
Microsoft Azure
Cosmos DB Revealed

A Multi-Modal Database Designed
for the Cloud
—
Building globally distributed
mission-critical applications
—
José Rolando Guay Paz

www.allitebooks.com

http://www.allitebooks.org

Microsoft Azure
Cosmos DB Revealed

A Multi-Modal Database
Designed for the Cloud

José Rolando Guay Paz

Microsoft Azure Cosmos DB Revealed

ISBN-13 (pbk): 978-1-4842-3350-4		 ISBN-13 (electronic): 978-1-4842-3351-1
https://doi.org/10.1007/978-1-4842-3351-1

Library of Congress Control Number: 2018930529

Copyright © 2018 by José Rolando Guay Paz

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Warner Chaves
Coordinating Editor: Jill Balzano
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484233504.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

José Rolando Guay Paz
Beach Park, Illinois, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3351-1
http://www.allitebooks.org

To the Lord, Jesus Christ

To my wife, Karina, and my daughters,
Sara and Samantha

v

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Table of Contents

Chapter 1: �Introduction to Azure Cosmos DB��1

What Is Azure Cosmos DB?��2

Major Features���2

Turnkey Global Distribution��2

Multiple Data Models and APIs���3

Elastically Scale Throughput and Storage on Demand�������������������������������������3

High Availability and Response Time��4

Five Consistency Models��4

Setting Up the Development Environment���4

Installing Microsoft Visual Studio���4

Installing the Azure Cosmos DB Emulator��12

Creating a Microsoft Azure Account and Subscription���15

Provisioning an Azure Cosmos DB Database���21

Summary���23

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: �Learning Azure Cosmos DB Concepts��������������������������������25

Understanding Global Distribution���25

Introducing Write and Read Regions��27

Understanding the Consistency Models���28

Scope of Consistency���29

Strong Consistency Model��30

Eventual Consistency Model���31

Bounded Staleness Consistency Model��32

Session Consistency Model��33

Consistent Prefix Consistency Model���33

Consistency for Queries��34

Understanding Partitioning��34

What Are Containers?���34

How Does Partitioning Work?���36

Designing for Partitioning���37

Understanding Throughput��38

Specifying Request Unit Capacity���38

Estimating Throughput���39

Implementing Security���41

Encryption at Rest��41

Firewall Support���42

Securing Access to Data���44

Supported APIs���46

Azure Cosmos DB REST API��46

DocumentDB API���49

MongoDB API��51

Table of Contents

vii

Graph API��53

Table API���57

Summary���59

Chapter 3: �Working with an Azure Cosmos DB Database��������������������61

Creating Your Database��62

Defining the Document��69

Managing Documents��70

Using the Azure Cosmos DB Emulator to Manage Documents����������������������������71

Managing Documents with an Application��77

Creating the ASP.NET Web Application���77

Creating a Class for the Document���85

Creating the Data Layer��89

Using the Data Layer in the Controller and Completing the Application�������103

Summary���122

Chapter 4: �Importing Data into an Azure Cosmos DB Database��������125

Introducing the DocumentDB Data Migration Tool���125

Software Requirements��126

Features of the DocumentDB Data Migration Tool��127

Installing the DocumentDB Data Migration Tool���128

Installing the DocumentDB Data Migration Tool from the Source Code�������132

Importing Data with the DocumentDB Data Migration Tool GUI�������������������������140

Importing JSON Files��140

Importing from SQL Server���151

Importing from MongoDB���154

Importing Data with the DocumentDB Data Migration Tool Command
Line Interface���156

Summary���157

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

Chapter 5: �Querying an Azure Cosmos DB Database�������������������������159

Understanding Indexing���159

Understanding the Indexing Mode��162

Understanding Index Paths���163

Adjusting the Indexing Policy���165

Querying an Azure Cosmos DB Database��167

Learning the SELECT Statement���167

Working with Iterations��177

Understanding Joins���179

Working with Parameterized SQL Queries��180

Using Built-In Functions���181

Extending the Sample Application���182

Implementing SQL Queries���193

Implementing Parameterized Queries��195

Implementing LINQ Queries��197

Summary���200

Chapter 6: �Working with a Globally Distributed Database����������������203

Configuring Global Distribution��203

Configuring Failover���208

Working with Manual Failover��208

Configuring Automatic Failover��209

Connecting to a Preferred Region��211

Implementing a Multi-Master Database��213

Application Scenario���213

Implementing the Solution���214

Summary���218

Table of Contents

ix

Chapter 7: �Advanced Concepts��219

Working with Transactions���219

Implementing Stored Procedures��220

Creating a Stored Procedure��225

Executing a Stored Procedure��229

Implementing Triggers���231

Creating a Trigger���234

Implementing User-Defined Functions���237

Creating a UDF��238

Using a UDF��241

Working with Dates��250

Backing Up and Restoring Azure Cosmos DB Databases�����������������������������������252

Backup Retention Policy���253

Restoring Databases��253

Summary���254

�Index��255

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

José Rolando Guay Paz is a professional developer with more than

20 years of experience in implementing database-backed applications. He

was among the first in Central America to build commercial applications

using Microsoft .NET. He has deep experience in Oracle Database and

SQL Server, and he is an MCPD in ASP.NET 3.5/4.0, an MCSD in web

applications, and an MCTS in SQL Server 2012/2014. José’s native

language is Spanish, he is fluent in English, and he has learned some

French. He holds a bachelor’s degree in Computer Science and a master’s

degree in Finance.

xiii

About the Technical Reviewer

Warner Chaves is a SQL Server MCM, Data

Platform MVP, and Principal Consultant at

Pythian, a Canada-based global company

specializing in database services and

analytics. A brief stint in .NET programming

led to his early DBA formation working for

enterprise customers in Hewlett-Packard’s ITO

organization. From there he transitioned to

his current position at Pythian, building and

managing data solutions in many industry verticals while leading a highly

talented team of data platform consultants.  

www.allitebooks.com

http://www.allitebooks.org

xv

Acknowledgments

I can’t thank Jonathan Gennick enough for helping to make this book a

reality, providing valuable advice, and pushing when needed. Thanks also

go to Jill Balzano for keeping all things organized. The technical reviewer,

Warner Chaves, was a key player in ensuring the quality of the content.

And thank you to the many people at Apress who were involved in one way

or another in this project.

1© José Rolando Guay Paz 2018
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_1

CHAPTER 1

Introduction to Azure
Cosmos DB
The database space has been greatly dominated by relational database

management systems (or RDBMSs) such as Microsoft® SQL Server or

Oracle. This dominance was made possible in part by the wide range of

solutions that can be built on top of those systems but also because of

the powerful products that are available. There is, however, a different

approach to data management, commonly known as NoSQL. The term

NoSQL stands for “non SQL” or “not only SQL” since SQL (Structured

Query Language) is almost exclusively tied to relational systems. NoSQL

databases have existed since the 1960s but it wasn’t until the early 2000s

that they gained a lot of popularity with companies like Facebook and

Amazon implementing them and products such as MongoDB, Cassandra,

and Redis becoming the choices for many developers.

In this chapter, I will introduce Azure Cosmos DB, Microsoft’s

NoSQL database, which is available in Microsoft Azure as a globally

distributed, multi-node database service. We will examine what it is and

its main features, but most importantly, at the end of the chapter, you

will have a complete development environment that you can use for your

applications.

www.allitebooks.com

http://www.allitebooks.org

2

�What Is Azure Cosmos DB?
Azure Cosmos DB started in 2010 as an internal Microsoft project known

as “Project Florence.” The objective of the project was to address some of

the problems that the Microsoft developers were facing with large Internet-

scale applications. In 2015, the project was made available to external

developers in Microsoft Azure and a new product was born under the

name of DocumentDB. Finally, at the Microsoft Build 2017 conference,

Azure Cosmos DB was officially launched with existing DocumentDB

capabilities such as global distribution and horizontal scale with low

latency and high throughput.

What’s new in Azure Cosmos DB is that it natively supports multiple

data models: key-value, documents, graph, columnar, and more that

are currently being developed. This gives you the freedom to work with

your data in the form that best describes it. It also supports multiple

APIs for accessing data including DocumentDB SQL, MongoDB,

Apache Cassandra, Graph, and Table.

�Major Features
The following are some of the most important features of Azure Cosmos

DB. There are many features in the product, but what follows are the ones that

drove the implementation. They are what the product developers most had in

mind. Most of these features were present since DocumentDB; however, with

the evolution of the product, new features were introduced, making Azure

Cosmos DB what is now. Many more features are under development.

�Turnkey Global Distribution
Global distribution means that your databases can be distributed across

different regions of Microsoft Azure and can be stored and accessible

closer to your clients. This powerful functionality has a high degree

Chapter 1 Introduction to Azure Cosmos DB

3

of automation and performance. There is no need to handle complex

configurations, replication downtime, high latency, or security concerns.

Using the Microsoft Azure portal, all you need to do is select the regions

where the database will be distributed and the portal will do the rest.

�Multiple Data Models and APIs
With Azure Cosmos DB, you can select the data model that best represents

your data. There is no need to think in terms of a rigid structure for the

data. If, for example, you want to store user settings, you can use the

key-value data model; if you want to work with orders, products, and

payments, you can use a document data model. If your data is best

described as relations between entities, then use a graph data model.

The DocumentDB API provides familiar SQL query capabilities. If you

have an application built on MongoDB, you can use the MongoDB API

transparently; in many cases there is no need to rewrite the application,

only change the connection string. For key-value databases, you can use

the Table API, which provides the same functionality as Azure Table storage

but with the benefits of the Azure Cosmos DB engine. With the Graph API,

you can use the Apache TinkerPop graph traversal language, Gremlin, or

any other TinkerPop-compatible graph system like Apache Spark GraphX.

�Elastically Scale Throughput and Storage
on Demand
Throughput in Azure Cosmos DB can be configured in requests per second

based on the requirements of your application. You can also change this

configuration at any time.

You can use all the storage you need. There are no caps as to how

much data you can store. Also, scaling databases is transparent and

happens automatically based on the configuration you set for your

account.

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

4

�High Availability and Response Time
Azure Cosmos DB has a standing SLA of 99.99% availability and a latency

in the 99th percentile regardless of the region. It also provides a guaranteed

throughput and consistency.

�Five Consistency Models
Azure Cosmos DB provides five different consistency models, from strong

SQL-like consistency to NoSQL-like eventual consistency. It all depends

on what your business or application needs.

�Setting Up the Development Environment
To develop applications with Azure Cosmos DB, I recommend using

Microsoft Visual Studio 2017. The main reason for this recommendation

is that it is very easy to build, test, and deploy applications for Microsoft

Azure. Another reason is that Visual Studio has a free edition called Visual

Studio Community Edition that has all the capabilities we need to develop

applications with Azure Cosmos DB.

�Installing Microsoft Visual Studio
If you already have Visual Studio 2017 installed, you can skip this section.

To obtain Visual Studio, all you need to do is the following:

	 1.	 Open your browser and go to www.visualstudio.com/.

The page is shown in Figure 1-1.

	 2.	 From the Download Visual Studio drop-down,

select Community 2017. If you have a license for a

different edition, you can download it by selecting it

from the options.

Chapter 1 Introduction to Azure Cosmos DB

http://www.visualstudio.com/

5

	 3.	 After selecting an edition to download, you will be

redirected to a new page where your download

will start.

	 4.	 Save the installer file in a folder by clicking the Save

button, as shown in Figure 1-2.

Figure 1-1.  Download Microsoft Visual Studio 2017

Figure 1-2.  Save the installer file to a folder

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

6

	 5.	 After the download has completed, run the installer

file by clicking the Run button shown in Figure 1-3.

	 6.	 You may be prompted to authorize the file to run.

Select Yes in the prompt window.

	 7.	 The first window in the installation program (shown

in Figure 1-4) will show you links to read the

Microsoft Privacy Statement as well as the license

terms. Accept the license terms by clicking the

Continue button.

Figure 1-3.  Run the installer file

Figure 1-4.  Visual Studio license terms and privacy statement
window

Chapter 1 Introduction to Azure Cosmos DB

7

	 8.	 Once you click the button, the installation program

will download the most current list of options to

install, as seen in Figure 1-5.

Figure 1-5.  Downloading installation options

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

8

	 9.	 After the options are downloaded, they will

be displayed so you can select the necessary

components for the types of applications you will

develop. Figure 1-6 shows these components. In this

case, you will select ASP.NET and web development

and Azure development.

	 10.	 Leave the default location to copy the files and click

the Install button.

Figure 1-6.  Selecting Visual Studio components to install

Chapter 1 Introduction to Azure Cosmos DB

9

	 11.	 The program will start downloading the necessary

files from Microsoft and install Visual Studio, as

shown in Figure 1-7.

	 12.	 Once the installation has completed, you will need

to restart your PC. Figure 1-8 shows the window

requiring you to restart your PC. You can choose

to do so later but it is not recommended to try to

launch Visual Studio before restarting the PC.

Figure 1-7.  Downloading and installing Visual Studio
Community 2017

Figure 1-8.  Restart your PC after installation has completed

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

10

	 13.	 Figure 1-9 shows Visual Studio’s welcome window.

After you restart, you can launch Visual Studio. It

will ask you to sign in with a Microsoft account such

as an Outlook.com or Office 365 account.

Figure 1-9.  Sign in with a Microsoft account

Chapter 1 Introduction to Azure Cosmos DB

11

	 14.	 Next, you will be asked to configure some settings

for Visual Studio, as shown in Figure 1-10. For the

development settings, select Web Development. For

the color theme, choose the color you like the most.

Figure 1-10.  Visual Studio’s welcome window and environment
settings

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

12

	 15.	 That’s it. You now have Visual Studio installed and

running.

�Installing the Azure Cosmos DB Emulator
With Azure Cosmos DB Emulator, you can develop your application locally

on your own computer without creating an Azure subscription or incurring

any costs. Once the application is ready for deployment, all you need to do

is to switch to an Azure Cosmos DB subscription.

The emulator has some requirements before it can be installed:

•	 It will only run on Windows 10, Windows Server 2012

R2, or Windows Server 2016.

•	 It needs 2GB of RAM and at least 10GB of free disk

space for storage.

To install the emulator, use the following instructions:

•	 Using your browser, download the emulator installer

from https://aka.ms/cosmosdb-emulator.

•	 Save the installer file in a folder, as shown in Figure 1-11.

•	 After the download is complete, run the installer file as

shown in Figure 1-12.

Figure 1-11.  Download and save the installer file

Figure 1-12.  Run the installer file

Chapter 1 Introduction to Azure Cosmos DB

https://aka.ms/cosmosdb-emulator

13

•	 Figure 1-13 shows the first window in the installation

program. Check the box to accept the license agreement

and click the Install button.

•	 You may be prompted to authorize the file to run.

Select Yes in the prompt window.

Figure 1-13.  Accept the license agreement and click the Install
button

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

14

•	 The installation will happen very quickly and then the

final window will give you the option to launch the

emulator. Check the box to launch the emulator and

then click the Finish button, as shown in Figure 1-14.

Figure 1-14.  Installation of the Azure Cosmos DB Emulator is
complete

Chapter 1 Introduction to Azure Cosmos DB

15

•	 After you click the Finish button, the emulator starts

and launches the web interface (shown in Figure 1-15).

This will indicate that the installation was successful.

With these tools, you have now set up a development environment to

create applications that use Azure Cosmos DB.

�Creating a Microsoft Azure Account
and Subscription
Microsoft has made the process of creating an Azure account very easy.

The account will give you access to Azure, but in order to use the products

you must also create a subscription. The subscription you will create now

Figure 1-15.  Azure Cosmos DB Emulator web interface

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

16

is based on the free tier, which gives you (at the time of this writing) one

month and $200 in credits to use. To create your account, perform the

following steps:

	 1.	 You can start by navigating in your browser to

http://bit.ly/azure-free-account. This page

will give you information about the benefits of the

free tier in Microsoft Azure and will also give you

access to create your account. Note that creating an

account does not cost anything.

	 2.	 To create an account, click the green button labeled

“Start free,” shown in Figure 1-16.

Figure 1-16.  Click the “Start free” button to start creating your Azure
account

Chapter 1 Introduction to Azure Cosmos DB

http://bit.ly/azure-free-account

17

	 3.	 On the following page, you need to sign up with

your Microsoft account. If you don’t have one, you

can create one by following the link Create a new

Microsoft account at the bottom of the page, as

shown in Figure 1-17.

	 4.	 Once you have signed in or created a new Microsoft

account, your Azure account is active.

Figure 1-17.  Sign in with your Microsoft account

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

18

	 5.	 Now it is time to create your subscription. For the

subscription, you will be presented with a four-step

form. At the end of the four steps you will have an

active subscription based on the free tier. The first step

is information about you, as shown in Figure 1-18.

Figure 1-18.  Information about you to create your Azure account
and subscription

Chapter 1 Introduction to Azure Cosmos DB

19

	 6.	 The second step is to add a valid mobile phone

number to validate your identity. It should be a

standard mobile number; VOIP numbers are not

accepted. The step is shown in Figure 1-19. This is

the first identity verification. There will be a second

one following this step. Once you enter your mobile

phone number, click the “Send text message” button

to get a verification code. Once you receive that code,

type it into the third box and click the “Verify code”

button.

Figure 1-19.  Enter your mobile phone number to validate your
identity

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

20

	 7.	 In step three, the process will ask for a credit card.

You will need to enter the credit card information

along with the billing address associated with the

card. The information is shown in Figure 1-20. At

this point, the credit card information is just for

identity verification and will not be charged until you

switch to a paid type subscription.

Figure 1-20.  Enter the credit card information to be used in your
subscription

Chapter 1 Introduction to Azure Cosmos DB

21

	 8.	 The final step in the subscription process is to

accept the subscription agreement, offer details, and

privacy statement shown in Figure 1-21. Just check

the box to agree and click the “Sign up” button. You

will be redirected to the Azure portal.

�Provisioning an Azure Cosmos DB Database
Now that you have created your account and subscription, you are ready to

provision your first Azure Cosmos DB database. The process is very simple.

Just follow the next steps, which are illustrated in Figure 1-22.

	 1.	 From the Azure portal, click in the big plus sign

in the top left corner. This will open the services

categories panel where you can select the new

service to be added.

	 2.	 From the categories panel, select Databases. This

will open the services under the Databases category.

	 3.	 Select Azure Cosmos DB. The Azure Cosmos DB

account form panel is opened.

	 4.	 You now need to fill the Azure Cosmos DB account

form.

Figure 1-21.  Accept the agreement, offer details, and privacy
statement

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

22

	 a.	 ID: This field identifies the Azure Cosmos DB

account. Enter a name that uniquely identifies your

account. A green checkmark at the end of the field

will show up if the name is valid.

	 b.	 API: For this field, you need to select between

Gremlin (graph), MongoDB, SQL (DocumentDB), or

Table (key-value).

	 c.	 Subscription: Select the new free subscription you

just created in the previous section.

	 d.	 Resource Group: A resource group is a collection of

resources or services in Microsoft Azure that share

the same lifecycle, permissions, and policies. Create

a new resource group by entering its name or select

one from the list if you have created one. Since this is

the first resource being created, you will need to enter

the resource group name and select “Create new.”

	 e.	 Location: This field refers to the Azure region where

the database will be first created. Select the one

closest to you, or if you know your target market, the

one closest to it to get better network speed.

Chapter 1 Introduction to Azure Cosmos DB

23

�Summary
In this chapter, I introduced you to Azure Cosmos DB and its major

features. You read about global distribution and how it helps get the data

closer to your application’s users and how it allows you to have a higher

availability, which is also guaranteed in the standard SLA. I explained

the different data models and supported APIs and also briefly mentioned

scalability and consistency.

You now have a complete development environment with Microsoft

Visual Studio 2017 and the Azure Cosmos DB Emulator. These are the tools

to develop, test, and deploy your applications to Azure. Finally, you have

created your Microsoft Azure account and subscription, and you have

provisioned your first Azure Cosmos DB database.

In the next chapter, we will examine these concepts in detail.

Figure 1-22.  Creating a new Azure Cosmos DB database

Chapter 1 Introduction to Azure Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

25© José Rolando Guay Paz 2018
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_2

CHAPTER 2

Learning Azure
Cosmos DB Concepts
To properly implement and use an Azure Cosmos DB database, it is very

important to understand several key concepts about the internals of the

service. In this chapter, I am going to examine concepts such as global

distribution, partitioning, and consistency to provide a solid foundation

upon which you will be able to build robust, scalable, and secure

applications.

Understanding these concepts is the best way to leverage all of the

potential and capabilities of Azure Cosmos DB. It’s important that you

know what you can do and that you understand why things work in a

certain way.

�Understanding Global Distribution
Microsoft Azure is available globally in over 30 regions, and it is constantly

growing. Azure Cosmos DB is available in all of the existing regions,

but because it is internally classified as a Ring 0 Azure Service, it will be

available in any new region by default. Azure Cosmos DB databases can be

distributed across these regions to provide higher availability, scalability,

and throughput (I will discuss throughput later in this chapter).

26

Global distribution is a comparable concept to what replication is for

relational databases; the difference is that everything is handled by Azure

and you don’t need complex configurations either at the database level or

the application level.

To understand how simple the process to distribute a database is, see

Figure 2-1. It shows the database created in Chapter 1 in the Azure portal.

I have clicked the Replicate data globally option on the left menu and it

displays a world map with all the available Azure regions.

For this database, the region where the database was created is shown

in a solid light blue hexagon with a white checkmark. The available regions

are shown in hexagons with a white background and a solid dark blue

border. The regions where the database will be distributed (or replicated)

are shown in hexagons with a solid dark blue background with a white

checkmark.

Figure 2-1.  Azure Cosmos DB database distributed to four
regions

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

27

�Introducing Write and Read Regions
When the database was first created, it was based on only one region. This

default configuration defines the first (and only) region where a database

accepts read and write operations. When you distribute the database to

more regions, the new regions automatically become read regions.

When this new configuration is in place, you also enable the failover

feature. By default, failover happens manually, meaning you will have

to log into the Azure portal and switch reads to a different region if the

designated read region is not available.

Failover can also happen automatically. With automatic failover,

each region has a priority in the list of read regions. If for any reason

the designated read region is not available, Azure will switch to the next

available read region based on the defined priorities. In Figure 2-2, you

can see how the database has one write region and two read regions with

automatic failover. Each of the read regions has a priority, and applications

will read from the region at the top of the list. Azure will determine

whenever the region becomes unavailable and will then choose the next

region in the list.

You cannot configure the database to have more than one write

region. This feature is not available at this point. A configuration known as

multi-master can be implemented but it requires two databases and is the

closest to having more than one write region. Normally, you would want to

implement a multi-master configuration to allow writes to regions where

users creating content are closer, providing even lower latency.

When having multiple write and/or read regions there is an associated

concept that needs to be learned. This is the concept of consistency. You

will learn about consistency next.

Chapter 2 Learning Azure Cosmos DB Concepts

28

�Understanding the Consistency Models
Consistency defines the rules under which distributed data is available

to users. What this means is that when new data is available (i.e. new or

updated data) in a distributed database, the consistency model determines

when the data is available to users for reads.

Despite having defined and proposed over 50 different consistency

models for distributed databases throughout history, the most significant

(and commercially available) are strong and eventual. The problem here is

that there is no real consensus about widely used scenarios that can create

enough interest for database products to implement them. Most of the

proposed consistency models try to solve only a very specific problem or

scenario.

Figure 2-2.  Azure Cosmos DB database with automatic failover and
two read regions

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

29

Azure Cosmos DB implements five different consistency models.

Besides strong and eventual, there are three additional consistency models.

These are the bounded staleness, session, and consistent prefix. With these

five models, you will be able to determine the most appropriate model for

your application based on availability and latency.

These additional consistency models are based on the work of the

scientist and Turing Award (https://en.wikipedia.org/wiki/Turing_

Award) winner Leslie Lamport, PhD (www.lamport.org/).

When deciding which consistency model to use, you need to

understand that they are all bound to elements such as throughput and

latency. As you will see when examining each of the five consistency

models, on one end is strong consistency, which will provide highest

latency of all, guaranteeing consistent reads across the entire read regions.

On the other end, eventual consistency will provide the lowest latency at a

cost of a high probability of not showing the latest data when reading from

different regions. The other three consistency models provide values

in-between these extremes for latency and throughput. It will depend on

what your application needs. Happily, you have several options.

�Scope of Consistency
The granularity of consistency is scoped to a single user request.

A write request may correspond to an insert, replace, update, or delete

transaction. As with writes, a read/query transaction is also scoped to

a single user request. The user may be required to paginate over a large

result-set, spanning multiple partitions, but each read transaction is

scoped to a single page and served from within a single partition. I will

discuss partitions later in this chapter.

Chapter 2 Learning Azure Cosmos DB Concepts

https://en.wikipedia.org/wiki/Turing_Award
https://en.wikipedia.org/wiki/Turing_Award
http://www.lamport.org/

30

�Strong Consistency Model
An Azure Cosmos DB account with a strong consistency model guarantees

that any read of an item (such as a customer record) will return the most

recent version of such item. This is important because it is the same

consistency model typically implemented in relational database systems.

Because we are working in a distributed environment, strong consistency

guarantees that a write operation is visible only after the majority of the

replicas have been committed durably with the write. A client will never

see a partially committed or incomplete write.

In Figure 2-3 you can see how a strong consistency model is

implemented in an Azure Cosmos DB account.

When strong consistency is configured for the Azure Cosmos DB

account, reads are only as fast as the latency among all regions involved in

the write. Because of this, an account with strong consistency can only be

associated to one Azure region. You use strong consistency when writes

are important and need to be fast, and applications don’t need to read the

data instantly. See in Figure 2-4 how the Azure portal blocks the ability to

distribute the account to multiple regions when using strong consistency.

Figure 2-3.  Azure Cosmos DB account with strong consistency
model

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

31

At the same time, if an account was defined with a different

consistency model, such as session, the Azure portal will not allow you to

change the consistency model to strong. In fact, it won’t even give you the

option, as shown in Figure 2-5.

�Eventual Consistency Model
When using the eventual consistency model, it is guaranteed that all of the

replicas will eventually converge to reflect the most recent write. In terms

of data consistency, this is a very weak model because users may read

values that are older than those defined by the most recent write; however,

it does offer the lowest latency of all consistency models for both reads

Figure 2-4.  Strong consistency prevents the Azure Cosmos DB from
being distributed to multiple regions

Figure 2-5.  Strong consistency is not available once an Azure Cosmos
DB account is distributed to multiple regions

Chapter 2 Learning Azure Cosmos DB Concepts

32

and writes. Low latency is achieved by not requiring every single replica

(region) to read the same value after each write. Data replication happens

in the background and will be complete at some point; it is just that

application reads are not stopped until all of the regions are synchronized.

Eventual consistency is used in many NoSQL and relational database

systems. It is useful in scenarios where reads need to happen as soon as

possible even if they don’t display the most recent version of the data. It is

only guaranteed that all replicas will be consistent at some point; you just

don’t know exactly when that will be.

�Bounded Staleness Consistency Model
With bounded staleness, reads may lag behind writes by at most K

operations or a t time interval. For an account with only one region, K

must be between 10 and 1,000,000 operations, and between 100,000

and 1,000,000 operations if the account is globally distributed. For t, the

permitted time intervals are between 5 seconds and 1 day for accounts

in one region, and between 5 minutes and 1 day for globally distributed

accounts.

For example, if an account is in only one region and configured with a

lag of 10 operations and 5 seconds, then if the latest write was more than 5

seconds ago or more than 10 operations ago, it is guaranteed that the user

will see the most recent version of the data.

This consistency model is suitable for applications that need writes

with strong consistency and low latency, and reads that are consistent

after a predictable number of operations or time interval. In addition, the

monotonic read guarantees exist within a region both inside and outside

the staleness window.

An Azure Cosmos DB account can be globally distributed to any

number of Azure regions when using bounded staleness consistency. In

Figure 2-6, you can see the configuration options to enable the bounded

staleness consistency model.

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

33

�Session Consistency Model
The session consistency model is named so because the consistency level is

scoped at the client session. What this means is that any reads or writes are

always current within the same session and they are monotonic. During the life

of a session, any write is immediately available for read and will be available for

other sessions as soon as the data is replicated to the rest of the regions.

This model provides high read throughput and low latency writes and

reads. This is the default consistency model for any new Azure Cosmos DB

account and you can distribute it to any number of Azure regions.

�Consistent Prefix Consistency Model
The last consistency model is consistent prefix. This model is similar to the

eventual consistency model; however, it guarantees that reads never see

out-of-order writes. For example, if your application writes 1, then 2, and

Figure 2-6.  Configuration of a bounded staleness consistency
model

Chapter 2 Learning Azure Cosmos DB Concepts

34

finally 3, users will see 1, or 1 and 2, or 1 and 2 and 3, but will never see 1

and 3. Eventually, all Azure regions will converge to 1 and 2 and 3, but it

will be in order, which translates into higher speeds and reliability.

�Consistency for Queries
By default, any user-defined resource would have the same consistency

level for queries as was defined for reads. This is possible because indexes

are updated synchronously on any insert, replace, or delete on any item in

an Azure Cosmos DB container (I’ll discuss containers later in this chapter).

You can also change the index update strategy to be lazy. This will

boost the performance of writes, especially in scenarios of bulk data

import where the application is primarily used for reads. What you

need to be aware of is that, when changing to lazy, regardless of the read

consistency level, queries will have a consistency level of eventual.

The consistency level of a specific query can be adjusted on every

request using the API.

�Understanding Partitioning
Partitioning is a key concept for Azure Cosmos DB. It is what enables

millisecond response time at any scale. A good partitioning scheme is

crucial to your application because it directly affects its performance.

�What Are Containers?
Azure Cosmos DB provides three types of containers for your data:

collections (for documents), tables, and graphs. Containers are logical

resources that group together one or more physical partitions. Partitions

are determined by a partition key in a container. Each partition has a fixed

amount of SSD-backed storage associated with it and it is locally replicated

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

35

for high availability. Containers don’t have any restrictions in terms of

amount of storage or throughput; they can grow as large as needed and

will scale as well.

Figure 2-7 shows how containers and partitions are defined. Note that

regardless of the type of container, they all work the same. This is important

in terms of predictability of performance because it guarantees the same

response time independent of the type of data you are working with.

Partition management is transparent and managed entirely by Azure

Cosmos DB. There is no need for custom code for this purpose, nor is any

additional configuration required for the account or container other than

defining the partition key.

Collections can have a fixed storage limit (up to 10GB) or can be

unlimited. The configuration will be determined by the necessary

throughput for the application.

Figure 2-7.  Containers and partitions

Chapter 2 Learning Azure Cosmos DB Concepts

36

�How Does Partitioning Work?
You need to define a partition key and a row key for each item in your

container. These key combinations uniquely identify the item. The

partition key determines the logical partition for your data and informs

Azure Cosmos DB of the boundary for distributing such data across

different partitions.

Azure Cosmos DB uses hash-based partitioning. When you write an

item, Azure Cosmos DB hashes the partition key value and uses that to

determine which partition it should store the item in. All items with the

same partition key are stored in the same physical partition. Given this

characteristic, choosing the right partition key is crucial and should be
done based on a key that provides a wide range of values and has even
access patterns.

Best Practice M icrosoft recommends having a partition key with
many distinct values (100s-1000s at a minimum).

Partitioning starts with the configuration of the Azure Cosmos DB

account. Initially, you create the account with T requests per second

throughput. The number of partitions (N) that are created are determined

by whether T is higher than the maximum throughput per partition (t).

If so, then N = T / t, otherwise N = 1.

When a physical partition p reaches its storage capacity, Azure

Cosmos DB seamlessly splits the partition into two new partitions

p1 and p2, with roughly half of the values on each one. All this is managed

transparently to your application.

If your provisioned throughput is higher than t * N, then Azure

Cosmos DB splits the necessary partitions to support the required

throughput.

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

37

�Designing for Partitioning
I have mentioned the importance of choosing the right partition key for

your application. There are two key considerations when choosing the

partition key.

�Boundary for Query and Transactions

Transactions in Azure Cosmos DB provide ACID guarantees; however,

a particular consideration is that each transaction happens within the

boundaries of a single partition. If your partition key does not generate

a good number of partitions, then you will have problems scaling your

application. On the other hand, if it creates too many of them (e.g. one

document on each partition) you may end up with problems with

cross-partition transactions in triggers and stored procedures.

Your partition key should balance the requirements for transactions

versus the requirements for distributing the entities across partitions to

scale the solution. Ideally, your partition key will enable you to efficiently

query the data and will have enough cardinality to ensure your application

can scale properly.

�No Storage and Performance Bottlenecks

The partition key should allow for writes to be distributed as evenly

as possible across different values. Requests to the same partition key

cannot exceed the throughput for a single partition and are throttled. It is

therefore necessary that the partition key will not result in partitions that

are always requested and/or partitions that allocate most of the data. If this

is the case, then a different partition key should be considered.

Chapter 2 Learning Azure Cosmos DB Concepts

38

�Understanding Throughput
Azure Cosmos DB supports completely different data models (documents,

tables, and graphs) so establishing a consistent model to handle requests

was paramount. To solve this problem, Microsoft introduced a normalized

quantity called request unit based on the computational requirements

to serve a request. Using request units, it is much easier to establish a

consistent method for billing requests across the different data models.

The number of requests units per operation is deterministic and can be

obtained on every request by reading the response headers.

I have mentioned that Azure Cosmos DB has predictable performance,

and this is achieved by provisioning a specific amount of request

units (RU) per second, and this amount is what is called throughput.

Throughput is reserved in units of 100s of requests units per second.

You can think of request units as the currency of throughput because they

are used to determine your bill.

An application’s load changes over time and using the Azure portal you

can increase or decrease the reserved throughput to fit your application’s

needs. There is no impact to the availability of the collection when you

change the throughput configuration, and the new configuration normally

goes into effect within seconds.

Important A zure Cosmos DB operates under a reservation model on
throughput. This means that you will be billed by how much reserved
throughput you have as opposed to how much you actually use.

�Specifying Request Unit Capacity
When defining a new collection, you need to configure the specific number

of request units per second you want reserved for the container. Based on

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

39

this number, Azure Cosmos DB allocates physical partitions to host the

collection and it will manage the data across partitions as it grows.

If the collection has a fixed storage capacity, the reserved throughput

can be between 400 and 10,000 request units per second. If it has

unlimited capacity, the throughput can be between 2,500 and 100,000

requests units per second.

�Estimating Throughput
A request unit represents the processing needed to read a single 1KB item

with 10 property values (excluding system properties). A request to create,

replace, or delete the same item will need more processing power and

therefore more request units.

There is no better way to estimate throughput than by using the

request unit calculator (http://bit.ly/cosmos-db-ru-calc) shown in

Figure 2-8. The calculator can estimate the request units as well as the

approximate storage need based on the information provided.

Figure 2-8.  Request unit calculator

Chapter 2 Learning Azure Cosmos DB Concepts

http://bit.ly/cosmos-db-ru-calc

40

To use it, you need to do the following steps:

	 1.	 Upload a sample JSON file that represents an item in

your collection, such as sample_file.json.

{

 "id":"1",

 "firstname":"Jose",

 "lastname":"Guay"

}

	 2.	 You will need a second JSON file that represents the

same item but with modified values to simulate a

replace, such as sample_file_modified.json.

{

 "id":"1",

 "firstname":"Rolando",

 "lastname":"Guay"

}

	 3.	 You then type the estimated number of operations

per second and number of items to be stored. The

collection shown in Figure 2-9 will store 50,000

items and will need to handle 100 reads, creates,

replaces, and deletes per second. The result is that

under these requirements, this collection will need

2,385 requests units per second throughput and will

use 2.35MB of storage.

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

41

�Implementing Security
Security in Azure Cosmos DB is implemented at several levels. There is a

security layer at the storage level with the implementation of a technology

named encryption at rest. At the network level, there is a firewall to enable

access only to specified IPs or IP ranges, and data is always encrypted

during transit. At the data access level, there is a configuration with keys

and tokens to authenticate users and provide access to data. Finally, for

increased availability a replication strategy ensures that data is never lost.

�Encryption at Rest
The term encryption at rest commonly refers to encrypting data on

permanent storage such as solid-state drives (SSDs) or hard disk drives

(HDDs). Azure Cosmos DB stores the primary databases on SSD disks.

Media attachments, replicas, and backups are stored in Azure Blob storage,

which uses HDDs. Encryption at rest is implemented at all levels so all

databases, media attachments, and backups are encrypted.

Figure 2-9.  Using the request unit calculator

Chapter 2 Learning Azure Cosmos DB Concepts

42

This feature is on by default and there are no controls to disable it.

It is managed entirely by Azure and has no impact on performance or

availability. An important consideration is that this feature is included at

no cost.

�Firewall Support
Azure Cosmos DB supports policy-driven, IP-based access control. This

works as a firewall for inbound connections where you allow a set of IP

addresses (or IP ranges) to access your Cosmos DB account. By default,

this feature is off, as shown in Figure 2-10, which means anyone can

connect to the Cosmos DB account, but you can turn it on to limit the

computers accessing the database.

A common scenario is a website that uses an Azure Cosmos DB

database account. You don’t need to have all-in access to the database,

only the IP of the website and your own IP address or IP range.

After you enable IP access control, you are given the option to add

individual IP addresses or IP ranges (CIDR), as shown in Figure 2-11.

You also have the option to limit access to the Azure portal to those

IP addresses, although this setting is for now an all-or-nothing

configuration; it won’t allow settings per IP.

Figure 2-10.  The Azure Cosmos DB Firewall IP access control is
turned off by default

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

43

After this configuration is saved, connections from IP addresses

outside the defined set will be blocked by the firewall. According to the

documentation from Microsoft (http://bit.ly/cosmos-db-firewall), if

you enable IP access control, you will need to add specific IP addresses for the

Azure portal to maintain access. Please see Figure 2-12 for the specific note.

If there are requests from IP addresses outside the allowed list, Azure

Cosmos DB will return an HTTP response 404 Not Found with any details.

This will ensure databases are kept hidden from unauthorized access.

Figure 2-11.  Azure Cosmos DB Firewall with enabled IP access
control

Chapter 2 Learning Azure Cosmos DB Concepts

http://bit.ly/cosmos-db-firewall

44

�Securing Access to Data
With Azure Cosmos DB, you can use two different keys to authenticate

users and provide access to data. They are master keys and resource tokens.

�Master Keys

You use master keys to provide access to the administrative resources in

the account, such as access to databases, users, and permissions. These

keys are automatically created at the same time the account is created

and can be regenerated at any time based on your security policy or if

they have been compromised. Master keys can’t be used to specify a more

granular access to collections and documents.

Each Azure Cosmos DB account has two master keys: a primary

master key and a secondary master key. Primary and secondary keys work

exactly the same way and provide access to the same resources without

any difference at all. The idea behind this implementation is that you can

regenerate or rotate keys without interrupting access to the account or data.

Figure 2-12.  Microsoft documentation note regarding access to
Azure portal

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

45

Figure 2-13 shows the keys in an Azure Cosmos DB account. Note the

two tabs for read-write and read-only keys. The information is the URI for

accessing the database, the primary and secondary keys, and the primary

and secondary connection strings. Next to each of the boxes is a button to

copy to the clipboard the value in the box; the key boxes contain an extra

button to regenerate them.

�Resource Tokens

Resource tokens provide access to resources within the database, such as

partition keys, documents, attachments, and stored procedures; they are

particularly useful when you want to provide access to a client that can’t

be trusted with a master key. They are created whenever a user is granted

permissions to a specific resource and recreated when a permission

account takes action by a POST, GET, or PULL request. Unlike keys,

resource tokens cannot be managed in the Azure portal. They can only be

managed using the Azure Cosmos DB API or client libraries.

A resource token has a validity period which by default is one hour.

This validity period can be adjusted to up to five hours. It uses a hash token

specifically designed for the resource, user, and permission.

Figure 2-13.  Read-write keys for an Azure Cosmos DB account

Chapter 2 Learning Azure Cosmos DB Concepts

46

�Supported APIs
Azure Cosmos DB supports several APIs for resource and data

management and several software development kits (SDKs) that

encapsulate the functionality for them. At its core is the REST API,

which provides a foundation for all actions that can be performed

against an Azure Cosmos DB account. There are also other APIs such as

DocumentDB, Mongo DB, Apache Cassandra, Table, and Graph.

�Azure Cosmos DB REST API
The REST API interacts with Azure Cosmos DB using the HTTP protocol.

As with any REST API, the HTTP verbs are used to inform what action to

perform. In general, they are the following:

•	 POST: Used to create item resources

•	 GET: Used to read an item resource or a list of

resources

•	 PUT: Used to replace an existing item resource

•	 DELETE: Used to delete an existing item resource

•	 HEAD: Used similarly to GET except it will only return

the response headers

The destination URI for the API is based on the URI endpoint

created for the database account. For example, if your database

account was named ProductCatalog, then the base URI would be

https://productcatalog.documents.azure.com.

Table 2-1 shows the base URIs for each of the resources in an Azure

Cosmos DB account. There is a URI for each and every resource, and any

action can be performed using the REST API.

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

https://productcatalog.documents.azure.com/
http://www.allitebooks.org

47

To simplify the URIs in Table 2-1, please consider the following:

{base} = https://{databaseaccount}.documents.azure.com

I’ll just use {base} instead so the URIs are shorter.

Table 2-1.  Base URIs for Each Resource in an Azure Cosmos DB

Account (Source: http://bit.ly/cosmos-db-rest-uris)

Resources Base URI

Database {base}/dbs/{db}

User {base}/dbs/{db}/users/{user}

Permission {base}/dbs/{db}/users/{user}/permissions/{perm}

Collection {base}/dbs/{db}/colls/{coll}

Stored Procedure {base}/dbs/{db}/colls/{coll}/sprocs/{sproc}

Trigger {base}/dbs/{db}/colls/{coll}/triggers/{trigger}

UDF {base}/dbs/{db}/colls/{coll}/udfs/{udf}

Document {base}/dbs/{db}/colls/{coll}/docs/{doc}

Attachment {base}/dbs/{db}/colls/{coll}/docs/{doc}/

attachments/{attch}

Offer {base}/offers/{offer}

Offers represent the collection’s provisioned throughput. This

throughput can be user-defined or predefined, and has an associated

request unit (RU) rate limit which is reserved and available exclusively for

the collection.

Chapter 2 Learning Azure Cosmos DB Concepts

http://bit.ly/cosmos-db-rest-uris

48

For example, to create a new database named Products in an account

named ProductCatalog, you would use

POST https://productcatalog.documents.azure.com/dbs

{

 "id":"Products"

}

Note that you are using the verb POST, which instructs the API to

create an item, in this case a database. The JSON information tells the API

the id of the new database and the URI is composed using the account

name. You can use a tool like Telerik Fiddler (www.telerik.com/fiddler)

or Postman (www.getpostman.com) to test REST API calls.

The API then sends a response to the client that looks like this:

HTTP/1.1 201 Created

Content-Type: application/json

x-ms-request-charge: 4.95

...

{

 "id": "Products",

 "_rid": "UoBa5x==",

 "_self": "dbs/UoBa5x==/",

 "_ts": 1403525012,

 "_etag": "00000100-0000-0000-0000-f3a1366000e8",

 "_colls": "colls/",

 "_users": "users/"

}

In this particular case, the _rid property defines the encrypted value

that internally identifies the new database, and it is the value that needs to

be used for subsequent calls to, for example, create collections and read

documents.

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.telerik.com/fiddler
http://www.getpostman.com/
http://www.allitebooks.org

49

Note I t is important to understand that, depending on your
preferred language and/or platform, you would (and should) be using
an SDK specifically designed for it. It is far easier to interact with the
SDK than to use the REST API directly. For more information about the
Azure Cosmos DB REST API, visit http://bit.ly/cosmos-db-
rest-api.

�DocumentDB API
The DocumentDB API is built on top of the REST API and is implemented

in several languages and platforms including .NET, Java, NodeJS,

JavaScript, and Python via their respective SDKs.

Using the DocumentDB API you can query documents using a SQL

syntax similar to the one used in Entity Framework, only extended to query

JSON documents. You can also manage the account resources and perform

actions such as create databases, collections, stored procedures, etc.

For example, in the previous section you created a new database using

the REST API. Let’s do the same now using the DocumentDB API in C#, as

shown in Listing 2-1.

Listing 2-1.  Creating a New Database Using DocumentDB API .NET

SDK in C#

var dbUrl = "https://productcatalog.documents.azure.com/dbs";

var authKey = "the primary or secondary key for the account";

client = new DocumentClient(new Uri(dbUrl),authKey);

await client.CreateDatabaseAsync(new Database { Id = "Products" });

Chapter 2 Learning Azure Cosmos DB Concepts

http://bit.ly/cosmos-db-­rest-api
http://bit.ly/cosmos-db-­rest-api

50

Note in Listing 2-1 that you still use the URLs for the endpoints as

described in Table 2-1, and you are clearly using the master keys to

access the resources. These two values are stored in variables that are

later used to create a DocumentClient object. This object is used to

interact with the Azure Cosmos DB account. Finally, the code calls the

CreateDatabaseAsync() method, passing as a parameter an instance of a

new Database object, and it is all done asynchronously.

The example in Listing 2-1 is very simple and it doesn’t do much,

but it is a good example of how to get started with the DocumentDB

API SDK. The URLs and master key should be stored in a central location

for easy and consistent access across the entire client application. The

AppSettings section in the configuration file is a good candidate for such

values.

Listing 2-3 shows a brief example of how to query the document shown

in Listing 2-2. Note how the syntax for querying is very much the same as

with SQL Server or Entity Framework.

Listing 2-2.  Sample JSON Document

{

 "id": "Fruits",

 "products":[

 {"name":"Apple","price":0.50},

 {"name":"Banana","price":0.80},

 {"name":"Peach","price":0.60},

 {"name":"Grapes","price":1.00},

],

}

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

51

Listing 2-3.  Querying the Sample JSON Document from Listing 2-2

SELECT p.name

FROM Products p

WHERE p.id = "Fruits"

AND p.products.price > 0.75

The results from the query are

[

 {"name":"Banana"},

 {"name":"Grapes"}

]

�MongoDB API
With the MongoDB API, you can leverage your knowledge of MongoDB. In

most cases, an existing MongoDB application would work without any

code changes. All you need is to migrate your databases to an Azure

Cosmos DB account that implements the MongoDB API, change the

application’s connection string, and that’s it; it will be transparent for the

application. In a sense, the application will think it is talking to MongoDB

when in fact it is talking to Azure Cosmos DB.

The Azure portal also includes functionality so you can open a mongo

shell where you can query your documents as you would with MongoDB.

Now, let’s imagine you are a MongoDB developer building an

application from scratch with .NET and will use Azure Cosmos DB to store

your data. In order to leverage your existing knowledge so you can deliver

your application faster, you will use the Mongo DB API SDK. You use the

code in Listing 2-4 to initialize your client to talk to Azure Cosmos DB.

Chapter 2 Learning Azure Cosmos DB Concepts

52

Listing 2-4.  Initialization of the MongoDB API Client Using the

.NET SDK

var host = "host string shown in the Azure portal";

var dbName = "ProductCatalog";

var username = "jose";

var password = "p@ssw0rd";

MongoClientSettings settings = new MongoClientSettings();

settings.Server = new MongoServerAddress(host, 10255);

settings.UseSsl = true;

settings.SslSettings = new SslSettings();

settings.SslSettings.EnabledSslProtocols = SslProtocols.Tls12;

MongoIdentity identity =

new MongoInternalIdentity(dbName, userName);

MongoIdentityEvidence evidence = new PasswordEvidence(password);

settings.Credentials = new List<MongoCredential>()

 {

 new MongoCredential("SCRAM-SHA-1", identity, evidence)

 };

MongoClient client = new MongoClient(settings);

The client configuration for an Azure Cosmos DB implementing

the MongoDB API has very strict networking rules. You start by creating

a MongoClientSettings object to configure how the client will be

connecting to the database. The configuration includes the host and port

as defined in the Azure portal for the Cosmos DB account. It is required to

use SSL and the TLS 1.2 protocol.

Next, you need to identify the application with a username and

password, and tell the API to which database you are connecting.

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

53

Now, to read the documents representing products in your database,

use the code in Listing 2-5.

Listing 2-5.  Getting the List of All Products

var collectionName = "Products";

var database = client.GetDatabase(dbName);

var prodCollection = database.GetCollection<Products>(collectionName);

var products = prodcollection.Find(new BsonDocument()).ToList();

From the code, you can see you are going to work in the

ProductCatalog database, which contains a collection named Products.

First, using the client object you get a reference to the database with

the GetDatabase() method from the client object. Next, you read the

collection with the GetCollection() method of the database object, and

from there, get the list of products using a BsonDocument format.

Note  BSON is a binary-encoded serialization of a JSON document.
BSON stands for Binary JSON. More information can be found at
http://bsonspec.org/.

�Graph API
A graph database, as opposed to a relational database, represents data as it

exists in the real world, such as people, cars, computers, and so on, that are

naturally connected, and does not try to change them in any way to define

them as entities. Graphs are composed of vertices and edges. Both vertices

and edges can have any number of properties. Vertices represent specific

objects such as a person, place, or event. An edge is a relation between

vertices.

Chapter 2 Learning Azure Cosmos DB Concepts

http://bsonspec.org/

54

For example, a vertex can be a person. Properties of this vertex are

name, age, and gender. Another vertex is a phone. Properties of this vertex

are brand and OS. An edge for these vertices could be “a person uses a

phone.” See this graph in Figure 2-14.

Graphs are very useful to understand a wide range of datasets in

different fields such as science and business. Graph databases let you work

with graphs naturally and efficiently, and they typically are NoSQL because

of their ability to adjust quickly to new or updated schemas. That’s why

implementing them in Azure Cosmos DB is a natural fit.

Graphs allow you to work with data in a powerful way by leveraging

graph traversals found in many use cases and patterns because they

outperform traditional SQL and NoSQL databases by several orders

of magnitude. Also, they open the door to querying in a natural way of

speaking, such as “find the names of the students who attended the

Chicago Bulls basketball exhibition game last summer.”

Azure Cosmos DB implements graph databases using the TinkerPop

standard. You can use the Apache TinkerPop traversal language, Gremlin,

or any other TinkerPop-compatible graph system like Apache Spark

GraphX.

Figure 2-14.  A sample graph with two vertices and one edge

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

55

Listing 2-6 contains the code of a console application that implements

the Azure Cosmos DB .NET SDK for Graph API. In the code, you first

connect to an Azure Cosmos DB graph database account. For connecting,

you need the end point, the primary or secondary key, and a connection

policy. In this case, the connection policy, defined by a ConnectionPolicy

object, specifies that the connection mode will be direct, which will

connect the application directly to the data nodes in the Azure Cosmos DB

account, and that the protocol will be TCP.

Next, you create a DocumentClient object inside a using statement to

ensure it gets closed. The client object takes the endpoint parameter, the

key, and connection policy.

Listing 2-6.  Connecting and Querying an Azure Cosmos DB Graph

Database Account

var endpoint = "https://productcatalog.documents.azure.com/dbs";

var authKey = "the primary or secondary key for the account";

var connPolicy = new ConnectionPolicy {

 �ConnectionMode = ConnectionMode.Direct,

ConnectionProtocol = Protocol.Tcp

 };

using (DocumentClient client = new DocumentClient(

 new Uri(endpoint),

 authKey,

 connPolicy)

{

 Database database = await

 �client.CreateDatabaseIfNotExistsAsync(

 �new Database { Id = "MyGraphDB" });

Chapter 2 Learning Azure Cosmos DB Concepts

56

 DocumentCollection graph = await

 �client.CreateDocumentCollectionIfNotExistsAsync(

 UriFactory.CreateDatabaseUri("MyGraphDB "),

 �new DocumentCollection { Id = "MyColl" },

 �new RequestOptions { OfferThroughput = 1000 });

 IDocumentQuery<dynamic> query =

 �client.CreateGremlinQuery<dynamic>(

 �graph, "g.V().count()");

 while (query.HasMoreResults)

 {

 �foreach (dynamic result in await query.ExecuteNextAsync())

 {

 Console.WriteLine($"\t

 {JsonConvert.SerializeObject(result)}");

 }

 }

}

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

57

Using the client object, the code attempts to create a

database named MyGraphDB, if it doesn’t exist, with the method

CreateDatabaseIfNotExistsAsync(). In the next line, it creates a new

collection, if it doesn’t exist already, called MyColl. The collection is

configured with a throughput of 1,000 requests units per second.

The last part of the code is a Gremlin query that counts how many

vertices are in the graph database and then prints the number out to the

console.

�Table API
An Azure Cosmos DB account implementing the Table API provides

the same functionality as Azure Table storage but with the benefits

of scalability and throughput from Cosmos DB. Another benefit (and

difference) is that all properties are indexed, as opposed to Azure Table

storage, which only indexes the PartitionKey and RowKey. Also, all five

consistency models are available with the Azure Cosmos DB Table API

versus only strong and eventual for Azure Table storage.

Listing 2-7 contains a small program that connects to an Azure Cosmos

DB account implementing the Table API. The connection string is found

in the Azure Cosmos DB account. First, you need to tell the SDK to which

storage account it is connecting; you do so with a CloudStorageAccount

object that takes the connection string as a parameter. You then create a

CloudTableClient object, which is used to perform the operations against

the database.

Using the cloud table client object, you obtain a reference to the

products table using the method GetTableReference(), and it is stored

in a CloudTable variable. If the table doesn’t exists, it is created using the

method CreateIfNotExists().

Chapter 2 Learning Azure Cosmos DB Concepts

58

Listing 2-7.  Connecting to an Azure Cosmos DB Account

Implementing the Table API Using the .NET SDK

CloudStorageAccount storageAccount =

CloudStorageAccount.Parse(connectionString);

CloudTableClient tableClient =

storageAccount.CreateCloudTableClient();

CloudTable table = tableClient.GetTableReference("products");

table.CreateIfNotExists();

ProductEntity item = new ProductEntity()

 {

 PartitionKey =

 Guid.NewGuid().ToString(),

 RowKey = Guid.NewGuid().ToString(),

 Name = $"Oranges",

 Origin = "Florida"

 };

TableOperation insertOperation = TableOperation.Insert(item);

table.Execute(insertOperation);

Next, a new product entity object is created and its properties filled.

This object is passed as a parameter of a TableOperation object using the

Insert() method. Using the table reference object, the operation object is

passed as a parameter to the Execute() method, which effectively inserts

the new item into the table.

Chapter 2 Learning Azure Cosmos DB Concepts

www.allitebooks.com

http://www.allitebooks.org

59

�Summary
In this chapter, you learned about the core concepts of Azure Cosmos

DB. You started by understanding what global distribution is and how it

helps take advantage of high availability and throughput by creating replicas

of the databases across multiple Azure regions. Then you examined the

different consistency models, their benefits, and when to use each one.

You saw that most of the commercially available solutions only offer two

consistency models, strong and eventual, but Azure Cosmos DB offers

three more models that balance the requirements between availability and

throughput. You then reviewed the concept of partitioning and why it is

important. You studied the concept of containers and how they help the

interaction between the application and the actual physical partitions by

virtue of being a logical definition. You also viewed the considerations for

partitioning and the criteria to choose the right partition key for the database.

The next concept was throughput. You saw that a request unit

is a normalized number for all different data models based on the

computational needs to execute an operation. This was necessary to

provide a standard measure of calculating throughput and billing. You

studied the different configurations for securing the databases starting

from the storage with encryption at rest, the network with firewall

capabilities, and access to data with master keys and resource tokens.

You finished the chapter by studying the different APIs that can be

used to interact with Azure Cosmos DB. You reviewed each of them,

starting from the core REST API and the implementations around it such

as the DocumentDB API. You saw how existing MongoDB applications can

work seamlessly with Azure Cosmos DB with virtually no changes to the

application coding. Also, you studied the implementations of the Graph

and Table APIs and their usage.

In the following chapter, I will dive in more detail into the operations

around an Azure Cosmos DB database account using the DocumentDB

API and the .NET SDK.

Chapter 2 Learning Azure Cosmos DB Concepts

61© José Rolando Guay Paz 2018
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_3

CHAPTER 3

Working with an Azure
Cosmos DB Database
In this chapter, you will start working with a new Cosmos DB database.

More specifically, it will be a database that implements the SQL

DocumentDB API using the document data model. You will learn to use

the DocumentDB API in a .NET application. You will create a database

and collection with a partition key. Then you will learn how work with

documents to create new documents and replace, delete, and query them.

Finally, you will learn how to create and run stored procedures.

Your sample database will contain student records from a fictitious

university named Cosmos University. You will be managing each student’s

record as they sign up for classes on a given year. The record will include

information such as the name of the student, their postal addresses,

email, and phone number. The intent of this database is to store the

master record information of each student; therefore there won’t be

any information about their classes, professors, labs, or other related

information.

www.allitebooks.com

http://www.allitebooks.org

62

�Creating Your Database
Chapter 1 outlined the generic steps to create an Azure Cosmos DB

database. Let’s now create a real one. The following steps will guide

you in creating one using the SQL DocumentDB API. To start creating a

database, you will use the Azure Cosmos DB Emulator that you installed in

Chapter 1. This will be a much easier environment to work with and, more

importantly, you will not incur in any costs.

	 1.	 Open the Azure Cosmos DB Emulator by going to your

browser and type in https://localhost:8081/_explorer/

index.html, as shown in Figure 3-1.

Figure 3-1.  Azure Cosmos DB Emulator home page

Chapter 3 Working with an Azure Cosmos DB Database

63

	 2.	 It is possible that the emulator might not be running

and you will get an error message similar to the one

shown in Figure 3-2.

Figure 3-2.  Error message when the Azure Cosmos DB Emulator is
not running

	 3.	 If you find the error shown in Figure 3-2, you need to

launch the emulator. Click the Windows Start button

and look for the Azure Cosmos DB Emulator folder.

Expand the folder and click in the Azure Cosmos

DB Emulator shortcut, as shown in Figure 3-3. You

might see a notification in the lower right corner of

your screen indicating that the emulator is starting.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

64

	 4.	 Once the emulator has been launched, it will show

in the running programs window in lower right

corner, as shown in Figure 3-4.

Figure 3-3.  Launching the Azure Cosmos DB Emulator

Figure 3-4.  Azure Cosmos DB Emulator running

Chapter 3 Working with an Azure Cosmos DB Database

65

	 5.	 With the emulator open, click the Explorer button in

the left menu. Figure 3-5 shows the Explorer page.

This is where you will create your database and

collection.

Figure 3-5.  The Explorer page from the Azure Cosmos DB Emulator

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

66

Figure 3-6.  New collection window

	 6.	 Click the New Collection button. Figure 3-6 shows

the new collection form. Note how this is similar to

the form shown in Figure 1-22 from Chapter 1.

Chapter 3 Working with an Azure Cosmos DB Database

67

	 7.	 Let’s start by typing the name of the database.

The database name should be entered in

lowercase letters in order to avoid problems when

migrating to the actual Azure account and for an

easier experience. For the database name, type

cosmosuniversity.

	 8.	 In the following field, you need to type the name of

the collection. Type student.

	 9.	 Then you select the type of storage: if it will be a

fixed storage up to 10GB or unlimited. I discussed

these parameters in Chapter 2. For your example,

select Unlimited.

	 10.	 Now you need to select the throughput. Leave the

default of 10,000 request units per second.

	 11.	 Finally, type the partition key for the collection. As

mentioned in Chapter 2, this is a crucial element to

achieve the expected throughput and to optimize

the storage and utilization of the physical partitions.

Let’s use the postal code from the address. There

are several thousand postal codes in the US alone,

which will give us a good distribution. There might

be a case, in the real world, where specific postal

codes, such as the home town of the university,

might introduce many more values than others, but

it won’t be the general rule. Type /postalCode in the

partition key field.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

68

	 12.	 In Figure 3-7 you can see the entire form completed.

Click the OK button.

Figure 3-7.  New collection form filled with the required
information

Chapter 3 Working with an Azure Cosmos DB Database

69

	 13.	 After you click the OK button, the database

and collection will be created and you will see

something similar to Figure 3-8.

Figure 3-8.  Database and collection created in the Azure Cosmos
DB Emulator

�Defining the Document
Now that you have the collection ready, you need to define the document

that will represent the data. To represent the data, you will use JSON. JSON

stands for JavaScript Object Notation. It is a very lightweight and easy-to-

read-and-write data format. You can find more about JSON at www.json.org.

There are implementations of the JSON specification in nearly all

modern programming languages. The preferred and recommended

platform to work with JSON documents in .NET is Json.NET by Newtonsoft

(www.newtonsoft.com/json); in fact, Microsoft updated the Visual Studio

templates to use Json.NET instead of the .NET implementation in the

System.Json serialization namespace.

Since the document will store information about student records, you

will have something similar to Listing 3-1. In the listing, what you see is a

definition using JSON to format the information.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.json.org/
http://www.newtonsoft.com/json
http://www.allitebooks.org

70

Listing 3-1.  Student Record Definition in JSON

{

 "id": "1",

 "firstName": "Jose",

 "lastName": "Guay",

 "birthDate": "04/07/1974",

 "address1": "1234 Main Street",

 "address2": "",

 "city": "Chicago",

 "state": "IL",

 "postalCode": 60601,

 "phoneNumber": "312-123-4567"

}

The listing shows the property id as a string. While in this example it

is a number, automatically generated ids in Azure Cosmos DB are GUIDs

stored as strings. The properties firstName, lastName, and phoneNumber

are strings. The property birthDate is a date. The properties address1,

address2, city, and state from the mail address are strings and, finally,

postalCode is an integer.

The document definition in Listing 3-1 will help you get through the

remainder of this chapter, and you will modify it in future chapters as you

dive into different topics of the implementation.

�Managing Documents
There are several ways to manage documents using Azure Cosmos DB. The

easiest is to use the emulator or Azure portal interface to query and

manipulate them. This method is, however, only useful for administrators

or developers. The most common method for end users is to use an

Chapter 3 Working with an Azure Cosmos DB Database

71

application built for this purpose. Finally, for the bulk import scenario

there is a tool called Data Migration Tool that can take information from a

source and import it into an Azure Cosmos DB database.

In this chapter, you will use the emulator so you can get started

right away creating, modifying, and deleting documents. You will then

implement a small web application that will facilitate these tasks for end

users. I will address the Data Migration Tool in Chapter 4.

�Using the Azure Cosmos DB Emulator
to Manage Documents
Now that you have a database and collection created, you will start using

the Azure Cosmos DB Emulator to manipulate documents. The emulator’s

interface is remarkably similar to the Azure portal interface. This was done

on purpose so that you can learn once and use everywhere. Follow the next

steps to work with the emulator:

	 1.	 With the database and collection open as shown in

Figure 3-8, click the arrow to the left of the collection

name to expand the options. Figure 3-9 shows

the different elements you can work with in the

collection. This list will give you the ability to not

only work with documents but also to change the

scalability and settings configuration and manage

stored procedures, user defined functions, and

triggers.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

72

Figure 3-10.  Options on the Documents page

Figure 3-9.  Expanding the collection options

	 2.	 Click the Documents option. You will see a new set

of options on the screen, as shown in Figure 3-10.

The page now gives you two toolbars, one at the

top of the page with buttons to create different

elements in the database such as a new query, new

stored procedure, new user defined function, and

new trigger. You can also create a new collection or

delete the current collection.

Chapter 3 Working with an Azure Cosmos DB Database

73

The second toolbar is specific to documents and

it is in a new tab to the right of the page. Inside the

tab, the second toolbar has only a single button at

this point, to create a new document. Note in the

Documents tab the SQL query that is use to read

information from the collection. Below the query

the page is divided in two sections. To the left is a

pane with two columns: one for the value of the id

in the document and the second for the value of the

partition key. In the right-side pane, you will be able

to see and manipulate the documents. Once you have

documents, the toolbar will show more buttons.

	 3.	 Click the New Document button to create a new

document that will be inserted into the database.

You will see a starting JSON document like the one in

Figure 3-11. This is a skeleton document that you can

use to start typing your document values. Also note

that two new buttons showed up in the toolbar: one to

save your document and one to discard the new record.

Figure 3-11.  Adding a new document

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

74

	 4.	 You will now copy the document from Listing 3-1

into the new document pane, completely replacing

the skeleton document. It will look like Figure 3-12.

Then click the Save button.

Figure 3-12.  New document using the information from Listing 3-1

	 5.	 After you click the Save button, the page changes

a little bit. As shown in Figure 3-13, the value of

the id field and the value of the partition key are

showing in the left-side list, and the toolbar shows

different buttons. You now have a button to delete

the document and two buttons to save or discard

modifications.

Chapter 3 Working with an Azure Cosmos DB Database

75

	 6.	 If you click the row in the left pane referencing the

new document, as shown in Figure 3-14, you will

see the document reloads but it has been modified a

little bit. It has new properties that were not present

in Listing 3-1. These properties were added by Azure

Cosmos DB. The new properties are described in

Table 3-1.

Figure 3-13.  New document saved in the collection

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

76

Figure 3-14.  New document displaying new properties used by Azure
Cosmos DB

Table 3-1.  Internal Properties in Azure Cosmos DB Documents

(source: http://bit.ly/cosmos-db-create-doc)

Property Description

_rid This is a system-generated property. The resource ID (_rid) is a

unique identifier that is also hierarchical per the resource stack

on the resource model. It is used internally for placement and

navigation of the document resource.

_self This is a system-generated property. It is the unique addressable

URI for the resource.

_etag This is a system-generated property that specifies the resource

etag required for optimistic concurrency control.

_attachments This is a system-generated property that specifies the

addressable path for the attachments resource.

_ts This is a system-generated property. It specifies the last updated

timestamp of the resource. The value is a timestamp.

Chapter 3 Working with an Azure Cosmos DB Database

http://bit.ly/cosmos-db-create-doc

77

	 7.	 To modify the value of a document, all you need to do is

adjust it in the right pane and click the Update button.

	 8.	 To delete a document, just select the document from

the left-side list and click the Delete button.

�Managing Documents with an Application
You will now build a small web application using Visual Studio 2017 to

manage documents. This is a different scenario, targeted to end users,

in which you will use the .NET SDK to interact with the database and

collection that you created in the Azure Cosmos DB Emulator.

�Creating the ASP.NET Web Application
The following steps will guide you through the process of developing this

web application:

	 1.	 Open Visual Studio 2017 from the Start menu, as

shown in Figure 3-15.

Figure 3-15.  Open Visual Studio 2017 from the Start menu

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

78

	 2.	 Go to the File menu, select New, and from the menu

select Project. As shown in Figure 3-16, you can also

use the keyboard shortcut of Ctrl-Shift-N.

Figure 3-16.  Creating a new project in Visual Studio 2017

	 3.	 The new project window is shown in Figure 3-17. You

now have the option to create any type of application.

From the list of templates in the left, select Web, and

from the options in the center pane, select ASP.NET

Web Application (.NET Framework). At the bottom,

type the name of the project as CosmosUniversity.

Web. Select a folder where the application files will be

saved and make sure the Create directory for solution

checkbox is selected in the lower right corner of the

window. Then click the OK button.

Chapter 3 Working with an Azure Cosmos DB Database

79

	 4.	 A new window opens to select the type template

for your web application. Select MVC to create

a new ASP.NET MVC web application, as shown

in Figure 3-18. Leave the default authentication

configuration, which is No Authentication, and don’t

select the option to create a unit tests project. Then

click the OK button.

Figure 3-17.  New ASP.NET web application

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

80

Note I n a real application, you would want to implement
authentication and unit tests. Unit tests will help you evaluate your
code as you develop and will potentially identify breaking changes
whenever new code is introduced. Depending on the requirements
of your application, authentication will play an important role in
identifying and authorizing users for different actions. For the purpose
of this sample application, these two features are not needed because
I only want to illustrate working with the Azure Cosmos DB database.

	 5.	 Visual Studio will now start creating all the

necessary files based on the template and the

options selected, as shown in Figure 3-19.

Figure 3-18.  Options to create a new ASP.NET web application

Chapter 3 Working with an Azure Cosmos DB Database

81

	 6.	 Once the application has been created, Visual

Studio will show the Solution Explorer window

shown in Figure 3-20.

Figure 3-19.  Visual Studio progress window when creating the new
ASP.NET web application

Figure 3-20.  Solution Explorer window in Visual Studio after the
new ASP.NET web application is created

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

82

	 7.	 Next, you will create the controller to handle

the application’s interaction with the user and

coordinate what needs to happen on each action.

Right-click in the Controllers folder and from the

context menu select Add and then Controller, as

shown in Figure 3-21.

Figure 3-21.  Adding a new controller in the Controllers folder

	 8.	 In the Add Scaffold window, select the MVC 5

Controller with read/write actions. This scaffold will

generate a controller with the necessary actions to

handle a basic CRUD implementation. This is shown

in Figure 3-22. Click the Add button.

Chapter 3 Working with an Azure Cosmos DB Database

83

	 9.	 In the Add Controller window, shown in

Figure 3-23, the name of the controller should be

StudentController.

Figure 3-22.  Adding a scaffold window and creating a controller
with read/write actions

Figure 3-23.  Configuring the new controller name as
StudentController

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

84

	 10.	 Part of the code from the new controller is shown in

Listing 3-2.

Listing 3-2.  Partial View of the New StudentController Class

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Mvc;

namespace CosmosUniversity.Web.Controllers

{

 public class StudentController : Controller

 {

 // GET: Student

 public ActionResult Index()

 {

 return View();

 }

 // GET: Student/Details/5

 public ActionResult Details(int id)

 {

 return View();

 }

 // GET: Student/Create

 public ActionResult Create()

 {

 return View();

 }

Chapter 3 Working with an Azure Cosmos DB Database

85

 // POST: Student/Create

 [HttpPost]

 public ActionResult Create(FormCollection collection)

 {

 try

 {

 // TODO: Add insert logic here

 return RedirectToAction("Index");

 }

 catch

 {

 return View();

 }

 }

...

�Creating a Class for the Document
It is time to create a structure that you can manipulate for the data. Since

you are using .NET and C#, you will create a new class that represents a

document in the database. It will contain all the properties necessary to

match the document in Listing 3-1. This will be your document model.

Using a class will be much easier than manipulating JSON directly, and in

the end, you will use Json.net to serialize this class into the actual JSON

document. Follow the next steps to create the document:

	 1.	 Right-click in the Models folder in the Solution

Explorer window. From the context menu, select

Add and then Class, as shown in Figure 3-24.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

86

	 2.	 When the Add New Item window opens, type the

name of the file as Student.cs and click the Add

button, as shown in Figure 3-25.

Figure 3-24.  Adding a new class in the Models folder for your
document

Figure 3-25.  Creating a new class named Student.cs that represents a
record in the database

Chapter 3 Working with an Azure Cosmos DB Database

87

	 3.	 The class at this point will be empty. Let’s now

add properties representing each of the properties

described in the JSON document from Listing 3-1.

These properties are shown in Listing 3-3.

Listing 3-3.  Student Model Representing a Record in the Database

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

namespace CosmosUniversity.Web.Models

{

 public class Student

 {

 public string Id { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public DateTime BirthDate { get; set; }

 public string Address1 { get; set; }

 public string Address2 { get; set; }

 public string City { get; set; }

 public string State { get; set; }

 public int PostalCode { get; set; }

 public string PhoneNumber { get; set; }

 }

}

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

88

Note that the names of the properties in the class use

Pascal Case notation while the JSON document uses

Camel Case. This might cause some problems but

they are easily solved by adding annotations to match

the casing between both formats. To make these

annotations you will need to add the Newtonsoft.Json

namespace to the class and use the [JsonProperty]

attribute on each property, as shown in Listing 3-4.

Listing 3-4.  Student Model Now with Annotations in the Class

Properties to Match the JSON Document’s Camel Case Style

using Newtonsoft.Json;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

namespace CosmosUniversity.Web.Models

{

 public class Student

 {

 [JsonProperty(PropertyName = "id")]

 public string Id { get; set; }

 [JsonProperty(PropertyName = "firstName")]

 public string FirstName { get; set; }

 [JsonProperty(PropertyName = "lastName")]

 public string LastName { get; set; }

 [JsonProperty(PropertyName = "birthDate")]

 public DateTime BirthDate { get; set; }

 [JsonProperty(PropertyName = "address1")]

 public string Address1 { get; set; }

Chapter 3 Working with an Azure Cosmos DB Database

89

 [JsonProperty(PropertyName = "address2")]

 public string Address2 { get; set; }

 [JsonProperty(PropertyName = "city")]

 public string City { get; set; }

 [JsonProperty(PropertyName = "state")]

 public string State { get; set; }

 [JsonProperty(PropertyName = "postalCode")]

 public int PostalCode { get; set; }

 [JsonProperty(PropertyName = "phoneNumber")]

 public string PhoneNumber { get; set; }

 }

}

�Creating the Data Layer
The web application is now ready for you to create the data layer. This will

be a class that implements the integration between the web application

and Azure Cosmos DB. The first thing you need to do is let the application

know you want to use Azure Cosmos DB, and for that you need to add

a new library to the solution. You will use a NuGet package for that. The

following steps will guide you through the creation of the data layer class:

	 1.	 The first step is to add the DocumentDB .NET SDK

to the project. To do so, open the NuGet Package

Manager Console. The console is a command

line interface where you can type the commands

to install, update, or remove a package from the

projects in a solution. To use it, go to the Tools menu,

open NuGet Package Manager, and then select

Package Manager Console, as shown in Figure 3-26.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

90

	 2.	 The Package Manager Console window is shown

in Figure 3-27. At this point, you can enter package

commands.

	 3.	 A graphical user interface for managing packages is

available in case you are not too comfortable with

the command line interface. The option, shown

in Figure 3-28, is available just below the Package

Manager Console in the Tools menu and is called

Manage NuGet Packages for Solution.

Figure 3-26.  Opening the Package Manager Console window

Figure 3-27.  Package Manager Console window

Chapter 3 Working with an Azure Cosmos DB Database

91

	 4.	 The graphical user interface for managing packages

is shown in Figure 3-29.

Figure 3-28.  Opening the graphical user interface to manage packages

Figure 3-29.  Graphical user interface to manage packages

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

92

	 5.	 In this example, you will use the command line

option because it is simpler. In the Package Manager

Console, type the following command and then press

the Enter key:

PM> Install-Package Microsoft.Azure.DocumentDB

	 6.	 The command will gather all dependencies for

the package, perform all necessary updates, and

download the required files for the application to

use the SDK. It should show something like the

results shown in Figure 3-30.

Figure 3-30.  Results of installing the DocumentDB .NET SDK using
the Package Manager Console

Chapter 3 Working with an Azure Cosmos DB Database

93

	 7.	 Let’s now start writing some code. For your

application to connect to Azure Cosmos DB it

needs two pieces of information: it needs to know

where the database is and it needs to know the

authentication key. The location of the database is

information you saw in Chapter 1. It is basically the

URL where the emulator is running. The second

piece is a fixed authentication key for the emulator

that never changes and is intended to be used only

with it; it can’t be used for production databases in

Microsoft Azure. The values are

Database endpoint URL: https://localhost:8081/

Authentication Key: C2y6yDjf5/R+ob0N8A7Cgv30VRD

JIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEc

aGQy67XIw/Jw==

	 8.	 Add these values to the Web.Config file so they are

easy to use in the application. Open the Web.Config

file in Visual Studio and add the following lines in

the <AppSettings> section as shown in Figure 3-31.

Then save the file and close it.

<add key="CosmodDBEndPoint"

value="https://localhost:8081/"/>

<add key="CosmosDBAuthKey" value="C2y6yDjf5/R+

ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mG

GyPMbIZnqyMsEcaGQy67XIw/Jw=="/>

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

94

Note M ore information on the Azure Cosmos DB Emulator can
be found in Chapter 1 and throughout this book and in the online
documentation at http://bit.ly/cosmos-db-emulator.

	 9.	 In the same way you added a class for the

document, let’s create a new class for the data

layer. Right-click the Models folder, open Add from

the context menu, and select Class at the bottom,

as shown in Figure 3-24. When the Add New Item

window opens, as shown in Figure 3-32, type the

name of the new class as Repository.cs.

Figure 3-31.  The Web.Config file after adding the two keys for
connecting to the Azure Cosmos DB Emulator

Chapter 3 Working with an Azure Cosmos DB Database

http://bit.ly/cosmos-db-emulator

95

Figure 3-32.  Creating the new Repository class for the data layer

	 10.	 You will change the default class code in several

ways to facilitate accessing it. First, you will make the

class static so that you don’t have to create instances

of it. Also, you will constraint your class to be able

to work only with class type arguments. This is

important because you are effectively saying that the

data layer will work only with classes such as the one

you built for the student records. Note that this refers

to any class, not just the Student class, and thus, it

can work with more class types as you add them. The

new class declaration is shown in Listing 3-5.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

96

Listing 3-5.  Repository Class Declaration with Restrictions for Class

Type Arguments

public static class Repository<T> where T : class

	 11.	 Now you will add a few private static variables to

reference the database and collection location and

name, as well as the authentication key and the

DocumentClient object you will use to interact with

Azure Cosmos DB. The definitions are shown in

Listing 3-6. Note that the database and collection

names could have also been stored in the Web.Config

file. It makes no difference, but basically it depends

on whether those values can change in the future or

not, and how easily you want them to update.

Listing 3-6.  Private Variables to Store Global Information to the

Repository Class

private static readonly string _endPoint =

 Co�nfigurationManager.AppSettings["CosmosDBEndPoint"];

private static readonly string _authKey =

 �ConfigurationManager.AppSettings["CosmosDBAuthKey"];

private static readonly string _dbName = "cosmosuniversity";

private static readonly string _collectionName = "student";

private static readonly DocumentClient =

 �new DocumentClient(new Uri(_endPoint), _authKey);

Chapter 3 Working with an Azure Cosmos DB Database

97

�Querying the Database

You are ready to start querying the database. To make it very responsive,

you will add an async method that returns a list of students; that way the

application UI won’t be locked while the query is executing.

The code for the method is shown in Listing 3-7. The method will

accept as a parameter a lambda expression that can be used to filter and

refine the query.

Listing 3-7.  Async Method to Query the Azure Cosmos DB

Collection to Read All the Student Documents

public static async Task<IEnumerable<T>>

 GetStudentsAsync(Expression<Func<T, bool>> where)

{

 Uri collectionUri = UriFactory.CreateDocumentCollectionUri

 (_dbName, _collectionName);

 FeedOptions feedOptions = new FeedOptions { MaxItemCount = -1 };

 IDocumentQuery<T> students;

 if (where == null)

 {

 students = client.CreateDocumentQuery<T>

 (collectionUri, feedOptions)

 .AsDocumentQuery();

 }

 else

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

98

 {

 students = client.CreateDocumentQuery<T>

 (collectionUri, feedOptions)

 .Where(where)

 .AsDocumentQuery();

 }

 List<T> listOfStudents = new List<T>();

 while (students.HasMoreResults)

 {

 listOfStudents.AddRange(await students.ExecuteNextAsync<T>());

 }

 return listOfStudents;

}

The first line creates an Uri variable. This variable will store

the actual link used to connect to the collection. It is built using the

CreateDocumentCollectionUri function in the UriFactory class and takes

as a parameter the name of the database and the name of the collection to

which you want to connect.

The second line creates a new FeedOptions variable which is used to

provide the client object with information about how to return results from

queries. In this example, by setting the MaxItemCount to -1, you’re telling

the client to dynamically calculate the page size. For example, a value of

10 for this property would instruct the client to return 10 documents at a

time. The FeedOptions class has many properties to configure the client,

such as PartitionKey which defines the partition key to use in the case of

an operation involving a specific partition. SessionToken gets or sets the

session token for use with Session consistency.

Chapter 3 Working with an Azure Cosmos DB Database

99

The following line creates an IDocumentQuery variable. It will be used

to read the information from the database and collection specified in the

Uri passed in the first parameter, and it will use the configuration in the

FeedOptions variable from the second parameter. The next line adds a

Where() extension for the query that in turn uses the expression in the

GetStudentsAsync method’s parameter as a predicate to filter the results.

Finally, since the Where() extension returns an IQueryable, you need

to convert this result to an IDocumentQuery and you use the extension

AsDocumentQuery(). Note that because the Where() extension requires the

predicate not to be null, you are checking if this is the case, and if so, it will

not add the extension to the query.

The final lines of the method create a List<T> to store the results from

the DocumentQuery. The query is executed page by page and you need to

loop through all the pages of data. The property HasMoreResults from

the DocumentQuery object is a Boolean that will be true if there are more

results to read. The first time it’s checked, it will return true; it then enters

the while loop and adds to the list of results the documents returned from

the call to ExecuteNextAsync<T>(). This method will go to the collection,

read the next page of data, and if there are more documents to read, based

on the query, it will keep the value of true for HasMoreResults. When there

are no more results to read, HasMoreResults becomes false and the loop

ends. Then the method finishes, returning a list of students.

To read a single document, you access it using its id. Listing 3-8 shows

the method GetStudentAsync() (note that the name is singular this time).

The method accepts as a parameter the id of the student you want to see.

Listing 3-8.  Async Method to Query the Azure Cosmos DB

Collection to Read a Student Document Based on Its Id

public static async Task<T> GetStudentAsync(string id)

{

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

100

 if (string.IsNullOrEmpty(id))

 throw new ApplicationException("No student id specified");

 Uri documentUri = UriFactory.CreateDocumentUri

 �(_db�Name, _collectionName, id);

 try

 {

 Document student =

await client.ReadDocumentAsync(documentUri);

 return (T)(dynamic)student;

 }

 catch (DocumentClientException ex)

 {

 if (ex.StatusCode == System.Net.HttpStatusCode.NotFound)

 return null;

 throw;

 }

}

The first two lines in the method are a validation to ensure you are

getting an actual value to query the database. It is a simple defensive

mechanism to avoid a roundtrip to the database that most surely will fail

and will just consume RUs.

The following line creates an Uri object that identifies the document in

the collection. The three parameters are the database, collection, and id of

the document. The UriFactory.CreateDocumentUri() method will make

sure the Uri is properly created.

To read the document you use the client.ReadDocumentAsync()

method. The way this method works is if the document is found, then

it returns the document; otherwise, it throws an exception of type

DocumentClientException. Documents either exist or not; therefore, if

the document is not found, the status code for the exception will be an

HttpStatusCode.NotFound. In this case, the method will just return null.

Chapter 3 Working with an Azure Cosmos DB Database

101

You use a try-catch statement to check for this exception. In the rare

case where something else happens, the method will just rethrow the

exception so it is visible and can be addressed. Converting the document

to a dynamic object and then casting to T will easily and implicitly take care

of the deserialization from JSON to object using the type represented by T.

�Creating a Document

Creating a document using the DocumentDB .NET SDK is a very simple

process. Once you have an object that maps to the document being stored

in the collection, you use the client.CreatDocumentAsync() method, as

shown in Listing 3-9.

Listing 3-9.  Async Method to Connect to the Azure Cosmos DB

Collection to Create a New Student Document

public static async Task<Document> CreateStudentAsync(T student)

{

 Uri collectionUri = UriFactory.CreateDocumentCollectionUri

 � (_dbName, _collectionName);

 return await client.CreateDocumentAsync(collectionUri, student);

}

The first line creates the Uri for the collection so the method knows to

which collection you are referring to when creating the document. The Uri

takes two parameters, the database and collection you intend to connect

to. The second line is the call to client.CreateDocumentAsync() that takes

two parameters: the first one is the Uri created before, and the second is

the document to be created.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

102

�Replacing a Document

When a document changes and those changes are saved to the

database, it is called a replace operation. This is done using the

client.ReplaceDocumentAsync() method shown in Listing 3-10.

Listing 3-10.  Async Method to Connect to the Azure Cosmos DB

Collection to Replace a Student Document

public static async Task<Document> ReplaceStudentAsync

 (T student, string id)

{

 if (string.IsNullOrEmpty(id))

 throw new ApplicationException("No student id specified");

 Uri documentUri = UriFactory.CreateDocumentUri

 (_dbName, _collectionName, id);

 return await client.ReplaceDocumentAsync(documentUri, student);

}

The method will accept two parameters: the document with the new

values and the id of the document. The document id will be used to create

the Uri of the document in the first line. The second line is the call to

client.ReplaceDocumentAsync() which connects to the collection and

replaces the document. As usual, you check the id variable to ensure there

is a value and throw an exception if there isn’t one.

�Deleting a Document

Deleting a document is done by calling the client.DeleteDocumentAsync()

method which accepts a single parameter: the Uri of the document

you intend to delete. Listing 3-11 shows the method to delete a student

document.

Chapter 3 Working with an Azure Cosmos DB Database

103

Listing 3-11.  Async Method to Connect to the Azure Cosmos DB

Collection to Delete a Student Document

public static async Task<Document> DeleteStudentAsync(string id)

{

 if (string.IsNullOrEmpty(id))

 throw new ApplicationException("No student id specified");

 Uri documentUri = UriFactory.CreateDocumentUri

 (_dbName, _collectionName, id);

 return await client.DeleteDocumentAsync(documentUri);

}

�Using the Data Layer in the Controller
and Completing the Application
It is now time to implement the data layer and add the necessary code in

the controller so you can interact with Azure Cosmos DB.

The first step to implement is the list of students. The idea is that

when a user opens the Students page they will get the list of students to

manipulate. The page will have the list of students, an option to create a

new student, and options to view, edit, and delete individual documents.

The following steps will guide you through the adjustments to the

StudentController class:

	 1.	 Open the StudentController.cs file by

double-clicking it in the Solution Explorer window,

as shown in Figure 3-33.

Figure 3-33.  Opening the StudentController.cs file

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

104

	 2.	 In the Index() action, add the code to call the

GetStudentsAsync() method from Repository. The

code will look similar to what is shown in Listing 3-12.

Listing 3-12.  Calling GetStudentsAsync()

var students = await Repository<Student>.GetStudentsAsync(null);

return View(students);

	 3.	 After you add the code you will notice a problem

highlighted with a red squiggle, as shown in Figure 3-34.

The issue here is that you are trying to call an

asynchronous function from a synchronous method.

Figure 3-34.  Issue when calling an asynchronous function from a
synchronous method

	 4.	 To resolve this problem, you must adjust the action

so that it is also asynchronous. Instead of this

being a simple ActionResult method, it should

be changed to be a Task<ActionResult> and it

also needs to be modified to be async. To keep it

consistent with the convention of async-await, the

action is also renamed to IndexAsync(). Finally, in

order to correctly call it from the application and

hide the fact that it is an asynchronous action, you

Chapter 3 Working with an Azure Cosmos DB Database

105

decorate the action with an annotation so its name

is known as just Index. The resulting code is in

Listing 3-13.

Listing 3-13.  Modified Controller Action to Become Asynchronous

[ActionName("Index")]

public async Task<ActionResult> IndexAsync()

{

 �var students = await Repository<Student>.GetStudentsAsync(null);

 return View(students);

}

	 5.	 You now add the view to render the list of students.

In the IndexAsync() action, right-click anywhere

inside the action and at the top of the context menu

you will see an option named Add View, as shown

in Figure 3-35. This will open the Add View window

shown in Figure 3-36. In the Add View window, type

the name of the view as Index only so it matches

the actual action name and follows the MVC

convention. Then select the List template. The Model

class should be the Student class in the Models

folder. Then click the Add button.

Figure 3-35.  Adding a view for the action method

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

106

	 6.	 Once you compile and run the application, just type

in the URL generated for the Student controller

(/Student) and you will see something like Figure 3-37.

Figure 3-36.  The Add View window with the configuration to create
a list of items

Figure 3-37.  Page showing the list of students with the default
scaffold page

Chapter 3 Working with an Azure Cosmos DB Database

107

	 7.	 The rest of the actions in the controller must also be

adjusted to be asynchronous. As you did before, the

modifications are as follows:

	 a.	 ActionResult becomes Task<ActionResult>.

	 b.	 The async modifier is added.

	 c.	 The method is renamed to end with Async.

	 d.	 An annotation is added so the action name is

not the same as the action method.

	 8.	 The code for the Details() action is similar to the

one in Listing 3-13. The difference is that instead of

returning a list of students it will return a single one.

The id parameter also needs to be adjusted so it is a

string. The resulting code is in Listing 3-14.

Listing 3-14.  Action to Read a Single Student Document

[ActionName("Details")]

public async Task<ActionResult> DetailsAsync(string id)

{

 var student = await Repository<Student>.GetStudentAsync(id);

 return View(student);

}

	 9.	 Now, similarly to what you did before, let’s add the

view for this action. Right-click in any part of the

action and select Add View. In the Add View window

type the name of the view as Details, the template

should be Details, and the Model class will be again

Student. The window is shown in Figure 3-38.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

108

	 10.	 You are now going to write the code to create

documents. You need two actions this time: one for

the empty form so the user can enter the information

of the new document, and one action that will receive

the information and store it in Azure Cosmos DB. You

will see those two actions in the controller; one is a

simple ActionResult method named Create() and

the other has an annotation that restricts its usage to

just respond to POST requests. Leave the first method

as is; you don’t need to change it to be asynchronous

because it will just serve the form to enter the

information, but the second one must be adjusted to

become async. In addition to the annotation to specify

the action name, add a new annotation to validate

the antiforgery token, as shown in Listing 3-15. The

antiforgery token is a value that is generated in the

server and is passed to the form in the view to be

Figure 3-38.  Adding the view for the viewing the details of a Student
document

Chapter 3 Working with an Azure Cosmos DB Database

109

rendered along with the rest of the fields for the user

to enter. This value is brought back with the user-typed

values and evaluated to prevent cross-site request

forgery attacks. You start the action by validating the

information, ensuring that everything is following the

security rules. If everything is right, then just call the

CreateStudentAsync() method from the repository.

If all goes well, it should take the user back to the list

of students. If there is an error, the form will stay open,

showing any errors to the user.

Listing 3-15.  Actions to Create New Student Documents

// GET: Student/Create

public ActionResult Create()

{

 return View();

}

// POST: Student/Create

[HttpPost]

[ActionName("Create")]

[ValidateAntiForgeryToken]

public async Task<ActionResult> CreateAsync(Student student)

{

 if (!ModelState.IsValid)

 return View(student);

 try

 {

 await Repository<Student>.CreateStudentAsync(student);

 return RedirectToAction("Index");

 }

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

110

 catch

 {

 return View(student);

 }

}

	 11.	 Let’s now add the view for this action. Right-click

anywhere inside the Create() action and select Add

View. In the Add View window the name should be

Create, the template will be Create, and the Model

class will be again Student. Leave the rest of the fields

with their default values, as shown in Figure 3-39.

Then click the Add button.

Figure 3-39.  Adding the view for the Create action

	 12.	 Compile and run the application. Now you have the

functionality to create new documents and view

the information in them. When you click the Create

New link in the students list page, the new form to

Chapter 3 Working with an Azure Cosmos DB Database

111

create students opens, as shown in Figure 3-40. Type

in some information to create your first document

and you will see something like Figure 3-41.

Figure 3-40.  Form in the Create Student page

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

112

	 13.	 If you click the Details link you should be able to

view the information for this particular document.

However, as shown in Figure 3-42, an error shows

up: PartitionKey value must be supplied for this

operation. What is happening here is that your

collection is partitioned by postal code and Azure

Cosmos DB requires the partition key to be able

to query the document. In this case, you need to

modify the view, controller, and data layer to pass

this information.

Figure 3-41.  List of students after creating one with your brand new
Create Student page

Figure 3-42.  Error when trying to read a document from a
partitioned collection without the partition key

Chapter 3 Working with an Azure Cosmos DB Database

113

	 14.	 Listing 3-16 shows the adjustment needed for the

Details link in the Index view. Open the Index view

from the Solution Explorer in the Student folder

inside the Views folder. This adjustment will be

needed for all three links to edit, view details, and

delete documents because they all deal with a single

document.

Listing 3-16.  Adjustments to the Index View to Pass the Partition

Key to Execute the Operations

<td>

 @Html.ActionLink("Edit", "Edit",

 new { id=item.Id, pk = item.PostalCode }) |

 @Html.ActionLink("Details", "Details",

 new { id=item.Id, pk = item.PostalCode }) |

 @Html.ActionLink("Delete", "Delete",

 new { id=item.Id, pk = item.PostalCode })

</td>

	 15.	 Now let’s modify the Details action in the controller

to receive this value in their signature. Listing 3-17

shows the modified action.

Listing 3-17.  Adjustments in the Controller Actions to Receive the

Value of the Partition Key

[ActionName("Details")]

public async Task<ActionResult> DetailsAsync(string id, int pk)

{

 var student = await Repository<Student>.GetStudentAsync(id, pk);

 return View(student);

}

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

114

	 16.	 Finally, the data layer class should be adjusted

to use the partition key. Listing 3-18 shows

the adjustment. The new parameter is added

to the method and it is used to create a new

RequestOptions object.

Listing 3-18.  Adjusted Data Layer Method to Query the Database

for a Particular Document

public static async Task<T> GetStudentAsync

 (string id, int partitionKey)

{

 if (string.IsNullOrEmpty(id))

 throw new ApplicationException("No student id specified");

 Uri documentUri = UriFactory.CreateDocumentUri

 (_dbName, _collectionName, id);

 try

 {

 RequestOptions requestOptions = new RequestOptions {

 PartitionKey = new PartitionKey(partitionKey)

 };

 Document student = await client.ReadDocumentAsync

 (documentUri, requestOptions);

 return (T)(dynamic)student;

 }

 catch (DocumentClientException ex)

 {

 if (ex.StatusCode == System.Net.HttpStatusCode.NotFound)

 return null;

 throw;

 }

}

Chapter 3 Working with an Azure Cosmos DB Database

115

	 17.	 Now, after compiling and running the application,

you should see a successful result, as shown in

Figure 3-43.

Figure 3-43.  Successful query for a single document using a
partitioned collection

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

116

	 18.	 Now you are going to add the code for editing a

document. In Listing 3-16 you adjusted the link to

open the Edit page. You need to adjust the action

in the controller to receive the postal code and pass

it to the data layer. The code in Listing 3-19 shows

both Edit methods. The first EditAsync() method

reads the document from the database and opens

the page with a form ready to edit the values of the

document. The second method only accepts POST

requests, similarly to the CreateAsync() method in

Listing 3-15. The method also validates the model,

and if everything looks correct, then it calls the data

layer using the ReplaceStudentAsync() method.

Listing 3-19.  Edit Actions Used to Edit Student Documents

// GET: Student/Edit/5

[ActionName("Edit")]

public async Task<ActionResult> EditAsync(string id, int pk)

{

 var student = await Repository<Student>.GetStudentAsync(id, pk);

 return View(student);

}

// POST: Student/Edit/5

[HttpPost]

[ActionName("Edit")]

[ValidateAntiForgeryToken]

public async Task<ActionResult> EditAsync(string id, Student student)

Chapter 3 Working with an Azure Cosmos DB Database

117

{

 if (!ModelState.IsValid)

 return View(student);

 try

 {

 await Repository<Student>.ReplaceStudentAsync(student, id);

 return RedirectToAction("Index");

 }

 catch

 {

 return View();

 }

}

Note in this case that the partition key was not needed

for the actual replace operation; it was needed only to

read the document to display the form.

	 19.	 Let’s now add the view for the Edit action. Right-click

anywhere inside the Edit() action and select Add

View. In the Add View window the name should be

Edit, the template will be Edit, and the Model class

will be again Student. Leave the rest of the fields

with their default values, as shown in Figure 3-44.

Then click the Add button.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

118

	 20.	 Now for the final operation. You are going to add

the functionality to delete documents. For this you

are going to adjust the two Delete() actions in the

controller. First, you’ll make them asynchronous, as

described before. The first action will only render

the document, similar to the Details() action.

It will also show a button to perform the actual

deletion. The second action will accept only POST

requests and will call DeleteStudentAsync() in the

data layer. Listing 3-20 shows the complete code.

Listing 3-20.  Action Methods to Delete Student Documents

// GET: Student/Delete/5

[ActionName("Delete")]

public async Task<ActionResult> Delete(string id, int pk)

Figure 3-44.  The Add View window for the Edit( ) action

Chapter 3 Working with an Azure Cosmos DB Database

119

{

 var student = await Repository<Student>.GetStudentAsync(id, pk);

 return View(student);

}

// POST: Student/Delete/5

[HttpPost]

[ActionName("Delete")]

[ValidateAntiForgeryToken]

public async Task<ActionResult> DeleteAsync

 �(st�ring id, int pk, Student student)

{

 try

 {

 await Repository<Student>.DeleteStudentAsync(id, pk);

 return RedirectToAction("Index");

 }

 catch

 {

 return View(student);

 }

}

	 21.	 In Listing 3-21 you can see the modified code for the

DeleteStudentAsync() method in the data layer. It

now handles the partition key that needs to be sent

in the RequestOptions object.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

120

Listing 3-21.  Modified DeleteStudentAsync() Method That Includes

the Partition Key

public static async Task<Document> DeleteStudentAsync

 �(st�ring id, int partitionKey)

{

 if (string.IsNullOrEmpty(id))

 throw new ApplicationException("No student id specified");

 RequestOptions requestOptions = new RequestOptions

 {

 PartitionKey = new PartitionKey(partitionKey)

 };

 Uri documentUri = UriFactory.CreateDocumentUri

 (_dbName, _collectionName, id);

 return await client.DeleteDocumentAsync

 (documentUri, requestOptions);

}

	 22.	 Let’s now add the view for the Delete action.

Right-click anywhere inside the Delete() action

and select Add View. In the Add View window

the name should be Delete, the template will be

Delete, and the Model class will be again Student.

Leave the rest of the fields with their default

values, as shown in Figure 3-45. Then click the

Add button.

Chapter 3 Working with an Azure Cosmos DB Database

121

When you click the Delete link now, you will see a new page opening

up to show the details of the document being deleted and to ask for your

confirmation to delete the document (see Figure 3-46). Also note in the

URL of the delete page that the id of the document is being passed along

with the partition key.

Figure 3-45.  The Add View window for the Delete( ) action method

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

122

You now have a full ASP.NET web application that can manipulate

documents in an Azure Cosmos DB database with a partitioned collection

using the DocumentDB .NET SDK.

�Summary
In this chapter, you examined some of the fundamental aspects of working

with an Azure Cosmos DB database. You learned how to create a database

and collection using the Azure Cosmos DB Emulator. You also learned

how to add a partition key to the collection and configure it based on

the requirements for your application. Then you examined the basics of

creating a document and manipulating documents in the emulator.

Figure 3-46.  Deleting a document (default scaffold page)

Chapter 3 Working with an Azure Cosmos DB Database

123

The final part of the chapter was devoted to creating a simple ASP.NET

web application that implements the DocumentDB .NET SDK to manage

documents. You learned the requirements for the web application, such as

the necessary packages that need to be downloaded from NuGet Package

Manager. You also learned how to create a simple data layer that contains

the all the necessary code to interact with an Azure Cosmos DB database,

collection, and documents using the DocumentDB .NET SDK.

Along the way you also saw the potential problems when dealing with

asynchronous methods and how to resolve them, as well as problems

when using partitioned collections.

In the next chapter, you will work with processes and tools to import

and export data to and from Azure Cosmos DB.

Chapter 3 Working with an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

125© José Rolando Guay Paz 2018
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_4

CHAPTER 4

Importing Data into
an Azure Cosmos DB
Database
One of the most important aspects for any individual or company with

an existing application that wants to use Azure Cosmos DB is how to

move their existing data to Azure so they don’t lose anything. To solve this

problem, there are different options in Azure Cosmos DB depending on

the source of the data.

In this chapter, you will examine one of the tools to import and export

data to and from Azure Cosmos DB. This tool is free, open source, and can

be downloaded and used without restrictions.

�Introducing the DocumentDB Data
Migration Tool
The DocumentDB Data Migration Tool (DMT) is used to migrate (import)

data from different sources into an Azure Cosmos DB database that

implements the DocumentDB API. The sources of data can include

(but are not limited to) the following:

126

•	 JSON files

•	 SQL Server

•	 CSV files

•	 Azure Table storage

•	 Azure Cosmos DB collections

•	 Amazon DynamoDB

•	 HBase

•	 MongoDB

The DMT can be obtained in two forms. You can download the most

recent version of the executable from Microsoft at http://bit.ly/cosmos-

db-ddbdmt-download or you can get the source code, which is open source

and hosted on GitHub at http://bit.ly/cosmos-db-ddbdmt-source.

Tip  If you are a developer, the availability of the DMT’s source
code gives you a great opportunity to not just look at the internals
of the tool but to help make it better by fixing bugs and providing
improvements. I encourage you to get involved in open source
projects, especially this one.

�Software Requirements
The DMT is supported in the following operating systems:

•	 Windows 10

•	 Windows 7 Service Pack 1

•	 Windows 8

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://bit.ly/cosmos-db-ddbdmt-download
http://bit.ly/cosmos-db-ddbdmt-download
http://bit.ly/cosmos-db-ddbdmt-source
http://www.allitebooks.org

127

•	 Windows 8.1

•	 Windows Server 2008 R2 SP1

•	 Windows Server 2008 Service Pack 2

•	 Windows Server 2012

•	 Windows Server 2012 R2

•	 Windows Vista Service Pack 2

To run or build the DMT, ensure you have .NET Framework 4.5.1 or

higher installed.

�Features of the DocumentDB Data Migration Tool
While the DMT is a simple tool, it includes a number of features that are

important for importing data. The following list includes some of these

features:

•	 Multiple interfaces: You can use the DMT in two ways:

the graphical user interface (GUI) or the command

line interface (CLI). Both versions of the program are

included in the download package and source code.

•	 Multiple sources: The DMT supports reading data

from multiple files sources such as JSON and CSV files,

other NoSQL databases such as MongoDB and Amazon

DynamoDB, and relational databases such as SQL Server.

•	 CLI command from GUI: The GUI exposes an option

to generate the equivalent CLI command used for

the import operation. This is particularly useful to

automate import processes and the CLI command is

unknown.

Chapter 4 Importing Data into an Azure Cosmos DB Database

128

•	 Available source code: The source code of the tool is

available from GitHub at http://bit.ly/cosmos-db-

ddbdmt-source.

•	 Bulk and sequential imports: In addition to sequential

imports, you can perform bulk imports using an Azure

Cosmos DB stored procedure.

�Installing the DocumentDB Data Migration Tool
The installation of the DMT is very simple. The following steps will guide

you through the process of obtaining the latest version of the executable:

	 1.	 To obtain the latest version of the DMT’s executable,

open your browser and go to http://bit.ly/cosmos-db-

ddbdmt-download. Figure 4-1 shows the download page.

Figure 4-1.  Download page for the DocumentDB Data Migration Tool

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://bit.ly/cosmos-db-ddbdmt-source
http://bit.ly/cosmos-db-ddbdmt-source
http://bit.ly/cosmos-db-ddbdmt-download
http://bit.ly/cosmos-db-ddbdmt-download
http://www.allitebooks.org

129

	 2.	 On the download page, click the orange Download

button. This action will open the download options

shown in Figure 4-2. The two options are a Microsoft

Word document with information about how to use

the tool and a zip file with the tool files. Check both

options and then click the Next button.

Figure 4-2.  Download options for the DocumentDB Data Migration
Tool

Chapter 4 Importing Data into an Azure Cosmos DB Database

130

	 3.	 Depending on your browser and configuration, you

will be prompted to open or save the files. In my

case, it shows the options in Figure 4-3. Click Save

to keep a copy of the files. If prompted, select the

folder where you want to save the files.

Figure 4-3.  Browser options to download the DocumentDB Data
Migration Tool files

	 4.	 In Windows Explorer, navigate to the folder where

the zip file was downloaded. Extract its contents to

C:\DMT, as shown in Figure 4-4.

Figure 4-4.  Contents of the zip file in the C:\DMT folder

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

131

	 5.	 Double-click the dtui.exe file to test the tool. You

should see the window shown in Figure 4-5.

Figure 4-5.  DocumentDB Data Migration Tool graphical
interface

If you see the same window as in Figure 4-5 then you have successfully

downloaded and installed the DocumentDB Data Migration Tool.

Chapter 4 Importing Data into an Azure Cosmos DB Database

132

�Installing the DocumentDB Data Migration Tool
from the Source Code
As mentioned before the DMT is open source and you can download it

from GitHub. Let’s now download the source code and build the DMT so

you have a working version that you can modify and improve.

Note  The following steps assume you have Git installed and have
at least basic knowledge of how it works and/or have used it in the
past. Learning Git is beyond the scope of this book but there are very
good books about the topic at www.apress.com such as Pro Git
(second edition) from Scott Chacon and Bend Straub (www.apress.
com/us/book/9781484200773).

The following steps will guide you through this process:

	 1.	 Open a command prompt window. Click the Start

button or search for command prompt, as shown in

Figure 4-6.

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.apress.com/
http://www.apress.com/us/book/9781484200773
http://www.apress.com/us/book/9781484200773
http://www.allitebooks.org

133

Figure 4-6.  Searching for the Command Prompt desktop app

Chapter 4 Importing Data into an Azure Cosmos DB Database

134

	 2.	 Click the Command Prompt desktop app icon. This

will open a window similar to the one shown in

Figure 4-7.

	 3.	 When you created the sample application in

Chapter 3, you had a Projects folder where the

application’s files were created. Let’s change to the

C:\Projects folder. You will store the DMT source

code in this folder. Use the following command:

C:\>cd C:\Projects

	 4.	 Open your browser and type the URL of the DMT

source code in GitHub (http://bit.ly/cosmos-

db-ddbdmt-source). When the page opens, click the

green button to the right of the page that says “Clone

or download,” as shown in Figure 4-8. This will open

a small window with the two options to clone the

repository. One is with HTTPS and the second is

with SSH. Let’s use the HTTPS URL for now as it is

simpler.

Figure 4-7.  Command Prompt desktop app

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://bit.ly/cosmos-db-ddbdmt-source
http://bit.ly/cosmos-db-ddbdmt-source
http://www.allitebooks.org

135

	 5.	 Click the button to the right of the URL to copy

the address to the clipboard. This is illustrated in

Figure 4-9. You will need this URL to clone the

repository and download the files.

Figure 4-8.  Obtaining the repository URL to clone the source code

Figure 4-9.  Copying the repository URL to the clipboard

Chapter 4 Importing Data into an Azure Cosmos DB Database

136

	 6.	 Now go back to the command prompt app and type

the command in Listing 4-1. Then press the Enter

key. The command will connect to GitHub and

download the necessary files from the repository so

you can work with it from Visual Studio. It will create

a new folder to store the files with the name azure-

documentdb-datamigrationtool in your Projects

folder. You should see something like what is shown

in Figure 4-10.

Listing 4-1.  Cloning the DMT from GitHub

C:\Projects>git clone https://github.com/Azure/azure-

documentdb-datamigrationtool.git

Figure 4-10.  Cloning the DMT repository from GitHub

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

137

	 7.	 Open Visual Studio, as shown in Figure 4-11. Click

the Start button and scroll to the bottom of the

programs to find Visual Studio 2017.

Figure 4-11.  Opening Visual Studio 2017

	 8.	 From Visual Studio, open the DMT solution from

the new folder created in step 6. This is shown in

Figure 4-12. Note the many folders and files that

were downloaded.

Chapter 4 Importing Data into an Azure Cosmos DB Database

138

	 9.	 When the solution opens, you will see many projects

inside folders in the Solution Explorer window, as

shown in Figure 4-13. The solution might take a

while to open.

Figure 4-12.  Opening the DMT source code in Visual Studio

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

139

	 10.	 As shown in Figure 4-13, open the Wpf folder and

select the Microsoft.DataTransfer.WpfHost

project and press F5 to compile the solution and run

the project. If all goes well, Visual Studio will have

downloaded all the necessary packages from NuGet,

compiled the projects, and built the solution. The

graphical interface application should be running.

Figure 4-13.  Many projects

Chapter 4 Importing Data into an Azure Cosmos DB Database

140

From this code, you can troubleshoot any issues and

create pull requests with new features or bug fixes

you provide.

�Importing Data with the DocumentDB Data
Migration Tool GUI
With the DMT up and running, let’s now use the graphical interface to

import some data. There are several sources that are available depending

on your existing application. I’ll focus on three sources that represent very

common scenarios: JSON files, SQL Server, and MongoDB.

�Importing JSON Files
Importing data from JSON files is a very common scenario. Many systems,

including NoSQL databases, have an export or backup functionality that

generates JSON files. You can take those files and import them into an

Azure Cosmos DB database using the DMT.

An extract of a sample file is shown in Listing 4-2. This file contains

1,000 documents with the same format as shown in Chapter 3. Note that

the data in the file is fictitious and was generated from a data mocking tool.

You can find this file in the source code included with the book.

Listing 4-2.  Extract of a JSON File

[{"firstName":"Ronda","lastName":"Beecheno","birthDate":"1998-

02-05T14:21:48Z","address1":"57401 Moland Drive","address2":null,

"city":"Harrisburg","state":"Pennsylvania","postalCode":17121,"

phoneNumber":"1-(717)760-6156"},

{"firstName":"Ingelbert","lastName":"Coverdill",

"birthDate":"1988-08-08T11:47:01Z","address1":"09 Lake View

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

141

Drive","address2":null,"city":"Fort Myers","state":"Florida",

"postalCode":33994,"phoneNumber":"1-(239)671-2746"},

{"firstName":"Portia","lastName":"Tuckley","birthDate":

"1991-03-20T06:52:59Z","address1":"081 Coolidge Alley",

"address2":null,"city":"Canton","state":"Ohio",

"postalCode":44720,"phoneNumber":"1-(234)384-0389"},

...

Follow the next steps that showcase the usage of the DMT to import a

JSON file:

	 1.	 Earlier in the chapter you created a folder named

DMT in the C: drive in which to save the downloaded

zip file that contains the executable version of the

DMT. Open the DMT from C:\DMT\dtui.exe. This is

shown in Figure 4-14.

Figure 4-14.  Running the DMT graphic interface by launching dtui.exe

Chapter 4 Importing Data into an Azure Cosmos DB Database

142

	 2.	 When you open the DMT graphic interface, you will

see it is a wizard type program. The first step in the

wizard is the Welcome step. In this step, you will see

a brief explanation of the tool and some links to get

more information about it. Click the Next button.

	 3.	 You are now in the Source Information step. Here is

where you define the source of the data you want

to import. From the Import from drop-down, select

JSON file(s). Note in Figure 4-15 that you have four

options to provide the DMT with a JSON file source.

You can add a single file, a folder (with an extra

option to recursively look in inside folders for more

files), a URL, and a BLOB from Azure. An interesting

feature of the DMT is that you can add multiple files,

folders, URLs, or BLOBs and they will be processed

by the tool.

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

143

	 4.	 For now, select a JSON file from the folder where

it’s stored. It will look something similar to what is

shown in Figure 4-16. You can use the sample file in

Listing 4-2 from the book’s source code or get your

own file. Then click the Next button.

Figure 4-15.  Selecting the source file for the DMT

Chapter 4 Importing Data into an Azure Cosmos DB Database

144

	 5.	 If your file was compressed, there is a checkbox

(shown in Figure 4-15) at the bottom of the

wizard that you can use to tell the DMT to

decompress it. The tool will use GZip to perform the

decompression.

	 6.	 You are now in the Target Information step. Here,

you will select DocumentDB - Sequential record

import (partitioned collection) from the Export to

drop-down, as shown in Figure 4-17.

Figure 4-16.  Select to add a JSON file

Figure 4-17.  Selecting the destination for the data

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

145

	 7.	 Then type the connection string. The connection

string consists of three pieces of information that

are separated by colons. They are the account

endpoint, account key, and database. The

keywords and values used for the connection

string are shown in Listing 4-3. Once you enter the

connection string, you can use the Verify button to

ensure the DMT can connect to your database.

Listing 4-3.  Connection String for the Azure Cosmos DB Emulator

AccountEndpoint=https://localhost:8081/

AccountKey=

C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyP

MbIZnqyMsEcaGQy67XIw/Jw==

Database=cosmosuniversity

The full connection string now looks like

AccountEndpoint=https://localhost:8081/;AccountKey=

C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyP

MbIZnqyMsEcaGQy67XIw/Jw==;Database=cosmosuniversity

	 8.	 The next step is to enter the name of the collection

where the documents should be stored. In this

example, type Student.

	 9.	 Then type the key in the collection that is used as the

partition key. This box is not mandatory, but since

your collection does have a partition key you need

to type /postalCode.

	 10.	 The next field determines the throughput you want

for the collection. If the collection doesn’t previously

exist, it will be created and this value will be used for

the throughput. If it does exist, it will be ignored.

Chapter 4 Importing Data into an Azure Cosmos DB Database

146

	 11.	 Finally, the last field is used to know the id field

in the documents. In the case of the sample JSON

file, there is no id field, so you can leave the file

blank. If you do have one in your file, then you

need to specify it here to avoid Azure Cosmos DB

autogenerating ids for your documents.

	 12.	 At this point, the wizard step should look like

Figure 4-18. Click the Next button.

Figure 4-18.  Fields necessary to connect to the Azure Cosmos DB
database and collection

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

147

	 13.	 There is a set of advanced options shown in

Figure 4-19. The Number of Parallel Requests

indicates how many documents will be imported

simultaneously; the default is 10. While there is no

limit to this number, you need to pay attention to

your provisioned throughput because if you hit the

limit, some documents can fail. Disable Automatic

Id Generation instructs the tool explicitly to not

generate ids for the documents you are importing.

This works in conjunction with the id field explained

earlier because you would need to define the id

field and any document that doesn’t have such id

won’t be imported. Update Existing Documents will

look to see if the document being imported already

exists based on its id; if so, the document gets

replaced. Persists Date and Time as is a setting that

indicates if date and time fields should be treated as

strings, epoch (Unix time), or both. Indexing policy

determines how indexes should be managed; the

default is blank, which will use the default setting

in the Azure Cosmos DB database indexing policy.

You can type the policy settings or you can use a file

with the settings. The Number of Retries on Failure

indicates how many times the DMT will retry to

import the documents. Connection Mode determines

how to connect to the database. DirectTcp is the

default but you can use DirectHttps or Gateway

depending on the network rules. In this example,

leave all these options with their default values.

Chapter 4 Importing Data into an Azure Cosmos DB Database

148

Figure 4-19.  DocumentDB Data Migration Tool advanced options

	 14.	 Next, in the Advanced step, you have the option

to specify a file for logging all of the information

generated by the DMT, the level of logging, and the

interval at which the log should be saved. Figure 4-20

shows some settings I use when importing data.

Normally I like to save a log and get as much

information as possible, so I recommend selecting

“All” for error information and the interval of 1

second. Note that for large imports these settings

might be overwhelming. Now click the Next button.

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

149

	 15.	 The final step is the Summary of what the DMT will

do. Here is your last chance to review your selections

and go back to adjust anything that is needed. This is

shown in Figure 4-21.

Figure 4-20.  Advanced configuration

Figure 4-21.  Summary step of the DocumentDB Data Migration Tool

Chapter 4 Importing Data into an Azure Cosmos DB Database

150

	 16.	 Note in Figure 4-21 that there is a button in the top

right corner named View Command (highlighted

in Figure 4-22). This button is very important. It will

display the command line interface parameters

needed based on your selections in the graphic

interface. When you click it, it will show you the

command parameters in a pop-up window, as

shown in Figure 4-23.

Figure 4-22.  View Command button in the Summary step

Figure 4-23.  Command line parameters based on the configuration
selected for the importGraphical user interface (GUI):JSON files:

	 17.	 After you click the Import button, the process will

start. If everything went well, it will show you a

result similar to Figure 4-24. You can see now in the

emulator that 1,000 new documents are showing up

in the student collection.

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

151

�Importing from SQL Server
The process to import data from SQL Server is very similar to importing

from JSON files. The only difference is in the Source Information step. In

the following steps, you will learn the differences in importing data from

SQL Server to Azure Cosmos DB. Note that this option works perfectly well

for on-premises SQL Server or Azure SQL Database.

	 1.	 In the Source Information step, select SQL from the

Import from drop-down, as shown in Figure 4-25.

Figure 4-24.  New documents in the student collection

Chapter 4 Importing Data into an Azure Cosmos DB Database

152

	 2.	 The next field is the connection string. This

connection string is similar to any other SQL

Provider connection string used in .NET

applications for the SqlClient library. It is a

collection of key-value pairs separated by colon.

Listing 4-4 shows two versions of a valid connection

string. The first one uses Windows Authentication

and the second one uses SQL Server Authentication.

The Data Source parameter indicates the server

where SQL Server is installed. It can be an IP

address or a domain name or the server name

and it can also have a port number. Initial Catalog

defines the name of the database to which you are

connecting. Integrated Security defines whether

Windows Authentication will be used or not. A value

of yes or SSPI will configure the connection with

Figure 4-25.  Select SQL from the Import from drop-down to import
from SQL Server

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

153

Windows Authentication. User ID and Password

are used when SQL Server Authentication is used

for the credentials of the login. Persists Security

Info determines whether or not to return security-

sensitive information such as the password after

the connection is open. Setting this parameter to

false is strongly recommended. More information

about connection strings for SQL Server can be

found at http://bit.ly/connection-string. For

this sample application, use the connection string

format that you have available.

Listing 4-4.  Connections Strings with Windows Authentication and

SQL Server Authentication

// Windows Authentication

Data Source=(local);Initial Catalog=CosmosUniversitySQL;

Integrated Security=SSPI;Persist Security Info=False

// SQL Server Authentication

Data Source=(local);Initial Catalog=CosmosUniversitySQL;

User ID=cosmos;Password=P@ssw0rd;Persist Security Info=False

	 3.	 The last piece information that is required is the

query or file with the query to use to read the data

from SQL Server. For this example, let’s read all the

columns and records in the Student table, as shown

in Figure 4-26.

Chapter 4 Importing Data into an Azure Cosmos DB Database

http://bit.ly/connection-string

154

	 4.	 If your query will be used to manage complex

documents, you can use the additional field at the

bottom of the step screen named Nesting Separator.

This field is used to enter the delimiter to split

columns names into subdocuments.

	 5.	 At this point, everything is ready and you can

click the Next button. You can then follow the

instructions from the “Importing JSON Files”

section, starting on step 6 to complete the import

operation.

�Importing from MongoDB
When importing documents from a MongoDB database, all the differences

in the DMT happen in the Source Information step. This is similar to when

importing from SQL Server. The following steps describe what is needed:

	 1.	 In the Source Information step, select MongoDB

from the Import from drop-down, as shown in

Figure 4-27.

Figure 4-26.  Query to use to read the data that will be imported into
Azure Cosmos DB

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

155

	 2.	 The next field is the connection string to connect

to your MongoDB database. The connection string

format is different than the one from SQL Server.

Listing 4-5 shows the format of the connection

string for a MongoDB database. You need to know

the username and password of a user with at least

read permissions for the database and collection.

Then you need the server and port for the database

as well as the name of the database.

Listing 4-5.  MongoDB Connection String Format

mongodb://<dbuser>:<dbpassword>@<server>:<port>/<database>

	 3.	 Next you need to enter the collection you want to

read documents from.

Figure 4-27.  Select MongoDB from the Import from drop-down to
import documents from a MongoDB database

Chapter 4 Importing Data into an Azure Cosmos DB Database

156

	 4.	 The next field is the query or query file to be used

to read the documents you want to import. In

this case, the query would indicate the filters or

restrictions to apply to the collection, such as

{postalCode:{$gt:60000}}.

	 5.	 The final field is the projection, used to refine the

selection of properties in the document to import.

	 6.	 At this point, everything is ready and you can

click the Next button. You can then follow the

instructions from the “Importing JSON Files”

section, starting on step 6 to complete the import

operation.

�Importing Data with the DocumentDB Data
Migration Tool Command Line Interface
Using the command line interface of the DMT is done by running the

program dt.exe and passing the necessary parameters.

As an example, see Listing 4-6, which runs the dt.exe program from

the C:\DMT folder you created earlier. This example uses the parameters

generated for the JSON files import in the “Importing JSON Files” section

that is shown in Figure 4-23.

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

157

Listing 4-6.  Command to Import Data with the CLI

C:\DMT\dt.exe /ErrorLog:C:\Temp\JsonFileLog.txt

/OverwriteErrorLog /ErrorDetails:All /s:JsonFile

/s.Files:"C:\\Mock Data\\MOCK_DATA.json" /t:DocumentDB

/t.ConnectionString:"AccountEndpoint=https://localhost:8081/;

AccountKey= C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVT

qobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==;Database=cosmosuniversity"

/t.Collection:student /t.PartitionKey:/postalCode

This functionality is particularly important to automate imports that

need to happen either on a schedule or as part of a DevOps strategy.

If you run this command, you will see the DMT working as shown in

Figure 4-28.

Figure 4-28.  Importing data with the CLI

�Summary
In this chapter, you worked with the DocumentDB Data Migration Tool.

In the first part, you learned about the tool, its requirements, features, and

benefits. Then you saw how to obtain the tool from two different sources.

One was using the executable version that is ready to use, the second was

with the source code from GitHub. With the second approach, you have the

ability to learn how the tool is built and to contribute to its development.

Chapter 4 Importing Data into an Azure Cosmos DB Database

158

In the second part of the chapter you learned how to import data into

an Azure Cosmos DB database, first from JSON files, then from SQL Server,

and lastly from a MongoDB database. The process is quite simple using

the GUI, which also provides a mechanism to generate the necessary

information to run the CLI. At the end of the chapter you saw how to use

the parameters generated from the GUI to automate the import process

with the CLI.

In the following chapter, you will examine indexing and querying in

more detail.

Chapter 4 Importing Data into an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

159© José Rolando Guay Paz 2018
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_5

CHAPTER 5

Querying an Azure
Cosmos DB Database
An integral part of working with any database is the ability to query

the data in the database. Fortunately, this very important functionality

has been implemented in Azure Cosmos DB in a way that any previous

SQL experience is valid and will help you accomplish even the most

complex tasks.

A related topic to querying is indexing. Let’s review the indexing

policies in Azure Cosmos DB, how they work, and how they can be

modified to achieve better throughput.

�Understanding Indexing
In Azure Cosmos DB, as opposed to relational database systems, every

document is indexed by default. That means that in any collection,

documents have indexes in all the properties in the document. This

normally works very well for the majority of applications; however, there

are times when a different indexing policy might achieve better results.

160

Every collection in a database has a default index policy which is

defined by the following properties:

	 1.	 The index mode is consistent.

	 2.	 Documents are indexed automatically.

	 3.	 All properties are indexed.

Listing 5-1 shows the default index policy for a collection in a database

that implements the DocumentDB API.

Listing 5-1.  Default Index Policy

{

 "indexingMode": "consistent",

 "automatic": true,

 "includedPaths": [

 {

 "path": "/*",

 "indexes": [

 {

 "kind": "Range",

 "dataType": "Number",

 "precision": -1

 },

 {

 "kind": "Range",

 "dataType": "String",

 "precision": -1

 },

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

161

 {

 "kind": "Spatial",

 "dataType": "Point"

 }

]

 }

],

 "excludedPaths": []

}

In the default index policy, you can see the properties described

before. The indexing mode is set to consistent, defined by the

indexingMode property. The documents are indexed automatically, which

is defined by the automatic property being set to true. The includedPaths

define which properties in the documents are indexed. By having a value

of /* in the path property and by having an empty excludedPaths list, the

policy states that all properties should be indexed.

Note T he indexing policy can only be changed in the Azure portal.
This functionality is not available in the Azure Cosmos DB Emulator.

To find the index policy, just open the database in the Azure portal,

scroll down to Collection Settings, select the collection from the drop-down,

and click the Default index policy, as shown in Figure 5-1.

Chapter 5 Querying an Azure Cosmos DB Database

162

�Understanding the Indexing Mode
The indexing mode determines when indexes are updated. Azure Cosmos

DB provides three different indexing modes:

•	 Consistent: With a consistent indexing mode, indexes

are updated synchronously as part of the write

operation (create, replace, or delete). This might have

an impact on write throughput depending on how

many properties the document has and the number of

writes that happen in a given period of time. Queries

follow the same consistency mode as the database

(i.e. strong, bounded-staleness, session, consistent

prefix, or eventual). This mode is generally acceptable

for most workloads.

Figure 5-1.  Collection default index policy

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

163

•	 Lazy: For scenarios where there is a huge amount of

data to be ingested into a collection, you can use lazy

indexing. This mode will change the way indexes are

updated from synchronous to asynchronous, causing

queries to achieve eventual consistency. This mode is

for extremely fast writes where reads are not needed

immediately. In addition, lazy mode consumes less

RUs than consistent mode.

•	 None: When you select None as the indexing mode, you

are effectively telling Azure Cosmos DB to not index the

documents in the collection. If indexes were previously

created as part of a different indexing mode, the change

to None will drop such indexes, leaving the documents

in the collection accessible only to be queried by the

Id or by reading a document with the self-URL. This

indexing mode can be useful if your collection is a key-

value storage and documents are accessed only by their

Id property.

�Understanding Index Paths
In an Azure Cosmos DB database, JSON documents are treated like trees,

and their properties are mapped as paths in the tree hierarchy. A path starts

at the root of the document denoted with / and typically ends with ?. The ?

operator indicates that there are multiple values for the specified property.

Take for example the document in Listing 5-2. The path to read the

last name property is /lastName. The path to read the age of a children is

/children/age/?. And the path to read one of the classes is /children/

school/classes[0]/name/?.

Other patterns for paths are * and []. The * pattern indicates

everything after such property. For example, the path /children/school/*

is referencing all properties under the school property (i.e. grade and

Chapter 5 Querying an Azure Cosmos DB Database

164

classes). The [] pattern indicates all elements in an array. For example,

/children/school/[]/name? references name properties in the classes

array under the school property.

Listing 5-2.  Sample JSON Document

{

 "firstName": "Jose",

 "lastName": "Guay",

 "children":[

 {

 "name": "Sara",

 "age": "16",

 "school":{

 "grade": "11",

 "classes":[

 {

 �"name": "Pre-Calculus"

 },

 {

 �"name": "US History"

 },

 {

 �"name": "Physics"

 }

]

 }

 },

 {

 "name": "Samantha",

 "age": "7",

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

165

 "school":{

 "grade": "2",

 "classes":[

 {

 "name": "Math"

 },

 {

 "name": "Reading"

 },

 {

 "name": "Music"

 }

]

 }

 }

]

}

�Adjusting the Indexing Policy
The indexing policy can be set for specific paths and there are several

properties that you can modify to fit the needs of your application.

The properties are kind, data type, and precision.

•	 Kind determines the type of index to be applied. It can

be hash, range, or spatial. A hash index is best suited

for equality comparisons which are used in joins and

where clauses. A range index is efficient for equality,

range queries (using the operators >, >=, <, <= or !=),

and for sorting with the order-by clause. Spatial indexes

are designed for queries involving spatial properties

like points, polygons, and lines.

Chapter 5 Querying an Azure Cosmos DB Database

166

•	 dataType identifies the type of data in a path. It can

be number, string, point, polygon, or LineString. An

important consideration is that in each path in the

indexing policy the different values for the data type can

only be defined once. For example, in Listing 5-2, the

indexing policy for the path /lastName would include

only one definition for the data type number and one for

string, but you can’t define string a second time.

•	 Precision determines the amount of data an index

stores based on how exact comparisons need to be. For

hash indexes, the value is any integer between 1 and

8, with 3 as the default. For a range index, the value

can be -1 (the default), which indicates maximum

precision, and then any value between 1 and 100 (100

also indicates maximum precision). When using the

maximum precision for numbers, each value is stored

in 8 bytes because JSON stores numbers in 8 bytes.

Any precision that is lower than maximum consume

less index storage, but in contrast it also causes queries

to process more documents, which would potentially

consume more RUs.

There are some considerations regarding indexes that you must be

aware of:

•	 If your query uses a range operator but there is no

range index for the path, then an error is thrown. This

same rule applies for spatial queries and missing

spatial indexes.

•	 If your query has an order-by clause by a path that

doesn’t have a range index, then an error is thrown.

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

167

•	 If your query has an order-by clause by string

properties, you need to define the index precision to

maximum (–1).

•	 Range queries can be performed without a range index

using the x-ms-documentdb-enable-scan header in

the REST API or the EnableScanInQuery request option

using the .NET SDK.

�Querying an Azure Cosmos DB Database
Using the DocumentDB .NET SDK it is very easy to query an Azure Cosmos

DB database. There are three syntaxes to query a database: LINQ, Lambda,

and SQL. They all do exactly the same work; the only difference is how the

queries are written.

�Learning the SELECT Statement
To query a database, you need to use the SELECT statement. This statement

was first defined in the SQL language, which is the standard for performing

operations against a database. Every database product uses SQL in one

form or another but they all normally implement one of the standards such

as ANSI or ISO and build on top of it its unique features.

If you are familiar with the SELECT statement, you can skip this section

because it explains the statement syntax.

As explained earlier, every database implements its own version of SQL

and therefore the features for each statement. Because of this, I will only

explain the most basic syntax, which you can find generally implemented

in most database products.

For the SELECT statement to return any information you need to

define at least two pieces of information. The first one is where the data

is stored; this is normally tables in the case of relational databases or

Chapter 5 Querying an Azure Cosmos DB Database

168

collections in the case of NoSQL databases. The second piece is the

columns (in the case of relational databases) or properties (in the case of

NoSQL databases) from the data store.

To achieve its purpose, the SELECT statement is defined by two

mandatory clauses: SELECT to define the columns or properties, and FROM

to indicate where the data is. The minimal required syntax for the SELECT

statement is shown in Listing 5-3.

Listing 5-3.  Minimal Syntax for the SELECT Statement

SELECT [columns or properties]

FROM [table or collection]

In addition to these two clauses, there are two more that are important.

Since databases can store a lot of information, you normally try to get

what is relevant to you. To solve this, there is a clause that can filter the

results you want. This clause is called WHERE. With WHERE, you define

the filters to apply to selectively get the relevant information. Finally,

results can be sorted when they are returned. To specify the sort order,

you use the ORDER BY clause. You use this clause to define the columns

or properties that should be used to sort the results and the direction

(ascending or descending) for each of them. Listing 5-4 shows the general

syntax with these two additional clauses. Remember that you can find

these four clauses for the SELECT statement in virtually any database,

but each database implements more features and you should read the

documentation to find what’s available and unique about the database you

are using.

Listing 5-4.  Extended Syntax of the SELECT Statement

SELECT [columns or properties]

FROM [table or collection]

WHERE [filters]

ORDER BY [sort order]

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

169

�Understanding the SELECT Clause

The SELECT clause lets you define the properties or values you want to read

from a collection. In addition to specifying the list of properties, you can

use the special operator * that indicates all properties.

Listing 5-5 shows the usage of the * operator. This tells Cosmos DB to

read all properties from the Person collection. For example, in Listing 5-2,

the document refers to a collection called Person.

Listing 5-5.  Querying All Properties from a Collection

SELECT *

FROM Person

The result of executing the query in Listing 5-5 is the entire document,

as shown in Listing 5-2. If you only need to read a subset of properties, you

can just create a list of the properties separated by commas, as shown in

Listing 5-6.

Listing 5-6.  Querying a Subset of Properties from a Collection

SELECT firstName, lastName

FROM Person

The result of the query in Listing 5-6 is

[{

 "firstName": "Jose",

 "lastName": "Guay"

}]

You can also modify the name of the properties with an alias. An alias

is a name that you specify with the keyword AS. In Listing 5-7, the query

returns the same two columns as in Listing 5-6 but the difference is that

the properties will have a different name.

Chapter 5 Querying an Azure Cosmos DB Database

170

Listing 5-7.  Query with Property Aliases

SELECT firstName AS "First Name", lastName AS "Last Name"

FROM Person

The results of the query from Listing 5-7 are

[{

 "First Name": "Jose",

 "Last Name": "Guay"

}]

The SELECT clause also supports JSON expressions, as shown in

Listing 5-8.

Listing 5-8.  Query with JSON Expression

SELECT {"First Name": firstName, "Last Name": lastName}

FROM Person

In this case, the results are

[{

 "$1": {

 "First Name": "Jose",

 "Last Name": "Guay"

 }

}]

In this case, what is happening is that the SELECT clause is creating a

JSON object, but since there is no key provided, an implicit argument named

$1 is automatically created. The implicit arguments are named $1, $2, and so

forth. If, on the other hand, a key is defined, as shown in Listing 5-9, then the

result is a little different.

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

171

Listing 5-9.  Query with JSON Expression

SELECT {"First": firstName, "Last": lastName} AS "Name"

FROM Person

In this case, the results are

[{

 "Name": {

 "First": "Jose",

 "Last": "Guay"

 }

}]

The SELECT clause also supports scalar expressions. These

expressions can be constants, arithmetic expressions, logical expressions,

etc. Listing 5-10 shows some scalar expressions.

Listing 5-10.  Query with Scalar Expressions

SELECT "This is a simple string",

 1+4/2

The results are

[

 "$1": "This is a simple string",

 "$2": 3

]

�Understanding the FROM Clause

In Azure Cosmos DB, the FROM clause indicates the collection from which

to read data. While that is the general idea, a particular implementation

that you can use instead of the collection is a subdocument. A subdocument

Chapter 5 Querying an Azure Cosmos DB Database

172

is nothing more than a part of the whole document in the collection. For

example, in Listing 5-2, the document contains a subdocument named

Person.children.

In Listing 5-11, the query retrieves all properties from a subdocument.

The query in Listing 5-5 will return the entire document, while the query in

Listing 5-11 will return only the portion in the children array.

Listing 5-11.  Querying a Subdocument

SELECT *

FROM Person.children

For the query in Listing 5-11, the results are

":[{

 "name": "Sara",

 "age": "16",

 "school":{

 "grade": "11",

 "classes":[{

 "name": "Pre-Calculus"

 },

 {

 "name": "US History"

 },

 {

 "name": "Physics"

 }

]

 }

},

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

173

{

 "name": "Samantha",

 "age": "7",

 "school":{

 "grade": "2",

 "classes":[{

 "name": "Math"

 },

 {

 "name": "Reading"

 },

 {

 "name": "Music"

 }

]

 }

}]

A few characteristics of the FROM clause are the following:

•	 The collections or subdocuments can be aliased. That

means that you can assign an alias to the collection

or subdocument to reference properties easier.

This comes in handy when reading from multiple

collections and/or subdocuments (which you will see

later in this chapter).

•	 Once you assign an alias, the original source cannot be

found.

•	 All properties that need to be referenced must be fully

qualified to avoid ambiguous bindings.

Chapter 5 Querying an Azure Cosmos DB Database

174

Listing 5-12 shows the same query in Listing 5-5, but with an alias and

only selecting two properties. The alias is defined after the collection name

as p. The properties are now fully qualified.

Listing 5-12.  Modified Query Using an Alias

SELECT p.firstName, p.lastName

FROM Person AS p

The results of the query in Listing 5-12 are

[{

 "firstName": "Jose",

 "lastName": "Guay"

}]

�Understanding the WHERE Clause

The WHERE clause is optional and defines the conditions that documents

must meet to be included in the results of the query. All conditions

specified in the WHERE clause must evaluate to true for a document to be

included in the result.

Listing 5-13 shows an example of a query with a condition. In this

example, the condition defines that all documents with the value of Guay in

the property lastName should be returned.

Listing 5-13.  Query with a Simple Condition

SELECT p.firstName, p.lastName

FROM Person AS p

WHERE p.lastName = "Guay"

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

175

The results for this query are

[{

 "firstName": "Jose",

 "lastName": "Guay"

}]

There are many more operators that can be used in conditions in the

WHERE clause, as shown in Table 5-1. These operators can be used to

perform different types of comparisons.

Listing 5-14 shows how to use an arithmetic operator in one of the

conditions.

Listing 5-14.  Query with an Arithmetic Operator

SELECT name

FROM Person.children

WHERE age > 5

Table 5-1.  Operators

Type of Operator Operators

Arithmetic +,-,*,/,%

Bitwise |, &, ^, <<, >>, >>> (zero-fill right shift)

Logical AND, OR, NOT

Comparison =, !=, <, >, <=, >=, <>

String || (concatenate)

Chapter 5 Querying an Azure Cosmos DB Database

176

The result of this query is

[{

 "name": "Sara"

},

{

 "name": "Samantha"

}]

The keyword BETWEEN can also be used in the same way as in ANSI/

SQL. It will return documents where the values in the condition fall in the

range specified, as shown in Listing 5-15.

Listing 5-15.  Using the BETWEEN Keyword

SELECT name

FROM Person.children

WHERE age BETWEEN 5 AND 10

The results of this query are similar to the previous one for Listing 5-14.

�Understanding the ORDER BY Clause

The ORDER BY clause is optional and can be included in queries to specify

the order in which to return the results. The clause expects a list of

properties separated by commas. Each property can contain an optional

argument to identify the direction of the sort. The argument can be either

ASC or DESC, for ascending (the default, if nothing is specified) and

descending.

The example in Listing 5-16 shows the usage of the ORDER BY clause.

The query selects the names of the children subdocument and will return

the results ordered by the name in alphabetic order.

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

177

Listing 5-16.  Using the ORDER BY Clause in a Query

SELECT name

FROM Person.children

ORDER BY name ASC

The results of the query are

[{

 "name": "Samantha"

},

{

 "name": "Sara"

}]

�Working with Iterations
Azure Cosmos DB implements a way to iterate through arrays in JSON

documents by extending the FROM clause. The result of this implementation

is a single array with the results of multiple documents. For example, in

Listing 5-17 you see a query that returns the names of the children in the

Person collection. Note how when having multiple documents, the results

are grouped by children in each document. This effect can be seen in the

results by the nesting of elements inside brackets ([]).

Listing 5-17.  Querying the Person.children Subdocument

SELECT name

FROM Person.children

The results of the query are

[

 [{

 "name": "Sara"

 },

Chapter 5 Querying an Azure Cosmos DB Database

178

 {

 "name": "Samantha"

 }],

 [{

 "name": "Michael"

 },

 {

 "name": "James"

 }],

 [{

 "name": "Daniel"

 }]

]

You can iterate over the JSON documents with the addition of the IN

keyword as part of the definition of the source of data. In this example, by

changing the FROM clause to use iterations, the result is a single array with

all the results, shown in Listing 5-18.

Listing 5-18.  Using Iterations

SELECT p.name

FROM p IN Person.children

The results of the query are

[

 {

 "name": "Sara"

 },

 {

 "name": "Samantha"

 },

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

179

 {

 "name": "Michael"

 },

 {

 "name": "James"

 },

 {

 "name": "Daniel"

 }

]

�Understanding Joins
In relational databases, joins play a key role in reading data from tables

where data redundancy has been eliminated (normalized). This feature

allows developers to keep a single version of a piece of data and use it

across the entire application.

Contrary to relational databases where normalized data is

fundamental, NoSQL databases such as Azure Cosmos DB rely on the

feature that documents will have no specific schema, which in turn expects

a document to include every piece of data required to express the entity

it represents. This causes some information to be included (repeated)

on each document. For example, in a JSON document representing sales

orders, the list of products will include the product name, price, and other

necessary properties on each of the documents in the collection.

This particular distinction makes joins function a bit different,

although in the end, the concept is similar to those in relational databases.

They are similar in the sense that different sources of data will be joined to

return a particular set of results; however, they are different in the fact that

in NoSQL databases you are joining parts of the document as opposed to

joining collections (which are the equivalent of tables).

Chapter 5 Querying an Azure Cosmos DB Database

180

Consider the query in Listing 5-19. Note that the query is doing a

join between the Person collection and the children subdocument. You

don’t need to specify the keys the join will use because children is a

subdocument already, a (possible) part of each person.

Listing 5-19.  Query with JOINs

SELECT p.lastName as Parent,

 c.name AS Child

FROM Person p

JOIN c IN p.children

The results are

[

 {

 "Parent": "Guay",

 "Child": "Sara"

 },

 {

 "Parent": "Guay",

 "Child": "Samantha"

 }

]

�Working with Parameterized SQL Queries
Azure Cosmos DB supports parameterized queries. By implementing

parameters, your queries become more robust when handling user input

and can prevent traditional SQL injection attacks.

The way this is implemented is with the @ notation which is widely

used in SQL Server. The query in Listing 5-20 implements parameters in

the WHERE clause.

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

181

Listing 5-20.  Using Parameterized SQL Queries

SELECT *

FROM c IN Person.children

WHERE c.age = @age

�Using Built-In Functions
Azure Cosmos DB has a number of built-in functions that you can use

in your queries. These functions can be categorized as mathematical

functions, type-checking functions, string functions, array functions, and

spatial functions. Table 5-2 lists the currently implemented built-in

functions (taken from http://bit.ly/cosmos-db-builtin-functions).

Table 5-2.  Built-In Functions in Azure Cosmos DB

Function Group Operations

Mathematical

Functions

ABS, CEILING, EXP, FLOOR, LOG, LOG10, POWER, ROUND, SIGN,

SQRT, SQUARE, TRUNC, ACOS, ASIN, ATAN, ATN2, COS, COT,

DEGREES, PI, RADIANS, SIN, and TAN

Type-Checking

Functions

IS_ARRAY, IS_BOOL, IS_NULL, IS_NUMBER, IS_OBJECT,

IS_STRING, IS_DEFINED, and IS_PRIMITIVE

String Functions CONCAT, CONTAINS, ENDSWITH, INDEX_OF, LEFT, LENGTH,

LOWER, LTRIM, REPLACE, REPLICATE, REVERSE, RIGHT, RTRIM,

STARTSWITH, SUBSTRING, and UPPER

Array Functions ARRAY_CONCAT, ARRAY_CONTAINS, ARRAY_LENGTH, and

ARRAY_SLICE

Spatial Functions ST_DISTANCE, ST_WITHIN, ST_INTERSECTS, ST_ISVALID, and

ST_ISVALIDDETAILED

Chapter 5 Querying an Azure Cosmos DB Database

http://bit.ly/cosmos-db-builtin-functions

182

The built-in functions can be used in your queries in the same way

you would, for example, in SQL Server. See Listing 5-21 for an example of a

query that uses some of these functions.

Listing 5-21.  Using Built-In Functions in a Query

SELECT lastName,

 COUNT(children)

FROM Person

The results are

[{

 "lastName":"Guay",

 "$1":2

}]

�Extending the Sample Application
In this chapter, you have learned how to query an Azure Cosmos DB

database. Let’s examine the sample application, Cosmos University, to add

some querying functionality that a potential user would need.

The modifications are as follows:

•	 Add a drop-down to select a property that will be used

for filtering.

•	 Add a text box to enter a value for the property.

•	 Add a button to filter the results.

•	 Add a second drop-down with properties to sort the

results.

•	 Add a third drop-down with the sort direction options

(ascending or descending).

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

183

The sample application implements Lambda queries but in addition

to this, I will also include code using the other syntaxes for querying

(LINQ and SQL).

The following steps will guide you through the process:

	 1.	 Open Visual Studio 2017 from the Start menu, as

shown in Figure 5-2.

	 2.	 Go to the File menu, select Open and from the menu

select Project/Solution. As shown in Figure 5-3, you

can also use the keyboard shortcut of Ctrl-Shift-O.

Figure 5-2.  Open Visual Studio 2017 from the Start menu

Chapter 5 Querying an Azure Cosmos DB Database

184

	 3.	 The Open Project window is open now. Navigate to

the folder where you saved the solution. In Chapter 3,

you saved it in the C:\Projects\CosmosUniversity

folder. As shown in Figure 5-4, select the

CosmosUniversity.Web.sln file and click the Open

button.

Figure 5-4.  Opening the CosmosUniversity.Web.sln solution

Figure 5-3.  Opening a project or solution in Visual Studio 2017

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

185

	 4.	 Open the Index.cshtml view from the Views/

Student folder, as shown in Figure 5-5. This is where

you will add the drop-downs, text box, and button.

	 5.	 Add the new HTML markup for the controls, as

shown in Listing 5-22. This code will create the

drop-downs, text box, and button that you need to

implement the filtering and sorting.

Figure 5-5.  Opening the Index.cshtml view from the Views/Student
folder

Chapter 5 Querying an Azure Cosmos DB Database

186

Listing 5-22.  New HTML Markup for the Controls

@model IEnumerable<CosmosUniversity.Web.Models.Student>

@{

 ViewBag.Title = "Index";

}

<h2>List of Students</h2>

@using (Html.BeginForm())

{

 @Html.AntiForgeryToken()

<p>

 Filter by:

 <select id="filterBy" name="filterBy">

 <option value="city">City</option>

 <option value="state">State</option>

 <option value="postalCode">Postal Code</option>

 </select>

 =

 <input type="text" id="filterValue" name="filterValue" />

</p>

<p>

 Sort by:

 <select id="sortBy" name="sortBy">

 <option value="firstName">First Name</option>

 <option value="lastName">Last Name</option>

 </select>

 <select id="sortOrder" name="sortOrder">

 <option value="asc">Ascending</option>

 <option value="desc">Descending</option>

 </select>

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

187

 <input type="submit" value="Go" />

</p>

}

...

	 6.	 Open the StudentController.cs file from the

Controllers folder, as shown in Figure 5-6. You

need to add a new action in the controller to handle

these new controls.

Figure 5-6.  Opening the StudentController.cs file from the Controllers
folder

Chapter 5 Querying an Azure Cosmos DB Database

188

	 7.	 Add the code in Listing 5-23 just after the Index()

action finishes. The first thing to note in the new

action is that, as opposed to the original Index()

action, this will only accept POST requests. This is

to prevent attacks using the URL. Then, there are

four parameters that will contain the values entered

in the page for filtering and sorting. The names of

the parameters match the name property in all the

HTML controls. The following lines are where the

filtering happens. In this particular case, you are

using LINQ to create and execute the query. You

start by checking if there is a value for the filter; if

so, then the call to the GetStudentsAsync() method

does include a predicate that specifies the filter. If

there is no value for the filter, then all documents are

returned. Finally, the result of the query is evaluated

for sorting. Depending on the direction of the sort,

the OrderBy() or OrderByDescending() method is

called with a predicate that indicates the property to

sort the results by.

Listing 5-23.  New Index( ) Action to Filter and Sort Results

[HttpPost]

[ActionName("Index")]

[ValidateAntiForgeryToken]

public async Task<ActionResult> IndexAsync(string filterBy,

 string filterValue, string sortBy,

 string sortOrder)

{

 IEnumerable<Student> students = null;

 if (!string.IsNullOrEmpty(filterValue))

 {

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

189

 switch (filterBy)

 {

 case "city":

 students = await Repository<Student>

 �.GetStudentsAsync(x => x.City == filterValue);

 break;

 case "state":

 students = await Repository<Student>

 �.GetStudentsAsync(x => x.State == filterValue);

 break;

 case "postalCode":

 var postalCode = Convert.ToInt32(filterValue);

 students = await Repository<Student>

 .GetStudentsAsync(x => x.PostalCode == postalCode);

 break;

 }

 }

 else

 {

 students = await Repository<Student>.GetStudentsAsync(null);

 }

 if (sortBy == "firstName")

 {

 students = sortOrder == "asc"

 ? students.OrderBy(x => x.FirstName)

 : students.OrderByDescending(x => x.FirstName);

 }

Chapter 5 Querying an Azure Cosmos DB Database

190

 else

 {

 students = sortOrder == "asc"

 ? students.OrderBy(x => x.LastName)

 : students.OrderByDescending(x => x.LastName);

 }

 return View(students);

}

	 8.	 At this point, you can compile and run the

application. To test it, select the filter by city,

enter the value Chicago, and click the Go button

to perform the query. Note that this will produce

the error shown in Figure 5-7. This error is caused

because the collection you are querying is

partitioned, and your query needs to look in different

partitions because city is not the partition key and

by default queries can only be performed in a single

partition.

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

191

	 9.	 The error message in Figure 5-7 is already telling

you how to resolve this issue. You need to set the

x-ms-documentdb-query-enablecrosspartition

header to true in the call to the API. This will enable

cross-partition queries. Since you are not using

the REST API, you need to configure this header

using the FeedOptions object that is passed in the

CreateDocumentQuery() method in the repository.

Listing 5-24 shows this adjustment.

Figure 5-7.  Error when running a query on a partitioned
collection

Chapter 5 Querying an Azure Cosmos DB Database

192

Listing 5-24.  Including the Cross-Partition Query Header in the

FeedOptions Object

FeedOptions feedOptions = new FeedOptions {

 MaxItemCount = -1,

 �EnableCrossPartitionQuery = true };

	 10.	 Now, after compiling and running the application

again you will see a result similar to the one shown

in Figure 5-8. The page is now returning only

documents from students in the city of Chicago

sorted by their first name in ascending order.

Figure 5-8.  Query now running correctly after allowing
cross-partition queries

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

193

�Implementing SQL Queries
Using SQL queries is very simple. For this purpose, you are going to create

a new method in your repository class named GetStudentsSQLAsync() that

will function the same as GetStudentsAsync(), only with the SQL syntax.

Listing 5-25 shows the code for this new method. Note that the

signature of the method is different because it is expecting the values

of the filter and sort as they are passed to the controller. These values

will be used here to build the SQL query as a string. Also note that you

keep the definition in the FeedOptions object to enable cross-partition

queries. Then you start with the construction of the SELECT statement.

An important distinction here is that since the client is communicating

directly to a collection in the database, the name of the collection is not

defined in the SELECT statement, only an alias. It is now the alias that is

being used in the different clauses. Next, the WHERE clause is built using

the filterBy and filterValue parameters. The filterBy parameter

already contains the name of the property to be used as the filter, and the

filterValue contains the actual value to use in the comparison. Finally,

the SORT clause is created using the last two parameters. The rest of the

method is similar to the previous GetStudentsAsync() method.

Listing 5-25.  GetStudentsSQLAsync( ) Method Implementing

SQL Syntax

public static async Task<IEnumerable<T>> GetStudentsSQLAsync(

 �string filterBy, string filterValue,

 �string sortBy, string sortOrder)

{

 Uri collectionUri = UriFactory.CreateDocumentCollectionUri(

 _dbName, _collectionName);

Chapter 5 Querying an Azure Cosmos DB Database

194

 FeedOptions feedOptions = new FeedOptions { MaxItemCount = -1,

 EnableCrossPartitionQuery = true };

 string sqlStatement = "SELECT * FROM s";

 if (!string.IsNullOrEmpty(filterValue))

 {

 string value = filterBy == "postalCode"

 ? filterValue

 : "'" + filterValue + "'";

 sqlStatement = sqlStatement + " WHERE s." + filterBy

 + " = " + value;

 }

 sqlStatement = sqlStatement + " ORDER BY s." + sortBy

 + " " + sortOrder.ToUpper();

 IDocumentQuery<T> students =

 client.CreateDocumentQuery<T>(collectionUri,

 sqlStatement, feedOptions)

 .AsDocumentQuery();

 List<T> listOfStudents = new List<T>();

 while (students.HasMoreResults)

 {

 �listOfStudents.AddRange(await students.

ExecuteNextAsync<T>());

 }

 return listOfStudents;

}

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

195

To use the new method in Listing 5-25 you need to change the new

Index() action in the controller. The modifications will basically eliminate

all the coding for the Lambda query, as shown in Listing 5-26. Note that

the call to the new method in the repository is all you need.

Listing 5-26.  Calling GetStudentsSQLAsync( ) in the Controller

[HttpPost]

[ActionName("Index")]

[ValidateAntiForgeryToken]

public async Task<ActionResult> IndexAsync(string filterBy,

 �string filterValue, string sortBy, string sortOrder)

{

 IEnumerable<Student> students = await

 Repository<Student>.GetStudentsSQLAsync(

 �filterBy, filterValue,

 �sortBy, sortOrder);

 return View(students);

}

�Implementing Parameterized Queries
The query in Listing 5-25 works well; however, it can be further enhanced

by using parameters. For this, you need to change how the query is created.

In this case, you need to create a SqlQuerySpec() object that will contain

the string with the query as well as the parameters. See Listing 5-27 for the

modified version of GetStudentsSQLAsync().

Chapter 5 Querying an Azure Cosmos DB Database

196

Listing 5-27.  Implementing GetStudentsSQLAsync( ) with

Parameters

public static async Task<IEnumerable<T>> GetStudentsSQLAsync(

 �string filterBy, string filterValue,

 string sortBy, string sortOrder)

{

 Uri collectionUri = UriFactory.CreateDocumentCollectionUri(

 �_dbName, _collectionName);

 FeedOptions feedOptions = new FeedOptions { MaxItemCount = -1,

 �EnableCrossPartitionQuery = true };

 string sqlStatement = "SELECT * FROM s";

 if (!string.IsNullOrEmpty(filterValue))

 {

 sqlStatement = sqlStatement

 �+ " WHERE s." + filterBy + " = @filterValue";

 }

 sqlStatement = sqlStatement + " ORDER BY s."

 �+ sortBy + " " + sortOrder.ToUpper();

 SqlQuerySpec querySpec = new SqlQuerySpec()

 {

 QueryText = sqlStatement,

 Parameters = new SqlParameterCollection()

 {

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

197

 new SqlParameter("@filterValue", filterValue)

 }

 };

 IDocumentQuery<T> students =

 �client.CreateDocumentQuery<T>(collectionUri,

 �querySpec, feedOptions)

 .AsDocumentQuery();

 List<T> listOfStudents = new List<T>();

 while (students.HasMoreResults)

 {

 listOfStudents.AddRange(await

 students.ExecuteNextAsync<T>());

 }

 return listOfStudents;

}

�Implementing LINQ Queries
Implementing LINQ queries is simple but has one particular issue worth

noting. Because LINQ works with specific objects and is strongly typed,

you can’t really implement a generic T object as you have so far. In this

case, your sample method using LINQ will need to be strongly typed as

well, as you can see in Listing 5-28.

Chapter 5 Querying an Azure Cosmos DB Database

198

Listing 5-28.  Implementing LINQ Queries in GetStudentsLINQAsync( )

public static async Task<IEnumerable<Student>>

 GetStudentsLINQAsync(

 �string filterBy, string filterValue,

 string sortBy, string sortOrder)

{

 Uri collectionUri =

 UriFactory.CreateDocumentCollectionUri(

 �_dbName, _collectionName);

 FeedOptions feedOptions = new FeedOptions { MaxItemCount = -1,

 �EnableCrossPartitionQuery = true };

 var linqQuery =

 from s in client.CreateDocumentQuery<Student>

 �(collectionUri, feedOptions)

 select s;

 if (!string.IsNullOrEmpty(filterValue))

 {

 switch (filterBy)

 {

 case "city":

 linqQuery = from s in

 client.CreateDocumentQuery<Student>(

 �collectionUri, feedOptions)

 where s.City == filterValue

 select s;

 break;

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

199

 case "state":

 linqQuery = from s in

 �client.CreateDocumentQuery<Student>(

 �collectionUri, feedOptions)

 where s.State == filterValue

 select s;

 break;

 case "postalCode":

 var postalCode = Convert.ToInt32(filterValue);

 linqQuery = from s in

 �client.CreateDocumentQuery<Student>(

 �collectionUri, feedOptions)

 where s.PostalCode == postalCode

 select s;

 break;

 }

 }

 if (sortBy == "firstName")

 {

 linqQuery = sortOrder == "asc"

 ? linqQuery.OrderBy(x => x.FirstName)

 : linqQuery.OrderByDescending(x => x.FirstName);

 }

 else

 {

 linqQuery = sortOrder == "asc"

 ? linqQuery.OrderBy(x => x.LastName)

 : linqQuery.OrderByDescending(x => x.LastName);

 }

Chapter 5 Querying an Azure Cosmos DB Database

200

 IDocumentQuery<Student> students = linqQuery.AsDocumentQuery();

 List<Student> listOfStudents = new List<Student>();

 while (students.HasMoreResults)

 {

 listOfStudents.AddRange(await

 students.ExecuteNextAsync<Student>());

 }

 return listOfStudents;

}

�Summary
In this chapter, you reviewed how indexing works and how it is configured.

You learned how to change the index policy of a collection and the rules

that guide these customizations. Then you went through the specifics

of the SELECT statement and how is it used to query databases. You

examined the four main clauses of the SELECT statement, which are

SELECT, FROM, WHERE, and ORDER BY. You reviewed how with an

addition to the FROM clause it is possible to iterate through the results

of a query. Also, you examined how joins work and how they are similar

and different than joins in relational databases. Later, you reviewed

how parameterized SQL queries work and why they are important and

you finished that section with a quick overview of the built-in functions

implemented in Azure Cosmos DB.

Chapter 5 Querying an Azure Cosmos DB Database

www.allitebooks.com

http://www.allitebooks.org

201

The last part of the chapter was devoted to making a real

implementation of all the techniques and concepts learned in the chapter.

This was done by enhancing the sample application with the ability to

refine the results presented in the page using filters on specific properties

and sorting such results.

In the following chapter, I will talk in more detail about globally

distributed databases and how to work with them to implement a system

with automatic failover.

Chapter 5 Querying an Azure Cosmos DB Database

203© José Rolando Guay Paz 2018
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_6

CHAPTER 6

Working with a
Globally Distributed
Database
Azure Cosmos DB is not only capable, but it’s built from the ground up to

be globally distributed. When the database is distributed across different

regions, applications can be configured to take advantage of this, making

them faster, scalable, and more resilient against data availability problems.

�Configuring Global Distribution
One of the biggest advantages of global distribution is that the configuration

happens in Azure and not the application itself. This greatly simplifies what

the application needs to do to scale and perform at large scale.

To configure a database to be globally distributed, you only need to

add more regions to the configuration. Azure will do the rest. The following

steps will guide you through the process:

	 1.	 Log into the Azure portal using the account you

created in Chapter 1 at https://portal.azure.com.

	 2.	 From the menu on the left, select Azure Cosmos DB.

www.allitebooks.com

https://portal.azure.com/
http://www.allitebooks.org

204

	 3.	 If you do not have a database created and only see

an empty list, you need to create a database. If you

have one already, you can skip to step 4.

•	 Click the Add button at the top of the page to open

the new database options page, shown in Figure 6-1.

•	 The ID will indicate the name of your database.

A green checkmark at the end of the box will

indicate if the name you entered is globally unique.

•	 Now select the API you want to use. In your case,

select SQL (DocumentDB).

Figure 6-1.  New Azure Cosmos DB database page

Chapter 6 Working with a Globally Distributed Database

205

•	 Then select the subscription that you created

previously, the one that is used for billing purposes.

•	 Now create a new resource group. The name of the

resource group accepts letters, numbers, hyphens,

and underscores. Again, a green checkmark at the

end of the box will let you know everything is fine.

•	 Finally, select the location where this database

should be created.

•	 The “Enable geo-redundancy” checkbox will allow

you to automatically replicate the database to the

associated geographically region of the selected

region. This is called region pairing. Each region

in Azure is paired with a second region that is

located in the same geography (same country or

continent). For example, for the Central US region

shown in Figure 6-1, its paired region is East US 2.

When selected, this checkbox effectively configures

the database to be distributed with the selected

region to be the write region and the paired region

the read region.

	 4.	 Once you click the database name to open its

properties, you need to click the Replicate data

globally option, as shown in Figure 6-2.

Chapter 6 Working with a Globally Distributed Database

www.allitebooks.com

http://www.allitebooks.org

206

	 5.	 Once you click the Replicate data globally option,

the Azure region map opens, as shown in Figure 6-3.

This will show you where the Azure regions are in

the world. You can replicate your database to any

number of regions. All you have to do at this point

is click each of the regions where you want your

database. Each region is represented by a hexagon.

Figure 6-2.  Open the replication page to configure global
distribution

Chapter 6 Working with a Globally Distributed Database

207

	 6.	 Once you have selected the regions, click the Save

button at the top.

	 7.	 After Azure completes the configuration for

replication, you should see something similar to

Figure 6-4. Note that replicated regions are shown

in a hexagon with solid blue background while the

main region is shown in a light-blue hexagon.

Figure 6-3.  Azure regions map for replication

Chapter 6 Working with a Globally Distributed Database

www.allitebooks.com

http://www.allitebooks.org

208

�Configuring Failover
Failover is the operation that happens when a region is not available and

the infrastructure switches to a backup region for service continuity. Azure

Cosmos DB databases can failover manually or automatically. Figure 6-4

shows the two buttons at the top of the regions map: one for manual failover

and one for automatic failover. Those two buttons are the ones that provide

access to manually failover to a region or to configure automatic failover.

�Working with Manual Failover
Manual failover is the default after you configure your database to replicate

to at least one other region. With this setting, if the designated write region

becomes unavailable, it is your responsibility to switch the database writes

to a different region. You have the freedom to choose any region out of the

set where the database is replicated.

Figure 6-4.  Azure Cosmos DB database replicated to multiple
regions

Chapter 6 Working with a Globally Distributed Database

209

Once you click the Manual Failover button, you will be presented

with a page similar to the one shown in Figure 6-5. In it, you are presented

with the current write region and the set of read regions.

To failover, all you need to do is select, out of the group of read

regions, the one that will become the new write region. Click the

checkbox to acknowledge that this is your intention and click the OK

button at the bottom.

�Configuring Automatic Failover
Let’s now examine how automatic failover works. With this

configuration, Azure will automatically switch the unavailable write

region to a read region to become the new write region. Azure will know

which region to choose based on the priority defined for the each of the

read regions. You are only responsible for defining this priority and then

Azure will do the rest.

Figure 6-5.  Configuring manual failover

Chapter 6 Working with a Globally Distributed Database

www.allitebooks.com

http://www.allitebooks.org

210

Figure 6-6 shows the page that is opened when you click the Automatic

Failover button. Similarly to the manual failover page, you are presented

with the current write region and the list of read regions. What is different

is that the read regions now have a priority column that tells Azure which

one is the next to become the write region in the event of a region outage.

You can change the priority of the regions by dragging and dropping the

regions in the order you want them to take over the write role.

In this example, the write region is Central US. If this region becomes

unavailable, Azure will switch writes to the East US 2 region. If the East

US 2 region becomes unavailable, Azure will switch writes to the West

US region.

Figure 6-6.  Automatic failover priority

Chapter 6 Working with a Globally Distributed Database

211

�Connecting to a Preferred Region
The DocumentDB API allows you to programmatically configure the

preferred order of regions in which document operations will be served.

This configuration is done by setting the PreferredLocations collection in

the ConnectionPolicy object that is passed to the DocumentClient object

when it is initialized.

Another benefit of setting up the preferred regions list is that based on

the Azure Cosmos DB account configuration, current regional availability,

and the preference list specified, the most optimal endpoint will be chosen

by the DocumentDB SDK to perform write and read operations.

When having a preferred regions list, all writes are sent to the current

write region and reads are sent to the first region in the preferred regions

list; if this region becomes unavailable, then the SDK redirects the requests

to the next region in the list, and so on.

An important consideration is that if the database is replicated, for

example, to five regions, but the preferred regions list only included four

of them, then the last region will never serve requests, even if failover has

chosen it to serve the requests. The preferred regions list defined in the

application takes precedence over the failover Azure configuration.

To configure the connection policy to have a preferred region list,

you need to define the regions in the PreferredLocations collection.

In Listing 6-1 you can see the declaration and initialization of the

DocumentClient object from the Cosmos University sample application

you have been using. This code is located in the /Models/Repository.cs

file, line 19.

Chapter 6 Working with a Globally Distributed Database

www.allitebooks.com

http://www.allitebooks.org

212

Listing 6-1.  Current DocumentClient Configuration in

CosmosUniversity Sample app

private static ConnectionPolicy _connectionPolicy =

 new ConnectionPolicy {

 �EnableEndpointDiscovery = false

 };

private static DocumentClient client =

 new DocumentClient(new Uri(_endPoint),

 _authKey,

 _connectionPolicy);

Since the declaration is at the class level, you need to make a small

modification to have a method of the repository class return the fully

configured instance of the client. The new code is shown in Listing 6-2.

Note that you now have a new method that creates the ConnectionPolicy

object, configures it with the preferred regions list, and then returns a new

instance of the DocumentClient object. The connection policy specifies

that reads should be first served from the Central US region and then from

the West US 2 region.

Listing 6-2.  Configuring the Preferred Regions List

private static DocumentClient client = GetNewDocumentClient();

private static DocumentClient GetNewDocumentClient()

{

 ConnectionPolicy _connectionPolicy =

 new ConnectionPolicy {

 EnableEndpointDiscovery = false

 };

 _co�nnectionPolicy.PreferredLocations

 .Add(LocationNames.CentralUS);

Chapter 6 Working with a Globally Distributed Database

213

 �_co�nnectionPolicy.PreferredLocations

 .Add(LocationNames.WestUS2);

 return new DocumentClient(new Uri(_endPoint),

 �_authKey,

_connectionPolicy);

}

�Implementing a Multi-Master Database
In general, having a single write region fits most application scenarios.

However, there are cases when more write regions are needed to scale the

application better. This configuration is known as multi-master.

�Application Scenario
To explain this, imagine a scenario where a company has many offices

across two continents (for example, America and Europe). This company

has an application where thousands of users add, modify, and delete

documents in an Azure Cosmos DB database. The configuration of the

database includes a single write region in America with multiple read

regions replicated in America and Europe. Users in Europe normally don’t

use information from America and vice versa, the only exception being

the higher executives that need information from both places. To reduce

latency and to provide an increased throughput it is determined that writes

should happen on at least one region on each continent. Not only will this

configuration make the application perform better, it can help with the

expansion planned for the near future when the company starts operating

in Asia.

The application is already deployed and working in multiple regions

with an Azure traffic manager that routes traffic to the closest region to

be served.

Chapter 6 Working with a Globally Distributed Database

www.allitebooks.com

http://www.allitebooks.org

214

�Implementing the Solution
Azure Cosmos Db does not provide writes to multiple regions out of the

box. For this to work, you need to create two separate database accounts

and configure the application to use them. This configuration is not exactly

the same as you have seen before where Azure handles the data replication

automatically. Instead, it will be the application’s responsibility to read and

write to the appropriate region depending on where the user is connecting

from. Figure 6-7 shows the final architecture.

In this sample scenario, the database in America has a write region with

multiple read regions; in Europe there is also a write region with multiple

read regions. Now, you will add to the American database a read region

in Europe, and in the same way the European database will have a read

region in America. You want this to happen because Azure will replicate the

information across continents automatically, and then the application will

have both sets of information closer to the users who need them.

Figure 6-7.  Implementing multiple write regions (image taken from
http://bit.ly/cosmos-db-multi-write)

Chapter 6 Working with a Globally Distributed Database

http://bit.ly/cosmos-db-multi-writeChange & to the word and in two places

215

Now, let’s imagine the write region in America is East US and it has a

read region in North Europe. For the European database, its writes region is

the North Europe region and the read region is East US. This configuration

matches the architecture defined in Figure 6-7.

The application then needs to know what to do with this configuration.

For this, you need to configure the region connection preference as

described earlier in this chapter. Listing 6-3 shows how this configuration

happens.

Listing 6-3.  Configuring Connections to Multi-Write Regions

ConnectionPolicy writeClientPolicy =

 new ConnectionPolicy {

 �ConnectionMode = ConnectionMode.Direct,

 �ConnectionProtocol = Protocol.Tcp

 };

writeClientPolicy.PreferredLocations

 .Add(LocationNames.EastUS);

writeClientPolicy.PreferredLocations

 .Add(LocationNames.NorthEurope);

string americaDB = ConfigurationManager

 .AppSettings["CosmosDBAmericaEndPoint"];

DocumentClient writeClient =

 �new DocumentClient(new Uri(americaDB),

 writeRegionAuthKey,

 writeClientPolicy);

ConnectionPolicy readClientPolicy =

 new ConnectionPolicy {

 �ConnectionMode = ConnectionMode.Direct,

 �ConnectionProtocol = Protocol.Tcp

 };

Chapter 6 Working with a Globally Distributed Database

www.allitebooks.com

http://www.allitebooks.org

216

readClientPolicy.PreferredLocations

 .Add(LocationNames.NorthEurope);

readClientPolicy.PreferredLocations

 .Add(LocationNames.EastUS);

string europeDB = ConfigurationManager

 .AppSettings["CosmosDBEuropeEndPoint"];

DocumentClient readClient =

 �new DocumentClient(new Uri(europeDB),

 readRegionAuthKey,

 readClientPolicy);

What you see in the code shown in Listing 6-3 is that the selected read

and write regions will be determined by the preferred location list, but also

by the traffic manager. In the case of American users, the selected read and

write locations will be East US; for European users, the locations will be

North Europe.

The application in this case will need to ensure that writes use the

writeClient object and reads use the readClient object. Otherwise, the

operations will not be done in the necessary regions.

With this, writes (add a new document, replace, or delete) will not

require any code changes because the destination is already determined

correctly. In the case of reads, if the queries require data from both

continents, two individual query executions need to happen (one for each

continent) and a manual merge of both results, as shown in Listing 6-4.

Chapter 6 Working with a Globally Distributed Database

217

Listing 6-4.  Querying from Two Different Databases

public async Task<IEnumerable<Doc>> ReadDocsAsync()

{

 IDocumentQuery<Document> writeAccount =

 (from d in

 �writeClient.CreateDocumentQuery<Doc>

 (this.contentCollection)

 select d).AsDocumentQuery();

 IDocumentQuery<Doc> readAccount =

 (from d in

 �readClient.CreateDocumentQuery<Doc>

 (this.contentCollection)

 select d).AsDocumentQuery();

 List<Doc> documents = new List<Doc>();

 �while (writeAccount.HasMoreResults

 || readAccount.HasMoreResults)

 {

 IList<Task<FeedResponse<Doc>>> results =

 new List<Task<FeedResponse<Doc>>>();

 if (writeAccount.HasMoreResults)

 {

 results.Add(writeAccount.ExecuteNextAsync<Doc>());

 }

 if (readAccount.HasMoreResults)

 {

 results.Add(readAccount.ExecuteNextAsync<Doc>());

 }

Chapter 6 Working with a Globally Distributed Database

www.allitebooks.com

http://www.allitebooks.org

218

 IList<FeedResponse<Doc>> docFeedResult =

 �await Task.WhenAll(results);

 foreach (FeedResponse<Doc> feed in docFeedResult)

 {

 documents.AddRange (feed);

 }

 }

 return documents;

}

�Summary
In this chapter, you reviewed in detail the global distribution

characteristics of Azure Cosmos DB. You learned, step by step, how to

use the Azure portal to replicate a database to different regions. Then you

examined failover and how to configure manual and automatic failover

for your database so application continuity is guaranteed even in the

event of region outages. The chapter ended by describing how to connect

to a preferred location and the configuration changes necessary for an

application that needs to have multiple write regions.

Chapter 6 Working with a Globally Distributed Database

219© José Rolando Guay Paz 2018
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1_7

CHAPTER 7

Advanced Concepts
When working with Azure Cosmos DB, there are several concepts that,

while they are familiar if you are coming from a relational database, they

will look completely alien. This is because they are implemented in a

different language or syntax. For example, to create stored procedures,

triggers, and user-defined functions you use the JavaScript language.

The implementation of JavaScript is based on the ECMAScript 2015

specification (you can find more about this specification at

www.ecma-international.org/ecma-262/6.0/).

You will examine how to properly create and execute these elements.

In addition, you will see how to work with dates in JSON documents

and you will learn some tips for backing up, restoring, and testing the

performance of a database.

�Working with Transactions
Transactions are a typical and extremely important concept in relational

databases. A transaction is a set of operations that change the data

stored in the database in some way, but for these changes to persists, all

operations must succeed. In the event of a failure in any operation, all

other operations must roll back their changes to leave the data intact.

A successful transaction normally ends with a commit command that

www.allitebooks.com

http://www.ecma-international.org/ecma-262/6.0/
http://www.allitebooks.org

220

confirms the success and instructs the database to make all data changes

permanent. Unsuccessful transactions issue a rollback command that

undoes all data changes and returns the data to its original state.

In Azure Cosmos DB, transactions fully support ACID (atomicity,

consistency, isolation, and durability). These four terms define the

guarantees for transactions to maintain the integrity of the data. Atomicity

defines that all operations are executed as a single unit. They all need

to be executed and all must succeed or none at all. Consistency refers

to the guarantee that data will be in a valid state between transactions.

Isolation makes sure that data being used within a transaction cannot be

modified by any other transaction until it is committed or rolled back.

Durability ensures that data changes are permanent once the transaction

is committed.

As mentioned, stored procedures and triggers are created using

JavaScript. This server-side JavaScript code is stored and executed in

the same memory space where the database is running. This fact is

what allows Azure Cosmos DB to guarantee ACID for all operations that

are part of a single stored procedure or trigger. This is a very important

consideration and distinction of Azure Cosmos DB. Furthermore, a stored

procedure or trigger is implicitly considered a transaction and the successful

execution of it constitutes an implicit commit whereas throwing an error

performs an automatic rollback.

�Implementing Stored Procedures
A stored procedure consists of a JavaScript function and an id that

identifies it. Within the function, there are several objects that give access

to the execution context, the request sent to the server, the response that

will be sent back to the client, and the collection being accessed.

To illustrate the implementation, let’s create a stored procedure that

will replace the current functionality for creating student documents in the

sample application. Listing 7-1 shows the code of the stored procedure.

Chapter 7 Advanced Concepts

221

Listing 7-1.  Stored Procedure to Create a New Student Document

/*

* �createStudent: Stored procedure to create a new student

document in an Azure Cosmos DB database

*

* @param {student} student - The student document being created.

*

*/

function createStudent(student) {

 // Get the context, collection and response objects

 var context = getContext();

 var collection = context.getCollection();

 var response = context.getResponse();

 // Get the Uri to the collection

 var collectionLink = collection.getSelfLink();

 // Call the function to insert the new student

 // document in the collection

 insertDoc(student, function(error, studentDoc){

 if (error) throw error;

 var responseBody = {

 student : studentDoc

 };

 response.setBody(responseBody);

 })

 // Function to create the new student document

 // in the collection

 function insertDoc(student, callback) {

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

222

 var options = {

 disableAutomaticIdGeneration : false

 };

 var wasCreated = collection

 .createDocument(collectionLink,

 student, options,

 function(err, doc) {

 callback(err, doc);

 }

);

 if (!wasCreated){

 �throw new

 Error("Student could not be created");

 }

 }

}

Let’s examine this function in detail. The function accepts as a

parameter the student document that is passed from the application with

the student information.

In the first part of the function you get access to the three objects you

are interested in. They are the context object, which provides access to all

the operations that can be performed in the Azure Cosmos DB database.

From the context object you then get the collection you are working

on and the response that will be sent back to the client. The collection is

defined by the client application at the time of connection.

 // Get the context, collection and response objects

 var context = getContext();

 var collection = context.getCollection();

 var response = context.getResponse();

Chapter 7 Advanced Concepts

223

The following part is the call to a second function that handles the

actual data manipulation. You are sending two pieces of information: the

student document and a callback function. The reason this is done this

way is to have control of the execution flow.

In JavaScript, functions are of type object, which makes it possible

to pass them as parameters. This concept is taken from a programming

paradigm called functional programming. The callback function can

be called inside the function where it was passed as a parameter. Using

callback functions makes it easy to define what will happen after the

principal function has completed its execution. If the callback function

is not called, then it just won’t do anything. If you didn’t have callback

functions, you would need to expect some return value from the function,

evaluate it, and determine whether or not to execute some additional

code. With this mechanism, the callback function is used if needed and

that is determined from within the principal function.

 // Call the function to insert the new student

 // document in the collection

 insertDoc(student,

 function(error, studentDoc){

 if (error) throw error;

 var responseBody = {

 student : studentDoc

 };

 response.setBody(responseBody);

 })

The purpose of this particular callback function is to evaluate whether

there has been an error when adding the new document to the collection.

In the event of an error, nothing will happen and an automatic rollback

will be issued. If there is no error, then a JSON response is built with

the student document, which is then sent back to the client using the

setBody() function of the response object.

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

224

The final part of the stored procedure is the internal function that adds

the document in the collection. The first thing you need to do is create a

CreateOptions object that will provide the necessary settings to handle

ids. In this case, because the application is not generating its own ids

but it is relying on Azure Cosmos DB to do so, you need to override the

document creation default behavior, which is to not to generate an id for

the document. This is done by setting the disableAutomaticIdGeneration

setting to false.

Next, you call the createDocument() method from the collection

object. This method will return true if the document was successfully

added to the collection and false otherwise. The code passes four

parameters: the collection Uri so it knows where to create the document,

the actual document, and the creation options. The last parameter is an

anonymous function that will be called after the method execution. This

function will take two parameters: an error object if something happened

that prevented the document creation and the document being inserted.

This function will run the callback function that was passed to the

insertdoc() function.

If the createDocument() method failed for any reason, it will return

false as noted earlier and you capture that value in the wasCreated

variable. You evaluate this variable later and if it did not succeed then the

function will throw an error.

 // Function to create the new student document

 // in the collection

 function insertDoc(student, callback) {

 var options = {

 disableAutomaticIdGeneration : false

 };

 var wasCreated = collection.createDocument(collectionLink,

 student, options,

Chapter 7 Advanced Concepts

225

 function(err, doc) {

 callback(err, doc);

 }

);

 if (!wasCreated){

 throw new Error("Student could not be created");

 }

}

�Creating a Stored Procedure
There are two ways to create a stored procedure. The first one is using the

Azure portal. The second one is programmatically using the SDK.

�Creating a Stored Procedure in the Azure Portal

Using the Azure portal is very straightforward. Open the Data Explorer

from the menu on the left. Then click the collection name and from there

click the New Stored Procedure at the top, as shown in Figure 7-1.

Figure 7-1.  Creating a new stored procedure

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

226

You are now presented with a textbox to enter the stored procedure

id and a text area where you will type the JavaScript function that is

executed when calling the stored procedure. Note that the id of the stored

procedure can be named differently than the function; while this is valid,

I recommend naming them the same to keep consistency and avoid

confusion later.

Now type createStudent for the id of the stored procedure and type

in the code from Listing 7-1, as shown in Figure 7-2. Once everything is

entered, click the Save button.

�Creating a Stored Procedure Programmatically

When creating a stored procedure programmatically with the .NET

SDK, you need to create a StoredProcedure object. With this object,

you define the id and body of the stored procedure. Listing 7-2

Figure 7-2.  The createStudent stored procedure

Chapter 7 Advanced Concepts

227

shows how the object is created. All you need to do next is call the

CreateStoredProcedureAsync() method which accepts two parameters:

the collection Uri and the stored procedure object. As you can see in the

code, the stored procedure body is defined as a string passed to the Body

property of the object. While this can be done, you might lose certain

capabilities of the editor in the Azure portal such as IntelliSense and color

highlighting for keywords. It will depend on what environment you feel

more comfortable with.

Listing 7-2.  Creating a Stored Procedure Programmatically

var createStudentSProc = new StoredProcedure

{

 Id = "createStudent",

 Body = @"

/*

* createStudent: Stored procedure to create

* a new student document in an Azure Cosmos DB database

*

* @param {student} student:

* The student document being created.

*/

function createStudent(student) {

 // Get the context, collection and response objects

 var context = getContext();

 var collection = context.getCollection();

 var response = context.getResponse();

 // Get the Uri to the collection

 var collectionLink = collection.getSelfLink();

 // Call the function to insert the new student

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

228

 // document in the collection

 insertDoc(student, function(error, studentDoc){

 if (error) throw error;

 var responseBody = {

 student : studentDoc

 };

 �response.setBody(responseBody);

 })

 // Function to create the new student document

 // in the collection

 function insertDoc(student, callback) {

 var options = {

 disableAutomaticIdGeneration : false

 };

 �var wasCreated = collection

 .createDocument(collectionLink,

 student,

 options,

 function(err, doc) {

 callback(err, doc);

 });

 if (!wasCreated){

 throw new

 Error("Student could not be created");

 }

 }

}"

};

Chapter 7 Advanced Concepts

229

// create the stored procedure in the collection

Uri collectionUri =

 �UriFactory.CreateDocumentCollectionUri

 (_dbName, _collectionName);

StoredProcedure createdStoredProcedure =

 await client.CreateStoredProcedureAsync

 (collectionUri,

 createStudentSProc);

�Executing a Stored Procedure
Let’s now use the stored procedure you created in the sample application.

Open the application in Visual Studio and then open the Repository.cs

file located in the Models folder. You will add a new async method called

CreateStudentWithStoredProcAsync() that will accept a parameter that

represents the student document. This method is shown in Listing 7-3. The

definition of the method is very similar to the CreateStudentAsync() one.

Listing 7-3.  Calling a Stored Procedure Using the .NET SDK

public static async Task<Document>
� CreateStudentWithStoredProcAsync(T student)
{
 Uri storedProcedureUri =
 �UriFactory.CreateStoredProcedureUri

 (_dbName,
 _collectionName,
 "createStudent");

 var st = student as Student;

 RequestOptions requestOptions = new RequestOptions
 {
 PartitionKey = new PartitionKey(st.PostalCode)
 };

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

230

 return await

 client.ExecuteStoredProcedureAsync<Document>

 �(storedProcedureUri,

requestOptions,

student);

}

The first thing you need to do is get the Uri of the stored procedure.

This is done using the CreateStoredProcedureUri() method from the

UriFactory class. This method will take three parameters: the database,

collection, and stored procedure names.

The following step is to create a RequestOptions object to define the

partition key from your collection. This is done by reading the postal code

property from the student document. If the collection doesn’t have a

partition key, this can be omitted.

Finally, the stored procedure is executed by calling the

ExecuteStoredProcedureAsync() asynchronous method. This method

takes three parameters: the stored procedure Uri, the RequestOptions

object, and the new document to be inserted.

Now you need to adjust the controller to call this new method instead

of the CreateStudentAsync() method currently being used. For this, open

the StudentController.cs file in the Controllers folder.

Find the CreateAsync() action method and replace the call to

CreateStudentAsync() with CreateStudentWithStoredProcAsync(), as

shown in Listing 7-4.

Listing 7-4.  Creating an Action Method in StudentController.cs

// POST: Student/Create

[HttpPost]

[ActionName("Create")]

[ValidateAntiForgeryToken]

Chapter 7 Advanced Concepts

231

public async Task<ActionResult> CreateAsync(Student student)

{

 if (!ModelState.IsValid)

 return View(student);

 try

 {

 Repository<Student>

 .CreateStudentWithStoredProcAsync(student);

 return RedirectToAction("Index");

 }

 catch

 {

 return View(student);

 }

}

After these modifications, compile and run the application. It will

behave exactly as before but now it will use the stored procedure to create

new documents into the database.

�Implementing Triggers
In Azure Cosmos DB, a trigger is similar to a stored procedure in the sense

that it is a JavaScript function with an id; however, triggers are different

in their execution because they run before or after a data manipulation

operation (create, update, or delete).

Similar to stored procedures, triggers have access to the Context object

but contrary to them, they cannot take any parameters. Triggers that run

before the data operation are called pre-triggers and those that run after

the operation are called post-triggers.

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

232

Pre-triggers have access to the request object and post-triggers have

access to the response object. Also, both pre-triggers and post-triggers

run within the same transaction context as the operation they are bound

to. This is important because any error thrown by the triggers will halt the

operation and roll back any modifications that have been made.

A big difference between Azure Cosmos DB triggers and relational

database triggers is that, as opposed as relational databases, triggers in

Azure Cosmos DB are optional and must be specified on each operation.

This is done for performance reasons but also to reduce the RUs required

for the operations. The way to include triggers in the execution of

operations is by adding them to the RequestOptions object.

Let’s look at an example. Imagine you have a request in which you

need to identify students that can be considered geniuses. For this

purpose, the criterion is to find out if a student is 15 years old or younger.

You want to do this in a way that every student is evaluated and a field is

set to true. Listing 7-5 illustrates a trigger that does this. Note that this

calculation for age does not take daylight savings or different time zones,

therefore it may not be 100% accurate on some extreme cases.

Listing 7-5.  Trigger to Identify If a Student is 15 Years Old or Younger

function preCreateStudentIdentifyGenius(){

 var context = getContext();

 var request = context.getRequest();

 // student document to be created in the current operation

 var doc = request.getBody();

 // Find age of student

 var birthDate = new Date(doc.birthDate);

 var ageDifMs = Date.now() - birthDate.getTime();

 var ageDate = new Date(ageDifMs);

 var age = Math.abs(ageDate.getUTCFullYear() - 1970);

Chapter 7 Advanced Concepts

233

 // Verify if the student is 15 years old or younger

 if (age <= 15) {

 doc.genius = true;

 }

 // update the document that will be created

 request.setBody(doc);

}

The trigger is getting the context and request objects at the

beginning. With the request object you have access to the request body

using the getBody() method. The getBody() method will return the JSON

document representing the entity you are working on, which in this case is

a student document.

Then the trigger attempts to calculate the age of the student based on

the birth date, which is then used to evaluate if he or she is 15 years old

or younger. If so, a new property is added to the document indicating the

student is a genius.

Finally, the modified document is saved back to the body of the request

so it can be processed later.

After this is in place, you can modify the client to include the trigger

in the operation so it gets called. Listing 7-6 shows the adjustment to the

RequestOptions object.

Listing 7-6.  Including a Trigger for Execution in the RequestOptions

Object

RequestOptions requestOptions = new RequestOptions {

 PreTriggerInclude =

 new List<string>

 { "preCreateStudentIdentifyGenius" }

};

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

234

�Creating a Trigger
Triggers, similar to stored procedures, can be created either in the Azure

portal or programmatically.

�Creating a Trigger in the Azure Portal

To create a trigger in the Azure portal, open the Data Explorer from the

menu and then click the collection. From the menu at the top, click the

New Trigger button shown in Figure 7-3.

This opens a new page with a textbox to type the name of the trigger.

You then need to select if it is a pre- or post-trigger in the Trigger Type

drop-down. Then you select whether the trigger should fire for all

operations or for one of create, delete, or replace. Finally, at the bottom

is the area to type in the trigger function. This is shown in Figure 7-4. Note

that in this figure I have selected a pre-trigger that is going to run before

creating documents. Once everything is ready, just click the Save button.

Figure 7-3.  Creating a trigger from the Azure portal

Chapter 7 Advanced Concepts

235

�Creating a Trigger Programmatically

To programmatically create a trigger, you need to use a Trigger object.

This object has the same properties as in the Azure portal. You will have

to define the id of the trigger; the trigger function is passed as a string

in the Body property. The type of trigger is passed in the TriggerType

property which accepts values from the TriggerType enumeration

that has two possible values: Pre or Post. The trigger operation is

passed in the TriggerOperation property that accepts values from the

TriggerOperation enumeration which contains values for All, Create,

Delete, Replace, and Update. Listing 7-7 shows a method that creates a

trigger programmatically.

Once the Trigger object is created, you create the Uri of the

collection where the trigger will be added. Then you need to call the

CreateTriggerAsync() method that takes two parameters. The first one is

the collection Uri and the second one is the Trigger object.

Figure 7-4.  Configuring a trigger

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

236

Listing 7-7.  Creating a Trigger Programmatically

public static async Task<Trigger> CreateAzureCosmosDBTriggerAsync()

{

 var createTrigger = new Trigger

 {

 Id = "preCreateStudentIdentifyGenius",

 Body = @"function preCreateStudentIdentifyGenius(){

 var context = getContext();

 var request = context.getRequest();

 // student document to be created in

 // the current operation

 var doc = request.getBody();

 // find age of student

 var birthDate = new Date(doc.birthDate);

 �var ageDifMs = Date.now()

 - birthDate.getTime();

 var ageDate = new Date(ageDifMs);

 var age = Math.abs(

 ageDate.getUTCFullYear()- 1970);

 �// Verify if the student is

// 15 years old or younger

 if (age <= 15) {

 doc.genius = true;

 }

 // update the document that will be created

 request.setBody(doc);

 }",

 TriggerType = TriggerType.Pre,

 TriggerOperation = TriggerOperation.Create

 };

Chapter 7 Advanced Concepts

237

 Uri collectionUri =

 �UriFactory.CreateDocumentCollectionUri

 (_dbName, _collectionName);

 return await

 �client.CreateTriggerAsync

 (collectionUri, createTrigger);

}

�Implementing User-Defined Functions
A user-defined function (UDF) in Azure Cosmos DB is a JavaScript

function that can be used to implement simple business logic. UDFs don’t

have access to the context object and can only be used inside queries.

This is a huge distinction from stored procedures and triggers, and it has

an important implication because it means that UDFs can only be run on

read regions.

Let’s now create a UDF that can help you in your sample application.

In your application you list all the students and show all the properties

stored in the database. Let’s create a new page where you will see only

the first and last name of the students and their age. In this case, you

have the student’s birthdate but not the age, so let’s create a UDF that can

calculate it.

The code for this function is in Listing 7-8.

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

238

Listing 7-8.  UDF to Calculate the Age of a Student Based on

Birthdate

function studentAge (studentBirthDate) {

 var birthDate = new Date(studentBirthDate);

 var ageDifMs = Date.now() - birthDate.getTime();

 var ageDate = new Date(ageDifMs);

 var age = Math.abs(ageDate.getUTCFullYear() - 1970);

 return age;

}

For this calculation you’re taking the code used in Listing 7-5 to

calculate the age of a student. Note that in the function there is no context

object and it only contains JavaScript functions.

�Creating a UDF
To add the UDF to the collection, similar to stored procedures and triggers,

there are two options: using the Azure portal and programmatically.

�Creating a UDF in the Azure Portal

To add a new UDF using the Azure portal, click in Data Explorer from

the left menu and then click New UDF at the top of the page, as shown in

Figure 7-5.

Chapter 7 Advanced Concepts

239

After you click the New UDF button, a new page opens up with two

fields to fill. The first one is the UDF id and the second one is the function

that will be executed. As you can see in Figure 7-6, enter studentAge in the

Id field; in the function body field, type the code from Listing 7-8.

Figure 7-5.  Creating a UDF using the Azure portal

Figure 7-6.  Creating the studentAge UDF

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

240

�Creating a UDF Programmatically

The process to create a UDF programmatically is very similar to the one

you saw for creating a trigger or stored procedure. In this case, you need to

use a UserDefinedFunction object and you set the Id and Body properties

with the same values you saw in the previous section.

In Listing 7-9, you can see how this is implemented. The first thing

you do is create the UserDefinedFunction object as described earlier.

The Id of the function is studentAge and the Body property contains the

function, which is the same as in Listing 7-8. Once the object is created,

you create the Uri for the collection where the UDF will be stored.

Finally, you call the CreateUserDefinedFunction() method, passing as

parameters the two objects you created before: the collection Uri and the

UserDefinedFunction object.

Listing 7-9.  Method to Create a UDF Programmatically

public static async Task<UserDefinedFunction> createUDF()

{

 var createUDF = new UserDefinedFunction

 {

 Id = "studentAge",

 Body = @"function studentAge (studentBirthDate) {

 var birthDate = new Date(studentBirthDate);

 �var ageDifMs = Date.now() - birthDate.getTime();

 var ageDate = new Date(ageDifMs);

 �var age = Math.abs(ageDate.getUTCFullYear()- 1970);

 return age;

 }"

 };

Chapter 7 Advanced Concepts

241

 Uri collectionUri =

 UriFactory.CreateDocumentCollectionUri(

 _dbName,_collectionName);

 return await

 client.CreateUserDefinedFunctionAsync(

 �collectionUri, createUDF);

}

�Using a UDF
Now that you have created a UDF, you are going to continue with the

scenario and implement the new page in your sample application to list

the names and ages of the students.

The first thing you need to do is add a new method to the Repository

class where you will be querying the database to get the properties you

want from the collection. In addition, the query will use the UDF you just

created to populate a new property called studentAge. I’m assuming at

this point the sample application is open in Visual Studio.

Open the Repository.cs file from the Models folder. You are going to

create a new async method named GetStudentsAgeAsync(). The method

will not accept any parameters. The method’s code is shown in Listing 7-10.

Listing 7-10.  GetStudentsAgeAsync() Method in the Repository Class

public static async Task<IEnumerable<T>> GetStudentsAgeAsync()

{

 Uri collectionUri =

 UriFactory.CreateDocumentCollectionUri(

 _dbName,_collectionName);

 FeedOptions feedOptions = new FeedOptions {

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

242

 MaxItemCount = -1,

 �EnableCrossPartitionQuery = true

 };

 string sqlStatement =

 @"SELECT s.firstName, s.lastName,

 �udf.studentAge(s.birthDate) AS studentAge

 FROM s";

 SqlQuerySpec querySpec = new SqlQuerySpec()

 {

 QueryText = sqlStatement,

 };

 IDocumentQuery<T> students =

 �client.CreateDocumentQuery<T>(collectionUri,

 �querySpec, feedOptions).AsDocumentQuery();

 List<T> listOfStudents = new List<T>();

 while (students.HasMoreResults)

 {

 listOfStudents.AddRange(

 await students.ExecuteNextAsync<T>());

 }

 return listOfStudents;

}

Chapter 7 Advanced Concepts

243

The code implements a SQL query where you read the firstName and

lastName properties from the documents in the collection. In addition,

you’ve added a call to the UDF, passing as a parameter the birthDate

property. Note that for calling UDFs you will need to use the udf. prefix.

If you don’t use the prefix, you will get an error because this is how Azure

Cosmos DB identifies the function as a UDF. The rest of the code is very

similar to the method built in Listing 5-25 in Chapter 5, which implements

a query to the database using SQL syntax.

What follows is to create a new class that will represent this reduced

version of the Student.cs class that you created in Chapter 3. The class

will contain only three properties: the first name, last name, and age of a

student. The following steps will guide you through the process of adding

this class:

	 1.	 Right-click in the Models folder in the Solution

Explorer window. From the context menu, select

Add and then Class, as shown in Figure 7-7.

Figure 7-7.  Adding a new class in the Models folder for your
document

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

244

	 2.	 When the Add New Item window opens, type the

name of the file as StudentAge.cs and click the Add

button, as shown in Figure 7-8.

	 3.	 The class at this point will be empty. Add properties

representing each of the properties you want to

show in your new page. These properties are shown

in Listing 7-11.

Listing 7-11.  New Model Representing a Student with Only the

Name and Age

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

Figure 7-8.  Creating a new class named StudentAge.cs

Chapter 7 Advanced Concepts

245

namespace CosmosUniversity.Web.Models

{

 public class StudentAge

 {

 public string Id { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public int StudentAge { get; set; }

 }

}

	 4.	 As you saw in Chapter 3, the names of the properties

in the class use Pascal Case notation while the

JSON document uses Camel Case. This might cause

some problems but they are easily solved by adding

annotations to match the casing between both

formats. To make these annotations, you will need

to add the Newtonsoft.Json namespace to the class,

as shown in Listing 7-12.

Listing 7-12.  StudentAge Model Now with Annotations in the Class

Properties to Match the JSON Document’s Camel Case

using Newtonsoft.Json;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

namespace CosmosUniversity.Web.Models

{

 public class StudentAge

 {

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

246

 [JsonProperty(PropertyName = "id")]

 public string Id { get; set; }

 [JsonProperty(PropertyName = "firstName")]

 public string FirstName { get; set; }

 [JsonProperty(PropertyName = "lastName")]

 public string LastName { get; set; }

 [JsonProperty(PropertyName = "studentAge")]

 public int StudentAge { get; set; }

 }

}

	 5.	 The next step is to add an action method in the

student controller. Open the StudentController.cs

file in the Controllers folder. The code of the action

method is similar to the IndexAsync() method but it

uses the StudentAge model you created. The code of

the method is in Listing 7-13.

Listing 7-13.  AgeList Action Method

[ActionName("AgeList")]

public async Task<ActionResult> AgeListAsync()

{

 var students = await Repository<StudentAge>.GetStudentsAgeAsync();

 return View(students);

}

In Listing 7-13 you are calling the

GetStudentsAgeAsync() method from the

Repository class and passing the results to the

view for rendering to the client.

Chapter 7 Advanced Concepts

247

	 6.	 The final step is to create the view that will render the

results to the user. From the AgeList action method,

right-click the top of the View(students) code and

select Add View, as shown in Figure 7-9. This will

open the Add View window shown in Figure 7-10.

Figure 7-9.  Adding a view to render the results of the AgeList action
method

Figure 7-10.  The Add View window

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

248

	 7.	 In the Add View window, type AgeList in the view

name field. Select List for the template because you

want to show a list of records. For this template to

work, you need to identify the Model class. Select

from the list StudentAge (CosmosUniversity.Web.

Models). This is the class you created earlier to use

for representing the data. Then uncheck the option

to create as a partial view and check the following

two options to reference script libraries and use a

layout page. Leave the last field empty to use the

same design as the rest of the site. Finally, click the

Add button.

	 8.	 When the view is created, it will open and you will

see it is a simple table with headers automatically

using the name of the fields they represent and a for

loop to iterate over all of the records returned in the

view model.

	 9.	 You are going to make a few tiny modifications to

change the page title and caption to List of Students

with Age. Also, remove the link to create a new

record and the column in the table where the links

to view details, edit, and delete are. The purpose of

this page is just to list the students. The final code for

the view is in Listing 7-14.

Listing 7-14.  AgeList View

@model IEnumerable<CosmosUniversity.Web.Models.StudentAge>

@{

 ViewBag.Title = "List of Students with Age";

}

Chapter 7 Advanced Concepts

249

<h2>List of Students with Age</h2>

<table class="table">

 <tr>

 <th>

 @Html.DisplayNameFor(model => model.FirstName)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.LastName)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.Age)

 </th>

 </tr>

@foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.FirstName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.LastName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Age)

 </td>

 </tr>

}

</table>

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

250

	 10.	 Once you save the modifications for the view,

compile and run the application. To open this new

page, use the http://localhost:[port]/Student/

AgeList URL. In the URL, use the port Visual Studio

assigned in your environment. You should see a

result similar to the one shown in Figure 7-11.

�Working with Dates
In Azure Cosmos DB, dates are serialized as strings using the ISO 8601

format. There is no native data type for DateTime as there is in relational

databases. This is because Azure Cosmos DB implements the native JSON

data model in which there are six basic types (string, number, boolean,

array, object, and null). Fortunately, JSON is flexible enough to represent

complex data types from these primitives, composing them as objects or

arrays.

Figure 7-11.  Result of the query using a UDF to calculate the age of
students

Chapter 7 Advanced Concepts

251

The fact that dates are serialized as strings should not be considered a

concern. There are several benefits.

•	 Strings can be compared, and the relative ordering

of the DateTime values is preserved when they are

transformed to strings.

•	 This approach doesn’t require any custom code or

attributes for JSON conversion.

•	 The dates as stored in JSON are human readable.

•	 This approach can take advantage of Azure Cosmos

DB’s index for fast query performance.

The document in Listing 7-15 shows how the dates are serialized.

Listing 7-15.  JSON Document with a Date Property Serialized as a

String

{

 "id": "497c1321-0d58-4fdc-a99b-85eca0815a95",

 "firstName": "Jose",

 "lastName": "Guay",

 "birthDate": "1974-04-07T00:00:00",

 "address1": "123 Main St.",

 "address2": null,

 "city": "Chicago",

 "state": "IL",

 "postalCode": 60601,

 "phoneNumber": "3126130813",

 "_rid": "hQlzAP7VMgAKAAAAAAAAAA==",

 �"_self":

"db�s/hQlzAA==/colls/hQlzAP7VMgA=/docs/hQlzAP7VMg

AKAAAAAAAAAA==/",

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

252

 "_etag": "\"00005d48-0000-0000-0000-59f7fde60000\"",

 "_attachments": "attachments/",

 "_ts": 1509424614

}

As you can see in Listing 7-15, the birthDate property is in ISO 8601

format; however, the internal timestamp property (_ts) is serialized as a

Unix timestamp, which is a number representing the number of elapsed

seconds since January 1, 1970. This format is available for your dates as

well by implementing the UnixDateTimeConverter class. More information

on the class can be found at http://bit.ly/UnixDateTimeConverter.

The two date formats have both advantages and disadvantages.

The advantage of the Unix format is that it has no ambiguity. It is a clear

number (of seconds) that can be easily converted into a different format.

The big disadvantage is that it is really not human readable. Unless it is

converted, the number has no actual meaning when read by a person. This

is the big advantage of the ISO 8601 format: it can be read very easily.

An important consideration when querying documents involving date

ranges is that, for efficiency and performance, the indexing policy should be

configured for range indexing on strings. I covered indexing in Chapter 5.

�Backing Up and Restoring Azure Cosmos
DB Databases
Backing up databases is one of the most important tasks for any database

administrator. Backups can help recover deleted or corrupted data from a

database and can even help restore an entire database if it is accidentally

(or deliberately) deleted.

In Azure Cosmos DB, data is globally distributed (or replicated) to

multiple regions to provide a high level of redundancy in the event of

region failures. In addition to global distribution, Azure performs full,

Chapter 7 Advanced Concepts

http://bit.ly/UnixDateTimeConverter

253

automatic backups on all Azure Cosmos DB databases approximately

every four hours. On top of this, data and backups are geo-replicated to

make them even more resilient to failures.

Backups are performed in the background without affecting the

performance or availability of the databases, and most importantly, this

processing does not count towards your provisioned RUs.

�Backup Retention Policy
A very important consideration of these automatic backups is its

retention policy. Azure only keeps the last two backups, which gives

you approximately eight hours to respond to a data loss issue before the

data becomes unrecoverable. This is because after data is deleted, the

databases are still being backed up and after eight hours there would be

two backups that would not contain the deleted data.

In the event of a database deletion, the last two backups made are kept

for up to 30 days. This gives you plenty of time to decide if you want to

recover the database or not.

If your internal backup retention policy is different, you have to make

a copy of your databases using the Azure Cosmos DB Data Migration Tool

based on the schedule you need. Just take into consideration that the

processing of these backups will count towards your provisioned RUs.

�Restoring Databases
In the event you need to restore a database from the automatic backups,

you will need to contact Azure support either by filing a support ticket

or by phone. If the restore is from your own backups, then all you need

to do is copy back the information using the Azure Cosmos DB Data

Migration Tool.

Chapter 7 Advanced Concepts

www.allitebooks.com

http://www.allitebooks.org

254

�Summary
In this chapter you learned how to create stored procedures, triggers,

and user-defined functions using both methods: the Azure portal and

programmatically. You saw how they work, their properties, advantages,

and usages. You reviewed the concept of transactions and how they apply

to Azure Cosmos DB. You worked with a stored procedure that replaced

the typical call to the SDK to create documents; you also added a trigger

that manipulated the document prior to insertion and you created a user-

defined function that was later used in a query to report on stored data.

In the last part of the chapter you reviewed the date data type and how

it is handled by Azure Cosmos DB in JSON documents. You also learned

about full automatic backups performed by Azure and that to restore a

database from a backup you need to file a support ticket or call Azure

support.

Chapter 7 Advanced Concepts

255© José Rolando Guay Paz 2018
J. R. Guay Paz, Microsoft Azure Cosmos DB Revealed,
https://doi.org/10.1007/978-1-4842-3351-1

Index

A
APIs

DocumentDB, 49–51
graph database, 53–57
MongoDB, 51–53
REST API, 46–48
Table, 57–58

Azure Cosmos DB
account creation, 15–21
APIs, 3
consistency models, 4
database, 21–23
global distribution, 2
high availability, 4
installation

emulator, 12, 14–15
Visual Studio, 4–6, 8–11

internet-scale applications, 2
response time, 4
throughput, 3

B
Backups

restoring databases, 253
retention policy, 253

Bounded staleness consistency
model, 32

C
Consistency models

bounded staleness, 32
consistent prefix, 33
definition, 28
eventual, 31–32
queries, 34
session, 33
strong, 30–31
throughput and latency, 29

Consistent prefix consistency
model, 33

D
Database

ASP.NET web application
controllers, 82–84
MVC, 79
project creation, 78, 80–81
Visual Studio 77, 2017

class, 85–86, 88–89
creation

emulator, 62–65
New Collection, 66–69

data layer (see Data layer)
Data Migration Tool, 71
emulator

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3351-1
http://www.allitebooks.org

256

collection, 72
new document, 72–75
properties, 75–76

JSON, 69–70
Data layer

action method, 105
Add View, 106–110
asynchronous function,

104–105
controller actions, 113
create student, 111
DeleteStudentAsync()

method, 120–122
document

creation, 101
deletion, 102–103
replace, 102

Edit actions, 116–118
GetStudentsAsync()

method, 104
graphical user interface, 91
Index View, 113
.NET SDK, 92
Package Manager Console, 90
query, 114–115
querying, 97–101
repository class, 94–96
StudentController, 103

Data Migration Tool (DMT)
API, 125
features, 127
GUI (see Graphical user

interface (GUI))

installation
DocumentDB, 128–131
source code, 132–140

software requirements, 126
Dates

advantages and
disadvantages, 252

strings, 250–252
DocumentDB API

C#, 49–50
JSON, 50–51

E
Eventual consistency model, 31–32

F
Failover

automatic, 209–210
manual, 208–209

G, H
Global distribution

Azure Cosmos DB, 203, 205
read and write operations,

27–28
replication, 26, 206–208

Graph API, 53–57
Graphical user interface (GUI)

JSON files
advanced, 148–149
CLI, 157

Database (cont.)

Index

257

extract, 140
MongoDB, 154–155
Source Information, 142
SQL Server, 151, 153–154
Summary, 149
Target Information, 144–147

to manage packages, 90–91

I, J, K
Indexing

default policy, 160–162
modes, 162–163
paths, 163–165
policy, 165–166
property, 160

L
LINQ queries, 197–200

M, N, O
Master keys, 44
MongoDB API

GetDatabase() method, 52–53
.NET SDK, 52

Multi-master database
application, 213
multiple write regions, 214–218

P, Q
Partitioning

containers, 34–35

hash-based partitioning, 36
query and transactions, 37

Preferred regions, 211–213

R
Request unit, 38
Resource tokens, 45
REST API, 46–48

S
Security

encryption at rest, 41
firewall, 42–44
master keys, 44
resource tokens, 45

Session consistency
model, 33

SQL queries
application

cross-partition query, 192
Index() action, 188–189
modifications, 182
partitioned collection, 191
Project/Solution, 183–185
StudentController, 187
Views/Student, 185

built-in functions, 181
FROM clause, 171, 173–174
GetStudentsSQLAsync()

method, 193–195
iterations, 177–178
joins, 179–180

Index

www.allitebooks.com

http://www.allitebooks.org

258

ORDER BY clause, 176
parameterized SQL, 180–181,

195–197
SELECT clause, 169–171
SELECT statement, 167, 168
WHERE clause, 174–175

Stored procedures
creation

Azure Portal, 225–226
programmatically, 226–229

execution, 229–231
student documents, creating,

220–224
Strong consistency model, 30–31

T
Table API, 57–58
Throughput

estimation, 39, 41
request unit (RU), 38

Transactions, 219–220
Triggers

creation
Azure Portal, 234
programmatically, 235, 237

getBody() method, 233
pre/post, 231
RequestOptions object, 233

U, V, W, X, Y, Z
UDF, see User-defined function

(UDF)
User-defined function (UDF)

AgeList action, 246–247
AgeList View, 248–250
creation

Azure Portal, 238–239
programmatically, 240–241

GetStudentsAgeAsync()
method, 241–243

StudentAge model, 245–246

SQL queries (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Azure Cosmos DB
	What Is Azure Cosmos DB?
	Major Features
	Turnkey Global Distribution
	Multiple Data Models and APIs
	Elastically Scale Throughput and Storage on Demand
	High Availability and Response Time
	Five Consistency Models

	Setting Up the Development Environment
	Installing Microsoft Visual Studio
	Installing the Azure Cosmos DB Emulator

	Creating a Microsoft Azure Account and Subscription
	Provisioning an Azure Cosmos DB Database
	Summary

	Chapter 2: Learning Azure Cosmos DB Concepts
	Understanding Global Distribution
	Introducing Write and Read Regions

	Understanding the Consistency Models
	Scope of Consistency
	Strong Consistency Model
	Eventual Consistency Model
	Bounded Staleness Consistency Model
	Session Consistency Model
	Consistent Prefix Consistency Model
	Consistency for Queries

	Understanding Partitioning
	What Are Containers?
	How Does Partitioning Work?
	Designing for Partitioning
	Boundary for Query and Transactions
	No Storage and Performance Bottlenecks

	Understanding Throughput
	Specifying Request Unit Capacity
	Estimating Throughput

	Implementing Security
	Encryption at Rest
	Firewall Support
	Securing Access to Data
	Master Keys
	Resource Tokens

	Supported APIs
	Azure Cosmos DB REST API
	DocumentDB API
	MongoDB API
	Graph API
	Table API

	Summary

	Chapter 3: Working with an Azure Cosmos DB Database
	Creating Your Database
	Defining the Document
	Managing Documents
	Using the Azure Cosmos DB Emulator to Manage Documents
	Managing Documents with an Application
	Creating the ASP.NET Web Application
	Creating a Class for the Document
	Creating the Data Layer
	Querying the Database
	Creating a Document
	Replacing a Document
	Deleting a Document

	Using the Data Layer in the Controller and Completing the Application

	Summary

	Chapter 4: Importing Data into an Azure Cosmos DB Database
	Introducing the DocumentDB Data Migration Tool
	Software Requirements
	Features of the DocumentDB Data Migration Tool
	Installing the DocumentDB Data Migration Tool
	Installing the DocumentDB Data Migration Tool from the Source Code

	Importing Data with the DocumentDB Data Migration Tool GUI
	Importing JSON Files
	Importing from SQL Server
	Importing from MongoDB

	Importing Data with the DocumentDB Data Migration Tool Command Line Interface
	Summary

	Chapter 5: Querying an Azure Cosmos DB Database
	Understanding Indexing
	Understanding the Indexing Mode
	Understanding Index Paths
	Adjusting the Indexing Policy

	Querying an Azure Cosmos DB Database
	Learning the SELECT Statement
	Understanding the SELECT Clause
	Understanding the FROM Clause
	Understanding the WHERE Clause
	Understanding the ORDER BY Clause

	Working with Iterations
	Understanding Joins
	Working with Parameterized SQL Queries
	Using Built-In Functions

	Extending the Sample Application
	Implementing SQL Queries
	Implementing Parameterized Queries
	Implementing LINQ Queries

	Summary

	Chapter 6: Working with a Globally Distributed Database
	Configuring Global Distribution
	Configuring Failover
	Working with Manual Failover
	Configuring Automatic Failover

	Connecting to a Preferred Region
	Implementing a Multi-Master Database
	Application Scenario
	Implementing the Solution

	Summary

	Chapter 7: Advanced Concepts
	Working with Transactions
	Implementing Stored Procedures
	Creating a Stored Procedure
	Creating a Stored Procedure in the Azure Portal
	Creating a Stored Procedure Programmatically

	Executing a Stored Procedure

	Implementing Triggers
	Creating a Trigger
	Creating a Trigger in the Azure Portal
	Creating a Trigger Programmatically

	Implementing User-Defined Functions
	Creating a UDF
	Creating a UDF in the Azure Portal
	Creating a UDF Programmatically

	Using a UDF

	Working with Dates
	Backing Up and Restoring Azure Cosmos DB Databases
	Backup Retention Policy
	Restoring Databases

	Summary

	Index

