Microsoft Azure
Cosmos DB Revealed

A Multi-Modal Database Designed
for the Cloud

Building globally distributed
mission-critical applications

José Rolando Guay Paz

ApPress’

ww.allitebooks.co

http://www.allitebooks.org

Microsoft Azure
Cosmos DB Revealed

A Multi-Modal Database
Designed for the Cloud

José Rolando Guay Paz

Apress’

Microsoft Azure Cosmos DB Revealed

José Rolando Guay Paz
Beach Park, Illinois, USA

ISBN-13 (pbk): 978-1-4842-3350-4 ISBN-13 (electronic): 978-1-4842-3351-1
https://doi.org/10.1007/978-1-4842-3351-1

Library of Congress Control Number: 2018930529
Copyright © 2018 by José Rolando Guay Paz

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Warner Chaves
Coordinating Editor: Jill Balzano

Copy Editor: Mary Behr

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484233504.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-3351-1
http://www.allitebooks.org

To the Lord, Jesus Christ

To my wife, Karina, and my daughters,
Sara and Samantha

Table of Contents

About the AUthOrcccinimmmsnmmemms s ———————— xi
About the Technical REVIEWErcussrssessssnsssassssnsssasssssssssnsssassssasnsns xiii
Acknowledgments........ccccuuussssnnmnnnmmmmsssssssssssnnnnsesssssssssssnnnnnsssssssssnnnnns XV
Chapter 1: Introduction to Azure Cosmos DBccccunsmssssssssssnssssnes 1
What IS Azure COSMOS DB? ..o 2
MajJOr FEALUIESccccceee e e e 2
Turnkey Global Distribution ... 2
Multiple Data Models and APIS..........ccccrrrernsnrnensrse e 3
Elastically Scale Throughput and Storage on Demand............ccccccvevverrenernne. 3

High Availability and Response TIMe.........ccecvvnrninnsnnniesiessn e sessessens 4

Five ConsSiStency MOMEISccveererrrrerreriereressenesesssssssessesssssssessessessssessessenes 4
Setting Up the Development Environment...........cccccvvvnincninnsnsnncnnenssessennenns 4
Installing Microsoft Visual Studiocccocevvinininnsnin s sessennens 4
Installing the Azure Cosmos DB Emulatorc.ccoceevvninenncnscnenssensennens 12
Creating a Microsoft Azure Account and Subscription..........ccoovvnvniniiininenne, 15
Provisioning an Azure Cosmos DB Databasec.ccovrereresernsesensesesenesensenens 21
SUMMANY ... ettt e e e e p e 23

v

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 2: Learning Azure Cosmos DB Conceptscccussunenrsssssnnnnas 25
Understanding Global Distribution ..o 25
Introducing Write and Read Regionsccucvvrenninsenienssensesse s ssssessessens 27
Understanding the Consistency Models.........ccccoucrvninninnnennnnnsnse s 28
SCOpe Of CONSISTENCY ...ccvevererererirsirrer e 29
Strong Consistency MOdEL..........cccccrvrrinnnnninin e 30
Eventual Consistency Model...........cccocvvrniinsninnnnsnseness e 31
Bounded Staleness Consistency Model............cccccvivvnininninnnnnsenesnsensennns 32
Session Consistency Model ... 33
Consistent Prefix Consistency Modelcccoveerenrnccnnieseniesern s 33
Consistency for QUEMIES.......ccccvererirrerererere s s se s se s e saeaes 34
Understanding Partitioningcccoeernenrenres e 34
What Are CONtAINEIS?ccoeeereeecrerererene s sesnenens 34
How Does Partitioning Work? ... 36
Designing for Partitioning.........c.ccocevvvninininnnnni e 37
Understanding TArOUGNPULcocoereerncere e 38
Specifying Request Unit Capacity.........c.ccourrerernnrnsenesesesssesesesesesesessenens 38
Estimating Throughput ... 39
IMPleMEeNting SECUNY........ccovrerrrerere e 4
Encryption @t Rest ... 4
Firewall SUPPOIto o 42
Securing ACCesS 10 Data.........ccoveernrerrrenernse s 44
SUPPOITEU APIS.....ceececeeerire e 46
Azure CosmOS DB REST APL........ccovenmrinernsenenesssssessssessssessssssessssessssesssssnens 46
DOCUMENEDB APL........c.oeeeeerere e s 49
MONGODB APL ... e e 51

TABLE OF CONTENTS

T 0] 1 172 o R 53
TaDIE APL......ceeceece e s 57
SUMMAIY....eiierirc s e e e s e et 59
Chapter 3: Working with an Azure Cosmos DB Database........cc.counes 61
Creating Your Database...........cccoeecrerenerenereescrenese e 62
Defining the DOCUMENTccocveeieeereerrere e 69
Managing DOCUMENEScccovererinerne s 70
Using the Azure Cosmos DB Emulator to Manage Documentscccevevveviennene 71
Managing Documents with an Applicationc.ccccvvvnininnnnenininsn e 77
Creating the ASP.NET Web Applicationccevrevvvrvenievenensensesesessensensens 77
Creating a Class for the DOCUMENT..........coevrvvrerernsrsere e 85
Creating the Data LaYercccevievrrerverieresesseresessssesessessssessessessesssssssessenes 89
Using the Data Layer in the Controller and Completing the Application...... 103
SUMMAIY.c.uetetrereresessere s e sesersessessesessessesae e ssesaesaessesessesassasssssesassasssssensessens 122
Chapter 4: Importing Data into an Azure Cosmos DB Database....... 125
Introducing the DocumentDB Data Migration Toolc.ccovoerreerrccnercserenes 125
Software ReqUIremMents........cccoovvvenininnnnnne s 126
Features of the DocumentDB Data Migration ToOL...........cccoevrrieriernseniennens 127
Installing the DocumentDB Data Migration Toolc..ccevvenvnierenensenienne, 128
Installing the DocumentDB Data Migration Tool from the Source Code 132
Importing Data with the DocumentDB Data Migration Tool GUI.............c.c..c...... 140
IMPOrting JSON FilES ... 140
Importing from SQL SEIVEr ... s 151
Importing from MONGODBccoverernnrrererese s seenes 154

Importing Data with the DocumentDB Data Migration Tool Command
Ling INTErfaCecovveeerreerrrcsire e 156
SUMMAIY.c.veiteirerere e e s s s a e e s e s sae e e e s aeeaesee e s e eaesae s e e nannaees 157
vii

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 5: Querying an Azure Cosmos DB Database...........cccnrissnnns 159
Understanding INAEXINGc.ccovvvrneninnsne s 159
Understanding the Indexing Mode...........cccoovvrrrinnsnncniesssnsesese e 162
Understanding Index Paths..........ccccccvvnniinnnnnnssnsnsese s 163
Adjusting the Indexing POICYccccvvrrrriririnne s rserer e sses e sensenns 165
Querying an Azure Cosmos DB Databasec.ccccvrevnvnsnennsnsensesessssensensens 167
Learning the SELECT Statement...........cccooevnvriniinncnnnnsssnesese s senenns 167
Working with Rerations ... e 177
Understanding JOiNS.........ccccuvrninnnnenisssinsese s snes 179
Working with Parameterized SQL QUETIES......ccccccvrvererereresereneseresereserenne 180
Using Built=In FUNCLIONScccoeriiicrrrr e 181
Extending the Sample Application ..o 182
Implementing SAL QUEHESccoceueeerircerererere s seses e s e e seenes 193
Implementing Parameterized QUEKIEScccvverirnrninie s 195
Implementing LINQ QUEKIES........ccceeeerurrererereriererieseses s e ses e sessesesseesennes 197
SUMMANY....eieeerieereree e e s pe e e e 200
Chapter 6: Working with a Globally Distributed Database................ 203
Configuring Global Distributionccccvvvivnnninine e 203
Configuring FAIIOVETcccvevrererrereresesseresessssessessessesessessessesssssssessesssssssensessens 208
Working with Manual Failover ... sesesses e ssesessenns 208
Configuring Automatic FAIlOVErccvvevvrrvnieriener s sese e sessesseenes 209
Connecting to a Preferred REgiONccvvevevererierieresessereressssessessessesessesessens 211
Implementing a Multi-Master Databasecccccocvvvvvninnninnsnsnese e 213
Application SCENANI0........c.ccvcererrrrire e 213
Implementing the Solution ... 214
SUMMANY....eieeereecreree s e s s e e ne s ne s 218

viii

TABLE OF CONTENTS

Chapter 7: Advanced CONcCepts.......ccccrrmsssnmnsrsssssnnsssssssnnsssssssnnnssssnnns 219
Working with Transactions...........ccccvcnvnnnnnsn e 219
Implementing Stored Procedures ... 220

Creating a Stored ProCedurec.cccrerinniniennnsn s sessesnes 225
Executing a Stored Procedurecoccvvvevncnininssnsensese s sessssessesnens 229
IMPlementing THGQEIS ...covvvreereerere s 231
Creating @ THgQETccoveeerecrere e e 234
Implementing User-Defined FUNCLIONS.........cccccvvenerenernseseneses e 237
Creating @ UDF..........ccoveeerernesere s se s 238
USING @ UDF ...t 241
Working With DAtes........cccueeernrernennesrsese e s 250
Backing Up and Restoring Azure Cosmos DB Databases..........cccceerierevreriernenn 252
Backup Retention POlICY........cccuvervvervnienenirserere s sessese e sessessesessessessens 253
Restoring Databasescccvvererenerserienensnsesesesss s sse e sessessessessssessessens 253
SUMMAIY . ueitetrerere e serse e sse s e sa e e ssesae s s e se s e saesaese e e saesaesaeseesesaesaesseensesaess 254
1T - 255
ix

vww . allitebooks.con

http://www.allitebooks.org

About the Author

José Rolando Guay Paz is a professional developer with more than

20 years of experience in implementing database-backed applications. He
was among the first in Central America to build commercial applications
using Microsoft .NET. He has deep experience in Oracle Database and
SQL Server, and he is an MCPD in ASP.NET 3.5/4.0, an MCSD in web
applications, and an MCTS in SQL Server 2012/2014. José’s native
language is Spanish, he is fluent in English, and he has learned some
French. He holds a bachelor’s degree in Computer Science and a master’s
degree in Finance.

About the Technical Reviewer

Warner Chaves is a SQL Server MCM, Data
Platform MVP, and Principal Consultant at
Pythian, a Canada-based global company
specializing in database services and
analytics. A brief stint in .NET programming
led to his early DBA formation working for
enterprise customers in Hewlett-Packard’s ITO

organization. From there he transitioned to
his current position at Pythian, building and
managing data solutions in many industry verticals while leading a highly
talented team of data platform consultants.

xiii

vww . allitebooks.con

http://www.allitebooks.org

Acknowledgments

I can’t thank Jonathan Gennick enough for helping to make this book a
reality, providing valuable advice, and pushing when needed. Thanks also
go to Jill Balzano for keeping all things organized. The technical reviewer,
Warner Chaves, was a key player in ensuring the quality of the content.
And thank you to the many people at Apress who were involved in one way
or another in this project.

CHAPTER 1

Introduction to Azure
Cosmos DB

The database space has been greatly dominated by relational database
management systems (or RDBMSs) such as Microsoft” SQL Server or
Oracle. This dominance was made possible in part by the wide range of
solutions that can be built on top of those systems but also because of
the powerful products that are available. There is, however, a different
approach to data management, commonly known as NoSQL. The term
NoSQL stands for “non SQL’ or “not only SQL” since SQL (Structured
Query Language) is almost exclusively tied to relational systems. NoSQL
databases have existed since the 1960s but it wasn’t until the early 2000s
that they gained a lot of popularity with companies like Facebook and
Amazon implementing them and products such as MongoDB, Cassandra,
and Redis becoming the choices for many developers.

In this chapter, I will introduce Azure Cosmos DB, Microsoft’s
NoSQL database, which is available in Microsoft Azure as a globally
distributed, multi-node database service. We will examine what it is and
its main features, but most importantly, at the end of the chapter, you
will have a complete development environment that you can use for your
applications.

© José Rolando Guay Paz 2018
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_1

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

What Is Azure Cosmos DB?

Azure Cosmos DB started in 2010 as an internal Microsoft project known
as “Project Florence.” The objective of the project was to address some of
the problems that the Microsoft developers were facing with large Internet-
scale applications. In 2015, the project was made available to external
developers in Microsoft Azure and a new product was born under the
name of DocumentDB. Finally, at the Microsoft Build 2017 conference,
Azure Cosmos DB was officially launched with existing DocumentDB
capabilities such as global distribution and horizontal scale with low
latency and high throughput.

What’s new in Azure Cosmos DB is that it natively supports multiple
data models: key-value, documents, graph, columnar, and more that
are currently being developed. This gives you the freedom to work with
your data in the form that best describes it. It also supports multiple
APIs for accessing data including DocumentDB SQL, MongoDB,
Apache Cassandra, Graph, and Table.

Major Features

The following are some of the most important features of Azure Cosmos

DB. There are many features in the product, but what follows are the ones that
drove the implementation. They are what the product developers most had in
mind. Most of these features were present since DocumentDB; however, with
the evolution of the product, new features were introduced, making Azure
Cosmos DB what is now. Many more features are under development.

Turnkey Global Distribution

Global distribution means that your databases can be distributed across
different regions of Microsoft Azure and can be stored and accessible
closer to your clients. This powerful functionality has a high degree

2

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

of automation and performance. There is no need to handle complex
configurations, replication downtime, high latency, or security concerns.
Using the Microsoft Azure portal, all you need to do is select the regions
where the database will be distributed and the portal will do the rest.

Multiple Data Models and APls

With Azure Cosmos DB, you can select the data model that best represents
your data. There is no need to think in terms of a rigid structure for the
data. If, for example, you want to store user settings, you can use the
key-value data model; if you want to work with orders, products, and
payments, you can use a document data model. If your data is best
described as relations between entities, then use a graph data model.

The DocumentDB API provides familiar SQL query capabilities. If you
have an application built on MongoDB, you can use the MongoDB API
transparently; in many cases there is no need to rewrite the application,
only change the connection string. For key-value databases, you can use
the Table API, which provides the same functionality as Azure Table storage
but with the benefits of the Azure Cosmos DB engine. With the Graph AP],
you can use the Apache TinkerPop graph traversal language, Gremlin, or
any other TinkerPop-compatible graph system like Apache Spark GraphX.

Elastically Scale Throughput and Storage
on Demand

Throughput in Azure Cosmos DB can be configured in requests per second
based on the requirements of your application. You can also change this
configuration at any time.

You can use all the storage you need. There are no caps as to how
much data you can store. Also, scaling databases is transparent and
happens automatically based on the configuration you set for your
account.

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

High Availability and Response Time

Azure Cosmos DB has a standing SLA of 99.99% availability and a latency
in the 99™ percentile regardless of the region. It also provides a guaranteed
throughput and consistency.

Five Consistency Models

Azure Cosmos DB provides five different consistency models, from strong
SQL-like consistency to NoSQL-like eventual consistency. It all depends
on what your business or application needs.

Setting Up the Development Environment

To develop applications with Azure Cosmos DB, I recommend using
Microsoft Visual Studio 2017. The main reason for this recommendation
is that it is very easy to build, test, and deploy applications for Microsoft
Azure. Another reason is that Visual Studio has a free edition called Visual
Studio Community Edition that has all the capabilities we need to develop
applications with Azure Cosmos DB.

Installing Microsoft Visual Studio

If you already have Visual Studio 2017 installed, you can skip this section.
To obtain Visual Studio, all you need to do is the following:

1. Open your browser and go to www.visualstudio.com/.
The page is shown in Figure 1-1.

2. From the Download Visual Studio drop-down,
select Commupnity 2017. If you have a license for a
different edition, you can download it by selecting it
from the options.

http://www.visualstudio.com/

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

® 3 BT visualStudio IDE Code X + W

(6D) & visualstudio.com

Any Developer, Any App, An

Visual Studio IDE Visual Studio Team Services

Rich IDE, advancec o Agile to it, and continuous integratior

Download Visual Studio & Get started for free ©

Community 2017

Learn more »

Professional 2017

Enterprise 2017

New in Visual Studio

Figure 1-1. Download Microsoft Visual Studio 2017

3. After selecting an edition to download, you will be
redirected to a new page where your download
will start.

4. Save the installer file in a folder by clicking the Save
button, as shown in Figure 1-2.

What do you want to do with
vs_community__2137703764.1500524076.exe (1017 KB)? Run Save ~ Cancel X

From: visualstudio.com

Figure 1-2. Save the installer file to a folder

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

5. After the download has completed, run the installer
file by clicking the Run button shown in Figure 1-3.

vs_community__2137703764.1500524076.exe finished downloading. Open folder View downloads

Figure 1-3. Run the installer file

6. You may be prompted to authorize the file to run.
Select Yes in the prompt window.

7. 'The first window in the installation program (shown
in Figure 1-4) will show you links to read the
Microsoft Privacy Statement as well as the license
terms. Accept the license terms by clicking the
Continue button.

Visual Studio

To learn more about privacy, see the Microsoft Privacy Statement.

By continuing, you agree to the License Terms.

N

Figure 1-4. Visual Studio license terms and privacy statement
window

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

8. Once you click the button, the installation program
will download the most current list of options to
install, as seen in Figure 1-5.

Visual Studio

Give us a minute. We’'ll be done soon...
I]

Cancel

Figure 1-5. Downloading installation options

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

9. After the options are downloaded, they will
be displayed so you can select the necessary
components for the types of applications you will
develop. Figure 1-6 shows these components. In this
case, you will select ASP.NET and web development

and Azure development.

Imizalling — Visuel Stuchi Commanity 2017 — 152 (26430.16)
Warkioads Individual components Language packs
Windous G) Summary

Uriversal Wandows Platiorm developrment NET desktop development
== Creae apicaian fox the Uniresal Widows Platoim with C%, E_] Buld WEF mmh?msw<munm.wmme i develpen
VB laaSeript or optionally Lo =, AT Framewrork. Ingtaded
[EI T
v NET Framemork 441 development .
Desiaog cevelopenent with Ca v w MET Cose 10+ 1.1 dsiapeant tocis
Butd cassic i 9 P of the MEPNIT and web development taols
Vst €+ toivet, ATL and epsisnal features lioe MEC and A

[Azuee Data Laks Toois
Wb & Clewd (T} B Asose Resource Mansger toch.
[2zuse Clow Services tects

ASPHET and web. nt Haure devebopment B Eowee Mobie Asps 50K
Buld web apalicstions usng ASPNET ASPNET Core HTML, Azere SDK, teols, and peoects for deviloping clowd apps and [Service Fabdic Todls
JoeeSeriot snd 55 eresting resourtes b i

[Windows Communicaton Foundasion

Azure Sarage Alopy

L@ Hote s developmunt

Pythan, worntedtiorn InaSesipt furtime.

, Pys P— Pt i
e-:) ity Sebuzging. Ipplications uting Nodejs, an syrehisnsus 1 2y corinuing. you agres 10 e icense e

e, By OGO #45 Ee S0 TR
I B Dats viorage and prosensing [Hh Dt scherce and analyticel applications s

Location

Crogram Foes (488 Mcrosntt Vivss] Stasko 2077 Comemanity Il 63968

install

Figure 1-6. Selecting Visual Studio components to install

10. Leave the defaultlocation to copy the files and click
the Install button.

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

11. The program will start downloading the necessary
files from Microsoft and install Visual Studio, as
shown in Figure 1-7.

4] Visual Studio Community 2017

Acquiring Microsoft.VisualCpp.Redist.14
20% —

Applying Microsoft.VisualStudio.AspNetDiagnosticPack.Msi

Cancel

Figure 1-7. Downloading and installing Visual Studio
Community 2017

12. Once the installation has completed, you will need
to restart your PC. Figure 1-8 shows the window
requiring you to restart your PC. You can choose
to do so later but it is not recommended to try to
launch Visual Studio before restarting the PC.

Reboot required

Success! One more step to go. Please restart your computer before you start Visual Studio Community
2017.

Get troubleshooting tips Not now

Figure 1-8. Restart your PC after installation has completed

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

13. Figure 1-9 shows Visual Studio’s welcome window.
After you restart, you can launch Visual Studio. It
will ask you to sign in with a Microsoft account such
as an Outlook.com or Office 365 account.

Visual Studio

Welcome!
Connect to all your developer services.

Sign in to start using your Azure credits, publish code to a private Git
repository, sync your settings, and unlock the IDE.

Learn more

Don't have an account? Sign up

Not now, maybe later.

Figure 1-9. Sign in with a Microsoft account

10

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

14. Next, you will be asked to configure some settings
for Visual Studio, as shown in Figure 1-10. For the
development settings, select Web Development. For
the color theme, choose the color you like the most.

Visual Studio

Hello, Jose R. Guay Paz

@outlook.com

JP

View your Visual Studio profile

Start with a familiar environment

Development Settings: Web Development ~

[T] Apply customizations from the previous version to the
environment selected above.

Choose your color theme

N

O Blue - O Dark @ Light
w4 visual Studio) w) visuat Studio

|_- I

You can always change these settings later.

| Start Visual Studio |

Figure 1-10. Visual Studio’s welcome window and environment
settings

11

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

15. That’s it. You now have Visual Studio installed and
running.

Installing the Azure Cosmos DB Emulator

With Azure Cosmos DB Emulator, you can develop your application locally
on your own computer without creating an Azure subscription or incurring
any costs. Once the application is ready for deployment, all you need to do
is to switch to an Azure Cosmos DB subscription.

The emulator has some requirements before it can be installed:

e Itwill only run on Windows 10, Windows Server 2012
R2, or Windows Server 2016.

o Itneeds 2GB of RAM and at least 10GB of free disk
space for storage.

To install the emulator, use the following instructions:

e Using your browser, download the emulator installer
from https://aka.ms/cosmosdb-emulator.

o Save the installer file in a folder, as shown in Figure 1-11.

What do you want to do with Azure Cosmos DB...msi (27.0 MB)?
From: ...Istorage.blob.core.windows.net

Figure 1-11. Download and save the installer file

o After the download is complete, run the installer file as

shown in Figure 1-12.

Azure Cosmos DB.Emulator.msi finished downloading. Open folder View downloads

Figure 1-12. Run the installer file

12

https://aka.ms/cosmosdb-emulator

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

o Figure 1-13 shows the first window in the installation
program. Check the box to accept the license agreement
and click the Install button.

ﬁ Azure Cosmos DB Emulator Setup - X

Please read the Azure Cosmos DB Emulator

License Agreement
MICROSOFT SOFTWARE
LICENSE TERMS

MICROSOFT AZURE COSMOS DB
EMULATOR, PUBLIC PREVIEW

These license terms are an agreement between
you and Microsoft Corporation (or one of its

afELatast Thaw annh: ba tha caflhuoara namaad

W

[A11 accept the terms in the License Agreement

Figure 1-13. Accept the license agreement and click the Install
button

e You may be prompted to authorize the file to run.
Select Yes in the prompt window.

www.allitebooks.cond

13

http://www.allitebooks.org

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

o The installation will happen very quickly and then the
final window will give you the option to launch the
emulator. Check the box to launch the emulator and
then click the Finish button, as shown in Figure 1-14.

ﬁ Azure Cosmos DB Emulator Setup -

Completed the Azure Cosmos DB
Emulator Setup Wizard

Click the Finish button to exit the Setup Wizard.

Launch Azure Cosmos DB Emulator

Back Cancel

Figure 1-14. Installation of the Azure Cosmos DB Emulator is
complete

14

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

o After you click the Finish button, the emulator starts
and launches the web interface (shown in Figure 1-15).
This will indicate that the installation was successful.

B 8 O AwrecosmosDBEmul X + - o x

&< = 0O B localhostaozi rer it Yo = £ =

Quickstart Congratulations! Your Azure Cosmos DB emulator is running.

Mow. let's connect a sample app to it.

Choose a platform

g NET A NET Cone

1 Open and run a sample .NET app
We created » sample NET app connected to your Azure Cosmos DB Emulater instance. Dewnload, extract, build and run the app.

| Dowricad | [

2 Learn more about Azure Cosmos DB

Figure 1-15. Azure Cosmos DB Emulator web interface

With these tools, you have now set up a development environment to
create applications that use Azure Cosmos DB.

Creating a Microsoft Azure Account
and Subscription

Microsoft has made the process of creating an Azure account very easy.
The account will give you access to Azure, but in order to use the products
you must also create a subscription. The subscription you will create now

15

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

is based on the free tier, which gives you (at the time of this writing) one
month and $200 in credits to use. To create your account, perform the
following steps:

1. You can start by navigating in your browser to
http://bit.ly/azure-free-account. This page
will give you information about the benefits of the
free tier in Microsoft Azure and will also give you
access to create your account. Note that creating an
account does not cost anything.

2. To create an account, click the green button labeled
“Start free,” shown in Figure 1-16.

Create your free Azure account today

Get $200 free credit

Start free with $200 in credit, and keep going with free options.

Try any Azure services

Explore our cloud by trying out any combination of Azure services for
30 days.

Pay nothing at the end

We use your credit card information for identity verification, but you'll
never be charged unless you choose to subscribe.

Figure 1-16. Click the “Start free” button to start creating your Azure
account

16

http://bit.ly/azure-free-account

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

3. On the following page, you need to sign up with
your Microsoft account. If you don’t have one, you
can create one by following the link Create a new
Microsoft account at the bottom of the page, as

shown in Figure 1-17.

Microsoft Azure

Work or school, or personal Microsoft account

[
| Email or phone

[
| Password

) Keep me signed in

Sign in Back

Can't access your account?

Create a new Microsoft account

Terms of use Privacy & Cookies

Figure 1-17. Sign in with your Microsoft account

4. Once you have signed in or created a new Microsoft
account, your Azure account is active.

vww . allitebooks.con

@ 2017 Microsoft == Microsoft

17

http://www.allitebooks.org

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

5. Now itis time to create your subscription. For the
subscription, you will be presented with a four-step
form. At the end of the four steps you will have an
active subscription based on the free tier. The first step
is information about you, as shown in Figure 1-18.

* Country/Region @

United States v]

* First Name

* Last Name

* Email address for important notifications @

- someone@example.com - l

* Work Phone

[Example: (425) 555-0100 |

Organization

- Optional - |

Figure 1-18. Information about you to create your Azure account
and subscription

18

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

6. The second step is to add a valid mobile phone
number to validate your identity. It should be a
standard mobile number; VOIP numbers are not
accepted. The step is shown in Figure 1-19. This is
the first identity verification. There will be a second
one following this step. Once you enter your mobile
phone number, click the “Send text message” button
to get a verification code. Once you receive that code,
type it into the third box and click the “Verify code”
button.

©) Identity verification by phone 4]

United States («1) v

i oo >

Figure 1-19. Enter your mobile phone number to validate your
identity

19

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

7. Instep three, the process will ask for a credit card.
You will need to enter the credit card information
along with the billing address associated with the
card. The information is shown in Figure 1-20. At
this point, the credit card information is just for
identity verification and will not be charged until you
switch to a paid type subscription.

@ Identity verification by card L]

Please enter valid credit card information so we can verify your identity. You will not be charged unless
you explicitly transition to a paid offer.

Payment methed

New Credit/Debnt Card v

Your card will not be charged, though you might see a
temporary authorization hold.

visa B ==
* Card number
* Expiration date *CW @

i._._,_‘ v | [vewr ,‘ ’

* Name on card
* Address line 1

Address line 2

* State * ZIP code

Figure 1-20. Enter the credit card information to be used in your
subscription

20

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

8. The final step in the subscription process is to
accept the subscription agreement, offer details, and
privacy statement shown in Figure 1-21. Just check
the box to agree and click the “Sign up” button. You
will be redirected to the Azure portal.

¥ | agree to the subscription agreement, offer details, and privacy statement.

Microsoft may use my email and phone to provide special Microsoft Azure offers.

:

Figure 1-21. Accept the agreement, offer details, and privacy
statement

Provisioning an Azure Cosmos DB Database

Now that you have created your account and subscription, you are ready to
provision your first Azure Cosmos DB database. The process is very simple.
Just follow the next steps, which are illustrated in Figure 1-22.

1. From the Azure portal, click in the big plus sign
in the top left corner. This will open the services
categories panel where you can select the new
service to be added.

2. From the categories panel, select Databases. This
will open the services under the Databases category.

3. Select Azure Cosmos DB. The Azure Cosmos DB
account form panel is opened.

4. You now need to fill the Azure Cosmos DB account
form.

21

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1

22

INTRODUCTION TO AZURE COSMOS DB

ID: This field identifies the Azure Cosmos DB
account. Enter a name that uniquely identifies your
account. A green checkmark at the end of the field
will show up if the name is valid.

APT: For this field, you need to select between
Gremlin (graph), MongoDB, SQL (DocumentDB), or
Table (key-value).

Subscription: Select the new free subscription you
just created in the previous section.

Resource Group: A resource group is a collection of
resources or services in Microsoft Azure that share
the same lifecycle, permissions, and policies. Create
a new resource group by entering its name or select
one from the list if you have created one. Since this is
the first resource being created, you will need to enter
the resource group name and select “Create new.”

Location: This field refers to the Azure region where
the database will be first created. Select the one
closest to you, or if you know your target market, the
one closest to it to get better network speed.

CHAPTER 1 INTRODUCTION TO AZURE COSMOS DB

Databases

<+ hew

S Dusticped - Azure Database for PostgreSClL i
documents.azure.com
MURKETPLACE See all (previes) * 510
L o v-u.\u W Pieass choose sn AP e
Compute >
" I N S0 Server 2016 SP1 Enterpruse T g
Netwarking g on W'soo-s Server 2‘56 hd
Sracage b
Wb + Mobile b
Azune(osnm DB
- r-morl
Databases b % s i
—4 envice.
Data + Analytics b hd
Al + Cognitive Services > Database as 3 service for
LN 1cngoDB
Intemnet of Things > —
Enterprise Integration >
Rud ’ache
Security + Identity
Developer toclks
0 Azure Active Directory . Automs "
Mandanns + Manaseemant > — e St

Figure 1-22. Creating a new Azure Cosmos DB database

Summary

In this chapter, I introduced you to Azure Cosmos DB and its major
features. You read about global distribution and how it helps get the data
closer to your application’s users and how it allows you to have a higher
availability, which is also guaranteed in the standard SLA. I explained
the different data models and supported APIs and also briefly mentioned
scalability and consistency.

You now have a complete development environment with Microsoft
Visual Studio 2017 and the Azure Cosmos DB Emulator. These are the tools
to develop, test, and deploy your applications to Azure. Finally, you have
created your Microsoft Azure account and subscription, and you have
provisioned your first Azure Cosmos DB database.

In the next chapter, we will examine these concepts in detail.

23

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2

Learning Azure
Cosmos DB Concepts

To properly implement and use an Azure Cosmos DB database, it is very
important to understand several key concepts about the internals of the
service. In this chapter, I am going to examine concepts such as global
distribution, partitioning, and consistency to provide a solid foundation
upon which you will be able to build robust, scalable, and secure
applications.

Understanding these concepts is the best way to leverage all of the
potential and capabilities of Azure Cosmos DB. It’s important that you
know what you can do and that you understand why things work in a
certain way.

Understanding Global Distribution

Microsoft Azure is available globally in over 30 regions, and it is constantly
growing. Azure Cosmos DB is available in all of the existing regions,

but because it is internally classified as a Ring 0 Azure Service, it will be
available in any new region by default. Azure Cosmos DB databases can be
distributed across these regions to provide higher availability, scalability,
and throughput (I will discuss throughput later in this chapter).

© José Rolando Guay Paz 2018 25
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_2

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Global distribution is a comparable concept to what replication is for
relational databases; the difference is that everything is handled by Azure
and you don’t need complex configurations either at the database level or
the application level.

To understand how simple the process to distribute a database is, see
Figure 2-1. It shows the database created in Chapter 1 in the Azure portal.
I have clicked the Replicate data globally option on the left menu and it
displays a world map with all the available Azure regions.

For this database, the region where the database was created is shown
in a solid light blue hexagon with a white checkmark. The available regions
are shown in hexagons with a white background and a solid dark blue
border. The regions where the database will be distributed (or replicated)
are shown in hexagons with a solid dark blue background with a white
checkmark.

£ Search (Ctrd+d) Hswve © Discard % Manual Failover (= Automatic Failove

o Overview Click on a location to add or remove regions from your Azure Cosmos DB account.

* Each region is billable based on the throughput and storage for the account. Learn more
B Activity log
;: Access contral (JAM)
& Tags
XK Diagnose and scive problems

i Quick start Q @E} % 8 8

B Data Explorer (Preview) az) -]
SETTINGS

& Replicate data globally &
= Default consistency

0 Firewall

Keys

Figure 2-1. Azure Cosmos DB database distributed to four
regions

26

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Introducing Write and Read Regions

When the database was first created, it was based on only one region. This
default configuration defines the first (and only) region where a database
accepts read and write operations. When you distribute the database to
more regions, the new regions automatically become read regions.

When this new configuration is in place, you also enable the failover
feature. By default, failover happens manually, meaning you will have
to log into the Azure portal and switch reads to a different region if the
designated read region is not available.

Failover can also happen automatically. With automatic failover,
each region has a priority in the list of read regions. If for any reason
the designated read region is not available, Azure will switch to the next
available read region based on the defined priorities. In Figure 2-2, you
can see how the database has one write region and two read regions with
automatic failover. Each of the read regions has a priority, and applications
will read from the region at the top of the list. Azure will determine
whenever the region becomes unavailable and will then choose the next
region in the list.

You cannot configure the database to have more than one write
region. This feature is not available at this point. A configuration known as
multi-master can be implemented but it requires two databases and is the
closest to having more than one write region. Normally, you would want to
implement a multi-master configuration to allow writes to regions where
users creating content are closer, providing even lower latency.

When having multiple write and/or read regions there is an associated
concept that needs to be learned. This is the concept of consistency. You
will learn about consistency next.

27

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Automatic Failover A X

Enable Automatic Failover @

Drag-and-drop read regions items to reorder the failover priorities.

Tip: Drag : on the left of the hovered row to reorder the list.

WRITE REGION
Central US
READ REGIONS PRIORITIES
West US 1
East US 2

Figure 2-2. Azure Cosmos DB database with automatic failover and
two read regions

Understanding the Consistency Models

Consistency defines the rules under which distributed data is available

to users. What this means is that when new data is available (i.e. new or
updated data) in a distributed database, the consistency model determines
when the data is available to users for reads.

Despite having defined and proposed over 50 different consistency
models for distributed databases throughout history, the most significant
(and commercially available) are strong and eventual. The problem here is
that there is no real consensus about widely used scenarios that can create
enough interest for database products to implement them. Most of the
proposed consistency models try to solve only a very specific problem or
scenario.

28

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Azure Cosmos DB implements five different consistency models.
Besides strong and eventual, there are three additional consistency models.
These are the bounded staleness, session, and consistent prefix. With these
five models, you will be able to determine the most appropriate model for
your application based on availability and latency.

These additional consistency models are based on the work of the
scientist and Turing Award (https://en.wikipedia.org/wiki/Turing_
Award) winner Leslie Lamport, PhD (www.lamport.org/).

When deciding which consistency model to use, you need to
understand that they are all bound to elements such as throughput and
latency. As you will see when examining each of the five consistency
models, on one end is strong consistency, which will provide highest
latency of all, guaranteeing consistent reads across the entire read regions.
On the other end, eventual consistency will provide the lowest latency at a
cost of a high probability of not showing the latest data when reading from
different regions. The other three consistency models provide values
in-between these extremes for latency and throughput. It will depend on
what your application needs. Happily, you have several options.

Scope of Consistency

The granularity of consistency is scoped to a single user request.

A write request may correspond to an insert, replace, update, or delete
transaction. As with writes, a read/query transaction is also scoped to
a single user request. The user may be required to paginate over a large
result-set, spanning multiple partitions, but each read transaction is
scoped to a single page and served from within a single partition. I will
discuss partitions later in this chapter.

29

https://en.wikipedia.org/wiki/Turing_Award
https://en.wikipedia.org/wiki/Turing_Award
http://www.lamport.org/

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Strong Consistency Model

An Azure Cosmos DB account with a strong consistency model guarantees
that any read of an item (such as a customer record) will return the most
recent version of such item. This is important because it is the same
consistency model typically implemented in relational database systems.
Because we are working in a distributed environment, strong consistency
guarantees that a write operation is visible only after the majority of the
replicas have been committed durably with the write. A client will never
see a partially committed or incomplete write.

In Figure 2-3 you can see how a strong consistency model is
implemented in an Azure Cosmos DB account.

BOUNDED STALENESS | SESSION | CONSISTENT PREFIX | EVENTUAL

Strong consistency provides the most predictable and intuitive programming model. B
When you configure your account with strong consistency level, Azure Cosmos DB
provides linearizability guarantee. This means that reads are guaranteed to see the

most recent write.

Click here, for more information on consistency levels.

Figure 2-3. Azure Cosmos DB account with strong consistency
model

When strong consistency is configured for the Azure Cosmos DB
account, reads are only as fast as the latency among all regions involved in
the write. Because of this, an account with strong consistency can only be
associated to one Azure region. You use strong consistency when writes
are important and need to be fast, and applications don’t need to read the
data instantly. See in Figure 2-4 how the Azure portal blocks the ability to
distribute the account to multiple regions when using strong consistency.

30

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

The current Default Consistency of your account does net allow data to be replicated
globally.

o To allow global replication, change the Default Consistency to Bounded Staleness (with a
Maximum Lag of at least 100,000 operations and at least 5 minutes), Session, Consistent
Prefix, or Eventual consistency.

To change the Default Consistency, go to "Settings > Default Consistency”

Figure 2-4. Strong consistency prevents the Azure Cosmos DB from
being distributed to multiple regions

At the same time, if an account was defined with a different
consistency model, such as session, the Azure portal will not allow you to
change the consistency model to strong. In fact, it won’t even give you the
option, as shown in Figure 2-5.

BOUNDED STALENESS | SESSION | CONSISTENT PREFIX | EVENTUAL

Session consistency is most widely used consistency level both for single region as well &
as, globally distributed applications.

It provides write latencies, availability and read throughput comparable to that of
eventual consistency but also provides the consistency guarantees that suit the needs
of applications written to operate in the context of a user.

Click here, for more information on consistency levels.

Figure 2-5. Strong consistency is not available once an Azure Cosmos
DB account is distributed to multiple regions

Eventual Consistency Model

When using the eventual consistency model, it is guaranteed that all of the
replicas will eventually converge to reflect the most recent write. In terms
of data consistency, this is a very weak model because users may read
values that are older than those defined by the most recent write; however,
it does offer the lowest latency of all consistency models for both reads

31

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

and writes. Low latency is achieved by not requiring every single replica
(region) to read the same value after each write. Data replication happens
in the background and will be complete at some point; it is just that
application reads are not stopped until all of the regions are synchronized.

Eventual consistency is used in many NoSQL and relational database
systems. It is useful in scenarios where reads need to happen as soon as
possible even if they don’t display the most recent version of the data. It is
only guaranteed that all replicas will be consistent at some point; you just
don’t know exactly when that will be.

Bounded Staleness Consistency Model

With bounded staleness, reads may lag behind writes by at most K
operations or a ¢ time interval. For an account with only one region, K
must be between 10 and 1,000,000 operations, and between 100,000
and 1,000,000 operations if the account is globally distributed. For t, the
permitted time intervals are between 5 seconds and 1 day for accounts
in one region, and between 5 minutes and 1 day for globally distributed
accounts.

For example, if an account is in only one region and configured with a
lag of 10 operations and 5 seconds, then if the latest write was more than 5
seconds ago or more than 10 operations ago, it is guaranteed that the user
will see the most recent version of the data.

This consistency model is suitable for applications that need writes
with strong consistency and low latency, and reads that are consistent
after a predictable number of operations or time interval. In addition, the
monotonic read guarantees exist within a region both inside and outside
the staleness window.

An Azure Cosmos DB account can be globally distributed to any
number of Azure regions when using bounded staleness consistency. In
Figure 2-6, you can see the configuration options to enable the bounded
staleness consistency model.

32

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

B o0 CONSISTENT PREFIX | EVENTUAL

Bounded staleness consistency is most frequently chosen by globally distributed [t
applications expecting low write latencies but total global order guarantees. Unlike
strong consistency which is scoped to a single region, you can choose bounded

o staleness consistency with any number of read regions (along with a write region).

Bounded staleness is great for applications featuring group collaboration and sharing,
stock ticker, publish-subscribe/queueing etc.

Click here, for more information on consistency levels.

Maximum Lag (Operations)
[100 n

Maximum Lag (Time)
Days Hours Minutes Seconds

Lo [|8 I | |E &

Figure 2-6. Configuration of a bounded staleness consistency
model

Session Consistency Model

The session consistency model is named so because the consistency level is
scoped at the client session. What this means is that any reads or writes are
always current within the same session and they are monotonic. During the life
of a session, any write is immediately available for read and will be available for
other sessions as soon as the data is replicated to the rest of the regions.

This model provides high read throughput and low latency writes and
reads. This is the default consistency model for any new Azure Cosmos DB
account and you can distribute it to any number of Azure regions.

Consistent Prefix Consistency Model

The last consistency model is consistent prefix. This model is similar to the
eventual consistency model; however, it guarantees that reads never see
out-of-order writes. For example, if your application writes 1, then 2, and

33

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

finally 3, users will see 1, or 1 and 2, or 1 and 2 and 3, but will never see 1
and 3. Eventually, all Azure regions will converge to 1 and 2 and 3, but it
will be in order, which translates into higher speeds and reliability.

Consistency for Queries

By default, any user-defined resource would have the same consistency
level for queries as was defined for reads. This is possible because indexes
are updated synchronously on any insert, replace, or delete on any item in
an Azure Cosmos DB container (I'll discuss containers later in this chapter).
You can also change the index update strategy to be lazy. This will
boost the performance of writes, especially in scenarios of bulk data
import where the application is primarily used for reads. What you
need to be aware of is that, when changing to lazy, regardless of the read
consistency level, queries will have a consistency level of eventual.
The consistency level of a specific query can be adjusted on every
request using the API.

Understanding Partitioning

Partitioning is a key concept for Azure Cosmos DB. It is what enables
millisecond response time at any scale. A good partitioning scheme is
crucial to your application because it directly affects its performance.

What Are Containers?

Azure Cosmos DB provides three types of containers for your data:
collections (for documents), tables, and graphs. Containers are logical
resources that group together one or more physical partitions. Partitions
are determined by a partition key in a container. Each partition has a fixed
amount of SSD-backed storage associated with it and it is locally replicated

34

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

for high availability. Containers don’t have any restrictions in terms of
amount of storage or throughput; they can grow as large as needed and
will scale as well.

Figure 2-7 shows how containers and partitions are defined. Note that
regardless of the type of container, they all work the same. This is important
in terms of predictability of performance because it guarantees the same
response time independent of the type of data you are working with.

Partition management is transparent and managed entirely by Azure
Cosmos DB. There is no need for custom code for this purpose, nor is any
additional configuration required for the account or container other than
defining the partition key.

Collections can have a fixed storage limit (up to 10GB) or can be
unlimited. The configuration will be determined by the necessary
throughput for the application.

Collection,
Graph, or Table

Resource
Partitions

Container
Partition-key = "category"”

Figure 2-7. Containers and partitions

35

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

How Does Partitioning Work?

You need to define a partition key and a row key for each item in your
container. These key combinations uniquely identify the item. The
partition key determines the logical partition for your data and informs
Azure Cosmos DB of the boundary for distributing such data across
different partitions.

Azure Cosmos DB uses hash-based partitioning. When you write an
item, Azure Cosmos DB hashes the partition key value and uses that to
determine which partition it should store the item in. All items with the
same partition key are stored in the same physical partition. Given this
characteristic, choosing the right partition key is crucial and should be
done based on a key that provides a wide range of values and has even
access patterns.

Best Practice Microsoft recommends having a partition key with
many distinct values (100s-1000s at a minimum).

Partitioning starts with the configuration of the Azure Cosmos DB
account. Initially, you create the account with T requests per second
throughput. The number of partitions () that are created are determined
by whether T'is higher than the maximum throughput per partition (z).
Ifso,thenN = T / t, otherwiseN = 1.

When a physical partition p reaches its storage capacity, Azure
Cosmos DB seamlessly splits the partition into two new partitions
plI and p2, with roughly half of the values on each one. All this is managed
transparently to your application.

If your provisioned throughput is higher thant * N, then Azure
Cosmos DB splits the necessary partitions to support the required
throughput.

36

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Designing for Partitioning

I have mentioned the importance of choosing the right partition key for
your application. There are two key considerations when choosing the
partition key.

Boundary for Query and Transactions

Transactions in Azure Cosmos DB provide ACID guarantees; however,
a particular consideration is that each transaction happens within the
boundaries of a single partition. If your partition key does not generate
a good number of partitions, then you will have problems scaling your
application. On the other hand, if it creates too many of them (e.g. one
document on each partition) you may end up with problems with
cross-partition transactions in triggers and stored procedures.

Your partition key should balance the requirements for transactions
versus the requirements for distributing the entities across partitions to
scale the solution. Ideally, your partition key will enable you to efficiently
query the data and will have enough cardinality to ensure your application
can scale properly.

No Storage and Performance Bottlenecks

The partition key should allow for writes to be distributed as evenly

as possible across different values. Requests to the same partition key
cannot exceed the throughput for a single partition and are throttled. It is
therefore necessary that the partition key will not result in partitions that
are always requested and/or partitions that allocate most of the data. If this
is the case, then a different partition key should be considered.

37

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Understanding Throughput

Azure Cosmos DB supports completely different data models (documents,
tables, and graphs) so establishing a consistent model to handle requests
was paramount. To solve this problem, Microsoft introduced a normalized
quantity called request unit based on the computational requirements

to serve a request. Using request units, it is much easier to establish a
consistent method for billing requests across the different data models.
The number of requests units per operation is deterministic and can be
obtained on every request by reading the response headers.

I have mentioned that Azure Cosmos DB has predictable performance,
and this is achieved by provisioning a specific amount of request
units (RU) per second, and this amount is what is called throughput.
Throughput is reserved in units of 100s of requests units per second.
You can think of request units as the currency of throughput because they
are used to determine your bill.

An application’s load changes over time and using the Azure portal you
can increase or decrease the reserved throughput to fit your application’s
needs. There is no impact to the availability of the collection when you
change the throughput configuration, and the new configuration normally
goes into effect within seconds.

Important Azure Cosmos DB operates under a reservation model on
throughput. This means that you will be billed by how much reserved
throughput you have as opposed to how much you actually use.

Specifying Request Unit Capacity

When defining a new collection, you need to configure the specific number
of request units per second you want reserved for the container. Based on

38

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

this number, Azure Cosmos DB allocates physical partitions to host the
collection and it will manage the data across partitions as it grows.

If the collection has a fixed storage capacity, the reserved throughput
can be between 400 and 10,000 request units per second. If it has
unlimited capacity, the throughput can be between 2,500 and 100,000
requests units per second.

Estimating Throughput

A request unit represents the processing needed to read a single 1KB item
with 10 property values (excluding system properties). A request to create,
replace, or delete the same item will need more processing power and
therefore more request units.

There is no better way to estimate throughput than by using the
request unit calculator (http://bit.ly/cosmos-db-ru-calc) shown in
Figure 2-8. The calculator can estimate the request units as well as the
approximate storage need based on the information provided.

'

Estimate Request Units and Data Storage

Mas thraughput per
er sacond

2 information

Add ong or mare JSON documents that are each representative of one type of document used by your application.

© Sample Document 1 X Estimated Total
) {7) Total RlUs for craate Ofsec
Sample JSON document Upioad Document
(%) Total RUs for read Ofsec
Number of documents: o L]
) Tatal AU for update Ofsee
Create / second: [\] [}
() Total RUs for delete Ovsec
Read / secand: o 1]
Update / second: o [0 RU;"’SGC
Delete / second o o
() Tatal Data Storage 0

+ Add an additional sample document

Figure 2-8. Request unit calculator

Go to Azure.com for Pricing >

39

http://bit.ly/cosmos-db-ru-calc

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

To use it, you need to do the following steps:

1. Upload a sample JSON file that represents an item in
your collection, such as sample file.json.

{
"id":"1",
"firstname":"Jose",
"lastname": "Guay"

}

2. Youwill need a second JSON file that represents the
same item but with modified values to simulate a
replace, such as sample_file_modified.json.

{
"id":"1",
"firstname":"Rolando",
"lastname": "Guay"

}

3. You then type the estimated number of operations
per second and number of items to be stored. The
collection shown in Figure 2-9 will store 50,000
items and will need to handle 100 reads, creates,
replaces, and deletes per second. The result is that
under these requirements, this collection will need
2,385 requests units per second throughput and will
use 2.35MB of storage.

40

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Sample Document 1 X Estimated Total
s (3 Total RlUs for create 571/s8c

Sample JSON document: simple_filefian Remove

(5 Total RUs for read 100/58¢
Numbsr of documnents: 50000 [:]

{3 Total RUs for update 1143/58¢
Create / second: 100 -]

(Z) Total RLs for delete ET1/sec
Read / second: 100 L]
Update / second: 100 [2385 RUS.-";SP.C

simplefite_modifiedjzon

(& Total Data Storage 2 3 S MB

Go to Azure.com for Pricing >

Figure 2-9. Using the request unit calculator

Implementing Security

Security in Azure Cosmos DB is implemented at several levels. There is a
security layer at the storage level with the implementation of a technology
named encryption at rest. At the network level, there is a firewall to enable
access only to specified IPs or IP ranges, and data is always encrypted
during transit. At the data access level, there is a configuration with keys
and fokens to authenticate users and provide access to data. Finally, for
increased availability a replication strategy ensures that data is never lost.

Encryption at Rest

The term encryption at rest commonly refers to encrypting data on
permanent storage such as solid-state drives (SSDs) or hard disk drives
(HDDs). Azure Cosmos DB stores the primary databases on SSD disks.
Media attachments, replicas, and backups are stored in Azure Blob storage,
which uses HDDs. Encryption at rest is implemented at all levels so all
databases, media attachments, and backups are encrypted.

41

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

This feature is on by default and there are no controls to disable it.
It is managed entirely by Azure and has no impact on performance or
availability. An important consideration is that this feature is included at

no cost.

Firewall Support

Azure Cosmos DB supports policy-driven, IP-based access control. This
works as a firewall for inbound connections where you allow a set of TP
addresses (or IP ranges) to access your Cosmos DB account. By default,
this feature is off, as shown in Figure 2-10, which means anyone can
connect to the Cosmos DB account, but you can turn it on to limit the
computers accessing the database.

L Search (Ctri+/)
Enable IP Access Control ON
SETTINGS

@ Replicate data globally

== Default consistency

O Firewall
Keys I

Figure 2-10. The Azure Cosmos DB Firewall IP access control is
turned off by default

A common scenario is a website that uses an Azure Cosmos DB
database account. You don’t need to have all-in access to the database,
only the IP of the website and your own IP address or IP range.

After you enable IP access control, you are given the option to add
individual IP addresses or IP ranges (CIDR), as shown in Figure 2-11.
You also have the option to limit access to the Azure portal to those
IP addresses, although this setting is for now an all-or-nothing
configuration; it won't allow settings per IP.

42

vww . allitebooks.con

http://www.allitebooks.org

2 Search (Cert+)
SETTINGS
@ Replicate dats globally
== Default consistency
0 Firewall

Keys
«3 Add Azure Search
a Lodks

EX Automation script
COLLECTIONS
B¢ Browse

£ Scale

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

This Azure Cosmos DB account allows connections only from the IP addresses listed
below.

Enable IP Access Control - CFF
Allow access to Azure Portal - ofFf

Add my current IP

(o [raa

IP (SINGLE IPV4 OR CIDR RANGE)

172.16.1.20/28

192.168.0.20

soe | et |

Figure 2-11. Azure Cosmos DB Firewall with enabled IP access

control

After this configuration is saved, connections from IP addresses
outside the defined set will be blocked by the firewall. According to the
documentation from Microsoft (http://bit.ly/cosmos-db-firewall), if
you enable IP access control, you will need to add specific IP addresses for the
Azure portal to maintain access. Please see Figure 2-12 for the specific note.

If there are requests from IP addresses outside the allowed list, Azure
Cosmos DB will return an HTTP response 404 Not Found with any details.
This will ensure databases are kept hidden from unauthorized access.

43

http://bit.ly/cosmos-db-firewall

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

[Note

When you enable an IP access control policy, you need to add the IP address for the Azure portal to
maintain access. The portal IP addresses are:

Region IP address
All regions except those specified below 104.42.195.92
Germany 51.4.229.218
China 139.217.8.252
US Gov Arizona 52.244.48.71

Figure 2-12. Microsoft documentation note regarding access to
Azure portal

Securing Access to Data

With Azure Cosmos DB, you can use two different keys to authenticate
users and provide access to data. They are master keys and resource tokens.

Master Keys

You use master keys to provide access to the administrative resources in
the account, such as access to databases, users, and permissions. These
keys are automatically created at the same time the account is created
and can be regenerated at any time based on your security policy or if
they have been compromised. Master keys can’t be used to specify a more
granular access to collections and documents.

Each Azure Cosmos DB account has two master keys: a primary
master key and a secondary master key. Primary and secondary keys work
exactly the same way and provide access to the same resources without
any difference at all. The idea behind this implementation is that you can
regenerate or rotate keys without interrupting access to the account or data.

44

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Figure 2-13 shows the keys in an Azure Cosmos DB account. Note the
two tabs for read-write and read-only keys. The information is the URI for
accessing the database, the primary and secondary keys, and the primary
and secondary connection strings. Next to each of the boxes is a button to
copy to the clipboard the value in the box; the key boxes contain an extra
button to regenerate them.

SETTINGS Read-write Keys Read-only Keys

@ Replicate data globally URI
https:/fy .documents.azure.com:443/ .
= Default consistency
PRIMARY KEY
O Firewall bbpyoAtcywCHEAUUpnOF4fl52qT BeWF4FbbCESdhY3NgNiABxajb20jGim) 15VyaTNGTLL... . (]

SECONDARY KEY

Keys
504100 WNG34CHCOV0af3dC6uNBpMKDING luPpigXFyPsi3acGFuTofGiTyPameuD... | [l T2

o

-,

2! ch
Add fnira Sean PRIMARY CONNECTION STRING

B Locks AccountEndpoint=https//] W.documents.azure.com:443/AccountKey=bbpyodtcy... .

SECONDARY CONNECTION STRING

E3 aut it ipt
2 Automation scnp AccountEndpaint=https:// .documents.azure.com:443/AccountKey=b04IQ0AWD... .

Figure 2-13. Read-write keys for an Azure Cosmos DB account

Resource Tokens

Resource tokens provide access to resources within the database, such as
partition keys, documents, attachments, and stored procedures; they are
particularly useful when you want to provide access to a client that can’t
be trusted with a master key. They are created whenever a user is granted
permissions to a specific resource and recreated when a permission
account takes action by a POST, GET, or PULL request. Unlike keys,
resource tokens cannot be managed in the Azure portal. They can only be
managed using the Azure Cosmos DB API or client libraries.

A resource token has a validity period which by default is one hour.
This validity period can be adjusted to up to five hours. It uses a hash token
specifically designed for the resource, user, and permission.

45

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Supported APIs

Azure Cosmos DB supports several APIs for resource and data
management and several software development kits (SDKs) that
encapsulate the functionality for them. At its core is the REST AP],
which provides a foundation for all actions that can be performed
against an Azure Cosmos DB account. There are also other APIs such as
DocumentDB, Mongo DB, Apache Cassandra, Table, and Graph.

Azure Cosmos DB REST API

The REST API interacts with Azure Cosmos DB using the HTTP protocol.
As with any REST API, the HTTP verbs are used to inform what action to
perform. In general, they are the following:

¢ POST: Used to create item resources

e GET: Used to read an item resource or a list of
resources

e PUT: Used to replace an existing item resource
o DELETE: Used to delete an existing item resource

o HEAD: Used similarly to GET except it will only return
the response headers

The destination URI for the API is based on the URI endpoint
created for the database account. For example, if your database
account was named ProductCatalog, then the base URI would be
https://productcatalog.documents.azure.com.

Table 2-1 shows the base URISs for each of the resources in an Azure
Cosmos DB account. There is a URI for each and every resource, and any
action can be performed using the REST API.

46

vww . allitebooks.con

https://productcatalog.documents.azure.com/
http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

To simplify the URIs in Table 2-1, please consider the following:

{base} = https://{databaseaccount}.documents.azure.com

I'll just use {base} instead so the URIs are shorter.

Table 2-1. Base URIs for Each Resource in an Azure Cosmos DB
Account (Source: http://bit.1ly/cosmos-db-rest-uris)

Resources Base URI

Database {base}/dbs/{db}

User {base}/dbs/{db}/users/{user}

Permission {base}/dbs/{db}/users/{user}/permissions/{perm}
Collection {base}/dbs/{db}/colls/{coll}

Stored Procedure
Trigger

UDF

Document

Attachment

Offer

{base}/dbs/{db}/colls/{coll}/sprocs/{sproc}
{base}/dbs/{db}/colls/{coll}/triggers/{trigger}
{base}/dbs/{db}/colls/{coll}/udfs/{udf}
{base}/dbs/{db}/colls/{coll}/docs/{doc}

{base}/dbs/{db}/colls/{coll}/docs/{doc}/
attachments/{attch}

{base}/offers/{offer}

Offers represent the collection’s provisioned throughput. This

throughput can be user-defined or predefined, and has an associated

request unit (RU) rate limit which is reserved and available exclusively for

the collection.

47

http://bit.ly/cosmos-db-rest-uris

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

For example, to create a new database named Products in an account
named ProductCatalog, you would use

POST https://productcatalog.documents.azure.com/dbs
{

"id":"Products"

Note that you are using the verb POST, which instructs the API to
create an item, in this case a database. The JSON information tells the API
the id of the new database and the URI is composed using the account
name. You can use a tool like Telerik Fiddler (www.telerik.com/fiddler)
or Postman (www.getpostman.com) to test REST API calls.

The API then sends a response to the client that looks like this:

HTTP/1.1 201 Created
Content-Type: application/json
X-ms-request-charge: 4.95

{
"id": "Products",
" rid": "UoBa5x==",
" self": "dbs/UoBa5x==/",
" ts": 1403525012,
" etag": "00000100-0000-0000-0000-13a1366000e8",
" colls": "colls/",
" users": "users/"
}

In this particular case, the rid property defines the encrypted value
that internally identifies the new database, and it is the value that needs to
be used for subsequent calls to, for example, create collections and read
documents.

48

vww . allitebooks.con

http://www.telerik.com/fiddler
http://www.getpostman.com/
http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Note It is important to understand that, depending on your
preferred language and/or platform, you would (and should) be using
an SDK specifically designed for it. It is far easier to interact with the
SDK than to use the REST API directly. For more information about the
Azure Cosmos DB REST API, visit http://bit.1ly/cosmos-db-
rest-api.

DocumentDB API

The DocumentDB APT is built on top of the REST API and is implemented
in several languages and platforms including .NET, Java, Node]JS,
JavaScript, and Python via their respective SDKs.

Using the DocumentDB API you can query documents using a SQL
syntax similar to the one used in Entity Framework, only extended to query
JSON documents. You can also manage the account resources and perform
actions such as create databases, collections, stored procedures, etc.

For example, in the previous section you created a new database using
the REST API. Let’s do the same now using the DocumentDB API in C#, as
shown in Listing 2-1.

Listing 2-1. Creating a New Database Using DocumentDB API .NET
SDKin C#

var dbUrl = "https://productcatalog.documents.azure.com/dbs";
var authKey = "the primary or secondary key for the account";
client = new DocumentClient(new Uri(dbUrl),authKey);

await client.CreateDatabaseAsync(new Database { Id = "Products" });

49

http://bit.ly/cosmos-db-­rest-api
http://bit.ly/cosmos-db-­rest-api

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Note in Listing 2-1 that you still use the URLSs for the endpoints as
described in Table 2-1, and you are clearly using the master keys to
access the resources. These two values are stored in variables that are
later used to create a DocumentClient object. This object is used to
interact with the Azure Cosmos DB account. Finally, the code calls the
CreateDatabaseAsync() method, passing as a parameter an instance of a
new Database object, and it is all done asynchronously.

The example in Listing 2-1 is very simple and it doesn’t do much,
but it is a good example of how to get started with the DocumentDB
API SDK. The URLs and master key should be stored in a central location
for easy and consistent access across the entire client application. The
AppSettings section in the configuration file is a good candidate for such
values.

Listing 2-3 shows a brief example of how to query the document shown
in Listing 2-2. Note how the syntax for querying is very much the same as
with SQL Server or Entity Framework.

Listing 2-2. Sample JSON Document

{

"id": "Fruits",

"products”:[
"name":"Apple","price":0.50},
"name":"Banana","price":0.80},
"name":"Peach","price":0.60},
"name": "Grapes","price":1.00},

]J

}
50

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS
Listing 2-3. Querying the Sample JSON Document from Listing 2-2

SELECT p.name

FROM Products p

WHERE p.id = "Fruits"

AND p.products.price > 0.75

The results from the query are

"name":"Banana"},

"name" : "Grapes"}

MongoDB API

With the MongoDB AP], you can leverage your knowledge of MongoDB. In
most cases, an existing MongoDB application would work without any
code changes. All you need is to migrate your databases to an Azure
Cosmos DB account that implements the MongoDB API, change the
application’s connection string, and that’s it; it will be transparent for the
application. In a sense, the application will think it is talking to MongoDB
when in fact it is talking to Azure Cosmos DB.

The Azure portal also includes functionality so you can open a mongo
shell where you can query your documents as you would with MongoDB.

Now, let’s imagine you are a MongoDB developer building an
application from scratch with .NET and will use Azure Cosmos DB to store
your data. In order to leverage your existing knowledge so you can deliver
your application faster, you will use the Mongo DB API SDK. You use the
code in Listing 2-4 to initialize your client to talk to Azure Cosmos DB.

51

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Listing 2-4. Initialization of the MongoDB API Client Using the
.NET SDK

var host = "host string shown in the Azure portal";
var dbName = "ProductCatalog";
var username

"jose";

"p@ssword";

MongoClientSettings settings = new MongoClientSettings();
settings.Server = new MongoServerAddress(host, 10255);
settings.UseSsl = true;

var password

settings.Ss1Settings = new SslSettings();
settings.SslSettings.EnabledSslProtocols = SslProtocols.Tls12;

MongoIdentity identity =
new MongoInternalIdentity(dbName, userName);
MongoIdentityEvidence evidence = new PasswordEvidence(password);

settings.Credentials = new List<MongoCredential>()

{
new MongoCredential("SCRAM-SHA-1", identity, evidence)

}s
MongoClient client = new MongoClient(settings);

The client configuration for an Azure Cosmos DB implementing
the MongoDB API has very strict networking rules. You start by creating
aMongoClientSettings object to configure how the client will be
connecting to the database. The configuration includes the host and port
as defined in the Azure portal for the Cosmos DB account. It is required to
use SSL and the TLS 1.2 protocol.

Next, you need to identify the application with a username and
password, and tell the API to which database you are connecting.

52

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Now, to read the documents representing products in your database,
use the code in Listing 2-5.

Listing 2-5. Getting the List of All Products

var collectionName = "Products";

var database = client.GetDatabase(dbName);

var prodCollection = database.GetCollection<Products>(collectionName);
var products = prodcollection.Find(new BsonDocument()).TolList();

From the code, you can see you are going to work in the
ProductCatalog database, which contains a collection named Products.
First, using the client object you get a reference to the database with
the GetDatabase() method from the client object. Next, you read the
collection with the GetCollection() method of the database object, and
from there, get the list of products using a BsonDocument format.

Note BSON is a binary-encoded serialization of a JSON document.
BSON stands for Binary JSON. More information can be found at
http://bsonspec.org/.

Graph API

A graph database, as opposed to a relational database, represents data as it
exists in the real world, such as people, cars, computers, and so on, that are
naturally connected, and does not try to change them in any way to define
them as entities. Graphs are composed of vertices and edges. Both vertices
and edges can have any number of properties. Vertices represent specific
objects such as a person, place, or event. An edge is a relation between
vertices.

53

http://bsonspec.org/

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

For example, a vertex can be a person. Properties of this vertex are
name, age, and gender. Another vertex is a phone. Properties of this vertex
are brand and OS. An edge for these vertices could be “a person uses a
phone.” See this graph in Figure 2-14.

' : Brand: Apple

Uses 0S:i0S

Name: Jose
Age: 43
Gender: Male

Figure 2-14. A sample graph with two vertices and one edge

Graphs are very useful to understand a wide range of datasets in
different fields such as science and business. Graph databases let you work
with graphs naturally and efficiently, and they typically are NoSQL because
of their ability to adjust quickly to new or updated schemas. That’s why
implementing them in Azure Cosmos DB is a natural fit.

Graphs allow you to work with data in a powerful way by leveraging
graph traversals found in many use cases and patterns because they
outperform traditional SQL and NoSQL databases by several orders
of magnitude. Also, they open the door to querying in a natural way of
speaking, such as “find the names of the students who attended the
Chicago Bulls basketball exhibition game last summer.”

Azure Cosmos DB implements graph databases using the TinkerPop
standard. You can use the Apache TinkerPop traversal language, Gremlin,
or any other TinkerPop-compatible graph system like Apache Spark
GraphX.

54

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Listing 2-6 contains the code of a console application that implements
the Azure Cosmos DB .NET SDK for Graph API. In the code, you first
connect to an Azure Cosmos DB graph database account. For connecting,
you need the end point, the primary or secondary key, and a connection
policy. In this case, the connection policy, defined by a ConnectionPolicy
object, specifies that the connection mode will be direct, which will
connect the application directly to the data nodes in the Azure Cosmos DB
account, and that the protocol will be TCP.

Next, you create a DocumentClient object inside a using statement to
ensure it gets closed. The client object takes the endpoint parameter, the
key, and connection policy.

Listing 2-6. Connecting and Querying an Azure Cosmos DB Graph
Database Account

var endpoint = "https://productcatalog.documents.azure.com/dbs";
var authKey = "the primary or secondary key for the account";
var connPolicy = new ConnectionPolicy {
ConnectionMode = ConnectionMode.Direct,
ConnectionProtocol = Protocol.Tcp
}s
using (DocumentClient client = new DocumentClient(
new Uri(endpoint),
authKey,
connPolicy)

Database database = await

client.CreateDatabaseIfNotExistsAsync(
new Database { Id = "MyGraphDB" });

55

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

DocumentCollection graph = await
client.CreateDocumentCollectionIfNotExistsAsync(
UriFactory.CreateDatabaseUri("MyGraphDB "),
new DocumentCollection { Id = "MyColl" },
new RequestOptions { OfferThroughput = 1000 });

IDocumentQuery<dynamic> query =
client.CreateGremlinQuery<dynamic>(

graph, "g.V().count()");

while (query.HasMoreResults)

{
foreach (dynamic result in await query.ExecuteNextAsync())
{
Console.WritelLine($"\t
{JsonConvert.SerializeObject(result)}");
}
}
}
56

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Using the client object, the code attempts to create a
database named MyGraphDB, if it doesn’t exist, with the method
CreateDatabaseIfNotExistsAsync(). In the next line, it creates a new
collection, if it doesn’t exist already, called MyColl. The collection is
configured with a throughput of 1,000 requests units per second.

The last part of the code is a Gremlin query that counts how many
vertices are in the graph database and then prints the number out to the
console.

Table API

An Azure Cosmos DB account implementing the Table API provides
the same functionality as Azure Table storage but with the benefits
of scalability and throughput from Cosmos DB. Another benefit (and
difference) is that all properties are indexed, as opposed to Azure Table
storage, which only indexes the PartitionKey and RowKey. Also, all five
consistency models are available with the Azure Cosmos DB Table API
versus only strong and eventual for Azure Table storage.

Listing 2-7 contains a small program that connects to an Azure Cosmos
DB account implementing the Table API. The connection string is found
in the Azure Cosmos DB account. First, you need to tell the SDK to which
storage account it is connecting; you do so with a CloudStorageAccount
object that takes the connection string as a parameter. You then create a
CloudTableClient object, which is used to perform the operations against
the database.

Using the cloud table client object, you obtain a reference to the
products table using the method GetTableReference(), and it is stored
in a CloudTable variable. If the table doesn’t exists, it is created using the
method CreateIfNotExists().

57

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Listing 2-7. Connecting to an Azure Cosmos DB Account
Implementing the Table API Using the .NET SDK

CloudStorageAccount storageAccount =
CloudStorageAccount.Parse(connectionString);
CloudTableClient tableClient =
storageAccount.CreateCloudTableClient();
CloudTable table = tableClient.GetTableReference("products");
table.CreateIfNotExists();
ProductEntity item = new ProductEntity()

{
PartitionKey =
Guid.NewGuid().ToString(),
RowKey = Guid.NewGuid().ToString(),
Name = $"Oranges",
Origin = "Florida"
};

TableOperation insertOperation = TableOperation.Insert(item);
table.Execute(insertOperation);

Next, a new product entity object is created and its properties filled.
This object is passed as a parameter of a TableOperation object using the
Insert() method. Using the table reference object, the operation object is
passed as a parameter to the Execute() method, which effectively inserts
the new item into the table.

58

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 LEARNING AZURE COSMOS DB CONCEPTS

Summary

In this chapter, you learned about the core concepts of Azure Cosmos

DB. You started by understanding what global distribution is and how it
helps take advantage of high availability and throughput by creating replicas
of the databases across multiple Azure regions. Then you examined the
different consistency models, their benefits, and when to use each one.

You saw that most of the commercially available solutions only offer two
consistency models, strong and eventual, but Azure Cosmos DB offers

three more models that balance the requirements between availability and
throughput. You then reviewed the concept of partitioning and why it is
important. You studied the concept of containers and how they help the
interaction between the application and the actual physical partitions by
virtue of being a logical definition. You also viewed the considerations for
partitioning and the criteria to choose the right partition key for the database.

The next concept was throughput. You saw that a request unit
is a normalized number for all different data models based on the
computational needs to execute an operation. This was necessary to
provide a standard measure of calculating throughput and billing. You
studied the different configurations for securing the databases starting
from the storage with encryption at rest, the network with firewall
capabilities, and access to data with master keys and resource tokens.

You finished the chapter by studying the different APIs that can be
used to interact with Azure Cosmos DB. You reviewed each of them,
starting from the core REST API and the implementations around it such
as the DocumentDB API. You saw how existing MongoDB applications can
work seamlessly with Azure Cosmos DB with virtually no changes to the
application coding. Also, you studied the implementations of the Graph
and Table APIs and their usage.

In the following chapter, I will dive in more detail into the operations
around an Azure Cosmos DB database account using the DocumentDB
API and the .NET SDK.

59

CHAPTER 3

Working with an Azure
Cosmos DB Database

In this chapter, you will start working with a new Cosmos DB database.
More specifically, it will be a database that implements the SQL
DocumentDB API using the document data model. You will learn to use
the DocumentDB API in a .NET application. You will create a database
and collection with a partition key. Then you will learn how work with
documents to create new documents and replace, delete, and query them.
Finally, you will learn how to create and run stored procedures.

Your sample database will contain student records from a fictitious
university named Cosmos University. You will be managing each student’s
record as they sign up for classes on a given year. The record will include
information such as the name of the student, their postal addresses,
email, and phone number. The intent of this database is to store the
master record information of each student; therefore there won't be
any information about their classes, professors, labs, or other related

information.

© José Rolando Guay Paz 2018 61
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_3

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Creating Your Database

Chapter 1 outlined the generic steps to create an Azure Cosmos DB
database. Let’s now create a real one. The following steps will guide

you in creating one using the SQL DocumentDB API. To start creating a
database, you will use the Azure Cosmos DB Emulator that you installed in
Chapter 1. This will be a much easier environment to work with and, more
importantly, you will not incur in any costs.

1. Open the Azure Cosmos DB Emulator by going to your
browser and type in https://localhost:8081/ explorer/
index.html, as shown in Figure 3-1.

® & B aAmrecosmosDBEmul X |+ _

—) & localhost <plor ¢ T

]
Fe
R O

Quickstart Congratulations! Your Azure Cosmos DB emulator is running.

Mow, let's connect a sample app to it.

i Choose a platform

[J—— g NET W NET Core £, Java 15] Nodejs @ Python
FeedDack S, -

1 Open and run a sample .NET app

We created a sample .NET app connected to your Azure Cosmos DB Emulator instance. Download, extract, build and run the app.

Figure 3-1. Azure Cosmos DB Emulator home page

62

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

2. [Itis possible that the emulator might not be running
and you will get an error message similar to the one
shown in Figure 3-2.

‘ B & [cantreachthispage X + — O X
e - O . localhost:8081/_explorer/index.htm ﬁ — ﬂ‘_ 1=
O Hmmm...can't reach this page
o Try this

(-]
+ Make sure you've got the right web address:
https://localhost:8081

* Search for "https.//localhost:8081" on Bing

+ Refresh the page

Details

Figure 3-2. Error message when the Azure Cosmos DB Emulator is
not running

3. Ifyoufind the error shown in Figure 3-2, you need to
launch the emulator. Click the Windows Start button
and look for the Azure Cosmos DB Emulator folder.
Expand the folder and click in the Azure Cosmos
DB Emulator shortcut, as shown in Figure 3-3. You
might see a notification in the lower right corner of
your screen indicating that the emulator is starting.

63

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

. Azure Cosmos DB Emulator

&

‘é’ Azure Cosmos DB Emulator

[

B

0@ Blend for Visual Studio 2015

C

L [fype here to search

Figure 3-3. Launching the Azure Cosmos DB Emulator
4. Once the emulator has been launched, it will show

in the running programs window in lower right

corner, as shown in Figure 3-4.

Azure Cosmos DB Emulator

Figure 3-4. Azure Cosmos DB Emulator running

64

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

5. With the emulator open, click the Explorer button in
the left menu. Figure 3-5 shows the Explorer page.
This is where you will create your database and
collection.

.
1 B Azure CosmosDBEmul X +

L S (&) 8 localhost x Yo = 7

() New Collection

COLLECTIONS O <

Feedback

Figure 3-5. The Explorer page from the Azure Cosmos DB Emulator

65

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

6. Click the New Collection button. Figure 3-6 shows
the new collection form. Note how this is similar to
the form shown in Figure 1-22 from Chapter 1.

Add Collection X

* Database id ©
* Collection Id @

* Storage capacity ©

Fixed (10 GB) Unlimited

* Throughput (400 - 10,000 RU/s) ©

400

*RU/meo©
o I

Partition key ®

Figure 3-6. New collection window

66

10.

11.

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Let’s start by typing the name of the database.

The database name should be entered in
lowercase letters in order to avoid problems when
migrating to the actual Azure account and for an
easier experience. For the database name, type
cosmosuniversity.

In the following field, you need to type the name of
the collection. Type student.

Then you select the type of storage: if it will be a
fixed storage up to 10GB or unlimited. I discussed
these parameters in Chapter 2. For your example,
select Unlimited.

Now you need to select the throughput. Leave the
default of 10,000 request units per second.

Finally, type the partition key for the collection. As
mentioned in Chapter 2, this is a crucial element to
achieve the expected throughput and to optimize
the storage and utilization of the physical partitions.
Let’s use the postal code from the address. There

are several thousand postal codes in the US alone,
which will give us a good distribution. There might
be a case, in the real world, where specific postal
codes, such as the home town of the university,
might introduce many more values than others, but
itwon’t be the general rule. Type /postalCode in the
partition key field.

67

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

12. In Figure 3-7 you can see the entire form completed.
Click the OK button.

Add Collection X

* Database id ©

cosmosuniversity

* Collection Id @

student

* Storage capacity ©

* Throughput (2500 - 100,000 RU/s) ©

10000

*RU/m @
o I

* Partition key ©

/postalCode

Lok &

Figure 3-7. New collection form filled with the required
information

68

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

13. After you click the OK button, the database
and collection will be created and you will see
something similar to Figure 3-8.

@ [r->1 New Collection
Quickstart
COLLECTIONS O <

A

s g :
v 4% cosmosuniversity
Explorer

©

Feedback

» [student

Figure 3-8. Database and collection created in the Azure Cosmos
DB Emulator

Defining the Document

Now that you have the collection ready, you need to define the document
that will represent the data. To represent the data, you will use JSON. JSON
stands for JavaScript Object Notation. It is a very lightweight and easy-to-
read-and-write data format. You can find more about JSON at www. json.org.

There are implementations of the JSON specification in nearly all
modern programming languages. The preferred and recommended
platform to work with JSON documents in .NET is Json.NET by Newtonsoft
(www.newtonsoft.com/json); in fact, Microsoft updated the Visual Studio
templates to use Json.NET instead of the .NET implementation in the
System.Json serialization namespace.

Since the document will store information about student records, you
will have something similar to Listing 3-1. In the listing, what you see is a
definition using JSON to format the information.

69

vww . allitebooks.con

http://www.json.org/
http://www.newtonsoft.com/json
http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Listing 3-1. Student Record Definition in JSON

{
"id": "1",
"firstName": "Jose",
"lastName": "Guay",
"birthDate": "04/07/1974",
"address1": "1234 Main Street",
"address2": "",
"city": "Chicago",
"state": "IL",
"postalCode": 60601,
"phoneNumber": "312-123-4567"
}

The listing shows the property id as a string. While in this example it
is a number, automatically generated ids in Azure Cosmos DB are GUIDs
stored as strings. The properties firstName, lastName, and phoneNumber
are strings. The property birthDate is a date. The properties address1,
address2, city, and state from the mail address are strings and, finally,
postalCode is an integer.

The document definition in Listing 3-1 will help you get through the
remainder of this chapter, and you will modify it in future chapters as you
dive into different topics of the implementation.

Managing Documents

There are several ways to manage documents using Azure Cosmos DB. The
easiest is to use the emulator or Azure portal interface to query and
manipulate them. This method is, however, only useful for administrators
or developers. The most common method for end users is to use an

70

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

application built for this purpose. Finally, for the bulk import scenario
there is a tool called Data Migration Tool that can take information from a
source and import it into an Azure Cosmos DB database.

In this chapter, you will use the emulator so you can get started
right away creating, modifying, and deleting documents. You will then
implement a small web application that will facilitate these tasks for end
users. [will address the Data Migration Tool in Chapter 4.

Using the Azure Cosmos DB Emulator
to Manage Documents

Now that you have a database and collection created, you will start using
the Azure Cosmos DB Emulator to manipulate documents. The emulator’s
interface is remarkably similar to the Azure portal interface. This was done
on purpose so that you can learn once and use everywhere. Follow the next
steps to work with the emulator:

1. With the database and collection open as shown in
Figure 3-8, click the arrow to the left of the collection
name to expand the options. Figure 3-9 shows
the different elements you can work with in the
collection. This list will give you the ability to not
only work with documents but also to change the
scalability and settings configuration and manage
stored procedures, user defined functions, and
triggers.

71

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

COLLECTIONS O <

v % cosmosuniversity

T‘m—[student

Documents

Scale & Settings
» Stored Procedures
» User Defined Functions
» Triggers

Figure 3-9. Expanding the collection options

2. Click the Documents option. You will see a new set
of options on the screen, as shown in Figure 3-10.
The page now gives you two toolbars, one at the
top of the page with buttons to create different
elements in the database such as a new query, new
stored procedure, new user defined function, and
new trigger. You can also create a new collection or
delete the current collection.

(] NewCollection =, NewSQLQuery @ New Stored Procedure fin, New User Defined Function %, New Trigger

&
COLLECTIONS O« Documents
- W cosmosuniversity [New Document
w |] student
| sascr-rmovc [
Documents.
Scale & Settings id IpostaiCode (3

P Stored Procedures

» User Defined Functions

P Trggers

Figure 3-10. Options on the Documents page

72

[i] Delete Coltection

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

The second toolbar is specific to documents and
itis in a new tab to the right of the page. Inside the
tab, the second toolbar has only a single button at
this point, to create a new document. Note in the
Documents tab the SQL query that is use to read
information from the collection. Below the query
the page is divided in two sections. To the leftis a
pane with two columns: one for the value of the id
in the document and the second for the value of the
partition key. In the right-side pane, you will be able
to see and manipulate the documents. Once you have
documents, the toolbar will show more buttons.

3. Click the New Document button to create a new
document that will be inserted into the database.
You will see a starting JSON document like the one in
Figure 3-11. This is a skeleton document that you can
use to start typing your document values. Also note
that two new buttons showed up in the toolbar: one to
save your document and one to discard the new record.

Documents X

Save ‘9 Discard

SELECT * FROM c m

id /postalCode ()
1
2 "id": "replace_with_new_document_id"
Load more 3

Figure 3-11. Adding a new document

73

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

4. You will now copy the document from Listing 3-1
into the new document pane, completely replacing
the skeleton document. It will look like Figure 3-12.
Then click the Save button.

Documents X

e

L Save ‘9 Discard

SeLeCT~FROM <

id /postalCode ()

1§
2 =3d": =1,

Load more 3 “firstName": "Jose”,
4 “lastName": “Guay",
5 "birthDate": "©4/07/1974",
6 "address1": "1234 Main Street”,
7 "address2": "",
8 "city": "Chicago”,
9 “state": "IL";
1@ “postalCode”: “60601",
11 "phoneNumber": "312-123-4567"
12 [

T

Figure 3-12. New document using the information from Listing 3-1

5. After you click the Save button, the page changes
a little bit. As shown in Figure 3-13, the value of
the id field and the value of the partition key are
showing in the left-side list, and the toolbar shows
different buttons. You now have a button to delete
the document and two buttons to save or discard
modifications.

74

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Documents X

D New Document []

sececr-reovc [T

id /postalCode ()

@ Delete

=

1 60601 2 P P T
"firstName": "Jose",
"lastName": "Guay",
"birthDate": "04/07/1974",
"address1": "1234 Main Street”,
"address2": "",

"city": "Chicago”,

"state": "IL",

“postalCode”: "6@601",
“phoneNumber": "312-123-4567"

Load more

O NO W E W N e

e
h @
o

Figure 3-13. New document saved in the collection

6. Ifyou click the row in the left pane referencing the
new document, as shown in Figure 3-14, you will
see the document reloads but it has been modified a
little bit. It has new properties that were not present
in Listing 3-1. These properties were added by Azure
Cosmos DB. The new properties are described in
Table 3-1.

75

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Documents X

[NewDocument (5] [i] Delete

SRV coitFiter |

id fpostalCode ()
14

1 [}50501 2 “id": 1=,
3 “firsthame": "Jose",
4 “lastName": “Guay”,

Load mare 5 "birthDate": "@4/07/1974",

6 "address1™: "1234 Main Street”,
7 “address2”: "7
] "city”: "Chicago”,
9 “state": "IL",
18 “postalCode”: "6@601",
11 "phe ber”: "312-123-4567",
12 “_rid": "ar428Ke7fQAEAAAAAAAABg==",
13 “_self": "dbs/ard2Ah==/colls/ard2AK87fQA=/docs/ar42AK87 FQAEAMMAAAMABE==/",

14
15
16
17 §

"_etag": "\"@0024co0-0000-0000-0000-599b8bc2aaBR\"",
"_attachments”: "attachments/",

"_ts": 1583366882

Figure 3-14. New document displaying new properties used by Azure
Cosmos DB

Table 3-1. Internal Properties in Azure Cosmos DB Documents
(source: http://bit.1ly/cosmos-db-create-doc)

Property Description

_rid This is a system-generated property. The resource ID (_rid)isa
unique identifier that is also hierarchical per the resource stack
on the resource model. It is used internally for placement and
navigation of the document resource.

_self This is a system-generated property. It is the unique addressable
URI for the resource.

_etag This is a system-generated property that specifies the resource
etag required for optimistic concurrency control.

_attachments This is a system-generated property that specifies the
addressable path for the attachments resource.

_ts This is a system-generated property. It specifies the last updated
timestamp of the resource. The value is a timestamp.

76

http://bit.ly/cosmos-db-create-doc

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

7. Tomodify the value of a document, all you need to do is
adjust it in the right pane and click the Update button.

8. To delete a document, just select the document from
the left-side list and click the Delete button.

Managing Documents with an Application

You will now build a small web application using Visual Studio 2017 to
manage documents. This is a different scenario, targeted to end users,
in which you will use the .NET SDK to interact with the database and
collection that you created in the Azure Cosmos DB Emulator.

Creating the ASP.NET Web Application

The following steps will guide you through the process of developing this
web application:

1. Open Visual Studio 2017 from the Start menu, as
shown in Figure 3-15.

Visual Studio 2017

Visual Studio 2017
Visual Studio Installer
VMware

Voice Recorder

L Type here to search
Figure 3-15. Open Visual Studio 2017 from the Start menu

77

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Figure 3-16. Creating a new project in Visual Studio 2017

78

2. Go to the File menu, select New, and from the menu
select Project. As shown in Figure 3-16, you can also
use the keyboard shortcut of Ctrl-Shift-N.

4] Start Page - Microsoft Visual Studio

File

[

Edit View Project Debug Team Tools Test Analyze Window Help
New * 3 Project..

Open ' %@ WebSite.. [}

Start Page P2 Repository...

Close ‘D File...
5 Project From Existing Code...

Ctrl+Shift+N
Shift+Alt+N

Ctrl+N ‘

3. The new project window is shown in Figure 3-17. You

now have the option to create any type of application.

From the list of templates in the left, select Web, and
from the options in the center pane, select ASPNET
Web Application (.NET Framework). At the bottom,
type the name of the project as CosmosUniversity.
Web. Select a folder where the application files will be
saved and make sure the Create directory for solution
checkbox is selected in the lower right corner of the
window. Then click the OK button.

Hew Project

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

b Recent (MET Framework 4.6.1 = Sortby: Default

4 Installed

4 Templates

@j ASP.NET Web Application (NET Framework)

4 Visual C& @ ASP.NET Core Web Application (.NET Care)

Windows Classic Desktop

Web @ ASP.NET Core Web Application (.NET Framework)

JNET Core
NET Standard
Cloud
Test
WCF

¢ Visual Basic

SOL Server
¥ Azure Data Lake
& Other Project Types

Not finding what you are leoking for?

Open Visual Studio Installer

¥ Online

HNarne: [CosmasUniversity. Web
Location: C:\Projects

Solution name CosmosUniversity. Web

Visual C# Type: Visual C=

Project templates for creating ASP.NET
applications. You can create ASP.NET Web
Forms, MVC, or Web AP apphcations and
add many other features in ASP.NET.

Visual C=

Visual C=

- [aom]

[Create directary for solution

Creste new Git repestory

o o]

Figure 3-17. New ASP.NET web application

4. A new window opens to select the type template
for your web application. Select MVC to create
anew ASPNET MVC web application, as shown
in Figure 3-18. Leave the default authentication
configuration, which is No Authentication, and don’t
select the option to create a unit tests project. Then
click the OK button.

vww . allitebooks.con

79

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

New ASP.NET Web Application - CosmosUniversity. Web 7 x
A project template for creating ASP.NET MVC
ASPNET 4.6.1 Templates applications. ASP.NET MVC allows you to build
applications using the Model-View-Controller
B B a] = architecture. ASP.NET MVC includes many features that
@J @J E:J o] enable fast, test-driven development for creating
Empty Web Forms MVC Web AP1 Single Page applications that use the latest standards.
Application caen mor
4 4
R
Azure APl App Azure Mobile
Al T
i [Change Authentication
4 ication: Mo Auth i i
Add folders and core references for:
[[] WebForms /| MVC [] Web AP
[C] Add unit tests
Test project name: | CosmosUniversity. Web. Tests
OK || Cancel

Figure 3-18. Options to create a new ASP.NET web application

Note In areal application, you would want to implement
authentication and unit tests. Unit tests will help you evaluate your
code as you develop and will potentially identify breaking changes
whenever new code is introduced. Depending on the requirements

of your application, authentication will play an important role in
identifying and authorizing users for different actions. For the purpose
of this sample application, these two features are not needed because
| only want to illustrate working with the Azure Cosmos DB database.

5. Visual Studio will now start creating all the
necessary files based on the template and the
options selected, as shown in Figure 3-19.

80

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Microsoft Visual Studio

Creating project 'CosmosUniversity.Web'...

Figure 3-19. Visual Studio progress window when creating the new
ASP.NET web application

6. Once the application has been created, Visual
Studio will show the Solution Explorer window
shown in Figure 3-20.

’SJ CosmosUniversity.Web - Microsoft Visual Studic ¥ & | Quick Launch (Ctrl+Q) Pl O x
File Edit View Project Build Debug Team Tocls Test Analyze Window Help Jose R. Guay Paz ~ n
Debug ~ AnyCPU = P GoogleChrome - & & - 5 o

8— ~ Saolution Explorer =i st w R E
g - . =
2 BE-o-5¢FB g

=

3

Search Solution Explorer (Ctre) p-

1] Selutien ‘CosmosUniversity. Web' (1 projec +

Connected Services ASP.NET 4 §1 CosmosUniversityWeb
¥ . 2 = Gp Connected Services
Publish Learn about the NET platform, craate your first b Properties
application and extend it to the cloud. b *B References
I App_Data
I 5 App Start
< / > (a b B Content
”[ll b B Controllers
P i fonts
Build Your Add a Deploy to & Models
App service Azure b B Scripts
-
Get started Telemetry Get started £ - ’
with with with azure Solution Explo... | Team Explorer Server Explorer
ASP.NET Application publish Properties =i cow X
Insights
Browse your -
docs, More website to
samples, connected Azure @?‘ ?
and services Sat
tutorials .
continuous
delivery

Output

[J Creating project 'CosmosUniversity,Web'... project creation successful. 4 Addto Source Contral ~

Figure 3-20. Solution Explorer window in Visual Studio after the
new ASP.NET web application is created

81

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

oo @

*

7. Next, you will create the controller to handle

the application’s interaction with the user and

coordinate what needs to happen on each action.
Right-click in the Controllers folder and from the

context menu select Add and then Controller, as
shown in Figure 3-21.

Controller...

MNew ltem...

Exsting ltem...

Mew Scaffolded ltem...

New Folder

Add ASP.NET Folder

Docker Support

REST AP| Client...

Mew Azure Weblob Project
Exsting Project as Azure Weblob
Web API Controller Class (v2.1)
Class...

Ctrl+Shife+A
Shift«Alt+A

0 &

» 9 A8 X

View in Browser (Microsoft Edge)
Browse With...

Add

Scope to This

Mew Solution Explorer View
Exclude From Project

Cut

Copy

Delete

Rename
Open Folder in File Explorer

Properties

Ctri+Shift«W | HomeController.cs
its
dels
Context.cs
Student.cs
ipts
bW
Home
CtrleX Shared
CtrisC _ViewStart.cshtml
Web.config
Del Teamn Explorer Server Explore
-0 x
Ider Properties
Alt+Enter
B Misc
Folder Name Controllers

Figure 3-21. Adding a new controller in the Controllers folder

82

8. Inthe Add Scaffold window, select the MVC 5
Controller with read/write actions. This scaffold will

generate a controller with the necessary actions to

handle a basic CRUD implementation. This is shown
in Figure 3-22. Click the Add button.

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Add Scaffold x
4 |nstalled

¥ Common “ MVC 5 Controller with read/write actions

by Microsoft
v5.0.0.0

‘[: MVC 5 Controller - Empty

‘[: MVCS Controier with read/write actions An MVC controller with actions to create,

read, update, delete, and list entities.
MVC 5 Controller with views, using Entity Framework
el;j Id: MvcControllerWithActionsScaffolder

‘[: Web AP1 2 Controller ~ Empty |\,
‘[: Web API 2 Controller with actions, using Entity Frameworl

‘[: Web AFI 2 Controller with read/write actions

Web API 2 OData v3 Controller with actions, using Entity
Framework 1.

Jick here to go online and find more scaffolding extensions,

Figure 3-22. Adding a scaffold window and creating a controller
with read/write actions

9. In the Add Controller window, shown in
Figure 3-23, the name of the controller should be

StudentController.
Add Controller X
Controller name: | Studenttontroller |

| add || Conce |

Figure 3-23. Configuring the new controller name as
StudentController

83

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

10. Part of the code from the new controller is shown in
Listing 3-2.

Listing 3-2. Partial View of the New StudentController Class

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

namespace CosmosUniversity.Web.Controllers

{
public class StudentController : Controller

{
// GET: Student

public ActionResult Index()
{

return View();

}

// GET: Student/Details/5
public ActionResult Details(int id)

{

return View();

}

// GET: Student/Create
public ActionResult Create()

{

return View();

84

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

// POST: Student/Create
[HttpPost]
public ActionResult Create(FormCollection collection)

{
try

{
// TODO: Add insert logic here

return RedirectToAction("Index");

}
catch
{
return View();
}

Creating a Class for the Document

It is time to create a structure that you can manipulate for the data. Since
you are using .NET and C#, you will create a new class that represents a
document in the database. It will contain all the properties necessary to
match the document in Listing 3-1. This will be your document model.
Using a class will be much easier than manipulating JSON directly, and in
the end, you will use Json.net to serialize this class into the actual JSON
document. Follow the next steps to create the document:

1. Right-click in the Models folder in the Solution
Explorer window. From the context menu, select
Add and then Class, as shown in Figure 3-24.

85

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

& View in Browser (Microsoft Edge) Ctrls Shift+W Seripts
Browse With... Vicv:
B Controller... Add Fo| s shared
0 MNew ltem... Ctrls Shifts A Scope to This Student
0 Bisting ltem... Shift-A+A | Mew Solution Explarer View !51 ﬁ::::'r‘;;hm
New Scaffolded tem... Exclude From Project Y Applic i ghts.config o
% New Folder ¥ cut CrrleX peplo.. | Team Explorer Server Explorer
Add ASP.NET Folder * 1P Copy Cirl+C -0 x
h Plockac Soppart o older Properties
REST API Client... X Delete Del .
Mew Azure Webleb Project O Rename
Existing Project as Azure Weblob €* Open Folder in File Explorer Mame Models
% Class.. s K Properties Alt+ Enter
Figure 3-24. Adding a new class in the Models folder for your
document
2. When the Add New Item window opens, type the
name of the file as Student.cs and click the Add
button, as shown in Figure 3-25.
Add Mew Item - CosmosUniversity.Web 7 x
4 Installed Sort by: Default - #E Search (Ctrl=E) p-
4 Visual C2 : = Type: Visual C# I
Azure Function Visual C=
Code f An empty class declaration
Data c=
S ,';'] Class Visusl G2
: ‘:;:NH Con & 5 Class for U-SQL Visual C2
SQL Server e
e o0 Interface Visual C#
b Online @ ADO.NET Emtty Data Model Visual C#
IEI Code Analysis Rule Set Visual C=
-y
N] CodeFile Visual C2
ﬁi DataSet Visual C#
Name: [Student.cd
Add Cancel

Figure 3-25. Creating a new class named Student.cs that represents a
record in the database

86

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

3. The class at this point will be empty. Let’s now

add properties representing each of the properties

described in the JSON document from Listing 3-1.

These properties are shown in Listing 3-3.

Listing 3-3. Student Model Representing a Record in the Database

using System;

using System.Collections.Generic;

using System.Ling;
using System.Web;

namespace CosmosUniversity.Web.Models

{

public class Student

{
public
public
public
public
public
public
public
public
public
public

string Id { get; set; }

string FirstName { get; set; }
string LastName { get; set; }
DateTime BirthDate { get; set; }
string Addressi { get; set; }
string Address2 { get; set; }
string City { get; set; }

string State { get; set; }

int PostalCode { get; set; }
string PhoneNumber { get; set; }

87

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Note that the names of the properties in the class use
Pascal Case notation while the JSON document uses
Camel Case. This might cause some problems but
they are easily solved by adding annotations to match
the casing between both formats. To make these
annotations you will need to add the Newtonsoft.Json
namespace to the class and use the [JsonProperty]
attribute on each property, as shown in Listing 3-4.

Listing 3-4. Student Model Now with Annotations in the Class
Properties to Match the JSON Document’s Camel Case Style

using Newtonsoft.Json;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

namespace CosmosUniversity.Web.Models

{
public class Student

{
[JsonProperty(PropertyName = "id")]
public string Id { get; set; }

[IsonProperty(PropertyName = "firstName")]
public string FirstName { get; set; }

[IsonProperty(PropertyName = "lastName")]
public string LastName { get; set; }

[JsonProperty(PropertyName = "birthDate")]
public DateTime BirthDate { get; set; }

[IsonProperty(PropertyName = "addressi")]
public string Addressi { get; set; }
88

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

[JsonProperty(PropertyName = "address2")]
public string Address2 { get; set; }

[IsonProperty(PropertyName = "city")]
public string City { get; set; }

[IsonProperty(PropertyName = "state")]
public string State { get; set; }

[JsonProperty(PropertyName = "postalCode")]
public int PostalCode { get; set; }

[IsonProperty(PropertyName = "phoneNumber™)]
public string PhoneNumber { get; set; }

Creating the Data Layer

The web application is now ready for you to create the data layer. This will

be a class that implements the integration between the web application
and Azure Cosmos DB. The first thing you need to do is let the application
know you want to use Azure Cosmos DB, and for that you need to add

a new library to the solution. You will use a NuGet package for that. The

following steps will guide you through the creation of the data layer class:

1.

The first step is to add the DocumentDB .NET SDK
to the project. To do so, open the NuGet Package
Manager Console. The console is a command

line interface where you can type the commands

to install, update, or remove a package from the
projects in a solution. To use it, go to the Tools menu,
open NuGet Package Manager, and then select
Package Manager Console, as shown in Figure 3-26.

89

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Aicroseft Visual Studic

Build Debug Team Tools Test Analyze Window Help

Debug Get Tools and Features...

Extensions and Updates...
Check Accessibility...
Connect to Database....
Connect to Server...
SQL Server »
Data Lake L
Web Code Analysis »
[l Code Snippets Manages... Ctrl+K, Ctri+B

woa T3

Cheoose Toolbex items...

NuGet Package Manager * B Package Manager Console

Create GUID B Manage NuGet Pahages for Solution...
& WCF Service Configuration Editor £} Package Manager Settings

External Tools...

Import and Export Settings...
Customize...

£# Options...

Figure 3-26. Opening the Package Manager Console window

2. 'The Package Manager Console window is shown
in Figure 3-27. At this point, you can enter package
commands.

Package source Al - @ Ocawtproject CotmosUnrversity.Web - B

Each package is licensed to you by its cwner. NuGet s not responsible for, nor does it gramt any licenses to, third-party packages. Some -
packages may include cependencies which are governed by additionsl licenses. Follow the packege source (feed) URL to determine any
cependencies .

Package Manager Console Wost Version 4.3.9.4339
Type 'get-help MuGet' to see all availatle NuGet comeands.

P>

% -

Figure 3-27. Package Manager Console window

3. A graphical user interface for managing packages is
available in case you are not too comfortable with
the command line interface. The option, shown
in Figure 3-28, is available just below the Package
Manager Console in the Tools menu and is called
Manage NuGet Packages for Solution.

90

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Tocls Test Analyze Window Help
Get Tools and Features...
Extensions and Updates...

E @l

Check Accessibility...

.

A
m «

Connect to Database...
Connect to Server...
SQL Server v
Data Lake r
‘Web Code Analysis v
[Code Snippets Manager... Ctri+K, Ctrl+B
Choose Teoolbox Items...
NuGet Package Manager * BB Package Manager Console
Create GUID # Manage NuGet Packages for Solution...
& WCF Service Configuration Editor £} Package Manager Settin
External Tools...

Import and Export Settings...
Customize...
£} Options...

Figure 3-28. Opening the graphical user interface to manage packages

4. 'The graphical user interface for managing packages
is shown in Figure 3-29.

M) CosmosUniversity.Web - Micrascht Visusl Sudio ¥ & | CuickLaunch (=) £ - B x
Fle Edt View Projest Buld Debug Team Tools Tt Anahze Window Help Jose R GuayPaz - M
Q-0 JH-L @ - - [Detug - [AmycPu - b MicrosoftEdge = @ ¢ - 31 _
F |NuGet - Solution & X z
= = T
% Browse Installed Updatesll Consolidate Manage Packages for Solution @E- B-56Ff@ i
eanch Sclution Explorer {Ctrl+2) p- 3
Sear P = & [Inchode presedease Package source: | nuget.org -8 ion Wkt {1 proje &
= Cmmumumv!h:h
= G Connecled Services
b & Properies
Antir by Terence Pam HRr b B Refeences
ANcther Tool for L 1 App_Data
p-o\.m.h.mmuﬂuzmnmnngmogmm .mnp«lm, v i .-:pp:mn
- 3 | Corfent
BOGLStrap by Mack Utte Jacok Themten vz b B Cortraliers
Sleek, intuitive, and powerful frort-end framework for faster and b ol fonts
emie web development. P ol Modek
b Scripts
E JCery by jCuery Foundationinc. vall b Views -
D jQuery is a new kind of Javadript Libeary 1 4
JChsery s a fast and concise AmvaSeripe Library that simplfies H_. Sction Explo... | Team Explorer Serves Explocer
'E JQuery.Validation by 1sm Zasferer VIIED Propertics ¥ Tt
3 This jQuery plugin makes simgle clientside form vabdation tivial, CosmesUniversity.Web Project Properties -
while offering lots of optien for customization. That makes » gocd._ [351]
= p
o WAD ¥ = Misc 4
Progect Fil CosmesUniversity. Wel
Each package is licensed to you by its cwner. NuGet is not responsible for, nor does it = 2 e .
grasit ary lieenses to, thivd-paity packages. Misc

7] £o et show this again

Output Package Manager Cormole

Figure 3-29. Graphical user interface to manage packages

91

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

5. Inthis example, you will use the command line
option because it is simpler. In the Package Manager
Console, type the following command and then press
the Enter key:

PM> Install-Package Microsoft.Azure.DocumentDB

6. The command will gather all dependencies for
the package, perform all necessary updates, and
download the required files for the application to
use the SDK. It should show something like the
results shown in Figure 3-30.

Package Manager Conscle

Package source: Al - 43 Default project: | CosmosUniversity.Web - E
PH> Install-Package Microsoft.Azure.DocumentDB -

Attespting to gather dependency information for package *Microsoft.Azure.DocumentDB.1.17.8' with respect to project
‘CosmasUniversity.Web', targeting °.NETFramework,Version=v4.6.1"
Gathering dependency information took 3.83 sec
Attespting to resclve dependencies for package 'Microsoft.Azure.DocumentDB.1.17.8' with DependencyBenavior 'Lowest'
Resclving dependency information took @ ms
Resolving actions to install packasge 'Microsoft.Azure.DocumentDB.1.17.8"
Resolved actions to install packesge 'Microsoft.Azure.DocusentDB.1.17.8"
Retrieving package 'Microsoft.Azure.DocumentDB 1.17.8' from 'nuget.org’.
Retrieving package 'Mewtonsoft.lson 6.8.8' from 'nuget.org'.
GET https://api.nuget.org/v3-flatcontainer/microsoft.azure.documentdb/1.17.8/microsoft.azure . documentdb.1.17.8.nupkg
Removed package 'Newtonsoft.Json.6.8.4' from 'packages.config'
OK https://fapi.nuget.org/v3-flatcontainer/microsoft.azure.documentdb/1.17.8/microsoft.azure.documentdb.1.17.0.nupkg 66ms
Installing Microsoft.Azure.DocumentDB 1.17.8.
Successfully uninstalled ‘MNewtonsoft.Json.6.8.4' from CosmosUniversity.Web
Adding package ‘Newtonsoft.J)son.6.8.8' to folder 'C:\Projects‘\CosmosUniversity.Web\packages'
Added package 'Newtonsoft.lson.6.8.8' to felder 'C:\Projects\CosmosUniversity.Web\packages®
Added package 'Newtonsoft.lson.6.8.8' to 'packages.config'

Executing script file 'C:\Projects\C sity.Weby \ t.Json.6.@.8\tools\install.psl®
Successfully installed "Newtonsoft.Json 6.@.8° to CosmosUniversity.Web
Adding package "Microsoft.Azure.DocumentDB.1.17.8° to folder 'C:\Projects\C iversity.Web\

ﬂddtd Elckl(l chrosoit ﬂzur{ DucuunlDE 1.17. 9 to fDldIr "C: \I’r\::llcts‘r iversity.Web

g ¥-Web\packages"
* from folder 'C: \Pro]ects\CosIosUmversity Web\packages'

T z
Removed package 'Newtonsoft. Jscn 6 -
Executing nuget actions tock 2.9 sec
Time Elapsed: ©0:80:06.3145667

PH> | -

100 %

Figure 3-30. Results of installing the DocumentDB .NET SDK using
the Package Manager Console

92

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Let’s now start writing some code. For your
application to connect to Azure Cosmos DB it
needs two pieces of information: it needs to know
where the database is and it needs to know the
authentication key. The location of the database is
information you saw in Chapter 1. It is basically the
URL where the emulator is running. The second
piece is a fixed authentication key for the emulator
that never changes and is intended to be used only
with it; it can’t be used for production databases in
Microsoft Azure. The values are

Database endpoint URL: https://localhost:8081/
Authentication Key: C2y6yDjf5/R+obON8A7Cgv30VRD
JIWEHLM+4QDUSDE 2nQ9nDuVTqobD4b8mGGyPMbIZngyMsEc
aGOy67XIw/Jw==

Add these values to the Web . Config file so they are
easy to use in the application. Open the Web.Config
file in Visual Studio and add the following lines in
the <AppSettings> section as shown in Figure 3-31.
Then save the file and close it.

<add key="CosmodDBEndPoint"
value="https://localhost:8081/"/>

<add key="CosmosDBAuthKey" value="C2y6yDjf5/R+
obON8A7Cgv30VRDIIWEHLM+4QDUSDE2nQ9nDuVTqobD4b8mG
GyPMbIZnqyMsEcaGQy67XIw/Jw=="/>

vww . allitebooks.con

93

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

<¥xal version=-1.8° encoding=-utt-8 1>
=PI
For more informatien

on how to configure your ASP.NET application, please visit
hs i .microsof link/ i |

frlin

»
= <configuration:
= «configSectionss
csection name="entityFramework” type="System.Data.Entity.Internal.Configfile.EntityFramewarkSection, EntityFramewark, Version=&.8
<fconfigSections»
18 = <sppSettings>
2 i

<add & rsiol 3.0.0.8° />
<add bpages:Enabled™ w false™ /»
3 <@ ClientvalidationEnable alue="true” /.

rusivedavasScriptE

<@ Cas=odDBEndPoint- valus="nttps://localhost BRI />
<atd key="CoszosDBAuthKey™ valuc="C2y6yDif5/Riab EV3BVADIINEHL q MolZ TAIWS Jwms 1
TSPESELLINgL > T

Figure 3-31. The Web.Config file after adding the two keys for
connecting to the Azure Cosmos DB Emulator

Note More information on the Azure Cosmos DB Emulator can
be found in Chapter 1 and throughout this book and in the online
documentation at http://bit.ly/cosmos-db-emulator.

9. Inthe same way you added a class for the
document, let’s create a new class for the data
layer. Right-click the Models folder, open Add from
the context menu, and select Class at the bottom,
as shown in Figure 3-24. When the Add New Item
window opens, as shown in Figure 3-32, type the
name of the new class as Repository.cs.

94

http://bit.ly/cosmos-db-emulator

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Add New Item - CosmosUniversity.Web [x
4 Installed Sortby: Default - 1] Search (Ctri+E)
. -
‘ "'""c“ ; f Azure Function VisualCs o Types Visual G2
Dvde . An empty class declaration
ata
Class Visual C=
General ‘r;\J =
b Web C :
Class for U-5QL Visual C#
b ASP.NET Core fo] Clustor S
SOL Server e
o0 Interface Visual G2
Storm ltems %
b Online q'? ADO.MET Entity Data Model Visual C&
@ Code Analysis Rule Set Visual C=
- = - i
h] Code File Visual C#
a? DataSet Visual C#
) -
Mame: Repository.cs

| Add || Cancel

Figure 3-32. Creating the new Repository class for the data layer

10. You will change the default class code in several
ways to facilitate accessing it. First, you will make the
class static so that you don’t have to create instances
of it. Also, you will constraint your class to be able
to work only with class type arguments. This is
important because you are effectively saying that the
data layer will work only with classes such as the one
you built for the student records. Note that this refers
to any class, not just the Student class, and thus, it
can work with more class types as you add them. The
new class declaration is shown in Listing 3-5.

95

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Listing 3-5. Repository Class Declaration with Restrictions for Class
Type Arguments

public static class Repository<T> where T : class

11. Now you will add a few private static variables to
reference the database and collection location and
name, as well as the authentication key and the
DocumentClient object you will use to interact with
Azure Cosmos DB. The definitions are shown in
Listing 3-6. Note that the database and collection
names could have also been stored in the Web. Config
file. It makes no difference, but basically it depends
on whether those values can change in the future or
not, and how easily you want them to update.

Listing 3-6. Private Variables to Store Global Information to the
Repository Class

private static readonly string _endPoint =
ConfigurationManager.AppSettings["CosmosDBEndPoint"];
private static readonly string _authKey =
ConfigurationManager.AppSettings["CosmosDBAuthKey"];
private static readonly string dbName = "cosmosuniversity";
private static readonly string collectionName = "student";
private static readonly DocumentClient =
new DocumentClient(new Uri(_endPoint), authKey);

96

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Querying the Database

You are ready to start querying the database. To make it very responsive,
you will add an async method that returns a list of students; that way the
application Ul won't be locked while the query is executing.

The code for the method is shown in Listing 3-7. The method will
accept as a parameter a lambda expression that can be used to filter and
refine the query.

Listing 3-7. Async Method to Query the Azure Cosmos DB
Collection to Read All the Student Documents

public static async Task<IEnumerable<T>>
GetStudentsAsync(Expression<Func<T, bool>> where)

Uri collectionUri = UriFactory.CreateDocumentCollectionUri

(_dbName, collectionName);
FeedOptions feedOptions = new FeedOptions { MaxItemCount = -1 };
IDocumentQuery<T> students;

if (where == null)

{
students = client.CreateDocumentQuery<T>
(collectionUri, feedOptions)
.AsDocumentQuery();
}
else

97

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

{
students = client.CreateDocumentQuery<T>
(collectionUri, feedOptions)
.Where(where)
.AsDocumentQuery();
}

List<T> listOfStudents = new List<T>();
while (students.HasMoreResults)

{
1istOfStudents.AddRange(await students.ExecuteNextAsync<T>());

}
return listOfStudents;

The first line creates an Uri variable. This variable will store
the actual link used to connect to the collection. It is built using the
CreateDocumentCollectionUri function in the UriFactory class and takes
as a parameter the name of the database and the name of the collection to
which you want to connect.

The second line creates a new FeedOptions variable which is used to
provide the client object with information about how to return results from
queries. In this example, by setting the MaxItemCount to -1, you're telling
the client to dynamically calculate the page size. For example, a value of
10 for this property would instruct the client to return 10 documents at a
time. The FeedOptions class has many properties to configure the client,
such as PartitionKey which defines the partition key to use in the case of
an operation involving a specific partition. SessionToken gets or sets the
session token for use with Session consistency.

98

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

The following line creates an IDocumentQuery variable. It will be used
to read the information from the database and collection specified in the
Uri passed in the first parameter, and it will use the configuration in the
FeedOptions variable from the second parameter. The next line adds a
Where() extension for the query that in turn uses the expression in the
GetStudentsAsync method’s parameter as a predicate to filter the results.
Finally, since the Where() extension returns an IQueryable, you need
to convert this result to an IDocumentQuery and you use the extension
AsDocumentQuery (). Note that because the Where() extension requires the
predicate not to be null, you are checking if this is the case, and if so, it will
not add the extension to the query.

The final lines of the method create a List<T> to store the results from
the DocumentQuery. The query is executed page by page and you need to
loop through all the pages of data. The property HasMoreResults from
the DocumentQuery object is a Boolean that will be true if there are more
results to read. The first time it’s checked, it will return true; it then enters
the while loop and adds to the list of results the documents returned from
the call to ExecuteNextAsync<T> (). This method will go to the collection,
read the next page of data, and if there are more documents to read, based
on the query, it will keep the value of true for HasMoreResults. When there
are no more results to read, HasMoreResults becomes false and the loop
ends. Then the method finishes, returning a list of students.

To read a single document, you access it using its id. Listing 3-8 shows
the method GetStudentAsync() (note that the name is singular this time).
The method accepts as a parameter the id of the student you want to see.

Listing 3-8. Async Method to Query the Azure Cosmos DB
Collection to Read a Student Document Based on Its Id

public static async Task<T> GetStudentAsync(string id)
{

99

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

if (string.IsNullOrEmpty(id))
throw new ApplicationException("No student id specified");

Uri documentUri = UriFactory.CreateDocumentUri
(_dbName, collectionName, id);
try
{
Document student =
await client.ReadDocumentAsync(documentUri);
return (T)(dynamic)student;

}
catch (DocumentClientException ex)
{
if (ex.StatusCode == System.Net.HttpStatusCode.NotFound)
return null;
throw;
}

The first two lines in the method are a validation to ensure you are
getting an actual value to query the database. It is a simple defensive
mechanism to avoid a roundtrip to the database that most surely will fail
and will just consume RUs.

The following line creates an Uri object that identifies the document in
the collection. The three parameters are the database, collection, and id of
the document. The UriFactory.CreateDocumentUri() method will make
sure the Uri is properly created.

To read the document you use the client.ReadDocumentAsync()
method. The way this method works is if the document is found, then
it returns the document; otherwise, it throws an exception of type
DocumentClientException. Documents either exist or not; therefore, if
the document is not found, the status code for the exception will be an
HttpStatusCode.NotFound. In this case, the method will just return null.

100

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

You use a try-catch statement to check for this exception. In the rare

case where something else happens, the method will just rethrow the
exception so it is visible and can be addressed. Converting the document
to a dynamic object and then casting to T will easily and implicitly take care
of the deserialization from JSON to object using the type represented by T.

Creating a Document

Creating a document using the DocumentDB .NET SDK is a very simple
process. Once you have an object that maps to the document being stored
in the collection, you use the client.CreatDocumentAsync() method, as
shown in Listing 3-9.

Listing 3-9. Async Method to Connect to the Azure Cosmos DB
Collection to Create a New Student Document

public static async Task<Document> CreateStudentAsync(T student)
{
Uri collectionUri = UriFactory.CreateDocumentCollectionUri
(_dbName, collectionName);
return await client.CreateDocumentAsync(collectionUri, student);

The first line creates the Uri for the collection so the method knows to
which collection you are referring to when creating the document. The Uri
takes two parameters, the database and collection you intend to connect
to. The second line is the call to client.CreateDocumentAsync() that takes
two parameters: the first one is the Uri created before, and the second is
the document to be created.

101

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Replacing a Document

When a document changes and those changes are saved to the
database, it is called a replace operation. This is done using the
client.ReplaceDocumentAsync() method shown in Listing 3-10.

Listing 3-10. Async Method to Connect to the Azure Cosmos DB
Collection to Replace a Student Document

public static async Task<Document> ReplaceStudentAsync
(T student, string id)

{
if (string.IsNullOrEmpty(id))
throw new ApplicationException("No student id specified");
Uri documentUri = UriFactory.CreateDocumentUri
(_dbName, collectionName, id);
return await client.ReplaceDocumentAsync(documentUri, student);
}

The method will accept two parameters: the document with the new
values and the id of the document. The document id will be used to create
the Uri of the document in the first line. The second line is the call to
client.ReplaceDocumentAsync() which connects to the collection and
replaces the document. As usual, you check the id variable to ensure there
is a value and throw an exception if there isn’t one.

Deleting a Document

Deleting a document is done by calling the client.DeleteDocumentAsync()
method which accepts a single parameter: the Uri of the document

you intend to delete. Listing 3-11 shows the method to delete a student
document.

102

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Listing 3-11. Async Method to Connect to the Azure Cosmos DB
Collection to Delete a Student Document

public static async Task<Document> DeleteStudentAsync(string id)
{
if (string.IsNullOrEmpty(id))
throw new ApplicationException("No student id specified");

Uri documentUri = UriFactory.CreateDocumentUri
(_dbName, collectionName, id);
return await client.DeleteDocumentAsync(documentUri);

Using the Data Layer in the Controller
and Completing the Application

It is now time to implement the data layer and add the necessary code in
the controller so you can interact with Azure Cosmos DB.

The first step to implement is the list of students. The idea is that
when a user opens the Students page they will get the list of students to
manipulate. The page will have the list of students, an option to create a
new student, and options to view, edit, and delete individual documents.
The following steps will guide you through the adjustments to the
StudentController class:

1. Open the StudentController.cs file by
double-clicking it in the Solution Explorer window,
as shown in Figure 3-33.

4 Controllers
P ©* HomeController.cs
b @ StudentController.cs
b fonts

Figure 3-33. Opening the StudentController.cs file

103

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

2. Inthe Index() action, add the code to call the
GetStudentsAsync() method from Repository. The
code will look similar to what is shown in Listing 3-12.

Listing 3-12. Calling GetStudentsAsync()

var students = await Repository<Student>.GetStudentsAsync(null);
return View(students);

3. After you add the code you will notice a problem
highlighted with a red squiggle, as shown in Figure 3-34.
The issue here is that you are trying to call an
asynchronous function from a synchronous method.

public class StudentController : Controller

// GET: Student
public ActionResult Index()
{
var students = await Re
return View(students);

Figure 3-34. Issue when calling an asynchronous function from a
synchronous method

4. To resolve this problem, you must adjust the action
so that it is also asynchronous. Instead of this
being a simple ActionResult method, it should
be changed to be a Task<ActionResult> and it
also needs to be modified to be async. To keep it
consistent with the convention of async-await, the
action is also renamed to IndexAsync(). Finally, in
order to correctly call it from the application and
hide the fact that it is an asynchronous action, you

104

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

decorate the action with an annotation so its name
is known as just Index. The resulting code is in
Listing 3-13.

Listing 3-13. Modified Controller Action to Become Asynchronous

[ActionName("Index")]

public async Task<ActionResult> IndexAsync()

{
var students = await Repository<Student>.GetStudentsAsync(null);
return View(students);

5. You now add the view to render the list of students.

In the IndexAsync() action, right-click anywhere
inside the action and at the top of the context menu
you will see an option named Add View, as shown
in Figure 3-35. This will open the Add View window
shown in Figure 3-36. In the Add View window, type
the name of the view as Index only so it matches
the actual action name and follows the MVC
convention. Then select the List template. The Model
class should be the Student class in the Models
folder. Then click the Add button.

[ActionName("Index")]

f{;ublic async Task<ActionResult> IndexAsync()

var students = await Repository<Student>.GetStudentsAsync(null);
return View(students);

} Go To View Ctrl+M, Ctrl+G
Add View...

// GET: Student/Details/5

[ActionName("Details")] . Quick Actions and Refactorings... Ctrl+,

public async Task<ActionRes 1 Rename... CtrI+R, Ctrl+R

{ Remnave and Sart llcinnac CtrleR Chrlats

Figure 3-35. Adding a view for the action method

105

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Add View X
View name: Index
Template: List v

Model class: Student (CosmosUniversity.Web.Models) v
Options:

[T] Create as a partial view

[¥] Reference script libraries

[¥] Use a layout page:

[-]

(Leave empty if it is set in a Razor _viewstart file)

[Md},\}_J

Figure 3-36. The Add View window with the configuration to create
a list of items

Cancel ‘

6. Once you compile and run the application, just type
in the URL generated for the Student controller
(/Student) and you will see something like Figure 3-37.

List of Students
Create New
FirstName LastName BirthDate Addressi Address2 City State PostalCode PhoneNumber

@ 2017 - My ASP NET Application

Figure 3-37. Page showing the list of students with the default
scaffold page

106

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

7. The rest of the actions in the controller must also be
adjusted to be asynchronous. As you did before, the
modifications are as follows:

a. ActionResult becomes Task<ActionResult>.
b. The async modifier is added.
c. The method is renamed to end with Async.

d. An annotation is added so the action name is
not the same as the action method.

8. The code for the Details() action is similar to the
one in Listing 3-13. The difference is that instead of
returning a list of students it will return a single one.
The id parameter also needs to be adjusted so it is a
string. The resulting code is in Listing 3-14.

Listing 3-14. Action to Read a Single Student Document

[ActionName("Details")]

public async Task<ActionResult> DetailsAsync(string id)

{
var student = await Repository<Student>.GetStudentAsync(id);
return View(student);

9. Now, similarly to what you did before, let’s add the
view for this action. Right-click in any part of the
action and select Add View. In the Add View window
type the name of the view as Details, the template
should be Details, and the Model class will be again
Student. The window is shown in Figure 3-38.

107

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Add View X

View name: Details

Template: Details v
Model class: | Student (CosmosUniversity.Web.Models) v
Options:

[C] Create as a partial view
[] Reference script libraries
[¥] Use a layout page:

[-]

‘ Add!}J| Cancel ‘

Figure 3-38. Adding the view for the viewing the details of a Student
document

(Leave empty if it is set in a Razor _viewstart file)

10. You are now going to write the code to create
documents. You need two actions this time: one for
the empty form so the user can enter the information
of the new document, and one action that will receive
the information and store it in Azure Cosmos DB. You
will see those two actions in the controller; one is a
simple ActionResult method named Create() and
the other has an annotation that restricts its usage to
just respond to POST requests. Leave the first method
as is; you don’t need to change it to be asynchronous
because it will just serve the form to enter the
information, but the second one must be adjusted to
become async. In addition to the annotation to specify
the action name, add a new annotation to validate
the antiforgery token, as shown in Listing 3-15. The
antiforgery token is a value that is generated in the
server and is passed to the form in the view to be

108

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

rendered along with the rest of the fields for the user
to enter. This value is brought back with the user-typed
values and evaluated to prevent cross-site request
forgery attacks. You start the action by validating the
information, ensuring that everything is following the
security rules. If everything is right, then just call the
CreateStudentAsync() method from the repository.
If all goes well, it should take the user back to the list

of students. If there is an error, the form will stay open,
showing any errors to the user.

Listing 3-15. Actions to Create New Student Documents

// GET: Student/Create
public ActionResult Create()

{

return View();

}

// POST: Student/Create
[HttpPost]
[ActionName("Create")]
[ValidateAntiForgeryToken]

public async Task<ActionResult> CreateAsync(Student student)

{
if (!ModelState.IsValid)

return View(student);

try

{

await Repository<Student>.CreateStudentAsync(student);
return RedirectToAction("Index");

109

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

catch

{

return View(student);

11. Let’s now add the view for this action. Right-click
anywhere inside the Create() action and select Add
View. In the Add View window the name should be
Create, the template will be Create, and the Model
class will be again Student. Leave the rest of the fields
with their default values, as shown in Figure 3-39.
Then click the Add button.

Add View X

View name: Create

Template: Create v
Model class: | Student (CosmosUniversity.Web.Models) v
Options:

[C] Create as a partial view

[¥] Reference script libraries

[¥] Use a layout page:

[-]

(Leave empty if it is set in a Razor _viewstart file)

[Cancel ‘

Figure 3-39. Adding the view for the Create action

12. Compile and run the application. Now you have the
functionality to create new documents and view
the information in them. When you click the Create
New link in the students list page, the new form to

110

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

create students opens, as shown in Figure 3-40. Type
in some information to create your first document
and you will see something like Figure 3-41.

@) localhost

Create
Student

FirstName
LastName
BirthDate
Address1
Address2

City

State
PostalCode
PhoneNumber

Create

Figure 3-40. Form in the Create Student page

111

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

D | tecamestzsirsudent %| = £
List of Students
Creale New
FirstName LastName BirthDate Address1 Address? City State PostalCode PhoneNumber
John Smith 1111989 12:00:00 AM 123 Main St. Chicago (8 60601 1231231234 Ean | Detalls | Delete

Figure 3-41. List of students after creating one with your brand new
Create Student page

13. Ifyou click the Details link you should be able to
view the information for this particular document.
However, as shown in Figure 3-42, an error shows
up: PartitionKey value must be supplied for this
operation. What is happening here is that your
collection is partitioned by postal code and Azure
Cosmos DB requires the partition key to be able
to query the document. In this case, you need to
modify the view, controller, and data layer to pass
this information.

P N T e —
Server Error in '/' Application.

PartitionKey value must be supplied for this operation.
Description: An unhandied exceplion oocurred during the execution of the curent web request. Please review the s1ack trace for more information about the emror and where it enginated in the code.
Exception Details: System InvabdOperaticnException: PariBionkey vakse must be supplisd for this operation

Source Error:

Line 57: try

Line 58: {

Line 59: Document student = await client.ReadDocumentfAsync(documentlri);
Lire 60: return (T){dynamic)student;

Line 61:

Source File: C\Proge iversity oy es Line: 58

Figure 3-42. Error when trying to read a document from a
partitioned collection without the partition key

112

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

14. Listing 3-16 shows the adjustment needed for the
Details link in the Index view. Open the Index view
from the Solution Explorer in the Student folder
inside the Views folder. This adjustment will be
needed for all three links to edit, view details, and
delete documents because they all deal with a single
document.

Listing 3-16. Adjustments to the Index View to Pass the Partition
Key to Execute the Operations

<td>
@Html.ActionLink("Edit", "Edit",
new { id=item.Id, pk
@Html.ActionLink("Details", "Details",
new { id=item.Id, pk = item.PostalCode }) |
@Html.ActionLink("Delete", "Delete",
new { id=item.Id, pk = item.PostalCode })

item.PostalCode }) |

</td>

15. Now let’s modify the Details action in the controller
to receive this value in their signature. Listing 3-17
shows the modified action.

Listing 3-17. Adjustments in the Controller Actions to Receive the
Value of the Partition Key

[ActionName("Details")]
public async Task<ActionResult> DetailsAsync(string id, int pk)

{
var student = await Repository<Student>.GetStudentAsync(id, pk);
return View(student);

113

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

16. Finally, the data layer class should be adjusted
to use the partition key. Listing 3-18 shows
the adjustment. The new parameter is added
to the method and it is used to create a new
RequestOptions object.

Listing 3-18. Adjusted Data Layer Method to Query the Database
for a Particular Document

public static async Task<T> GetStudentAsync
(string id, int partitionKey)

{
if (string.IsNullOrEmpty(id))
throw new ApplicationException("No student id specified");
Uri documentUri = UriFactory.CreateDocumentUri
(_dbName, _collectionName, id);
try
{
RequestOptions requestOptions = new RequestOptions {
PartitionKey = new PartitionKey(partitionKey)
}5
Document student = await client.ReadDocumentAsync
(documentUri, requestOptions);
return (T)(dynamic)student;
}
catch (DocumentClientException ex)
{
if (ex.StatusCode == System.Net.HttpStatusCode.NotFound)
return null;
throw;
}
}

114

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

17. Now, after compiling and running the application,
you should see a successful result, as shown in
Figure 3-43.

O localhost:

Details
Student

FirstName John

LastName Smith

BirthDate 1/1/1989 12:00:00 AM
Address1 123 Main St.

Address2
City Chicago
state IL

PostalCode 60601
PhoneNumber 123-123-1234

Edit | Back to List

Figure 3-43. Successful query for a single document using a
partitioned collection

115

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

18. Now you are going to add the code for editing a
document. In Listing 3-16 you adjusted the link to
open the Edit page. You need to adjust the action
in the controller to receive the postal code and pass
it to the data layer. The code in Listing 3-19 shows
both Edit methods. The first EditAsync() method
reads the document from the database and opens
the page with a form ready to edit the values of the
document. The second method only accepts POST
requests, similarly to the CreateAsync() method in
Listing 3-15. The method also validates the model,
and if everything looks correct, then it calls the data
layer using the ReplaceStudentAsync() method.

Listing 3-19. Edit Actions Used to Edit Student Documents

// GET: Student/Edit/5

[ActionName("Edit")]

public async Task<ActionResult> EditAsync(string id, int pk)

{
var student = await Repository<Student>.GetStudentAsync(id, pk);
return View(student);

}
// POST: Student/Edit/5
[HttpPost]

[ActionName("Edit")]
[ValidateAntiForgeryToken]
public async Task<ActionResult> EditAsync(string id, Student student)

116

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

if (!'ModelState.IsValid)
return View(student);

try

{
await Repository<Student>.ReplaceStudentAsync(student, id);
return RedirectToAction("Index");

}

catch

{
return View();

}

Note in this case that the partition key was not needed
for the actual replace operation; it was needed only to
read the document to display the form.

19. Let’s now add the view for the Edit action. Right-click
anywhere inside the Edit() action and select Add
View. In the Add View window the name should be
Edit, the template will be Edit, and the Model class
will be again Student. Leave the rest of the fields
with their default values, as shown in Figure 3-44.
Then click the Add button.

117

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Add View X

View name: Edit

Template: Edit v
Model class: Student (CosmosUniversity.Web.Models) v
Options:

[C] Create as a partial view
[] Reference script libraries
[¥] Use a layout page:

[-]

(Leave empty if it is set in a Razor _viewstart file)

Figure 3-44. The Add View window for the Edit() action

20. Now for the final operation. You are going to add
the functionality to delete documents. For this you
are going to adjust the two Delete() actions in the
controller. First, you'll make them asynchronous, as
described before. The first action will only render
the document, similar to the Details() action.

It will also show a button to perform the actual
deletion. The second action will accept only POST
requests and will call DeleteStudentAsync() in the
data layer. Listing 3-20 shows the complete code.

Listing 3-20. Action Methods to Delete Student Documents

// GET: Student/Delete/5
[ActionName("Delete")]
public async Task<ActionResult> Delete(string id, int pk)

118

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

var student = await Repository<Student>.GetStudentAsync(id, pk);
return View(student);

}

// POST: Student/Delete/5
[HttpPost]
[ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<ActionResult> DeleteAsync
(string id, int pk, Student student)

{
try
{
await Repository<Student>.DeleteStudentAsync(id, pk);
return RedirectToAction("Index");
}
catch
{
return View(student);
}
}

21. In Listing 3-21 you can see the modified code for the
DeleteStudentAsync() method in the data layer. It
now handles the partition key that needs to be sent
in the RequestOptions object.

119

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Listing 3-21. Modified DeleteStudentAsync() Method That Includes
the Partition Key

public static async Task<Document> DeleteStudentAsync
(string id, int partitionKey)

{
if (string.IsNullOrEmpty(id))
throw new ApplicationException("No student id specified");
RequestOptions requestOptions = new RequestOptions
{
PartitionKey = new PartitionKey(partitionKey)
};
Uri documentUri = UriFactory.CreateDocumentUri
(_dbName, collectionName, id);
return await client.DeleteDocumentAsync
(documentUri, requestOptions);
}

22. Let’s now add the view for the Delete action.
Right-click anywhere inside the Delete() action
and select Add View. In the Add View window
the name should be Delete, the template will be
Delete, and the Model class will be again Student.
Leave the rest of the fields with their default
values, as shown in Figure 3-45. Then click the
Add button.

120

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

Add View X
View name: Delete
Template: Delete v
Model class: | Student (CosmosUniversity.Web.Models) v
Options:

[T] Create as a partial view
[] Reference script libraries
[¥] Use a layout page:

[-]

(Leave empty if it is set in a Razor _viewstart file)

’ Cancel ‘

Figure 3-45. The Add View window for the Delete() action method

When you click the Delete link now, you will see a new page opening
up to show the details of the document being deleted and to ask for your
confirmation to delete the document (see Figure 3-46). Also note in the
URL of the delete page that the id of the document is being passed along
with the partition key.

121

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

B3 Delete - My ASPNETA; X

> O & localhost:36171/Student/Delete/d043114d-d904-4b2c-8alc-e6b9a3aSelPe?pk=60657 hxe =
Delete
Are you sure you want to delete this?
Student
FirstName Ajay
LastName Finar
BirthDate 12/11/1980 3:24:16 AM
Address1 40553 Tony Drive
Address2
City Chicago
State lliinois
PostaiCode 60657
Ph 1-(312)331-3140

Delete || Back to List

Figure 3-46. Deleting a document (default scaffold page)

You now have a full ASP.NET web application that can manipulate
documents in an Azure Cosmos DB database with a partitioned collection
using the DocumentDB .NET SDK.

Summary

In this chapter, you examined some of the fundamental aspects of working
with an Azure Cosmos DB database. You learned how to create a database
and collection using the Azure Cosmos DB Emulator. You also learned
how to add a partition key to the collection and configure it based on

the requirements for your application. Then you examined the basics of
creating a document and manipulating documents in the emulator.

122

CHAPTER 3 WORKING WITH AN AZURE COSMOS DB DATABASE

The final part of the chapter was devoted to creating a simple ASP.NET
web application that implements the DocumentDB .NET SDK to manage
documents. You learned the requirements for the web application, such as
the necessary packages that need to be downloaded from NuGet Package
Manager. You also learned how to create a simple data layer that contains
the all the necessary code to interact with an Azure Cosmos DB database,
collection, and documents using the DocumentDB .NET SDK.

Along the way you also saw the potential problems when dealing with
asynchronous methods and how to resolve them, as well as problems
when using partitioned collections.

In the next chapter, you will work with processes and tools to import
and export data to and from Azure Cosmos DB.

123

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4

Importing Data into
an Azure Cosmos DB
Database

One of the most important aspects for any individual or company with
an existing application that wants to use Azure Cosmos DB is how to
move their existing data to Azure so they don’t lose anything. To solve this
problem, there are different options in Azure Cosmos DB depending on
the source of the data.

In this chapter, you will examine one of the tools to import and export
data to and from Azure Cosmos DB. This tool is free, open source, and can
be downloaded and used without restrictions.

Introducing the DocumentDB Data
Migration Tool

The DocumentDB Data Migration Tool (DMT) is used to migrate (import)
data from different sources into an Azure Cosmos DB database that
implements the DocumentDB API. The sources of data can include

(but are not limited to) the following:

© José Rolando Guay Paz 2018 125
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_4

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

e JSON files

¢ SQL Server

o (CSVfiles

e Azure Table storage

e Azure Cosmos DB collections
¢ Amazon DynamoDB

e HBase

e MongoDB

The DMT can be obtained in two forms. You can download the most
recent version of the executable from Microsoft at http://bit.1ly/cosmos-
db-ddbdmt-download or you can get the source code, which is open source
and hosted on GitHub at http://bit.ly/cosmos-db-ddbdmt-source.

Tip If you are a developer, the availability of the DMT’s source
code gives you a great opportunity to not just look at the internals
of the tool but to help make it better by fixing bugs and providing
improvements. | encourage you to get involved in open source
projects, especially this one.

Software Requirements

The DMT is supported in the following operating systems:
¢ Windows 10
e Windows 7 Service Pack 1

¢ Windows 8

126

vww . allitebooks.con

http://bit.ly/cosmos-db-ddbdmt-download
http://bit.ly/cosmos-db-ddbdmt-download
http://bit.ly/cosmos-db-ddbdmt-source
http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

Windows 8.1

Windows Server 2008 R2 SP1
Windows Server 2008 Service Pack 2
Windows Server 2012

Windows Server 2012 R2

Windows Vista Service Pack 2

To run or build the DMT, ensure you have .NET Framework 4.5.1 or

higher installed.

Features of the DocumentDB Data Migration Tool

While the DMT is a simple tool, it includes a number of features that are

important for importing data. The following list includes some of these

features:

Multiple interfaces: You can use the DMT in two ways:
the graphical user interface (GUI) or the command
line interface (CLI). Both versions of the program are
included in the download package and source code.

Multiple sources: The DMT supports reading data

from multiple files sources such as JSON and CSV files,
other NoSQL databases such as MongoDB and Amazon
DynamoDB, and relational databases such as SQL Server.

CLI command from GUI: The GUI exposes an option
to generate the equivalent CLI command used for
the import operation. This is particularly useful to
automate import processes and the CLI command is
unknown.

127

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

e Available source code: The source code of the tool is
available from GitHub at http://bit.ly/cosmos-db-
ddbdmt-source.

e Bulk and sequential imports: In addition to sequential
imports, you can perform bulk imports using an Azure
Cosmos DB stored procedure.

Installing the DocumentDB Data Migration Tool

The installation of the DMT is very simple. The following steps will guide
you through the process of obtaining the latest version of the executable:

1. To obtain the latest version of the DMT’s executable,
open your browser and go to http://bit.ly/cosmos-db-
ddbdmt-download. Figure 4-1 shows the download page.

[& B® Download Azure Docun X+ - o b4

&~ - 0O |E| microsoft.com/en-us/download/details.aspx?id=4643€ g

I
fa
D

Azure DocumentDB Data Migration Tool

Azure DocumentDB Data Migration Tool enables movement of data from various
data sources into DocumentDB

® Details

@ System Requirements

® Install Instructions

Figure 4-1. Download page for the DocumentDB Data Migration Tool

128

vww . allitebooks.con

http://bit.ly/cosmos-db-ddbdmt-source
http://bit.ly/cosmos-db-ddbdmt-source
http://bit.ly/cosmos-db-ddbdmt-download
http://bit.ly/cosmos-db-ddbdmt-download
http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

2. On the download page, click the orange Download
button. This action will open the download options
shown in Figure 4-2. The two options are a Microsoft
Word document with information about how to use
the tool and a zip file with the tool files. Check both
options and then click the Next button.

B + B Download Azure Docun X | 4+ = [m] » |
« = 0O | & microsoft.com/en-us/download/details.aspxtid=46436 T = 1 =
Choose the download you want
@ File Name Size

Download Summary:
DocumentDB Data Migration Tool v1.7.docx 926 K8
1. DocumentDB Data Migration
Tool v1.7.docx
dt-1.7.zip 8.7 M8 2. dt-1.7.zip

Total Size: 9.6 MB

Figure 4-2. Download options for the DocumentDB Data Migration
Tool

129

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

3. Depending on your browser and configuration, you

will be prompted to open or save the files. In my

case, it shows the options in Figure 4-3. Click Save

to keep a copy of the files. If prompted, select the

folder where you want to save the files.

What do you want to do with

dt-1.7.zip (8.7 MB)?

Open

From: download.microsoft.com

Figure 4-3. Browser options to download the DocumentDB Data
Migration Tool files

4. In Windows Explorer, navigate to the folder where

the zip file was downloaded. Extract its contents to

C:\DMT, as shown in Figure 4-4.

(=] = | DMT
Home Share

View
* | u cb Cut «Moveto = I Delete =
4 = Copy path
ick Copy P 2 Jto~ | &P Ren
Pinat‘;erq:lck op; aste [£] Paste shorteut 5l Copy to [name
Clipboard Organize
& L. » ThisPC » OS(C) » DMT
Desktop ™ MName o
Ly [DocumentDB.Spatial.Sql.dl
inetpub 5] dt.exe
Intel i dt.exe.config
Logs [dtpdb
OneDriveTes [dtaml
| PerfLogs 0 dieee
i o i3 ditui.exe.config
v [dtuipdb
Program Fils |—n dtuisml
ProgramDat i EULARTE
Projects [Microsoft.Azure.Documents.Client.dll
SQLData [Z1 Micreseft.Azure.Documents.Client. Transi...
SymCache E Microsoft.Azure.Docurments.Client. Transi...
= ¥ [] Microsoft.Azure.Documents.Clientxml
149 items

LTl [} i4 Open -
)
1l- { Edit

Mew Properties .
folder - &) History
New Open

[Date modified

9/26/2016 5:36 PM
9/29/2016 T:11 PM
9/29/2016 7:08 PM
9/29/2016 T:09 PM
9/29/2016 T:09 PM
9/29/2016 11 PM
9/29/2016 T:08 PM
9/29/2016 T:09 PM
9/29/2016 T:09 PM
9/29/2016 T:08 PM
9/26/2016 5:36 PM
9/29/2016 6:01 PM
9/29/2016 £:01 PM
9/26/2016 5:36 PM

v & | Search DMT

Type

Application extens...

Application

XML Configuratio...
Program Debug D...

XML Document

Application

AML Configuratio...
Program Debug D...

XML Document
Rich Text Format

Application extens...
Application extens...

XML Document
XML Document

= [m]

HH setect an

50 Select none

X

:F Invert selection

Select

Size

822 KB
4TKB
4KB
GOKE
TKB
119 KB
6KB
292 KB
11KB
62 KB
1,043 KB
85KB
176 KB
1.134 KB

Figure 4-4. Contents of the zip file in the C:\DMT folder

130

vww . allitebooks.con

2

http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

5. Double-click the dtui.exe file to test the tool. You
should see the window shown in Figure 4-5.

] DocumentDB Data Migration Tool - o *

Welcome

DocumentDB Data Migration Tool
Source Information @

Target Infarmation @ Use the DocumentDE data mig ratlon tool to impo_rt data_in DocumentDEB from a variety of sources. The
tool can not anly help scope certain source data via queries (e.g. SQL Server, MongoDB), but can also
Advanced transform tabular data (e.g. CSV file, SOL Server) into hierarchical structures.

S
ummary For help using the tool, please see the online documentation located here.
Results

Feel free to suggest and vote for new features by posting here.

Figure 4-5. DocumentDB Data Migration Tool graphical
interface

If you see the same window as in Figure 4-5 then you have successfully
downloaded and installed the DocumentDB Data Migration Tool.

131

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

Installing the DocumentDB Data Migration Tool
from the Source Code
As mentioned before the DMT is open source and you can download it

from GitHub. Let’s now download the source code and build the DMT so
you have a working version that you can modify and improve.

Note The following steps assume you have Git installed and have
at least basic knowledge of how it works and/or have used it in the
past. Learning Git is beyond the scope of this book but there are very
good books about the topic at www.apress.com such as Pro Git
(second edition) from Scott Chacon and Bend Straub (www.apress.
com/us/book/9781484200773).

The following steps will guide you through this process:

1. Open a command prompt window. Click the Start
button or search for command prompt, as shown in
Figure 4-6.

132

vww . allitebooks.con

http://www.apress.com/
http://www.apress.com/us/book/9781484200773
http://www.apress.com/us/book/9781484200773
http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

0O @ Filters ~v/

Best match

Command Prompt
Desktop app

Apps »
B Developer Command Prompt for VS 2017
B Microsoft Azure Command Prompt - v2.9
B Developer Command Prompt for V52015
B MSBuild Command Prompt for V52015
Store »

S Command prompt tricks

Search suggestions »

L2 command prompt - See web results

=='¢ £ command prompt]

Figure 4-6. Searching for the Command Prompt desktop app

133

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

2. Click the Command Prompt desktop app icon. This
will open a window similar to the one shown in
Figure 4-7.

E¥ Command Prompt o

Microsoft Windows [Version 10.8.15063]
(c) 2017 Microsoft Corporation. All rights reserved.

C:\Users\jrgua>,

Figure 4-7. Command Prompt desktop app

3. When you created the sample application in
Chapter 3, you had a Projects folder where the
application’s files were created. Let’s change to the
C:\Projects folder. You will store the DMT source
code in this folder. Use the following command:

C:\>cd C:\Projects

4. Open your browser and type the URL of the DMT
source code in GitHub (http://bit.ly/cosmos-
db-ddbdmt-source). When the page opens, click the
green button to the right of the page that says “Clone
or download,” as shown in Figure 4-8. This will open
a small window with the two options to clone the
repository. One is with HTTPS and the second is
with SSH. Let’s use the HTTPS URL for now as it is

simpler.

134

vww . allitebooks.con

http://bit.ly/cosmos-db-ddbdmt-source
http://bit.ly/cosmos-db-ddbdmt-source
http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

B GitHub, Inc. [US] github.com/Azure/azure-documentdb-datamigrationt h*d

Azure DocumentDE Data Migration Tool

@) 14 commits U 1 branch © 7 releases 131 contributor o MIT
b e | e o ...
X nahk-ivanov Fix Document 8 Transient Fault Handling library references Clone with HTTPS &

Use Git or checkout with SV using the web URL.

i nuget Release 1.7

httes://github. con/Azure/azure- documentab- | [}
i AzureTable Release 1.7
i Console Ralease 1.7 Open in Desktop Dewnload ZIP
i Core Releass 1.7 11 months ago
i CovFile Raleass 1.7 11 months aao

Figure 4-8. Obtaining the repository URL to clone the source code

5. Click the button to the right of the URL to copy
the address to the clipboard. This is illustrated in
Figure 4-9. You will need this URL to clone the
repository and download the files.

Clone with HTTPS ® Use SSH
Use Git or checkout with SVN using the web URL.

Copy to clipboard
Open in Desktop Download ZIP

Figure 4-9. Copying the repository URL to the clipboard

135

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

6. Now go back to the command prompt app and type
the command in Listing 4-1. Then press the Enter
key. The command will connect to GitHub and
download the necessary files from the repository so
you can work with it from Visual Studio. It will create
a new folder to store the files with the name azure-
documentdb-datamigrationtool in your Projects
folder. You should see something like what is shown
in Figure 4-10.

Listing 4-1. Cloning the DMT from GitHub

C:\Projects>git clone https://github.com/Azure/azure-
documentdb-datamigrationtool.git

B¥ Command Prompt = [m]

Microsoft Windows [Version 18.8.15863]
(c) 2017 Microsoft Corporation. All rights reserved.

C:\Users\jrgua>cd C:\Projects

C:\Projects»git clone https://github.com/Azure/azure-documentdb-datamigrationtocl.git
Cloning into '"azure-documentdb-datamigrationtool’...

remote: Counting objects: 2981, done.

remote: Total 29@1 (delta @), reused @ (delta @), pack-reused 2901

Receiving objects: 1% (2901/2901), 815.37 KiB | @ bytes/s, done.

Resolving deltas: 10@% (1877/1877), done.

Checking connectivity... done.

C:\Projects>,

Figure 4-10. Cloning the DMT repository from GitHub

136

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

7. Open Visual Studio, as shown in Figure 4-11. Click
the Start button and scroll to the bottom of the
programs to find Visual Studio 2017.

B Visual studio 2017

Visual Studio 2017
Visual Studio Installer
VMware

Voice Recorder

L Type here to search
Figure 4-11. Opening Visual Studio 2017

8. From Visual Studio, open the DMT solution from
the new folder created in step 6. This is shown in
Figure 4-12. Note the many folders and files that
were downloaded.

137

CHAPTER 4

3_] Start Page - Microscft Visual Studio

IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

File Edit \View Project Debug Team Tools Test Analyze Window Help
P a 'l > Open Project >
o < 3 3
Y « L « Projects » d db ~ & | Searcharure-documentdb-da... ©
a
Organize = Mewfolder Ez~ A @
azure-docum ® Name - Diate modified Type Size
4R git /2972017 TS8PM Filefalder
-nuget nuget 8/29/2017T:58 PM File folder
AzureTable AzureTable B/29/2017 T:38 PM File folder
Console Console 82972017 T:58 PM File folder
Core Core 8/ TT:58PM Filefolder
i 2 se fol
CavFile CevFile & SEPM Filefolder
i 2 DecumentDb 8/29/20017 T:38 PM File folder
o | DynamoDb 822017 T:58PM Filefolder
DynamoDé HBase Y2NTTSEPM Filefolder
HBase JsonFile 22017 TSEPM Filefolder
JsonFile Mi ft.DataT [Tests 8/28/2017 T:58 PM File folder
Microsoft.D MongeDb B/29/201TT:58 PM File folder
MongaDb RavenDb f2NTT-58PM Filefolder
b Shared 58 PM File folder
Solution ltems 282007 T:56PM File folder
Shcei] Sql SEPM File folder
Selution ite: TestSettings Y292NTTSEPM Filefolder
Sal Wef B/29/2017 T:58PM File folder
T M8 DataTransfersl D} 8/29/2017 T:58 PM Visual Studio Solu... 35KB
Wpf v < : >

File name: | DataTransfer.sin

|
Frearlist Chrtor

| All Project Files (*.sin;*.dsw;*ve v

VI

Cancel

ste

Figure 4-12. Opening the DMT source code in Visual Studio

138

9. When the solution opens, you will see many projects

inside folders in the Solution Explorer window, as

shown in Figure 4-13. The solution might take a

while to open.

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

4
4=
X

Solution Explorer
AE- o-5CaB £
Search Solution Explorer (Ctrl+;) o)

afg] Solution 'DataTransfer' (50 projects) ~
4 .nuget
AzureTable
Console
| Core
CsvFile
DocumentDb
DynamoDb
HBase
JsonFile
MongoDb
! RavenDb
Shared
Solution Items
o Sql
| TestSettings
| Wpf
Microsoft.DataTransfer.WpfHost
a[c#] Microsoft.DataTransfer.WpfHost.Basics
a[c#] Microsoft.DataTransfer.WpfHost.Extensibility
a[c®] Microsoft.DataTransfer.WpfHost.Extensibility.B

ARl AMicenraft NabaTenmrfnr WWnbldart Canimahdadal

4 >

-

b
b
b
b
b
b
4
4
4
4
b
4
b
b
4

7 v Vv Va4

Figure 4-13. Many projects

10. Asshown in Figure 4-13, open the Wpf folder and
select the Microsoft.DataTransfer.WpfHost
project and press F5 to compile the solution and run
the project. If all goes well, Visual Studio will have
downloaded all the necessary packages from NuGet,
compiled the projects, and built the solution. The
graphical interface application should be running.

139

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

From this code, you can troubleshoot any issues and
create pull requests with new features or bug fixes
you provide.

Importing Data with the DocumentDB Data
Migration Tool GUI

With the DMT up and running, let’s now use the graphical interface to
import some data. There are several sources that are available depending
on your existing application. I'll focus on three sources that represent very
common scenarios: JSON files, SQL Server, and MongoDB.

Importing JSON Files

Importing data from JSON files is a very common scenario. Many systems,
including NoSQL databases, have an export or backup functionality that
generates JSON files. You can take those files and import them into an
Azure Cosmos DB database using the DMT.

An extract of a sample file is shown in Listing 4-2. This file contains
1,000 documents with the same format as shown in Chapter 3. Note that
the data in the file is fictitious and was generated from a data mocking tool.
You can find this file in the source code included with the book.

Listing 4-2. Extract of a JSON File

[{"firstName":"Ronda","lastName":"Beecheno","birthDate":"1998-
02-05T14:21:487","address1":"57401 Moland Drive","address2":null,
"city":"Harrisburg","state":"Pennsylvania","postalCode":17121,"
phoneNumber":"1-(717)760-6156"},
{"firstName":"Ingelbert","lastName":"Coverdill"”,

"birthDate":"1988-08-08T11:47:01Z","address1":"09 Lake View

140

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

Drive","address2":null,"city":"Fort Myers","state":
"postalCode":33994, "phoneNumber":"1-(239)671-2746"},
{"firstName":"Portia","lastName":"Tuckley","birthDate":
"1991-03-20T06:52:59Z","address1":"081 Coolidge Alley",
"address2":null,"city":"Canton","state":"0Ohio",
"postalCode":44720, "phoneNumber":"1-(234)384-0389"},

Florida",

Follow the next steps that showcase the usage of the DMT to import a
JSON file:

1. Earlier in the chapter you created a folder named
DMT in the C: drive in which to save the downloaded
zip file that contains the executable version of the
DMT. Open the DMT from C:\DMT\dtui.exe. This is
shown in Figure 4-14.

> ThisPC » OS(C:) » DMT

~

de] AWSSDK.DynamoDBv2.dll [4] Mic
es |] AWSSDK.DynamoDBv2xml [<] Mic
fr [B]Bulkinsert js [] Mic
it BIBulkTransformationinsert.js [] Mic
j2 | DocumentDB.Spatial.Sql.dll [&] Mic
ko (¥ dt.exe 4] Mic
ru i) dt.exe.config [] Mic
SqlServerTypes | dt.pdb [4] Mic
zh-Hans | dtxml [] Mic
zh-Hant |] dtui.exe [4] Mic
< Autofac.dll _;_-;.dtui.ae..%.fig [] Mic
] Autofacxml ' dtui.pdb [] Mic
(2] AWSSDK.Core.dll [] dtuixml [Mic
|] AWSSDK.Corexml (f: EULA.RTF [4] Mic

Figure 4-14. Running the DMT graphic interface by launching dtui.exe

141

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

2. When you open the DMT graphic interface, you will
see it is a wizard type program. The first step in the
wizard is the Welcome step. In this step, you will see
a brief explanation of the tool and some links to get
more information about it. Click the Next button.

3. You are now in the Source Information step. Here is
where you define the source of the data you want
to import. From the Import from drop-down, select
JSON file(s). Note in Figure 4-15 that you have four
options to provide the DMT with a JSON file source.
You can add a single file, a folder (with an extra
option to recursively look in inside folders for more
files), a URL, and a BLOB from Azure. An interesting
feature of the DMT is that you can add multiple files,
folders, URLs, or BLOBs and they will be processed
by the tool.

142

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

] DocumentDB Data Migration Tool = o *

Source Information

Welcome = 2 -
Specify source information
Source Information @
Target Information @ Import from:
Advanced | SON fle(s &
Summary | Add Fites || Add Folder ~ || Add URL(s) | [Add BLOBIs) | | Remove |
Results

[Decompress data @

Figure 4-15. Selecting the source file for the DMT

4. For now, select a JSON file from the folder where
it’s stored. It will look something similar to what is
shown in Figure 4-16. You can use the sample file in
Listing 4-2 from the book’s source code or get your
own file. Then click the Next button.

143

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

Specify source information

Import from:
JSON file(s)

| Add Files || Add Folder + || Add URLIs) | | Add BLOB(s) | | Remove |

A\l Mock Data\MOCK_DATA json
Figure 4-16. Select to add a JSON file

5. Ifyour file was compressed, there is a checkbox
(shown in Figure 4-15) at the bottom of the
wizard that you can use to tell the DMT to
decompress it. The tool will use GZip to perform the
decompression.

6. You are now in the Target Information step. Here,
you will select DocumentDB - Sequential record
import (partitioned collection) from the Export to
drop-down, as shown in Figure 4-17.

Specify target information

Export to:
DocumentDB - Sequential record import (partitioned collection)

DocumentDEB - Sequential record import (partitioned collection) .

DocumentDB - Bulk import (single partition collections)
JSON file

Figure 4-17. Selecting the destination for the data

144

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

7. Then type the connection string. The connection
string consists of three pieces of information that
are separated by colons. They are the account
endpoint, account key, and database. The
keywords and values used for the connection
string are shown in Listing 4-3. Once you enter the
connection string, you can use the Verify button to
ensure the DMT can connect to your database.

Listing 4-3. Connection String for the Azure Cosmos DB Emulator

AccountEndpoint=https://localhost:8081/

AccountKey=
C2y6yDjf5/R+obON8A7Cgv30VRDIIWEHLM+40QDU5DE2nQ9nDuUVTqobD4b8mGGyP
MbIZnqyMsEcaGQy67XIw/Iw==

Database=cosmosuniversity

The full connection string now looks like
AccountEndpoint=https://localhost:8081/;AccountKey=
C2y6yDjf5/R+0obON8A7Cgv30VRDIIWEHLM+4QDUSDE2nQ9nDuVTqobD4b8mGGyP
MbIZnqyMsEcaGQy67XIw/Jw==;Database=cosmosuniversity

8. The next step is to enter the name of the collection
where the documents should be stored. In this
example, type Student.

9. Then type the key in the collection that is used as the
partition key. This box is not mandatory, but since
your collection does have a partition key you need
to type /postalCode.

10. The next field determines the throughput you want
for the collection. If the collection doesn’t previously
exist, it will be created and this value will be used for
the throughput. If it does exist, it will be ignored.

145

CHAPTER 4

11. Finally, the last field is used to know the id field

IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

in the documents. In the case of the sample JSON

file, there is no id field, so you can leave the file
blank. If you do have one in your file, then you

need to specify it here to avoid Azure Cosmos DB

autogenerating ids for your documents.

12. At this point, the wizard step should look like

Figure 4-18. Click the Next button.

] DocumentDB Data Migration Tool

Target Information

Welcome

Source Informaticn
Target Information
Advanced
Summary

Results

Specify target information

Export to:

l DocumentDE - Sequential record import (partitioned collection)

Connection String €
|AccountEndpoint=httpsy//localhest:8081/:A

tKey= C2y6yDjfS/R~obONBATCv30VRDJIWE | Verify |

Collection
[Student

]

Partition Key ©

|/pestalCode
Collection Throughput @

]

1000

Id Field

@ Advanced Options

Figure 4-18. Fields necessary to connect to the Azure Cosmos DB
database and collection

146

vww . allitebooks.con

http://www.allitebooks.org

13.

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

There is a set of advanced options shown in

Figure 4-19. The Number of Parallel Requests
indicates how many documents will be imported
simultaneously; the default is 10. While there is no
limit to this number, you need to pay attention to
your provisioned throughput because if you hit the
limit, some documents can fail. Disable Automatic
Id Generation instructs the tool explicitly to not
generate ids for the documents you are importing.
This works in conjunction with the id field explained
earlier because you would need to define the id
field and any document that doesn’t have such id
won’t be imported. Update Existing Documents will
look to see if the document being imported already
exists based on its id; if so, the document gets
replaced. Persists Date and Time as is a setting that
indicates if date and time fields should be treated as
strings, epoch (Unix time), or both. Indexing policy
determines how indexes should be managed; the
default is blank, which will use the default setting
in the Azure Cosmos DB database indexing policy.
You can type the policy settings or you can use a file
with the settings. The Number of Retries on Failure
indicates how many times the DMT will retry to
import the documents. Connection Mode determines
how to connect to the database. DirectTcp is the
default but you can use DirectHttps or Gateway
depending on the network rules. In this example,
leave all these options with their default values.

147

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

Number of Parallel Requests
10

[[] Disable Automatic Id Generation @
[[] Update Existing Documents @
Persist Date and Time as

String

(®) Enter Indexing Policy () Select Policy File

Number of Retries on Failure
30

Retry Interval
00:00:01
Connection Mode €

DirectTecp

Figure 4-19. DocumentDB Data Migration Tool advanced options

14. Next, in the Advanced step, you have the option
to specify a file for logging all of the information
generated by the DMT, the level of logging, and the
interval at which the log should be saved. Figure 4-20
shows some settings I use when importing data.
Normally I like to save a log and get as much
information as possible, so I recommend selecting
“All” for error information and the interval of 1
second. Note that for large imports these settings
might be overwhelming. Now click the Next button.

148

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4

Advanced configuration

IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

Error Log File ©

| C:\Temp\sonFileLog.txt

Detailed Error Information

Al

Progress Update Interval €

[00:00:01

Figure 4-20. Advanced configuration

15. The final step is the Summary of what the DMT will
do. Here is your last chance to review your selections
and go back to adjust anything that is needed. This is
shown in Figure 4-21.

ﬂ DocumentDB Data Migraticn Tool

Wel . :
come Confirm import settings
Source Informaticn
Target Information Source (JSON file(s)) A
Advanced
nee Files: Ci\Users\jrqua\OneDrive\Azure Cosmos DB Revealed\Mock Data
Summary MOCK_DATA json
Results Decompress data: No
Target (DocumentDB - Sequential record import (partitioned collection))
Connection String: A tEndpoil flocalhost:2081/Acc Ki

X/ Iw==:Datab: i
Collection: Student

Partition Key: fpostalCode

Collection Throughput: 1000

Id Field:

C2y6yDjf5/R+obONBATCgy3OVRDIWEHLM
+4QDUSDE2nQInDuVTgobD4b8mGGyPMbIZngyMsEcaGQy67

Number of Parallel Requests: 10
Disable Automatic Id Generation: No

lIndate Fxictinn Documents: New

w

Figure 4-21.

Summary step of the DocumentDB Data Migration Tool

149

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

16. Note in Figure 4-21 that there is a button in the top
right corner named View Command (highlighted
in Figure 4-22). This button is very important. It will
display the command line interface parameters
needed based on your selections in the graphic
interface. When you click it, it will show you the
command parameters in a pop-up window, as
shown in Figure 4-23.

Confirm import settings % View Command

Figure 4-22. View Command button in the Summary step

Command Line Preview n

/ErrorLog:C:\Temp\JsonFileLog.txt /OverwriteErrorLog /ErrorDetails:All /s:JsonFile /s.Files:"C:\
\ \Mock Data\\MOCK_DATA json" /
t:DocumentDB /t.ConnectionString:"AccountEndpoint=https://localhost:8081/;AccountKey=
C2ybyDjf5/R+obON8ATCgv30VRDJIWEHLM
+4QDU5DE2nQINDuVTqobD4b8mGGyPMblZngyMsEcaGQy67XIw/
|Jw==;Database=cosmosuniversity” /t.Collection:Student /t.PartitionKey:/postalCode

[Copy] | Close |

Figure 4-23. Command line parameters based on the configuration
selected for the importGraphical user interface (GUI):JSON files:

17. After you click the Import button, the process will
start. If everything went well, it will show you a
result similar to Figure 4-24. You can see now in the
emulator that 1,000 new documents are showing up
in the student collection.

150

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

Import results

Elapsed time: 0:00:01.6
Transferred: 1000

Failed: 0
Failure Information Export ¥
Record Error l

Figure 4-24. New documents in the student collection

Importing from SQL Server

The process to import data from SQL Server is very similar to importing
from JSON files. The only difference is in the Source Information step. In
the following steps, you will learn the differences in importing data from
SQL Server to Azure Cosmos DB. Note that this option works perfectly well
for on-premises SQL Server or Azure SQL Database.

1. In the Source Information step, select SQL from the
Import from drop-down, as shown in Figure 4-25.

151

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

Specify source information

Import from:

saL

JSON file(s)

MongoDB

MongoDB export (mongoexport) JSON file(s)
sQL [}

CSV File(s)

Azure Table

DynamoDB

HBase

DocumentDB

Figure 4-25. Select SQL from the Import from drop-down to import
Jfrom SQL Server

2. 'The next field is the connection string. This
connection string is similar to any other SQL
Provider connection string used in .NET
applications for the SqlClient library. Itis a
collection of key-value pairs separated by colon.
Listing 4-4 shows two versions of a valid connection
string. The first one uses Windows Authentication
and the second one uses SQL Server Authentication.
The Data Source parameter indicates the server
where SQL Server is installed. It can be an IP
address or a domain name or the server name
and it can also have a port number. Initial Catalog
defines the name of the database to which you are
connecting. Integrated Security defines whether
Windows Authentication will be used or not. A value
of yes or SSPI will configure the connection with

152

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

Windows Authentication. User ID and Password
are used when SQL Server Authentication is used
for the credentials of the login. Persists Security
Info determines whether or not to return security-
sensitive information such as the password after
the connection is open. Setting this parameter to
false is strongly recommended. More information
about connection strings for SQL Server can be
found at http://bit.ly/connection-string. For
this sample application, use the connection string
format that you have available.

Listing 4-4. Connections Strings with Windows Authentication and
SQL Server Authentication

// Windows Authentication
Data Source=(local);Initial Catalog=CosmosUniversitySQL;
Integrated Security=SSPI;Persist Security Info=False

// SQL Server Authentication
Data Source=(local);Initial Catalog=CosmosUniversitySQL;
User ID=cosmos;Password=P@sswOrd;Persist Security Info=False

3. 'The last piece information that is required is the
query or file with the query to use to read the data
from SQL Server. For this example, let’s read all the
columns and records in the Student table, as shown
in Figure 4-26.

153

http://bit.ly/connection-string

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

®) Enter Query () Select Query File

SELECT *
FROM dbo.Student

Figure 4-26. Query to use to read the data that will be imported into
Azure Cosmos DB

4. Ifyour query will be used to manage complex
documents, you can use the additional field at the
bottom of the step screen named Nesting Separator.
This field is used to enter the delimiter to split
columns names into subdocuments.

5. At this point, everything is ready and you can
click the Next button. You can then follow the
instructions from the “Importing JSON Files”
section, starting on step 6 to complete the import
operation.

Importing from MongoDB

When importing documents from a MongoDB database, all the differences
in the DMT happen in the Source Information step. This is similar to when
importing from SQL Server. The following steps describe what is needed:

1. In the Source Information step, select MongoDB
from the Import from drop-down, as shown in
Figure 4-27.

154

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

Specify source information

Import from:
MongoDB
JSON file(s)
MongoDB
MongoDB export (mongoexport) JSON file(s)
sqQL

CSV File(s)
Azure Table
DynamoDB
HBase
DocumentDB

Figure 4-27. Select MongoDB from the Import from drop-down to
import documents from a MongoDB database

2. The nextfield is the connection string to connect
to your MongoDB database. The connection string
format is different than the one from SQL Server.
Listing 4-5 shows the format of the connection
string for a MongoDB database. You need to know
the username and password of a user with at least
read permissions for the database and collection.
Then you need the server and port for the database
as well as the name of the database.

Listing 4-5. MongoDB Connection String Format
mongodb://<dbuser>:<dbpassword>@<server>:<port>/<database>

3. Nextyou need to enter the collection you want to
read documents from.

155

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

4. The next field is the query or query file to be used
to read the documents you want to import. In
this case, the query would indicate the filters or
restrictions to apply to the collection, such as
{postalCode:{$gt:60000}}.

5. The final field is the projection, used to refine the
selection of properties in the document to import.

6. At this point, everything is ready and you can
click the Next button. You can then follow the
instructions from the “Importing JSON Files”
section, starting on step 6 to complete the import
operation.

Importing Data with the DocumentDB Data
Migration Tool Command Line Interface

Using the command line interface of the DMT is done by running the
program dt.exe and passing the necessary parameters.

As an example, see Listing 4-6, which runs the dt.exe program from
the C: \DMT folder you created earlier. This example uses the parameters
generated for the JSON files import in the “Importing JSON Files” section
that is shown in Figure 4-23.

156

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE
Listing 4-6. Command to Import Data with the CLI

C:\DMT\dt.exe /ErrorLog:C:\Temp\JsonFilelog.txt
/OverwriteErrorLog /ErrorDetails:All /s:JsonFile
/s.Files:"C:\\Mock Data\\MOCK_DATA.json" /t:DocumentDB
/t.ConnectionString: "AccountEndpoint=https://localhost:8081/;
AccountKey= C2y6yDjf5/R+0bON8A7Cgv30VRDIIWEHLM+4QDUSDE2nQ9NnDUVT
qobD4b8mGCGyPMbIZnqyMsEcaGQy67XIw/Iw==;Database=cosmosuniversity"
/t.Collection:student /t.PartitionKey:/postalCode

This functionality is particularly important to automate imports that
need to happen either on a schedule or as part of a DevOps strategy.

If you run this command, you will see the DMT working as shown in
Figure 4-28.

BE C\Windows\System 32\ emd.exe - [u] *

Microsoft Windows [Version 18.8.15863] -~
(c) 2017 Microsoft Corporaticn. All rights reserved.

IC:\DMT>dt .exe /ErrorLog:C:\Temp\JsonFileLog.txt /OverwriteErrorlog fErrorDetails:All /s:J)sonFile /s.Files:"C:\\
\\Mock Data‘\\MOCK_DATA.json" ft:DocumentDB ft.ConnectionString:“AccountEndpointah

[ctps://localhost:8@81/;AccountKey= C2yGyDjf5/R+obBNBATCEY3OVRDI IWEHLM+4QDUSDE 2nQonDuVTqobDabemGGyPMbI ZnqyMsECaGQyE7XIw/ 2

==;Database=cosmosuniversity™ ft.Collection:student2 /t.PartitionKey:/postalCode

[Transferred: 1leee

Failed: @

Time spent: B8:88:82.5774847

oo \om T
- v

Figure 4-28. Importing data with the CLI

Summary

In this chapter, you worked with the DocumentDB Data Migration Tool.

In the first part, you learned about the tool, its requirements, features, and
benefits. Then you saw how to obtain the tool from two different sources.
One was using the executable version that is ready to use, the second was
with the source code from GitHub. With the second approach, you have the
ability to learn how the tool is built and to contribute to its development.

157

CHAPTER 4 IMPORTING DATA INTO AN AZURE COSMOS DB DATABASE

In the second part of the chapter you learned how to import data into
an Azure Cosmos DB database, first from JSON files, then from SQL Server,
and lastly from a MongoDB database. The process is quite simple using
the GUI, which also provides a mechanism to generate the necessary
information to run the CLI. At the end of the chapter you saw how to use
the parameters generated from the GUI to automate the import process
with the CLI.

In the following chapter, you will examine indexing and querying in
more detail.

158

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5

Querying an Azure
Cosmos DB Database

An integral part of working with any database is the ability to query
the data in the database. Fortunately, this very important functionality
has been implemented in Azure Cosmos DB in a way that any previous
SQL experience is valid and will help you accomplish even the most
complex tasks.

A related topic to querying is indexing. Let’s review the indexing
policies in Azure Cosmos DB, how they work, and how they can be
modified to achieve better throughput.

Understanding Indexing

In Azure Cosmos DB, as opposed to relational database systems, every
document is indexed by default. That means that in any collection,
documents have indexes in all the properties in the document. This
normally works very well for the majority of applications; however, there
are times when a different indexing policy might achieve better results.

© José Rolando Guay Paz 2018 159
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_5

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Every collection in a database has a default index policy which is
defined by the following properties:

1. Theindex mode is consistent.
2. Documents are indexed automatically.
3. All properties are indexed.
Listing 5-1 shows the default index policy for a collection in a database

that implements the DocumentDB API.

Listing 5-1. Default Index Policy

{
"indexingMode": "consistent”,
"automatic": true,
"includedPaths": [
{
"path": "/*",
"indexes": [
{
"kind": "Range",
"dataType": "Number",
"precision": -1
})
{
"kind": "Range",
"dataType": "String",
"precision”: -1
})
160

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

{
"kind": "Spatial",
"dataType": "Point"
}
]
}
])
"excludedPaths": []

}

In the default index policy, you can see the properties described
before. The indexing mode is set to consistent, defined by the
indexingMode property. The documents are indexed automatically, which
is defined by the automatic property being set to true. The includedPaths
define which properties in the documents are indexed. By having a value
of /* in the path property and by having an empty excludedPaths list, the
policy states that all properties should be indexed.

Note The indexing policy can only be changed in the Azure portal.
This functionality is not available in the Azure Cosmos DB Emulator.

To find the index policy, just open the database in the Azure portal,
scroll down to Collection Settings, select the collection from the drop-down,
and click the Default index policy, as shown in Figure 5-1.

161

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

B Seavch (Cerl+ H x W Delete X
" [v Show Diff
& Locks 1
|NDEXING POUCY @ “indexingMode”: “consistent”,
EX Automation script Default > “automatic”: true,

“includedPaths™: [

COLLECTIONS { - ., =
TIMETO LVE® path™: °f [,
2 Browse . “indexes™:
On On (no default) Off
[or p
F Scale “kind": "Range",
“dataType™: "Number~,
LF Settings “precision”: -1
I8
A Document Explorer {
:) "kind": "Range”,
B Query Explorer “dataType": "String",
“precision™: -1
A Script Explorer ' #
{
MONITORING “kind": "spatial”,
“dataType”: "Point™
fifl Metrics }
. . .

Figure 5-1. Collection default index policy

Understanding the Indexing Mode

The indexing mode determines when indexes are updated. Azure Cosmos
DB provides three different indexing modes:

o Consistent: With a consistent indexing mode, indexes
are updated synchronously as part of the write
operation (create, replace, or delete). This might have
an impact on write throughput depending on how
many properties the document has and the number of
writes that happen in a given period of time. Queries
follow the same consistency mode as the database
(i.e. strong, bounded-staleness, session, consistent
prefix, or eventual). This mode is generally acceptable
for most workloads.

162

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

o Lazy: For scenarios where there is a huge amount of
data to be ingested into a collection, you can use lazy
indexing. This mode will change the way indexes are
updated from synchronous to asynchronous, causing
queries to achieve eventual consistency. This mode is
for extremely fast writes where reads are not needed
immediately. In addition, lazy mode consumes less
RUs than consistent mode.

e None: When you select None as the indexing mode, you
are effectively telling Azure Cosmos DB to not index the
documents in the collection. If indexes were previously
created as part of a different indexing mode, the change
to None will drop such indexes, leaving the documents
in the collection accessible only to be queried by the
Id or by reading a document with the self-URL. This
indexing mode can be useful if your collection is a key-
value storage and documents are accessed only by their

Id property.

Understanding Index Paths

In an Azure Cosmos DB database, JSON documents are treated like trees,
and their properties are mapped as paths in the tree hierarchy. A path starts
at the root of the document denoted with / and typically ends with ?. The ?
operator indicates that there are multiple values for the specified property.
Take for example the document in Listing 5-2. The path to read the
last name property is /1astName. The path to read the age of a children is
/children/age/?. And the path to read one of the classes is /children/
school/classes[0]/name/?.
Other patterns for paths are * and []. The * pattern indicates
everything after such property. For example, the path /children/school/*
is referencing all properties under the school property (i.e. grade and

163

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

classes). The [] pattern indicates all elements in an array. For example,
/children/school/[]/name? references name properties in the classes
array under the school property.

Listing 5-2. Sample JSON Document

{
"firstName": "Jose",
"lastName": "Guay",
"children":[
{
"name": "Sara",
"age": "16",
"school":{
"grade": "11",
"classes":[
{
"name": "Pre-Calculus"
})
{
"name": "US History"
})
{
"name": "Physics"
}
]
}
b
{
"name": "Samantha",
"age": "7",
164

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

"school":{
"grade": "2",
"classes":[
{
"name": "Math"
})
{
"name": "Reading"
}J
{
"name": "Music"
}
]

Adjusting the Indexing Policy

The indexing policy can be set for specific paths and there are several
properties that you can modify to fit the needs of your application.
The properties are kind, data type, and precision.

o Kind determines the type of index to be applied. It can
be hash, range, or spatial. A hash index is best suited
for equality comparisons which are used in joins and
where clauses. A range index is efficient for equality,
range queries (using the operators >, >=, <, <= or /=),
and for sorting with the order-by clause. Spatial indexes
are designed for queries involving spatial properties
like points, polygons, and lines.

165

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

o dataType identifies the type of data in a path. It can
be number, string, point, polygon, or LineString. An
important consideration is that in each path in the
indexing policy the different values for the data type can
only be defined once. For example, in Listing 5-2, the
indexing policy for the path /lastName would include
only one definition for the data type number and one for
string, but you can’t define string a second time.

e Precision determines the amount of data an index
stores based on how exact comparisons need to be. For
hash indexes, the value is any integer between 1 and
8, with 3 as the default. For a range index, the value
can be -1 (the default), which indicates maximum
precision, and then any value between 1 and 100 (100
also indicates maximum precision). When using the
maximum precision for numbers, each value is stored
in 8 bytes because JSON stores numbers in 8 bytes.
Any precision that is lower than maximum consume
less index storage, but in contrast it also causes queries
to process more documents, which would potentially
consume more RUs.

There are some considerations regarding indexes that you must be

aware of:

» Ifyour query uses a range operator but there is no
range index for the path, then an error is thrown. This
same rule applies for spatial queries and missing
spatial indexes.

o Ifyour query has an order-by clause by a path that
doesn’t have a range index, then an error is thrown.

166

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

e Ifyour query has an order-by clause by string
properties, you need to define the index precision to
maximum (-1).

o Range queries can be performed without a range index
using the x-ms-documentdb-enable-scan header in
the REST API or the EnableScanInQuery request option
using the .NET SDK.

Querying an Azure Gosmos DB Database

Using the DocumentDB .NET SDK it is very easy to query an Azure Cosmos
DB database. There are three syntaxes to query a database: LINQ, Lambda,
and SQL. They all do exactly the same work; the only difference is how the

queries are written.

Learning the SELECT Statement

To query a database, you need to use the SELECT statement. This statement
was first defined in the SQL language, which is the standard for performing
operations against a database. Every database product uses SQL in one
form or another but they all normally implement one of the standards such
as ANSI or ISO and build on top of it its unique features.

If you are familiar with the SELECT statement, you can skip this section
because it explains the statement syntax.

As explained earlier, every database implements its own version of SQL
and therefore the features for each statement. Because of this, I will only
explain the most basic syntax, which you can find generally implemented
in most database products.

For the SELECT statement to return any information you need to
define at least two pieces of information. The first one is where the data
is stored; this is normally tables in the case of relational databases or

167

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

collections in the case of NoSQL databases. The second piece is the
columns (in the case of relational databases) or properties (in the case of
NoSQL databases) from the data store.

To achieve its purpose, the SELECT statement is defined by two
mandatory clauses: SELECT to define the columns or properties, and FROM
to indicate where the data is. The minimal required syntax for the SELECT
statement is shown in Listing 5-3.

Listing 5-3. Minimal Syntax for the SELECT Statement

SELECT [columns or properties]
FROM [table or collection]

In addition to these two clauses, there are two more that are important.
Since databases can store a lot of information, you normally try to get
what is relevant to you. To solve this, there is a clause that can filter the
results you want. This clause is called WHERE. With WHERE, you define
the filters to apply to selectively get the relevant information. Finally,
results can be sorted when they are returned. To specify the sort order,
you use the ORDER BY clause. You use this clause to define the columns
or properties that should be used to sort the results and the direction
(ascending or descending) for each of them. Listing 5-4 shows the general
syntax with these two additional clauses. Remember that you can find
these four clauses for the SELECT statement in virtually any database,
but each database implements more features and you should read the
documentation to find what’s available and unique about the database you
are using.

Listing 5-4. Extended Syntax of the SELECT Statement

SELECT [columns or properties]
FROM [table or collection]
WHERE [filters]

ORDER BY [sort order]

168

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Understanding the SELECT Clause

The SELECT clause lets you define the properties or values you want to read
from a collection. In addition to specifying the list of properties, you can
use the special operator * that indicates all properties.

Listing 5-5 shows the usage of the * operator. This tells Cosmos DB to
read all properties from the Person collection. For example, in Listing 5-2,
the document refers to a collection called Person.

Listing 5-5. Querying All Properties from a Collection

SELECT *
FROM Person

The result of executing the query in Listing 5-5 is the entire document,
as shown in Listing 5-2. If you only need to read a subset of properties, you
can just create a list of the properties separated by commas, as shown in
Listing 5-6.

Listing 5-6. Querying a Subset of Properties from a Collection

SELECT firstName, lastName
FROM Person

The result of the query in Listing 5-6 is

[{

"firstName": "Jose",
"lastName": "Guay"

1

You can also modify the name of the properties with an alias. An alias
is a name that you specify with the keyword AS. In Listing 5-7, the query
returns the same two columns as in Listing 5-6 but the difference is that
the properties will have a different name.

169

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE
Listing 5-7. Query with Property Aliases

SELECT firstName AS "First Name", lastName AS "Last Name"
FROM Person

The results of the query from Listing 5-7 are

[{

"First Name": "Jose",
"Last Name": "Guay"

}]

The SELECT clause also supports JSON expressions, as shown in
Listing 5-8.

Listing 5-8. Query with JSON Expression

SELECT {"First Name": firstName, "Last Name": lastName}
FROM Person

In this case, the results are

[{
"$1": |
"First Name": "Jose",
"Last Name": "Guay"

1

In this case, what is happening is that the SELECT clause is creating a
JSON obiject, but since there is no key provided, an implicit argument named
$1 is automatically created. The implicit arguments are named $1, $2, and so
forth. If, on the other hand, a key is defined, as shown in Listing 5-9, then the
result is a little different.

170

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE
Listing 5-9. Query with JSON Expression

SELECT {"First": firstName, "Last": lastName} AS "Name"
FROM Person

In this case, the results are

[{
"Name": {
"First": "Jose",
"Last": "Guay"
}
1

The SELECT clause also supports scalar expressions. These
expressions can be constants, arithmetic expressions, logical expressions,

etc. Listing 5-10 shows some scalar expressions.

Listing 5-10. Query with Scalar Expressions

SELECT "This is a simple string",
1+4/2

The results are

"$1": "This is a simple string",
ll$2" : 3
]

Understanding the FROM Clause

In Azure Cosmos DB, the FROM clause indicates the collection from which
to read data. While that is the general idea, a particular implementation
that you can use instead of the collection is a subdocument. A subdocument

171

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

is nothing more than a part of the whole document in the collection. For
example, in Listing 5-2, the document contains a subdocument named
Person.children.

In Listing 5-11, the query retrieves all properties from a subdocument.
The query in Listing 5-5 will return the entire document, while the query in
Listing 5-11 will return only the portion in the children array.

Listing 5-11. Querying a Subdocument

SELECT *
FROM Person.children

For the query in Listing 5-11, the results are

"
"name": "Sara",
"age": "16",
"school":{
"grade": "11",
"classes":[{
"name": "Pre-Calculus"
})
{
"name": "US History"
})
{
“name": "Physics"
}
]
}
}J
172

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5

{
"name": "Samantha",
"age": "7",
"school":{
"grade": "2",
"classes":[{
"name" :
})
{
"name" :
})
{
"name":
}
]
}
1]

QUERYING AN AZURE COSMOS DB DATABASE

IIMathll

"Reading"

"Music"

A few characteristics of the FROM clause are the following:

¢ The collections or subdocuments can be aliased. That

means that you can assign an alias to the collection

or subdocument to reference properties easier.

This comes in handy when reading from multiple

collections and/or subdocuments (which you will see

later in this chapter).

e Once you assign an alias, the original source cannot be

found.

o All properties that need to be referenced must be fully

qualified to avoid ambiguous bindings.

173

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Listing 5-12 shows the same query in Listing 5-5, but with an alias and
only selecting two properties. The alias is defined after the collection name
as p. The properties are now fully qualified.

Listing 5-12. Modified Query Using an Alias

SELECT p.firstName, p.lastName
FROM Person AS p

The results of the query in Listing 5-12 are

[{

"firstName": "Jose",
"lastName": "Guay"

1]
Understanding the WHERE Clause

The WHERE clause is optional and defines the conditions that documents
must meet to be included in the results of the query. All conditions
specified in the WHERE clause must evaluate to true for a document to be
included in the result.

Listing 5-13 shows an example of a query with a condition. In this
example, the condition defines that all documents with the value of Guay in
the property lastName should be returned.

Listing 5-13. Query with a Simple Condition

SELECT p.firstName, p.lastName
FROM Person AS p
WHERE p.lastName = "Guay"

174

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

The results for this query are

[{

"firstName": "Jose",
"lastName": "Guay"

1

There are many more operators that can be used in conditions in the
WHERE clause, as shown in Table 5-1. These operators can be used to
perform different types of comparisons.

Table 5-1. Operators

Type of Operator Operators

Arithmetic +,-,%,7/,%

Bitwise [, &, 7, <<, >>, >>> (zero-fill right shift)
Logical AND, OR, NOT

Comparison =, 1=, <, >, <=, >=,

String | | (concatenate)

Listing 5-14 shows how to use an arithmetic operator in one of the
conditions.

Listing 5-14. Query with an Arithmetic Operator

SELECT name
FROM Person.children
WHERE age > 5

175

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

The result of this query is

[{
"name": "Sara"
1
{
"name": "Samantha"
}H

The keyword BETWEEN can also be used in the same way as in ANSI/
SQL. It will return documents where the values in the condition fall in the
range specified, as shown in Listing 5-15.

Listing 5-15. Using the BETWEEN Keyword

SELECT name
FROM Person.children
WHERE age BETWEEN 5 AND 10

The results of this query are similar to the previous one for Listing 5-14.

Understanding the ORDER BY Clause

The ORDER BY clause is optional and can be included in queries to specify
the order in which to return the results. The clause expects a list of
properties separated by commas. Each property can contain an optional
argument to identify the direction of the sort. The argument can be either
ASC or DESC, for ascending (the default, if nothing is specified) and
descending.

The example in Listing 5-16 shows the usage of the ORDER BY clause.
The query selects the names of the children subdocument and will return
the results ordered by the name in alphabetic order.

176

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Listing 5-16. Using the ORDER BY Clause in a Query

SELECT name
FROM Person.children
ORDER BY name ASC

The results of the query are

[{
"name": "Samantha"
1
{
"name": "Sara"
H

Working with Iterations

Azure Cosmos DB implements a way to iterate through arrays in JSON
documents by extending the FROM clause. The result of this implementation
is a single array with the results of multiple documents. For example, in
Listing 5-17 you see a query that returns the names of the children in the
Person collection. Note how when having multiple documents, the results
are grouped by children in each document. This effect can be seen in the
results by the nesting of elements inside brackets ([]).

Listing 5-17. Querying the Person.children Subdocument

SELECT name
FROM Person.children

The results of the query are

[{

"name": "Sara"

b

177

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

{

"name": "Samantha"
H,
[{

"name": "Michael"
1,
{

"name": "James"
H,
[{

"name": "Daniel"
}H

You can iterate over the JSON documents with the addition of the IN
keyword as part of the definition of the source of data. In this example, by
changing the FROM clause to use iterations, the result is a single array with
all the results, shown in Listing 5-18.

Listing 5-18. Using Iterations

SELECT p.name
FROM p IN Person.children

The results of the query are

[
{
"name": "Sara"
}
{
"name": "Samantha"
}
178

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

{

"name": "Michael"
1,
{

"name": "James"
1
{

"name": "Daniel"
}

Understanding Joins

In relational databases, joins play a key role in reading data from tables
where data redundancy has been eliminated (normalized). This feature
allows developers to keep a single version of a piece of data and use it
across the entire application.

Contrary to relational databases where normalized data is
fundamental, NoSQL databases such as Azure Cosmos DB rely on the
feature that documents will have no specific schema, which in turn expects
a document to include every piece of data required to express the entity
it represents. This causes some information to be included (repeated)
on each document. For example, in a JSON document representing sales
orders, the list of products will include the product name, price, and other
necessary properties on each of the documents in the collection.

This particular distinction makes joins function a bit different,
although in the end, the concept is similar to those in relational databases.
They are similar in the sense that different sources of data will be joined to
return a particular set of results; however, they are different in the fact that
in NoSQL databases you are joining parts of the document as opposed to
joining collections (which are the equivalent of tables).

179

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Consider the query in Listing 5-19. Note that the query is doing a
join between the Person collection and the children subdocument. You
don’t need to specify the keys the join will use because childrenis a
subdocument already, a (possible) part of each person.

Listing 5-19. Query with JOINs

SELECT p.lastName as Parent,
c.name AS Child

FROM Person p

JOIN ¢ IN p.children

The results are

{
"Parent”: "Guay",
"Child": "Sara"
}J
{
"Parent": "Guay",
"Child": "Samantha"
}

Working with Parameterized SQL Queries

Azure Cosmos DB supports parameterized queries. By implementing
parameters, your queries become more robust when handling user input
and can prevent traditional SQL injection attacks.

The way this is implemented is with the @ notation which is widely
used in SQL Server. The query in Listing 5-20 implements parameters in
the WHERE clause.

180

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Listing 5-20. Using Parameterized SQL Queries

SELECT *
FROM c IN Person.children
WHERE c.age = @age

Using Built-In Functions

Azure Cosmos DB has a number of built-in functions that you can use
in your queries. These functions can be categorized as mathematical
functions, type-checking functions, string functions, array functions, and
spatial functions. Table 5-2 lists the currently implemented built-in
functions (taken from http://bit.1ly/cosmos-db-builtin-functions).

Table 5-2. Built-In Functions in Azure Cosmos DB

Function Group Operations

Mathematical ABS, CEILING, EXP, FLOOR, LOG, LOG10, POWER, ROUND, SIGN,
Functions SQRT, SQUARE, TRUNC, ACOS, ASIN, ATAN, ATN2, COS, COT,
DEGREES, PI, RADIANS, SIN, and TAN

Type-Checking IS_ARRAY, IS_BOOL, IS_NULL, IS_NUMBER, IS_OBJECT,
Functions IS_STRING, IS_DEFINED, and IS_PRIMITIVE

String Functions ~ CONCAT, CONTAINS, ENDSWITH, INDEX_OF, LEFT, LENGTH,
LOWER, LTRIM, REPLACE, REPLICATE, REVERSE, RIGHT, RTRIM,
STARTSWITH, SUBSTRING, and UPPER

Array Functions ~ ARRAY_CONCAT, ARRAY_CONTAINS, ARRAY_LENGTH, and
ARRAY_SLICE

Spatial Functions ~ ST_DISTANCE, ST_WITHIN, ST_INTERSECTS, ST_ISVALID, and
ST_ISVALIDDETAILED

181

http://bit.ly/cosmos-db-builtin-functions

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

The built-in functions can be used in your queries in the same way
you would, for example, in SQL Server. See Listing 5-21 for an example of a
query that uses some of these functions.

Listing 5-21. Using Built-In Functions in a Query

SELECT lastName,
COUNT(children)
FROM Person

The results are

[{

"lastName":"Guay",
II$1II:2

1

Extending the Sample Application

In this chapter, you have learned how to query an Azure Cosmos DB
database. Let’s examine the sample application, Cosmos University, to add
some querying functionality that a potential user would need.

The modifications are as follows:

e Add a drop-down to select a property that will be used
for filtering.

o Add atext box to enter a value for the property.
e Add a button to filter the results.

¢ Add a second drop-down with properties to sort the
results.

e Add a third drop-down with the sort direction options
(ascending or descending).

182

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

The sample application implements Lambda queries but in addition
to this, I will also include code using the other syntaxes for querying
(LINQ and SQL).

The following steps will guide you through the process:

1. Open Visual Studio 2017 from the Start menu, as
shown in Figure 5-2.

l Visual Studio 2017

Visual Studio 2017

Visual Studio Installer

VMware

Voice Recorder

L Type here to search

Figure 5-2. Open Visual Studio 2017 from the Start menu

2. Go to the File menu, select Open and from the menu
select Project/Solution. As shown in Figure 5-3, you
can also use the keyboard shortcut of Ctrl-Shift-O.

183

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

ﬂ Start Page - Microsoft Visual Studio
File = Edit View Project Debug Team Tools Test Analyze Window Help

New v || |Any CPU b Attach... - A
Open * @ Project/Solution... N Ctrl+Shift+0
& Start Page 2 Folder... Ctrl+ Shift+Alt+ O
Close D WebSite... Shift+Alt+0
: : . Open from Source Control hen
elected ltems Ctrl+ S 2 File... Ctrl+Q
dectad e 7 C odefromar
v ed ltemns As.. onvert... ething on you
WM SaveAll Ctrl+Shift+S onials and sample projects
Checkout from:

, and technologies g
& Visual Studio

iect

Figure 5-3. Opening a project or solution in Visual Studio 2017

3. The Open Project window is open now. Navigate to
the folder where you saved the solution. In Chapter 3,
you saved itin the C: \Projects\CosmosUniversity
folder. As shown in Figure 5-4, select the
CosmosUniversity.Web.sln file and click the Open

button.
Pd Open Project X
« v 4 <« QS(C) » Projects » CosmosUniversity.Web v O Search CosmosUniversity. Web @
Organize = New folder > 1 @
' Name Date modified Type Size
s git File folder
-1 v File folder
' CosmosUniversity.Web File folder
& packages File folder
J4 &8 CosmosUniversity.Web.sln 8/23/2017 T10PM Visual Studio Solu... 2KB
<
g
File name: CosmosUniversity.Web.sin ~ | All Project Files (*.sIn;*.dsw;* ve vl

Open |+ Cancel

Figure 5-4. Opening the CosmosUniversity.Web.sln solution

184

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

4. Open the Index.cshtml view from the Views/
Student folder, as shown in Figure 5-5. This is where
you will add the drop-downs, text box, and button.

@E- o-5S¢CF@ K=

Search Solution Explorer (Ctrl+;) peo i
b 1 fonts -
b 1 Models
P B8 Scripts
4) Views
P ¥ Home
b = Shared
4 . Student

a[@] Create.cshtml
a[@] Delete.cshtml
a[@] Details.cshtml
al@] Edit.cshtml

Index.cshtml k

al@ _ViewStart.cshtml
ay)) Web.config -

Figure 5-5. Opening the Index.cshtml view from the Views/Student
folder

5. Add the new HTML markup for the controls, as
shown in Listing 5-22. This code will create the
drop-downs, text box, and button that you need to
implement the filtering and sorting.

185

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Listing 5-22. New HTML Markup for the Controls

@model IEnumerable<CosmosUniversity.Web.Models.Student>

ef
ViewBag.Title = "Index";

}

<h2>List of Students</h2>
@using (Html.BeginForm())
{
@Html.AntiForgeryToken()
<p>
<spanyFilter by: </spany
<select id="filterBy" name="filterBy"»>
<option value="city"»>City</option>
<option value="state"»State</options
<option value="postalCode"sPostal Code</optiony
</select»
<span» =
<input type="text" id="filterValue" name="filterValue" />
</p>
<p>
<span»Sort by:
<select id="sortBy" name="sortBy"»>
<option value="firstName">First Name</option»
<option value="lastName">Last Name</optiony
</select>
<select id="sortOrder" name="sortOrder"»
<option value="asc"»Ascending</option»
<option value="desc"»>Descending</option>
</select»

186

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

<input type="submit" value="Go" />
</p>
}

6. Open the StudentController.cs file from the
Controllers folder, as shown in Figure 5-6. You
need to add a new action in the controller to handle
these new controls.

Solution Explorer * 0 X

QE- o-5CB © &=
Search Solution Explorer (Ctrl+;) R~

afa] Solution ‘CosmosUniversity.Web' (1 project) -
4) CosmosUniversity.Web
& Connected Services
b &/ Properties
p =W References

1 App_Data
b 1 App_Start
b 1 Content
4 . Controllers
P &c* HomeController.cs
b 4@ StudentController.cs k‘
b 1 fonts
b Models
P 10 Scripts v

Solution Explorer Team Explorer Server Explorer

Figure 5-6. Opening the StudentController.cs file from the Controllers

folder

187

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

7. Add the code in Listing 5-23 just after the Index()
action finishes. The first thing to note in the new
action is that, as opposed to the original Index()
action, this will only accept POST requests. This is
to prevent attacks using the URL. Then, there are
four parameters that will contain the values entered
in the page for filtering and sorting. The names of
the parameters match the name property in all the
HTML controls. The following lines are where the
filtering happens. In this particular case, you are
using LINQ to create and execute the query. You
start by checking if there is a value for the filter; if
so, then the call to the GetStudentsAsync() method
does include a predicate that specifies the filter. If
there is no value for the filter, then all documents are
returned. Finally, the result of the query is evaluated
for sorting. Depending on the direction of the sort,
the OrderBy() or OrderByDescending() method is
called with a predicate that indicates the property to
sort the results by.

Listing 5-23. New Index() Action to Filter and Sort Results

[HttpPost]

[ActionName("Index")]

[ValidateAntiForgeryToken]

public async Task<ActionResult> IndexAsync(string filterBy,
string filterValue, string sortBy,
string sortOrder)

{
IEnumerable<Student> students = null;
if (!string.IsNullOrEmpty(filterValue))
{

188

vww . allitebooks.con

http://www.allitebooks.org

}

else

{

}
if (
{

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

switch (filterBy)

{
case "city":
students = await Repository<Student>
.GetStudentsAsync(x => x.City == filterValue);
break;
case "state":
students = await Repository<Student>
.GetStudentsAsync(x => x.State == filterValue);
break;
case "postalCode":
var postalCode = Convert.ToInt32(filterValue);
students = await Repository<Student>
.GetStudentsAsync(x => x.PostalCode == postalCode);
break;
}

students = await Repository<Student>.GetStudentsAsync(null);

sortBy == "firstName")
students = sortOrder == "asc"

? students.OrderBy(x => x.FirstName)
: students.OrderByDescending(x => x.FirstName);

189

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

else
{
students = sortOrder == "asc"
? students.OrderBy(x => x.LastName)
: students.OrderByDescending(x => x.LastName);

}

return View(students);

8. At this point, you can compile and run the
application. To test it, select the filter by city,
enter the value Chicago, and click the Go button
to perform the query. Note that this will produce
the error shown in Figure 5-7. This error is caused
because the collection you are querying is
partitioned, and your query needs to look in different
partitions because city is not the partition key and
by default queries can only be performed in a single
partition.

190

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

B & B crosspanition queryis X + - o ®
p query

&< - O o localhost:36171/student bxg = 1. =
Server Error in '/' Application.

Cross partition query is required but disabled. Please set x-ms-documentdb-
query-enablecrosspartition to true, specify x-ms-documentdb-partitionkey, or
revise your query to avoid this exception.

Activityld: 7d9fc5cc-0182-4c4b-9b30-fofb64fc211c

Desc An i during the of the current web request. Please review the stack trace for more information about
the error and where it originated in the code.
Exception Details: Mi Azure, D ts.0 i ion: Cross parfition Llllhl is required but disabled. Please set x-ms-documentdb-
query-enablecrosspartition 1o true, specify x-ms-documentdb-partitionkey, of revise your query 10 avoid this exception.
Activityld: Td9fe5ec-0182-4c4b-9b30 11e
Source Error:

Line 43: while (students.HasMoreResults)

Line 44:

Line 45: 1istOfStudents.AddRange(await students.ExecuteNextAsync<T>());

Line 46: }

Line 47:

Source File: C/\ProjectsiCosmosUniversity Wet'CosmosUniversity. \WebiModels\Repository.cs Line: 45

Figure 5-7. Error when running a query on a partitioned
collection

9. The error message in Figure 5-7 is already telling
you how to resolve this issue. You need to set the
x-ms-documentdb-query-enablecrosspartition
header to true in the call to the API. This will enable
cross-partition queries. Since you are not using
the REST API, you need to configure this header
using the FeedOptions object that is passed in the
CreateDocumentQuery() method in the repository.
Listing 5-24 shows this adjustment.

191

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Listing 5-24. Including the Cross-Partition Query Header in the
FeedOptions Object

FeedOptions feedOptions = new FeedOptions {
MaxItemCount = -1,
EnableCrossPartitionQuery = true };

10. Now, after compiling and running the application
again you will see a result similar to the one shown
in Figure 5-8. The page is now returning only
documents from students in the city of Chicago
sorted by their first name in ascending order.

|B & O index- My ASPNET A X |+ - 5 =
| “— > O @ localhost 26171 student e = LB -
List of Students

Filter by: [Clty | = [cnicage
Sort by. |Firs! Name | [Ascending | Go

Create New
FirstName LastName BirthDate Addressi Address2 City State PostalCode PhoneNumber
Ajay Pinar 1211171980 40553 Tony Chizagn llinois G0GST 143121391 Edit | Details
324:16 AM Drrive: 140 ket
Ajay Pinar 1211111980 40553 Tony Chicage llinois B0G5T 143203 Edi | Details |
324216 AM Drive: 2140 Delete
Ann-marie Philipps 42001993 043 Loeprich Chicage Ilinols 60609 1-{T72)598- Ecit | Details |
12:00:00 AM Drrive: 4824
Bethanne Allsworth 3Manser 53876 Rigney Chicago llinoks 60686 (121188
12:00:00 Al Junction 1030
Derwin Adanet 151199551259 8 Dayton Q Chicaga llinois 6065T 1-{7721852-
Al Avenue 2648
Derwin Adanet 15198551259 8 Daylon Chicago llinoks 60657 1-{T731852-
AN Avenue 2648

Figure 5-8. Query now running correctly after allowing
cross-partition queries

192

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Implementing SQL Queries

Using SQL queries is very simple. For this purpose, you are going to create
anew method in your repository class named GetStudentsSQLAsync() that
will function the same as GetStudentsAsync(), only with the SQL syntax.
Listing 5-25 shows the code for this new method. Note that the
signature of the method is different because it is expecting the values
of the filter and sort as they are passed to the controller. These values
will be used here to build the SQL query as a string. Also note that you
keep the definition in the FeedOptions object to enable cross-partition
queries. Then you start with the construction of the SELECT statement.
An important distinction here is that since the client is communicating
directly to a collection in the database, the name of the collection is not
defined in the SELECT statement, only an alias. It is now the alias that is
being used in the different clauses. Next, the WHERE clause is built using
the filterBy and filterValue parameters. The filterBy parameter
already contains the name of the property to be used as the filter, and the
filterValue contains the actual value to use in the comparison. Finally,
the SORT clause is created using the last two parameters. The rest of the
method is similar to the previous GetStudentsAsync() method.

Listing 5-25. GetStudentsSQLAsync() Method Implementing
SQL Syntax

public static async Task<IEnumerable<T>> GetStudentsSQLAsync(
string filterBy, string filterValue,
string sortBy, string sortOrder)

Uri collectionUri = UriFactory.CreateDocumentCollectionUri(
_dbName, _collectionName);

193

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

FeedOptions feedOptions = new FeedOptions { MaxItemCount = -1,
EnableCrossPartitionQuery = true };

string sqlStatement = "SELECT * FROM s";
if (!string.IsNullOrEmpty(filterValue))

{
string value = filterBy == "postalCode"
? filterValue
: """+ filtervalue + "'";
sqlStatement = sqlStatement + " WHERE s." + filterBy
+ " =" + value;
}

sqlStatement = sqlStatement + " ORDER BY s." + sortBy

¥ + sortOrder.ToUpper();

IDocumentQuery<T> students =
client.CreateDocumentQuery<T>(collectionUri,
sqlStatement, feedOptions)
.AsDocumentQuery();

List<T> listOfStudents = new List<T>();
while (students.HasMoreResults)

{
1istOfStudents.AddRange(await students.
ExecuteNextAsync<T>());
}
return listOfStudents;
}
194

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

To use the new method in Listing 5-25 you need to change the new
Index() action in the controller. The modifications will basically eliminate
all the coding for the Lambda query, as shown in Listing 5-26. Note that
the call to the new method in the repository is all you need.

Listing 5-26. Calling GetStudentsSQLAsync() in the Controller

[HttpPost]

[ActionName("Index")]

[ValidateAntiForgeryToken]

public async Task<ActionResult> IndexAsync(string filterBy,
string filterValue, string sortBy, string sortOrder)

{
IEnumerable<Student> students = await
Repository<Student>.GetStudentsSOLAsync(
filterBy, filterValue,
sortBy, sortOrder);
return View(students);
}

Implementing Parameterized Queries

The query in Listing 5-25 works well; however, it can be further enhanced
by using parameters. For this, you need to change how the query is created.
In this case, you need to create a SqlQuerySpec() object that will contain
the string with the query as well as the parameters. See Listing 5-27 for the
modified version of GetStudentsSQLAsync().

195

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Listing 5-27. Implementing GetStudentsSQLAsync() with
Parameters

public static async Task<IEnumerable<T>> GetStudentsSQLAsync(
string filterBy, string filterValue,
string sortBy, string sortOrder)

{
Uri collectionUri = UriFactory.CreateDocumentCollectionUri(
_dbName, _collectionName);
FeedOptions feedOptions = new FeedOptions { MaxItemCount = -1,
EnableCrossPartitionQuery = true };
string sqlStatement = "SELECT * FROM s";
if (!string.IsNullOrEmpty(filterValue))
{
sqlStatement = sqlStatement
+ " WHERE s." + filterBy + " = @filterValue";
}
sqlStatement = sqlStatement + " ORDER BY s."
+ sortBy + " " + sortOrder.ToUpper();
SqlQuerySpec querySpec = new SqlQuerySpec()
{
QueryText = sqlStatement,
Parameters = new SqlParameterCollection()
{
196

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

new SqlParameter("@filterValue", filterValue)

}s

IDocumentQuery<T> students =
client.CreateDocumentQuery<T>(collectionUri,
querySpec, feedOptions)
.AsDocumentQuery();

List<T> listOfStudents = new List<T>();
while (students.HasMoreResults)

{
1istOfStudents.AddRange(await

students.ExecuteNextAsync<T>());
}

return listOfStudents;

Implementing LINQ Queries

Implementing LINQ queries is simple but has one particular issue worth
noting. Because LINQ works with specific objects and is strongly typed,
you can’t really implement a generic T object as you have so far. In this
case, your sample method using LINQ will need to be strongly typed as
well, as you can see in Listing 5-28.

197

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

Listing 5-28. Implementing LINQ Queries in GetStudentsLINQAsync()

public static async Task<IEnumerable<Student>>
GetStudentsLINQAsync(
string filterBy, string filterValue,
string sortBy, string sortOrder)

{
Uri collectionUri =
UriFactory.CreateDocumentCollectionUri(
_dbName, _collectionName);
FeedOptions feedOptions = new FeedOptions { MaxItemCount = -1,
EnableCrossPartitionQuery = true };
var lingQuery =
from s in client.CreateDocumentQuery<Studenty
(collectionUri, feedOptions)
select s;
if (!string.IsNullOrEmpty(filterValue))
{
switch (filterBy)
{
case "city":
linqQuery = from s in
client.CreateDocumentQuery<Student(
collectionUri, feedOptions)
where s.City == filterValue
select s;
break;
198

vww . allitebooks.con

http://www.allitebooks.org

}

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

case "state":
linqQuery = from s in
client.CreateDocumentQuery<Students(
collectionUri, feedOptions)
where s.State == filterValue
select s;
break;
case "postalCode":
var postalCode = Convert.ToInt32(filterValue);
linqQuery = from s in
client.CreateDocumentQuery<Student>(
collectionUri, feedOptions)
where s.PostalCode == postalCode
select s;
break;

if (sortBy == "firstName")

{

}

else

{

linqQuery

linqQuery

= sortOrder == "asc"

? lingQuery.OrderBy(x => x.FirstName)

: lingQuery.OrderByDescending(x => x.FirstName);
= sortOrder == "asc"

? linqQuery.OrderBy(x => x.LastName)
: lingQuery.OrderByDescending(x => x.LastName);

199

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE
IDocumentQuery<Student> students = linqQuery.AsDocumentQuery();

List<Student> 1istOfStudents = new List<Student>();
while (students.HasMoreResults)

{
1istOfStudents.AddRange(await
students. ExecuteNextAsync<Student>());
}
return listOfStudents;
}
Summary

In this chapter, you reviewed how indexing works and how it is configured.
You learned how to change the index policy of a collection and the rules
that guide these customizations. Then you went through the specifics
of the SELECT statement and how is it used to query databases. You
examined the four main clauses of the SELECT statement, which are
SELECT, FROM, WHERE, and ORDER BY. You reviewed how with an
addition to the FROM clause it is possible to iterate through the results
of a query. Also, you examined how joins work and how they are similar
and different than joins in relational databases. Later, you reviewed
how parameterized SQL queries work and why they are important and
you finished that section with a quick overview of the built-in functions
implemented in Azure Cosmos DB.

200

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 QUERYING AN AZURE COSMOS DB DATABASE

The last part of the chapter was devoted to making a real
implementation of all the techniques and concepts learned in the chapter.
This was done by enhancing the sample application with the ability to
refine the results presented in the page using filters on specific properties
and sorting such results.

In the following chapter, I will talk in more detail about globally
distributed databases and how to work with them to implement a system
with automatic failover.

201

CHAPTER 6

Working with a
Globally Distributed
Database

Azure Cosmos DB is not only capable, but it’s built from the ground up to
be globally distributed. When the database is distributed across different
regions, applications can be configured to take advantage of this, making
them faster, scalable, and more resilient against data availability problems.

Configuring Global Distribution

One of the biggest advantages of global distribution is that the configuration
happens in Azure and not the application itself. This greatly simplifies what
the application needs to do to scale and perform at large scale.

To configure a database to be globally distributed, you only need to
add more regions to the configuration. Azure will do the rest. The following
steps will guide you through the process:

1. Loginto the Azure portal using the account you
created in Chapter 1 at https://portal.azure.com.

2. From the menu on the left, select Azure Cosmos DB.
© José Rolando Guay Paz 2018 203

J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_6

vww . allitebooks.con

https://portal.azure.com/
http://www.allitebooks.org

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

3. Ifyoudo nothave a database created and only see
an empty list, you need to create a database. If you
have one already, you can skip to step 4.

e Click the Add button at the top of the page to open
the new database options page, shown in Figure 6-1.

Azure Cosmos DB * X Azure Cosmos DB |
New account
- New o Add @ Assign Tags “ve More 1D
Dashboard - Subscriptions: Cosmos D8 Bock

documents.azure.com
Filter by name.

25 All resources

hoose an AP w
0 items
TS * Subscriptior
\ESOuUrce groups AME Subscription
W
@ App Services -
* Resource Group @
- -
“ SQOL databases ® Create new Use existing
& Azure Cosmos DB
* Location
B virtual machines Central US hd
£, Function Apps [[] enable geo-redundancy @

Load balancers

Storage accounts

. 22 mone ot
*2 Virtual networks
Create Azure Cosmos DB [_] Pin to dashboard
& wonitor
More services

Figure 6-1. New Azure Cosmos DB database page

e The ID will indicate the name of your database.
A green checkmark at the end of the box will
indicate if the name you entered is globally unique.

e Now select the API you want to use. In your case,
select SQL (DocumentDB).

204

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

e Then select the subscription that you created
previously, the one that is used for billing purposes.

e Now create a new resource group. The name of the
resource group accepts letters, numbers, hyphens,
and underscores. Again, a green checkmark at the
end of the box will let you know everything is fine.

o Finally, select the location where this database
should be created.

e The “Enable geo-redundancy” checkbox will allow
you to automatically replicate the database to the
associated geographically region of the selected
region. This is called region pairing. Each region
in Azure is paired with a second region that is
located in the same geography (same country or
continent). For example, for the Central US region
shown in Figure 6-1, its paired region is East US 2.
When selected, this checkbox effectively configures
the database to be distributed with the selected
region to be the write region and the paired region
the read region.

4. Once you click the database name to open its
properties, you need to click the Replicate data
globally option, as shown in Figure 6-2.

205

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

& Overview

B Activity log

;,ﬁ Access control (IAM)

& Tags

X Diagnose and solve problems
dd Quick start

P’ Data Explorer

SETTINGS

@ Replicate da@jglobally

== Default consistency

Figure 6-2. Open the replication page to configure global
distribution

206

Once you click the Replicate data globally option,
the Azure region map opens, as shown in Figure 6-3.
This will show you where the Azure regions are in
the world. You can replicate your database to any
number of regions. All you have to do at this point

is click each of the regions where you want your
database. Each region is represented by a hexagon.

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

£ Search (Ctrd=/) Hsave 'O Discard %y Manual Failover 1= Automatic Failove

& Overview Click on a location to add or remove regions from your Azure Cosmos DB account.

* Each ragion is billable based on the throughput and storage for the account. Leam more
B Activitylog

;ﬂ Access control (JAN)

& Tags
x Diagneose and solve problems
o Kog0]
i Quick start @ @ 8
© 8
B¢ Data Explorer 83 &
SETTINGS ©

¥ Replicate data globally ®
= Default consistency

O Firewall

Figure 6-3. Azure regions map for replication

6. Once you have selected the regions, click the Save
button at the top.

7. After Azure completes the configuration for
replication, you should see something similar to
Figure 6-4. Note that replicated regions are shown
in a hexagon with solid blue background while the

main region is shown in a light-blue hexagon.

207

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

L Search (Ctri+/) Hosse 9 Discard %y Manusl Failover 1= Automatic Failover

-

Click on a location to add or remove regions from your Azure Casmos DB account,
K Ciagnose and scive problems
* Each region is billable based on the throughput and storage for the account. Leam more

i Quick start

B! Data Explorer

SETTINGS

© Replicate data globally © B 106,00 2
o © &8 8
= Default consistency 0] 8
©
O Firewall 83)
©
Keys
> Add Azure Function ©
« Add Azure Search o]
ﬂ Lacks

Figure 6-4. Azure Cosmos DB database replicated to multiple
regions

Configuring Failover

Failover is the operation that happens when a region is not available and
the infrastructure switches to a backup region for service continuity. Azure
Cosmos DB databases can failover manually or automatically. Figure 6-4
shows the two buttons at the top of the regions map: one for manual failover
and one for automatic failover. Those two buttons are the ones that provide
access to manually failover to a region or to configure automatic failover.

Working with Manual Failover

Manual failover is the default after you configure your database to replicate
to at least one other region. With this setting, if the designated write region
becomes unavailable, it is your responsibility to switch the database writes
to a different region. You have the freedom to choose any region out of the
set where the database is replicated.

208

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

Once you click the Manual Failover button, you will be presented
with a page similar to the one shown in Figure 6-5. In it, you are presented
with the current write region and the set of read regions.

Manual Failover a X

Select a Read Region to become the new Write Region.

Tip: Identify all dependent services leveraging this account and ensure that triggering a failover
will not jeopardize your production application.

WRITE REGION

...

| Central US

READ REGIONS

East US 2

West US
Figure 6-5. Configuring manual failover

To failover, all you need to do is select, out of the group of read
regions, the one that will become the new write region. Click the
checkbox to acknowledge that this is your intention and click the OK
button at the bottom.

Configuring Automatic Failover

Let’s now examine how automatic failover works. With this
configuration, Azure will automatically switch the unavailable write
region to a read region to become the new write region. Azure will know
which region to choose based on the priority defined for the each of the
read regions. You are only responsible for defining this priority and then
Azure will do the rest.

209

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

Figure 6-6 shows the page that is opened when you click the Automatic
Failover button. Similarly to the manual failover page, you are presented
with the current write region and the list of read regions. What is different
is that the read regions now have a priority column that tells Azure which
one is the next to become the write region in the event of a region outage.
You can change the priority of the regions by dragging and dropping the
regions in the order you want them to take over the write role.

Automatic Failover O X

Enable Automatic Failover @

Drag-and-drop read regions items to reorder the failover priorities.

Tip: Drag : on the left of the hovered row to reorder the list.

WRITE REGION

Central US

READ REGIONS PRIORITIES
EastUS 2 1

West US

8]

Figure 6-6. Automatic failover priority

In this example, the write region is Central US. If this region becomes
unavailable, Azure will switch writes to the East US 2 region. If the East
US 2region becomes unavailable, Azure will switch writes to the West
US region.

210

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

Connecting to a Preferred Region

The DocumentDB API allows you to programmatically configure the
preferred order of regions in which document operations will be served.
This configuration is done by setting the PreferredLocations collection in
the ConnectionPolicy object that is passed to the DocumentClient object
when it is initialized.

Another benefit of setting up the preferred regions list is that based on
the Azure Cosmos DB account configuration, current regional availability,
and the preference list specified, the most optimal endpoint will be chosen
by the DocumentDB SDK to perform write and read operations.

When having a preferred regions list, all writes are sent to the current
write region and reads are sent to the first region in the preferred regions
list; if this region becomes unavailable, then the SDK redirects the requests
to the next region in the list, and so on.

An important consideration is that if the database is replicated, for
example, to five regions, but the preferred regions list only included four
of them, then the last region will never serve requests, even if failover has
chosen it to serve the requests. The preferred regions list defined in the
application takes precedence over the failover Azure configuration.

To configure the connection policy to have a preferred region list,
you need to define the regions in the PreferredLocations collection.

In Listing 6-1 you can see the declaration and initialization of the
DocumentClient object from the Cosmos University sample application
you have been using. This code is located in the /Models/Repository.cs
file, line 19.

211

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

Listing 6-1. Current DocumentClient Configuration in
CosmosUniversity Sample app

private static ConnectionPolicy _connectionPolicy =
new ConnectionPolicy {
EnableEndpointDiscovery = false
};
private static DocumentClient client =
new DocumentClient(new Uri(_endPoint),
_authKey,
_connectionPolicy);

Since the declaration is at the class level, you need to make a small
modification to have a method of the repository class return the fully
configured instance of the client. The new code is shown in Listing 6-2.
Note that you now have a new method that creates the ConnectionPolicy
object, configures it with the preferred regions list, and then returns a new
instance of the DocumentClient object. The connection policy specifies
that reads should be first served from the Central US region and then from
the West US 2 region.

Listing 6-2. Configuring the Preferred Regions List
private static DocumentClient client = GetNewDocumentClient();

private static DocumentClient GetNewDocumentClient()
{
ConnectionPolicy connectionPolicy =
new ConnectionPolicy {
EnableEndpointDiscovery = false
};
_connectionPolicy.PreferredLocations
+Add(LocationNames.CentralUs);

212

CHAPTER 6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

_connectionPolicy.PreferredLocations
-Add(LocationNames.WestUS2);

return new DocumentClient(new Uri(endPoint),
_authKey,
_connectionPolicy);

Implementing a Multi-Master Database

In general, having a single write region fits most application scenarios.
However, there are cases when more write regions are needed to scale the
application better. This configuration is known as multi-master.

Application Scenario

To explain this, imagine a scenario where a company has many offices
across two continents (for example, America and Europe). This company
has an application where thousands of users add, modify, and delete
documents in an Azure Cosmos DB database. The configuration of the
database includes a single write region in America with multiple read
regions replicated in America and Europe. Users in Europe normally don’t
use information from America and vice versa, the only exception being
the higher executives that need information from both places. To reduce
latency and to provide an increased throughput it is determined that writes
should happen on at least one region on each continent. Not only will this
configuration make the application perform better, it can help with the
expansion planned for the near future when the company starts operating
in Asia.

The application is already deployed and working in multiple regions
with an Azure traffic manager that routes traffic to the closest region to
be served.

213

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

Implementing the Solution

Azure Cosmos Db does not provide writes to multiple regions out of the
box. For this to work, you need to create two separate database accounts
and configure the application to use them. This configuration is not exactly
the same as you have seen before where Azure handles the data replication
automatically. Instead, it will be the application’s responsibility to read and
write to the appropriate region depending on where the user is connecting
from. Figure 6-7 shows the final architecture.

mls

o al .
> \' —>
M. Local read and write

I
e—i gl " i D
1 ;

Local read from read region

Azure Traffic
Manager

“"‘
| o I
‘ é Local read and write 5

Azure
Region B

/D

Local read from read region

Figure 6-7. Implementing multiple write regions (image taken from
http://bit.1y/cosmos-db-multi-write)

In this sample scenario, the database in America has a write region with
multiple read regions; in Europe there is also a write region with multiple
read regions. Now, you will add to the American database a read region
in Europe, and in the same way the European database will have a read
region in America. You want this to happen because Azure will replicate the
information across continents automatically, and then the application will
have both sets of information closer to the users who need them.

214

http://bit.ly/cosmos-db-multi-writeChange & to the word and in two places

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

Now, let’s imagine the write region in America is East US and it has a
read region in North Europe. For the European database, its writes region is
the North Europe region and the read region is East US. This configuration
matches the architecture defined in Figure 6-7.

The application then needs to know what to do with this configuration.
For this, you need to configure the region connection preference as
described earlier in this chapter. Listing 6-3 shows how this configuration
happens.

Listing 6-3. Configuring Connections to Multi-Write Regions

ConnectionPolicy writeClientPolicy =
new ConnectionPolicy {
ConnectionMode = ConnectionMode.Direct,
ConnectionProtocol = Protocol.Tcp
};
writeClientPolicy.PreferredLocations
.Add(LocationNames.EastUS);
writeClientPolicy.PreferredlLocations
.Add(LocationNames.NorthEurope);

string americaDB = ConfigurationManager
.AppSettings["CosmosDBAmericaEndPoint"];
DocumentClient writeClient =
new DocumentClient(new Uri(americaDB),
writeRegionAuthKey,
writeClientPolicy);

ConnectionPolicy readClientPolicy =
new ConnectionPolicy {
ConnectionMode = ConnectionMode.Direct,
ConnectionProtocol = Protocol.Tcp

};

215

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

readClientPolicy.PreferredlLocations
.Add(LocationNames.NorthEurope);

readClientPolicy.PreferredlLocations
.Add(LocationNames.EastUS);

string europeDB = ConfigurationManager
.AppSettings["CosmosDBEuropeEndPoint"];
DocumentClient readClient =
new DocumentClient(new Uri(europeDB),
readRegionAuthKey,
readClientPolicy);

What you see in the code shown in Listing 6-3 is that the selected read
and write regions will be determined by the preferred location list, but also
by the traffic manager. In the case of American users, the selected read and
write locations will be East US; for European users, the locations will be
North Europe.

The application in this case will need to ensure that writes use the
writeClient object and reads use the readClient object. Otherwise, the
operations will not be done in the necessary regions.

With this, writes (add a new document, replace, or delete) will not
require any code changes because the destination is already determined
correctly. In the case of reads, if the queries require data from both
continents, two individual query executions need to happen (one for each
continent) and a manual merge of both results, as shown in Listing 6-4.

216

CHAPTER 6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE
Listing 6-4. Querying from Two Different Databases

public async Task<IEnumerable<Doc>> ReadDocsAsync()
{
IDocumentQuery<Document> writeAccount =
(from d in
writeClient.CreateDocumentQuery<Doc>
(this.contentCollection)
select d).AsDocumentQuery();

IDocumentQuery<Doc> readAccount =
(from d in
readClient.CreateDocumentQuery<Doc>
(this.contentCollection)
select d).AsDocumentQuery();

List<Doc> documents = new List<Doc>();

while (writeAccount.HasMoreResults
|| readAccount.HasMoreResults)

IList<Task<FeedResponse<Doc>>> results =
new List<Task<FeedResponse<Doc>>>();

if (writeAccount.HasMoreResults)

{

results.Add(writeAccount.ExecuteNextAsync<Doc>());
}
if (readAccount.HasMoreResults)
{

results.Add(readAccount.ExecuteNextAsync<Doc>());
}

217

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH A GLOBALLY DISTRIBUTED DATABASE

IList<FeedResponse<Doc>> docFeedResult =
await Task.WhenAll(results);

foreach (FeedResponse<Doc> feed in docFeedResult)

{
documents.AddRange (feed);
}
}
return documents;
}
Summary

In this chapter, you reviewed in detail the global distribution
characteristics of Azure Cosmos DB. You learned, step by step, how to
use the Azure portal to replicate a database to different regions. Then you
examined failover and how to configure manual and automatic failover
for your database so application continuity is guaranteed even in the
event of region outages. The chapter ended by describing how to connect
to a preferred location and the configuration changes necessary for an
application that needs to have multiple write regions.

218

CHAPTER 7

Advanced Concepts

When working with Azure Cosmos DB, there are several concepts that,
while they are familiar if you are coming from a relational database, they
will look completely alien. This is because they are implemented in a
different language or syntax. For example, to create stored procedures,
triggers, and user-defined functions you use the JavaScript language.
The implementation of JavaScript is based on the ECMAScript 2015
specification (you can find more about this specification at
www.ecma-international.org/ecma-262/6.0/).

You will examine how to properly create and execute these elements.
In addition, you will see how to work with dates in JSON documents
and you will learn some tips for backing up, restoring, and testing the
performance of a database.

Working with Transactions

Transactions are a typical and extremely important concept in relational
databases. A transaction is a set of operations that change the data
stored in the database in some way, but for these changes to persists, all
operations must succeed. In the event of a failure in any operation, all
other operations must roll back their changes to leave the data intact.

A successful transaction normally ends with a commit command that

© José Rolando Guay Paz 2018 219
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_7

vww . allitebooks.con

http://www.ecma-international.org/ecma-262/6.0/
http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

confirms the success and instructs the database to make all data changes
permanent. Unsuccessful transactions issue a rollback command that
undoes all data changes and returns the data to its original state.

In Azure Cosmos DB, transactions fully support ACID (atomicity,
consistency, isolation, and durability). These four terms define the
guarantees for transactions to maintain the integrity of the data. Atomicity
defines that all operations are executed as a single unit. They all need
to be executed and all must succeed or none at all. Consistency refers
to the guarantee that data will be in a valid state between transactions.
Isolation makes sure that data being used within a transaction cannot be
modified by any other transaction until it is committed or rolled back.
Durability ensures that data changes are permanent once the transaction
is committed.

As mentioned, stored procedures and triggers are created using
JavaScript. This server-side JavaScript code is stored and executed in
the same memory space where the database is running. This fact is
what allows Azure Cosmos DB to guarantee ACID for all operations that
are part of a single stored procedure or trigger. This is a very important
consideration and distinction of Azure Cosmos DB. Furthermore, a stored
procedure or trigger is implicitly considered a transaction and the successful
execution of it constitutes an implicit commit whereas throwing an error
performs an automatic rollback.

Implementing Stored Procedures

A stored procedure consists of a JavaScript function and an id that
identifies it. Within the function, there are several objects that give access
to the execution context, the request sent to the server, the response that
will be sent back to the client, and the collection being accessed.

To illustrate the implementation, let’s create a stored procedure that
will replace the current functionality for creating student documents in the
sample application. Listing 7-1 shows the code of the stored procedure.

220

CHAPTER 7 ADVANCED CONCEPTS

Listing 7-1. Stored Procedure to Create a New Student Document

/*

* createStudent: Stored procedure to create a new student
document in an Azure Cosmos DB database

*

* @param {student} student - The student document being created.
*

*/
function createStudent(student) {
// Get the context, collection and response objects
var context = getContext();
var collection = context.getCollection();
var response = context.getResponse();

// Get the Uri to the collection
var collectionLink = collection.getSelfLink();

// Call the function to insert the new student

// document in the collection

insertDoc(student, function(error, studentDoc){
if (error) throw error;

var responseBody = {
student : studentDoc
};

response. setBody(responseBody);

1)

// Function to create the new student document
// in the collection
function insertDoc(student, callback) {

221

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

var options = {
disableAutomaticIdGeneration : false

s

var wasCreated = collection
.createDocument(collectionLink,
student, options,
function(err, doc) {
callback(err, doc);

}
);
if (!wasCreated){
throw new
Error("Student could not be created");
}

Let’s examine this function in detail. The function accepts as a
parameter the student document that is passed from the application with
the student information.

In the first part of the function you get access to the three objects you
are interested in. They are the context object, which provides access to all
the operations that can be performed in the Azure Cosmos DB database.
From the context object you then get the collection you are working
on and the response that will be sent back to the client. The collection is
defined by the client application at the time of connection.

// Get the context, collection and response objects
var context = getContext();

var collection = context.getCollection();

var response = context.getResponse();

222

CHAPTER 7 ADVANCED CONCEPTS

The following part is the call to a second function that handles the
actual data manipulation. You are sending two pieces of information: the
student document and a callback function. The reason this is done this
way is to have control of the execution flow.

In JavaScript, functions are of type object, which makes it possible
to pass them as parameters. This concept is taken from a programming
paradigm called functional programming. The callback function can
be called inside the function where it was passed as a parameter. Using
callback functions makes it easy to define what will happen after the
principal function has completed its execution. If the callback function
is not called, then it just won’t do anything. If you didn’t have callback
functions, you would need to expect some return value from the function,
evaluate it, and determine whether or not to execute some additional
code. With this mechanism, the callback function is used if needed and
that is determined from within the principal function.

// Call the function to insert the new student
// document in the collection
insertDoc(student,
function(error, studentDoc){
if (error) throw error;

var responseBody = {
student : studentDoc

};
response. setBody(responseBody);

1)

The purpose of this particular callback function is to evaluate whether
there has been an error when adding the new document to the collection.
In the event of an error, nothing will happen and an automatic rollback
will be issued. If there is no error, then a JSON response is built with
the student document, which is then sent back to the client using the
setBody() function of the response object.

223

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

The final part of the stored procedure is the internal function that adds
the document in the collection. The first thing you need to do is create a
CreateOptions object that will provide the necessary settings to handle
ids. In this case, because the application is not generating its own ids
but it is relying on Azure Cosmos DB to do so, you need to override the
document creation default behavior, which is to not to generate an id for
the document. This is done by setting the disableAutomaticIdGeneration
setting to false.

Next, you call the createDocument () method from the collection
object. This method will return true if the document was successfully
added to the collection and false otherwise. The code passes four
parameters: the collection Uri so it knows where to create the document,
the actual document, and the creation options. The last parameter is an
anonymous function that will be called after the method execution. This
function will take two parameters: an error object if something happened
that prevented the document creation and the document being inserted.
This function will run the callback function that was passed to the
insertdoc() function.

If the createDocument () method failed for any reason, it will return
false as noted earlier and you capture that value in the wasCreated
variable. You evaluate this variable later and if it did not succeed then the
function will throw an error.

// Function to create the new student document
// in the collection
function insertDoc(student, callback) {
var options = {
disableAutomaticIdGeneration : false

};

var wasCreated = collection.createDocument(collectionLink,
student, options,

224

CHAPTER 7 ADVANCED CONCEPTS

function(err, doc) {
callback(err, doc);

)5

if (!wasCreated){
throw new Error("Student could not be created");

Creating a Stored Procedure

There are two ways to create a stored procedure. The first one is using the
Azure portal. The second one is programmatically using the SDK.

Creating a Stored Procedure in the Azure Portal

Using the Azure portal is very straightforward. Open the Data Explorer
from the menu on the left. Then click the collection name and from there
click the New Stored Procedure at the top, as shown in Figure 7-1.

[‘t_il New Collection @ New SQL Query (‘ﬁ‘ New Stored Procedure f(n) New UDF 4

)

COLLECTIONS O < New Stored Procedure |

- - -
v & cosmosuniversity
=
I

w student

Documents

Scale & Settings

» Stored Procedures

» User Defined Functions

» Triggers

Figure 7-1. Creating a new stored procedure

225

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

You are now presented with a textbox to enter the stored procedure
id and a text area where you will type the JavaScript function that is
executed when calling the stored procedure. Note that the id of the stored
procedure can be named differently than the function; while this is valid,
I recommend naming them the same to keep consistency and avoid
confusion later.

Now type createStudent for the id of the stored procedure and type
in the code from Listing 7-1, as shown in Figure 7-2. Once everything is
entered, click the Save button.

m New Collection E New SQL Query @_; New Stored Procedure finl New UDF £ New Trigger E Delete Collection E

COLLECTIONS O < New Stored Pr... X
~ ¥ cosmosuniversity Blsave) Discard
- [_']stuc'er:
Documents Stored Procedure Id
Scale & Settings :rea:e:tuden* | h
} Stored Procedures Stored Procedure Body
1/*
Jser Defi b ¥
¥ User Dufined Functions 2 * createStudent: Stored procedure to create a new student dc
} Triggers 3 *
4 * @param {student} student - The student document being cre:
» DStudent g x é { } €
b [student2 6 */
7 function createStudent(student) {
b [person 3 // Get the context, collection and response objects
a var context = getContext();
1@ var collection = context.getCollection();
11 var response = context.getResponse();
12
13 // Get the Uri to the collection
14 var collectionLink = collection.getSelfLink();

15

Figure 7-2. The createStudent stored procedure

Creating a Stored Procedure Programmatically

When creating a stored procedure programmatically with the .NET
SDK, you need to create a StoredProcedure object. With this object,
you define the id and body of the stored procedure. Listing 7-2

226

CHAPTER 7 ADVANCED CONCEPTS

shows how the object is created. All you need to do next is call the
CreateStoredProcedureAsync() method which accepts two parameters:
the collection Uri and the stored procedure object. As you can see in the
code, the stored procedure body is defined as a string passed to the Body
property of the object. While this can be done, you might lose certain
capabilities of the editor in the Azure portal such as IntelliSense and color
highlighting for keywords. It will depend on what environment you feel
more comfortable with.

Listing 7-2. Creating a Stored Procedure Programmatically

var createStudentSProc = new StoredProcedure

{
Id = "createStudent",
Body = @"
/*
* createStudent: Stored procedure to create
* a new student document in an Azure Cosmos DB database

*

* @param {student} student:
* The student document being created.
*/
function createStudent(student) {
// Get the context, collection and response objects
var context = getContext();
var collection = context.getCollection();
var response = context.getResponse();

// Get the Uri to the collection
var collectionlLink = collection.getSelflLink();

// Call the function to insert the new student

227

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

// document in the collection
insertDoc(student, function(error, studentDoc){
if (error) throw error;

var responseBody = {
student : studentDoc

};

response.setBody(responseBody);

1)

// Function to create the new student document
// in the collection
function insertDoc(student, callback) {
var options = {
disableAutomaticIdGeneration : false

};
var wasCreated = collection
.createDocument(collectionLink,
student,
options,

function(err, doc) {
callback(err, doc);

1

if (!wasCreated){
throw new
Error("Student could not be created");

CHAPTER 7 ADVANCED CONCEPTS

// create the stored procedure in the collection
Uri collectionUri =
UriFactory.CreateDocumentCollectionUri
(_dbName, collectionName);

StoredProcedure createdStoredProcedure =
await client.CreateStoredProcedureAsync
(collectionUri,
createStudentSProc);

Executing a Stored Procedure

Let’s now use the stored procedure you created in the sample application.
Open the application in Visual Studio and then open the Repository.cs
file located in the Models folder. You will add a new async method called
CreateStudentWithStoredProcAsync() that will accept a parameter that
represents the student document. This method is shown in Listing 7-3. The
definition of the method is very similar to the CreateStudentAsync() one.

Listing 7-3. Calling a Stored Procedure Using the .NET SDK

public static async Task<Document>
CreateStudentWithStoredProcAsync(T student)

{

Uri storedProcedureUri =
UriFactory.CreateStoredProcedureUri
(_dbName,
_collectionName,
"createStudent");

var st = student as Student;

RequestOptions requestOptions = new RequestOptions

{
};

PartitionKey = new PartitionKey(st.PostalCode)

229

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

return await
client.ExecuteStoredProcedureAsync<Document>
(storedProcedureUri,
requestOptions,
student);

The first thing you need to do is get the Ur1i of the stored procedure.
This is done using the CreateStoredProcedureUri() method from the
UriFactory class. This method will take three parameters: the database,
collection, and stored procedure names.

The following step is to create a RequestOptions object to define the
partition key from your collection. This is done by reading the postal code
property from the student document. If the collection doesn’t have a
partition key, this can be omitted.

Finally, the stored procedure is executed by calling the
ExecuteStoredProcedureAsync() asynchronous method. This method
takes three parameters: the stored procedure Uri, the RequestOptions
object, and the new document to be inserted.

Now you need to adjust the controller to call this new method instead
of the CreateStudentAsync() method currently being used. For this, open
the StudentController.cs file in the Controllers folder.

Find the CreateAsync() action method and replace the call to
CreateStudentAsync() with CreateStudentWithStoredProcAsync(), as
shown in Listing 7-4.

Listing 7-4. Creating an Action Method in StudentController.cs

// POST: Student/Create
[HttpPost]
[ActionName("Create")]
[ValidateAntiForgeryToken]

230

CHAPTER 7 ADVANCED CONCEPTS

public async Task<ActionResult> CreateAsync(Student student)

{
if (!'ModelState.IsValid)

return View(student);

try

{
Repository<Student>

.CreateStudentWithStoredProcAsync(student);

return RedirectToAction("Index");

}

catch

{
return View(student);

}

After these modifications, compile and run the application. It will
behave exactly as before but now it will use the stored procedure to create
new documents into the database.

Implementing Triggers

In Azure Cosmos DB, a trigger is similar to a stored procedure in the sense
that it is a JavaScript function with an id; however, triggers are different

in their execution because they run before or after a data manipulation
operation (create, update, or delete).

Similar to stored procedures, triggers have access to the Context object
but contrary to them, they cannot take any parameters. Triggers that run
before the data operation are called pre-triggers and those that run after
the operation are called post-triggers.

231

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

Pre-triggers have access to the request object and post-triggers have
access to the response object. Also, both pre-triggers and post-triggers
run within the same transaction context as the operation they are bound
to. This is important because any error thrown by the triggers will halt the
operation and roll back any modifications that have been made.

A big difference between Azure Cosmos DB triggers and relational
database triggers is that, as opposed as relational databases, triggers in
Azure Cosmos DB are optional and must be specified on each operation.
This is done for performance reasons but also to reduce the RUs required
for the operations. The way to include triggers in the execution of
operations is by adding them to the RequestOptions object.

Let’s look at an example. Imagine you have a request in which you
need to identify students that can be considered geniuses. For this
purpose, the criterion is to find out if a student is 15 years old or younger.
You want to do this in a way that every student is evaluated and a field is
set to true. Listing 7-5 illustrates a trigger that does this. Note that this
calculation for age does not take daylight savings or different time zones,
therefore it may not be 100% accurate on some extreme cases.

Listing 7-5. Trigger to Identify If a Student is 15 Years Old or Younger

function preCreateStudentIdentifyGenius(){
getContext();
context.getRequest();

var context

var request

// student document to be created in the current operation
var doc = request.getBody();

// Find age of student

var birthDate = new Date(doc.birthDate);

var ageDifMs = Date.now() - birthDate.getTime();

var ageDate = new Date(ageDifMs);

var age = Math.abs(ageDate.getUTCFullYear() - 1970);

232

CHAPTER 7 ADVANCED CONCEPTS

// Verify if the student is 15 years old or younger
if (age <= 15) {
doc.genius = true;

}

// update the document that will be created
request.setBody(doc);

The trigger is getting the context and request objects at the
beginning. With the request object you have access to the request body
using the getBody () method. The getBody() method will return the JSON
document representing the entity you are working on, which in this case is
a student document.

Then the trigger attempts to calculate the age of the student based on
the birth date, which is then used to evaluate if he or she is 15 years old
or younger. If so, a new property is added to the document indicating the
student is a genius.

Finally, the modified document is saved back to the body of the request
so it can be processed later.

After this is in place, you can modify the client to include the trigger
in the operation so it gets called. Listing 7-6 shows the adjustment to the
RequestOptions object.

Listing 7-6. Including a Trigger for Execution in the RequestOptions
Object

RequestOptions requestOptions = new RequestOptions {
PreTriggerInclude =
new List<string>
{ "preCreateStudentIdentifyGenius" }

};

233

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

Creating a Trigger

Triggers, similar to stored procedures, can be created either in the Azure

portal or programmatically.

Creating a Trigger in the Azure Portal

To create a trigger in the Azure portal, open the Data Explorer from the
menu and then click the collection. From the menu at the top, click the
New Trigger button shown in Figure 7-3.

:‘:_}1 New Collection E New SQL Query @3"2 New Stored Procedure ﬂr-;_ New UDF £ New Trigger
COLLECTIONS O <

~ & cosmosuniversity

‘ v ﬂstudent ‘

Documents

Scale & Settings
b Stored Procedures
» User Defined Functions

¥ Triggers

Figure 7-3. Creating a trigger from the Azure portal

This opens a new page with a textbox to type the name of the trigger.
You then need to select if it is a pre- or post-trigger in the Trigger Type
drop-down. Then you select whether the trigger should fire for all
operations or for one of create, delete, or replace. Finally, at the bottom
is the area to type in the trigger function. This is shown in Figure 7-4. Note
that in this figure I have selected a pre-trigger that is going to run before
creating documents. Once everything is ready, just click the Save button.

234

CHAPTER 7 ADVANCED CONCEPTS

[:_‘E New Collection E New SQL Query ggﬁ New Stored Procedure fin} New UDF i New Trigger [T_ﬂ Delete Collection]i[Delete

COLLECTIONS O < New Trigger 1 X
~ & cosmosuniversity Bsave) Discard
b D student

Documents Trigger Id

. reCreateStudentidentifyGenius
Scale & Settings P S

P Stored Procedures Trigger Type

P v
b User Defined Functions e

Trigger Operation
Create ¥

Trigger Body

1 function preCreateStudentIdentifyGenius(){
var context = getContext();
var request = context.getRequest();

¥ Triggers

// student document to be created in the current operation
var doc = request.getBody();

// find age of student T
var birthDate = new Date(doc.birthDate);
var ageDifMs = Date.now() - birthDate.getTime();

[T B T R YRR

=

Figure 7-4. Configuring a trigger

Creating a Trigger Programmatically

To programmatically create a trigger, you need to use a Trigger object.
This object has the same properties as in the Azure portal. You will have
to define the id of the trigger; the trigger function is passed as a string
in the Body property. The type of trigger is passed in the TriggerType
property which accepts values from the TriggerType enumeration

that has two possible values: Pre or Post. The trigger operation is
passed in the TriggerOperation property that accepts values from the
TriggerOperation enumeration which contains values for All, Create,
Delete, Replace, and Update. Listing 7-7 shows a method that creates a
trigger programmatically.

Once the Trigger object is created, you create the Uri of the
collection where the trigger will be added. Then you need to call the
CreateTriggerAsync() method that takes two parameters. The first one is
the collection Uri and the second one is the Trigger object.

235

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

Listing 7-7. Creating a Trigger Programmatically

public static async Task<Trigger> CreateAzureCosmosDBTriggerAsync()

{

var createTrigger = new Trigger
{
Id = "preCreateStudentIdentifyGenius",
Body = @"function preCreateStudentIdentifyGenius(){
var context = getContext();
var request = context.getRequest();

// student document to be created in
// the current operation
var doc = request.getBody();

// find age of student
var birthDate = new Date(doc.birthDate);
var ageDifMs = Date.now()
- birthDate.getTime();
var ageDate = new Date(ageDifMs);
var age = Math.abs(
ageDate.getUTCFullYear()- 1970);

// Verify if the student is
// 15 years old or younger
if (age <= 15) {

doc.genius = true;

}

// update the document that will be created
request.setBody(doc);

n
)

TriggerType = TriggerType.Pre,
TriggerOperation = TriggerOperation.Create

};

236

CHAPTER 7 ADVANCED CONCEPTS

Uri collectionUri =
UriFactory.CreateDocumentCollectionUri
(_dbName, _collectionName);

return await
client.CreateTriggerAsync
(collectionUri, createTrigger);

Implementing User-Defined Functions

A user-defined function (UDF) in Azure Cosmos DB is a JavaScript
function that can be used to implement simple business logic. UDFs don’t
have access to the context object and can only be used inside queries.
This is a huge distinction from stored procedures and triggers, and it has
an important implication because it means that UDFs can only be run on
read regions.

Let’s now create a UDF that can help you in your sample application.
In your application you list all the students and show all the properties
stored in the database. Let’s create a new page where you will see only
the first and last name of the students and their age. In this case, you
have the student’s birthdate but not the age, so let’s create a UDF that can
calculate it.

The code for this function is in Listing 7-8.

237

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

Listing 7-8. UDF to Calculate the Age of a Student Based on
Birthdate

function studentAge (studentBirthDate) {
var birthDate = new Date(studentBirthDate);
var ageDifMs = Date.now() - birthDate.getTime();
var ageDate = new Date(ageDifMs);
var age = Math.abs(ageDate.getUTCFullYear() - 1970);

return age;

For this calculation you're taking the code used in Listing 7-5 to
calculate the age of a student. Note that in the function there is no context
object and it only contains JavaScript functions.

Creating a UDF

To add the UDF to the collection, similar to stored procedures and triggers,
there are two options: using the Azure portal and programmatically.

Creating a UDF in the Azure Portal

To add a new UDF using the Azure portal, click in Data Explorer from
the left menu and then click New UDF at the top of the page, as shown in
Figure 7-5.

238

CHAPTER 7 ADVANCED CONCEPTS

ﬁ}:"_ New Collection "_E New SQL Query @"_’2 New Stored Procedure fin} New UDF ﬁ New Trigger
COLLECTIONS O X«

v # cosmosuniversity

‘ - ﬁstudenl

Documents
Scale & Settings
» Stored Procedures
» User Defined Functions

Triggers

Figure 7-5. Creating a UDF using the Azure portal

After you click the New UDF button, a new page opens up with two
fields to fill. The first one is the UDF id and the second one is the function
that will be executed. As you can see in Figure 7-6, enter studentAge in the
Id field; in the function body field, type the code from Listing 7-8.

(EF New SQL Query
O <«

i} New Collection
COLLECTIONS

~ & cosmosuniversity
- j student
Documents
Scale & Settings
b Stored Procedures
» User Defined Functions

P Triggers

4. NewTrigger [ii] Delete Collection

&5 New Stored Procedure fin}, New UDF

New User Defi... X

Save ? Discard

User Defined Function Id

| studentAge

User Defined Function Body
1 function studentAge (studentBirthDate) {
2 var birthDate = new Date(studentBirthDate);
var ageDifMs = Date.now() - birthDate.getTime();
var ageDate = new Date(ageDifMs);
var age = Math.abs(ageDate.getUTCFullYear() - 1978);

return age;

}

3
4
5
6
7
8
9

T

Figure 7-6. Creating the studentAge UDF

239

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

Creating a UDF Programmatically

The process to create a UDF programmatically is very similar to the one
you saw for creating a trigger or stored procedure. In this case, you need to
use a UserDefinedFunction object and you set the Id and Body properties
with the same values you saw in the previous section.

In Listing 7-9, you can see how this is implemented. The first thing
you do is create the UserDefinedFunction object as described earlier.
The Id of the function is studentAge and the Body property contains the
function, which is the same as in Listing 7-8. Once the object is created,
you create the Uri for the collection where the UDF will be stored.
Finally, you call the CreateUserDefinedFunction() method, passing as
parameters the two objects you created before: the collection Uri and the
UserDefinedFunction object.

Listing 7-9. Method to Create a UDF Programmatically

public static async Task<UserDefinedFunction> createUDF()

{

var createUDF = new UserDefinedFunction

{
Id = "studentAge",
Body = @"function studentAge (studentBirthDate) {
var birthDate = new Date(studentBirthDate);
var ageDifMs = Date.now() - birthDate.getTime();
var ageDate = new Date(ageDifMs);
var age = Math.abs(ageDate.getUTCFullYear()- 1970);
return age;
3
};

240

CHAPTER 7 ADVANCED CONCEPTS

Uri collectionUri =
UriFactory.CreateDocumentCollectionUri(
_dbName, collectionName);

return await
client.CreateUserDefinedFunctionAsync(
collectionUri, createUDF);

Using a UDF

Now that you have created a UDEF you are going to continue with the
scenario and implement the new page in your sample application to list
the names and ages of the students.

The first thing you need to do is add a new method to the Repository
class where you will be querying the database to get the properties you
want from the collection. In addition, the query will use the UDF you just
created to populate a new property called studentAge. I'm assuming at
this point the sample application is open in Visual Studio.

Open the Repository.cs file from the Models folder. You are going to
create a new async method named GetStudentsAgeAsync(). The method
will not accept any parameters. The method’s code is shown in Listing 7-10.

Listing 7-10. GetStudentsAgeAsync() Method in the Repository Class

public static async Task<IEnumerable<T>> GetStudentsAgeAsync()
{
Uri collectionUri =
UriFactory.CreateDocumentCollectionUri(
_dbName, collectionName);
FeedOptions feedOptions = new FeedOptions {

241

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

242

MaxItemCount = -1,
EnableCrossPartitionQuery = true

};

string sqlStatement =
@"SELECT s.firstName, s.lastName,
udf.studentAge(s.birthDate) AS studentAge

FROM s";
SqlQuerySpec querySpec = new SqlQuerySpec()
{
QueryText = sqlStatement,
};

IDocumentQuery<T> students =
client.CreateDocumentQuery<T>(collectionUri,
querySpec, feedOptions).AsDocumentQuery();

List<T> listOfStudents = new List<T>();
while (students.HasMoreResults)

{
1istOfStudents.AddRange(

await students.ExecuteNextAsync<T>());

}
return listOfStudents;

CHAPTER 7 ADVANCED CONCEPTS

The code implements a SQL query where you read the firstName and
lastName properties from the documents in the collection. In addition,
you've added a call to the UDF, passing as a parameter the birthDate
property. Note that for calling UDFs you will need to use the udf. prefix.
If you don’t use the prefix, you will get an error because this is how Azure
Cosmos DB identifies the function as a UDF. The rest of the code is very
similar to the method built in Listing 5-25 in Chapter 5, which implements
a query to the database using SQL syntax.

What follows is to create a new class that will represent this reduced
version of the Student.cs class that you created in Chapter 3. The class
will contain only three properties: the first name, last name, and age of a
student. The following steps will guide you through the process of adding
this class:

1. Right-click in the Models folder in the Solution
Explorer window. From the context menu, select
Add and then Class, as shown in Figure 7-7.

& View in Browser (Microsoft Edge) Ctrl+ Shift~W Seripts
Browse With... Views
| Home
A Controller... Add v i
T Newltem... Ctrl=Shift=A Scope to This Student
10 Esting tem... Shift-a+=a | Mew Solution Explorer View E EViewStant el
Web.config
Mew Scaffolded Item... Exclude From Project) Applicationinsights.config =
% Mew Folder HoCut CtrleX plo.. Team Explorer Server Explorer
Add ASP.NET Folder » |9 copy CtrleC ST
& DockerSupport n older Properties
REST AP Client... X Delete Del =
Mew Azure Weblob Project) Rename
Existing Project as Azure Weblob €* Open Folder in File Explorer e Models
% Class... N F Properties Alt+Enter
. . .
Figure 7-7. Adding a new class in the Models folder for your
document

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

2. When the Add New Item window opens, type the
name of the file as StudentAge. cs and click the Add
button, as shown in Figure 7-8.

Add New Item - CosmosUniversity. Web ?
4 Installed Sort by: Default BT
4 Visual C= rj" Class Visual C# * Type: Visual C#
;ode % An empty class declaration
cn
G:::m Q Class for U-SQL Visual C#
bW
- A;:NET Core f Azure Function Visual C2
ﬁ;?:::\s -0 Interface Visual C=
b Online ﬁ? ADOQ.NET Entity Data Mo... Visual C#
E Code Analysis Rule Set Visual C2
-C
N _'I Code File Visual C#
i‘i DataSet Visual C#
Name: StudentAge]

Add || Cancel

Figure 7-8. Creating a new class named StudentAge.cs

3. The class at this point will be empty. Add properties
representing each of the properties you want to
show in your new page. These properties are shown
in Listing 7-11.

Listing 7-11. New Model Representing a Student with Only the
Name and Age

using System;

using System.Collections.Generic;
using System.Lling;

using System.Web;

244

CHAPTER 7 ADVANCED CONCEPTS

namespace CosmosUniversity.Web.Models

{
public class StudentAge
{
public string Id { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }
public int StudentAge { get; set; }
}
}

4. Asyousaw in Chapter 3, the names of the properties
in the class use Pascal Case notation while the
JSON document uses Camel Case. This might cause
some problems but they are easily solved by adding
annotations to match the casing between both
formats. To make these annotations, you will need
to add the Newtonsoft.Json namespace to the class,
as shown in Listing 7-12.

Listing 7-12. StudentAge Model Now with Annotations in the Class
Properties to Match the JSON Document’s Camel Case

using Newtonsoft.Json;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

namespace CosmosUniversity.Web.Models

{
public class StudentAge

{

245

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

[JsonProperty(PropertyName = "id")]
public string Id { get; set; }

[IsonProperty(PropertyName = "firstName")]
public string FirstName { get; set; }

[IsonProperty(PropertyName = "lastName")]
public string LastName { get; set; }

[JsonProperty(PropertyName = "studentAge")]
public int StudentAge { get; set; }

5. The next step is to add an action method in the
student controller. Open the StudentController.cs
file in the Controllers folder. The code of the action
method is similar to the IndexAsync() method but it
uses the StudentAge model you created. The code of
the method is in Listing 7-13.

Listing 7-13. AgeList Action Method

[ActionName("AgeList")]
public async Task<ActionResult> AgelistAsync()

{
var students = await Repository<StudentAge>.GetStudentsAgeAsync();

return View(students);

In Listing 7-13 you are calling the
GetStudentsAgeAsync() method from the
Repository class and passing the results to the
view for rendering to the client.

246

CHAPTER 7 ADVANCED CONCEPTS

6. The final step is to create the view that will render the
results to the user. From the AgelList action method,
right-click the top of the View(students) code and
select Add View, as shown in Figure 7-9. This will
open the Add View window shown in Figure 7-10.

[ActionName(“AgeList")]
public async Task<ActionResult> AgelListAsync()

{

var students = await Repository<StudentAge>.GetStudentsAgeAsync();

return Viemictudontcis
} B GoTo View Ctrl+M, Ctrl+G
[HetpPost] [&) Add View...
[ActionName("I ', Quick Actions and Refactorings... Ctrl+.
[validateAntiF R C

trl+R, Ctrl+R

public async T ename 1S g filterValue, :
r Remnve and Sort Lcinns Ctrl+R Ctrd+G

Figure 7-9. Adding a view to render the results of the AgeList action
method

Add View X

View name: Agelist

Template: List v
Model class: StudentAge (CosmosUniversity.Web.Models) ¥
Options:

[T] Create as a partial view
Reference script libraries
Use a layout page:

(Leave empty if it is set in a Razor _viewstart file)

| add || Conce |

Figure 7-10. The Add View window

247

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

7. Inthe Add View window, type AgelList in the view
name field. Select List for the template because you
want to show a list of records. For this template to
work, you need to identify the Model class. Select
from the list StudentAge (CosmosUniversity.Web.
Models). This is the class you created earlier to use
for representing the data. Then uncheck the option
to create as a partial view and check the following
two options to reference script libraries and use a
layout page. Leave the last field empty to use the
same design as the rest of the site. Finally, click the
Add button.

8. When the view is created, it will open and you will
see it is a simple table with headers automatically
using the name of the fields they represent and a for
loop to iterate over all of the records returned in the
view model.

9. You are going to make a few tiny modifications to
change the page title and caption to List of Students
with Age. Also, remove the link to create a new
record and the column in the table where the links
to view details, edit, and delete are. The purpose of
this page is just to list the students. The final code for
the view is in Listing 7-14.

Listing 7-14. AgeList View
@model IEnumerable<CosmosUniversity.Web.Models.StudentAge>

@f
ViewBag.Title = "List of Students with Age";

248

CHAPTER 7 ADVANCED CONCEPTS
<h2>List of Students with Age</h2>

<table class="table">
<tr>
<th>
@Html.DisplayNameFor (model => model.FirstName)
</th>
<th>
@Html.DisplayNameFor(model => model.LastName)
</th>
<th>
@Html.DisplayNameFor(model => model.Age)
</th>
</tr>

@foreach (var item in Model) {
<tr>
<td>
@Html.DisplayFor(modelItem => item.FirstName)
</td>
<td>
@Html.DisplayFor(modelItem => item.LastName)
</td>
<td>
@Html.DisplayFor(modelItem => item.Age)
</td>
</tr>

}
</table>

249

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

10. Once you save the modifications for the view,
compile and run the application. To open this new
page, use the http://localhost: [port]/Student/
Agelist URL. In the URL, use the port Visual Studio
assigned in your environment. You should see a
result similar to the one shown in Figure 7-11.

B 8 B ustofStudentswithag X + - [m] A ‘

< Oy localhost ident/AgeList * = 7 &

List of Students with Age

FirstName LastName Age

Jose Guay 43

© 2017 - My ASP.NET Application

L+

Figure 7-11. Result of the query using a UDF to calculate the age of
students

Working with Dates

In Azure Cosmos DB, dates are serialized as strings using the ISO 8601
format. There is no native data type for DateTime as there is in relational
databases. This is because Azure Cosmos DB implements the native JSON
data model in which there are six basic types (string, number, boolean,
array, object, and null). Fortunately, JSON is flexible enough to represent
complex data types from these primitives, composing them as objects or
arrays.

250

CHAPTER 7 ADVANCED CONCEPTS

The fact that dates are serialized as strings should not be considered a
concern. There are several benefits.

e Strings can be compared, and the relative ordering
of the DateTime values is preserved when they are
transformed to strings.

e This approach doesn’t require any custom code or
attributes for JSON conversion.

o The dates as stored in JSON are human readable.

o This approach can take advantage of Azure Cosmos
DB’s index for fast query performance.

The document in Listing 7-15 shows how the dates are serialized.

Listing 7-15. JSON Document with a Date Property Serialized as a
String

{

"id": "497c1321-0d58-4fdc-a99b-85eca0815a95",

"firstName": "Jose",

"lastName": "Guay",

"birthDate": "1974-04-07T00:00:00",

"address1": "123 Main St.",

"address2": null,

"city": "Chicago",

"state": "IL",

"postalCode": 60601,

"phoneNumber”: "3126130813",

" rid": "hQlzAP7VMgAKAAAAAAAAAA==" ,

" self":

"dbs/hQlzAA==/colls/hQ1zAP7VMgA=/docs/hQlzAP7VMg
AKAAAAAAAAAA==/",

251

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

" etag": "\"00005d48-0000-0000-0000-59f7fde60000\"",
" attachments": "attachments/",
"_ts": 1509424614

Asyou can see in Listing 7-15, the birthDate property is in ISO 8601
format; however, the internal timestamp property (_ts) is serialized as a
Unix timestamp, which is a number representing the number of elapsed
seconds since January 1, 1970. This format is available for your dates as
well by implementing the UnixDateTimeConverter class. More information
on the class can be found at http://bit.ly/UnixDateTimeConverter.

The two date formats have both advantages and disadvantages.

The advantage of the Unix format is that it has no ambiguity. It is a clear
number (of seconds) that can be easily converted into a different format.
The big disadvantage is that it is really not human readable. Unless it is
converted, the number has no actual meaning when read by a person. This
is the big advantage of the ISO 8601 format: it can be read very easily.

An important consideration when querying documents involving date
ranges is that, for efficiency and performance, the indexing policy should be
configured for range indexing on strings. I covered indexing in Chapter 5.

Backing Up and Restoring Azure Cosmos
DB Databases

Backing up databases is one of the most important tasks for any database
administrator. Backups can help recover deleted or corrupted data from a
database and can even help restore an entire database if it is accidentally
(or deliberately) deleted.

In Azure Cosmos DB, data is globally distributed (or replicated) to
multiple regions to provide a high level of redundancy in the event of
region failures. In addition to global distribution, Azure performs full,

252

http://bit.ly/UnixDateTimeConverter

CHAPTER 7 ADVANCED CONCEPTS

automatic backups on all Azure Cosmos DB databases approximately
every four hours. On top of this, data and backups are geo-replicated to
make them even more resilient to failures.

Backups are performed in the background without affecting the
performance or availability of the databases, and most importantly, this
processing does not count towards your provisioned RUs.

Backup Retention Policy

A very important consideration of these automatic backups is its
retention policy. Azure only keeps the last two backups, which gives
you approximately eight hours to respond to a data loss issue before the
data becomes unrecoverable. This is because after data is deleted, the
databases are still being backed up and after eight hours there would be
two backups that would not contain the deleted data.

In the event of a database deletion, the last two backups made are kept
for up to 30 days. This gives you plenty of time to decide if you want to
recover the database or not.

If your internal backup retention policy is different, you have to make
a copy of your databases using the Azure Cosmos DB Data Migration Tool
based on the schedule you need. Just take into consideration that the
processing of these backups will count towards your provisioned RUs.

Restoring Databases

In the event you need to restore a database from the automatic backups,
you will need to contact Azure support either by filing a support ticket
or by phone. If the restore is from your own backups, then all you need
to do is copy back the information using the Azure Cosmos DB Data
Migration Tool.

253

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 ADVANCED CONCEPTS

Summary

In this chapter you learned how to create stored procedures, triggers,
and user-defined functions using both methods: the Azure portal and
programmatically. You saw how they work, their properties, advantages,
and usages. You reviewed the concept of transactions and how they apply
to Azure Cosmos DB. You worked with a stored procedure that replaced
the typical call to the SDK to create documents; you also added a trigger
that manipulated the document prior to insertion and you created a user-
defined function that was later used in a query to report on stored data.
In the last part of the chapter you reviewed the date data type and how
itis handled by Azure Cosmos DB in JSON documents. You also learned
about full automatic backups performed by Azure and that to restore a
database from a backup you need to file a support ticket or call Azure
support.

254

Index

A

APIs
DocumentDB, 49-51
graph database, 53-57
MongoDB, 51-53
REST API, 46-48
Table, 57-58
Azure Cosmos DB
account creation, 15-21
APIs, 3
consistency models, 4
database, 21-23
global distribution, 2
high availability, 4
installation
emulator, 12, 14-15
Visual Studio, 4-6, 8-11
internet-scale applications, 2
response time, 4
throughput, 3

B

Backups
restoring databases, 253
retention policy, 253
Bounded staleness consistency
model, 32

© José Rolando Guay Paz 2018

C

Consistency models
bounded staleness, 32
consistent prefix, 33
definition, 28
eventual, 31-32
queries, 34
session, 33
strong, 30-31
throughput and latency, 29

Consistent prefix consistency

model, 33

D

Database
ASP.NET web application
controllers, 82-84
MVC, 79

project creation, 78, 80-81

Visual Studio 77, 2017
class, 85-86, 88-89
creation

emulator, 62-65

New Collection, 66-69
data layer (see Data layer)
Data Migration Tool, 71
emulator

J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,

https://doi.org/10.1007/978-1-4842-3351-1

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-3351-1
http://www.allitebooks.org

INDEX

Database (cont.) installation
collection, 72 DocumentDB, 128-131
new document, 72-75 source code, 132-140
properties, 75-76 software requirements, 126
JSON, 69-70 Dates
Data layer advantages and
action method, 105 disadvantages, 252
Add View, 106-110 strings, 250-252
asynchronous function, DocumentDB API
104-105 C#, 49-50
controller actions, 113 JSON, 50-51
create student, 111
DeleteStudentAsync()
method, 120-122 E
document Eventual consistency model, 31-32

creation, 101
deletion, 102-103

replace, 102 F
Edit actions, 116-118 Failover
GetStudentsAsync() automatic, 209-210
method, 104 manual, 208-209

graphical user interface, 91
Index View, 113

.NET SDK, 92 G! H

Package Manager Console, 90 Global distribution

query, 114-115 Azure Cosmos DB, 203, 205

querying, 97-101 read and write operations,

repository class, 94-96 27-28

StudentController, 103 replication, 26, 206-208
Data Migration Tool (DMT) Graph APIJ, 53-57

API, 125 Graphical user interface (GUI)

features, 127 JSON files

GUI (see Graphical user advanced, 148-149

interface (GUI)) CLI, 157

256

extract, 140

MongoDB, 154-155

Source Information, 142

SQL Server, 151, 153-154

Summary, 149

Target Information, 144-147
to manage packages, 90-91

LJ,K

Indexing
default policy, 160-162
modes, 162-163
paths, 163-165
policy, 165-166
property, 160

L

LINQ queries, 197-200

M,N, O

Master keys, 44

MongoDB API
GetDatabase() method, 52-53
.NET SDK, 52

Multi-master database
application, 213
multiple write regions, 214-218

PQ

Partitioning
containers, 34-35

INDEX

hash-based partitioning, 36
query and transactions, 37
Preferred regions, 211-213

R

Request unit, 38
Resource tokens, 45
REST API, 46-48

S

Security
encryption at rest, 41
firewall, 42-44
master keys, 44
resource tokens, 45
Session consistency
model, 33
SQL queries
application
cross-partition query, 192
Index() action, 188-189
modifications, 182
partitioned collection, 191
Project/Solution, 183-185
StudentController, 187
Views/Student, 185
built-in functions, 181
FROM clause, 171, 173-174
GetStudentsSQLAsync()
method, 193-195
iterations, 177-178
joins, 179-180

257

vww . allitebooks.con

http://www.allitebooks.org

INDEX

SQL queries (cont.)
ORDER BY clause, 176

parameterized SQL, 180-181,

195-197
SELECT clause, 169-171
SELECT statement, 167, 168
WHERE clause, 174-175
Stored procedures
creation
Azure Portal, 225-226

programmatically, 226-229

execution, 229-231

student documents, creating,

220-224

Strong consistency model, 30-31

T

Table API, 57-58
Throughput
estimation, 39, 41
request unit (RU), 38

258

Transactions, 219-220
Triggers
creation
Azure Portal, 234
programmatically, 235, 237
getBody() method, 233
pre/post, 231
RequestOptions object, 233

UVWXYZ
UDE see User-defined function
(UDF)

User-defined function (UDF)
AgelList action, 246-247
AgelList View, 248-250
creation

Azure Portal, 238-239
programmatically, 240-241
GetStudentsAgeAsync()
method, 241-243
StudentAge model, 245-246

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Azure Cosmos DB
	What Is Azure Cosmos DB?
	Major Features
	Turnkey Global Distribution
	Multiple Data Models and APIs
	Elastically Scale Throughput and Storage on Demand
	High Availability and Response Time
	Five Consistency Models

	Setting Up the Development Environment
	Installing Microsoft Visual Studio
	Installing the Azure Cosmos DB Emulator

	Creating a Microsoft Azure Account and Subscription
	Provisioning an Azure Cosmos DB Database
	Summary

	Chapter 2: Learning Azure Cosmos DB Concepts
	Understanding Global Distribution
	Introducing Write and Read Regions

	Understanding the Consistency Models
	Scope of Consistency
	Strong Consistency Model
	Eventual Consistency Model
	Bounded Staleness Consistency Model
	Session Consistency Model
	Consistent Prefix Consistency Model
	Consistency for Queries

	Understanding Partitioning
	What Are Containers?
	How Does Partitioning Work?
	Designing for Partitioning
	Boundary for Query and Transactions
	No Storage and Performance Bottlenecks

	Understanding Throughput
	Specifying Request Unit Capacity
	Estimating Throughput

	Implementing Security
	Encryption at Rest
	Firewall Support
	Securing Access to Data
	Master Keys
	Resource Tokens

	Supported APIs
	Azure Cosmos DB REST API
	DocumentDB API
	MongoDB API
	Graph API
	Table API

	Summary

	Chapter 3: Working with an Azure Cosmos DB Database
	Creating Your Database
	Defining the Document
	Managing Documents
	Using the Azure Cosmos DB Emulator to Manage Documents
	Managing Documents with an Application
	Creating the ASP.NET Web Application
	Creating a Class for the Document
	Creating the Data Layer
	Querying the Database
	Creating a Document
	Replacing a Document
	Deleting a Document

	Using the Data Layer in the Controller and Completing the Application

	Summary

	Chapter 4: Importing Data into an Azure Cosmos DB Database
	Introducing the DocumentDB Data Migration Tool
	Software Requirements
	Features of the DocumentDB Data Migration Tool
	Installing the DocumentDB Data Migration Tool
	Installing the DocumentDB Data Migration Tool from the Source Code

	Importing Data with the DocumentDB Data Migration Tool GUI
	Importing JSON Files
	Importing from SQL Server
	Importing from MongoDB

	Importing Data with the DocumentDB Data Migration Tool Command Line Interface
	Summary

	Chapter 5: Querying an Azure Cosmos DB Database
	Understanding Indexing
	Understanding the Indexing Mode
	Understanding Index Paths
	Adjusting the Indexing Policy

	Querying an Azure Cosmos DB Database
	Learning the SELECT Statement
	Understanding the SELECT Clause
	Understanding the FROM Clause
	Understanding the WHERE Clause
	Understanding the ORDER BY Clause

	Working with Iterations
	Understanding Joins
	Working with Parameterized SQL Queries
	Using Built-In Functions

	Extending the Sample Application
	Implementing SQL Queries
	Implementing Parameterized Queries
	Implementing LINQ Queries

	Summary

	Chapter 6: Working with a Globally Distributed Database
	Configuring Global Distribution
	Configuring Failover
	Working with Manual Failover
	Configuring Automatic Failover

	Connecting to a Preferred Region
	Implementing a Multi-Master Database
	Application Scenario
	Implementing the Solution

	Summary

	Chapter 7: Advanced Concepts
	Working with Transactions
	Implementing Stored Procedures
	Creating a Stored Procedure
	Creating a Stored Procedure in the Azure Portal
	Creating a Stored Procedure Programmatically

	Executing a Stored Procedure

	Implementing Triggers
	Creating a Trigger
	Creating a Trigger in the Azure Portal
	Creating a Trigger Programmatically

	Implementing User-Defined Functions
	Creating a UDF
	Creating a UDF in the Azure Portal
	Creating a UDF Programmatically

	Using a UDF

	Working with Dates
	Backing Up and Restoring Azure Cosmos DB Databases
	Backup Retention Policy
	Restoring Databases

	Summary

	Index

