be used when developing infrastructure code with Chef.

Setting Up a Development Environment on Your Workstation

[30]

I will be emphasizing the use of Git throughout the examples in the rest of the book.
Git is included with Mac OS X, but it will need to be installed on Windows and
Ubuntu workstations. I recommend you to use the GitHub desktop installer where
available (Windows and OS X) and allow it to deploy the command-line tools as
part of the installation. This installation of Git is easy and will be left to the reader
to execute.

Virtualization hypervisor
There are several virtualization choices you can use for your Chef testing.
The overall goal is to have a system that you can use to deploy a temporary Chef
node to test your infrastructure code. One of the best ways to accomplish this is to
install a local virtualization tool on your workstation. Among the choices for a local
hypervisor are:

• VirtualBox
• Docker
• VMware Workstation or Fusion

One of the best choices for this kind of Chef testing is VirtualBox. The reasons
include its functionality, its ease of use, and its free price tag. Either of the VMware
solutions will cost you not only for the hypervisor layer, but also for the integration
plugins we'll use with Vagrant to manage our test nodes.

Visit the VirtualBox downloads page at https://www.virtualbox.org/wiki/
Downloads to download the installer. Once downloaded, it is an easy matter to
install it, so I'll leave that to the reader to take care of.

Vagrant
Last, but certainly not least, is Vagrant. Vagrant is another item I consider to be one
of the key pieces of the Chef testing puzzle. It is the "glue" between Chef and the
hypervisor that deploys the test nodes during testing. You will want to download
and install Vagrant on your workstation. You can find the downloaders at
https://www.vagrantup.com/downloads.html. Vagrant is also an easy
install, so I'll leave that to the reader to handle.

I'll go into using Vagrant with VitualBox (and Docker) in some detail in a
later chapter.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html

Chapter 1

[31]

References
• You can download Sublime Text 2 from http://www.sublimetext.com/
• If you want to try the long-running beta of Sublime Text 3, it can be found at

http://www.sublimetext.com/3

• If you are looking to try Atom 1.0, you can get it at https://atom.io/
• The OS X editor, TextMate, can be had at https://macromates.com
• Learn more about GitHub at https://github.com/
• Learn about and download VirtualBox from https://www.virtualbox.

org/

• Learn more about Docker at https://www.docker.com/
• To get VMware Workstation go to https://www.vmware.com/products/

workstation

• Or for Mac OS X, get VMware Fusion at https://www.vmware.com/
products/fusion

What is chef-apply?
One often overlooked tool that is installed with the ChefDK is chef-apply. This
tool basically allows you to execute chef to converge a single recipe on your local
machine. There is no Chef server involved. Everything is local.

Note that chef-apply is not a tool for the deployment of production nodes. It's just a
quick and easy way to use Chef to configure your local system.

Why is that useful?
One use case for chef-apply is to learn what a recipe does. You can use chef-apply
to run a recipe in a "test only" mode by using the -W or --why-run parameter. This
will converge the recipe, showing you everything that would happen with the recipe
without making actual changes to your system.

You can also execute some one-liner scripts. You can easily use chef-apply in a
scripting-like manner to install software. For example, if you need to use Git on
your system and you find it's not installed. Just issue the command:

sudo chef-apply -e "package 'git'"

http://www.sublimetext.com/
http://www.sublimetext.com/3
https://atom.io/
https://macromates.com
https://github.com/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.docker.com/
https://www.vmware.com/products/workstation
https://www.vmware.com/products/workstation
https://www.vmware.com/products/fusion
https://www.vmware.com/products/fusion

Setting Up a Development Environment on Your Workstation

[32]

This will check to see if Git is currently installed. If it is, then the command will just
inform you that that is the case and exit. If Git is not installed, then it will go about
using the correct installer (aka Provider) to obtain and install the package.

Testing this on my Ubuntu workstation, you can see that Git was not installed
initially. Then, by using the chef-apply command, the git package is installed.
Then to confirm that nothing happens if you try to use chef-apply to install a
package that is already installed, I ran the same chef-apply again to show
what happens:

How about creating a "workstation" recipe to set up all the "missing" items from
a new ChefDK workstations setup? You create the recipe that defines the state of
having your editor installed and integrated with Chef, defines the state of having
git installed, and defines the state of having your custom OS X "tree" script created
in /usr/local/bin. You create this recipe once, and you (and anyone in your
organization) can quickly complete their workstation setup by using chef-apply
with your workstation recipe.

References
• The link to get the details of an interesting use case for chef-apply posted

by Chris Doherty on chef.io is https://www.chef.io/blog/2015/01/16/
convert-your-bash-scripts-with-chef-apply/.

• The link to the chef.io documentation on chef-apply is https://docs.chef.
io/ctl_chef_apply.html.

https://www.chef.io/blog/2015/01/16/convert-your-bash-scripts-with-chef-apply/
https://www.chef.io/blog/2015/01/16/convert-your-bash-scripts-with-chef-apply/
https://docs.chef.io/ctl_chef_apply.html
https://docs.chef.io/ctl_chef_apply.html

Chapter 1

[33]

Summary
In this chapter, we've taken a quick stroll down memory lane and reviewed some
Chef basics so that those concepts are fresh and easy to mentally access during the
rest of the journey through this book. Next up, we took a deeper dive into the Chef
Development Kit and learned how to download, install, and configure it for our Chef
workstation. We've exposed the small gap in the ChefDK installer when used on Mac
OS X and Linux systems, which is the setup of the shell environment and learned
the simple way (provided by the new Chef tool) to fill that gap. We also explored
the setup and configuration of your very own on-premise Chef server, including
creating your admin user and the first organization. After this, we took a look at
setting up our Chef repo, giving a BIG WARNING about the starter kit. And then
we considered what was still missing from a well-rounded Chef workstation. That
will be our favorite editor, a version control system, a virtualization layer to simplify
our testing flow, and Vagrant to glue things together. Finally, as an added bonus, we
talked about the ChefDK tool chef-apply.

Wow! That was a lot of ground for a single chapter, but I hope that you were able to
stick with me till the end. This chapter is a great foundation for the Chef knowledge
transfer coming your way in the chapters ahead.

So without any further delay, let's charge ahead into Chapter 2, Knife Tooling and
Plugins, and carve things up with some Swiss Army knife skills.

[35]

Knife Tooling and Plugins
In this chapter, we're going to cover the primary command-line tool in the Chef
repertoire. Basic Knife functionality is detailed, as well as the use of community
plugins and instructions on how to create your own new plugins.

"Knife skills are the gateway drug to good cooking" – Chef Todd Mohr, Certified
Culinary Educator (CCE)

In this chapter, the reader will learn to wield Knife and extend its capabilities as
needed. Here is the list of topics that will be covered in this chapter:

• Knife help
• Knife subcommands
• Knife to editor integration
• Knife Windows plugin
• Knife EC2 plugin
• Creating new Knife plugins

Knife help
Let's begin with the basics. As with all command-line tools in the Chef toolbox, knife
has a rich help system built in. Issuing the command knife --help will display the
basic knife syntax help contents. When you issue the knife --help command, you
get a list of all the optional parameters, plus a list of all the knife subcommands. In
addition, each of the subcommands has its own help content. For example, ask for
help with the subcommand node, and you will get the syntax for the full set of node-
specific subcommands and options.

Knife Tooling and Plugins

[36]

Here is what it will look like when you issue the knife node --help command:

You can see from this help text that, using the knife node command, you can create
nodes, delete nodes, list nodes, show the details of nodes, and much more. Each
subcommand available to the knife command has a similar set of rich help details
available on demand.

Most of the actions associated with the subcommands have additional syntax
help details available, and they can be accessed in the same fashion as earlier. For
example, issuing the command knife node show --help will give you all of the
options available for the action "show" of the subcommand node.

The frequency of use of the knife subcommands vary greatly, and having this level
of syntax help at your fingertips is very valuable. When you are trying to use a
subcommand that you don't regularly execute, remembering to check the syntax
and options using this help system will help you avoid frustration and mistakes.

However, if you need more than syntax help on a specific subcommand, you can
invoke the full help text for that command by using the full knife help command.
For example, entering the command knife help node will present you with the
full knife-node help man page. This content will detail all of the options available
to the subcommand, in this case, the node subcommand. It includes a description of
the function of the subcommand, the syntax, the options, and example uses of the
subcommand—in short, a rich man page for the subcommand.

Chapter 2

[37]

References
There is an excellent help reference available on GitHub that takes the built-in
syntax help information to the next level. You can download and print out your
own reference guide from https://github.com/chef/quick-reference.

Knife subcommands
Now that we have some help skills under our belt, let's take a look at some of the
other knife subcommands in greater detail. Using the various knife subcommands,
we will manage nodes, cookbooks, recipes, roles, and environments. We will also
use knife to do searching of our Chef server data. All of this and more is available
using Knife.

We will have a look at some of the most used commands, but also dig deeper into
some of the less frequently used commands to better understand what they can do
for us.

Knife Bootstrap
You use the knife bootstrap subcommand to install the chef-client on systems so that
it can be used on those systems to communicate with the Chef server. The bootstrap
process also registers the system with the Chef server to facilitate communication
between the two. In addition to installing the chef-client and registering it with the
Chef server, bootstrapping also creates a Node object on the Chef server that is used
to manage the configuration of the bootstrapped system.

The primary syntax of the bootstrap command is knife bootstrap <IP | FQDN>. For
example, to bootstrap a server by IP address, you would use a command like knife
bootstrap 192.168.10.44. This instructs knife to install the chef-client on the
system with the IP address 192.168.10.44, register that system with the Chef server,
and create a node representing the system on the Chef server.

To obtain the Chef server's SSL certificate, you can use the knife
subcommand ssl_fetch to download the on-premise Chef server's SSL
certificate and install it in your trusted certs folder. This certificate is
used in the knife bootstrap subcommands.

https://github.com/chef/quick-reference

Knife Tooling and Plugins

[38]

Here is an example knife bootstrap command that I used to bootstrap an opscode-
centos-7.1 vagrant node running on VirtualBox:

knife bootstrap 127.0.0.1 --node-name vagrant-node01 --ssh-port 2222
--ssh-user vagrant --identity-file ~/chef-repo/.vagrant/machines/default/
virtualbox/private_key --sudo

Here is the result of running that bootstrap command:

The optional parameters that I used in this command are:

• --node-name vagrant: Create a Node object on the Chef server with the
name "vagrant".

• --ssh-port 2222: Use port "2222" when connecting to the system being
bootstrapped.

Chapter 2

[39]

• --ssh-user vagrant: When ssh'ing to the system, log in with username
"vagrant".

• --identity-file ~/chef-repo/: Use key-based authentication and use the
listed key file "~/chef-repo/…".

• --sudo: Execute the commands on the bootstrapped system using sudo.

There is one significant option that I did not include in the example shown earlier.
Did you notice its absence? That optional parameter is --run-list <RUN_LIST>.
The run list option allows you to specify a comma-separated list of policies, roles,
and recipes, that are used in the initial chef-client run.

Another common optional parameter used is --environment. This parameter can be
used to associate an environment with the system/node, so that only policies, roles,
and recipes that are part of the associated environment are used when configuring
the server.

Knife Node
The knife node subcommand is used to query and set the various configuration
values for a node. One of the most common uses of this subcommand is to get a
list of nodes known to your Chef server. The command to do this is knife node
list. This will return the complete list of nodes on your Chef server. The node
subcommand can also be used to create, delete, or edit node objects on your
Chef server.

Make sure that you have set up your editor to work with Knife, as shown
in the Knife to editor integration section of this chapter.

Other uses for the node subcommand include adding or removing a node's run list.
And of course, there is the knife node show <node name> command to let you see
the current configuration settings stored in the Node object on the Chef server.

Knife Diff
Another useful knife subcommand is knife diff. Knife diff is used to compare the
files in your current Workstation repo with what is stored on the Chef server. You
can compare files before you upload them to the Chef server. You can also use knife
diff to compare the repo files with versions used for different environments. You
will find this subcommand to be very valuable when modifying resources, such as
cookbooks and recipes, to compare your changes to the state of the resource on the
Chef server. It provides an excellent sanity check on your work.

Knife Tooling and Plugins

[40]

Remember that you can use knife diff to compare individual files,
like a single recipe file, or you can use it to compare folders, like an
entire cookbook.

Knife Exec
Exec is a knife subcommand that lets you run Ruby scripts against the Chef server
in the context of a fully configured chef-client. What that means is that you can
do things to the Chef server via Ruby scripts that would be much more difficult
or impossible to accomplish using other subcommands. For example, if you
want to move nodes from one environment to another, you can issue a knife exec
subcommand. Here is what a knife exec command to move all nodes in the "_default"
environment into the "development" environment:

knife exec -E 'nodes.transform("chef_environment:_default") { |n| n.chef_
environment("development") }'

This is something that you would not need to do very often, but having the ability
to do it with a single knife exec command would still save you a lot of time. Another
example use case would be adding a role or recipe to a subset of your nodes, such as
all the nodes in production. If, for example, you want to add the recipe "base" to all
of your nodes in production, you could issue a knife exec command like this:

knife exec -E 'nodes.transform("chef_environment:production") {|n| puts
n.run_list << "recipe[base]"; n.save }'

Executing this command will update the run_list for all of the nodes in the
production environment adding the recipe "base".

Issuing the command without the n.save as a test run
If you issue the preceding command without including the
n.save first, then you can see the effects of the knife exec
command without applying the changes to the server. If
everything looks right, run it again with the n.save to apply the
changes. This lets you try test your commands before they make
changes to your environment.

Issue the following command first to test the results:

knife exec -E 'nodes.transform("chef_environment:production") {|n| puts
n.run_list << "recipe[base]"}'

Chapter 2

[41]

Then, issue the command again with n.save to apply the changes:

knife exec -E 'nodes.transform("chef_environment:production") {|n| puts
n.run_list << "recipe[base]"; n.save }'

Knife SSH
The knife ssh subcommand lets you run ssh commands on all or a subset of the
nodes known to your Chef Server. The nodes that will have the ssh command
invoked on them are determined by a search or a query against the Chef Server's
nodes. For example, if you want to run the uptime command on all of the nodes in
the production environment, you can issue a command like this one:

knife ssh "chef_environment:production" "uptime" -p 2222 -x earl -P
MyPW99

The search used is chef_environment:production. The command being issued on
the matching nodes is "uptime". In this case, the port being used for ssh is 2222, and
the credentials are self-explanatory.

Another good use of the knife ssh subcommand is to combine it with the knife
exec subcommand. This combination lets you do some very powerful things. For
example, you can check the status of the ntpd service on all your production nodes
with a command something like this:

knife ssh -p 2222 -x earl -P MyPW99 -m "`knife exec -E "search(:node,
'chef_environment:production').each {|host| puts host[:hostname] }" |
xargs`" '/etc/init.d/ntpd status'

Here, we are searching for all of the nodes in the production environment, and for
each node, we are sshing into the system and issuing the command /etc/init.d/
ntpd status.

Using a combination of the knife ssh subcommand and the knife exec command is an
excellent and easy way to create ad hoc reports.

Knife Search
The knife search subcommand is one of the most used commands in the knife set.
knife search lets you do queries against all of the data stored in the Chef server.
Since the chef-client run sends system data collected via the Ohai command to the
Chef server, there is a wealth of search criteria that is available to search against. The
knife search subcommand uses two main parts: an index and a query. A knife search
is executed against one of the indexes on the Chef server. The possible indexes are
"client," "environment," "node," or "role."

Knife Tooling and Plugins

[42]

Note that if you do not specify an index, knife search uses the default of "node".
The other half of the knife search subcommand is the query. The query is the filter
applied to the index to limit the results of the search. In addition, there are several
optional parameters that modify the data returned from the search. For example, you
can use the optional parameter of "-i" to instruct knife search to return only the ID
of the objects in the index that match the filter used. Here, a sample command will
better explain. If you want to see a list of all the nodes in your Chef server, you can
issue the following command:

knife search node '*:*' -i

Here, the knife search command is using the index of "node" and the query or filter is
:, and the -i says to just give me the index IDs for the matching objects. The index
IDs for the node index are the node names.

Remember that the default index is "node", so the same results will be delivered if
you issue the command like this:

knife search '*:*' -i

Without the optional -i, the knife search command will return the Node object
details, and there are varying levels of detail you can have the search command
return. Here are the options:

• The -i parameter: just the node name, no object details
• No parameter: short list of the object's details
• The -m parameter: medium list of the object's details
• The -l parameter: full list of all of the object's details

You can also specify specific attributes of the node object, that is, the IP Address,
with the -a parameter. The following command will return the IP address of all the
nodes in the Chef server:

knife search node '*:*' -a server_ip

This is only the tip of the knife search iceberg. In these basic examples, we are
essentially ignoring the query part of the search command by using a "*:*". Say that
you need to see a list of all of the Nodes that are in the 192.168.112.x subnet. You can
issue the following knife search command to create the list:

knife search node 'server_ip*:192.168.112.*' -i

Truly, the only limit to what you can search for is your imagination. The knife search
command is one of the most powerful commands in the knife set.

Chapter 2

[43]

References
• You can read more about the knife command and all of its subcommands on

the Chef site at https://docs.chef.io/knife.html.
• The link to the Chef documentation on knife search is at https://docs.

chef.io/knife_search.html.
• The link to the Chef bootstrapping data is at https://docs.chef.io/

knife_bootstrap.html.

Knife to editor integration
Many of the interactive knife subcommands use an editor to create or modify the
infrastructure code. The proper integration of your favorite editor is important to a
fluid knife experience.

Using the "wait" option
The key to successfully using your editor with knife is to configure it to use the
editor's "wait" option. The wait option tells your editor to launch, open the specified
file or content, but not return or exit from the launch command until the editor is
exited.

In your standard modern OS, launching most applications from the command line
will invoke the application and then immediately return control to the command-line
shell. The command, in this case, invokes the editor; actually, it executes completely
by launching the editor. This is the behavior that needs to be avoided when using
the knife commands. Depending on the editor of choice and OS, we may need to
configure the "invoke the editor" command so that it does not return as soon as the
editor is invoked, but instead waits until the editor is closed before it returns control
to the command-line shell. Each editor has its own way of indicating a desire to wait
for exit before returning control. The best way to configure your editor to use its
wait option is to add the parameter to the editor line in your ~/.chef/knife.rb file.
When needed, the setting will take the following format:

knife[:editor] = '<path to your editor> <wait option>'

https://docs.chef.io/knife.html
https://docs.chef.io/knife_search.html
https://docs.chef.io/knife_search.html
https://docs.chef.io/knife_bootstrap.html
https://docs.chef.io/knife_bootstrap.html

Knife Tooling and Plugins

[44]

Does my editor require the wait option?
As you might expect, every editor has its own unique features and behaviors. Two
common editors, Sublime Text and Atom, both require a wait parameter to allow
them to be used successfully with knife. Both use a "-w" for the wait parameter. If
you use VI or TextMate, then no wait option is necessary, as both editors, when
invoked, hold control until the editor is exited.

Use Sublime Text for your interactive knife commands
When I issue a knife command, I want my editor to open
quickly and to contain just the contents related to the issued
knife command. Sublime Text does this way better than any
other editor I've tried so far.

On my OS X system, I use Sublime Text as my editor of choice for the interactive
knife commands. The knife.rb file entry that I use looks as follows:

knife[:editor] = '/Applications/Sublime\ Text.app/Contents/
SharedSupport/bin/subl -w'

Moreover, even though I am using Atom as my current code editor of choice,
I still prefer to use Sublime Text with my interactive knife commands. This is
because I have not found a way to have Atom launch the knife command into a
new window that does not also open tabs for the files that were open the last time
Atom was launched. In addition to this being an undesirable behavior for me, it also
slows down the launch of the editor. I have tried all the various combinations of the
command-line parameters available for Atom, including --wait, --foreground, and
--new-window, without finding a combination that works for me. Your mileage
may vary.

References
• You can get the Sublime Text editor from http://www.sublimetext.com/2.
• You can get the Atom editor from https://atom.io/.
• You can get TextMate (Mac OS only) from https://macromates.com/

download.

http://www.sublimetext.com/2
https://atom.io/
https://macromates.com/download
https://macromates.com/download

Chapter 2

[45]

Knife Windows plugin
Now, let's take a look at a couple of community knife plugins. We'll start with
the Windows plugin. We use the knife Windows plugin when we are working
with nodes running the Windows operating system. First, you will need to install
the knife Windows plugin and then we will review how to use it to bootstrap a
Windows node. Then, we will use some of the search features to see some of the
Windows-specific node data.

Installing the Knife Windows plugin
Like many things related to the new ChefDK, installing Chef-specific gems is pretty
straightforward and easy. In this case, we want to install the knife-windows gem.
The command to do this is:

chef gem install knife-windows

That is all it takes. You are now ready to use the knife Windows plugin.

Bootstrapping a Windows node
Now that we have the knife Windows plugin installed, we can bootstrap our
Windows nodes. There are two methods to interface with a Windows system when
bootstrapping a node using the knife Windows plugin. One uses ssh just as though
the node is a Linux system. The other is using the WinRM interface. The benefit of
using the WinRM protocol is that it allows the use of standard Windows objects to be
used, such as batch scripts and PowerShell scripts. Here is an example of using the
WinRM method to bootstrap a node named "node03":

knife bootstrap windows winrm node03 -p 55985 -x Administrator -P MyPW99
-r 'recipe[winbase]'

In the preceding command, you can see that we are using the Windows plugin, and
the WinRM protocol to bootstrap a node named "node03." We are specifying port
55985 and using the Administrator credentials.

Remember to use a local admin account
Although a node can be connected to an Active Directory domain, it is
still necessary to bootstrap the node using a local administrator account.

Knife Tooling and Plugins

[46]

The last part of the bootstrap command was to tell the node to use the recipe
"winbase" in the first chef-client run.

Searching for Windows node data
Now that we know how to bootstrap some Windows nodes, let's take a look at
some knife searches that use some Windows-specific attributes. Starting off with
something easy, say we need to create a list of all the windows nodes in production:

knife search node 'chef_environment:production && os:windows' -i

But now we've been asked to provide a list of all the production Windows nodes
that have not been properly joined to the domain (that is, they still have a domain
of WORKGROUP). This one is a bit tricky because the knife search command does
not handle nested attributes all that well, and the attribute we need is very nested
(kernel.cs_info.domain). We can see the values with a command like this:

knife search node 'chef_environment:production && os:windows' -a kernel.
cs_info.domain

This will provide a list of all production windows nodes, but we will still have to
manually filter that list down to those nodes that aren't joined to the domain.

If we try to use a command that includes a nested attribute, the search will find zero
matches. That is, a command like this will not work for us:

knife search node 'chef_environment:production && os:windows && kernel.
cs_info.domain:WORKGROUP' -i

So, what can we do? It's the knife exec subcommand that comes to the rescue. We can
use nested attributes in the find of a knife exec command, something like this:

knife exec -E 'nodes.find("chef_environment:production && os:windows &&
kernel.cs_info.domain:WORKGROUP"){|n| puts "#{n.name}"}'

Here, we are using all three conditions in nodes.find to provide a list of nodes that
are in the production environment, have windows as the OS, and have the (nested)
attribute kernel.cs_info.domain equal to WORKGROUP. Using this type of "search"
will net us the list of nodes we desire. Hurray!

References
• The knife Windows plugin on the Chef site is discussed in detail at

https://docs.chef.io/plugin_knife_windows.html.
• The GitHub repo for the knife Windows plugin is discussed in detail at

https://github.com/chef/knife-windows.

https://docs.chef.io/plugin_knife_windows.html
https://github.com/chef/knife-windows

Chapter 2

[47]

Knife EC2 plugin
Let's continue our community plugin exploration with the knife EC2 plugin. This
plugin is used to integrate knife with Amazon cloud instances that allow you to
create and manage instances from the command line.

Installing the Knife EC2 plugin
Much like installing the knife Windows plugin, the installation process for the knife
EC2 plugin is super easy. The Chef command-line tool comes to our aid once again.
Simply issue the following command:

chef gem install knife-ec2

Your installation will be done in a few seconds. You might note that there is a
dependent gem installed; it is the fog-aws gem, which the EC2 plugin uses.

Unlike the knife Windows plugin, after the plugin is installed, there is still more
to configure to be able to use it. The knife EC2 plugin requires some specific data
related to your Amazon account. There are several ways to make the Amazon
data available to the EC2 plugin. The data can be used via environment variables,
or as knife.rb configuration settings, or by creating an AWS credential file and
referring to it in your knife.rb file. This is the method I would recommend because
sometimes, the knife.rb file is uploaded to your git repo and that would put your
AWS access key ID and secret access key at risk. However, if you still want to add
the Amazon data to your knife.rb file, it should be added in this format:

knife[:aws_access_key_id] = "Your AWS Access Key ID"
knife[:aws_secret_access_key] = "Your AWS Secret Access Key"

If, instead, you want to use the safer AWS credential file method, decide on or create
a location to store the credential file, and create a new file entering in the credential
data in the format shown later. Note that you do not enclose your ID or Key in any
kind of quotes like you would if you are adding them directly to the knife.rb file:

[default]
aws_access_key_id = Your AWS Access Key ID
aws_secret_access_key = Your AWS Secret Access Key

Now update your knife.rb file to point to the credential file, by adding a line
as follows:

knife[:aws_credential_file] = "/path/to/credentials/file"

Knife Tooling and Plugins

[48]

Okay, now you are ready to use the knife EC2 plugin. If you already have some EC2
instances running, go ahead and test your new plugin by listing them out. You can
issue a command like this:

knife ec2 server list -r us-west-2

The -r option tells the EC2 plugin what region you are accessing.

Create a "default" region by adding it to your knife.rb file.
If you want to save yourself the extra typing needed to add the -r
<region> to all of your EC2 plugin commands, you can add an entry
into your knife.rb file to specify a "default" region. The entry will look as
follows:

knife[:region] = "us-west-2"

With a default region defined in your knife.rb file, you can skip the -r
parameter and your knife ec2 plugin will use the region specified in the
knife.rb file.
If you need to temporarily access a different region, you can still override
the default region by using the -r <some other region> parameter
again.

Creating an EC2 instance
Using the Knife EC2 command to create a new EC2 instance is somewhat
complicated. A "simple" version of the command might look something like this:

knife ec2 server create --node-name ec2-node08 \

 --groups=launch-wizard-1 \

 --region=us-west-2 \

 --availability-zone=us-west-2a \

 --image=ami-5189a661 \

 --server-connect-attribute=public_ip_address \

 --flavor=t2.micro \

 --ssh-user=ubuntu \

 --ssh-key=my_chef_service \

 --identity-file=/Users/earlwaud/.aws/my_chef_service.pem \

 --run-list=recipe['base']

Chapter 2

[49]

There is a lot going on there, so let's go over each part of the command:

• knife ec2 server create: This is the syntax of the create command
• --node-name ec2-node08: Name to give the new instance and the

Chef node
• --groups=launch-wizard-1: Use the pre-existing security group named

launch-wizard-1
• --region=us-west-2: Selects the region to create instance into
• --availability-zone=us-west-2a: The AZ to use
• --image=ami-5189a661: The specific AMI image to deploy
• --server-connect-attribute=public_ip_address: Use the public IP

for ssh
• --flavor=t2.micro: The size of the image to deploy
• --ssh-user=ubuntu: The user to use in ssh commands
• --ssh-key=my_chef_service: The user access key name
• --identity-file=/Users/earlwaud/.aws/my_chef_service.pem: This is

a key file
• --run-list=recipe['base']: The initial run list for the new node

When you run the command, you will see that the knife ec2 server create command
details the progression of the instance creation plus the node bootstrap process.
That's right, the create command also bootstraps the node and converges the
specified run list. Pretty handy, right?

In addition to listing the actions done to create the new instance, the server create
command also provides the data needed to access the new instance, including DNS
name and both the public and private IP addresses.

So what about existing EC2 instances? You can bootstrap an existing instance pretty
much the same way you would bootstrap any other server. Let's take a look.

Bootstrapping an existing EC2 instance
To bootstrap an existing EC2 instance, you will issue a command much like the one
used to bootstrap any other server. It might look something like this:

knife bootstrap 54.213.235.40 \

 --node-name my_old_ec2_node \

 --ssh-user ubuntu \

 --identity-file /Users/earlwaud/.aws/my_chef_service.pem \

 --sudo

Knife Tooling and Plugins

[50]

There is a significant consideration here. If your Chef server is an on-premise server,
you may not have access to it from your EC2 instance. This same consideration
applies to the knife ec2 server create command.

Deleting EC2 instances
Eventually, you are going to want to delete some instances. You can use the knife
EC2 plugin in order to handle this task. The command you use is knife ec2 server
delete --node-name <node-name> --purge. The --purge option tells knife that
you also want to remove the corresponding node and client from the Chef server.
Here is what deleting the instance we created earlier looks like:

References
• The link to the Chef knife EC2 plugin page is https://docs.chef.io/

plugin_knife_ec2.html.
• Another excellent reference can be found on the GitHub page for the knife

EC2 plugin at https://github.com/chef/knife-ec2.
• The link to the knife Cloud plugins at https://docs.chef.io/plugin_

knife.html.
• The GitHub knife EC2 plugin link is https://github.com/chef/knife-

ec2.
• There is an interesting blog post by Mark Birbeck on using the knife EC2

plugin to create and manage EC2 instances without a Chef server at http://
markbirbeck.com/2012/03/16/using-knife-to-launch-ec2-instances-
without-a-chef-server/.

https://docs.chef.io/plugin_knife_ec2.html
https://docs.chef.io/plugin_knife_ec2.html
https://github.com/chef/knife-ec2
https://docs.chef.io/plugin_knife.html
https://docs.chef.io/plugin_knife.html
 https://github.com/chef/knife-ec2
 https://github.com/chef/knife-ec2
 http://markbirbeck.com/2012/03/16/using-knife-to-launch-ec2-instances-without-a-chef-server/
 http://markbirbeck.com/2012/03/16/using-knife-to-launch-ec2-instances-without-a-chef-server/
 http://markbirbeck.com/2012/03/16/using-knife-to-launch-ec2-instances-without-a-chef-server/

Chapter 2

[51]

Creating new Knife plugins
Sometimes, you will be dealing with unique situations and need to create your own
knife plugin. In this section, we will review how that is accomplished.

The basic plugin file format
A custom knife plugin begins by creating a new plugin ruby file. The plugin file has
to have a specific format. That format, in its simplest form, looks like this:

require 'chef/knife'

module ModuleName
 class SubclassName < Chef::Knife

 deps do
 require 'chef/dependency'
 end

 banner 'knife subcommand argument VALUE (options)'

 option :name_of_option,
 :short => "-l VALUE",
 :long => "--long-option-name VALUE",
 :description => "The description for the option.",
 :proc => Proc.new { code_to_run }
 :boolean => true | false
 :default => default_value

 def run
 end
end

The essential sections of this file are:

• The required chef/knife directive provides the calls all knife plugins
inherit from

• ModuleName is the name space for our plugin
• SubClassName is important because it defines how the knife plugin

will be called
• The deps do block provides the list of module-specific dependencies
• The banner method call provides the header that is shown when the user

needs help

Knife Tooling and Plugins

[52]

• The option method call defines the optional parameters for your plugin
• The run definition is the method knife calls to execute our plugin

Once you have created the plugin's ruby file, you have the choice of saving the
file to one of two places. You can save it within your chef-repo, in a location like
~/chef-repo/.chef/plugins/knife/shinnynewplugin.rb. Otherwise, you can
save the file in a location outside of any chef-repo, which would be like ~/.chef/
plugins/knife/shinnynewplugin.rb. This second option, outside of any chef-
repo, is where I would recommend placing the file. Remember that the file name
must have the .rb extension.

Example – A simpler EC2 Create Server plugin
If you are like me and don't want to type in all those parameter names and values
every time you create new EC2 instances, then this example is for you. We're going
to create a shortcut plugin that allows us to create EC2 instances using a predefined
set of parameters, so that we don't have to do all that typing every time we want
to spin up another instance. Of course, this is an exaggerated example, and if you
were going to create such a shortcut plugin, you would use the knife.rb file to hold
the predefined parameters so that it would not require a code change to update a
parameter value. Hmmmm…. Anyway, here is the example code:

require 'chef/knife'

module EasyCreate
 class EasyCreate < Chef::Knife
 deps do
 end

 banner 'knife easy create NODENAME'

 def run
 puts "node-name #{name_args.first}"

 cmd = "knife ec2 server create \
 --node-name #{name_args.first} \
 --groups=launch-wizard-1 \
 --region=us-west-2 \
 --availability-zone=us-west-2a \
 --image=ami-5189a661 \
 --server-connect-attribute=public_ip_address \
 --flavor=t2.micro \
 --ssh-user=ubuntu \
 --ssh-key=my_chef_service \

Chapter 2

[53]

 --identity-file=/Users/earlwaud/.aws/my_chef_service.pem\
 --run-list=recipe['base']"

 system(cmd)
 end
 end
end

Now when you want to create a new EC2 instance, you can issue a command such as
the following:

knife easy create ec2-node10

References
For the complete custom knife plugins documentation, go to https://docs.chef.
io/plugin_knife_custom.html.

Summary
In this chapter, we've seen how to quickly verify the syntax of a knife subcommand
or to review at length the full wealth of the help system contents. We have looked
at some of the most often used knife subcommands as well as a few that may be
generally overlooked. We also took a deep dive into the knife search subcommand.
Then, we shifted gears to explore some existing community knife plugins—one for
Windows and and one for EC2. Finally, we cut our way through the exciting topic
of creating our own knife plugins. Now, with our newly sharpened knife skills, let's
begin to explore the management of your infrastructure code with the use of roles,
environments, and the new and exciting feature that is policies, in the next chapter.

https://docs.chef.io/plugin_knife_custom.html
https://docs.chef.io/plugin_knife_custom.html

[55]

Leveraging Roles,
Environments, and Policies

In this chapter, the reader will learn the power of using roles and to follow the best
practices to manage large-scale environments by leveraging roles, environments,
organizations, and policies.

"My doctor told me I had to stop throwing intimate dinners for four unless there
are three other people." – Orson Welles

Here is a list of the topics covered in this chapter:

• Using Chef roles
• Using Chef environments
• Using Chef organizations
• Understanding nested roles
• Learning precedence hierarchy
• Exploring policies

Using Chef roles
Roles provide a way of looking at our infrastructure code as a representation of the
functions performed by the servers we associate with them. Said another way, a
"web server" role is created and assigned to a server that performs the function of a
web server.

Leveraging Roles, Environments, and Policies

[56]

The benefit here is functional consistency. Whether your goal is to be able to
reproduce a server in the event of failure or upgrade, or to deploy multiple identical
servers to load balance a function, using a role will allow you to achieve that
functional consistency.

A role's definition can be anywhere between very general, such as "Base" role, to very
specific, such as "App-A Inventory Backup PostgreSQL DB Server". It is a common
practice to use a role to group functionality that goes together, like all the recipes that
should be run on every node grouped in a "Base" role.

Sometimes, servers will be assigned a single role, such as "UI Server". Other times,
a server will be assigned more than one role. For example, when you want to deploy
a server as a 3-tier all in one, that server might have the roles of "UI Server", "DB
Server", and "App Server" assigned to it. This distinction can be one of environment.
For example, in a development environment, you may deploy a server as an all in
one, with all three roles assigned to it, but in production, you deploy each role to a
separate server or multiple servers, as load necessitates.

How to create a role
There are two ways to create a new Chef role. The first way to create a role is to use
a Knife create command that will allow you to edit a role template and then transfer
that edited template to the Chef server directly, creating the role (without creating a
saved copy of the role on your workstation). The format of the create command is:

knife role create <role_name> [options]

For example to create a "base" role using default options, you would issue a
command like this:

knife role create base

That command will launch your editor with a template that contains the various
parts of a role, in JSON data format. Here is an example of using the Knife command
to create the "base" role:

Chapter 3

[57]

Of course, you will need to populate the various parts of the role, such as the
description and the run_list. Once you have added the content desired for your role,
you will save and then exit the editor. This will allow Knife to upload your new role
directly to the Chef server. Similarly, you can edit an existing role by using the Knife
command in this format:

knife role edit <role_name> [options]

For example, to edit the "base" role using default options, you can issue the
following command:

knife role edit base

Leveraging Roles, Environments, and Policies

[58]

When creating or editing roles this way, you will get a confirmation message that
indicates success, such as "Created role[base]" or "Saved role[base]".

The second way, which is the way I would recommend, is to first create a role file
on your workstation and then use Knife to upload the role from that file to the Chef
server. A role file can be created in one of two formats. One is a JSON data file that
is in the same form as the template used in the knife role create command. The
other is to create the role file as a ruby file that contains domain-specific language.
Either way, the file contains the definition of the role it represents. The standard
practice is to have the name of the role file equal to the name of the role and to save
the role file in the repo/roles folder. For example, a ruby-formatted role file for the
"Web Server" role would be saved as ~/chef-repo/roles/webserver.rb.

This is the best practice way to create roles because you can save the role
file in your git repo, like the other aspects of your infrastructure code, and
capture the history of the changes made to the role over time.

Once the role file is created, it is then uploaded to the Chef server with an upload
command that takes the following form:

knife role from file <path to the role file> [options]

For example, to update the webserver role, you would have a command like this:

knife role from file roles/webserver.rb

When all goes well, you will get a message back that says "Updated Role
webserver!".

Using per-environment run-lists in roles
You may have noted that the section for the env_run_lists in the JSON data role
template is shown in the previous section. That section allows you to create different
run lists that get used when the role is applied to the various environments in your
organization, such as development and production. Per environment run lists can
provide a powerful way to deploy server functionality that differs between the
stages of the development process.

Chapter 3

[59]

Per environment run lists in roles can be defined for any number of environments,
but there can only be one run list per environment. When a role that has env_run_
lists defined is applied to an environment not defined in the role, the default run list,
defined in the run_list section of the role, is applied to the server. Similarly, when an
environment defined in the env_run_list section has an empty run list, the default
run list defined in run_list will be used. Here is a sample role that uses env_run_lists:

name 'big_app'
description 'Big App server role'
run_list 'role[base]'
env_run_lists(
 'production' => ['role[base] \
 recipe[app_insall] \
 recipe[prod_monitoring]'],
 'development' => ['role[base] \
 recipe[mysql] \
 recipe[app_install] \
 recipe[load_test_data]'],
 'stage' => [],
 '_default' => []
)
override_attributes(
 'base_name' => 'primary',
 'user_name' => 'prod_svc_acct'
)

You can see that if the sample role is applied to a server in either the production
or the development environments, there are specifically defined run lists that will
be used. It is also anticipated that if this role is applied to a server in the stage
environment or the _default environment, the default run_list will be used. Also,
note that if the role is applied to a server in an environment not listed in the role
file, say the "test" environment, then the default run_list will be used. This is exactly
what happens when there are no values in the role file for the env_run_lists, that is,
all servers that have this role get the default run_list regardless of what environment
they are in.

Leveraging Roles, Environments, and Policies

[60]

Using nested roles
Having recipes grouped together into a role is very useful, and extending this idea
by adding or nesting roles into the run_list of other roles makes for a powerful way
to organize and define the functionality of a role or node. For example, if you have
created a base role that includes all the recipes that should be applied to every node,
it is much easier to add all of that functionality to your web server role by including
the base role in its run_list before the other recipes that define a webserver. The
resulting run_list is also much easier to understand. For example, a simple web
server role might look like this:

name 'webserver'
description 'Simple Web Server'
run_list 'role[base] recipe[apache]'
default_attributes(
 'apache' => {
 'sites' => {
 'customers' => {
 'port' => 8080
 },
 'admins' => {
 'port' => 8081
 }
 }
 }
)

It is very clear that the web server role will always have the recipes that are part of
the base role applied to the server before the apache recipe is applied.

The way this works is that during a chef-client run, the run_list is expanded. In the
case of the preceding web server role, the recipes (and possibly roles) found in the
"base" role will be evaluated first. You can think of it like this: if the base role has
two recipes, say, recipe[motd] and recipe[ntp], then the resulting expanded run_list
would look like this:

run_list 'recipe[motd] recipe[ntp] recipe[apache]'

It is important to remember that everything is expanded in the order it
is listed. If the base role had another role in between the motd and ntp
recipes, the resulting expanded run_list would have the recipes from
that role in between the motd and ntp recipes.

Chapter 3

[61]

There are some important considerations here. The first is that during a
chef-client run, a recipe will only be applied to a server once, the first time it appears
in the expanded run_list. That is why the order in which roles are expanded is an
important consideration. Next, this order or sequence is important to the order of the
attributes. It contributes to the determination of attribute precedence. We will talk
more about the precedence hierarchy later in this chapter. Finally, you will want to
review the run_lists containing roles when we discuss policies, because currently,
policies don't support roles in the run_list.

There is a downside to roles
Roles provide a lot of benefits to our infrastructure code, and until recently, they were
the best way to encapsulate the cookbooks and related data into a single construct to
be applied to our servers to define their functional purpose. But they have a major
shortcoming. That shortcoming is the absence of any versioning capability.

What this means to you is that any changes to a role used in servers deployed to your
environment will always be applied to those servers during the next chef-client run.
There is no way to use a single role and define something like "use DB Server role
version 1.0 in production and DB Server role version 1.1 in development". When the
dev team updates the DB Server role for their ongoing development, that updated
role is now the de facto standard for DB servers across all servers that the role is
assigned to.

The Chef team knows that this is a shortcoming and has recently provided a
solution. That solution is policies, and we will explore policies later in this chapter.

References
• The Chef.io documentation for roles can be found at https://docs.chef.

io/roles.html.
• There is a nice tutorial on using roles and environments by Justin Ellingwood

that can be found at https://www.digitalocean.com/community/
tutorials/how-to-use-roles-and-environments-in-chef-to-control-
server-configurations.

https://docs.chef.io/roles.html
https://docs.chef.io/roles.html
https://www.digitalocean.com/community/tutorials/how-to-use-roles-and-environments-in-chef-to-control-server-configurations
https://www.digitalocean.com/community/tutorials/how-to-use-roles-and-environments-in-chef-to-control-server-configurations
https://www.digitalocean.com/community/tutorials/how-to-use-roles-and-environments-in-chef-to-control-server-configurations

Leveraging Roles, Environments, and Policies

[62]

Using Chef environments
If your code development cycle goes through phases, such as development, test,
stage, preproduction, and production, then you should also have servers that
represent those same phases of development. Environments allow us to reproduce
the workflow of the development life cycle by assigning servers to the different
phases of that life cycle. Environments offer a way to designate a server as being
within a specific part of the development process, such as test or production. Each
server can be in one and only one environment. Put another way, a server cannot
be in both development and production at the same time. The obvious benefit of
using environments is that changes made to one environment will not impact
other environments.

The _default environment
Every Chef server will have an environment created automatically when the server
is deployed. That environment is named "_default". It is a permanent environment
that cannot be renamed, modified, or deleted. Any node that is created on the Chef
server will automatically be assigned to the _default environment unless another
environment is specifically used.

Creating environments
The creation of an environment is done in much the same way as the creation of a
role. There are two methods when using Knife—creating the environment using a
knife environment create command—or creating an environment file in your
chef repo and then uploading that file to create the environment using the knife
environment from file command. Just like with roles, I recommend that you
always create environment files in your chef repo and then upload those files to the
Chef server to create the environment. This allows the environment to be checked
into your source code control system (that is, Git) and have a history of all the
changes made to the environment.

Again, like role files, the environment file can be created in one of two formats: either
the JSON data format, or the Ruby DSL format. Here is a sample environment file for
a development environment created using the Ruby format:

name 'test'
description 'The test environment for the bigapp project'
cookbook_versions(
 'bigapp' => '>= 2.1',
 'testdata' => '= 2.1.1'
)
override_attributes(

Chapter 3

[63]

 'bigapp' => {
 'listen' => ['8080', '4443']
 },
 'testdata' => {
 'testset' => 'customer'
 }
)

You create environment files in a folder named environments off your chef-repo
folder. For example, the test environment file would be saved to ~/chef-repo/
environments/test.rb. The best practice is to name the file using the name of the
environment. Once you've created the environment file, you would upload that file
to the Chef Server with a command in the following format:

knife environment from file <path to environment file> [options]

For example, to upload the test environment, you would use the following command:

knife environment from file environments/test.rb

A successful upload will result in a response such as Updated Environment test.
Note that changes that you make to the environment file are uploaded using the
same command used to create the environment, and the resulting success message
will also be the same.

Use the -a or --all parameter to upload all environments or roles
at once.
Both the Knife environment from a file and the knife role from a file can
be used to upload all of the environments or roles at once if you supply
a folder instead of a file name and use the -a or --all parameter. For
example, knife environment from file environments/ -a
would upload all environment files in the environments folder.

Specifying cookbook versions in
environments
Chef provides a method of specifying cookbook versions to be used within an
environment via the "cookbook" or "cookbook_versions" attributes. In the sample
shown in the previous section, you saw the use of the "cookbook_versions" attribute.
This attribute allows you to specify the version or versions of multiple cookbooks
that can be applied to nodes within the environment, in this case, the "bigapp" and
"testdata" cookbooks. You can specify the version of a single cookbook by using the
"cookbook" attribute instead of "cookbook_versions" (although a single cookbook
could also be specified using the "cookbook_versions" attribute).

Leveraging Roles, Environments, and Policies

[64]

The limits or constraints that you can specify for the cookbooks used in an
environment are the standard operators that you are probably already familiar with,
such as "=" (exactly this version), ">=" (this version or any greater version), "~>" (this
version or any greater version that does not exceed the specified version number
element), and others. If a version constraint is not specified for a cookbook in an
environment, it is assumed that any version of that cookbook is acceptable for nodes
within that environment.

References
• The Chef.io documentation for roles can be found at

https://docs.chef.io/environments.html.
• A complete description of the cookbook version constraints can be found at

https://docs.chef.io/cookbook_versions.html.

When you want to move nodes from one environment to another, you can use the
Knife Exec command. Read more about that in the Knife subcommands section
found in Chapter 2, Knife Tooling and Plugins.

Using Chef organizations
A single Chef Server can be configured to manage the infrastructure of multiple
organizations. For example, if your company has different business units that each
have their own application and infrastructure servers, they can all use the same Chef
server or set of Chef servers by defining unique organizations for each business
unit on those Chef servers. Organizations allow the siloing of your infrastructure
code, including the cookbooks, nodes, roles, environments, and so on. Said another
way, cookbooks, nodes, roles, and so on, are not shared across organizations.
A cookbook with the same name can exist in multiple organizations and have
completely different content in each organization. This is the mechanism that allows
for multitenancy on a Chef server. Each organization will have its own set of users. It
is possible for a user to have access to multiple organizations, but such a user would
have to be invited into each organization.

Creating organizations
An organization can be created on the Chef server via the chef-server-ctl
command, as shown in the Setting Up an On-premise Chef Server section of Chapter 1,
Setting Up a Development Environment on Your Workstation. For reference, the format
of that command goes like this:
chef-server-ctl org-create short_name "full_organization_name"
--association_user user_name --filename ORGANIZATION-validator.pem

https://docs.chef.io/environments.html
https://docs.chef.io/cookbook_versions.html

Chapter 3

[65]

The initial (default) organization will always be created with this command.
Additional organizations can be created using this command or through the Chef
UI when the Chef Management Console has been installed on the Chef server (also
shown in Chapter 1, Setting Up a Development Environment on Your Workstation).

Access control
Chef provides access control through a role-based system that uses organizations,
groups, and users. The organization is the top-level entity for controlling access. The
organization allows for access to the Chef server itself. Users need to be invited into
an organization, and they have to accept that invitation to access the Chef server
content belonging to that organization.

Each organization will contain a set of groups, some default, for example, "admins"
and "users," and optionally some custom groups. Groups control access to object
types and objects within an organization. Depending on the need, custom groups
can be created within an organization to further fine tune the access control within
that organization.

A default user is created during the initial setup of the Chef server, which is
automatically added to the admins group. In addition, the Chef server can have
any number of other users, all of which will belong to one or more organizations.

References
• The link to the Chef.io reference on organization and groups is

https://docs.chef.io/server_orgs.html.
• There is a Knife plugin that can be useful when it is necessary to work with

multiple organizations or multiple Chef servers. It is named Knife Block, and
you can find it at https://github.com/knife-block/knife-block.

• The information on the Chef Management Console is at https://docs.
chef.io/ctl_manage.html.

https://docs.chef.io/server_orgs.html
https://github.com/knife-block/knife-block
https://docs.chef.io/ctl_manage.html
https://docs.chef.io/ctl_manage.html

Leveraging Roles, Environments, and Policies

[66]

Learning the attribute precedence
hierarchy
With roles, environments, cookbooks, recipes, and so on, there are many places
that attributes can be defined. In addition, there are many types of attributes that
can be used. If, as a slight exaggeration, the same attribute is defined in all possible
resources, each with a different value, how do you know which value would be
applied when chef-client converges the node? Consider a more real-world example
if you use an application cookbook that has a default attribute defined for the install
directory, and you need that app to install into a different directory, what type of
attribute can you use, and where should you set it so that your value would be used
instead of the default? The answer to these questions is found in the precedence
hierarchy. The factors that determine precedence include the type of attribute, the
source of the attribute, and of course, the order evaluated. Let's take a closer look at
these factors now.

Understanding attribute precedence factors
There are six types of attributes. Each one represents a different level of precedence.
The six types, in order of precedence, are: "default", "force_default", "normal",
"override", "force_override", and "automatic."

When developing cookbooks, it is the best practice to always provide a default value
for the attributes defined in your cookbook. And it is the best practice to use the
type "default" when assigning those values. The reason you should use the "default"
attribute type is that "default" attributes are at the lowest level of precedence in the
hierarchy, and they are always reset at the start of a chef-client run. By using the
"default" type of attribute, you allow users of your cookbooks to supply role- and
environment-specific values for the attributes using the same "default" type and
still supersede your defaults with theirs. And when a developer decides to create
a wrapper cookbook, having your cookbook attributes defined with the "default"
type makes it easy for the developer to assign new attribute values that will be used
instead of yours.

Remember that the "default" attribute type is the best choice for
your cookbook's default attribute values.

Chapter 3

[67]

Again, the "default" attribute type is the type with the lowest level of precedence.
The attribute type that is the next level up in the precedence hierarchy is the
"force_default". When you use the attribute type force_default in your cookbooks,
you are stating that the attribute values set should take precedence over the "default"
attribute values set in any roles or environments.

Next up in the precedence hierarchy is the "normal" type of attribute, sometimes
referred to as the "set" type. Normal attribute values have a higher precedence than
both default and force_default attributes. In addition, the normal type attribute
values are preserved on the node between chef-client runs. This is unlike the
"default" type attributes, which are reset on every chef-client run.

The next higher level of attribute is the "override" attribute. While override attributes
can be set in roles or environments, typically if necessary, you will use override
attributes directly in a recipe. There is also a "force_override" attribute type that has
a higher level of precedence than an override attribute. A force_override attribute
would be used to make sure that the attribute value set in a cookbook was used
instead of any defined in a role or environment.

Finally, at the highest precedence level, we have the "automatic" type attributes.
The automatic type of attribute is set by Ohai on the node and always has the highest
level of precedence. Examples of automatic attributes would be things specific to the
node, like CPU speed or amount of RAM. Automatic attributes cannot be modified
during a chef-client run.

With all of these attribute types available, it can be challenging to know
which type to use. I have found that it is usually best to limit your use of
attribute types to the default type. There will be situations when you will
need to use the other types, but if most of the attribute values you create
are type default, you will be successful.

Attribute values can come from a variety of sources. These include nodes, cookbooks
(in attribute files), recipes, environments, and roles. These sources, combined with
the attribute types listed earlier, generate 15 possible levels of precedence.

Leveraging Roles, Environments, and Policies

[68]

Resulting precedence hierarchy
So what does all this mean? When chef-client converges the attributes in a run,
the attributes collected from all the various sources are evaluated to determine
which value is actually used when applying the recipes. Since there are 15 levels
of precedence, there is a mapping of those levels. Chef.io has provided a very nice
table to be able to understand the order of precedence. The higher the number in this
table, the higher the level of precedence. Said another way, if an attribute is assigned
a value in more than one place, the place with the highest number in this table is the
value that will be used:

Attribute Files Node/Recipe Environment Role
default 1 2 3 4

force_default 5 6
normal 7 8

override 9 10 12 11
force_override 13 14

automatic 15

Let's consider a specific example. You have a default.rb file in your apache
cookbook/attributes/ folder that contains the following default attribute values:

default['apache']['dir'] = '/etc/apache2'
default['apache']['listen_ports'] = ['80','443']

Your organization requires that all web servers get installed into /var/www folder
and that they use the ports 8080 and 4443 instead of the standard defaults.

Armed with the knowledge provided in the precedence table earlier, you can add
"default" type attributes to your web server role, as follows:

name 'webserver'
description 'webserver'
run_list 'role[base] recipe[apache]'
default_attributes(
 'apache' => {
 'dir' => '/var/www',
 'listen_ports' => %w(8080 4443)
 }
)

And know that your values will be used instead of the cookbook's defaults because
a "default" attribute type in a role has a higher level of precedence than the same
default type attributes defined in the cookbook's attributes file.

Chapter 3

[69]

Exploring policies
One of the best things about cookbooks is that they can be versioned. And as you
have learned, the best application of cookbooks is to combine them into roles.
Unfortunately, there is no concept of version for roles. The proper application of
roles to your infrastructure obscures the desirable standard of versions.

Enter policies. Policies allow you to group all of the various resources into a
high-level object that defines the specific versions that are used to create the object.
Policies combine the best parts of roles, environments, and tools such as Berkshelf,
into a single-versioned resource. You can apply a policy in a development
environment, test it thoroughly, and promote that policy into the stage and then
production environments, progressing your infrastructure code through its lifecycle
in a safe, reliable way.

What exactly is a policy?
A policy is built by creating a policyfile. A policyfile is kind of like a Chef role mixed
with a Berkshelf berksfile. Policyfiles are used to create artifacts that are used by the
chef-client to configure a node. These artifacts are a lock file and a cookbook bundle.
They are versioned and cannot be modified without changing the version, and
because of this, your chef-client runs become 100 percent reproducible.

A policyfile contains the policy description for a node. They are written using Ruby
DSL and contain the run_list of recipes, where to get the recipe's cookbooks
(including the version of the cookbooks that are valid), and the attributes needed
for the recipes. Using ChefDK's chef generate command with the policyfile, you
create a policy lock file and cache the required cookbooks. The policy and cookbooks
can then be uploaded to the Chef server or export the policy and cookbooks into a
directory to be used with chef-client or chef solo.

Caching the cookbooks provides several benefits. For example, each cookbook
becomes a unique artifact, including each version of the cookbook used. Each of
these artifacts can be tracked in a source control. This provides a guarantee that
policies will be consistently applied to nodes. The chef generate command
creates a policy lock file that includes a checksum. Any change in any of the
cookbooks used causes a change in the checksum value, which prevents any
unexpected cookbook changes being applied to your nodes. This allows a level
of certainty that you can deploy a policy to a node across the full development life
cycle with 100 percent consistency.

Leveraging Roles, Environments, and Policies

[70]

Why would I use a policy?
Although the use of roles can be very effective, there are still significant challenges
that are not addressed very well by them, the biggest of the challenges being that
roles don't have versions. Another big challenge is that the effort of dependency
resolution for cookbooks requires the use of an external tool to work effectively. For
most Chef users, that tool is Berkshelf. Chef Environments fills in some of the version
deficiency, but the combination of roles, environments, and dependency resolvers
like Berkshelf quickly become a source of confusion and potential mistakes. To be
clear, I am not saying that there is anything wrong with using Berkshelf. Frankly,
until now, it was a must-use tool. But with the introduction of Chef Policy, Berkshelf
is no longer needed. The Policyfile includes all the necessary details to resolve all
cookbook dependencies.

Another reason that you would want to use Chef Policy is the attribute precedence
hierarchy that was covered in a previous section. With the use of Chef Policy, the
15 levels of precedence are effectively reduced by about seven. This removes nearly
half of the attribute precedence complexity. This alone can be a compelling reason to
switch from roles to policy.

How do I use a policy?
Aha! The part you have been waiting for: how to create and use Chef Policy.
First, you will create a Policyfile that describes the desired node state. Let's begin
by showing a very simplified example that uses the "example" cookbook that is
generated with a chef generate repo command (which we explored in Chapter 1,
Setting Up a Development Environment on Your Workstation). Here is our policyfile:

name 'cookbook-dir'
default_source :chef_repo, File.dirname(__FILE__)

run_list 'example'

To create the policy lock file from a Policyfile, execute a command in the
following format:

chef install <path to policy file> [options]

For example, here is what it looked like when I created our policy lock file for
"cookbook-dir":

chef install cookbook-dir.rb

Building policy cookbook-dir

Expanded run list: recipe[example]

Caching Cookbooks...

Chapter 3

[71]

Installing example 1.0.0

Lockfile written to /Users/earlwaud/chef-repo/cookbook-dir.lock.json

Let's take a look at the generated policy lock file. Inside the cookbook-dir.lock.
json file, you will find quite a bit of specific information about our policy. One bit of
data to notice is a key "revision_id". Look at the value that was created for it. Here is
the one from my lock file:

 "revision_id":
"66d367a388f645c251b15db7586830a36be2aadaf9f2aaa96065b1691d0d5995"

This is the unique identifier for this lock file and serves as its version number. You
can see the name of the policy in the "name" field. You see the run_list that was
specified in the policyfile.

Note that it expanded the recipe to identify the specific cookbook
recipe that is used, in this case "default."

Next, you see the specifics about the cookbook captured in this lock file. There
is the friendly version number and then a unique identifier. Even if a developer
makes changes to this cookbook without updating the friendly version number, the
identifier version generated will change, thus providing a new "version number"
for the lock file. This makes sure that you get the exact version of the cookbook you
intended when you apply the policy to your nodes. There's more data in the lock file,
mostly related to attributes. Note that if the values for the attributes change, so will
the lock file identifier.

When changes are made to the underlying cookbooks, and a new version of the policy
is desired, you issue the command to update the policy in the following format:

chef update <path to policy file> [options]

For example, after changes were made to the "examples" recipe, I updated the policy
look file with the chef update command. Here is the command I used:

chef update cookbook-dir.rb

The policy lock file is updated, and it contains a new revision_id and a new
cookbook identifier (even though I didn't update the cookbook-friendly version
number from 1.0.0). Here is the new "revision_id" from the updated lock file for
comparison with the higher version:

 "revision_id":
"f80ae69ae021e0b577a8c0b9dd23f4bb5ea4b91c66ce921cf868721b9a01cafa"

Leveraging Roles, Environments, and Policies

[72]

You still need to update the friendly version number
Even though the policy lock file has its own unique version
number, it is still going to be the best practice to update the
friendly version number in the metadata of your cookbooks.
The version number will always play an important role
for cookbook versions when collaborating with others or
publishing cookbooks to the supermarket.

Another example
So now, let's walk through the workflow of creating and using a new policy.
Begin by changing into your home or preferred working directory. Then,
execute the following commands:

chef generate repo policyfile-book

cd policyfile-book/

git init

git add .

git commit -m 'Initial repo commit'

chef generate policyfile

So far, you have created a new repo, initialized git, and then added and committed
all the files in the new repo. Finally, you generated a new policyfile template. Since
you didn't specify a name for the policy file, you created a template file named
Policyfile.rb. Here is what that policy file template looks like:

cat Policyfile.rb

Policyfile.rb - Describe how you want Chef to build your system.

#

For more information on the Policyfile feature, visit

https://github.com/opscode/chef-dk/blob/master/POLICYFILE_README.md

A name that describes what the system you're building with Chef does.

name "example-application-service"

Chapter 3

[73]

Where to find external cookbooks:

default_source :supermarket

run_list: chef-client will run these recipes in the order specified.

run_list "example_cookbook::default"

Specify a custom source for a single cookbook:

cookbook "example_cookbook", path: "../cookbooks/example_cookbook"

Now you will want to make changes to the policy file template to turn it into the
desired policy file. I've edited my Policyfile.rb file, making the simple changes
resulting in the contents shown here:

cat Policyfile.rb

name "policyfile-book"

default_source :supermarket

run_list "motd", 'ntp'

le_cookbook", path: "../cookbooks/example_cookbook"

Specifically, I changed the name of the policy to policyfile-book. I set the run_list
to include two recipes, motd and ntp.

It is important to note that the run_list of a policy can only
use recipes. You cannot specify a role, or another policy. These
options may be available in future releases, but for now, it is
only recipes in the run_list of your policies.

Next we need to generate our policy lock file and cache our desired cookbooks. We
do that by issuing the chef install command. It will look something like this:

chef install

Building policy policyfile-book

Expanded run list: recipe[motd], recipe[ntp]

Caching Cookbooks...

Installing motd 0.6.3

Installing ntp 1.8.6

Installing chef_handler 1.2.0

Lockfile written to /Users/earlwaud/policyfile-book/Policyfile.lock.json

www.allitebooks.com

http://www.allitebooks.org

Leveraging Roles, Environments, and Policies

[74]

Note that in my example, there is a dependency on the chef_handler cookbook,
and it was automatically dealt with, and that cookbook was also cached. So, if the
cookbooks are cached, where do they go? Well, if you don't specify otherwise, they
go into a cache folder off your home directory. For me, that is ~/.chefdk/cache/
cookbooks/. Here is what you will find if you look in that folder, at this point in
the example:

ls -la ~/.chefdk/cache/cookbooks/

total 0

drwxr-xr-x 7 earlwaud staff 238 Dec 13 23:07 .

drwxr-xr-x 5 earlwaud staff 170 Dec 13 22:42 ..

drwxr-xr-x 11 earlwaud staff 374 Dec 13 23:07 chef_handler-1.2.0-
supermarket.chef.io

drwxr-xr-x 22 earlwaud staff 748 Dec 13 23:07 motd-0.6.3-supermarket.
chef.io

drwxr-xr-x 10 earlwaud staff 340 Dec 13 23:07 ntp-1.8.6-supermarket.
chef.io

Note that the specific versions have been identified in the
name of the cookbooks.

Next up, we are going to upload our policy and the related files to our Chef server.
Remember that we just created a new repo, and it will be necessary to configure
that repo to communicate with our Chef server before we can upload the policy. I
took care of that by using a shortcut. I copied the contents of the .chef folder from
another repo into this new one. Here is what that looks like:

mkdir .chef

cp -r ../chef-repo/.chef/* ./.chef/

Okay, so now we are ready to upload our policy. We upload the policy and its
related files with the chef push command. You will provide a name for this policy
so that it can be identified for use later. In my case, I am using the name "book".
Here is what that looks like:

chef push book

Uploading policy to policy group book

Uploaded vim 2.0.0 (8f81a5b1)

Uploaded zsh 1.0.3 (cb687099)

Chapter 3

[75]

Alternatively, you can export the policy and related files to a local folder or to a tar
file using the chef export command. Here is what using those commands looks
like, first the export to a folder:

chef export chef-repo

Exported policy 'policyfile-book' to chef-repo

ls -la chef-repo/

total 16

drwxr-xr-x 6 earlwaud staff 204 Dec 13 22:54 .

drwxr-xr-x 15 earlwaud staff 510 Dec 13 22:54 ..

-rw-r--r-- 1 earlwaud staff 1566 Dec 13 22:54 Policyfile.lock.json

-rw-r--r-- 1 earlwaud staff 396 Dec 13 22:54 client.rb

drwxr-xr-x 4 earlwaud staff 136 Dec 13 22:54 cookbooks

drwxr-xr-x 3 earlwaud staff 102 Dec 13 22:54 data_bags

Or exporting to create a tar file:

chef export -a chef-repo

Exported policy 'policyfile-book' to /Users/earlwaud/policyfile-book/
chef-repo/policyfile-book-c465f6433cc209d0fd8ba9196a9e90beaccb3ab88161556
8f2041aa433cb54c5.tgz

Now you have two artifacts you can use to configure your "Book" nodes.
Using these exact same artifacts, first in dev, then in test, and finally in production,
assures that the configuration of the servers in each stage of your lifecycle is
100 percent consistent.

How to specify the source options for
cookbooks
Since you can specify the source you want to obtain cookbooks from in your
Policyfile, you need to know the options you have for those sources. Here is
a list of sources, with examples:

cookbooks with version constraint
cookbook 'yum', '= 3.6.1'
cookbook 'yum', '~> 3.6.0'

cookbooks from a local path
cookbook 'yum', '/Users/earlwaud/chef-repo/cookbooks/yum'

Leveraging Roles, Environments, and Policies

[76]

cookbooks from a git repository
cookbook 'yum', git: 'https://github.com/chef-cookbooks/yum'

cookbooks from a github repository
cookbook 'yum', github: 'chef-cookbooks/yum'

cookbooks from a github repo with a release tag
cookbook 'yum', github: 'chef-cookbooks/yum', tag: '3.7.0'

Also, there are options for what you want to use as a default source for when you
don't specify a cookbook source. The default is defined in the default_source value,
and here are the options you have, with examples:

use the chef supermarket
default_source :supermarket
default_source :community

use a local or private supermarket
default_source :supermarket, 'https://mysupermarket.domain.com'

use the cookbooks in the current working directory
default_source :chef_repo, FILE.dirname(__FILE__)

use the cookbooks in another filesystem location
default_source :chef_repo, '/home/src/other-chef-repo'

:community = :supermarket
In early versions of the policy generator, the default_source for
cookbooks was set to ":community". Later, this was updated to
":supermarket". If you see :community used in policy files, know
that it is the same as using :supermarket.

What are the "Gotchas"?
The number one consideration before using Chef Policy is that at the time of this
writing, it is just now "nearing" 1.0 status. With the latest Chef release, all of the
major features are available, but there is still significant development in flight that
will make policies better in the near future.

If you want to know the specific limitations in the current release, here is my list:

• Must be using the latest released versions of Chef, ChefDK, and Chef Server
• There is no support for Chef roles

Chapter 3

[77]

• You cannot "nest" or "include" other policies like you can with Chef roles
• Using Chef zero, which is a local in-memory Chef Server, requires

compatibility mode
• Not yet officially branded as version 1.0 by Chef.io
• And my #1 limitation… Not yet implemented for use with Knife bootstrap

References
• The (limited) documentation about policies on the Chef.io site can be found

at https://docs.chef.io/policy.html. Hopefully, it will be expanded by
the time you visit it.

• You will probably want to check out the policyfile documentation on GitHub
found at https://github.com/chef/chef-dk/blob/master/POLICYFILE_
README.md.

• You will find the chef-zero repo on GitHub at https://github.com/chef/
chef-zero.

• The link to the Chef.io blog post titled "Policyfiles: A Guided Tour" at
https://www.chef.io/blog/2015/08/18/policyfiles-a-guided-tour.

• There is an excellent Chef.io webinar recording on the why, what, and
how of Chef policies, that can be watched at https://www.chef.io/
webinars/?commid=171697&utm_campaign=add-to-calendar&utm_
medium=calendar&utm_source=brighttalk-transact.

Summary
In this chapter, you learned about Chef roles and how valuable they are to deploying
fully functional servers. We saw that even though they are a global resource, they
can be leveraged across environments to deliver different content, based on the
environment of the node. We also discussed the big shortcoming of roles, that being
their lack of a version component. Then, we looked at using Chef Environments to
mimic the development life cycle of your infrastructure code. That was followed
by talking about how to provide multitenancy with your Chef servers using
organizations. Next, we took a deep dive into the attribute precedence hierarchy, and
then we finished up with a visit to the exciting new policy feature, which delivers an
object that combines the best of roles and environments (and dependency tools such
as Berkshelf too).

In out next chapter, we will investigate custom resources, explaining how to create
and use them effectively. Are you ready? Then read on…

https://docs.chef.io/policy.html
https://github.com/chef/chef-dk/blob/master/POLICYFILE_README.md
https://github.com/chef/chef-dk/blob/master/POLICYFILE_README.md
https://github.com/chef/chef-zero
https://github.com/chef/chef-zero
https://www.chef.io/blog/2015/08/18/policyfiles-a-guided-tour
https://www.chef.io/webinars/?commid=171697&utm_campaign=add-to-calendar&utm_medium=calendar&utm_source=brighttalk-transact
https://www.chef.io/webinars/?commid=171697&utm_campaign=add-to-calendar&utm_medium=calendar&utm_source=brighttalk-transact
https://www.chef.io/webinars/?commid=171697&utm_campaign=add-to-calendar&utm_medium=calendar&utm_source=brighttalk-transact

[79]

Custom Resources
In this chapter, we're going to discuss the exciting changes released in Chef 12.5
that transform the old LWRPs and HWRPs into the much easier-to-create and use
Custom Resources. We'll start with a look at the differences between the old and
new, but by the end of the chapter, the reader will know how to build and use
Custom Resources.

"To me, my recipes are priceless." – Colonel Sanders

Here is a list of the topics covered in this chapter:

• Out with the old (LWRPs), in with the new (Custom Resources)
• Creating an example use case
• Creating and using a Custom Resource
• Making a Custom Resource more reusable
• Subclassing a Custom Resource

Out with the old (LWRPs), in with the new
(Custom Resources)
When Chef was created, the Chef developers delivered a tool that had a lot of
capabilities right out of the box. The variety of resources that it supported natively
was very useful and quite extensive. But, of course, being a finite tool, it could not
handle every possible type of resource that existed or could exist in the future.
Knowing this, the Chef developers built in a feature set to allow users to augment
the capabilities and support an ever-growing set of resources.

Custom Resources

[80]

This feature set is known as Lightweight Resource Providers (LWRP) and
Heavyweight Resource Providers (HWRP). These features allow users to define
new resources and create the providers to support those resources, making Chef
infinitely customizable.

The two types, LWRP and HWRP, are differentiated by the level of complexity
used to define the resources and the providers being created. LWRPs are created
using the Chef DSL (Domain-specific Language) and are capable of handling most
customization needs. HWRP are created using pure Ruby. HWRPs are the go-to
feature when the requirements are too complex to be handled by straight Chef DSL.

Unfortunately, creating and using LWRPs and HWRPs is more challenging than most
of the other features of Chef. This is because the Chef developers created Custom
Resources. Custom Resources provide the same feature set as LWRP and HWRP,
but do it in a way that is much easier to create and use. None of the capabilities are
lost in translation either. A Custom Resource can easily handle the task of providing
new resources using the Chef DSL, but it can also handle the times when you need to
support more complex scenarios that require using pure Ruby.

What is the difference between the old way
and the new way of defining resources?
As of version 12.5, LWRPs and HWRPs are no longer used. All existing code that
creates and uses them will still work because version 12.5 is backward compatible
with cookbooks from previous versions, but new resources should now be created
only as Custom Resources.

LWRP and HWRP required you to create both the Resource and the Provider. With
Custom Resources, it is only necessary to create the Resource. There is no need to
create a folder named providers in the cookbook when creating Custom Resources.

Creating and using Custom Resources is much easier than it was to create and use
LWRPs and HWRPs.

Custom Resources use "properties". LWRPs and HWRPs used attributes, which was
easily confused with Node attributes.

It is much easier to create OS-specific resources by subclassing a base class, and we
will take a look at doing that later in the chapter.

Although Custom Resources are not deprecating "Definitions",
it is recommended that going forward, you should create
Custom Resources instead.

Chapter 4

[81]

There are many other differences between the old Resource Provider model and the
Custom Resource model introduced in version 12.5, but what is listed earlier should
provide reason enough to embrace the change.

What is a Custom Resource?
A Custom Resource is an extension to Chef. It is a way to create and use new
resources that were not provided by Chef. A Custom Resource is created as part of
a cookbook. A Custom Resource can be created with Chef DSL and can use built-in
resources, or you can create a Custom Resource using Ruby if the need is complex
enough. A Custom Resource provides the mechanism to create and use resources
that are not built in to Chef. For example, Chef has built-in resources for things, such
as directories, files, and services. However, there is no built-in resource for websites.
So, as a way to demonstrate Custom Resources, we will create a website Custom
Resource later in this chapter.

References
• The link to Chef's new Custom Resources information is

https://docs.chef.io/custom_resources.html.
• The link to the Chef page for Custom Resources prior to version 12.5 is

https://docs.chef.io/release/12-4/custom_resources.html. It
describes LWRP and HWRP.

• The Chef documentation for (almost deprecated) definitions is at
https://docs.chef.io/definitions.html.

• There is an excellent book that really details the creation and use of LWRPs
and HWRPs. The book is titled Customizing Chef and is by Jon Cowie. You
can check out a sample at https://books.google.com/books/about/
Customizing_Chef.html?id=XOBdBAAAQBAJ&printsec=frontcover&sourc
e=kp_read_button&hl=en#v=onepage&q&f=false.

https://docs.chef.io/custom_resources.html
https://docs.chef.io/release/12-4/custom_resources.html
https://docs.chef.io/definitions.html
https://books.google.com/books/about/Customizing_Chef.html?id=XOBdBAAAQBAJ&printsec=frontcover&source=kp_read_button&hl=en#v=onepage&q&f=false
https://books.google.com/books/about/Customizing_Chef.html?id=XOBdBAAAQBAJ&printsec=frontcover&source=kp_read_button&hl=en#v=onepage&q&f=false
https://books.google.com/books/about/Customizing_Chef.html?id=XOBdBAAAQBAJ&printsec=frontcover&source=kp_read_button&hl=en#v=onepage&q&f=false

Custom Resources

[82]

Creating an example use case
In order to understand the creation and use of Custom Resources, let's create a
somewhat contrived example use case. In order to avoid getting lost in the details,
we'll keep the example simple, using just enough detail so that you can see the
power of Custom Resources.

What is the goal?
We have been asked to create a new cookbook to support a brand new web
application. The application is going to use several different websites such as a
"Users" site, a "Suppliers" site, and a "Customers" site. The developers are saying
that there will be several other sites needed in the future, but they want to get
started now with these three.

Based on this short user story, we are going to create a new cookbook named
"mywebapp", and it is going to create the beginnings of three websites: "Users",
"Suppliers", and "Customers". We should keep in mind that these three sites are only
the beginning, and our cookbook should be written to make adding more websites
easy. We are going to begin with the non-custom resource model, so let's get started.

Creating the cookbook
As described in Chapter 1, Setting Up a Development Environment on Your Workstation,
we will use the chef command-line tool to create our cookbook template. We do that
by issuing the following commands:

cd ~/chef-repo/cookbooks

chef generate cookbook mywebapp

Let's take a look at what we are starting with. Go into the new cookbook folder and
issue the tree command like this:

cd mywebapp

tree

Chapter 4

[83]

This is what you should see:

We have a new cookbook template named mywebapp ready to customize to
our needs.

Creating the default recipe
Now that we have our cookbook template ready to go, let's create our default recipe.
Adding the following code to the default.rb file will give us the resources needed
to create three (very simplistic) websites. The code is as follows:

#
Cookbook Name:: mywebapp
Recipe:: default
#
Copyright (c) 2016 The Authors, All Rights Reserved.

directory '/var/www/users' do
 recursive true
 mode 0755

Custom Resources

[84]

 user 'earlwaud'
 group 'wheel'
 action :create
end

file '/var/www/users/index.html' do
 content '<html><title>Users</title><body><h1>Hello to our Users</
h1></body></html>'
 mode 0755
 user 'earlwaud'
 group 'wheel'
 notifies :restart, 'service[httpd]'
end

service 'httpd' do
 action :nothing
end

directory '/var/www/suppliers' do
 recursive true
 mode 0755
 user 'earlwaud'
 group 'wheel'
 action :create
end

file '/var/www/suppliers/index.html' do
 content '<html><title>Suppliers</title><body><h1>Hello to our
Suppliers</h1></body></html>'
 mode 0755
 user 'earlwaud'
 group 'wheel'
 notifies :restart, 'service[httpd]'
end

service 'httpd' do
 action :nothing
end

directory '/var/www/customers' do
 recursive true
 mode 0755
 user 'earlwaud'
 group 'wheel'

Chapter 4

[85]

 action :create
end

file '/var/www/customers/index.html' do
 content '<html><title>Customers</title><body><h1>Hello to our
Customers</h1></body></html>'
 mode 0755
 user 'earlwaud'
 group 'wheel'
 notifies :restart, 'service[httpd]'
end

service 'httpd' do
 action :nothing
end

Looking at the preceding code, we can see that we have repeated a "set" of resources
three times, one for each of the three websites we wish to create. First, we have the
directory resource that defines the location where we want to put our website files.
The description includes instructions to recursively create the segments of the folder
path and apply the permissions, owner, and group values to each one. Next, we have
a file resource that creates an index.html file in the target folder, again applying
the permissions, owner, and group values. Also, we are providing a very basic
description of the content for the file. In this case, it is a site-specific title, and a
site-specific "Hello" message for the body of the web page.

If we want to validate that what we have created so far is working, we can execute a
local override chef-client run with the -z and -o parameters, as follows:

cd ~/chef-repo

sudo chef-client -z -o mywebapp

This chef-client run will generate a lot of output. Here is a subset of what you will see:

(truncated) …
Synchronizing Cookbooks:
[2016-01-18T12:20:02-08:00] INFO: Storing updated cookbooks/mywebapp/
recipes/default.rb in the cache.
 - mywebapp (0.1.0)
Compiling Cookbooks...
Converging 9 resources
Recipe: mywebapp::default
 * directory[/var/www/users] action create[2016-01-18T12:20:02-08:00]
INFO: Processing directory[/var/www/users] action create
(mywebapp::default line 7)

Custom Resources

[86]

[2016-01-18T12:20:02-08:00] INFO: directory[/var/www/users] created
directory /var/www/users

 - create new directory /var/www/users[2016-01-18T12:20:02-08:00]
INFO: directory[/var/www/users] owner changed to 501
[2016-01-18T12:20:02-08:00] INFO: directory[/var/www/users] group
changed to 0
[2016-01-18T12:20:02-08:00] INFO: directory[/var/www/users] mode
changed to 755

 - change mode from '' to '0755'
 - change owner from '' to 'earlwaud'
 - change group from '' to 'wheel'
 * file[/var/www/users/index.html] action create[2016-01-
18T12:20:02-08:00] INFO: Processing file[/var/www/users/index.html]
action create (mywebapp::default line 15)
[2016-01-18T12:20:02-08:00] INFO: file[/var/www/users/index.html]
created file /var/www/users/index.html

 - create new file /var/www/users/index.html[2016-01-
18T12:20:02-08:00] INFO: file[/var/www/users/index.html] updated file
contents /var/www/users/index.html

 - update content in file /var/www/users/index.html from none to
23195b
 --- /var/www/users/index.html 2016-01-18 12:20:02.000000000
-0800
 +++ /var/www/users/.index.html20160118-4946-1nzzlcz 2016-01-18
12:20:02.000000000 -0800
 @@ -1 +1,2 @@
 +<html><title>Users</title><body><h1>Hello to our Users</h1></
body></html>[2016-01-18T12:20:02-08:00] INFO: file[/var/www/users/
index.html] owner changed to 501
[2016-01-18T12:20:02-08:00] INFO: file[/var/www/users/index.html]
group changed to 0
[2016-01-18T12:20:02-08:00] INFO: file[/var/www/users/index.html] mode
changed to 755
…(truncated)

The preceding subset of the chef-client run output is related to the set of resources
creating the first website, "Users". You will note that it creates the new /var/www/
users directory and then applies the owner, group, and permissions to it. Next, it
creates the new /var/www/users/index.html file. Then, it sets the index.html file
contents to the desired site content described in the file resource. Finally, it sets the
owner, group, and permissions for the newly created file. All of this is as expected.

Chapter 4

[87]

Our simple, but repetitive, recipe did the job. It created three "websites"
as requested. Although that recipe worked, it does not meet all of the
requirements of the developers. So what is missing?

The recipe worked, but what is missing?
Although the recipe worked and created our three websites, there is a significant
request made by the developers that was not addressed. They wanted the
recipe to be written so that it could be easily expanded to create many more
additional websites.

Of course, we could copy the resources of one of the websites and paste them in at
the bottom, editing the definitions to reflect a new website. This would work, but it is
not very efficient, and it will make an already repetitive recipe even more repetitive.
Also, this plan is a potential source of errors. For example, after pasting the copied
resources, the person editing the recipe might forget to update one or more of the
"custom" values, forgetting to change the file location, for example. What's more is
that if there needs to be a change made, say changing the permissions from 755 to
644, it would be necessary to update the recipe in six places, even with just our three
websites. Again, this method would be inefficient and error-prone.

So what can we do about meeting the developers' request, and at the same time,
address all this inefficient repetition and potential for errors? Say hello to my little
friend, "Custom Resources".

References
The link to chef-client documentation that includes the details for using local mode is
https://docs.chef.io/ctl_chef_client.html#run-in-local-mode.

Creating and using a Custom Resource
Now that we have our use case defined and a working solution created, we want
to introduce updates to the cookbook to turn what we have into a better solution
that uses Custom Resources. Specifically, we are going to create a "website"
Custom Resource.

https://docs.chef.io/ctl_chef_client.html#run-in-local-mode

Custom Resources

[88]

What makes up a Custom Resource?
Custom Resources are created by making a Ruby file in the cookbook's resources
folder. The resource name will be the name of the file created. For example, if we
want to create a "website" Custom Resource, we would create a new Ruby file
named website.rb, as follows:

mkdir –p ~/chef-repo/cookbooks/mywebapp/resources

touch ~/chef-repo/cookbooks/mywebapp/resources/website.rb

This will create a new folder named resources and create an empty file named
website.rb in that folder.

Creating a default.rb resource file: If you create a resource file named
default.rb, the resource will have the same name as the cookbook.

A cookbook can have multiple resources. Each one would be defined in a separate
Ruby file in the resources folder.

The contents of the resource file will have three basic parts:

• Declarations of the properties used in the Custom Resource
• Loading of the current value of the properties, if they already exist
• Definitions of the actions that the Custom Resource can take

A Custom Resource is much simpler to create when compared with the LWRP
and HWRP.

Creating the "website" Custom Resource
We are going to "re-use" some of the code in the default.rb recipe to create our new
"website" Custom Resource. First, let's create a new file to hold our Custom Resource:

mkdir ~/chef-repo/cookbooks/mywebapp/resources

touch ~/chef-repo/cookbooks/mywebapp/resources/website.rb

Next, let's copy one set of the website resources from our recipe/default.rb file,
the Users site resources, and paste them into our new website.rb file. Here is the
section we are copying and/or pasting:

directory '/var/www/users' do
 recursive true
 mode 0755
 user 'earlwaud'

Chapter 4

[89]

 group 'wheel'
 action :create
end

file '/var/www/users/index.html' do
 content '<html><title>Users</title><body><h1>Hello to our Users</
h1></body></html>'
 mode 0755
 user 'earlwaud'
 group 'wheel'
 notifies :restart, 'service[httpd]'
end

service 'httpd' do
 action :nothing
end

Next, we need to "wrap" our copied code in an action block with the format
action :start do … end. Now our website Custom Resource looks as follows:

action :start do
 directory '/var/www/users' do
 recursive true
 mode 0755
 user 'earlwaud'
 group 'wheel'
 action :create
 end

 file '/var/www/users/index.html' do
 content '<html><title>Users</title><body><h1>Hello to our Users</
h1></body></html>'
 mode 0755
 user 'earlwaud'
 group 'wheel'
 notifies :restart, 'service[httpd]'
 end

 service 'httpd' do
 action :nothing
 end
end

Custom Resources

[90]

This code block is our action definition for our "website" Custom Resource.

When you have more than one action defined in a Custom
Resource file, the first action listed will be the default action.

In our example, you can plainly see that we have some "constants" defined in our
action block, and because we want this to be a highly reusable Custom Resource, this
simply will not do. So, let's create some properties for our Custom Resource, which
we'll use to replace these constants.

At the top of our website.rb file, let's add two new properties. One will be the
"site name" and the other will be the "title". Add the following two lines to the
website.rb file:

property :site_name, String, name_property: true
property :title, String

The first line is for the site name. This property is defined to be a string and includes
the name_property setting, which says to use the value of the resource name for the
value of this property.

All resources defined in Chef have a name_property. For example, our directory
resource for the Users site has the name_property of /var/www/users.

When a recipe uses our new website resource, the name it provides will be the value
that gets set for our site_name property. This will make more sense when you see
how we use our Custom Resource in the section ahead.

Second, we are adding a title property, also of type string.

Once we have our properties declared, we need to do some modifications to our
Custom Resource's action to use the new properties instead of using the constant
values currently defined.

Let's update our website.rb file to use the new properties now. Once updated, our
file should contain the following:

property :site_name, String, name_property: true
property :title, String

action :start do
 directory "/var/www/#{site_name}" do
 recursive true
 mode 0755
 user 'earlwaud'

Chapter 4

[91]

 group 'wheel'
 action :create
 end

 file "/var/www/#{site_name}/index.html" do
 content "<html><title>#{title}</title><body><h1>Hello to our
#{title}</h1></body></html>"
 mode 0755
 user 'earlwaud'
 group 'wheel'
 notifies :restart, 'service[httpd]'
 end

 service 'httpd' do
 action :nothing
 end
end

That is all we need for this very simplified example of a Custom Resource.
Let's move on to how to use our new website Custom Resource.

Using our Custom Resource
Now that we have created our "website" Custom Resource, let's put it to use. We
are going to update our cookbook's recipe file. Edit the default.rb file we created
earlier, and cut out all of the code. Then, add the following three blocks of code to the
now empty file:

mywebapp_website 'users' do
 title 'Users'
end

mywebapp_website 'suppliers' do
 title 'Suppliers'
end

mywebapp_website 'customers' do
 title 'Customers'
end

These three blocks of code are using our new Custom Resource. You will note
from this example that the way you use a Custom Resource is to use the name of
the cookbook, an underscore, and the name of the resource. In this case, our
cookbook is named "mywebapp", and our Custom Resource is named (from the file
that defines it) "website". Based on this, we can use our newly defined resource as
"mywebapp_website".

Custom Resources

[92]

Our two properties are given values for each instance of our Custom Resource. First,
site_name is given the values from the resource names, such as "users", "suppliers",
and "customers". Second, the title is given its values from the title properties.

Using our new Custom Resource has delivered on the request made by the
developers. We have a new recipe that will be easy to expand to create future
websites. In addition, we have removed a lot of repetition from the first version of
our cookbook, and the result is a more user-friendly cookbook that is much less
error-prone and easier to understand and use. Not bad, right?

So, let's take it for a spin. Use the local override chef-client run again to see how
this has changed the way our resources are converged. Issue the same commands
used earlier:

cd ~/chef-repo

sudo chef-client -z -o mywebapp

Here is what you should see in the chef-client output this time:

(truncated)…

Synchronizing Cookbooks:

[2016-01-18T14:03:42-08:00] INFO: Storing updated cookbooks/mywebapp/
recipes/default.rb in the cache.

[2016-01-18T14:03:42-08:00] INFO: Storing updated cookbooks/mywebapp/
resources/website.rb in the cache.

 - mywebapp (0.1.0)

Compiling Cookbooks...

Converging 3 resources

Recipe: mywebapp::default

 * mywebapp_website[users] action start[2016-01-18T14:03:42-08:00] INFO:
Processing mywebapp_website[users] action start (mywebapp::default line
7)

 * directory[/var/www/users] action create[2016-01-18T14:03:42-08:00]
INFO: Processing directory[/var/www/users] action create (/Users/
earlwaud/chef-repo/.chef/local-mode-cache/cache/cookbooks/mywebapp/
resources/website.rb line 5)

 (up to date)

 * file[/var/www/users/index.html] action create[2016-01-
18T14:03:42-08:00] INFO: Processing file[/var/www/users/index.html]
action create (/Users/earlwaud/chef-repo/.chef/local-mode-cache/cache/
cookbooks/mywebapp/resources/website.rb line 13)

 (up to date)

Chapter 4

[93]

 * macosx_service[httpd] action nothing[2016-01-18T14:03:42-08:00]
INFO: Processing macosx_service[httpd] action nothing (/Users/earlwaud/
chef-repo/.chef/local-mode-cache/cache/cookbooks/mywebapp/resources/
website.rb line 21)

 (skipped due to action :nothing)

 (up to date)

…(truncated)

As in the output sample shown earlier, I have included only the subset of the output
that relates to the creation of the Users website.

A couple of differences you should notice here are:
Only three resources are converged this time, compared to nine before.
These three are our new Custom Resources. Also note that pretty much
everything resulted in no action taken (up to date). This is because the
new Custom Resource we created does the same work that was done
(using nine resources) in our model that didn't use Custom Resources.

Both versions converge to the same state, but by using Custom Resources, we
have achieved that desired state much more efficiently and in a way that is
much more extensible.

References
The link to a Chef.io slide deck on creating Custom Resources is
https://docs.chef.io/decks/custom_resources.html.

Making a Custom Resource more
reusable
The Custom Resource we just created, "mywebapp_website", is easily reusable
within our mywebapp cookbook and could be used with other cookbooks, but what
if we want to expand on its reusability? What if we want to make a cookbook that
only has a Custom Resource that we want to use in several cookbooks? The answer
is pretty simple. Let's walk through the steps to convert our "website" Custom
Resource into a more reusable Custom Resource-only cookbook.

https://docs.chef.io/decks/custom_resources.html

Custom Resources

[94]

Making a Custom Resource-only cookbook
The Custom Resource website.rb file in the cookbook mywebapp, which we created
in the previous section, is almost all we need to create our more reusable Custom
Resource-only cookbook. Let's create a new cookbook named appsite, which will be
our new reusable cookbook:

cd ~/chef-repo/cookbooks

chef generate cookbook appsite

Now delete the entire recipe folder. The best practice for reusable Custom Resource
cookbooks is that they do not have a recipe folder at all. They should only include
the resources folder (and maybe a libraries folder if it uses helper functions, which
we will talk about in the next section). Our reusable Custom Resource cookbook
will not have its own recipes, but it will only contain the website Custom Resource
found in the resources folder from our previous example.

Reuse the code from the "mywebapp"
example
Now that we have a new cookbook (with no recipe folder), let's move the resources
folder from our previous example into the "appsite" cookbook. This will completely
remove the resources folder and the website.rb file within from the "mywebapp"
cookbook and place them in our new "appsite" cookbook.

You're done. This completes the work on our reusable Custom Resource-only
cookbook. Wow, that was really easy, right? So how do we use it?

Using the reusable Custom Resource-only
cookbook
We now have a brand new shiny cookbook that supplies a Custom Resource to
create websites. Using the cookbook is pretty easy. We need to do two things to
our "mywebapp" cookbook example to leverage our "appsite" cookbook.

First, we need to add a "depends" directive to our cookbook metadata.rb file.
Making this one line change will result in a metadata.rb file that looks like this:

name 'mywebapp'
maintainer 'The Authors'
maintainer_email 'you@example.com'
license 'all_rights'
description 'Installs/Configures mywebapp'

Chapter 4

[95]

long_description 'Installs/Configures mywebapp'
version '0.1.0'
depends 'appsite'

Adding the depends directive to our cookbook ensures that the specified cookbook
will be loaded and available when our cookbook converges. If the specified
cookbook, in this case "appsite", is not available for some reason, the chef-client r
un would fail to converge.

Secondly, we need to change the name we use when calling our Custom Resource. In
the default.rb file of our "mywebapp" cookbook, change the three resource calls so
that they use the new name for our Custom Resource. The resulting default.rb file
will look like this:

appsite_website 'customers' do
 title 'Customers'
end

appsite_website 'suppliers' do
 title 'Suppliers'
end

appsite_website 'users' do
 title 'Users'
end

That was pretty easy too, right? When Chef.io created the Custom Resource feature,
a driving goal was to make it much easier to create and use compared with LWRP
and HWRP, and I think they have succeeded very well in that goal.

However, with that said, what if you need to do something a little more complex?
For example, if you want to handle websites installed to different operating systems?
We can do that too, and we'll take a look at doing it later in the chapter, with an
example that uses subclassing in a Custom Resource. But now, let's have a quick look
at handling idempotence.

Handling idempotence
In our simple example, the resources handle the check for idempotence, making
sure that actions are only executed when the resulting state would be different than
the existing state. But if we were doing something more complex, such as using
Ruby code in our actions or making calls to APIs to affect change, then we need our
code to handle the idempotence tasks. Fortunately, Chef has the helper functions
"load_current_value" and "converge_if_changed" to help us with this need.

Custom Resources

[96]

Without actually changing our action so that it truly needs to handle the
idempotence, let's look at what the Custom Resource code might look like
using the previously-mentioned helper functions.

I'm simplifying the contents of index.html to keep the example simple.

If we needed to check the state of the contents of the index.html file and only
change it if the resulting state (or contents) would be different than it currently is,
then we can update the code to look like this:

property :site_name, String, name_property: true
property :title, String

load_current_value do
 title IO.read("/var/www/#{site_name}/index.html")
end

action :start do
 converge_if_changed do
 directory "/var/www/#{site_name}" do
 recursive true
 mode 0755
 user 'earlwaud'
 group 'wheel'
 action :create
 end

 file "/var/www/#{site_name}/index.html" do
 content title
 mode 0755
 user 'earlwaud'
 group 'wheel'
 notifies :restart, 'service[httpd]'
 end

 service 'httpd' do
 action :nothing
 end
 end
end

Chapter 4

[97]

You can see in the preceding example that we are checking whether there is a
change to "title" by using the call to load_current_value. Then, with converge_if_
changed, we are executing the action only if there was a change to the value of title.
This is a somewhat forced example, but it should serve as a template to handling
idempotence in your Custom Resources.

Remember that this type of custom test and set code is not necessary
when leveraging the built-in resources provided by Chef within your
Custom Resource. You will only need to add this type of functionality if
your Custom Resources are using Ruby for your actions, or coding for
some other, more complex scenario.

References
The link to the Chef Documentation for Custom Resource DSL with details about
converge_if_changed and load_current_value is https://docs.chef.io/dsl_
custom_resource.html.

Subclassing a Custom Resource
Sometimes, you need to handle more complex situations, such as supporting
distinctly different operating systems, such as Linux and Windows. This can easily
be handled by subclassing your Custom Resource. Let's consider a new requirement
for our use case, that is, we need to extend our new appsite Custom Resource
cookbook so that it will allow us to create websites on OS X and Linux using
Apache, and on Windows using IIS.

In order to provide for subclassing of our Custom Resource, we will need to convert
them into a library module, so let's start there.

Convert our resource into a library module
We begin by creating a new folder named "libraries" in our cookbook. Next, we
create a new file in our libraries folder named website.rb and add the following
contents to the file:

module AppsiteCookbook
 class Website < Chef::Resource
 resource_name :appsite_website

 end
end

https://docs.chef.io/dsl_custom_resource.html
https://docs.chef.io/dsl_custom_resource.html

Custom Resources

[98]

This is the template used to define our library module. We are creating a new library
module that will be used by calling the name "appsite_website". It is a new class that
is of type Chef::Resource.

Next, we can copy all of the code from our resource/website.rb file and paste it
into our new library module definition. The resulting file will then look like this:

module AppsiteCookbook
 class Website < Chef::Resource
 resource_name :appsite_website

 property :site_name, String, name_property: true
 property :title, String

 action :start do
 directory "/var/www/#{site_name}" do
 recursive true
 mode 0755
 user 'earlwaud'
 group 'wheel'
 action :create
 end

 file "/var/www/#{site_name}/index.html" do
 content "<html><title>#{title}</title><body><h1>Hello to our
#{title}</h1></body></html>"
 mode 0755
 user 'earlwaud'
 group 'wheel'
 notifies :restart, 'service[httpd]'
 end

 service 'httpd' do
 action :nothing
 end

 end
 end
end

So far, we have only converted our Custom Resource into a library module Custom
Resource. At this point, you can delete the folder named resources and then run the
override local chef-client command again. The results will be the same state as before
with no actions taken because everything is "(up to date)".

Chapter 4

[99]

So, let's move on to the subclassing of the Custom Resource now.

Subclassing the library module Custom
Resource
Now we are going to convert our library module Custom Resource into a subclassed
Custom Resource. In this example, we are going to handle the scenario of deploying
our websites for either Apache on Linux and OS X systems, or for IIS on Windows
systems. Let's change the base class first. We are going to simplify our libraries/
website.rb file changing the contents to the following:

module AppsiteCookbook
 class Website < Chef::Resource
 resource_name :appsite_website

 property :site_name, String, name_property: true
 property :title, String

 action :start do
 puts "Executing Base Class"
 end

 end
end

This simple base class is just going to provide the class name, provide for the
properties, and execute any required base class actions—in this case, just writing
out a message.

Next, let's create our first base class for the Linux-based operating systems. Create
a new file in the libraries folder named website_linux.rb. Put the following code
into the file:

module AppsiteCookbook
 class WebsiteLinux < Website
 resource_name :appsite_website_linux
 provides :appsite_website, os: ['linux', 'darwin']

 action :start do
 puts 'Installing on Linux OS'
 super()
 puts 'Executing Linux Sub-Class'

Custom Resources

[100]

 directory "/var/www/#{site_name}" do
 recursive true
 mode 0755
 user 'earlwaud'
 group 'wheel'
 action :create
 end

 file "/var/www/#{site_name}/index.html" do
 content "<html><title>#{title}</title><body><h1>Hello to our
#{title}</h1></body></html>"
 mode 0755
 user 'earlwaud'
 group 'wheel'
 notifies :restart, 'service[httpd]'
 end

 service 'httpd' do
 supports :restart => true
 action :nothing
 end

 end
 end
end

This is the code that will get executed for the OS types "Linux" or "Darwin" (OS X).

The key things to notice are that the class is named
WebsiteLinux and is derived from our base class
Website. Next, note the "provides" directive. This is what
instructs chef-client to use this subclass when the OS type
matches either "linux" or "darwin". The rest of the code is
pretty much identical to our earlier example.

Finally, let's create the Windows subclass file for completeness. Again in the libraries
folder, create a new file named website_windows.rb. Put the following code into
the new file:

module AppsiteCookbook
 class WebsiteWindows < Website
 resource_name :appsite_website_windows
 provides :appsite_website, os: 'windows'

Chapter 4

[101]

 action :start do
 puts 'Installing on Windows OS'
 super()
 puts 'Executing Windows Sub-Class'

 directory "#{ENV['SYSTEMDRIVE']}\\inetpub\\wwwroot\\#{site_
name}" do
 recursive true
 mode 0755
 user 'earlwaud'
 group 'wheel'
 action :create
 end

 file "#{ENV['SYSTEMDRIVE']}\\inetpub\\wwwroot\\#{site_name}\\
index.html" do
 content "<html><title>#{title}</title><body><h1>Hello to our
#{title}</h1></body></html>"
 mode 0755
 user 'earlwaud'
 group 'wheel'
 notifies :restart, 'service[w3svc]'
 end

 service 'w3svc' do
 action :nothing
 end
 end
 end
end

Again, notice the class line—it defines the class name as WebsiteWindows and says
that the class is derived from our Website base class. And like in the Linux subclass,
we have a "providers" directive that instructs the chef-client to use this base class
only when running on a "windows" OS.

Because all of this code is functionally equivalent to our earlier examples, executing
our override local chef-client run will result in no state modifying actions taken, as
everything is (up to date).

References
The link to the Chef documentation on Libraries is https://docs.chef.io/
libraries.html.

https://docs.chef.io/libraries.html
https://docs.chef.io/libraries.html

Custom Resources

[102]

Summary
In this chapter, we saw how the new 12.5 version of Chef has brought us the Custom
Resource, and we explored how the Custom Resource has improved upon the old
concept of LWRPs and HWRPs. We realized that Chef has built-in resources for a lot
of things, but not for creating websites. Therefore, you learned how to create a new
"website" Custom Resource. We expanded on the website resource to make it easy
to use in different cookbooks, and expanded it even further so that we can use it for
cookbooks that will be converged in multiple operating systems. By now, you should
really appreciate the humble Custom Resource. It is a great improvement over the
old Resource Provider model and can greatly simplify your recipes.

Next, let's dive into the use of Chef to provision into the traditional datacenter.
There is a lot to cover, so let's get started.

[103]

Provisioning in the Traditional
Data Center

In this chapter, we're going to pull together the concepts of the earlier chapters
to deliver the software-defined data center in the traditional on-premise model.
The reader will take control of their traditional data center, integrating Chef into
industry-wide compute deployment and configuration environments.

"The secret of success in life is to eat what you like and let the food fight it out
inside." – Mark Twain

The following topics will be covered in this chapter:

• VMware provisioning
• Open Stack provisioning
• Network automation

VMware provisioning
VMware is the blue 600-pound gorilla in the data center. If you have any exposure
to virtualization in a corporate setting, then the odds are that you have worked
extensively with VMware's product line.

Since early 2000s, VMware has had an ever-increasing presence in the data center,
which started initially as a way to deliver more computing power in the same
space through server consolidation. Then, VMware continued to grow as a way
to provide faster server provisioning to meet the ever-increasing demands for
rapid deployment.

Provisioning in the Traditional Data Center

[104]

And now, VMware is the fast, fault-tolerant, and highly available on-site data center
cloud provider. Regardless of the reasons, VMware virtualization environments are
here to stay in our data centers (at least in the short term).

Because of this, you will need to be able to leverage Chef to manage the
configuration of all VMware virtual machines.

Since VMware deployments are such a common part of the traditional data center,
I am not going to take you through vSphere environment deployment. If for some
reason, you do not already have access to a vSphere environment, you can deploy a
"lab in a box" using VMware workstation or fusion. There are many guides available
on the Internet that can detail the requirements and steps needed to set up your
lab. For example, there is a fairly complete guide on the EnterpriseDaddy website,
and the link is http://www.enterprisedaddy.com/building-a-home-lab-for-
vmware-vsphere-6-0/. You can download a PDF of their guide or review the steps
in the pages of their blog.

Let's proceed now with the expectation that you have access to a vSphere
environment or that you've created your own vSphere lab to work with. There
are many ways to leverage Chef in the VMware-centric data center environment.
Starting with just post-provisioning customization, the knife command will
very effectively integrate with a VM previously provisioned in any number of
ways, allowing the DevOps person to manage the configuration and application
deployment on their VMs with relative ease. You can bootstrap a VM with knife,
installing the chef-client and applying any desired run lists or perhaps, with the new
feature, a policy.

But if you want to provision your VMs with Chef, there are many ways
to do that. You can use Chef to work directly with ESX hosts using the
knife-esx plugin. With this plugin, you can clone, bootstrap, and manage
virtual machines on your ESX or ESXi hosts. Although this is very useful,
most large VMware deployments don't stop with the utilization of this
free version of VMware's hypervisor. Instead, they will opt for the more
complete solution, paying for the feature-rich vSphere product line.

So, another Chef to VMware provisioning option is to use the knife-vsphere
plugin and interact directly with the vSphere server. This plugin provides a lot of
functionality beyond just creating virtual machines. You are also able to handle some
management tasks, such as powering on or off your VMs and adding additional
drives by adding VMDKs. We will talk more about some of these features shortly.

http://www.enterprisedaddy.com/building-a-home-lab-for-vmware-vsphere-6-0/
http://www.enterprisedaddy.com/building-a-home-lab-for-vmware-vsphere-6-0/

Chapter 5

[105]

Then, there is a knife plugin for VMware's vCloud Director (vCD) product. It is
appropriately named knife-vcloud. If you have an active deployment of vCloud
Director, like my company does, then you might be very interested in the knife
plugin that lets you work with vCD. However, as the vCloud Director product line is
nearing the end of its life, I'll not be talking about using the knife-vcloud plugin here.
However, I will provide a link in the references section if you want to investigate it
on your own.

There's also integration between Chef and VMware vCloud Automation Center
(vCAC). This is a great area to familiarize yourself with because it is the direction
that VMware is moving its product line. There's a plugin named knife-vrealize. This
is in the same vein because VMware vRealize is the new product branding for vCAC.
There's also another, relatively new, VMware knife plugin named knife-vcair. This
plugin allows you to create, bootstrap, and manage instances in VMware's Hybrid
Service known as vCloud Air (vcair). I will provide references to these plugins
later, but due to space limitations, I will leave the discovery of these to the
reader's discretion.

Because this chapter focuses on the traditional data center where vSphere is certain
to be found, we will continue to look at the knife-vsphere plugin, starting with the
installation of the plugin itself.

Installing the knife-vsphere plugin
Like many other plugins we have installed so far, we will use Chef to install our new
knife gem. Here is the command:

chef gem install knife-vsphere

Once you've executed the gem install, you need to configure your knife.rb file.
So, edit your file with the following command:

vi ~/chef-repo/.chef/knife.rb

Add the following lines to your knife file, replacing the values with values
appropriate to your vSphere environment:

knife[:vsphere_host] = 'vcenter-hostname'
knife[:vsphere_user] = 'privileged username'
knife[:vsphere_pass] = 'your password'
knife[:vsphere_dc] = 'your-datacenter'

Provisioning in the Traditional Data Center

[106]

Here are the values I've used in my knife.rb file:

knife[:vsphere_host] = 'vcenter6.nat.local.net'
knife[:vsphere_user] = 'earlwaud'
knife[:vsphere_pass] = '1Password'
knife[:vsphere_dc] = 'SanDiego'

One big concern here is the public nature of your password. This is very undesirable
in a real production environment. So, the knife-vsphere plugin provides the ability
to use a base64 encoded version. To do this, you would need to prepend the tag
base64: to your password value string. That would look something like this:

knife[:vsphere_pass] = 'base64:Yk2nZuJwHp=='

An alternative to saving the password in the knife.rb file is to pass the credentials
on the command line when you execute your knife commands.

Also, depending on your environment, you may experience SSL connection issues
when you run your knife commands. This is usually due to certificate errors, and
you can configure your knife.rb file to just ignore these errors with the additional
setting as follows:

knife[:vsphere_insecure] = true

With these commands saved in our knife.rb file, we are ready to start provisioning
to our vSphere environment. Of course, you are going to need a template in your
vSphere environment, so let's check our knife.rb configuration with a quick query
to see the templates that are available to provision (or clone) from. The command
you will use for this check is as follows:

knife vsphere template list

Another query you will want to try is to list out the available datastores. Use the
following command:

knife vsphere datastore list

Similarly, you can get a list of several object types, such as hosts, vm, cluster,
folder, pool, and vlan by issuing a command in the same format:

knife vsphere hosts list

knife vsphere vm list

knife vsphere cluster list

knife vsphere vlan list

Chapter 5

[107]

Here is what running these commands looks like in my shiny new vSphere 6 lab:

Next, let's take a look at how we provision using the knife-vsphere plugin.

Provisioning VMs using the knife-vsphere
plugin
Using the knife-vsphere plugin to provision VMs into VMware Vsphere can range
from a fairly simple command to a very complex command.

Starting out with baby steps, here is an example of a simple knife command to clone
a VM template to create a new VM:

knife vsphere vm clone api_vm01 \

 --template centos6-template \

 --cspec centos6 \

 -V

Examining the preceding command, we start off, with the typical format for a knife
plugin command, using knife vsphere for the vsphere plugin. Then, we provide the
name of the VM we wish to create. In this case, name is api_vm01.

Provisioning in the Traditional Data Center

[108]

Next, we provide the parameter --template with a value of the name of the VM
template that we want to clone. This is typically one of your company's baseline
templates. In my case, it is a simple centos6 template I created for my lab.

Next, using the --cspec parameter, you tell knife the name of the customization
spec to use to customize the VM to your environment once it has been provisioned.
In my case, I have a Linux customization spec named "centos6".

Finally, we are using the -V parameter to tell knife to provide verbose output.

Remember that we can use a second V, as in -VV, to get very verbose, debug-level
output from the command. You might consider using the double V when you are
trying these commands out for the first few times.

Now, let's take our provisioning command up a notch. Let's do some additional VM
customization with our knife command. Here is another example of using the knife-
vsphere plugin to provision a VM:

knife vsphere vm clone api_vm02 \

 --template centos6-template \

 --cspec centos6 \

 --ccpu 1 \

 --cram 2 \

 --dest-folder Public \

 --datastore esxi6-01-datastore1 \

 --resource-pool Production \

 --annotation "This VM was provisioned using the knife-vsphere plugin.

The VM is owned by Earl Waud" \

 --start \

 -V

So, what is new here. We have added the parameter --ccpu. The value used for this
parameter tells knife to provision the VM with that number of vCPUs. Similarly, the
--cram parameter and value tells knife to provision the VM with that many GB of
RAM. The next new parameter is the --dest-folder. The value of this parameter
tells knife the name of the folder you want your VM placed in (visible in the
Inventory | VMs and Templates vCenter view). Remember that the folder has to
exist in vCenter for the knife command to execute successfully. If the folder does not
exist, your knife command will fail with a "no such folder" error. The next parameter
in our knife command is the --datastore. The value provided to this parameter
is the exact name of the datastore that you want to house the VMs files when it is
provisioned. If the datastore does not exist, the knife command will fail with a "no
such datastore" error.

Chapter 5

[109]

Next, we added the --resource-pool parameter and value. This parameter is
somewhat overloaded. At its most basic use, the value is the name of the vSphere
cluster that you want to provision into. But as the name would imply, you are
actually targeting the automatic default resource pool that exists in every cluster.
You can, as desired, specify the name of a resource pool that exists, and the VM
will be added to that resource pool.

Note that to target a resource pool, you need to provide the value in
the form of "Cluster/ResourcePool". For example, if you have a cluster
named Production and you have resource pools within that cluster
named Gold, Silver, and Bronze, and you want your new VM to go
into the Silver resource pool, the parameter value should be provided
as "Production/Silver".

Finally, we added the --annotation parameter and value. The value provided for
this parameter will be inserted into the Annotations section shown on the VM's
Summary view. Oh yeah, we also added the parameter --start, which as you might
expect, tells knife to have the VM started after the successful provision completes.

So, you may have noted that while we did provision a VM, and we did some pretty
awesome customizations, we didn't do anything Chef to our VM. So, let's Chef this
thing up. We are going to do another provision, and this time, we're going to add
two Chef-specific parameters, one parameter to tell Knife to bootstrap our VM and
the other parameter to provide the node name to our Chef Server to register the VM
under. We also need to add some authentication parameters. For this example, I am
using ssh user credentials, so the new knife command looks like this:

knife vsphere vm clone api_vm03 \

 --template "centos6-template" \

 --cspec centos6 \

 --ccpu 1 \

 --cram 2 \

 --dest-folder Public \

 --datastore esxi6-01-datastore1 \

 --resource-pool "Development" \

 --annotation "This VM is owned by Earl Waud." \

 --start \

 --node-name api_vm03 \

 --bootstrap \

 --bootstrap-protocol ssh \

Provisioning in the Traditional Data Center

[110]

 --ssh-user centos \
 --ssh-password password \
 --ssh-port 22 \
 --run-list "recipe[base]" \
 -V

This is not the best way to authenticate when cloning a VM with knife for several
reasons, not the least of which is that your password is right there for all to see.
But in addition, when Knife gets to the step where it uses sudo to gain root-level
privileges on your new VM, it may ask you for the sudo password (unless the user
is configured for NOPASSWD access in the sudoers file). This does not lend itself to
automation very well. This of course implies that the ssh user you provide on the
command line must be added to the sudoers file in the template for the chef-client
install to work.

Now we have a Knife command that will provision VM, customize that VM,
bootstrap the VM, and set the desired state to converge with the run list specified.
The VM will be registered with the Chef Server and can be managed from there.
Not too shabby.

Cleaning up our vSphere and Chef
environments
Perhaps we have been doing a lot of test provisions, or we have system that have
been around for a while that we need to retire to reclaim our compute resources.
For whatever the reason maybe, we need to get rid of some of our VMs. The
knife-vsphere plugin has been covered. We can control the power state of our
VMs using the state subcommand. For example, if we want to power off our
VM, we can issue a command in this format:

knife vsphere vm state <VM NAME> --state off

For example, if we want to power off the VM we provisioned previously, we can use
the command:

knife vsphere vm state api_vm03 –state off

This command will do a hard power off of the VM. If we want to be more respectful
of the guest OS running within VM, we can add the --shutdown parameter to
the command, and the knife plugin will execute a guest shutdown on the VM
instead of a hard power off. Once we are completely finished with our VM, we can
remove them from vCenter by issuing a delete command. The command takes the
following form:

knife vsphere vm delete <VM NAME>

Chapter 5

[111]

Big note! This command is destructive in that it not only removes the
VM from vCenter, but it does it with the "Delete from Disk" command,
resulting in the VM being removed from vCenter and all of the VM's files
get deleted from the datastore that contained them. They are gone, and
unless you have some external backup (such as NAS snapshots and many
more), they are gone for good. So, be careful with using this feature.

As an example of using this command, if we want to delete the VM we recently
provisioned, we can issue the following command:

knife vsphere vm delete api_vm03

There is a very useful parameter that we can apply with the delete subcommand.
It is --purge. When we add this parameter to the delete subcommand, the node
representing the VM in the Chef Server will also be deleted.

Using Chef with VMware and Vagrant
Even though this chapter focuses on using Chef in the traditional data center,
I want to take a few minutes to cover using Chef with either VMware Workstation or
VMware Fusion and a tool named Vagrant to provision development environments.
This is an important technology because it creates development environments that
are running the same Chef code that is used in production vSphere environments.
"Sounds good," you say; "How do I do it," you say, well let's take a look now.

Disclaimer
The Vagrant plugins for either VMware Workstation or VMware Fusion
are commercial (not open source) products and must be purchased from
HashiCorp. At the time of this writing, they are $79 per license. The licenses
are unique between Workstation and Fusion, so if you work using both
desktop hypervisors, you would need to purchase a separate license for
each. If you are in a corporate setting and developing Chef cookbooks and
your company is providing Workstation or Fusion software, then they
should willingly spring for the Vagrant plugin license. If you are not able
or not willing to purchase the license for the VMware desktop hypervisor,
then there is a popular alternative that does not require the purchase of a
commercial product. That alternative is using VirtualBox from Oracle as
the desktop hypervisor. The general functionality is the same, although the
templates used for provisioning will differ.

Provisioning in the Traditional Data Center

[112]

Once you have purchased your Vagrant license, you will get an e-mail from
HashiCorp that details instructions on downloading your plugin and license file.
Once you have them downloaded and have Vagrant installed (of course), you
can install and license your new plugin. The command will be slightly different
depending on if you are using Workstation or Fusion.

Here are the commands to install and license the Fusion plugin:

vagrant plugin install vagrant-vmware-fusion

vagrant plugin license vagrant-vmware-fusion license.lic

And here are the commands to install and license the Workstation plugin (it should
be run from a command prompt with Administrator privileges):

vagrant plugin install vagrant-vmware-workstation

vagrant plugin license vagrant-vmware-workstation license.lic

The license.lic parameter in these commands is the filename (and path) to the
downloaded plugin license key file.

You can confirm that the plugin and license were successfully deployed by issuing
the following command:

vagrant plugin list

We want to download some VM boxes to use in our development environment. You
can find many options in the Vagrant box share found at http://www.vagrantbox.
es. For my testing, I have downloaded a CentOS5.10 box. Here is the command:

vagrant box add centos-5.10 https://dl.dropboxusercontent.com/s/
r5okkx8330h3tzh/vagrant-centos-5.10-x86_64.box

This will download the VM box and deploy it in your VMware Workstation
environment. The box is placed into a common Vagrant cache area so that you won't
need to download the box file each time you deploy a new environment. You can see
a list of the boxes that have been downloaded and are stored in the cache with the
following command:

vagrant box list

Now we're ready to provision some VMs with our desktop hypervisor. For brevity,
in the remaining examples in this section, I will be using Workstation. The Fusion
commands are nearly identical.

http://www.vagrantbox.es
http://www.vagrantbox.es

Chapter 5

[113]

Now you need to initialize your new project. Issue the following command:

cd ~/chef-repo

vagrant init centos-5.10

Now we want to bring up our new Vagrant box with the following command:

vagrant up --provider vmware_workstation

You can see a list of the templates that have been downloaded and are stored in the
cache with the following command:

vagrant box list

We now have a new VM running in our VMware Workstation system. However,
here is another case where we haven't done anything with Chef yet. So, let's go
ahead and get rid of this environment with the following command:

vagrant destroy

This will power down the VM and then delete it from the workstation (and from the
hard drive).

OK, with our first test system deployed and cleaned up, we are ready to add some
Chef to this party. We need to edit the Vagrantfile that was created for us when
we ran the vagrant init command earlier. Initially, this default Vagrantfile will
comprise mostly comments. For the sake of space in this chapter, we will remove the
comments and only share the active content of the Vagrantfile. Here is what a simple
Vagrant file looks like:

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = '2'

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = 'centos-5.10'

 config.vm.network 'public_network'

 config.vm.hostname = 'vagrant-vm01'

 config.vm.provision :chef_client do |chef|
 chef.chef_server_url = \
 'https://chefserver/organizations/sdearl'
 chef.validation_client_name = 'sdearl-validator'
 chef.validation_key_path = \

Provisioning in the Traditional Data Center

[114]

 '/Users/earlwaud/chef-repo/.chef/sdearl-validator.pem'
 chef.run_list = 'recipe[base] '
 chef.validation_client_name = 'sdearl-validator'
 chef.environment = 'production'
 end
end

Now, when we issue the command vagrant up, the VM being provisioned will also
have the chef-client installed and will be registered with the Chef server, and will
converge with the run list of "recipe[base]".

Now that we are deploying VMs using Vagrant and registering them with our Chef
server, when we clean up those VMs, we also want to clean up the Chef-client and
node in our Chef Server. Of course, you can do this manually every time, but that is
not what we are all about. We want automation. Well, there's a Vagrant plugin for
that. It is called Butcher. What the plugin does for us is when we issue our vagrant
destroy commands, it will not only destroy the VM but will also reach out to the
Chef Server and do the necessary cleanup of the Node there as well. Installing the
plugin is easy. Just enter the following command:

vagrant plugin install vagrant-butcher

Once it is installed, there are a few additional configuration lines you will want to
add to your Vagrantfile. Here are the lines to add:

config.butcher.client_key = \
 '/Users/earlwaud/chef-repo/.vagrant/butcher/default-client.pem'
config.butcher.enabled = true
config.butcher.verify_ssl = false

Now when you execute your vagrant destroy commands, everything will be cleaned
up automatically. Great.

References
• You can read about the knife-vsphere plugin at https://github.com/chef-

partners/knife-vsphere.
• How to guide on setting up a vSphere 6 lab in VMware Workstation is at

http://www.enterprisedaddy.com/building-a-home-lab-for-vmware-
vsphere-6-0/.

• Learn more about the many Chef + VMware integrations at https://www.
chef.io/solutions/vmware/.

• You can read about the knife-vcair plugin at https://github.com/chef-
partners/knife-vcair.

https://github.com/chef-partners/knife-vsphere
https://github.com/chef-partners/knife-vsphere
http://www.enterprisedaddy.com/building-a-home-lab-for-vmware-vsphere-6-0/
http://www.enterprisedaddy.com/building-a-home-lab-for-vmware-vsphere-6-0/
https://www.chef.io/solutions/vmware/
https://www.chef.io/solutions/vmware/
https://github.com/chef-partners/knife-vcair
https://github.com/chef-partners/knife-vcair

Chapter 5

[115]

• If you are working directly with ESX instead of vSphere, you might like the
info for the knife-esx plugin, which can be found at https://github.com/
maintux/knife-esx.

• Finally, if you want to work with VMware Fusion or VMware Workstation,
you can integrate with Vagrant and the corresponding plugin. Learn more
at https://www.vagrantup.com and https://www.vagrantup.com/docs/
vmware/installation.html.

• You can find a variety of Vagrant base boxes at http://www.vagrantbox.es.
• If you are interested in making your own templates or boxes for Vagrant,

there is an excellent tutorial found at https://blog.engineyard.
com/2014/building-a-vagrant-box.

• You can read about the Vagrant Plugin Butcher at https://github.com/
cassianoleal/vagrant-butcher.

OpenStack provisioning
Using Chef to provision to OpenStack instances requires an OpenStack environment
to work with. This seems obvious and simple, but with OpenStack, nothing is really
obvious and simple. To emphasize this point, let me tell you a story.

My first exposure to OpenStack was in early 2014, when the company I was working
for hired a well-respected training company to come onsite and train our team in
the setup and use of OpenStack. It was a very expensive engagement, but we were
considering the possibility of reducing our reliance on VMware and were looking
at OpenStack as a path toward that end. The training was scheduled for full 5 days
for about a dozen people. The instructor arrived on Monday morning, and after
introductions, we got down to it. After 3 full days of "work," only two people in
the class had a working OpenStack environment. Even the instructor's example
environment was not functional. On that day, the instructor apologized and bowed
out, ending our training early. The costs were refunded by the training company,
and our team decided that, at least for the short term, OpenStack was not our path
to VMware independence.

OpenStack has come a long way since then, and it is much less troublesome to get
an environment up and running today. Still, it is a complex deployment and can
present a lot of challenges. So, before we dive into our use of Chef to provision
to OpenStack instances, let's take a look at the way we can set up a development
OpenStack environment.

https://github.com/maintux/knife-esx
https://github.com/maintux/knife-esx
https://www.vagrantup.com
https://www.vagrantup.com/docs/vmware/installation.html
https://www.vagrantup.com/docs/vmware/installation.html
http://www.vagrantbox.es
https://blog.engineyard.com/2014/building-a-vagrant-box
https://blog.engineyard.com/2014/building-a-vagrant-box
https://github.com/cassianoleal/vagrant-butcher
https://github.com/cassianoleal/vagrant-butcher

Provisioning in the Traditional Data Center

[116]

Know that the information in the section ahead was not easily obtained. Bits and
pieces had to be learned from all over the place, refined, and reworked to be able to
detail a way to deploy a fully functional DevStack OpenStack environment using
Neutron networking in a VMware Workstation VM. Even though this is a book on
Chef Provisioning, the following section alone is worth the price of the book!

To paraphrase a quote by Matt Damon's character in the move The Martian -- "I
had to science the crap out of this".

So, let's get to work…

Setting up a DevStack OpenStack all-in-one
environment
There is a community production of OpenStack named DevStack. This "tool" is not
something meant for production use and does not support all configuration and
platforms. However, it is a perfect tool for education and dev and test scenarios. You
can quickly set up a working OpenStack environment on a workstation or a beefy
laptop. So, if you want to use OpenStack for development, the DevStack production
is a good option for you. Let's walk through the setup so that if you don't already
have access to OpenStack, you can test out the Chef provisioning examples coming
up later in the chapter. Let's begin with the setup of the "host" of our DevStack.

Deploying the DevStack Host VM
You can set up DevStack directly on physical hardware, but I would highly
recommend that you use a desktop virtualization tool such as VMware Workstation
or Fusion. You probably already have it installed in your system. We are going to set
up a new VM for our DevStack and set up specific networking for that VM to assure
that everything works as desired.

I suggest you to download the Ubuntu 14.04 desktop 64-bit installer ISO for your
host VM. At the time of this writing, the current master repo for DevStack works
well with this version of Ubuntu. Plus, it is painless to install in the latest version
of VMware's desktop hypervisors, using the "Easy Install" feature, which answers
nearly all of the deployment questions automatically.

Chapter 5

[117]

Because we are in fact going to install all of our OpenStack environment into this
host VM, you will want to set the configuration a little larger than you might be used
to for normal desktop OS VMs. I would recommend that you give the VM at least
6 GB of memory. With only 4 GB, you will experience a small amount of memory
swapping just to stand up the OpenStack environment. It will work, but if you have
a system that has the RAM, go ahead and set the VM to 6 GB of memory or more.
Since my workstation has 32 GB of RAM, I am using 8 GB for my VM. Next, you
will want to give the VM at least 2 CPUs. This is the bare minimum. Since I have a
system that can handle it, I am setting my VMs CPU count to 4. Be sure to enable the
Virtualization options on the CPUs in Virtual Machine Settings, as shown in the
following image. Next, you should allow the VM to have some disk breathing room
by setting a large hard disk size. I went with a 180 GB drive.

Remember that the disk will not use the full allocated capacity set
here, but it will only use what is actually used by the VM.

I set my disk files to use a single file instead of breaking them into small chunks.

For now, in the networking option, select NAT for Network Adapter. We will talk
more about the networking shortly.

Next, I removed the USB controller and the printer as they are not necessary for the
DevStack host. I also turned off the accelerate 3D Graphics option on the Display.

Provisioning in the Traditional Data Center

[118]

Once you've set your Virtual Machine Settings, save them and power on the VM to
let it run the OS installer. Enter your name, username, and password and remember
them so you can log in once the VM is running. When the installation is complete,
log in and make the VM your own by setting your normal desktop things, such as
wallpaper, terminal settings, and running software updates (restart as necessary).

In addition, I would recommend installing the ntp, landscape-common (for the
landscape-sysinfo command), and htop (it's just a better top). Here is the command:

sudo apt-get install ntp landscape-common htop

You might want to consider taking a VM Snapshot at this point and labeling
something like Clean Ubuntu 14.04 Install.

Change host interface from DHCP to static.

We want to control the IP address assigned to our OpenStack host, so we need to
change the interface configuration from a DHCP autoassigned IP configuration
to one that is static. In my setup, the NAT networking interfaces are on the
192.168.157.0/24 subnet. So, here is what my updated networking will look like:

Chapter 5

[119]

Save your new settings and then, to make sure the settings take effect, open a
terminal window and restart the network manager with the following command:

sudo service network-manager restart

Now check your settings by with the ifconfig command and pinging some well-
known servers such as www.google.com.

Downloading and installing DevStack
Now that we have our host VM up and running, it is time to download and install
OpenStack DevStack. First things first, we need to install git. Open up a Terminal
session on your host VM and issue the following command:

sudo apt-get install git -y

This will install git so that we can use it to download the DevStack repo. I would
recommend doing an update next with the following command:

sudo apt-get update

Then, issue the following git command to clone the DevStack repo:

cd ~/

git clone https://git.openstack.org/openstack-dev/devstack –b stable/kilo

Although you can deploy the master branch for DevStack, or even the Liberty
branch, at the time of writing, the knife-openstack plugin has not been blessed
for anything later than the OpenStack stable kilo release. Therefore, I am working
with stable/kilo branch so that you will have a working example. The earlier stable
branches are probably ok, but I would recommend going with kilo since I know that
it works with the config file I am about to share.

Now that we have the DevStack installer bits, we can do the installation as soon as
we are ready.

Next, we want to create a configuration file to help DevStack configure OpenStack
correctly for our Host VM.

Create and edit a file named local.conf:

cd ~/

touch devstack/local.conf

vi devstack/local.conf

www.google.com

Provisioning in the Traditional Data Center

[120]

Enter the following data into the new file:

[[local|localrc]]

Passwords (modify to match your VM)
ADMIN_PASSWORD=password

DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
SERVICE_TOKEN=$ADMIN_PASSWORD

Branches
KEYSTONE_BRANCH=stable/kilo
NOVA_BRANCH=stable/kilo
NEUTRON_BRANCH=stable/kilo
SWIFT_BRANCH=stable/kilo
GLANCE_BRANCH=stable/kilo
CINDER_BRANCH=stable/kilo
HEAT_BRANCH=stable/kilo
TROVE_BRANCH=stable/kilo
HORIZON_BRANCH=stable/kilo
SAHARA_BRANCH=stable/kilo

Host VM IP address (replace with the IP of your VM)
HOST_IP=192.168.157.134
SERVICE_HOST=192.168.157.134
MYSQL_HOST=192.168.157.134
RABBIT_HOST=192.168.157.134
GLANCE_HOSTPORT=192.168.157.134:9292

domain (should be the same as chef server domain)
dhcp_domain=nat.local.net

Enable the console auth service
enable_service n-cauth

Disable tempest service to save stack time
disable_service tempest

Do not use Nova-Network
disable_service n-net

Enable Neutron

Chapter 5

[121]

ENABLED_SERVICES+=,q-svc,q-dhcp,q-meta,q-agt,q-l3

Neutron options
Q_USE_SECGROUP=True
Q_L3_ENABLED=True
Q_USE_PROVIDERNET_FOR_PUBLIC=True
Q_AGENT=linuxbridge

IP range for fixed and floating IP assignments
FIXED_RANGE="10.0.0.0/24"
PUBLIC_INTERFACE=eth0
FLOATING_RANGE="192.168.157.0/24"
Q_FLOATING_ALLOCATION_POOL=start=192.168.157.250,end=192.168.157.254
PUBLIC_NETWORK_GATEWAY="192.168.157.1"

Linuxbridge Settings
LB_PHYSICAL_INTERFACE=eth0
LB_INTERFACE_MAPPINGS=default:eth0
PUBLIC_PHYSICAL_NETWORK=default

Enable Logging
LOGFILE=/opt/stack/logs/stack.sh.log
VERBOSE=True
LOG_COLOR=True
SCREEN_LOGDIR=/opt/stack/logs

You will need to make a few changes to reflect your installation.

First, change the ADMIN_PASSWORD value to the password you use for your login
account on the Host VM.

Then, replace all of the 192.168.157.134 values with the IP address you are using for
the Host VM.

Then, set the dhcp_domain value to the same domain that your Chef Server belongs
to. This value will be to domain that provisioned instances belong to. If they do not
match the domain of your Chef Server, they will not be able to register with the
Chef Server.

Then, replace the FLOATING_RANGE and Q_FLOATING_ALLOCATION_POOL values with
values in the same subnet as your Host VM.

Finally, replace the PUBLIC_NETWORK_GATEWAY value with the gateway address of
your NAT network.

Provisioning in the Traditional Data Center

[122]

Now save the file with all the changes, and you are ready to stack your DevStack.

Don't use root to run DevStack
An important note here is that you do not want to run DevStack
as root. The web page documentation suggests you to use a script
provided in the repo to create a "stack" user. I have found that there
are permission issues that can get introduced if you do that. So, I
recommend that you use your own user account to run DevStack,
and don't bother with the creation of a specialized "stack" user.

Keep your network active during the stacking of DevStack. When you are "stacking,"
there is a lot of dependency on the eth0 interface of the Host VM to stay active.
I've found that depending on your system's connection, the eth0 interface can
temporarily lose connectivity with the NAT network. I've found that if you open
another terminal window and start up a continuous ping of the host computer's IP
address that the stack is much more likely to run to completion. This might just be
a quirk of my systems, but I've found that it really is does the trick for me. Once the
stack is up and running, you can stop the ping.

Ok, we have our second terminal window open and pinging our VMs host IP
address, so we are ready to install and start our OpenStack environment. Change
into the devstack folder and launch DevStack with the following commands:

cd devstack

./stack.sh

This will take a while, depending on your system's horsepower and your network
bandwidth. It may be a good time to go get a coffee, grab some lunch, or take a
nap. Naps are nice. Expect about 30 minutes, give or take, for the stack command
to complete.

You will see a lot of messages across the screen, but if everything goes according
to plan, you will get a "DevStack Components Timed" message that will look
something like this:

Chapter 5

[123]

You can now open up your browser and enter the Horizon URL shown in your stack.
sh output and log into your OpenStack environment. However, before you get too
far, I would suggest you to take another snapshot of your VM as a safety net.

Downloading the demo project rc file and
applying it
We now have a working OpenStack environment, but there is one more
thing we want to do. Since this is a test tool and we are going to want to make
testing easy, let's configure the system to permit all ping and ssh traffic; so when
we use commands to access the instances we are going to provision, we will have
no surprises.

The first step will be to log in to our environment, so open up a browser on your
DevStack VM and log in as admin. For me, the URL is http://192.168.157.134/.
Use the user name admin and the password that you used in the local.conf file
described in the preceding section. For me, that was password.

Now make sure that you are in the demo project space by selecting demo in the
projects drop-down menu near the top-left part of the web page. Next, using the
menu accordion on the left, select the option Project, then Compute, and Access &
Security. Now in the Access & Security view, select the tab for API Access. Press the
Download OpenStack RC File button to download the rc file. Save the file to your
DevStack Host VM.

Adding the security rules to allow ping and
ssh traffic
Now we have the rc file to configure the environment in order to add our security
rules. Open up a terminal window and, assuming that you saved the rc file in your
Downloads folder, issue the following command:

source ~/Downloads/demo-openrc.sh

You will be prompted for your password. Again, enter the password you used
in the local.conf file (the same one shown at the end of your successful run of
./stack.sh).

Shortly, you will be entering two commands, one for the ICMP protocol for ping,
and the other for tcp protocol on port 22 for the ssh commands.

Provisioning in the Traditional Data Center

[124]

The two commands will be in this format:

neutron security-group-rule-create \

 <SECURITY GROUP ID> \

 --direction ingress --ethertype IPv4 --protocol icmp \

 --remote-ip-prefix 0.0.0.0/0

neutron security-group-rule-create \

 <SECURITY GROUP ID> \

 --direction ingress --ethertype IPv4 --protocol tcp \

 --port-range-min 22 --port-range-max 22 \

 --remote-ip-prefix 0.0.0.0/0

However, you'll first need to get the <SECURITY GROUP ID> value for your
DevStack's default security group to use in the commands. To get the security
group ID, you will issue the nova secgroup-list command as follows:

nova secgroup-list

Here is the results from my execution of these commands as an example:

earlwaud@ubuntu:~$ source ~/Downloads/demo-openrc.sh

Please enter your OpenStack Password:

earlwaud@ubuntu:~$

earlwaud@ubuntu:~$ nova secgroup-list

+--------------------------------------+---------+----------------------
--+

| Id | Name | Description
|

+--------------------------------------+---------+----------------------
--+

| a209661a-cb15-4cc7-b42f-45a5c507aba0 | default | Default security group
|

+--------------------------------------+---------+----------------------
--+

earlwaud@ubuntu:~$

earlwaud@ubuntu:~$ neutron security-group-rule-create \

> a209661a-cb15-4cc7-b42f-45a5c507aba0 \

> --direction ingress --ethertype IPv4 --protocol icmp \

> --remote-ip-prefix 0.0.0.0/0

Created a new security_group_rule:

Chapter 5

[125]

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| direction | ingress |

| ethertype | IPv4 |

| id | fabb4c57-b2c6-4661-a1a7-f7083b1d1743 |

| port_range_max | |

| port_range_min | |

| protocol | icmp |

| remote_group_id | |

| remote_ip_prefix | 0.0.0.0/0 |

| security_group_id | a209661a-cb15-4cc7-b42f-45a5c507aba0 |

| tenant_id | e2af8dbd4ae44ecf84b1f9b30ff1aad8 |

+-------------------+--------------------------------------+

earlwaud@ubuntu:~$

earlwaud@ubuntu:~$ neutron security-group-rule-create \

> a209661a-cb15-4cc7-b42f-45a5c507aba0 \

> --direction ingress --ethertype IPv4 --protocol tcp \

> --port-range-min 22 --port-range-max 22 \

> --remote-ip-prefix 0.0.0.0/0

Created a new security_group_rule:

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| direction | ingress |

| ethertype | IPv4 |

| id | 5dba1c6e-e57d-4739-82b2-5153270f033f |

| port_range_max | 22 |

| port_range_min | 22 |

| protocol | tcp |

| remote_group_id | |

| remote_ip_prefix | 0.0.0.0/0 |

| security_group_id | a209661a-cb15-4cc7-b42f-45a5c507aba0 |

| tenant_id | e2af8dbd4ae44ecf84b1f9b30ff1aad8 |

+-------------------+--------------------------------------+

earlwaud@ubuntu:~$

Provisioning in the Traditional Data Center

[126]

With these rules in place, all of the ICMP and TCP traffic on port 22 will past into
your provisioned instances. Your new DevStack OpenStack all-in-one system is now
ready to use for development and testing.

You will also want to provide a public DNS address for your private network so
that your provisioning VMs are able to resolve external host names. I am using a
local DNS address of 192.168.157.101 and a public DNS address of 8.8.8.8. So, the
command to do that is as follows:

neutron subnet-update private-subnet --dns-nameservers list=true
192.168.157.101 8.8.8.8

Since I was rebuilding my DevStack a lot during testing (and writing this book),
I created a small script to add rules. The script still needs to source your
demo_openrc.sh file, so it will ask for your password, but once that's done,
the script to create the security group rules and inject the public DNS server:

#!/bin/bash
#new_rules.sh

load the demo project access settings
source ~/Downloads/demo-openrc.sh

capture the ID for the "default" security group
ID="$(nova secgroup-list | grep default | awk -F"|" '{ print $2 }')"

add a rule for ping
neutron security-group-rule-create $ID \
 --direction ingress --ethertype IPv4 \
 --protocol icmp --remote-ip-prefix 0.0.0.0/0

add a rule for ssh
neutron security-group-rule-create $ID \
 --direction ingress --ethertype IPv4 \
 --protocol tcp --port-range-min 22 --port-range-max 22 \
 --remote-ip-prefix 0.0.0.0/0

add a rule for dns
neutron security-group-rule-create $ID \
 --direction ingress --ethertype IPv4 \
 --protocol tcp --port-range-min 53 --port-range-max 53 \
 --remote-ip-prefix 0.0.0.0/0

add a public DNS to the private instances
neutron subnet-update private-subnet --dns-nameservers list=true
192.167.157.101 8.8.8.8

Chapter 5

[127]

With that large task behind us, let's now return to our Chef workstation and do some
OpenStack provisioning.

Installing the knife OpenStack plugin
Now that we have a working OpenStack environment, there are some steps we need
to take on our Chef workstation to set up for provisioning into that environment. The
first of those steps is to install the knife-openstack gem. To accomplish this, back on
your Chef development workstation, change directories to your chef-repo folder
and issue the chef gem install command, like this:

cd ~/chef-repo

sudo chef gem install knife-openstack

This command will download and install the gem and make it ready and available
for our knife commands to use. There is still more setup work that we need to do;
therefore, we will set up some knife OpenStack-specific configuration so that knife
can communicate with our OpenStack environment.

We need some data from the OpenStack environment, and the best way to get it is
to log in and download it. So, on your Chef workstation, browse to the OpenStack
Horizon dashboard and log in. If you are using the DevStack environment that we
set up earlier, you will use the URL that you got from running stack.sh. In my case,
it is http://192.168.157.134/. You will log in with the admin credentials also
provided from running the stack.sh command.

Setting up the DevStack public key
We are going to create and download a security key pair to allow our knife bootstrap
commands to ssh into our instances without using username/password credentials.

So, once you log in to OpenStack, set your project to be "admin" by selecting admin
from the projects drop-down at the top of the web page. You should see the green
"switch to project "admin" successful" message, and your project label should now
display as admin.

Next, using the accordion menu on the left, select the Project top menu, and from
its submenu options, select Access & Security. Now in the Access & Security area,
select the tab for Key Pairs.

Provisioning in the Traditional Data Center

[128]

If you just deployed your DevStack, you probably don't have any existing key
pairs to use, so press the + Create Key Pair button to create you first one. Give it a
significant Key Pair Name, then press the Create Key Pair button. I named my key
pair admin since I will be working with the admin project and login credentials.
Creating the key pair will initiate a download of the public key file. If it does not,
be sure to download the key before moving away from the new key pair page. It is
important to remember the name you use to create the key pair as it will be vital to
the successful use of our provisioning with Chef, (and it is the name given to the
public key file).

Now copy the public key file to a location you can access easily from your chef
repo. For simplicity of my examples, I am copying the public key file to my
chef-repo folder.

cp ~/Downloads/admin.pem ~/chef-repo/

One important tip to remember is that public key files need to be secure,
and most applications won't use them unless the permissions are tight.

So, the next step will be to make sure to tighten the permissions on the public key
file. Issuing the following command will take care of this step:

chmod 400 ~/chef-repo/admin.pem

The public key is now ready to use in our chef OpenStack provisioning. But before
we can start using it, we need to poke some holes in our OpenStack firewall.

Allocating some floating IP addresses to the
project
We worked very hard to create an OpenStack environment that allows us to use the
knife-openstack plugin to allocate floating IP addresses, so we might as well add
some to our project so that we can allocate them when the time comes.

Browse to your horizon dashboard and log in. Make sure that your project is
set to demo again (it should default to that because it was used previously, but
check to be sure). Select the Project menu from the menu accordion on the left and
then select Access & Security from the Project submenu options. Now, select the
Floating IP tab.

Click on the Allocate Floating IP Address button and add an IP to the public group.
Repeat this process a few times to give us a few floating IPs to work with.

Chapter 5

[129]

These public IP addresses will be assigned to the OpenStack instances to allow a
route to access the private subnet addresses that are assigned to the instances during
provisioning. The floating IP will be used by knife to install the chef-client and to
execute the chef-client run that will register the node with the Chef Server. Apply
the configuration settings based on the run list used.

Configuring the knife-openstack plugin knife
settings
Do you remember the knife.rb file we configured in Chapter 2, Knife Tooling
and Plugins? Well, we are going to update it now to include the settings for the
knife-openstack plugin. Once again, we need information from OpenStack,
and the best way to get it is to log in and collect it.

Once more, browse to your horizon dashboard and log in. Again, make sure that
your project is set to admin. Again, select the Project menu from the menu accordion
on the left, and select Access & Security from the Project submenu options. This
time, in the Access & Security view, select the API Access tab.

Once there, you are going to want to view the credentials needed for the API
access. As you probably have already figured out, you can view them by clicking
on the button marked + View Credentials. Here is what my API access credentials
look like:

Provisioning in the Traditional Data Center

[130]

You will want to capture the values shown in the User Credentials dialog as we are
going to need them for our knife.rb file. Once you have copied the values, you will
want to edit your knife.rb file:

cd ~/chef-repo

vi .chef/knife.rb

Go to the end of the file and add the following values, replacing the Project ID and
Authentication URL values with the data from your User Credentials dialog. Here
are my entries:

knife[:openstack_auth_url] = 'http://192.168.157.134:5000/v2.0/tokens'
knife[:openstack_username] = 'admin'
knife[:openstack_password] = 'password'
knife[:openstack_tenant] = 'demo'
knife[:openstack_tenant_id] = 'ae3bbe1e367f44189424511bd8c123a0'
knife[:openstack_region] = 'RegionOne'

Notice that the openstack_auth_url value has an extra /tokens string at the end
that is not shown in the User Credentials dialog. Make sure that you add it to your
knife.rb file.

Note that each OpenStack entry should be on its own, single line
in the knife.rb file. The code shown above may appear to have
some lines split into two. The only other comment on these lines
is the one for the OpenStack region. This is the default value used
for my DevStack environment. It will be the same default value for
your environment too. Now, save your changes, so we can test our
knife-openstack plugin integration.

Here, for reference, is the full knife.rb file that contains settings for knife, the editor
integration, the ec2 plugin, and the OpenStack plugin:

See https://docs.getchef.com/config_rb_knife.html for more
information on knife configuration options

current_dir = File.dirname(__FILE__)
log_level :info
log_location STDOUT
node_name 'earlwaud'
client_key "#{current_dir}/earlwaud.pem"
validation_client_name 'sdearl-validator'
validation_key "#{current_dir}/sdearl-validator.pem"
chef_server_url 'https://chefserver/organizations/sdearl'
cookbook_path ["#{current_dir}/../cookbooks"]

Chapter 5

[131]

#ssl_verify_mode :verify_none
knife[:editor] = '/Applications/Sublime\ Text.app/Contents/
SharedSupport/bin/subl -w'
knife[:aws_credential_file] = '/Users/earlwaud/.aws/credential_file'

#knife-vsphere
knife[:vsphere_host] = 'vcenter6.nat.local.net'
knife[:vsphere_user] = 'earlwaud'
knife[:vsphere_pass] = '1Password'
knife[:vsphere_dc] = 'SanDiego'
knife[:vsphere_insecure] = true

#knife-openstack
knife[:openstack_auth_url] = 'http://192.168.157.134:5000/v2.0/tokens'
knife[:openstack_username] = 'admin'
knife[:openstack_password] = 'password'
knife[:openstack_tenant] = 'demo'
knife[:opnestack_tenant_id] = '181735be7b8a4a0c80c68200dffabe77'
knife[:openstack_region] = 'RegionOne'
knife[:openstack_ssh_key_id] = 'admin'

Add knife openstack server create parameters to your knife.rb file.
You may note the openstack_ssh_key_id value shown in this listing.
I've added it to my knife.rb file so that I can avoid adding it to every
server create command. I'll include it in the upcoming example, but
know that you can add other OpenStack parameters to your knife.rb
file to shorten your knife commands.

With our updated knife.rb file, we should be able to successfully communicate
with our OpenStack environment using knife. We can test this integration easily
with the following commands:

cd ~/chef-repo

knife openstack server list

If your configuration is correct, issuing the server list command shown earlier will
return a single header line of information. It is only showing a header line because
we haven't deployed any instances yet. Another command you might want to try at
this point is the image list command. We are going to need the image information
when we try to provision an instance. Give this a try now:

knife openstack image list

Provisioning in the Traditional Data Center

[132]

You should get back a list of the default images in your OpenStack environment.
In my case, issuing that command looks like this:

Earls-Mac:chef-repo earlwaud$ sudo knife openstack image list

Name ID
Snapshot

cirros-0.3.4-x86_64-uec 84dff654-7f0d-45c8-a20b-b08c0ef39fd1 no

cirros-0.3.4-x86_64-uec-ramdisk d03ec228-a5c9-4200-8058-3bde074c67a1 no

Let's get a better option for our knife-openstack plugin testing.

Adding a CentOS instance image to provision
The default deployment of DevStack detailed earlier comes with some sample cirros
images to test and validate the OpenStack deployment. Those images are listed in the
output example from the previous section. For our use, we want to deploy a more
production-like image. For the examples in the rest of this chapter, I am going to use
a CentOS image for provisioning OpenStack instances.

You can obtain the same image by visiting the official Get Images OpenStack page at
this URL: http://docs.openstack.org/image-guide/obtain-images.html. Near
the top of the page, you will find the Official CentOS 6 Images link. Clicking that
link will take you to a list of CentOS 6 images you can download. I'll use the CentOS
image for the rest of the testing in this chapter. Click on the link for that image and
download it to your Chef workstation. The exact name of the image I downloaded
for the examples is as follows:

CentOS-6-x86_64-GenericCloud-1508.qcow2

Once it has been downloaded, you can log in to your OpenStack environment and
add the image to the list of available images. Make sure that you are in the demo
project, then using the menu accordion on the left, select Project | Compute |
Images. Now press the + Create Image button to create our new centos6 image.
A dialog window will open up, and you can populate the inputs as follows:

http://docs.openstack.org/image-guide/obtain-images.html

Chapter 5

[133]

Leave all of the other inputs blank. Also, since this is an image in the demo project,
and we will provision into the demo project, you don't need to check the Public
check-box, but if you want this image to be available to any other projects, check
the public check-box. Now click on the Create Image button, and we are ready to
provision an OpenStack instance with Chef. Let's give it a try.

Provisioning a new instance
Now that we finally have everything configured for OpenStack provisioning, let's
see what our first knife OpenStack provisioning command will look like. Here is a
command that I used to provision a new OpenStack instance (and deploy chef-client
onto to it and so on):

knife openstack server create \

--availability-zone "nova" \

--image "centos6" \

--flavor "m1.small" \

--sudo \

Provisioning in the Traditional Data Center

[134]

--bootstrap-protocol ssh \

--ssh-user "centos" \

--identity-file "/Users/earlwaud/chef-repo/admin.pem" \

--openstack-ssh-key-id admin \

--openstack-floating-ip \

--run-list "recipe[base]" \

--node-name api_vm01 \

-V

There are a lot of parameters in that command, so let's talk about each one. By the
way, if you want to see the full list of parameters for this create command, ask for
help with this command:

knife openstack server create --help

Ok, so here is what's going on:

• knife openstack server create: This is telling knife to use the newly
installed openstack plugin and to issue a create server command. The server
create command will talk to OpenStack, and using the API information we
added to the .chef file, will execute a "Launch Instance" command. Several
of the parameters in our knife command are used to provide the inputs for
the launch instance command.

• availability-zone "nova": This parameter tells OpenStack that we want
our instance to go into the "nova" zone. In our dev environment, we only
have the single zone, but if this were a production deployment, we would
have multiple zones, which would provide our physical fault isolation.
The objective would be to deploy redundant instances in different zones to
provide protection against physical failure of the hosting resources.

• image "centos6": This is the name of the image from which we want to
build our instance. This is the image we installed in the earlier section.

• flavor "m1.small": This tells OpenStack what resources we want our
instance to have. This sets the number of vCPUs, the amount of memory,
the disk size, and so on. The configured "Flavors" can be found in your
OpenStack dashboard in the Admin accordion menu on the left-hand side.

• Sudo: This tells knife to execute the node bootstrap using sudo.
• bootstrap-protocol ssh: This instructs the knife command to use ssh to

connect to the new instance when it bootstraps the node.

Chapter 5

[135]

• ssh-user "centos": This is the username to use when executing the ssh
command for bootstrapping the node. All of the images provided on the
OpenStack image pages use an OS distro-related user name. For CentOS
images, the user name is centos, for Ubuntu images, it is ubuntu, and for
the cirros images, the username is cirros.

• identity-file "/Users/earlwaud/chef-repo/admin.pem": This
parameter is providing the location on your Chef workstation to the key file
that will be used for authentication during the connection of the ssh session.

• openstack-ssh-key-id admin: This parameter tells OpenStack the name
of the key pair to use when deploying the instance thus providing the access
via key authentication in the ssh command. (There is no password access
provided for the OpenStack instances deployed.)

• openstack-floating-ip: This parameter is telling OpenStack to associate
one of the allocated floating IP addresses to the provisioned instance. This
IP address will provide the public access to the node. It is an address on the
public network interface. In our environment, the instance is provisioned
with an IP address in the 10.0.0.x subnet on a private network interface.
The floating IP is created in the public subnet (for our example, that is in
192.168.157.250 - 192.168.157.254). OpenStack is configured to with a virtual
router to pass traffic between the private and public networks.

• run-list "recipe[base]": This parameter is telling knife to use the run list
"base" when it does the initial bootstrap chef-client run.

• node-name api_vm01: This parameter is telling OpenStack to name the new
instance api_vm01. This will also be the name of the node on the Chef Server.

• V: Finally, this parameter is telling the knife command to provide verbose
debugging output during the execution of the command.

Note that it is the only parameter we used that has a single
dash. You can increase the level of output to debug by
adding a second V, making the parameter -VV.

Here is a look at the command with its output:

knife openstack server create \

> --availability-zone "nova" \

> --image "centos6" \

> --flavor "m1.small" \

> --sudo \

Provisioning in the Traditional Data Center

[136]

> --bootstrap-protocol ssh \

> --ssh-user "centos" \

> --identity-file "/Users/earlwaud/chef-repo/admin.pem" \

> --openstack-ssh-key-id admin \

> --openstack-floating-ip \

> --run-list "recipe[base]" \

> --node-name api_vm01 \

> -V

INFO: Using configuration from /Users/earlwaud/chef-repo/.chef/knife.rb

Waiting for server [wait time = 600]....

Instance ID af367e7f-689a-4c1e-b086-da07da75e03b

Name api_vm01

Private IP 10.0.0.12

Flavor 2

Image 2135dc5e-9c5a-473d-ace4-f1477a076836

Keypair admin

State ACTIVE

Availability Zone nova

Private IP Address: 10.0.0.12

[fog][WARNING] Unrecognized arguments: openstack_identity_endpoint

Floating IP Address: 192.168.157.252

Private IP Address: 10.0.0.12

Bootstrapping the server by using bootstrap_protocol: ssh and image_os_
type: linux

Waiting for sshd to host (192.168.157.252)..........done

Doing old-style registration with the validation key at /Users/earlwaud/
chef-repo/.chef/sdearl-validator.pem...

Delete your validation key in order to use your user credentials instead

Connecting to 192.168.157.252

192.168.157.252 -----> Installing Chef Omnibus (-v 12)

192.168.157.252 downloading https://www.opscode.com/chef/install.sh

. . .(truncated). . .

Chapter 5

[137]

There you have it. You can now provision new OpenStack instances using the
knife-openstack plugin. Go forth and provision!

References
• Learn more about DevStack at this link http://docs.openstack.org/

developer/devstack/.
• Download the Ubuntu Desktop install bits at http://www.ubuntu.com/

download/desktop.
• Follow the knife-openstack plugin repo at https://github.com/chef/

knife-openstack.
• Follow the status of the "Forbidden error" at https://bugs.launchpad.

net/devstack/+bug/1243075.
• Download your OpenStack instance images from http://docs.openstack.

org/image-guide/obtain-images.html.
• Read about the OpenStack configuration input settings at http://docs.

openstack.org/developer/devstack/configuration.html.
• There is a nice OpenStack command cheat sheet http://docs.openstack.

org/user-guide/cli_cheat_sheet.html.

Network automation
The Software-defined Networking (SDN) technology is still in its infancy. Since it is
still evolving, it means different things to different people. It is like what the idea of
Cloud Computing used to be; in the past, if you asked several different people what
Cloud Computing means, you would have received several very different answers.
Now, we have refined the definition of Cloud Computing and developed the specific
technologies of Platform as a Service (Paas), Infrastructure as a Service (IaaS), and
Software as a Service (SaaS).

Like Cloud Computing, SDN comprises many different technologies such as
OpenFlow, Virtual Switching, and Data Center Network Fabrics. Because of this,
there is no single answer to the question "What is Network Automation?". Every
company has a unique network configuration (although with common elements), so
every company will have a different need for their network automation. In fact, with
the proper attention, this topic could be made into its own, thick, book.

http://docs.openstack.org/developer/devstack/
http://docs.openstack.org/developer/devstack/
http://www.ubuntu.com/download/desktop
http://www.ubuntu.com/download/desktop
https://github.com/chef/knife-openstack
https://github.com/chef/knife-openstack
https://bugs.launchpad.net/devstack/+bug/1243075
https://bugs.launchpad.net/devstack/+bug/1243075
http://docs.openstack.org/image-guide/obtain-images.html
http://docs.openstack.org/image-guide/obtain-images.html
http://docs.openstack.org/developer/devstack/configuration.html
http://docs.openstack.org/developer/devstack/configuration.html
http://docs.openstack.org/user-guide/cli_cheat_sheet.html
http://docs.openstack.org/user-guide/cli_cheat_sheet.html

Provisioning in the Traditional Data Center

[138]

So what can we cover in a few pages that will be valuable to the DevOps, or in this
case the NetOps engineer? Let's work from Chef.io's point of view. They consider
network devices as any other node that can be managed. Here is how Chef.io
describes it:

OK, so let's take a look at how we turn the configuration of some of the more
common data center elements into code with Chef. We will start with Juniper
devices. Then, we'll explore Cisco devices, and finally, we'll learn about using
Chef with F5 LTMs. Let's begin.

Automating juniper devices
As an example, let's look at how to manage a common data center switch from
Juniper, the QFX5100 switch. This switch supports virtualized network environments
so it will stand as a good representation for our purposes. If you are using the Junos
Enhanced Automation software, the image comes with a Chef agent preinstalled. It is
a ruby program that uses the NETCONF libraries.

The QFX5100 switch can be treated as a node for the Chef Server to manage. And
with the built-in chef-client, we can converge the switch to our desired state. The first
step is to register the node with the Chef Server. There is a specific bootstrap process
to do this registration for us. You will need a specific bootstrap file for this process.
You can use wget to download the bootstrap file with the following command:

wget https://github.com/opscode/junos-chef/blob/master/bootstrap/junos-
minimal.erb

Once you have the bootstrap file, you will execute the knife bootstrap command.
It will take the following format:

knife bootstrap <SWITCH IP ADDRESS> --template_file junos-minimal.erb -x
root

For example, if the IP address of your switch is 172.0.0.10, you would use
the command:

knife bootstrap 172.0.0.1 --template_file junos-minimal.erb -x root

Chapter 5

[139]

You will be prompted for the root password, and when entered, the node will be
bootstrapped and registered with the Chef Server. OK, now we have a new node,
and we want to configure it for our environment. We are going to employ the
cookbook netdev to handle the configuration of our switch. We need to add the
cookbook to our repo. You can do this with the following commands:

knife cookbook site download netdev

tar zxvf ./netdev-2.0.0.tar.gz -C cookbooks

mkdir ~/chef-repo/cookbooks/netdev/recipes

Now you need to create the recipes you will use to configure the switch. Here are
some example recipes. Create a create_vlan recipe, as follows:

vi ~/chef-repo/cookbooks/netdev/recipes/create_vlan.rb

netdev_vlan 'public' do
 vlan_id 100
 description 'public'
 action :create
end
netdev_vlan 'nonpublic' do
 vlan_id 200
 description 'nonpublic'
 action :create
end

Create a create_access recipe , as follows:

vi ~/chef-repo/cookbooks/netdev/recipes/create_access.rb

netdev_interface 'xe-0/0/14' do
 description 'access interface 14'
 action :create
end
netdev_interface 'xe-0/0/15' do
 description 'access interface 15'
 action :create
end

netdev_l2_interface 'xe-0/0/14' do
 description 'belongs to public VLAN'
 untagged_vlan 'public'
 vlan_tagging false
 action :create
end

Provisioning in the Traditional Data Center

[140]

netdev_l2_interface 'xe-0/0/15' do
 description 'belongs to nonpublic VLAN'
 untagged_vlan 'nonpublic'
 vlan_tagging false
 action :create
end

Create a create_uplink recipe, as follows:

vi ~/chef-repo/cookbooks/netdev/recipes/create_uplink.rb

netdev_l2_interface 'xe-0/0/10' do
 action :delete
end
netdev_l2_interface 'xe-0/0/11' do
 action :delete
end

netdev_lag 'ae0' do
 links ['xe-0/0/10', 'xe-0/0/11']
 minimum_links 1
 lacp 'active'
 action :create
end

netdev_l2_interface 'ae0' do
 description 'Uplink interface'
 tagged_vlans ['public', 'nonpublic']
 vlan_tagging true
 action :create
end

Now that you have the new recipes, you need to upload them to the Chef server with
the following commands:

cd ~/chef-repo

knife cookbook upload netdev

Now you need to update the Chef server run list for the node that represents the
switch. You can do this via the Chef server UI or using the knife node edit
command. Edit the run list to include the new recipes you created earlier.
If you are using the knife command, you would enter the following:

knife node edit qfx5100

"run_list": ["recipe[netdev::create_vlan]","recipe[netdev::create_
access]","recipe[netdev::create_uplink]"

Chapter 5

[141]

Next, we need to update the switch, running the chef-client to have the device's
configuration converged to our desired state. To do this, you need to log in to the
switch and run the ruby command to execute the chef-client. Here is the command:

/opt/sdk/chef/bin/ruby /opt/sdk/chef/bin/chef-client -c /var/db/chef/
client.rb

This will make the switch download the netdev cookbook and apply the recipes you
added to the node's run list. This is the similar process that you are used to doing
with your compute nodes, so it should seem very familiar now.

Be mindful of time drift
Although compute nodes are sensitive to small time differences between
their clock and that of the Chef server, this sensitivity is greater for
switches. It is vital that all elements are using NTP and are syncing to the
same source for their clocks. The slightest drift between the clocks on the
switches and the Chef server will result in failure to converge issues.

Now, let's take a look at some examples of automating Cisco systems.

Automating Cisco systems
In a way very similar to the automation of Juniper devices, Cisco has added Chef
support to their Cisco NX-OS. The installation of the chef-client can be done
manually or through automation. In the interest of space, I am going to review a
high-level automated method of installing the client. Cisco NX-OS supports three
environment types: bash-shell, guest-shell, and Open Agent Container (OAC).
The chef client can be run in any of the three but on in one at a time. I will
focus on guest-shell as it is a CentOS environment that is enabled by default
on most platforms.

Note that the automated Chef client installation is not currently available
when using the OAC environment, and if you wanted to use chef-client in
that environment, you would need to do a manual installation.

There are two gems needed for the chef-client installation: the chef-provisioning and
the chef-provisioning-ssh gems. The first one is installed when you install ChefDK,
and the second you will need to install yourself. Use the following commands:

cd ~/chef-repo

chef gem install chef-provisioning-ssh

Provisioning in the Traditional Data Center

[142]

Now on the Cisco device, you need to do some setup. Here are the steps:

Enter the guestshell environment using the 'guestshell' command

guestshell

If using the management interface you must enter the management
namespace

sudo su -

chvrf management

Set up hostname and DNS configuration

hostname n3k

echo 'n3k' > /etc/hostname

cat >> /etc/resolv.conf << EOF

nameserver 10.0.0.202

domain mycompany.com

search mycompany.com

EOF

configure terminal

 feature ssh

 username devops password password role network-admin

 username devops shelltype guestshell

end

Of course, you will need to adjust the values for nameserver, domain, search, and so
on to match your systems.

Now you need to create a Chef provisioning input file. We will go into detail on the
use of the Chef Provisioning feature in Chapter 8, Using Chef Provisioning. For now,
just create an input file named chef_provisioning.rb and add the following as the
contents of the file:

require 'chef/provisioning/ssh_driver'

with_driver 'ssh'

with_chef_server 'https://chefserver.example.com/organizations/chef',
 client_name: 'chefuser',
 signing_key_filename: '/etc/chef/chefuser.pem'

Chapter 5

[143]

with_machine_options transport_options: {
 ip_address: '10.100.100.1',
 username: 'devops',
 options: {
 # BASH-SHELL options - uncomment if installing to bash-shell
 # prefix: 'sudo ip netns exec management ',

 # GUESTSHELL options - uncomment if installing to guestshell
 prefix: '/isan/bin/guestshell sudo ip netns exec management ',
 scp_temp_dir: '/bootflash',
 },
 ssh_options: {
 password: 'password',
 },
}

machine "n3k_100_1.example.com" do
 action [:ready, :setup, :converge]
 # Copy the trusted certificate to the newly provisioned node
 file '/Users/earlwaud/chef-repo/.chef/trusted_certs/chefserver.crt'
 converge true
end

Again, you need to update the values to match your systems. Once you have done
this, save the file. Now run the chef-client command:

chef-client -z chef_provisioning.rb

This will install the chef-client into the guestshell environment of the Cisco device.
However, you may encounter one of the following errors:

Unable to Connect … or … 401 "Unauthorized"

In the first case, you may have a stale SSH key in your ~/.ssh/known_hosts file.
You can remove it with the ssh-keygen -R <hostname or IP> command and then
try again.

In the second case, you probably have a time sync issue between your system and
the Cisco system.

Make sure that clocks are in sync and try again.

Provisioning in the Traditional Data Center

[144]

Once the chef-client has been successfully installed into the guestshell environment
of the Cisco device, you can begin to build recipes with the Cisco cookbook.
Download and install the cookbook with these commands:

cd ~/chef-repo

knife cookbook site download cisco-cookbook

tar zxvf ./cisco-cookbook-1.1.2.tar.gz -C cookbooks

You are ready to create and edit recipes, upload them to the Chef server, and modify
the run list for the Cisco devices in the same way you did for the Juniper devices
described in the earlier section.

Now, let's take a look at automating F5 LTMs.

Automating F5 LTMs
There is an interesting article that discusses using Chef to automatically add web
servers to an F5 LTM. It was written several years ago, and while the description of
the process is accurate, the execution is no longer valid. We are going to re-engineer
the process so that we can add this ability to our own Web Server role.

First, we need to download the cookbook from the article. Visit the link https://
devcentral.f5.com/articles/automating-web-app-deployments-with-
opscode-chef-and-icontrol and find the download link titled f5-node-
initiator.tgz in the "installing the cookbook" section of the article. Click on the
link and download the tgz file, saving it into your ~/chef-repo folder. Now you
can review the article for the description of what and why, but ignore the how, it is
not relevant to today's versions of Chef. Here are the steps you need to set up and
use this cookbook:

Start by extracting the cookbook. Use these commands:

cd ~/chef-repo

tar zxvf ./f5-node-initiator.tgz -C cookbooks

Unfortunately, the cookbook has a metadata.rb file that is missing an attribute for
the cookbook name, which is required in current versions of chef. So, we need to edit
the metadata.rb file to add that attribute:

cd ~/chef-repo

vi ./cookbooks/f5-node-initiator/metadata.rb

https://devcentral.f5.com/articles/automating-web-app-deployments-with-opscode-chef-and-icontrol
https://devcentral.f5.com/articles/automating-web-app-deployments-with-opscode-chef-and-icontrol
https://devcentral.f5.com/articles/automating-web-app-deployments-with-opscode-chef-and-icontrol

Chapter 5

[145]

And a line at the top like this:

name 'f5-node-initiator'

Save the file. Now we need to upload the cookbook to our chef server. Use the
following commands:

cd ~/chef-repo

knife cookbook upload f5-node-initiator

You can confirm the cookbook is available on the chef server with the knife
cookbook list command. Now we need to create our web server role. Create or
edit your web_server.rb file accordingly:

cd ~/chef-repo

vi ./roles/web_server.rb

Update the file contents as follows:

name 'webserver'
description 'The Web Server Role'
run_list([
 'recipe[base] ',
 'recipe[apache2] ',
 'recipe[f5-node-initiator] '
])
default_attributes({
 'bigip' => {
 'address' => '10.0.0.245',
 'user' => 'admin',
 'pass' => 'password',
 'pool_name' => 'chef_test_http_pool'
 }
})
override_attributes({
 'base_name' => 'Earl Waud',
 'user_name' => 'Earl Waud',
})

Provisioning in the Traditional Data Center

[146]

Replace the address, user, pass, and pool_name values with values appropriate for
your environment. Save the file. Now we need to upload the role to our Chef server.
Issue the following commands to upload the role:

cd ~/chef-repo

knife role from file roles/web_server.rb

Next, we need to add the new role to our web server nodes. For example, if we have
a web server node named web01, we would issue the following commands:

cd ~/chef-repo

knife node run_list add web01 "role[webserver]"

The node web01 is now ready to re-run the chef-client and converge its configuration
to that of our new webserver role that includes the f5-node-initiator.

Chapter 5

[147]

References
• Check out the junos-chef repo for Juniper switch configuration with Chef at

https://github.com/Juniper/junos-chef.
• Learn about the Chef Junos integration at the Chef.io site at https://docs.

chef.io/junos.html.
• Read about the QFX5100 switches from Juniper at http://www.juniper.

net/us/en/products-services/switching/qfx-series/qfx5100/.
• There is the netdev repo on GitHub at https://github.com/chef-

partners/netdev.
• There is the Cisco cookbook repo on GitHub at https://github.com/

cisco/cisco-network-chef-cookbook?files=1.
• There is the manual chef-client installation instructions at https://github.

com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-
agent-install.md.

• There are the automated chef-client installation instructions at https://
github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/
README-chef-provisioning.md.

• Learn about the Chef to NX-OS integration at http://www.cisco.
com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/
programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_
Programmability_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_
Programmability_Guide_7x_chapter_01110.html.

• Read an excellent article on automating WebApp deployments with Chef
at https://devcentral.f5.com/articles/automating-web-app-
deployments-with-opscode-chef-and-icontrol.

• Take a deep look at the F5 Big IP cookbook that was released into open
source by Target: https://github.com/target/f5-bigip-cookbook.

• Download the F5 cookbook from the Chef supermarket at https://
supermarket.chef.io/cookbooks/f5/versions/0.2.4.

https://github.com/Juniper/junos-chef
https://docs.chef.io/junos.html
https://docs.chef.io/junos.html
http://www.juniper.net/us/en/products-services/switching/qfx-series/qfx5100/
http://www.juniper.net/us/en/products-services/switching/qfx-series/qfx5100/
https://github.com/chef-partners/netdev
https://github.com/chef-partners/netdev
https://github.com/cisco/cisco-network-chef-cookbook?files=1
https://github.com/cisco/cisco-network-chef-cookbook?files=1
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-chef-provisioning.md
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-chef-provisioning.md
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-chef-provisioning.md
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x_chapter_01110.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x_chapter_01110.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x_chapter_01110.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x_chapter_01110.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_7x_chapter_01110.html
https://devcentral.f5.com/articles/automating-web-app-deployments-with-opscode-chef-and-icontrol
https://devcentral.f5.com/articles/automating-web-app-deployments-with-opscode-chef-and-icontrol
https://github.com/target/f5-bigip-cookbook
https://supermarket.chef.io/cookbooks/f5/versions/0.2.4
https://supermarket.chef.io/cookbooks/f5/versions/0.2.4

Provisioning in the Traditional Data Center

[148]

Summary
In this chapter, we focused on provisioning in the traditional data center. With the
widespread use of VMware vSphere, it is appropriate that we started with using the
knife-vsphere plugin to deploy VMs into our vSphere environment. You learned
how to provision and manage vSphere VM's configuration with Chef using this
plugin. We also covered setting up a personal development environment using
VMware's desktop hypervisors and Vagrant. We also provided references for you
to do your own homework on several other VMware-related knife plugins, and
with the information you have learned so far, you should be able to figure out how
to make them work in your environment. Next, we took a look at provisioning
into OpenStack environments. With the strong growth of OpenStack deployments
and the ever-growing list of developers backing this technology, having a good
foundation for provisioning into OpenStack is vital. You definitely have that
knowledge now. And following the track of having a place for your development
work, you learned how to stand up your own OpenStack development environment.
Next, we took a dip into the waters of a NetOps engineer, exploring some areas for
network automation. What a journey! This chapter is so full of information that you
might have to read it twice!

However, if you are ready for more, then next up, we turn our attention to
the clouds with a look at provisioning in Amazon AWS and other cloud based
hosting providers.

[149]

Provisioning in the Cloud
This chapter will expand the previous chapter and explore the use of Chef for
deployment and configuration in the cloud. Much like VMware is the 600 pound
gorilla in the data center, Amazon is the 600 pound gorilla in the cloud. Amazon is
the first provider that comes to mind when people ask about the cloud, and it has the
biggest market share, at least so far. They currently host about 30 percent of cloud-
based systems, which is a larger percentage than the next three providers combined.
With that kind of dominance in the cloud market, you might ask why learn how
to provision to any other cloud provider? Well, because Microsoft and Google are
currently the fastest growing providers. Microsoft has already grabbed about 12
percent of the market share and is growing at a much faster rate than Amazon. And
not one to be out done, Google is not too far behind Microsoft. Let the cloud provider
wars begin! So, in this chapter, the reader will learn about provisioning to all three
of the top cloud providers. This will help them to manage hybrid solutions for scale
and high availability with whichever provider best meets their business needs. We'll
begin by expanding the work we did in Chapter 2, Knife Tooling and Plugins, with
provisioning EC2 instances. Then, you will learn how to leverage Chef to provision
into Windows Azure and into Google Cloud Platform. The chapter will end with a
look at using Chef to provision containers using Docker.

"I like rice. Rice is great if you're hungry and want two thousand of something."

 – Mitch Hedberg

The following topics will be covered in this chapter:

• Provisioning AWS EC2 instances
• Provisioning Microsoft Azure instances
• Provisioning in the Google Cloud Platform
• Looking at an honorable mention – Linode
• Provisioning containers in Docker

Provisioning in the Cloud

[150]

Provisioning AWS EC2 instances
In Chapter 2, Knife Tooling and Plugins, you explored installing the knife-ec2 plugin
and learned the knife configuration settings required to provision AWS EC2
instances. Now you are going to expand on this base of knowledge and learn more
about AWS authentication. Then, we are going to see how easy it is to set up a Chef
Server in an EC2 instance.

Remember that you can set up an AWS account on Amazon
and use the service for free, as long as you stay within the
"Free Tier Eligible" guidelines. I will note where any of the
examples go outside of the free services.

Understanding EC2 authentication
As we saw in Chapter 2, Knife Tooling and Plugins, you need to configure knife to
allow it to use the EC2 plugin to create AWS EC2 instances. You can either add the
credentials directly to your knife.rb file, or better, create an AWS configuration file
with the account credentials in it and point your knife.rb file to that credentials file.
The contents of the credentials file will look something like this:

cat /Users/earlwaud/.aws/credential_file

[default]

aws_access_key_id = TR42UIIKKN73BSROPZGA

aws_secret_access_key = eZMk1OXH2Ish056IkH50fLg7TQ9U2pDHrOh9OUF9

Then, you will add the pointer to the credentials in your knife file with a line
like this:

knife[:aws_credential_file] = '/Users/earlwaud/.aws/credential_file'

Okay, we can create our EC2 instances with the knife-ec2 plugin. What else do
we need? There are two more authentication areas we need to explore: the first is
creating security key pairs, and the second is creating networking security groups.
Let's take a deeper look into these two topics.

Creating key pairs
Access to the EC2 instances is handled using public key cryptography that encrypts
and decrypts the login information. This method uses a public key to encrypt data
like passwords. Then, the private key can be used to decrypt that data. These public
and private key combinations are known as key pairs.

Chapter 6

[151]

To log in to an Amazon EC2 instance, you need to provide the private key. The
Linux-based instances are created without passwords, and the only access is via the
use of the key pairs. Windows-based instances also use key pairs. But for Windows,
you use the private key to obtain the administrator password, which can then be
used to access the instance via RDP.

You can create your key pairs through the Amazon user interface, or generate your
own key pairs, and upload the public key to Amazon where it can be injected into
your created instances. Here are the steps to creating your key pair using Amazon:

1. Browse the Amazon compute EC2 console and login.
2. Select the region that will use the key pair. For me, this is US West (Oregon).

It is important to remember that key pairs are only valid in
the region where they are created or uploaded.

3. Expand the NETWORK & SECURITY accordion in the navigation pane on
the left and select Key Pairs.

4. Click on the Create Key Pair button.
5. In the window that pops up, enter the name you want to use for your new

key pair and then click on the Create button.
6. The private key file will be downloaded automatically via your browser.

The filename will match the name you give the key pair and will have the
extension of .pem.

This is the only time you will be given the private key file.
Save it in a location that is persistent. I saved mine at the
same location as my AWS credentials file, which is at /
Users/earlwaud/.aws/credential_file. It is a real
big pain if you lose a private key and need to access an
instance that was created with the matching public key.
You can find documentation for dealing with this on the
Amazon site, but trust me, it's not fun. Keep your private
keys safe and accessible.

7. In most use cases, as the last step, you need to change the permission on the
private key file to be more restrictive. For example, to use the key with ssh,
you must lock down the access to it. Use the command chmod 400 ~/.aws/
us-west-oregon-earl01.pem.

Provisioning in the Cloud

[152]

If you are accessing EC2 instances using PuTTY on your Windows system, you
need to generate a private key file in a format that can be used by PuTTY. When
you install PuTTY, there is an additional tool named PuTTYgen that is installed as
well. PuTTYgen can be used to create an SSH-2 RSA version of your private key file,
which PuTTY can use to access your instances. If you've never done this before, you
can find the full instructions in the Amazon documentation. I will provide the direct
link to that document in the references section later. You're now ready to use key
pairs to create and access your new EC2 instances.

Creating security groups
Now, let's take a look at creating security groups. The EC2 security group is
essentially a firewall for your instances. Each instance you create needs to have one
or more security groups applied to provide the access rules for the instance. You can
create a security group that has many rules for inbound or outbound traffic, or you
can create multiple security groups where each has a specific rule for traffic, such as
a rule to allow ICMP traffic. This multiple security group method is a better choice,
allowing you to create protocol-specific security groups that can be applied on an as
needed basis. If your application needs SSL access, you can create a security group
for HTTPS and apply that group to your instance. Now it's very clear what traffic is
permitted in or out of your systems.

For the examples in this book, I am going to describe the steps to create and
configure a single security group with very open access. In a real production
application, you will want to configure your security groups with very specific and
limited access, allowing only the network traffic necessary to use your applications.
With that detail noted, here are the steps to create the new security group, which we
will use in the next section to deploy an EC2 instance for our new Chef Server.

1. Browse the Amazon compute EC2 console and login.
2. Select the region that will use the security group. For me, this is US West

(Oregon). As with key pairs, security groups are only valid in the region
where they are created.

3. Expand the NETWORK & SECURITY accordion in the navigation pane on
the left and select Security Groups.

4. Click on the Create Security Group button.
5. In the popup window, enter a name and description.
6. Click on the Add Rule button one or more times and create the rules for the

new group. In this security group, I added a rule for ICMP, SSH, HTTP,
and HTTPS.

7. Once all the rules have been added, click on the Create button to create the
new security group.

Chapter 6

[153]

Take a look at the security group I created for the example in this chapter:

You can see in the preceding image that I added four rules to my security group—
one to allow ping traffic, one to allow SSH traffic, and one each for HTTP and
HTTPS. Remember that it would be a better idea to create individual security groups
for each protocol and then add those groups to your instances only if that protocol
is needed for your application. Also note that I left the source of all these inbound
rules to be wide open, allowing access from any IP address. You really don't want to
do this for a production environment if you can avoid it. Of course, if the system is
hosting a public web server, you may need to have an open access rule for HTTP or
HTTPS, but you certainly wouldn't want to have SSH wide open like this.

Also, each security group has a default outbound rule that allows all network traffic
to flow out of the instance. This too can be narrowed to limit what can exit your
systems and should be modified to achieve a hardened environment.

Now that you have your AWS credentials setup to use knife to create EC2 instances
and you've created a key pair to use for accessing those instances, and you have
created your security group to control the network traffic to and from your instances,
let's create a new instance. This time, we are going to use knife, along with our
existing public Chef Server, to deploy and configure a new Chef Server in an
EC2 instance.

Provisioning in the Cloud

[154]

Installing Chef Server into an EC2 instance
There are two ways you can arrive at the destination of having your Chef Server
running in an EC2 instance. The first and easiest way is to just "purchase" a Chef
Server AMI from the AWS Marketplace. There are different levels of the Chef
Server AMIs based on the number of nodes that you plan to manage, starting at
25 nodes, all of which currently offer a 14-day free trial (which, by the way, is not
exactly free, you still pay for the AWS infrastructure charges, just not for the hourly
software charges). These Chef Server instances all come with an easy way to add
additional Chef.io offerings, such as Chef Analytics, Management Console, and Chef
Compliance, at an additional software cost, of course.

The second way, which is the way we are going to examine further, is to stand up the
Chef Server in an EC2 instance ourselves. We are going to download the chef-server
cookbook and its dependent cookbooks form the Chef marketplace. Then, we are
going to upload the cookbooks to our current publicly accessible Chef Server. Then,
we are going to use the knife-ec2 plugin to create our new instance and converge
its configuration to that of a Chef Server. Finally, we are going to use some of the
commands you learned in Chapter 1, Setting Up a Development Environment on Your
Workstation, to round out the setup of our Chef Server. This sounds like a lot to do,
but you'll see that it's not too bad. Let's start.

The first step is to download the chef-server cookbook and its dependencies. To do
this, we are going to issue the following commands:

cd ~/chef-repo

knife cookbook site install chef-server

This knife cookbook command will go out to the Chef supermarket and will
download the chef-server cookbook archive file. It will extract the contents of that
archive into our cookbooks folder and then delete the downloaded archive file. It will
then look at the dependencies for the chef-server cookbook, and in turn, download,
extract, and delete the archive for each of the dependent cookbooks. This process will
be repeated for each of the dependent cookbooks until all the cookbooks necessary to
use the chef-server cookbook have been added to our local repo.

Depending on the state of your repo, you may receive an error message telling you
that you need to commit your exiting changes before installing new cookbooks. If
you get this message, use the git add and git commit commands to "tidy up" your
local repo as needed and then run the knife cookbook command again.

Chapter 6

[155]

Now that we have the chef-server cookbook and all of its dependencies in our local
repo, we need to upload them into our publically accessible chef server. In my case,
I am using the free version of Chef Server available at http://manage.chef.io.
Yes, this is a kind of recursion—we are using a Chef Server to deploy a Chef server.
(I have a T-shirt that has a circle of text on the front that says "In order to understand
recursion, one must first understand recursion." It is my favorite T-shirt.). To upload
our cookbooks to the Chef Server, we will issue the following command:

cd ~/chef-repo

knife cookbook upload chef-server --include-dependencies

Now we are ready to create out new EC2 instance and converge it into a Chef
Server. If you haven't done so yet, install the knife-ec2 plugin now with the
following command:

chef gem install knife-ec2

Before we create our instance, let me point out that you cannot use the t2.micro
flavor for your Chef Server instance. Chef Server's minimum memory requirements
as stated in the Chef documentation are 4 GB. I have found that you can stand up a
Chef Server (for testing and dev) using only 2 GB, which is configured when you use
a t2.small flavor. The Chef Server cookbook will not converge successfully if you try
to use it in a 1 GB server, which is what you get when you use the t2.micro flavor.
So, t2.small is the smallest working environment flavor you have for testing this
out. This is of importance because the t2.small flavor is not "Free Tier Eligible", and
you will be incurring infrastructure charges when you deploy a t2.small instance.
With that advisory said, here is the knife-ec2 command I used for deploying the EC2
instance I'll use for the Chef Server:

cd ~/chef-repo
knife ec2 server create \
 --node-name ec2-chef-server \
 --groups=chef-provisioning \
 --region=us-west-2 \
 --availability-zone=us-west-2a \
 --image=ami-9abea4fb \
 --server-connect-attribute=public_ip_address \
 --flavor=t2.small \
 --ssh-user=ubuntu \
 --ssh-key=us-west-oregon-earl01 \
 --identity-file=/Users/earlwaud/.aws/us-west-oregon-earl01.pem \
 --run-list="recipe['chef-server']" \
 -V

http://manage.chef.io

Provisioning in the Cloud

[156]

This will take a little while to complete, but when it is done, the new EC2 instance
will be a registered node on your public-facing Chef Server, the chef-server cookbook
will have been installed, and the instance will be ready for you to ssh into, to finish
up the configuration. Of course, you could have added additional recipes to the
run-list and completed some or all of the next steps, but for the sake of space in this
chapter, I am going to just list out the steps manually a little later. Right now, let's
review the server create command we used to provision our Chef Server;

• knife ec2 server create: This is the ec2 server create subcommand.
• --node-name ec2-chef-server: This parameter provides the name to use

to register the node on the Chef Server. In this example, our node will be
registered as "ec2-chef-server". This value will also be used for the instance
name in AWS.

• --groups=chef-provisioning: The value used in this parameter is the
name of the security group you have created in AWS. Remember that the
security group provides the firewall settings for your instances. This time, we
are referencing the security group "chef-provisioning" that we created earlier.

• --region=us-west-2: This parameter identifies the target region for our
provisioning. This is one of the parameters that we can set in our knife.rb file
so that we wouldn't need to add it to our commands like we did here. This
VM will be deployed in the "us-west-2" region.

• --availability-zone=us-west-2a: Each region has multiple zones to
provide for fault tolerance. This parameter specifies which of the zones to
deploy into. In our example here, we are using the "us-west-2a" zone.

• --image=ami-9abea4fb: Here, we provide the name of the template image
that we want to deploy. You can find the details of all of the available AMI
images in the AWS Marketplace. The link for the Marketplace will be in
the references section later. An easy way to find AMIs that are available in
your target region is to log in to the AWS console. Select the region you are
interested in. Then, select "AMIs" from the images navigation pane.

Remember to select "Public Images" in the search bar to
see the images that are in the AWS Marketplace. In this
example, we are using the AMI named "ami-9abea4fb".
This is an Ubuntu 14.04 server image that uses the EBS root
device type.

• --server-connect-attribute=public_ip_address: This parameter tells
Knife that we want to have a public IP address assigned to our instance.

Chapter 6

[157]

• --flavor=t2.small: The flavor parameter provides the resource size to use
when provisioning this instance. The "t2" flavors are of general purpose, and
"small" indicates that the VM will have 1 vCPU and 2 GB memory. Other
sizing options include nano, micro, medium, and large. Note that most of the
flavors are outside of the free tier subset, so be aware of this when selecting
your flavors.

• --ssh-user=ubuntu: With many public AMIs available in the Marketplace,
especially the OS-specific AMIs, access is granted with a specific username.
In this case, we are using an Ubuntu server AMI, so the username is
"ubuntu".

• --ssh-key=us-west-oregon-earl01: This parameter provides the name of
the key pair we set up in AWS.

• --identity-file=/Users/earlwaud/.aws/us-west-oregon-earl01.
pem: This parameter's value is the local path and filename for the key file
associated with the key referenced in the ssh-key parameter.

• --run-list="recipe['chef-server']": With this parameter, we provide
the run-list to be used in the initial chef-client run. It is the state to which we
wish to converge this node.

• -V: This is the standard verbose output option parameter. We can increase
the level of output with a second V, like -VV.

Now that we understand the parameters used, here is a snippet of the output
from the server create command used earlier. Make note of the Public DNS Name
when you run your command, since we will use that to access the instance when
it is deployed.

Let's take care of the final steps needed to turn our EC2 instance into a full-fledged
Chef Server. The first of these final steps is to ssh into our new Chef Server.
Remember that we need to use the private key that we created earlier along
with the Public DNS name of the newly deployed instance.

Provisioning in the Cloud

[158]

Since we deployed an Ubuntu instance, the user name we need for our ssh
connection is "ubuntu". This is the same user name that we used in the knife
command earlier. If we had used a different OS provider for our EC2 instance, say
CentOS, then we would be using a different username, that is, "centos" for these
commands. And as you can see from the preceding image, the public DNS name
is ec2-54-201-38-94.us-west-2.compute.amazonaws.com. To ssh into our new
system, issue the following commands:

cd ~/chef-repo

ssh -i ../.aws/us-west-oregon-earl01.pem ubuntu@ec2-54-201-38-94.us-
west-2.compute.amazonaws.com

You will receive a message about not being able to establish the authenticity of the
host (a very normal ssh message). Enter yes to continue, and you will be logged
into your new instance. Now we will issue the last few commands (these are much
the same as we saw in Chapter 1, Setting Up a Development Environment on Your
Workstation) to finish our Chef Server setup. Here are the commands:

sudo chef-server-ctl user-create earlwaud Earl Waud earl@sandiegoearl.com
MyPassword99 --filename ~/earlwaud-ec2.pem

sudo chef-server-ctl org-create sdearl "San Diego Earl" --association_
user earlwaud --filename ~/sdearl-validator-ec2.pem

sudo chef-server-ctl install chef-manage

sudo chef-server-ctl reconfigure

sudo opscode-manage-ctl reconfigure

You will want to download the two Chef Server .pem files that are created with the
preceding commands, so they can be used later to work with this new Chef Server,
but other than this, we are done. You can open up a web browser now and visit the
URL for your new server. In my case, it is http://ec2-54-201-38-94.us-west-2.
compute.amazonaws.com. You will be presented with the login for your Chef Server.
Enter the username and password you provided in the user create command shown
earlier and you are good to go.

Now, let's turn our attention to what Microsoft has been cooking up in the clouds
with their hosting solution, Microsoft Azure.

References
• Read about the partnership between Chef.io and Amazon AWS at https://

www.chef.io/solutions/aws/.
• Visit the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
• You can find the knife-ec2 plugin on github at https://github.com/chef/

knife-ec2.

https://www.chef.io/solutions/aws/
https://www.chef.io/solutions/aws/
https://console.aws.amazon.com/ec2/
https://github.com/chef/knife-ec2
https://github.com/chef/knife-ec2

Chapter 6

[159]

• Explore the many AMI images available to provision from in the AWS
Marketplace at https://aws.amazon.com/marketplace/ref=csl_ec2_ami.

• Find the details for the Chef Server-specific AMIs offered on the
AWS Marketplace at https://aws.amazon.com/marketplace/pp/
B010OMO0UE/?ref=_ptnr_chef_website#product-details.

• Learn how to connect to your EC2 instances using PuTTY at https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/putty.html?icmpid=docs_
ec2_console.

• Amazon's documentation on key pairs is at https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/ec2-key-pairs.html?icmpid=docs_ec2_
console.

• Amazon's documentation on security groups is at https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/using-network-security.
html?icmpid=docs_ec2_console.

• The chef-server cookbook repo on Github is at https://github.com/chef-
cookbooks/chef-server.

• Find all the available flavors that can be used to configure your instance's
resource sizing at https://aws.amazon.com/ec2/instance-types/.

Provisioning Microsoft Azure instances
Now that we have a solid understanding of using Chef to turn our EC2 cloud
infrastructure into code, it is easy to deploy and manage. Let's see how we can do
that using Microsoft's cloud hosting provider service, Azure. As I mentioned earlier
in the chapter, Azure is the fastest growing cloud provider, currently with about 12
percent of the cloud hosting market. As with Amazon, Microsoft offers a free trial
of the service, so you can test out how things work for you with a real-life proof
of concept.

At the time of writing this chapter, Microsoft Azure has multiple personalities.
By this, I mean that Microsoft has created a newer fresh version of their Azure
user interface, that is, Portal. Portal has a new domain name and a new cleaner,
customizable UI. Along with this new UI, there is a new deployment model named
Resource Manager. You may see this referred to as Azure Resource Manager. The
older UI and deployment model, Azure Service Management, is now branded as
Classic. Here are the URLs to access both versions of the UI:

• Classic: http://manage.windowsazure.com/
• Portal: http://portal.azure.com/

https://aws.amazon.com/marketplace/ref=csl_ec2_ami
https://aws.amazon.com/marketplace/pp/B010OMO0UE/?ref=_ptnr_chef_website#product-details
https://aws.amazon.com/marketplace/pp/B010OMO0UE/?ref=_ptnr_chef_website#product-details
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html?icmpid=docs_ec2_console
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html?icmpid=docs_ec2_console
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html?icmpid=docs_ec2_console
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html?icmpid=docs_ec2_console
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html?icmpid=docs_ec2_console
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html?icmpid=docs_ec2_console
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html?icmpid=docs_ec2_console
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html?icmpid=docs_ec2_console
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html?icmpid=docs_ec2_console
https://github.com/chef-cookbooks/chef-server
https://github.com/chef-cookbooks/chef-server
https://aws.amazon.com/ec2/instance-types/
http://manage.windowsazure.com/
http://portal.azure.com/

Provisioning in the Cloud

[160]

The newer Portal UI allows you to provision "Classic" VMs and will manage those
VMs as well as any that are provisioned using the actual Classic UI. However, only
Classic VMs (those created with the "Classic" setting using the Portal UI or those
created using the Classic UI itself) are currently manageable using Chef. You cannot
see or act on the Azure Resource Manager VMs created using the Portal UI.

So far, you can access both versions of the user interface
when you create an account using either. So if you've already
created an account via the Portal UI, you can still use all of the
following information.

With that framing, if you haven't done so yet, using either of the UIs, create your free
trial account now, and let's explore Azure together.

Installing the knife-azure plugin
We begin, like we have several times before, by installing the plugin that will let us
use Knife to work with a hosting provider, in this case, Microsoft Azure.

The current release of the knife-azure plugin is version 1.5.0. There is a release
candidate of the plugin, version 1.6.0.rc.0, that was released in November 2015. This
release candidate version is documented as the first version to support the newer
resource model available via the Portal UI. The release candidate version provides
access to the new Azure Resource Manager resource model with an additional
unique keyword (azurerm), so your commands would start with:

knife azurerm …

The keyword for working with the Classic model (azure) has not changed in the
release candidate version, so those commands would still start with:

knife azure …

Because the plugin will use separate keywords for each API, you can only execute in
one model or the other in a single knife command.

Unfortunately, all of my attempts to get the knife azurerm commands to work
have failed. Even the documentation says that the release candidate version of the
plugin is not ready for production use. Because of this, the examples in this chapter
will focus on Classic Azure and not Portal Azure. I am certain that in the near future,
maybe by the time you read this book, the knife-azure plugin will get a new release
version that also allows Chef Integration with the Portal Azure Resource Manager
API to work.

Chapter 6

[161]

Alright, let's install the plugin. You can easily install the plugin with the
following commands:

cd ~/chef-repo

chef gem install knife-azure

Otherwise, if you want to give the release candidate version a try,
use these commands:

cd ~/chef-repo

chef gem install knife-azure –v 1.6.0.rc.0

You can also use the more generic parameter:

cd ~/chef-repo

chef gem install knife-azure –prerelease

Either version works perfectly with the Classic model, so all of the commands will
work as expected (except for the azurerm commands that I just pointed out earlier).
If you are working in a production environment, I would strongly suggest that you
stick with the latest release version and not use any release candidate versions).

By now, installing this plugin should seem very familiar and if you've been following
along throughout the book, you probably could have installed it without looking at
any of the commands shown earlier. Great!

Configuring the plugin
Now we are going to configure the knife-azure plugin. Configuring the plugin is
also much like we have done previously. We are going to update the contents of our
knife.rb file, adding a line for knife-azure. This time, however, the format is slightly
different. This time, we need to have Azure generate a subscription file for us.
We'll download the subscription file and save it in a safe location (I created a folder
~/.azure to store the credentials file in so that name and location will be consistent
with the name and location we used for AWS).

To have Azure create your credentials file, you need to visit https://manage.
windowsazure.com/publishsettings/index?client=xplat. When you browse
this link and you are already logged in to Azure, Microsoft will generate your
subscription file and initiate the download automatically. If you are not logged
in, you will be asked for your login credentials, and then you'll be redirected to
the download page and your subscription file will download automatically. If the
download does not start, you can click the link to restart the download. Note that
you need to have your Azure account created for this to work. The webpage has a
link to take you to the Sign Up page if you haven't done so yet.

https://manage.windowsazure.com/publishsettings/index?client=xplat
https://manage.windowsazure.com/publishsettings/index?client=xplat

Provisioning in the Cloud

[162]

Once you've saved and copied your downloaded subscription file into your safe
place folder, you are ready to update your knife.rb file. I copied my subscription
file to ~/.azure/credentials.publishsettings. (You want to maintain the file
type of .publishsettings, especially if you plan to use other tools like PowerShell
to integrate with Azure.) Now, edit the knife.rb file and add the lines for the Azure
plugin configuration:

cd ~/chef-repo

vi .chef/knife.rb

Add the following lines:

#knife-azure
knife[:azure_publish_settings_file] = '/Users/earlwaud/.azure/
credentials.publishsettings'

Notice that I used the full path for the location/name of the subscription file. I found
that if I use ~/.azure…, the plugin does not correctly find the credentials.

OK, we have our plugin and credentials installed, and we have our knife
configuration file updated accordingly. Let's start working with Azure.

Verifying the configuration
We have our new knife-azure plugin ready to use. So, let's kick the tires on this
thing. Start off with a simple command to list our exiting Azure hosted servers.
Enter the following:

knife azure server list

Well, that was probably underwhelming, as you probably haven't created any Azure
virtual machines yet. You should still have seen a column header line show up as a
response to your command. It would look something like:

…

DNS Name VM Name Status IP Address SSH Port WinRM Port

This at least tells us that our plugin integration is working as desired. Now, let's try
another command. This time, we want to list out all of the available images that we
can use as a template to provision from. Try this command:

knife azure image list

Chapter 6

[163]

Wow, that one gave us some output. You should have seen a very long list of images
scroll across the screen. The information returned lists the name of each image, the
base OS of each image, and the regions that each image can be deployed into. Much
like AWS, many of the resources are associated to specific regions. Here are some
of the possible regions you should see in your command results: Southeast Asia,
Australia Southeast, West Europe, Central India, Japan East, Central US, East US,
and South Central US. Currently, Microsoft provides Azure hosting services in 22
regional data centers.

Generating public/private key pairs
We now know that our knife-azure plugin is working, so it's almost time to use
it to provision a new VM. We have one more step before we give provisioning a
try though. We need to create a key pair to use for authentication with our Knife
commands. I've found it, let's say "challenging" to get the authentication to work
with username and password credentials, so I recommend you to focus on using key
pairs for authentication and save yourself that headache. So, let's create a key pair for
our Azure provisioning purposes. You can use the ssh-keygen command to create
the key pair you need. Here is what it looked like when I created my key pair:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/earlwaud/.ssh/id_rsa): /
Users/earlwaud/.ssh/azure_rsa

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /Users/earlwaud/.ssh/azure_rsa.

Your public key has been saved in /Users/earlwaud/.ssh/azure_rsa.pub.

The key fingerprint is:

7c:ed:c9:84:ee:7a:ea:48:65:00:d1:2a:ca:d3:89:c1 earlwaud@Earls-Mac.local

The key's randomart image is:

+--[RSA 2048]----+

| oo |

| .. |

|. .. |

| E. . o o |

|..+.. S o o |

|.+ o o o + . |

| . . . + |

| |

| ..++. |

+-----------------+

Provisioning in the Cloud

[164]

Provisioning virtual machines
OK, now that we have our key pair ready, let's create a new Azure compute resource.
Here is the knife-azure plugin command to create a new server named earl-vm01:

knife azure server create \

 --azure-dns-name earl-dns01 \

 --azure-vm-name earl-vm01 \

 --azure-source-image

112500ae3b842c8b9c604889f8753c3__OpenLogic-CentOS-71-20160308 \

 --azure-service-location 'Central US' \

 --ssh-user earlwaud \

 --identity-file ~/.ssh/azure_rsa \

 --bootstrap-protocol ssh \

 --node-name earl-node01 \

 --run-list 'recipe['base']' \

 -V

The parameters used here should look quite familiar to you because they are very
much like the parameters used for our other knife plugin server creates. Let's review
the parameters for certainty.

The first part is the command itself:

• knife azure server create: This is the normal knife plugin format for
a create server command. The keyword is azure, and the subcommand is
server create.

• --azure-dns-name 'earl-dns01': This parameter provides the name
that will be assigned as the public DNS name. The domain used by Azure
is .cloudapp.net. This implies that you must create a unique name to use
as the value for this parameter, as it will create a public DNS name that
must not conflict with any other public names in the same domain. You can
actually create more than one server that uses the same DNS name. This
supports Azure availability groups. In our example, we will have a public
name of earl-dns01.cloudapp.net.

• --azure-vm-name earl-vm01: This parameter supplies the friendly name
of the server. It is what you will see when you use the knife azure server
list command and must be of 15 characters or less.

Chapter 6

[165]

• --azure-source-image 112500ae3b842c8b9c604889f8753c3__
OpenLogic-CentOS-71-20160308: This parameter tells the plugin the name
of the image file to provision our new system from. Again, you can get a full
list of the available images with the command knife azure image list.
I found it helpful to pipe the output into a grep command to "filter" the
list. I use knife azure image list | grep -i "centos-71" to find the
CentOS 7.1 images available.

• --azure-service-location 'Central US': This parameter provides the
name of the region to create the new system in.

I believe that "West US" is not currently accessible with the
knife-azure plugin. I would normally have selected that
region, but due to the lack of availability for West US, I
selected "Central US".

• --ssh-user earlwaud: This parameter tells knife what we want
our username to be. In my case, I opted with the ever narcissistic
"earlwaud" option.

• --identity-file ~/.ssh/azure_rsa: Do you remember the key pair we
created earlier? This parameter is the path and name of that key file. This
file will be injected into the new server so that the public key can be used to
provide password-less access.

• --bootstrap-protocol ssh: This parameter tells knife to use the ssh
protocol to bootstrap the new system. If we had selected a Windows OS-
based image file to provision from, then we would have told knife to use
the protocol of "winrm". You will usually use a value of "ssh" for deploying
Linux systems.

• --node-name earl-node01: This parameter tells knife the name you want to
register this new server as within your Chef Server. In this example, we will
have a node named "earl-node01".

• --run-list 'recipe['base']': This parameter provides the run-list value.
As you already know, it supplies the list of recipes to converge the new
system to. The value is a comma-separated list of roles or recipes to apply to
the new system.

• -V: Finally, this is the verbose option, which can be made even more so with
a second V as in -VV.

Provisioning in the Cloud

[166]

When the command completes, we will have a new compute resource hosted in
Microsoft Azure named earl-vm01. This new system will be registered with our
Chef server with the node name earl-node01 and be bootstrapped to the provided
run list, in this case, "base". The system will be configured to allow key pair access
using the username "earlwaud" and the public dns name of earl-dns01.cloudapp.
net, and the access key in this case will be azure_rsa. So, we can ssh into our new
system with the following command:

ssh -i ~/.ssh/azure_rsa earlwaud@earl-dns01.cloudapp.net

Provisioning a new Chef server into Azure
Well that was pretty easy, right? So let's try one more and see if we can deploy an
Ubuntu image to step up a new Chef server in Microsoft Azure, as we did with our
Amazon EC2 instance. We are going to need to change a few of the parameters in our
server create command. First, we need an Ubuntu image name for the source image
parameter. Then, we need to update the run-list to tell the command to converge on
a Chef server configuration, and finally, we need to increase the resources allocated
to the system because the default size of "Small" is too small for a Chef Server. With
those changes identified, here is the new server create command:

knife azure server create \

 --azure-dns-name earl-chef \

 --azure-vm-name earl-chefvm01 \

 --azure-vm-size Medium \

 --azure-source-image b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04_1-
LTS-amd64-server-20150123-en-us-30GB \

 --azure-service-location 'Central US' \

 --ssh-user earlwaud \

 --identity-file ~/.ssh/azure_rsa \

 --bootstrap-protocol ssh \

 --node-name earl-chefvm01 \

 --run-list 'recipe['chef-server']' \

 --tcp-endpoints 80,443,9683 \

 -V

Chapter 6

[167]

Let's take a quick look at the additional parameters we used this time:

• --azure-vm-size Medium: With this parameter, we are asking Azure
to create our new system with the resources associated with a "Medium"
environment (2 cores, 3.5 GB memory). The other options available as values
for this parameter include ExtraSmall (shared core, 768 MB memory), Small
(1 core, 1.75 GB memory), Large (4 cores, 7 GB memory), and ExtraLarge (8
cores, 14 GB memory).

• --tcp-endpoints 80,443,9683: If you recall from the AWS examples, you
create Security Groups with permissions for different network protocols. The
tcp-endpoints parameter is an Azure shortcut for this same type of feature.
In this example, I am creating a new Chef server, and a Chef server needs the
TCP ports 80, 443, and 9683 open and accessible to external connections. This
parameter is configuring our new server to have that accessibility.

Executing the server create command given previously creates our Chef server
successfully. This command does take a long time to complete, and at one point, it
may seem to have frozen. Be patient. Allow it time to run to completion, and it will
be successful. Note that if you use a larger azure-vm-size value, the execution will
complete more quickly.

Okay, now we can go about our business of sshing into our new Chef server using
the same format as the ssh command shown earlier:

ssh -i ~/.ssh/azure_rsa earlwaud@earl-chef.cloudapp.net

Then, we can complete the setup of our Chef server with these commands (which are
nearly identical to the ones we used for our Chef server in the EC2 instance:

sudo chef-server-ctl user-create earlwaud Earl Waud earl@sandiegoearl.com
MyPassword99 --filename ~/earlwaud-azure.pem

sudo chef-server-ctl org-create sdearl "San Diego Earl" --association_
user earlwaud --filename ~/sdearl-validator-azure.pem

sudo chef-server-ctl install chef-manage

sudo chef-server-ctl reconfigure

sudo opscode-manage-ctl reconfigure

Our new Chef server is online and ready for us to log in at https:\\earl-chef.
cloudapp.net. This is getting easy, right? Now, with this work done, we can begin
to manage our infrastructure using our new Chef server hosted in our Azure cloud.

Provisioning in the Cloud

[168]

Several of the parameters used in the earlier server create command can be added
as knife.rb configuration parameters. Setting them in the knife configuration file
will allow you to issue your server create commands without need to supply the
parameter. Here is a subset of the common parameters available for your knife.rb
file. Remember to use fully qualified paths for filename configuration parameters:

knife[:azure_publish_settings_file] = '/Users/earlwaud/.azure/
credentials.publishsettings'
knife[:azure_dns_name] = 'earl-dns01'
knife[:azure_service_location] = 'Central US'
knife[:azure_source_image] = '112500ae3b842c8b9c604889f8753c3__
OpenLogic-CentOS-71-20160308'
knife[:azure_vm_name] ='earl-vm01'
knife[:ssh_user] = 'earlwaud'
knife[:identity_file] = '/Users/earlwaud/.ssh/azure_rsa'
knife[:tcp-endpoints] = '80,443,9683'
knife[:udp-endpoints] = '123:124'

Once we've finished using our new Azure compute resources and they are no longer
desired, we can use the knife-azure plugin to delete the virtual machines and remove
the nodes from our Chef server. Here is an example of a command to do this:

knife azure server delete earl-vm01 -N earl-node01 --purge -y

Now that we have the Chef chops to provision into the top two major cloud hosting
providers, let's swing for a triple and learn how to provision into the Google Cloud
Platform. Are you ready?

References
• Create a Microsoft Azure account using the Classic UI at https://account.

windowsazure.com/SignUp.
• Or create your account using the Portal UI at https://azure.microsoft.

com/en-us/.
• Learn about the Chef and Microsoft partnership at https://www.chef.io/

solutions/azure/.
• Find the knife-azure plugin repo on Github at https://github.com/chef/

knife-azure.
• Find the azure-cookbook repo on Github at https://github.com/chef-

partners/azure-cookbook.
• Link to download (Classic UI) Azure PublishSettings file from

Microsoft https://manage.windowsazure.com/publishsettings/
index?client=xplat.

https://account.windowsazure.com/SignUp
https://account.windowsazure.com/SignUp
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.chef.io/solutions/azure/
https://www.chef.io/solutions/azure/
https://github.com/chef/knife-azure
https://github.com/chef/knife-azure
https://github.com/chef-partners/azure-cookbook
https://github.com/chef-partners/azure-cookbook
https://manage.windowsazure.com/publishsettings/index?client=xplat
https://manage.windowsazure.com/publishsettings/index?client=xplat

Chapter 6

[169]

• If you want to do some DevOps work using Microsoft PowerShell and
Azure, you can find the instructions at https://azure.microsoft.com/en-
us/documentation/articles/powershell-install-configure/.

Provisioning in the Google Cloud
platform
By now, you should be seeing the similarities between using Chef with Amazon
and Microsoft, and as you might expect, the similarities don't end there. As you
are about to see, we are going to do much the same as we explore provisioning and
managing systems hosted on the Google Cloud Platform in the Google Compute
Engine (GCE). One of the biggest advantages that Google's Engine offers is speed
of deployment, so if you need to stand up images quickly, this might be the hosting
platform for you. The Google Cloud Platform is feature-rich and offers automation
for many of the services under the platform umbrella. Unfortunately, not all of the
automation features are available using the associated Knife plugin. Still, there is
plenty we can do, so let's explore what Chef provisioning options are available with
the GCE and the knife-google plugin.

Installing and configuring the knife-google
plugin
We are going to install the knife-google plugin to allow us to provision and manage
our GCE hosts. The installation is via a gem, like the previous plugins we have
explored. Use the following command for the installation:

chef gem install knife-google

This gem has many dependencies, and you will see them installed along the
knife-google plugin gem. In my case, the command installed 15 gems in total,
but other than the additional dependencies, there is nothing unusual here.

Now we need to set up authentication. This is where we get into something different.
All of the previous Knife plugin integrations had a parameter that you add to the
knife.rb file to supply a credential or point to a file to supply the credential for
authentication to the specific hosting platform. Google handles this differently. The
Google Knife plugin expects a credential file with a specific name to be in a specific
location on your workstation and will look there when you run the knife-google
plugin commands.

https://azure.microsoft.com/en-us/documentation/articles/powershell-install-configure/
https://azure.microsoft.com/en-us/documentation/articles/powershell-install-configure/

Provisioning in the Cloud

[170]

What's more, the credentials file has to be created with the Google Cloud SDK. It is
not something that you log in to the Google Cloud Platform UI and download. And,
there is no place in the UI where you can gather all of the values you need to build
the file yourself. You are literally forced to install the Google Cloud SDK on your
Chef workstation, and once it is installed, issue an SDK command that generates a
.json file in this location:

~/.config/gcloud/application_default_credentials.json

You can store this credential file in a different location and create an environment
variable to point to it, but there does not seem to be the typical knife.rb parameter
that you can use to point to a different location or name for the file.

This requirement, having to install the Google Cloud SDK on your Chef workstation
to be able to use the knife-google plugin, seems to be the least Chef-friendly
installation of any of the Cloud integrations explored in this book. This both
surprised and disappointed me a little. So with that said, how do you create the
credential file you need for the knife-google plugin? Here are the steps for an
OSX workstation.

Open a Terminal window and enter the following command:

curl https://sdk.cloud.google.com | bash

This will download the SDK and execute its installation. Now, restart your shell with
the following command:

exec -l $SHELL

Next, initialize the gcloud environment with the following command:

gcloud init

This command will launch a browser window, so you can log in to the Google Cloud
Platform and it will ask you to provide various selections to set up an environment
for using the SDK. When the command finishes, it will have created the credentials
file you need to use the knife-google plugin to integrate Chef with the Google Cloud
Engine. The resulting .json file will have four parameters—client_id, client_
secret, refresh_token, and type. Okay. That was a long process, but it seems to be
the only way to get our needed credential file. And now, with this done, we can get
back to the more "normal" Knife integration type stuff.

Chapter 6

[171]

It is time again to open up our knife.rb file and add more configuration data to
it. This time, we need to add a value for Google's gce_project parameter. Adding
a value for the gce_zone parameter makes it so that we don't have to type it
repeatedly with each of the knife-google commands. We can also add a parameter for
the compute zone. The values of these settings can be determined from the Google
Cloud Platform UI, and they were shown when we ran the gcloud init command
to create our credential file. Here are the values I used in my knife.rb file:

#knife-google
knife[:gce_project] = 'api-project-167666703318'
knife[:gce_zone] = 'us-central1-a'

Now we are almost ready to start issuing knife-google plugin commands that we
expect to work. We've got one more step to complete first, that being creating and
registering our key pairs.

Creating and registering your key pairs
First, we need to create a key pair that we will then post to our user settings in the
Google Cloud Platform. To create a new key pair, follow the instructions shown in
the earlier Azure section. Here is the command for reference:

ssh-keygen

Save the keys in your .ssh folder. Give them a name that you can remember, letting
you identify the key later so you can upload it to Google. I used the following:

/Users/earlwaud/.ssh/gce_rsa

With the keys generated, we now need to upload the public key to Google. Here are
the steps required to successfully upload your key:

1. Visit the Google Cloud Platform UI at https://cloud.google.com/.
2. Log in to your account.
3. Go to console view by clicking on My console to the top-right of the page.
4. Select your project from the project list dropdown in the menu bar (you may

only have one project at this point, so it may be preselected for you).
5. Using the Products and Services menu button, go to Compute Engine.
6. Select the Metadata functions from the Compute Engine menu options.
7. Change to the SSH Keys tab.

https://cloud.google.com/

Provisioning in the Cloud

[172]

8. Click on the Add item button.
9. Now copy and paste in the entire contents of your public key into the

"username" input field. To change the username automatically detected for
the key, prefix your key with the username you plan to use as the --ssh-
user value when creating a server with Knife. For example, if you plan to
connect as "chef-user01", your key should look like: chef-user01:ssh-rsa
AAAAB3NzaC1yc2EAAAA...

10. Finally, click on Save to complete the key entry. If you need to add more than
one key, maybe for different users, then you need to hit the Edit button and
then you get the Add item button again.

Here is what the uploaded public key file will look like in the GCE UI:

That rounds out our setup steps. Now we are ready to start provisioning using the
knife-google plugin.

Provisioning virtual machines with the GCE
Let's warm up the engine so to speak, with a couple of knife-google plugin
commands, as we have done for the previous plugins. We'll start with the server list
command, which should provide us with a server list header and little else, since
we haven't provisioned any servers yet. Of course, if you have pre-existing GCE
instances, then you should see them listed with this command:

knife google server list

Chapter 6

[173]

Now, let's give the image list command a shot. Issue the following command:

knife google image list

Well, that was unexpected. We have already found a common plugin command that
is not available with the knife-google plugin. Using our other plugins, this command
provided a list of the images available to provision from. Okay. We will figure out
what our available images in the GCE are later. What we did get was a list of the
knife-google commands we have available. Here is the list:

Available google subcommands: (for details, knife SUB-COMMAND --help)

** GOOGLE COMMANDS **

knife google disk create NAME --gce-disk-size N (options)

knife google disk delete NAME [NAME] (options)

knife google disk list

knife google project quotas

knife google zone list

knife google region quotas

knife google server create NAME -m MACHINE_TYPE -I IMAGE (options)

knife google server delete INSTANCE_NAME [INSTANCE_NAME] (options)

knife google server list

knife google server show INSTANCE_NAME (options)

knife google zone list

Okay, the first thing I noticed was that the help text listed the "zone list" command
twice. Well, that is surely a typo in the help command output. That first zone list
should probably say "region list" instead. So, let's try that command to see if there is
a "region list" command:

knife google region list

Yes. It works. You should get back a list of the regions and their status and subzones.
It should look something like this:

Provisioning in the Cloud

[174]

Okay, now let's decide on an image we want to deploy. The GCE images list can be
found in the UI. Log in to the Google Cloud Platform and select the Compute Engine
console. From there select the "Image" views from the menu options on the left. Then,
look through the available images to the right. For the examples in the rest of this
section, I will select the image: centos-7-v20160301. So, let's build our server create
command. On our Chef workstation, enter the following command:

knife google server create earl-gce101 \

 --gce-machine-type g1-small \

 --gce-image centos-7-v20160301 \

 --identity-file ~/.ssh/gce_rsa \

 --gce-can-ip-forward \

 --ssh-user earlwaud \

 -V

This command will create a new VM instance in GCE, and it will install the chef-
client, registering the node with the Chef server. It will also converge the node to
the desired state, but in this case, we didn't provide a run-list, so there were zero
changes converged. Let's review this command in detail now. Starting with the
command itself:

• knife google server create earl-gce101: Okay, this is the Knife
command for creating our instances. We have the subcommand itself, "server
create", and the first parameter, which is the name of our VM instance to be
created. In this example, the VM instance name is "earl-gce101".

• --gce-machine-type g1-small: The value of this parameter provides the
size of the instance to provision. In our example, we are creating a "g1-small"
instance. This is one of the two partial vCPU flavors, with the other small
one being "f1-micro". We will use a larger, nonpartial vCPU flavor in our
next example, and you can read about all of the Machine Types available by
visiting the relevant link provided later in the references section.

• --gce-image centos-7-v20160301: This parameter's value provides
the name of the template image that we want to use to provision our VM
instance. As mentioned already, you can discover all of the available images
via the Google Compute Engine UI.

• --identity-file ~/.ssh/gce_rsa: The value for the identity-file
parameter provides the path and filename of the private key of our key pair.
The public key was uploaded to the SSH Keys section of the Google Compute
Engine UI earlier.

Chapter 6

[175]

• --gce-can-ip-forward: This parameter is a toggle that enables the
forwarding of traffic from the public IP address to the private address. It is
essentially the gate that either isolates or exposes the VM instance. The VM
instance is isolated by default, and you can call that out explicitly with this
parameter's opposite --no-gce-can-ip-forward.

• --ssh-user earlwaud: This parameter and value tell knife the username to
use in ssh connections. This should match the username associated with the
key generated and called out in our --identity-file parameter.

• -V: Once more, this is the verbose option, which can be made even more so
with a second V as in -VV.

Okay, let's repeat our Chef server deployment, this time into GCE, to see what's
different and what's same as our previous Chef server deployments.

Deploying Chef server into a GCE instance
Before we can deploy Chef server onto a GCE VM instance, we need to set up some
firewall rules to allow the proper network access. To accomplish this, we are going
to visit the Google Cloud Platform console. Once you've logged in, bring up the
"Products & Services" menu, and choose "Networking". Then, using the navigation
pane on the left, select Firewall rules. Now, to the right, you will see the list of
firewall rules. Here is a look at what the default firewall rules look like:

One of the key bits of information shown in the previous screenshot is the Target
tags column. The data in that column shows the tag name we will use to enable the
associated firewall rule with the instances we provision. For example, to enable SSL,
we will use the tag name "https-server" in our knife server creates commands.

Provisioning in the Cloud

[176]

For Chef server, we need to open up TCP port 9683. To do this, we want to use the
"Create Firewall Rule" button at the top of the window. Let's add the rule for port
9683 now. When you click on the "Create Firewall Rule" button, you are shown an
input form. In that form, provide a name for the rule. I am using "chef-server". The
name must be all lower case characters with no spaces. Next, we can provide an
optional description. I am using "TCP port 9683 required for a Chef server". If you
have created additional networks beyond the "default" provided, you can select the
network to which you want to add this rule. I am using the default network, so no
change is necessary for me. The next value, "Source filter" allows you to specify the
systems whose traffic will be allowed though this port.

Best practices would be to set up specific subnets to allow. If the rule
will be for all possible servers, you can supply a value of "Allow
from any source (0.0.0.0/0)". This is the option I am setting, knowing
that this server is only a temporary test system.

The next input will provide the protocol and port that we are opening with this rule.
In our example, we are entering "tcp:9683". If we were to enter just "tcp", it would
open all ports, which is really not the desired state for a production system. Finally,
we provide a tag name for this rule. While the form suggests that this value is
optional, it is actually a requirement for us, since it is how we tell the knife server
create command to use this rule. In the example for the Chef server rule, I am using
the tag name "chef-server".

Okay, we're ready to provision our new GCE Chef server instance. With this
example command, we are going to deploy the new instance, register the new node
with our public Chef server, and converge the state to a Chef server with the initial
chef-client run. Here's the command:

knife google server create earl-gce-chef \

 --node-name earl-gce-chef \

 --gce-machine-type n1-standard-1 \

 --gce-image ubuntu-1404-trusty-v20160314 \

 --bootstrap-protocol ssh \

 --ssh-user earlwaud \

 --identity-file ~/.ssh/gce_rsa \

 --user earlwaud \

 --gce-can-ip-forward \

 --gce-tags http-server,https-server,chef-server \

 --run-list="recipe['chef-server']" \

 -V

Chapter 6

[177]

Let's take a closer look at the command parameters, focusing on the few parameters
that are new or different from what we used in the previous command;

• knife google server create earl-gce-chef: This is the same
command we used before; the only difference this time is the name
is now "earl-gce-chef".

• --node-name earl-gce-chef: Again, this is the same parameter, but this
time, we are using a node name of "earl-gce-chef".

• --gce-machine-type n1-standard-1: We need to create a VM that is a
little more beefy that that provided with a "g1-small" flavor, so this time, we
are using an "n1-standard-1". This will create our VM with 1 vCPU and 3.75
GB of memory (and 10 GB system drive).

• --gce-image ubuntu-1404-trusty-v20160314: This time, we requested an
Ubuntu 14.04 server image for our Chef server provision.

• --user earlwaud: This parameter provides the API Client Username.
• --gce-tags http-server,https-server,chef-server: This parameter

and its values list the firewall rules we want to put into place for the
provisioned VM. The values are the tags we saw (and created) in the Google
Cloud Platform Networking UI. This example is applying the http rule, the
https rule, and our new chef-server rule. The resulting VM will have the TCP
ports 80, 443, and 9683 open from all IP addresses.

• --run-list="recipe['chef-server']": This parameter provides the now
familiar run-list for our first chef-client run.

Once again, let's ssh into our new server, and issue the few commands needed to
complete the Chef Server setup:

sudo chef-server-ctl user-create earlwaud Earl Waud earl@sandiegoearl.com
MyPassword99 --filename ~/earlwaud-gce.pem

sudo chef-server-ctl org-create sdearl "San Diego Earl" --association_
user earlwaud --filename ~/sdearl-validator-gce.pem

sudo chef-server-ctl install chef-manage

sudo chef-server-ctl reconfigure

sudo opscode-manage-ctl reconfigure

We now have a new Chef server ready to use, provisioned into our Google Cloud
Platform. Well done! Now, let's delete it. As with the plugins we used before, we can
issue a server delete command to delete the instances and unregister it from our Chef
server. Here is an example command:

knife google server delete earl-gce-chef --purge

Provisioning in the Cloud

[178]

That wraps up our look into provisioning in the Google Cloud Platform. You should
now have enough detail to be able to provision successfully using the GCE for
whatever needs you may have. So, now we've reviewed using Knife for provisioning
in the top three Cloud hosting providers. Before we switch gears a little, let's take a
quick look at an honorable mention Cloud hosting provider—Linode.com.

References
• Create your account and start a free 60-day trial at https://cloud.google.

com/.
• Chef and GCE information on Chef.io: https://www.chef.io/solutions/

google-cloud-platform/.
• Learn about the knife-google plugin on Github at https://github.com/

chef/knife-google.
• Learn about the GCE cookbook LWRP on Github at https://github.com/

chef/knife-google.
• Learn about the Google Cloud Storage (GCS) cookbook LWRP on Github at

https://github.com/chef-partners/google-cloud-storage.
• Watch some demo screencasts to learn more about Google DevOps with

Chef at http://googlecloudplatform.github.io/compute-video-demo-
chef/.

• Instructions to install the Google Cloud SDK https://cloud.google.com/
sdk/.

• The list of Google Compute Engine Machine Types (instance sizes) is at
https://cloud.google.com/compute/docs/machine-types?hl=en_US&_
ga=1.97972955.533487120.1458267295.

Looking at an honorable mention –
Linode
Here is a quick look at the Chef integration to provision to the hosting provider
Linode.com. While Linode has nowhere near the market share of any of the top
hosting providers we've covered so far, there is a strong user base of passionate
developers (like my colleague Barry Ruffner who introduced me to Linode) and
many happy companies who use the hosting service to fill their Linux-based hosts
needs with distros from CentOS, Debian, Fedora, openSUSE, Ubuntu, and Slackware,
to name a few. And just like with the other hosting providers we discussed, you have
the ability to create and manage your servers hosted there with a knife plugin, knife-
linode. You can install the plugin with the now familiar Chef command:
chef gem install knife-linode

https://cloud.google.com/
https://cloud.google.com/
https://www.chef.io/solutions/google-cloud-platform/
https://www.chef.io/solutions/google-cloud-platform/
https://github.com/chef/knife-google
https://github.com/chef/knife-google
https://github.com/chef/knife-google
https://github.com/chef/knife-google
https://github.com/chef-partners/google-cloud-storage
http://googlecloudplatform.github.io/compute-video-demo-chef/
http://googlecloudplatform.github.io/compute-video-demo-chef/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/compute/docs/machine-types?hl=en_US&_ga=1.97972955.533487120.1458267295
https://cloud.google.com/compute/docs/machine-types?hl=en_US&_ga=1.97972955.533487120.1458267295

Chapter 6

[179]

As with our other plugins, you will want to add a linode configuration parameter to
your knife.rb file so you don't have to provide the parameter with each command.
It will contain your API key, which can be generated from the API section of your
linode.com profile settings page. Here is what the knife.rb configuration parameter
will look like:

#knife-linode
knife[:linode_api_key] =
'O7wCP4TVURELEDtG6uF0mp6Gxf1BVZtEc2jm6uw1V63Yc3UodwztxCuk4EU8uPvQ'

With that in place, you're ready to provision and manage your Linode hosts. I'm not
going into any real detail on the Linode commands here because I think that with
the data provided in the previous sections of this chapter, you can handle those
details easily. What I will do is share a list of the subcommands available and
then let you take it from there. So, without further ado, here are the knife-linode
plugin subcommands:

• The knife linode server list
• The knife linode image list
• The knife linode server create
• The knife linode server delete
• The knife linode server reboot
• The knife linode data center list
• The knife linode flavor list
• The knife linode kernel list
• The knife linode stackscript list

In the references section later, you can find the links you'll need to set up your own
Linode account and to learn more about the linode plugin. Note that at this time,
Linode does not offer a free trial, but they do have a 7-day money-back guarantee.

References
• The Linode website: https://www.linode.com/
• The knife-linode plugin repo on Github: https://github.com/chef/knife-

linode

https://www.linode.com/
https://github.com/chef/knife-linode
https://github.com/chef/knife-linode

Provisioning in the Cloud

[180]

Provisioning containers in Docker
Now you are going to learn about something a little different, Docker. Docker is a
container provider, and although it is not the only container game in town, it is by
far the most widely used. You will be able to leverage what you learn in this section
to other container platforms as desired. Of course, you don't have to use Docker in
the cloud. It is equally viable in the traditional data center, but since it is a fresh
re-imagining of virtual environments, I thought it would better fit in a chapter
in the clouds.

Containers offer much benefit as an alternative to "traditional" virtual machines.
For example, containers are lightweight and can be deployed much more densely
than traditional VMs. Containers contain fewer overhead processes, and so they can
start up much faster than VMs. There are many advantages that might compel you
to want to create your own containers, so let's give provisioning a try with Chef.
Of course, you can use a commercial provider like dotCloud, Tutum, or Google's
Container Engine. But we are going to set up or own Docker host to serve
our containers.

Setting up a Docker server to host our
containers
We want a Docker server to provision our containers, and since this is a book about
Chef Provisioning, we're going to leverage Chef to set up our Docker server. We
will download the Docker cookbook from the Chef Marketplace and then upload
the cookbook to our Chef server. Once it has been uploaded, we will deploy a
new server using knife and converge the server into a Docker server with the
cookbook and chef-client. Let's get started. Here is the command to download the
Docker cookbook:

knife cookbook site install docker

This command will download the Docker cookbook and all of its dependencies
from the Chef Marketplace and then install them into the cookbooks folder of our
current repo.

The docker cookbook has a dependency on the compat_resource cookbook,
specifically version 12.7.1, so let's make sure that we have the desired version
installed in our repo with the following command:

knife cookbook site install compat_resource 12.7.1

Chapter 6

[181]

Now, let's upload the docker cookbook and its dependencies with the
following command:

knife cookbook upload docker --include-dependencies

We need to do one more thing to finish our cookbook setup. The docker cookbook is
a library-only cookbook. It does not have recipes and is intended to be used by other
cookbooks. So we are going to create the most basic cookbook, named my-docker. It
is going to have a default recipe that will install the docker server for us. Let's create
the new cookbook structure with Chef, using this command:

cd ~/chef-repo

chef generate cookbook cookbooks/my-docker

Now, let's update the metadata for our new cookbook by editing the metadata.rb file:

cd ~/chef-repo

vi cookbooks/my-docker/metadata.rb

Update the contents of the metadata.rb file, filling in the maintainer and maintainer
e-mail values, and then, most importantly, add a "depends" line for docker.
The resulting file should look something like this:

name 'my-docker'
maintainer 'Earl Waud'
maintainer_email 'earl.waud@gmail.com'
license 'all_rights'
description 'Installs/Configures my-docker'
long_description 'Installs/Configures my-docker'
version '0.1.0'

depends 'docker', '~> 2.0'

Now, let's create a my-docker recipe by creating a default.rb file in the recipes
folder of our new cookbook:

cd ~/chef-repo

vi cookbooks/my-docker/recipes/default.rb

Insert the following recipe code:

docker_service 'default' do
 action [:create, :start]
end

Provisioning in the Cloud

[182]

Save the file, and we can upload the cookbook to our Chef server with the
following command:

cd ~/chef-repo

Knife cookbook upload my-docker

Great! We are now ready to deploy our new server and converge it into a Docker
host. We have several options for where we want to deploy this new server. We can
go with something in our own data center, or we can deploy it in the cloud using
any of the hosting providers we've looked at in this chapter. Somewhat arbitrarily,
I am going to choose the Microsoft Azure service to host our Docker server. With
that decision, here is the command:

knife azure server create \

 --azure-dns-name earl-docker \

 --azure-vm-name earl-docker \

 --azure-vm-size Medium \

 --azure-source-image b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04_1-
LTS-amd64-server-20150123-en-us-30GB \

 --azure-service-location 'Central US' \

 --ssh-user earlwaud \

 --identity-file ~/.ssh/azure_rsa \

 --bootstrap-protocol ssh \

 --node-name earl-docker \

 --run-list 'recipe['my-docker']' \

 --tcp-endpoints 80,443,3306 \

 -V

This command does as we desire. It provisions a new server into Azure classic,
registers the node with our public Chef server, and then running the chef-client, it
converges the host into the state of a Docker server. Most of this command should
be very familiar, as it is nearly identical to the command we used to provision a Chef
server into Azure earlier in this chapter. The only two significant differences are the
run list used and the port 3306 specified in the tcp-endpoints parameter. The 3306
port is used by the Docker engine.

Chapter 6

[183]

While this method of deploying Docker onto a server might be the long way around,
it is still important because it follows our DevOps methodology and it is OS agnostic.
In other words, I could have just deployed my Ubuntu server, logged in and done
an appropriate wget command, and achieved the same state. But by using a Chef
cookbook, we have achieved our infrastructure as code goal. Also, if we had used a
CentOS host instead of Ubuntu, our cookbook would have still done the right thing
to install the Docker engine. Likewise, if it were a Windows-based host, it would
have properly installed the Docker engine.

Alright, we've got our Docker server set up and running the Docker engine. We can
confirm this by using ssh to log in to the server and running a docker command.
For example, we can use the following command:

sudo docker ps

This command will list the containers running on the Docker host. We are now to use
Docker from our Azure instance.

Installing and using Docker on our Chef
Workstation
Since we've been primarily using OS X for our Chef workstation examples, we are
going to use the Docker toolbox as the local host for our Docker containers example.
This is the same tool you would use for a Windows Chef Workstation.

If you are using Ubuntu or another Linux flavor, you can install docker.io and
execute the remainder of the examples with a direct Docker install. Frankly, this is
a much easier and better solution to create local Docker containers than the OS X
option. If you can do your container work in an Ubuntu workstation, I would highly
recommend it.

So, if you are still using an OS X workstation, the next step is to install the toolbox.
You can download and install the toolbox for free from www.docker.com/products/
docker-toolbox.

Once the toolbox is installed, run the "docker quickstart terminal" to open up a
Terminal session with the docker environment preconfigured. This actually spins
up a virtual machine that is running Docker. Fun, right?!

www.docker.com/products/docker-toolbox
www.docker.com/products/docker-toolbox

Provisioning in the Cloud

[184]

Now we can use the knife-docker plugin (as well as any standard docker commands,
such as docker ps) in our Terminal window.

Now can give some Docker commands a try. Here are some commands for you:

docker ps

docker images

docker run -t -i ubuntu:14.04 /bin/bash

Using the knife-docker plugin
We are going to switch gears a little bit now. The knife-docker plugin does not
successfully execute the chef client run when run on OS X. There is an unreleased
version 0.0.3 that is working to address this issue, but at the time of writing this,
it was not working. So, we are going to execute this example using Ubuntu for
our workstation.

Let's start by installing the knife-docker plugin for working with Docker. Issue the
following command:

chef gem install knife-docker

For our docker container examples, we will work with publicly downloadable
docker images. Let's start by listing the docker images we have currently available on
our workstation. Open up a terminal session. From within the terminal session, issue
the following command:

sudo docker images

You should have an empty list of images at this point if you have just recently
installed your local docker environment. Next, let's see a list of some of the publicly
available images. We can do this by issuing a docker search command like this:

sudo docker search ubuntu

From that command, you should get a list of public docker images related to the
search key "ubuntu". In my list, there is an image named rastasheep/ubuntu-sshd.
I want to use that for our test of the knife-docker plugin, so I am going to download
that image with the following command:

sudo docker pull rastasheep/ubuntu-sshd

Chapter 6

[185]

Many docker images do not pre-install sshd, so we want to make sure we are
working with one that does. The rastasheep/ubuntu-sshd, as the name suggests,
is an image that runs sshd. Okay, let's issue the image command again to see if the
downloaded image shows up in our list as expected:

sudo docker images

Yep, there it is. Excellent. Now we are going to use that image to deploy a docker
container using the knife-docker plugin. Here is the basic command:

sudo knife docker create -I rastasheep/ubuntu-sshd --node-name docker01

This command will deploy the new container using the image rastasheep/ubuntu-
sshd as the template. The container uses the credentials of username, root, and
password, root, so when you are prompted for the password, enter root.

The command deploys the container and registers it with the Chef server as
configured in our .chef/knife.rb file using the value in the --node-name
parameter, in this case, docker01.

The other knife-docker command allows us to use the knife-docker plugin to
delete our containers and clean up their artifacts from the Chef server. Here
is an example command:

sudo knife docker delete f5e483540f3d -P

The two parameters used here are the container ID and the -P switch, which
instructs knife to delete the node and client as well as the container.

I would like to point out that using the knife-docker plugin
as a container provisioning method while functional is not
really the way to go. We will examine the much more favored
method of deploying containers using Chef in Chapter 8, Using
Chef Provisioning, so stay tuned.

References
• The link to the Docker home page is https://www.docker.com/.
• You can find the Docker repo at https://github.com/docker/docker.
• You can find the Chef cookbook for Docker at https://github.com/chef-

cookbooks/docker.

https://www.docker.com/
https://github.com/docker/docker
https://github.com/chef-cookbooks/docker
https://github.com/chef-cookbooks/docker

Provisioning in the Cloud

[186]

• Sign up for a commercial Docker hosting service at one of these providers,
Tutum (at https://www.tutum.co/), dotCloud (at https://cloud.docker.
com/), or use the Container Engine system with the Google Cloud Provider
(at https://cloud.google.com/container-engine/).

• The link to Chef.io information on using Chef for containers is https://
docs.chef.io/containers.html.

• Find the knife-docker plugin on Github at https://github.com/ema/
knife-docker.

• Download and install the Docker Toolbox from https://www.docker.com/
products/docker-toolbox.

• There is an interesting Ubuntu base image for your containers at https://
github.com/phusion/baseimage-docker.

• There is another interesting base image container at https://github.com/
phusion/passenger-docker.

• Read through a tutorial on using Docker at http://www.dedoimedo.com/
computers/docker-networking.html and http://www.dedoimedo.com/
computers/docker-guide.html.

Summary
In this chapter, you learned how to turn our cloud-based servers (and containers)
into code, so they can benefit from all the methodologies we are used to using for
our application projects. We solidified our knowledge of using Amazon AWS EC2
instances. You learned how to leverage the next big players in the cloud provider
arena, Microsoft and Google. We took a brief look at provisioning hosts on Linode.
com, and you learned how to use Chef to provision our containers in Docker.
Adding all this new cloud knowledge to what you learned about doing the same
things in our traditional data center, we are now armed with the skills to easily create
a hybrid hosting solution that lets us target our deployments in-house or in the cloud
and lets us burst from one to the other depending on the needs of our business.
With so many options available to provision our workloads, let's take a quick look
at making sure that those workloads are as error free as possible by examining
test-driven development in the next chapter. Turn the page, and I'll see you there!

https://www.tutum.co/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.google.com/container-engine/
https://docs.chef.io/containers.html
https://docs.chef.io/containers.html
https://github.com/ema/knife-docker
https://github.com/ema/knife-docker
https://www.docker.com/products/docker-toolbox
https://www.docker.com/products/docker-toolbox
https://github.com/phusion/baseimage-docker
https://github.com/phusion/baseimage-docker
https://github.com/phusion/passenger-docker
https://github.com/phusion/passenger-docker
http://www.dedoimedo.com/computers/docker-networking.html
http://www.dedoimedo.com/computers/docker-networking.html
http://www.dedoimedo.com/computers/docker-guide.html
http://www.dedoimedo.com/computers/docker-guide.html

[187]

Test-Driven Development
In this chapter, we're going to delve into the Test-driven Development model,
showing how to maximize development efforts and quickly deliver highly functional
and well-tested environments. The reader will learn how to transform their model
for Chef from one where cookbooks are code to one, where cookbooks are artifacts,
with test practices built into both models. Initially, it may seem difficult and time
consuming to build the skills and habits of test-driven development. However, once
the skills and habits are acquired, the development cycle becomes accelerated and
the resulting infrastructure is much more stable. What's more, DevOps Engineers
will have greater certainty that the infrastructure will be fully functional. It will no
longer be necessary to do ad hoc tests and spot checks on infrastructure deployed
into production environments. The infrastructure code will be continually tested
through the development process, and the artifact deployments will be equally
well-vetted before anything is ever pushed into production. The result is better
deliverables and shorter development cycles.

"This is my advice to people: Learn how to cook, try new recipes, learn from your
mistakes, be fearless, and above all have fun" – Julia Child

The following topics will be covered:

• Analyzing cookbooks with RuboCop
• Analyzing cookbooks with Foodcritic
• Unit testing with ChefSpec
• Integration testing with Kitchen and ServerSpec

Test-Driven Development

[188]

Analyzing cookbooks with RuboCop
We begin with a look at tools working within the cookbooks-as-code model. These
tools are considered static analysis test tools, and they examine the code itself to
verify syntax, structure, and alignment with desired coding practices. The first tool
we'll explore is named RuboCop.

Simply put, by using RuboCop, you will produce better cookbooks. RuboCop is
included as part of the ChefDK installation. It is a command-line tool used to test
the syntax and style of individual cookbooks. RuboCop uses a set of rules, known as
cops, to test specific considerations, such as syntax, style, and metrics for Ruby best
practices. These cops deliver results as warnings, deviations from convention, and
different levels of errors. The main benefits of using RuboCop are that you identify
errors early in the development process and the resulting code conforms to an
agreed upon style and formatting practice. So, how do we use RuboCop?
Let's take a look now.

Using RuboCop
The expectation to use RuboCop is that you provide the path and name of a
cookbook to test or you execute the tool within the folder of a specific cookbook to
test that cookbook. For example, two different ways to execute RuboCop to test the
apache cookbook that is part of your chef-repo are as follows:

cd ~/chef-repo/cookbooks/apache

rubocop .

We also have the following:

cd ~/chef-repo

rubocop cookbooks/apache

RuboCop is a Ruby test tool, and as such, it will examine all of the Ruby files in your
cookbook. By default, there are many RuboCop cops patrolling the cookbooks for
violations. They are grouped into categories based on the type of rule they enforce,
including lint, style, metrics, Ruby, and so on. You can see all of the cops enforced by
RuboCop with the following command:

rubocop --show-cops

This command will list out all of the cops, and it includes URLs to the RuboCop
documentation for the rules enforced by that cop.

Chapter 7

[189]

With this information, you can use RuboCop to evaluate the rules of a single cop
by using the parameter --only and the name of the cop. For example, to see if you
have any lines that are longer than the standard 80 characters, you can issue the
following commands:

cd ~/chef-repo/cookbooks/apache

rubocop --only Metrics/LineLength

Examining the RuboCop output
By default, RuboCop displays the results in what is known as the progress format.
The available output formats include [p]rogress (default), [s]imple, [c]lang, [j]son,
[h]tml, [o]ffenses, and so on. These output formats can be called upon with the
--format (or -f) parameter. For example, to see the results for a RuboCop test of the
NTP cookbook in the [o]ffences and [h]tml formats, issue the following commands:

cd ~/chef-repo

rubocop -f o -f h cookbooks/ntp > /tmp/ntp.html

Now you can open the output in your browser, and the output is nicely formatted
and easy to review. It will look something like this:

Test-Driven Development

[190]

Each Ruby file is tested for offences, and the output provides the specifics of the
violations found. The first thing reported is a summary of how many files were
tested and how many total violations were found. From there, the results of each
file examined are provided, starting with the filename and number of violations in
that file. Then, the individual violations are listed with each providing the violation
details, including the type of issue. The following abbreviations are used to indicate
the type of issue found:

'.' means the file contains no issues
'C' means there is an issue with convention
'W' means there is a warning
'E' means there is an error
'F' means there is a fatal error

Additional information provided in the violation details includes the line number
and position within the line where the issue was found, followed by the actual line
of code from the Ruby file that contains the issue. Using this information, you should
be able to easily remedy the issues reported on by RuboCop.

With the multitude of cops and the extensive violation data they watch for, it can
become overwhelming to keep you code in obedience with the laws. Because of this,
RuboCop provides a way to customize your cops and rules so that you can focus in
on the ones that are most important to you and your team. Let's look at how we can
configure RuboCop to use a subset of cops without having to call them out on the
command line.

Customizing RuboCop
RuboCop customization is handled via a .rubocop.yml file in the cookbook's folder.
The easiest way to create this file is to let RuboCop help you. For example, you can
issue the following commands:

cd ~/chef-repo/cookbooks/apache

rubocop --auto-gen-config

This will create a new file named .rubocop_todo.yml in the cookbook folder. Now
you have a place to start. This file contains the minimum set of cop configurations
that, when used by RuboCop in subsequent runs, allow your cookbook to pass
all cop evaluations. For example, if the longest line of code in your cookbook is 93
characters long, the cop for line length checks will be configured to all lines to be up
to 93 characters long.

Chapter 7

[191]

With the new todo file, you can proceed in one of the three ways. You can rename
your .rubocop_todo.yml file to .rubocop.yml. You can also add a parameter to
your command like this:

rubocop --config .rubocop_todo.yml

Or, you can create your own .rubocop.yml file and add the line inherit_from:
.rubocop_todo.yml to it. With any of these shortcuts, all existing violations will be
ignored in your future RuboCop runs.

With any of those options in place, you can edit the configuration file and re-
enable the cops that you want to address one by one. For example, if you care
about maximum line lengths in your cookbooks, you can re-enable that rule check
by commenting out the Metrics/LineLength rule in the configuration file or by
adjusting the rule's setting value to the desired line length max value, that is, 80.
Once this is done, violations of that rule will again be reported by the LineLength
cop the next time RuboCop is executed. This will provide the data that needs to
fix any violations of that rule. Using this one by one rule check and fix technique,
you implement corrections to the rules that matter most to you, without being
overwhelmed by the volume of violations that RuboCop can find.

One final note about RuboCop is that it offers an "auto correct" option that will fix
minor violations automagically for you. Add the parameter -a or --auto-correct
to your command line to use this option. While this is a very handy feature, be
aware that it is not perfect, and you should review its changes for sanity. Now, let's
continue our testing with the tool, Foodcritic.

References
• You can find the RuboCop home page at http://batsov.com/rubocop.
• Learn more about RuboCop on the Chef.io site, https://docs.chef.io/

rubocop.html.
• There is the RuboCop repo on GitHub at https://github.com/bbatsov/

rubocop.
• You can find the list of RuboCop cops that are enabled by default at

https://github.com/bbatsov/rubocop/blob/master/config/enabled.
yml.

• The link for the cops that are disabled by default is https://github.com/
bbatsov/rubocop/blob/master/config/disabled.yml.

http://batsov.com/rubocop
https://docs.chef.io/rubocop.html
https://docs.chef.io/rubocop.html
https://github.com/bbatsov/rubocop
https://github.com/bbatsov/rubocop
https://github.com/bbatsov/rubocop/blob/master/config/enabled.yml
https://github.com/bbatsov/rubocop/blob/master/config/enabled.yml
https://github.com/bbatsov/rubocop/blob/master/config/disabled.yml
https://github.com/bbatsov/rubocop/blob/master/config/disabled.yml

Test-Driven Development

[192]

• If you want to add RuboCop support directly to your editor, visit one
or more of these GitHub repos—Sublime Text at https://github.
com/pderichs/sublime_rubocop, Atom at https://github.com/
yujinakayama/atom-lint, or VIM at https://github.com/ngmy/vim-
rubocop.

Analyzing cookbooks with Foodcritic
Let's take a quick look at another static analysis test tool that is included with
ChefDK. That tool is named Foodcritic. Like RuboCop, Foodcritic examines the code
in your cookbooks for violations to its rules. However, where RuboCop is a generic
Ruby linter, Foodcritic is a Chef-specific linting tool. The difference being that using
RuboCop helps you to keep your cookbooks in line with Ruby best practices, and
Foodcritic helps to keep your cookbooks in line with Chef best practices. Foodcritic
currently has 61 built-in rules to evaluate your cookbooks and allows the creation
and use of custom rules as well. Both tools have their value, and I suggest that there
is a place for each one in your DevOps workflow.

Using Foodcritic
You will find using Foodcritic to be very much like using RuboCop. It is expected
that you will be testing individual cookbooks and as such will execute Foodcritic
at the command line in the folder of the cookbook being tested, or you can execute
Foodcritic in your chef repo with a parameter for the path to the cookbook being
tested. For example, if you want to test the apache cookbook that is a part of your
chef-repo, you would execute the following command:

cd ~/chef-repo/cookbooks/apache

foodcritic .

One of the optional parameters you can include will provide context data when rule
violations are found. The parameter is -C or --context. I've found that using this
parameter makes correcting the issues much easier. Here is an example command,
which uses the context parameter with Foodcritic to test a work-in-progress
apache cookbook:

https://github.com/pderichs/sublime_rubocop
https://github.com/pderichs/sublime_rubocop
https://github.com/yujinakayama/atom-lint
https://github.com/yujinakayama/atom-lint
https://github.com/ngmy/vim-rubocop
https://github.com/ngmy/vim-rubocop

Chapter 7

[193]

Let's take a closer look at the output provided by Foodcritic.

Examining the Foodcritic output
Foodcritic has a set of rules built in that checks for specific issues in your cookbooks.
Each rule has an identifier, such as FC008 or FC043. When a rule violation is found,
Foodcritic will output the rule ID with the rule description. If you use the optional
context parameter as shown earlier, the actual code that violates the rule will also be
included in the output displayed. The nature and detail of each rule can be found on
the Foodcritic website, http://www.foodcritic.io/. Clicking on the rule ID will
take you to a description of the issue found by the rule, and it provides guidance on
how to correct that issue.

http://www.foodcritic.io/

Test-Driven Development

[194]

Customizing Foodcritic
Foodcritic offers a "filter" to fine tune the rules that are checked, much like RuboCop.
It is applied in one of two ways. Either via a parameter on the command line or as
a parameter in a special .foodcritic configuration file. To use the parameter on the
command line, use a -t followed by the rule ID. For example, to check the apache
cookbook for violations of only rule ID FC008, you would use a command like this:

cd ~/chef-repo

foodcritic -t FC008 cookbooks/apache

You can also check for violations of every rule except the rule specified by preceding
the rule ID with a tilde. Thus, to check the apache cookbook for violations of every
rule except FC008, you would use a command like this:

cd ~/chef-repo

foodcritic -t ~FC008 cookbooks/apache

Remember that you can put these parameters into a configuration file in the
cookbook folder, and they will be considered in every Foodcritic run for that
cookbook without needing to add them to the command line. For example, if you
want to exclude the rules FC008, FC034, and FC043 every time you run Foodcritic to
test the apache cookbook, you can create the configuration file using this command:

cd ~/chef-repo/cookbooks/apache

echo "~FC008,~FC034,~FC043" > .foodcritic

foodcritic .

References
• The link to the Foodcritic home page is http://www.foodcritic.io.
• You can read more about Foodcritic on the Chef.io site, https://docs.

chef.io/foodcritic.html.
• The Foodcritic repo on GitHub is https://github.com/acrmp/foodcritic.
• Additional custom Foodcritic rules can be found at https://github.com/

etsy/foodcritic-rules.

http://www.foodcritic.io
https://docs.chef.io/foodcritic.html
https://docs.chef.io/foodcritic.html
https://github.com/acrmp/foodcritic
https://github.com/etsy/foodcritic-rules
https://github.com/etsy/foodcritic-rules

Chapter 7

[195]

Unit testing with ChefSpec
Now that we have cookbooks that are adhering to the best practices of both Ruby
and Chef, it is time to turn our attention away from static analysis and toward
runtime testing. This is where we begin to move from a model of cookbooks-as-code
to one of cookbooks-as-artifacts. Unit testing is a kind of middle ground, where we
are doing a combination of code testing and artifact testing. This is also the point at
which we move into a test-driven development model, where you write the tests
before you write the code.

Ruby is a dynamically typed language. Ruby code is not type checked until it is
executed. So in order to actually test our cookbooks, they have to be run. Before
ChefSpec, this meant that you had to make the code changes to your cookbooks on
your workstation, upload your modified cookbooks to your Chef server, then finally
converge a node that is assigned that cookbook in order to be able to actually test
your changes. This was a work- and time-intensive process that, with a complex set
of cookbooks, could easily take 20 minutes or more. Not cool.

That was all before ChefSpec. ChefSpec is a unit testing tool that simulates a chef-
client run to actually execute your cookbook code locally, saving you the time and
effort of uploading the cookbook to your Chef server and executing a chef-client run
on some node to test your changes. Using ChefSpec, you can accomplish your tests
in a fraction of the time that was required before. ChefSpec is built on RSpec, which
is a Ruby-specific unit test tool. ChefSpec is to RSpec what Foodcritic is to RuboCop.
That is, ChefSpec takes the same unit test concepts used for Ruby in RSpec and
adapts them to be Chef-specific. Both RSpec and ChefSpec are installed as part
of ChefDK.

ChefSpec allows you to define what you expect the resources of your cookbooks
to do. Then, you can use ChefSpec to test the cookbooks to see if they accomplish
your expectations.

Using ChefSpec
Getting started doing unit testing with ChefSpec is easy. When you begin by creating
your cookbooks and recipes using the generate feature of Chef, you automatically get
a ChefSpec test spec template file created for you. Let's say that you want to create a
new web app cookbook. Using Chef, we can create the cookbook with the following
command:

cd ~/chef-repo/cookbooks
chef generate cookbook mywebapp
cd mywebapp
berks init

Test-Driven Development

[196]

Allow the berks init command to overwrite any of the configuration files with a
response of "Y" at each prompt. Now take a look at what was created:

We have two directories that have been created for us that relate to testing. The first
is named spec, and the second is named test. We will take a closer look at the folder
named test in the next section of this chapter. Looking closer at the folder named
spec, we can see that we have a subfolder named unit. This implies that we will be
using this for our unit tests. We have a folder named recipes with a single file named
default_spec.rb later. This file, default_spec.rb, is where we will create the unit
tests for our corresponding default.rb cookbook recipe file, which as you can see in
the image is found in the normal location under the cookbook's recipes folder.

In order to better understand how to use ChefSpec, let's create a very simple default
recipe for our mywebapp cookbook. We will add some resources to the default
recipe that installs and starts httpd, and provides a super simple index.html file to
serve up. Start by editing the recipe file:

cd ~/chef-repo/cookbooks/mywebapp

vi recipe/default.rb

Chapter 7

[197]

Add the following resources:

package 'httpd'

file '/var/www/html/index.html' do
 content '<h1>Hello MyWebApp User</h1>'
end

service 'httpd' do
 action [:enable, :start]
end

Now save and exit the editor. We have three resources; the first installs the httpd
package, then we create an index.html file with the Hello Users content, and we
have the service that starts httpd and makes sure that it starts on boot. It is simple,
but it does enough to explore our use of ChefSpec.

At this point, we can actually run a test. Remember that ChefSpec is built upon
RSpec, so we will be using RSpec to execute our test. The ChefSpec test specs are in
the spec/unit/recipes folder, and they will have a name that matches our recipe
file. That is, for a recipe file named default.rb, the ChefSpec test file will be named
default_spec.rb. So, let's give it a try with the following command:

cd ~/chef-repo/cookbooks/mywebapp

chef exec rspec spec/unit/recipes/default_spec.rb

This is going to execute the unit test defined in the default_spec.rb file to test the
cookbook default recipe found in recipes/default.rb. If you've been following
along, and you run the command given previously, you will get results that look
like this:

cd ~/chef-repo/cookbooks/mywebapp

chef exec rspec spec/unit/recipes/default_spec.rb

.

Finished in 3.84 seconds (files took 2.41 seconds to load)

1 example, 0 failures

Test-Driven Development

[198]

Well, we can see that the unit test took about 4 seconds to complete, and that it had
zero failures, but what did it actually test? To find out, we want to examine the
contents of our default_spec.rb file, the one found in cookbooks/mywebapp/spec/
unit/recipes folder:

cd ~/chef-repo/cookbooks/mywebapp

cat spec/unit/recipes/default_spec.rb

require 'spec_helper'

describe 'mywebapp::default' do

 context 'When all attributes are default, on an unspecified platform'
do

 let(:chef_run) do

 runner = ChefSpec::ServerRunner.new

 runner.converge(described_recipe)

 end

 it 'converges successfully' do

 expect { chef_run }.to_not raise_error

 end

 end

end

Okay, that is probably a bit confusing at first glance, so let's break it down. We
start off with a require statement. That is your standard require gem declaration; in
this case, we require the spec_helper gem. Next, we have the describe line. This is
identifying the name of the cookbook and recipe that we want to test. In this case, it
is the default recipe of the mywebapp cookbook. Next, we have a context block. This
block is what tells ChefSpec to set up a temporary node that will be converged to the
state described in the recipe. The temporary node is named runner, and it is going
to converge the recipe called out in the describe line earlier. There are two types of
nodes or runners that can be used, a SoloRunner or a ServerRunner. ServerRunner is
the default type of runner. The next block is defining our expectation. This is the unit
test we hope to see pass. In this case, it is simply saying that when we do the Chef
run, we don't want to see any errors.

Chapter 7

[199]

Expanding our tests
So far, we have created a pretty basic unit test. It just runs and checks to see whether
anything had an error. What if we want to be more specific? Let's begin to expand
our unit tests. This time, we want to make sure that our recipe installs the package
httpd. Editing our default_spec.rb file, we add another expectation. Here is the
resulting file content:

cd ~/chef-repo/cookbooks/mywebapp

vi spec/unit/recipes/default_spec.rb

Insert the following in the file:

require 'spec_helper'

describe 'mywebapp::default' do
 context 'When all attributes are default, on an unspecified
platform' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new
 runner.converge(described_recipe)
 end

 it 'converges successfully' do
 expect { chef_run }.to_not raise_error
 end

 it 'installs the package httpd' do
 expect(chef_run).to install_package('httpd')
 end

 end
end

I've highlighted the new section for easy identification. Here, we are declaring our
expectation that the recipe will install the package httpd. Now, before you start to
panic, wondering how in the world are you supposed to know what needs to be
added to a unit test file to set the expectations, realize that the very smart people who
developed ChefSpec have already thought of that. They have provided a GitHub
repo that has a very well-developed set of examples. The examples provided have
both the cookbook recipe resources and the corresponding unit test expectation
specs. You can find these examples at https://github.com/sethvargo/chefspec/
tree/master/examples.

https://github.com/sethvargo/chefspec/tree/master/examples
https://github.com/sethvargo/chefspec/tree/master/examples

Test-Driven Development

[200]

So, let's run our unit test again now that we have added our new expectation:

cd ~/chef-repo/cookbooks/mywebapp

chef exec rspec spec/unit/recipes/default_spec.rb

..

Finished in 0.77693 seconds (files took 2.31 seconds to load)

2 examples, 0 failures

Now, there are zero failures. So, both of the expectations passed successfully. You
may have noticed that the output from our command started off with two dots
this time. There was one dot last time. The dots represent the progress of our tests.
Two expectations provide two dots. This format of output is appropriately named
the progress format. There are other formats in which you can have our output
delivered. For example, there is a format named document format. If you add a -fd
parameter to your command, it will deliver the output in the document format.
Go ahead and give that a try now, as follows:

cd ~/chef-repo/cookbooks/mywebapp

chef exec rspec -fd spec/unit/recipes/default_spec.rb

mywebapp::default

 When all attributes are default, on an unspecified platform

 converges successfully

 installs the package httpd

Finished in 0.65813 seconds (files took 2.3 seconds to load)

2 examples, 0 failures

With the document format, the output is changed from a sequence of dots to a
human-readable description of what is being tested. You can take it a step further
and add the parameter -c to the command, and the output will be color coded for
easy interpretation.

Another thing that makes this process very easy is knowing that you don't have to
know how to write every expectation at the time you add them to your spec file. You
can add your expectations in a "pending" form first by just inserting some it '…'
lines into your spec file. For example, I could have inserted the following pending
expectations into my default_spec.rb file:

it 'installs a package named httpd'
it 'makes me a cup of Earl Grey tea'

Chapter 7

[201]

When you run your ChefSpec test, you will get a result that shows you have some
pending expectations to complete in your spec file:

Remember that the best practice for test-driven development is that you
create your tests first and then you create your recipe code to pass the
tests you defined. With this in mind, you can create your expectations in
your spec files for each recipe before you write the recipe itself.

When you initially run your ChefSpec test, all of the tests will fail, and that is okay.
Then, when you create your recipe and rerun the ChefSpec test, you will see the tests
passing and know that you are delivering a recipe that is converging to the state
defined in your expectations.

Remember to use chef generate to create any additional recipes you need in your
cookbooks so that the corresponding test files get created for your automatically. For
example, if you want to refactor your cookbook so that it is more modular, and if
you want to move the package install code into its own recipe, you can use the chef
generate command to help you out. Here is the command for reference:

cd ~/chef-repo/cookbooks/mywebapp

chef generate recipe install

Test-Driven Development

[202]

This command will create your install.rb recipe file in the recipes folder, and it
will create your unit test install_spec.rb file in the spec/unit/recipes folder.
From there, you can insert your expectations and begin unit testing the new recipe in
the same way you did for your default recipe.

This form of unit testing is very powerful and provides a very fast method of testing
your cookbook recipes. You can accomplish in seconds what it would otherwise
take many minutes to achieve with full integration testing. Still, there is a place for
integration testing, so let's now take a look at another testing tool, Test Kitchen,
which allows us to do full integration tests with ease.

References
• There is the ChefSpec documentation on the Chef.io site at https://docs.

chef.io/chefspec.html.
• You can find the ChefSpec repo on GitHub at https://github.com/

sethvargo/chefspec.
• The expectation examples in the ChefSpec repo are at https://github.com/

sethvargo/chefspec/tree/master/examples.
• There is an exceptional webinar on using ChefSpec at https://www.chef.

io/webinars/?commid=194483.

Integration testing with Kitchen and
ServerSpec
Now we are going to move to the cookbooks-as-artifacts model of testing. This is
full integration testing, and we are going to look to the Test Kitchen framework as
the tool for this type of test. Kitchen is another tool that is included as part of the
installation of ChefDK, so there is no additional work to install it. Kitchen allows
you to easily deploy a new system, install Chef, download the run-list cookbooks,
and converge the node instance to fully test the functionality of our policies, roles,
cookbooks, and so on.

https://docs.chef.io/chefspec.html
https://docs.chef.io/chefspec.html
https://github.com/sethvargo/chefspec
https://github.com/sethvargo/chefspec
https://github.com/sethvargo/chefspec/tree/master/examples
https://github.com/sethvargo/chefspec/tree/master/examples
https://www.chef.io/webinars/?commid=194483
https://www.chef.io/webinars/?commid=194483

Chapter 7

[203]

To explore using Test Kitchen, let's imagine that we want to create a cookbook
that will set up a web server to present our new application's website to users. The
best way to approach this from a test-driven development aspect is to consider the
desired results from the user's point of view. The user does not care that we have
a web server installed and running; they only care about getting an appropriate
response from our app when they visit its website. With this in mind, we will craft
our tests to validate the results from our user's point of view. Does our instance
deliver an appropriate response when the user visits the app's website? Realize that
by testing this result in this way, we are in fact also testing the results of everything it
takes to get there, that is, standing up a new instance, installing and running the web
server application, setting up the web page content, and so on. This is all confirmed
by a single, simple test, to make sure that the user gets the response they desire. This
result-focused testing is known as behavior-driven development, or BDD. We will
talk more about our BDD test shortly.

Preparing our tests
As I mentioned already, Kitchen is installed as part of ChefDK, so it should already
be installed on your Chef workstation. Kitchen leverages other tools that we have
talked about in earlier chapters. For example, as a default configuration, it will use
the tool Vagrant to create our test nodes. Vagrant can be configured to use any
number of hosting platforms as the place it launches our test nodes, but the
"out-of-the-box" configuration for Kitchen is to use the open source tool VirtualBox
as a local hosting platform. If you have not done so already, I would strongly
suggest that you download and install both of these tools now. Once you have the
tools installed, the rest of this section will be easy and make more sense as you run
through the examples.

Let's take a look at a default Kitchen configuration file. To make sure that we have
a "default" file, we will actually generate a new cookbook using the chef generate
command (note that you may have already done this if you have been following
along in this chapter):

cd ~/chef-repo/cookbooks

chef generate cookbook mywebapp

cd mywebapp

berks init

Test-Driven Development

[204]

This will create a template cookbook named mywebapp in your chef-repo/
cookbooks folder. As we saw in the previous section, the files created by the chef
generate command include test input files we can build on. From these test files, we
want to begin by examining the Kitchen configuration file. It is found in the root of
the cookbook and has the name .kitchen.yml. Here is what that file looks like after
you've run the preceding commands (note that the berks init command overwrites
the .kitchen.yml file created by the chef generate command):

cd ~/chef-repo/cookbooks/mywebapp

cat .kitchen.yml

driver:

 name: vagrant

provisioner:

 name: chef_solo

platforms:

 - name: ubuntu-14.04

 - name: centos-7.1

suites:

 - name: default

 run_list:

 - recipe[mywebapp::default]

 attributes:

As you can see in the file contents shown earlier, we have four sections of
configuration info: driver, provisioner, platforms, and suites. Beginning with the
driver section, the default driver name is Vagrant. What this setting means is that
Kitchen will use Vagrant as the mechanism to create and manage our test instances.
Several other options for drivers are available to be installed and used, such as
Docker, EC2, Google, and OpenStack, to name a few. The Kitchen-Vagrant driver
is an excellent option for our use, as it is installed as part of ChefDK, and it is quick
and easy to integrate with an installation of VirtualBox. This option keeps all of the
provisioning local to your workstation, which allows for quick integration testing.

The next section in the configuration file calls out the type of provisioner that will
be used. There are a few choices for provisioner, with chef_solo and chef_zero as
the most common. The provisioner determines how chef-client is run, and for the
tests in this set of examples, leaving the value of chef_solo will be fine. The chef_zero
provisioner is another common option as it is more like a full Chef server, but a
Chef server in a local mode. There is another provisioner that may quickly become
common, the policyfile_zero provisioner. This is provisioner that should be used
when your run list is a policyfile.

Chapter 7

[205]

Next, we have the platforms section. The platforms section defines the operating
systems that we want to provision as test nodes. By the way, another benefit of
using the Vagrant driver is that we can use abbreviated names for the platforms. For
example, you can see in the configuration file contents earlier that we have the names
ubuntu-14.04 and centos-7.1. This is identifying our platforms to specific versions
of those OSes, without needing to fully identify the actual templates or other
parameters that would be required if we were using a different driver.

Finally, we have the suites section. This defines the what-to-test configuration. In the
suites section, you provide a name for each suite you wish to test and define what
you want to be tested. In this case, we have just one suite named "default", and it
is going to test the default recipe in the mywebapp cookbook. There is a virtually
unlimited number of things that you can include in your suites configuration section,
and it is way beyond the scope of this chapter to provide you with a significant
sampling, so I urge you to visit the links provided in the references section later,
specifically for the .kitchen.yml configuration settings and the getting started
guide. For our tests, just leave this set to the default value, which is to test the
mywebapp cookbook's default recipe.

There is one more comment about the platforms and suites sections of the .kitchen.
yml file. The values provided in these two sections create a matrix of test scenarios.
That is, if you have one platform value and one suite, those combine to create one
test (1 x 1 = 1). If you have two platforms and one suite, you will have two test
scenarios—one suite tested in each of the two platforms (2 x 1 = 2). If you have two
platforms and two suites, you will have four test scenarios, with each suite tested in
each platform (2 x 2 = 4). Add the third platform, and you now have six test scenarios
(2 x 3 = 6), and so on. Make sense? To simplify the Kitchen examples that follow, I
am going to comment out the Ubuntu platform line in our .kitchen.yml file so that
we are focused on a single centos platform with a single suite to test. This will result
in one test scenario.

If you did not create the contents for the default recipe described in the previous
section of this chapter, you should add that to the default recipe file now:

cd ~/chef-repo/cookbooks/mywebapp

vi recipes/default.rb

Add the following to the file:

package 'httpd'

file '/var/www/html/index.html' do
 content '<h1>Hello MyWebApp User</h1>'
end

Test-Driven Development

[206]

service 'httpd' do
 action [:enable, :start]
end

Great! That was a lot of preparation— mostly just a lot of description of what was
autogenerated for us—but we are now ready to try out Test Kitchen.

Kitchen create
The first command we will try is the create command. When you execute the
command, Kitchen will read the contents of the .kitchen.yml file:

cd ~/chef-repo/cookbooks/mywebapp

kitchen create

Based on its contents, Kitchen will use the selected driver to stand up one or more
new servers as defined by the platforms configuration section. Based on our .kitchen.
yml file, Kitchen will use Vagrant to deploy a new server based on the CentOS 7.1
platform. Since the default for the Vagrant driver is to use VirtualBox as the hosting
provider, the server will be deployed as VirtualBox VM.

If this is the first time you have run the kitchen create command for a specified
platform, the template image will be downloaded to your workstation before
being deployed. Templates are cached so that when you run future kitchen create
commands, they do not have to be downloaded again.

There is a fair amount of output generated from this command, but you can
look for some specific bits of information. Based on the name value in the suites
section (in our case "default") and the platforms listed in the platforms section
(in our case "centos-7.1"), the kitchen create command will name our test server
default-centos-71. In the create command output, you will see some lines that
look like the following:

Vagrant instance <default-centos-71> created.

Finished creating <default-centos-71> (0m41.08s).

This is indicating that the new server instance has been deployed, and it is ready to
run chef-client to prepare for the tests to follow. You should see a line like this for
each of the test scenarios in the matrix defined by the .kitchen.yml file. Now let's
use kitchen converge to run chef-client and converge our new server instance to the
desired state.

At this point, if you so desire, you can log in to the instance with the command
kitchen login. Type "exit" to log out of the instance.

Chapter 7

[207]

Kitchen converge
To converge our server instance to the desired state, execute the following command:

cd ~/chef-repo/cookbooks/mywebapp

kitchen converge

This will instruct Kitchen to read the .kitchen.yml file, and then, based on the
selected provisioner and the values defined in the suites section of the configuration
file, Kitchen will install and run chef-client with specific settings in the deployed
server instance.

By the way, you can actually skip calling the kitchen create command, and just call
the kitchen converge command. This will automatically execute the kitchen create
function first, if the server instances have not already been deployed with a kitchen
create command.

Here is a portion of the type of output you should expect from running the kitchen
converge command:

 Installing chef

 installing with rpm...

 warning: /tmp/install.sh.12447/chef-12.8.1-1.el7.x86_64.rpm:
Header V4 DSA/SHA1 Signature, key ID 83ef826a: NOKEY

 Preparing... ############################
[100%]

 Updating / installing...

################################# [100%]

 Thank you for installing Chef!

 Transferring files to <default-centos-71>

 Starting Chef Client, version 12.8.1

 Creating a new client identity for default-centos-71 using the
validator key.

 resolving cookbooks for run list: ["mywebapp::default"]

 Synchronizing Cookbooks:

 - mywebapp (0.1.0)

 Installing Cookbook Gems:

 Compiling Cookbooks...

 Converging 3 resources

Test-Driven Development

[208]

You can see in this output snippet that the kitchen converge command installs chef,
synchronizes the cookbooks listed in the suite's run-list, and converges the cookbook
resources. Now, let's finally do some actual testing.

Kitchen verify
Now we have a server instance running, and it's been converged to the desired state,
that is, our kitchen converge completed without errors. However, this does not
mean that we have actually tested anything. To test the state, we need to run kitchen
verify. Kitchen verify will look at our test spec files and will validate our converged
instance to verify that it passes our defined tests. So, run the verify command now:

cd ~/chef-repo/cookbooks/mywebapp

kitchen verify

This will actually test our converged instance to see if it delivers the results we
desire. Kitchen will be using ServerSpec to do our tests. So, one of the first things you
will see in the output from the verify command is about installing ServerSpec and
its required gems. Then, you will see the ServerSpec command used to run the tests,
which will be followed by the results of the tests. Here is part of what that output
will look like:

-----> serverspec installed (version 2.31.0)

 /opt/chef/embedded/bin/ruby -I/tmp/verifier/suites/serverspec
-I/tmp/verifier/gems/gems/rspec-support-3.4.1/lib:/tmp/verifier/gems/
gems/rspec-core-3.4.4/lib /opt/chef/embedded/bin/rspec --pattern /tmp/
verifier/suites/serverspec/**/*_spec.rb --color --format documentation
--default-path /tmp/verifier/suites/serverspec

 mywebapp::default

 does something (PENDING: Replace this with meaningful tests)

 Pending: (Failures listed here are expected and do not affect your
suite's status)

 1) mywebapp::default does something

 # Replace this with meaningful tests

 # /tmp/verifier/suites/serverspec/default_spec.rb:6

Chapter 7

[209]

 Finished in 0.00052 seconds (files took 0.31508 seconds to load)

 1 example, 0 failures, 1 pending

 Finished verifying <default-centos-71> (0m13.90s).

-----> Kitchen is finished. (0m14.59s)

You can see that one test (example) was performed and that the tests took just under
15 seconds to complete. But we didn't actually perform the BDD test we discussed
earlier, which was to verify that the user gets an appropriate response when they
visit our new app's website. This is because we didn't write that test yet. So, let's do
that now. Edit our test file:

cd ~/chef-repo/cookbooks/mywebapp

vi test/integration/default/serverspec/default_spec.rb

The file contents will look like this:

require 'spec_helper'

describe 'mywebapp::default' do
 # Serverspec examples can be found at
 # http://serverspec.org/resource_types.html
 it 'does something' do
 skip 'Replace this with meaningful tests'
 end
end

We are going to replace the inner block test it 'does something' with a new test
that verifies that the user gets an appropriate response when they visit our app's
website. In this oversimplified example, the appropriate response is going to be
Hello MyWebApp User. To create this test, replace the inner block of test code,
so the resulting file looks like this:

require 'spec_helper'

describe 'mywebapp::default' do
 describe command('curl http://localhost') do
 its(:stdout) { should match(/Hello MyWebApp User/) }
 end
end

Now save the file and run the verify command again:

cd ~/chef-repo/cookbooks/mywebapp

kitchen verify

Test-Driven Development

[210]

This time, you should see that we executed our test successfully, and in fact, the
results prove that the user is getting an appropriate response when they visit our
new app's website:

-----> Running serverspec test suite

 /opt/chef/embedded/bin/ruby -I/tmp/verifier/suites/serverspec
-I/tmp/verifier/gems/gems/rspec-support-3.4.1/lib:/tmp/verifier/gems/
gems/rspec-core-3.4.4/lib /opt/chef/embedded/bin/rspec --pattern /tmp/
verifier/suites/serverspec/**/*_spec.rb --color --format documentation
--default-path /tmp/verifier/suites/serverspec

 mywebapp::default

 Command "curl http://localhost"

 stdout

 should match /Hello MyWebApp User/

 Finished in 0.20631 seconds (files took 0.31911 seconds to load)

 1 example, 0 failures

 Finished verifying <default-centos-71> (0m3.20s).

-----> Kitchen is finished. (0m3.95s)

If you have not previously run kitchen create or kitchen converge and you run the
kitchen verify command, kitchen will execute both the create and converge steps
automatically before running the verify step.

However, it is important to note that running the verify command does not
automatically rerun the converge command if it has already run. If anything related
to the cookbook is changed between calls to kitchen verify, it is necessary to run
kitchen converge in between. Often, you'll just want to issue the commands like this:

cd ~/chef-repo/cookbooks/mywebapp

kitchen converge && kitchen verify

With that command, you can be certain that your instance is converged to the
currently defined state before you try to verify your test results. Running the
converge and verify commands like this is a quick way to test changes to the
cookbook and ServerSpec tests. Just be aware that if a cookbook resource has already
been converged, it will result in a no-op for the kitchen converge command and will
just report "resource up to date" in the output. This is a valid test case for verifying
instance upgrade scenarios. However, if your goal is to verify the new instance
deployment scenarios, you will want to add a kitchen destroy command in
between your test runs. This will shut down and delete your deployed test instance.

Chapter 7

[211]

The command for this is as you would expect:

cd ~/chef-repo/cookbooks/mywebapp

kitchen destroy

Now when you run your kitchen verify command, a new instance will be deployed,
converged, and verified. Of course, the wise people who developed Test Kitchen
realize that a common test pattern is to issue the create, converge, verify, and destroy
commands in sequence to do a full new deployment integration test. So, they have
provided us with a single command that will do all of this for us. It actually will
start with a destroy command to make sure that any existing running instances are
cleaned up before we start the new tests. To execute this, you issue the command
as follows:

cd ~/chef-repo/cookbooks/mywebapp

kitchen test

If the verify tests are successful, a trailing kitchen destroy command will be executed
to clean up your test instance. If the verify tests result in an error, the training destroy
command will not be executed. This affords you the opportunity to investigate the
test image to better debug the failure. Pretty sweet, right? You bet!

So, you now have the necessary skills to do full integration testing in your test-
driven development cycle. Remember that what you have shown in this chapter is
just the tip of the iceberg of what is available to you for your chef testing. Visit the
links provided in the references and learn how to expand on what you have already
learned. Your customers will be glad you did!

References
• The link to the Chef.io information about Test Kitchen is https://docs.

chef.io/kitchen.html.
• You can find the Test Kitchen repo on GitHub at https://github.com/

test-kitchen/test-kitchen.
• The link to the Test Kitchen home page is http://kitchen.ci.
• The link to the ServerSpec site is http://serverspec.org.
• The link to the home page for the Vagrant tool is https://www.vagrantup.

com.
• The VirtualBox software can be found at the link https://www.virtualbox.

org/wiki/Downloads.
• Learn about many options that can be used in the .kitchen.yml configuration

file https://docs.chef.io/config_yml_kitchen.html.

https://docs.chef.io/kitchen.html
https://docs.chef.io/kitchen.html
https://github.com/test-kitchen/test-kitchen
https://github.com/test-kitchen/test-kitchen
http://kitchen.ci
http://serverspec.org
https://www.vagrantup.com
https://www.vagrantup.com
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://docs.chef.io/config_yml_kitchen.html

Test-Driven Development

[212]

• An excellent Test Kitchen getting started guide is found at http://kitchen.
ci/docs/getting-started.

• Find information about the various ServerSpec resource tests available to you
at http://serverspec.org/resource_types.html.

Summary
In this chapter, you learned how to use several of the tools available to implement
a test-driven development cycle for infrastructure code development. We looked
at tools that focus on cookbooks-as-code, validating that the code is syntactically
correct, that it is structurally correct, and that it follows the coding standards we
want all of our source code to employ. These tools include RuboCop and Foodcritic.
Then, we looked at tools that fit into the cookbooks-as-artifacts model and test
the functionality and deployment aspects of our cookbooks. These tools include
ChefSpec and Test Kitchen. We learned that when tests are performed on our
cookbooks in both models, the result is better infrastructure delivered faster than
ever before. Remember that what you learned in this chapter is only the beginning.
In fact, we barely scratched the surface. It is up to you, the reader, to persist in your
education and the use of these test tools. Continue to the point where your normal
workflow includes using these tools as a matter of habit. Like driving a car for the
first time, there seems to be too much to do, too many controls, and so much at stake.
But with time and practice, it all becomes natural. Everything is executed by habit,
arriving at the destination safely and efficiently, almost without thinking about it at
all. So it will be with your test-driven development journey. We are now very well
equipped to handle our Chef Provisioning needs and deliver solid infrastructure
across a wide variety of environments, but there is one more feature provided by
Chef that we can use to accelerate our provisioning. Let's wrap all of this up in a nice
bow, with a look at using Chef Provisioning.

http://kitchen.ci/docs/getting-started
http://kitchen.ci/docs/getting-started
http://serverspec.org/resource_types.html

[213]

Using Chef Provisioning
In this chapter, you're going to learn to use Chef provisioning.

Wait… what? This is the last chapter in the book titled Chef Provisioning, and
now you are going to learn to use Chef provisioning? What were we doing in
Chapters 1–7?

Yes, in Chapters 1–7, we were doing Chef provisioning, but ChefDK actually comes
with a feature named Chef Provisioning. In the earlier chapters, you learned how
to use Chef to provision into a variety of hosting solutions, both in the data center
and the cloud. However, most of the work we did to provision our environments
was done in single-instance bites, creating one server instance at a time. All perfectly
acceptable and very valuable. However, in the world of a DevOps Engineer, it is a
rare situation when a single instance is all that is needed for an application. These
days, distributed applications are built in clusters. An app will require multiple web
servers, databases, app servers, networking and load balancers, and so on. Wouldn't
it be great if there was way to create a cookbook to describe our application's entire
cluster as code? Well, there is, and it is called Chef provisioning.

"The devil came to me last night and asked what I wanted in exchange for my soul.
I still can't believe I said pizza. Friggin' cravings." – Marc Ostroff

The following topics will be covered:

• What is Chef provisioning?
• How to use Chef provisioning

Using Chef Provisioning

[214]

What is Chef provisioning?
If you have been using Chef for a while, you may have heard about a feature named
Chef Metal. Chef provisioning is the rebranded and evolved tool formerly known
as Chef Metal. Chef provisioning is the Chef of all things. It serves the purpose of
turning your application-run books into code. Now, all the benefits of infrastructure
as code that you have come to enjoy in order to manage your server instances can
also be enjoyed in managing your entire application cluster. Chef provisioning lets
you describe your entire app the way you currently describe a single machine, using
resources. Because of this, Chef provisioning allows you to test an entire distributed
application at once.

It's highly idempotent
Chef Provision is highly idempotent, meaning that you can run the same Chef
provisioning command repeatedly, and only the specific resources that have
changed since the previous run will be affected.

For example, when you first run the Chef Provisioning command to create a new
application cluster, all the machines described will be deployed, and they will be
converged to their desired state. If you're testing changes to a recipe used in the
run-list of a specific role and you run the Chef Provisioning command again, Chef
Provisioning will not redeploy the machines already running. It will just load the
modified recipe to the instances using the modified role and reconverge only those
instances to the new desired state.

This is the same idempotency behavior you have learned to depend on when using
Chef for your single-instance work.

Consider the benefit of being able to rerun your Chef Provisioning commands, where
they only affect changes in an application's cluster if something has diverged from
the fully described cluster recipe.

A hypothetical example
Imagine that you have a new distributed web application that you need to deploy.
Here is an example of how you could use Chef Provisioning to do this for you.

1. You can create a cluster recipe that, when converged, deploys your app's
fully realized cluster. The recipe includes all the required web servers, DBs,
load balancers, and so on.

Chapter 8

[215]

2. You create a recipe for an "app provisioner" instance that, when converged,
runs the Chef Provisioning command with the cluster recipe created in
step 1.

3. You deploy your app provisioner. The app provisioner converges, and
as part of that convergence, it deploys your entire app cluster. All the
web servers, the DBs, the load balancers, and so on, all get stood up and
configured, and they are ready to be used by your customers. And by
the way, when app provisioner converges, it is configured to re-run Chef
Provisioning with the app cluster's recipe every 15 minutes. Because of the
idempotency of Chef Provisioning, each run is a no-op until…

4. ...Time passes with your app running and serving your happy customers, but
then some unforeseen event causes a web server to crash and burn. Yikes!
No need to worry. It's okay. Because the next time your app provisioner runs
the Chef Provisioning command, it will see that one of the web servers you
defined is no longer "as defined". Chef provisioning will deploy a new web
server based on your cluster recipe, converging it to the desired state, and
voilà, you are back to 100% functionality.

5. (Bonus step) If you really wanted to go all inception-like on this idea, you
could add the ability to deploy your app provisioner to the instances in
your app cluster so that they would monitor, and if necessary redeploy the
provisioner. They watch the watcher. Where's my spinning top?

References
• Learn more about Chef provisioning on the chef.io site, https://docs.

chef.io/provisioning.html.
• Review the code for Chef provisioning in the GitHub repo at https://

github.com/chef/chef-provisioning.

How to use Chef Provisioning
Now that you have a picture of what Chef provisioning is and how you might use
it to turn an application's cluster infrastructure into code, let's take a look at how to
actually use it. Like other aspects of Chef, we create recipes for Chef provisioning.
And like the recipes in our other cookbooks, these recipes will contain resource
definitions that will describe the desired state of our application cluster.

So, let's begin by learning about the resources that we can create in our Chef
provisioning recipes.

https://docs.chef.io/provisioning.html
https://docs.chef.io/provisioning.html
https://github.com/chef/chef-provisioning
https://github.com/chef/chef-provisioning

Using Chef Provisioning

[216]

Chef Provisioning resources
A Chef Provisioning recipe can contain the definitions of the following resources:

• with_driver: This resource tells Chef Provisioning the name of the driver
to use with subsequent machine resources. The driver name corresponds
to the hosting provider, such as Vagrant, AWS, and Docker. More than one
with_driver resource can be used in a recipe, providing for the ability to
deploy subsets of machines to different hosting providers within the same
application cluster. For example, with one recipe, you can deploy instances to
both vSphere and AWS.

• machine_image: This resource allows you to define a template to be used
when describing your machine resources.

• machine: This is the primary resource for your Chef Provisioning recipes.
This is what you use to describe your instances.

• machine_options: This resource is used as a helper resource to define your
machine resources.

• machine_batch: The machine_batch resource provides a way of describing
multiple machine resources that can be deployed concurrently. When
Chef Provisioning is executing recipes, it does so sequentially, in the
order described. However, using the machine_batch resource tells
Chef Provisioning that the resources described within can be executed
concurrently.

Each of the drivers associated with specific hosting providers may support additional
resource types. For example, when you are using the AWS driver, some additional
resources that are available include aws_key_pair, aws_launch_configuration,
and aws_vpc. With the Vagrant driver, you have additional resources such as
vagrant_box. Please visit the repo associated with the driver you are using to get the
full list of driver-specific resources available. Links to the most common drivers are
provided in the References section later.

A Vagrant example
Let's put this information to use. Since the Vagrant driver is included in ChefDK, and
we don't have to do any additional installation work to use Chef Provisioning with
Vagrant and VirtualBox, we'll start there.

Here is the requirement: Deploy the new "cool-app" cluster, which needs three
instances—one DB and two web servers.

Chapter 8

[217]

Here is the solution: we will create a cluster recipe to deploy three instances—one
database server and two web servers.

Let's create a new app in our chef-repo:

cd ~/chef-repo

chef generate app cool-app

Now, let's create our recipe file:

mkdir -p cool-app/provision/recipes

touch cool-app/provision/recipes/app-cluster.rb

And now, let's edit our recipe file:

vi cool-app/provision/recipes/app-cluster.rb

Enter the contents shown later in the recipe file:

require 'chef/provisioning/vagrant_driver'
with_driver 'vagrant'

vagrant_box 'centos-7.1' do
 url 'https://github.com/CommanderK5/packer-centos-template/releases/
download/0.7.1/vagrant-centos-7.1.box'
end

with_machine_options :vagrant_options => {
 'vm.box' => 'centos-7.1'
}

machine 'db' do
 recipe 'postgresql'
 converge true
end

num_webservers = 2
machine_batch do
 1.upto(num_webservers) do |i|
 machine "web#{i}" do
 recipe 'apache'
 converge true
 end
 end
end

Using Chef Provisioning

[218]

Save the file, and we will be ready to run our Chef Provisioning command.
But before we do that, let's go over the recipe a bit.

1. We start it off with a require command that is calling out the dependency on
the Vagrant driver.

2. Then, we actually describe the driver we are using in the
with_driver resource.

3. Next, we use the vagrant_box resource, one that is obviously unique to the
Vagrant driver, to define our centos-7.1 image.

4. In the next resource, with_machine_options, we are describing which
image we want to use for our machine commands.

5. Next is our first machine resource. This one is describing our database
instance. You can see that we are using the PostgreSQL recipe for our DB.
Our Chef Provisioning cluster recipe will actually be using our public Chef
server as defined in the .chef/knife.rb file, so our nodes will be registered
to that Chef server as well. As such, the cookbook recipes that we use for our
cool-app instances will need to have been uploaded to the Chef server before
running the Chef Provisioning command.

6. The last resource block defined in our app-cluster.rb file is the machine_
batch resource. This resource is describing the resources that can be
deployed synchronously, in this case our two web servers, web1 and
web2. These instances will have the Apache recipe applied, which, like the
PostgreSQL cookbook, needs to be uploaded to the Chef server before the
execution of our Chef Provisioning command.

Okay, provided we have uploaded the necessary cookbooks to the Chef server,
we are ready to run the Chef Provisioning command. So, let's do so.

There are three modes you can employ when using Chef Provisioning; two modes
utilize policyfiles and one does not. For this example, we will be using the non-policy
mode, so the commands to run Chef Provisioning are:

cd ~/chef-repo

chef provision --no-policy --cookbook ./cool-app/provision -r app-cluster

We are telling Chef Provisioning that we are using the non-policy mode with the
--no-policy parameter, then using the --cookbook parameter, we say where to
find our cluster recipe, and finally using the -r parameter, we call out the name of
our cluster recipe.

Chapter 8

[219]

There will be a lot of output during the execution of this command, far too much
to show in this space, but if everything goes as planned, your VirtualBox will have
three new instances running in it. It will look something like this:

In addition, your Chef server will have three new registered nodes in the Nodes list:
db, web1, and web2. It will look something like this:

Using Chef Provisioning

[220]

Okay, we've done a test deployment of our app cluster using Chef Provisioning, and
we have these three instances and associated nodes in our Chef server that we don't
really want hanging around. So what do we do?

Fortunately, Chef Provisioning has resource actions for cleanup time too. We can
create a destroy-all recipe that can be called upon by Chef Provisioning that will
"destroy all".

Be careful! This is a quick example script to clean up our test
environments. It will unceremoniously deregister all your nodes and
delete all the associated instances. I am leaving it to you, the reader, to
modify the recipe to be more focused in its clean-up actions.

With that advisory said, here is the destroy-all recipe:

cd ~/chef-repo

vi cool-app/provision/recipes/destroy-all.rb

Enter the contents as follows:

require 'chef/provisioning'
machine_batch do
 machines search(:node, '*:*').map { |n| n.name }
 action :destroy
end

Save the file and run the following command:

cd ~/chef-repo

chef provision --no-policy --cookbook ./cool-app/provision -r destroy-all

Now all of the nodes and associated instances are gone!

A cloud example with AWS
Now that we have successfully deployed our cool-app cluster onto our local
workstation with Vagrant and VirtualBox, it's time to try to deploy the app to
the cloud. Let's use AWS for this example, creating EC2 instances using Chef
Provisioning. This time, however, we do need to install the AWS driver. To do this,
enter the following commands:

cd ~/chef-repo

chef gem install chef-provisioning-aws

Chapter 8

[221]

I've found that the AWS driver is a little finicky about a few configuration settings.
Follow these three steps to make sure that your experience is a successful one.

Create a "config" file in your ~/.aws folder. The contents of the file provide a default
section with the AWS region you want to work with. Here are the steps:

cd ~/.aws

vi ./config

Enter contents like the following:

[default]
region = us-west-2

It is expecting your credentials to be in the ~/.aws/credentials file. The file has to
have the name credentials, and it has to be in that exact location.

Your key pair files need to be in the ~/.ssh/ folder. Even though there is a
parameter available in the with_machine_options resource for key_path that you
can fill with a different path for your keys, it seems that the AWS driver only looks in
~/.ssh. So, just make sure to save your key files in the ~/.ssh folder.

Okay, now let's create our new AWS cluster recipe file:

cd ~/chef-repo

touch cool-app/provision/recipes/aws-cluster.rb

Edit the new recipe file:

cd ~/chef-repo

vi cool-app/provision/recipes/aws-cluster.rb

Enter the following as the contents in the file:

require 'chef/provisioning/aws_driver'
with_driver 'aws'

with_machine_options ({
 bootstrap_options: {
 image_id: 'ami-8d5b11bd',
 instance_type: 't1.micro',
 key_name: 'chef-server-ec2',
 security_group_ids: 'chef-provisioning',
 },
 use_private_ip_for_ssh: false,
 transport_address_location: :public_ip,
 ssh_username: 'root',

Using Chef Provisioning

[222]

 availability_zone: 'us-west-2a',
})

machine 'db' do
 recipe 'postgresql'
 converge true
end

num_webservers = 2
machine_batch do
 1.upto(num_webservers) do |i|
 machine "web#{i}" do
 recipe 'apache'
 converge true
 end
 end
end

Now save the file, and let's talk about some of the differences between this recipe
and the previous one that we used to provision with the Vagrant driver. The first
two directives, require and with_driver, are specific to our desire to provision
using AWS. Then, we have a with_machine_options resource. This is the same type
of resource we used in the Vagrant example, but this time, we have added several
additional parameters that are needed for deployment to AWS, all of which should
be very familiar to you if you read Chapter 6, Provisioning in the Cloud. After this, we
have the machine and machine_batch resources, which are identical to the ones we
used in the earlier example.

Okay, now let's run the Chef Provisioning command to deploy and converge
our cluster:

cd ~/chef-repo

chef provision --no-policy --cookbook ./cool-app/provision -r aws-cluster

As before, our cluster recipe is used by Chef Provisioning to deploy our cool-app
cluster, and we have fully realized deployment with a single command. The results
on AWS should look something like this:

Chapter 8

[223]

A Docker example
Okay, we are able to use Chef Provisioning to deploy our cluster to our local
workstation using the Vagrant driver, and we can deploy the cluster to the cloud
with the AWS driver. Let's turn our attention back to Docker and see how we can
deploy our cluster as Docker containers.

We need to install the Docker driver for Chef Provisioning. To accomplish this, issue
the following command:

cd ~/chef-repo

chef gem install chef-provisioning-docker

Excellent. Now let's create a new cluster recipe file:

cd ~/chef-repo

touch cool-app/provision/recipes/docker-cluster.rb

Fill the new recipe file with the following:

require 'chef/provisioning/docker_driver'
with_driver 'docker'

machine_image 'ubuntu' do
 machine_options :docker_options => {
 base_image: {
 name: 'ubuntu',
 repository: 'ubuntu',
 tag: '14.04'
 }
 }

Using Chef Provisioning

[224]

end

machine 'db' do
 from_image 'ubuntu'
 recipe 'postgresql'
 converge true
end

num_webservers = 2
machine_batch do
 1.upto(num_webservers) do |i|
 machine "web#{i}" do
 from_image 'ubuntu'
 recipe 'apache'
 converge true
 end
 end
end

This recipe should now seem pretty familiar. Really the only thing that is new here is
that we've used a machine_image resource to define what our Docker image should
look like, and in the machine resources, we've included the from_image directive.
Neat, right?

Since this is a section on using Chef Provisioning with Docker, if you haven't
installed your Docker environment yet, now this would be a good time to do so.
Visit the Docker Toolbox site so you can download and install the toolbox.

Take a look at the URL, https://www.docker.com/products/docker-toolbox.
Once your toolbox is installed, you'll want to launch both the "Kitematic UI" and the
"Docker Quickstart Terminal". These are the tools provided by the Docker Toolbox:

https://www.docker.com/products/docker-toolbox

Chapter 8

[225]

Now, within the Quickstart Terminal, you will run your Chef Provisioning
commands. Let's go ahead and run the command:

cd ~/chef-repo

chef provision --no-policy --cookbook ./cool-app/provision -r docker-
cluster

There will be significant output from this command, but it is interesting, so here is
what you should see:

$ cd ~/chef-repo

$ chef provision --no-policy --cookbook ./cool-app/provision -r docker-
cluster

Installing Cookbook Gems:

Compiling Cookbooks...

Recipe: provision::docker-cluster

 * machine_image[ubuntu] action create (up to date)

 * machine[db] action converge

 - create node db at https://api.chef.io/organizations/sdearl

 - add normal.tags = nil

 - add normal.chef_provisioning = {"from_image"=>"ubuntu",
"reference"=>{"driver_url"=>"docker:tcp://192.168.99.100:2376", "driver_
version"=>"0.9.0", "allocated_at"=>"2016-04-04 04:07:32 UTC", "host_
node"=>"https://api.chef.io/organizations/sdearl/nodes/", "container_
name"=>"db", "image_id"=>nil, "docker_options"=>nil, "container_
id"=>nil}}

 - update run_list from [] to ["recipe[postgresql]"]

 - create container to converge db

 - start converge container chef-converge.db

 - commit and delete converged container for db

 - update node db at https://api.chef.io/organizations/sdearl

 - update normal.chef_provisioning.reference.container_id from nil
to "43ac4f550657946e9205315d4bddde049ca2ba0ad769854075f9bfdc74d3df23"

 - create final container for db

 - start container db

 * machine_batch[default] action converge

 - [web1] create node web1 at https://api.chef.io/organizations/sdearl

 - [web1] add normal.tags = nil

Using Chef Provisioning

[226]

 - [web1] add normal.chef_provisioning = {"from_image"=>"ubuntu",
"reference"=>{"driver_url"=>"docker:tcp://192.168.99.100:2376", "driver_
version"=>"0.9.0", "allocated_at"=>"2016-04-04 04:07:36 UTC", "host_
node"=>"https://api.chef.io/organizations/sdearl/nodes/", "container_
name"=>"web1", "image_id"=>nil, "docker_options"=>nil, "container_
id"=>nil}}

 - [web1] update run_list from [] to ["recipe[apache]"]

 - [web2] create node web2 at https://api.chef.io/organizations/sdearl

 - [web2] add normal.tags = nil

 - [web2] add normal.chef_provisioning = {"from_image"=>"ubuntu",
"reference"=>{"driver_url"=>"docker:tcp://192.168.99.100:2376", "driver_
version"=>"0.9.0", "allocated_at"=>"2016-04-04 04:07:36 UTC", "host_
node"=>"https://api.chef.io/organizations/sdearl/nodes/", "container_
name"=>"web2", "image_id"=>nil, "docker_options"=>nil, "container_
id"=>nil}}

 - [web2] update run_list from [] to ["recipe[apache]"]

 - [web1] create container to converge web1

 - [web2] create container to converge web2

 - [web1] start converge container chef-converge.web1

 - [web2] start converge container chef-converge.web2

 - [web1] commit and delete converged container for web1

 - [web2] commit and delete converged container for web2

 - [web1] update node web1 at https://api.chef.io/organizations/sdearl

 - [web1] update normal.chef_provisioning.
reference.container_id from nil to
"fcbdc9eb4de28474237c4ec146f3852ce796ff998af23c5bff5792a3a224d119"

 - [web1] create final container for web1

 - [web2] update node web2 at https://api.chef.io/organizations/sdearl

 - [web2] update normal.chef_provisioning.
reference.container_id from nil to
"c6c89b0c946cb76156fbaefb32a3f54bdba1e85f3a25025305ab6aa56134160d"

 - [web2] create final container for web2

 - [web2] start container web2

 - [web1] start container web1

Some things to note in the output include the following:

1. The machine image "Ubuntu" is created first.
2. Then, we converge the DB machine. This phase ends with the starting of the

DB container.
3. After this, we get to the machine_batch resource, which will converge two

machines—web1 and web2.

Chapter 8

[227]

Note how the output from those actions are intermixed. This is because of the
synchronous nature of using the machine_batch resource type. Here too,
this ends with the starting of our two web containers. Success!

Now we have our cool-app cluster running in Docker containers. It should look
something like this:

References
• Here are the GitHub repos for a few of the Chef Provisioning drivers, each of

which provides examples for using Chef Provisioning as its named provider:
 ° AWS driver: https://github.com/chef/chef-provisioning-aws
 ° Azure driver: https://github.com/chef/chef-provisioning-

azure

 ° Docker driver: https://github.com/chef/chef-provisioning-
docker

 ° Vagrant driver: https://github.com/chef/chef-provisioning-
vagrant

https://github.com/chef/chef-provisioning-aws
https://github.com/chef/chef-provisioning-azure
https://github.com/chef/chef-provisioning-azure
https://github.com/chef/chef-provisioning-docker
https://github.com/chef/chef-provisioning-docker
https://github.com/chef/chef-provisioning-vagrant
https://github.com/chef/chef-provisioning-vagrant

Using Chef Provisioning

[228]

 ° Google driver: https://github.com/chef/chef-provisioning-
google

 ° VSphere driver: https://github.com/CenturyLinkCloud/chef-
provisioning-vsphere

• Here is the link to the public Vagrant boxes: http://www.vagrantbox.es
• Learn all of the AWS create instance options at http://docs.aws.amazon.

com/sdkforruby/api/Aws/EC2/Resource.html#create_instances-
instance_method

• You can download the Docker Toolbox at https://www.docker.com/
products/docker-toolbox

Summary
In this chapter, we have learned how to master Chef Provisioning. Finally.

https://github.com/chef/chef-provisioning-google
https://github.com/chef/chef-provisioning-google
https://github.com/CenturyLinkCloud/chef-provisioning-vsphere
https://github.com/CenturyLinkCloud/chef-provisioning-vsphere
http://www.vagrantbox.es
http://docs.aws.amazon.com/sdkforruby/api/Aws/EC2/Resource.html#create_instances-instance_method
http://docs.aws.amazon.com/sdkforruby/api/Aws/EC2/Resource.html#create_instances-instance_method
http://docs.aws.amazon.com/sdkforruby/api/Aws/EC2/Resource.html#create_instances-instance_method
https://www.docker.com/products/docker-toolbox
https://www.docker.com/products/docker-toolbox

[229]

Index
Symbols
.chef folder files

using 23, 24
.kitchen.yml configuration

URL 211

A
Amazon EC2 console

URL 158
Atom editor

URL 44
attribute precedence hierarchy

about 66
attribute precedence factors 66, 67
resulting precedence hierarchy 68

attributes, recipes
URL 6

AWS create instance options
URL 228

AWS driver
URL 227

AWS EC2 instances
Chef Server, installing 154-158
EC2 authentication 150
key pairs, creating 150-152
provisioning 150
security groups, creating 152, 153

AWS Marketplace
URL 159

azure-cookbook
URL 168

Azure driver
URL 227

Azure PublishSettings file
URL 168

B
base image container

URL 186
Berkshelf 13
bootstrapping data

URL 43

C
CentOS instance image

adding, to provision 132, 133
Certified Culinary Educator (CCE) 35
Chef

about 2, 3
Chef Development Kit (ChefDK) 8
cookbooks 5
data bags 7
environments 7
Ohai 5
on-premise (private) Chef Server,

setting up 8-12
recipes 5
references 3, 12
resources 6
roles 6
run lists 5
supermarket 8
version, determining 2

chef-apply
about 31
advantages 31, 32
references 32

[230]

Chef client 4
chef-client installation

automated, URL 147
manual, URL 147

Chef, components
Chef server 4
nodes 4
workstations 4

Chef cookbook
for Docker, URL 185

Chef Development Kit (ChefDK)
about 1, 8, 13
community tools 13
downloading 14
installing 14, 15
installing, on Ubuntu 16
installing, on Windows workstation 20
Knife 13
references 14, 20
URL 14
verifying 16-20

Chef environments
_default environment 62
Chef.io documentation, URL 64
cookbook versions constraints, URL 64
cookbook versions, specifying 63
creating 62
using 62

Chef.io
and Amazon AWS, URL 158

Chef.io slide deck
URL 93

Chef Junos integration
URL 147

Chef Management Console
URL 65

Chef organizations
access control 65
Chef.io reference, URL 65
creating 64
using 64

Chef provisioning
about 214
chef.io site, URL 215
cloud example, with AWS 220-222
Docker example 223-226
hypothetical example 214, 215

idempotent 214
in GitHub repo, URL 215
resources 216
using 215
Vagrant example 216-220

Chef repo
.chef folder files 23, 24
Chef tool, using 21, 22
references 27
self-signed certificates 25, 26
setting up 20
starter kit 22, 23
tree script, creating 24

Chef roles
Chef.io documentation, URL 61
creating 56-58
downside 61
nested roles, using 60
per-environment run-lists, using 58, 59
using 55, 56

Chef Server
about 4
installing, into EC2 instance 154-158
URL 9

chef-server cookbook
URL 159

Chef Server-specific
URL 159

ChefSpec
about 14
on Chef.io site, URL 202
repo on GitHub, URL 202
repo, URL 202
tests, expanding 199-201
unit testing with 195
using 195-198

Chef + VMware integration
URL 114

Cisco cookbook repo
on GitHub, URL 147

Cisco systems
automating 141-144

classic
URL 159

Classic UI
URL 168

community tools 13

[231]

Compute Engine (GCE)
Chef server, deploying 175-178
on Chef.io, URL 178
virtual machines,

provisioning with 172-175
containers

Docker, installing on Chef Workstation 183
Docker, using on Chef Workstation 183
hosting, by setting up

Docker server 180-183
knife-docker plugin, using 184, 185
provisioning, in Docker 180
URL 186

Customer Resource
example use case, creating 81

Customizing Chef book
URL 81

Custom Resource
about 81
Chef.io slide deck, URL 93
converting, into library module 97-99
creating 87, 88
DSL, URL 97
library module Custom Resource,

subclassing 99-101
prior to version 12.5, URL 81
subclassing 97
URL 81
using 87, 91-93
website Custom Resource,

creating 88-91
Custom Resource, creating

idempotence, handling 95-97
more reusable 93
mywebapp example, code reusing 94
only cookbook 94
reusable Custom Resource only cookbook,

using 94, 95

D
data bags 7
DevStack

downloading 119-122
installing 119-122
URL 137

DevStack Host VM
deploying 116-119

DevStack OpenStack all-in-one
environment

setting up 116
DevStack public key

setting up 127, 128
Docker

containers, provisioning 180
installing, on Chef Workstation 183
knife-docker plugin, using 184, 185
server setting up,

to host containers 180-183
tutorial, URL 186
URL 185
using, on Chef Workstation 183

Docker driver
URL 227

Docker repo
URL 185

Docker Toolbox
URL 186, 228

dotCloud
URL 186

DSL (Domain-specific Language) 80

E
EnterpriseDaddy

URL 104
environments 7
example use case, Customer Resource

about 81
chef-client documentation, URL 87
cookbook, creating 82, 83
default recipe, creating 83-86
goal 82
recipe 87

F
F5 Big IP cookbook

downloading, URL 147
URL 147

F5 LTMs
automating 144, 145

[232]

Foodcritic
about 13
cookbooks, analyzing with 192
customizing 194
on Chef.io site, URL 194
output, analyzing 193
repo on GitHub , URL 194
rules , URL 194
URL 193, 194
using 192

Forbidden error
URL 137

G
GCE cookbook LWRP

on GitHub, URL 178
Google Cloud platform

Chef server, deploying into
GCE instance 175-177

key pairs, creating 171, 172
key pairs, registering 171, 172
knife-google plugin,

configuring 169-171
knife-google plugin, installing 169
provisioning 169
virtual machines,

provisioning with GCE 172-174
Google Cloud SDK

URL 178
Google Cloud Storage (GCS)

cookbook LWRP
on GitHub, URL 178

Google Compute Engine (GCE) 169
Google Compute Engine Machine

Types (instance sizes)
URL 178

Google driver
URL 228

H
Heavyweight Resource

Providers (HWRP) 80

I
Infrastructure as a Service (IaaS) 137
instance resource sizing

URL 159
integration testing

tests, preparing 203-206
with Kitchen and ServerSpec 202

J
juniper devices

automating 138-141
junos-chef repo

URL 147
Justin Ellingwood

URL 61

K
key pairs

creating 150-152
URL 159

Kitchen
converge 207
create 206
integration testing with 202
verify 208-211

Knife 13
knife-azure plugin

installing 160, 161
URL 168

Knife Block
URL 65

Knife Bootstrap 37-39
Knife command

URL 43
Knife Diff 39
knife-docker plugin

URL 186
using 184, 185

knife-ec2 plugin
URL 158

[233]

Knife EC2 plugin
about 47
EC2 Create Server plugin 52, 53
EC2 instances, URL 50
existing EC2 instance, bootstrapping 49
GitHub Knife EC2 plugin, URL 50
installing 47, 48
instance, creating 48, 49
instances, deleting 50
Knife Cloud plugins, URL 50
on GitHub page, URL 50
URL 50-53

knife-esx plugin
URL 115

Knife Exec 40
knife-google plugin

configuring 169-171
installing 169-171
on GitHub, URL 178

Knife help
about 35, 36
URL 37

Knife Node 39
knife-openstack plugin

URL 137
knife OpenStack plugin

installing 127
knife-openstack plugin knife settings

configuring 129-131
Knife plugins

basic plugin file format 51, 52
creating 51

Knife Search
about 41, 42
URL 43

Knife SSH 41
Knife subcommands 37
Knife to editor, integration

about 43
wait option, uses 44
wait option, using 43

knife-vsphere plugin
installing 105-107
URL 114
used, for provisioning VMs 107-110

Knife Windows plugin
about 45
GitHub repo, URL 46
installing 45
URL 46
Windows node, bootstrapping 45, 46
Windows node data, searching for 46

L
libraries

Chef documentation, URL 101
Lightweight Resource Providers (LWRP) 80
Linode

about 178, 179
knife-linode plugin, URL 179
URL 179

M
Microsoft Azure instances

configuration, verifying 162
knife-azure plugin, installing 160, 161
new Chef server, provisioning

into Azure 166-168
plugin, configuring 161, 162
provisioning 159, 160
public/private key pairs, generating 163
virtual machines, provisioning 164, 165

Microsoft PowerShell
URL 169

N
netdev repo

on GitHub, URL 147
network automation

Cisco systems, automating 141-144
F5 LTMs, automating 144, 145
juniper devices, automating 138-141

nodes 4
NX-OS integration

URL 147

[234]

O
Ohai 5
on-premise (private) Chef Server

setting up 8-12
OpenStack command cheat sheet

URL 137
OpenStack configuration input settings

URL 137
OpenStack instance images

URL 137
OpenStack provisioning

about 115
CentOS instance image,

adding to provision 132, 133
demo project rc file, applying 123
demo project rc file, downloading 123
DevStack, downloading 119-122
DevStack Host VM, deploying 116-119
DevStack, installing 119-122
DevStack OpenStack all-in-one

environment, setting up 116
DevStack public key, setting up 127, 128
floating IP addresses,

allocating to project 128, 129
knife OpenStack plugin, installing 127
knife-openstack plugin knife settings,

configuring 129-131
new instance, provisioning 133-137
security rules, adding to allow ping and ssh

traffic 123-127

P
Platform as a Service (Paas) 137
policies

about 69
Chef.io blog post, URL 77
Chef.io webinar, URL 77
chef-zero repo, URL 77
example 72-75
Gotchas 76, 77
policyfile documentation, URL 77
source options, specifying

for cookbooks 75, 76
URL 77
uses 70
ways, for using 70, 71

portal
URL 159

Portal UI
URL 168

PuTTY
URL 159

Q
QFX5100 switches

URL 147

R
recipes

about 5
attributes 6
convergence 7
idempotence 7
order 7

resources
about 6
defining 80
package 6
service 6
template 6

roles 6
RuboCop

cookbooks, analyzing with 188
cops, URL 191
customizing 190
on Chef.io site, URL 191
output, examining 189, 190
repo on GitHub, URL 191
URL 191
using 188

run lists 5

S
security groups

creating 152, 153
URL 159

self-signed certificates 25, 26
ServerSpec

resource tests, URL 212
URL 211

Software as a Service (SaaS) 137

[235]

Software-defined Networking (SDN) 137
Sublime Text editor

URL 44
supermarket

about 8
URL 8

T
Test Kitchen

about 13
home page 211
repo, URL 211
URL 211, 212

text editor
using 27-29

TextMate
URL 44

tree script
creating 24

Tutum
URL 186

U
Ubuntu

Chef Development Kit (ChefDK),
installing 16

Ubuntu Desktop
URL 137

unit testing
with Chefspec 195

V
Vagrant

URL 30
using 30

Vagrant box
URL 115, 228

Vagrant driver
URL 227

Vagrant Plugin Butcher
URL 115

Vagrant tool
URL 211

vCloud Director (vCD) 105

version control system
using 29

VirtualBox
software, URL 211
URL 30

virtualization hypervisor 30
VMware Fusion

URL 115
VMware provisioning

about 103-105
Chef, using 111-114
knife-vsphere plugin, installing 105-107
knife-vsphere plugin used 107-110
vSphere and Chef environments,

cleaning up 110, 111
VMware vCloud Automation Center

(vCAC) 105
VMware Workstation

URL 115
vSphere 6 lab

URL 114
VSphere driver

URL 228

W
wait option 43
WebApp deployments

URL 147
webinar

URL 202
Windows workstation

Chef Development Kit (ChefDK),
installing 20

workstation
about 4
references 31
setting up 27
text editor, using 27-29
Vagrant 30
version control system 29
virtualization hypervisor 30

	Cover

	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Setting up a Development Environment on Your Workstation
	Re-introducing Chef
	What version of the Chef tools do I use?
	References

	Filling in the gaps in your Chef knowledge base
	Major pieces of a Chef puzzle
	The Chef client
	The Ohai Chef tool
	Recipes and cookbooks
	Chef run lists
	Chef roles
	Chef resources
	More things to consider
	Data bags
	Environments
	The Chef supermarket
	Chef Development Kit
	Setting up an on-premise (private) Chef Server
	References

	Exploring the Chef Development Kit
	The Chef Knife
	Community tools
	References

	Installing Chef Development Kit
	Downloading ChefDK
	Installing ChefDK
	Verifying ChefDK
	References

	Setting up a standard Chef repo
	Using the Chef tool for Chef repo
	The repo starter kit
	Files for your .chef folder – a safer way
	Growing your own tree
	Self-signed certificates
	References

	What else do you need?
	Using your favorite editor
	Version control systems
	Virtualization hypervisor
	Vagrant
	References

	What is chef-apply?
	Why is that useful?
	References

	Summary

	Knife Tooling and Plugins
	Knife help
	References

	Knife subcommands
	Knife Bootstrap
	Knife Node
	Knife Diff
	Knife Exec
	Knife SSH
	Knife Search
	References

	Knife to editor integration
	Using the "wait" option
	Does my editor require the wait option?
	References

	Knife Windows plugin
	Installing the Knife Windows plugin
	Bootstrapping a Windows node
	Searching for Windows node data
	References

	Knife EC2 plugin
	Installing the Knife EC2 plugin
	Creating an EC2 instance
	Bootstrapping an existing EC2 instance
	Deleting EC2 instances
	References

	Creating new Knife plugins
	The basic plugin file format
	Example – A simpler EC2 Create Server plugin
	References

	Summary

	Leveraging Roles, Environments, and Policies
	Using Chef roles
	How to create a role
	Using per-environment run-lists in roles
	Using nested roles
	There is a downside to roles
	References

	Using Chef environments
	The _default environment
	Creating environments
	Specifying cookbook versions in environments
	References

	Using Chef organizations
	Creating organizations
	Access control
	References

	Learning the attribute precedence hierarchy
	Understanding attribute precedence factors
	Resulting precedence hierarchy

	Exploring policies
	What exactly is a policy?
	Why would I use a policy?
	How do I use a policy?
	Another example
	How to specify the source options for cookbooks
	What are the "Gotchas"?
	References

	Summary

	Custom Resources
	Out with the old (LWRPs), in with the new (Custom Resources)
	What is the difference between the old way and the new way of defining resources?
	What is a Custom Resource?
	References

	Creating an example use case
	What is the goal?
	Creating the cookbook
	Creating the default recipe
	The recipe worked, but what is missing?
	References

	Creating and using a Custom Resource
	What makes up a Custom Resource?
	Creating the "website" Custom Resource
	Using our Custom Resource
	References

	Making a Custom Resource more reusable
	Making a Custom Resource-only cookbook
	Reuse the code from the "mywebapp" example
	Using the reusable Custom Resource-only cookbook
	Handling idempotence
	References

	Subclassing a Custom Resource
	Convert our resource into a library module
	Subclassing the library module Custom Resource
	References

	Summary

	Provisioning in the Traditional Data Center
	VMware provisioning
	Installing the knife-vsphere plugin
	Provisioning VMs using the knife-vsphere plugin
	Cleaning up our vSphere and Chef environments
	Using Chef with VMware and Vagrant
	References

	OpenStack provisioning
	Setting up a DevStack OpenStack all-in-one environment
	Deploying the DevStack Host VM
	Downloading and installing DevStack
	Downloading the demo project rc file and applying it
	Adding the security rules to allow ping and ssh traffic
	Installing the knife OpenStack plugin
	Setting up the DevStack public key
	Allocating some floating IP addresses to the project
	Configuring the knife-openstack plugin knife settings
	Adding a CentOS instance image to provision
	Provisioning a new instance
	References

	Network automation
	Automating juniper devices
	Automating Cisco systems
	Automating F5 LTMs
	References

	Summary

	Provisioning in the Cloud
	Provisioning AWS EC2 instances
	Understanding EC2 authentication
	Creating key pairs
	Creating security groups
	Installing Chef Server into an EC2 instance
	References

	Provisioning Microsoft Azure instances
	Installing the knife-azure plugin
	Configuring the plugin
	Verifying the configuration
	Generating public/private key pairs
	Provisioning virtual machines
	Provisioning a new Chef server into Azure
	References

	Provisioning in the Google Cloud platform
	Installing and configuring the knife-google plugin
	Creating and registering your key pairs
	Provisioning virtual machines with the GCE
	Deploying Chef server into a GCE instance
	References

	Looking at an honorable mention – Linode
	References

	Provisioning containers in Docker
	Setting up a Docker server to host our containers
	Installing and using Docker on our Chef Workstation
	Using the knife-docker plugin
	References

	Summary

	Test-Driven Development
	Analyzing cookbooks with RuboCop
	Using RuboCop
	Examining the RuboCop output
	Customizing RuboCop
	References

	Analyzing cookbooks with Foodcritic
	Using Foodcritic
	Examining the Foodcritic output
	Customizing Foodcritic
	References

	Unit testing with ChefSpec
	Using ChefSpec
	Expanding our tests
	References

	Integration testing with Kitchen and ServerSpec
	Preparing our tests
	Kitchen create
	Kitchen converge
	Kitchen verify
	References

	Summary

	Using Chef Provisioning
	What is Chef provisioning?
	It's highly idempotent
	A hypothetical example
	References

	How to use Chef Provisioning
	Chef Provisioning resources
	A Vagrant example
	A cloud example with AWS
	A Docker example
	References

	Summary

	Index

